DWARF-5 basic functionality
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
325fac50 76#include <algorithm>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
73be47f5
DE
81/* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
b4f54984
DE
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84static unsigned int dwarf_read_debug = 0;
45cfd468 85
d97bc12b 86/* When non-zero, dump DIEs after they are read in. */
b4f54984 87static unsigned int dwarf_die_debug = 0;
d97bc12b 88
27e0867f
DE
89/* When non-zero, dump line number entries as they are read in. */
90static unsigned int dwarf_line_debug = 0;
91
900e11f9
JK
92/* When non-zero, cross-check physname against demangler. */
93static int check_physname = 0;
94
481860b3 95/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 96static int use_deprecated_index_sections = 0;
481860b3 97
6502dd73
DJ
98static const struct objfile_data *dwarf2_objfile_data_key;
99
f1e6e072
TT
100/* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102static int dwarf2_locexpr_index;
103static int dwarf2_loclist_index;
104static int dwarf2_locexpr_block_index;
105static int dwarf2_loclist_block_index;
106
73869dc2
DE
107/* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
dce234bc
PP
123struct dwarf2_section_info
124{
73869dc2
DE
125 union
126 {
e5aa3347 127 /* If this is a real section, the bfd section. */
049412e3 128 asection *section;
73869dc2 129 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 130 section. */
73869dc2
DE
131 struct dwarf2_section_info *containing_section;
132 } s;
19ac8c2e 133 /* Pointer to section data, only valid if readin. */
d521ce57 134 const gdb_byte *buffer;
73869dc2 135 /* The size of the section, real or virtual. */
dce234bc 136 bfd_size_type size;
73869dc2
DE
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
be391dca 140 /* True if we have tried to read this section. */
73869dc2
DE
141 char readin;
142 /* True if this is a virtual section, False otherwise.
049412e3 143 This specifies which of s.section and s.containing_section to use. */
73869dc2 144 char is_virtual;
dce234bc
PP
145};
146
8b70b953
TT
147typedef struct dwarf2_section_info dwarf2_section_info_def;
148DEF_VEC_O (dwarf2_section_info_def);
149
9291a0cd
TT
150/* All offsets in the index are of this type. It must be
151 architecture-independent. */
152typedef uint32_t offset_type;
153
154DEF_VEC_I (offset_type);
155
156942c7
DE
156/* Ensure only legit values are used. */
157#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163/* Ensure only legit values are used. */
164#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171/* Ensure we don't use more than the alloted nuber of bits for the CU. */
172#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
9291a0cd
TT
178/* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180struct mapped_index
181{
559a7a62
JK
182 /* Index data format version. */
183 int version;
184
9291a0cd
TT
185 /* The total length of the buffer. */
186 off_t total_size;
b11b1f88 187
9291a0cd
TT
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
b11b1f88 190
9291a0cd
TT
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
b11b1f88 193
3876f04e
DE
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
b11b1f88 196
9291a0cd 197 /* Size in slots, each slot is 2 offset_types. */
3876f04e 198 offset_type symbol_table_slots;
b11b1f88 199
9291a0cd
TT
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202};
203
95554aad
TT
204typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205DEF_VEC_P (dwarf2_per_cu_ptr);
206
52059ffd
TT
207struct tu_stats
208{
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214};
215
9cdd5dbd
DE
216/* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
6502dd73
DJ
219struct dwarf2_per_objfile
220{
dce234bc
PP
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
dce234bc 224 struct dwarf2_section_info loc;
43988095 225 struct dwarf2_section_info loclists;
dce234bc 226 struct dwarf2_section_info macinfo;
cf2c3c16 227 struct dwarf2_section_info macro;
dce234bc 228 struct dwarf2_section_info str;
43988095 229 struct dwarf2_section_info line_str;
dce234bc 230 struct dwarf2_section_info ranges;
43988095 231 struct dwarf2_section_info rnglists;
3019eac3 232 struct dwarf2_section_info addr;
dce234bc
PP
233 struct dwarf2_section_info frame;
234 struct dwarf2_section_info eh_frame;
9291a0cd 235 struct dwarf2_section_info gdb_index;
ae038cb0 236
8b70b953
TT
237 VEC (dwarf2_section_info_def) *types;
238
be391dca
TT
239 /* Back link. */
240 struct objfile *objfile;
241
d467dd73 242 /* Table of all the compilation units. This is used to locate
10b3939b 243 the target compilation unit of a particular reference. */
ae038cb0
DJ
244 struct dwarf2_per_cu_data **all_comp_units;
245
246 /* The number of compilation units in ALL_COMP_UNITS. */
247 int n_comp_units;
248
1fd400ff 249 /* The number of .debug_types-related CUs. */
d467dd73 250 int n_type_units;
1fd400ff 251
6aa5f3a6
DE
252 /* The number of elements allocated in all_type_units.
253 If there are skeleton-less TUs, we add them to all_type_units lazily. */
254 int n_allocated_type_units;
255
a2ce51a0
DE
256 /* The .debug_types-related CUs (TUs).
257 This is stored in malloc space because we may realloc it. */
b4dd5633 258 struct signatured_type **all_type_units;
1fd400ff 259
f4dc4d17
DE
260 /* Table of struct type_unit_group objects.
261 The hash key is the DW_AT_stmt_list value. */
262 htab_t type_unit_groups;
72dca2f5 263
348e048f
DE
264 /* A table mapping .debug_types signatures to its signatured_type entry.
265 This is NULL if the .debug_types section hasn't been read in yet. */
266 htab_t signatured_types;
267
f4dc4d17
DE
268 /* Type unit statistics, to see how well the scaling improvements
269 are doing. */
52059ffd 270 struct tu_stats tu_stats;
f4dc4d17
DE
271
272 /* A chain of compilation units that are currently read in, so that
273 they can be freed later. */
274 struct dwarf2_per_cu_data *read_in_chain;
275
3019eac3
DE
276 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
277 This is NULL if the table hasn't been allocated yet. */
278 htab_t dwo_files;
279
80626a55
DE
280 /* Non-zero if we've check for whether there is a DWP file. */
281 int dwp_checked;
282
283 /* The DWP file if there is one, or NULL. */
284 struct dwp_file *dwp_file;
285
36586728
TT
286 /* The shared '.dwz' file, if one exists. This is used when the
287 original data was compressed using 'dwz -m'. */
288 struct dwz_file *dwz_file;
289
72dca2f5
FR
290 /* A flag indicating wether this objfile has a section loaded at a
291 VMA of 0. */
292 int has_section_at_zero;
9291a0cd 293
ae2de4f8
DE
294 /* True if we are using the mapped index,
295 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
296 unsigned char using_index;
297
ae2de4f8 298 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 299 struct mapped_index *index_table;
98bfdba5 300
7b9f3c50 301 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
302 TUs typically share line table entries with a CU, so we maintain a
303 separate table of all line table entries to support the sharing.
304 Note that while there can be way more TUs than CUs, we've already
305 sorted all the TUs into "type unit groups", grouped by their
306 DW_AT_stmt_list value. Therefore the only sharing done here is with a
307 CU and its associated TU group if there is one. */
7b9f3c50
DE
308 htab_t quick_file_names_table;
309
98bfdba5
PA
310 /* Set during partial symbol reading, to prevent queueing of full
311 symbols. */
312 int reading_partial_symbols;
673bfd45 313
dee91e82 314 /* Table mapping type DIEs to their struct type *.
673bfd45 315 This is NULL if not allocated yet.
02142a6c 316 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 317 htab_t die_type_hash;
95554aad
TT
318
319 /* The CUs we recently read. */
320 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
321
322 /* Table containing line_header indexed by offset and offset_in_dwz. */
323 htab_t line_header_hash;
6502dd73
DJ
324};
325
326static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 327
251d32d9 328/* Default names of the debugging sections. */
c906108c 329
233a11ab
CS
330/* Note that if the debugging section has been compressed, it might
331 have a name like .zdebug_info. */
332
9cdd5dbd
DE
333static const struct dwarf2_debug_sections dwarf2_elf_names =
334{
251d32d9
TG
335 { ".debug_info", ".zdebug_info" },
336 { ".debug_abbrev", ".zdebug_abbrev" },
337 { ".debug_line", ".zdebug_line" },
338 { ".debug_loc", ".zdebug_loc" },
43988095 339 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 340 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 341 { ".debug_macro", ".zdebug_macro" },
251d32d9 342 { ".debug_str", ".zdebug_str" },
43988095 343 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 344 { ".debug_ranges", ".zdebug_ranges" },
43988095 345 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 346 { ".debug_types", ".zdebug_types" },
3019eac3 347 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
348 { ".debug_frame", ".zdebug_frame" },
349 { ".eh_frame", NULL },
24d3216f
TT
350 { ".gdb_index", ".zgdb_index" },
351 23
251d32d9 352};
c906108c 353
80626a55 354/* List of DWO/DWP sections. */
3019eac3 355
80626a55 356static const struct dwop_section_names
3019eac3
DE
357{
358 struct dwarf2_section_names abbrev_dwo;
359 struct dwarf2_section_names info_dwo;
360 struct dwarf2_section_names line_dwo;
361 struct dwarf2_section_names loc_dwo;
43988095 362 struct dwarf2_section_names loclists_dwo;
09262596
DE
363 struct dwarf2_section_names macinfo_dwo;
364 struct dwarf2_section_names macro_dwo;
3019eac3
DE
365 struct dwarf2_section_names str_dwo;
366 struct dwarf2_section_names str_offsets_dwo;
367 struct dwarf2_section_names types_dwo;
80626a55
DE
368 struct dwarf2_section_names cu_index;
369 struct dwarf2_section_names tu_index;
3019eac3 370}
80626a55 371dwop_section_names =
3019eac3
DE
372{
373 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
374 { ".debug_info.dwo", ".zdebug_info.dwo" },
375 { ".debug_line.dwo", ".zdebug_line.dwo" },
376 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 377 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
378 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
379 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
380 { ".debug_str.dwo", ".zdebug_str.dwo" },
381 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
382 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
383 { ".debug_cu_index", ".zdebug_cu_index" },
384 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
385};
386
c906108c
SS
387/* local data types */
388
107d2387
AC
389/* The data in a compilation unit header, after target2host
390 translation, looks like this. */
c906108c 391struct comp_unit_head
a738430d 392{
c764a876 393 unsigned int length;
a738430d 394 short version;
a738430d
MK
395 unsigned char addr_size;
396 unsigned char signed_addr_p;
b64f50a1 397 sect_offset abbrev_offset;
57349743 398
a738430d
MK
399 /* Size of file offsets; either 4 or 8. */
400 unsigned int offset_size;
57349743 401
a738430d
MK
402 /* Size of the length field; either 4 or 12. */
403 unsigned int initial_length_size;
57349743 404
43988095
JK
405 enum dwarf_unit_type unit_type;
406
a738430d
MK
407 /* Offset to the first byte of this compilation unit header in the
408 .debug_info section, for resolving relative reference dies. */
b64f50a1 409 sect_offset offset;
57349743 410
d00adf39
DE
411 /* Offset to first die in this cu from the start of the cu.
412 This will be the first byte following the compilation unit header. */
b64f50a1 413 cu_offset first_die_offset;
43988095
JK
414
415 /* 64-bit signature of this type unit - it is valid only for
416 UNIT_TYPE DW_UT_type. */
417 ULONGEST signature;
418
419 /* For types, offset in the type's DIE of the type defined by this TU. */
420 cu_offset type_offset_in_tu;
a738430d 421};
c906108c 422
3da10d80
KS
423/* Type used for delaying computation of method physnames.
424 See comments for compute_delayed_physnames. */
425struct delayed_method_info
426{
427 /* The type to which the method is attached, i.e., its parent class. */
428 struct type *type;
429
430 /* The index of the method in the type's function fieldlists. */
431 int fnfield_index;
432
433 /* The index of the method in the fieldlist. */
434 int index;
435
436 /* The name of the DIE. */
437 const char *name;
438
439 /* The DIE associated with this method. */
440 struct die_info *die;
441};
442
443typedef struct delayed_method_info delayed_method_info;
444DEF_VEC_O (delayed_method_info);
445
e7c27a73
DJ
446/* Internal state when decoding a particular compilation unit. */
447struct dwarf2_cu
448{
449 /* The objfile containing this compilation unit. */
450 struct objfile *objfile;
451
d00adf39 452 /* The header of the compilation unit. */
e7c27a73 453 struct comp_unit_head header;
e142c38c 454
d00adf39
DE
455 /* Base address of this compilation unit. */
456 CORE_ADDR base_address;
457
458 /* Non-zero if base_address has been set. */
459 int base_known;
460
e142c38c
DJ
461 /* The language we are debugging. */
462 enum language language;
463 const struct language_defn *language_defn;
464
b0f35d58
DL
465 const char *producer;
466
e142c38c
DJ
467 /* The generic symbol table building routines have separate lists for
468 file scope symbols and all all other scopes (local scopes). So
469 we need to select the right one to pass to add_symbol_to_list().
470 We do it by keeping a pointer to the correct list in list_in_scope.
471
472 FIXME: The original dwarf code just treated the file scope as the
473 first local scope, and all other local scopes as nested local
474 scopes, and worked fine. Check to see if we really need to
475 distinguish these in buildsym.c. */
476 struct pending **list_in_scope;
477
433df2d4
DE
478 /* The abbrev table for this CU.
479 Normally this points to the abbrev table in the objfile.
480 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
481 struct abbrev_table *abbrev_table;
72bf9492 482
b64f50a1
JK
483 /* Hash table holding all the loaded partial DIEs
484 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
485 htab_t partial_dies;
486
487 /* Storage for things with the same lifetime as this read-in compilation
488 unit, including partial DIEs. */
489 struct obstack comp_unit_obstack;
490
ae038cb0
DJ
491 /* When multiple dwarf2_cu structures are living in memory, this field
492 chains them all together, so that they can be released efficiently.
493 We will probably also want a generation counter so that most-recently-used
494 compilation units are cached... */
495 struct dwarf2_per_cu_data *read_in_chain;
496
69d751e3 497 /* Backlink to our per_cu entry. */
ae038cb0
DJ
498 struct dwarf2_per_cu_data *per_cu;
499
500 /* How many compilation units ago was this CU last referenced? */
501 int last_used;
502
b64f50a1
JK
503 /* A hash table of DIE cu_offset for following references with
504 die_info->offset.sect_off as hash. */
51545339 505 htab_t die_hash;
10b3939b
DJ
506
507 /* Full DIEs if read in. */
508 struct die_info *dies;
509
510 /* A set of pointers to dwarf2_per_cu_data objects for compilation
511 units referenced by this one. Only set during full symbol processing;
512 partial symbol tables do not have dependencies. */
513 htab_t dependencies;
514
cb1df416
DJ
515 /* Header data from the line table, during full symbol processing. */
516 struct line_header *line_header;
517
3da10d80
KS
518 /* A list of methods which need to have physnames computed
519 after all type information has been read. */
520 VEC (delayed_method_info) *method_list;
521
96408a79
SA
522 /* To be copied to symtab->call_site_htab. */
523 htab_t call_site_htab;
524
034e5797
DE
525 /* Non-NULL if this CU came from a DWO file.
526 There is an invariant here that is important to remember:
527 Except for attributes copied from the top level DIE in the "main"
528 (or "stub") file in preparation for reading the DWO file
529 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
530 Either there isn't a DWO file (in which case this is NULL and the point
531 is moot), or there is and either we're not going to read it (in which
532 case this is NULL) or there is and we are reading it (in which case this
533 is non-NULL). */
3019eac3
DE
534 struct dwo_unit *dwo_unit;
535
536 /* The DW_AT_addr_base attribute if present, zero otherwise
537 (zero is a valid value though).
1dbab08b 538 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
539 ULONGEST addr_base;
540
2e3cf129
DE
541 /* The DW_AT_ranges_base attribute if present, zero otherwise
542 (zero is a valid value though).
1dbab08b 543 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 544 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_ranges_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
551 ULONGEST ranges_base;
552
ae038cb0
DJ
553 /* Mark used when releasing cached dies. */
554 unsigned int mark : 1;
555
8be455d7
JK
556 /* This CU references .debug_loc. See the symtab->locations_valid field.
557 This test is imperfect as there may exist optimized debug code not using
558 any location list and still facing inlining issues if handled as
559 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 560 unsigned int has_loclist : 1;
ba919b58 561
1b80a9fa
JK
562 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
563 if all the producer_is_* fields are valid. This information is cached
564 because profiling CU expansion showed excessive time spent in
565 producer_is_gxx_lt_4_6. */
ba919b58
TT
566 unsigned int checked_producer : 1;
567 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 568 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 569 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
570
571 /* When set, the file that we're processing is known to have
572 debugging info for C++ namespaces. GCC 3.3.x did not produce
573 this information, but later versions do. */
574
575 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
576};
577
10b3939b
DJ
578/* Persistent data held for a compilation unit, even when not
579 processing it. We put a pointer to this structure in the
28dee7f5 580 read_symtab_private field of the psymtab. */
10b3939b 581
ae038cb0
DJ
582struct dwarf2_per_cu_data
583{
36586728 584 /* The start offset and length of this compilation unit.
45452591 585 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
586 initial_length_size.
587 If the DIE refers to a DWO file, this is always of the original die,
588 not the DWO file. */
b64f50a1 589 sect_offset offset;
36586728 590 unsigned int length;
ae038cb0 591
43988095
JK
592 /* DWARF standard version this data has been read from (such as 4 or 5). */
593 short dwarf_version;
594
ae038cb0
DJ
595 /* Flag indicating this compilation unit will be read in before
596 any of the current compilation units are processed. */
c764a876 597 unsigned int queued : 1;
ae038cb0 598
0d99eb77
DE
599 /* This flag will be set when reading partial DIEs if we need to load
600 absolutely all DIEs for this compilation unit, instead of just the ones
601 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
602 hash table and don't find it. */
603 unsigned int load_all_dies : 1;
604
0186c6a7
DE
605 /* Non-zero if this CU is from .debug_types.
606 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
607 this is non-zero. */
3019eac3
DE
608 unsigned int is_debug_types : 1;
609
36586728
TT
610 /* Non-zero if this CU is from the .dwz file. */
611 unsigned int is_dwz : 1;
612
a2ce51a0
DE
613 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
614 This flag is only valid if is_debug_types is true.
615 We can't read a CU directly from a DWO file: There are required
616 attributes in the stub. */
617 unsigned int reading_dwo_directly : 1;
618
7ee85ab1
DE
619 /* Non-zero if the TU has been read.
620 This is used to assist the "Stay in DWO Optimization" for Fission:
621 When reading a DWO, it's faster to read TUs from the DWO instead of
622 fetching them from random other DWOs (due to comdat folding).
623 If the TU has already been read, the optimization is unnecessary
624 (and unwise - we don't want to change where gdb thinks the TU lives
625 "midflight").
626 This flag is only valid if is_debug_types is true. */
627 unsigned int tu_read : 1;
628
3019eac3
DE
629 /* The section this CU/TU lives in.
630 If the DIE refers to a DWO file, this is always the original die,
631 not the DWO file. */
8a0459fd 632 struct dwarf2_section_info *section;
348e048f 633
17ea53c3 634 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
635 of the CU cache it gets reset to NULL again. This is left as NULL for
636 dummy CUs (a CU header, but nothing else). */
ae038cb0 637 struct dwarf2_cu *cu;
1c379e20 638
9cdd5dbd
DE
639 /* The corresponding objfile.
640 Normally we can get the objfile from dwarf2_per_objfile.
641 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
642 struct objfile *objfile;
643
fffbe6a8
YQ
644 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
645 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
646 union
647 {
648 /* The partial symbol table associated with this compilation unit,
95554aad 649 or NULL for unread partial units. */
9291a0cd
TT
650 struct partial_symtab *psymtab;
651
652 /* Data needed by the "quick" functions. */
653 struct dwarf2_per_cu_quick_data *quick;
654 } v;
95554aad 655
796a7ff8
DE
656 /* The CUs we import using DW_TAG_imported_unit. This is filled in
657 while reading psymtabs, used to compute the psymtab dependencies,
658 and then cleared. Then it is filled in again while reading full
659 symbols, and only deleted when the objfile is destroyed.
660
661 This is also used to work around a difference between the way gold
662 generates .gdb_index version <=7 and the way gdb does. Arguably this
663 is a gold bug. For symbols coming from TUs, gold records in the index
664 the CU that includes the TU instead of the TU itself. This breaks
665 dw2_lookup_symbol: It assumes that if the index says symbol X lives
666 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
667 will find X. Alas TUs live in their own symtab, so after expanding CU Y
668 we need to look in TU Z to find X. Fortunately, this is akin to
669 DW_TAG_imported_unit, so we just use the same mechanism: For
670 .gdb_index version <=7 this also records the TUs that the CU referred
671 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
672 indices so we only pay a price for gold generated indices.
673 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 674 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
675};
676
348e048f
DE
677/* Entry in the signatured_types hash table. */
678
679struct signatured_type
680{
42e7ad6c 681 /* The "per_cu" object of this type.
ac9ec31b 682 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
683 N.B.: This is the first member so that it's easy to convert pointers
684 between them. */
685 struct dwarf2_per_cu_data per_cu;
686
3019eac3 687 /* The type's signature. */
348e048f
DE
688 ULONGEST signature;
689
3019eac3 690 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
691 If this TU is a DWO stub and the definition lives in a DWO file
692 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
693 cu_offset type_offset_in_tu;
694
695 /* Offset in the section of the type's DIE.
696 If the definition lives in a DWO file, this is the offset in the
697 .debug_types.dwo section.
698 The value is zero until the actual value is known.
699 Zero is otherwise not a valid section offset. */
700 sect_offset type_offset_in_section;
0186c6a7
DE
701
702 /* Type units are grouped by their DW_AT_stmt_list entry so that they
703 can share them. This points to the containing symtab. */
704 struct type_unit_group *type_unit_group;
ac9ec31b
DE
705
706 /* The type.
707 The first time we encounter this type we fully read it in and install it
708 in the symbol tables. Subsequent times we only need the type. */
709 struct type *type;
a2ce51a0
DE
710
711 /* Containing DWO unit.
712 This field is valid iff per_cu.reading_dwo_directly. */
713 struct dwo_unit *dwo_unit;
348e048f
DE
714};
715
0186c6a7
DE
716typedef struct signatured_type *sig_type_ptr;
717DEF_VEC_P (sig_type_ptr);
718
094b34ac
DE
719/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
720 This includes type_unit_group and quick_file_names. */
721
722struct stmt_list_hash
723{
724 /* The DWO unit this table is from or NULL if there is none. */
725 struct dwo_unit *dwo_unit;
726
727 /* Offset in .debug_line or .debug_line.dwo. */
728 sect_offset line_offset;
729};
730
f4dc4d17
DE
731/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
732 an object of this type. */
733
734struct type_unit_group
735{
0186c6a7 736 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
737 To simplify things we create an artificial CU that "includes" all the
738 type units using this stmt_list so that the rest of the code still has
739 a "per_cu" handle on the symtab.
740 This PER_CU is recognized by having no section. */
8a0459fd 741#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
742 struct dwarf2_per_cu_data per_cu;
743
0186c6a7
DE
744 /* The TUs that share this DW_AT_stmt_list entry.
745 This is added to while parsing type units to build partial symtabs,
746 and is deleted afterwards and not used again. */
747 VEC (sig_type_ptr) *tus;
f4dc4d17 748
43f3e411 749 /* The compunit symtab.
094b34ac 750 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
751 so we create an essentially anonymous symtab as the compunit symtab. */
752 struct compunit_symtab *compunit_symtab;
f4dc4d17 753
094b34ac
DE
754 /* The data used to construct the hash key. */
755 struct stmt_list_hash hash;
f4dc4d17
DE
756
757 /* The number of symtabs from the line header.
758 The value here must match line_header.num_file_names. */
759 unsigned int num_symtabs;
760
761 /* The symbol tables for this TU (obtained from the files listed in
762 DW_AT_stmt_list).
763 WARNING: The order of entries here must match the order of entries
764 in the line header. After the first TU using this type_unit_group, the
765 line header for the subsequent TUs is recreated from this. This is done
766 because we need to use the same symtabs for each TU using the same
767 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
768 there's no guarantee the line header doesn't have duplicate entries. */
769 struct symtab **symtabs;
770};
771
73869dc2 772/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
773
774struct dwo_sections
775{
776 struct dwarf2_section_info abbrev;
3019eac3
DE
777 struct dwarf2_section_info line;
778 struct dwarf2_section_info loc;
43988095 779 struct dwarf2_section_info loclists;
09262596
DE
780 struct dwarf2_section_info macinfo;
781 struct dwarf2_section_info macro;
3019eac3
DE
782 struct dwarf2_section_info str;
783 struct dwarf2_section_info str_offsets;
80626a55
DE
784 /* In the case of a virtual DWO file, these two are unused. */
785 struct dwarf2_section_info info;
3019eac3
DE
786 VEC (dwarf2_section_info_def) *types;
787};
788
c88ee1f0 789/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
790
791struct dwo_unit
792{
793 /* Backlink to the containing struct dwo_file. */
794 struct dwo_file *dwo_file;
795
796 /* The "id" that distinguishes this CU/TU.
797 .debug_info calls this "dwo_id", .debug_types calls this "signature".
798 Since signatures came first, we stick with it for consistency. */
799 ULONGEST signature;
800
801 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 802 struct dwarf2_section_info *section;
3019eac3 803
19ac8c2e 804 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
805 sect_offset offset;
806 unsigned int length;
807
808 /* For types, offset in the type's DIE of the type defined by this TU. */
809 cu_offset type_offset_in_tu;
810};
811
73869dc2
DE
812/* include/dwarf2.h defines the DWP section codes.
813 It defines a max value but it doesn't define a min value, which we
814 use for error checking, so provide one. */
815
816enum dwp_v2_section_ids
817{
818 DW_SECT_MIN = 1
819};
820
80626a55 821/* Data for one DWO file.
57d63ce2
DE
822
823 This includes virtual DWO files (a virtual DWO file is a DWO file as it
824 appears in a DWP file). DWP files don't really have DWO files per se -
825 comdat folding of types "loses" the DWO file they came from, and from
826 a high level view DWP files appear to contain a mass of random types.
827 However, to maintain consistency with the non-DWP case we pretend DWP
828 files contain virtual DWO files, and we assign each TU with one virtual
829 DWO file (generally based on the line and abbrev section offsets -
830 a heuristic that seems to work in practice). */
3019eac3
DE
831
832struct dwo_file
833{
0ac5b59e 834 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
835 For virtual DWO files the name is constructed from the section offsets
836 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
837 from related CU+TUs. */
0ac5b59e
DE
838 const char *dwo_name;
839
840 /* The DW_AT_comp_dir attribute. */
841 const char *comp_dir;
3019eac3 842
80626a55
DE
843 /* The bfd, when the file is open. Otherwise this is NULL.
844 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
845 bfd *dbfd;
3019eac3 846
73869dc2
DE
847 /* The sections that make up this DWO file.
848 Remember that for virtual DWO files in DWP V2, these are virtual
849 sections (for lack of a better name). */
3019eac3
DE
850 struct dwo_sections sections;
851
19c3d4c9
DE
852 /* The CU in the file.
853 We only support one because having more than one requires hacking the
854 dwo_name of each to match, which is highly unlikely to happen.
855 Doing this means all TUs can share comp_dir: We also assume that
856 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
857 struct dwo_unit *cu;
3019eac3
DE
858
859 /* Table of TUs in the file.
860 Each element is a struct dwo_unit. */
861 htab_t tus;
862};
863
80626a55
DE
864/* These sections are what may appear in a DWP file. */
865
866struct dwp_sections
867{
73869dc2 868 /* These are used by both DWP version 1 and 2. */
80626a55
DE
869 struct dwarf2_section_info str;
870 struct dwarf2_section_info cu_index;
871 struct dwarf2_section_info tu_index;
73869dc2
DE
872
873 /* These are only used by DWP version 2 files.
874 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
875 sections are referenced by section number, and are not recorded here.
876 In DWP version 2 there is at most one copy of all these sections, each
877 section being (effectively) comprised of the concatenation of all of the
878 individual sections that exist in the version 1 format.
879 To keep the code simple we treat each of these concatenated pieces as a
880 section itself (a virtual section?). */
881 struct dwarf2_section_info abbrev;
882 struct dwarf2_section_info info;
883 struct dwarf2_section_info line;
884 struct dwarf2_section_info loc;
885 struct dwarf2_section_info macinfo;
886 struct dwarf2_section_info macro;
887 struct dwarf2_section_info str_offsets;
888 struct dwarf2_section_info types;
80626a55
DE
889};
890
73869dc2
DE
891/* These sections are what may appear in a virtual DWO file in DWP version 1.
892 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 893
73869dc2 894struct virtual_v1_dwo_sections
80626a55
DE
895{
896 struct dwarf2_section_info abbrev;
897 struct dwarf2_section_info line;
898 struct dwarf2_section_info loc;
899 struct dwarf2_section_info macinfo;
900 struct dwarf2_section_info macro;
901 struct dwarf2_section_info str_offsets;
902 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 903 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
904 struct dwarf2_section_info info_or_types;
905};
906
73869dc2
DE
907/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
908 In version 2, the sections of the DWO files are concatenated together
909 and stored in one section of that name. Thus each ELF section contains
910 several "virtual" sections. */
911
912struct virtual_v2_dwo_sections
913{
914 bfd_size_type abbrev_offset;
915 bfd_size_type abbrev_size;
916
917 bfd_size_type line_offset;
918 bfd_size_type line_size;
919
920 bfd_size_type loc_offset;
921 bfd_size_type loc_size;
922
923 bfd_size_type macinfo_offset;
924 bfd_size_type macinfo_size;
925
926 bfd_size_type macro_offset;
927 bfd_size_type macro_size;
928
929 bfd_size_type str_offsets_offset;
930 bfd_size_type str_offsets_size;
931
932 /* Each DWP hash table entry records one CU or one TU.
933 That is recorded here, and copied to dwo_unit.section. */
934 bfd_size_type info_or_types_offset;
935 bfd_size_type info_or_types_size;
936};
937
80626a55
DE
938/* Contents of DWP hash tables. */
939
940struct dwp_hash_table
941{
73869dc2 942 uint32_t version, nr_columns;
80626a55 943 uint32_t nr_units, nr_slots;
73869dc2
DE
944 const gdb_byte *hash_table, *unit_table;
945 union
946 {
947 struct
948 {
949 const gdb_byte *indices;
950 } v1;
951 struct
952 {
953 /* This is indexed by column number and gives the id of the section
954 in that column. */
955#define MAX_NR_V2_DWO_SECTIONS \
956 (1 /* .debug_info or .debug_types */ \
957 + 1 /* .debug_abbrev */ \
958 + 1 /* .debug_line */ \
959 + 1 /* .debug_loc */ \
960 + 1 /* .debug_str_offsets */ \
961 + 1 /* .debug_macro or .debug_macinfo */)
962 int section_ids[MAX_NR_V2_DWO_SECTIONS];
963 const gdb_byte *offsets;
964 const gdb_byte *sizes;
965 } v2;
966 } section_pool;
80626a55
DE
967};
968
969/* Data for one DWP file. */
970
971struct dwp_file
972{
973 /* Name of the file. */
974 const char *name;
975
73869dc2
DE
976 /* File format version. */
977 int version;
978
93417882 979 /* The bfd. */
80626a55
DE
980 bfd *dbfd;
981
982 /* Section info for this file. */
983 struct dwp_sections sections;
984
57d63ce2 985 /* Table of CUs in the file. */
80626a55
DE
986 const struct dwp_hash_table *cus;
987
988 /* Table of TUs in the file. */
989 const struct dwp_hash_table *tus;
990
19ac8c2e
DE
991 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
992 htab_t loaded_cus;
993 htab_t loaded_tus;
80626a55 994
73869dc2
DE
995 /* Table to map ELF section numbers to their sections.
996 This is only needed for the DWP V1 file format. */
80626a55
DE
997 unsigned int num_sections;
998 asection **elf_sections;
999};
1000
36586728
TT
1001/* This represents a '.dwz' file. */
1002
1003struct dwz_file
1004{
1005 /* A dwz file can only contain a few sections. */
1006 struct dwarf2_section_info abbrev;
1007 struct dwarf2_section_info info;
1008 struct dwarf2_section_info str;
1009 struct dwarf2_section_info line;
1010 struct dwarf2_section_info macro;
2ec9a5e0 1011 struct dwarf2_section_info gdb_index;
36586728
TT
1012
1013 /* The dwz's BFD. */
1014 bfd *dwz_bfd;
1015};
1016
0963b4bd
MS
1017/* Struct used to pass misc. parameters to read_die_and_children, et
1018 al. which are used for both .debug_info and .debug_types dies.
1019 All parameters here are unchanging for the life of the call. This
dee91e82 1020 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1021
1022struct die_reader_specs
1023{
a32a8923 1024 /* The bfd of die_section. */
93311388
DE
1025 bfd* abfd;
1026
1027 /* The CU of the DIE we are parsing. */
1028 struct dwarf2_cu *cu;
1029
80626a55 1030 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1031 struct dwo_file *dwo_file;
1032
dee91e82 1033 /* The section the die comes from.
3019eac3 1034 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1035 struct dwarf2_section_info *die_section;
1036
1037 /* die_section->buffer. */
d521ce57 1038 const gdb_byte *buffer;
f664829e
DE
1039
1040 /* The end of the buffer. */
1041 const gdb_byte *buffer_end;
a2ce51a0
DE
1042
1043 /* The value of the DW_AT_comp_dir attribute. */
1044 const char *comp_dir;
93311388
DE
1045};
1046
fd820528 1047/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1048typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1049 const gdb_byte *info_ptr,
dee91e82
DE
1050 struct die_info *comp_unit_die,
1051 int has_children,
1052 void *data);
1053
52059ffd
TT
1054struct file_entry
1055{
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
83769d0b
DE
1060 /* Non-zero if referenced by the Line Number Program. */
1061 int included_p;
1062 /* The associated symbol table, if any. */
1063 struct symtab *symtab;
52059ffd
TT
1064};
1065
debd256d
JB
1066/* The line number information for a compilation unit (found in the
1067 .debug_line section) begins with a "statement program header",
1068 which contains the following information. */
1069struct line_header
1070{
527f3840
JK
1071 /* Offset of line number information in .debug_line section. */
1072 sect_offset offset;
1073
1074 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1075 unsigned offset_in_dwz : 1;
1076
debd256d
JB
1077 unsigned int total_length;
1078 unsigned short version;
1079 unsigned int header_length;
1080 unsigned char minimum_instruction_length;
2dc7f7b3 1081 unsigned char maximum_ops_per_instruction;
debd256d
JB
1082 unsigned char default_is_stmt;
1083 int line_base;
1084 unsigned char line_range;
1085 unsigned char opcode_base;
1086
1087 /* standard_opcode_lengths[i] is the number of operands for the
1088 standard opcode whose value is i. This means that
1089 standard_opcode_lengths[0] is unused, and the last meaningful
1090 element is standard_opcode_lengths[opcode_base - 1]. */
1091 unsigned char *standard_opcode_lengths;
1092
1093 /* The include_directories table. NOTE! These strings are not
1094 allocated with xmalloc; instead, they are pointers into
1095 debug_line_buffer. If you try to free them, `free' will get
1096 indigestion. */
1097 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1098 const char **include_dirs;
debd256d
JB
1099
1100 /* The file_names table. NOTE! These strings are not allocated
1101 with xmalloc; instead, they are pointers into debug_line_buffer.
1102 Don't try to free them directly. */
1103 unsigned int num_file_names, file_names_size;
52059ffd 1104 struct file_entry *file_names;
debd256d
JB
1105
1106 /* The start and end of the statement program following this
6502dd73 1107 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1108 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1109};
c906108c
SS
1110
1111/* When we construct a partial symbol table entry we only
0963b4bd 1112 need this much information. */
c906108c
SS
1113struct partial_die_info
1114 {
72bf9492 1115 /* Offset of this DIE. */
b64f50a1 1116 sect_offset offset;
72bf9492
DJ
1117
1118 /* DWARF-2 tag for this DIE. */
1119 ENUM_BITFIELD(dwarf_tag) tag : 16;
1120
72bf9492
DJ
1121 /* Assorted flags describing the data found in this DIE. */
1122 unsigned int has_children : 1;
1123 unsigned int is_external : 1;
1124 unsigned int is_declaration : 1;
1125 unsigned int has_type : 1;
1126 unsigned int has_specification : 1;
1127 unsigned int has_pc_info : 1;
481860b3 1128 unsigned int may_be_inlined : 1;
72bf9492 1129
0c1b455e
TT
1130 /* This DIE has been marked DW_AT_main_subprogram. */
1131 unsigned int main_subprogram : 1;
1132
72bf9492
DJ
1133 /* Flag set if the SCOPE field of this structure has been
1134 computed. */
1135 unsigned int scope_set : 1;
1136
fa4028e9
JB
1137 /* Flag set if the DIE has a byte_size attribute. */
1138 unsigned int has_byte_size : 1;
1139
ff908ebf
AW
1140 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1141 unsigned int has_const_value : 1;
1142
98bfdba5
PA
1143 /* Flag set if any of the DIE's children are template arguments. */
1144 unsigned int has_template_arguments : 1;
1145
abc72ce4
DE
1146 /* Flag set if fixup_partial_die has been called on this die. */
1147 unsigned int fixup_called : 1;
1148
36586728
TT
1149 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1150 unsigned int is_dwz : 1;
1151
1152 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1153 unsigned int spec_is_dwz : 1;
1154
72bf9492 1155 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1156 sometimes a default name for unnamed DIEs. */
15d034d0 1157 const char *name;
72bf9492 1158
abc72ce4
DE
1159 /* The linkage name, if present. */
1160 const char *linkage_name;
1161
72bf9492
DJ
1162 /* The scope to prepend to our children. This is generally
1163 allocated on the comp_unit_obstack, so will disappear
1164 when this compilation unit leaves the cache. */
15d034d0 1165 const char *scope;
72bf9492 1166
95554aad
TT
1167 /* Some data associated with the partial DIE. The tag determines
1168 which field is live. */
1169 union
1170 {
1171 /* The location description associated with this DIE, if any. */
1172 struct dwarf_block *locdesc;
1173 /* The offset of an import, for DW_TAG_imported_unit. */
1174 sect_offset offset;
1175 } d;
72bf9492
DJ
1176
1177 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1178 CORE_ADDR lowpc;
1179 CORE_ADDR highpc;
72bf9492 1180
93311388 1181 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1182 DW_AT_sibling, if any. */
abc72ce4
DE
1183 /* NOTE: This member isn't strictly necessary, read_partial_die could
1184 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1185 const gdb_byte *sibling;
72bf9492
DJ
1186
1187 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1188 DW_AT_specification (or DW_AT_abstract_origin or
1189 DW_AT_extension). */
b64f50a1 1190 sect_offset spec_offset;
72bf9492
DJ
1191
1192 /* Pointers to this DIE's parent, first child, and next sibling,
1193 if any. */
1194 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1195 };
1196
0963b4bd 1197/* This data structure holds the information of an abbrev. */
c906108c
SS
1198struct abbrev_info
1199 {
1200 unsigned int number; /* number identifying abbrev */
1201 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1202 unsigned short has_children; /* boolean */
1203 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1204 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1205 struct abbrev_info *next; /* next in chain */
1206 };
1207
1208struct attr_abbrev
1209 {
9d25dd43
DE
1210 ENUM_BITFIELD(dwarf_attribute) name : 16;
1211 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1212
1213 /* It is valid only if FORM is DW_FORM_implicit_const. */
1214 LONGEST implicit_const;
c906108c
SS
1215 };
1216
433df2d4
DE
1217/* Size of abbrev_table.abbrev_hash_table. */
1218#define ABBREV_HASH_SIZE 121
1219
1220/* Top level data structure to contain an abbreviation table. */
1221
1222struct abbrev_table
1223{
f4dc4d17
DE
1224 /* Where the abbrev table came from.
1225 This is used as a sanity check when the table is used. */
433df2d4
DE
1226 sect_offset offset;
1227
1228 /* Storage for the abbrev table. */
1229 struct obstack abbrev_obstack;
1230
1231 /* Hash table of abbrevs.
1232 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1233 It could be statically allocated, but the previous code didn't so we
1234 don't either. */
1235 struct abbrev_info **abbrevs;
1236};
1237
0963b4bd 1238/* Attributes have a name and a value. */
b60c80d6
DJ
1239struct attribute
1240 {
9d25dd43 1241 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1242 ENUM_BITFIELD(dwarf_form) form : 15;
1243
1244 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1245 field should be in u.str (existing only for DW_STRING) but it is kept
1246 here for better struct attribute alignment. */
1247 unsigned int string_is_canonical : 1;
1248
b60c80d6
DJ
1249 union
1250 {
15d034d0 1251 const char *str;
b60c80d6 1252 struct dwarf_block *blk;
43bbcdc2
PH
1253 ULONGEST unsnd;
1254 LONGEST snd;
b60c80d6 1255 CORE_ADDR addr;
ac9ec31b 1256 ULONGEST signature;
b60c80d6
DJ
1257 }
1258 u;
1259 };
1260
0963b4bd 1261/* This data structure holds a complete die structure. */
c906108c
SS
1262struct die_info
1263 {
76815b17
DE
1264 /* DWARF-2 tag for this DIE. */
1265 ENUM_BITFIELD(dwarf_tag) tag : 16;
1266
1267 /* Number of attributes */
98bfdba5
PA
1268 unsigned char num_attrs;
1269
1270 /* True if we're presently building the full type name for the
1271 type derived from this DIE. */
1272 unsigned char building_fullname : 1;
76815b17 1273
adde2bff
DE
1274 /* True if this die is in process. PR 16581. */
1275 unsigned char in_process : 1;
1276
76815b17
DE
1277 /* Abbrev number */
1278 unsigned int abbrev;
1279
93311388 1280 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1281 sect_offset offset;
78ba4af6
JB
1282
1283 /* The dies in a compilation unit form an n-ary tree. PARENT
1284 points to this die's parent; CHILD points to the first child of
1285 this node; and all the children of a given node are chained
4950bc1c 1286 together via their SIBLING fields. */
639d11d3
DC
1287 struct die_info *child; /* Its first child, if any. */
1288 struct die_info *sibling; /* Its next sibling, if any. */
1289 struct die_info *parent; /* Its parent, if any. */
c906108c 1290
b60c80d6
DJ
1291 /* An array of attributes, with NUM_ATTRS elements. There may be
1292 zero, but it's not common and zero-sized arrays are not
1293 sufficiently portable C. */
1294 struct attribute attrs[1];
c906108c
SS
1295 };
1296
0963b4bd 1297/* Get at parts of an attribute structure. */
c906108c
SS
1298
1299#define DW_STRING(attr) ((attr)->u.str)
8285870a 1300#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1301#define DW_UNSND(attr) ((attr)->u.unsnd)
1302#define DW_BLOCK(attr) ((attr)->u.blk)
1303#define DW_SND(attr) ((attr)->u.snd)
1304#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1305#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1306
0963b4bd 1307/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1308struct dwarf_block
1309 {
56eb65bd 1310 size_t size;
1d6edc3c
JK
1311
1312 /* Valid only if SIZE is not zero. */
d521ce57 1313 const gdb_byte *data;
c906108c
SS
1314 };
1315
c906108c
SS
1316#ifndef ATTR_ALLOC_CHUNK
1317#define ATTR_ALLOC_CHUNK 4
1318#endif
1319
c906108c
SS
1320/* Allocate fields for structs, unions and enums in this size. */
1321#ifndef DW_FIELD_ALLOC_CHUNK
1322#define DW_FIELD_ALLOC_CHUNK 4
1323#endif
1324
c906108c
SS
1325/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1326 but this would require a corresponding change in unpack_field_as_long
1327 and friends. */
1328static int bits_per_byte = 8;
1329
52059ffd
TT
1330struct nextfield
1331{
1332 struct nextfield *next;
1333 int accessibility;
1334 int virtuality;
1335 struct field field;
1336};
1337
1338struct nextfnfield
1339{
1340 struct nextfnfield *next;
1341 struct fn_field fnfield;
1342};
1343
1344struct fnfieldlist
1345{
1346 const char *name;
1347 int length;
1348 struct nextfnfield *head;
1349};
1350
1351struct typedef_field_list
1352{
1353 struct typedef_field field;
1354 struct typedef_field_list *next;
1355};
1356
c906108c
SS
1357/* The routines that read and process dies for a C struct or C++ class
1358 pass lists of data member fields and lists of member function fields
1359 in an instance of a field_info structure, as defined below. */
1360struct field_info
c5aa993b 1361 {
0963b4bd 1362 /* List of data member and baseclasses fields. */
52059ffd 1363 struct nextfield *fields, *baseclasses;
c906108c 1364
7d0ccb61 1365 /* Number of fields (including baseclasses). */
c5aa993b 1366 int nfields;
c906108c 1367
c5aa993b
JM
1368 /* Number of baseclasses. */
1369 int nbaseclasses;
c906108c 1370
c5aa993b
JM
1371 /* Set if the accesibility of one of the fields is not public. */
1372 int non_public_fields;
c906108c 1373
c5aa993b
JM
1374 /* Member function fields array, entries are allocated in the order they
1375 are encountered in the object file. */
52059ffd 1376 struct nextfnfield *fnfields;
c906108c 1377
c5aa993b
JM
1378 /* Member function fieldlist array, contains name of possibly overloaded
1379 member function, number of overloaded member functions and a pointer
1380 to the head of the member function field chain. */
52059ffd 1381 struct fnfieldlist *fnfieldlists;
c906108c 1382
c5aa993b
JM
1383 /* Number of entries in the fnfieldlists array. */
1384 int nfnfields;
98751a41
JK
1385
1386 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1387 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1388 struct typedef_field_list *typedef_field_list;
98751a41 1389 unsigned typedef_field_list_count;
c5aa993b 1390 };
c906108c 1391
10b3939b
DJ
1392/* One item on the queue of compilation units to read in full symbols
1393 for. */
1394struct dwarf2_queue_item
1395{
1396 struct dwarf2_per_cu_data *per_cu;
95554aad 1397 enum language pretend_language;
10b3939b
DJ
1398 struct dwarf2_queue_item *next;
1399};
1400
1401/* The current queue. */
1402static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1403
ae038cb0
DJ
1404/* Loaded secondary compilation units are kept in memory until they
1405 have not been referenced for the processing of this many
1406 compilation units. Set this to zero to disable caching. Cache
1407 sizes of up to at least twenty will improve startup time for
1408 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1409static int dwarf_max_cache_age = 5;
920d2a44 1410static void
b4f54984
DE
1411show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
920d2a44 1413{
3e43a32a 1414 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1415 "DWARF compilation units is %s.\n"),
920d2a44
AC
1416 value);
1417}
4390d890 1418\f
c906108c
SS
1419/* local function prototypes */
1420
a32a8923
DE
1421static const char *get_section_name (const struct dwarf2_section_info *);
1422
1423static const char *get_section_file_name (const struct dwarf2_section_info *);
1424
4efb68b1 1425static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1426
918dd910
JK
1427static void dwarf2_find_base_address (struct die_info *die,
1428 struct dwarf2_cu *cu);
1429
0018ea6f
DE
1430static struct partial_symtab *create_partial_symtab
1431 (struct dwarf2_per_cu_data *per_cu, const char *name);
1432
c67a9c90 1433static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1434
72bf9492
DJ
1435static void scan_partial_symbols (struct partial_die_info *,
1436 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1437 int, struct dwarf2_cu *);
c906108c 1438
72bf9492
DJ
1439static void add_partial_symbol (struct partial_die_info *,
1440 struct dwarf2_cu *);
63d06c5c 1441
72bf9492
DJ
1442static void add_partial_namespace (struct partial_die_info *pdi,
1443 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1444 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1445
5d7cb8df 1446static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1447 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1448 struct dwarf2_cu *cu);
1449
72bf9492
DJ
1450static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1451 struct dwarf2_cu *cu);
91c24f0a 1452
bc30ff58
JB
1453static void add_partial_subprogram (struct partial_die_info *pdi,
1454 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1455 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1456
257e7a09
YQ
1457static void dwarf2_read_symtab (struct partial_symtab *,
1458 struct objfile *);
c906108c 1459
a14ed312 1460static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1461
433df2d4
DE
1462static struct abbrev_info *abbrev_table_lookup_abbrev
1463 (const struct abbrev_table *, unsigned int);
1464
1465static struct abbrev_table *abbrev_table_read_table
1466 (struct dwarf2_section_info *, sect_offset);
1467
1468static void abbrev_table_free (struct abbrev_table *);
1469
f4dc4d17
DE
1470static void abbrev_table_free_cleanup (void *);
1471
dee91e82
DE
1472static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1473 struct dwarf2_section_info *);
c906108c 1474
f3dd6933 1475static void dwarf2_free_abbrev_table (void *);
c906108c 1476
d521ce57 1477static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1478
dee91e82 1479static struct partial_die_info *load_partial_dies
d521ce57 1480 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1481
d521ce57
TT
1482static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1483 struct partial_die_info *,
1484 struct abbrev_info *,
1485 unsigned int,
1486 const gdb_byte *);
c906108c 1487
36586728 1488static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1489 struct dwarf2_cu *);
72bf9492
DJ
1490
1491static void fixup_partial_die (struct partial_die_info *,
1492 struct dwarf2_cu *);
1493
d521ce57
TT
1494static const gdb_byte *read_attribute (const struct die_reader_specs *,
1495 struct attribute *, struct attr_abbrev *,
1496 const gdb_byte *);
a8329558 1497
a1855c1d 1498static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1499
a1855c1d 1500static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1501
a1855c1d 1502static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1503
a1855c1d 1504static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1505
a1855c1d 1506static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1507
d521ce57 1508static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1509 unsigned int *);
c906108c 1510
d521ce57 1511static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1512
1513static LONGEST read_checked_initial_length_and_offset
d521ce57 1514 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1515 unsigned int *, unsigned int *);
613e1657 1516
d521ce57
TT
1517static LONGEST read_offset (bfd *, const gdb_byte *,
1518 const struct comp_unit_head *,
c764a876
DE
1519 unsigned int *);
1520
d521ce57 1521static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1522
f4dc4d17
DE
1523static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1524 sect_offset);
1525
d521ce57 1526static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1527
d521ce57 1528static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1529
d521ce57
TT
1530static const char *read_indirect_string (bfd *, const gdb_byte *,
1531 const struct comp_unit_head *,
1532 unsigned int *);
4bdf3d34 1533
43988095
JK
1534static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1535 const struct comp_unit_head *,
1536 unsigned int *);
36586728 1537
43988095 1538static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1539
d521ce57 1540static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1541
d521ce57
TT
1542static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1543 const gdb_byte *,
3019eac3
DE
1544 unsigned int *);
1545
d521ce57 1546static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1547 ULONGEST str_index);
3019eac3 1548
e142c38c 1549static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1550
e142c38c
DJ
1551static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1552 struct dwarf2_cu *);
c906108c 1553
348e048f 1554static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1555 unsigned int);
348e048f 1556
7d45c7c3
KB
1557static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1558 struct dwarf2_cu *cu);
1559
05cf31d1
JB
1560static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1561 struct dwarf2_cu *cu);
1562
e142c38c 1563static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1564
e142c38c 1565static struct die_info *die_specification (struct die_info *die,
f2f0e013 1566 struct dwarf2_cu **);
63d06c5c 1567
debd256d
JB
1568static void free_line_header (struct line_header *lh);
1569
3019eac3
DE
1570static struct line_header *dwarf_decode_line_header (unsigned int offset,
1571 struct dwarf2_cu *cu);
debd256d 1572
f3f5162e 1573static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1574 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1575 CORE_ADDR, int decode_mapping);
c906108c 1576
4d663531 1577static void dwarf2_start_subfile (const char *, const char *);
c906108c 1578
43f3e411
DE
1579static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1580 const char *, const char *,
1581 CORE_ADDR);
f4dc4d17 1582
a14ed312 1583static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1584 struct dwarf2_cu *);
c906108c 1585
34eaf542
TT
1586static struct symbol *new_symbol_full (struct die_info *, struct type *,
1587 struct dwarf2_cu *, struct symbol *);
1588
ff39bb5e 1589static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1590 struct dwarf2_cu *);
c906108c 1591
ff39bb5e 1592static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1593 struct type *type,
1594 const char *name,
1595 struct obstack *obstack,
12df843f 1596 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1597 const gdb_byte **bytes,
98bfdba5 1598 struct dwarf2_locexpr_baton **baton);
2df3850c 1599
e7c27a73 1600static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1601
b4ba55a1
JB
1602static int need_gnat_info (struct dwarf2_cu *);
1603
3e43a32a
MS
1604static struct type *die_descriptive_type (struct die_info *,
1605 struct dwarf2_cu *);
b4ba55a1
JB
1606
1607static void set_descriptive_type (struct type *, struct die_info *,
1608 struct dwarf2_cu *);
1609
e7c27a73
DJ
1610static struct type *die_containing_type (struct die_info *,
1611 struct dwarf2_cu *);
c906108c 1612
ff39bb5e 1613static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1614 struct dwarf2_cu *);
c906108c 1615
f792889a 1616static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1617
673bfd45
DE
1618static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1619
0d5cff50 1620static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1621
6e70227d 1622static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1623 const char *suffix, int physname,
1624 struct dwarf2_cu *cu);
63d06c5c 1625
e7c27a73 1626static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1627
348e048f
DE
1628static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1629
e7c27a73 1630static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1631
e7c27a73 1632static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1633
96408a79
SA
1634static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1635
ff013f42
JK
1636static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *, struct partial_symtab *);
1638
3a2b436a 1639/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1640 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1641enum pc_bounds_kind
1642{
e385593e 1643 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1644 PC_BOUNDS_NOT_PRESENT,
1645
e385593e
JK
1646 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1647 were present but they do not form a valid range of PC addresses. */
1648 PC_BOUNDS_INVALID,
1649
3a2b436a
JK
1650 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1651 PC_BOUNDS_RANGES,
1652
1653 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1654 PC_BOUNDS_HIGH_LOW,
1655};
1656
1657static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *,
1660 struct partial_symtab *);
c906108c 1661
fae299cd
DC
1662static void get_scope_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *);
1665
801e3a5b
JB
1666static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1667 CORE_ADDR, struct dwarf2_cu *);
1668
a14ed312 1669static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1670 struct dwarf2_cu *);
c906108c 1671
a14ed312 1672static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1673 struct type *, struct dwarf2_cu *);
c906108c 1674
a14ed312 1675static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1676 struct die_info *, struct type *,
e7c27a73 1677 struct dwarf2_cu *);
c906108c 1678
a14ed312 1679static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1680 struct type *,
1681 struct dwarf2_cu *);
c906108c 1682
134d01f1 1683static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1684
e7c27a73 1685static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1686
e7c27a73 1687static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1688
5d7cb8df
JK
1689static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1690
22cee43f
PMR
1691static struct using_direct **using_directives (enum language);
1692
27aa8d6a
SW
1693static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1694
74921315
KS
1695static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1696
f55ee35c
JK
1697static struct type *read_module_type (struct die_info *die,
1698 struct dwarf2_cu *cu);
1699
38d518c9 1700static const char *namespace_name (struct die_info *die,
e142c38c 1701 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1702
134d01f1 1703static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1704
e7c27a73 1705static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1706
6e70227d 1707static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1708 struct dwarf2_cu *);
1709
bf6af496 1710static struct die_info *read_die_and_siblings_1
d521ce57 1711 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1712 struct die_info *);
639d11d3 1713
dee91e82 1714static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1715 const gdb_byte *info_ptr,
1716 const gdb_byte **new_info_ptr,
639d11d3
DC
1717 struct die_info *parent);
1718
d521ce57
TT
1719static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1720 struct die_info **, const gdb_byte *,
1721 int *, int);
3019eac3 1722
d521ce57
TT
1723static const gdb_byte *read_full_die (const struct die_reader_specs *,
1724 struct die_info **, const gdb_byte *,
1725 int *);
93311388 1726
e7c27a73 1727static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1728
15d034d0
TT
1729static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1730 struct obstack *);
71c25dea 1731
15d034d0 1732static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1733
15d034d0 1734static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1735 struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
ca69b9e6
DE
1738static const char *dwarf2_physname (const char *name, struct die_info *die,
1739 struct dwarf2_cu *cu);
1740
e142c38c 1741static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1742 struct dwarf2_cu **);
9219021c 1743
f39c6ffd 1744static const char *dwarf_tag_name (unsigned int);
c906108c 1745
f39c6ffd 1746static const char *dwarf_attr_name (unsigned int);
c906108c 1747
f39c6ffd 1748static const char *dwarf_form_name (unsigned int);
c906108c 1749
a14ed312 1750static char *dwarf_bool_name (unsigned int);
c906108c 1751
f39c6ffd 1752static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1753
f9aca02d 1754static struct die_info *sibling_die (struct die_info *);
c906108c 1755
d97bc12b
DE
1756static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1757
1758static void dump_die_for_error (struct die_info *);
1759
1760static void dump_die_1 (struct ui_file *, int level, int max_level,
1761 struct die_info *);
c906108c 1762
d97bc12b 1763/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1764
51545339 1765static void store_in_ref_table (struct die_info *,
10b3939b 1766 struct dwarf2_cu *);
c906108c 1767
ff39bb5e 1768static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1769
ff39bb5e 1770static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1771
348e048f 1772static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1773 const struct attribute *,
348e048f
DE
1774 struct dwarf2_cu **);
1775
10b3939b 1776static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1777 const struct attribute *,
f2f0e013 1778 struct dwarf2_cu **);
c906108c 1779
348e048f 1780static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1781 const struct attribute *,
348e048f
DE
1782 struct dwarf2_cu **);
1783
ac9ec31b
DE
1784static struct type *get_signatured_type (struct die_info *, ULONGEST,
1785 struct dwarf2_cu *);
1786
1787static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1788 const struct attribute *,
ac9ec31b
DE
1789 struct dwarf2_cu *);
1790
e5fe5e75 1791static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1792
52dc124a 1793static void read_signatured_type (struct signatured_type *);
348e048f 1794
63e43d3a
PMR
1795static int attr_to_dynamic_prop (const struct attribute *attr,
1796 struct die_info *die, struct dwarf2_cu *cu,
1797 struct dynamic_prop *prop);
1798
c906108c
SS
1799/* memory allocation interface */
1800
7b5a2f43 1801static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1802
b60c80d6 1803static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1804
43f3e411 1805static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1806
6e5a29e1 1807static int attr_form_is_block (const struct attribute *);
8e19ed76 1808
6e5a29e1 1809static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1810
6e5a29e1 1811static int attr_form_is_constant (const struct attribute *);
3690dd37 1812
6e5a29e1 1813static int attr_form_is_ref (const struct attribute *);
7771576e 1814
8cf6f0b1
TT
1815static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1816 struct dwarf2_loclist_baton *baton,
ff39bb5e 1817 const struct attribute *attr);
8cf6f0b1 1818
ff39bb5e 1819static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1820 struct symbol *sym,
f1e6e072
TT
1821 struct dwarf2_cu *cu,
1822 int is_block);
4c2df51b 1823
d521ce57
TT
1824static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1825 const gdb_byte *info_ptr,
1826 struct abbrev_info *abbrev);
4bb7a0a7 1827
72bf9492
DJ
1828static void free_stack_comp_unit (void *);
1829
72bf9492
DJ
1830static hashval_t partial_die_hash (const void *item);
1831
1832static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1833
ae038cb0 1834static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1835 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1836
9816fde3 1837static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1838 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1839
1840static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1841 struct die_info *comp_unit_die,
1842 enum language pretend_language);
93311388 1843
68dc6402 1844static void free_heap_comp_unit (void *);
ae038cb0
DJ
1845
1846static void free_cached_comp_units (void *);
1847
1848static void age_cached_comp_units (void);
1849
dee91e82 1850static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1851
f792889a
DJ
1852static struct type *set_die_type (struct die_info *, struct type *,
1853 struct dwarf2_cu *);
1c379e20 1854
ae038cb0
DJ
1855static void create_all_comp_units (struct objfile *);
1856
0e50663e 1857static int create_all_type_units (struct objfile *);
1fd400ff 1858
95554aad
TT
1859static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
10b3939b 1861
95554aad
TT
1862static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1863 enum language);
10b3939b 1864
f4dc4d17
DE
1865static void process_full_type_unit (struct dwarf2_per_cu_data *,
1866 enum language);
1867
10b3939b
DJ
1868static void dwarf2_add_dependence (struct dwarf2_cu *,
1869 struct dwarf2_per_cu_data *);
1870
ae038cb0
DJ
1871static void dwarf2_mark (struct dwarf2_cu *);
1872
1873static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1874
b64f50a1 1875static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1876 struct dwarf2_per_cu_data *);
673bfd45 1877
f792889a 1878static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1879
9291a0cd
TT
1880static void dwarf2_release_queue (void *dummy);
1881
95554aad
TT
1882static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1883 enum language pretend_language);
1884
a0f42c21 1885static void process_queue (void);
9291a0cd
TT
1886
1887static void find_file_and_directory (struct die_info *die,
1888 struct dwarf2_cu *cu,
15d034d0 1889 const char **name, const char **comp_dir);
9291a0cd
TT
1890
1891static char *file_full_name (int file, struct line_header *lh,
1892 const char *comp_dir);
1893
43988095
JK
1894/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1895enum class rcuh_kind { COMPILE, TYPE };
1896
d521ce57 1897static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1898 (struct comp_unit_head *header,
1899 struct dwarf2_section_info *section,
d521ce57 1900 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1901 rcuh_kind section_kind);
36586728 1902
fd820528 1903static void init_cutu_and_read_dies
f4dc4d17
DE
1904 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1905 int use_existing_cu, int keep,
3019eac3
DE
1906 die_reader_func_ftype *die_reader_func, void *data);
1907
dee91e82
DE
1908static void init_cutu_and_read_dies_simple
1909 (struct dwarf2_per_cu_data *this_cu,
1910 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1911
673bfd45 1912static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1913
3019eac3
DE
1914static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1915
57d63ce2
DE
1916static struct dwo_unit *lookup_dwo_unit_in_dwp
1917 (struct dwp_file *dwp_file, const char *comp_dir,
1918 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1919
1920static struct dwp_file *get_dwp_file (void);
1921
3019eac3 1922static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1923 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1924
1925static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1926 (struct signatured_type *, const char *, const char *);
3019eac3 1927
89e63ee4
DE
1928static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1929
3019eac3
DE
1930static void free_dwo_file_cleanup (void *);
1931
95554aad
TT
1932static void process_cu_includes (void);
1933
1b80a9fa 1934static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1935
1936static void free_line_header_voidp (void *arg);
4390d890
DE
1937\f
1938/* Various complaints about symbol reading that don't abort the process. */
1939
1940static void
1941dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1942{
1943 complaint (&symfile_complaints,
1944 _("statement list doesn't fit in .debug_line section"));
1945}
1946
1947static void
1948dwarf2_debug_line_missing_file_complaint (void)
1949{
1950 complaint (&symfile_complaints,
1951 _(".debug_line section has line data without a file"));
1952}
1953
1954static void
1955dwarf2_debug_line_missing_end_sequence_complaint (void)
1956{
1957 complaint (&symfile_complaints,
1958 _(".debug_line section has line "
1959 "program sequence without an end"));
1960}
1961
1962static void
1963dwarf2_complex_location_expr_complaint (void)
1964{
1965 complaint (&symfile_complaints, _("location expression too complex"));
1966}
1967
1968static void
1969dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1970 int arg3)
1971{
1972 complaint (&symfile_complaints,
1973 _("const value length mismatch for '%s', got %d, expected %d"),
1974 arg1, arg2, arg3);
1975}
1976
1977static void
1978dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1979{
1980 complaint (&symfile_complaints,
1981 _("debug info runs off end of %s section"
1982 " [in module %s]"),
a32a8923
DE
1983 get_section_name (section),
1984 get_section_file_name (section));
4390d890 1985}
1b80a9fa 1986
4390d890
DE
1987static void
1988dwarf2_macro_malformed_definition_complaint (const char *arg1)
1989{
1990 complaint (&symfile_complaints,
1991 _("macro debug info contains a "
1992 "malformed macro definition:\n`%s'"),
1993 arg1);
1994}
1995
1996static void
1997dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1998{
1999 complaint (&symfile_complaints,
2000 _("invalid attribute class or form for '%s' in '%s'"),
2001 arg1, arg2);
2002}
527f3840
JK
2003
2004/* Hash function for line_header_hash. */
2005
2006static hashval_t
2007line_header_hash (const struct line_header *ofs)
2008{
2009 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
2010}
2011
2012/* Hash function for htab_create_alloc_ex for line_header_hash. */
2013
2014static hashval_t
2015line_header_hash_voidp (const void *item)
2016{
9a3c8263 2017 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2018
2019 return line_header_hash (ofs);
2020}
2021
2022/* Equality function for line_header_hash. */
2023
2024static int
2025line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2026{
9a3c8263
SM
2027 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2028 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
2029
2030 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2031 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2032}
2033
4390d890 2034\f
9291a0cd
TT
2035#if WORDS_BIGENDIAN
2036
2037/* Convert VALUE between big- and little-endian. */
2038static offset_type
2039byte_swap (offset_type value)
2040{
2041 offset_type result;
2042
2043 result = (value & 0xff) << 24;
2044 result |= (value & 0xff00) << 8;
2045 result |= (value & 0xff0000) >> 8;
2046 result |= (value & 0xff000000) >> 24;
2047 return result;
2048}
2049
2050#define MAYBE_SWAP(V) byte_swap (V)
2051
2052#else
2053#define MAYBE_SWAP(V) (V)
2054#endif /* WORDS_BIGENDIAN */
2055
31aa7e4e
JB
2056/* Read the given attribute value as an address, taking the attribute's
2057 form into account. */
2058
2059static CORE_ADDR
2060attr_value_as_address (struct attribute *attr)
2061{
2062 CORE_ADDR addr;
2063
2064 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2065 {
2066 /* Aside from a few clearly defined exceptions, attributes that
2067 contain an address must always be in DW_FORM_addr form.
2068 Unfortunately, some compilers happen to be violating this
2069 requirement by encoding addresses using other forms, such
2070 as DW_FORM_data4 for example. For those broken compilers,
2071 we try to do our best, without any guarantee of success,
2072 to interpret the address correctly. It would also be nice
2073 to generate a complaint, but that would require us to maintain
2074 a list of legitimate cases where a non-address form is allowed,
2075 as well as update callers to pass in at least the CU's DWARF
2076 version. This is more overhead than what we're willing to
2077 expand for a pretty rare case. */
2078 addr = DW_UNSND (attr);
2079 }
2080 else
2081 addr = DW_ADDR (attr);
2082
2083 return addr;
2084}
2085
9291a0cd
TT
2086/* The suffix for an index file. */
2087#define INDEX_SUFFIX ".gdb-index"
2088
c906108c 2089/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2090 information and return true if we have enough to do something.
2091 NAMES points to the dwarf2 section names, or is NULL if the standard
2092 ELF names are used. */
c906108c
SS
2093
2094int
251d32d9
TG
2095dwarf2_has_info (struct objfile *objfile,
2096 const struct dwarf2_debug_sections *names)
c906108c 2097{
9a3c8263
SM
2098 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2099 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2100 if (!dwarf2_per_objfile)
2101 {
2102 /* Initialize per-objfile state. */
2103 struct dwarf2_per_objfile *data
8d749320 2104 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2105
be391dca
TT
2106 memset (data, 0, sizeof (*data));
2107 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2108 dwarf2_per_objfile = data;
6502dd73 2109
251d32d9
TG
2110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2111 (void *) names);
be391dca
TT
2112 dwarf2_per_objfile->objfile = objfile;
2113 }
73869dc2 2114 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2115 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2116 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2117 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2118}
2119
2120/* Return the containing section of virtual section SECTION. */
2121
2122static struct dwarf2_section_info *
2123get_containing_section (const struct dwarf2_section_info *section)
2124{
2125 gdb_assert (section->is_virtual);
2126 return section->s.containing_section;
c906108c
SS
2127}
2128
a32a8923
DE
2129/* Return the bfd owner of SECTION. */
2130
2131static struct bfd *
2132get_section_bfd_owner (const struct dwarf2_section_info *section)
2133{
73869dc2
DE
2134 if (section->is_virtual)
2135 {
2136 section = get_containing_section (section);
2137 gdb_assert (!section->is_virtual);
2138 }
049412e3 2139 return section->s.section->owner;
a32a8923
DE
2140}
2141
2142/* Return the bfd section of SECTION.
2143 Returns NULL if the section is not present. */
2144
2145static asection *
2146get_section_bfd_section (const struct dwarf2_section_info *section)
2147{
73869dc2
DE
2148 if (section->is_virtual)
2149 {
2150 section = get_containing_section (section);
2151 gdb_assert (!section->is_virtual);
2152 }
049412e3 2153 return section->s.section;
a32a8923
DE
2154}
2155
2156/* Return the name of SECTION. */
2157
2158static const char *
2159get_section_name (const struct dwarf2_section_info *section)
2160{
2161 asection *sectp = get_section_bfd_section (section);
2162
2163 gdb_assert (sectp != NULL);
2164 return bfd_section_name (get_section_bfd_owner (section), sectp);
2165}
2166
2167/* Return the name of the file SECTION is in. */
2168
2169static const char *
2170get_section_file_name (const struct dwarf2_section_info *section)
2171{
2172 bfd *abfd = get_section_bfd_owner (section);
2173
2174 return bfd_get_filename (abfd);
2175}
2176
2177/* Return the id of SECTION.
2178 Returns 0 if SECTION doesn't exist. */
2179
2180static int
2181get_section_id (const struct dwarf2_section_info *section)
2182{
2183 asection *sectp = get_section_bfd_section (section);
2184
2185 if (sectp == NULL)
2186 return 0;
2187 return sectp->id;
2188}
2189
2190/* Return the flags of SECTION.
73869dc2 2191 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2192
2193static int
2194get_section_flags (const struct dwarf2_section_info *section)
2195{
2196 asection *sectp = get_section_bfd_section (section);
2197
2198 gdb_assert (sectp != NULL);
2199 return bfd_get_section_flags (sectp->owner, sectp);
2200}
2201
251d32d9
TG
2202/* When loading sections, we look either for uncompressed section or for
2203 compressed section names. */
233a11ab
CS
2204
2205static int
251d32d9
TG
2206section_is_p (const char *section_name,
2207 const struct dwarf2_section_names *names)
233a11ab 2208{
251d32d9
TG
2209 if (names->normal != NULL
2210 && strcmp (section_name, names->normal) == 0)
2211 return 1;
2212 if (names->compressed != NULL
2213 && strcmp (section_name, names->compressed) == 0)
2214 return 1;
2215 return 0;
233a11ab
CS
2216}
2217
c906108c
SS
2218/* This function is mapped across the sections and remembers the
2219 offset and size of each of the debugging sections we are interested
2220 in. */
2221
2222static void
251d32d9 2223dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2224{
251d32d9 2225 const struct dwarf2_debug_sections *names;
dc7650b8 2226 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2227
2228 if (vnames == NULL)
2229 names = &dwarf2_elf_names;
2230 else
2231 names = (const struct dwarf2_debug_sections *) vnames;
2232
dc7650b8
JK
2233 if ((aflag & SEC_HAS_CONTENTS) == 0)
2234 {
2235 }
2236 else if (section_is_p (sectp->name, &names->info))
c906108c 2237 {
049412e3 2238 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2239 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2240 }
251d32d9 2241 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2242 {
049412e3 2243 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2244 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2245 }
251d32d9 2246 else if (section_is_p (sectp->name, &names->line))
c906108c 2247 {
049412e3 2248 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2249 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2250 }
251d32d9 2251 else if (section_is_p (sectp->name, &names->loc))
c906108c 2252 {
049412e3 2253 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2254 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2255 }
43988095
JK
2256 else if (section_is_p (sectp->name, &names->loclists))
2257 {
2258 dwarf2_per_objfile->loclists.s.section = sectp;
2259 dwarf2_per_objfile->loclists.size = bfd_get_section_size (sectp);
2260 }
251d32d9 2261 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2262 {
049412e3 2263 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2264 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2265 }
cf2c3c16
TT
2266 else if (section_is_p (sectp->name, &names->macro))
2267 {
049412e3 2268 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2269 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2270 }
251d32d9 2271 else if (section_is_p (sectp->name, &names->str))
c906108c 2272 {
049412e3 2273 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2274 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2275 }
43988095
JK
2276 else if (section_is_p (sectp->name, &names->line_str))
2277 {
2278 dwarf2_per_objfile->line_str.s.section = sectp;
2279 dwarf2_per_objfile->line_str.size = bfd_get_section_size (sectp);
2280 }
3019eac3
DE
2281 else if (section_is_p (sectp->name, &names->addr))
2282 {
049412e3 2283 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2284 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2285 }
251d32d9 2286 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2287 {
049412e3 2288 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2289 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2290 }
251d32d9 2291 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2292 {
049412e3 2293 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2294 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2295 }
251d32d9 2296 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2297 {
049412e3 2298 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2299 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2300 }
43988095
JK
2301 else if (section_is_p (sectp->name, &names->rnglists))
2302 {
2303 dwarf2_per_objfile->rnglists.s.section = sectp;
2304 dwarf2_per_objfile->rnglists.size = bfd_get_section_size (sectp);
2305 }
251d32d9 2306 else if (section_is_p (sectp->name, &names->types))
348e048f 2307 {
8b70b953
TT
2308 struct dwarf2_section_info type_section;
2309
2310 memset (&type_section, 0, sizeof (type_section));
049412e3 2311 type_section.s.section = sectp;
8b70b953
TT
2312 type_section.size = bfd_get_section_size (sectp);
2313
2314 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2315 &type_section);
348e048f 2316 }
251d32d9 2317 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2318 {
049412e3 2319 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2320 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2321 }
dce234bc 2322
b4e1fd61 2323 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2324 && bfd_section_vma (abfd, sectp) == 0)
2325 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2326}
2327
fceca515
DE
2328/* A helper function that decides whether a section is empty,
2329 or not present. */
9e0ac564
TT
2330
2331static int
19ac8c2e 2332dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2333{
73869dc2
DE
2334 if (section->is_virtual)
2335 return section->size == 0;
049412e3 2336 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2337}
2338
3019eac3
DE
2339/* Read the contents of the section INFO.
2340 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2341 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2342 of the DWO file.
dce234bc 2343 If the section is compressed, uncompress it before returning. */
c906108c 2344
dce234bc
PP
2345static void
2346dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2347{
a32a8923 2348 asection *sectp;
3019eac3 2349 bfd *abfd;
dce234bc 2350 gdb_byte *buf, *retbuf;
c906108c 2351
be391dca
TT
2352 if (info->readin)
2353 return;
dce234bc 2354 info->buffer = NULL;
be391dca 2355 info->readin = 1;
188dd5d6 2356
9e0ac564 2357 if (dwarf2_section_empty_p (info))
dce234bc 2358 return;
c906108c 2359
a32a8923 2360 sectp = get_section_bfd_section (info);
3019eac3 2361
73869dc2
DE
2362 /* If this is a virtual section we need to read in the real one first. */
2363 if (info->is_virtual)
2364 {
2365 struct dwarf2_section_info *containing_section =
2366 get_containing_section (info);
2367
2368 gdb_assert (sectp != NULL);
2369 if ((sectp->flags & SEC_RELOC) != 0)
2370 {
2371 error (_("Dwarf Error: DWP format V2 with relocations is not"
2372 " supported in section %s [in module %s]"),
2373 get_section_name (info), get_section_file_name (info));
2374 }
2375 dwarf2_read_section (objfile, containing_section);
2376 /* Other code should have already caught virtual sections that don't
2377 fit. */
2378 gdb_assert (info->virtual_offset + info->size
2379 <= containing_section->size);
2380 /* If the real section is empty or there was a problem reading the
2381 section we shouldn't get here. */
2382 gdb_assert (containing_section->buffer != NULL);
2383 info->buffer = containing_section->buffer + info->virtual_offset;
2384 return;
2385 }
2386
4bf44c1c
TT
2387 /* If the section has relocations, we must read it ourselves.
2388 Otherwise we attach it to the BFD. */
2389 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2390 {
d521ce57 2391 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2392 return;
dce234bc 2393 }
dce234bc 2394
224c3ddb 2395 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2396 info->buffer = buf;
dce234bc
PP
2397
2398 /* When debugging .o files, we may need to apply relocations; see
2399 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2400 We never compress sections in .o files, so we only need to
2401 try this when the section is not compressed. */
ac8035ab 2402 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2403 if (retbuf != NULL)
2404 {
2405 info->buffer = retbuf;
2406 return;
2407 }
2408
a32a8923
DE
2409 abfd = get_section_bfd_owner (info);
2410 gdb_assert (abfd != NULL);
2411
dce234bc
PP
2412 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2413 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2414 {
2415 error (_("Dwarf Error: Can't read DWARF data"
2416 " in section %s [in module %s]"),
2417 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2418 }
dce234bc
PP
2419}
2420
9e0ac564
TT
2421/* A helper function that returns the size of a section in a safe way.
2422 If you are positive that the section has been read before using the
2423 size, then it is safe to refer to the dwarf2_section_info object's
2424 "size" field directly. In other cases, you must call this
2425 function, because for compressed sections the size field is not set
2426 correctly until the section has been read. */
2427
2428static bfd_size_type
2429dwarf2_section_size (struct objfile *objfile,
2430 struct dwarf2_section_info *info)
2431{
2432 if (!info->readin)
2433 dwarf2_read_section (objfile, info);
2434 return info->size;
2435}
2436
dce234bc 2437/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2438 SECTION_NAME. */
af34e669 2439
dce234bc 2440void
3017a003
TG
2441dwarf2_get_section_info (struct objfile *objfile,
2442 enum dwarf2_section_enum sect,
d521ce57 2443 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2444 bfd_size_type *sizep)
2445{
2446 struct dwarf2_per_objfile *data
9a3c8263
SM
2447 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2448 dwarf2_objfile_data_key);
dce234bc 2449 struct dwarf2_section_info *info;
a3b2a86b
TT
2450
2451 /* We may see an objfile without any DWARF, in which case we just
2452 return nothing. */
2453 if (data == NULL)
2454 {
2455 *sectp = NULL;
2456 *bufp = NULL;
2457 *sizep = 0;
2458 return;
2459 }
3017a003
TG
2460 switch (sect)
2461 {
2462 case DWARF2_DEBUG_FRAME:
2463 info = &data->frame;
2464 break;
2465 case DWARF2_EH_FRAME:
2466 info = &data->eh_frame;
2467 break;
2468 default:
2469 gdb_assert_not_reached ("unexpected section");
2470 }
dce234bc 2471
9e0ac564 2472 dwarf2_read_section (objfile, info);
dce234bc 2473
a32a8923 2474 *sectp = get_section_bfd_section (info);
dce234bc
PP
2475 *bufp = info->buffer;
2476 *sizep = info->size;
2477}
2478
36586728
TT
2479/* A helper function to find the sections for a .dwz file. */
2480
2481static void
2482locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2483{
9a3c8263 2484 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2485
2486 /* Note that we only support the standard ELF names, because .dwz
2487 is ELF-only (at the time of writing). */
2488 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2489 {
049412e3 2490 dwz_file->abbrev.s.section = sectp;
36586728
TT
2491 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2492 }
2493 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2494 {
049412e3 2495 dwz_file->info.s.section = sectp;
36586728
TT
2496 dwz_file->info.size = bfd_get_section_size (sectp);
2497 }
2498 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2499 {
049412e3 2500 dwz_file->str.s.section = sectp;
36586728
TT
2501 dwz_file->str.size = bfd_get_section_size (sectp);
2502 }
2503 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2504 {
049412e3 2505 dwz_file->line.s.section = sectp;
36586728
TT
2506 dwz_file->line.size = bfd_get_section_size (sectp);
2507 }
2508 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2509 {
049412e3 2510 dwz_file->macro.s.section = sectp;
36586728
TT
2511 dwz_file->macro.size = bfd_get_section_size (sectp);
2512 }
2ec9a5e0
TT
2513 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2514 {
049412e3 2515 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2516 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2517 }
36586728
TT
2518}
2519
4db1a1dc
TT
2520/* Open the separate '.dwz' debug file, if needed. Return NULL if
2521 there is no .gnu_debugaltlink section in the file. Error if there
2522 is such a section but the file cannot be found. */
36586728
TT
2523
2524static struct dwz_file *
2525dwarf2_get_dwz_file (void)
2526{
4db1a1dc 2527 char *data;
36586728
TT
2528 struct cleanup *cleanup;
2529 const char *filename;
2530 struct dwz_file *result;
acd13123 2531 bfd_size_type buildid_len_arg;
dc294be5
TT
2532 size_t buildid_len;
2533 bfd_byte *buildid;
36586728
TT
2534
2535 if (dwarf2_per_objfile->dwz_file != NULL)
2536 return dwarf2_per_objfile->dwz_file;
2537
4db1a1dc
TT
2538 bfd_set_error (bfd_error_no_error);
2539 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2540 &buildid_len_arg, &buildid);
4db1a1dc
TT
2541 if (data == NULL)
2542 {
2543 if (bfd_get_error () == bfd_error_no_error)
2544 return NULL;
2545 error (_("could not read '.gnu_debugaltlink' section: %s"),
2546 bfd_errmsg (bfd_get_error ()));
2547 }
36586728 2548 cleanup = make_cleanup (xfree, data);
dc294be5 2549 make_cleanup (xfree, buildid);
36586728 2550
acd13123
TT
2551 buildid_len = (size_t) buildid_len_arg;
2552
f9d83a0b 2553 filename = (const char *) data;
36586728
TT
2554 if (!IS_ABSOLUTE_PATH (filename))
2555 {
4262abfb 2556 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2557 char *rel;
2558
2559 make_cleanup (xfree, abs);
2560 abs = ldirname (abs);
2561 make_cleanup (xfree, abs);
2562
2563 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2564 make_cleanup (xfree, rel);
2565 filename = rel;
2566 }
2567
dc294be5
TT
2568 /* First try the file name given in the section. If that doesn't
2569 work, try to use the build-id instead. */
192b62ce 2570 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2571 if (dwz_bfd != NULL)
36586728 2572 {
192b62ce
TT
2573 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2574 dwz_bfd.release ();
36586728
TT
2575 }
2576
dc294be5
TT
2577 if (dwz_bfd == NULL)
2578 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2579
2580 if (dwz_bfd == NULL)
2581 error (_("could not find '.gnu_debugaltlink' file for %s"),
2582 objfile_name (dwarf2_per_objfile->objfile));
2583
36586728
TT
2584 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2585 struct dwz_file);
192b62ce 2586 result->dwz_bfd = dwz_bfd.release ();
36586728 2587
192b62ce 2588 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2589
2590 do_cleanups (cleanup);
2591
192b62ce 2592 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2593 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2594 return result;
2595}
9291a0cd 2596\f
7b9f3c50
DE
2597/* DWARF quick_symbols_functions support. */
2598
2599/* TUs can share .debug_line entries, and there can be a lot more TUs than
2600 unique line tables, so we maintain a separate table of all .debug_line
2601 derived entries to support the sharing.
2602 All the quick functions need is the list of file names. We discard the
2603 line_header when we're done and don't need to record it here. */
2604struct quick_file_names
2605{
094b34ac
DE
2606 /* The data used to construct the hash key. */
2607 struct stmt_list_hash hash;
7b9f3c50
DE
2608
2609 /* The number of entries in file_names, real_names. */
2610 unsigned int num_file_names;
2611
2612 /* The file names from the line table, after being run through
2613 file_full_name. */
2614 const char **file_names;
2615
2616 /* The file names from the line table after being run through
2617 gdb_realpath. These are computed lazily. */
2618 const char **real_names;
2619};
2620
2621/* When using the index (and thus not using psymtabs), each CU has an
2622 object of this type. This is used to hold information needed by
2623 the various "quick" methods. */
2624struct dwarf2_per_cu_quick_data
2625{
2626 /* The file table. This can be NULL if there was no file table
2627 or it's currently not read in.
2628 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2629 struct quick_file_names *file_names;
2630
2631 /* The corresponding symbol table. This is NULL if symbols for this
2632 CU have not yet been read. */
43f3e411 2633 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2634
2635 /* A temporary mark bit used when iterating over all CUs in
2636 expand_symtabs_matching. */
2637 unsigned int mark : 1;
2638
2639 /* True if we've tried to read the file table and found there isn't one.
2640 There will be no point in trying to read it again next time. */
2641 unsigned int no_file_data : 1;
2642};
2643
094b34ac
DE
2644/* Utility hash function for a stmt_list_hash. */
2645
2646static hashval_t
2647hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2648{
2649 hashval_t v = 0;
2650
2651 if (stmt_list_hash->dwo_unit != NULL)
2652 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2653 v += stmt_list_hash->line_offset.sect_off;
2654 return v;
2655}
2656
2657/* Utility equality function for a stmt_list_hash. */
2658
2659static int
2660eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2661 const struct stmt_list_hash *rhs)
2662{
2663 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2664 return 0;
2665 if (lhs->dwo_unit != NULL
2666 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2667 return 0;
2668
2669 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2670}
2671
7b9f3c50
DE
2672/* Hash function for a quick_file_names. */
2673
2674static hashval_t
2675hash_file_name_entry (const void *e)
2676{
9a3c8263
SM
2677 const struct quick_file_names *file_data
2678 = (const struct quick_file_names *) e;
7b9f3c50 2679
094b34ac 2680 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2681}
2682
2683/* Equality function for a quick_file_names. */
2684
2685static int
2686eq_file_name_entry (const void *a, const void *b)
2687{
9a3c8263
SM
2688 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2689 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2690
094b34ac 2691 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2692}
2693
2694/* Delete function for a quick_file_names. */
2695
2696static void
2697delete_file_name_entry (void *e)
2698{
9a3c8263 2699 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2700 int i;
2701
2702 for (i = 0; i < file_data->num_file_names; ++i)
2703 {
2704 xfree ((void*) file_data->file_names[i]);
2705 if (file_data->real_names)
2706 xfree ((void*) file_data->real_names[i]);
2707 }
2708
2709 /* The space for the struct itself lives on objfile_obstack,
2710 so we don't free it here. */
2711}
2712
2713/* Create a quick_file_names hash table. */
2714
2715static htab_t
2716create_quick_file_names_table (unsigned int nr_initial_entries)
2717{
2718 return htab_create_alloc (nr_initial_entries,
2719 hash_file_name_entry, eq_file_name_entry,
2720 delete_file_name_entry, xcalloc, xfree);
2721}
9291a0cd 2722
918dd910
JK
2723/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2724 have to be created afterwards. You should call age_cached_comp_units after
2725 processing PER_CU->CU. dw2_setup must have been already called. */
2726
2727static void
2728load_cu (struct dwarf2_per_cu_data *per_cu)
2729{
3019eac3 2730 if (per_cu->is_debug_types)
e5fe5e75 2731 load_full_type_unit (per_cu);
918dd910 2732 else
95554aad 2733 load_full_comp_unit (per_cu, language_minimal);
918dd910 2734
cc12ce38
DE
2735 if (per_cu->cu == NULL)
2736 return; /* Dummy CU. */
2dc860c0
DE
2737
2738 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2739}
2740
a0f42c21 2741/* Read in the symbols for PER_CU. */
2fdf6df6 2742
9291a0cd 2743static void
a0f42c21 2744dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2745{
2746 struct cleanup *back_to;
2747
f4dc4d17
DE
2748 /* Skip type_unit_groups, reading the type units they contain
2749 is handled elsewhere. */
2750 if (IS_TYPE_UNIT_GROUP (per_cu))
2751 return;
2752
9291a0cd
TT
2753 back_to = make_cleanup (dwarf2_release_queue, NULL);
2754
95554aad 2755 if (dwarf2_per_objfile->using_index
43f3e411 2756 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2757 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2758 {
2759 queue_comp_unit (per_cu, language_minimal);
2760 load_cu (per_cu);
89e63ee4
DE
2761
2762 /* If we just loaded a CU from a DWO, and we're working with an index
2763 that may badly handle TUs, load all the TUs in that DWO as well.
2764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2765 if (!per_cu->is_debug_types
cc12ce38 2766 && per_cu->cu != NULL
89e63ee4
DE
2767 && per_cu->cu->dwo_unit != NULL
2768 && dwarf2_per_objfile->index_table != NULL
2769 && dwarf2_per_objfile->index_table->version <= 7
2770 /* DWP files aren't supported yet. */
2771 && get_dwp_file () == NULL)
2772 queue_and_load_all_dwo_tus (per_cu);
95554aad 2773 }
9291a0cd 2774
a0f42c21 2775 process_queue ();
9291a0cd
TT
2776
2777 /* Age the cache, releasing compilation units that have not
2778 been used recently. */
2779 age_cached_comp_units ();
2780
2781 do_cleanups (back_to);
2782}
2783
2784/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2785 the objfile from which this CU came. Returns the resulting symbol
2786 table. */
2fdf6df6 2787
43f3e411 2788static struct compunit_symtab *
a0f42c21 2789dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2790{
95554aad 2791 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2792 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2793 {
2794 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2795 increment_reading_symtab ();
a0f42c21 2796 dw2_do_instantiate_symtab (per_cu);
95554aad 2797 process_cu_includes ();
9291a0cd
TT
2798 do_cleanups (back_to);
2799 }
f194fefb 2800
43f3e411 2801 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2802}
2803
8832e7e3 2804/* Return the CU/TU given its index.
f4dc4d17
DE
2805
2806 This is intended for loops like:
2807
2808 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2809 + dwarf2_per_objfile->n_type_units); ++i)
2810 {
8832e7e3 2811 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2812
2813 ...;
2814 }
2815*/
2fdf6df6 2816
1fd400ff 2817static struct dwarf2_per_cu_data *
8832e7e3 2818dw2_get_cutu (int index)
1fd400ff
TT
2819{
2820 if (index >= dwarf2_per_objfile->n_comp_units)
2821 {
f4dc4d17 2822 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2823 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2824 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2825 }
2826
2827 return dwarf2_per_objfile->all_comp_units[index];
2828}
2829
8832e7e3
DE
2830/* Return the CU given its index.
2831 This differs from dw2_get_cutu in that it's for when you know INDEX
2832 refers to a CU. */
f4dc4d17
DE
2833
2834static struct dwarf2_per_cu_data *
8832e7e3 2835dw2_get_cu (int index)
f4dc4d17 2836{
8832e7e3 2837 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2838
1fd400ff
TT
2839 return dwarf2_per_objfile->all_comp_units[index];
2840}
2841
2ec9a5e0
TT
2842/* A helper for create_cus_from_index that handles a given list of
2843 CUs. */
2fdf6df6 2844
74a0d9f6 2845static void
2ec9a5e0
TT
2846create_cus_from_index_list (struct objfile *objfile,
2847 const gdb_byte *cu_list, offset_type n_elements,
2848 struct dwarf2_section_info *section,
2849 int is_dwz,
2850 int base_offset)
9291a0cd
TT
2851{
2852 offset_type i;
9291a0cd 2853
2ec9a5e0 2854 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2855 {
2856 struct dwarf2_per_cu_data *the_cu;
2857 ULONGEST offset, length;
2858
74a0d9f6
JK
2859 gdb_static_assert (sizeof (ULONGEST) >= 8);
2860 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2861 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2862 cu_list += 2 * 8;
2863
2864 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_data);
b64f50a1 2866 the_cu->offset.sect_off = offset;
9291a0cd
TT
2867 the_cu->length = length;
2868 the_cu->objfile = objfile;
8a0459fd 2869 the_cu->section = section;
9291a0cd
TT
2870 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2871 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2872 the_cu->is_dwz = is_dwz;
2873 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2874 }
9291a0cd
TT
2875}
2876
2ec9a5e0 2877/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2878 the CU objects for this objfile. */
2ec9a5e0 2879
74a0d9f6 2880static void
2ec9a5e0
TT
2881create_cus_from_index (struct objfile *objfile,
2882 const gdb_byte *cu_list, offset_type cu_list_elements,
2883 const gdb_byte *dwz_list, offset_type dwz_elements)
2884{
2885 struct dwz_file *dwz;
2886
2887 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2888 dwarf2_per_objfile->all_comp_units =
2889 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2890 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2891
74a0d9f6
JK
2892 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2893 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2894
2895 if (dwz_elements == 0)
74a0d9f6 2896 return;
2ec9a5e0
TT
2897
2898 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2899 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2900 cu_list_elements / 2);
2ec9a5e0
TT
2901}
2902
1fd400ff 2903/* Create the signatured type hash table from the index. */
673bfd45 2904
74a0d9f6 2905static void
673bfd45 2906create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2907 struct dwarf2_section_info *section,
673bfd45
DE
2908 const gdb_byte *bytes,
2909 offset_type elements)
1fd400ff
TT
2910{
2911 offset_type i;
673bfd45 2912 htab_t sig_types_hash;
1fd400ff 2913
6aa5f3a6
DE
2914 dwarf2_per_objfile->n_type_units
2915 = dwarf2_per_objfile->n_allocated_type_units
2916 = elements / 3;
8d749320
SM
2917 dwarf2_per_objfile->all_type_units =
2918 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2919
673bfd45 2920 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2921
2922 for (i = 0; i < elements; i += 3)
2923 {
52dc124a
DE
2924 struct signatured_type *sig_type;
2925 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2926 void **slot;
2927
74a0d9f6
JK
2928 gdb_static_assert (sizeof (ULONGEST) >= 8);
2929 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2930 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2931 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2933 bytes += 3 * 8;
2934
52dc124a 2935 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2936 struct signatured_type);
52dc124a 2937 sig_type->signature = signature;
3019eac3
DE
2938 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2939 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2940 sig_type->per_cu.section = section;
52dc124a
DE
2941 sig_type->per_cu.offset.sect_off = offset;
2942 sig_type->per_cu.objfile = objfile;
2943 sig_type->per_cu.v.quick
1fd400ff
TT
2944 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2945 struct dwarf2_per_cu_quick_data);
2946
52dc124a
DE
2947 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2948 *slot = sig_type;
1fd400ff 2949
b4dd5633 2950 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2951 }
2952
673bfd45 2953 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2954}
2955
9291a0cd
TT
2956/* Read the address map data from the mapped index, and use it to
2957 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2958
9291a0cd
TT
2959static void
2960create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2961{
3e29f34a 2962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2963 const gdb_byte *iter, *end;
2964 struct obstack temp_obstack;
2965 struct addrmap *mutable_map;
2966 struct cleanup *cleanup;
2967 CORE_ADDR baseaddr;
2968
2969 obstack_init (&temp_obstack);
2970 cleanup = make_cleanup_obstack_free (&temp_obstack);
2971 mutable_map = addrmap_create_mutable (&temp_obstack);
2972
2973 iter = index->address_table;
2974 end = iter + index->address_table_size;
2975
2976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2977
2978 while (iter < end)
2979 {
2980 ULONGEST hi, lo, cu_index;
2981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2982 iter += 8;
2983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2984 iter += 8;
2985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2986 iter += 4;
f652bce2 2987
24a55014 2988 if (lo > hi)
f652bce2 2989 {
24a55014
DE
2990 complaint (&symfile_complaints,
2991 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2992 hex_string (lo), hex_string (hi));
24a55014 2993 continue;
f652bce2 2994 }
24a55014
DE
2995
2996 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2997 {
2998 complaint (&symfile_complaints,
2999 _(".gdb_index address table has invalid CU number %u"),
3000 (unsigned) cu_index);
24a55014 3001 continue;
f652bce2 3002 }
24a55014 3003
3e29f34a
MR
3004 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3005 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3006 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3007 }
3008
3009 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3010 &objfile->objfile_obstack);
3011 do_cleanups (cleanup);
3012}
3013
59d7bcaf
JK
3014/* The hash function for strings in the mapped index. This is the same as
3015 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3016 implementation. This is necessary because the hash function is tied to the
3017 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3018 SYMBOL_HASH_NEXT.
3019
3020 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3021
9291a0cd 3022static hashval_t
559a7a62 3023mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3024{
3025 const unsigned char *str = (const unsigned char *) p;
3026 hashval_t r = 0;
3027 unsigned char c;
3028
3029 while ((c = *str++) != 0)
559a7a62
JK
3030 {
3031 if (index_version >= 5)
3032 c = tolower (c);
3033 r = r * 67 + c - 113;
3034 }
9291a0cd
TT
3035
3036 return r;
3037}
3038
3039/* Find a slot in the mapped index INDEX for the object named NAME.
3040 If NAME is found, set *VEC_OUT to point to the CU vector in the
3041 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 3042
9291a0cd
TT
3043static int
3044find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3045 offset_type **vec_out)
3046{
0cf03b49
JK
3047 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3048 offset_type hash;
9291a0cd 3049 offset_type slot, step;
559a7a62 3050 int (*cmp) (const char *, const char *);
9291a0cd 3051
0cf03b49 3052 if (current_language->la_language == language_cplus
45280282
IB
3053 || current_language->la_language == language_fortran
3054 || current_language->la_language == language_d)
0cf03b49
JK
3055 {
3056 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3057 not contain any. */
a8719064 3058
72998fb3 3059 if (strchr (name, '(') != NULL)
0cf03b49 3060 {
72998fb3 3061 char *without_params = cp_remove_params (name);
0cf03b49 3062
72998fb3
DE
3063 if (without_params != NULL)
3064 {
3065 make_cleanup (xfree, without_params);
3066 name = without_params;
3067 }
0cf03b49
JK
3068 }
3069 }
3070
559a7a62 3071 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3072 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3073 simulate our NAME being searched is also lowercased. */
3074 hash = mapped_index_string_hash ((index->version == 4
3075 && case_sensitivity == case_sensitive_off
3076 ? 5 : index->version),
3077 name);
3078
3876f04e
DE
3079 slot = hash & (index->symbol_table_slots - 1);
3080 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3081 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3082
3083 for (;;)
3084 {
3085 /* Convert a slot number to an offset into the table. */
3086 offset_type i = 2 * slot;
3087 const char *str;
3876f04e 3088 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3089 {
3090 do_cleanups (back_to);
3091 return 0;
3092 }
9291a0cd 3093
3876f04e 3094 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3095 if (!cmp (name, str))
9291a0cd
TT
3096 {
3097 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3098 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3099 do_cleanups (back_to);
9291a0cd
TT
3100 return 1;
3101 }
3102
3876f04e 3103 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3104 }
3105}
3106
2ec9a5e0
TT
3107/* A helper function that reads the .gdb_index from SECTION and fills
3108 in MAP. FILENAME is the name of the file containing the section;
3109 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3110 ok to use deprecated sections.
3111
3112 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3113 out parameters that are filled in with information about the CU and
3114 TU lists in the section.
3115
3116 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3117
9291a0cd 3118static int
2ec9a5e0
TT
3119read_index_from_section (struct objfile *objfile,
3120 const char *filename,
3121 int deprecated_ok,
3122 struct dwarf2_section_info *section,
3123 struct mapped_index *map,
3124 const gdb_byte **cu_list,
3125 offset_type *cu_list_elements,
3126 const gdb_byte **types_list,
3127 offset_type *types_list_elements)
9291a0cd 3128{
948f8e3d 3129 const gdb_byte *addr;
2ec9a5e0 3130 offset_type version;
b3b272e1 3131 offset_type *metadata;
1fd400ff 3132 int i;
9291a0cd 3133
2ec9a5e0 3134 if (dwarf2_section_empty_p (section))
9291a0cd 3135 return 0;
82430852
JK
3136
3137 /* Older elfutils strip versions could keep the section in the main
3138 executable while splitting it for the separate debug info file. */
a32a8923 3139 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3140 return 0;
3141
2ec9a5e0 3142 dwarf2_read_section (objfile, section);
9291a0cd 3143
2ec9a5e0 3144 addr = section->buffer;
9291a0cd 3145 /* Version check. */
1fd400ff 3146 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3147 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3148 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3149 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3150 indices. */
831adc1f 3151 if (version < 4)
481860b3
GB
3152 {
3153 static int warning_printed = 0;
3154 if (!warning_printed)
3155 {
3156 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3157 filename);
481860b3
GB
3158 warning_printed = 1;
3159 }
3160 return 0;
3161 }
3162 /* Index version 4 uses a different hash function than index version
3163 5 and later.
3164
3165 Versions earlier than 6 did not emit psymbols for inlined
3166 functions. Using these files will cause GDB not to be able to
3167 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3168 indices unless the user has done
3169 "set use-deprecated-index-sections on". */
2ec9a5e0 3170 if (version < 6 && !deprecated_ok)
481860b3
GB
3171 {
3172 static int warning_printed = 0;
3173 if (!warning_printed)
3174 {
e615022a
DE
3175 warning (_("\
3176Skipping deprecated .gdb_index section in %s.\n\
3177Do \"set use-deprecated-index-sections on\" before the file is read\n\
3178to use the section anyway."),
2ec9a5e0 3179 filename);
481860b3
GB
3180 warning_printed = 1;
3181 }
3182 return 0;
3183 }
796a7ff8 3184 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3185 of the TU (for symbols coming from TUs),
3186 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3187 Plus gold-generated indices can have duplicate entries for global symbols,
3188 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3189 These are just performance bugs, and we can't distinguish gdb-generated
3190 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3191
481860b3 3192 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3193 longer backward compatible. */
796a7ff8 3194 if (version > 8)
594e8718 3195 return 0;
9291a0cd 3196
559a7a62 3197 map->version = version;
2ec9a5e0 3198 map->total_size = section->size;
9291a0cd
TT
3199
3200 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3201
3202 i = 0;
2ec9a5e0
TT
3203 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3204 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3205 / 8);
1fd400ff
TT
3206 ++i;
3207
2ec9a5e0
TT
3208 *types_list = addr + MAYBE_SWAP (metadata[i]);
3209 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3210 - MAYBE_SWAP (metadata[i]))
3211 / 8);
987d643c 3212 ++i;
1fd400ff
TT
3213
3214 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3215 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3216 - MAYBE_SWAP (metadata[i]));
3217 ++i;
3218
3876f04e
DE
3219 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3220 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3221 - MAYBE_SWAP (metadata[i]))
3222 / (2 * sizeof (offset_type)));
1fd400ff 3223 ++i;
9291a0cd 3224
f9d83a0b 3225 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3226
2ec9a5e0
TT
3227 return 1;
3228}
3229
3230
3231/* Read the index file. If everything went ok, initialize the "quick"
3232 elements of all the CUs and return 1. Otherwise, return 0. */
3233
3234static int
3235dwarf2_read_index (struct objfile *objfile)
3236{
3237 struct mapped_index local_map, *map;
3238 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3239 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3240 struct dwz_file *dwz;
2ec9a5e0 3241
4262abfb 3242 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3243 use_deprecated_index_sections,
3244 &dwarf2_per_objfile->gdb_index, &local_map,
3245 &cu_list, &cu_list_elements,
3246 &types_list, &types_list_elements))
3247 return 0;
3248
0fefef59 3249 /* Don't use the index if it's empty. */
2ec9a5e0 3250 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3251 return 0;
3252
2ec9a5e0
TT
3253 /* If there is a .dwz file, read it so we can get its CU list as
3254 well. */
4db1a1dc
TT
3255 dwz = dwarf2_get_dwz_file ();
3256 if (dwz != NULL)
2ec9a5e0 3257 {
2ec9a5e0
TT
3258 struct mapped_index dwz_map;
3259 const gdb_byte *dwz_types_ignore;
3260 offset_type dwz_types_elements_ignore;
3261
3262 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3263 1,
3264 &dwz->gdb_index, &dwz_map,
3265 &dwz_list, &dwz_list_elements,
3266 &dwz_types_ignore,
3267 &dwz_types_elements_ignore))
3268 {
3269 warning (_("could not read '.gdb_index' section from %s; skipping"),
3270 bfd_get_filename (dwz->dwz_bfd));
3271 return 0;
3272 }
3273 }
3274
74a0d9f6
JK
3275 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3276 dwz_list_elements);
1fd400ff 3277
8b70b953
TT
3278 if (types_list_elements)
3279 {
3280 struct dwarf2_section_info *section;
3281
3282 /* We can only handle a single .debug_types when we have an
3283 index. */
3284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3285 return 0;
3286
3287 section = VEC_index (dwarf2_section_info_def,
3288 dwarf2_per_objfile->types, 0);
3289
74a0d9f6
JK
3290 create_signatured_type_table_from_index (objfile, section, types_list,
3291 types_list_elements);
8b70b953 3292 }
9291a0cd 3293
2ec9a5e0
TT
3294 create_addrmap_from_index (objfile, &local_map);
3295
8d749320 3296 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3297 *map = local_map;
9291a0cd
TT
3298
3299 dwarf2_per_objfile->index_table = map;
3300 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3301 dwarf2_per_objfile->quick_file_names_table =
3302 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3303
3304 return 1;
3305}
3306
3307/* A helper for the "quick" functions which sets the global
3308 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3309
9291a0cd
TT
3310static void
3311dw2_setup (struct objfile *objfile)
3312{
9a3c8263
SM
3313 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3314 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3315 gdb_assert (dwarf2_per_objfile);
3316}
3317
dee91e82 3318/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3319
dee91e82
DE
3320static void
3321dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3322 const gdb_byte *info_ptr,
dee91e82
DE
3323 struct die_info *comp_unit_die,
3324 int has_children,
3325 void *data)
9291a0cd 3326{
dee91e82
DE
3327 struct dwarf2_cu *cu = reader->cu;
3328 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3329 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3330 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3331 struct line_header *lh;
9291a0cd 3332 struct attribute *attr;
dee91e82 3333 int i;
15d034d0 3334 const char *name, *comp_dir;
7b9f3c50
DE
3335 void **slot;
3336 struct quick_file_names *qfn;
3337 unsigned int line_offset;
9291a0cd 3338
0186c6a7
DE
3339 gdb_assert (! this_cu->is_debug_types);
3340
07261596
TT
3341 /* Our callers never want to match partial units -- instead they
3342 will match the enclosing full CU. */
3343 if (comp_unit_die->tag == DW_TAG_partial_unit)
3344 {
3345 this_cu->v.quick->no_file_data = 1;
3346 return;
3347 }
3348
0186c6a7 3349 lh_cu = this_cu;
7b9f3c50
DE
3350 lh = NULL;
3351 slot = NULL;
3352 line_offset = 0;
dee91e82
DE
3353
3354 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3355 if (attr)
3356 {
7b9f3c50
DE
3357 struct quick_file_names find_entry;
3358
3359 line_offset = DW_UNSND (attr);
3360
3361 /* We may have already read in this line header (TU line header sharing).
3362 If we have we're done. */
094b34ac
DE
3363 find_entry.hash.dwo_unit = cu->dwo_unit;
3364 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3365 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3366 &find_entry, INSERT);
3367 if (*slot != NULL)
3368 {
9a3c8263 3369 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3370 return;
7b9f3c50
DE
3371 }
3372
3019eac3 3373 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3374 }
3375 if (lh == NULL)
3376 {
094b34ac 3377 lh_cu->v.quick->no_file_data = 1;
dee91e82 3378 return;
9291a0cd
TT
3379 }
3380
8d749320 3381 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3382 qfn->hash.dwo_unit = cu->dwo_unit;
3383 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3384 gdb_assert (slot != NULL);
3385 *slot = qfn;
9291a0cd 3386
dee91e82 3387 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3388
7b9f3c50 3389 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3390 qfn->file_names =
3391 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3392 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3393 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3394 qfn->real_names = NULL;
9291a0cd 3395
7b9f3c50 3396 free_line_header (lh);
7b9f3c50 3397
094b34ac 3398 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3399}
3400
3401/* A helper for the "quick" functions which attempts to read the line
3402 table for THIS_CU. */
3403
3404static struct quick_file_names *
e4a48d9d 3405dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3406{
0186c6a7
DE
3407 /* This should never be called for TUs. */
3408 gdb_assert (! this_cu->is_debug_types);
3409 /* Nor type unit groups. */
3410 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3411
dee91e82
DE
3412 if (this_cu->v.quick->file_names != NULL)
3413 return this_cu->v.quick->file_names;
3414 /* If we know there is no line data, no point in looking again. */
3415 if (this_cu->v.quick->no_file_data)
3416 return NULL;
3417
0186c6a7 3418 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3419
3420 if (this_cu->v.quick->no_file_data)
3421 return NULL;
3422 return this_cu->v.quick->file_names;
9291a0cd
TT
3423}
3424
3425/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3426 real path for a given file name from the line table. */
2fdf6df6 3427
9291a0cd 3428static const char *
7b9f3c50
DE
3429dw2_get_real_path (struct objfile *objfile,
3430 struct quick_file_names *qfn, int index)
9291a0cd 3431{
7b9f3c50
DE
3432 if (qfn->real_names == NULL)
3433 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3434 qfn->num_file_names, const char *);
9291a0cd 3435
7b9f3c50
DE
3436 if (qfn->real_names[index] == NULL)
3437 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3438
7b9f3c50 3439 return qfn->real_names[index];
9291a0cd
TT
3440}
3441
3442static struct symtab *
3443dw2_find_last_source_symtab (struct objfile *objfile)
3444{
43f3e411 3445 struct compunit_symtab *cust;
9291a0cd 3446 int index;
ae2de4f8 3447
9291a0cd
TT
3448 dw2_setup (objfile);
3449 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3450 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3451 if (cust == NULL)
3452 return NULL;
3453 return compunit_primary_filetab (cust);
9291a0cd
TT
3454}
3455
7b9f3c50
DE
3456/* Traversal function for dw2_forget_cached_source_info. */
3457
3458static int
3459dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3460{
7b9f3c50 3461 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3462
7b9f3c50 3463 if (file_data->real_names)
9291a0cd 3464 {
7b9f3c50 3465 int i;
9291a0cd 3466
7b9f3c50 3467 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3468 {
7b9f3c50
DE
3469 xfree ((void*) file_data->real_names[i]);
3470 file_data->real_names[i] = NULL;
9291a0cd
TT
3471 }
3472 }
7b9f3c50
DE
3473
3474 return 1;
3475}
3476
3477static void
3478dw2_forget_cached_source_info (struct objfile *objfile)
3479{
3480 dw2_setup (objfile);
3481
3482 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3483 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3484}
3485
f8eba3c6
TT
3486/* Helper function for dw2_map_symtabs_matching_filename that expands
3487 the symtabs and calls the iterator. */
3488
3489static int
3490dw2_map_expand_apply (struct objfile *objfile,
3491 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3492 const char *name, const char *real_path,
f8eba3c6
TT
3493 int (*callback) (struct symtab *, void *),
3494 void *data)
3495{
43f3e411 3496 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3497
3498 /* Don't visit already-expanded CUs. */
43f3e411 3499 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3500 return 0;
3501
3502 /* This may expand more than one symtab, and we want to iterate over
3503 all of them. */
a0f42c21 3504 dw2_instantiate_symtab (per_cu);
f8eba3c6 3505
f5b95b50 3506 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3507 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3508}
3509
3510/* Implementation of the map_symtabs_matching_filename method. */
3511
9291a0cd 3512static int
f8eba3c6 3513dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3514 const char *real_path,
f8eba3c6
TT
3515 int (*callback) (struct symtab *, void *),
3516 void *data)
9291a0cd
TT
3517{
3518 int i;
c011a4f4 3519 const char *name_basename = lbasename (name);
9291a0cd
TT
3520
3521 dw2_setup (objfile);
ae2de4f8 3522
848e3e78
DE
3523 /* The rule is CUs specify all the files, including those used by
3524 any TU, so there's no need to scan TUs here. */
f4dc4d17 3525
848e3e78 3526 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3527 {
3528 int j;
8832e7e3 3529 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3530 struct quick_file_names *file_data;
9291a0cd 3531
3d7bb9d9 3532 /* We only need to look at symtabs not already expanded. */
43f3e411 3533 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3534 continue;
3535
e4a48d9d 3536 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3537 if (file_data == NULL)
9291a0cd
TT
3538 continue;
3539
7b9f3c50 3540 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3541 {
7b9f3c50 3542 const char *this_name = file_data->file_names[j];
da235a7c 3543 const char *this_real_name;
9291a0cd 3544
af529f8f 3545 if (compare_filenames_for_search (this_name, name))
9291a0cd 3546 {
f5b95b50 3547 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3548 callback, data))
3549 return 1;
288e77a7 3550 continue;
4aac40c8 3551 }
9291a0cd 3552
c011a4f4
DE
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (! basenames_may_differ
3556 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3557 continue;
3558
da235a7c
JK
3559 this_real_name = dw2_get_real_path (objfile, file_data, j);
3560 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3561 {
da235a7c
JK
3562 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3563 callback, data))
3564 return 1;
288e77a7 3565 continue;
da235a7c 3566 }
9291a0cd 3567
da235a7c
JK
3568 if (real_path != NULL)
3569 {
af529f8f
JK
3570 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3571 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3572 if (this_real_name != NULL
af529f8f 3573 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3574 {
f5b95b50 3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3576 callback, data))
3577 return 1;
288e77a7 3578 continue;
9291a0cd
TT
3579 }
3580 }
3581 }
3582 }
3583
9291a0cd
TT
3584 return 0;
3585}
3586
da51c347
DE
3587/* Struct used to manage iterating over all CUs looking for a symbol. */
3588
3589struct dw2_symtab_iterator
9291a0cd 3590{
da51c347
DE
3591 /* The internalized form of .gdb_index. */
3592 struct mapped_index *index;
3593 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3594 int want_specific_block;
3595 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3596 Unused if !WANT_SPECIFIC_BLOCK. */
3597 int block_index;
3598 /* The kind of symbol we're looking for. */
3599 domain_enum domain;
3600 /* The list of CUs from the index entry of the symbol,
3601 or NULL if not found. */
3602 offset_type *vec;
3603 /* The next element in VEC to look at. */
3604 int next;
3605 /* The number of elements in VEC, or zero if there is no match. */
3606 int length;
8943b874
DE
3607 /* Have we seen a global version of the symbol?
3608 If so we can ignore all further global instances.
3609 This is to work around gold/15646, inefficient gold-generated
3610 indices. */
3611 int global_seen;
da51c347 3612};
9291a0cd 3613
da51c347
DE
3614/* Initialize the index symtab iterator ITER.
3615 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3616 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3617
9291a0cd 3618static void
da51c347
DE
3619dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3620 struct mapped_index *index,
3621 int want_specific_block,
3622 int block_index,
3623 domain_enum domain,
3624 const char *name)
3625{
3626 iter->index = index;
3627 iter->want_specific_block = want_specific_block;
3628 iter->block_index = block_index;
3629 iter->domain = domain;
3630 iter->next = 0;
8943b874 3631 iter->global_seen = 0;
da51c347
DE
3632
3633 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3634 iter->length = MAYBE_SWAP (*iter->vec);
3635 else
3636 {
3637 iter->vec = NULL;
3638 iter->length = 0;
3639 }
3640}
3641
3642/* Return the next matching CU or NULL if there are no more. */
3643
3644static struct dwarf2_per_cu_data *
3645dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3646{
3647 for ( ; iter->next < iter->length; ++iter->next)
3648 {
3649 offset_type cu_index_and_attrs =
3650 MAYBE_SWAP (iter->vec[iter->next + 1]);
3651 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3652 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3653 int want_static = iter->block_index != GLOBAL_BLOCK;
3654 /* This value is only valid for index versions >= 7. */
3655 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3656 gdb_index_symbol_kind symbol_kind =
3657 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3658 /* Only check the symbol attributes if they're present.
3659 Indices prior to version 7 don't record them,
3660 and indices >= 7 may elide them for certain symbols
3661 (gold does this). */
3662 int attrs_valid =
3663 (iter->index->version >= 7
3664 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3665
3190f0c6
DE
3666 /* Don't crash on bad data. */
3667 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3668 + dwarf2_per_objfile->n_type_units))
3669 {
3670 complaint (&symfile_complaints,
3671 _(".gdb_index entry has bad CU index"
4262abfb
JK
3672 " [in module %s]"),
3673 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3674 continue;
3675 }
3676
8832e7e3 3677 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3678
da51c347 3679 /* Skip if already read in. */
43f3e411 3680 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3681 continue;
3682
8943b874
DE
3683 /* Check static vs global. */
3684 if (attrs_valid)
3685 {
3686 if (iter->want_specific_block
3687 && want_static != is_static)
3688 continue;
3689 /* Work around gold/15646. */
3690 if (!is_static && iter->global_seen)
3691 continue;
3692 if (!is_static)
3693 iter->global_seen = 1;
3694 }
da51c347
DE
3695
3696 /* Only check the symbol's kind if it has one. */
3697 if (attrs_valid)
3698 {
3699 switch (iter->domain)
3700 {
3701 case VAR_DOMAIN:
3702 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3703 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3704 /* Some types are also in VAR_DOMAIN. */
3705 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3706 continue;
3707 break;
3708 case STRUCT_DOMAIN:
3709 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3710 continue;
3711 break;
3712 case LABEL_DOMAIN:
3713 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3714 continue;
3715 break;
3716 default:
3717 break;
3718 }
3719 }
3720
3721 ++iter->next;
3722 return per_cu;
3723 }
3724
3725 return NULL;
3726}
3727
43f3e411 3728static struct compunit_symtab *
da51c347
DE
3729dw2_lookup_symbol (struct objfile *objfile, int block_index,
3730 const char *name, domain_enum domain)
9291a0cd 3731{
43f3e411 3732 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3733 struct mapped_index *index;
3734
9291a0cd
TT
3735 dw2_setup (objfile);
3736
156942c7
DE
3737 index = dwarf2_per_objfile->index_table;
3738
da51c347 3739 /* index is NULL if OBJF_READNOW. */
156942c7 3740 if (index)
9291a0cd 3741 {
da51c347
DE
3742 struct dw2_symtab_iterator iter;
3743 struct dwarf2_per_cu_data *per_cu;
3744
3745 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3746
da51c347 3747 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3748 {
b2e2f908 3749 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3750 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3751 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3752 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3753
b2e2f908
DE
3754 sym = block_find_symbol (block, name, domain,
3755 block_find_non_opaque_type_preferred,
3756 &with_opaque);
3757
da51c347
DE
3758 /* Some caution must be observed with overloaded functions
3759 and methods, since the index will not contain any overload
3760 information (but NAME might contain it). */
da51c347 3761
b2e2f908
DE
3762 if (sym != NULL
3763 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3764 return stab;
3765 if (with_opaque != NULL
3766 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3767 stab_best = stab;
da51c347
DE
3768
3769 /* Keep looking through other CUs. */
9291a0cd
TT
3770 }
3771 }
9291a0cd 3772
da51c347 3773 return stab_best;
9291a0cd
TT
3774}
3775
3776static void
3777dw2_print_stats (struct objfile *objfile)
3778{
e4a48d9d 3779 int i, total, count;
9291a0cd
TT
3780
3781 dw2_setup (objfile);
e4a48d9d 3782 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3783 count = 0;
e4a48d9d 3784 for (i = 0; i < total; ++i)
9291a0cd 3785 {
8832e7e3 3786 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3787
43f3e411 3788 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3789 ++count;
3790 }
e4a48d9d 3791 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3792 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3793}
3794
779bd270
DE
3795/* This dumps minimal information about the index.
3796 It is called via "mt print objfiles".
3797 One use is to verify .gdb_index has been loaded by the
3798 gdb.dwarf2/gdb-index.exp testcase. */
3799
9291a0cd
TT
3800static void
3801dw2_dump (struct objfile *objfile)
3802{
779bd270
DE
3803 dw2_setup (objfile);
3804 gdb_assert (dwarf2_per_objfile->using_index);
3805 printf_filtered (".gdb_index:");
3806 if (dwarf2_per_objfile->index_table != NULL)
3807 {
3808 printf_filtered (" version %d\n",
3809 dwarf2_per_objfile->index_table->version);
3810 }
3811 else
3812 printf_filtered (" faked for \"readnow\"\n");
3813 printf_filtered ("\n");
9291a0cd
TT
3814}
3815
3816static void
3189cb12
DE
3817dw2_relocate (struct objfile *objfile,
3818 const struct section_offsets *new_offsets,
3819 const struct section_offsets *delta)
9291a0cd
TT
3820{
3821 /* There's nothing to relocate here. */
3822}
3823
3824static void
3825dw2_expand_symtabs_for_function (struct objfile *objfile,
3826 const char *func_name)
3827{
da51c347
DE
3828 struct mapped_index *index;
3829
3830 dw2_setup (objfile);
3831
3832 index = dwarf2_per_objfile->index_table;
3833
3834 /* index is NULL if OBJF_READNOW. */
3835 if (index)
3836 {
3837 struct dw2_symtab_iterator iter;
3838 struct dwarf2_per_cu_data *per_cu;
3839
3840 /* Note: It doesn't matter what we pass for block_index here. */
3841 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3842 func_name);
3843
3844 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3845 dw2_instantiate_symtab (per_cu);
3846 }
9291a0cd
TT
3847}
3848
3849static void
3850dw2_expand_all_symtabs (struct objfile *objfile)
3851{
3852 int i;
3853
3854 dw2_setup (objfile);
1fd400ff
TT
3855
3856 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3857 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3858 {
8832e7e3 3859 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3860
a0f42c21 3861 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3862 }
3863}
3864
3865static void
652a8996
JK
3866dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3867 const char *fullname)
9291a0cd
TT
3868{
3869 int i;
3870
3871 dw2_setup (objfile);
d4637a04
DE
3872
3873 /* We don't need to consider type units here.
3874 This is only called for examining code, e.g. expand_line_sal.
3875 There can be an order of magnitude (or more) more type units
3876 than comp units, and we avoid them if we can. */
3877
3878 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3879 {
3880 int j;
8832e7e3 3881 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3882 struct quick_file_names *file_data;
9291a0cd 3883
3d7bb9d9 3884 /* We only need to look at symtabs not already expanded. */
43f3e411 3885 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3886 continue;
3887
e4a48d9d 3888 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3889 if (file_data == NULL)
9291a0cd
TT
3890 continue;
3891
7b9f3c50 3892 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3893 {
652a8996
JK
3894 const char *this_fullname = file_data->file_names[j];
3895
3896 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3897 {
a0f42c21 3898 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3899 break;
3900 }
3901 }
3902 }
3903}
3904
9291a0cd 3905static void
ade7ed9e 3906dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3907 const char * name, domain_enum domain,
ade7ed9e 3908 int global,
40658b94
PH
3909 int (*callback) (struct block *,
3910 struct symbol *, void *),
2edb89d3
JK
3911 void *data, symbol_compare_ftype *match,
3912 symbol_compare_ftype *ordered_compare)
9291a0cd 3913{
40658b94 3914 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3915 current language is Ada for a non-Ada objfile using GNU index. As Ada
3916 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3917}
3918
3919static void
f8eba3c6
TT
3920dw2_expand_symtabs_matching
3921 (struct objfile *objfile,
206f2a57
DE
3922 expand_symtabs_file_matcher_ftype *file_matcher,
3923 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3924 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3925 enum search_domain kind,
3926 void *data)
9291a0cd
TT
3927{
3928 int i;
3929 offset_type iter;
4b5246aa 3930 struct mapped_index *index;
9291a0cd
TT
3931
3932 dw2_setup (objfile);
ae2de4f8
DE
3933
3934 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3935 if (!dwarf2_per_objfile->index_table)
3936 return;
4b5246aa 3937 index = dwarf2_per_objfile->index_table;
9291a0cd 3938
7b08b9eb 3939 if (file_matcher != NULL)
24c79950 3940 {
fc4007c9
TT
3941 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3942 htab_eq_pointer,
3943 NULL, xcalloc, xfree));
3944 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3945 htab_eq_pointer,
3946 NULL, xcalloc, xfree));
24c79950 3947
848e3e78
DE
3948 /* The rule is CUs specify all the files, including those used by
3949 any TU, so there's no need to scan TUs here. */
3950
3951 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3952 {
3953 int j;
8832e7e3 3954 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3955 struct quick_file_names *file_data;
3956 void **slot;
7b08b9eb 3957
61d96d7e
DE
3958 QUIT;
3959
24c79950 3960 per_cu->v.quick->mark = 0;
3d7bb9d9 3961
24c79950 3962 /* We only need to look at symtabs not already expanded. */
43f3e411 3963 if (per_cu->v.quick->compunit_symtab)
24c79950 3964 continue;
7b08b9eb 3965
e4a48d9d 3966 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3967 if (file_data == NULL)
3968 continue;
7b08b9eb 3969
fc4007c9 3970 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 3971 continue;
fc4007c9 3972 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
3973 {
3974 per_cu->v.quick->mark = 1;
3975 continue;
3976 }
3977
3978 for (j = 0; j < file_data->num_file_names; ++j)
3979 {
da235a7c
JK
3980 const char *this_real_name;
3981
fbd9ab74 3982 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3983 {
3984 per_cu->v.quick->mark = 1;
3985 break;
3986 }
da235a7c
JK
3987
3988 /* Before we invoke realpath, which can get expensive when many
3989 files are involved, do a quick comparison of the basenames. */
3990 if (!basenames_may_differ
3991 && !file_matcher (lbasename (file_data->file_names[j]),
3992 data, 1))
3993 continue;
3994
3995 this_real_name = dw2_get_real_path (objfile, file_data, j);
3996 if (file_matcher (this_real_name, data, 0))
3997 {
3998 per_cu->v.quick->mark = 1;
3999 break;
4000 }
24c79950
TT
4001 }
4002
4003 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4004 ? visited_found.get ()
4005 : visited_not_found.get (),
24c79950
TT
4006 file_data, INSERT);
4007 *slot = file_data;
4008 }
24c79950 4009 }
9291a0cd 4010
3876f04e 4011 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4012 {
4013 offset_type idx = 2 * iter;
4014 const char *name;
4015 offset_type *vec, vec_len, vec_idx;
8943b874 4016 int global_seen = 0;
9291a0cd 4017
61d96d7e
DE
4018 QUIT;
4019
3876f04e 4020 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4021 continue;
4022
3876f04e 4023 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4024
206f2a57 4025 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
4026 continue;
4027
4028 /* The name was matched, now expand corresponding CUs that were
4029 marked. */
4b5246aa 4030 vec = (offset_type *) (index->constant_pool
3876f04e 4031 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4032 vec_len = MAYBE_SWAP (vec[0]);
4033 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4034 {
e254ef6a 4035 struct dwarf2_per_cu_data *per_cu;
156942c7 4036 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4037 /* This value is only valid for index versions >= 7. */
4038 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4039 gdb_index_symbol_kind symbol_kind =
4040 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4041 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4042 /* Only check the symbol attributes if they're present.
4043 Indices prior to version 7 don't record them,
4044 and indices >= 7 may elide them for certain symbols
4045 (gold does this). */
4046 int attrs_valid =
4047 (index->version >= 7
4048 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4049
8943b874
DE
4050 /* Work around gold/15646. */
4051 if (attrs_valid)
4052 {
4053 if (!is_static && global_seen)
4054 continue;
4055 if (!is_static)
4056 global_seen = 1;
4057 }
4058
3190f0c6
DE
4059 /* Only check the symbol's kind if it has one. */
4060 if (attrs_valid)
156942c7
DE
4061 {
4062 switch (kind)
4063 {
4064 case VARIABLES_DOMAIN:
4065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4066 continue;
4067 break;
4068 case FUNCTIONS_DOMAIN:
4069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4070 continue;
4071 break;
4072 case TYPES_DOMAIN:
4073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4074 continue;
4075 break;
4076 default:
4077 break;
4078 }
4079 }
4080
3190f0c6
DE
4081 /* Don't crash on bad data. */
4082 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4083 + dwarf2_per_objfile->n_type_units))
4084 {
4085 complaint (&symfile_complaints,
4086 _(".gdb_index entry has bad CU index"
4262abfb 4087 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4088 continue;
4089 }
4090
8832e7e3 4091 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4092 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4093 {
4094 int symtab_was_null =
4095 (per_cu->v.quick->compunit_symtab == NULL);
4096
4097 dw2_instantiate_symtab (per_cu);
4098
4099 if (expansion_notify != NULL
4100 && symtab_was_null
4101 && per_cu->v.quick->compunit_symtab != NULL)
4102 {
4103 expansion_notify (per_cu->v.quick->compunit_symtab,
4104 data);
4105 }
4106 }
9291a0cd
TT
4107 }
4108 }
4109}
4110
43f3e411 4111/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4112 symtab. */
4113
43f3e411
DE
4114static struct compunit_symtab *
4115recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4116 CORE_ADDR pc)
9703b513
TT
4117{
4118 int i;
4119
43f3e411
DE
4120 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4121 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4122 return cust;
9703b513 4123
43f3e411 4124 if (cust->includes == NULL)
a3ec0bb1
DE
4125 return NULL;
4126
43f3e411 4127 for (i = 0; cust->includes[i]; ++i)
9703b513 4128 {
43f3e411 4129 struct compunit_symtab *s = cust->includes[i];
9703b513 4130
43f3e411 4131 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4132 if (s != NULL)
4133 return s;
4134 }
4135
4136 return NULL;
4137}
4138
43f3e411
DE
4139static struct compunit_symtab *
4140dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4141 struct bound_minimal_symbol msymbol,
4142 CORE_ADDR pc,
4143 struct obj_section *section,
4144 int warn_if_readin)
9291a0cd
TT
4145{
4146 struct dwarf2_per_cu_data *data;
43f3e411 4147 struct compunit_symtab *result;
9291a0cd
TT
4148
4149 dw2_setup (objfile);
4150
4151 if (!objfile->psymtabs_addrmap)
4152 return NULL;
4153
9a3c8263
SM
4154 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4155 pc);
9291a0cd
TT
4156 if (!data)
4157 return NULL;
4158
43f3e411 4159 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4160 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4161 paddress (get_objfile_arch (objfile), pc));
4162
43f3e411
DE
4163 result
4164 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4165 pc);
9703b513
TT
4166 gdb_assert (result != NULL);
4167 return result;
9291a0cd
TT
4168}
4169
9291a0cd 4170static void
44b13c5a 4171dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4172 void *data, int need_fullname)
9291a0cd
TT
4173{
4174 int i;
fc4007c9
TT
4175 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4176 NULL, xcalloc, xfree));
9291a0cd
TT
4177
4178 dw2_setup (objfile);
ae2de4f8 4179
848e3e78
DE
4180 /* The rule is CUs specify all the files, including those used by
4181 any TU, so there's no need to scan TUs here.
4182 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4183
848e3e78 4184 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4185 {
8832e7e3 4186 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4187
43f3e411 4188 if (per_cu->v.quick->compunit_symtab)
24c79950 4189 {
fc4007c9
TT
4190 void **slot = htab_find_slot (visited.get (),
4191 per_cu->v.quick->file_names,
24c79950
TT
4192 INSERT);
4193
4194 *slot = per_cu->v.quick->file_names;
4195 }
4196 }
4197
848e3e78 4198 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4199 {
4200 int j;
8832e7e3 4201 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4202 struct quick_file_names *file_data;
24c79950 4203 void **slot;
9291a0cd 4204
3d7bb9d9 4205 /* We only need to look at symtabs not already expanded. */
43f3e411 4206 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4207 continue;
4208
e4a48d9d 4209 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4210 if (file_data == NULL)
9291a0cd
TT
4211 continue;
4212
fc4007c9 4213 slot = htab_find_slot (visited.get (), file_data, INSERT);
24c79950
TT
4214 if (*slot)
4215 {
4216 /* Already visited. */
4217 continue;
4218 }
4219 *slot = file_data;
4220
7b9f3c50 4221 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4222 {
74e2f255
DE
4223 const char *this_real_name;
4224
4225 if (need_fullname)
4226 this_real_name = dw2_get_real_path (objfile, file_data, j);
4227 else
4228 this_real_name = NULL;
7b9f3c50 4229 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4230 }
4231 }
4232}
4233
4234static int
4235dw2_has_symbols (struct objfile *objfile)
4236{
4237 return 1;
4238}
4239
4240const struct quick_symbol_functions dwarf2_gdb_index_functions =
4241{
4242 dw2_has_symbols,
4243 dw2_find_last_source_symtab,
4244 dw2_forget_cached_source_info,
f8eba3c6 4245 dw2_map_symtabs_matching_filename,
9291a0cd 4246 dw2_lookup_symbol,
9291a0cd
TT
4247 dw2_print_stats,
4248 dw2_dump,
4249 dw2_relocate,
4250 dw2_expand_symtabs_for_function,
4251 dw2_expand_all_symtabs,
652a8996 4252 dw2_expand_symtabs_with_fullname,
40658b94 4253 dw2_map_matching_symbols,
9291a0cd 4254 dw2_expand_symtabs_matching,
43f3e411 4255 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4256 dw2_map_symbol_filenames
4257};
4258
4259/* Initialize for reading DWARF for this objfile. Return 0 if this
4260 file will use psymtabs, or 1 if using the GNU index. */
4261
4262int
4263dwarf2_initialize_objfile (struct objfile *objfile)
4264{
4265 /* If we're about to read full symbols, don't bother with the
4266 indices. In this case we also don't care if some other debug
4267 format is making psymtabs, because they are all about to be
4268 expanded anyway. */
4269 if ((objfile->flags & OBJF_READNOW))
4270 {
4271 int i;
4272
4273 dwarf2_per_objfile->using_index = 1;
4274 create_all_comp_units (objfile);
0e50663e 4275 create_all_type_units (objfile);
7b9f3c50
DE
4276 dwarf2_per_objfile->quick_file_names_table =
4277 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4278
1fd400ff 4279 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4280 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4281 {
8832e7e3 4282 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4283
e254ef6a
DE
4284 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4285 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4286 }
4287
4288 /* Return 1 so that gdb sees the "quick" functions. However,
4289 these functions will be no-ops because we will have expanded
4290 all symtabs. */
4291 return 1;
4292 }
4293
4294 if (dwarf2_read_index (objfile))
4295 return 1;
4296
9291a0cd
TT
4297 return 0;
4298}
4299
4300\f
4301
dce234bc
PP
4302/* Build a partial symbol table. */
4303
4304void
f29dff0a 4305dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4306{
c9bf0622 4307
f29dff0a 4308 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4309 {
4310 init_psymbol_list (objfile, 1024);
4311 }
4312
492d29ea 4313 TRY
c9bf0622
TT
4314 {
4315 /* This isn't really ideal: all the data we allocate on the
4316 objfile's obstack is still uselessly kept around. However,
4317 freeing it seems unsafe. */
906768f9 4318 psymtab_discarder psymtabs (objfile);
c9bf0622 4319 dwarf2_build_psymtabs_hard (objfile);
906768f9 4320 psymtabs.keep ();
c9bf0622 4321 }
492d29ea
PA
4322 CATCH (except, RETURN_MASK_ERROR)
4323 {
4324 exception_print (gdb_stderr, except);
4325 }
4326 END_CATCH
c906108c 4327}
c906108c 4328
1ce1cefd
DE
4329/* Return the total length of the CU described by HEADER. */
4330
4331static unsigned int
4332get_cu_length (const struct comp_unit_head *header)
4333{
4334 return header->initial_length_size + header->length;
4335}
4336
45452591
DE
4337/* Return TRUE if OFFSET is within CU_HEADER. */
4338
4339static inline int
b64f50a1 4340offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4341{
b64f50a1 4342 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4343 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4344
b64f50a1 4345 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4346}
4347
3b80fe9b
DE
4348/* Find the base address of the compilation unit for range lists and
4349 location lists. It will normally be specified by DW_AT_low_pc.
4350 In DWARF-3 draft 4, the base address could be overridden by
4351 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4352 compilation units with discontinuous ranges. */
4353
4354static void
4355dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4356{
4357 struct attribute *attr;
4358
4359 cu->base_known = 0;
4360 cu->base_address = 0;
4361
4362 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4363 if (attr)
4364 {
31aa7e4e 4365 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4366 cu->base_known = 1;
4367 }
4368 else
4369 {
4370 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4371 if (attr)
4372 {
31aa7e4e 4373 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4374 cu->base_known = 1;
4375 }
4376 }
4377}
4378
93311388 4379/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4380 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4381 NOTE: This leaves members offset, first_die_offset to be filled in
4382 by the caller. */
107d2387 4383
d521ce57 4384static const gdb_byte *
107d2387 4385read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4386 const gdb_byte *info_ptr,
4387 struct dwarf2_section_info *section,
4388 rcuh_kind section_kind)
107d2387
AC
4389{
4390 int signed_addr;
891d2f0b 4391 unsigned int bytes_read;
43988095
JK
4392 const char *filename = get_section_file_name (section);
4393 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4394
4395 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4396 cu_header->initial_length_size = bytes_read;
4397 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4398 info_ptr += bytes_read;
107d2387
AC
4399 cu_header->version = read_2_bytes (abfd, info_ptr);
4400 info_ptr += 2;
43988095
JK
4401 if (cu_header->version < 5)
4402 switch (section_kind)
4403 {
4404 case rcuh_kind::COMPILE:
4405 cu_header->unit_type = DW_UT_compile;
4406 break;
4407 case rcuh_kind::TYPE:
4408 cu_header->unit_type = DW_UT_type;
4409 break;
4410 default:
4411 internal_error (__FILE__, __LINE__,
4412 _("read_comp_unit_head: invalid section_kind"));
4413 }
4414 else
4415 {
4416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4417 (read_1_byte (abfd, info_ptr));
4418 info_ptr += 1;
4419 switch (cu_header->unit_type)
4420 {
4421 case DW_UT_compile:
4422 if (section_kind != rcuh_kind::COMPILE)
4423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4425 filename);
4426 break;
4427 case DW_UT_type:
4428 section_kind = rcuh_kind::TYPE;
4429 break;
4430 default:
4431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4432 "(is %d, should be %d or %d) [in module %s]"),
4433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4434 }
4435
4436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4437 info_ptr += 1;
4438 }
b64f50a1
JK
4439 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4440 &bytes_read);
613e1657 4441 info_ptr += bytes_read;
43988095
JK
4442 if (cu_header->version < 5)
4443 {
4444 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4445 info_ptr += 1;
4446 }
107d2387
AC
4447 signed_addr = bfd_get_sign_extend_vma (abfd);
4448 if (signed_addr < 0)
8e65ff28 4449 internal_error (__FILE__, __LINE__,
e2e0b3e5 4450 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4451 cu_header->signed_addr_p = signed_addr;
c764a876 4452
43988095
JK
4453 if (section_kind == rcuh_kind::TYPE)
4454 {
4455 LONGEST type_offset;
4456
4457 cu_header->signature = read_8_bytes (abfd, info_ptr);
4458 info_ptr += 8;
4459
4460 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4461 info_ptr += bytes_read;
4462 cu_header->type_offset_in_tu.cu_off = type_offset;
4463 if (cu_header->type_offset_in_tu.cu_off != type_offset)
4464 error (_("Dwarf Error: Too big type_offset in compilation unit "
4465 "header (is %s) [in module %s]"), plongest (type_offset),
4466 filename);
4467 }
4468
107d2387
AC
4469 return info_ptr;
4470}
4471
36586728
TT
4472/* Helper function that returns the proper abbrev section for
4473 THIS_CU. */
4474
4475static struct dwarf2_section_info *
4476get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4477{
4478 struct dwarf2_section_info *abbrev;
4479
4480 if (this_cu->is_dwz)
4481 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4482 else
4483 abbrev = &dwarf2_per_objfile->abbrev;
4484
4485 return abbrev;
4486}
4487
9ff913ba
DE
4488/* Subroutine of read_and_check_comp_unit_head and
4489 read_and_check_type_unit_head to simplify them.
4490 Perform various error checking on the header. */
4491
4492static void
4493error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4494 struct dwarf2_section_info *section,
4495 struct dwarf2_section_info *abbrev_section)
9ff913ba 4496{
a32a8923 4497 const char *filename = get_section_file_name (section);
9ff913ba 4498
43988095 4499 if (header->version < 2 || header->version > 5)
9ff913ba 4500 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4501 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4502 filename);
4503
b64f50a1 4504 if (header->abbrev_offset.sect_off
36586728 4505 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4506 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4507 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4508 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4509 filename);
4510
4511 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4512 avoid potential 32-bit overflow. */
1ce1cefd 4513 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4514 > section->size)
4515 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4516 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4517 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4518 filename);
4519}
4520
4521/* Read in a CU/TU header and perform some basic error checking.
4522 The contents of the header are stored in HEADER.
4523 The result is a pointer to the start of the first DIE. */
adabb602 4524
d521ce57 4525static const gdb_byte *
9ff913ba
DE
4526read_and_check_comp_unit_head (struct comp_unit_head *header,
4527 struct dwarf2_section_info *section,
4bdcc0c1 4528 struct dwarf2_section_info *abbrev_section,
d521ce57 4529 const gdb_byte *info_ptr,
43988095 4530 rcuh_kind section_kind)
72bf9492 4531{
d521ce57 4532 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4533 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4534
b64f50a1 4535 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4536
43988095 4537 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4538
b64f50a1 4539 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4540
4bdcc0c1 4541 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4542
4543 return info_ptr;
348e048f
DE
4544}
4545
f4dc4d17
DE
4546/* Fetch the abbreviation table offset from a comp or type unit header. */
4547
4548static sect_offset
4549read_abbrev_offset (struct dwarf2_section_info *section,
4550 sect_offset offset)
4551{
a32a8923 4552 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4553 const gdb_byte *info_ptr;
ac298888 4554 unsigned int initial_length_size, offset_size;
f4dc4d17 4555 sect_offset abbrev_offset;
43988095 4556 uint16_t version;
f4dc4d17
DE
4557
4558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4559 info_ptr = section->buffer + offset.sect_off;
ac298888 4560 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4561 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4562 info_ptr += initial_length_size;
4563
4564 version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
4566 if (version >= 5)
4567 {
4568 /* Skip unit type and address size. */
4569 info_ptr += 2;
4570 }
4571
f4dc4d17
DE
4572 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4573 return abbrev_offset;
4574}
4575
aaa75496
JB
4576/* Allocate a new partial symtab for file named NAME and mark this new
4577 partial symtab as being an include of PST. */
4578
4579static void
d521ce57 4580dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4581 struct objfile *objfile)
4582{
4583 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4584
fbd9ab74
JK
4585 if (!IS_ABSOLUTE_PATH (subpst->filename))
4586 {
4587 /* It shares objfile->objfile_obstack. */
4588 subpst->dirname = pst->dirname;
4589 }
4590
aaa75496
JB
4591 subpst->textlow = 0;
4592 subpst->texthigh = 0;
4593
8d749320
SM
4594 subpst->dependencies
4595 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4596 subpst->dependencies[0] = pst;
4597 subpst->number_of_dependencies = 1;
4598
4599 subpst->globals_offset = 0;
4600 subpst->n_global_syms = 0;
4601 subpst->statics_offset = 0;
4602 subpst->n_static_syms = 0;
43f3e411 4603 subpst->compunit_symtab = NULL;
aaa75496
JB
4604 subpst->read_symtab = pst->read_symtab;
4605 subpst->readin = 0;
4606
4607 /* No private part is necessary for include psymtabs. This property
4608 can be used to differentiate between such include psymtabs and
10b3939b 4609 the regular ones. */
58a9656e 4610 subpst->read_symtab_private = NULL;
aaa75496
JB
4611}
4612
4613/* Read the Line Number Program data and extract the list of files
4614 included by the source file represented by PST. Build an include
d85a05f0 4615 partial symtab for each of these included files. */
aaa75496
JB
4616
4617static void
4618dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4619 struct die_info *die,
4620 struct partial_symtab *pst)
aaa75496 4621{
d85a05f0
DJ
4622 struct line_header *lh = NULL;
4623 struct attribute *attr;
aaa75496 4624
d85a05f0
DJ
4625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4626 if (attr)
3019eac3 4627 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4628 if (lh == NULL)
4629 return; /* No linetable, so no includes. */
4630
c6da4cef 4631 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4632 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4633
4634 free_line_header (lh);
4635}
4636
348e048f 4637static hashval_t
52dc124a 4638hash_signatured_type (const void *item)
348e048f 4639{
9a3c8263
SM
4640 const struct signatured_type *sig_type
4641 = (const struct signatured_type *) item;
9a619af0 4642
348e048f 4643 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4644 return sig_type->signature;
348e048f
DE
4645}
4646
4647static int
52dc124a 4648eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4649{
9a3c8263
SM
4650 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4651 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4652
348e048f
DE
4653 return lhs->signature == rhs->signature;
4654}
4655
1fd400ff
TT
4656/* Allocate a hash table for signatured types. */
4657
4658static htab_t
673bfd45 4659allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4660{
4661 return htab_create_alloc_ex (41,
52dc124a
DE
4662 hash_signatured_type,
4663 eq_signatured_type,
1fd400ff
TT
4664 NULL,
4665 &objfile->objfile_obstack,
4666 hashtab_obstack_allocate,
4667 dummy_obstack_deallocate);
4668}
4669
d467dd73 4670/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4671
4672static int
d467dd73 4673add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4674{
9a3c8263
SM
4675 struct signatured_type *sigt = (struct signatured_type *) *slot;
4676 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4677
b4dd5633 4678 **datap = sigt;
1fd400ff
TT
4679 ++*datap;
4680
4681 return 1;
4682}
4683
78d4d2c5 4684/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4685 and fill them into TYPES_HTAB. It will process only type units,
4686 therefore DW_UT_type. */
c88ee1f0 4687
78d4d2c5
JK
4688static void
4689create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4690 dwarf2_section_info *section, htab_t &types_htab,
4691 rcuh_kind section_kind)
348e048f 4692{
3019eac3 4693 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4694 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4695 bfd *abfd;
4696 const gdb_byte *info_ptr, *end_ptr;
348e048f 4697
4bdcc0c1
DE
4698 abbrev_section = (dwo_file != NULL
4699 ? &dwo_file->sections.abbrev
4700 : &dwarf2_per_objfile->abbrev);
4701
b4f54984 4702 if (dwarf_read_debug)
43988095
JK
4703 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4704 get_section_name (section),
a32a8923 4705 get_section_file_name (abbrev_section));
09406207 4706
78d4d2c5
JK
4707 dwarf2_read_section (objfile, section);
4708 info_ptr = section->buffer;
348e048f 4709
78d4d2c5
JK
4710 if (info_ptr == NULL)
4711 return;
348e048f 4712
78d4d2c5
JK
4713 /* We can't set abfd until now because the section may be empty or
4714 not present, in which case the bfd is unknown. */
4715 abfd = get_section_bfd_owner (section);
348e048f 4716
78d4d2c5
JK
4717 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4718 because we don't need to read any dies: the signature is in the
4719 header. */
3019eac3 4720
78d4d2c5
JK
4721 end_ptr = info_ptr + section->size;
4722 while (info_ptr < end_ptr)
4723 {
4724 sect_offset offset;
78d4d2c5
JK
4725 struct signatured_type *sig_type;
4726 struct dwo_unit *dwo_tu;
4727 void **slot;
4728 const gdb_byte *ptr = info_ptr;
4729 struct comp_unit_head header;
4730 unsigned int length;
8b70b953 4731
78d4d2c5 4732 offset.sect_off = ptr - section->buffer;
348e048f 4733
78d4d2c5
JK
4734 /* We need to read the type's signature in order to build the hash
4735 table, but we don't need anything else just yet. */
348e048f 4736
43988095
JK
4737 ptr = read_and_check_comp_unit_head (&header, section,
4738 abbrev_section, ptr, section_kind);
348e048f 4739
78d4d2c5 4740 length = get_cu_length (&header);
6caca83c 4741
78d4d2c5
JK
4742 /* Skip dummy type units. */
4743 if (ptr >= info_ptr + length
43988095
JK
4744 || peek_abbrev_code (abfd, ptr) == 0
4745 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4746 {
4747 info_ptr += length;
4748 continue;
4749 }
dee91e82 4750
78d4d2c5
JK
4751 if (types_htab == NULL)
4752 {
4753 if (dwo_file)
4754 types_htab = allocate_dwo_unit_table (objfile);
4755 else
4756 types_htab = allocate_signatured_type_table (objfile);
4757 }
8b70b953 4758
78d4d2c5
JK
4759 if (dwo_file)
4760 {
4761 sig_type = NULL;
4762 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwo_unit);
4764 dwo_tu->dwo_file = dwo_file;
43988095
JK
4765 dwo_tu->signature = header.signature;
4766 dwo_tu->type_offset_in_tu = header.type_offset_in_tu;
78d4d2c5
JK
4767 dwo_tu->section = section;
4768 dwo_tu->offset = offset;
4769 dwo_tu->length = length;
4770 }
4771 else
4772 {
4773 /* N.B.: type_offset is not usable if this type uses a DWO file.
4774 The real type_offset is in the DWO file. */
4775 dwo_tu = NULL;
4776 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4777 struct signatured_type);
43988095
JK
4778 sig_type->signature = header.signature;
4779 sig_type->type_offset_in_tu = header.type_offset_in_tu;
78d4d2c5
JK
4780 sig_type->per_cu.objfile = objfile;
4781 sig_type->per_cu.is_debug_types = 1;
4782 sig_type->per_cu.section = section;
4783 sig_type->per_cu.offset = offset;
4784 sig_type->per_cu.length = length;
4785 }
4786
4787 slot = htab_find_slot (types_htab,
4788 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4789 INSERT);
4790 gdb_assert (slot != NULL);
4791 if (*slot != NULL)
4792 {
4793 sect_offset dup_offset;
0349ea22 4794
3019eac3
DE
4795 if (dwo_file)
4796 {
78d4d2c5
JK
4797 const struct dwo_unit *dup_tu
4798 = (const struct dwo_unit *) *slot;
4799
4800 dup_offset = dup_tu->offset;
3019eac3
DE
4801 }
4802 else
4803 {
78d4d2c5
JK
4804 const struct signatured_type *dup_tu
4805 = (const struct signatured_type *) *slot;
4806
4807 dup_offset = dup_tu->per_cu.offset;
3019eac3 4808 }
8b70b953 4809
78d4d2c5
JK
4810 complaint (&symfile_complaints,
4811 _("debug type entry at offset 0x%x is duplicate to"
4812 " the entry at offset 0x%x, signature %s"),
4813 offset.sect_off, dup_offset.sect_off,
43988095 4814 hex_string (header.signature));
78d4d2c5
JK
4815 }
4816 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4817
78d4d2c5
JK
4818 if (dwarf_read_debug > 1)
4819 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4820 offset.sect_off,
43988095 4821 hex_string (header.signature));
3019eac3 4822
78d4d2c5
JK
4823 info_ptr += length;
4824 }
4825}
3019eac3 4826
78d4d2c5
JK
4827/* Create the hash table of all entries in the .debug_types
4828 (or .debug_types.dwo) section(s).
4829 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4830 otherwise it is NULL.
b3c8eb43 4831
78d4d2c5 4832 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4833
78d4d2c5 4834 Note: This function processes DWO files only, not DWP files. */
348e048f 4835
78d4d2c5
JK
4836static void
4837create_debug_types_hash_table (struct dwo_file *dwo_file,
4838 VEC (dwarf2_section_info_def) *types,
4839 htab_t &types_htab)
4840{
4841 int ix;
4842 struct dwarf2_section_info *section;
4843
4844 if (VEC_empty (dwarf2_section_info_def, types))
4845 return;
348e048f 4846
78d4d2c5
JK
4847 for (ix = 0;
4848 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4849 ++ix)
43988095
JK
4850 create_debug_type_hash_table (dwo_file, section, types_htab,
4851 rcuh_kind::TYPE);
3019eac3
DE
4852}
4853
4854/* Create the hash table of all entries in the .debug_types section,
4855 and initialize all_type_units.
4856 The result is zero if there is an error (e.g. missing .debug_types section),
4857 otherwise non-zero. */
4858
4859static int
4860create_all_type_units (struct objfile *objfile)
4861{
78d4d2c5 4862 htab_t types_htab = NULL;
b4dd5633 4863 struct signatured_type **iter;
3019eac3 4864
43988095
JK
4865 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
4866 rcuh_kind::COMPILE);
78d4d2c5 4867 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
4868 if (types_htab == NULL)
4869 {
4870 dwarf2_per_objfile->signatured_types = NULL;
4871 return 0;
4872 }
4873
348e048f
DE
4874 dwarf2_per_objfile->signatured_types = types_htab;
4875
6aa5f3a6
DE
4876 dwarf2_per_objfile->n_type_units
4877 = dwarf2_per_objfile->n_allocated_type_units
4878 = htab_elements (types_htab);
8d749320
SM
4879 dwarf2_per_objfile->all_type_units =
4880 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4881 iter = &dwarf2_per_objfile->all_type_units[0];
4882 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4883 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4884 == dwarf2_per_objfile->n_type_units);
1fd400ff 4885
348e048f
DE
4886 return 1;
4887}
4888
6aa5f3a6
DE
4889/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4890 If SLOT is non-NULL, it is the entry to use in the hash table.
4891 Otherwise we find one. */
4892
4893static struct signatured_type *
4894add_type_unit (ULONGEST sig, void **slot)
4895{
4896 struct objfile *objfile = dwarf2_per_objfile->objfile;
4897 int n_type_units = dwarf2_per_objfile->n_type_units;
4898 struct signatured_type *sig_type;
4899
4900 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4901 ++n_type_units;
4902 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4903 {
4904 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4905 dwarf2_per_objfile->n_allocated_type_units = 1;
4906 dwarf2_per_objfile->n_allocated_type_units *= 2;
4907 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4908 = XRESIZEVEC (struct signatured_type *,
4909 dwarf2_per_objfile->all_type_units,
4910 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4911 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4912 }
4913 dwarf2_per_objfile->n_type_units = n_type_units;
4914
4915 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4916 struct signatured_type);
4917 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4918 sig_type->signature = sig;
4919 sig_type->per_cu.is_debug_types = 1;
4920 if (dwarf2_per_objfile->using_index)
4921 {
4922 sig_type->per_cu.v.quick =
4923 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwarf2_per_cu_quick_data);
4925 }
4926
4927 if (slot == NULL)
4928 {
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 sig_type, INSERT);
4931 }
4932 gdb_assert (*slot == NULL);
4933 *slot = sig_type;
4934 /* The rest of sig_type must be filled in by the caller. */
4935 return sig_type;
4936}
4937
a2ce51a0
DE
4938/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4939 Fill in SIG_ENTRY with DWO_ENTRY. */
4940
4941static void
4942fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4943 struct signatured_type *sig_entry,
4944 struct dwo_unit *dwo_entry)
4945{
7ee85ab1 4946 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4947 gdb_assert (! sig_entry->per_cu.queued);
4948 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4949 if (dwarf2_per_objfile->using_index)
4950 {
4951 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4952 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4953 }
4954 else
4955 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4956 gdb_assert (sig_entry->signature == dwo_entry->signature);
4957 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4958 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4959 gdb_assert (sig_entry->dwo_unit == NULL);
4960
4961 sig_entry->per_cu.section = dwo_entry->section;
4962 sig_entry->per_cu.offset = dwo_entry->offset;
4963 sig_entry->per_cu.length = dwo_entry->length;
4964 sig_entry->per_cu.reading_dwo_directly = 1;
4965 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4966 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4967 sig_entry->dwo_unit = dwo_entry;
4968}
4969
4970/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4971 If we haven't read the TU yet, create the signatured_type data structure
4972 for a TU to be read in directly from a DWO file, bypassing the stub.
4973 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4974 using .gdb_index, then when reading a CU we want to stay in the DWO file
4975 containing that CU. Otherwise we could end up reading several other DWO
4976 files (due to comdat folding) to process the transitive closure of all the
4977 mentioned TUs, and that can be slow. The current DWO file will have every
4978 type signature that it needs.
a2ce51a0
DE
4979 We only do this for .gdb_index because in the psymtab case we already have
4980 to read all the DWOs to build the type unit groups. */
4981
4982static struct signatured_type *
4983lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4984{
4985 struct objfile *objfile = dwarf2_per_objfile->objfile;
4986 struct dwo_file *dwo_file;
4987 struct dwo_unit find_dwo_entry, *dwo_entry;
4988 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4989 void **slot;
a2ce51a0
DE
4990
4991 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4992
6aa5f3a6
DE
4993 /* If TU skeletons have been removed then we may not have read in any
4994 TUs yet. */
4995 if (dwarf2_per_objfile->signatured_types == NULL)
4996 {
4997 dwarf2_per_objfile->signatured_types
4998 = allocate_signatured_type_table (objfile);
4999 }
a2ce51a0
DE
5000
5001 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5002 Use the global signatured_types array to do our own comdat-folding
5003 of types. If this is the first time we're reading this TU, and
5004 the TU has an entry in .gdb_index, replace the recorded data from
5005 .gdb_index with this TU. */
a2ce51a0 5006
a2ce51a0 5007 find_sig_entry.signature = sig;
6aa5f3a6
DE
5008 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5009 &find_sig_entry, INSERT);
9a3c8263 5010 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5011
5012 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5013 read. Don't reassign the global entry to point to this DWO if that's
5014 the case. Also note that if the TU is already being read, it may not
5015 have come from a DWO, the program may be a mix of Fission-compiled
5016 code and non-Fission-compiled code. */
5017
5018 /* Have we already tried to read this TU?
5019 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5020 needn't exist in the global table yet). */
5021 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5022 return sig_entry;
5023
6aa5f3a6
DE
5024 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5025 dwo_unit of the TU itself. */
5026 dwo_file = cu->dwo_unit->dwo_file;
5027
a2ce51a0
DE
5028 /* Ok, this is the first time we're reading this TU. */
5029 if (dwo_file->tus == NULL)
5030 return NULL;
5031 find_dwo_entry.signature = sig;
9a3c8263 5032 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5033 if (dwo_entry == NULL)
5034 return NULL;
5035
6aa5f3a6
DE
5036 /* If the global table doesn't have an entry for this TU, add one. */
5037 if (sig_entry == NULL)
5038 sig_entry = add_type_unit (sig, slot);
5039
a2ce51a0 5040 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5041 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5042 return sig_entry;
5043}
5044
a2ce51a0
DE
5045/* Subroutine of lookup_signatured_type.
5046 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5047 then try the DWP file. If the TU stub (skeleton) has been removed then
5048 it won't be in .gdb_index. */
a2ce51a0
DE
5049
5050static struct signatured_type *
5051lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5052{
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 struct dwp_file *dwp_file = get_dwp_file ();
5055 struct dwo_unit *dwo_entry;
5056 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5057 void **slot;
a2ce51a0
DE
5058
5059 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5060 gdb_assert (dwp_file != NULL);
5061
6aa5f3a6
DE
5062 /* If TU skeletons have been removed then we may not have read in any
5063 TUs yet. */
5064 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5065 {
6aa5f3a6
DE
5066 dwarf2_per_objfile->signatured_types
5067 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5068 }
5069
6aa5f3a6
DE
5070 find_sig_entry.signature = sig;
5071 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5072 &find_sig_entry, INSERT);
9a3c8263 5073 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5074
5075 /* Have we already tried to read this TU?
5076 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5077 needn't exist in the global table yet). */
5078 if (sig_entry != NULL)
5079 return sig_entry;
5080
a2ce51a0
DE
5081 if (dwp_file->tus == NULL)
5082 return NULL;
57d63ce2
DE
5083 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5084 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5085 if (dwo_entry == NULL)
5086 return NULL;
5087
6aa5f3a6 5088 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5089 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5090
a2ce51a0
DE
5091 return sig_entry;
5092}
5093
380bca97 5094/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5095 Returns NULL if signature SIG is not present in the table.
5096 It is up to the caller to complain about this. */
348e048f
DE
5097
5098static struct signatured_type *
a2ce51a0 5099lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5100{
a2ce51a0
DE
5101 if (cu->dwo_unit
5102 && dwarf2_per_objfile->using_index)
5103 {
5104 /* We're in a DWO/DWP file, and we're using .gdb_index.
5105 These cases require special processing. */
5106 if (get_dwp_file () == NULL)
5107 return lookup_dwo_signatured_type (cu, sig);
5108 else
5109 return lookup_dwp_signatured_type (cu, sig);
5110 }
5111 else
5112 {
5113 struct signatured_type find_entry, *entry;
348e048f 5114
a2ce51a0
DE
5115 if (dwarf2_per_objfile->signatured_types == NULL)
5116 return NULL;
5117 find_entry.signature = sig;
9a3c8263
SM
5118 entry = ((struct signatured_type *)
5119 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5120 return entry;
5121 }
348e048f 5122}
42e7ad6c
DE
5123\f
5124/* Low level DIE reading support. */
348e048f 5125
d85a05f0
DJ
5126/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5127
5128static void
5129init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5130 struct dwarf2_cu *cu,
3019eac3
DE
5131 struct dwarf2_section_info *section,
5132 struct dwo_file *dwo_file)
d85a05f0 5133{
fceca515 5134 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5135 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5136 reader->cu = cu;
3019eac3 5137 reader->dwo_file = dwo_file;
dee91e82
DE
5138 reader->die_section = section;
5139 reader->buffer = section->buffer;
f664829e 5140 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5141 reader->comp_dir = NULL;
d85a05f0
DJ
5142}
5143
b0c7bfa9
DE
5144/* Subroutine of init_cutu_and_read_dies to simplify it.
5145 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5146 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5147 already.
5148
5149 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5150 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5151 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5152 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5153 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5154 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5155 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5156 are filled in with the info of the DIE from the DWO file.
5157 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5158 provided an abbrev table to use.
5159 The result is non-zero if a valid (non-dummy) DIE was found. */
5160
5161static int
5162read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5163 struct dwo_unit *dwo_unit,
5164 int abbrev_table_provided,
5165 struct die_info *stub_comp_unit_die,
a2ce51a0 5166 const char *stub_comp_dir,
b0c7bfa9 5167 struct die_reader_specs *result_reader,
d521ce57 5168 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5169 struct die_info **result_comp_unit_die,
5170 int *result_has_children)
5171{
5172 struct objfile *objfile = dwarf2_per_objfile->objfile;
5173 struct dwarf2_cu *cu = this_cu->cu;
5174 struct dwarf2_section_info *section;
5175 bfd *abfd;
d521ce57 5176 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5177 ULONGEST signature; /* Or dwo_id. */
5178 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5179 int i,num_extra_attrs;
5180 struct dwarf2_section_info *dwo_abbrev_section;
5181 struct attribute *attr;
5182 struct die_info *comp_unit_die;
5183
b0aeadb3
DE
5184 /* At most one of these may be provided. */
5185 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5186
b0c7bfa9
DE
5187 /* These attributes aren't processed until later:
5188 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5189 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5190 referenced later. However, these attributes are found in the stub
5191 which we won't have later. In order to not impose this complication
5192 on the rest of the code, we read them here and copy them to the
5193 DWO CU/TU die. */
b0c7bfa9
DE
5194
5195 stmt_list = NULL;
5196 low_pc = NULL;
5197 high_pc = NULL;
5198 ranges = NULL;
5199 comp_dir = NULL;
5200
5201 if (stub_comp_unit_die != NULL)
5202 {
5203 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5204 DWO file. */
5205 if (! this_cu->is_debug_types)
5206 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5207 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5208 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5209 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5210 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5211
5212 /* There should be a DW_AT_addr_base attribute here (if needed).
5213 We need the value before we can process DW_FORM_GNU_addr_index. */
5214 cu->addr_base = 0;
5215 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5216 if (attr)
5217 cu->addr_base = DW_UNSND (attr);
5218
5219 /* There should be a DW_AT_ranges_base attribute here (if needed).
5220 We need the value before we can process DW_AT_ranges. */
5221 cu->ranges_base = 0;
5222 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5223 if (attr)
5224 cu->ranges_base = DW_UNSND (attr);
5225 }
a2ce51a0
DE
5226 else if (stub_comp_dir != NULL)
5227 {
5228 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5229 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5230 comp_dir->name = DW_AT_comp_dir;
5231 comp_dir->form = DW_FORM_string;
5232 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5233 DW_STRING (comp_dir) = stub_comp_dir;
5234 }
b0c7bfa9
DE
5235
5236 /* Set up for reading the DWO CU/TU. */
5237 cu->dwo_unit = dwo_unit;
5238 section = dwo_unit->section;
5239 dwarf2_read_section (objfile, section);
a32a8923 5240 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5241 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5242 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5243 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5244
5245 if (this_cu->is_debug_types)
5246 {
b0c7bfa9
DE
5247 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5248
43988095 5249 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5250 dwo_abbrev_section,
43988095 5251 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5252 /* This is not an assert because it can be caused by bad debug info. */
43988095 5253 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5254 {
5255 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5256 " TU at offset 0x%x [in module %s]"),
5257 hex_string (sig_type->signature),
43988095 5258 hex_string (cu->header.signature),
a2ce51a0
DE
5259 dwo_unit->offset.sect_off,
5260 bfd_get_filename (abfd));
5261 }
b0c7bfa9
DE
5262 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5263 /* For DWOs coming from DWP files, we don't know the CU length
5264 nor the type's offset in the TU until now. */
5265 dwo_unit->length = get_cu_length (&cu->header);
43988095 5266 dwo_unit->type_offset_in_tu = cu->header.type_offset_in_tu;
b0c7bfa9
DE
5267
5268 /* Establish the type offset that can be used to lookup the type.
5269 For DWO files, we don't know it until now. */
5270 sig_type->type_offset_in_section.sect_off =
5271 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5272 }
5273 else
5274 {
5275 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5276 dwo_abbrev_section,
43988095 5277 info_ptr, rcuh_kind::COMPILE);
b0c7bfa9
DE
5278 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5279 /* For DWOs coming from DWP files, we don't know the CU length
5280 until now. */
5281 dwo_unit->length = get_cu_length (&cu->header);
5282 }
5283
02142a6c
DE
5284 /* Replace the CU's original abbrev table with the DWO's.
5285 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5286 if (abbrev_table_provided)
5287 {
5288 /* Don't free the provided abbrev table, the caller of
5289 init_cutu_and_read_dies owns it. */
5290 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5291 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5292 make_cleanup (dwarf2_free_abbrev_table, cu);
5293 }
5294 else
5295 {
5296 dwarf2_free_abbrev_table (cu);
5297 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5298 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5299 }
5300
5301 /* Read in the die, but leave space to copy over the attributes
5302 from the stub. This has the benefit of simplifying the rest of
5303 the code - all the work to maintain the illusion of a single
5304 DW_TAG_{compile,type}_unit DIE is done here. */
5305 num_extra_attrs = ((stmt_list != NULL)
5306 + (low_pc != NULL)
5307 + (high_pc != NULL)
5308 + (ranges != NULL)
5309 + (comp_dir != NULL));
5310 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5311 result_has_children, num_extra_attrs);
5312
5313 /* Copy over the attributes from the stub to the DIE we just read in. */
5314 comp_unit_die = *result_comp_unit_die;
5315 i = comp_unit_die->num_attrs;
5316 if (stmt_list != NULL)
5317 comp_unit_die->attrs[i++] = *stmt_list;
5318 if (low_pc != NULL)
5319 comp_unit_die->attrs[i++] = *low_pc;
5320 if (high_pc != NULL)
5321 comp_unit_die->attrs[i++] = *high_pc;
5322 if (ranges != NULL)
5323 comp_unit_die->attrs[i++] = *ranges;
5324 if (comp_dir != NULL)
5325 comp_unit_die->attrs[i++] = *comp_dir;
5326 comp_unit_die->num_attrs += num_extra_attrs;
5327
b4f54984 5328 if (dwarf_die_debug)
bf6af496
DE
5329 {
5330 fprintf_unfiltered (gdb_stdlog,
5331 "Read die from %s@0x%x of %s:\n",
a32a8923 5332 get_section_name (section),
bf6af496
DE
5333 (unsigned) (begin_info_ptr - section->buffer),
5334 bfd_get_filename (abfd));
b4f54984 5335 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5336 }
5337
a2ce51a0
DE
5338 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5339 TUs by skipping the stub and going directly to the entry in the DWO file.
5340 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5341 to get it via circuitous means. Blech. */
5342 if (comp_dir != NULL)
5343 result_reader->comp_dir = DW_STRING (comp_dir);
5344
b0c7bfa9
DE
5345 /* Skip dummy compilation units. */
5346 if (info_ptr >= begin_info_ptr + dwo_unit->length
5347 || peek_abbrev_code (abfd, info_ptr) == 0)
5348 return 0;
5349
5350 *result_info_ptr = info_ptr;
5351 return 1;
5352}
5353
5354/* Subroutine of init_cutu_and_read_dies to simplify it.
5355 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5356 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5357
5358static struct dwo_unit *
5359lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5360 struct die_info *comp_unit_die)
5361{
5362 struct dwarf2_cu *cu = this_cu->cu;
5363 struct attribute *attr;
5364 ULONGEST signature;
5365 struct dwo_unit *dwo_unit;
5366 const char *comp_dir, *dwo_name;
5367
a2ce51a0
DE
5368 gdb_assert (cu != NULL);
5369
b0c7bfa9 5370 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5371 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5372 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5373
5374 if (this_cu->is_debug_types)
5375 {
5376 struct signatured_type *sig_type;
5377
5378 /* Since this_cu is the first member of struct signatured_type,
5379 we can go from a pointer to one to a pointer to the other. */
5380 sig_type = (struct signatured_type *) this_cu;
5381 signature = sig_type->signature;
5382 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5383 }
5384 else
5385 {
5386 struct attribute *attr;
5387
5388 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5389 if (! attr)
5390 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5391 " [in module %s]"),
4262abfb 5392 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5393 signature = DW_UNSND (attr);
5394 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5395 signature);
5396 }
5397
b0c7bfa9
DE
5398 return dwo_unit;
5399}
5400
a2ce51a0 5401/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5402 See it for a description of the parameters.
5403 Read a TU directly from a DWO file, bypassing the stub.
5404
5405 Note: This function could be a little bit simpler if we shared cleanups
5406 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5407 to do, so we keep this function self-contained. Or we could move this
5408 into our caller, but it's complex enough already. */
a2ce51a0
DE
5409
5410static void
6aa5f3a6
DE
5411init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5412 int use_existing_cu, int keep,
a2ce51a0
DE
5413 die_reader_func_ftype *die_reader_func,
5414 void *data)
5415{
5416 struct dwarf2_cu *cu;
5417 struct signatured_type *sig_type;
6aa5f3a6 5418 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5419 struct die_reader_specs reader;
5420 const gdb_byte *info_ptr;
5421 struct die_info *comp_unit_die;
5422 int has_children;
5423
5424 /* Verify we can do the following downcast, and that we have the
5425 data we need. */
5426 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->dwo_unit != NULL);
5429
5430 cleanups = make_cleanup (null_cleanup, NULL);
5431
6aa5f3a6
DE
5432 if (use_existing_cu && this_cu->cu != NULL)
5433 {
5434 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5435 cu = this_cu->cu;
5436 /* There's no need to do the rereading_dwo_cu handling that
5437 init_cutu_and_read_dies does since we don't read the stub. */
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
8d749320 5443 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5444 init_one_comp_unit (cu, this_cu);
5445 /* If an error occurs while loading, release our storage. */
5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5447 }
5448
5449 /* A future optimization, if needed, would be to use an existing
5450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5451 could share abbrev tables. */
a2ce51a0
DE
5452
5453 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5454 0 /* abbrev_table_provided */,
5455 NULL /* stub_comp_unit_die */,
5456 sig_type->dwo_unit->dwo_file->comp_dir,
5457 &reader, &info_ptr,
5458 &comp_unit_die, &has_children) == 0)
5459 {
5460 /* Dummy die. */
5461 do_cleanups (cleanups);
5462 return;
5463 }
5464
5465 /* All the "real" work is done here. */
5466 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5467
6aa5f3a6 5468 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5469 but the alternative is making the latter more complex.
5470 This function is only for the special case of using DWO files directly:
5471 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5472 if (free_cu_cleanup != NULL)
a2ce51a0 5473 {
6aa5f3a6
DE
5474 if (keep)
5475 {
5476 /* We've successfully allocated this compilation unit. Let our
5477 caller clean it up when finished with it. */
5478 discard_cleanups (free_cu_cleanup);
a2ce51a0 5479
6aa5f3a6
DE
5480 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5481 So we have to manually free the abbrev table. */
5482 dwarf2_free_abbrev_table (cu);
a2ce51a0 5483
6aa5f3a6
DE
5484 /* Link this CU into read_in_chain. */
5485 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5486 dwarf2_per_objfile->read_in_chain = this_cu;
5487 }
5488 else
5489 do_cleanups (free_cu_cleanup);
a2ce51a0 5490 }
a2ce51a0
DE
5491
5492 do_cleanups (cleanups);
5493}
5494
fd820528 5495/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5496 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5497
f4dc4d17
DE
5498 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5499 Otherwise the table specified in the comp unit header is read in and used.
5500 This is an optimization for when we already have the abbrev table.
5501
dee91e82
DE
5502 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5503 Otherwise, a new CU is allocated with xmalloc.
5504
5505 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5506 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5507
5508 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5509 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5510
70221824 5511static void
fd820528 5512init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5513 struct abbrev_table *abbrev_table,
fd820528
DE
5514 int use_existing_cu, int keep,
5515 die_reader_func_ftype *die_reader_func,
5516 void *data)
c906108c 5517{
dee91e82 5518 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5519 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5520 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5521 struct dwarf2_cu *cu;
d521ce57 5522 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5523 struct die_reader_specs reader;
d85a05f0 5524 struct die_info *comp_unit_die;
dee91e82 5525 int has_children;
d85a05f0 5526 struct attribute *attr;
365156ad 5527 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5528 struct signatured_type *sig_type = NULL;
4bdcc0c1 5529 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5530 /* Non-zero if CU currently points to a DWO file and we need to
5531 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5532 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5533 int rereading_dwo_cu = 0;
c906108c 5534
b4f54984 5535 if (dwarf_die_debug)
09406207
DE
5536 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5537 this_cu->is_debug_types ? "type" : "comp",
5538 this_cu->offset.sect_off);
5539
dee91e82
DE
5540 if (use_existing_cu)
5541 gdb_assert (keep);
23745b47 5542
a2ce51a0
DE
5543 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5544 file (instead of going through the stub), short-circuit all of this. */
5545 if (this_cu->reading_dwo_directly)
5546 {
5547 /* Narrow down the scope of possibilities to have to understand. */
5548 gdb_assert (this_cu->is_debug_types);
5549 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5550 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5551 die_reader_func, data);
a2ce51a0
DE
5552 return;
5553 }
5554
dee91e82
DE
5555 cleanups = make_cleanup (null_cleanup, NULL);
5556
5557 /* This is cheap if the section is already read in. */
5558 dwarf2_read_section (objfile, section);
5559
5560 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5561
5562 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5563
5564 if (use_existing_cu && this_cu->cu != NULL)
5565 {
5566 cu = this_cu->cu;
42e7ad6c
DE
5567 /* If this CU is from a DWO file we need to start over, we need to
5568 refetch the attributes from the skeleton CU.
5569 This could be optimized by retrieving those attributes from when we
5570 were here the first time: the previous comp_unit_die was stored in
5571 comp_unit_obstack. But there's no data yet that we need this
5572 optimization. */
5573 if (cu->dwo_unit != NULL)
5574 rereading_dwo_cu = 1;
dee91e82
DE
5575 }
5576 else
5577 {
5578 /* If !use_existing_cu, this_cu->cu must be NULL. */
5579 gdb_assert (this_cu->cu == NULL);
8d749320 5580 cu = XNEW (struct dwarf2_cu);
dee91e82 5581 init_one_comp_unit (cu, this_cu);
dee91e82 5582 /* If an error occurs while loading, release our storage. */
365156ad 5583 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5584 }
dee91e82 5585
b0c7bfa9 5586 /* Get the header. */
42e7ad6c
DE
5587 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5588 {
5589 /* We already have the header, there's no need to read it in again. */
5590 info_ptr += cu->header.first_die_offset.cu_off;
5591 }
5592 else
5593 {
3019eac3 5594 if (this_cu->is_debug_types)
dee91e82 5595 {
43988095 5596 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5597 abbrev_section, info_ptr,
43988095 5598 rcuh_kind::TYPE);
dee91e82 5599
42e7ad6c
DE
5600 /* Since per_cu is the first member of struct signatured_type,
5601 we can go from a pointer to one to a pointer to the other. */
5602 sig_type = (struct signatured_type *) this_cu;
43988095 5603 gdb_assert (sig_type->signature == cu->header.signature);
42e7ad6c 5604 gdb_assert (sig_type->type_offset_in_tu.cu_off
43988095 5605 == cu->header.type_offset_in_tu.cu_off);
dee91e82
DE
5606 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5607
42e7ad6c
DE
5608 /* LENGTH has not been set yet for type units if we're
5609 using .gdb_index. */
1ce1cefd 5610 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5611
5612 /* Establish the type offset that can be used to lookup the type. */
5613 sig_type->type_offset_in_section.sect_off =
5614 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
43988095
JK
5615
5616 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5617 }
5618 else
5619 {
4bdcc0c1
DE
5620 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5621 abbrev_section,
43988095
JK
5622 info_ptr,
5623 rcuh_kind::COMPILE);
dee91e82
DE
5624
5625 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5626 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5627 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5628 }
5629 }
10b3939b 5630
6caca83c 5631 /* Skip dummy compilation units. */
dee91e82 5632 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5633 || peek_abbrev_code (abfd, info_ptr) == 0)
5634 {
dee91e82 5635 do_cleanups (cleanups);
21b2bd31 5636 return;
6caca83c
CC
5637 }
5638
433df2d4
DE
5639 /* If we don't have them yet, read the abbrevs for this compilation unit.
5640 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5641 done. Note that it's important that if the CU had an abbrev table
5642 on entry we don't free it when we're done: Somewhere up the call stack
5643 it may be in use. */
f4dc4d17
DE
5644 if (abbrev_table != NULL)
5645 {
5646 gdb_assert (cu->abbrev_table == NULL);
5647 gdb_assert (cu->header.abbrev_offset.sect_off
5648 == abbrev_table->offset.sect_off);
5649 cu->abbrev_table = abbrev_table;
5650 }
5651 else if (cu->abbrev_table == NULL)
dee91e82 5652 {
4bdcc0c1 5653 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5654 make_cleanup (dwarf2_free_abbrev_table, cu);
5655 }
42e7ad6c
DE
5656 else if (rereading_dwo_cu)
5657 {
5658 dwarf2_free_abbrev_table (cu);
5659 dwarf2_read_abbrevs (cu, abbrev_section);
5660 }
af703f96 5661
dee91e82 5662 /* Read the top level CU/TU die. */
3019eac3 5663 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5664 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5665
b0c7bfa9
DE
5666 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5667 from the DWO file.
5668 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5669 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5670 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5671 if (attr)
5672 {
3019eac3 5673 struct dwo_unit *dwo_unit;
b0c7bfa9 5674 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5675
5676 if (has_children)
6a506a2d
DE
5677 {
5678 complaint (&symfile_complaints,
5679 _("compilation unit with DW_AT_GNU_dwo_name"
5680 " has children (offset 0x%x) [in module %s]"),
5681 this_cu->offset.sect_off, bfd_get_filename (abfd));
5682 }
b0c7bfa9 5683 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5684 if (dwo_unit != NULL)
3019eac3 5685 {
6a506a2d
DE
5686 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5687 abbrev_table != NULL,
a2ce51a0 5688 comp_unit_die, NULL,
6a506a2d
DE
5689 &reader, &info_ptr,
5690 &dwo_comp_unit_die, &has_children) == 0)
5691 {
5692 /* Dummy die. */
5693 do_cleanups (cleanups);
5694 return;
5695 }
5696 comp_unit_die = dwo_comp_unit_die;
5697 }
5698 else
5699 {
5700 /* Yikes, we couldn't find the rest of the DIE, we only have
5701 the stub. A complaint has already been logged. There's
5702 not much more we can do except pass on the stub DIE to
5703 die_reader_func. We don't want to throw an error on bad
5704 debug info. */
3019eac3
DE
5705 }
5706 }
5707
b0c7bfa9 5708 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5709 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5710
b0c7bfa9 5711 /* Done, clean up. */
365156ad 5712 if (free_cu_cleanup != NULL)
348e048f 5713 {
365156ad
TT
5714 if (keep)
5715 {
5716 /* We've successfully allocated this compilation unit. Let our
5717 caller clean it up when finished with it. */
5718 discard_cleanups (free_cu_cleanup);
dee91e82 5719
365156ad
TT
5720 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5721 So we have to manually free the abbrev table. */
5722 dwarf2_free_abbrev_table (cu);
dee91e82 5723
365156ad
TT
5724 /* Link this CU into read_in_chain. */
5725 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5726 dwarf2_per_objfile->read_in_chain = this_cu;
5727 }
5728 else
5729 do_cleanups (free_cu_cleanup);
348e048f 5730 }
365156ad
TT
5731
5732 do_cleanups (cleanups);
dee91e82
DE
5733}
5734
33e80786
DE
5735/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5736 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5737 to have already done the lookup to find the DWO file).
dee91e82
DE
5738
5739 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5740 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5741
5742 We fill in THIS_CU->length.
5743
5744 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5745 linker) then DIE_READER_FUNC will not get called.
5746
5747 THIS_CU->cu is always freed when done.
3019eac3
DE
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5750
5751static void
5752init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5753 struct dwo_file *dwo_file,
dee91e82
DE
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756{
5757 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5758 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5759 bfd *abfd = get_section_bfd_owner (section);
33e80786 5760 struct dwarf2_section_info *abbrev_section;
dee91e82 5761 struct dwarf2_cu cu;
d521ce57 5762 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5763 struct die_reader_specs reader;
5764 struct cleanup *cleanups;
5765 struct die_info *comp_unit_die;
5766 int has_children;
5767
b4f54984 5768 if (dwarf_die_debug)
09406207
DE
5769 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5770 this_cu->is_debug_types ? "type" : "comp",
5771 this_cu->offset.sect_off);
5772
dee91e82
DE
5773 gdb_assert (this_cu->cu == NULL);
5774
33e80786
DE
5775 abbrev_section = (dwo_file != NULL
5776 ? &dwo_file->sections.abbrev
5777 : get_abbrev_section_for_cu (this_cu));
5778
dee91e82
DE
5779 /* This is cheap if the section is already read in. */
5780 dwarf2_read_section (objfile, section);
5781
5782 init_one_comp_unit (&cu, this_cu);
5783
5784 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5785
5786 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5787 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5788 abbrev_section, info_ptr,
43988095
JK
5789 (this_cu->is_debug_types
5790 ? rcuh_kind::TYPE
5791 : rcuh_kind::COMPILE));
dee91e82 5792
1ce1cefd 5793 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5794
5795 /* Skip dummy compilation units. */
5796 if (info_ptr >= begin_info_ptr + this_cu->length
5797 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5798 {
dee91e82 5799 do_cleanups (cleanups);
21b2bd31 5800 return;
93311388 5801 }
72bf9492 5802
dee91e82
DE
5803 dwarf2_read_abbrevs (&cu, abbrev_section);
5804 make_cleanup (dwarf2_free_abbrev_table, &cu);
5805
3019eac3 5806 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5807 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5808
5809 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5810
5811 do_cleanups (cleanups);
5812}
5813
3019eac3
DE
5814/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5815 does not lookup the specified DWO file.
5816 This cannot be used to read DWO files.
dee91e82
DE
5817
5818 THIS_CU->cu is always freed when done.
3019eac3
DE
5819 This is done in order to not leave THIS_CU->cu in a state where we have
5820 to care whether it refers to the "main" CU or the DWO CU.
5821 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5822
5823static void
5824init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5825 die_reader_func_ftype *die_reader_func,
5826 void *data)
5827{
33e80786 5828 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5829}
0018ea6f
DE
5830\f
5831/* Type Unit Groups.
dee91e82 5832
0018ea6f
DE
5833 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5834 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5835 so that all types coming from the same compilation (.o file) are grouped
5836 together. A future step could be to put the types in the same symtab as
5837 the CU the types ultimately came from. */
ff013f42 5838
f4dc4d17
DE
5839static hashval_t
5840hash_type_unit_group (const void *item)
5841{
9a3c8263
SM
5842 const struct type_unit_group *tu_group
5843 = (const struct type_unit_group *) item;
f4dc4d17 5844
094b34ac 5845 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5846}
348e048f
DE
5847
5848static int
f4dc4d17 5849eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5850{
9a3c8263
SM
5851 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5852 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5853
094b34ac 5854 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5855}
348e048f 5856
f4dc4d17
DE
5857/* Allocate a hash table for type unit groups. */
5858
5859static htab_t
5860allocate_type_unit_groups_table (void)
5861{
5862 return htab_create_alloc_ex (3,
5863 hash_type_unit_group,
5864 eq_type_unit_group,
5865 NULL,
5866 &dwarf2_per_objfile->objfile->objfile_obstack,
5867 hashtab_obstack_allocate,
5868 dummy_obstack_deallocate);
5869}
dee91e82 5870
f4dc4d17
DE
5871/* Type units that don't have DW_AT_stmt_list are grouped into their own
5872 partial symtabs. We combine several TUs per psymtab to not let the size
5873 of any one psymtab grow too big. */
5874#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5875#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5876
094b34ac 5877/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5878 Create the type_unit_group object used to hold one or more TUs. */
5879
5880static struct type_unit_group *
094b34ac 5881create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5882{
5883 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5884 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5885 struct type_unit_group *tu_group;
f4dc4d17
DE
5886
5887 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5888 struct type_unit_group);
094b34ac 5889 per_cu = &tu_group->per_cu;
f4dc4d17 5890 per_cu->objfile = objfile;
f4dc4d17 5891
094b34ac
DE
5892 if (dwarf2_per_objfile->using_index)
5893 {
5894 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5895 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5896 }
5897 else
5898 {
5899 unsigned int line_offset = line_offset_struct.sect_off;
5900 struct partial_symtab *pst;
5901 char *name;
5902
5903 /* Give the symtab a useful name for debug purposes. */
5904 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5905 name = xstrprintf ("<type_units_%d>",
5906 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5907 else
5908 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5909
5910 pst = create_partial_symtab (per_cu, name);
5911 pst->anonymous = 1;
f4dc4d17 5912
094b34ac
DE
5913 xfree (name);
5914 }
f4dc4d17 5915
094b34ac
DE
5916 tu_group->hash.dwo_unit = cu->dwo_unit;
5917 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5918
5919 return tu_group;
5920}
5921
094b34ac
DE
5922/* Look up the type_unit_group for type unit CU, and create it if necessary.
5923 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5924
5925static struct type_unit_group *
ff39bb5e 5926get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5927{
5928 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5929 struct type_unit_group *tu_group;
5930 void **slot;
5931 unsigned int line_offset;
5932 struct type_unit_group type_unit_group_for_lookup;
5933
5934 if (dwarf2_per_objfile->type_unit_groups == NULL)
5935 {
5936 dwarf2_per_objfile->type_unit_groups =
5937 allocate_type_unit_groups_table ();
5938 }
5939
5940 /* Do we need to create a new group, or can we use an existing one? */
5941
5942 if (stmt_list)
5943 {
5944 line_offset = DW_UNSND (stmt_list);
5945 ++tu_stats->nr_symtab_sharers;
5946 }
5947 else
5948 {
5949 /* Ugh, no stmt_list. Rare, but we have to handle it.
5950 We can do various things here like create one group per TU or
5951 spread them over multiple groups to split up the expansion work.
5952 To avoid worst case scenarios (too many groups or too large groups)
5953 we, umm, group them in bunches. */
5954 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5955 | (tu_stats->nr_stmt_less_type_units
5956 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5957 ++tu_stats->nr_stmt_less_type_units;
5958 }
5959
094b34ac
DE
5960 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5961 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5962 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5963 &type_unit_group_for_lookup, INSERT);
5964 if (*slot != NULL)
5965 {
9a3c8263 5966 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5967 gdb_assert (tu_group != NULL);
5968 }
5969 else
5970 {
5971 sect_offset line_offset_struct;
5972
5973 line_offset_struct.sect_off = line_offset;
094b34ac 5974 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5975 *slot = tu_group;
5976 ++tu_stats->nr_symtabs;
5977 }
5978
5979 return tu_group;
5980}
0018ea6f
DE
5981\f
5982/* Partial symbol tables. */
5983
5984/* Create a psymtab named NAME and assign it to PER_CU.
5985
5986 The caller must fill in the following details:
5987 dirname, textlow, texthigh. */
5988
5989static struct partial_symtab *
5990create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5991{
5992 struct objfile *objfile = per_cu->objfile;
5993 struct partial_symtab *pst;
5994
18a94d75 5995 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5996 objfile->global_psymbols.next,
5997 objfile->static_psymbols.next);
5998
5999 pst->psymtabs_addrmap_supported = 1;
6000
6001 /* This is the glue that links PST into GDB's symbol API. */
6002 pst->read_symtab_private = per_cu;
6003 pst->read_symtab = dwarf2_read_symtab;
6004 per_cu->v.psymtab = pst;
6005
6006 return pst;
6007}
6008
b93601f3
TT
6009/* The DATA object passed to process_psymtab_comp_unit_reader has this
6010 type. */
6011
6012struct process_psymtab_comp_unit_data
6013{
6014 /* True if we are reading a DW_TAG_partial_unit. */
6015
6016 int want_partial_unit;
6017
6018 /* The "pretend" language that is used if the CU doesn't declare a
6019 language. */
6020
6021 enum language pretend_language;
6022};
6023
0018ea6f
DE
6024/* die_reader_func for process_psymtab_comp_unit. */
6025
6026static void
6027process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6028 const gdb_byte *info_ptr,
0018ea6f
DE
6029 struct die_info *comp_unit_die,
6030 int has_children,
6031 void *data)
6032{
6033 struct dwarf2_cu *cu = reader->cu;
6034 struct objfile *objfile = cu->objfile;
3e29f34a 6035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6036 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6037 CORE_ADDR baseaddr;
6038 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6039 struct partial_symtab *pst;
3a2b436a 6040 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6041 const char *filename;
9a3c8263
SM
6042 struct process_psymtab_comp_unit_data *info
6043 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6044
b93601f3 6045 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6046 return;
6047
6048 gdb_assert (! per_cu->is_debug_types);
6049
b93601f3 6050 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6051
6052 cu->list_in_scope = &file_symbols;
6053
6054 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6055 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6056 if (filename == NULL)
0018ea6f 6057 filename = "";
0018ea6f
DE
6058
6059 pst = create_partial_symtab (per_cu, filename);
6060
6061 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6062 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6063
6064 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6065
6066 dwarf2_find_base_address (comp_unit_die, cu);
6067
6068 /* Possibly set the default values of LOWPC and HIGHPC from
6069 `DW_AT_ranges'. */
3a2b436a
JK
6070 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6071 &best_highpc, cu, pst);
6072 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6073 /* Store the contiguous range if it is not empty; it can be empty for
6074 CUs with no code. */
6075 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6076 gdbarch_adjust_dwarf2_addr (gdbarch,
6077 best_lowpc + baseaddr),
6078 gdbarch_adjust_dwarf2_addr (gdbarch,
6079 best_highpc + baseaddr) - 1,
6080 pst);
0018ea6f
DE
6081
6082 /* Check if comp unit has_children.
6083 If so, read the rest of the partial symbols from this comp unit.
6084 If not, there's no more debug_info for this comp unit. */
6085 if (has_children)
6086 {
6087 struct partial_die_info *first_die;
6088 CORE_ADDR lowpc, highpc;
6089
6090 lowpc = ((CORE_ADDR) -1);
6091 highpc = ((CORE_ADDR) 0);
6092
6093 first_die = load_partial_dies (reader, info_ptr, 1);
6094
6095 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6096 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6097
6098 /* If we didn't find a lowpc, set it to highpc to avoid
6099 complaints from `maint check'. */
6100 if (lowpc == ((CORE_ADDR) -1))
6101 lowpc = highpc;
6102
6103 /* If the compilation unit didn't have an explicit address range,
6104 then use the information extracted from its child dies. */
e385593e 6105 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6106 {
6107 best_lowpc = lowpc;
6108 best_highpc = highpc;
6109 }
6110 }
3e29f34a
MR
6111 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6112 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6113
8763cede 6114 end_psymtab_common (objfile, pst);
0018ea6f
DE
6115
6116 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6117 {
6118 int i;
6119 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6120 struct dwarf2_per_cu_data *iter;
6121
6122 /* Fill in 'dependencies' here; we fill in 'users' in a
6123 post-pass. */
6124 pst->number_of_dependencies = len;
8d749320
SM
6125 pst->dependencies =
6126 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6127 for (i = 0;
6128 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6129 i, iter);
6130 ++i)
6131 pst->dependencies[i] = iter->v.psymtab;
6132
6133 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6134 }
6135
6136 /* Get the list of files included in the current compilation unit,
6137 and build a psymtab for each of them. */
6138 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6139
b4f54984 6140 if (dwarf_read_debug)
0018ea6f
DE
6141 {
6142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6143
6144 fprintf_unfiltered (gdb_stdlog,
6145 "Psymtab for %s unit @0x%x: %s - %s"
6146 ", %d global, %d static syms\n",
6147 per_cu->is_debug_types ? "type" : "comp",
6148 per_cu->offset.sect_off,
6149 paddress (gdbarch, pst->textlow),
6150 paddress (gdbarch, pst->texthigh),
6151 pst->n_global_syms, pst->n_static_syms);
6152 }
6153}
6154
6155/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6156 Process compilation unit THIS_CU for a psymtab. */
6157
6158static void
6159process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6160 int want_partial_unit,
6161 enum language pretend_language)
0018ea6f 6162{
b93601f3
TT
6163 struct process_psymtab_comp_unit_data info;
6164
0018ea6f
DE
6165 /* If this compilation unit was already read in, free the
6166 cached copy in order to read it in again. This is
6167 necessary because we skipped some symbols when we first
6168 read in the compilation unit (see load_partial_dies).
6169 This problem could be avoided, but the benefit is unclear. */
6170 if (this_cu->cu != NULL)
6171 free_one_cached_comp_unit (this_cu);
6172
6173 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6174 info.want_partial_unit = want_partial_unit;
6175 info.pretend_language = pretend_language;
0018ea6f
DE
6176 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6177 process_psymtab_comp_unit_reader,
b93601f3 6178 &info);
0018ea6f
DE
6179
6180 /* Age out any secondary CUs. */
6181 age_cached_comp_units ();
6182}
f4dc4d17
DE
6183
6184/* Reader function for build_type_psymtabs. */
6185
6186static void
6187build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6188 const gdb_byte *info_ptr,
f4dc4d17
DE
6189 struct die_info *type_unit_die,
6190 int has_children,
6191 void *data)
6192{
6193 struct objfile *objfile = dwarf2_per_objfile->objfile;
6194 struct dwarf2_cu *cu = reader->cu;
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6196 struct signatured_type *sig_type;
f4dc4d17
DE
6197 struct type_unit_group *tu_group;
6198 struct attribute *attr;
6199 struct partial_die_info *first_die;
6200 CORE_ADDR lowpc, highpc;
6201 struct partial_symtab *pst;
6202
6203 gdb_assert (data == NULL);
0186c6a7
DE
6204 gdb_assert (per_cu->is_debug_types);
6205 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6206
6207 if (! has_children)
6208 return;
6209
6210 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6211 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6212
0186c6a7 6213 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6214
6215 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6216 cu->list_in_scope = &file_symbols;
6217 pst = create_partial_symtab (per_cu, "");
6218 pst->anonymous = 1;
6219
6220 first_die = load_partial_dies (reader, info_ptr, 1);
6221
6222 lowpc = (CORE_ADDR) -1;
6223 highpc = (CORE_ADDR) 0;
6224 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6225
8763cede 6226 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6227}
6228
73051182
DE
6229/* Struct used to sort TUs by their abbreviation table offset. */
6230
6231struct tu_abbrev_offset
6232{
6233 struct signatured_type *sig_type;
6234 sect_offset abbrev_offset;
6235};
6236
6237/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6238
6239static int
6240sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6241{
9a3c8263
SM
6242 const struct tu_abbrev_offset * const *a
6243 = (const struct tu_abbrev_offset * const*) ap;
6244 const struct tu_abbrev_offset * const *b
6245 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6246 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6247 unsigned int boff = (*b)->abbrev_offset.sect_off;
6248
6249 return (aoff > boff) - (aoff < boff);
6250}
6251
6252/* Efficiently read all the type units.
6253 This does the bulk of the work for build_type_psymtabs.
6254
6255 The efficiency is because we sort TUs by the abbrev table they use and
6256 only read each abbrev table once. In one program there are 200K TUs
6257 sharing 8K abbrev tables.
6258
6259 The main purpose of this function is to support building the
6260 dwarf2_per_objfile->type_unit_groups table.
6261 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6262 can collapse the search space by grouping them by stmt_list.
6263 The savings can be significant, in the same program from above the 200K TUs
6264 share 8K stmt_list tables.
6265
6266 FUNC is expected to call get_type_unit_group, which will create the
6267 struct type_unit_group if necessary and add it to
6268 dwarf2_per_objfile->type_unit_groups. */
6269
6270static void
6271build_type_psymtabs_1 (void)
6272{
73051182
DE
6273 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6274 struct cleanup *cleanups;
6275 struct abbrev_table *abbrev_table;
6276 sect_offset abbrev_offset;
6277 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6278 int i;
6279
6280 /* It's up to the caller to not call us multiple times. */
6281 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6282
6283 if (dwarf2_per_objfile->n_type_units == 0)
6284 return;
6285
6286 /* TUs typically share abbrev tables, and there can be way more TUs than
6287 abbrev tables. Sort by abbrev table to reduce the number of times we
6288 read each abbrev table in.
6289 Alternatives are to punt or to maintain a cache of abbrev tables.
6290 This is simpler and efficient enough for now.
6291
6292 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6293 symtab to use). Typically TUs with the same abbrev offset have the same
6294 stmt_list value too so in practice this should work well.
6295
6296 The basic algorithm here is:
6297
6298 sort TUs by abbrev table
6299 for each TU with same abbrev table:
6300 read abbrev table if first user
6301 read TU top level DIE
6302 [IWBN if DWO skeletons had DW_AT_stmt_list]
6303 call FUNC */
6304
b4f54984 6305 if (dwarf_read_debug)
73051182
DE
6306 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6307
6308 /* Sort in a separate table to maintain the order of all_type_units
6309 for .gdb_index: TU indices directly index all_type_units. */
6310 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6311 dwarf2_per_objfile->n_type_units);
6312 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6313 {
6314 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6315
6316 sorted_by_abbrev[i].sig_type = sig_type;
6317 sorted_by_abbrev[i].abbrev_offset =
6318 read_abbrev_offset (sig_type->per_cu.section,
6319 sig_type->per_cu.offset);
6320 }
6321 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6322 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6323 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6324
6325 abbrev_offset.sect_off = ~(unsigned) 0;
6326 abbrev_table = NULL;
6327 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6328
6329 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6330 {
6331 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6332
6333 /* Switch to the next abbrev table if necessary. */
6334 if (abbrev_table == NULL
6335 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6336 {
6337 if (abbrev_table != NULL)
6338 {
6339 abbrev_table_free (abbrev_table);
6340 /* Reset to NULL in case abbrev_table_read_table throws
6341 an error: abbrev_table_free_cleanup will get called. */
6342 abbrev_table = NULL;
6343 }
6344 abbrev_offset = tu->abbrev_offset;
6345 abbrev_table =
6346 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6347 abbrev_offset);
6348 ++tu_stats->nr_uniq_abbrev_tables;
6349 }
6350
6351 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6352 build_type_psymtabs_reader, NULL);
6353 }
6354
73051182 6355 do_cleanups (cleanups);
6aa5f3a6 6356}
73051182 6357
6aa5f3a6
DE
6358/* Print collected type unit statistics. */
6359
6360static void
6361print_tu_stats (void)
6362{
6363 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6364
6365 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6366 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6367 dwarf2_per_objfile->n_type_units);
6368 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6369 tu_stats->nr_uniq_abbrev_tables);
6370 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6371 tu_stats->nr_symtabs);
6372 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6373 tu_stats->nr_symtab_sharers);
6374 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6375 tu_stats->nr_stmt_less_type_units);
6376 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6377 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6378}
6379
f4dc4d17
DE
6380/* Traversal function for build_type_psymtabs. */
6381
6382static int
6383build_type_psymtab_dependencies (void **slot, void *info)
6384{
6385 struct objfile *objfile = dwarf2_per_objfile->objfile;
6386 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6387 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6388 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6389 int len = VEC_length (sig_type_ptr, tu_group->tus);
6390 struct signatured_type *iter;
f4dc4d17
DE
6391 int i;
6392
6393 gdb_assert (len > 0);
0186c6a7 6394 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6395
6396 pst->number_of_dependencies = len;
8d749320
SM
6397 pst->dependencies =
6398 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6399 for (i = 0;
0186c6a7 6400 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6401 ++i)
6402 {
0186c6a7
DE
6403 gdb_assert (iter->per_cu.is_debug_types);
6404 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6405 iter->type_unit_group = tu_group;
f4dc4d17
DE
6406 }
6407
0186c6a7 6408 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6409
6410 return 1;
6411}
6412
6413/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6414 Build partial symbol tables for the .debug_types comp-units. */
6415
6416static void
6417build_type_psymtabs (struct objfile *objfile)
6418{
0e50663e 6419 if (! create_all_type_units (objfile))
348e048f
DE
6420 return;
6421
73051182 6422 build_type_psymtabs_1 ();
6aa5f3a6 6423}
f4dc4d17 6424
6aa5f3a6
DE
6425/* Traversal function for process_skeletonless_type_unit.
6426 Read a TU in a DWO file and build partial symbols for it. */
6427
6428static int
6429process_skeletonless_type_unit (void **slot, void *info)
6430{
6431 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6432 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6433 struct signatured_type find_entry, *entry;
6434
6435 /* If this TU doesn't exist in the global table, add it and read it in. */
6436
6437 if (dwarf2_per_objfile->signatured_types == NULL)
6438 {
6439 dwarf2_per_objfile->signatured_types
6440 = allocate_signatured_type_table (objfile);
6441 }
6442
6443 find_entry.signature = dwo_unit->signature;
6444 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6445 INSERT);
6446 /* If we've already seen this type there's nothing to do. What's happening
6447 is we're doing our own version of comdat-folding here. */
6448 if (*slot != NULL)
6449 return 1;
6450
6451 /* This does the job that create_all_type_units would have done for
6452 this TU. */
6453 entry = add_type_unit (dwo_unit->signature, slot);
6454 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6455 *slot = entry;
6456
6457 /* This does the job that build_type_psymtabs_1 would have done. */
6458 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6459 build_type_psymtabs_reader, NULL);
6460
6461 return 1;
6462}
6463
6464/* Traversal function for process_skeletonless_type_units. */
6465
6466static int
6467process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6468{
6469 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6470
6471 if (dwo_file->tus != NULL)
6472 {
6473 htab_traverse_noresize (dwo_file->tus,
6474 process_skeletonless_type_unit, info);
6475 }
6476
6477 return 1;
6478}
6479
6480/* Scan all TUs of DWO files, verifying we've processed them.
6481 This is needed in case a TU was emitted without its skeleton.
6482 Note: This can't be done until we know what all the DWO files are. */
6483
6484static void
6485process_skeletonless_type_units (struct objfile *objfile)
6486{
6487 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6488 if (get_dwp_file () == NULL
6489 && dwarf2_per_objfile->dwo_files != NULL)
6490 {
6491 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6492 process_dwo_file_for_skeletonless_type_units,
6493 objfile);
6494 }
348e048f
DE
6495}
6496
60606b2c
TT
6497/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6498
6499static void
6500psymtabs_addrmap_cleanup (void *o)
6501{
9a3c8263 6502 struct objfile *objfile = (struct objfile *) o;
ec61707d 6503
60606b2c
TT
6504 objfile->psymtabs_addrmap = NULL;
6505}
6506
95554aad
TT
6507/* Compute the 'user' field for each psymtab in OBJFILE. */
6508
6509static void
6510set_partial_user (struct objfile *objfile)
6511{
6512 int i;
6513
6514 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6515 {
8832e7e3 6516 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6517 struct partial_symtab *pst = per_cu->v.psymtab;
6518 int j;
6519
36586728
TT
6520 if (pst == NULL)
6521 continue;
6522
95554aad
TT
6523 for (j = 0; j < pst->number_of_dependencies; ++j)
6524 {
6525 /* Set the 'user' field only if it is not already set. */
6526 if (pst->dependencies[j]->user == NULL)
6527 pst->dependencies[j]->user = pst;
6528 }
6529 }
6530}
6531
93311388
DE
6532/* Build the partial symbol table by doing a quick pass through the
6533 .debug_info and .debug_abbrev sections. */
72bf9492 6534
93311388 6535static void
c67a9c90 6536dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6537{
60606b2c
TT
6538 struct cleanup *back_to, *addrmap_cleanup;
6539 struct obstack temp_obstack;
21b2bd31 6540 int i;
93311388 6541
b4f54984 6542 if (dwarf_read_debug)
45cfd468
DE
6543 {
6544 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6545 objfile_name (objfile));
45cfd468
DE
6546 }
6547
98bfdba5
PA
6548 dwarf2_per_objfile->reading_partial_symbols = 1;
6549
be391dca 6550 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6551
93311388
DE
6552 /* Any cached compilation units will be linked by the per-objfile
6553 read_in_chain. Make sure to free them when we're done. */
6554 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6555
348e048f
DE
6556 build_type_psymtabs (objfile);
6557
93311388 6558 create_all_comp_units (objfile);
c906108c 6559
60606b2c
TT
6560 /* Create a temporary address map on a temporary obstack. We later
6561 copy this to the final obstack. */
6562 obstack_init (&temp_obstack);
6563 make_cleanup_obstack_free (&temp_obstack);
6564 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6565 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6566
21b2bd31 6567 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6568 {
8832e7e3 6569 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6570
b93601f3 6571 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6572 }
ff013f42 6573
6aa5f3a6
DE
6574 /* This has to wait until we read the CUs, we need the list of DWOs. */
6575 process_skeletonless_type_units (objfile);
6576
6577 /* Now that all TUs have been processed we can fill in the dependencies. */
6578 if (dwarf2_per_objfile->type_unit_groups != NULL)
6579 {
6580 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6581 build_type_psymtab_dependencies, NULL);
6582 }
6583
b4f54984 6584 if (dwarf_read_debug)
6aa5f3a6
DE
6585 print_tu_stats ();
6586
95554aad
TT
6587 set_partial_user (objfile);
6588
ff013f42
JK
6589 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6590 &objfile->objfile_obstack);
60606b2c 6591 discard_cleanups (addrmap_cleanup);
ff013f42 6592
ae038cb0 6593 do_cleanups (back_to);
45cfd468 6594
b4f54984 6595 if (dwarf_read_debug)
45cfd468 6596 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6597 objfile_name (objfile));
ae038cb0
DJ
6598}
6599
3019eac3 6600/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6601
6602static void
dee91e82 6603load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6604 const gdb_byte *info_ptr,
dee91e82
DE
6605 struct die_info *comp_unit_die,
6606 int has_children,
6607 void *data)
ae038cb0 6608{
dee91e82 6609 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6610
95554aad 6611 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6612
ae038cb0
DJ
6613 /* Check if comp unit has_children.
6614 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6615 If not, there's no more debug_info for this comp unit. */
d85a05f0 6616 if (has_children)
dee91e82
DE
6617 load_partial_dies (reader, info_ptr, 0);
6618}
98bfdba5 6619
dee91e82
DE
6620/* Load the partial DIEs for a secondary CU into memory.
6621 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6622
dee91e82
DE
6623static void
6624load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6625{
f4dc4d17
DE
6626 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6627 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6628}
6629
ae038cb0 6630static void
36586728
TT
6631read_comp_units_from_section (struct objfile *objfile,
6632 struct dwarf2_section_info *section,
6633 unsigned int is_dwz,
6634 int *n_allocated,
6635 int *n_comp_units,
6636 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6637{
d521ce57 6638 const gdb_byte *info_ptr;
a32a8923 6639 bfd *abfd = get_section_bfd_owner (section);
be391dca 6640
b4f54984 6641 if (dwarf_read_debug)
bf6af496 6642 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6643 get_section_name (section),
6644 get_section_file_name (section));
bf6af496 6645
36586728 6646 dwarf2_read_section (objfile, section);
ae038cb0 6647
36586728 6648 info_ptr = section->buffer;
6e70227d 6649
36586728 6650 while (info_ptr < section->buffer + section->size)
ae038cb0 6651 {
c764a876 6652 unsigned int length, initial_length_size;
ae038cb0 6653 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6654 sect_offset offset;
ae038cb0 6655
36586728 6656 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6657
6658 /* Read just enough information to find out where the next
6659 compilation unit is. */
36586728 6660 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6661
6662 /* Save the compilation unit for later lookup. */
8d749320 6663 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6664 memset (this_cu, 0, sizeof (*this_cu));
6665 this_cu->offset = offset;
c764a876 6666 this_cu->length = length + initial_length_size;
36586728 6667 this_cu->is_dwz = is_dwz;
9291a0cd 6668 this_cu->objfile = objfile;
8a0459fd 6669 this_cu->section = section;
ae038cb0 6670
36586728 6671 if (*n_comp_units == *n_allocated)
ae038cb0 6672 {
36586728 6673 *n_allocated *= 2;
224c3ddb
SM
6674 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6675 *all_comp_units, *n_allocated);
ae038cb0 6676 }
36586728
TT
6677 (*all_comp_units)[*n_comp_units] = this_cu;
6678 ++*n_comp_units;
ae038cb0
DJ
6679
6680 info_ptr = info_ptr + this_cu->length;
6681 }
36586728
TT
6682}
6683
6684/* Create a list of all compilation units in OBJFILE.
6685 This is only done for -readnow and building partial symtabs. */
6686
6687static void
6688create_all_comp_units (struct objfile *objfile)
6689{
6690 int n_allocated;
6691 int n_comp_units;
6692 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6693 struct dwz_file *dwz;
36586728
TT
6694
6695 n_comp_units = 0;
6696 n_allocated = 10;
8d749320 6697 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6698
6699 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6700 &n_allocated, &n_comp_units, &all_comp_units);
6701
4db1a1dc
TT
6702 dwz = dwarf2_get_dwz_file ();
6703 if (dwz != NULL)
6704 read_comp_units_from_section (objfile, &dwz->info, 1,
6705 &n_allocated, &n_comp_units,
6706 &all_comp_units);
ae038cb0 6707
8d749320
SM
6708 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6709 struct dwarf2_per_cu_data *,
6710 n_comp_units);
ae038cb0
DJ
6711 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6712 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6713 xfree (all_comp_units);
6714 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6715}
6716
5734ee8b 6717/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6718 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6719 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6720 DW_AT_ranges). See the comments of add_partial_subprogram on how
6721 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6722
72bf9492
DJ
6723static void
6724scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6725 CORE_ADDR *highpc, int set_addrmap,
6726 struct dwarf2_cu *cu)
c906108c 6727{
72bf9492 6728 struct partial_die_info *pdi;
c906108c 6729
91c24f0a
DC
6730 /* Now, march along the PDI's, descending into ones which have
6731 interesting children but skipping the children of the other ones,
6732 until we reach the end of the compilation unit. */
c906108c 6733
72bf9492 6734 pdi = first_die;
91c24f0a 6735
72bf9492
DJ
6736 while (pdi != NULL)
6737 {
6738 fixup_partial_die (pdi, cu);
c906108c 6739
f55ee35c 6740 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6741 children, so we need to look at them. Ditto for anonymous
6742 enums. */
933c6fe4 6743
72bf9492 6744 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6745 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6746 || pdi->tag == DW_TAG_imported_unit)
c906108c 6747 {
72bf9492 6748 switch (pdi->tag)
c906108c
SS
6749 {
6750 case DW_TAG_subprogram:
cdc07690 6751 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6752 break;
72929c62 6753 case DW_TAG_constant:
c906108c
SS
6754 case DW_TAG_variable:
6755 case DW_TAG_typedef:
91c24f0a 6756 case DW_TAG_union_type:
72bf9492 6757 if (!pdi->is_declaration)
63d06c5c 6758 {
72bf9492 6759 add_partial_symbol (pdi, cu);
63d06c5c
DC
6760 }
6761 break;
c906108c 6762 case DW_TAG_class_type:
680b30c7 6763 case DW_TAG_interface_type:
c906108c 6764 case DW_TAG_structure_type:
72bf9492 6765 if (!pdi->is_declaration)
c906108c 6766 {
72bf9492 6767 add_partial_symbol (pdi, cu);
c906108c 6768 }
e98c9e7c
TT
6769 if (cu->language == language_rust && pdi->has_children)
6770 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6771 set_addrmap, cu);
c906108c 6772 break;
91c24f0a 6773 case DW_TAG_enumeration_type:
72bf9492
DJ
6774 if (!pdi->is_declaration)
6775 add_partial_enumeration (pdi, cu);
c906108c
SS
6776 break;
6777 case DW_TAG_base_type:
a02abb62 6778 case DW_TAG_subrange_type:
c906108c 6779 /* File scope base type definitions are added to the partial
c5aa993b 6780 symbol table. */
72bf9492 6781 add_partial_symbol (pdi, cu);
c906108c 6782 break;
d9fa45fe 6783 case DW_TAG_namespace:
cdc07690 6784 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6785 break;
5d7cb8df 6786 case DW_TAG_module:
cdc07690 6787 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6788 break;
95554aad
TT
6789 case DW_TAG_imported_unit:
6790 {
6791 struct dwarf2_per_cu_data *per_cu;
6792
f4dc4d17
DE
6793 /* For now we don't handle imported units in type units. */
6794 if (cu->per_cu->is_debug_types)
6795 {
6796 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6797 " supported in type units [in module %s]"),
4262abfb 6798 objfile_name (cu->objfile));
f4dc4d17
DE
6799 }
6800
95554aad 6801 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6802 pdi->is_dwz,
95554aad
TT
6803 cu->objfile);
6804
6805 /* Go read the partial unit, if needed. */
6806 if (per_cu->v.psymtab == NULL)
b93601f3 6807 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6808
f4dc4d17 6809 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6810 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6811 }
6812 break;
74921315
KS
6813 case DW_TAG_imported_declaration:
6814 add_partial_symbol (pdi, cu);
6815 break;
c906108c
SS
6816 default:
6817 break;
6818 }
6819 }
6820
72bf9492
DJ
6821 /* If the die has a sibling, skip to the sibling. */
6822
6823 pdi = pdi->die_sibling;
6824 }
6825}
6826
6827/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6828
72bf9492 6829 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6830 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6831 Enumerators are an exception; they use the scope of their parent
6832 enumeration type, i.e. the name of the enumeration type is not
6833 prepended to the enumerator.
91c24f0a 6834
72bf9492
DJ
6835 There are two complexities. One is DW_AT_specification; in this
6836 case "parent" means the parent of the target of the specification,
6837 instead of the direct parent of the DIE. The other is compilers
6838 which do not emit DW_TAG_namespace; in this case we try to guess
6839 the fully qualified name of structure types from their members'
6840 linkage names. This must be done using the DIE's children rather
6841 than the children of any DW_AT_specification target. We only need
6842 to do this for structures at the top level, i.e. if the target of
6843 any DW_AT_specification (if any; otherwise the DIE itself) does not
6844 have a parent. */
6845
6846/* Compute the scope prefix associated with PDI's parent, in
6847 compilation unit CU. The result will be allocated on CU's
6848 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6849 field. NULL is returned if no prefix is necessary. */
15d034d0 6850static const char *
72bf9492
DJ
6851partial_die_parent_scope (struct partial_die_info *pdi,
6852 struct dwarf2_cu *cu)
6853{
15d034d0 6854 const char *grandparent_scope;
72bf9492 6855 struct partial_die_info *parent, *real_pdi;
91c24f0a 6856
72bf9492
DJ
6857 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6858 then this means the parent of the specification DIE. */
6859
6860 real_pdi = pdi;
72bf9492 6861 while (real_pdi->has_specification)
36586728
TT
6862 real_pdi = find_partial_die (real_pdi->spec_offset,
6863 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6864
6865 parent = real_pdi->die_parent;
6866 if (parent == NULL)
6867 return NULL;
6868
6869 if (parent->scope_set)
6870 return parent->scope;
6871
6872 fixup_partial_die (parent, cu);
6873
10b3939b 6874 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6875
acebe513
UW
6876 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6877 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6878 Work around this problem here. */
6879 if (cu->language == language_cplus
6e70227d 6880 && parent->tag == DW_TAG_namespace
acebe513
UW
6881 && strcmp (parent->name, "::") == 0
6882 && grandparent_scope == NULL)
6883 {
6884 parent->scope = NULL;
6885 parent->scope_set = 1;
6886 return NULL;
6887 }
6888
9c6c53f7
SA
6889 if (pdi->tag == DW_TAG_enumerator)
6890 /* Enumerators should not get the name of the enumeration as a prefix. */
6891 parent->scope = grandparent_scope;
6892 else if (parent->tag == DW_TAG_namespace
f55ee35c 6893 || parent->tag == DW_TAG_module
72bf9492
DJ
6894 || parent->tag == DW_TAG_structure_type
6895 || parent->tag == DW_TAG_class_type
680b30c7 6896 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6897 || parent->tag == DW_TAG_union_type
6898 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6899 {
6900 if (grandparent_scope == NULL)
6901 parent->scope = parent->name;
6902 else
3e43a32a
MS
6903 parent->scope = typename_concat (&cu->comp_unit_obstack,
6904 grandparent_scope,
f55ee35c 6905 parent->name, 0, cu);
72bf9492 6906 }
72bf9492
DJ
6907 else
6908 {
6909 /* FIXME drow/2004-04-01: What should we be doing with
6910 function-local names? For partial symbols, we should probably be
6911 ignoring them. */
6912 complaint (&symfile_complaints,
e2e0b3e5 6913 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6914 parent->tag, pdi->offset.sect_off);
72bf9492 6915 parent->scope = grandparent_scope;
c906108c
SS
6916 }
6917
72bf9492
DJ
6918 parent->scope_set = 1;
6919 return parent->scope;
6920}
6921
6922/* Return the fully scoped name associated with PDI, from compilation unit
6923 CU. The result will be allocated with malloc. */
4568ecf9 6924
72bf9492
DJ
6925static char *
6926partial_die_full_name (struct partial_die_info *pdi,
6927 struct dwarf2_cu *cu)
6928{
15d034d0 6929 const char *parent_scope;
72bf9492 6930
98bfdba5
PA
6931 /* If this is a template instantiation, we can not work out the
6932 template arguments from partial DIEs. So, unfortunately, we have
6933 to go through the full DIEs. At least any work we do building
6934 types here will be reused if full symbols are loaded later. */
6935 if (pdi->has_template_arguments)
6936 {
6937 fixup_partial_die (pdi, cu);
6938
6939 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6940 {
6941 struct die_info *die;
6942 struct attribute attr;
6943 struct dwarf2_cu *ref_cu = cu;
6944
b64f50a1 6945 /* DW_FORM_ref_addr is using section offset. */
b4069958 6946 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6947 attr.form = DW_FORM_ref_addr;
4568ecf9 6948 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6949 die = follow_die_ref (NULL, &attr, &ref_cu);
6950
6951 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6952 }
6953 }
6954
72bf9492
DJ
6955 parent_scope = partial_die_parent_scope (pdi, cu);
6956 if (parent_scope == NULL)
6957 return NULL;
6958 else
f55ee35c 6959 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6960}
6961
6962static void
72bf9492 6963add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6964{
e7c27a73 6965 struct objfile *objfile = cu->objfile;
3e29f34a 6966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6967 CORE_ADDR addr = 0;
15d034d0 6968 const char *actual_name = NULL;
e142c38c 6969 CORE_ADDR baseaddr;
15d034d0 6970 char *built_actual_name;
e142c38c
DJ
6971
6972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6973
15d034d0
TT
6974 built_actual_name = partial_die_full_name (pdi, cu);
6975 if (built_actual_name != NULL)
6976 actual_name = built_actual_name;
63d06c5c 6977
72bf9492
DJ
6978 if (actual_name == NULL)
6979 actual_name = pdi->name;
6980
c906108c
SS
6981 switch (pdi->tag)
6982 {
6983 case DW_TAG_subprogram:
3e29f34a 6984 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6985 if (pdi->is_external || cu->language == language_ada)
c906108c 6986 {
2cfa0c8d
JB
6987 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6988 of the global scope. But in Ada, we want to be able to access
6989 nested procedures globally. So all Ada subprograms are stored
6990 in the global scope. */
f47fb265 6991 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6992 built_actual_name != NULL,
f47fb265
MS
6993 VAR_DOMAIN, LOC_BLOCK,
6994 &objfile->global_psymbols,
1762568f 6995 addr, cu->language, objfile);
c906108c
SS
6996 }
6997 else
6998 {
f47fb265 6999 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7000 built_actual_name != NULL,
f47fb265
MS
7001 VAR_DOMAIN, LOC_BLOCK,
7002 &objfile->static_psymbols,
1762568f 7003 addr, cu->language, objfile);
c906108c 7004 }
0c1b455e
TT
7005
7006 if (pdi->main_subprogram && actual_name != NULL)
7007 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7008 break;
72929c62
JB
7009 case DW_TAG_constant:
7010 {
7011 struct psymbol_allocation_list *list;
7012
7013 if (pdi->is_external)
7014 list = &objfile->global_psymbols;
7015 else
7016 list = &objfile->static_psymbols;
f47fb265 7017 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7018 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7019 list, 0, cu->language, objfile);
72929c62
JB
7020 }
7021 break;
c906108c 7022 case DW_TAG_variable:
95554aad
TT
7023 if (pdi->d.locdesc)
7024 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7025
95554aad 7026 if (pdi->d.locdesc
caac4577
JG
7027 && addr == 0
7028 && !dwarf2_per_objfile->has_section_at_zero)
7029 {
7030 /* A global or static variable may also have been stripped
7031 out by the linker if unused, in which case its address
7032 will be nullified; do not add such variables into partial
7033 symbol table then. */
7034 }
7035 else if (pdi->is_external)
c906108c
SS
7036 {
7037 /* Global Variable.
7038 Don't enter into the minimal symbol tables as there is
7039 a minimal symbol table entry from the ELF symbols already.
7040 Enter into partial symbol table if it has a location
7041 descriptor or a type.
7042 If the location descriptor is missing, new_symbol will create
7043 a LOC_UNRESOLVED symbol, the address of the variable will then
7044 be determined from the minimal symbol table whenever the variable
7045 is referenced.
7046 The address for the partial symbol table entry is not
7047 used by GDB, but it comes in handy for debugging partial symbol
7048 table building. */
7049
95554aad 7050 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7051 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7052 built_actual_name != NULL,
f47fb265
MS
7053 VAR_DOMAIN, LOC_STATIC,
7054 &objfile->global_psymbols,
1762568f 7055 addr + baseaddr,
f47fb265 7056 cu->language, objfile);
c906108c
SS
7057 }
7058 else
7059 {
ff908ebf
AW
7060 int has_loc = pdi->d.locdesc != NULL;
7061
7062 /* Static Variable. Skip symbols whose value we cannot know (those
7063 without location descriptors or constant values). */
7064 if (!has_loc && !pdi->has_const_value)
decbce07 7065 {
15d034d0 7066 xfree (built_actual_name);
decbce07
MS
7067 return;
7068 }
ff908ebf 7069
f47fb265 7070 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7071 built_actual_name != NULL,
f47fb265
MS
7072 VAR_DOMAIN, LOC_STATIC,
7073 &objfile->static_psymbols,
ff908ebf 7074 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7075 cu->language, objfile);
c906108c
SS
7076 }
7077 break;
7078 case DW_TAG_typedef:
7079 case DW_TAG_base_type:
a02abb62 7080 case DW_TAG_subrange_type:
38d518c9 7081 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7082 built_actual_name != NULL,
176620f1 7083 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7084 &objfile->static_psymbols,
1762568f 7085 0, cu->language, objfile);
c906108c 7086 break;
74921315 7087 case DW_TAG_imported_declaration:
72bf9492
DJ
7088 case DW_TAG_namespace:
7089 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7090 built_actual_name != NULL,
72bf9492
DJ
7091 VAR_DOMAIN, LOC_TYPEDEF,
7092 &objfile->global_psymbols,
1762568f 7093 0, cu->language, objfile);
72bf9492 7094 break;
530e8392
KB
7095 case DW_TAG_module:
7096 add_psymbol_to_list (actual_name, strlen (actual_name),
7097 built_actual_name != NULL,
7098 MODULE_DOMAIN, LOC_TYPEDEF,
7099 &objfile->global_psymbols,
1762568f 7100 0, cu->language, objfile);
530e8392 7101 break;
c906108c 7102 case DW_TAG_class_type:
680b30c7 7103 case DW_TAG_interface_type:
c906108c
SS
7104 case DW_TAG_structure_type:
7105 case DW_TAG_union_type:
7106 case DW_TAG_enumeration_type:
fa4028e9
JB
7107 /* Skip external references. The DWARF standard says in the section
7108 about "Structure, Union, and Class Type Entries": "An incomplete
7109 structure, union or class type is represented by a structure,
7110 union or class entry that does not have a byte size attribute
7111 and that has a DW_AT_declaration attribute." */
7112 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7113 {
15d034d0 7114 xfree (built_actual_name);
decbce07
MS
7115 return;
7116 }
fa4028e9 7117
63d06c5c
DC
7118 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7119 static vs. global. */
38d518c9 7120 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7121 built_actual_name != NULL,
176620f1 7122 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7123 cu->language == language_cplus
63d06c5c
DC
7124 ? &objfile->global_psymbols
7125 : &objfile->static_psymbols,
1762568f 7126 0, cu->language, objfile);
c906108c 7127
c906108c
SS
7128 break;
7129 case DW_TAG_enumerator:
38d518c9 7130 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7131 built_actual_name != NULL,
176620f1 7132 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7133 cu->language == language_cplus
f6fe98ef
DJ
7134 ? &objfile->global_psymbols
7135 : &objfile->static_psymbols,
1762568f 7136 0, cu->language, objfile);
c906108c
SS
7137 break;
7138 default:
7139 break;
7140 }
5c4e30ca 7141
15d034d0 7142 xfree (built_actual_name);
c906108c
SS
7143}
7144
5c4e30ca
DC
7145/* Read a partial die corresponding to a namespace; also, add a symbol
7146 corresponding to that namespace to the symbol table. NAMESPACE is
7147 the name of the enclosing namespace. */
91c24f0a 7148
72bf9492
DJ
7149static void
7150add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7152 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7153{
72bf9492 7154 /* Add a symbol for the namespace. */
e7c27a73 7155
72bf9492 7156 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7157
7158 /* Now scan partial symbols in that namespace. */
7159
91c24f0a 7160 if (pdi->has_children)
cdc07690 7161 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7162}
7163
5d7cb8df
JK
7164/* Read a partial die corresponding to a Fortran module. */
7165
7166static void
7167add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7168 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7169{
530e8392
KB
7170 /* Add a symbol for the namespace. */
7171
7172 add_partial_symbol (pdi, cu);
7173
f55ee35c 7174 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7175
7176 if (pdi->has_children)
cdc07690 7177 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7178}
7179
bc30ff58
JB
7180/* Read a partial die corresponding to a subprogram and create a partial
7181 symbol for that subprogram. When the CU language allows it, this
7182 routine also defines a partial symbol for each nested subprogram
cdc07690 7183 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7184 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7185 and highest PC values found in PDI.
6e70227d 7186
cdc07690
YQ
7187 PDI may also be a lexical block, in which case we simply search
7188 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7189 Again, this is only performed when the CU language allows this
7190 type of definitions. */
7191
7192static void
7193add_partial_subprogram (struct partial_die_info *pdi,
7194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7195 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7196{
7197 if (pdi->tag == DW_TAG_subprogram)
7198 {
7199 if (pdi->has_pc_info)
7200 {
7201 if (pdi->lowpc < *lowpc)
7202 *lowpc = pdi->lowpc;
7203 if (pdi->highpc > *highpc)
7204 *highpc = pdi->highpc;
cdc07690 7205 if (set_addrmap)
5734ee8b 7206 {
5734ee8b 7207 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7209 CORE_ADDR baseaddr;
7210 CORE_ADDR highpc;
7211 CORE_ADDR lowpc;
5734ee8b
DJ
7212
7213 baseaddr = ANOFFSET (objfile->section_offsets,
7214 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7215 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7216 pdi->lowpc + baseaddr);
7217 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7218 pdi->highpc + baseaddr);
7219 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7220 cu->per_cu->v.psymtab);
5734ee8b 7221 }
481860b3
GB
7222 }
7223
7224 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7225 {
bc30ff58 7226 if (!pdi->is_declaration)
e8d05480
JB
7227 /* Ignore subprogram DIEs that do not have a name, they are
7228 illegal. Do not emit a complaint at this point, we will
7229 do so when we convert this psymtab into a symtab. */
7230 if (pdi->name)
7231 add_partial_symbol (pdi, cu);
bc30ff58
JB
7232 }
7233 }
6e70227d 7234
bc30ff58
JB
7235 if (! pdi->has_children)
7236 return;
7237
7238 if (cu->language == language_ada)
7239 {
7240 pdi = pdi->die_child;
7241 while (pdi != NULL)
7242 {
7243 fixup_partial_die (pdi, cu);
7244 if (pdi->tag == DW_TAG_subprogram
7245 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7246 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7247 pdi = pdi->die_sibling;
7248 }
7249 }
7250}
7251
91c24f0a
DC
7252/* Read a partial die corresponding to an enumeration type. */
7253
72bf9492
DJ
7254static void
7255add_partial_enumeration (struct partial_die_info *enum_pdi,
7256 struct dwarf2_cu *cu)
91c24f0a 7257{
72bf9492 7258 struct partial_die_info *pdi;
91c24f0a
DC
7259
7260 if (enum_pdi->name != NULL)
72bf9492
DJ
7261 add_partial_symbol (enum_pdi, cu);
7262
7263 pdi = enum_pdi->die_child;
7264 while (pdi)
91c24f0a 7265 {
72bf9492 7266 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7267 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7268 else
72bf9492
DJ
7269 add_partial_symbol (pdi, cu);
7270 pdi = pdi->die_sibling;
91c24f0a 7271 }
91c24f0a
DC
7272}
7273
6caca83c
CC
7274/* Return the initial uleb128 in the die at INFO_PTR. */
7275
7276static unsigned int
d521ce57 7277peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7278{
7279 unsigned int bytes_read;
7280
7281 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282}
7283
4bb7a0a7
DJ
7284/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7285 Return the corresponding abbrev, or NULL if the number is zero (indicating
7286 an empty DIE). In either case *BYTES_READ will be set to the length of
7287 the initial number. */
7288
7289static struct abbrev_info *
d521ce57 7290peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7291 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7292{
7293 bfd *abfd = cu->objfile->obfd;
7294 unsigned int abbrev_number;
7295 struct abbrev_info *abbrev;
7296
7297 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7298
7299 if (abbrev_number == 0)
7300 return NULL;
7301
433df2d4 7302 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7303 if (!abbrev)
7304 {
422b9917
DE
7305 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7306 " at offset 0x%x [in module %s]"),
7307 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7308 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7309 }
7310
7311 return abbrev;
7312}
7313
93311388
DE
7314/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7315 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7316 DIE. Any children of the skipped DIEs will also be skipped. */
7317
d521ce57
TT
7318static const gdb_byte *
7319skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7320{
dee91e82 7321 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7322 struct abbrev_info *abbrev;
7323 unsigned int bytes_read;
7324
7325 while (1)
7326 {
7327 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7328 if (abbrev == NULL)
7329 return info_ptr + bytes_read;
7330 else
dee91e82 7331 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7332 }
7333}
7334
93311388
DE
7335/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7336 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7337 abbrev corresponding to that skipped uleb128 should be passed in
7338 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7339 children. */
7340
d521ce57
TT
7341static const gdb_byte *
7342skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7343 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7344{
7345 unsigned int bytes_read;
7346 struct attribute attr;
dee91e82
DE
7347 bfd *abfd = reader->abfd;
7348 struct dwarf2_cu *cu = reader->cu;
d521ce57 7349 const gdb_byte *buffer = reader->buffer;
f664829e 7350 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7351 unsigned int form, i;
7352
7353 for (i = 0; i < abbrev->num_attrs; i++)
7354 {
7355 /* The only abbrev we care about is DW_AT_sibling. */
7356 if (abbrev->attrs[i].name == DW_AT_sibling)
7357 {
dee91e82 7358 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7359 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7360 complaint (&symfile_complaints,
7361 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7362 else
b9502d3f
WN
7363 {
7364 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7365 const gdb_byte *sibling_ptr = buffer + off;
7366
7367 if (sibling_ptr < info_ptr)
7368 complaint (&symfile_complaints,
7369 _("DW_AT_sibling points backwards"));
22869d73
KS
7370 else if (sibling_ptr > reader->buffer_end)
7371 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7372 else
7373 return sibling_ptr;
7374 }
4bb7a0a7
DJ
7375 }
7376
7377 /* If it isn't DW_AT_sibling, skip this attribute. */
7378 form = abbrev->attrs[i].form;
7379 skip_attribute:
7380 switch (form)
7381 {
4bb7a0a7 7382 case DW_FORM_ref_addr:
ae411497
TT
7383 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7384 and later it is offset sized. */
7385 if (cu->header.version == 2)
7386 info_ptr += cu->header.addr_size;
7387 else
7388 info_ptr += cu->header.offset_size;
7389 break;
36586728
TT
7390 case DW_FORM_GNU_ref_alt:
7391 info_ptr += cu->header.offset_size;
7392 break;
ae411497 7393 case DW_FORM_addr:
4bb7a0a7
DJ
7394 info_ptr += cu->header.addr_size;
7395 break;
7396 case DW_FORM_data1:
7397 case DW_FORM_ref1:
7398 case DW_FORM_flag:
7399 info_ptr += 1;
7400 break;
2dc7f7b3 7401 case DW_FORM_flag_present:
43988095 7402 case DW_FORM_implicit_const:
2dc7f7b3 7403 break;
4bb7a0a7
DJ
7404 case DW_FORM_data2:
7405 case DW_FORM_ref2:
7406 info_ptr += 2;
7407 break;
7408 case DW_FORM_data4:
7409 case DW_FORM_ref4:
7410 info_ptr += 4;
7411 break;
7412 case DW_FORM_data8:
7413 case DW_FORM_ref8:
55f1336d 7414 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7415 info_ptr += 8;
7416 break;
7417 case DW_FORM_string:
9b1c24c8 7418 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7419 info_ptr += bytes_read;
7420 break;
2dc7f7b3 7421 case DW_FORM_sec_offset:
4bb7a0a7 7422 case DW_FORM_strp:
36586728 7423 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7424 info_ptr += cu->header.offset_size;
7425 break;
2dc7f7b3 7426 case DW_FORM_exprloc:
4bb7a0a7
DJ
7427 case DW_FORM_block:
7428 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7429 info_ptr += bytes_read;
7430 break;
7431 case DW_FORM_block1:
7432 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7433 break;
7434 case DW_FORM_block2:
7435 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7436 break;
7437 case DW_FORM_block4:
7438 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7439 break;
7440 case DW_FORM_sdata:
7441 case DW_FORM_udata:
7442 case DW_FORM_ref_udata:
3019eac3
DE
7443 case DW_FORM_GNU_addr_index:
7444 case DW_FORM_GNU_str_index:
d521ce57 7445 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7446 break;
7447 case DW_FORM_indirect:
7448 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7449 info_ptr += bytes_read;
7450 /* We need to continue parsing from here, so just go back to
7451 the top. */
7452 goto skip_attribute;
7453
7454 default:
3e43a32a
MS
7455 error (_("Dwarf Error: Cannot handle %s "
7456 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7457 dwarf_form_name (form),
7458 bfd_get_filename (abfd));
7459 }
7460 }
7461
7462 if (abbrev->has_children)
dee91e82 7463 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7464 else
7465 return info_ptr;
7466}
7467
93311388 7468/* Locate ORIG_PDI's sibling.
dee91e82 7469 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7470
d521ce57 7471static const gdb_byte *
dee91e82
DE
7472locate_pdi_sibling (const struct die_reader_specs *reader,
7473 struct partial_die_info *orig_pdi,
d521ce57 7474 const gdb_byte *info_ptr)
91c24f0a
DC
7475{
7476 /* Do we know the sibling already? */
72bf9492 7477
91c24f0a
DC
7478 if (orig_pdi->sibling)
7479 return orig_pdi->sibling;
7480
7481 /* Are there any children to deal with? */
7482
7483 if (!orig_pdi->has_children)
7484 return info_ptr;
7485
4bb7a0a7 7486 /* Skip the children the long way. */
91c24f0a 7487
dee91e82 7488 return skip_children (reader, info_ptr);
91c24f0a
DC
7489}
7490
257e7a09 7491/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7492 not NULL. */
c906108c
SS
7493
7494static void
257e7a09
YQ
7495dwarf2_read_symtab (struct partial_symtab *self,
7496 struct objfile *objfile)
c906108c 7497{
257e7a09 7498 if (self->readin)
c906108c 7499 {
442e4d9c 7500 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7501 self->filename);
442e4d9c
YQ
7502 }
7503 else
7504 {
7505 if (info_verbose)
c906108c 7506 {
442e4d9c 7507 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7508 self->filename);
442e4d9c 7509 gdb_flush (gdb_stdout);
c906108c 7510 }
c906108c 7511
442e4d9c 7512 /* Restore our global data. */
9a3c8263
SM
7513 dwarf2_per_objfile
7514 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7515 dwarf2_objfile_data_key);
10b3939b 7516
442e4d9c
YQ
7517 /* If this psymtab is constructed from a debug-only objfile, the
7518 has_section_at_zero flag will not necessarily be correct. We
7519 can get the correct value for this flag by looking at the data
7520 associated with the (presumably stripped) associated objfile. */
7521 if (objfile->separate_debug_objfile_backlink)
7522 {
7523 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7524 = ((struct dwarf2_per_objfile *)
7525 objfile_data (objfile->separate_debug_objfile_backlink,
7526 dwarf2_objfile_data_key));
9a619af0 7527
442e4d9c
YQ
7528 dwarf2_per_objfile->has_section_at_zero
7529 = dpo_backlink->has_section_at_zero;
7530 }
b2ab525c 7531
442e4d9c 7532 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7533
257e7a09 7534 psymtab_to_symtab_1 (self);
c906108c 7535
442e4d9c
YQ
7536 /* Finish up the debug error message. */
7537 if (info_verbose)
7538 printf_filtered (_("done.\n"));
c906108c 7539 }
95554aad
TT
7540
7541 process_cu_includes ();
c906108c 7542}
9cdd5dbd
DE
7543\f
7544/* Reading in full CUs. */
c906108c 7545
10b3939b
DJ
7546/* Add PER_CU to the queue. */
7547
7548static void
95554aad
TT
7549queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7550 enum language pretend_language)
10b3939b
DJ
7551{
7552 struct dwarf2_queue_item *item;
7553
7554 per_cu->queued = 1;
8d749320 7555 item = XNEW (struct dwarf2_queue_item);
10b3939b 7556 item->per_cu = per_cu;
95554aad 7557 item->pretend_language = pretend_language;
10b3939b
DJ
7558 item->next = NULL;
7559
7560 if (dwarf2_queue == NULL)
7561 dwarf2_queue = item;
7562 else
7563 dwarf2_queue_tail->next = item;
7564
7565 dwarf2_queue_tail = item;
7566}
7567
89e63ee4
DE
7568/* If PER_CU is not yet queued, add it to the queue.
7569 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7570 dependency.
0907af0c 7571 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7572 meaning either PER_CU is already queued or it is already loaded.
7573
7574 N.B. There is an invariant here that if a CU is queued then it is loaded.
7575 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7576
7577static int
89e63ee4 7578maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7579 struct dwarf2_per_cu_data *per_cu,
7580 enum language pretend_language)
7581{
7582 /* We may arrive here during partial symbol reading, if we need full
7583 DIEs to process an unusual case (e.g. template arguments). Do
7584 not queue PER_CU, just tell our caller to load its DIEs. */
7585 if (dwarf2_per_objfile->reading_partial_symbols)
7586 {
7587 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7588 return 1;
7589 return 0;
7590 }
7591
7592 /* Mark the dependence relation so that we don't flush PER_CU
7593 too early. */
89e63ee4
DE
7594 if (dependent_cu != NULL)
7595 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7596
7597 /* If it's already on the queue, we have nothing to do. */
7598 if (per_cu->queued)
7599 return 0;
7600
7601 /* If the compilation unit is already loaded, just mark it as
7602 used. */
7603 if (per_cu->cu != NULL)
7604 {
7605 per_cu->cu->last_used = 0;
7606 return 0;
7607 }
7608
7609 /* Add it to the queue. */
7610 queue_comp_unit (per_cu, pretend_language);
7611
7612 return 1;
7613}
7614
10b3939b
DJ
7615/* Process the queue. */
7616
7617static void
a0f42c21 7618process_queue (void)
10b3939b
DJ
7619{
7620 struct dwarf2_queue_item *item, *next_item;
7621
b4f54984 7622 if (dwarf_read_debug)
45cfd468
DE
7623 {
7624 fprintf_unfiltered (gdb_stdlog,
7625 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7626 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7627 }
7628
03dd20cc
DJ
7629 /* The queue starts out with one item, but following a DIE reference
7630 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7631 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7632 {
cc12ce38
DE
7633 if ((dwarf2_per_objfile->using_index
7634 ? !item->per_cu->v.quick->compunit_symtab
7635 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7636 /* Skip dummy CUs. */
7637 && item->per_cu->cu != NULL)
f4dc4d17
DE
7638 {
7639 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7640 unsigned int debug_print_threshold;
247f5c4f 7641 char buf[100];
f4dc4d17 7642
247f5c4f 7643 if (per_cu->is_debug_types)
f4dc4d17 7644 {
247f5c4f
DE
7645 struct signatured_type *sig_type =
7646 (struct signatured_type *) per_cu;
7647
7648 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7649 hex_string (sig_type->signature),
7650 per_cu->offset.sect_off);
7651 /* There can be 100s of TUs.
7652 Only print them in verbose mode. */
7653 debug_print_threshold = 2;
f4dc4d17 7654 }
247f5c4f 7655 else
73be47f5
DE
7656 {
7657 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7658 debug_print_threshold = 1;
7659 }
247f5c4f 7660
b4f54984 7661 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7662 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7663
7664 if (per_cu->is_debug_types)
7665 process_full_type_unit (per_cu, item->pretend_language);
7666 else
7667 process_full_comp_unit (per_cu, item->pretend_language);
7668
b4f54984 7669 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7670 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7671 }
10b3939b
DJ
7672
7673 item->per_cu->queued = 0;
7674 next_item = item->next;
7675 xfree (item);
7676 }
7677
7678 dwarf2_queue_tail = NULL;
45cfd468 7679
b4f54984 7680 if (dwarf_read_debug)
45cfd468
DE
7681 {
7682 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7683 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7684 }
10b3939b
DJ
7685}
7686
7687/* Free all allocated queue entries. This function only releases anything if
7688 an error was thrown; if the queue was processed then it would have been
7689 freed as we went along. */
7690
7691static void
7692dwarf2_release_queue (void *dummy)
7693{
7694 struct dwarf2_queue_item *item, *last;
7695
7696 item = dwarf2_queue;
7697 while (item)
7698 {
7699 /* Anything still marked queued is likely to be in an
7700 inconsistent state, so discard it. */
7701 if (item->per_cu->queued)
7702 {
7703 if (item->per_cu->cu != NULL)
dee91e82 7704 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7705 item->per_cu->queued = 0;
7706 }
7707
7708 last = item;
7709 item = item->next;
7710 xfree (last);
7711 }
7712
7713 dwarf2_queue = dwarf2_queue_tail = NULL;
7714}
7715
7716/* Read in full symbols for PST, and anything it depends on. */
7717
c906108c 7718static void
fba45db2 7719psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7720{
10b3939b 7721 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7722 int i;
7723
95554aad
TT
7724 if (pst->readin)
7725 return;
7726
aaa75496 7727 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7728 if (!pst->dependencies[i]->readin
7729 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7730 {
7731 /* Inform about additional files that need to be read in. */
7732 if (info_verbose)
7733 {
a3f17187 7734 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7735 fputs_filtered (" ", gdb_stdout);
7736 wrap_here ("");
7737 fputs_filtered ("and ", gdb_stdout);
7738 wrap_here ("");
7739 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7740 wrap_here (""); /* Flush output. */
aaa75496
JB
7741 gdb_flush (gdb_stdout);
7742 }
7743 psymtab_to_symtab_1 (pst->dependencies[i]);
7744 }
7745
9a3c8263 7746 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7747
7748 if (per_cu == NULL)
aaa75496
JB
7749 {
7750 /* It's an include file, no symbols to read for it.
7751 Everything is in the parent symtab. */
7752 pst->readin = 1;
7753 return;
7754 }
c906108c 7755
a0f42c21 7756 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7757}
7758
dee91e82
DE
7759/* Trivial hash function for die_info: the hash value of a DIE
7760 is its offset in .debug_info for this objfile. */
10b3939b 7761
dee91e82
DE
7762static hashval_t
7763die_hash (const void *item)
10b3939b 7764{
9a3c8263 7765 const struct die_info *die = (const struct die_info *) item;
6502dd73 7766
dee91e82
DE
7767 return die->offset.sect_off;
7768}
63d06c5c 7769
dee91e82
DE
7770/* Trivial comparison function for die_info structures: two DIEs
7771 are equal if they have the same offset. */
98bfdba5 7772
dee91e82
DE
7773static int
7774die_eq (const void *item_lhs, const void *item_rhs)
7775{
9a3c8263
SM
7776 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7777 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7778
dee91e82
DE
7779 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7780}
c906108c 7781
dee91e82
DE
7782/* die_reader_func for load_full_comp_unit.
7783 This is identical to read_signatured_type_reader,
7784 but is kept separate for now. */
c906108c 7785
dee91e82
DE
7786static void
7787load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7788 const gdb_byte *info_ptr,
dee91e82
DE
7789 struct die_info *comp_unit_die,
7790 int has_children,
7791 void *data)
7792{
7793 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7794 enum language *language_ptr = (enum language *) data;
6caca83c 7795
dee91e82
DE
7796 gdb_assert (cu->die_hash == NULL);
7797 cu->die_hash =
7798 htab_create_alloc_ex (cu->header.length / 12,
7799 die_hash,
7800 die_eq,
7801 NULL,
7802 &cu->comp_unit_obstack,
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
e142c38c 7805
dee91e82
DE
7806 if (has_children)
7807 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7808 &info_ptr, comp_unit_die);
7809 cu->dies = comp_unit_die;
7810 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7811
7812 /* We try not to read any attributes in this function, because not
9cdd5dbd 7813 all CUs needed for references have been loaded yet, and symbol
10b3939b 7814 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7815 or we won't be able to build types correctly.
7816 Similarly, if we do not read the producer, we can not apply
7817 producer-specific interpretation. */
95554aad 7818 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7819}
10b3939b 7820
dee91e82 7821/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7822
dee91e82 7823static void
95554aad
TT
7824load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7825 enum language pretend_language)
dee91e82 7826{
3019eac3 7827 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7828
f4dc4d17
DE
7829 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7830 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7831}
7832
3da10d80
KS
7833/* Add a DIE to the delayed physname list. */
7834
7835static void
7836add_to_method_list (struct type *type, int fnfield_index, int index,
7837 const char *name, struct die_info *die,
7838 struct dwarf2_cu *cu)
7839{
7840 struct delayed_method_info mi;
7841 mi.type = type;
7842 mi.fnfield_index = fnfield_index;
7843 mi.index = index;
7844 mi.name = name;
7845 mi.die = die;
7846 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7847}
7848
7849/* A cleanup for freeing the delayed method list. */
7850
7851static void
7852free_delayed_list (void *ptr)
7853{
7854 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7855 if (cu->method_list != NULL)
7856 {
7857 VEC_free (delayed_method_info, cu->method_list);
7858 cu->method_list = NULL;
7859 }
7860}
7861
7862/* Compute the physnames of any methods on the CU's method list.
7863
7864 The computation of method physnames is delayed in order to avoid the
7865 (bad) condition that one of the method's formal parameters is of an as yet
7866 incomplete type. */
7867
7868static void
7869compute_delayed_physnames (struct dwarf2_cu *cu)
7870{
7871 int i;
7872 struct delayed_method_info *mi;
7873 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7874 {
1d06ead6 7875 const char *physname;
3da10d80
KS
7876 struct fn_fieldlist *fn_flp
7877 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7878 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7879 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7880 = physname ? physname : "";
3da10d80
KS
7881 }
7882}
7883
a766d390
DE
7884/* Go objects should be embedded in a DW_TAG_module DIE,
7885 and it's not clear if/how imported objects will appear.
7886 To keep Go support simple until that's worked out,
7887 go back through what we've read and create something usable.
7888 We could do this while processing each DIE, and feels kinda cleaner,
7889 but that way is more invasive.
7890 This is to, for example, allow the user to type "p var" or "b main"
7891 without having to specify the package name, and allow lookups
7892 of module.object to work in contexts that use the expression
7893 parser. */
7894
7895static void
7896fixup_go_packaging (struct dwarf2_cu *cu)
7897{
7898 char *package_name = NULL;
7899 struct pending *list;
7900 int i;
7901
7902 for (list = global_symbols; list != NULL; list = list->next)
7903 {
7904 for (i = 0; i < list->nsyms; ++i)
7905 {
7906 struct symbol *sym = list->symbol[i];
7907
7908 if (SYMBOL_LANGUAGE (sym) == language_go
7909 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7910 {
7911 char *this_package_name = go_symbol_package_name (sym);
7912
7913 if (this_package_name == NULL)
7914 continue;
7915 if (package_name == NULL)
7916 package_name = this_package_name;
7917 else
7918 {
7919 if (strcmp (package_name, this_package_name) != 0)
7920 complaint (&symfile_complaints,
7921 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7922 (symbol_symtab (sym) != NULL
7923 ? symtab_to_filename_for_display
7924 (symbol_symtab (sym))
4262abfb 7925 : objfile_name (cu->objfile)),
a766d390
DE
7926 this_package_name, package_name);
7927 xfree (this_package_name);
7928 }
7929 }
7930 }
7931 }
7932
7933 if (package_name != NULL)
7934 {
7935 struct objfile *objfile = cu->objfile;
34a68019 7936 const char *saved_package_name
224c3ddb
SM
7937 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7938 package_name,
7939 strlen (package_name));
19f392bc
UW
7940 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7941 saved_package_name);
a766d390
DE
7942 struct symbol *sym;
7943
7944 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7945
e623cf5d 7946 sym = allocate_symbol (objfile);
f85f34ed 7947 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7948 SYMBOL_SET_NAMES (sym, saved_package_name,
7949 strlen (saved_package_name), 0, objfile);
a766d390
DE
7950 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7951 e.g., "main" finds the "main" module and not C's main(). */
7952 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7953 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7954 SYMBOL_TYPE (sym) = type;
7955
7956 add_symbol_to_list (sym, &global_symbols);
7957
7958 xfree (package_name);
7959 }
7960}
7961
95554aad
TT
7962/* Return the symtab for PER_CU. This works properly regardless of
7963 whether we're using the index or psymtabs. */
7964
43f3e411
DE
7965static struct compunit_symtab *
7966get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7967{
7968 return (dwarf2_per_objfile->using_index
43f3e411
DE
7969 ? per_cu->v.quick->compunit_symtab
7970 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7971}
7972
7973/* A helper function for computing the list of all symbol tables
7974 included by PER_CU. */
7975
7976static void
43f3e411 7977recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7978 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7979 struct dwarf2_per_cu_data *per_cu,
43f3e411 7980 struct compunit_symtab *immediate_parent)
95554aad
TT
7981{
7982 void **slot;
7983 int ix;
43f3e411 7984 struct compunit_symtab *cust;
95554aad
TT
7985 struct dwarf2_per_cu_data *iter;
7986
7987 slot = htab_find_slot (all_children, per_cu, INSERT);
7988 if (*slot != NULL)
7989 {
7990 /* This inclusion and its children have been processed. */
7991 return;
7992 }
7993
7994 *slot = per_cu;
7995 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7996 cust = get_compunit_symtab (per_cu);
7997 if (cust != NULL)
ec94af83
DE
7998 {
7999 /* If this is a type unit only add its symbol table if we haven't
8000 seen it yet (type unit per_cu's can share symtabs). */
8001 if (per_cu->is_debug_types)
8002 {
43f3e411 8003 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8004 if (*slot == NULL)
8005 {
43f3e411
DE
8006 *slot = cust;
8007 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8008 if (cust->user == NULL)
8009 cust->user = immediate_parent;
ec94af83
DE
8010 }
8011 }
8012 else
f9125b6c 8013 {
43f3e411
DE
8014 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8015 if (cust->user == NULL)
8016 cust->user = immediate_parent;
f9125b6c 8017 }
ec94af83 8018 }
95554aad
TT
8019
8020 for (ix = 0;
796a7ff8 8021 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8022 ++ix)
ec94af83
DE
8023 {
8024 recursively_compute_inclusions (result, all_children,
43f3e411 8025 all_type_symtabs, iter, cust);
ec94af83 8026 }
95554aad
TT
8027}
8028
43f3e411 8029/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8030 PER_CU. */
8031
8032static void
43f3e411 8033compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8034{
f4dc4d17
DE
8035 gdb_assert (! per_cu->is_debug_types);
8036
796a7ff8 8037 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8038 {
8039 int ix, len;
ec94af83 8040 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8041 struct compunit_symtab *compunit_symtab_iter;
8042 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8043 htab_t all_children, all_type_symtabs;
43f3e411 8044 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8045
8046 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8047 if (cust == NULL)
95554aad
TT
8048 return;
8049
8050 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8051 NULL, xcalloc, xfree);
ec94af83
DE
8052 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8053 NULL, xcalloc, xfree);
95554aad
TT
8054
8055 for (ix = 0;
796a7ff8 8056 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8057 ix, per_cu_iter);
95554aad 8058 ++ix)
ec94af83
DE
8059 {
8060 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8061 all_type_symtabs, per_cu_iter,
43f3e411 8062 cust);
ec94af83 8063 }
95554aad 8064
ec94af83 8065 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8066 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8067 cust->includes
8d749320
SM
8068 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8069 struct compunit_symtab *, len + 1);
95554aad 8070 for (ix = 0;
43f3e411
DE
8071 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8072 compunit_symtab_iter);
95554aad 8073 ++ix)
43f3e411
DE
8074 cust->includes[ix] = compunit_symtab_iter;
8075 cust->includes[len] = NULL;
95554aad 8076
43f3e411 8077 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8078 htab_delete (all_children);
ec94af83 8079 htab_delete (all_type_symtabs);
95554aad
TT
8080 }
8081}
8082
8083/* Compute the 'includes' field for the symtabs of all the CUs we just
8084 read. */
8085
8086static void
8087process_cu_includes (void)
8088{
8089 int ix;
8090 struct dwarf2_per_cu_data *iter;
8091
8092 for (ix = 0;
8093 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8094 ix, iter);
8095 ++ix)
f4dc4d17
DE
8096 {
8097 if (! iter->is_debug_types)
43f3e411 8098 compute_compunit_symtab_includes (iter);
f4dc4d17 8099 }
95554aad
TT
8100
8101 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8102}
8103
9cdd5dbd 8104/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8105 already been loaded into memory. */
8106
8107static void
95554aad
TT
8108process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8109 enum language pretend_language)
10b3939b 8110{
10b3939b 8111 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8112 struct objfile *objfile = per_cu->objfile;
3e29f34a 8113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8114 CORE_ADDR lowpc, highpc;
43f3e411 8115 struct compunit_symtab *cust;
3da10d80 8116 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8117 CORE_ADDR baseaddr;
4359dff1 8118 struct block *static_block;
3e29f34a 8119 CORE_ADDR addr;
10b3939b
DJ
8120
8121 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8122
10b3939b
DJ
8123 buildsym_init ();
8124 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8125 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8126
8127 cu->list_in_scope = &file_symbols;
c906108c 8128
95554aad
TT
8129 cu->language = pretend_language;
8130 cu->language_defn = language_def (cu->language);
8131
c906108c 8132 /* Do line number decoding in read_file_scope () */
10b3939b 8133 process_die (cu->dies, cu);
c906108c 8134
a766d390
DE
8135 /* For now fudge the Go package. */
8136 if (cu->language == language_go)
8137 fixup_go_packaging (cu);
8138
3da10d80
KS
8139 /* Now that we have processed all the DIEs in the CU, all the types
8140 should be complete, and it should now be safe to compute all of the
8141 physnames. */
8142 compute_delayed_physnames (cu);
8143 do_cleanups (delayed_list_cleanup);
8144
fae299cd
DC
8145 /* Some compilers don't define a DW_AT_high_pc attribute for the
8146 compilation unit. If the DW_AT_high_pc is missing, synthesize
8147 it, by scanning the DIE's below the compilation unit. */
10b3939b 8148 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8149
3e29f34a
MR
8150 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8151 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8152
8153 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8154 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8155 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8156 addrmap to help ensure it has an accurate map of pc values belonging to
8157 this comp unit. */
8158 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8159
43f3e411
DE
8160 cust = end_symtab_from_static_block (static_block,
8161 SECT_OFF_TEXT (objfile), 0);
c906108c 8162
43f3e411 8163 if (cust != NULL)
c906108c 8164 {
df15bd07 8165 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8166
8be455d7
JK
8167 /* Set symtab language to language from DW_AT_language. If the
8168 compilation is from a C file generated by language preprocessors, do
8169 not set the language if it was already deduced by start_subfile. */
43f3e411 8170 if (!(cu->language == language_c
40e3ad0e 8171 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8172 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8173
8174 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8175 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8176 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8177 there were bugs in prologue debug info, fixed later in GCC-4.5
8178 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8179
8180 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8181 needed, it would be wrong due to missing DW_AT_producer there.
8182
8183 Still one can confuse GDB by using non-standard GCC compilation
8184 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8185 */
ab260dad 8186 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8187 cust->locations_valid = 1;
e0d00bc7
JK
8188
8189 if (gcc_4_minor >= 5)
43f3e411 8190 cust->epilogue_unwind_valid = 1;
96408a79 8191
43f3e411 8192 cust->call_site_htab = cu->call_site_htab;
c906108c 8193 }
9291a0cd
TT
8194
8195 if (dwarf2_per_objfile->using_index)
43f3e411 8196 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8197 else
8198 {
8199 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8200 pst->compunit_symtab = cust;
9291a0cd
TT
8201 pst->readin = 1;
8202 }
c906108c 8203
95554aad
TT
8204 /* Push it for inclusion processing later. */
8205 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8206
c906108c 8207 do_cleanups (back_to);
f4dc4d17 8208}
45cfd468 8209
f4dc4d17
DE
8210/* Generate full symbol information for type unit PER_CU, whose DIEs have
8211 already been loaded into memory. */
8212
8213static void
8214process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8215 enum language pretend_language)
8216{
8217 struct dwarf2_cu *cu = per_cu->cu;
8218 struct objfile *objfile = per_cu->objfile;
43f3e411 8219 struct compunit_symtab *cust;
f4dc4d17 8220 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8221 struct signatured_type *sig_type;
8222
8223 gdb_assert (per_cu->is_debug_types);
8224 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8225
8226 buildsym_init ();
8227 back_to = make_cleanup (really_free_pendings, NULL);
8228 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8229
8230 cu->list_in_scope = &file_symbols;
8231
8232 cu->language = pretend_language;
8233 cu->language_defn = language_def (cu->language);
8234
8235 /* The symbol tables are set up in read_type_unit_scope. */
8236 process_die (cu->dies, cu);
8237
8238 /* For now fudge the Go package. */
8239 if (cu->language == language_go)
8240 fixup_go_packaging (cu);
8241
8242 /* Now that we have processed all the DIEs in the CU, all the types
8243 should be complete, and it should now be safe to compute all of the
8244 physnames. */
8245 compute_delayed_physnames (cu);
8246 do_cleanups (delayed_list_cleanup);
8247
8248 /* TUs share symbol tables.
8249 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8250 of it with end_expandable_symtab. Otherwise, complete the addition of
8251 this TU's symbols to the existing symtab. */
43f3e411 8252 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8253 {
43f3e411
DE
8254 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8255 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8256
43f3e411 8257 if (cust != NULL)
f4dc4d17
DE
8258 {
8259 /* Set symtab language to language from DW_AT_language. If the
8260 compilation is from a C file generated by language preprocessors,
8261 do not set the language if it was already deduced by
8262 start_subfile. */
43f3e411
DE
8263 if (!(cu->language == language_c
8264 && COMPUNIT_FILETABS (cust)->language != language_c))
8265 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8266 }
8267 }
8268 else
8269 {
0ab9ce85 8270 augment_type_symtab ();
43f3e411 8271 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8272 }
8273
8274 if (dwarf2_per_objfile->using_index)
43f3e411 8275 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8276 else
8277 {
8278 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8279 pst->compunit_symtab = cust;
f4dc4d17 8280 pst->readin = 1;
45cfd468 8281 }
f4dc4d17
DE
8282
8283 do_cleanups (back_to);
c906108c
SS
8284}
8285
95554aad
TT
8286/* Process an imported unit DIE. */
8287
8288static void
8289process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8290{
8291 struct attribute *attr;
8292
f4dc4d17
DE
8293 /* For now we don't handle imported units in type units. */
8294 if (cu->per_cu->is_debug_types)
8295 {
8296 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8297 " supported in type units [in module %s]"),
4262abfb 8298 objfile_name (cu->objfile));
f4dc4d17
DE
8299 }
8300
95554aad
TT
8301 attr = dwarf2_attr (die, DW_AT_import, cu);
8302 if (attr != NULL)
8303 {
8304 struct dwarf2_per_cu_data *per_cu;
95554aad 8305 sect_offset offset;
36586728 8306 int is_dwz;
95554aad
TT
8307
8308 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8309 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8310 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8311
69d751e3 8312 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8313 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8314 load_full_comp_unit (per_cu, cu->language);
8315
796a7ff8 8316 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8317 per_cu);
8318 }
8319}
8320
adde2bff
DE
8321/* Reset the in_process bit of a die. */
8322
8323static void
8324reset_die_in_process (void *arg)
8325{
9a3c8263 8326 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8327
adde2bff
DE
8328 die->in_process = 0;
8329}
8330
c906108c
SS
8331/* Process a die and its children. */
8332
8333static void
e7c27a73 8334process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8335{
adde2bff
DE
8336 struct cleanup *in_process;
8337
8338 /* We should only be processing those not already in process. */
8339 gdb_assert (!die->in_process);
8340
8341 die->in_process = 1;
8342 in_process = make_cleanup (reset_die_in_process,die);
8343
c906108c
SS
8344 switch (die->tag)
8345 {
8346 case DW_TAG_padding:
8347 break;
8348 case DW_TAG_compile_unit:
95554aad 8349 case DW_TAG_partial_unit:
e7c27a73 8350 read_file_scope (die, cu);
c906108c 8351 break;
348e048f
DE
8352 case DW_TAG_type_unit:
8353 read_type_unit_scope (die, cu);
8354 break;
c906108c 8355 case DW_TAG_subprogram:
c906108c 8356 case DW_TAG_inlined_subroutine:
edb3359d 8357 read_func_scope (die, cu);
c906108c
SS
8358 break;
8359 case DW_TAG_lexical_block:
14898363
L
8360 case DW_TAG_try_block:
8361 case DW_TAG_catch_block:
e7c27a73 8362 read_lexical_block_scope (die, cu);
c906108c 8363 break;
96408a79
SA
8364 case DW_TAG_GNU_call_site:
8365 read_call_site_scope (die, cu);
8366 break;
c906108c 8367 case DW_TAG_class_type:
680b30c7 8368 case DW_TAG_interface_type:
c906108c
SS
8369 case DW_TAG_structure_type:
8370 case DW_TAG_union_type:
134d01f1 8371 process_structure_scope (die, cu);
c906108c
SS
8372 break;
8373 case DW_TAG_enumeration_type:
134d01f1 8374 process_enumeration_scope (die, cu);
c906108c 8375 break;
134d01f1 8376
f792889a
DJ
8377 /* These dies have a type, but processing them does not create
8378 a symbol or recurse to process the children. Therefore we can
8379 read them on-demand through read_type_die. */
c906108c 8380 case DW_TAG_subroutine_type:
72019c9c 8381 case DW_TAG_set_type:
c906108c 8382 case DW_TAG_array_type:
c906108c 8383 case DW_TAG_pointer_type:
c906108c 8384 case DW_TAG_ptr_to_member_type:
c906108c 8385 case DW_TAG_reference_type:
c906108c 8386 case DW_TAG_string_type:
c906108c 8387 break;
134d01f1 8388
c906108c 8389 case DW_TAG_base_type:
a02abb62 8390 case DW_TAG_subrange_type:
cb249c71 8391 case DW_TAG_typedef:
134d01f1
DJ
8392 /* Add a typedef symbol for the type definition, if it has a
8393 DW_AT_name. */
f792889a 8394 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8395 break;
c906108c 8396 case DW_TAG_common_block:
e7c27a73 8397 read_common_block (die, cu);
c906108c
SS
8398 break;
8399 case DW_TAG_common_inclusion:
8400 break;
d9fa45fe 8401 case DW_TAG_namespace:
4d4ec4e5 8402 cu->processing_has_namespace_info = 1;
e7c27a73 8403 read_namespace (die, cu);
d9fa45fe 8404 break;
5d7cb8df 8405 case DW_TAG_module:
4d4ec4e5 8406 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8407 read_module (die, cu);
8408 break;
d9fa45fe 8409 case DW_TAG_imported_declaration:
74921315
KS
8410 cu->processing_has_namespace_info = 1;
8411 if (read_namespace_alias (die, cu))
8412 break;
8413 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8414 case DW_TAG_imported_module:
4d4ec4e5 8415 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8416 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8417 || cu->language != language_fortran))
8418 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8419 dwarf_tag_name (die->tag));
8420 read_import_statement (die, cu);
d9fa45fe 8421 break;
95554aad
TT
8422
8423 case DW_TAG_imported_unit:
8424 process_imported_unit_die (die, cu);
8425 break;
8426
c906108c 8427 default:
e7c27a73 8428 new_symbol (die, NULL, cu);
c906108c
SS
8429 break;
8430 }
adde2bff
DE
8431
8432 do_cleanups (in_process);
c906108c 8433}
ca69b9e6
DE
8434\f
8435/* DWARF name computation. */
c906108c 8436
94af9270
KS
8437/* A helper function for dwarf2_compute_name which determines whether DIE
8438 needs to have the name of the scope prepended to the name listed in the
8439 die. */
8440
8441static int
8442die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8443{
1c809c68
TT
8444 struct attribute *attr;
8445
94af9270
KS
8446 switch (die->tag)
8447 {
8448 case DW_TAG_namespace:
8449 case DW_TAG_typedef:
8450 case DW_TAG_class_type:
8451 case DW_TAG_interface_type:
8452 case DW_TAG_structure_type:
8453 case DW_TAG_union_type:
8454 case DW_TAG_enumeration_type:
8455 case DW_TAG_enumerator:
8456 case DW_TAG_subprogram:
08a76f8a 8457 case DW_TAG_inlined_subroutine:
94af9270 8458 case DW_TAG_member:
74921315 8459 case DW_TAG_imported_declaration:
94af9270
KS
8460 return 1;
8461
8462 case DW_TAG_variable:
c2b0a229 8463 case DW_TAG_constant:
94af9270
KS
8464 /* We only need to prefix "globally" visible variables. These include
8465 any variable marked with DW_AT_external or any variable that
8466 lives in a namespace. [Variables in anonymous namespaces
8467 require prefixing, but they are not DW_AT_external.] */
8468
8469 if (dwarf2_attr (die, DW_AT_specification, cu))
8470 {
8471 struct dwarf2_cu *spec_cu = cu;
9a619af0 8472
94af9270
KS
8473 return die_needs_namespace (die_specification (die, &spec_cu),
8474 spec_cu);
8475 }
8476
1c809c68 8477 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8478 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8479 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8480 return 0;
8481 /* A variable in a lexical block of some kind does not need a
8482 namespace, even though in C++ such variables may be external
8483 and have a mangled name. */
8484 if (die->parent->tag == DW_TAG_lexical_block
8485 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8486 || die->parent->tag == DW_TAG_catch_block
8487 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8488 return 0;
8489 return 1;
94af9270
KS
8490
8491 default:
8492 return 0;
8493 }
8494}
8495
8496/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8497 compute the physname for the object, which include a method's:
9c37b5ae 8498 - formal parameters (C++),
a766d390 8499 - receiver type (Go),
a766d390
DE
8500
8501 The term "physname" is a bit confusing.
8502 For C++, for example, it is the demangled name.
8503 For Go, for example, it's the mangled name.
94af9270 8504
af6b7be1
JB
8505 For Ada, return the DIE's linkage name rather than the fully qualified
8506 name. PHYSNAME is ignored..
8507
94af9270
KS
8508 The result is allocated on the objfile_obstack and canonicalized. */
8509
8510static const char *
15d034d0
TT
8511dwarf2_compute_name (const char *name,
8512 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8513 int physname)
8514{
bb5ed363
DE
8515 struct objfile *objfile = cu->objfile;
8516
94af9270
KS
8517 if (name == NULL)
8518 name = dwarf2_name (die, cu);
8519
2ee7123e
DE
8520 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8521 but otherwise compute it by typename_concat inside GDB.
8522 FIXME: Actually this is not really true, or at least not always true.
8523 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8524 Fortran names because there is no mangling standard. So new_symbol_full
8525 will set the demangled name to the result of dwarf2_full_name, and it is
8526 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8527 if (cu->language == language_ada
8528 || (cu->language == language_fortran && physname))
8529 {
8530 /* For Ada unit, we prefer the linkage name over the name, as
8531 the former contains the exported name, which the user expects
8532 to be able to reference. Ideally, we want the user to be able
8533 to reference this entity using either natural or linkage name,
8534 but we haven't started looking at this enhancement yet. */
2ee7123e 8535 const char *linkage_name;
f55ee35c 8536
2ee7123e
DE
8537 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8538 if (linkage_name == NULL)
8539 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8540 if (linkage_name != NULL)
8541 return linkage_name;
f55ee35c
JK
8542 }
8543
94af9270
KS
8544 /* These are the only languages we know how to qualify names in. */
8545 if (name != NULL
9c37b5ae 8546 && (cu->language == language_cplus
c44af4eb
TT
8547 || cu->language == language_fortran || cu->language == language_d
8548 || cu->language == language_rust))
94af9270
KS
8549 {
8550 if (die_needs_namespace (die, cu))
8551 {
8552 long length;
0d5cff50 8553 const char *prefix;
34a68019 8554 const char *canonical_name = NULL;
94af9270 8555
d7e74731
PA
8556 string_file buf;
8557
94af9270 8558 prefix = determine_prefix (die, cu);
94af9270
KS
8559 if (*prefix != '\0')
8560 {
f55ee35c
JK
8561 char *prefixed_name = typename_concat (NULL, prefix, name,
8562 physname, cu);
9a619af0 8563
d7e74731 8564 buf.puts (prefixed_name);
94af9270
KS
8565 xfree (prefixed_name);
8566 }
8567 else
d7e74731 8568 buf.puts (name);
94af9270 8569
98bfdba5
PA
8570 /* Template parameters may be specified in the DIE's DW_AT_name, or
8571 as children with DW_TAG_template_type_param or
8572 DW_TAG_value_type_param. If the latter, add them to the name
8573 here. If the name already has template parameters, then
8574 skip this step; some versions of GCC emit both, and
8575 it is more efficient to use the pre-computed name.
8576
8577 Something to keep in mind about this process: it is very
8578 unlikely, or in some cases downright impossible, to produce
8579 something that will match the mangled name of a function.
8580 If the definition of the function has the same debug info,
8581 we should be able to match up with it anyway. But fallbacks
8582 using the minimal symbol, for instance to find a method
8583 implemented in a stripped copy of libstdc++, will not work.
8584 If we do not have debug info for the definition, we will have to
8585 match them up some other way.
8586
8587 When we do name matching there is a related problem with function
8588 templates; two instantiated function templates are allowed to
8589 differ only by their return types, which we do not add here. */
8590
8591 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8592 {
8593 struct attribute *attr;
8594 struct die_info *child;
8595 int first = 1;
8596
8597 die->building_fullname = 1;
8598
8599 for (child = die->child; child != NULL; child = child->sibling)
8600 {
8601 struct type *type;
12df843f 8602 LONGEST value;
d521ce57 8603 const gdb_byte *bytes;
98bfdba5
PA
8604 struct dwarf2_locexpr_baton *baton;
8605 struct value *v;
8606
8607 if (child->tag != DW_TAG_template_type_param
8608 && child->tag != DW_TAG_template_value_param)
8609 continue;
8610
8611 if (first)
8612 {
d7e74731 8613 buf.puts ("<");
98bfdba5
PA
8614 first = 0;
8615 }
8616 else
d7e74731 8617 buf.puts (", ");
98bfdba5
PA
8618
8619 attr = dwarf2_attr (child, DW_AT_type, cu);
8620 if (attr == NULL)
8621 {
8622 complaint (&symfile_complaints,
8623 _("template parameter missing DW_AT_type"));
d7e74731 8624 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8625 continue;
8626 }
8627 type = die_type (child, cu);
8628
8629 if (child->tag == DW_TAG_template_type_param)
8630 {
d7e74731 8631 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8632 continue;
8633 }
8634
8635 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8636 if (attr == NULL)
8637 {
8638 complaint (&symfile_complaints,
3e43a32a
MS
8639 _("template parameter missing "
8640 "DW_AT_const_value"));
d7e74731 8641 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8642 continue;
8643 }
8644
8645 dwarf2_const_value_attr (attr, type, name,
8646 &cu->comp_unit_obstack, cu,
8647 &value, &bytes, &baton);
8648
8649 if (TYPE_NOSIGN (type))
8650 /* GDB prints characters as NUMBER 'CHAR'. If that's
8651 changed, this can use value_print instead. */
d7e74731 8652 c_printchar (value, type, &buf);
98bfdba5
PA
8653 else
8654 {
8655 struct value_print_options opts;
8656
8657 if (baton != NULL)
8658 v = dwarf2_evaluate_loc_desc (type, NULL,
8659 baton->data,
8660 baton->size,
8661 baton->per_cu);
8662 else if (bytes != NULL)
8663 {
8664 v = allocate_value (type);
8665 memcpy (value_contents_writeable (v), bytes,
8666 TYPE_LENGTH (type));
8667 }
8668 else
8669 v = value_from_longest (type, value);
8670
3e43a32a
MS
8671 /* Specify decimal so that we do not depend on
8672 the radix. */
98bfdba5
PA
8673 get_formatted_print_options (&opts, 'd');
8674 opts.raw = 1;
d7e74731 8675 value_print (v, &buf, &opts);
98bfdba5
PA
8676 release_value (v);
8677 value_free (v);
8678 }
8679 }
8680
8681 die->building_fullname = 0;
8682
8683 if (!first)
8684 {
8685 /* Close the argument list, with a space if necessary
8686 (nested templates). */
d7e74731
PA
8687 if (!buf.empty () && buf.string ().back () == '>')
8688 buf.puts (" >");
98bfdba5 8689 else
d7e74731 8690 buf.puts (">");
98bfdba5
PA
8691 }
8692 }
8693
9c37b5ae 8694 /* For C++ methods, append formal parameter type
94af9270 8695 information, if PHYSNAME. */
6e70227d 8696
94af9270 8697 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8698 && cu->language == language_cplus)
94af9270
KS
8699 {
8700 struct type *type = read_type_die (die, cu);
8701
d7e74731 8702 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8703 &type_print_raw_options);
94af9270 8704
9c37b5ae 8705 if (cu->language == language_cplus)
94af9270 8706 {
60430eff
DJ
8707 /* Assume that an artificial first parameter is
8708 "this", but do not crash if it is not. RealView
8709 marks unnamed (and thus unused) parameters as
8710 artificial; there is no way to differentiate
8711 the two cases. */
94af9270
KS
8712 if (TYPE_NFIELDS (type) > 0
8713 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8714 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8715 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8716 0))))
d7e74731 8717 buf.puts (" const");
94af9270
KS
8718 }
8719 }
8720
d7e74731 8721 const std::string &intermediate_name = buf.string ();
94af9270
KS
8722
8723 if (cu->language == language_cplus)
34a68019 8724 canonical_name
322a8516 8725 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8726 &objfile->per_bfd->storage_obstack);
8727
8728 /* If we only computed INTERMEDIATE_NAME, or if
8729 INTERMEDIATE_NAME is already canonical, then we need to
8730 copy it to the appropriate obstack. */
322a8516 8731 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8732 name = ((const char *)
8733 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8734 intermediate_name.c_str (),
8735 intermediate_name.length ()));
34a68019
TT
8736 else
8737 name = canonical_name;
94af9270
KS
8738 }
8739 }
8740
8741 return name;
8742}
8743
0114d602
DJ
8744/* Return the fully qualified name of DIE, based on its DW_AT_name.
8745 If scope qualifiers are appropriate they will be added. The result
34a68019 8746 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8747 not have a name. NAME may either be from a previous call to
8748 dwarf2_name or NULL.
8749
9c37b5ae 8750 The output string will be canonicalized (if C++). */
0114d602
DJ
8751
8752static const char *
15d034d0 8753dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8754{
94af9270
KS
8755 return dwarf2_compute_name (name, die, cu, 0);
8756}
0114d602 8757
94af9270
KS
8758/* Construct a physname for the given DIE in CU. NAME may either be
8759 from a previous call to dwarf2_name or NULL. The result will be
8760 allocated on the objfile_objstack or NULL if the DIE does not have a
8761 name.
0114d602 8762
9c37b5ae 8763 The output string will be canonicalized (if C++). */
0114d602 8764
94af9270 8765static const char *
15d034d0 8766dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8767{
bb5ed363 8768 struct objfile *objfile = cu->objfile;
900e11f9
JK
8769 const char *retval, *mangled = NULL, *canon = NULL;
8770 struct cleanup *back_to;
8771 int need_copy = 1;
8772
8773 /* In this case dwarf2_compute_name is just a shortcut not building anything
8774 on its own. */
8775 if (!die_needs_namespace (die, cu))
8776 return dwarf2_compute_name (name, die, cu, 1);
8777
8778 back_to = make_cleanup (null_cleanup, NULL);
8779
7d45c7c3
KB
8780 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8781 if (mangled == NULL)
8782 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8783
e98c9e7c
TT
8784 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8785 See https://github.com/rust-lang/rust/issues/32925. */
8786 if (cu->language == language_rust && mangled != NULL
8787 && strchr (mangled, '{') != NULL)
8788 mangled = NULL;
8789
900e11f9
JK
8790 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8791 has computed. */
7d45c7c3 8792 if (mangled != NULL)
900e11f9
JK
8793 {
8794 char *demangled;
8795
900e11f9
JK
8796 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8797 type. It is easier for GDB users to search for such functions as
8798 `name(params)' than `long name(params)'. In such case the minimal
8799 symbol names do not match the full symbol names but for template
8800 functions there is never a need to look up their definition from their
8801 declaration so the only disadvantage remains the minimal symbol
8802 variant `long name(params)' does not have the proper inferior type.
8803 */
8804
a766d390
DE
8805 if (cu->language == language_go)
8806 {
8807 /* This is a lie, but we already lie to the caller new_symbol_full.
8808 new_symbol_full assumes we return the mangled name.
8809 This just undoes that lie until things are cleaned up. */
8810 demangled = NULL;
8811 }
8812 else
8813 {
8de20a37 8814 demangled = gdb_demangle (mangled,
9c37b5ae 8815 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 8816 }
900e11f9
JK
8817 if (demangled)
8818 {
8819 make_cleanup (xfree, demangled);
8820 canon = demangled;
8821 }
8822 else
8823 {
8824 canon = mangled;
8825 need_copy = 0;
8826 }
8827 }
8828
8829 if (canon == NULL || check_physname)
8830 {
8831 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8832
8833 if (canon != NULL && strcmp (physname, canon) != 0)
8834 {
8835 /* It may not mean a bug in GDB. The compiler could also
8836 compute DW_AT_linkage_name incorrectly. But in such case
8837 GDB would need to be bug-to-bug compatible. */
8838
8839 complaint (&symfile_complaints,
8840 _("Computed physname <%s> does not match demangled <%s> "
8841 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8842 physname, canon, mangled, die->offset.sect_off,
8843 objfile_name (objfile));
900e11f9
JK
8844
8845 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8846 is available here - over computed PHYSNAME. It is safer
8847 against both buggy GDB and buggy compilers. */
8848
8849 retval = canon;
8850 }
8851 else
8852 {
8853 retval = physname;
8854 need_copy = 0;
8855 }
8856 }
8857 else
8858 retval = canon;
8859
8860 if (need_copy)
224c3ddb
SM
8861 retval = ((const char *)
8862 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8863 retval, strlen (retval)));
900e11f9
JK
8864
8865 do_cleanups (back_to);
8866 return retval;
0114d602
DJ
8867}
8868
74921315
KS
8869/* Inspect DIE in CU for a namespace alias. If one exists, record
8870 a new symbol for it.
8871
8872 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8873
8874static int
8875read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8876{
8877 struct attribute *attr;
8878
8879 /* If the die does not have a name, this is not a namespace
8880 alias. */
8881 attr = dwarf2_attr (die, DW_AT_name, cu);
8882 if (attr != NULL)
8883 {
8884 int num;
8885 struct die_info *d = die;
8886 struct dwarf2_cu *imported_cu = cu;
8887
8888 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8889 keep inspecting DIEs until we hit the underlying import. */
8890#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8891 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8892 {
8893 attr = dwarf2_attr (d, DW_AT_import, cu);
8894 if (attr == NULL)
8895 break;
8896
8897 d = follow_die_ref (d, attr, &imported_cu);
8898 if (d->tag != DW_TAG_imported_declaration)
8899 break;
8900 }
8901
8902 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8903 {
8904 complaint (&symfile_complaints,
8905 _("DIE at 0x%x has too many recursively imported "
8906 "declarations"), d->offset.sect_off);
8907 return 0;
8908 }
8909
8910 if (attr != NULL)
8911 {
8912 struct type *type;
8913 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8914
8915 type = get_die_type_at_offset (offset, cu->per_cu);
8916 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8917 {
8918 /* This declaration is a global namespace alias. Add
8919 a symbol for it whose type is the aliased namespace. */
8920 new_symbol (die, type, cu);
8921 return 1;
8922 }
8923 }
8924 }
8925
8926 return 0;
8927}
8928
22cee43f
PMR
8929/* Return the using directives repository (global or local?) to use in the
8930 current context for LANGUAGE.
8931
8932 For Ada, imported declarations can materialize renamings, which *may* be
8933 global. However it is impossible (for now?) in DWARF to distinguish
8934 "external" imported declarations and "static" ones. As all imported
8935 declarations seem to be static in all other languages, make them all CU-wide
8936 global only in Ada. */
8937
8938static struct using_direct **
8939using_directives (enum language language)
8940{
8941 if (language == language_ada && context_stack_depth == 0)
8942 return &global_using_directives;
8943 else
8944 return &local_using_directives;
8945}
8946
27aa8d6a
SW
8947/* Read the import statement specified by the given die and record it. */
8948
8949static void
8950read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8951{
bb5ed363 8952 struct objfile *objfile = cu->objfile;
27aa8d6a 8953 struct attribute *import_attr;
32019081 8954 struct die_info *imported_die, *child_die;
de4affc9 8955 struct dwarf2_cu *imported_cu;
27aa8d6a 8956 const char *imported_name;
794684b6 8957 const char *imported_name_prefix;
13387711
SW
8958 const char *canonical_name;
8959 const char *import_alias;
8960 const char *imported_declaration = NULL;
794684b6 8961 const char *import_prefix;
32019081
JK
8962 VEC (const_char_ptr) *excludes = NULL;
8963 struct cleanup *cleanups;
13387711 8964
27aa8d6a
SW
8965 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8966 if (import_attr == NULL)
8967 {
8968 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8969 dwarf_tag_name (die->tag));
8970 return;
8971 }
8972
de4affc9
CC
8973 imported_cu = cu;
8974 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8975 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8976 if (imported_name == NULL)
8977 {
8978 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8979
8980 The import in the following code:
8981 namespace A
8982 {
8983 typedef int B;
8984 }
8985
8986 int main ()
8987 {
8988 using A::B;
8989 B b;
8990 return b;
8991 }
8992
8993 ...
8994 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8995 <52> DW_AT_decl_file : 1
8996 <53> DW_AT_decl_line : 6
8997 <54> DW_AT_import : <0x75>
8998 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8999 <59> DW_AT_name : B
9000 <5b> DW_AT_decl_file : 1
9001 <5c> DW_AT_decl_line : 2
9002 <5d> DW_AT_type : <0x6e>
9003 ...
9004 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9005 <76> DW_AT_byte_size : 4
9006 <77> DW_AT_encoding : 5 (signed)
9007
9008 imports the wrong die ( 0x75 instead of 0x58 ).
9009 This case will be ignored until the gcc bug is fixed. */
9010 return;
9011 }
9012
82856980
SW
9013 /* Figure out the local name after import. */
9014 import_alias = dwarf2_name (die, cu);
27aa8d6a 9015
794684b6
SW
9016 /* Figure out where the statement is being imported to. */
9017 import_prefix = determine_prefix (die, cu);
9018
9019 /* Figure out what the scope of the imported die is and prepend it
9020 to the name of the imported die. */
de4affc9 9021 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9022
f55ee35c
JK
9023 if (imported_die->tag != DW_TAG_namespace
9024 && imported_die->tag != DW_TAG_module)
794684b6 9025 {
13387711
SW
9026 imported_declaration = imported_name;
9027 canonical_name = imported_name_prefix;
794684b6 9028 }
13387711 9029 else if (strlen (imported_name_prefix) > 0)
12aaed36 9030 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9031 imported_name_prefix,
9032 (cu->language == language_d ? "." : "::"),
9033 imported_name, (char *) NULL);
13387711
SW
9034 else
9035 canonical_name = imported_name;
794684b6 9036
32019081
JK
9037 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9038
9039 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9040 for (child_die = die->child; child_die && child_die->tag;
9041 child_die = sibling_die (child_die))
9042 {
9043 /* DWARF-4: A Fortran use statement with a “rename list” may be
9044 represented by an imported module entry with an import attribute
9045 referring to the module and owned entries corresponding to those
9046 entities that are renamed as part of being imported. */
9047
9048 if (child_die->tag != DW_TAG_imported_declaration)
9049 {
9050 complaint (&symfile_complaints,
9051 _("child DW_TAG_imported_declaration expected "
9052 "- DIE at 0x%x [in module %s]"),
4262abfb 9053 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9054 continue;
9055 }
9056
9057 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9058 if (import_attr == NULL)
9059 {
9060 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9061 dwarf_tag_name (child_die->tag));
9062 continue;
9063 }
9064
9065 imported_cu = cu;
9066 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9067 &imported_cu);
9068 imported_name = dwarf2_name (imported_die, imported_cu);
9069 if (imported_name == NULL)
9070 {
9071 complaint (&symfile_complaints,
9072 _("child DW_TAG_imported_declaration has unknown "
9073 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9074 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9075 continue;
9076 }
9077
9078 VEC_safe_push (const_char_ptr, excludes, imported_name);
9079
9080 process_die (child_die, cu);
9081 }
9082
22cee43f
PMR
9083 add_using_directive (using_directives (cu->language),
9084 import_prefix,
9085 canonical_name,
9086 import_alias,
9087 imported_declaration,
9088 excludes,
9089 0,
9090 &objfile->objfile_obstack);
32019081
JK
9091
9092 do_cleanups (cleanups);
27aa8d6a
SW
9093}
9094
f4dc4d17 9095/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9096
cb1df416
DJ
9097static void
9098free_cu_line_header (void *arg)
9099{
9a3c8263 9100 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9101
9102 free_line_header (cu->line_header);
9103 cu->line_header = NULL;
9104}
9105
1b80a9fa
JK
9106/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9107 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9108 this, it was first present in GCC release 4.3.0. */
9109
9110static int
9111producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9112{
9113 if (!cu->checked_producer)
9114 check_producer (cu);
9115
9116 return cu->producer_is_gcc_lt_4_3;
9117}
9118
9291a0cd
TT
9119static void
9120find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9121 const char **name, const char **comp_dir)
9291a0cd 9122{
9291a0cd
TT
9123 /* Find the filename. Do not use dwarf2_name here, since the filename
9124 is not a source language identifier. */
7d45c7c3
KB
9125 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9126 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9127
7d45c7c3
KB
9128 if (*comp_dir == NULL
9129 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9130 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9131 {
15d034d0
TT
9132 char *d = ldirname (*name);
9133
9134 *comp_dir = d;
9135 if (d != NULL)
9136 make_cleanup (xfree, d);
9291a0cd
TT
9137 }
9138 if (*comp_dir != NULL)
9139 {
9140 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9141 directory, get rid of it. */
e6a959d6 9142 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9143
9144 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9145 *comp_dir = cp + 1;
9146 }
9147
9148 if (*name == NULL)
9149 *name = "<unknown>";
9150}
9151
f4dc4d17
DE
9152/* Handle DW_AT_stmt_list for a compilation unit.
9153 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9154 COMP_DIR is the compilation directory. LOWPC is passed to
9155 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9156
9157static void
9158handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9159 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9160{
527f3840 9161 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9162 struct attribute *attr;
527f3840
JK
9163 unsigned int line_offset;
9164 struct line_header line_header_local;
9165 hashval_t line_header_local_hash;
9166 unsigned u;
9167 void **slot;
9168 int decode_mapping;
2ab95328 9169
f4dc4d17
DE
9170 gdb_assert (! cu->per_cu->is_debug_types);
9171
2ab95328 9172 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9173 if (attr == NULL)
9174 return;
9175
9176 line_offset = DW_UNSND (attr);
9177
9178 /* The line header hash table is only created if needed (it exists to
9179 prevent redundant reading of the line table for partial_units).
9180 If we're given a partial_unit, we'll need it. If we're given a
9181 compile_unit, then use the line header hash table if it's already
9182 created, but don't create one just yet. */
9183
9184 if (dwarf2_per_objfile->line_header_hash == NULL
9185 && die->tag == DW_TAG_partial_unit)
2ab95328 9186 {
527f3840
JK
9187 dwarf2_per_objfile->line_header_hash
9188 = htab_create_alloc_ex (127, line_header_hash_voidp,
9189 line_header_eq_voidp,
9190 free_line_header_voidp,
9191 &objfile->objfile_obstack,
9192 hashtab_obstack_allocate,
9193 dummy_obstack_deallocate);
9194 }
2ab95328 9195
527f3840
JK
9196 line_header_local.offset.sect_off = line_offset;
9197 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9198 line_header_local_hash = line_header_hash (&line_header_local);
9199 if (dwarf2_per_objfile->line_header_hash != NULL)
9200 {
9201 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9202 &line_header_local,
9203 line_header_local_hash, NO_INSERT);
9204
9205 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9206 is not present in *SLOT (since if there is something in *SLOT then
9207 it will be for a partial_unit). */
9208 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9209 {
527f3840 9210 gdb_assert (*slot != NULL);
9a3c8263 9211 cu->line_header = (struct line_header *) *slot;
527f3840 9212 return;
dee91e82 9213 }
2ab95328 9214 }
527f3840
JK
9215
9216 /* dwarf_decode_line_header does not yet provide sufficient information.
9217 We always have to call also dwarf_decode_lines for it. */
9218 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9219 if (cu->line_header == NULL)
9220 return;
9221
9222 if (dwarf2_per_objfile->line_header_hash == NULL)
9223 slot = NULL;
9224 else
9225 {
9226 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9227 &line_header_local,
9228 line_header_local_hash, INSERT);
9229 gdb_assert (slot != NULL);
9230 }
9231 if (slot != NULL && *slot == NULL)
9232 {
9233 /* This newly decoded line number information unit will be owned
9234 by line_header_hash hash table. */
9235 *slot = cu->line_header;
9236 }
9237 else
9238 {
9239 /* We cannot free any current entry in (*slot) as that struct line_header
9240 may be already used by multiple CUs. Create only temporary decoded
9241 line_header for this CU - it may happen at most once for each line
9242 number information unit. And if we're not using line_header_hash
9243 then this is what we want as well. */
9244 gdb_assert (die->tag != DW_TAG_partial_unit);
9245 make_cleanup (free_cu_line_header, cu);
9246 }
9247 decode_mapping = (die->tag != DW_TAG_partial_unit);
9248 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9249 decode_mapping);
2ab95328
TT
9250}
9251
95554aad 9252/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9253
c906108c 9254static void
e7c27a73 9255read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9256{
dee91e82 9257 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9258 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9259 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9260 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9261 CORE_ADDR highpc = ((CORE_ADDR) 0);
9262 struct attribute *attr;
15d034d0
TT
9263 const char *name = NULL;
9264 const char *comp_dir = NULL;
c906108c 9265 struct die_info *child_die;
e142c38c 9266 CORE_ADDR baseaddr;
6e70227d 9267
e142c38c 9268 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9269
fae299cd 9270 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9271
9272 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9273 from finish_block. */
2acceee2 9274 if (lowpc == ((CORE_ADDR) -1))
c906108c 9275 lowpc = highpc;
3e29f34a 9276 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9277
9291a0cd 9278 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9279
95554aad 9280 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9281
f4b8a18d
KW
9282 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9283 standardised yet. As a workaround for the language detection we fall
9284 back to the DW_AT_producer string. */
9285 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9286 cu->language = language_opencl;
9287
3019eac3
DE
9288 /* Similar hack for Go. */
9289 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9290 set_cu_language (DW_LANG_Go, cu);
9291
f4dc4d17 9292 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9293
9294 /* Decode line number information if present. We do this before
9295 processing child DIEs, so that the line header table is available
9296 for DW_AT_decl_file. */
c3b7b696 9297 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9298
9299 /* Process all dies in compilation unit. */
9300 if (die->child != NULL)
9301 {
9302 child_die = die->child;
9303 while (child_die && child_die->tag)
9304 {
9305 process_die (child_die, cu);
9306 child_die = sibling_die (child_die);
9307 }
9308 }
9309
9310 /* Decode macro information, if present. Dwarf 2 macro information
9311 refers to information in the line number info statement program
9312 header, so we can only read it if we've read the header
9313 successfully. */
9314 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9315 if (attr && cu->line_header)
9316 {
9317 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9318 complaint (&symfile_complaints,
9319 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9320
43f3e411 9321 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9322 }
9323 else
9324 {
9325 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9326 if (attr && cu->line_header)
9327 {
9328 unsigned int macro_offset = DW_UNSND (attr);
9329
43f3e411 9330 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9331 }
9332 }
9333
9334 do_cleanups (back_to);
9335}
9336
f4dc4d17
DE
9337/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9338 Create the set of symtabs used by this TU, or if this TU is sharing
9339 symtabs with another TU and the symtabs have already been created
9340 then restore those symtabs in the line header.
9341 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9342
9343static void
f4dc4d17 9344setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9345{
f4dc4d17
DE
9346 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9347 struct type_unit_group *tu_group;
9348 int first_time;
9349 struct line_header *lh;
3019eac3 9350 struct attribute *attr;
f4dc4d17 9351 unsigned int i, line_offset;
0186c6a7 9352 struct signatured_type *sig_type;
3019eac3 9353
f4dc4d17 9354 gdb_assert (per_cu->is_debug_types);
0186c6a7 9355 sig_type = (struct signatured_type *) per_cu;
3019eac3 9356
f4dc4d17 9357 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9358
f4dc4d17 9359 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9360 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9361 if (sig_type->type_unit_group == NULL)
9362 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9363 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9364
9365 /* If we've already processed this stmt_list there's no real need to
9366 do it again, we could fake it and just recreate the part we need
9367 (file name,index -> symtab mapping). If data shows this optimization
9368 is useful we can do it then. */
43f3e411 9369 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9370
9371 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9372 debug info. */
9373 lh = NULL;
9374 if (attr != NULL)
3019eac3 9375 {
f4dc4d17
DE
9376 line_offset = DW_UNSND (attr);
9377 lh = dwarf_decode_line_header (line_offset, cu);
9378 }
9379 if (lh == NULL)
9380 {
9381 if (first_time)
9382 dwarf2_start_symtab (cu, "", NULL, 0);
9383 else
9384 {
9385 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9386 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9387 }
f4dc4d17 9388 return;
3019eac3
DE
9389 }
9390
f4dc4d17
DE
9391 cu->line_header = lh;
9392 make_cleanup (free_cu_line_header, cu);
3019eac3 9393
f4dc4d17
DE
9394 if (first_time)
9395 {
43f3e411 9396 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9397
1fd60fc0
DE
9398 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9399 still initializing it, and our caller (a few levels up)
9400 process_full_type_unit still needs to know if this is the first
9401 time. */
9402
f4dc4d17
DE
9403 tu_group->num_symtabs = lh->num_file_names;
9404 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9405
f4dc4d17
DE
9406 for (i = 0; i < lh->num_file_names; ++i)
9407 {
d521ce57 9408 const char *dir = NULL;
f4dc4d17 9409 struct file_entry *fe = &lh->file_names[i];
3019eac3 9410
afa6c9ab 9411 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9412 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9413 dwarf2_start_subfile (fe->name, dir);
3019eac3 9414
f4dc4d17
DE
9415 if (current_subfile->symtab == NULL)
9416 {
9417 /* NOTE: start_subfile will recognize when it's been passed
9418 a file it has already seen. So we can't assume there's a
43f3e411 9419 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9420 lh->file_names may contain dups. */
43f3e411
DE
9421 current_subfile->symtab
9422 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9423 }
9424
9425 fe->symtab = current_subfile->symtab;
9426 tu_group->symtabs[i] = fe->symtab;
9427 }
9428 }
9429 else
3019eac3 9430 {
0ab9ce85 9431 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9432
9433 for (i = 0; i < lh->num_file_names; ++i)
9434 {
9435 struct file_entry *fe = &lh->file_names[i];
9436
9437 fe->symtab = tu_group->symtabs[i];
9438 }
3019eac3
DE
9439 }
9440
f4dc4d17
DE
9441 /* The main symtab is allocated last. Type units don't have DW_AT_name
9442 so they don't have a "real" (so to speak) symtab anyway.
9443 There is later code that will assign the main symtab to all symbols
9444 that don't have one. We need to handle the case of a symbol with a
9445 missing symtab (DW_AT_decl_file) anyway. */
9446}
3019eac3 9447
f4dc4d17
DE
9448/* Process DW_TAG_type_unit.
9449 For TUs we want to skip the first top level sibling if it's not the
9450 actual type being defined by this TU. In this case the first top
9451 level sibling is there to provide context only. */
3019eac3 9452
f4dc4d17
DE
9453static void
9454read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9455{
9456 struct die_info *child_die;
3019eac3 9457
f4dc4d17
DE
9458 prepare_one_comp_unit (cu, die, language_minimal);
9459
9460 /* Initialize (or reinitialize) the machinery for building symtabs.
9461 We do this before processing child DIEs, so that the line header table
9462 is available for DW_AT_decl_file. */
9463 setup_type_unit_groups (die, cu);
9464
9465 if (die->child != NULL)
9466 {
9467 child_die = die->child;
9468 while (child_die && child_die->tag)
9469 {
9470 process_die (child_die, cu);
9471 child_die = sibling_die (child_die);
9472 }
9473 }
3019eac3
DE
9474}
9475\f
80626a55
DE
9476/* DWO/DWP files.
9477
9478 http://gcc.gnu.org/wiki/DebugFission
9479 http://gcc.gnu.org/wiki/DebugFissionDWP
9480
9481 To simplify handling of both DWO files ("object" files with the DWARF info)
9482 and DWP files (a file with the DWOs packaged up into one file), we treat
9483 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9484
9485static hashval_t
9486hash_dwo_file (const void *item)
9487{
9a3c8263 9488 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9489 hashval_t hash;
3019eac3 9490
a2ce51a0
DE
9491 hash = htab_hash_string (dwo_file->dwo_name);
9492 if (dwo_file->comp_dir != NULL)
9493 hash += htab_hash_string (dwo_file->comp_dir);
9494 return hash;
3019eac3
DE
9495}
9496
9497static int
9498eq_dwo_file (const void *item_lhs, const void *item_rhs)
9499{
9a3c8263
SM
9500 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9501 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9502
a2ce51a0
DE
9503 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9504 return 0;
9505 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9506 return lhs->comp_dir == rhs->comp_dir;
9507 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9508}
9509
9510/* Allocate a hash table for DWO files. */
9511
9512static htab_t
9513allocate_dwo_file_hash_table (void)
9514{
9515 struct objfile *objfile = dwarf2_per_objfile->objfile;
9516
9517 return htab_create_alloc_ex (41,
9518 hash_dwo_file,
9519 eq_dwo_file,
9520 NULL,
9521 &objfile->objfile_obstack,
9522 hashtab_obstack_allocate,
9523 dummy_obstack_deallocate);
9524}
9525
80626a55
DE
9526/* Lookup DWO file DWO_NAME. */
9527
9528static void **
0ac5b59e 9529lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9530{
9531 struct dwo_file find_entry;
9532 void **slot;
9533
9534 if (dwarf2_per_objfile->dwo_files == NULL)
9535 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9536
9537 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9538 find_entry.dwo_name = dwo_name;
9539 find_entry.comp_dir = comp_dir;
80626a55
DE
9540 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9541
9542 return slot;
9543}
9544
3019eac3
DE
9545static hashval_t
9546hash_dwo_unit (const void *item)
9547{
9a3c8263 9548 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9549
9550 /* This drops the top 32 bits of the id, but is ok for a hash. */
9551 return dwo_unit->signature;
9552}
9553
9554static int
9555eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9556{
9a3c8263
SM
9557 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9558 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9559
9560 /* The signature is assumed to be unique within the DWO file.
9561 So while object file CU dwo_id's always have the value zero,
9562 that's OK, assuming each object file DWO file has only one CU,
9563 and that's the rule for now. */
9564 return lhs->signature == rhs->signature;
9565}
9566
9567/* Allocate a hash table for DWO CUs,TUs.
9568 There is one of these tables for each of CUs,TUs for each DWO file. */
9569
9570static htab_t
9571allocate_dwo_unit_table (struct objfile *objfile)
9572{
9573 /* Start out with a pretty small number.
9574 Generally DWO files contain only one CU and maybe some TUs. */
9575 return htab_create_alloc_ex (3,
9576 hash_dwo_unit,
9577 eq_dwo_unit,
9578 NULL,
9579 &objfile->objfile_obstack,
9580 hashtab_obstack_allocate,
9581 dummy_obstack_deallocate);
9582}
9583
80626a55 9584/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9585
19c3d4c9 9586struct create_dwo_cu_data
3019eac3
DE
9587{
9588 struct dwo_file *dwo_file;
19c3d4c9 9589 struct dwo_unit dwo_unit;
3019eac3
DE
9590};
9591
19c3d4c9 9592/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9593
9594static void
19c3d4c9
DE
9595create_dwo_cu_reader (const struct die_reader_specs *reader,
9596 const gdb_byte *info_ptr,
9597 struct die_info *comp_unit_die,
9598 int has_children,
9599 void *datap)
3019eac3
DE
9600{
9601 struct dwarf2_cu *cu = reader->cu;
3019eac3 9602 sect_offset offset = cu->per_cu->offset;
8a0459fd 9603 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9604 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9605 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9606 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9607 struct attribute *attr;
3019eac3
DE
9608
9609 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9610 if (attr == NULL)
9611 {
19c3d4c9
DE
9612 complaint (&symfile_complaints,
9613 _("Dwarf Error: debug entry at offset 0x%x is missing"
9614 " its dwo_id [in module %s]"),
9615 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9616 return;
9617 }
9618
3019eac3
DE
9619 dwo_unit->dwo_file = dwo_file;
9620 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9621 dwo_unit->section = section;
3019eac3
DE
9622 dwo_unit->offset = offset;
9623 dwo_unit->length = cu->per_cu->length;
9624
b4f54984 9625 if (dwarf_read_debug)
4031ecc5
DE
9626 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9627 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9628}
9629
19c3d4c9
DE
9630/* Create the dwo_unit for the lone CU in DWO_FILE.
9631 Note: This function processes DWO files only, not DWP files. */
3019eac3 9632
19c3d4c9
DE
9633static struct dwo_unit *
9634create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9635{
9636 struct objfile *objfile = dwarf2_per_objfile->objfile;
9637 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9638 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9639 struct create_dwo_cu_data create_dwo_cu_data;
9640 struct dwo_unit *dwo_unit;
3019eac3
DE
9641
9642 dwarf2_read_section (objfile, section);
9643 info_ptr = section->buffer;
9644
9645 if (info_ptr == NULL)
9646 return NULL;
9647
b4f54984 9648 if (dwarf_read_debug)
19c3d4c9
DE
9649 {
9650 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9651 get_section_name (section),
9652 get_section_file_name (section));
19c3d4c9 9653 }
3019eac3 9654
19c3d4c9
DE
9655 create_dwo_cu_data.dwo_file = dwo_file;
9656 dwo_unit = NULL;
3019eac3
DE
9657
9658 end_ptr = info_ptr + section->size;
9659 while (info_ptr < end_ptr)
9660 {
9661 struct dwarf2_per_cu_data per_cu;
9662
19c3d4c9
DE
9663 memset (&create_dwo_cu_data.dwo_unit, 0,
9664 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9665 memset (&per_cu, 0, sizeof (per_cu));
9666 per_cu.objfile = objfile;
9667 per_cu.is_debug_types = 0;
9668 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9669 per_cu.section = section;
3019eac3 9670
33e80786 9671 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9672 create_dwo_cu_reader,
9673 &create_dwo_cu_data);
9674
9675 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9676 {
9677 /* If we've already found one, complain. We only support one
9678 because having more than one requires hacking the dwo_name of
9679 each to match, which is highly unlikely to happen. */
9680 if (dwo_unit != NULL)
9681 {
9682 complaint (&symfile_complaints,
9683 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9684 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9685 break;
9686 }
9687
9688 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9689 *dwo_unit = create_dwo_cu_data.dwo_unit;
9690 }
3019eac3
DE
9691
9692 info_ptr += per_cu.length;
9693 }
9694
19c3d4c9 9695 return dwo_unit;
3019eac3
DE
9696}
9697
80626a55
DE
9698/* DWP file .debug_{cu,tu}_index section format:
9699 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9700
d2415c6c
DE
9701 DWP Version 1:
9702
80626a55
DE
9703 Both index sections have the same format, and serve to map a 64-bit
9704 signature to a set of section numbers. Each section begins with a header,
9705 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9706 indexes, and a pool of 32-bit section numbers. The index sections will be
9707 aligned at 8-byte boundaries in the file.
9708
d2415c6c
DE
9709 The index section header consists of:
9710
9711 V, 32 bit version number
9712 -, 32 bits unused
9713 N, 32 bit number of compilation units or type units in the index
9714 M, 32 bit number of slots in the hash table
80626a55 9715
d2415c6c 9716 Numbers are recorded using the byte order of the application binary.
80626a55 9717
d2415c6c
DE
9718 The hash table begins at offset 16 in the section, and consists of an array
9719 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9720 order of the application binary). Unused slots in the hash table are 0.
9721 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9722
d2415c6c
DE
9723 The parallel table begins immediately after the hash table
9724 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9725 array of 32-bit indexes (using the byte order of the application binary),
9726 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9727 table contains a 32-bit index into the pool of section numbers. For unused
9728 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9729
73869dc2
DE
9730 The pool of section numbers begins immediately following the hash table
9731 (at offset 16 + 12 * M from the beginning of the section). The pool of
9732 section numbers consists of an array of 32-bit words (using the byte order
9733 of the application binary). Each item in the array is indexed starting
9734 from 0. The hash table entry provides the index of the first section
9735 number in the set. Additional section numbers in the set follow, and the
9736 set is terminated by a 0 entry (section number 0 is not used in ELF).
9737
9738 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9739 section must be the first entry in the set, and the .debug_abbrev.dwo must
9740 be the second entry. Other members of the set may follow in any order.
9741
9742 ---
9743
9744 DWP Version 2:
9745
9746 DWP Version 2 combines all the .debug_info, etc. sections into one,
9747 and the entries in the index tables are now offsets into these sections.
9748 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9749 section.
9750
9751 Index Section Contents:
9752 Header
9753 Hash Table of Signatures dwp_hash_table.hash_table
9754 Parallel Table of Indices dwp_hash_table.unit_table
9755 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9756 Table of Section Sizes dwp_hash_table.v2.sizes
9757
9758 The index section header consists of:
9759
9760 V, 32 bit version number
9761 L, 32 bit number of columns in the table of section offsets
9762 N, 32 bit number of compilation units or type units in the index
9763 M, 32 bit number of slots in the hash table
9764
9765 Numbers are recorded using the byte order of the application binary.
9766
9767 The hash table has the same format as version 1.
9768 The parallel table of indices has the same format as version 1,
9769 except that the entries are origin-1 indices into the table of sections
9770 offsets and the table of section sizes.
9771
9772 The table of offsets begins immediately following the parallel table
9773 (at offset 16 + 12 * M from the beginning of the section). The table is
9774 a two-dimensional array of 32-bit words (using the byte order of the
9775 application binary), with L columns and N+1 rows, in row-major order.
9776 Each row in the array is indexed starting from 0. The first row provides
9777 a key to the remaining rows: each column in this row provides an identifier
9778 for a debug section, and the offsets in the same column of subsequent rows
9779 refer to that section. The section identifiers are:
9780
9781 DW_SECT_INFO 1 .debug_info.dwo
9782 DW_SECT_TYPES 2 .debug_types.dwo
9783 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9784 DW_SECT_LINE 4 .debug_line.dwo
9785 DW_SECT_LOC 5 .debug_loc.dwo
9786 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9787 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9788 DW_SECT_MACRO 8 .debug_macro.dwo
9789
9790 The offsets provided by the CU and TU index sections are the base offsets
9791 for the contributions made by each CU or TU to the corresponding section
9792 in the package file. Each CU and TU header contains an abbrev_offset
9793 field, used to find the abbreviations table for that CU or TU within the
9794 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9795 be interpreted as relative to the base offset given in the index section.
9796 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9797 should be interpreted as relative to the base offset for .debug_line.dwo,
9798 and offsets into other debug sections obtained from DWARF attributes should
9799 also be interpreted as relative to the corresponding base offset.
9800
9801 The table of sizes begins immediately following the table of offsets.
9802 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9803 with L columns and N rows, in row-major order. Each row in the array is
9804 indexed starting from 1 (row 0 is shared by the two tables).
9805
9806 ---
9807
9808 Hash table lookup is handled the same in version 1 and 2:
9809
9810 We assume that N and M will not exceed 2^32 - 1.
9811 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9812
d2415c6c
DE
9813 Given a 64-bit compilation unit signature or a type signature S, an entry
9814 in the hash table is located as follows:
80626a55 9815
d2415c6c
DE
9816 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9817 the low-order k bits all set to 1.
80626a55 9818
d2415c6c 9819 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9820
d2415c6c
DE
9821 3) If the hash table entry at index H matches the signature, use that
9822 entry. If the hash table entry at index H is unused (all zeroes),
9823 terminate the search: the signature is not present in the table.
80626a55 9824
d2415c6c 9825 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9826
d2415c6c 9827 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9828 to stop at an unused slot or find the match. */
80626a55
DE
9829
9830/* Create a hash table to map DWO IDs to their CU/TU entry in
9831 .debug_{info,types}.dwo in DWP_FILE.
9832 Returns NULL if there isn't one.
9833 Note: This function processes DWP files only, not DWO files. */
9834
9835static struct dwp_hash_table *
9836create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9837{
9838 struct objfile *objfile = dwarf2_per_objfile->objfile;
9839 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9840 const gdb_byte *index_ptr, *index_end;
80626a55 9841 struct dwarf2_section_info *index;
73869dc2 9842 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9843 struct dwp_hash_table *htab;
9844
9845 if (is_debug_types)
9846 index = &dwp_file->sections.tu_index;
9847 else
9848 index = &dwp_file->sections.cu_index;
9849
9850 if (dwarf2_section_empty_p (index))
9851 return NULL;
9852 dwarf2_read_section (objfile, index);
9853
9854 index_ptr = index->buffer;
9855 index_end = index_ptr + index->size;
9856
9857 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9858 index_ptr += 4;
9859 if (version == 2)
9860 nr_columns = read_4_bytes (dbfd, index_ptr);
9861 else
9862 nr_columns = 0;
9863 index_ptr += 4;
80626a55
DE
9864 nr_units = read_4_bytes (dbfd, index_ptr);
9865 index_ptr += 4;
9866 nr_slots = read_4_bytes (dbfd, index_ptr);
9867 index_ptr += 4;
9868
73869dc2 9869 if (version != 1 && version != 2)
80626a55 9870 {
21aa081e 9871 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9872 " [in module %s]"),
21aa081e 9873 pulongest (version), dwp_file->name);
80626a55
DE
9874 }
9875 if (nr_slots != (nr_slots & -nr_slots))
9876 {
21aa081e 9877 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9878 " is not power of 2 [in module %s]"),
21aa081e 9879 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9880 }
9881
9882 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9883 htab->version = version;
9884 htab->nr_columns = nr_columns;
80626a55
DE
9885 htab->nr_units = nr_units;
9886 htab->nr_slots = nr_slots;
9887 htab->hash_table = index_ptr;
9888 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9889
9890 /* Exit early if the table is empty. */
9891 if (nr_slots == 0 || nr_units == 0
9892 || (version == 2 && nr_columns == 0))
9893 {
9894 /* All must be zero. */
9895 if (nr_slots != 0 || nr_units != 0
9896 || (version == 2 && nr_columns != 0))
9897 {
9898 complaint (&symfile_complaints,
9899 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9900 " all zero [in modules %s]"),
9901 dwp_file->name);
9902 }
9903 return htab;
9904 }
9905
9906 if (version == 1)
9907 {
9908 htab->section_pool.v1.indices =
9909 htab->unit_table + sizeof (uint32_t) * nr_slots;
9910 /* It's harder to decide whether the section is too small in v1.
9911 V1 is deprecated anyway so we punt. */
9912 }
9913 else
9914 {
9915 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9916 int *ids = htab->section_pool.v2.section_ids;
9917 /* Reverse map for error checking. */
9918 int ids_seen[DW_SECT_MAX + 1];
9919 int i;
9920
9921 if (nr_columns < 2)
9922 {
9923 error (_("Dwarf Error: bad DWP hash table, too few columns"
9924 " in section table [in module %s]"),
9925 dwp_file->name);
9926 }
9927 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9928 {
9929 error (_("Dwarf Error: bad DWP hash table, too many columns"
9930 " in section table [in module %s]"),
9931 dwp_file->name);
9932 }
9933 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9934 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9935 for (i = 0; i < nr_columns; ++i)
9936 {
9937 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9938
9939 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9940 {
9941 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9942 " in section table [in module %s]"),
9943 id, dwp_file->name);
9944 }
9945 if (ids_seen[id] != -1)
9946 {
9947 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9948 " id %d in section table [in module %s]"),
9949 id, dwp_file->name);
9950 }
9951 ids_seen[id] = i;
9952 ids[i] = id;
9953 }
9954 /* Must have exactly one info or types section. */
9955 if (((ids_seen[DW_SECT_INFO] != -1)
9956 + (ids_seen[DW_SECT_TYPES] != -1))
9957 != 1)
9958 {
9959 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9960 " DWO info/types section [in module %s]"),
9961 dwp_file->name);
9962 }
9963 /* Must have an abbrev section. */
9964 if (ids_seen[DW_SECT_ABBREV] == -1)
9965 {
9966 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9967 " section [in module %s]"),
9968 dwp_file->name);
9969 }
9970 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9971 htab->section_pool.v2.sizes =
9972 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9973 * nr_units * nr_columns);
9974 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9975 * nr_units * nr_columns))
9976 > index_end)
9977 {
9978 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9979 " [in module %s]"),
9980 dwp_file->name);
9981 }
9982 }
80626a55
DE
9983
9984 return htab;
9985}
9986
9987/* Update SECTIONS with the data from SECTP.
9988
9989 This function is like the other "locate" section routines that are
9990 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9991 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9992
9993 The result is non-zero for success, or zero if an error was found. */
9994
9995static int
73869dc2
DE
9996locate_v1_virtual_dwo_sections (asection *sectp,
9997 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9998{
9999 const struct dwop_section_names *names = &dwop_section_names;
10000
10001 if (section_is_p (sectp->name, &names->abbrev_dwo))
10002 {
10003 /* There can be only one. */
049412e3 10004 if (sections->abbrev.s.section != NULL)
80626a55 10005 return 0;
049412e3 10006 sections->abbrev.s.section = sectp;
80626a55
DE
10007 sections->abbrev.size = bfd_get_section_size (sectp);
10008 }
10009 else if (section_is_p (sectp->name, &names->info_dwo)
10010 || section_is_p (sectp->name, &names->types_dwo))
10011 {
10012 /* There can be only one. */
049412e3 10013 if (sections->info_or_types.s.section != NULL)
80626a55 10014 return 0;
049412e3 10015 sections->info_or_types.s.section = sectp;
80626a55
DE
10016 sections->info_or_types.size = bfd_get_section_size (sectp);
10017 }
10018 else if (section_is_p (sectp->name, &names->line_dwo))
10019 {
10020 /* There can be only one. */
049412e3 10021 if (sections->line.s.section != NULL)
80626a55 10022 return 0;
049412e3 10023 sections->line.s.section = sectp;
80626a55
DE
10024 sections->line.size = bfd_get_section_size (sectp);
10025 }
10026 else if (section_is_p (sectp->name, &names->loc_dwo))
10027 {
10028 /* There can be only one. */
049412e3 10029 if (sections->loc.s.section != NULL)
80626a55 10030 return 0;
049412e3 10031 sections->loc.s.section = sectp;
80626a55
DE
10032 sections->loc.size = bfd_get_section_size (sectp);
10033 }
10034 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10035 {
10036 /* There can be only one. */
049412e3 10037 if (sections->macinfo.s.section != NULL)
80626a55 10038 return 0;
049412e3 10039 sections->macinfo.s.section = sectp;
80626a55
DE
10040 sections->macinfo.size = bfd_get_section_size (sectp);
10041 }
10042 else if (section_is_p (sectp->name, &names->macro_dwo))
10043 {
10044 /* There can be only one. */
049412e3 10045 if (sections->macro.s.section != NULL)
80626a55 10046 return 0;
049412e3 10047 sections->macro.s.section = sectp;
80626a55
DE
10048 sections->macro.size = bfd_get_section_size (sectp);
10049 }
10050 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10051 {
10052 /* There can be only one. */
049412e3 10053 if (sections->str_offsets.s.section != NULL)
80626a55 10054 return 0;
049412e3 10055 sections->str_offsets.s.section = sectp;
80626a55
DE
10056 sections->str_offsets.size = bfd_get_section_size (sectp);
10057 }
10058 else
10059 {
10060 /* No other kind of section is valid. */
10061 return 0;
10062 }
10063
10064 return 1;
10065}
10066
73869dc2
DE
10067/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10068 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10069 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10070 This is for DWP version 1 files. */
80626a55
DE
10071
10072static struct dwo_unit *
73869dc2
DE
10073create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10074 uint32_t unit_index,
10075 const char *comp_dir,
10076 ULONGEST signature, int is_debug_types)
80626a55
DE
10077{
10078 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10079 const struct dwp_hash_table *dwp_htab =
10080 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10081 bfd *dbfd = dwp_file->dbfd;
10082 const char *kind = is_debug_types ? "TU" : "CU";
10083 struct dwo_file *dwo_file;
10084 struct dwo_unit *dwo_unit;
73869dc2 10085 struct virtual_v1_dwo_sections sections;
80626a55
DE
10086 void **dwo_file_slot;
10087 char *virtual_dwo_name;
80626a55
DE
10088 struct cleanup *cleanups;
10089 int i;
10090
73869dc2
DE
10091 gdb_assert (dwp_file->version == 1);
10092
b4f54984 10093 if (dwarf_read_debug)
80626a55 10094 {
73869dc2 10095 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10096 kind,
73869dc2 10097 pulongest (unit_index), hex_string (signature),
80626a55
DE
10098 dwp_file->name);
10099 }
10100
19ac8c2e 10101 /* Fetch the sections of this DWO unit.
80626a55
DE
10102 Put a limit on the number of sections we look for so that bad data
10103 doesn't cause us to loop forever. */
10104
73869dc2 10105#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10106 (1 /* .debug_info or .debug_types */ \
10107 + 1 /* .debug_abbrev */ \
10108 + 1 /* .debug_line */ \
10109 + 1 /* .debug_loc */ \
10110 + 1 /* .debug_str_offsets */ \
19ac8c2e 10111 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10112 + 1 /* trailing zero */)
10113
10114 memset (&sections, 0, sizeof (sections));
10115 cleanups = make_cleanup (null_cleanup, 0);
10116
73869dc2 10117 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10118 {
10119 asection *sectp;
10120 uint32_t section_nr =
10121 read_4_bytes (dbfd,
73869dc2
DE
10122 dwp_htab->section_pool.v1.indices
10123 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10124
10125 if (section_nr == 0)
10126 break;
10127 if (section_nr >= dwp_file->num_sections)
10128 {
10129 error (_("Dwarf Error: bad DWP hash table, section number too large"
10130 " [in module %s]"),
10131 dwp_file->name);
10132 }
10133
10134 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10135 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10136 {
10137 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10138 " [in module %s]"),
10139 dwp_file->name);
10140 }
10141 }
10142
10143 if (i < 2
a32a8923
DE
10144 || dwarf2_section_empty_p (&sections.info_or_types)
10145 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10146 {
10147 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10148 " [in module %s]"),
10149 dwp_file->name);
10150 }
73869dc2 10151 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10152 {
10153 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10154 " [in module %s]"),
10155 dwp_file->name);
10156 }
10157
10158 /* It's easier for the rest of the code if we fake a struct dwo_file and
10159 have dwo_unit "live" in that. At least for now.
10160
10161 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10162 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10163 file, we can combine them back into a virtual DWO file to save space
10164 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10165 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10166
2792b94d
PM
10167 virtual_dwo_name =
10168 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10169 get_section_id (&sections.abbrev),
10170 get_section_id (&sections.line),
10171 get_section_id (&sections.loc),
10172 get_section_id (&sections.str_offsets));
80626a55
DE
10173 make_cleanup (xfree, virtual_dwo_name);
10174 /* Can we use an existing virtual DWO file? */
0ac5b59e 10175 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10176 /* Create one if necessary. */
10177 if (*dwo_file_slot == NULL)
10178 {
b4f54984 10179 if (dwarf_read_debug)
80626a55
DE
10180 {
10181 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10182 virtual_dwo_name);
10183 }
10184 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10185 dwo_file->dwo_name
10186 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10187 virtual_dwo_name,
10188 strlen (virtual_dwo_name));
0ac5b59e 10189 dwo_file->comp_dir = comp_dir;
80626a55
DE
10190 dwo_file->sections.abbrev = sections.abbrev;
10191 dwo_file->sections.line = sections.line;
10192 dwo_file->sections.loc = sections.loc;
10193 dwo_file->sections.macinfo = sections.macinfo;
10194 dwo_file->sections.macro = sections.macro;
10195 dwo_file->sections.str_offsets = sections.str_offsets;
10196 /* The "str" section is global to the entire DWP file. */
10197 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10198 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10199 there's no need to record it in dwo_file.
10200 Also, we can't simply record type sections in dwo_file because
10201 we record a pointer into the vector in dwo_unit. As we collect more
10202 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10203 for it, invalidating all copies of pointers into the previous
10204 contents. */
80626a55
DE
10205 *dwo_file_slot = dwo_file;
10206 }
10207 else
10208 {
b4f54984 10209 if (dwarf_read_debug)
80626a55
DE
10210 {
10211 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10212 virtual_dwo_name);
10213 }
9a3c8263 10214 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10215 }
10216 do_cleanups (cleanups);
10217
10218 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10219 dwo_unit->dwo_file = dwo_file;
10220 dwo_unit->signature = signature;
8d749320
SM
10221 dwo_unit->section =
10222 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10223 *dwo_unit->section = sections.info_or_types;
57d63ce2 10224 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10225
10226 return dwo_unit;
10227}
10228
73869dc2
DE
10229/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10230 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10231 piece within that section used by a TU/CU, return a virtual section
10232 of just that piece. */
10233
10234static struct dwarf2_section_info
10235create_dwp_v2_section (struct dwarf2_section_info *section,
10236 bfd_size_type offset, bfd_size_type size)
10237{
10238 struct dwarf2_section_info result;
10239 asection *sectp;
10240
10241 gdb_assert (section != NULL);
10242 gdb_assert (!section->is_virtual);
10243
10244 memset (&result, 0, sizeof (result));
10245 result.s.containing_section = section;
10246 result.is_virtual = 1;
10247
10248 if (size == 0)
10249 return result;
10250
10251 sectp = get_section_bfd_section (section);
10252
10253 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10254 bounds of the real section. This is a pretty-rare event, so just
10255 flag an error (easier) instead of a warning and trying to cope. */
10256 if (sectp == NULL
10257 || offset + size > bfd_get_section_size (sectp))
10258 {
10259 bfd *abfd = sectp->owner;
10260
10261 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10262 " in section %s [in module %s]"),
10263 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10264 objfile_name (dwarf2_per_objfile->objfile));
10265 }
10266
10267 result.virtual_offset = offset;
10268 result.size = size;
10269 return result;
10270}
10271
10272/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10273 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10274 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10275 This is for DWP version 2 files. */
10276
10277static struct dwo_unit *
10278create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10279 uint32_t unit_index,
10280 const char *comp_dir,
10281 ULONGEST signature, int is_debug_types)
10282{
10283 struct objfile *objfile = dwarf2_per_objfile->objfile;
10284 const struct dwp_hash_table *dwp_htab =
10285 is_debug_types ? dwp_file->tus : dwp_file->cus;
10286 bfd *dbfd = dwp_file->dbfd;
10287 const char *kind = is_debug_types ? "TU" : "CU";
10288 struct dwo_file *dwo_file;
10289 struct dwo_unit *dwo_unit;
10290 struct virtual_v2_dwo_sections sections;
10291 void **dwo_file_slot;
10292 char *virtual_dwo_name;
73869dc2
DE
10293 struct cleanup *cleanups;
10294 int i;
10295
10296 gdb_assert (dwp_file->version == 2);
10297
b4f54984 10298 if (dwarf_read_debug)
73869dc2
DE
10299 {
10300 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10301 kind,
10302 pulongest (unit_index), hex_string (signature),
10303 dwp_file->name);
10304 }
10305
10306 /* Fetch the section offsets of this DWO unit. */
10307
10308 memset (&sections, 0, sizeof (sections));
10309 cleanups = make_cleanup (null_cleanup, 0);
10310
10311 for (i = 0; i < dwp_htab->nr_columns; ++i)
10312 {
10313 uint32_t offset = read_4_bytes (dbfd,
10314 dwp_htab->section_pool.v2.offsets
10315 + (((unit_index - 1) * dwp_htab->nr_columns
10316 + i)
10317 * sizeof (uint32_t)));
10318 uint32_t size = read_4_bytes (dbfd,
10319 dwp_htab->section_pool.v2.sizes
10320 + (((unit_index - 1) * dwp_htab->nr_columns
10321 + i)
10322 * sizeof (uint32_t)));
10323
10324 switch (dwp_htab->section_pool.v2.section_ids[i])
10325 {
10326 case DW_SECT_INFO:
10327 case DW_SECT_TYPES:
10328 sections.info_or_types_offset = offset;
10329 sections.info_or_types_size = size;
10330 break;
10331 case DW_SECT_ABBREV:
10332 sections.abbrev_offset = offset;
10333 sections.abbrev_size = size;
10334 break;
10335 case DW_SECT_LINE:
10336 sections.line_offset = offset;
10337 sections.line_size = size;
10338 break;
10339 case DW_SECT_LOC:
10340 sections.loc_offset = offset;
10341 sections.loc_size = size;
10342 break;
10343 case DW_SECT_STR_OFFSETS:
10344 sections.str_offsets_offset = offset;
10345 sections.str_offsets_size = size;
10346 break;
10347 case DW_SECT_MACINFO:
10348 sections.macinfo_offset = offset;
10349 sections.macinfo_size = size;
10350 break;
10351 case DW_SECT_MACRO:
10352 sections.macro_offset = offset;
10353 sections.macro_size = size;
10354 break;
10355 }
10356 }
10357
10358 /* It's easier for the rest of the code if we fake a struct dwo_file and
10359 have dwo_unit "live" in that. At least for now.
10360
10361 The DWP file can be made up of a random collection of CUs and TUs.
10362 However, for each CU + set of TUs that came from the same original DWO
10363 file, we can combine them back into a virtual DWO file to save space
10364 (fewer struct dwo_file objects to allocate). Remember that for really
10365 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10366
10367 virtual_dwo_name =
10368 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10369 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10370 (long) (sections.line_size ? sections.line_offset : 0),
10371 (long) (sections.loc_size ? sections.loc_offset : 0),
10372 (long) (sections.str_offsets_size
10373 ? sections.str_offsets_offset : 0));
10374 make_cleanup (xfree, virtual_dwo_name);
10375 /* Can we use an existing virtual DWO file? */
10376 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10377 /* Create one if necessary. */
10378 if (*dwo_file_slot == NULL)
10379 {
b4f54984 10380 if (dwarf_read_debug)
73869dc2
DE
10381 {
10382 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10383 virtual_dwo_name);
10384 }
10385 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10386 dwo_file->dwo_name
10387 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10388 virtual_dwo_name,
10389 strlen (virtual_dwo_name));
73869dc2
DE
10390 dwo_file->comp_dir = comp_dir;
10391 dwo_file->sections.abbrev =
10392 create_dwp_v2_section (&dwp_file->sections.abbrev,
10393 sections.abbrev_offset, sections.abbrev_size);
10394 dwo_file->sections.line =
10395 create_dwp_v2_section (&dwp_file->sections.line,
10396 sections.line_offset, sections.line_size);
10397 dwo_file->sections.loc =
10398 create_dwp_v2_section (&dwp_file->sections.loc,
10399 sections.loc_offset, sections.loc_size);
10400 dwo_file->sections.macinfo =
10401 create_dwp_v2_section (&dwp_file->sections.macinfo,
10402 sections.macinfo_offset, sections.macinfo_size);
10403 dwo_file->sections.macro =
10404 create_dwp_v2_section (&dwp_file->sections.macro,
10405 sections.macro_offset, sections.macro_size);
10406 dwo_file->sections.str_offsets =
10407 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10408 sections.str_offsets_offset,
10409 sections.str_offsets_size);
10410 /* The "str" section is global to the entire DWP file. */
10411 dwo_file->sections.str = dwp_file->sections.str;
10412 /* The info or types section is assigned below to dwo_unit,
10413 there's no need to record it in dwo_file.
10414 Also, we can't simply record type sections in dwo_file because
10415 we record a pointer into the vector in dwo_unit. As we collect more
10416 types we'll grow the vector and eventually have to reallocate space
10417 for it, invalidating all copies of pointers into the previous
10418 contents. */
10419 *dwo_file_slot = dwo_file;
10420 }
10421 else
10422 {
b4f54984 10423 if (dwarf_read_debug)
73869dc2
DE
10424 {
10425 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10426 virtual_dwo_name);
10427 }
9a3c8263 10428 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10429 }
10430 do_cleanups (cleanups);
10431
10432 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10433 dwo_unit->dwo_file = dwo_file;
10434 dwo_unit->signature = signature;
8d749320
SM
10435 dwo_unit->section =
10436 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10437 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10438 ? &dwp_file->sections.types
10439 : &dwp_file->sections.info,
10440 sections.info_or_types_offset,
10441 sections.info_or_types_size);
10442 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10443
10444 return dwo_unit;
10445}
10446
57d63ce2
DE
10447/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10448 Returns NULL if the signature isn't found. */
80626a55
DE
10449
10450static struct dwo_unit *
57d63ce2
DE
10451lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10452 ULONGEST signature, int is_debug_types)
80626a55 10453{
57d63ce2
DE
10454 const struct dwp_hash_table *dwp_htab =
10455 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10456 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10457 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10458 uint32_t hash = signature & mask;
10459 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10460 unsigned int i;
10461 void **slot;
870f88f7 10462 struct dwo_unit find_dwo_cu;
80626a55
DE
10463
10464 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10465 find_dwo_cu.signature = signature;
19ac8c2e
DE
10466 slot = htab_find_slot (is_debug_types
10467 ? dwp_file->loaded_tus
10468 : dwp_file->loaded_cus,
10469 &find_dwo_cu, INSERT);
80626a55
DE
10470
10471 if (*slot != NULL)
9a3c8263 10472 return (struct dwo_unit *) *slot;
80626a55
DE
10473
10474 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10475 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10476 {
10477 ULONGEST signature_in_table;
10478
10479 signature_in_table =
57d63ce2 10480 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10481 if (signature_in_table == signature)
10482 {
57d63ce2
DE
10483 uint32_t unit_index =
10484 read_4_bytes (dbfd,
10485 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10486
73869dc2
DE
10487 if (dwp_file->version == 1)
10488 {
10489 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10490 comp_dir, signature,
10491 is_debug_types);
10492 }
10493 else
10494 {
10495 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10496 comp_dir, signature,
10497 is_debug_types);
10498 }
9a3c8263 10499 return (struct dwo_unit *) *slot;
80626a55
DE
10500 }
10501 if (signature_in_table == 0)
10502 return NULL;
10503 hash = (hash + hash2) & mask;
10504 }
10505
10506 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10507 " [in module %s]"),
10508 dwp_file->name);
10509}
10510
ab5088bf 10511/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10512 Open the file specified by FILE_NAME and hand it off to BFD for
10513 preliminary analysis. Return a newly initialized bfd *, which
10514 includes a canonicalized copy of FILE_NAME.
80626a55 10515 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10516 SEARCH_CWD is true if the current directory is to be searched.
10517 It will be searched before debug-file-directory.
13aaf454
DE
10518 If successful, the file is added to the bfd include table of the
10519 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10520 If unable to find/open the file, return NULL.
3019eac3
DE
10521 NOTE: This function is derived from symfile_bfd_open. */
10522
192b62ce 10523static gdb_bfd_ref_ptr
6ac97d4c 10524try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10525{
80626a55 10526 int desc, flags;
3019eac3 10527 char *absolute_name;
9c02c129
DE
10528 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10529 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10530 to debug_file_directory. */
10531 char *search_path;
10532 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10533
6ac97d4c
DE
10534 if (search_cwd)
10535 {
10536 if (*debug_file_directory != '\0')
10537 search_path = concat (".", dirname_separator_string,
b36cec19 10538 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10539 else
10540 search_path = xstrdup (".");
10541 }
9c02c129 10542 else
6ac97d4c 10543 search_path = xstrdup (debug_file_directory);
3019eac3 10544
492c0ab7 10545 flags = OPF_RETURN_REALPATH;
80626a55
DE
10546 if (is_dwp)
10547 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10548 desc = openp (search_path, flags, file_name,
3019eac3 10549 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10550 xfree (search_path);
3019eac3
DE
10551 if (desc < 0)
10552 return NULL;
10553
192b62ce 10554 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10555 xfree (absolute_name);
9c02c129
DE
10556 if (sym_bfd == NULL)
10557 return NULL;
192b62ce 10558 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10559
192b62ce
TT
10560 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10561 return NULL;
3019eac3 10562
13aaf454
DE
10563 /* Success. Record the bfd as having been included by the objfile's bfd.
10564 This is important because things like demangled_names_hash lives in the
10565 objfile's per_bfd space and may have references to things like symbol
10566 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10567 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10568
3019eac3
DE
10569 return sym_bfd;
10570}
10571
ab5088bf 10572/* Try to open DWO file FILE_NAME.
3019eac3
DE
10573 COMP_DIR is the DW_AT_comp_dir attribute.
10574 The result is the bfd handle of the file.
10575 If there is a problem finding or opening the file, return NULL.
10576 Upon success, the canonicalized path of the file is stored in the bfd,
10577 same as symfile_bfd_open. */
10578
192b62ce 10579static gdb_bfd_ref_ptr
ab5088bf 10580open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10581{
80626a55 10582 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10583 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10584
10585 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10586
10587 if (comp_dir != NULL)
10588 {
b36cec19
PA
10589 char *path_to_try = concat (comp_dir, SLASH_STRING,
10590 file_name, (char *) NULL);
3019eac3
DE
10591
10592 /* NOTE: If comp_dir is a relative path, this will also try the
10593 search path, which seems useful. */
192b62ce
TT
10594 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10595 1 /*search_cwd*/));
3019eac3
DE
10596 xfree (path_to_try);
10597 if (abfd != NULL)
10598 return abfd;
10599 }
10600
10601 /* That didn't work, try debug-file-directory, which, despite its name,
10602 is a list of paths. */
10603
10604 if (*debug_file_directory == '\0')
10605 return NULL;
10606
6ac97d4c 10607 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10608}
10609
80626a55
DE
10610/* This function is mapped across the sections and remembers the offset and
10611 size of each of the DWO debugging sections we are interested in. */
10612
10613static void
10614dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10615{
9a3c8263 10616 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10617 const struct dwop_section_names *names = &dwop_section_names;
10618
10619 if (section_is_p (sectp->name, &names->abbrev_dwo))
10620 {
049412e3 10621 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10622 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10623 }
10624 else if (section_is_p (sectp->name, &names->info_dwo))
10625 {
049412e3 10626 dwo_sections->info.s.section = sectp;
80626a55
DE
10627 dwo_sections->info.size = bfd_get_section_size (sectp);
10628 }
10629 else if (section_is_p (sectp->name, &names->line_dwo))
10630 {
049412e3 10631 dwo_sections->line.s.section = sectp;
80626a55
DE
10632 dwo_sections->line.size = bfd_get_section_size (sectp);
10633 }
10634 else if (section_is_p (sectp->name, &names->loc_dwo))
10635 {
049412e3 10636 dwo_sections->loc.s.section = sectp;
80626a55
DE
10637 dwo_sections->loc.size = bfd_get_section_size (sectp);
10638 }
10639 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10640 {
049412e3 10641 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10642 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10643 }
10644 else if (section_is_p (sectp->name, &names->macro_dwo))
10645 {
049412e3 10646 dwo_sections->macro.s.section = sectp;
80626a55
DE
10647 dwo_sections->macro.size = bfd_get_section_size (sectp);
10648 }
10649 else if (section_is_p (sectp->name, &names->str_dwo))
10650 {
049412e3 10651 dwo_sections->str.s.section = sectp;
80626a55
DE
10652 dwo_sections->str.size = bfd_get_section_size (sectp);
10653 }
10654 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10655 {
049412e3 10656 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10657 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10658 }
10659 else if (section_is_p (sectp->name, &names->types_dwo))
10660 {
10661 struct dwarf2_section_info type_section;
10662
10663 memset (&type_section, 0, sizeof (type_section));
049412e3 10664 type_section.s.section = sectp;
80626a55
DE
10665 type_section.size = bfd_get_section_size (sectp);
10666 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10667 &type_section);
10668 }
10669}
10670
ab5088bf 10671/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10672 by PER_CU. This is for the non-DWP case.
80626a55 10673 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10674
10675static struct dwo_file *
0ac5b59e
DE
10676open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10677 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10678{
10679 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10680 struct dwo_file *dwo_file;
3019eac3
DE
10681 struct cleanup *cleanups;
10682
192b62ce 10683 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10684 if (dbfd == NULL)
10685 {
b4f54984 10686 if (dwarf_read_debug)
80626a55
DE
10687 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10688 return NULL;
10689 }
10690 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10691 dwo_file->dwo_name = dwo_name;
10692 dwo_file->comp_dir = comp_dir;
192b62ce 10693 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10694
10695 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10696
192b62ce
TT
10697 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10698 &dwo_file->sections);
3019eac3 10699
19c3d4c9 10700 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3 10701
78d4d2c5
JK
10702 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10703 dwo_file->tus);
3019eac3
DE
10704
10705 discard_cleanups (cleanups);
10706
b4f54984 10707 if (dwarf_read_debug)
80626a55
DE
10708 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10709
3019eac3
DE
10710 return dwo_file;
10711}
10712
80626a55 10713/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10714 size of each of the DWP debugging sections common to version 1 and 2 that
10715 we are interested in. */
3019eac3 10716
80626a55 10717static void
73869dc2
DE
10718dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10719 void *dwp_file_ptr)
3019eac3 10720{
9a3c8263 10721 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10722 const struct dwop_section_names *names = &dwop_section_names;
10723 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10724
80626a55 10725 /* Record the ELF section number for later lookup: this is what the
73869dc2 10726 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10727 gdb_assert (elf_section_nr < dwp_file->num_sections);
10728 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10729
80626a55
DE
10730 /* Look for specific sections that we need. */
10731 if (section_is_p (sectp->name, &names->str_dwo))
10732 {
049412e3 10733 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10734 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->cu_index))
10737 {
049412e3 10738 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10739 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->tu_index))
10742 {
049412e3 10743 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10744 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10745 }
10746}
3019eac3 10747
73869dc2
DE
10748/* This function is mapped across the sections and remembers the offset and
10749 size of each of the DWP version 2 debugging sections that we are interested
10750 in. This is split into a separate function because we don't know if we
10751 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10752
10753static void
10754dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10755{
9a3c8263 10756 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10757 const struct dwop_section_names *names = &dwop_section_names;
10758 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10759
10760 /* Record the ELF section number for later lookup: this is what the
10761 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10762 gdb_assert (elf_section_nr < dwp_file->num_sections);
10763 dwp_file->elf_sections[elf_section_nr] = sectp;
10764
10765 /* Look for specific sections that we need. */
10766 if (section_is_p (sectp->name, &names->abbrev_dwo))
10767 {
049412e3 10768 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10769 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10770 }
10771 else if (section_is_p (sectp->name, &names->info_dwo))
10772 {
049412e3 10773 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10774 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10775 }
10776 else if (section_is_p (sectp->name, &names->line_dwo))
10777 {
049412e3 10778 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10779 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10780 }
10781 else if (section_is_p (sectp->name, &names->loc_dwo))
10782 {
049412e3 10783 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10784 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10785 }
10786 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10787 {
049412e3 10788 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10789 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10790 }
10791 else if (section_is_p (sectp->name, &names->macro_dwo))
10792 {
049412e3 10793 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10794 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10795 }
10796 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10797 {
049412e3 10798 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10799 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10800 }
10801 else if (section_is_p (sectp->name, &names->types_dwo))
10802 {
049412e3 10803 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10804 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10805 }
10806}
10807
80626a55 10808/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10809
80626a55
DE
10810static hashval_t
10811hash_dwp_loaded_cutus (const void *item)
10812{
9a3c8263 10813 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10814
80626a55
DE
10815 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10816 return dwo_unit->signature;
3019eac3
DE
10817}
10818
80626a55 10819/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10820
80626a55
DE
10821static int
10822eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10823{
9a3c8263
SM
10824 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10825 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10826
80626a55
DE
10827 return dua->signature == dub->signature;
10828}
3019eac3 10829
80626a55 10830/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10831
80626a55
DE
10832static htab_t
10833allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10834{
10835 return htab_create_alloc_ex (3,
10836 hash_dwp_loaded_cutus,
10837 eq_dwp_loaded_cutus,
10838 NULL,
10839 &objfile->objfile_obstack,
10840 hashtab_obstack_allocate,
10841 dummy_obstack_deallocate);
10842}
3019eac3 10843
ab5088bf
DE
10844/* Try to open DWP file FILE_NAME.
10845 The result is the bfd handle of the file.
10846 If there is a problem finding or opening the file, return NULL.
10847 Upon success, the canonicalized path of the file is stored in the bfd,
10848 same as symfile_bfd_open. */
10849
192b62ce 10850static gdb_bfd_ref_ptr
ab5088bf
DE
10851open_dwp_file (const char *file_name)
10852{
192b62ce
TT
10853 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10854 1 /*search_cwd*/));
6ac97d4c
DE
10855 if (abfd != NULL)
10856 return abfd;
10857
10858 /* Work around upstream bug 15652.
10859 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10860 [Whether that's a "bug" is debatable, but it is getting in our way.]
10861 We have no real idea where the dwp file is, because gdb's realpath-ing
10862 of the executable's path may have discarded the needed info.
10863 [IWBN if the dwp file name was recorded in the executable, akin to
10864 .gnu_debuglink, but that doesn't exist yet.]
10865 Strip the directory from FILE_NAME and search again. */
10866 if (*debug_file_directory != '\0')
10867 {
10868 /* Don't implicitly search the current directory here.
10869 If the user wants to search "." to handle this case,
10870 it must be added to debug-file-directory. */
10871 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10872 0 /*search_cwd*/);
10873 }
10874
10875 return NULL;
ab5088bf
DE
10876}
10877
80626a55
DE
10878/* Initialize the use of the DWP file for the current objfile.
10879 By convention the name of the DWP file is ${objfile}.dwp.
10880 The result is NULL if it can't be found. */
a766d390 10881
80626a55 10882static struct dwp_file *
ab5088bf 10883open_and_init_dwp_file (void)
80626a55
DE
10884{
10885 struct objfile *objfile = dwarf2_per_objfile->objfile;
10886 struct dwp_file *dwp_file;
10887 char *dwp_name;
6c447423 10888 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10889
82bf32bc
JK
10890 /* Try to find first .dwp for the binary file before any symbolic links
10891 resolving. */
6c447423
DE
10892
10893 /* If the objfile is a debug file, find the name of the real binary
10894 file and get the name of dwp file from there. */
10895 if (objfile->separate_debug_objfile_backlink != NULL)
10896 {
10897 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10898 const char *backlink_basename = lbasename (backlink->original_name);
10899 char *debug_dirname = ldirname (objfile->original_name);
10900
10901 make_cleanup (xfree, debug_dirname);
10902 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10903 SLASH_STRING, backlink_basename);
10904 }
10905 else
10906 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10907 make_cleanup (xfree, dwp_name);
80626a55 10908
192b62ce 10909 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
82bf32bc
JK
10910 if (dbfd == NULL
10911 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10912 {
10913 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10914 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10915 make_cleanup (xfree, dwp_name);
10916 dbfd = open_dwp_file (dwp_name);
10917 }
10918
80626a55
DE
10919 if (dbfd == NULL)
10920 {
b4f54984 10921 if (dwarf_read_debug)
80626a55
DE
10922 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10923 do_cleanups (cleanups);
10924 return NULL;
3019eac3 10925 }
80626a55 10926 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
10927 dwp_file->name = bfd_get_filename (dbfd.get ());
10928 dwp_file->dbfd = dbfd.release ();
80626a55 10929 do_cleanups (cleanups);
c906108c 10930
80626a55 10931 /* +1: section 0 is unused */
192b62ce 10932 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
10933 dwp_file->elf_sections =
10934 OBSTACK_CALLOC (&objfile->objfile_obstack,
10935 dwp_file->num_sections, asection *);
10936
192b62ce
TT
10937 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10938 dwp_file);
80626a55
DE
10939
10940 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10941
10942 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10943
73869dc2
DE
10944 /* The DWP file version is stored in the hash table. Oh well. */
10945 if (dwp_file->cus->version != dwp_file->tus->version)
10946 {
10947 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10948 pretty bizarre. We use pulongest here because that's the established
4d65956b 10949 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10950 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10951 " TU version %s [in DWP file %s]"),
10952 pulongest (dwp_file->cus->version),
10953 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10954 }
10955 dwp_file->version = dwp_file->cus->version;
10956
10957 if (dwp_file->version == 2)
192b62ce
TT
10958 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10959 dwp_file);
73869dc2 10960
19ac8c2e
DE
10961 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10962 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10963
b4f54984 10964 if (dwarf_read_debug)
80626a55
DE
10965 {
10966 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10967 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10968 " %s CUs, %s TUs\n",
10969 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10970 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10971 }
10972
10973 return dwp_file;
3019eac3 10974}
c906108c 10975
ab5088bf
DE
10976/* Wrapper around open_and_init_dwp_file, only open it once. */
10977
10978static struct dwp_file *
10979get_dwp_file (void)
10980{
10981 if (! dwarf2_per_objfile->dwp_checked)
10982 {
10983 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10984 dwarf2_per_objfile->dwp_checked = 1;
10985 }
10986 return dwarf2_per_objfile->dwp_file;
10987}
10988
80626a55
DE
10989/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10990 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10991 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10992 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10993 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10994
10995 This is called, for example, when wanting to read a variable with a
10996 complex location. Therefore we don't want to do file i/o for every call.
10997 Therefore we don't want to look for a DWO file on every call.
10998 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10999 then we check if we've already seen DWO_NAME, and only THEN do we check
11000 for a DWO file.
11001
1c658ad5 11002 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11003 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11004
3019eac3 11005static struct dwo_unit *
80626a55
DE
11006lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11007 const char *dwo_name, const char *comp_dir,
11008 ULONGEST signature, int is_debug_types)
3019eac3
DE
11009{
11010 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11011 const char *kind = is_debug_types ? "TU" : "CU";
11012 void **dwo_file_slot;
3019eac3 11013 struct dwo_file *dwo_file;
80626a55 11014 struct dwp_file *dwp_file;
cb1df416 11015
6a506a2d
DE
11016 /* First see if there's a DWP file.
11017 If we have a DWP file but didn't find the DWO inside it, don't
11018 look for the original DWO file. It makes gdb behave differently
11019 depending on whether one is debugging in the build tree. */
cf2c3c16 11020
ab5088bf 11021 dwp_file = get_dwp_file ();
80626a55 11022 if (dwp_file != NULL)
cf2c3c16 11023 {
80626a55
DE
11024 const struct dwp_hash_table *dwp_htab =
11025 is_debug_types ? dwp_file->tus : dwp_file->cus;
11026
11027 if (dwp_htab != NULL)
11028 {
11029 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11030 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11031 signature, is_debug_types);
80626a55
DE
11032
11033 if (dwo_cutu != NULL)
11034 {
b4f54984 11035 if (dwarf_read_debug)
80626a55
DE
11036 {
11037 fprintf_unfiltered (gdb_stdlog,
11038 "Virtual DWO %s %s found: @%s\n",
11039 kind, hex_string (signature),
11040 host_address_to_string (dwo_cutu));
11041 }
11042 return dwo_cutu;
11043 }
11044 }
11045 }
6a506a2d 11046 else
80626a55 11047 {
6a506a2d 11048 /* No DWP file, look for the DWO file. */
80626a55 11049
6a506a2d
DE
11050 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11051 if (*dwo_file_slot == NULL)
80626a55 11052 {
6a506a2d
DE
11053 /* Read in the file and build a table of the CUs/TUs it contains. */
11054 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11055 }
6a506a2d 11056 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11057 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11058
6a506a2d 11059 if (dwo_file != NULL)
19c3d4c9 11060 {
6a506a2d
DE
11061 struct dwo_unit *dwo_cutu = NULL;
11062
11063 if (is_debug_types && dwo_file->tus)
11064 {
11065 struct dwo_unit find_dwo_cutu;
11066
11067 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11068 find_dwo_cutu.signature = signature;
9a3c8263
SM
11069 dwo_cutu
11070 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11071 }
11072 else if (!is_debug_types && dwo_file->cu)
80626a55 11073 {
6a506a2d
DE
11074 if (signature == dwo_file->cu->signature)
11075 dwo_cutu = dwo_file->cu;
11076 }
11077
11078 if (dwo_cutu != NULL)
11079 {
b4f54984 11080 if (dwarf_read_debug)
6a506a2d
DE
11081 {
11082 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11083 kind, dwo_name, hex_string (signature),
11084 host_address_to_string (dwo_cutu));
11085 }
11086 return dwo_cutu;
80626a55
DE
11087 }
11088 }
2e276125 11089 }
9cdd5dbd 11090
80626a55
DE
11091 /* We didn't find it. This could mean a dwo_id mismatch, or
11092 someone deleted the DWO/DWP file, or the search path isn't set up
11093 correctly to find the file. */
11094
b4f54984 11095 if (dwarf_read_debug)
80626a55
DE
11096 {
11097 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11098 kind, dwo_name, hex_string (signature));
11099 }
3019eac3 11100
6656a72d
DE
11101 /* This is a warning and not a complaint because it can be caused by
11102 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11103 {
11104 /* Print the name of the DWP file if we looked there, helps the user
11105 better diagnose the problem. */
11106 char *dwp_text = NULL;
11107 struct cleanup *cleanups;
11108
11109 if (dwp_file != NULL)
11110 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11111 cleanups = make_cleanup (xfree, dwp_text);
11112
11113 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11114 " [in module %s]"),
11115 kind, dwo_name, hex_string (signature),
11116 dwp_text != NULL ? dwp_text : "",
11117 this_unit->is_debug_types ? "TU" : "CU",
11118 this_unit->offset.sect_off, objfile_name (objfile));
11119
11120 do_cleanups (cleanups);
11121 }
3019eac3 11122 return NULL;
5fb290d7
DJ
11123}
11124
80626a55
DE
11125/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11126 See lookup_dwo_cutu_unit for details. */
11127
11128static struct dwo_unit *
11129lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11130 const char *dwo_name, const char *comp_dir,
11131 ULONGEST signature)
11132{
11133 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11134}
11135
11136/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11137 See lookup_dwo_cutu_unit for details. */
11138
11139static struct dwo_unit *
11140lookup_dwo_type_unit (struct signatured_type *this_tu,
11141 const char *dwo_name, const char *comp_dir)
11142{
11143 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11144}
11145
89e63ee4
DE
11146/* Traversal function for queue_and_load_all_dwo_tus. */
11147
11148static int
11149queue_and_load_dwo_tu (void **slot, void *info)
11150{
11151 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11152 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11153 ULONGEST signature = dwo_unit->signature;
11154 struct signatured_type *sig_type =
11155 lookup_dwo_signatured_type (per_cu->cu, signature);
11156
11157 if (sig_type != NULL)
11158 {
11159 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11160
11161 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11162 a real dependency of PER_CU on SIG_TYPE. That is detected later
11163 while processing PER_CU. */
11164 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11165 load_full_type_unit (sig_cu);
11166 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11167 }
11168
11169 return 1;
11170}
11171
11172/* Queue all TUs contained in the DWO of PER_CU to be read in.
11173 The DWO may have the only definition of the type, though it may not be
11174 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11175 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11176
11177static void
11178queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11179{
11180 struct dwo_unit *dwo_unit;
11181 struct dwo_file *dwo_file;
11182
11183 gdb_assert (!per_cu->is_debug_types);
11184 gdb_assert (get_dwp_file () == NULL);
11185 gdb_assert (per_cu->cu != NULL);
11186
11187 dwo_unit = per_cu->cu->dwo_unit;
11188 gdb_assert (dwo_unit != NULL);
11189
11190 dwo_file = dwo_unit->dwo_file;
11191 if (dwo_file->tus != NULL)
11192 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11193}
11194
3019eac3
DE
11195/* Free all resources associated with DWO_FILE.
11196 Close the DWO file and munmap the sections.
11197 All memory should be on the objfile obstack. */
348e048f
DE
11198
11199static void
3019eac3 11200free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11201{
348e048f 11202
5c6fa7ab 11203 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11204 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11205
3019eac3
DE
11206 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11207}
348e048f 11208
3019eac3 11209/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11210
3019eac3
DE
11211static void
11212free_dwo_file_cleanup (void *arg)
11213{
11214 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11215 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11216
3019eac3
DE
11217 free_dwo_file (dwo_file, objfile);
11218}
348e048f 11219
3019eac3 11220/* Traversal function for free_dwo_files. */
2ab95328 11221
3019eac3
DE
11222static int
11223free_dwo_file_from_slot (void **slot, void *info)
11224{
11225 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11226 struct objfile *objfile = (struct objfile *) info;
348e048f 11227
3019eac3 11228 free_dwo_file (dwo_file, objfile);
348e048f 11229
3019eac3
DE
11230 return 1;
11231}
348e048f 11232
3019eac3 11233/* Free all resources associated with DWO_FILES. */
348e048f 11234
3019eac3
DE
11235static void
11236free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11237{
11238 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11239}
3019eac3
DE
11240\f
11241/* Read in various DIEs. */
348e048f 11242
d389af10
JK
11243/* qsort helper for inherit_abstract_dies. */
11244
11245static int
11246unsigned_int_compar (const void *ap, const void *bp)
11247{
11248 unsigned int a = *(unsigned int *) ap;
11249 unsigned int b = *(unsigned int *) bp;
11250
11251 return (a > b) - (b > a);
11252}
11253
11254/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11255 Inherit only the children of the DW_AT_abstract_origin DIE not being
11256 already referenced by DW_AT_abstract_origin from the children of the
11257 current DIE. */
d389af10
JK
11258
11259static void
11260inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11261{
11262 struct die_info *child_die;
11263 unsigned die_children_count;
11264 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11265 sect_offset *offsets;
11266 sect_offset *offsets_end, *offsetp;
d389af10
JK
11267 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11268 struct die_info *origin_die;
11269 /* Iterator of the ORIGIN_DIE children. */
11270 struct die_info *origin_child_die;
11271 struct cleanup *cleanups;
11272 struct attribute *attr;
cd02d79d
PA
11273 struct dwarf2_cu *origin_cu;
11274 struct pending **origin_previous_list_in_scope;
d389af10
JK
11275
11276 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11277 if (!attr)
11278 return;
11279
cd02d79d
PA
11280 /* Note that following die references may follow to a die in a
11281 different cu. */
11282
11283 origin_cu = cu;
11284 origin_die = follow_die_ref (die, attr, &origin_cu);
11285
11286 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11287 symbols in. */
11288 origin_previous_list_in_scope = origin_cu->list_in_scope;
11289 origin_cu->list_in_scope = cu->list_in_scope;
11290
edb3359d
DJ
11291 if (die->tag != origin_die->tag
11292 && !(die->tag == DW_TAG_inlined_subroutine
11293 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11294 complaint (&symfile_complaints,
11295 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11296 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11297
11298 child_die = die->child;
11299 die_children_count = 0;
11300 while (child_die && child_die->tag)
11301 {
11302 child_die = sibling_die (child_die);
11303 die_children_count++;
11304 }
8d749320 11305 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11306 cleanups = make_cleanup (xfree, offsets);
11307
11308 offsets_end = offsets;
3ea89b92
PMR
11309 for (child_die = die->child;
11310 child_die && child_die->tag;
11311 child_die = sibling_die (child_die))
11312 {
11313 struct die_info *child_origin_die;
11314 struct dwarf2_cu *child_origin_cu;
11315
11316 /* We are trying to process concrete instance entries:
11317 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11318 it's not relevant to our analysis here. i.e. detecting DIEs that are
11319 present in the abstract instance but not referenced in the concrete
11320 one. */
11321 if (child_die->tag == DW_TAG_GNU_call_site)
11322 continue;
11323
c38f313d
DJ
11324 /* For each CHILD_DIE, find the corresponding child of
11325 ORIGIN_DIE. If there is more than one layer of
11326 DW_AT_abstract_origin, follow them all; there shouldn't be,
11327 but GCC versions at least through 4.4 generate this (GCC PR
11328 40573). */
3ea89b92
PMR
11329 child_origin_die = child_die;
11330 child_origin_cu = cu;
c38f313d
DJ
11331 while (1)
11332 {
cd02d79d
PA
11333 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11334 child_origin_cu);
c38f313d
DJ
11335 if (attr == NULL)
11336 break;
cd02d79d
PA
11337 child_origin_die = follow_die_ref (child_origin_die, attr,
11338 &child_origin_cu);
c38f313d
DJ
11339 }
11340
d389af10
JK
11341 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11342 counterpart may exist. */
c38f313d 11343 if (child_origin_die != child_die)
d389af10 11344 {
edb3359d
DJ
11345 if (child_die->tag != child_origin_die->tag
11346 && !(child_die->tag == DW_TAG_inlined_subroutine
11347 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11348 complaint (&symfile_complaints,
11349 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11350 "different tags"), child_die->offset.sect_off,
11351 child_origin_die->offset.sect_off);
c38f313d
DJ
11352 if (child_origin_die->parent != origin_die)
11353 complaint (&symfile_complaints,
11354 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11355 "different parents"), child_die->offset.sect_off,
11356 child_origin_die->offset.sect_off);
c38f313d
DJ
11357 else
11358 *offsets_end++ = child_origin_die->offset;
d389af10 11359 }
d389af10
JK
11360 }
11361 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11362 unsigned_int_compar);
11363 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11364 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11365 complaint (&symfile_complaints,
11366 _("Multiple children of DIE 0x%x refer "
11367 "to DIE 0x%x as their abstract origin"),
b64f50a1 11368 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11369
11370 offsetp = offsets;
11371 origin_child_die = origin_die->child;
11372 while (origin_child_die && origin_child_die->tag)
11373 {
11374 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11375 while (offsetp < offsets_end
11376 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11377 offsetp++;
b64f50a1
JK
11378 if (offsetp >= offsets_end
11379 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11380 {
adde2bff
DE
11381 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11382 Check whether we're already processing ORIGIN_CHILD_DIE.
11383 This can happen with mutually referenced abstract_origins.
11384 PR 16581. */
11385 if (!origin_child_die->in_process)
11386 process_die (origin_child_die, origin_cu);
d389af10
JK
11387 }
11388 origin_child_die = sibling_die (origin_child_die);
11389 }
cd02d79d 11390 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11391
11392 do_cleanups (cleanups);
11393}
11394
c906108c 11395static void
e7c27a73 11396read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11397{
e7c27a73 11398 struct objfile *objfile = cu->objfile;
3e29f34a 11399 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11400 struct context_stack *newobj;
c906108c
SS
11401 CORE_ADDR lowpc;
11402 CORE_ADDR highpc;
11403 struct die_info *child_die;
edb3359d 11404 struct attribute *attr, *call_line, *call_file;
15d034d0 11405 const char *name;
e142c38c 11406 CORE_ADDR baseaddr;
801e3a5b 11407 struct block *block;
edb3359d 11408 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11409 VEC (symbolp) *template_args = NULL;
11410 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11411
11412 if (inlined_func)
11413 {
11414 /* If we do not have call site information, we can't show the
11415 caller of this inlined function. That's too confusing, so
11416 only use the scope for local variables. */
11417 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11418 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11419 if (call_line == NULL || call_file == NULL)
11420 {
11421 read_lexical_block_scope (die, cu);
11422 return;
11423 }
11424 }
c906108c 11425
e142c38c
DJ
11426 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11427
94af9270 11428 name = dwarf2_name (die, cu);
c906108c 11429
e8d05480
JB
11430 /* Ignore functions with missing or empty names. These are actually
11431 illegal according to the DWARF standard. */
11432 if (name == NULL)
11433 {
11434 complaint (&symfile_complaints,
b64f50a1
JK
11435 _("missing name for subprogram DIE at %d"),
11436 die->offset.sect_off);
e8d05480
JB
11437 return;
11438 }
11439
11440 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11441 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11442 <= PC_BOUNDS_INVALID)
e8d05480 11443 {
ae4d0c03
PM
11444 attr = dwarf2_attr (die, DW_AT_external, cu);
11445 if (!attr || !DW_UNSND (attr))
11446 complaint (&symfile_complaints,
3e43a32a
MS
11447 _("cannot get low and high bounds "
11448 "for subprogram DIE at %d"),
b64f50a1 11449 die->offset.sect_off);
e8d05480
JB
11450 return;
11451 }
c906108c 11452
3e29f34a
MR
11453 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11454 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11455
34eaf542
TT
11456 /* If we have any template arguments, then we must allocate a
11457 different sort of symbol. */
11458 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11459 {
11460 if (child_die->tag == DW_TAG_template_type_param
11461 || child_die->tag == DW_TAG_template_value_param)
11462 {
e623cf5d 11463 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11464 templ_func->base.is_cplus_template_function = 1;
11465 break;
11466 }
11467 }
11468
fe978cb0
PA
11469 newobj = push_context (0, lowpc);
11470 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11471 (struct symbol *) templ_func);
4c2df51b 11472
4cecd739
DJ
11473 /* If there is a location expression for DW_AT_frame_base, record
11474 it. */
e142c38c 11475 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11476 if (attr)
fe978cb0 11477 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11478
63e43d3a
PMR
11479 /* If there is a location for the static link, record it. */
11480 newobj->static_link = NULL;
11481 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11482 if (attr)
11483 {
224c3ddb
SM
11484 newobj->static_link
11485 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11486 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11487 }
11488
e142c38c 11489 cu->list_in_scope = &local_symbols;
c906108c 11490
639d11d3 11491 if (die->child != NULL)
c906108c 11492 {
639d11d3 11493 child_die = die->child;
c906108c
SS
11494 while (child_die && child_die->tag)
11495 {
34eaf542
TT
11496 if (child_die->tag == DW_TAG_template_type_param
11497 || child_die->tag == DW_TAG_template_value_param)
11498 {
11499 struct symbol *arg = new_symbol (child_die, NULL, cu);
11500
f1078f66
DJ
11501 if (arg != NULL)
11502 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11503 }
11504 else
11505 process_die (child_die, cu);
c906108c
SS
11506 child_die = sibling_die (child_die);
11507 }
11508 }
11509
d389af10
JK
11510 inherit_abstract_dies (die, cu);
11511
4a811a97
UW
11512 /* If we have a DW_AT_specification, we might need to import using
11513 directives from the context of the specification DIE. See the
11514 comment in determine_prefix. */
11515 if (cu->language == language_cplus
11516 && dwarf2_attr (die, DW_AT_specification, cu))
11517 {
11518 struct dwarf2_cu *spec_cu = cu;
11519 struct die_info *spec_die = die_specification (die, &spec_cu);
11520
11521 while (spec_die)
11522 {
11523 child_die = spec_die->child;
11524 while (child_die && child_die->tag)
11525 {
11526 if (child_die->tag == DW_TAG_imported_module)
11527 process_die (child_die, spec_cu);
11528 child_die = sibling_die (child_die);
11529 }
11530
11531 /* In some cases, GCC generates specification DIEs that
11532 themselves contain DW_AT_specification attributes. */
11533 spec_die = die_specification (spec_die, &spec_cu);
11534 }
11535 }
11536
fe978cb0 11537 newobj = pop_context ();
c906108c 11538 /* Make a block for the local symbols within. */
fe978cb0 11539 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11540 newobj->static_link, lowpc, highpc);
801e3a5b 11541
df8a16a1 11542 /* For C++, set the block's scope. */
45280282
IB
11543 if ((cu->language == language_cplus
11544 || cu->language == language_fortran
c44af4eb
TT
11545 || cu->language == language_d
11546 || cu->language == language_rust)
4d4ec4e5 11547 && cu->processing_has_namespace_info)
195a3f6c
TT
11548 block_set_scope (block, determine_prefix (die, cu),
11549 &objfile->objfile_obstack);
df8a16a1 11550
801e3a5b
JB
11551 /* If we have address ranges, record them. */
11552 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11553
fe978cb0 11554 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11555
34eaf542
TT
11556 /* Attach template arguments to function. */
11557 if (! VEC_empty (symbolp, template_args))
11558 {
11559 gdb_assert (templ_func != NULL);
11560
11561 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11562 templ_func->template_arguments
8d749320
SM
11563 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11564 templ_func->n_template_arguments);
34eaf542
TT
11565 memcpy (templ_func->template_arguments,
11566 VEC_address (symbolp, template_args),
11567 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11568 VEC_free (symbolp, template_args);
11569 }
11570
208d8187
JB
11571 /* In C++, we can have functions nested inside functions (e.g., when
11572 a function declares a class that has methods). This means that
11573 when we finish processing a function scope, we may need to go
11574 back to building a containing block's symbol lists. */
fe978cb0 11575 local_symbols = newobj->locals;
22cee43f 11576 local_using_directives = newobj->local_using_directives;
208d8187 11577
921e78cf
JB
11578 /* If we've finished processing a top-level function, subsequent
11579 symbols go in the file symbol list. */
11580 if (outermost_context_p ())
e142c38c 11581 cu->list_in_scope = &file_symbols;
c906108c
SS
11582}
11583
11584/* Process all the DIES contained within a lexical block scope. Start
11585 a new scope, process the dies, and then close the scope. */
11586
11587static void
e7c27a73 11588read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11589{
e7c27a73 11590 struct objfile *objfile = cu->objfile;
3e29f34a 11591 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11592 struct context_stack *newobj;
c906108c
SS
11593 CORE_ADDR lowpc, highpc;
11594 struct die_info *child_die;
e142c38c
DJ
11595 CORE_ADDR baseaddr;
11596
11597 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11598
11599 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11600 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11601 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11602 be nasty. Might be easier to properly extend generic blocks to
af34e669 11603 describe ranges. */
e385593e
JK
11604 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11605 {
11606 case PC_BOUNDS_NOT_PRESENT:
11607 /* DW_TAG_lexical_block has no attributes, process its children as if
11608 there was no wrapping by that DW_TAG_lexical_block.
11609 GCC does no longer produces such DWARF since GCC r224161. */
11610 for (child_die = die->child;
11611 child_die != NULL && child_die->tag;
11612 child_die = sibling_die (child_die))
11613 process_die (child_die, cu);
11614 return;
11615 case PC_BOUNDS_INVALID:
11616 return;
11617 }
3e29f34a
MR
11618 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11619 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11620
11621 push_context (0, lowpc);
639d11d3 11622 if (die->child != NULL)
c906108c 11623 {
639d11d3 11624 child_die = die->child;
c906108c
SS
11625 while (child_die && child_die->tag)
11626 {
e7c27a73 11627 process_die (child_die, cu);
c906108c
SS
11628 child_die = sibling_die (child_die);
11629 }
11630 }
3ea89b92 11631 inherit_abstract_dies (die, cu);
fe978cb0 11632 newobj = pop_context ();
c906108c 11633
22cee43f 11634 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11635 {
801e3a5b 11636 struct block *block
63e43d3a 11637 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11638 newobj->start_addr, highpc);
801e3a5b
JB
11639
11640 /* Note that recording ranges after traversing children, as we
11641 do here, means that recording a parent's ranges entails
11642 walking across all its children's ranges as they appear in
11643 the address map, which is quadratic behavior.
11644
11645 It would be nicer to record the parent's ranges before
11646 traversing its children, simply overriding whatever you find
11647 there. But since we don't even decide whether to create a
11648 block until after we've traversed its children, that's hard
11649 to do. */
11650 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11651 }
fe978cb0 11652 local_symbols = newobj->locals;
22cee43f 11653 local_using_directives = newobj->local_using_directives;
c906108c
SS
11654}
11655
96408a79
SA
11656/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11657
11658static void
11659read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11660{
11661 struct objfile *objfile = cu->objfile;
11662 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11663 CORE_ADDR pc, baseaddr;
11664 struct attribute *attr;
11665 struct call_site *call_site, call_site_local;
11666 void **slot;
11667 int nparams;
11668 struct die_info *child_die;
11669
11670 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11671
11672 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11673 if (!attr)
11674 {
11675 complaint (&symfile_complaints,
11676 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11677 "DIE 0x%x [in module %s]"),
4262abfb 11678 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11679 return;
11680 }
31aa7e4e 11681 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11682 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11683
11684 if (cu->call_site_htab == NULL)
11685 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11686 NULL, &objfile->objfile_obstack,
11687 hashtab_obstack_allocate, NULL);
11688 call_site_local.pc = pc;
11689 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11690 if (*slot != NULL)
11691 {
11692 complaint (&symfile_complaints,
11693 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11694 "DIE 0x%x [in module %s]"),
4262abfb
JK
11695 paddress (gdbarch, pc), die->offset.sect_off,
11696 objfile_name (objfile));
96408a79
SA
11697 return;
11698 }
11699
11700 /* Count parameters at the caller. */
11701
11702 nparams = 0;
11703 for (child_die = die->child; child_die && child_die->tag;
11704 child_die = sibling_die (child_die))
11705 {
11706 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11707 {
11708 complaint (&symfile_complaints,
11709 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11710 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11711 child_die->tag, child_die->offset.sect_off,
11712 objfile_name (objfile));
96408a79
SA
11713 continue;
11714 }
11715
11716 nparams++;
11717 }
11718
224c3ddb
SM
11719 call_site
11720 = ((struct call_site *)
11721 obstack_alloc (&objfile->objfile_obstack,
11722 sizeof (*call_site)
11723 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11724 *slot = call_site;
11725 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11726 call_site->pc = pc;
11727
11728 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11729 {
11730 struct die_info *func_die;
11731
11732 /* Skip also over DW_TAG_inlined_subroutine. */
11733 for (func_die = die->parent;
11734 func_die && func_die->tag != DW_TAG_subprogram
11735 && func_die->tag != DW_TAG_subroutine_type;
11736 func_die = func_die->parent);
11737
11738 /* DW_AT_GNU_all_call_sites is a superset
11739 of DW_AT_GNU_all_tail_call_sites. */
11740 if (func_die
11741 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11742 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11743 {
11744 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11745 not complete. But keep CALL_SITE for look ups via call_site_htab,
11746 both the initial caller containing the real return address PC and
11747 the final callee containing the current PC of a chain of tail
11748 calls do not need to have the tail call list complete. But any
11749 function candidate for a virtual tail call frame searched via
11750 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11751 determined unambiguously. */
11752 }
11753 else
11754 {
11755 struct type *func_type = NULL;
11756
11757 if (func_die)
11758 func_type = get_die_type (func_die, cu);
11759 if (func_type != NULL)
11760 {
11761 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11762
11763 /* Enlist this call site to the function. */
11764 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11765 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11766 }
11767 else
11768 complaint (&symfile_complaints,
11769 _("Cannot find function owning DW_TAG_GNU_call_site "
11770 "DIE 0x%x [in module %s]"),
4262abfb 11771 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11772 }
11773 }
11774
11775 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11776 if (attr == NULL)
11777 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11778 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11779 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11780 /* Keep NULL DWARF_BLOCK. */;
11781 else if (attr_form_is_block (attr))
11782 {
11783 struct dwarf2_locexpr_baton *dlbaton;
11784
8d749320 11785 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11786 dlbaton->data = DW_BLOCK (attr)->data;
11787 dlbaton->size = DW_BLOCK (attr)->size;
11788 dlbaton->per_cu = cu->per_cu;
11789
11790 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11791 }
7771576e 11792 else if (attr_form_is_ref (attr))
96408a79 11793 {
96408a79
SA
11794 struct dwarf2_cu *target_cu = cu;
11795 struct die_info *target_die;
11796
ac9ec31b 11797 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11798 gdb_assert (target_cu->objfile == objfile);
11799 if (die_is_declaration (target_die, target_cu))
11800 {
7d45c7c3 11801 const char *target_physname;
9112db09
JK
11802
11803 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11804 target_physname = dwarf2_string_attr (target_die,
11805 DW_AT_linkage_name,
11806 target_cu);
11807 if (target_physname == NULL)
11808 target_physname = dwarf2_string_attr (target_die,
11809 DW_AT_MIPS_linkage_name,
11810 target_cu);
11811 if (target_physname == NULL)
9112db09 11812 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11813 if (target_physname == NULL)
11814 complaint (&symfile_complaints,
11815 _("DW_AT_GNU_call_site_target target DIE has invalid "
11816 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11817 die->offset.sect_off, objfile_name (objfile));
96408a79 11818 else
7d455152 11819 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11820 }
11821 else
11822 {
11823 CORE_ADDR lowpc;
11824
11825 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11826 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11827 <= PC_BOUNDS_INVALID)
96408a79
SA
11828 complaint (&symfile_complaints,
11829 _("DW_AT_GNU_call_site_target target DIE has invalid "
11830 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11831 die->offset.sect_off, objfile_name (objfile));
96408a79 11832 else
3e29f34a
MR
11833 {
11834 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11835 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11836 }
96408a79
SA
11837 }
11838 }
11839 else
11840 complaint (&symfile_complaints,
11841 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11842 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11843 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11844
11845 call_site->per_cu = cu->per_cu;
11846
11847 for (child_die = die->child;
11848 child_die && child_die->tag;
11849 child_die = sibling_die (child_die))
11850 {
96408a79 11851 struct call_site_parameter *parameter;
1788b2d3 11852 struct attribute *loc, *origin;
96408a79
SA
11853
11854 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11855 {
11856 /* Already printed the complaint above. */
11857 continue;
11858 }
11859
11860 gdb_assert (call_site->parameter_count < nparams);
11861 parameter = &call_site->parameter[call_site->parameter_count];
11862
1788b2d3
JK
11863 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11864 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11865 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11866
24c5c679 11867 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11868 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11869 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11870 {
11871 sect_offset offset;
11872
11873 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11874 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11875 if (!offset_in_cu_p (&cu->header, offset))
11876 {
11877 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11878 binding can be done only inside one CU. Such referenced DIE
11879 therefore cannot be even moved to DW_TAG_partial_unit. */
11880 complaint (&symfile_complaints,
11881 _("DW_AT_abstract_origin offset is not in CU for "
11882 "DW_TAG_GNU_call_site child DIE 0x%x "
11883 "[in module %s]"),
4262abfb 11884 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11885 continue;
11886 }
1788b2d3
JK
11887 parameter->u.param_offset.cu_off = (offset.sect_off
11888 - cu->header.offset.sect_off);
11889 }
11890 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11891 {
11892 complaint (&symfile_complaints,
11893 _("No DW_FORM_block* DW_AT_location for "
11894 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11895 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11896 continue;
11897 }
24c5c679 11898 else
96408a79 11899 {
24c5c679
JK
11900 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11901 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11902 if (parameter->u.dwarf_reg != -1)
11903 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11904 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11905 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11906 &parameter->u.fb_offset))
11907 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11908 else
11909 {
11910 complaint (&symfile_complaints,
11911 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11912 "for DW_FORM_block* DW_AT_location is supported for "
11913 "DW_TAG_GNU_call_site child DIE 0x%x "
11914 "[in module %s]"),
4262abfb 11915 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11916 continue;
11917 }
96408a79
SA
11918 }
11919
11920 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11921 if (!attr_form_is_block (attr))
11922 {
11923 complaint (&symfile_complaints,
11924 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11925 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11926 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11927 continue;
11928 }
11929 parameter->value = DW_BLOCK (attr)->data;
11930 parameter->value_size = DW_BLOCK (attr)->size;
11931
11932 /* Parameters are not pre-cleared by memset above. */
11933 parameter->data_value = NULL;
11934 parameter->data_value_size = 0;
11935 call_site->parameter_count++;
11936
11937 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11938 if (attr)
11939 {
11940 if (!attr_form_is_block (attr))
11941 complaint (&symfile_complaints,
11942 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11943 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11944 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11945 else
11946 {
11947 parameter->data_value = DW_BLOCK (attr)->data;
11948 parameter->data_value_size = DW_BLOCK (attr)->size;
11949 }
11950 }
11951 }
11952}
11953
43988095
JK
11954/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
11955 reading .debug_rnglists.
11956 Callback's type should be:
11957 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
11958 Return true if the attributes are present and valid, otherwise,
11959 return false. */
11960
11961template <typename Callback>
11962static bool
11963dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
11964 Callback &&callback)
11965{
11966 struct objfile *objfile = cu->objfile;
11967 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11968 struct comp_unit_head *cu_header = &cu->header;
11969 bfd *obfd = objfile->obfd;
11970 unsigned int addr_size = cu_header->addr_size;
11971 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11972 /* Base address selection entry. */
11973 CORE_ADDR base;
11974 int found_base;
11975 unsigned int dummy;
11976 const gdb_byte *buffer;
11977 CORE_ADDR low = 0;
11978 CORE_ADDR high = 0;
11979 CORE_ADDR baseaddr;
11980 bool overflow = false;
11981
11982 found_base = cu->base_known;
11983 base = cu->base_address;
11984
11985 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
11986 if (offset >= dwarf2_per_objfile->rnglists.size)
11987 {
11988 complaint (&symfile_complaints,
11989 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11990 offset);
11991 return false;
11992 }
11993 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
11994
11995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11996
11997 while (1)
11998 {
11999 CORE_ADDR range_beginning, range_end;
12000 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12001 + dwarf2_per_objfile->rnglists.size);
12002 unsigned int bytes_read;
12003
12004 if (buffer == buf_end)
12005 {
12006 overflow = true;
12007 break;
12008 }
12009 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12010 switch (rlet)
12011 {
12012 case DW_RLE_end_of_list:
12013 break;
12014 case DW_RLE_base_address:
12015 if (buffer + cu->header.addr_size > buf_end)
12016 {
12017 overflow = true;
12018 break;
12019 }
12020 base = read_address (obfd, buffer, cu, &bytes_read);
12021 found_base = 1;
12022 buffer += bytes_read;
12023 break;
12024 case DW_RLE_start_length:
12025 if (buffer + cu->header.addr_size > buf_end)
12026 {
12027 overflow = true;
12028 break;
12029 }
12030 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12031 buffer += bytes_read;
12032 range_end = (range_beginning
12033 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12034 buffer += bytes_read;
12035 if (buffer > buf_end)
12036 {
12037 overflow = true;
12038 break;
12039 }
12040 break;
12041 case DW_RLE_offset_pair:
12042 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12043 buffer += bytes_read;
12044 if (buffer > buf_end)
12045 {
12046 overflow = true;
12047 break;
12048 }
12049 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12050 buffer += bytes_read;
12051 if (buffer > buf_end)
12052 {
12053 overflow = true;
12054 break;
12055 }
12056 break;
12057 case DW_RLE_start_end:
12058 if (buffer + 2 * cu->header.addr_size > buf_end)
12059 {
12060 overflow = true;
12061 break;
12062 }
12063 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12064 buffer += bytes_read;
12065 range_end = read_address (obfd, buffer, cu, &bytes_read);
12066 buffer += bytes_read;
12067 break;
12068 default:
12069 complaint (&symfile_complaints,
12070 _("Invalid .debug_rnglists data (no base address)"));
12071 return false;
12072 }
12073 if (rlet == DW_RLE_end_of_list || overflow)
12074 break;
12075 if (rlet == DW_RLE_base_address)
12076 continue;
12077
12078 if (!found_base)
12079 {
12080 /* We have no valid base address for the ranges
12081 data. */
12082 complaint (&symfile_complaints,
12083 _("Invalid .debug_rnglists data (no base address)"));
12084 return false;
12085 }
12086
12087 if (range_beginning > range_end)
12088 {
12089 /* Inverted range entries are invalid. */
12090 complaint (&symfile_complaints,
12091 _("Invalid .debug_rnglists data (inverted range)"));
12092 return false;
12093 }
12094
12095 /* Empty range entries have no effect. */
12096 if (range_beginning == range_end)
12097 continue;
12098
12099 range_beginning += base;
12100 range_end += base;
12101
12102 /* A not-uncommon case of bad debug info.
12103 Don't pollute the addrmap with bad data. */
12104 if (range_beginning + baseaddr == 0
12105 && !dwarf2_per_objfile->has_section_at_zero)
12106 {
12107 complaint (&symfile_complaints,
12108 _(".debug_rnglists entry has start address of zero"
12109 " [in module %s]"), objfile_name (objfile));
12110 continue;
12111 }
12112
12113 callback (range_beginning, range_end);
12114 }
12115
12116 if (overflow)
12117 {
12118 complaint (&symfile_complaints,
12119 _("Offset %d is not terminated "
12120 "for DW_AT_ranges attribute"),
12121 offset);
12122 return false;
12123 }
12124
12125 return true;
12126}
12127
12128/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12129 Callback's type should be:
12130 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12131 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12132
43988095 12133template <typename Callback>
43039443 12134static int
5f46c5a5 12135dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12136 Callback &&callback)
43039443
JK
12137{
12138 struct objfile *objfile = cu->objfile;
3e29f34a 12139 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12140 struct comp_unit_head *cu_header = &cu->header;
12141 bfd *obfd = objfile->obfd;
12142 unsigned int addr_size = cu_header->addr_size;
12143 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12144 /* Base address selection entry. */
12145 CORE_ADDR base;
12146 int found_base;
12147 unsigned int dummy;
d521ce57 12148 const gdb_byte *buffer;
ff013f42 12149 CORE_ADDR baseaddr;
43039443 12150
43988095
JK
12151 if (cu_header->version >= 5)
12152 return dwarf2_rnglists_process (offset, cu, callback);
12153
d00adf39
DE
12154 found_base = cu->base_known;
12155 base = cu->base_address;
43039443 12156
be391dca 12157 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12158 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12159 {
12160 complaint (&symfile_complaints,
12161 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12162 offset);
12163 return 0;
12164 }
dce234bc 12165 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12166
e7030f15 12167 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12168
43039443
JK
12169 while (1)
12170 {
12171 CORE_ADDR range_beginning, range_end;
12172
12173 range_beginning = read_address (obfd, buffer, cu, &dummy);
12174 buffer += addr_size;
12175 range_end = read_address (obfd, buffer, cu, &dummy);
12176 buffer += addr_size;
12177 offset += 2 * addr_size;
12178
12179 /* An end of list marker is a pair of zero addresses. */
12180 if (range_beginning == 0 && range_end == 0)
12181 /* Found the end of list entry. */
12182 break;
12183
12184 /* Each base address selection entry is a pair of 2 values.
12185 The first is the largest possible address, the second is
12186 the base address. Check for a base address here. */
12187 if ((range_beginning & mask) == mask)
12188 {
28d2bfb9
AB
12189 /* If we found the largest possible address, then we already
12190 have the base address in range_end. */
12191 base = range_end;
43039443
JK
12192 found_base = 1;
12193 continue;
12194 }
12195
12196 if (!found_base)
12197 {
12198 /* We have no valid base address for the ranges
12199 data. */
12200 complaint (&symfile_complaints,
12201 _("Invalid .debug_ranges data (no base address)"));
12202 return 0;
12203 }
12204
9277c30c
UW
12205 if (range_beginning > range_end)
12206 {
12207 /* Inverted range entries are invalid. */
12208 complaint (&symfile_complaints,
12209 _("Invalid .debug_ranges data (inverted range)"));
12210 return 0;
12211 }
12212
12213 /* Empty range entries have no effect. */
12214 if (range_beginning == range_end)
12215 continue;
12216
43039443
JK
12217 range_beginning += base;
12218 range_end += base;
12219
01093045
DE
12220 /* A not-uncommon case of bad debug info.
12221 Don't pollute the addrmap with bad data. */
12222 if (range_beginning + baseaddr == 0
12223 && !dwarf2_per_objfile->has_section_at_zero)
12224 {
12225 complaint (&symfile_complaints,
12226 _(".debug_ranges entry has start address of zero"
4262abfb 12227 " [in module %s]"), objfile_name (objfile));
01093045
DE
12228 continue;
12229 }
12230
5f46c5a5
JK
12231 callback (range_beginning, range_end);
12232 }
12233
12234 return 1;
12235}
12236
12237/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12238 Return 1 if the attributes are present and valid, otherwise, return 0.
12239 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12240
12241static int
12242dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12243 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12244 struct partial_symtab *ranges_pst)
12245{
12246 struct objfile *objfile = cu->objfile;
12247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12248 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12249 SECT_OFF_TEXT (objfile));
12250 int low_set = 0;
12251 CORE_ADDR low = 0;
12252 CORE_ADDR high = 0;
12253 int retval;
12254
12255 retval = dwarf2_ranges_process (offset, cu,
12256 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12257 {
9277c30c 12258 if (ranges_pst != NULL)
3e29f34a
MR
12259 {
12260 CORE_ADDR lowpc;
12261 CORE_ADDR highpc;
12262
12263 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12264 range_beginning + baseaddr);
12265 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12266 range_end + baseaddr);
12267 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12268 ranges_pst);
12269 }
ff013f42 12270
43039443
JK
12271 /* FIXME: This is recording everything as a low-high
12272 segment of consecutive addresses. We should have a
12273 data structure for discontiguous block ranges
12274 instead. */
12275 if (! low_set)
12276 {
12277 low = range_beginning;
12278 high = range_end;
12279 low_set = 1;
12280 }
12281 else
12282 {
12283 if (range_beginning < low)
12284 low = range_beginning;
12285 if (range_end > high)
12286 high = range_end;
12287 }
5f46c5a5
JK
12288 });
12289 if (!retval)
12290 return 0;
43039443
JK
12291
12292 if (! low_set)
12293 /* If the first entry is an end-of-list marker, the range
12294 describes an empty scope, i.e. no instructions. */
12295 return 0;
12296
12297 if (low_return)
12298 *low_return = low;
12299 if (high_return)
12300 *high_return = high;
12301 return 1;
12302}
12303
3a2b436a
JK
12304/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12305 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12306 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12307
3a2b436a 12308static enum pc_bounds_kind
af34e669 12309dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12310 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12311 struct partial_symtab *pst)
c906108c
SS
12312{
12313 struct attribute *attr;
91da1414 12314 struct attribute *attr_high;
af34e669
DJ
12315 CORE_ADDR low = 0;
12316 CORE_ADDR high = 0;
e385593e 12317 enum pc_bounds_kind ret;
c906108c 12318
91da1414
MW
12319 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12320 if (attr_high)
af34e669 12321 {
e142c38c 12322 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12323 if (attr)
91da1414 12324 {
31aa7e4e
JB
12325 low = attr_value_as_address (attr);
12326 high = attr_value_as_address (attr_high);
12327 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12328 high += low;
91da1414 12329 }
af34e669
DJ
12330 else
12331 /* Found high w/o low attribute. */
e385593e 12332 return PC_BOUNDS_INVALID;
af34e669
DJ
12333
12334 /* Found consecutive range of addresses. */
3a2b436a 12335 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12336 }
c906108c 12337 else
af34e669 12338 {
e142c38c 12339 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12340 if (attr != NULL)
12341 {
ab435259
DE
12342 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12343 We take advantage of the fact that DW_AT_ranges does not appear
12344 in DW_TAG_compile_unit of DWO files. */
12345 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12346 unsigned int ranges_offset = (DW_UNSND (attr)
12347 + (need_ranges_base
12348 ? cu->ranges_base
12349 : 0));
2e3cf129 12350
af34e669 12351 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12352 .debug_ranges section. */
2e3cf129 12353 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12354 return PC_BOUNDS_INVALID;
43039443 12355 /* Found discontinuous range of addresses. */
3a2b436a 12356 ret = PC_BOUNDS_RANGES;
af34e669 12357 }
e385593e
JK
12358 else
12359 return PC_BOUNDS_NOT_PRESENT;
af34e669 12360 }
c906108c 12361
9373cf26
JK
12362 /* read_partial_die has also the strict LOW < HIGH requirement. */
12363 if (high <= low)
e385593e 12364 return PC_BOUNDS_INVALID;
c906108c
SS
12365
12366 /* When using the GNU linker, .gnu.linkonce. sections are used to
12367 eliminate duplicate copies of functions and vtables and such.
12368 The linker will arbitrarily choose one and discard the others.
12369 The AT_*_pc values for such functions refer to local labels in
12370 these sections. If the section from that file was discarded, the
12371 labels are not in the output, so the relocs get a value of 0.
12372 If this is a discarded function, mark the pc bounds as invalid,
12373 so that GDB will ignore it. */
72dca2f5 12374 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12375 return PC_BOUNDS_INVALID;
c906108c
SS
12376
12377 *lowpc = low;
96408a79
SA
12378 if (highpc)
12379 *highpc = high;
af34e669 12380 return ret;
c906108c
SS
12381}
12382
b084d499
JB
12383/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12384 its low and high PC addresses. Do nothing if these addresses could not
12385 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12386 and HIGHPC to the high address if greater than HIGHPC. */
12387
12388static void
12389dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12391 struct dwarf2_cu *cu)
12392{
12393 CORE_ADDR low, high;
12394 struct die_info *child = die->child;
12395
e385593e 12396 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12397 {
325fac50
PA
12398 *lowpc = std::min (*lowpc, low);
12399 *highpc = std::max (*highpc, high);
b084d499
JB
12400 }
12401
12402 /* If the language does not allow nested subprograms (either inside
12403 subprograms or lexical blocks), we're done. */
12404 if (cu->language != language_ada)
12405 return;
6e70227d 12406
b084d499
JB
12407 /* Check all the children of the given DIE. If it contains nested
12408 subprograms, then check their pc bounds. Likewise, we need to
12409 check lexical blocks as well, as they may also contain subprogram
12410 definitions. */
12411 while (child && child->tag)
12412 {
12413 if (child->tag == DW_TAG_subprogram
12414 || child->tag == DW_TAG_lexical_block)
12415 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12416 child = sibling_die (child);
12417 }
12418}
12419
fae299cd
DC
12420/* Get the low and high pc's represented by the scope DIE, and store
12421 them in *LOWPC and *HIGHPC. If the correct values can't be
12422 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12423
12424static void
12425get_scope_pc_bounds (struct die_info *die,
12426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12427 struct dwarf2_cu *cu)
12428{
12429 CORE_ADDR best_low = (CORE_ADDR) -1;
12430 CORE_ADDR best_high = (CORE_ADDR) 0;
12431 CORE_ADDR current_low, current_high;
12432
3a2b436a 12433 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12434 >= PC_BOUNDS_RANGES)
fae299cd
DC
12435 {
12436 best_low = current_low;
12437 best_high = current_high;
12438 }
12439 else
12440 {
12441 struct die_info *child = die->child;
12442
12443 while (child && child->tag)
12444 {
12445 switch (child->tag) {
12446 case DW_TAG_subprogram:
b084d499 12447 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12448 break;
12449 case DW_TAG_namespace:
f55ee35c 12450 case DW_TAG_module:
fae299cd
DC
12451 /* FIXME: carlton/2004-01-16: Should we do this for
12452 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12453 that current GCC's always emit the DIEs corresponding
12454 to definitions of methods of classes as children of a
12455 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12456 the DIEs giving the declarations, which could be
12457 anywhere). But I don't see any reason why the
12458 standards says that they have to be there. */
12459 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12460
12461 if (current_low != ((CORE_ADDR) -1))
12462 {
325fac50
PA
12463 best_low = std::min (best_low, current_low);
12464 best_high = std::max (best_high, current_high);
fae299cd
DC
12465 }
12466 break;
12467 default:
0963b4bd 12468 /* Ignore. */
fae299cd
DC
12469 break;
12470 }
12471
12472 child = sibling_die (child);
12473 }
12474 }
12475
12476 *lowpc = best_low;
12477 *highpc = best_high;
12478}
12479
801e3a5b
JB
12480/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12481 in DIE. */
380bca97 12482
801e3a5b
JB
12483static void
12484dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12485 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12486{
bb5ed363 12487 struct objfile *objfile = cu->objfile;
3e29f34a 12488 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12489 struct attribute *attr;
91da1414 12490 struct attribute *attr_high;
801e3a5b 12491
91da1414
MW
12492 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12493 if (attr_high)
801e3a5b 12494 {
801e3a5b
JB
12495 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12496 if (attr)
12497 {
31aa7e4e
JB
12498 CORE_ADDR low = attr_value_as_address (attr);
12499 CORE_ADDR high = attr_value_as_address (attr_high);
12500
12501 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12502 high += low;
9a619af0 12503
3e29f34a
MR
12504 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12505 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12506 record_block_range (block, low, high - 1);
801e3a5b
JB
12507 }
12508 }
12509
12510 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12511 if (attr)
12512 {
bb5ed363 12513 bfd *obfd = objfile->obfd;
ab435259
DE
12514 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12515 We take advantage of the fact that DW_AT_ranges does not appear
12516 in DW_TAG_compile_unit of DWO files. */
12517 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12518
12519 /* The value of the DW_AT_ranges attribute is the offset of the
12520 address range list in the .debug_ranges section. */
ab435259
DE
12521 unsigned long offset = (DW_UNSND (attr)
12522 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12523 const gdb_byte *buffer;
801e3a5b
JB
12524
12525 /* For some target architectures, but not others, the
12526 read_address function sign-extends the addresses it returns.
12527 To recognize base address selection entries, we need a
12528 mask. */
12529 unsigned int addr_size = cu->header.addr_size;
12530 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12531
12532 /* The base address, to which the next pair is relative. Note
12533 that this 'base' is a DWARF concept: most entries in a range
12534 list are relative, to reduce the number of relocs against the
12535 debugging information. This is separate from this function's
12536 'baseaddr' argument, which GDB uses to relocate debugging
12537 information from a shared library based on the address at
12538 which the library was loaded. */
d00adf39
DE
12539 CORE_ADDR base = cu->base_address;
12540 int base_known = cu->base_known;
801e3a5b 12541
5f46c5a5
JK
12542 dwarf2_ranges_process (offset, cu,
12543 [&] (CORE_ADDR start, CORE_ADDR end)
12544 {
12545 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12546 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12547 record_block_range (block, start, end - 1);
12548 });
801e3a5b
JB
12549 }
12550}
12551
685b1105
JK
12552/* Check whether the producer field indicates either of GCC < 4.6, or the
12553 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12554
685b1105
JK
12555static void
12556check_producer (struct dwarf2_cu *cu)
60d5a603 12557{
38360086 12558 int major, minor;
60d5a603
JK
12559
12560 if (cu->producer == NULL)
12561 {
12562 /* For unknown compilers expect their behavior is DWARF version
12563 compliant.
12564
12565 GCC started to support .debug_types sections by -gdwarf-4 since
12566 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12567 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12568 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12569 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12570 }
b1ffba5a 12571 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12572 {
38360086
MW
12573 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12574 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12575 }
61012eef 12576 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12577 cu->producer_is_icc = 1;
12578 else
12579 {
12580 /* For other non-GCC compilers, expect their behavior is DWARF version
12581 compliant. */
60d5a603
JK
12582 }
12583
ba919b58 12584 cu->checked_producer = 1;
685b1105 12585}
ba919b58 12586
685b1105
JK
12587/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12588 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12589 during 4.6.0 experimental. */
12590
12591static int
12592producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12593{
12594 if (!cu->checked_producer)
12595 check_producer (cu);
12596
12597 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12598}
12599
12600/* Return the default accessibility type if it is not overriden by
12601 DW_AT_accessibility. */
12602
12603static enum dwarf_access_attribute
12604dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12605{
12606 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12607 {
12608 /* The default DWARF 2 accessibility for members is public, the default
12609 accessibility for inheritance is private. */
12610
12611 if (die->tag != DW_TAG_inheritance)
12612 return DW_ACCESS_public;
12613 else
12614 return DW_ACCESS_private;
12615 }
12616 else
12617 {
12618 /* DWARF 3+ defines the default accessibility a different way. The same
12619 rules apply now for DW_TAG_inheritance as for the members and it only
12620 depends on the container kind. */
12621
12622 if (die->parent->tag == DW_TAG_class_type)
12623 return DW_ACCESS_private;
12624 else
12625 return DW_ACCESS_public;
12626 }
12627}
12628
74ac6d43
TT
12629/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12630 offset. If the attribute was not found return 0, otherwise return
12631 1. If it was found but could not properly be handled, set *OFFSET
12632 to 0. */
12633
12634static int
12635handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12636 LONGEST *offset)
12637{
12638 struct attribute *attr;
12639
12640 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12641 if (attr != NULL)
12642 {
12643 *offset = 0;
12644
12645 /* Note that we do not check for a section offset first here.
12646 This is because DW_AT_data_member_location is new in DWARF 4,
12647 so if we see it, we can assume that a constant form is really
12648 a constant and not a section offset. */
12649 if (attr_form_is_constant (attr))
12650 *offset = dwarf2_get_attr_constant_value (attr, 0);
12651 else if (attr_form_is_section_offset (attr))
12652 dwarf2_complex_location_expr_complaint ();
12653 else if (attr_form_is_block (attr))
12654 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12655 else
12656 dwarf2_complex_location_expr_complaint ();
12657
12658 return 1;
12659 }
12660
12661 return 0;
12662}
12663
c906108c
SS
12664/* Add an aggregate field to the field list. */
12665
12666static void
107d2387 12667dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12668 struct dwarf2_cu *cu)
6e70227d 12669{
e7c27a73 12670 struct objfile *objfile = cu->objfile;
5e2b427d 12671 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12672 struct nextfield *new_field;
12673 struct attribute *attr;
12674 struct field *fp;
15d034d0 12675 const char *fieldname = "";
c906108c
SS
12676
12677 /* Allocate a new field list entry and link it in. */
8d749320 12678 new_field = XNEW (struct nextfield);
b8c9b27d 12679 make_cleanup (xfree, new_field);
c906108c 12680 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12681
12682 if (die->tag == DW_TAG_inheritance)
12683 {
12684 new_field->next = fip->baseclasses;
12685 fip->baseclasses = new_field;
12686 }
12687 else
12688 {
12689 new_field->next = fip->fields;
12690 fip->fields = new_field;
12691 }
c906108c
SS
12692 fip->nfields++;
12693
e142c38c 12694 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12695 if (attr)
12696 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12697 else
12698 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12699 if (new_field->accessibility != DW_ACCESS_public)
12700 fip->non_public_fields = 1;
60d5a603 12701
e142c38c 12702 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12703 if (attr)
12704 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12705 else
12706 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12707
12708 fp = &new_field->field;
a9a9bd0f 12709
e142c38c 12710 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12711 {
74ac6d43
TT
12712 LONGEST offset;
12713
a9a9bd0f 12714 /* Data member other than a C++ static data member. */
6e70227d 12715
c906108c 12716 /* Get type of field. */
e7c27a73 12717 fp->type = die_type (die, cu);
c906108c 12718
d6a843b5 12719 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12720
c906108c 12721 /* Get bit size of field (zero if none). */
e142c38c 12722 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12723 if (attr)
12724 {
12725 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12726 }
12727 else
12728 {
12729 FIELD_BITSIZE (*fp) = 0;
12730 }
12731
12732 /* Get bit offset of field. */
74ac6d43
TT
12733 if (handle_data_member_location (die, cu, &offset))
12734 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12735 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12736 if (attr)
12737 {
5e2b427d 12738 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12739 {
12740 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12741 additional bit offset from the MSB of the containing
12742 anonymous object to the MSB of the field. We don't
12743 have to do anything special since we don't need to
12744 know the size of the anonymous object. */
f41f5e61 12745 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12746 }
12747 else
12748 {
12749 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12750 MSB of the anonymous object, subtract off the number of
12751 bits from the MSB of the field to the MSB of the
12752 object, and then subtract off the number of bits of
12753 the field itself. The result is the bit offset of
12754 the LSB of the field. */
c906108c
SS
12755 int anonymous_size;
12756 int bit_offset = DW_UNSND (attr);
12757
e142c38c 12758 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12759 if (attr)
12760 {
12761 /* The size of the anonymous object containing
12762 the bit field is explicit, so use the
12763 indicated size (in bytes). */
12764 anonymous_size = DW_UNSND (attr);
12765 }
12766 else
12767 {
12768 /* The size of the anonymous object containing
12769 the bit field must be inferred from the type
12770 attribute of the data member containing the
12771 bit field. */
12772 anonymous_size = TYPE_LENGTH (fp->type);
12773 }
f41f5e61
PA
12774 SET_FIELD_BITPOS (*fp,
12775 (FIELD_BITPOS (*fp)
12776 + anonymous_size * bits_per_byte
12777 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12778 }
12779 }
da5b30da
AA
12780 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12781 if (attr != NULL)
12782 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12783 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
12784
12785 /* Get name of field. */
39cbfefa
DJ
12786 fieldname = dwarf2_name (die, cu);
12787 if (fieldname == NULL)
12788 fieldname = "";
d8151005
DJ
12789
12790 /* The name is already allocated along with this objfile, so we don't
12791 need to duplicate it for the type. */
12792 fp->name = fieldname;
c906108c
SS
12793
12794 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12795 pointer or virtual base class pointer) to private. */
e142c38c 12796 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12797 {
d48cc9dd 12798 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12799 new_field->accessibility = DW_ACCESS_private;
12800 fip->non_public_fields = 1;
12801 }
12802 }
a9a9bd0f 12803 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12804 {
a9a9bd0f
DC
12805 /* C++ static member. */
12806
12807 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12808 is a declaration, but all versions of G++ as of this writing
12809 (so through at least 3.2.1) incorrectly generate
12810 DW_TAG_variable tags. */
6e70227d 12811
ff355380 12812 const char *physname;
c906108c 12813
a9a9bd0f 12814 /* Get name of field. */
39cbfefa
DJ
12815 fieldname = dwarf2_name (die, cu);
12816 if (fieldname == NULL)
c906108c
SS
12817 return;
12818
254e6b9e 12819 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12820 if (attr
12821 /* Only create a symbol if this is an external value.
12822 new_symbol checks this and puts the value in the global symbol
12823 table, which we want. If it is not external, new_symbol
12824 will try to put the value in cu->list_in_scope which is wrong. */
12825 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12826 {
12827 /* A static const member, not much different than an enum as far as
12828 we're concerned, except that we can support more types. */
12829 new_symbol (die, NULL, cu);
12830 }
12831
2df3850c 12832 /* Get physical name. */
ff355380 12833 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12834
d8151005
DJ
12835 /* The name is already allocated along with this objfile, so we don't
12836 need to duplicate it for the type. */
12837 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12838 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12839 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12840 }
12841 else if (die->tag == DW_TAG_inheritance)
12842 {
74ac6d43 12843 LONGEST offset;
d4b96c9a 12844
74ac6d43
TT
12845 /* C++ base class field. */
12846 if (handle_data_member_location (die, cu, &offset))
12847 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12848 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12849 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12850 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12851 fip->nbaseclasses++;
12852 }
12853}
12854
98751a41
JK
12855/* Add a typedef defined in the scope of the FIP's class. */
12856
12857static void
12858dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12859 struct dwarf2_cu *cu)
6e70227d 12860{
98751a41 12861 struct typedef_field_list *new_field;
98751a41 12862 struct typedef_field *fp;
98751a41
JK
12863
12864 /* Allocate a new field list entry and link it in. */
8d749320 12865 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12866 make_cleanup (xfree, new_field);
12867
12868 gdb_assert (die->tag == DW_TAG_typedef);
12869
12870 fp = &new_field->field;
12871
12872 /* Get name of field. */
12873 fp->name = dwarf2_name (die, cu);
12874 if (fp->name == NULL)
12875 return;
12876
12877 fp->type = read_type_die (die, cu);
12878
12879 new_field->next = fip->typedef_field_list;
12880 fip->typedef_field_list = new_field;
12881 fip->typedef_field_list_count++;
12882}
12883
c906108c
SS
12884/* Create the vector of fields, and attach it to the type. */
12885
12886static void
fba45db2 12887dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12888 struct dwarf2_cu *cu)
c906108c
SS
12889{
12890 int nfields = fip->nfields;
12891
12892 /* Record the field count, allocate space for the array of fields,
12893 and create blank accessibility bitfields if necessary. */
12894 TYPE_NFIELDS (type) = nfields;
12895 TYPE_FIELDS (type) = (struct field *)
12896 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12897 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12898
b4ba55a1 12899 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12900 {
12901 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12902
12903 TYPE_FIELD_PRIVATE_BITS (type) =
12904 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12905 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12906
12907 TYPE_FIELD_PROTECTED_BITS (type) =
12908 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12909 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12910
774b6a14
TT
12911 TYPE_FIELD_IGNORE_BITS (type) =
12912 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12913 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12914 }
12915
12916 /* If the type has baseclasses, allocate and clear a bit vector for
12917 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12918 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12919 {
12920 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12921 unsigned char *pointer;
c906108c
SS
12922
12923 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12924 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12925 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12926 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12927 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12928 }
12929
3e43a32a
MS
12930 /* Copy the saved-up fields into the field vector. Start from the head of
12931 the list, adding to the tail of the field array, so that they end up in
12932 the same order in the array in which they were added to the list. */
c906108c
SS
12933 while (nfields-- > 0)
12934 {
7d0ccb61
DJ
12935 struct nextfield *fieldp;
12936
12937 if (fip->fields)
12938 {
12939 fieldp = fip->fields;
12940 fip->fields = fieldp->next;
12941 }
12942 else
12943 {
12944 fieldp = fip->baseclasses;
12945 fip->baseclasses = fieldp->next;
12946 }
12947
12948 TYPE_FIELD (type, nfields) = fieldp->field;
12949 switch (fieldp->accessibility)
c906108c 12950 {
c5aa993b 12951 case DW_ACCESS_private:
b4ba55a1
JB
12952 if (cu->language != language_ada)
12953 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12954 break;
c906108c 12955
c5aa993b 12956 case DW_ACCESS_protected:
b4ba55a1
JB
12957 if (cu->language != language_ada)
12958 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12959 break;
c906108c 12960
c5aa993b
JM
12961 case DW_ACCESS_public:
12962 break;
c906108c 12963
c5aa993b
JM
12964 default:
12965 /* Unknown accessibility. Complain and treat it as public. */
12966 {
e2e0b3e5 12967 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12968 fieldp->accessibility);
c5aa993b
JM
12969 }
12970 break;
c906108c
SS
12971 }
12972 if (nfields < fip->nbaseclasses)
12973 {
7d0ccb61 12974 switch (fieldp->virtuality)
c906108c 12975 {
c5aa993b
JM
12976 case DW_VIRTUALITY_virtual:
12977 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12978 if (cu->language == language_ada)
a73c6dcd 12979 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12980 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12981 break;
c906108c
SS
12982 }
12983 }
c906108c
SS
12984 }
12985}
12986
7d27a96d
TT
12987/* Return true if this member function is a constructor, false
12988 otherwise. */
12989
12990static int
12991dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12992{
12993 const char *fieldname;
fe978cb0 12994 const char *type_name;
7d27a96d
TT
12995 int len;
12996
12997 if (die->parent == NULL)
12998 return 0;
12999
13000 if (die->parent->tag != DW_TAG_structure_type
13001 && die->parent->tag != DW_TAG_union_type
13002 && die->parent->tag != DW_TAG_class_type)
13003 return 0;
13004
13005 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13006 type_name = dwarf2_name (die->parent, cu);
13007 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13008 return 0;
13009
13010 len = strlen (fieldname);
fe978cb0
PA
13011 return (strncmp (fieldname, type_name, len) == 0
13012 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13013}
13014
c906108c
SS
13015/* Add a member function to the proper fieldlist. */
13016
13017static void
107d2387 13018dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13019 struct type *type, struct dwarf2_cu *cu)
c906108c 13020{
e7c27a73 13021 struct objfile *objfile = cu->objfile;
c906108c
SS
13022 struct attribute *attr;
13023 struct fnfieldlist *flp;
13024 int i;
13025 struct fn_field *fnp;
15d034d0 13026 const char *fieldname;
c906108c 13027 struct nextfnfield *new_fnfield;
f792889a 13028 struct type *this_type;
60d5a603 13029 enum dwarf_access_attribute accessibility;
c906108c 13030
b4ba55a1 13031 if (cu->language == language_ada)
a73c6dcd 13032 error (_("unexpected member function in Ada type"));
b4ba55a1 13033
2df3850c 13034 /* Get name of member function. */
39cbfefa
DJ
13035 fieldname = dwarf2_name (die, cu);
13036 if (fieldname == NULL)
2df3850c 13037 return;
c906108c 13038
c906108c
SS
13039 /* Look up member function name in fieldlist. */
13040 for (i = 0; i < fip->nfnfields; i++)
13041 {
27bfe10e 13042 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13043 break;
13044 }
13045
13046 /* Create new list element if necessary. */
13047 if (i < fip->nfnfields)
13048 flp = &fip->fnfieldlists[i];
13049 else
13050 {
13051 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13052 {
13053 fip->fnfieldlists = (struct fnfieldlist *)
13054 xrealloc (fip->fnfieldlists,
13055 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13056 * sizeof (struct fnfieldlist));
c906108c 13057 if (fip->nfnfields == 0)
c13c43fd 13058 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13059 }
13060 flp = &fip->fnfieldlists[fip->nfnfields];
13061 flp->name = fieldname;
13062 flp->length = 0;
13063 flp->head = NULL;
3da10d80 13064 i = fip->nfnfields++;
c906108c
SS
13065 }
13066
13067 /* Create a new member function field and chain it to the field list
0963b4bd 13068 entry. */
8d749320 13069 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13070 make_cleanup (xfree, new_fnfield);
c906108c
SS
13071 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13072 new_fnfield->next = flp->head;
13073 flp->head = new_fnfield;
13074 flp->length++;
13075
13076 /* Fill in the member function field info. */
13077 fnp = &new_fnfield->fnfield;
3da10d80
KS
13078
13079 /* Delay processing of the physname until later. */
9c37b5ae 13080 if (cu->language == language_cplus)
3da10d80
KS
13081 {
13082 add_to_method_list (type, i, flp->length - 1, fieldname,
13083 die, cu);
13084 }
13085 else
13086 {
1d06ead6 13087 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13088 fnp->physname = physname ? physname : "";
13089 }
13090
c906108c 13091 fnp->type = alloc_type (objfile);
f792889a
DJ
13092 this_type = read_type_die (die, cu);
13093 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13094 {
f792889a 13095 int nparams = TYPE_NFIELDS (this_type);
c906108c 13096
f792889a 13097 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13098 of the method itself (TYPE_CODE_METHOD). */
13099 smash_to_method_type (fnp->type, type,
f792889a
DJ
13100 TYPE_TARGET_TYPE (this_type),
13101 TYPE_FIELDS (this_type),
13102 TYPE_NFIELDS (this_type),
13103 TYPE_VARARGS (this_type));
c906108c
SS
13104
13105 /* Handle static member functions.
c5aa993b 13106 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13107 member functions. G++ helps GDB by marking the first
13108 parameter for non-static member functions (which is the this
13109 pointer) as artificial. We obtain this information from
13110 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13111 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13112 fnp->voffset = VOFFSET_STATIC;
13113 }
13114 else
e2e0b3e5 13115 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13116 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13117
13118 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13119 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13120 fnp->fcontext = die_containing_type (die, cu);
c906108c 13121
3e43a32a
MS
13122 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13123 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13124
13125 /* Get accessibility. */
e142c38c 13126 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13127 if (attr)
aead7601 13128 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13129 else
13130 accessibility = dwarf2_default_access_attribute (die, cu);
13131 switch (accessibility)
c906108c 13132 {
60d5a603
JK
13133 case DW_ACCESS_private:
13134 fnp->is_private = 1;
13135 break;
13136 case DW_ACCESS_protected:
13137 fnp->is_protected = 1;
13138 break;
c906108c
SS
13139 }
13140
b02dede2 13141 /* Check for artificial methods. */
e142c38c 13142 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13143 if (attr && DW_UNSND (attr) != 0)
13144 fnp->is_artificial = 1;
13145
7d27a96d
TT
13146 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13147
0d564a31 13148 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13149 function. For older versions of GCC, this is an offset in the
13150 appropriate virtual table, as specified by DW_AT_containing_type.
13151 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13152 to the object address. */
13153
e142c38c 13154 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13155 if (attr)
8e19ed76 13156 {
aec5aa8b 13157 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13158 {
aec5aa8b
TT
13159 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13160 {
13161 /* Old-style GCC. */
13162 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13163 }
13164 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13165 || (DW_BLOCK (attr)->size > 1
13166 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13167 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13168 {
aec5aa8b
TT
13169 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13170 if ((fnp->voffset % cu->header.addr_size) != 0)
13171 dwarf2_complex_location_expr_complaint ();
13172 else
13173 fnp->voffset /= cu->header.addr_size;
13174 fnp->voffset += 2;
13175 }
13176 else
13177 dwarf2_complex_location_expr_complaint ();
13178
13179 if (!fnp->fcontext)
7e993ebf
KS
13180 {
13181 /* If there is no `this' field and no DW_AT_containing_type,
13182 we cannot actually find a base class context for the
13183 vtable! */
13184 if (TYPE_NFIELDS (this_type) == 0
13185 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13186 {
13187 complaint (&symfile_complaints,
13188 _("cannot determine context for virtual member "
13189 "function \"%s\" (offset %d)"),
13190 fieldname, die->offset.sect_off);
13191 }
13192 else
13193 {
13194 fnp->fcontext
13195 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13196 }
13197 }
aec5aa8b 13198 }
3690dd37 13199 else if (attr_form_is_section_offset (attr))
8e19ed76 13200 {
4d3c2250 13201 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13202 }
13203 else
13204 {
4d3c2250
KB
13205 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13206 fieldname);
8e19ed76 13207 }
0d564a31 13208 }
d48cc9dd
DJ
13209 else
13210 {
13211 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13212 if (attr && DW_UNSND (attr))
13213 {
13214 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13215 complaint (&symfile_complaints,
3e43a32a
MS
13216 _("Member function \"%s\" (offset %d) is virtual "
13217 "but the vtable offset is not specified"),
b64f50a1 13218 fieldname, die->offset.sect_off);
9655fd1a 13219 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13220 TYPE_CPLUS_DYNAMIC (type) = 1;
13221 }
13222 }
c906108c
SS
13223}
13224
13225/* Create the vector of member function fields, and attach it to the type. */
13226
13227static void
fba45db2 13228dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13229 struct dwarf2_cu *cu)
c906108c
SS
13230{
13231 struct fnfieldlist *flp;
c906108c
SS
13232 int i;
13233
b4ba55a1 13234 if (cu->language == language_ada)
a73c6dcd 13235 error (_("unexpected member functions in Ada type"));
b4ba55a1 13236
c906108c
SS
13237 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13238 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13239 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13240
13241 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13242 {
13243 struct nextfnfield *nfp = flp->head;
13244 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13245 int k;
13246
13247 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13248 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13249 fn_flp->fn_fields = (struct fn_field *)
13250 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13251 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13252 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13253 }
13254
13255 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13256}
13257
1168df01
JB
13258/* Returns non-zero if NAME is the name of a vtable member in CU's
13259 language, zero otherwise. */
13260static int
13261is_vtable_name (const char *name, struct dwarf2_cu *cu)
13262{
13263 static const char vptr[] = "_vptr";
987504bb 13264 static const char vtable[] = "vtable";
1168df01 13265
9c37b5ae
TT
13266 /* Look for the C++ form of the vtable. */
13267 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13268 return 1;
13269
13270 return 0;
13271}
13272
c0dd20ea 13273/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13274 functions, with the ABI-specified layout. If TYPE describes
13275 such a structure, smash it into a member function type.
61049d3b
DJ
13276
13277 GCC shouldn't do this; it should just output pointer to member DIEs.
13278 This is GCC PR debug/28767. */
c0dd20ea 13279
0b92b5bb
TT
13280static void
13281quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13282{
09e2d7c7 13283 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13284
13285 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13286 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13287 return;
c0dd20ea
DJ
13288
13289 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13290 if (TYPE_FIELD_NAME (type, 0) == NULL
13291 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13292 || TYPE_FIELD_NAME (type, 1) == NULL
13293 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13294 return;
c0dd20ea
DJ
13295
13296 /* Find the type of the method. */
0b92b5bb 13297 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13298 if (pfn_type == NULL
13299 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13300 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13301 return;
c0dd20ea
DJ
13302
13303 /* Look for the "this" argument. */
13304 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13305 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13306 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13307 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13308 return;
c0dd20ea 13309
09e2d7c7 13310 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13311 new_type = alloc_type (objfile);
09e2d7c7 13312 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13313 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13314 TYPE_VARARGS (pfn_type));
0b92b5bb 13315 smash_to_methodptr_type (type, new_type);
c0dd20ea 13316}
1168df01 13317
685b1105
JK
13318/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13319 (icc). */
13320
13321static int
13322producer_is_icc (struct dwarf2_cu *cu)
13323{
13324 if (!cu->checked_producer)
13325 check_producer (cu);
13326
13327 return cu->producer_is_icc;
13328}
13329
c906108c 13330/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13331 (definition) to create a type for the structure or union. Fill in
13332 the type's name and general properties; the members will not be
83655187
DE
13333 processed until process_structure_scope. A symbol table entry for
13334 the type will also not be done until process_structure_scope (assuming
13335 the type has a name).
c906108c 13336
c767944b
DJ
13337 NOTE: we need to call these functions regardless of whether or not the
13338 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13339 structure or union. This gets the type entered into our set of
83655187 13340 user defined types. */
c906108c 13341
f792889a 13342static struct type *
134d01f1 13343read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13344{
e7c27a73 13345 struct objfile *objfile = cu->objfile;
c906108c
SS
13346 struct type *type;
13347 struct attribute *attr;
15d034d0 13348 const char *name;
c906108c 13349
348e048f
DE
13350 /* If the definition of this type lives in .debug_types, read that type.
13351 Don't follow DW_AT_specification though, that will take us back up
13352 the chain and we want to go down. */
45e58e77 13353 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13354 if (attr)
13355 {
ac9ec31b 13356 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13357
ac9ec31b 13358 /* The type's CU may not be the same as CU.
02142a6c 13359 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13360 return set_die_type (die, type, cu);
13361 }
13362
c0dd20ea 13363 type = alloc_type (objfile);
c906108c 13364 INIT_CPLUS_SPECIFIC (type);
93311388 13365
39cbfefa
DJ
13366 name = dwarf2_name (die, cu);
13367 if (name != NULL)
c906108c 13368 {
987504bb 13369 if (cu->language == language_cplus
c44af4eb
TT
13370 || cu->language == language_d
13371 || cu->language == language_rust)
63d06c5c 13372 {
15d034d0 13373 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13374
13375 /* dwarf2_full_name might have already finished building the DIE's
13376 type. If so, there is no need to continue. */
13377 if (get_die_type (die, cu) != NULL)
13378 return get_die_type (die, cu);
13379
13380 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13381 if (die->tag == DW_TAG_structure_type
13382 || die->tag == DW_TAG_class_type)
13383 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13384 }
13385 else
13386 {
d8151005
DJ
13387 /* The name is already allocated along with this objfile, so
13388 we don't need to duplicate it for the type. */
7d455152 13389 TYPE_TAG_NAME (type) = name;
94af9270
KS
13390 if (die->tag == DW_TAG_class_type)
13391 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13392 }
c906108c
SS
13393 }
13394
13395 if (die->tag == DW_TAG_structure_type)
13396 {
13397 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13398 }
13399 else if (die->tag == DW_TAG_union_type)
13400 {
13401 TYPE_CODE (type) = TYPE_CODE_UNION;
13402 }
13403 else
13404 {
4753d33b 13405 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13406 }
13407
0cc2414c
TT
13408 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13409 TYPE_DECLARED_CLASS (type) = 1;
13410
e142c38c 13411 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13412 if (attr)
13413 {
155bfbd3
JB
13414 if (attr_form_is_constant (attr))
13415 TYPE_LENGTH (type) = DW_UNSND (attr);
13416 else
13417 {
13418 /* For the moment, dynamic type sizes are not supported
13419 by GDB's struct type. The actual size is determined
13420 on-demand when resolving the type of a given object,
13421 so set the type's length to zero for now. Otherwise,
13422 we record an expression as the length, and that expression
13423 could lead to a very large value, which could eventually
13424 lead to us trying to allocate that much memory when creating
13425 a value of that type. */
13426 TYPE_LENGTH (type) = 0;
13427 }
c906108c
SS
13428 }
13429 else
13430 {
13431 TYPE_LENGTH (type) = 0;
13432 }
13433
422b1cb0 13434 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13435 {
13436 /* ICC does not output the required DW_AT_declaration
13437 on incomplete types, but gives them a size of zero. */
422b1cb0 13438 TYPE_STUB (type) = 1;
685b1105
JK
13439 }
13440 else
13441 TYPE_STUB_SUPPORTED (type) = 1;
13442
dc718098 13443 if (die_is_declaration (die, cu))
876cecd0 13444 TYPE_STUB (type) = 1;
a6c727b2
DJ
13445 else if (attr == NULL && die->child == NULL
13446 && producer_is_realview (cu->producer))
13447 /* RealView does not output the required DW_AT_declaration
13448 on incomplete types. */
13449 TYPE_STUB (type) = 1;
dc718098 13450
c906108c
SS
13451 /* We need to add the type field to the die immediately so we don't
13452 infinitely recurse when dealing with pointers to the structure
0963b4bd 13453 type within the structure itself. */
1c379e20 13454 set_die_type (die, type, cu);
c906108c 13455
7e314c57
JK
13456 /* set_die_type should be already done. */
13457 set_descriptive_type (type, die, cu);
13458
c767944b
DJ
13459 return type;
13460}
13461
13462/* Finish creating a structure or union type, including filling in
13463 its members and creating a symbol for it. */
13464
13465static void
13466process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13467{
13468 struct objfile *objfile = cu->objfile;
ca040673 13469 struct die_info *child_die;
c767944b
DJ
13470 struct type *type;
13471
13472 type = get_die_type (die, cu);
13473 if (type == NULL)
13474 type = read_structure_type (die, cu);
13475
e142c38c 13476 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13477 {
13478 struct field_info fi;
34eaf542 13479 VEC (symbolp) *template_args = NULL;
c767944b 13480 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13481
13482 memset (&fi, 0, sizeof (struct field_info));
13483
639d11d3 13484 child_die = die->child;
c906108c
SS
13485
13486 while (child_die && child_die->tag)
13487 {
a9a9bd0f
DC
13488 if (child_die->tag == DW_TAG_member
13489 || child_die->tag == DW_TAG_variable)
c906108c 13490 {
a9a9bd0f
DC
13491 /* NOTE: carlton/2002-11-05: A C++ static data member
13492 should be a DW_TAG_member that is a declaration, but
13493 all versions of G++ as of this writing (so through at
13494 least 3.2.1) incorrectly generate DW_TAG_variable
13495 tags for them instead. */
e7c27a73 13496 dwarf2_add_field (&fi, child_die, cu);
c906108c 13497 }
8713b1b1 13498 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13499 {
e98c9e7c
TT
13500 /* Rust doesn't have member functions in the C++ sense.
13501 However, it does emit ordinary functions as children
13502 of a struct DIE. */
13503 if (cu->language == language_rust)
13504 read_func_scope (child_die, cu);
13505 else
13506 {
13507 /* C++ member function. */
13508 dwarf2_add_member_fn (&fi, child_die, type, cu);
13509 }
c906108c
SS
13510 }
13511 else if (child_die->tag == DW_TAG_inheritance)
13512 {
13513 /* C++ base class field. */
e7c27a73 13514 dwarf2_add_field (&fi, child_die, cu);
c906108c 13515 }
98751a41
JK
13516 else if (child_die->tag == DW_TAG_typedef)
13517 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13518 else if (child_die->tag == DW_TAG_template_type_param
13519 || child_die->tag == DW_TAG_template_value_param)
13520 {
13521 struct symbol *arg = new_symbol (child_die, NULL, cu);
13522
f1078f66
DJ
13523 if (arg != NULL)
13524 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13525 }
13526
c906108c
SS
13527 child_die = sibling_die (child_die);
13528 }
13529
34eaf542
TT
13530 /* Attach template arguments to type. */
13531 if (! VEC_empty (symbolp, template_args))
13532 {
13533 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13534 TYPE_N_TEMPLATE_ARGUMENTS (type)
13535 = VEC_length (symbolp, template_args);
13536 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13537 = XOBNEWVEC (&objfile->objfile_obstack,
13538 struct symbol *,
13539 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13540 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13541 VEC_address (symbolp, template_args),
13542 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13543 * sizeof (struct symbol *)));
13544 VEC_free (symbolp, template_args);
13545 }
13546
c906108c
SS
13547 /* Attach fields and member functions to the type. */
13548 if (fi.nfields)
e7c27a73 13549 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13550 if (fi.nfnfields)
13551 {
e7c27a73 13552 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13553
c5aa993b 13554 /* Get the type which refers to the base class (possibly this
c906108c 13555 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13556 class from the DW_AT_containing_type attribute. This use of
13557 DW_AT_containing_type is a GNU extension. */
c906108c 13558
e142c38c 13559 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13560 {
e7c27a73 13561 struct type *t = die_containing_type (die, cu);
c906108c 13562
ae6ae975 13563 set_type_vptr_basetype (type, t);
c906108c
SS
13564 if (type == t)
13565 {
c906108c
SS
13566 int i;
13567
13568 /* Our own class provides vtbl ptr. */
13569 for (i = TYPE_NFIELDS (t) - 1;
13570 i >= TYPE_N_BASECLASSES (t);
13571 --i)
13572 {
0d5cff50 13573 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13574
1168df01 13575 if (is_vtable_name (fieldname, cu))
c906108c 13576 {
ae6ae975 13577 set_type_vptr_fieldno (type, i);
c906108c
SS
13578 break;
13579 }
13580 }
13581
13582 /* Complain if virtual function table field not found. */
13583 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13584 complaint (&symfile_complaints,
3e43a32a
MS
13585 _("virtual function table pointer "
13586 "not found when defining class '%s'"),
4d3c2250
KB
13587 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13588 "");
c906108c
SS
13589 }
13590 else
13591 {
ae6ae975 13592 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13593 }
13594 }
f6235d4c 13595 else if (cu->producer
61012eef 13596 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13597 {
13598 /* The IBM XLC compiler does not provide direct indication
13599 of the containing type, but the vtable pointer is
13600 always named __vfp. */
13601
13602 int i;
13603
13604 for (i = TYPE_NFIELDS (type) - 1;
13605 i >= TYPE_N_BASECLASSES (type);
13606 --i)
13607 {
13608 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13609 {
ae6ae975
DE
13610 set_type_vptr_fieldno (type, i);
13611 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13612 break;
13613 }
13614 }
13615 }
c906108c 13616 }
98751a41
JK
13617
13618 /* Copy fi.typedef_field_list linked list elements content into the
13619 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13620 if (fi.typedef_field_list)
13621 {
13622 int i = fi.typedef_field_list_count;
13623
a0d7a4ff 13624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13625 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13626 = ((struct typedef_field *)
13627 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13628 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13629
13630 /* Reverse the list order to keep the debug info elements order. */
13631 while (--i >= 0)
13632 {
13633 struct typedef_field *dest, *src;
6e70227d 13634
98751a41
JK
13635 dest = &TYPE_TYPEDEF_FIELD (type, i);
13636 src = &fi.typedef_field_list->field;
13637 fi.typedef_field_list = fi.typedef_field_list->next;
13638 *dest = *src;
13639 }
13640 }
c767944b
DJ
13641
13642 do_cleanups (back_to);
c906108c 13643 }
63d06c5c 13644
bb5ed363 13645 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13646
90aeadfc
DC
13647 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13648 snapshots) has been known to create a die giving a declaration
13649 for a class that has, as a child, a die giving a definition for a
13650 nested class. So we have to process our children even if the
13651 current die is a declaration. Normally, of course, a declaration
13652 won't have any children at all. */
134d01f1 13653
ca040673
DE
13654 child_die = die->child;
13655
90aeadfc
DC
13656 while (child_die != NULL && child_die->tag)
13657 {
13658 if (child_die->tag == DW_TAG_member
13659 || child_die->tag == DW_TAG_variable
34eaf542
TT
13660 || child_die->tag == DW_TAG_inheritance
13661 || child_die->tag == DW_TAG_template_value_param
13662 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13663 {
90aeadfc 13664 /* Do nothing. */
134d01f1 13665 }
90aeadfc
DC
13666 else
13667 process_die (child_die, cu);
134d01f1 13668
90aeadfc 13669 child_die = sibling_die (child_die);
134d01f1
DJ
13670 }
13671
fa4028e9
JB
13672 /* Do not consider external references. According to the DWARF standard,
13673 these DIEs are identified by the fact that they have no byte_size
13674 attribute, and a declaration attribute. */
13675 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13676 || !die_is_declaration (die, cu))
c767944b 13677 new_symbol (die, type, cu);
134d01f1
DJ
13678}
13679
55426c9d
JB
13680/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13681 update TYPE using some information only available in DIE's children. */
13682
13683static void
13684update_enumeration_type_from_children (struct die_info *die,
13685 struct type *type,
13686 struct dwarf2_cu *cu)
13687{
13688 struct obstack obstack;
60f7655a 13689 struct die_info *child_die;
55426c9d
JB
13690 int unsigned_enum = 1;
13691 int flag_enum = 1;
13692 ULONGEST mask = 0;
13693 struct cleanup *old_chain;
13694
13695 obstack_init (&obstack);
13696 old_chain = make_cleanup_obstack_free (&obstack);
13697
60f7655a
DE
13698 for (child_die = die->child;
13699 child_die != NULL && child_die->tag;
13700 child_die = sibling_die (child_die))
55426c9d
JB
13701 {
13702 struct attribute *attr;
13703 LONGEST value;
13704 const gdb_byte *bytes;
13705 struct dwarf2_locexpr_baton *baton;
13706 const char *name;
60f7655a 13707
55426c9d
JB
13708 if (child_die->tag != DW_TAG_enumerator)
13709 continue;
13710
13711 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13712 if (attr == NULL)
13713 continue;
13714
13715 name = dwarf2_name (child_die, cu);
13716 if (name == NULL)
13717 name = "<anonymous enumerator>";
13718
13719 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13720 &value, &bytes, &baton);
13721 if (value < 0)
13722 {
13723 unsigned_enum = 0;
13724 flag_enum = 0;
13725 }
13726 else if ((mask & value) != 0)
13727 flag_enum = 0;
13728 else
13729 mask |= value;
13730
13731 /* If we already know that the enum type is neither unsigned, nor
13732 a flag type, no need to look at the rest of the enumerates. */
13733 if (!unsigned_enum && !flag_enum)
13734 break;
55426c9d
JB
13735 }
13736
13737 if (unsigned_enum)
13738 TYPE_UNSIGNED (type) = 1;
13739 if (flag_enum)
13740 TYPE_FLAG_ENUM (type) = 1;
13741
13742 do_cleanups (old_chain);
13743}
13744
134d01f1
DJ
13745/* Given a DW_AT_enumeration_type die, set its type. We do not
13746 complete the type's fields yet, or create any symbols. */
c906108c 13747
f792889a 13748static struct type *
134d01f1 13749read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13750{
e7c27a73 13751 struct objfile *objfile = cu->objfile;
c906108c 13752 struct type *type;
c906108c 13753 struct attribute *attr;
0114d602 13754 const char *name;
134d01f1 13755
348e048f
DE
13756 /* If the definition of this type lives in .debug_types, read that type.
13757 Don't follow DW_AT_specification though, that will take us back up
13758 the chain and we want to go down. */
45e58e77 13759 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13760 if (attr)
13761 {
ac9ec31b 13762 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13763
ac9ec31b 13764 /* The type's CU may not be the same as CU.
02142a6c 13765 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13766 return set_die_type (die, type, cu);
13767 }
13768
c906108c
SS
13769 type = alloc_type (objfile);
13770
13771 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13772 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13773 if (name != NULL)
7d455152 13774 TYPE_TAG_NAME (type) = name;
c906108c 13775
0626fc76
TT
13776 attr = dwarf2_attr (die, DW_AT_type, cu);
13777 if (attr != NULL)
13778 {
13779 struct type *underlying_type = die_type (die, cu);
13780
13781 TYPE_TARGET_TYPE (type) = underlying_type;
13782 }
13783
e142c38c 13784 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13785 if (attr)
13786 {
13787 TYPE_LENGTH (type) = DW_UNSND (attr);
13788 }
13789 else
13790 {
13791 TYPE_LENGTH (type) = 0;
13792 }
13793
137033e9
JB
13794 /* The enumeration DIE can be incomplete. In Ada, any type can be
13795 declared as private in the package spec, and then defined only
13796 inside the package body. Such types are known as Taft Amendment
13797 Types. When another package uses such a type, an incomplete DIE
13798 may be generated by the compiler. */
02eb380e 13799 if (die_is_declaration (die, cu))
876cecd0 13800 TYPE_STUB (type) = 1;
02eb380e 13801
0626fc76
TT
13802 /* Finish the creation of this type by using the enum's children.
13803 We must call this even when the underlying type has been provided
13804 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13805 update_enumeration_type_from_children (die, type, cu);
13806
0626fc76
TT
13807 /* If this type has an underlying type that is not a stub, then we
13808 may use its attributes. We always use the "unsigned" attribute
13809 in this situation, because ordinarily we guess whether the type
13810 is unsigned -- but the guess can be wrong and the underlying type
13811 can tell us the reality. However, we defer to a local size
13812 attribute if one exists, because this lets the compiler override
13813 the underlying type if needed. */
13814 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13815 {
13816 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13817 if (TYPE_LENGTH (type) == 0)
13818 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13819 }
13820
3d567982
TT
13821 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13822
f792889a 13823 return set_die_type (die, type, cu);
134d01f1
DJ
13824}
13825
13826/* Given a pointer to a die which begins an enumeration, process all
13827 the dies that define the members of the enumeration, and create the
13828 symbol for the enumeration type.
13829
13830 NOTE: We reverse the order of the element list. */
13831
13832static void
13833process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13834{
f792889a 13835 struct type *this_type;
134d01f1 13836
f792889a
DJ
13837 this_type = get_die_type (die, cu);
13838 if (this_type == NULL)
13839 this_type = read_enumeration_type (die, cu);
9dc481d3 13840
639d11d3 13841 if (die->child != NULL)
c906108c 13842 {
9dc481d3
DE
13843 struct die_info *child_die;
13844 struct symbol *sym;
13845 struct field *fields = NULL;
13846 int num_fields = 0;
15d034d0 13847 const char *name;
9dc481d3 13848
639d11d3 13849 child_die = die->child;
c906108c
SS
13850 while (child_die && child_die->tag)
13851 {
13852 if (child_die->tag != DW_TAG_enumerator)
13853 {
e7c27a73 13854 process_die (child_die, cu);
c906108c
SS
13855 }
13856 else
13857 {
39cbfefa
DJ
13858 name = dwarf2_name (child_die, cu);
13859 if (name)
c906108c 13860 {
f792889a 13861 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13862
13863 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13864 {
13865 fields = (struct field *)
13866 xrealloc (fields,
13867 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13868 * sizeof (struct field));
c906108c
SS
13869 }
13870
3567439c 13871 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13872 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13873 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13874 FIELD_BITSIZE (fields[num_fields]) = 0;
13875
13876 num_fields++;
13877 }
13878 }
13879
13880 child_die = sibling_die (child_die);
13881 }
13882
13883 if (num_fields)
13884 {
f792889a
DJ
13885 TYPE_NFIELDS (this_type) = num_fields;
13886 TYPE_FIELDS (this_type) = (struct field *)
13887 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13888 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13889 sizeof (struct field) * num_fields);
b8c9b27d 13890 xfree (fields);
c906108c 13891 }
c906108c 13892 }
134d01f1 13893
6c83ed52
TT
13894 /* If we are reading an enum from a .debug_types unit, and the enum
13895 is a declaration, and the enum is not the signatured type in the
13896 unit, then we do not want to add a symbol for it. Adding a
13897 symbol would in some cases obscure the true definition of the
13898 enum, giving users an incomplete type when the definition is
13899 actually available. Note that we do not want to do this for all
13900 enums which are just declarations, because C++0x allows forward
13901 enum declarations. */
3019eac3 13902 if (cu->per_cu->is_debug_types
6c83ed52
TT
13903 && die_is_declaration (die, cu))
13904 {
52dc124a 13905 struct signatured_type *sig_type;
6c83ed52 13906
c0f78cd4 13907 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13908 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13909 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13910 return;
13911 }
13912
f792889a 13913 new_symbol (die, this_type, cu);
c906108c
SS
13914}
13915
13916/* Extract all information from a DW_TAG_array_type DIE and put it in
13917 the DIE's type field. For now, this only handles one dimensional
13918 arrays. */
13919
f792889a 13920static struct type *
e7c27a73 13921read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13922{
e7c27a73 13923 struct objfile *objfile = cu->objfile;
c906108c 13924 struct die_info *child_die;
7e314c57 13925 struct type *type;
c906108c
SS
13926 struct type *element_type, *range_type, *index_type;
13927 struct type **range_types = NULL;
13928 struct attribute *attr;
13929 int ndim = 0;
13930 struct cleanup *back_to;
15d034d0 13931 const char *name;
dc53a7ad 13932 unsigned int bit_stride = 0;
c906108c 13933
e7c27a73 13934 element_type = die_type (die, cu);
c906108c 13935
7e314c57
JK
13936 /* The die_type call above may have already set the type for this DIE. */
13937 type = get_die_type (die, cu);
13938 if (type)
13939 return type;
13940
dc53a7ad
JB
13941 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13942 if (attr != NULL)
13943 bit_stride = DW_UNSND (attr) * 8;
13944
13945 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13946 if (attr != NULL)
13947 bit_stride = DW_UNSND (attr);
13948
c906108c
SS
13949 /* Irix 6.2 native cc creates array types without children for
13950 arrays with unspecified length. */
639d11d3 13951 if (die->child == NULL)
c906108c 13952 {
46bf5051 13953 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13954 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13955 type = create_array_type_with_stride (NULL, element_type, range_type,
13956 bit_stride);
f792889a 13957 return set_die_type (die, type, cu);
c906108c
SS
13958 }
13959
13960 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13961 child_die = die->child;
c906108c
SS
13962 while (child_die && child_die->tag)
13963 {
13964 if (child_die->tag == DW_TAG_subrange_type)
13965 {
f792889a 13966 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13967
f792889a 13968 if (child_type != NULL)
a02abb62 13969 {
0963b4bd
MS
13970 /* The range type was succesfully read. Save it for the
13971 array type creation. */
a02abb62
JB
13972 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13973 {
13974 range_types = (struct type **)
13975 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13976 * sizeof (struct type *));
13977 if (ndim == 0)
13978 make_cleanup (free_current_contents, &range_types);
13979 }
f792889a 13980 range_types[ndim++] = child_type;
a02abb62 13981 }
c906108c
SS
13982 }
13983 child_die = sibling_die (child_die);
13984 }
13985
13986 /* Dwarf2 dimensions are output from left to right, create the
13987 necessary array types in backwards order. */
7ca2d3a3 13988
c906108c 13989 type = element_type;
7ca2d3a3
DL
13990
13991 if (read_array_order (die, cu) == DW_ORD_col_major)
13992 {
13993 int i = 0;
9a619af0 13994
7ca2d3a3 13995 while (i < ndim)
dc53a7ad
JB
13996 type = create_array_type_with_stride (NULL, type, range_types[i++],
13997 bit_stride);
7ca2d3a3
DL
13998 }
13999 else
14000 {
14001 while (ndim-- > 0)
dc53a7ad
JB
14002 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14003 bit_stride);
7ca2d3a3 14004 }
c906108c 14005
f5f8a009
EZ
14006 /* Understand Dwarf2 support for vector types (like they occur on
14007 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14008 array type. This is not part of the Dwarf2/3 standard yet, but a
14009 custom vendor extension. The main difference between a regular
14010 array and the vector variant is that vectors are passed by value
14011 to functions. */
e142c38c 14012 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14013 if (attr)
ea37ba09 14014 make_vector_type (type);
f5f8a009 14015
dbc98a8b
KW
14016 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14017 implementation may choose to implement triple vectors using this
14018 attribute. */
14019 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14020 if (attr)
14021 {
14022 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14023 TYPE_LENGTH (type) = DW_UNSND (attr);
14024 else
3e43a32a
MS
14025 complaint (&symfile_complaints,
14026 _("DW_AT_byte_size for array type smaller "
14027 "than the total size of elements"));
dbc98a8b
KW
14028 }
14029
39cbfefa
DJ
14030 name = dwarf2_name (die, cu);
14031 if (name)
14032 TYPE_NAME (type) = name;
6e70227d 14033
0963b4bd 14034 /* Install the type in the die. */
7e314c57
JK
14035 set_die_type (die, type, cu);
14036
14037 /* set_die_type should be already done. */
b4ba55a1
JB
14038 set_descriptive_type (type, die, cu);
14039
c906108c
SS
14040 do_cleanups (back_to);
14041
7e314c57 14042 return type;
c906108c
SS
14043}
14044
7ca2d3a3 14045static enum dwarf_array_dim_ordering
6e70227d 14046read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14047{
14048 struct attribute *attr;
14049
14050 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14051
aead7601
SM
14052 if (attr)
14053 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14054
0963b4bd
MS
14055 /* GNU F77 is a special case, as at 08/2004 array type info is the
14056 opposite order to the dwarf2 specification, but data is still
14057 laid out as per normal fortran.
7ca2d3a3 14058
0963b4bd
MS
14059 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14060 version checking. */
7ca2d3a3 14061
905e0470
PM
14062 if (cu->language == language_fortran
14063 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14064 {
14065 return DW_ORD_row_major;
14066 }
14067
6e70227d 14068 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14069 {
14070 case array_column_major:
14071 return DW_ORD_col_major;
14072 case array_row_major:
14073 default:
14074 return DW_ORD_row_major;
14075 };
14076}
14077
72019c9c 14078/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14079 the DIE's type field. */
72019c9c 14080
f792889a 14081static struct type *
72019c9c
GM
14082read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14083{
7e314c57
JK
14084 struct type *domain_type, *set_type;
14085 struct attribute *attr;
f792889a 14086
7e314c57
JK
14087 domain_type = die_type (die, cu);
14088
14089 /* The die_type call above may have already set the type for this DIE. */
14090 set_type = get_die_type (die, cu);
14091 if (set_type)
14092 return set_type;
14093
14094 set_type = create_set_type (NULL, domain_type);
14095
14096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14097 if (attr)
14098 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14099
f792889a 14100 return set_die_type (die, set_type, cu);
72019c9c 14101}
7ca2d3a3 14102
0971de02
TT
14103/* A helper for read_common_block that creates a locexpr baton.
14104 SYM is the symbol which we are marking as computed.
14105 COMMON_DIE is the DIE for the common block.
14106 COMMON_LOC is the location expression attribute for the common
14107 block itself.
14108 MEMBER_LOC is the location expression attribute for the particular
14109 member of the common block that we are processing.
14110 CU is the CU from which the above come. */
14111
14112static void
14113mark_common_block_symbol_computed (struct symbol *sym,
14114 struct die_info *common_die,
14115 struct attribute *common_loc,
14116 struct attribute *member_loc,
14117 struct dwarf2_cu *cu)
14118{
14119 struct objfile *objfile = dwarf2_per_objfile->objfile;
14120 struct dwarf2_locexpr_baton *baton;
14121 gdb_byte *ptr;
14122 unsigned int cu_off;
14123 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14124 LONGEST offset = 0;
14125
14126 gdb_assert (common_loc && member_loc);
14127 gdb_assert (attr_form_is_block (common_loc));
14128 gdb_assert (attr_form_is_block (member_loc)
14129 || attr_form_is_constant (member_loc));
14130
8d749320 14131 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14132 baton->per_cu = cu->per_cu;
14133 gdb_assert (baton->per_cu);
14134
14135 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14136
14137 if (attr_form_is_constant (member_loc))
14138 {
14139 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14140 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14141 }
14142 else
14143 baton->size += DW_BLOCK (member_loc)->size;
14144
224c3ddb 14145 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14146 baton->data = ptr;
14147
14148 *ptr++ = DW_OP_call4;
14149 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
14150 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14151 ptr += 4;
14152
14153 if (attr_form_is_constant (member_loc))
14154 {
14155 *ptr++ = DW_OP_addr;
14156 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14157 ptr += cu->header.addr_size;
14158 }
14159 else
14160 {
14161 /* We have to copy the data here, because DW_OP_call4 will only
14162 use a DW_AT_location attribute. */
14163 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14164 ptr += DW_BLOCK (member_loc)->size;
14165 }
14166
14167 *ptr++ = DW_OP_plus;
14168 gdb_assert (ptr - baton->data == baton->size);
14169
0971de02 14170 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14171 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14172}
14173
4357ac6c
TT
14174/* Create appropriate locally-scoped variables for all the
14175 DW_TAG_common_block entries. Also create a struct common_block
14176 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14177 is used to sepate the common blocks name namespace from regular
14178 variable names. */
c906108c
SS
14179
14180static void
e7c27a73 14181read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14182{
0971de02
TT
14183 struct attribute *attr;
14184
14185 attr = dwarf2_attr (die, DW_AT_location, cu);
14186 if (attr)
14187 {
14188 /* Support the .debug_loc offsets. */
14189 if (attr_form_is_block (attr))
14190 {
14191 /* Ok. */
14192 }
14193 else if (attr_form_is_section_offset (attr))
14194 {
14195 dwarf2_complex_location_expr_complaint ();
14196 attr = NULL;
14197 }
14198 else
14199 {
14200 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14201 "common block member");
14202 attr = NULL;
14203 }
14204 }
14205
639d11d3 14206 if (die->child != NULL)
c906108c 14207 {
4357ac6c
TT
14208 struct objfile *objfile = cu->objfile;
14209 struct die_info *child_die;
14210 size_t n_entries = 0, size;
14211 struct common_block *common_block;
14212 struct symbol *sym;
74ac6d43 14213
4357ac6c
TT
14214 for (child_die = die->child;
14215 child_die && child_die->tag;
14216 child_die = sibling_die (child_die))
14217 ++n_entries;
14218
14219 size = (sizeof (struct common_block)
14220 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14221 common_block
14222 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14223 size);
4357ac6c
TT
14224 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14225 common_block->n_entries = 0;
14226
14227 for (child_die = die->child;
14228 child_die && child_die->tag;
14229 child_die = sibling_die (child_die))
14230 {
14231 /* Create the symbol in the DW_TAG_common_block block in the current
14232 symbol scope. */
e7c27a73 14233 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14234 if (sym != NULL)
14235 {
14236 struct attribute *member_loc;
14237
14238 common_block->contents[common_block->n_entries++] = sym;
14239
14240 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14241 cu);
14242 if (member_loc)
14243 {
14244 /* GDB has handled this for a long time, but it is
14245 not specified by DWARF. It seems to have been
14246 emitted by gfortran at least as recently as:
14247 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14248 complaint (&symfile_complaints,
14249 _("Variable in common block has "
14250 "DW_AT_data_member_location "
14251 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14252 child_die->offset.sect_off,
14253 objfile_name (cu->objfile));
0971de02
TT
14254
14255 if (attr_form_is_section_offset (member_loc))
14256 dwarf2_complex_location_expr_complaint ();
14257 else if (attr_form_is_constant (member_loc)
14258 || attr_form_is_block (member_loc))
14259 {
14260 if (attr)
14261 mark_common_block_symbol_computed (sym, die, attr,
14262 member_loc, cu);
14263 }
14264 else
14265 dwarf2_complex_location_expr_complaint ();
14266 }
14267 }
c906108c 14268 }
4357ac6c
TT
14269
14270 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14271 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14272 }
14273}
14274
0114d602 14275/* Create a type for a C++ namespace. */
d9fa45fe 14276
0114d602
DJ
14277static struct type *
14278read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14279{
e7c27a73 14280 struct objfile *objfile = cu->objfile;
0114d602 14281 const char *previous_prefix, *name;
9219021c 14282 int is_anonymous;
0114d602
DJ
14283 struct type *type;
14284
14285 /* For extensions, reuse the type of the original namespace. */
14286 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14287 {
14288 struct die_info *ext_die;
14289 struct dwarf2_cu *ext_cu = cu;
9a619af0 14290
0114d602
DJ
14291 ext_die = dwarf2_extension (die, &ext_cu);
14292 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14293
14294 /* EXT_CU may not be the same as CU.
02142a6c 14295 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14296 return set_die_type (die, type, cu);
14297 }
9219021c 14298
e142c38c 14299 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14300
14301 /* Now build the name of the current namespace. */
14302
0114d602
DJ
14303 previous_prefix = determine_prefix (die, cu);
14304 if (previous_prefix[0] != '\0')
14305 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14306 previous_prefix, name, 0, cu);
0114d602
DJ
14307
14308 /* Create the type. */
19f392bc 14309 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14310 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14311
60531b24 14312 return set_die_type (die, type, cu);
0114d602
DJ
14313}
14314
22cee43f 14315/* Read a namespace scope. */
0114d602
DJ
14316
14317static void
14318read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14319{
14320 struct objfile *objfile = cu->objfile;
0114d602 14321 int is_anonymous;
9219021c 14322
5c4e30ca
DC
14323 /* Add a symbol associated to this if we haven't seen the namespace
14324 before. Also, add a using directive if it's an anonymous
14325 namespace. */
9219021c 14326
f2f0e013 14327 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14328 {
14329 struct type *type;
14330
0114d602 14331 type = read_type_die (die, cu);
e7c27a73 14332 new_symbol (die, type, cu);
5c4e30ca 14333
e8e80198 14334 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14335 if (is_anonymous)
0114d602
DJ
14336 {
14337 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14338
22cee43f
PMR
14339 add_using_directive (using_directives (cu->language),
14340 previous_prefix, TYPE_NAME (type), NULL,
14341 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14342 }
5c4e30ca 14343 }
9219021c 14344
639d11d3 14345 if (die->child != NULL)
d9fa45fe 14346 {
639d11d3 14347 struct die_info *child_die = die->child;
6e70227d 14348
d9fa45fe
DC
14349 while (child_die && child_die->tag)
14350 {
e7c27a73 14351 process_die (child_die, cu);
d9fa45fe
DC
14352 child_die = sibling_die (child_die);
14353 }
14354 }
38d518c9
EZ
14355}
14356
f55ee35c
JK
14357/* Read a Fortran module as type. This DIE can be only a declaration used for
14358 imported module. Still we need that type as local Fortran "use ... only"
14359 declaration imports depend on the created type in determine_prefix. */
14360
14361static struct type *
14362read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14363{
14364 struct objfile *objfile = cu->objfile;
15d034d0 14365 const char *module_name;
f55ee35c
JK
14366 struct type *type;
14367
14368 module_name = dwarf2_name (die, cu);
14369 if (!module_name)
3e43a32a
MS
14370 complaint (&symfile_complaints,
14371 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14372 die->offset.sect_off);
19f392bc 14373 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14374
14375 /* determine_prefix uses TYPE_TAG_NAME. */
14376 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14377
14378 return set_die_type (die, type, cu);
14379}
14380
5d7cb8df
JK
14381/* Read a Fortran module. */
14382
14383static void
14384read_module (struct die_info *die, struct dwarf2_cu *cu)
14385{
14386 struct die_info *child_die = die->child;
530e8392
KB
14387 struct type *type;
14388
14389 type = read_type_die (die, cu);
14390 new_symbol (die, type, cu);
5d7cb8df 14391
5d7cb8df
JK
14392 while (child_die && child_die->tag)
14393 {
14394 process_die (child_die, cu);
14395 child_die = sibling_die (child_die);
14396 }
14397}
14398
38d518c9
EZ
14399/* Return the name of the namespace represented by DIE. Set
14400 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14401 namespace. */
14402
14403static const char *
e142c38c 14404namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14405{
14406 struct die_info *current_die;
14407 const char *name = NULL;
14408
14409 /* Loop through the extensions until we find a name. */
14410
14411 for (current_die = die;
14412 current_die != NULL;
f2f0e013 14413 current_die = dwarf2_extension (die, &cu))
38d518c9 14414 {
96553a0c
DE
14415 /* We don't use dwarf2_name here so that we can detect the absence
14416 of a name -> anonymous namespace. */
7d45c7c3 14417 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14418
38d518c9
EZ
14419 if (name != NULL)
14420 break;
14421 }
14422
14423 /* Is it an anonymous namespace? */
14424
14425 *is_anonymous = (name == NULL);
14426 if (*is_anonymous)
2b1dbab0 14427 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14428
14429 return name;
d9fa45fe
DC
14430}
14431
c906108c
SS
14432/* Extract all information from a DW_TAG_pointer_type DIE and add to
14433 the user defined type vector. */
14434
f792889a 14435static struct type *
e7c27a73 14436read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14437{
5e2b427d 14438 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14439 struct comp_unit_head *cu_header = &cu->header;
c906108c 14440 struct type *type;
8b2dbe47
KB
14441 struct attribute *attr_byte_size;
14442 struct attribute *attr_address_class;
14443 int byte_size, addr_class;
7e314c57
JK
14444 struct type *target_type;
14445
14446 target_type = die_type (die, cu);
c906108c 14447
7e314c57
JK
14448 /* The die_type call above may have already set the type for this DIE. */
14449 type = get_die_type (die, cu);
14450 if (type)
14451 return type;
14452
14453 type = lookup_pointer_type (target_type);
8b2dbe47 14454
e142c38c 14455 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14456 if (attr_byte_size)
14457 byte_size = DW_UNSND (attr_byte_size);
c906108c 14458 else
8b2dbe47
KB
14459 byte_size = cu_header->addr_size;
14460
e142c38c 14461 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14462 if (attr_address_class)
14463 addr_class = DW_UNSND (attr_address_class);
14464 else
14465 addr_class = DW_ADDR_none;
14466
14467 /* If the pointer size or address class is different than the
14468 default, create a type variant marked as such and set the
14469 length accordingly. */
14470 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14471 {
5e2b427d 14472 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14473 {
14474 int type_flags;
14475
849957d9 14476 type_flags = gdbarch_address_class_type_flags
5e2b427d 14477 (gdbarch, byte_size, addr_class);
876cecd0
TT
14478 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14479 == 0);
8b2dbe47
KB
14480 type = make_type_with_address_space (type, type_flags);
14481 }
14482 else if (TYPE_LENGTH (type) != byte_size)
14483 {
3e43a32a
MS
14484 complaint (&symfile_complaints,
14485 _("invalid pointer size %d"), byte_size);
8b2dbe47 14486 }
6e70227d 14487 else
9a619af0
MS
14488 {
14489 /* Should we also complain about unhandled address classes? */
14490 }
c906108c 14491 }
8b2dbe47
KB
14492
14493 TYPE_LENGTH (type) = byte_size;
f792889a 14494 return set_die_type (die, type, cu);
c906108c
SS
14495}
14496
14497/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14498 the user defined type vector. */
14499
f792889a 14500static struct type *
e7c27a73 14501read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14502{
14503 struct type *type;
14504 struct type *to_type;
14505 struct type *domain;
14506
e7c27a73
DJ
14507 to_type = die_type (die, cu);
14508 domain = die_containing_type (die, cu);
0d5de010 14509
7e314c57
JK
14510 /* The calls above may have already set the type for this DIE. */
14511 type = get_die_type (die, cu);
14512 if (type)
14513 return type;
14514
0d5de010
DJ
14515 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14516 type = lookup_methodptr_type (to_type);
7078baeb
TT
14517 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14518 {
14519 struct type *new_type = alloc_type (cu->objfile);
14520
14521 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14522 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14523 TYPE_VARARGS (to_type));
14524 type = lookup_methodptr_type (new_type);
14525 }
0d5de010
DJ
14526 else
14527 type = lookup_memberptr_type (to_type, domain);
c906108c 14528
f792889a 14529 return set_die_type (die, type, cu);
c906108c
SS
14530}
14531
14532/* Extract all information from a DW_TAG_reference_type DIE and add to
14533 the user defined type vector. */
14534
f792889a 14535static struct type *
e7c27a73 14536read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14537{
e7c27a73 14538 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14539 struct type *type, *target_type;
c906108c
SS
14540 struct attribute *attr;
14541
7e314c57
JK
14542 target_type = die_type (die, cu);
14543
14544 /* The die_type call above may have already set the type for this DIE. */
14545 type = get_die_type (die, cu);
14546 if (type)
14547 return type;
14548
14549 type = lookup_reference_type (target_type);
e142c38c 14550 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14551 if (attr)
14552 {
14553 TYPE_LENGTH (type) = DW_UNSND (attr);
14554 }
14555 else
14556 {
107d2387 14557 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14558 }
f792889a 14559 return set_die_type (die, type, cu);
c906108c
SS
14560}
14561
cf363f18
MW
14562/* Add the given cv-qualifiers to the element type of the array. GCC
14563 outputs DWARF type qualifiers that apply to an array, not the
14564 element type. But GDB relies on the array element type to carry
14565 the cv-qualifiers. This mimics section 6.7.3 of the C99
14566 specification. */
14567
14568static struct type *
14569add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14570 struct type *base_type, int cnst, int voltl)
14571{
14572 struct type *el_type, *inner_array;
14573
14574 base_type = copy_type (base_type);
14575 inner_array = base_type;
14576
14577 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14578 {
14579 TYPE_TARGET_TYPE (inner_array) =
14580 copy_type (TYPE_TARGET_TYPE (inner_array));
14581 inner_array = TYPE_TARGET_TYPE (inner_array);
14582 }
14583
14584 el_type = TYPE_TARGET_TYPE (inner_array);
14585 cnst |= TYPE_CONST (el_type);
14586 voltl |= TYPE_VOLATILE (el_type);
14587 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14588
14589 return set_die_type (die, base_type, cu);
14590}
14591
f792889a 14592static struct type *
e7c27a73 14593read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14594{
f792889a 14595 struct type *base_type, *cv_type;
c906108c 14596
e7c27a73 14597 base_type = die_type (die, cu);
7e314c57
JK
14598
14599 /* The die_type call above may have already set the type for this DIE. */
14600 cv_type = get_die_type (die, cu);
14601 if (cv_type)
14602 return cv_type;
14603
2f608a3a
KW
14604 /* In case the const qualifier is applied to an array type, the element type
14605 is so qualified, not the array type (section 6.7.3 of C99). */
14606 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14607 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14608
f792889a
DJ
14609 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14610 return set_die_type (die, cv_type, cu);
c906108c
SS
14611}
14612
f792889a 14613static struct type *
e7c27a73 14614read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14615{
f792889a 14616 struct type *base_type, *cv_type;
c906108c 14617
e7c27a73 14618 base_type = die_type (die, cu);
7e314c57
JK
14619
14620 /* The die_type call above may have already set the type for this DIE. */
14621 cv_type = get_die_type (die, cu);
14622 if (cv_type)
14623 return cv_type;
14624
cf363f18
MW
14625 /* In case the volatile qualifier is applied to an array type, the
14626 element type is so qualified, not the array type (section 6.7.3
14627 of C99). */
14628 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14629 return add_array_cv_type (die, cu, base_type, 0, 1);
14630
f792889a
DJ
14631 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14632 return set_die_type (die, cv_type, cu);
c906108c
SS
14633}
14634
06d66ee9
TT
14635/* Handle DW_TAG_restrict_type. */
14636
14637static struct type *
14638read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14639{
14640 struct type *base_type, *cv_type;
14641
14642 base_type = die_type (die, cu);
14643
14644 /* The die_type call above may have already set the type for this DIE. */
14645 cv_type = get_die_type (die, cu);
14646 if (cv_type)
14647 return cv_type;
14648
14649 cv_type = make_restrict_type (base_type);
14650 return set_die_type (die, cv_type, cu);
14651}
14652
a2c2acaf
MW
14653/* Handle DW_TAG_atomic_type. */
14654
14655static struct type *
14656read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14657{
14658 struct type *base_type, *cv_type;
14659
14660 base_type = die_type (die, cu);
14661
14662 /* The die_type call above may have already set the type for this DIE. */
14663 cv_type = get_die_type (die, cu);
14664 if (cv_type)
14665 return cv_type;
14666
14667 cv_type = make_atomic_type (base_type);
14668 return set_die_type (die, cv_type, cu);
14669}
14670
c906108c
SS
14671/* Extract all information from a DW_TAG_string_type DIE and add to
14672 the user defined type vector. It isn't really a user defined type,
14673 but it behaves like one, with other DIE's using an AT_user_def_type
14674 attribute to reference it. */
14675
f792889a 14676static struct type *
e7c27a73 14677read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14678{
e7c27a73 14679 struct objfile *objfile = cu->objfile;
3b7538c0 14680 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14681 struct type *type, *range_type, *index_type, *char_type;
14682 struct attribute *attr;
14683 unsigned int length;
14684
e142c38c 14685 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14686 if (attr)
14687 {
14688 length = DW_UNSND (attr);
14689 }
14690 else
14691 {
0963b4bd 14692 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14693 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14694 if (attr)
14695 {
14696 length = DW_UNSND (attr);
14697 }
14698 else
14699 {
14700 length = 1;
14701 }
c906108c 14702 }
6ccb9162 14703
46bf5051 14704 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14705 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14706 char_type = language_string_char_type (cu->language_defn, gdbarch);
14707 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14708
f792889a 14709 return set_die_type (die, type, cu);
c906108c
SS
14710}
14711
4d804846
JB
14712/* Assuming that DIE corresponds to a function, returns nonzero
14713 if the function is prototyped. */
14714
14715static int
14716prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14717{
14718 struct attribute *attr;
14719
14720 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14721 if (attr && (DW_UNSND (attr) != 0))
14722 return 1;
14723
14724 /* The DWARF standard implies that the DW_AT_prototyped attribute
14725 is only meaninful for C, but the concept also extends to other
14726 languages that allow unprototyped functions (Eg: Objective C).
14727 For all other languages, assume that functions are always
14728 prototyped. */
14729 if (cu->language != language_c
14730 && cu->language != language_objc
14731 && cu->language != language_opencl)
14732 return 1;
14733
14734 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14735 prototyped and unprototyped functions; default to prototyped,
14736 since that is more common in modern code (and RealView warns
14737 about unprototyped functions). */
14738 if (producer_is_realview (cu->producer))
14739 return 1;
14740
14741 return 0;
14742}
14743
c906108c
SS
14744/* Handle DIES due to C code like:
14745
14746 struct foo
c5aa993b
JM
14747 {
14748 int (*funcp)(int a, long l);
14749 int b;
14750 };
c906108c 14751
0963b4bd 14752 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14753
f792889a 14754static struct type *
e7c27a73 14755read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14756{
bb5ed363 14757 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14758 struct type *type; /* Type that this function returns. */
14759 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14760 struct attribute *attr;
14761
e7c27a73 14762 type = die_type (die, cu);
7e314c57
JK
14763
14764 /* The die_type call above may have already set the type for this DIE. */
14765 ftype = get_die_type (die, cu);
14766 if (ftype)
14767 return ftype;
14768
0c8b41f1 14769 ftype = lookup_function_type (type);
c906108c 14770
4d804846 14771 if (prototyped_function_p (die, cu))
a6c727b2 14772 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14773
c055b101
CV
14774 /* Store the calling convention in the type if it's available in
14775 the subroutine die. Otherwise set the calling convention to
14776 the default value DW_CC_normal. */
14777 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14778 if (attr)
14779 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14780 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14781 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14782 else
14783 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14784
743649fd
MW
14785 /* Record whether the function returns normally to its caller or not
14786 if the DWARF producer set that information. */
14787 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14788 if (attr && (DW_UNSND (attr) != 0))
14789 TYPE_NO_RETURN (ftype) = 1;
14790
76c10ea2
GM
14791 /* We need to add the subroutine type to the die immediately so
14792 we don't infinitely recurse when dealing with parameters
0963b4bd 14793 declared as the same subroutine type. */
76c10ea2 14794 set_die_type (die, ftype, cu);
6e70227d 14795
639d11d3 14796 if (die->child != NULL)
c906108c 14797 {
bb5ed363 14798 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14799 struct die_info *child_die;
8072405b 14800 int nparams, iparams;
c906108c
SS
14801
14802 /* Count the number of parameters.
14803 FIXME: GDB currently ignores vararg functions, but knows about
14804 vararg member functions. */
8072405b 14805 nparams = 0;
639d11d3 14806 child_die = die->child;
c906108c
SS
14807 while (child_die && child_die->tag)
14808 {
14809 if (child_die->tag == DW_TAG_formal_parameter)
14810 nparams++;
14811 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14812 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14813 child_die = sibling_die (child_die);
14814 }
14815
14816 /* Allocate storage for parameters and fill them in. */
14817 TYPE_NFIELDS (ftype) = nparams;
14818 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14819 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14820
8072405b
JK
14821 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14822 even if we error out during the parameters reading below. */
14823 for (iparams = 0; iparams < nparams; iparams++)
14824 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14825
14826 iparams = 0;
639d11d3 14827 child_die = die->child;
c906108c
SS
14828 while (child_die && child_die->tag)
14829 {
14830 if (child_die->tag == DW_TAG_formal_parameter)
14831 {
3ce3b1ba
PA
14832 struct type *arg_type;
14833
14834 /* DWARF version 2 has no clean way to discern C++
14835 static and non-static member functions. G++ helps
14836 GDB by marking the first parameter for non-static
14837 member functions (which is the this pointer) as
14838 artificial. We pass this information to
14839 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14840
14841 DWARF version 3 added DW_AT_object_pointer, which GCC
14842 4.5 does not yet generate. */
e142c38c 14843 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14844 if (attr)
14845 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14846 else
9c37b5ae 14847 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
14848 arg_type = die_type (child_die, cu);
14849
14850 /* RealView does not mark THIS as const, which the testsuite
14851 expects. GCC marks THIS as const in method definitions,
14852 but not in the class specifications (GCC PR 43053). */
14853 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14854 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14855 {
14856 int is_this = 0;
14857 struct dwarf2_cu *arg_cu = cu;
14858 const char *name = dwarf2_name (child_die, cu);
14859
14860 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14861 if (attr)
14862 {
14863 /* If the compiler emits this, use it. */
14864 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14865 is_this = 1;
14866 }
14867 else if (name && strcmp (name, "this") == 0)
14868 /* Function definitions will have the argument names. */
14869 is_this = 1;
14870 else if (name == NULL && iparams == 0)
14871 /* Declarations may not have the names, so like
14872 elsewhere in GDB, assume an artificial first
14873 argument is "this". */
14874 is_this = 1;
14875
14876 if (is_this)
14877 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14878 arg_type, 0);
14879 }
14880
14881 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14882 iparams++;
14883 }
14884 child_die = sibling_die (child_die);
14885 }
14886 }
14887
76c10ea2 14888 return ftype;
c906108c
SS
14889}
14890
f792889a 14891static struct type *
e7c27a73 14892read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14893{
e7c27a73 14894 struct objfile *objfile = cu->objfile;
0114d602 14895 const char *name = NULL;
3c8e0968 14896 struct type *this_type, *target_type;
c906108c 14897
94af9270 14898 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
14899 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14900 TYPE_TARGET_STUB (this_type) = 1;
f792889a 14901 set_die_type (die, this_type, cu);
3c8e0968
DE
14902 target_type = die_type (die, cu);
14903 if (target_type != this_type)
14904 TYPE_TARGET_TYPE (this_type) = target_type;
14905 else
14906 {
14907 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14908 spec and cause infinite loops in GDB. */
14909 complaint (&symfile_complaints,
14910 _("Self-referential DW_TAG_typedef "
14911 "- DIE at 0x%x [in module %s]"),
4262abfb 14912 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14913 TYPE_TARGET_TYPE (this_type) = NULL;
14914 }
f792889a 14915 return this_type;
c906108c
SS
14916}
14917
9b790ce7
UW
14918/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14919 (which may be different from NAME) to the architecture back-end to allow
14920 it to guess the correct format if necessary. */
14921
14922static struct type *
14923dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14924 const char *name_hint)
14925{
14926 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14927 const struct floatformat **format;
14928 struct type *type;
14929
14930 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14931 if (format)
14932 type = init_float_type (objfile, bits, name, format);
14933 else
14934 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14935
14936 return type;
14937}
14938
c906108c
SS
14939/* Find a representation of a given base type and install
14940 it in the TYPE field of the die. */
14941
f792889a 14942static struct type *
e7c27a73 14943read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14944{
e7c27a73 14945 struct objfile *objfile = cu->objfile;
c906108c
SS
14946 struct type *type;
14947 struct attribute *attr;
19f392bc 14948 int encoding = 0, bits = 0;
15d034d0 14949 const char *name;
c906108c 14950
e142c38c 14951 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14952 if (attr)
14953 {
14954 encoding = DW_UNSND (attr);
14955 }
e142c38c 14956 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14957 if (attr)
14958 {
19f392bc 14959 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 14960 }
39cbfefa 14961 name = dwarf2_name (die, cu);
6ccb9162 14962 if (!name)
c906108c 14963 {
6ccb9162
UW
14964 complaint (&symfile_complaints,
14965 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14966 }
6ccb9162
UW
14967
14968 switch (encoding)
c906108c 14969 {
6ccb9162
UW
14970 case DW_ATE_address:
14971 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
14972 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14973 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
14974 break;
14975 case DW_ATE_boolean:
19f392bc 14976 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
14977 break;
14978 case DW_ATE_complex_float:
9b790ce7 14979 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 14980 type = init_complex_type (objfile, name, type);
6ccb9162
UW
14981 break;
14982 case DW_ATE_decimal_float:
19f392bc 14983 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
14984 break;
14985 case DW_ATE_float:
9b790ce7 14986 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
14987 break;
14988 case DW_ATE_signed:
19f392bc 14989 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14990 break;
14991 case DW_ATE_unsigned:
3b2b8fea
TT
14992 if (cu->language == language_fortran
14993 && name
61012eef 14994 && startswith (name, "character("))
19f392bc
UW
14995 type = init_character_type (objfile, bits, 1, name);
14996 else
14997 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
14998 break;
14999 case DW_ATE_signed_char:
6e70227d 15000 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15001 || cu->language == language_pascal
15002 || cu->language == language_fortran)
19f392bc
UW
15003 type = init_character_type (objfile, bits, 0, name);
15004 else
15005 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15006 break;
15007 case DW_ATE_unsigned_char:
868a0084 15008 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15009 || cu->language == language_pascal
c44af4eb
TT
15010 || cu->language == language_fortran
15011 || cu->language == language_rust)
19f392bc
UW
15012 type = init_character_type (objfile, bits, 1, name);
15013 else
15014 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15015 break;
75079b2b
TT
15016 case DW_ATE_UTF:
15017 /* We just treat this as an integer and then recognize the
15018 type by name elsewhere. */
19f392bc 15019 type = init_integer_type (objfile, bits, 0, name);
75079b2b
TT
15020 break;
15021
6ccb9162
UW
15022 default:
15023 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15024 dwarf_type_encoding_name (encoding));
19f392bc
UW
15025 type = init_type (objfile, TYPE_CODE_ERROR,
15026 bits / TARGET_CHAR_BIT, name);
6ccb9162 15027 break;
c906108c 15028 }
6ccb9162 15029
0114d602 15030 if (name && strcmp (name, "char") == 0)
876cecd0 15031 TYPE_NOSIGN (type) = 1;
0114d602 15032
f792889a 15033 return set_die_type (die, type, cu);
c906108c
SS
15034}
15035
80180f79
SA
15036/* Parse dwarf attribute if it's a block, reference or constant and put the
15037 resulting value of the attribute into struct bound_prop.
15038 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15039
15040static int
15041attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15042 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15043{
15044 struct dwarf2_property_baton *baton;
15045 struct obstack *obstack = &cu->objfile->objfile_obstack;
15046
15047 if (attr == NULL || prop == NULL)
15048 return 0;
15049
15050 if (attr_form_is_block (attr))
15051 {
8d749320 15052 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15053 baton->referenced_type = NULL;
15054 baton->locexpr.per_cu = cu->per_cu;
15055 baton->locexpr.size = DW_BLOCK (attr)->size;
15056 baton->locexpr.data = DW_BLOCK (attr)->data;
15057 prop->data.baton = baton;
15058 prop->kind = PROP_LOCEXPR;
15059 gdb_assert (prop->data.baton != NULL);
15060 }
15061 else if (attr_form_is_ref (attr))
15062 {
15063 struct dwarf2_cu *target_cu = cu;
15064 struct die_info *target_die;
15065 struct attribute *target_attr;
15066
15067 target_die = follow_die_ref (die, attr, &target_cu);
15068 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15069 if (target_attr == NULL)
15070 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15071 target_cu);
80180f79
SA
15072 if (target_attr == NULL)
15073 return 0;
15074
df25ebbd 15075 switch (target_attr->name)
80180f79 15076 {
df25ebbd
JB
15077 case DW_AT_location:
15078 if (attr_form_is_section_offset (target_attr))
15079 {
8d749320 15080 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15081 baton->referenced_type = die_type (target_die, target_cu);
15082 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15083 prop->data.baton = baton;
15084 prop->kind = PROP_LOCLIST;
15085 gdb_assert (prop->data.baton != NULL);
15086 }
15087 else if (attr_form_is_block (target_attr))
15088 {
8d749320 15089 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15090 baton->referenced_type = die_type (target_die, target_cu);
15091 baton->locexpr.per_cu = cu->per_cu;
15092 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15093 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15094 prop->data.baton = baton;
15095 prop->kind = PROP_LOCEXPR;
15096 gdb_assert (prop->data.baton != NULL);
15097 }
15098 else
15099 {
15100 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15101 "dynamic property");
15102 return 0;
15103 }
15104 break;
15105 case DW_AT_data_member_location:
15106 {
15107 LONGEST offset;
15108
15109 if (!handle_data_member_location (target_die, target_cu,
15110 &offset))
15111 return 0;
15112
8d749320 15113 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15114 baton->referenced_type = read_type_die (target_die->parent,
15115 target_cu);
df25ebbd
JB
15116 baton->offset_info.offset = offset;
15117 baton->offset_info.type = die_type (target_die, target_cu);
15118 prop->data.baton = baton;
15119 prop->kind = PROP_ADDR_OFFSET;
15120 break;
15121 }
80180f79
SA
15122 }
15123 }
15124 else if (attr_form_is_constant (attr))
15125 {
15126 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15127 prop->kind = PROP_CONST;
15128 }
15129 else
15130 {
15131 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15132 dwarf2_name (die, cu));
15133 return 0;
15134 }
15135
15136 return 1;
15137}
15138
a02abb62
JB
15139/* Read the given DW_AT_subrange DIE. */
15140
f792889a 15141static struct type *
a02abb62
JB
15142read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15143{
4c9ad8c2 15144 struct type *base_type, *orig_base_type;
a02abb62
JB
15145 struct type *range_type;
15146 struct attribute *attr;
729efb13 15147 struct dynamic_prop low, high;
4fae6e18 15148 int low_default_is_valid;
c451ebe5 15149 int high_bound_is_count = 0;
15d034d0 15150 const char *name;
43bbcdc2 15151 LONGEST negative_mask;
e77813c8 15152
4c9ad8c2
TT
15153 orig_base_type = die_type (die, cu);
15154 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15155 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15156 creating the range type, but we use the result of check_typedef
15157 when examining properties of the type. */
15158 base_type = check_typedef (orig_base_type);
a02abb62 15159
7e314c57
JK
15160 /* The die_type call above may have already set the type for this DIE. */
15161 range_type = get_die_type (die, cu);
15162 if (range_type)
15163 return range_type;
15164
729efb13
SA
15165 low.kind = PROP_CONST;
15166 high.kind = PROP_CONST;
15167 high.data.const_val = 0;
15168
4fae6e18
JK
15169 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15170 omitting DW_AT_lower_bound. */
15171 switch (cu->language)
6e70227d 15172 {
4fae6e18
JK
15173 case language_c:
15174 case language_cplus:
729efb13 15175 low.data.const_val = 0;
4fae6e18
JK
15176 low_default_is_valid = 1;
15177 break;
15178 case language_fortran:
729efb13 15179 low.data.const_val = 1;
4fae6e18
JK
15180 low_default_is_valid = 1;
15181 break;
15182 case language_d:
4fae6e18 15183 case language_objc:
c44af4eb 15184 case language_rust:
729efb13 15185 low.data.const_val = 0;
4fae6e18
JK
15186 low_default_is_valid = (cu->header.version >= 4);
15187 break;
15188 case language_ada:
15189 case language_m2:
15190 case language_pascal:
729efb13 15191 low.data.const_val = 1;
4fae6e18
JK
15192 low_default_is_valid = (cu->header.version >= 4);
15193 break;
15194 default:
729efb13 15195 low.data.const_val = 0;
4fae6e18
JK
15196 low_default_is_valid = 0;
15197 break;
a02abb62
JB
15198 }
15199
e142c38c 15200 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15201 if (attr)
11c1ba78 15202 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15203 else if (!low_default_is_valid)
15204 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15205 "- DIE at 0x%x [in module %s]"),
4262abfb 15206 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15207
e142c38c 15208 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15209 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15210 {
15211 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15212 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15213 {
c451ebe5
SA
15214 /* If bounds are constant do the final calculation here. */
15215 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15216 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15217 else
15218 high_bound_is_count = 1;
c2ff108b 15219 }
e77813c8
PM
15220 }
15221
15222 /* Dwarf-2 specifications explicitly allows to create subrange types
15223 without specifying a base type.
15224 In that case, the base type must be set to the type of
15225 the lower bound, upper bound or count, in that order, if any of these
15226 three attributes references an object that has a type.
15227 If no base type is found, the Dwarf-2 specifications say that
15228 a signed integer type of size equal to the size of an address should
15229 be used.
15230 For the following C code: `extern char gdb_int [];'
15231 GCC produces an empty range DIE.
15232 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15233 high bound or count are not yet handled by this code. */
e77813c8
PM
15234 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15235 {
15236 struct objfile *objfile = cu->objfile;
15237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15238 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15239 struct type *int_type = objfile_type (objfile)->builtin_int;
15240
15241 /* Test "int", "long int", and "long long int" objfile types,
15242 and select the first one having a size above or equal to the
15243 architecture address size. */
15244 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15245 base_type = int_type;
15246 else
15247 {
15248 int_type = objfile_type (objfile)->builtin_long;
15249 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15250 base_type = int_type;
15251 else
15252 {
15253 int_type = objfile_type (objfile)->builtin_long_long;
15254 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15255 base_type = int_type;
15256 }
15257 }
15258 }
a02abb62 15259
dbb9c2b1
JB
15260 /* Normally, the DWARF producers are expected to use a signed
15261 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15262 But this is unfortunately not always the case, as witnessed
15263 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15264 is used instead. To work around that ambiguity, we treat
15265 the bounds as signed, and thus sign-extend their values, when
15266 the base type is signed. */
6e70227d 15267 negative_mask =
66c6502d 15268 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15269 if (low.kind == PROP_CONST
15270 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15271 low.data.const_val |= negative_mask;
15272 if (high.kind == PROP_CONST
15273 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15274 high.data.const_val |= negative_mask;
43bbcdc2 15275
729efb13 15276 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15277
c451ebe5
SA
15278 if (high_bound_is_count)
15279 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15280
c2ff108b
JK
15281 /* Ada expects an empty array on no boundary attributes. */
15282 if (attr == NULL && cu->language != language_ada)
729efb13 15283 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15284
39cbfefa
DJ
15285 name = dwarf2_name (die, cu);
15286 if (name)
15287 TYPE_NAME (range_type) = name;
6e70227d 15288
e142c38c 15289 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15290 if (attr)
15291 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15292
7e314c57
JK
15293 set_die_type (die, range_type, cu);
15294
15295 /* set_die_type should be already done. */
b4ba55a1
JB
15296 set_descriptive_type (range_type, die, cu);
15297
7e314c57 15298 return range_type;
a02abb62 15299}
6e70227d 15300
f792889a 15301static struct type *
81a17f79
JB
15302read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15303{
15304 struct type *type;
81a17f79 15305
81a17f79
JB
15306 /* For now, we only support the C meaning of an unspecified type: void. */
15307
19f392bc 15308 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15309 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15310
f792889a 15311 return set_die_type (die, type, cu);
81a17f79 15312}
a02abb62 15313
639d11d3
DC
15314/* Read a single die and all its descendents. Set the die's sibling
15315 field to NULL; set other fields in the die correctly, and set all
15316 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15317 location of the info_ptr after reading all of those dies. PARENT
15318 is the parent of the die in question. */
15319
15320static struct die_info *
dee91e82 15321read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15322 const gdb_byte *info_ptr,
15323 const gdb_byte **new_info_ptr,
dee91e82 15324 struct die_info *parent)
639d11d3
DC
15325{
15326 struct die_info *die;
d521ce57 15327 const gdb_byte *cur_ptr;
639d11d3
DC
15328 int has_children;
15329
bf6af496 15330 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15331 if (die == NULL)
15332 {
15333 *new_info_ptr = cur_ptr;
15334 return NULL;
15335 }
93311388 15336 store_in_ref_table (die, reader->cu);
639d11d3
DC
15337
15338 if (has_children)
bf6af496 15339 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15340 else
15341 {
15342 die->child = NULL;
15343 *new_info_ptr = cur_ptr;
15344 }
15345
15346 die->sibling = NULL;
15347 die->parent = parent;
15348 return die;
15349}
15350
15351/* Read a die, all of its descendents, and all of its siblings; set
15352 all of the fields of all of the dies correctly. Arguments are as
15353 in read_die_and_children. */
15354
15355static struct die_info *
bf6af496 15356read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15357 const gdb_byte *info_ptr,
15358 const gdb_byte **new_info_ptr,
bf6af496 15359 struct die_info *parent)
639d11d3
DC
15360{
15361 struct die_info *first_die, *last_sibling;
d521ce57 15362 const gdb_byte *cur_ptr;
639d11d3 15363
c906108c 15364 cur_ptr = info_ptr;
639d11d3
DC
15365 first_die = last_sibling = NULL;
15366
15367 while (1)
c906108c 15368 {
639d11d3 15369 struct die_info *die
dee91e82 15370 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15371
1d325ec1 15372 if (die == NULL)
c906108c 15373 {
639d11d3
DC
15374 *new_info_ptr = cur_ptr;
15375 return first_die;
c906108c 15376 }
1d325ec1
DJ
15377
15378 if (!first_die)
15379 first_die = die;
c906108c 15380 else
1d325ec1
DJ
15381 last_sibling->sibling = die;
15382
15383 last_sibling = die;
c906108c 15384 }
c906108c
SS
15385}
15386
bf6af496
DE
15387/* Read a die, all of its descendents, and all of its siblings; set
15388 all of the fields of all of the dies correctly. Arguments are as
15389 in read_die_and_children.
15390 This the main entry point for reading a DIE and all its children. */
15391
15392static struct die_info *
15393read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15394 const gdb_byte *info_ptr,
15395 const gdb_byte **new_info_ptr,
bf6af496
DE
15396 struct die_info *parent)
15397{
15398 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15399 new_info_ptr, parent);
15400
b4f54984 15401 if (dwarf_die_debug)
bf6af496
DE
15402 {
15403 fprintf_unfiltered (gdb_stdlog,
15404 "Read die from %s@0x%x of %s:\n",
a32a8923 15405 get_section_name (reader->die_section),
bf6af496
DE
15406 (unsigned) (info_ptr - reader->die_section->buffer),
15407 bfd_get_filename (reader->abfd));
b4f54984 15408 dump_die (die, dwarf_die_debug);
bf6af496
DE
15409 }
15410
15411 return die;
15412}
15413
3019eac3
DE
15414/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15415 attributes.
15416 The caller is responsible for filling in the extra attributes
15417 and updating (*DIEP)->num_attrs.
15418 Set DIEP to point to a newly allocated die with its information,
15419 except for its child, sibling, and parent fields.
15420 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15421
d521ce57 15422static const gdb_byte *
3019eac3 15423read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15424 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15425 int *has_children, int num_extra_attrs)
93311388 15426{
b64f50a1
JK
15427 unsigned int abbrev_number, bytes_read, i;
15428 sect_offset offset;
93311388
DE
15429 struct abbrev_info *abbrev;
15430 struct die_info *die;
15431 struct dwarf2_cu *cu = reader->cu;
15432 bfd *abfd = reader->abfd;
15433
b64f50a1 15434 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15435 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15436 info_ptr += bytes_read;
15437 if (!abbrev_number)
15438 {
15439 *diep = NULL;
15440 *has_children = 0;
15441 return info_ptr;
15442 }
15443
433df2d4 15444 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15445 if (!abbrev)
348e048f
DE
15446 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15447 abbrev_number,
15448 bfd_get_filename (abfd));
15449
3019eac3 15450 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15451 die->offset = offset;
15452 die->tag = abbrev->tag;
15453 die->abbrev = abbrev_number;
15454
3019eac3
DE
15455 /* Make the result usable.
15456 The caller needs to update num_attrs after adding the extra
15457 attributes. */
93311388
DE
15458 die->num_attrs = abbrev->num_attrs;
15459
15460 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15461 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15462 info_ptr);
93311388
DE
15463
15464 *diep = die;
15465 *has_children = abbrev->has_children;
15466 return info_ptr;
15467}
15468
3019eac3
DE
15469/* Read a die and all its attributes.
15470 Set DIEP to point to a newly allocated die with its information,
15471 except for its child, sibling, and parent fields.
15472 Set HAS_CHILDREN to tell whether the die has children or not. */
15473
d521ce57 15474static const gdb_byte *
3019eac3 15475read_full_die (const struct die_reader_specs *reader,
d521ce57 15476 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15477 int *has_children)
15478{
d521ce57 15479 const gdb_byte *result;
bf6af496
DE
15480
15481 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15482
b4f54984 15483 if (dwarf_die_debug)
bf6af496
DE
15484 {
15485 fprintf_unfiltered (gdb_stdlog,
15486 "Read die from %s@0x%x of %s:\n",
a32a8923 15487 get_section_name (reader->die_section),
bf6af496
DE
15488 (unsigned) (info_ptr - reader->die_section->buffer),
15489 bfd_get_filename (reader->abfd));
b4f54984 15490 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15491 }
15492
15493 return result;
3019eac3 15494}
433df2d4
DE
15495\f
15496/* Abbreviation tables.
3019eac3 15497
433df2d4 15498 In DWARF version 2, the description of the debugging information is
c906108c
SS
15499 stored in a separate .debug_abbrev section. Before we read any
15500 dies from a section we read in all abbreviations and install them
433df2d4
DE
15501 in a hash table. */
15502
15503/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15504
15505static struct abbrev_info *
15506abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15507{
15508 struct abbrev_info *abbrev;
15509
8d749320 15510 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15511 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15512
433df2d4
DE
15513 return abbrev;
15514}
15515
15516/* Add an abbreviation to the table. */
c906108c
SS
15517
15518static void
433df2d4
DE
15519abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15520 unsigned int abbrev_number,
15521 struct abbrev_info *abbrev)
15522{
15523 unsigned int hash_number;
15524
15525 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15526 abbrev->next = abbrev_table->abbrevs[hash_number];
15527 abbrev_table->abbrevs[hash_number] = abbrev;
15528}
dee91e82 15529
433df2d4
DE
15530/* Look up an abbrev in the table.
15531 Returns NULL if the abbrev is not found. */
15532
15533static struct abbrev_info *
15534abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15535 unsigned int abbrev_number)
c906108c 15536{
433df2d4
DE
15537 unsigned int hash_number;
15538 struct abbrev_info *abbrev;
15539
15540 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15541 abbrev = abbrev_table->abbrevs[hash_number];
15542
15543 while (abbrev)
15544 {
15545 if (abbrev->number == abbrev_number)
15546 return abbrev;
15547 abbrev = abbrev->next;
15548 }
15549 return NULL;
15550}
15551
15552/* Read in an abbrev table. */
15553
15554static struct abbrev_table *
15555abbrev_table_read_table (struct dwarf2_section_info *section,
15556 sect_offset offset)
15557{
15558 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15559 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15560 struct abbrev_table *abbrev_table;
d521ce57 15561 const gdb_byte *abbrev_ptr;
c906108c
SS
15562 struct abbrev_info *cur_abbrev;
15563 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15564 unsigned int abbrev_form;
f3dd6933
DJ
15565 struct attr_abbrev *cur_attrs;
15566 unsigned int allocated_attrs;
c906108c 15567
70ba0933 15568 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15569 abbrev_table->offset = offset;
433df2d4 15570 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15571 abbrev_table->abbrevs =
15572 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15573 ABBREV_HASH_SIZE);
433df2d4
DE
15574 memset (abbrev_table->abbrevs, 0,
15575 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15576
433df2d4
DE
15577 dwarf2_read_section (objfile, section);
15578 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15579 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15580 abbrev_ptr += bytes_read;
15581
f3dd6933 15582 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15583 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15584
0963b4bd 15585 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15586 while (abbrev_number)
15587 {
433df2d4 15588 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15589
15590 /* read in abbrev header */
15591 cur_abbrev->number = abbrev_number;
aead7601
SM
15592 cur_abbrev->tag
15593 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15594 abbrev_ptr += bytes_read;
15595 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15596 abbrev_ptr += 1;
15597
15598 /* now read in declarations */
22d2f3ab 15599 for (;;)
c906108c 15600 {
43988095
JK
15601 LONGEST implicit_const;
15602
22d2f3ab
JK
15603 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15604 abbrev_ptr += bytes_read;
15605 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15606 abbrev_ptr += bytes_read;
43988095
JK
15607 if (abbrev_form == DW_FORM_implicit_const)
15608 {
15609 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15610 &bytes_read);
15611 abbrev_ptr += bytes_read;
15612 }
15613 else
15614 {
15615 /* Initialize it due to a false compiler warning. */
15616 implicit_const = -1;
15617 }
22d2f3ab
JK
15618
15619 if (abbrev_name == 0)
15620 break;
15621
f3dd6933 15622 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15623 {
f3dd6933
DJ
15624 allocated_attrs += ATTR_ALLOC_CHUNK;
15625 cur_attrs
224c3ddb 15626 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15627 }
ae038cb0 15628
aead7601
SM
15629 cur_attrs[cur_abbrev->num_attrs].name
15630 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15631 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15632 = (enum dwarf_form) abbrev_form;
43988095 15633 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15634 ++cur_abbrev->num_attrs;
c906108c
SS
15635 }
15636
8d749320
SM
15637 cur_abbrev->attrs =
15638 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15639 cur_abbrev->num_attrs);
f3dd6933
DJ
15640 memcpy (cur_abbrev->attrs, cur_attrs,
15641 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15642
433df2d4 15643 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15644
15645 /* Get next abbreviation.
15646 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15647 always properly terminated with an abbrev number of 0.
15648 Exit loop if we encounter an abbreviation which we have
15649 already read (which means we are about to read the abbreviations
15650 for the next compile unit) or if the end of the abbreviation
15651 table is reached. */
433df2d4 15652 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15653 break;
15654 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15655 abbrev_ptr += bytes_read;
433df2d4 15656 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15657 break;
15658 }
f3dd6933
DJ
15659
15660 xfree (cur_attrs);
433df2d4 15661 return abbrev_table;
c906108c
SS
15662}
15663
433df2d4 15664/* Free the resources held by ABBREV_TABLE. */
c906108c 15665
c906108c 15666static void
433df2d4 15667abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15668{
433df2d4
DE
15669 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15670 xfree (abbrev_table);
c906108c
SS
15671}
15672
f4dc4d17
DE
15673/* Same as abbrev_table_free but as a cleanup.
15674 We pass in a pointer to the pointer to the table so that we can
15675 set the pointer to NULL when we're done. It also simplifies
73051182 15676 build_type_psymtabs_1. */
f4dc4d17
DE
15677
15678static void
15679abbrev_table_free_cleanup (void *table_ptr)
15680{
9a3c8263 15681 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15682
15683 if (*abbrev_table_ptr != NULL)
15684 abbrev_table_free (*abbrev_table_ptr);
15685 *abbrev_table_ptr = NULL;
15686}
15687
433df2d4
DE
15688/* Read the abbrev table for CU from ABBREV_SECTION. */
15689
15690static void
15691dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15692 struct dwarf2_section_info *abbrev_section)
c906108c 15693{
433df2d4
DE
15694 cu->abbrev_table =
15695 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15696}
c906108c 15697
433df2d4 15698/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15699
433df2d4
DE
15700static void
15701dwarf2_free_abbrev_table (void *ptr_to_cu)
15702{
9a3c8263 15703 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15704
a2ce51a0
DE
15705 if (cu->abbrev_table != NULL)
15706 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15707 /* Set this to NULL so that we SEGV if we try to read it later,
15708 and also because free_comp_unit verifies this is NULL. */
15709 cu->abbrev_table = NULL;
15710}
15711\f
72bf9492
DJ
15712/* Returns nonzero if TAG represents a type that we might generate a partial
15713 symbol for. */
15714
15715static int
15716is_type_tag_for_partial (int tag)
15717{
15718 switch (tag)
15719 {
15720#if 0
15721 /* Some types that would be reasonable to generate partial symbols for,
15722 that we don't at present. */
15723 case DW_TAG_array_type:
15724 case DW_TAG_file_type:
15725 case DW_TAG_ptr_to_member_type:
15726 case DW_TAG_set_type:
15727 case DW_TAG_string_type:
15728 case DW_TAG_subroutine_type:
15729#endif
15730 case DW_TAG_base_type:
15731 case DW_TAG_class_type:
680b30c7 15732 case DW_TAG_interface_type:
72bf9492
DJ
15733 case DW_TAG_enumeration_type:
15734 case DW_TAG_structure_type:
15735 case DW_TAG_subrange_type:
15736 case DW_TAG_typedef:
15737 case DW_TAG_union_type:
15738 return 1;
15739 default:
15740 return 0;
15741 }
15742}
15743
15744/* Load all DIEs that are interesting for partial symbols into memory. */
15745
15746static struct partial_die_info *
dee91e82 15747load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15748 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15749{
dee91e82 15750 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15751 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15752 struct partial_die_info *part_die;
15753 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15754 struct abbrev_info *abbrev;
15755 unsigned int bytes_read;
5afb4e99 15756 unsigned int load_all = 0;
72bf9492
DJ
15757 int nesting_level = 1;
15758
15759 parent_die = NULL;
15760 last_die = NULL;
15761
7adf1e79
DE
15762 gdb_assert (cu->per_cu != NULL);
15763 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15764 load_all = 1;
15765
72bf9492
DJ
15766 cu->partial_dies
15767 = htab_create_alloc_ex (cu->header.length / 12,
15768 partial_die_hash,
15769 partial_die_eq,
15770 NULL,
15771 &cu->comp_unit_obstack,
15772 hashtab_obstack_allocate,
15773 dummy_obstack_deallocate);
15774
8d749320 15775 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15776
15777 while (1)
15778 {
15779 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15780
15781 /* A NULL abbrev means the end of a series of children. */
15782 if (abbrev == NULL)
15783 {
15784 if (--nesting_level == 0)
15785 {
15786 /* PART_DIE was probably the last thing allocated on the
15787 comp_unit_obstack, so we could call obstack_free
15788 here. We don't do that because the waste is small,
15789 and will be cleaned up when we're done with this
15790 compilation unit. This way, we're also more robust
15791 against other users of the comp_unit_obstack. */
15792 return first_die;
15793 }
15794 info_ptr += bytes_read;
15795 last_die = parent_die;
15796 parent_die = parent_die->die_parent;
15797 continue;
15798 }
15799
98bfdba5
PA
15800 /* Check for template arguments. We never save these; if
15801 they're seen, we just mark the parent, and go on our way. */
15802 if (parent_die != NULL
15803 && cu->language == language_cplus
15804 && (abbrev->tag == DW_TAG_template_type_param
15805 || abbrev->tag == DW_TAG_template_value_param))
15806 {
15807 parent_die->has_template_arguments = 1;
15808
15809 if (!load_all)
15810 {
15811 /* We don't need a partial DIE for the template argument. */
dee91e82 15812 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15813 continue;
15814 }
15815 }
15816
0d99eb77 15817 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15818 Skip their other children. */
15819 if (!load_all
15820 && cu->language == language_cplus
15821 && parent_die != NULL
15822 && parent_die->tag == DW_TAG_subprogram)
15823 {
dee91e82 15824 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15825 continue;
15826 }
15827
5afb4e99
DJ
15828 /* Check whether this DIE is interesting enough to save. Normally
15829 we would not be interested in members here, but there may be
15830 later variables referencing them via DW_AT_specification (for
15831 static members). */
15832 if (!load_all
15833 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15834 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15835 && abbrev->tag != DW_TAG_enumerator
15836 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15837 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15838 && abbrev->tag != DW_TAG_variable
5afb4e99 15839 && abbrev->tag != DW_TAG_namespace
f55ee35c 15840 && abbrev->tag != DW_TAG_module
95554aad 15841 && abbrev->tag != DW_TAG_member
74921315
KS
15842 && abbrev->tag != DW_TAG_imported_unit
15843 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15844 {
15845 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15846 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15847 continue;
15848 }
15849
dee91e82
DE
15850 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15851 info_ptr);
72bf9492
DJ
15852
15853 /* This two-pass algorithm for processing partial symbols has a
15854 high cost in cache pressure. Thus, handle some simple cases
15855 here which cover the majority of C partial symbols. DIEs
15856 which neither have specification tags in them, nor could have
15857 specification tags elsewhere pointing at them, can simply be
15858 processed and discarded.
15859
15860 This segment is also optional; scan_partial_symbols and
15861 add_partial_symbol will handle these DIEs if we chain
15862 them in normally. When compilers which do not emit large
15863 quantities of duplicate debug information are more common,
15864 this code can probably be removed. */
15865
15866 /* Any complete simple types at the top level (pretty much all
15867 of them, for a language without namespaces), can be processed
15868 directly. */
15869 if (parent_die == NULL
15870 && part_die->has_specification == 0
15871 && part_die->is_declaration == 0
d8228535 15872 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15873 || part_die->tag == DW_TAG_base_type
15874 || part_die->tag == DW_TAG_subrange_type))
15875 {
15876 if (building_psymtab && part_die->name != NULL)
04a679b8 15877 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15878 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15879 &objfile->static_psymbols,
1762568f 15880 0, cu->language, objfile);
dee91e82 15881 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15882 continue;
15883 }
15884
d8228535
JK
15885 /* The exception for DW_TAG_typedef with has_children above is
15886 a workaround of GCC PR debug/47510. In the case of this complaint
15887 type_name_no_tag_or_error will error on such types later.
15888
15889 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15890 it could not find the child DIEs referenced later, this is checked
15891 above. In correct DWARF DW_TAG_typedef should have no children. */
15892
15893 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15894 complaint (&symfile_complaints,
15895 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15896 "- DIE at 0x%x [in module %s]"),
4262abfb 15897 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15898
72bf9492
DJ
15899 /* If we're at the second level, and we're an enumerator, and
15900 our parent has no specification (meaning possibly lives in a
15901 namespace elsewhere), then we can add the partial symbol now
15902 instead of queueing it. */
15903 if (part_die->tag == DW_TAG_enumerator
15904 && parent_die != NULL
15905 && parent_die->die_parent == NULL
15906 && parent_die->tag == DW_TAG_enumeration_type
15907 && parent_die->has_specification == 0)
15908 {
15909 if (part_die->name == NULL)
3e43a32a
MS
15910 complaint (&symfile_complaints,
15911 _("malformed enumerator DIE ignored"));
72bf9492 15912 else if (building_psymtab)
04a679b8 15913 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15914 VAR_DOMAIN, LOC_CONST,
9c37b5ae 15915 cu->language == language_cplus
bb5ed363
DE
15916 ? &objfile->global_psymbols
15917 : &objfile->static_psymbols,
1762568f 15918 0, cu->language, objfile);
72bf9492 15919
dee91e82 15920 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15921 continue;
15922 }
15923
15924 /* We'll save this DIE so link it in. */
15925 part_die->die_parent = parent_die;
15926 part_die->die_sibling = NULL;
15927 part_die->die_child = NULL;
15928
15929 if (last_die && last_die == parent_die)
15930 last_die->die_child = part_die;
15931 else if (last_die)
15932 last_die->die_sibling = part_die;
15933
15934 last_die = part_die;
15935
15936 if (first_die == NULL)
15937 first_die = part_die;
15938
15939 /* Maybe add the DIE to the hash table. Not all DIEs that we
15940 find interesting need to be in the hash table, because we
15941 also have the parent/sibling/child chains; only those that we
15942 might refer to by offset later during partial symbol reading.
15943
15944 For now this means things that might have be the target of a
15945 DW_AT_specification, DW_AT_abstract_origin, or
15946 DW_AT_extension. DW_AT_extension will refer only to
15947 namespaces; DW_AT_abstract_origin refers to functions (and
15948 many things under the function DIE, but we do not recurse
15949 into function DIEs during partial symbol reading) and
15950 possibly variables as well; DW_AT_specification refers to
15951 declarations. Declarations ought to have the DW_AT_declaration
15952 flag. It happens that GCC forgets to put it in sometimes, but
15953 only for functions, not for types.
15954
15955 Adding more things than necessary to the hash table is harmless
15956 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15957 wasted time in find_partial_die, when we reread the compilation
15958 unit with load_all_dies set. */
72bf9492 15959
5afb4e99 15960 if (load_all
72929c62 15961 || abbrev->tag == DW_TAG_constant
5afb4e99 15962 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15963 || abbrev->tag == DW_TAG_variable
15964 || abbrev->tag == DW_TAG_namespace
15965 || part_die->is_declaration)
15966 {
15967 void **slot;
15968
15969 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15970 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15971 *slot = part_die;
15972 }
15973
8d749320 15974 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15975
15976 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15977 we have no reason to follow the children of structures; for other
98bfdba5
PA
15978 languages we have to, so that we can get at method physnames
15979 to infer fully qualified class names, for DW_AT_specification,
15980 and for C++ template arguments. For C++, we also look one level
15981 inside functions to find template arguments (if the name of the
15982 function does not already contain the template arguments).
bc30ff58
JB
15983
15984 For Ada, we need to scan the children of subprograms and lexical
15985 blocks as well because Ada allows the definition of nested
15986 entities that could be interesting for the debugger, such as
15987 nested subprograms for instance. */
72bf9492 15988 if (last_die->has_children
5afb4e99
DJ
15989 && (load_all
15990 || last_die->tag == DW_TAG_namespace
f55ee35c 15991 || last_die->tag == DW_TAG_module
72bf9492 15992 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15993 || (cu->language == language_cplus
15994 && last_die->tag == DW_TAG_subprogram
15995 && (last_die->name == NULL
15996 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15997 || (cu->language != language_c
15998 && (last_die->tag == DW_TAG_class_type
680b30c7 15999 || last_die->tag == DW_TAG_interface_type
72bf9492 16000 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16001 || last_die->tag == DW_TAG_union_type))
16002 || (cu->language == language_ada
16003 && (last_die->tag == DW_TAG_subprogram
16004 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16005 {
16006 nesting_level++;
16007 parent_die = last_die;
16008 continue;
16009 }
16010
16011 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16012 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16013
16014 /* Back to the top, do it again. */
16015 }
16016}
16017
c906108c
SS
16018/* Read a minimal amount of information into the minimal die structure. */
16019
d521ce57 16020static const gdb_byte *
dee91e82
DE
16021read_partial_die (const struct die_reader_specs *reader,
16022 struct partial_die_info *part_die,
16023 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16024 const gdb_byte *info_ptr)
c906108c 16025{
dee91e82 16026 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16027 struct objfile *objfile = cu->objfile;
d521ce57 16028 const gdb_byte *buffer = reader->buffer;
fa238c03 16029 unsigned int i;
c906108c 16030 struct attribute attr;
c5aa993b 16031 int has_low_pc_attr = 0;
c906108c 16032 int has_high_pc_attr = 0;
91da1414 16033 int high_pc_relative = 0;
c906108c 16034
72bf9492 16035 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16036
b64f50a1 16037 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
16038
16039 info_ptr += abbrev_len;
16040
16041 if (abbrev == NULL)
16042 return info_ptr;
16043
c906108c
SS
16044 part_die->tag = abbrev->tag;
16045 part_die->has_children = abbrev->has_children;
c906108c
SS
16046
16047 for (i = 0; i < abbrev->num_attrs; ++i)
16048 {
dee91e82 16049 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16050
16051 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16052 partial symbol table. */
c906108c
SS
16053 switch (attr.name)
16054 {
16055 case DW_AT_name:
71c25dea
TT
16056 switch (part_die->tag)
16057 {
16058 case DW_TAG_compile_unit:
95554aad 16059 case DW_TAG_partial_unit:
348e048f 16060 case DW_TAG_type_unit:
71c25dea
TT
16061 /* Compilation units have a DW_AT_name that is a filename, not
16062 a source language identifier. */
16063 case DW_TAG_enumeration_type:
16064 case DW_TAG_enumerator:
16065 /* These tags always have simple identifiers already; no need
16066 to canonicalize them. */
16067 part_die->name = DW_STRING (&attr);
16068 break;
16069 default:
16070 part_die->name
16071 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16072 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16073 break;
16074 }
c906108c 16075 break;
31ef98ae 16076 case DW_AT_linkage_name:
c906108c 16077 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16078 /* Note that both forms of linkage name might appear. We
16079 assume they will be the same, and we only store the last
16080 one we see. */
94af9270
KS
16081 if (cu->language == language_ada)
16082 part_die->name = DW_STRING (&attr);
abc72ce4 16083 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16084 break;
16085 case DW_AT_low_pc:
16086 has_low_pc_attr = 1;
31aa7e4e 16087 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16088 break;
16089 case DW_AT_high_pc:
16090 has_high_pc_attr = 1;
31aa7e4e
JB
16091 part_die->highpc = attr_value_as_address (&attr);
16092 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16093 high_pc_relative = 1;
c906108c
SS
16094 break;
16095 case DW_AT_location:
0963b4bd 16096 /* Support the .debug_loc offsets. */
8e19ed76
PS
16097 if (attr_form_is_block (&attr))
16098 {
95554aad 16099 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16100 }
3690dd37 16101 else if (attr_form_is_section_offset (&attr))
8e19ed76 16102 {
4d3c2250 16103 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16104 }
16105 else
16106 {
4d3c2250
KB
16107 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16108 "partial symbol information");
8e19ed76 16109 }
c906108c 16110 break;
c906108c
SS
16111 case DW_AT_external:
16112 part_die->is_external = DW_UNSND (&attr);
16113 break;
16114 case DW_AT_declaration:
16115 part_die->is_declaration = DW_UNSND (&attr);
16116 break;
16117 case DW_AT_type:
16118 part_die->has_type = 1;
16119 break;
16120 case DW_AT_abstract_origin:
16121 case DW_AT_specification:
72bf9492
DJ
16122 case DW_AT_extension:
16123 part_die->has_specification = 1;
c764a876 16124 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16125 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16126 || cu->per_cu->is_dwz);
c906108c
SS
16127 break;
16128 case DW_AT_sibling:
16129 /* Ignore absolute siblings, they might point outside of
16130 the current compile unit. */
16131 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16132 complaint (&symfile_complaints,
16133 _("ignoring absolute DW_AT_sibling"));
c906108c 16134 else
b9502d3f
WN
16135 {
16136 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
16137 const gdb_byte *sibling_ptr = buffer + off;
16138
16139 if (sibling_ptr < info_ptr)
16140 complaint (&symfile_complaints,
16141 _("DW_AT_sibling points backwards"));
22869d73
KS
16142 else if (sibling_ptr > reader->buffer_end)
16143 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16144 else
16145 part_die->sibling = sibling_ptr;
16146 }
c906108c 16147 break;
fa4028e9
JB
16148 case DW_AT_byte_size:
16149 part_die->has_byte_size = 1;
16150 break;
ff908ebf
AW
16151 case DW_AT_const_value:
16152 part_die->has_const_value = 1;
16153 break;
68511cec
CES
16154 case DW_AT_calling_convention:
16155 /* DWARF doesn't provide a way to identify a program's source-level
16156 entry point. DW_AT_calling_convention attributes are only meant
16157 to describe functions' calling conventions.
16158
16159 However, because it's a necessary piece of information in
0c1b455e
TT
16160 Fortran, and before DWARF 4 DW_CC_program was the only
16161 piece of debugging information whose definition refers to
16162 a 'main program' at all, several compilers marked Fortran
16163 main programs with DW_CC_program --- even when those
16164 functions use the standard calling conventions.
16165
16166 Although DWARF now specifies a way to provide this
16167 information, we support this practice for backward
16168 compatibility. */
68511cec 16169 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16170 && cu->language == language_fortran)
16171 part_die->main_subprogram = 1;
68511cec 16172 break;
481860b3
GB
16173 case DW_AT_inline:
16174 if (DW_UNSND (&attr) == DW_INL_inlined
16175 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16176 part_die->may_be_inlined = 1;
16177 break;
95554aad
TT
16178
16179 case DW_AT_import:
16180 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
16181 {
16182 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16183 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16184 || cu->per_cu->is_dwz);
16185 }
95554aad
TT
16186 break;
16187
0c1b455e
TT
16188 case DW_AT_main_subprogram:
16189 part_die->main_subprogram = DW_UNSND (&attr);
16190 break;
16191
c906108c
SS
16192 default:
16193 break;
16194 }
16195 }
16196
91da1414
MW
16197 if (high_pc_relative)
16198 part_die->highpc += part_die->lowpc;
16199
9373cf26
JK
16200 if (has_low_pc_attr && has_high_pc_attr)
16201 {
16202 /* When using the GNU linker, .gnu.linkonce. sections are used to
16203 eliminate duplicate copies of functions and vtables and such.
16204 The linker will arbitrarily choose one and discard the others.
16205 The AT_*_pc values for such functions refer to local labels in
16206 these sections. If the section from that file was discarded, the
16207 labels are not in the output, so the relocs get a value of 0.
16208 If this is a discarded function, mark the pc bounds as invalid,
16209 so that GDB will ignore it. */
16210 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16211 {
bb5ed363 16212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16213
16214 complaint (&symfile_complaints,
16215 _("DW_AT_low_pc %s is zero "
16216 "for DIE at 0x%x [in module %s]"),
16217 paddress (gdbarch, part_die->lowpc),
4262abfb 16218 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16219 }
16220 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16221 else if (part_die->lowpc >= part_die->highpc)
16222 {
bb5ed363 16223 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16224
16225 complaint (&symfile_complaints,
16226 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16227 "for DIE at 0x%x [in module %s]"),
16228 paddress (gdbarch, part_die->lowpc),
16229 paddress (gdbarch, part_die->highpc),
4262abfb 16230 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16231 }
16232 else
16233 part_die->has_pc_info = 1;
16234 }
85cbf3d3 16235
c906108c
SS
16236 return info_ptr;
16237}
16238
72bf9492
DJ
16239/* Find a cached partial DIE at OFFSET in CU. */
16240
16241static struct partial_die_info *
b64f50a1 16242find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16243{
16244 struct partial_die_info *lookup_die = NULL;
16245 struct partial_die_info part_die;
16246
16247 part_die.offset = offset;
9a3c8263
SM
16248 lookup_die = ((struct partial_die_info *)
16249 htab_find_with_hash (cu->partial_dies, &part_die,
16250 offset.sect_off));
72bf9492 16251
72bf9492
DJ
16252 return lookup_die;
16253}
16254
348e048f
DE
16255/* Find a partial DIE at OFFSET, which may or may not be in CU,
16256 except in the case of .debug_types DIEs which do not reference
16257 outside their CU (they do however referencing other types via
55f1336d 16258 DW_FORM_ref_sig8). */
72bf9492
DJ
16259
16260static struct partial_die_info *
36586728 16261find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16262{
bb5ed363 16263 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16264 struct dwarf2_per_cu_data *per_cu = NULL;
16265 struct partial_die_info *pd = NULL;
72bf9492 16266
36586728
TT
16267 if (offset_in_dwz == cu->per_cu->is_dwz
16268 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16269 {
16270 pd = find_partial_die_in_comp_unit (offset, cu);
16271 if (pd != NULL)
16272 return pd;
0d99eb77
DE
16273 /* We missed recording what we needed.
16274 Load all dies and try again. */
16275 per_cu = cu->per_cu;
5afb4e99 16276 }
0d99eb77
DE
16277 else
16278 {
16279 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16280 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16281 {
16282 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16283 " external reference to offset 0x%lx [in module %s].\n"),
16284 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16285 bfd_get_filename (objfile->obfd));
16286 }
36586728
TT
16287 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16288 objfile);
72bf9492 16289
0d99eb77
DE
16290 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16291 load_partial_comp_unit (per_cu);
ae038cb0 16292
0d99eb77
DE
16293 per_cu->cu->last_used = 0;
16294 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16295 }
5afb4e99 16296
dee91e82
DE
16297 /* If we didn't find it, and not all dies have been loaded,
16298 load them all and try again. */
16299
5afb4e99
DJ
16300 if (pd == NULL && per_cu->load_all_dies == 0)
16301 {
5afb4e99 16302 per_cu->load_all_dies = 1;
fd820528
DE
16303
16304 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16305 THIS_CU->cu may already be in use. So we can't just free it and
16306 replace its DIEs with the ones we read in. Instead, we leave those
16307 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16308 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16309 set. */
dee91e82 16310 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16311
16312 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16313 }
16314
16315 if (pd == NULL)
16316 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16317 _("could not find partial DIE 0x%x "
16318 "in cache [from module %s]\n"),
b64f50a1 16319 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16320 return pd;
72bf9492
DJ
16321}
16322
abc72ce4
DE
16323/* See if we can figure out if the class lives in a namespace. We do
16324 this by looking for a member function; its demangled name will
16325 contain namespace info, if there is any. */
16326
16327static void
16328guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16329 struct dwarf2_cu *cu)
16330{
16331 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16332 what template types look like, because the demangler
16333 frequently doesn't give the same name as the debug info. We
16334 could fix this by only using the demangled name to get the
16335 prefix (but see comment in read_structure_type). */
16336
16337 struct partial_die_info *real_pdi;
16338 struct partial_die_info *child_pdi;
16339
16340 /* If this DIE (this DIE's specification, if any) has a parent, then
16341 we should not do this. We'll prepend the parent's fully qualified
16342 name when we create the partial symbol. */
16343
16344 real_pdi = struct_pdi;
16345 while (real_pdi->has_specification)
36586728
TT
16346 real_pdi = find_partial_die (real_pdi->spec_offset,
16347 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16348
16349 if (real_pdi->die_parent != NULL)
16350 return;
16351
16352 for (child_pdi = struct_pdi->die_child;
16353 child_pdi != NULL;
16354 child_pdi = child_pdi->die_sibling)
16355 {
16356 if (child_pdi->tag == DW_TAG_subprogram
16357 && child_pdi->linkage_name != NULL)
16358 {
16359 char *actual_class_name
16360 = language_class_name_from_physname (cu->language_defn,
16361 child_pdi->linkage_name);
16362 if (actual_class_name != NULL)
16363 {
16364 struct_pdi->name
224c3ddb
SM
16365 = ((const char *)
16366 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16367 actual_class_name,
16368 strlen (actual_class_name)));
abc72ce4
DE
16369 xfree (actual_class_name);
16370 }
16371 break;
16372 }
16373 }
16374}
16375
72bf9492
DJ
16376/* Adjust PART_DIE before generating a symbol for it. This function
16377 may set the is_external flag or change the DIE's name. */
16378
16379static void
16380fixup_partial_die (struct partial_die_info *part_die,
16381 struct dwarf2_cu *cu)
16382{
abc72ce4
DE
16383 /* Once we've fixed up a die, there's no point in doing so again.
16384 This also avoids a memory leak if we were to call
16385 guess_partial_die_structure_name multiple times. */
16386 if (part_die->fixup_called)
16387 return;
16388
72bf9492
DJ
16389 /* If we found a reference attribute and the DIE has no name, try
16390 to find a name in the referred to DIE. */
16391
16392 if (part_die->name == NULL && part_die->has_specification)
16393 {
16394 struct partial_die_info *spec_die;
72bf9492 16395
36586728
TT
16396 spec_die = find_partial_die (part_die->spec_offset,
16397 part_die->spec_is_dwz, cu);
72bf9492 16398
10b3939b 16399 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16400
16401 if (spec_die->name)
16402 {
16403 part_die->name = spec_die->name;
16404
16405 /* Copy DW_AT_external attribute if it is set. */
16406 if (spec_die->is_external)
16407 part_die->is_external = spec_die->is_external;
16408 }
16409 }
16410
16411 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16412
16413 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16414 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16415
abc72ce4
DE
16416 /* If there is no parent die to provide a namespace, and there are
16417 children, see if we can determine the namespace from their linkage
122d1940 16418 name. */
abc72ce4 16419 if (cu->language == language_cplus
8b70b953 16420 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16421 && part_die->die_parent == NULL
16422 && part_die->has_children
16423 && (part_die->tag == DW_TAG_class_type
16424 || part_die->tag == DW_TAG_structure_type
16425 || part_die->tag == DW_TAG_union_type))
16426 guess_partial_die_structure_name (part_die, cu);
16427
53832f31
TT
16428 /* GCC might emit a nameless struct or union that has a linkage
16429 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16430 if (part_die->name == NULL
96408a79
SA
16431 && (part_die->tag == DW_TAG_class_type
16432 || part_die->tag == DW_TAG_interface_type
16433 || part_die->tag == DW_TAG_structure_type
16434 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16435 && part_die->linkage_name != NULL)
16436 {
16437 char *demangled;
16438
8de20a37 16439 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16440 if (demangled)
16441 {
96408a79
SA
16442 const char *base;
16443
16444 /* Strip any leading namespaces/classes, keep only the base name.
16445 DW_AT_name for named DIEs does not contain the prefixes. */
16446 base = strrchr (demangled, ':');
16447 if (base && base > demangled && base[-1] == ':')
16448 base++;
16449 else
16450 base = demangled;
16451
34a68019 16452 part_die->name
224c3ddb
SM
16453 = ((const char *)
16454 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16455 base, strlen (base)));
53832f31
TT
16456 xfree (demangled);
16457 }
16458 }
16459
abc72ce4 16460 part_die->fixup_called = 1;
72bf9492
DJ
16461}
16462
a8329558 16463/* Read an attribute value described by an attribute form. */
c906108c 16464
d521ce57 16465static const gdb_byte *
dee91e82
DE
16466read_attribute_value (const struct die_reader_specs *reader,
16467 struct attribute *attr, unsigned form,
43988095 16468 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16469{
dee91e82 16470 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16471 struct objfile *objfile = cu->objfile;
16472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16473 bfd *abfd = reader->abfd;
e7c27a73 16474 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16475 unsigned int bytes_read;
16476 struct dwarf_block *blk;
16477
aead7601 16478 attr->form = (enum dwarf_form) form;
a8329558 16479 switch (form)
c906108c 16480 {
c906108c 16481 case DW_FORM_ref_addr:
ae411497 16482 if (cu->header.version == 2)
4568ecf9 16483 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16484 else
4568ecf9
DE
16485 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16486 &cu->header, &bytes_read);
ae411497
TT
16487 info_ptr += bytes_read;
16488 break;
36586728
TT
16489 case DW_FORM_GNU_ref_alt:
16490 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16491 info_ptr += bytes_read;
16492 break;
ae411497 16493 case DW_FORM_addr:
e7c27a73 16494 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16495 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16496 info_ptr += bytes_read;
c906108c
SS
16497 break;
16498 case DW_FORM_block2:
7b5a2f43 16499 blk = dwarf_alloc_block (cu);
c906108c
SS
16500 blk->size = read_2_bytes (abfd, info_ptr);
16501 info_ptr += 2;
16502 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16503 info_ptr += blk->size;
16504 DW_BLOCK (attr) = blk;
16505 break;
16506 case DW_FORM_block4:
7b5a2f43 16507 blk = dwarf_alloc_block (cu);
c906108c
SS
16508 blk->size = read_4_bytes (abfd, info_ptr);
16509 info_ptr += 4;
16510 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16511 info_ptr += blk->size;
16512 DW_BLOCK (attr) = blk;
16513 break;
16514 case DW_FORM_data2:
16515 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16516 info_ptr += 2;
16517 break;
16518 case DW_FORM_data4:
16519 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16520 info_ptr += 4;
16521 break;
16522 case DW_FORM_data8:
16523 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16524 info_ptr += 8;
16525 break;
2dc7f7b3
TT
16526 case DW_FORM_sec_offset:
16527 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16528 info_ptr += bytes_read;
16529 break;
c906108c 16530 case DW_FORM_string:
9b1c24c8 16531 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16532 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16533 info_ptr += bytes_read;
16534 break;
4bdf3d34 16535 case DW_FORM_strp:
36586728
TT
16536 if (!cu->per_cu->is_dwz)
16537 {
16538 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16539 &bytes_read);
16540 DW_STRING_IS_CANONICAL (attr) = 0;
16541 info_ptr += bytes_read;
16542 break;
16543 }
16544 /* FALLTHROUGH */
43988095
JK
16545 case DW_FORM_line_strp:
16546 if (!cu->per_cu->is_dwz)
16547 {
16548 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16549 cu_header, &bytes_read);
16550 DW_STRING_IS_CANONICAL (attr) = 0;
16551 info_ptr += bytes_read;
16552 break;
16553 }
16554 /* FALLTHROUGH */
36586728
TT
16555 case DW_FORM_GNU_strp_alt:
16556 {
16557 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16558 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16559 &bytes_read);
16560
16561 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16562 DW_STRING_IS_CANONICAL (attr) = 0;
16563 info_ptr += bytes_read;
16564 }
4bdf3d34 16565 break;
2dc7f7b3 16566 case DW_FORM_exprloc:
c906108c 16567 case DW_FORM_block:
7b5a2f43 16568 blk = dwarf_alloc_block (cu);
c906108c
SS
16569 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16570 info_ptr += bytes_read;
16571 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16572 info_ptr += blk->size;
16573 DW_BLOCK (attr) = blk;
16574 break;
16575 case DW_FORM_block1:
7b5a2f43 16576 blk = dwarf_alloc_block (cu);
c906108c
SS
16577 blk->size = read_1_byte (abfd, info_ptr);
16578 info_ptr += 1;
16579 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16580 info_ptr += blk->size;
16581 DW_BLOCK (attr) = blk;
16582 break;
16583 case DW_FORM_data1:
16584 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16585 info_ptr += 1;
16586 break;
16587 case DW_FORM_flag:
16588 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16589 info_ptr += 1;
16590 break;
2dc7f7b3
TT
16591 case DW_FORM_flag_present:
16592 DW_UNSND (attr) = 1;
16593 break;
c906108c
SS
16594 case DW_FORM_sdata:
16595 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16596 info_ptr += bytes_read;
16597 break;
16598 case DW_FORM_udata:
16599 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16600 info_ptr += bytes_read;
16601 break;
16602 case DW_FORM_ref1:
4568ecf9
DE
16603 DW_UNSND (attr) = (cu->header.offset.sect_off
16604 + read_1_byte (abfd, info_ptr));
c906108c
SS
16605 info_ptr += 1;
16606 break;
16607 case DW_FORM_ref2:
4568ecf9
DE
16608 DW_UNSND (attr) = (cu->header.offset.sect_off
16609 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16610 info_ptr += 2;
16611 break;
16612 case DW_FORM_ref4:
4568ecf9
DE
16613 DW_UNSND (attr) = (cu->header.offset.sect_off
16614 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16615 info_ptr += 4;
16616 break;
613e1657 16617 case DW_FORM_ref8:
4568ecf9
DE
16618 DW_UNSND (attr) = (cu->header.offset.sect_off
16619 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16620 info_ptr += 8;
16621 break;
55f1336d 16622 case DW_FORM_ref_sig8:
ac9ec31b 16623 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16624 info_ptr += 8;
16625 break;
c906108c 16626 case DW_FORM_ref_udata:
4568ecf9
DE
16627 DW_UNSND (attr) = (cu->header.offset.sect_off
16628 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16629 info_ptr += bytes_read;
16630 break;
c906108c 16631 case DW_FORM_indirect:
a8329558
KW
16632 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16633 info_ptr += bytes_read;
43988095
JK
16634 if (form == DW_FORM_implicit_const)
16635 {
16636 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16637 info_ptr += bytes_read;
16638 }
16639 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16640 info_ptr);
16641 break;
16642 case DW_FORM_implicit_const:
16643 DW_SND (attr) = implicit_const;
a8329558 16644 break;
3019eac3
DE
16645 case DW_FORM_GNU_addr_index:
16646 if (reader->dwo_file == NULL)
16647 {
16648 /* For now flag a hard error.
16649 Later we can turn this into a complaint. */
16650 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16651 dwarf_form_name (form),
16652 bfd_get_filename (abfd));
16653 }
16654 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16655 info_ptr += bytes_read;
16656 break;
16657 case DW_FORM_GNU_str_index:
16658 if (reader->dwo_file == NULL)
16659 {
16660 /* For now flag a hard error.
16661 Later we can turn this into a complaint if warranted. */
16662 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16663 dwarf_form_name (form),
16664 bfd_get_filename (abfd));
16665 }
16666 {
16667 ULONGEST str_index =
16668 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16669
342587c4 16670 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16671 DW_STRING_IS_CANONICAL (attr) = 0;
16672 info_ptr += bytes_read;
16673 }
16674 break;
c906108c 16675 default:
8a3fe4f8 16676 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16677 dwarf_form_name (form),
16678 bfd_get_filename (abfd));
c906108c 16679 }
28e94949 16680
36586728 16681 /* Super hack. */
7771576e 16682 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16683 attr->form = DW_FORM_GNU_ref_alt;
16684
28e94949
JB
16685 /* We have seen instances where the compiler tried to emit a byte
16686 size attribute of -1 which ended up being encoded as an unsigned
16687 0xffffffff. Although 0xffffffff is technically a valid size value,
16688 an object of this size seems pretty unlikely so we can relatively
16689 safely treat these cases as if the size attribute was invalid and
16690 treat them as zero by default. */
16691 if (attr->name == DW_AT_byte_size
16692 && form == DW_FORM_data4
16693 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16694 {
16695 complaint
16696 (&symfile_complaints,
43bbcdc2
PH
16697 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16698 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16699 DW_UNSND (attr) = 0;
16700 }
28e94949 16701
c906108c
SS
16702 return info_ptr;
16703}
16704
a8329558
KW
16705/* Read an attribute described by an abbreviated attribute. */
16706
d521ce57 16707static const gdb_byte *
dee91e82
DE
16708read_attribute (const struct die_reader_specs *reader,
16709 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16710 const gdb_byte *info_ptr)
a8329558
KW
16711{
16712 attr->name = abbrev->name;
43988095
JK
16713 return read_attribute_value (reader, attr, abbrev->form,
16714 abbrev->implicit_const, info_ptr);
a8329558
KW
16715}
16716
0963b4bd 16717/* Read dwarf information from a buffer. */
c906108c
SS
16718
16719static unsigned int
a1855c1d 16720read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16721{
fe1b8b76 16722 return bfd_get_8 (abfd, buf);
c906108c
SS
16723}
16724
16725static int
a1855c1d 16726read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16727{
fe1b8b76 16728 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16729}
16730
16731static unsigned int
a1855c1d 16732read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16733{
fe1b8b76 16734 return bfd_get_16 (abfd, buf);
c906108c
SS
16735}
16736
21ae7a4d 16737static int
a1855c1d 16738read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16739{
16740 return bfd_get_signed_16 (abfd, buf);
16741}
16742
c906108c 16743static unsigned int
a1855c1d 16744read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16745{
fe1b8b76 16746 return bfd_get_32 (abfd, buf);
c906108c
SS
16747}
16748
21ae7a4d 16749static int
a1855c1d 16750read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16751{
16752 return bfd_get_signed_32 (abfd, buf);
16753}
16754
93311388 16755static ULONGEST
a1855c1d 16756read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16757{
fe1b8b76 16758 return bfd_get_64 (abfd, buf);
c906108c
SS
16759}
16760
16761static CORE_ADDR
d521ce57 16762read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16763 unsigned int *bytes_read)
c906108c 16764{
e7c27a73 16765 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16766 CORE_ADDR retval = 0;
16767
107d2387 16768 if (cu_header->signed_addr_p)
c906108c 16769 {
107d2387
AC
16770 switch (cu_header->addr_size)
16771 {
16772 case 2:
fe1b8b76 16773 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16774 break;
16775 case 4:
fe1b8b76 16776 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16777 break;
16778 case 8:
fe1b8b76 16779 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16780 break;
16781 default:
8e65ff28 16782 internal_error (__FILE__, __LINE__,
e2e0b3e5 16783 _("read_address: bad switch, signed [in module %s]"),
659b0389 16784 bfd_get_filename (abfd));
107d2387
AC
16785 }
16786 }
16787 else
16788 {
16789 switch (cu_header->addr_size)
16790 {
16791 case 2:
fe1b8b76 16792 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16793 break;
16794 case 4:
fe1b8b76 16795 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16796 break;
16797 case 8:
fe1b8b76 16798 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16799 break;
16800 default:
8e65ff28 16801 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16802 _("read_address: bad switch, "
16803 "unsigned [in module %s]"),
659b0389 16804 bfd_get_filename (abfd));
107d2387 16805 }
c906108c 16806 }
64367e0a 16807
107d2387
AC
16808 *bytes_read = cu_header->addr_size;
16809 return retval;
c906108c
SS
16810}
16811
f7ef9339 16812/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16813 specification allows the initial length to take up either 4 bytes
16814 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16815 bytes describe the length and all offsets will be 8 bytes in length
16816 instead of 4.
16817
f7ef9339
KB
16818 An older, non-standard 64-bit format is also handled by this
16819 function. The older format in question stores the initial length
16820 as an 8-byte quantity without an escape value. Lengths greater
16821 than 2^32 aren't very common which means that the initial 4 bytes
16822 is almost always zero. Since a length value of zero doesn't make
16823 sense for the 32-bit format, this initial zero can be considered to
16824 be an escape value which indicates the presence of the older 64-bit
16825 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16826 greater than 4GB. If it becomes necessary to handle lengths
16827 somewhat larger than 4GB, we could allow other small values (such
16828 as the non-sensical values of 1, 2, and 3) to also be used as
16829 escape values indicating the presence of the old format.
f7ef9339 16830
917c78fc
MK
16831 The value returned via bytes_read should be used to increment the
16832 relevant pointer after calling read_initial_length().
c764a876 16833
613e1657
KB
16834 [ Note: read_initial_length() and read_offset() are based on the
16835 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16836 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16837 from:
16838
f7ef9339 16839 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16840
613e1657
KB
16841 This document is only a draft and is subject to change. (So beware.)
16842
f7ef9339 16843 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16844 determined empirically by examining 64-bit ELF files produced by
16845 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16846
16847 - Kevin, July 16, 2002
613e1657
KB
16848 ] */
16849
16850static LONGEST
d521ce57 16851read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16852{
fe1b8b76 16853 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16854
dd373385 16855 if (length == 0xffffffff)
613e1657 16856 {
fe1b8b76 16857 length = bfd_get_64 (abfd, buf + 4);
613e1657 16858 *bytes_read = 12;
613e1657 16859 }
dd373385 16860 else if (length == 0)
f7ef9339 16861 {
dd373385 16862 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16863 length = bfd_get_64 (abfd, buf);
f7ef9339 16864 *bytes_read = 8;
f7ef9339 16865 }
613e1657
KB
16866 else
16867 {
16868 *bytes_read = 4;
613e1657
KB
16869 }
16870
c764a876
DE
16871 return length;
16872}
dd373385 16873
c764a876
DE
16874/* Cover function for read_initial_length.
16875 Returns the length of the object at BUF, and stores the size of the
16876 initial length in *BYTES_READ and stores the size that offsets will be in
16877 *OFFSET_SIZE.
16878 If the initial length size is not equivalent to that specified in
16879 CU_HEADER then issue a complaint.
16880 This is useful when reading non-comp-unit headers. */
dd373385 16881
c764a876 16882static LONGEST
d521ce57 16883read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16884 const struct comp_unit_head *cu_header,
16885 unsigned int *bytes_read,
16886 unsigned int *offset_size)
16887{
16888 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16889
16890 gdb_assert (cu_header->initial_length_size == 4
16891 || cu_header->initial_length_size == 8
16892 || cu_header->initial_length_size == 12);
16893
16894 if (cu_header->initial_length_size != *bytes_read)
16895 complaint (&symfile_complaints,
16896 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16897
c764a876 16898 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16899 return length;
613e1657
KB
16900}
16901
16902/* Read an offset from the data stream. The size of the offset is
917c78fc 16903 given by cu_header->offset_size. */
613e1657
KB
16904
16905static LONGEST
d521ce57
TT
16906read_offset (bfd *abfd, const gdb_byte *buf,
16907 const struct comp_unit_head *cu_header,
891d2f0b 16908 unsigned int *bytes_read)
c764a876
DE
16909{
16910 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16911
c764a876
DE
16912 *bytes_read = cu_header->offset_size;
16913 return offset;
16914}
16915
16916/* Read an offset from the data stream. */
16917
16918static LONGEST
d521ce57 16919read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16920{
16921 LONGEST retval = 0;
16922
c764a876 16923 switch (offset_size)
613e1657
KB
16924 {
16925 case 4:
fe1b8b76 16926 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16927 break;
16928 case 8:
fe1b8b76 16929 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16930 break;
16931 default:
8e65ff28 16932 internal_error (__FILE__, __LINE__,
c764a876 16933 _("read_offset_1: bad switch [in module %s]"),
659b0389 16934 bfd_get_filename (abfd));
613e1657
KB
16935 }
16936
917c78fc 16937 return retval;
613e1657
KB
16938}
16939
d521ce57
TT
16940static const gdb_byte *
16941read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16942{
16943 /* If the size of a host char is 8 bits, we can return a pointer
16944 to the buffer, otherwise we have to copy the data to a buffer
16945 allocated on the temporary obstack. */
4bdf3d34 16946 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16947 return buf;
c906108c
SS
16948}
16949
d521ce57
TT
16950static const char *
16951read_direct_string (bfd *abfd, const gdb_byte *buf,
16952 unsigned int *bytes_read_ptr)
c906108c
SS
16953{
16954 /* If the size of a host char is 8 bits, we can return a pointer
16955 to the string, otherwise we have to copy the string to a buffer
16956 allocated on the temporary obstack. */
4bdf3d34 16957 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16958 if (*buf == '\0')
16959 {
16960 *bytes_read_ptr = 1;
16961 return NULL;
16962 }
d521ce57
TT
16963 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16964 return (const char *) buf;
4bdf3d34
JJ
16965}
16966
43988095
JK
16967/* Return pointer to string at section SECT offset STR_OFFSET with error
16968 reporting strings FORM_NAME and SECT_NAME. */
16969
d521ce57 16970static const char *
43988095
JK
16971read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
16972 struct dwarf2_section_info *sect,
16973 const char *form_name,
16974 const char *sect_name)
16975{
16976 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
16977 if (sect->buffer == NULL)
16978 error (_("%s used without %s section [in module %s]"),
16979 form_name, sect_name, bfd_get_filename (abfd));
16980 if (str_offset >= sect->size)
16981 error (_("%s pointing outside of %s section [in module %s]"),
16982 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 16983 gdb_assert (HOST_CHAR_BIT == 8);
43988095 16984 if (sect->buffer[str_offset] == '\0')
4bdf3d34 16985 return NULL;
43988095
JK
16986 return (const char *) (sect->buffer + str_offset);
16987}
16988
16989/* Return pointer to string at .debug_str offset STR_OFFSET. */
16990
16991static const char *
16992read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16993{
16994 return read_indirect_string_at_offset_from (abfd, str_offset,
16995 &dwarf2_per_objfile->str,
16996 "DW_FORM_strp", ".debug_str");
16997}
16998
16999/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17000
17001static const char *
17002read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17003{
17004 return read_indirect_string_at_offset_from (abfd, str_offset,
17005 &dwarf2_per_objfile->line_str,
17006 "DW_FORM_line_strp",
17007 ".debug_line_str");
c906108c
SS
17008}
17009
36586728
TT
17010/* Read a string at offset STR_OFFSET in the .debug_str section from
17011 the .dwz file DWZ. Throw an error if the offset is too large. If
17012 the string consists of a single NUL byte, return NULL; otherwise
17013 return a pointer to the string. */
17014
d521ce57 17015static const char *
36586728
TT
17016read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17017{
17018 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17019
17020 if (dwz->str.buffer == NULL)
17021 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17022 "section [in module %s]"),
17023 bfd_get_filename (dwz->dwz_bfd));
17024 if (str_offset >= dwz->str.size)
17025 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17026 ".debug_str section [in module %s]"),
17027 bfd_get_filename (dwz->dwz_bfd));
17028 gdb_assert (HOST_CHAR_BIT == 8);
17029 if (dwz->str.buffer[str_offset] == '\0')
17030 return NULL;
d521ce57 17031 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17032}
17033
43988095
JK
17034/* Return pointer to string at .debug_str offset as read from BUF.
17035 BUF is assumed to be in a compilation unit described by CU_HEADER.
17036 Return *BYTES_READ_PTR count of bytes read from BUF. */
17037
d521ce57
TT
17038static const char *
17039read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17040 const struct comp_unit_head *cu_header,
17041 unsigned int *bytes_read_ptr)
17042{
17043 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17044
17045 return read_indirect_string_at_offset (abfd, str_offset);
17046}
17047
43988095
JK
17048/* Return pointer to string at .debug_line_str offset as read from BUF.
17049 BUF is assumed to be in a compilation unit described by CU_HEADER.
17050 Return *BYTES_READ_PTR count of bytes read from BUF. */
17051
17052static const char *
17053read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17054 const struct comp_unit_head *cu_header,
17055 unsigned int *bytes_read_ptr)
17056{
17057 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17058
17059 return read_indirect_line_string_at_offset (abfd, str_offset);
17060}
17061
17062ULONGEST
d521ce57 17063read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17064 unsigned int *bytes_read_ptr)
c906108c 17065{
12df843f 17066 ULONGEST result;
ce5d95e1 17067 unsigned int num_read;
870f88f7 17068 int shift;
c906108c
SS
17069 unsigned char byte;
17070
17071 result = 0;
17072 shift = 0;
17073 num_read = 0;
c906108c
SS
17074 while (1)
17075 {
fe1b8b76 17076 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17077 buf++;
17078 num_read++;
12df843f 17079 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17080 if ((byte & 128) == 0)
17081 {
17082 break;
17083 }
17084 shift += 7;
17085 }
17086 *bytes_read_ptr = num_read;
17087 return result;
17088}
17089
12df843f 17090static LONGEST
d521ce57
TT
17091read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17092 unsigned int *bytes_read_ptr)
c906108c 17093{
12df843f 17094 LONGEST result;
870f88f7 17095 int shift, num_read;
c906108c
SS
17096 unsigned char byte;
17097
17098 result = 0;
17099 shift = 0;
c906108c 17100 num_read = 0;
c906108c
SS
17101 while (1)
17102 {
fe1b8b76 17103 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17104 buf++;
17105 num_read++;
12df843f 17106 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17107 shift += 7;
17108 if ((byte & 128) == 0)
17109 {
17110 break;
17111 }
17112 }
77e0b926 17113 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17114 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17115 *bytes_read_ptr = num_read;
17116 return result;
17117}
17118
3019eac3
DE
17119/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17120 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17121 ADDR_SIZE is the size of addresses from the CU header. */
17122
17123static CORE_ADDR
17124read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17125{
17126 struct objfile *objfile = dwarf2_per_objfile->objfile;
17127 bfd *abfd = objfile->obfd;
17128 const gdb_byte *info_ptr;
17129
17130 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17131 if (dwarf2_per_objfile->addr.buffer == NULL)
17132 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17133 objfile_name (objfile));
3019eac3
DE
17134 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17135 error (_("DW_FORM_addr_index pointing outside of "
17136 ".debug_addr section [in module %s]"),
4262abfb 17137 objfile_name (objfile));
3019eac3
DE
17138 info_ptr = (dwarf2_per_objfile->addr.buffer
17139 + addr_base + addr_index * addr_size);
17140 if (addr_size == 4)
17141 return bfd_get_32 (abfd, info_ptr);
17142 else
17143 return bfd_get_64 (abfd, info_ptr);
17144}
17145
17146/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17147
17148static CORE_ADDR
17149read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17150{
17151 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17152}
17153
17154/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17155
17156static CORE_ADDR
d521ce57 17157read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17158 unsigned int *bytes_read)
17159{
17160 bfd *abfd = cu->objfile->obfd;
17161 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17162
17163 return read_addr_index (cu, addr_index);
17164}
17165
17166/* Data structure to pass results from dwarf2_read_addr_index_reader
17167 back to dwarf2_read_addr_index. */
17168
17169struct dwarf2_read_addr_index_data
17170{
17171 ULONGEST addr_base;
17172 int addr_size;
17173};
17174
17175/* die_reader_func for dwarf2_read_addr_index. */
17176
17177static void
17178dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17179 const gdb_byte *info_ptr,
3019eac3
DE
17180 struct die_info *comp_unit_die,
17181 int has_children,
17182 void *data)
17183{
17184 struct dwarf2_cu *cu = reader->cu;
17185 struct dwarf2_read_addr_index_data *aidata =
17186 (struct dwarf2_read_addr_index_data *) data;
17187
17188 aidata->addr_base = cu->addr_base;
17189 aidata->addr_size = cu->header.addr_size;
17190}
17191
17192/* Given an index in .debug_addr, fetch the value.
17193 NOTE: This can be called during dwarf expression evaluation,
17194 long after the debug information has been read, and thus per_cu->cu
17195 may no longer exist. */
17196
17197CORE_ADDR
17198dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17199 unsigned int addr_index)
17200{
17201 struct objfile *objfile = per_cu->objfile;
17202 struct dwarf2_cu *cu = per_cu->cu;
17203 ULONGEST addr_base;
17204 int addr_size;
17205
17206 /* This is intended to be called from outside this file. */
17207 dw2_setup (objfile);
17208
17209 /* We need addr_base and addr_size.
17210 If we don't have PER_CU->cu, we have to get it.
17211 Nasty, but the alternative is storing the needed info in PER_CU,
17212 which at this point doesn't seem justified: it's not clear how frequently
17213 it would get used and it would increase the size of every PER_CU.
17214 Entry points like dwarf2_per_cu_addr_size do a similar thing
17215 so we're not in uncharted territory here.
17216 Alas we need to be a bit more complicated as addr_base is contained
17217 in the DIE.
17218
17219 We don't need to read the entire CU(/TU).
17220 We just need the header and top level die.
a1b64ce1 17221
3019eac3 17222 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17223 For now we skip this optimization. */
3019eac3
DE
17224
17225 if (cu != NULL)
17226 {
17227 addr_base = cu->addr_base;
17228 addr_size = cu->header.addr_size;
17229 }
17230 else
17231 {
17232 struct dwarf2_read_addr_index_data aidata;
17233
a1b64ce1
DE
17234 /* Note: We can't use init_cutu_and_read_dies_simple here,
17235 we need addr_base. */
17236 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17237 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17238 addr_base = aidata.addr_base;
17239 addr_size = aidata.addr_size;
17240 }
17241
17242 return read_addr_index_1 (addr_index, addr_base, addr_size);
17243}
17244
57d63ce2
DE
17245/* Given a DW_FORM_GNU_str_index, fetch the string.
17246 This is only used by the Fission support. */
3019eac3 17247
d521ce57 17248static const char *
342587c4 17249read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17250{
17251 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17252 const char *objf_name = objfile_name (objfile);
3019eac3 17253 bfd *abfd = objfile->obfd;
342587c4 17254 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17255 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17256 struct dwarf2_section_info *str_offsets_section =
17257 &reader->dwo_file->sections.str_offsets;
d521ce57 17258 const gdb_byte *info_ptr;
3019eac3 17259 ULONGEST str_offset;
57d63ce2 17260 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17261
73869dc2
DE
17262 dwarf2_read_section (objfile, str_section);
17263 dwarf2_read_section (objfile, str_offsets_section);
17264 if (str_section->buffer == NULL)
57d63ce2 17265 error (_("%s used without .debug_str.dwo section"
3019eac3 17266 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17267 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17268 if (str_offsets_section->buffer == NULL)
57d63ce2 17269 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 17270 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17271 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17272 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17273 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 17274 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17275 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17276 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17277 + str_index * cu->header.offset_size);
17278 if (cu->header.offset_size == 4)
17279 str_offset = bfd_get_32 (abfd, info_ptr);
17280 else
17281 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17282 if (str_offset >= str_section->size)
57d63ce2 17283 error (_("Offset from %s pointing outside of"
3019eac3 17284 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17285 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17286 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17287}
17288
3019eac3
DE
17289/* Return the length of an LEB128 number in BUF. */
17290
17291static int
17292leb128_size (const gdb_byte *buf)
17293{
17294 const gdb_byte *begin = buf;
17295 gdb_byte byte;
17296
17297 while (1)
17298 {
17299 byte = *buf++;
17300 if ((byte & 128) == 0)
17301 return buf - begin;
17302 }
17303}
17304
c906108c 17305static void
e142c38c 17306set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17307{
17308 switch (lang)
17309 {
17310 case DW_LANG_C89:
76bee0cc 17311 case DW_LANG_C99:
0cfd832f 17312 case DW_LANG_C11:
c906108c 17313 case DW_LANG_C:
d1be3247 17314 case DW_LANG_UPC:
e142c38c 17315 cu->language = language_c;
c906108c 17316 break;
9c37b5ae 17317 case DW_LANG_Java:
c906108c 17318 case DW_LANG_C_plus_plus:
0cfd832f
MW
17319 case DW_LANG_C_plus_plus_11:
17320 case DW_LANG_C_plus_plus_14:
e142c38c 17321 cu->language = language_cplus;
c906108c 17322 break;
6aecb9c2
JB
17323 case DW_LANG_D:
17324 cu->language = language_d;
17325 break;
c906108c
SS
17326 case DW_LANG_Fortran77:
17327 case DW_LANG_Fortran90:
b21b22e0 17328 case DW_LANG_Fortran95:
f7de9aab
MW
17329 case DW_LANG_Fortran03:
17330 case DW_LANG_Fortran08:
e142c38c 17331 cu->language = language_fortran;
c906108c 17332 break;
a766d390
DE
17333 case DW_LANG_Go:
17334 cu->language = language_go;
17335 break;
c906108c 17336 case DW_LANG_Mips_Assembler:
e142c38c 17337 cu->language = language_asm;
c906108c
SS
17338 break;
17339 case DW_LANG_Ada83:
8aaf0b47 17340 case DW_LANG_Ada95:
bc5f45f8
JB
17341 cu->language = language_ada;
17342 break;
72019c9c
GM
17343 case DW_LANG_Modula2:
17344 cu->language = language_m2;
17345 break;
fe8e67fd
PM
17346 case DW_LANG_Pascal83:
17347 cu->language = language_pascal;
17348 break;
22566fbd
DJ
17349 case DW_LANG_ObjC:
17350 cu->language = language_objc;
17351 break;
c44af4eb
TT
17352 case DW_LANG_Rust:
17353 case DW_LANG_Rust_old:
17354 cu->language = language_rust;
17355 break;
c906108c
SS
17356 case DW_LANG_Cobol74:
17357 case DW_LANG_Cobol85:
c906108c 17358 default:
e142c38c 17359 cu->language = language_minimal;
c906108c
SS
17360 break;
17361 }
e142c38c 17362 cu->language_defn = language_def (cu->language);
c906108c
SS
17363}
17364
17365/* Return the named attribute or NULL if not there. */
17366
17367static struct attribute *
e142c38c 17368dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17369{
a48e046c 17370 for (;;)
c906108c 17371 {
a48e046c
TT
17372 unsigned int i;
17373 struct attribute *spec = NULL;
17374
17375 for (i = 0; i < die->num_attrs; ++i)
17376 {
17377 if (die->attrs[i].name == name)
17378 return &die->attrs[i];
17379 if (die->attrs[i].name == DW_AT_specification
17380 || die->attrs[i].name == DW_AT_abstract_origin)
17381 spec = &die->attrs[i];
17382 }
17383
17384 if (!spec)
17385 break;
c906108c 17386
f2f0e013 17387 die = follow_die_ref (die, spec, &cu);
f2f0e013 17388 }
c5aa993b 17389
c906108c
SS
17390 return NULL;
17391}
17392
348e048f
DE
17393/* Return the named attribute or NULL if not there,
17394 but do not follow DW_AT_specification, etc.
17395 This is for use in contexts where we're reading .debug_types dies.
17396 Following DW_AT_specification, DW_AT_abstract_origin will take us
17397 back up the chain, and we want to go down. */
17398
17399static struct attribute *
45e58e77 17400dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17401{
17402 unsigned int i;
17403
17404 for (i = 0; i < die->num_attrs; ++i)
17405 if (die->attrs[i].name == name)
17406 return &die->attrs[i];
17407
17408 return NULL;
17409}
17410
7d45c7c3
KB
17411/* Return the string associated with a string-typed attribute, or NULL if it
17412 is either not found or is of an incorrect type. */
17413
17414static const char *
17415dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17416{
17417 struct attribute *attr;
17418 const char *str = NULL;
17419
17420 attr = dwarf2_attr (die, name, cu);
17421
17422 if (attr != NULL)
17423 {
43988095
JK
17424 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17425 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17426 str = DW_STRING (attr);
17427 else
17428 complaint (&symfile_complaints,
17429 _("string type expected for attribute %s for "
17430 "DIE at 0x%x in module %s"),
17431 dwarf_attr_name (name), die->offset.sect_off,
17432 objfile_name (cu->objfile));
17433 }
17434
17435 return str;
17436}
17437
05cf31d1
JB
17438/* Return non-zero iff the attribute NAME is defined for the given DIE,
17439 and holds a non-zero value. This function should only be used for
2dc7f7b3 17440 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17441
17442static int
17443dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17444{
17445 struct attribute *attr = dwarf2_attr (die, name, cu);
17446
17447 return (attr && DW_UNSND (attr));
17448}
17449
3ca72b44 17450static int
e142c38c 17451die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17452{
05cf31d1
JB
17453 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17454 which value is non-zero. However, we have to be careful with
17455 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17456 (via dwarf2_flag_true_p) follows this attribute. So we may
17457 end up accidently finding a declaration attribute that belongs
17458 to a different DIE referenced by the specification attribute,
17459 even though the given DIE does not have a declaration attribute. */
17460 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17461 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17462}
17463
63d06c5c 17464/* Return the die giving the specification for DIE, if there is
f2f0e013 17465 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17466 containing the return value on output. If there is no
17467 specification, but there is an abstract origin, that is
17468 returned. */
63d06c5c
DC
17469
17470static struct die_info *
f2f0e013 17471die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17472{
f2f0e013
DJ
17473 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17474 *spec_cu);
63d06c5c 17475
edb3359d
DJ
17476 if (spec_attr == NULL)
17477 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17478
63d06c5c
DC
17479 if (spec_attr == NULL)
17480 return NULL;
17481 else
f2f0e013 17482 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17483}
c906108c 17484
debd256d 17485/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17486 refers to.
17487 NOTE: This is also used as a "cleanup" function. */
17488
debd256d
JB
17489static void
17490free_line_header (struct line_header *lh)
17491{
17492 if (lh->standard_opcode_lengths)
a8bc7b56 17493 xfree (lh->standard_opcode_lengths);
debd256d
JB
17494
17495 /* Remember that all the lh->file_names[i].name pointers are
17496 pointers into debug_line_buffer, and don't need to be freed. */
17497 if (lh->file_names)
a8bc7b56 17498 xfree (lh->file_names);
debd256d
JB
17499
17500 /* Similarly for the include directory names. */
17501 if (lh->include_dirs)
a8bc7b56 17502 xfree (lh->include_dirs);
debd256d 17503
a8bc7b56 17504 xfree (lh);
debd256d
JB
17505}
17506
527f3840
JK
17507/* Stub for free_line_header to match void * callback types. */
17508
17509static void
17510free_line_header_voidp (void *arg)
17511{
9a3c8263 17512 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17513
17514 free_line_header (lh);
17515}
17516
debd256d 17517/* Add an entry to LH's include directory table. */
ae2de4f8 17518
debd256d 17519static void
d521ce57 17520add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17521{
27e0867f
DE
17522 if (dwarf_line_debug >= 2)
17523 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17524 lh->num_include_dirs + 1, include_dir);
17525
debd256d
JB
17526 /* Grow the array if necessary. */
17527 if (lh->include_dirs_size == 0)
c5aa993b 17528 {
debd256d 17529 lh->include_dirs_size = 1; /* for testing */
8d749320 17530 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17531 }
17532 else if (lh->num_include_dirs >= lh->include_dirs_size)
17533 {
17534 lh->include_dirs_size *= 2;
8d749320
SM
17535 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17536 lh->include_dirs_size);
c5aa993b 17537 }
c906108c 17538
debd256d
JB
17539 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17540}
6e70227d 17541
debd256d 17542/* Add an entry to LH's file name table. */
ae2de4f8 17543
debd256d
JB
17544static void
17545add_file_name (struct line_header *lh,
d521ce57 17546 const char *name,
debd256d
JB
17547 unsigned int dir_index,
17548 unsigned int mod_time,
17549 unsigned int length)
17550{
17551 struct file_entry *fe;
17552
27e0867f
DE
17553 if (dwarf_line_debug >= 2)
17554 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17555 lh->num_file_names + 1, name);
17556
debd256d
JB
17557 /* Grow the array if necessary. */
17558 if (lh->file_names_size == 0)
17559 {
17560 lh->file_names_size = 1; /* for testing */
8d749320 17561 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17562 }
17563 else if (lh->num_file_names >= lh->file_names_size)
17564 {
17565 lh->file_names_size *= 2;
224c3ddb
SM
17566 lh->file_names
17567 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17568 }
17569
17570 fe = &lh->file_names[lh->num_file_names++];
17571 fe->name = name;
17572 fe->dir_index = dir_index;
17573 fe->mod_time = mod_time;
17574 fe->length = length;
aaa75496 17575 fe->included_p = 0;
cb1df416 17576 fe->symtab = NULL;
debd256d 17577}
6e70227d 17578
83769d0b 17579/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17580
17581static struct dwarf2_section_info *
17582get_debug_line_section (struct dwarf2_cu *cu)
17583{
17584 struct dwarf2_section_info *section;
17585
17586 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17587 DWO file. */
17588 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17589 section = &cu->dwo_unit->dwo_file->sections.line;
17590 else if (cu->per_cu->is_dwz)
17591 {
17592 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17593
17594 section = &dwz->line;
17595 }
17596 else
17597 section = &dwarf2_per_objfile->line;
17598
17599 return section;
17600}
17601
43988095
JK
17602/* Forwarding function for read_formatted_entries. */
17603
17604static void
17605add_include_dir_stub (struct line_header *lh, const char *name,
17606 unsigned int dir_index, unsigned int mod_time,
17607 unsigned int length)
17608{
17609 add_include_dir (lh, name);
17610}
17611
17612/* Read directory or file name entry format, starting with byte of
17613 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17614 entries count and the entries themselves in the described entry
17615 format. */
17616
17617static void
17618read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17619 struct line_header *lh,
17620 const struct comp_unit_head *cu_header,
17621 void (*callback) (struct line_header *lh,
17622 const char *name,
17623 unsigned int dir_index,
17624 unsigned int mod_time,
17625 unsigned int length))
17626{
17627 gdb_byte format_count, formati;
17628 ULONGEST data_count, datai;
17629 const gdb_byte *buf = *bufp;
17630 const gdb_byte *format_header_data;
17631 int i;
17632 unsigned int bytes_read;
17633
17634 format_count = read_1_byte (abfd, buf);
17635 buf += 1;
17636 format_header_data = buf;
17637 for (formati = 0; formati < format_count; formati++)
17638 {
17639 read_unsigned_leb128 (abfd, buf, &bytes_read);
17640 buf += bytes_read;
17641 read_unsigned_leb128 (abfd, buf, &bytes_read);
17642 buf += bytes_read;
17643 }
17644
17645 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17646 buf += bytes_read;
17647 for (datai = 0; datai < data_count; datai++)
17648 {
17649 const gdb_byte *format = format_header_data;
17650 struct file_entry fe;
17651
17652 memset (&fe, 0, sizeof (fe));
17653
17654 for (formati = 0; formati < format_count; formati++)
17655 {
17656 ULONGEST content_type, form;
17657 const char *string_trash;
17658 const char **stringp = &string_trash;
17659 unsigned int uint_trash, *uintp = &uint_trash;
17660
17661 content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17662 format += bytes_read;
17663 switch (content_type)
17664 {
17665 case DW_LNCT_path:
17666 stringp = &fe.name;
17667 break;
17668 case DW_LNCT_directory_index:
17669 uintp = &fe.dir_index;
17670 break;
17671 case DW_LNCT_timestamp:
17672 uintp = &fe.mod_time;
17673 break;
17674 case DW_LNCT_size:
17675 uintp = &fe.length;
17676 break;
17677 case DW_LNCT_MD5:
17678 break;
17679 default:
17680 complaint (&symfile_complaints,
17681 _("Unknown format content type %s"),
17682 pulongest (content_type));
17683 }
17684
17685 form = read_unsigned_leb128 (abfd, format, &bytes_read);
17686 format += bytes_read;
17687 switch (form)
17688 {
17689 case DW_FORM_string:
17690 *stringp = read_direct_string (abfd, buf, &bytes_read);
17691 buf += bytes_read;
17692 break;
17693
17694 case DW_FORM_line_strp:
17695 *stringp = read_indirect_line_string (abfd, buf, cu_header, &bytes_read);
17696 buf += bytes_read;
17697 break;
17698
17699 case DW_FORM_data1:
17700 *uintp = read_1_byte (abfd, buf);
17701 buf += 1;
17702 break;
17703
17704 case DW_FORM_data2:
17705 *uintp = read_2_bytes (abfd, buf);
17706 buf += 2;
17707 break;
17708
17709 case DW_FORM_data4:
17710 *uintp = read_4_bytes (abfd, buf);
17711 buf += 4;
17712 break;
17713
17714 case DW_FORM_data8:
17715 *uintp = read_8_bytes (abfd, buf);
17716 buf += 8;
17717 break;
17718
17719 case DW_FORM_udata:
17720 *uintp = read_unsigned_leb128 (abfd, buf, &bytes_read);
17721 buf += bytes_read;
17722 break;
17723
17724 case DW_FORM_block:
17725 /* It is valid only for DW_LNCT_timestamp which is ignored by
17726 current GDB. */
17727 break;
17728 }
17729 }
17730
17731 callback (lh, fe.name, fe.dir_index, fe.mod_time, fe.length);
17732 }
17733
17734 *bufp = buf;
17735}
17736
debd256d 17737/* Read the statement program header starting at OFFSET in
3019eac3 17738 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17739 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17740 Returns NULL if there is a problem reading the header, e.g., if it
17741 has a version we don't understand.
debd256d
JB
17742
17743 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17744 the returned object point into the dwarf line section buffer,
17745 and must not be freed. */
ae2de4f8 17746
debd256d 17747static struct line_header *
3019eac3 17748dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17749{
17750 struct cleanup *back_to;
17751 struct line_header *lh;
d521ce57 17752 const gdb_byte *line_ptr;
c764a876 17753 unsigned int bytes_read, offset_size;
debd256d 17754 int i;
d521ce57 17755 const char *cur_dir, *cur_file;
3019eac3
DE
17756 struct dwarf2_section_info *section;
17757 bfd *abfd;
17758
36586728 17759 section = get_debug_line_section (cu);
3019eac3
DE
17760 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17761 if (section->buffer == NULL)
debd256d 17762 {
3019eac3
DE
17763 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17764 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17765 else
17766 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17767 return 0;
17768 }
17769
fceca515
DE
17770 /* We can't do this until we know the section is non-empty.
17771 Only then do we know we have such a section. */
a32a8923 17772 abfd = get_section_bfd_owner (section);
fceca515 17773
a738430d
MK
17774 /* Make sure that at least there's room for the total_length field.
17775 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17776 if (offset + 4 >= section->size)
debd256d 17777 {
4d3c2250 17778 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17779 return 0;
17780 }
17781
8d749320 17782 lh = XNEW (struct line_header);
debd256d
JB
17783 memset (lh, 0, sizeof (*lh));
17784 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17785 (void *) lh);
17786
527f3840
JK
17787 lh->offset.sect_off = offset;
17788 lh->offset_in_dwz = cu->per_cu->is_dwz;
17789
3019eac3 17790 line_ptr = section->buffer + offset;
debd256d 17791
a738430d 17792 /* Read in the header. */
6e70227d 17793 lh->total_length =
c764a876
DE
17794 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17795 &bytes_read, &offset_size);
debd256d 17796 line_ptr += bytes_read;
3019eac3 17797 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17798 {
4d3c2250 17799 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17800 do_cleanups (back_to);
debd256d
JB
17801 return 0;
17802 }
17803 lh->statement_program_end = line_ptr + lh->total_length;
17804 lh->version = read_2_bytes (abfd, line_ptr);
17805 line_ptr += 2;
43988095 17806 if (lh->version > 5)
cd366ee8
DE
17807 {
17808 /* This is a version we don't understand. The format could have
17809 changed in ways we don't handle properly so just punt. */
17810 complaint (&symfile_complaints,
17811 _("unsupported version in .debug_line section"));
17812 return NULL;
17813 }
43988095
JK
17814 if (lh->version >= 5)
17815 {
17816 gdb_byte segment_selector_size;
17817
17818 /* Skip address size. */
17819 read_1_byte (abfd, line_ptr);
17820 line_ptr += 1;
17821
17822 segment_selector_size = read_1_byte (abfd, line_ptr);
17823 line_ptr += 1;
17824 if (segment_selector_size != 0)
17825 {
17826 complaint (&symfile_complaints,
17827 _("unsupported segment selector size %u "
17828 "in .debug_line section"),
17829 segment_selector_size);
17830 return NULL;
17831 }
17832 }
c764a876
DE
17833 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17834 line_ptr += offset_size;
debd256d
JB
17835 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17836 line_ptr += 1;
2dc7f7b3
TT
17837 if (lh->version >= 4)
17838 {
17839 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17840 line_ptr += 1;
17841 }
17842 else
17843 lh->maximum_ops_per_instruction = 1;
17844
17845 if (lh->maximum_ops_per_instruction == 0)
17846 {
17847 lh->maximum_ops_per_instruction = 1;
17848 complaint (&symfile_complaints,
3e43a32a
MS
17849 _("invalid maximum_ops_per_instruction "
17850 "in `.debug_line' section"));
2dc7f7b3
TT
17851 }
17852
debd256d
JB
17853 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17854 line_ptr += 1;
17855 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17856 line_ptr += 1;
17857 lh->line_range = read_1_byte (abfd, line_ptr);
17858 line_ptr += 1;
17859 lh->opcode_base = read_1_byte (abfd, line_ptr);
17860 line_ptr += 1;
8d749320 17861 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17862
17863 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17864 for (i = 1; i < lh->opcode_base; ++i)
17865 {
17866 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17867 line_ptr += 1;
17868 }
17869
43988095 17870 if (lh->version >= 5)
debd256d 17871 {
43988095
JK
17872 /* Read directory table. */
17873 read_formatted_entries (abfd, &line_ptr, lh, &cu->header,
17874 add_include_dir_stub);
debd256d 17875
43988095
JK
17876 /* Read file name table. */
17877 read_formatted_entries (abfd, &line_ptr, lh, &cu->header, add_file_name);
17878 }
17879 else
debd256d 17880 {
43988095
JK
17881 /* Read directory table. */
17882 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17883 {
17884 line_ptr += bytes_read;
17885 add_include_dir (lh, cur_dir);
17886 }
debd256d
JB
17887 line_ptr += bytes_read;
17888
43988095
JK
17889 /* Read file name table. */
17890 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17891 {
17892 unsigned int dir_index, mod_time, length;
17893
17894 line_ptr += bytes_read;
17895 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17896 line_ptr += bytes_read;
17897 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17898 line_ptr += bytes_read;
17899 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17900 line_ptr += bytes_read;
17901
17902 add_file_name (lh, cur_file, dir_index, mod_time, length);
17903 }
17904 line_ptr += bytes_read;
debd256d 17905 }
6e70227d 17906 lh->statement_program_start = line_ptr;
debd256d 17907
3019eac3 17908 if (line_ptr > (section->buffer + section->size))
4d3c2250 17909 complaint (&symfile_complaints,
3e43a32a
MS
17910 _("line number info header doesn't "
17911 "fit in `.debug_line' section"));
debd256d
JB
17912
17913 discard_cleanups (back_to);
17914 return lh;
17915}
c906108c 17916
c6da4cef
DE
17917/* Subroutine of dwarf_decode_lines to simplify it.
17918 Return the file name of the psymtab for included file FILE_INDEX
17919 in line header LH of PST.
17920 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17921 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17922 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17923
17924 The function creates dangling cleanup registration. */
c6da4cef 17925
d521ce57 17926static const char *
c6da4cef
DE
17927psymtab_include_file_name (const struct line_header *lh, int file_index,
17928 const struct partial_symtab *pst,
17929 const char *comp_dir)
17930{
17931 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17932 const char *include_name = fe.name;
17933 const char *include_name_to_compare = include_name;
17934 const char *dir_name = NULL;
72b9f47f
TT
17935 const char *pst_filename;
17936 char *copied_name = NULL;
c6da4cef
DE
17937 int file_is_pst;
17938
afa6c9ab 17939 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17940 dir_name = lh->include_dirs[fe.dir_index - 1];
17941
17942 if (!IS_ABSOLUTE_PATH (include_name)
17943 && (dir_name != NULL || comp_dir != NULL))
17944 {
17945 /* Avoid creating a duplicate psymtab for PST.
17946 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17947 Before we do the comparison, however, we need to account
17948 for DIR_NAME and COMP_DIR.
17949 First prepend dir_name (if non-NULL). If we still don't
17950 have an absolute path prepend comp_dir (if non-NULL).
17951 However, the directory we record in the include-file's
17952 psymtab does not contain COMP_DIR (to match the
17953 corresponding symtab(s)).
17954
17955 Example:
17956
17957 bash$ cd /tmp
17958 bash$ gcc -g ./hello.c
17959 include_name = "hello.c"
17960 dir_name = "."
17961 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17962 DW_AT_name = "./hello.c"
17963
17964 */
c6da4cef
DE
17965
17966 if (dir_name != NULL)
17967 {
d521ce57
TT
17968 char *tem = concat (dir_name, SLASH_STRING,
17969 include_name, (char *)NULL);
17970
17971 make_cleanup (xfree, tem);
17972 include_name = tem;
c6da4cef 17973 include_name_to_compare = include_name;
c6da4cef
DE
17974 }
17975 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17976 {
d521ce57
TT
17977 char *tem = concat (comp_dir, SLASH_STRING,
17978 include_name, (char *)NULL);
17979
17980 make_cleanup (xfree, tem);
17981 include_name_to_compare = tem;
c6da4cef
DE
17982 }
17983 }
17984
17985 pst_filename = pst->filename;
17986 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17987 {
72b9f47f
TT
17988 copied_name = concat (pst->dirname, SLASH_STRING,
17989 pst_filename, (char *)NULL);
17990 pst_filename = copied_name;
c6da4cef
DE
17991 }
17992
1e3fad37 17993 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17994
72b9f47f
TT
17995 if (copied_name != NULL)
17996 xfree (copied_name);
c6da4cef
DE
17997
17998 if (file_is_pst)
17999 return NULL;
18000 return include_name;
18001}
18002
d9b3de22
DE
18003/* State machine to track the state of the line number program. */
18004
18005typedef struct
18006{
18007 /* These are part of the standard DWARF line number state machine. */
18008
18009 unsigned char op_index;
18010 unsigned int file;
18011 unsigned int line;
18012 CORE_ADDR address;
18013 int is_stmt;
18014 unsigned int discriminator;
18015
18016 /* Additional bits of state we need to track. */
18017
18018 /* The last file that we called dwarf2_start_subfile for.
18019 This is only used for TLLs. */
18020 unsigned int last_file;
18021 /* The last file a line number was recorded for. */
18022 struct subfile *last_subfile;
18023
18024 /* The function to call to record a line. */
18025 record_line_ftype *record_line;
18026
18027 /* The last line number that was recorded, used to coalesce
18028 consecutive entries for the same line. This can happen, for
18029 example, when discriminators are present. PR 17276. */
18030 unsigned int last_line;
18031 int line_has_non_zero_discriminator;
18032} lnp_state_machine;
18033
18034/* There's a lot of static state to pass to dwarf_record_line.
18035 This keeps it all together. */
18036
18037typedef struct
18038{
18039 /* The gdbarch. */
18040 struct gdbarch *gdbarch;
18041
18042 /* The line number header. */
18043 struct line_header *line_header;
18044
18045 /* Non-zero if we're recording lines.
18046 Otherwise we're building partial symtabs and are just interested in
18047 finding include files mentioned by the line number program. */
18048 int record_lines_p;
18049} lnp_reader_state;
18050
c91513d8
PP
18051/* Ignore this record_line request. */
18052
18053static void
18054noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18055{
18056 return;
18057}
18058
a05a36a5
DE
18059/* Return non-zero if we should add LINE to the line number table.
18060 LINE is the line to add, LAST_LINE is the last line that was added,
18061 LAST_SUBFILE is the subfile for LAST_LINE.
18062 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18063 had a non-zero discriminator.
18064
18065 We have to be careful in the presence of discriminators.
18066 E.g., for this line:
18067
18068 for (i = 0; i < 100000; i++);
18069
18070 clang can emit four line number entries for that one line,
18071 each with a different discriminator.
18072 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18073
18074 However, we want gdb to coalesce all four entries into one.
18075 Otherwise the user could stepi into the middle of the line and
18076 gdb would get confused about whether the pc really was in the
18077 middle of the line.
18078
18079 Things are further complicated by the fact that two consecutive
18080 line number entries for the same line is a heuristic used by gcc
18081 to denote the end of the prologue. So we can't just discard duplicate
18082 entries, we have to be selective about it. The heuristic we use is
18083 that we only collapse consecutive entries for the same line if at least
18084 one of those entries has a non-zero discriminator. PR 17276.
18085
18086 Note: Addresses in the line number state machine can never go backwards
18087 within one sequence, thus this coalescing is ok. */
18088
18089static int
18090dwarf_record_line_p (unsigned int line, unsigned int last_line,
18091 int line_has_non_zero_discriminator,
18092 struct subfile *last_subfile)
18093{
18094 if (current_subfile != last_subfile)
18095 return 1;
18096 if (line != last_line)
18097 return 1;
18098 /* Same line for the same file that we've seen already.
18099 As a last check, for pr 17276, only record the line if the line
18100 has never had a non-zero discriminator. */
18101 if (!line_has_non_zero_discriminator)
18102 return 1;
18103 return 0;
18104}
18105
252a6764
DE
18106/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18107 in the line table of subfile SUBFILE. */
18108
18109static void
d9b3de22
DE
18110dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18111 unsigned int line, CORE_ADDR address,
18112 record_line_ftype p_record_line)
252a6764
DE
18113{
18114 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18115
27e0867f
DE
18116 if (dwarf_line_debug)
18117 {
18118 fprintf_unfiltered (gdb_stdlog,
18119 "Recording line %u, file %s, address %s\n",
18120 line, lbasename (subfile->name),
18121 paddress (gdbarch, address));
18122 }
18123
d5962de5 18124 (*p_record_line) (subfile, line, addr);
252a6764
DE
18125}
18126
18127/* Subroutine of dwarf_decode_lines_1 to simplify it.
18128 Mark the end of a set of line number records.
d9b3de22 18129 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18130 If SUBFILE is NULL the request is ignored. */
18131
18132static void
18133dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18134 CORE_ADDR address, record_line_ftype p_record_line)
18135{
27e0867f
DE
18136 if (subfile == NULL)
18137 return;
18138
18139 if (dwarf_line_debug)
18140 {
18141 fprintf_unfiltered (gdb_stdlog,
18142 "Finishing current line, file %s, address %s\n",
18143 lbasename (subfile->name),
18144 paddress (gdbarch, address));
18145 }
18146
d9b3de22
DE
18147 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18148}
18149
18150/* Record the line in STATE.
18151 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
18152
18153static void
18154dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
18155 int end_sequence)
18156{
18157 const struct line_header *lh = reader->line_header;
18158 unsigned int file, line, discriminator;
18159 int is_stmt;
18160
18161 file = state->file;
18162 line = state->line;
18163 is_stmt = state->is_stmt;
18164 discriminator = state->discriminator;
18165
18166 if (dwarf_line_debug)
18167 {
18168 fprintf_unfiltered (gdb_stdlog,
18169 "Processing actual line %u: file %u,"
18170 " address %s, is_stmt %u, discrim %u\n",
18171 line, file,
18172 paddress (reader->gdbarch, state->address),
18173 is_stmt, discriminator);
18174 }
18175
18176 if (file == 0 || file - 1 >= lh->num_file_names)
18177 dwarf2_debug_line_missing_file_complaint ();
18178 /* For now we ignore lines not starting on an instruction boundary.
18179 But not when processing end_sequence for compatibility with the
18180 previous version of the code. */
18181 else if (state->op_index == 0 || end_sequence)
18182 {
18183 lh->file_names[file - 1].included_p = 1;
18184 if (reader->record_lines_p && is_stmt)
18185 {
e815d2d2 18186 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
18187 {
18188 dwarf_finish_line (reader->gdbarch, state->last_subfile,
18189 state->address, state->record_line);
18190 }
18191
18192 if (!end_sequence)
18193 {
18194 if (dwarf_record_line_p (line, state->last_line,
18195 state->line_has_non_zero_discriminator,
18196 state->last_subfile))
18197 {
18198 dwarf_record_line_1 (reader->gdbarch, current_subfile,
18199 line, state->address,
18200 state->record_line);
18201 }
18202 state->last_subfile = current_subfile;
18203 state->last_line = line;
18204 }
18205 }
18206 }
18207}
18208
18209/* Initialize STATE for the start of a line number program. */
18210
18211static void
18212init_lnp_state_machine (lnp_state_machine *state,
18213 const lnp_reader_state *reader)
18214{
18215 memset (state, 0, sizeof (*state));
18216
18217 /* Just starting, there is no "last file". */
18218 state->last_file = 0;
18219 state->last_subfile = NULL;
18220
18221 state->record_line = record_line;
18222
18223 state->last_line = 0;
18224 state->line_has_non_zero_discriminator = 0;
18225
18226 /* Initialize these according to the DWARF spec. */
18227 state->op_index = 0;
18228 state->file = 1;
18229 state->line = 1;
18230 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18231 was a line entry for it so that the backend has a chance to adjust it
18232 and also record it in case it needs it. This is currently used by MIPS
18233 code, cf. `mips_adjust_dwarf2_line'. */
18234 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
18235 state->is_stmt = reader->line_header->default_is_stmt;
18236 state->discriminator = 0;
252a6764
DE
18237}
18238
924c2928
DE
18239/* Check address and if invalid nop-out the rest of the lines in this
18240 sequence. */
18241
18242static void
d9b3de22 18243check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
18244 const gdb_byte *line_ptr,
18245 CORE_ADDR lowpc, CORE_ADDR address)
18246{
18247 /* If address < lowpc then it's not a usable value, it's outside the
18248 pc range of the CU. However, we restrict the test to only address
18249 values of zero to preserve GDB's previous behaviour which is to
18250 handle the specific case of a function being GC'd by the linker. */
18251
18252 if (address == 0 && address < lowpc)
18253 {
18254 /* This line table is for a function which has been
18255 GCd by the linker. Ignore it. PR gdb/12528 */
18256
18257 struct objfile *objfile = cu->objfile;
18258 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18259
18260 complaint (&symfile_complaints,
18261 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18262 line_offset, objfile_name (objfile));
d9b3de22
DE
18263 state->record_line = noop_record_line;
18264 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
18265 until we see DW_LNE_end_sequence. */
18266 }
18267}
18268
f3f5162e 18269/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18270 Process the line number information in LH.
18271 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18272 program in order to set included_p for every referenced header. */
debd256d 18273
c906108c 18274static void
43f3e411
DE
18275dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18276 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18277{
d521ce57
TT
18278 const gdb_byte *line_ptr, *extended_end;
18279 const gdb_byte *line_end;
a8c50c1f 18280 unsigned int bytes_read, extended_len;
699ca60a 18281 unsigned char op_code, extended_op;
e142c38c
DJ
18282 CORE_ADDR baseaddr;
18283 struct objfile *objfile = cu->objfile;
f3f5162e 18284 bfd *abfd = objfile->obfd;
fbf65064 18285 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
18286 /* Non-zero if we're recording line info (as opposed to building partial
18287 symtabs). */
18288 int record_lines_p = !decode_for_pst_p;
18289 /* A collection of things we need to pass to dwarf_record_line. */
18290 lnp_reader_state reader_state;
e142c38c
DJ
18291
18292 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18293
debd256d
JB
18294 line_ptr = lh->statement_program_start;
18295 line_end = lh->statement_program_end;
c906108c 18296
d9b3de22
DE
18297 reader_state.gdbarch = gdbarch;
18298 reader_state.line_header = lh;
18299 reader_state.record_lines_p = record_lines_p;
18300
c906108c
SS
18301 /* Read the statement sequences until there's nothing left. */
18302 while (line_ptr < line_end)
18303 {
d9b3de22
DE
18304 /* The DWARF line number program state machine. */
18305 lnp_state_machine state_machine;
c906108c 18306 int end_sequence = 0;
d9b3de22
DE
18307
18308 /* Reset the state machine at the start of each sequence. */
18309 init_lnp_state_machine (&state_machine, &reader_state);
18310
18311 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 18312 {
aaa75496 18313 /* Start a subfile for the current file of the state machine. */
debd256d
JB
18314 /* lh->include_dirs and lh->file_names are 0-based, but the
18315 directory and file name numbers in the statement program
18316 are 1-based. */
d9b3de22 18317 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 18318 const char *dir = NULL;
a738430d 18319
afa6c9ab 18320 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 18321 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 18322
4d663531 18323 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
18324 }
18325
a738430d 18326 /* Decode the table. */
d9b3de22 18327 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18328 {
18329 op_code = read_1_byte (abfd, line_ptr);
18330 line_ptr += 1;
9aa1fe7e 18331
debd256d 18332 if (op_code >= lh->opcode_base)
6e70227d 18333 {
8e07a239 18334 /* Special opcode. */
699ca60a 18335 unsigned char adj_opcode;
3e29f34a 18336 CORE_ADDR addr_adj;
a05a36a5 18337 int line_delta;
8e07a239 18338
debd256d 18339 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
18340 addr_adj = (((state_machine.op_index
18341 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
18342 / lh->maximum_ops_per_instruction)
18343 * lh->minimum_instruction_length);
d9b3de22
DE
18344 state_machine.address
18345 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18346 state_machine.op_index = ((state_machine.op_index
18347 + (adj_opcode / lh->line_range))
18348 % lh->maximum_ops_per_instruction);
a05a36a5 18349 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 18350 state_machine.line += line_delta;
a05a36a5 18351 if (line_delta != 0)
d9b3de22
DE
18352 state_machine.line_has_non_zero_discriminator
18353 = state_machine.discriminator != 0;
18354
18355 dwarf_record_line (&reader_state, &state_machine, 0);
18356 state_machine.discriminator = 0;
9aa1fe7e
GK
18357 }
18358 else switch (op_code)
c906108c
SS
18359 {
18360 case DW_LNS_extended_op:
3e43a32a
MS
18361 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18362 &bytes_read);
473b7be6 18363 line_ptr += bytes_read;
a8c50c1f 18364 extended_end = line_ptr + extended_len;
c906108c
SS
18365 extended_op = read_1_byte (abfd, line_ptr);
18366 line_ptr += 1;
18367 switch (extended_op)
18368 {
18369 case DW_LNE_end_sequence:
d9b3de22 18370 state_machine.record_line = record_line;
c906108c 18371 end_sequence = 1;
c906108c
SS
18372 break;
18373 case DW_LNE_set_address:
d9b3de22
DE
18374 {
18375 CORE_ADDR address
18376 = read_address (abfd, line_ptr, cu, &bytes_read);
18377
18378 line_ptr += bytes_read;
18379 check_line_address (cu, &state_machine, line_ptr,
18380 lowpc, address);
18381 state_machine.op_index = 0;
18382 address += baseaddr;
18383 state_machine.address
18384 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
18385 }
c906108c
SS
18386 break;
18387 case DW_LNE_define_file:
debd256d 18388 {
d521ce57 18389 const char *cur_file;
debd256d 18390 unsigned int dir_index, mod_time, length;
6e70227d 18391
3e43a32a
MS
18392 cur_file = read_direct_string (abfd, line_ptr,
18393 &bytes_read);
debd256d
JB
18394 line_ptr += bytes_read;
18395 dir_index =
18396 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18397 line_ptr += bytes_read;
18398 mod_time =
18399 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18400 line_ptr += bytes_read;
18401 length =
18402 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18403 line_ptr += bytes_read;
18404 add_file_name (lh, cur_file, dir_index, mod_time, length);
18405 }
c906108c 18406 break;
d0c6ba3d
CC
18407 case DW_LNE_set_discriminator:
18408 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
18409 just ignore it. We still need to check its value though:
18410 if there are consecutive entries for the same
18411 (non-prologue) line we want to coalesce them.
18412 PR 17276. */
d9b3de22
DE
18413 state_machine.discriminator
18414 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18415 state_machine.line_has_non_zero_discriminator
18416 |= state_machine.discriminator != 0;
a05a36a5 18417 line_ptr += bytes_read;
d0c6ba3d 18418 break;
c906108c 18419 default:
4d3c2250 18420 complaint (&symfile_complaints,
e2e0b3e5 18421 _("mangled .debug_line section"));
debd256d 18422 return;
c906108c 18423 }
a8c50c1f
DJ
18424 /* Make sure that we parsed the extended op correctly. If e.g.
18425 we expected a different address size than the producer used,
18426 we may have read the wrong number of bytes. */
18427 if (line_ptr != extended_end)
18428 {
18429 complaint (&symfile_complaints,
18430 _("mangled .debug_line section"));
18431 return;
18432 }
c906108c
SS
18433 break;
18434 case DW_LNS_copy:
d9b3de22
DE
18435 dwarf_record_line (&reader_state, &state_machine, 0);
18436 state_machine.discriminator = 0;
c906108c
SS
18437 break;
18438 case DW_LNS_advance_pc:
2dc7f7b3
TT
18439 {
18440 CORE_ADDR adjust
18441 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 18442 CORE_ADDR addr_adj;
2dc7f7b3 18443
d9b3de22 18444 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18445 / lh->maximum_ops_per_instruction)
18446 * lh->minimum_instruction_length);
d9b3de22
DE
18447 state_machine.address
18448 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18449 state_machine.op_index = ((state_machine.op_index + adjust)
18450 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18451 line_ptr += bytes_read;
18452 }
c906108c
SS
18453 break;
18454 case DW_LNS_advance_line:
a05a36a5
DE
18455 {
18456 int line_delta
18457 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18458
d9b3de22 18459 state_machine.line += line_delta;
a05a36a5 18460 if (line_delta != 0)
d9b3de22
DE
18461 state_machine.line_has_non_zero_discriminator
18462 = state_machine.discriminator != 0;
a05a36a5
DE
18463 line_ptr += bytes_read;
18464 }
c906108c
SS
18465 break;
18466 case DW_LNS_set_file:
d9b3de22
DE
18467 {
18468 /* The arrays lh->include_dirs and lh->file_names are
18469 0-based, but the directory and file name numbers in
18470 the statement program are 1-based. */
18471 struct file_entry *fe;
18472 const char *dir = NULL;
18473
18474 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18475 &bytes_read);
18476 line_ptr += bytes_read;
18477 if (state_machine.file == 0
18478 || state_machine.file - 1 >= lh->num_file_names)
18479 dwarf2_debug_line_missing_file_complaint ();
18480 else
18481 {
18482 fe = &lh->file_names[state_machine.file - 1];
18483 if (fe->dir_index && lh->include_dirs != NULL)
18484 dir = lh->include_dirs[fe->dir_index - 1];
18485 if (record_lines_p)
18486 {
18487 state_machine.last_subfile = current_subfile;
18488 state_machine.line_has_non_zero_discriminator
18489 = state_machine.discriminator != 0;
18490 dwarf2_start_subfile (fe->name, dir);
18491 }
18492 }
18493 }
c906108c
SS
18494 break;
18495 case DW_LNS_set_column:
0ad93d4f 18496 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18497 line_ptr += bytes_read;
18498 break;
18499 case DW_LNS_negate_stmt:
d9b3de22 18500 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18501 break;
18502 case DW_LNS_set_basic_block:
c906108c 18503 break;
c2c6d25f
JM
18504 /* Add to the address register of the state machine the
18505 address increment value corresponding to special opcode
a738430d
MK
18506 255. I.e., this value is scaled by the minimum
18507 instruction length since special opcode 255 would have
b021a221 18508 scaled the increment. */
c906108c 18509 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18510 {
18511 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18512 CORE_ADDR addr_adj;
2dc7f7b3 18513
d9b3de22 18514 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18515 / lh->maximum_ops_per_instruction)
18516 * lh->minimum_instruction_length);
d9b3de22
DE
18517 state_machine.address
18518 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18519 state_machine.op_index = ((state_machine.op_index + adjust)
18520 % lh->maximum_ops_per_instruction);
2dc7f7b3 18521 }
c906108c
SS
18522 break;
18523 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18524 {
18525 CORE_ADDR addr_adj;
18526
18527 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18528 state_machine.address
18529 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18530 state_machine.op_index = 0;
3e29f34a
MR
18531 line_ptr += 2;
18532 }
c906108c 18533 break;
9aa1fe7e 18534 default:
a738430d
MK
18535 {
18536 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18537 int i;
a738430d 18538
debd256d 18539 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18540 {
18541 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18542 line_ptr += bytes_read;
18543 }
18544 }
c906108c
SS
18545 }
18546 }
d9b3de22
DE
18547
18548 if (!end_sequence)
18549 dwarf2_debug_line_missing_end_sequence_complaint ();
18550
18551 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18552 in which case we still finish recording the last line). */
18553 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18554 }
f3f5162e
DE
18555}
18556
18557/* Decode the Line Number Program (LNP) for the given line_header
18558 structure and CU. The actual information extracted and the type
18559 of structures created from the LNP depends on the value of PST.
18560
18561 1. If PST is NULL, then this procedure uses the data from the program
18562 to create all necessary symbol tables, and their linetables.
18563
18564 2. If PST is not NULL, this procedure reads the program to determine
18565 the list of files included by the unit represented by PST, and
18566 builds all the associated partial symbol tables.
18567
18568 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18569 It is used for relative paths in the line table.
18570 NOTE: When processing partial symtabs (pst != NULL),
18571 comp_dir == pst->dirname.
18572
18573 NOTE: It is important that psymtabs have the same file name (via strcmp)
18574 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18575 symtab we don't use it in the name of the psymtabs we create.
18576 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18577 A good testcase for this is mb-inline.exp.
18578
527f3840
JK
18579 LOWPC is the lowest address in CU (or 0 if not known).
18580
18581 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18582 for its PC<->lines mapping information. Otherwise only the filename
18583 table is read in. */
f3f5162e
DE
18584
18585static void
18586dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18587 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18588 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18589{
18590 struct objfile *objfile = cu->objfile;
18591 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18592
527f3840
JK
18593 if (decode_mapping)
18594 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18595
18596 if (decode_for_pst_p)
18597 {
18598 int file_index;
18599
18600 /* Now that we're done scanning the Line Header Program, we can
18601 create the psymtab of each included file. */
18602 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18603 if (lh->file_names[file_index].included_p == 1)
18604 {
d521ce57 18605 const char *include_name =
c6da4cef
DE
18606 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18607 if (include_name != NULL)
aaa75496
JB
18608 dwarf2_create_include_psymtab (include_name, pst, objfile);
18609 }
18610 }
cb1df416
DJ
18611 else
18612 {
18613 /* Make sure a symtab is created for every file, even files
18614 which contain only variables (i.e. no code with associated
18615 line numbers). */
43f3e411 18616 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18617 int i;
cb1df416
DJ
18618
18619 for (i = 0; i < lh->num_file_names; i++)
18620 {
d521ce57 18621 const char *dir = NULL;
f3f5162e 18622 struct file_entry *fe;
9a619af0 18623
cb1df416 18624 fe = &lh->file_names[i];
afa6c9ab 18625 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18626 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18627 dwarf2_start_subfile (fe->name, dir);
cb1df416 18628
cb1df416 18629 if (current_subfile->symtab == NULL)
43f3e411
DE
18630 {
18631 current_subfile->symtab
18632 = allocate_symtab (cust, current_subfile->name);
18633 }
cb1df416
DJ
18634 fe->symtab = current_subfile->symtab;
18635 }
18636 }
c906108c
SS
18637}
18638
18639/* Start a subfile for DWARF. FILENAME is the name of the file and
18640 DIRNAME the name of the source directory which contains FILENAME
4d663531 18641 or NULL if not known.
c906108c
SS
18642 This routine tries to keep line numbers from identical absolute and
18643 relative file names in a common subfile.
18644
18645 Using the `list' example from the GDB testsuite, which resides in
18646 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18647 of /srcdir/list0.c yields the following debugging information for list0.c:
18648
c5aa993b 18649 DW_AT_name: /srcdir/list0.c
4d663531 18650 DW_AT_comp_dir: /compdir
357e46e7 18651 files.files[0].name: list0.h
c5aa993b 18652 files.files[0].dir: /srcdir
357e46e7 18653 files.files[1].name: list0.c
c5aa993b 18654 files.files[1].dir: /srcdir
c906108c
SS
18655
18656 The line number information for list0.c has to end up in a single
4f1520fb
FR
18657 subfile, so that `break /srcdir/list0.c:1' works as expected.
18658 start_subfile will ensure that this happens provided that we pass the
18659 concatenation of files.files[1].dir and files.files[1].name as the
18660 subfile's name. */
c906108c
SS
18661
18662static void
4d663531 18663dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18664{
d521ce57 18665 char *copy = NULL;
4f1520fb 18666
4d663531 18667 /* In order not to lose the line information directory,
4f1520fb
FR
18668 we concatenate it to the filename when it makes sense.
18669 Note that the Dwarf3 standard says (speaking of filenames in line
18670 information): ``The directory index is ignored for file names
18671 that represent full path names''. Thus ignoring dirname in the
18672 `else' branch below isn't an issue. */
c906108c 18673
d5166ae1 18674 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18675 {
18676 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18677 filename = copy;
18678 }
c906108c 18679
4d663531 18680 start_subfile (filename);
4f1520fb 18681
d521ce57
TT
18682 if (copy != NULL)
18683 xfree (copy);
c906108c
SS
18684}
18685
f4dc4d17
DE
18686/* Start a symtab for DWARF.
18687 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18688
43f3e411 18689static struct compunit_symtab *
f4dc4d17 18690dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18691 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18692{
43f3e411
DE
18693 struct compunit_symtab *cust
18694 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18695
f4dc4d17
DE
18696 record_debugformat ("DWARF 2");
18697 record_producer (cu->producer);
18698
18699 /* We assume that we're processing GCC output. */
18700 processing_gcc_compilation = 2;
18701
4d4ec4e5 18702 cu->processing_has_namespace_info = 0;
43f3e411
DE
18703
18704 return cust;
f4dc4d17
DE
18705}
18706
4c2df51b
DJ
18707static void
18708var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18709 struct dwarf2_cu *cu)
4c2df51b 18710{
e7c27a73
DJ
18711 struct objfile *objfile = cu->objfile;
18712 struct comp_unit_head *cu_header = &cu->header;
18713
4c2df51b
DJ
18714 /* NOTE drow/2003-01-30: There used to be a comment and some special
18715 code here to turn a symbol with DW_AT_external and a
18716 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18717 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18718 with some versions of binutils) where shared libraries could have
18719 relocations against symbols in their debug information - the
18720 minimal symbol would have the right address, but the debug info
18721 would not. It's no longer necessary, because we will explicitly
18722 apply relocations when we read in the debug information now. */
18723
18724 /* A DW_AT_location attribute with no contents indicates that a
18725 variable has been optimized away. */
18726 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18727 {
f1e6e072 18728 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18729 return;
18730 }
18731
18732 /* Handle one degenerate form of location expression specially, to
18733 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18734 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18735 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18736
18737 if (attr_form_is_block (attr)
3019eac3
DE
18738 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18739 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18740 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18741 && (DW_BLOCK (attr)->size
18742 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18743 {
891d2f0b 18744 unsigned int dummy;
4c2df51b 18745
3019eac3
DE
18746 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18747 SYMBOL_VALUE_ADDRESS (sym) =
18748 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18749 else
18750 SYMBOL_VALUE_ADDRESS (sym) =
18751 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18752 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18753 fixup_symbol_section (sym, objfile);
18754 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18755 SYMBOL_SECTION (sym));
4c2df51b
DJ
18756 return;
18757 }
18758
18759 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18760 expression evaluator, and use LOC_COMPUTED only when necessary
18761 (i.e. when the value of a register or memory location is
18762 referenced, or a thread-local block, etc.). Then again, it might
18763 not be worthwhile. I'm assuming that it isn't unless performance
18764 or memory numbers show me otherwise. */
18765
f1e6e072 18766 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18767
f1e6e072 18768 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18769 cu->has_loclist = 1;
4c2df51b
DJ
18770}
18771
c906108c
SS
18772/* Given a pointer to a DWARF information entry, figure out if we need
18773 to make a symbol table entry for it, and if so, create a new entry
18774 and return a pointer to it.
18775 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18776 used the passed type.
18777 If SPACE is not NULL, use it to hold the new symbol. If it is
18778 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18779
18780static struct symbol *
34eaf542
TT
18781new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18782 struct symbol *space)
c906108c 18783{
e7c27a73 18784 struct objfile *objfile = cu->objfile;
3e29f34a 18785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18786 struct symbol *sym = NULL;
15d034d0 18787 const char *name;
c906108c
SS
18788 struct attribute *attr = NULL;
18789 struct attribute *attr2 = NULL;
e142c38c 18790 CORE_ADDR baseaddr;
e37fd15a
SW
18791 struct pending **list_to_add = NULL;
18792
edb3359d 18793 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18794
18795 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18796
94af9270 18797 name = dwarf2_name (die, cu);
c906108c
SS
18798 if (name)
18799 {
94af9270 18800 const char *linkagename;
34eaf542 18801 int suppress_add = 0;
94af9270 18802
34eaf542
TT
18803 if (space)
18804 sym = space;
18805 else
e623cf5d 18806 sym = allocate_symbol (objfile);
c906108c 18807 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18808
18809 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18810 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18811 linkagename = dwarf2_physname (name, die, cu);
18812 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18813
f55ee35c
JK
18814 /* Fortran does not have mangling standard and the mangling does differ
18815 between gfortran, iFort etc. */
18816 if (cu->language == language_fortran
b250c185 18817 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18818 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18819 dwarf2_full_name (name, die, cu),
29df156d 18820 NULL);
f55ee35c 18821
c906108c 18822 /* Default assumptions.
c5aa993b 18823 Use the passed type or decode it from the die. */
176620f1 18824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18825 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18826 if (type != NULL)
18827 SYMBOL_TYPE (sym) = type;
18828 else
e7c27a73 18829 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18830 attr = dwarf2_attr (die,
18831 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18832 cu);
c906108c
SS
18833 if (attr)
18834 {
18835 SYMBOL_LINE (sym) = DW_UNSND (attr);
18836 }
cb1df416 18837
edb3359d
DJ
18838 attr = dwarf2_attr (die,
18839 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18840 cu);
cb1df416
DJ
18841 if (attr)
18842 {
18843 int file_index = DW_UNSND (attr);
9a619af0 18844
cb1df416
DJ
18845 if (cu->line_header == NULL
18846 || file_index > cu->line_header->num_file_names)
18847 complaint (&symfile_complaints,
18848 _("file index out of range"));
1c3d648d 18849 else if (file_index > 0)
cb1df416
DJ
18850 {
18851 struct file_entry *fe;
9a619af0 18852
cb1df416 18853 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18854 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18855 }
18856 }
18857
c906108c
SS
18858 switch (die->tag)
18859 {
18860 case DW_TAG_label:
e142c38c 18861 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18862 if (attr)
3e29f34a
MR
18863 {
18864 CORE_ADDR addr;
18865
18866 addr = attr_value_as_address (attr);
18867 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18868 SYMBOL_VALUE_ADDRESS (sym) = addr;
18869 }
0f5238ed
TT
18870 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18871 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18872 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18873 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18874 break;
18875 case DW_TAG_subprogram:
18876 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18877 finish_block. */
f1e6e072 18878 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18879 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18880 if ((attr2 && (DW_UNSND (attr2) != 0))
18881 || cu->language == language_ada)
c906108c 18882 {
2cfa0c8d
JB
18883 /* Subprograms marked external are stored as a global symbol.
18884 Ada subprograms, whether marked external or not, are always
18885 stored as a global symbol, because we want to be able to
18886 access them globally. For instance, we want to be able
18887 to break on a nested subprogram without having to
18888 specify the context. */
e37fd15a 18889 list_to_add = &global_symbols;
c906108c
SS
18890 }
18891 else
18892 {
e37fd15a 18893 list_to_add = cu->list_in_scope;
c906108c
SS
18894 }
18895 break;
edb3359d
DJ
18896 case DW_TAG_inlined_subroutine:
18897 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18898 finish_block. */
f1e6e072 18899 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18900 SYMBOL_INLINED (sym) = 1;
481860b3 18901 list_to_add = cu->list_in_scope;
edb3359d 18902 break;
34eaf542
TT
18903 case DW_TAG_template_value_param:
18904 suppress_add = 1;
18905 /* Fall through. */
72929c62 18906 case DW_TAG_constant:
c906108c 18907 case DW_TAG_variable:
254e6b9e 18908 case DW_TAG_member:
0963b4bd
MS
18909 /* Compilation with minimal debug info may result in
18910 variables with missing type entries. Change the
18911 misleading `void' type to something sensible. */
c906108c 18912 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18913 SYMBOL_TYPE (sym)
46bf5051 18914 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18915
e142c38c 18916 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18917 /* In the case of DW_TAG_member, we should only be called for
18918 static const members. */
18919 if (die->tag == DW_TAG_member)
18920 {
3863f96c
DE
18921 /* dwarf2_add_field uses die_is_declaration,
18922 so we do the same. */
254e6b9e
DE
18923 gdb_assert (die_is_declaration (die, cu));
18924 gdb_assert (attr);
18925 }
c906108c
SS
18926 if (attr)
18927 {
e7c27a73 18928 dwarf2_const_value (attr, sym, cu);
e142c38c 18929 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18930 if (!suppress_add)
34eaf542
TT
18931 {
18932 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18933 list_to_add = &global_symbols;
34eaf542 18934 else
e37fd15a 18935 list_to_add = cu->list_in_scope;
34eaf542 18936 }
c906108c
SS
18937 break;
18938 }
e142c38c 18939 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18940 if (attr)
18941 {
e7c27a73 18942 var_decode_location (attr, sym, cu);
e142c38c 18943 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18944
18945 /* Fortran explicitly imports any global symbols to the local
18946 scope by DW_TAG_common_block. */
18947 if (cu->language == language_fortran && die->parent
18948 && die->parent->tag == DW_TAG_common_block)
18949 attr2 = NULL;
18950
caac4577
JG
18951 if (SYMBOL_CLASS (sym) == LOC_STATIC
18952 && SYMBOL_VALUE_ADDRESS (sym) == 0
18953 && !dwarf2_per_objfile->has_section_at_zero)
18954 {
18955 /* When a static variable is eliminated by the linker,
18956 the corresponding debug information is not stripped
18957 out, but the variable address is set to null;
18958 do not add such variables into symbol table. */
18959 }
18960 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18961 {
f55ee35c
JK
18962 /* Workaround gfortran PR debug/40040 - it uses
18963 DW_AT_location for variables in -fPIC libraries which may
18964 get overriden by other libraries/executable and get
18965 a different address. Resolve it by the minimal symbol
18966 which may come from inferior's executable using copy
18967 relocation. Make this workaround only for gfortran as for
18968 other compilers GDB cannot guess the minimal symbol
18969 Fortran mangling kind. */
18970 if (cu->language == language_fortran && die->parent
18971 && die->parent->tag == DW_TAG_module
18972 && cu->producer
28586665 18973 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18974 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18975
1c809c68
TT
18976 /* A variable with DW_AT_external is never static,
18977 but it may be block-scoped. */
18978 list_to_add = (cu->list_in_scope == &file_symbols
18979 ? &global_symbols : cu->list_in_scope);
1c809c68 18980 }
c906108c 18981 else
e37fd15a 18982 list_to_add = cu->list_in_scope;
c906108c
SS
18983 }
18984 else
18985 {
18986 /* We do not know the address of this symbol.
c5aa993b
JM
18987 If it is an external symbol and we have type information
18988 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18989 The address of the variable will then be determined from
18990 the minimal symbol table whenever the variable is
18991 referenced. */
e142c38c 18992 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18993
18994 /* Fortran explicitly imports any global symbols to the local
18995 scope by DW_TAG_common_block. */
18996 if (cu->language == language_fortran && die->parent
18997 && die->parent->tag == DW_TAG_common_block)
18998 {
18999 /* SYMBOL_CLASS doesn't matter here because
19000 read_common_block is going to reset it. */
19001 if (!suppress_add)
19002 list_to_add = cu->list_in_scope;
19003 }
19004 else if (attr2 && (DW_UNSND (attr2) != 0)
19005 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19006 {
0fe7935b
DJ
19007 /* A variable with DW_AT_external is never static, but it
19008 may be block-scoped. */
19009 list_to_add = (cu->list_in_scope == &file_symbols
19010 ? &global_symbols : cu->list_in_scope);
19011
f1e6e072 19012 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19013 }
442ddf59
JK
19014 else if (!die_is_declaration (die, cu))
19015 {
19016 /* Use the default LOC_OPTIMIZED_OUT class. */
19017 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19018 if (!suppress_add)
19019 list_to_add = cu->list_in_scope;
442ddf59 19020 }
c906108c
SS
19021 }
19022 break;
19023 case DW_TAG_formal_parameter:
edb3359d
DJ
19024 /* If we are inside a function, mark this as an argument. If
19025 not, we might be looking at an argument to an inlined function
19026 when we do not have enough information to show inlined frames;
19027 pretend it's a local variable in that case so that the user can
19028 still see it. */
19029 if (context_stack_depth > 0
19030 && context_stack[context_stack_depth - 1].name != NULL)
19031 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19032 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19033 if (attr)
19034 {
e7c27a73 19035 var_decode_location (attr, sym, cu);
c906108c 19036 }
e142c38c 19037 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19038 if (attr)
19039 {
e7c27a73 19040 dwarf2_const_value (attr, sym, cu);
c906108c 19041 }
f346a30d 19042
e37fd15a 19043 list_to_add = cu->list_in_scope;
c906108c
SS
19044 break;
19045 case DW_TAG_unspecified_parameters:
19046 /* From varargs functions; gdb doesn't seem to have any
19047 interest in this information, so just ignore it for now.
19048 (FIXME?) */
19049 break;
34eaf542
TT
19050 case DW_TAG_template_type_param:
19051 suppress_add = 1;
19052 /* Fall through. */
c906108c 19053 case DW_TAG_class_type:
680b30c7 19054 case DW_TAG_interface_type:
c906108c
SS
19055 case DW_TAG_structure_type:
19056 case DW_TAG_union_type:
72019c9c 19057 case DW_TAG_set_type:
c906108c 19058 case DW_TAG_enumeration_type:
f1e6e072 19059 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19060 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19061
63d06c5c 19062 {
9c37b5ae 19063 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19064 really ever be static objects: otherwise, if you try
19065 to, say, break of a class's method and you're in a file
19066 which doesn't mention that class, it won't work unless
19067 the check for all static symbols in lookup_symbol_aux
19068 saves you. See the OtherFileClass tests in
19069 gdb.c++/namespace.exp. */
19070
e37fd15a 19071 if (!suppress_add)
34eaf542 19072 {
34eaf542 19073 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19074 && cu->language == language_cplus
34eaf542 19075 ? &global_symbols : cu->list_in_scope);
63d06c5c 19076
64382290 19077 /* The semantics of C++ state that "struct foo {
9c37b5ae 19078 ... }" also defines a typedef for "foo". */
64382290 19079 if (cu->language == language_cplus
45280282 19080 || cu->language == language_ada
c44af4eb
TT
19081 || cu->language == language_d
19082 || cu->language == language_rust)
64382290
TT
19083 {
19084 /* The symbol's name is already allocated along
19085 with this objfile, so we don't need to
19086 duplicate it for the type. */
19087 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19088 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19089 }
63d06c5c
DC
19090 }
19091 }
c906108c
SS
19092 break;
19093 case DW_TAG_typedef:
f1e6e072 19094 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19095 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19096 list_to_add = cu->list_in_scope;
63d06c5c 19097 break;
c906108c 19098 case DW_TAG_base_type:
a02abb62 19099 case DW_TAG_subrange_type:
f1e6e072 19100 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19101 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19102 list_to_add = cu->list_in_scope;
c906108c
SS
19103 break;
19104 case DW_TAG_enumerator:
e142c38c 19105 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19106 if (attr)
19107 {
e7c27a73 19108 dwarf2_const_value (attr, sym, cu);
c906108c 19109 }
63d06c5c
DC
19110 {
19111 /* NOTE: carlton/2003-11-10: See comment above in the
19112 DW_TAG_class_type, etc. block. */
19113
e142c38c 19114 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19115 && cu->language == language_cplus
e142c38c 19116 ? &global_symbols : cu->list_in_scope);
63d06c5c 19117 }
c906108c 19118 break;
74921315 19119 case DW_TAG_imported_declaration:
5c4e30ca 19120 case DW_TAG_namespace:
f1e6e072 19121 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19122 list_to_add = &global_symbols;
5c4e30ca 19123 break;
530e8392
KB
19124 case DW_TAG_module:
19125 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19126 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19127 list_to_add = &global_symbols;
19128 break;
4357ac6c 19129 case DW_TAG_common_block:
f1e6e072 19130 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19131 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19132 add_symbol_to_list (sym, cu->list_in_scope);
19133 break;
c906108c
SS
19134 default:
19135 /* Not a tag we recognize. Hopefully we aren't processing
19136 trash data, but since we must specifically ignore things
19137 we don't recognize, there is nothing else we should do at
0963b4bd 19138 this point. */
e2e0b3e5 19139 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19140 dwarf_tag_name (die->tag));
c906108c
SS
19141 break;
19142 }
df8a16a1 19143
e37fd15a
SW
19144 if (suppress_add)
19145 {
19146 sym->hash_next = objfile->template_symbols;
19147 objfile->template_symbols = sym;
19148 list_to_add = NULL;
19149 }
19150
19151 if (list_to_add != NULL)
19152 add_symbol_to_list (sym, list_to_add);
19153
df8a16a1
DJ
19154 /* For the benefit of old versions of GCC, check for anonymous
19155 namespaces based on the demangled name. */
4d4ec4e5 19156 if (!cu->processing_has_namespace_info
94af9270 19157 && cu->language == language_cplus)
a10964d1 19158 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19159 }
19160 return (sym);
19161}
19162
34eaf542
TT
19163/* A wrapper for new_symbol_full that always allocates a new symbol. */
19164
19165static struct symbol *
19166new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19167{
19168 return new_symbol_full (die, type, cu, NULL);
19169}
19170
98bfdba5
PA
19171/* Given an attr with a DW_FORM_dataN value in host byte order,
19172 zero-extend it as appropriate for the symbol's type. The DWARF
19173 standard (v4) is not entirely clear about the meaning of using
19174 DW_FORM_dataN for a constant with a signed type, where the type is
19175 wider than the data. The conclusion of a discussion on the DWARF
19176 list was that this is unspecified. We choose to always zero-extend
19177 because that is the interpretation long in use by GCC. */
c906108c 19178
98bfdba5 19179static gdb_byte *
ff39bb5e 19180dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19181 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19182{
e7c27a73 19183 struct objfile *objfile = cu->objfile;
e17a4113
UW
19184 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19185 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19186 LONGEST l = DW_UNSND (attr);
19187
19188 if (bits < sizeof (*value) * 8)
19189 {
19190 l &= ((LONGEST) 1 << bits) - 1;
19191 *value = l;
19192 }
19193 else if (bits == sizeof (*value) * 8)
19194 *value = l;
19195 else
19196 {
224c3ddb 19197 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19198 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19199 return bytes;
19200 }
19201
19202 return NULL;
19203}
19204
19205/* Read a constant value from an attribute. Either set *VALUE, or if
19206 the value does not fit in *VALUE, set *BYTES - either already
19207 allocated on the objfile obstack, or newly allocated on OBSTACK,
19208 or, set *BATON, if we translated the constant to a location
19209 expression. */
19210
19211static void
ff39bb5e 19212dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19213 const char *name, struct obstack *obstack,
19214 struct dwarf2_cu *cu,
d521ce57 19215 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19216 struct dwarf2_locexpr_baton **baton)
19217{
19218 struct objfile *objfile = cu->objfile;
19219 struct comp_unit_head *cu_header = &cu->header;
c906108c 19220 struct dwarf_block *blk;
98bfdba5
PA
19221 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19222 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19223
19224 *value = 0;
19225 *bytes = NULL;
19226 *baton = NULL;
c906108c
SS
19227
19228 switch (attr->form)
19229 {
19230 case DW_FORM_addr:
3019eac3 19231 case DW_FORM_GNU_addr_index:
ac56253d 19232 {
ac56253d
TT
19233 gdb_byte *data;
19234
98bfdba5
PA
19235 if (TYPE_LENGTH (type) != cu_header->addr_size)
19236 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19237 cu_header->addr_size,
98bfdba5 19238 TYPE_LENGTH (type));
ac56253d
TT
19239 /* Symbols of this form are reasonably rare, so we just
19240 piggyback on the existing location code rather than writing
19241 a new implementation of symbol_computed_ops. */
8d749320 19242 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19243 (*baton)->per_cu = cu->per_cu;
19244 gdb_assert ((*baton)->per_cu);
ac56253d 19245
98bfdba5 19246 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19247 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19248 (*baton)->data = data;
ac56253d
TT
19249
19250 data[0] = DW_OP_addr;
19251 store_unsigned_integer (&data[1], cu_header->addr_size,
19252 byte_order, DW_ADDR (attr));
19253 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19254 }
c906108c 19255 break;
4ac36638 19256 case DW_FORM_string:
93b5768b 19257 case DW_FORM_strp:
3019eac3 19258 case DW_FORM_GNU_str_index:
36586728 19259 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19260 /* DW_STRING is already allocated on the objfile obstack, point
19261 directly to it. */
d521ce57 19262 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19263 break;
c906108c
SS
19264 case DW_FORM_block1:
19265 case DW_FORM_block2:
19266 case DW_FORM_block4:
19267 case DW_FORM_block:
2dc7f7b3 19268 case DW_FORM_exprloc:
c906108c 19269 blk = DW_BLOCK (attr);
98bfdba5
PA
19270 if (TYPE_LENGTH (type) != blk->size)
19271 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19272 TYPE_LENGTH (type));
19273 *bytes = blk->data;
c906108c 19274 break;
2df3850c
JM
19275
19276 /* The DW_AT_const_value attributes are supposed to carry the
19277 symbol's value "represented as it would be on the target
19278 architecture." By the time we get here, it's already been
19279 converted to host endianness, so we just need to sign- or
19280 zero-extend it as appropriate. */
19281 case DW_FORM_data1:
3aef2284 19282 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19283 break;
c906108c 19284 case DW_FORM_data2:
3aef2284 19285 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19286 break;
c906108c 19287 case DW_FORM_data4:
3aef2284 19288 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19289 break;
c906108c 19290 case DW_FORM_data8:
3aef2284 19291 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19292 break;
19293
c906108c 19294 case DW_FORM_sdata:
98bfdba5 19295 *value = DW_SND (attr);
2df3850c
JM
19296 break;
19297
c906108c 19298 case DW_FORM_udata:
98bfdba5 19299 *value = DW_UNSND (attr);
c906108c 19300 break;
2df3850c 19301
c906108c 19302 default:
4d3c2250 19303 complaint (&symfile_complaints,
e2e0b3e5 19304 _("unsupported const value attribute form: '%s'"),
4d3c2250 19305 dwarf_form_name (attr->form));
98bfdba5 19306 *value = 0;
c906108c
SS
19307 break;
19308 }
19309}
19310
2df3850c 19311
98bfdba5
PA
19312/* Copy constant value from an attribute to a symbol. */
19313
2df3850c 19314static void
ff39bb5e 19315dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19316 struct dwarf2_cu *cu)
2df3850c 19317{
98bfdba5 19318 struct objfile *objfile = cu->objfile;
12df843f 19319 LONGEST value;
d521ce57 19320 const gdb_byte *bytes;
98bfdba5 19321 struct dwarf2_locexpr_baton *baton;
2df3850c 19322
98bfdba5
PA
19323 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19324 SYMBOL_PRINT_NAME (sym),
19325 &objfile->objfile_obstack, cu,
19326 &value, &bytes, &baton);
2df3850c 19327
98bfdba5
PA
19328 if (baton != NULL)
19329 {
98bfdba5 19330 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19331 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19332 }
19333 else if (bytes != NULL)
19334 {
19335 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19336 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19337 }
19338 else
19339 {
19340 SYMBOL_VALUE (sym) = value;
f1e6e072 19341 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19342 }
2df3850c
JM
19343}
19344
c906108c
SS
19345/* Return the type of the die in question using its DW_AT_type attribute. */
19346
19347static struct type *
e7c27a73 19348die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19349{
c906108c 19350 struct attribute *type_attr;
c906108c 19351
e142c38c 19352 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19353 if (!type_attr)
19354 {
19355 /* A missing DW_AT_type represents a void type. */
46bf5051 19356 return objfile_type (cu->objfile)->builtin_void;
c906108c 19357 }
348e048f 19358
673bfd45 19359 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19360}
19361
b4ba55a1
JB
19362/* True iff CU's producer generates GNAT Ada auxiliary information
19363 that allows to find parallel types through that information instead
19364 of having to do expensive parallel lookups by type name. */
19365
19366static int
19367need_gnat_info (struct dwarf2_cu *cu)
19368{
19369 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19370 of GNAT produces this auxiliary information, without any indication
19371 that it is produced. Part of enhancing the FSF version of GNAT
19372 to produce that information will be to put in place an indicator
19373 that we can use in order to determine whether the descriptive type
19374 info is available or not. One suggestion that has been made is
19375 to use a new attribute, attached to the CU die. For now, assume
19376 that the descriptive type info is not available. */
19377 return 0;
19378}
19379
b4ba55a1
JB
19380/* Return the auxiliary type of the die in question using its
19381 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19382 attribute is not present. */
19383
19384static struct type *
19385die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19386{
b4ba55a1 19387 struct attribute *type_attr;
b4ba55a1
JB
19388
19389 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19390 if (!type_attr)
19391 return NULL;
19392
673bfd45 19393 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19394}
19395
19396/* If DIE has a descriptive_type attribute, then set the TYPE's
19397 descriptive type accordingly. */
19398
19399static void
19400set_descriptive_type (struct type *type, struct die_info *die,
19401 struct dwarf2_cu *cu)
19402{
19403 struct type *descriptive_type = die_descriptive_type (die, cu);
19404
19405 if (descriptive_type)
19406 {
19407 ALLOCATE_GNAT_AUX_TYPE (type);
19408 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19409 }
19410}
19411
c906108c
SS
19412/* Return the containing type of the die in question using its
19413 DW_AT_containing_type attribute. */
19414
19415static struct type *
e7c27a73 19416die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19417{
c906108c 19418 struct attribute *type_attr;
c906108c 19419
e142c38c 19420 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19421 if (!type_attr)
19422 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19423 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19424
673bfd45 19425 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19426}
19427
ac9ec31b
DE
19428/* Return an error marker type to use for the ill formed type in DIE/CU. */
19429
19430static struct type *
19431build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19432{
19433 struct objfile *objfile = dwarf2_per_objfile->objfile;
19434 char *message, *saved;
19435
19436 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19437 objfile_name (objfile),
ac9ec31b
DE
19438 cu->header.offset.sect_off,
19439 die->offset.sect_off);
224c3ddb
SM
19440 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19441 message, strlen (message));
ac9ec31b
DE
19442 xfree (message);
19443
19f392bc 19444 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19445}
19446
673bfd45 19447/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19448 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19449 DW_AT_containing_type.
673bfd45
DE
19450 If there is no type substitute an error marker. */
19451
c906108c 19452static struct type *
ff39bb5e 19453lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19454 struct dwarf2_cu *cu)
c906108c 19455{
bb5ed363 19456 struct objfile *objfile = cu->objfile;
f792889a
DJ
19457 struct type *this_type;
19458
ac9ec31b
DE
19459 gdb_assert (attr->name == DW_AT_type
19460 || attr->name == DW_AT_GNAT_descriptive_type
19461 || attr->name == DW_AT_containing_type);
19462
673bfd45
DE
19463 /* First see if we have it cached. */
19464
36586728
TT
19465 if (attr->form == DW_FORM_GNU_ref_alt)
19466 {
19467 struct dwarf2_per_cu_data *per_cu;
19468 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19469
19470 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19471 this_type = get_die_type_at_offset (offset, per_cu);
19472 }
7771576e 19473 else if (attr_form_is_ref (attr))
673bfd45 19474 {
b64f50a1 19475 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19476
19477 this_type = get_die_type_at_offset (offset, cu->per_cu);
19478 }
55f1336d 19479 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19480 {
ac9ec31b 19481 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19482
ac9ec31b 19483 return get_signatured_type (die, signature, cu);
673bfd45
DE
19484 }
19485 else
19486 {
ac9ec31b
DE
19487 complaint (&symfile_complaints,
19488 _("Dwarf Error: Bad type attribute %s in DIE"
19489 " at 0x%x [in module %s]"),
19490 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19491 objfile_name (objfile));
ac9ec31b 19492 return build_error_marker_type (cu, die);
673bfd45
DE
19493 }
19494
19495 /* If not cached we need to read it in. */
19496
19497 if (this_type == NULL)
19498 {
ac9ec31b 19499 struct die_info *type_die = NULL;
673bfd45
DE
19500 struct dwarf2_cu *type_cu = cu;
19501
7771576e 19502 if (attr_form_is_ref (attr))
ac9ec31b
DE
19503 type_die = follow_die_ref (die, attr, &type_cu);
19504 if (type_die == NULL)
19505 return build_error_marker_type (cu, die);
19506 /* If we find the type now, it's probably because the type came
3019eac3
DE
19507 from an inter-CU reference and the type's CU got expanded before
19508 ours. */
ac9ec31b 19509 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19510 }
19511
19512 /* If we still don't have a type use an error marker. */
19513
19514 if (this_type == NULL)
ac9ec31b 19515 return build_error_marker_type (cu, die);
673bfd45 19516
f792889a 19517 return this_type;
c906108c
SS
19518}
19519
673bfd45
DE
19520/* Return the type in DIE, CU.
19521 Returns NULL for invalid types.
19522
02142a6c 19523 This first does a lookup in die_type_hash,
673bfd45
DE
19524 and only reads the die in if necessary.
19525
19526 NOTE: This can be called when reading in partial or full symbols. */
19527
f792889a 19528static struct type *
e7c27a73 19529read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19530{
f792889a
DJ
19531 struct type *this_type;
19532
19533 this_type = get_die_type (die, cu);
19534 if (this_type)
19535 return this_type;
19536
673bfd45
DE
19537 return read_type_die_1 (die, cu);
19538}
19539
19540/* Read the type in DIE, CU.
19541 Returns NULL for invalid types. */
19542
19543static struct type *
19544read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19545{
19546 struct type *this_type = NULL;
19547
c906108c
SS
19548 switch (die->tag)
19549 {
19550 case DW_TAG_class_type:
680b30c7 19551 case DW_TAG_interface_type:
c906108c
SS
19552 case DW_TAG_structure_type:
19553 case DW_TAG_union_type:
f792889a 19554 this_type = read_structure_type (die, cu);
c906108c
SS
19555 break;
19556 case DW_TAG_enumeration_type:
f792889a 19557 this_type = read_enumeration_type (die, cu);
c906108c
SS
19558 break;
19559 case DW_TAG_subprogram:
19560 case DW_TAG_subroutine_type:
edb3359d 19561 case DW_TAG_inlined_subroutine:
f792889a 19562 this_type = read_subroutine_type (die, cu);
c906108c
SS
19563 break;
19564 case DW_TAG_array_type:
f792889a 19565 this_type = read_array_type (die, cu);
c906108c 19566 break;
72019c9c 19567 case DW_TAG_set_type:
f792889a 19568 this_type = read_set_type (die, cu);
72019c9c 19569 break;
c906108c 19570 case DW_TAG_pointer_type:
f792889a 19571 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19572 break;
19573 case DW_TAG_ptr_to_member_type:
f792889a 19574 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19575 break;
19576 case DW_TAG_reference_type:
f792889a 19577 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19578 break;
19579 case DW_TAG_const_type:
f792889a 19580 this_type = read_tag_const_type (die, cu);
c906108c
SS
19581 break;
19582 case DW_TAG_volatile_type:
f792889a 19583 this_type = read_tag_volatile_type (die, cu);
c906108c 19584 break;
06d66ee9
TT
19585 case DW_TAG_restrict_type:
19586 this_type = read_tag_restrict_type (die, cu);
19587 break;
c906108c 19588 case DW_TAG_string_type:
f792889a 19589 this_type = read_tag_string_type (die, cu);
c906108c
SS
19590 break;
19591 case DW_TAG_typedef:
f792889a 19592 this_type = read_typedef (die, cu);
c906108c 19593 break;
a02abb62 19594 case DW_TAG_subrange_type:
f792889a 19595 this_type = read_subrange_type (die, cu);
a02abb62 19596 break;
c906108c 19597 case DW_TAG_base_type:
f792889a 19598 this_type = read_base_type (die, cu);
c906108c 19599 break;
81a17f79 19600 case DW_TAG_unspecified_type:
f792889a 19601 this_type = read_unspecified_type (die, cu);
81a17f79 19602 break;
0114d602
DJ
19603 case DW_TAG_namespace:
19604 this_type = read_namespace_type (die, cu);
19605 break;
f55ee35c
JK
19606 case DW_TAG_module:
19607 this_type = read_module_type (die, cu);
19608 break;
a2c2acaf
MW
19609 case DW_TAG_atomic_type:
19610 this_type = read_tag_atomic_type (die, cu);
19611 break;
c906108c 19612 default:
3e43a32a
MS
19613 complaint (&symfile_complaints,
19614 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19615 dwarf_tag_name (die->tag));
c906108c
SS
19616 break;
19617 }
63d06c5c 19618
f792889a 19619 return this_type;
63d06c5c
DC
19620}
19621
abc72ce4
DE
19622/* See if we can figure out if the class lives in a namespace. We do
19623 this by looking for a member function; its demangled name will
19624 contain namespace info, if there is any.
19625 Return the computed name or NULL.
19626 Space for the result is allocated on the objfile's obstack.
19627 This is the full-die version of guess_partial_die_structure_name.
19628 In this case we know DIE has no useful parent. */
19629
19630static char *
19631guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19632{
19633 struct die_info *spec_die;
19634 struct dwarf2_cu *spec_cu;
19635 struct die_info *child;
19636
19637 spec_cu = cu;
19638 spec_die = die_specification (die, &spec_cu);
19639 if (spec_die != NULL)
19640 {
19641 die = spec_die;
19642 cu = spec_cu;
19643 }
19644
19645 for (child = die->child;
19646 child != NULL;
19647 child = child->sibling)
19648 {
19649 if (child->tag == DW_TAG_subprogram)
19650 {
7d45c7c3 19651 const char *linkage_name;
abc72ce4 19652
7d45c7c3
KB
19653 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19654 if (linkage_name == NULL)
19655 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19656 cu);
19657 if (linkage_name != NULL)
abc72ce4
DE
19658 {
19659 char *actual_name
19660 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19661 linkage_name);
abc72ce4
DE
19662 char *name = NULL;
19663
19664 if (actual_name != NULL)
19665 {
15d034d0 19666 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19667
19668 if (die_name != NULL
19669 && strcmp (die_name, actual_name) != 0)
19670 {
19671 /* Strip off the class name from the full name.
19672 We want the prefix. */
19673 int die_name_len = strlen (die_name);
19674 int actual_name_len = strlen (actual_name);
19675
19676 /* Test for '::' as a sanity check. */
19677 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19678 && actual_name[actual_name_len
19679 - die_name_len - 1] == ':')
224c3ddb
SM
19680 name = (char *) obstack_copy0 (
19681 &cu->objfile->per_bfd->storage_obstack,
19682 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19683 }
19684 }
19685 xfree (actual_name);
19686 return name;
19687 }
19688 }
19689 }
19690
19691 return NULL;
19692}
19693
96408a79
SA
19694/* GCC might emit a nameless typedef that has a linkage name. Determine the
19695 prefix part in such case. See
19696 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19697
19698static char *
19699anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19700{
19701 struct attribute *attr;
e6a959d6 19702 const char *base;
96408a79
SA
19703
19704 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19705 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19706 return NULL;
19707
7d45c7c3 19708 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19709 return NULL;
19710
19711 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19712 if (attr == NULL)
19713 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19714 if (attr == NULL || DW_STRING (attr) == NULL)
19715 return NULL;
19716
19717 /* dwarf2_name had to be already called. */
19718 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19719
19720 /* Strip the base name, keep any leading namespaces/classes. */
19721 base = strrchr (DW_STRING (attr), ':');
19722 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19723 return "";
19724
224c3ddb
SM
19725 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19726 DW_STRING (attr),
19727 &base[-1] - DW_STRING (attr));
96408a79
SA
19728}
19729
fdde2d81 19730/* Return the name of the namespace/class that DIE is defined within,
0114d602 19731 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19732
0114d602
DJ
19733 For example, if we're within the method foo() in the following
19734 code:
19735
19736 namespace N {
19737 class C {
19738 void foo () {
19739 }
19740 };
19741 }
19742
19743 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19744
0d5cff50 19745static const char *
e142c38c 19746determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19747{
0114d602
DJ
19748 struct die_info *parent, *spec_die;
19749 struct dwarf2_cu *spec_cu;
19750 struct type *parent_type;
96408a79 19751 char *retval;
63d06c5c 19752
9c37b5ae 19753 if (cu->language != language_cplus
c44af4eb
TT
19754 && cu->language != language_fortran && cu->language != language_d
19755 && cu->language != language_rust)
0114d602
DJ
19756 return "";
19757
96408a79
SA
19758 retval = anonymous_struct_prefix (die, cu);
19759 if (retval)
19760 return retval;
19761
0114d602
DJ
19762 /* We have to be careful in the presence of DW_AT_specification.
19763 For example, with GCC 3.4, given the code
19764
19765 namespace N {
19766 void foo() {
19767 // Definition of N::foo.
19768 }
19769 }
19770
19771 then we'll have a tree of DIEs like this:
19772
19773 1: DW_TAG_compile_unit
19774 2: DW_TAG_namespace // N
19775 3: DW_TAG_subprogram // declaration of N::foo
19776 4: DW_TAG_subprogram // definition of N::foo
19777 DW_AT_specification // refers to die #3
19778
19779 Thus, when processing die #4, we have to pretend that we're in
19780 the context of its DW_AT_specification, namely the contex of die
19781 #3. */
19782 spec_cu = cu;
19783 spec_die = die_specification (die, &spec_cu);
19784 if (spec_die == NULL)
19785 parent = die->parent;
19786 else
63d06c5c 19787 {
0114d602
DJ
19788 parent = spec_die->parent;
19789 cu = spec_cu;
63d06c5c 19790 }
0114d602
DJ
19791
19792 if (parent == NULL)
19793 return "";
98bfdba5
PA
19794 else if (parent->building_fullname)
19795 {
19796 const char *name;
19797 const char *parent_name;
19798
19799 /* It has been seen on RealView 2.2 built binaries,
19800 DW_TAG_template_type_param types actually _defined_ as
19801 children of the parent class:
19802
19803 enum E {};
19804 template class <class Enum> Class{};
19805 Class<enum E> class_e;
19806
19807 1: DW_TAG_class_type (Class)
19808 2: DW_TAG_enumeration_type (E)
19809 3: DW_TAG_enumerator (enum1:0)
19810 3: DW_TAG_enumerator (enum2:1)
19811 ...
19812 2: DW_TAG_template_type_param
19813 DW_AT_type DW_FORM_ref_udata (E)
19814
19815 Besides being broken debug info, it can put GDB into an
19816 infinite loop. Consider:
19817
19818 When we're building the full name for Class<E>, we'll start
19819 at Class, and go look over its template type parameters,
19820 finding E. We'll then try to build the full name of E, and
19821 reach here. We're now trying to build the full name of E,
19822 and look over the parent DIE for containing scope. In the
19823 broken case, if we followed the parent DIE of E, we'd again
19824 find Class, and once again go look at its template type
19825 arguments, etc., etc. Simply don't consider such parent die
19826 as source-level parent of this die (it can't be, the language
19827 doesn't allow it), and break the loop here. */
19828 name = dwarf2_name (die, cu);
19829 parent_name = dwarf2_name (parent, cu);
19830 complaint (&symfile_complaints,
19831 _("template param type '%s' defined within parent '%s'"),
19832 name ? name : "<unknown>",
19833 parent_name ? parent_name : "<unknown>");
19834 return "";
19835 }
63d06c5c 19836 else
0114d602
DJ
19837 switch (parent->tag)
19838 {
63d06c5c 19839 case DW_TAG_namespace:
0114d602 19840 parent_type = read_type_die (parent, cu);
acebe513
UW
19841 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19842 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19843 Work around this problem here. */
19844 if (cu->language == language_cplus
19845 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19846 return "";
0114d602
DJ
19847 /* We give a name to even anonymous namespaces. */
19848 return TYPE_TAG_NAME (parent_type);
63d06c5c 19849 case DW_TAG_class_type:
680b30c7 19850 case DW_TAG_interface_type:
63d06c5c 19851 case DW_TAG_structure_type:
0114d602 19852 case DW_TAG_union_type:
f55ee35c 19853 case DW_TAG_module:
0114d602
DJ
19854 parent_type = read_type_die (parent, cu);
19855 if (TYPE_TAG_NAME (parent_type) != NULL)
19856 return TYPE_TAG_NAME (parent_type);
19857 else
19858 /* An anonymous structure is only allowed non-static data
19859 members; no typedefs, no member functions, et cetera.
19860 So it does not need a prefix. */
19861 return "";
abc72ce4 19862 case DW_TAG_compile_unit:
95554aad 19863 case DW_TAG_partial_unit:
abc72ce4
DE
19864 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19865 if (cu->language == language_cplus
8b70b953 19866 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19867 && die->child != NULL
19868 && (die->tag == DW_TAG_class_type
19869 || die->tag == DW_TAG_structure_type
19870 || die->tag == DW_TAG_union_type))
19871 {
19872 char *name = guess_full_die_structure_name (die, cu);
19873 if (name != NULL)
19874 return name;
19875 }
19876 return "";
3d567982
TT
19877 case DW_TAG_enumeration_type:
19878 parent_type = read_type_die (parent, cu);
19879 if (TYPE_DECLARED_CLASS (parent_type))
19880 {
19881 if (TYPE_TAG_NAME (parent_type) != NULL)
19882 return TYPE_TAG_NAME (parent_type);
19883 return "";
19884 }
19885 /* Fall through. */
63d06c5c 19886 default:
8176b9b8 19887 return determine_prefix (parent, cu);
63d06c5c 19888 }
63d06c5c
DC
19889}
19890
3e43a32a
MS
19891/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19892 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19893 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19894 an obconcat, otherwise allocate storage for the result. The CU argument is
19895 used to determine the language and hence, the appropriate separator. */
987504bb 19896
f55ee35c 19897#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19898
19899static char *
f55ee35c
JK
19900typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19901 int physname, struct dwarf2_cu *cu)
63d06c5c 19902{
f55ee35c 19903 const char *lead = "";
5c315b68 19904 const char *sep;
63d06c5c 19905
3e43a32a
MS
19906 if (suffix == NULL || suffix[0] == '\0'
19907 || prefix == NULL || prefix[0] == '\0')
987504bb 19908 sep = "";
45280282
IB
19909 else if (cu->language == language_d)
19910 {
19911 /* For D, the 'main' function could be defined in any module, but it
19912 should never be prefixed. */
19913 if (strcmp (suffix, "D main") == 0)
19914 {
19915 prefix = "";
19916 sep = "";
19917 }
19918 else
19919 sep = ".";
19920 }
f55ee35c
JK
19921 else if (cu->language == language_fortran && physname)
19922 {
19923 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19924 DW_AT_MIPS_linkage_name is preferred and used instead. */
19925
19926 lead = "__";
19927 sep = "_MOD_";
19928 }
987504bb
JJ
19929 else
19930 sep = "::";
63d06c5c 19931
6dd47d34
DE
19932 if (prefix == NULL)
19933 prefix = "";
19934 if (suffix == NULL)
19935 suffix = "";
19936
987504bb
JJ
19937 if (obs == NULL)
19938 {
3e43a32a 19939 char *retval
224c3ddb
SM
19940 = ((char *)
19941 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19942
f55ee35c
JK
19943 strcpy (retval, lead);
19944 strcat (retval, prefix);
6dd47d34
DE
19945 strcat (retval, sep);
19946 strcat (retval, suffix);
63d06c5c
DC
19947 return retval;
19948 }
987504bb
JJ
19949 else
19950 {
19951 /* We have an obstack. */
f55ee35c 19952 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19953 }
63d06c5c
DC
19954}
19955
c906108c
SS
19956/* Return sibling of die, NULL if no sibling. */
19957
f9aca02d 19958static struct die_info *
fba45db2 19959sibling_die (struct die_info *die)
c906108c 19960{
639d11d3 19961 return die->sibling;
c906108c
SS
19962}
19963
71c25dea
TT
19964/* Get name of a die, return NULL if not found. */
19965
15d034d0
TT
19966static const char *
19967dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19968 struct obstack *obstack)
19969{
19970 if (name && cu->language == language_cplus)
19971 {
2f408ecb 19972 std::string canon_name = cp_canonicalize_string (name);
71c25dea 19973
2f408ecb 19974 if (!canon_name.empty ())
71c25dea 19975 {
2f408ecb
PA
19976 if (canon_name != name)
19977 name = (const char *) obstack_copy0 (obstack,
19978 canon_name.c_str (),
19979 canon_name.length ());
71c25dea
TT
19980 }
19981 }
19982
19983 return name;
c906108c
SS
19984}
19985
96553a0c
DE
19986/* Get name of a die, return NULL if not found.
19987 Anonymous namespaces are converted to their magic string. */
9219021c 19988
15d034d0 19989static const char *
e142c38c 19990dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19991{
19992 struct attribute *attr;
19993
e142c38c 19994 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19995 if ((!attr || !DW_STRING (attr))
96553a0c 19996 && die->tag != DW_TAG_namespace
53832f31
TT
19997 && die->tag != DW_TAG_class_type
19998 && die->tag != DW_TAG_interface_type
19999 && die->tag != DW_TAG_structure_type
20000 && die->tag != DW_TAG_union_type)
71c25dea
TT
20001 return NULL;
20002
20003 switch (die->tag)
20004 {
20005 case DW_TAG_compile_unit:
95554aad 20006 case DW_TAG_partial_unit:
71c25dea
TT
20007 /* Compilation units have a DW_AT_name that is a filename, not
20008 a source language identifier. */
20009 case DW_TAG_enumeration_type:
20010 case DW_TAG_enumerator:
20011 /* These tags always have simple identifiers already; no need
20012 to canonicalize them. */
20013 return DW_STRING (attr);
907af001 20014
96553a0c
DE
20015 case DW_TAG_namespace:
20016 if (attr != NULL && DW_STRING (attr) != NULL)
20017 return DW_STRING (attr);
20018 return CP_ANONYMOUS_NAMESPACE_STR;
20019
907af001
UW
20020 case DW_TAG_class_type:
20021 case DW_TAG_interface_type:
20022 case DW_TAG_structure_type:
20023 case DW_TAG_union_type:
20024 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20025 structures or unions. These were of the form "._%d" in GCC 4.1,
20026 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20027 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20028 if (attr && DW_STRING (attr)
61012eef
GB
20029 && (startswith (DW_STRING (attr), "._")
20030 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20031 return NULL;
53832f31
TT
20032
20033 /* GCC might emit a nameless typedef that has a linkage name. See
20034 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20035 if (!attr || DW_STRING (attr) == NULL)
20036 {
df5c6c50 20037 char *demangled = NULL;
53832f31
TT
20038
20039 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20040 if (attr == NULL)
20041 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20042
20043 if (attr == NULL || DW_STRING (attr) == NULL)
20044 return NULL;
20045
df5c6c50
JK
20046 /* Avoid demangling DW_STRING (attr) the second time on a second
20047 call for the same DIE. */
20048 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20049 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20050
20051 if (demangled)
20052 {
e6a959d6 20053 const char *base;
96408a79 20054
53832f31 20055 /* FIXME: we already did this for the partial symbol... */
34a68019 20056 DW_STRING (attr)
224c3ddb
SM
20057 = ((const char *)
20058 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20059 demangled, strlen (demangled)));
53832f31
TT
20060 DW_STRING_IS_CANONICAL (attr) = 1;
20061 xfree (demangled);
96408a79
SA
20062
20063 /* Strip any leading namespaces/classes, keep only the base name.
20064 DW_AT_name for named DIEs does not contain the prefixes. */
20065 base = strrchr (DW_STRING (attr), ':');
20066 if (base && base > DW_STRING (attr) && base[-1] == ':')
20067 return &base[1];
20068 else
20069 return DW_STRING (attr);
53832f31
TT
20070 }
20071 }
907af001
UW
20072 break;
20073
71c25dea 20074 default:
907af001
UW
20075 break;
20076 }
20077
20078 if (!DW_STRING_IS_CANONICAL (attr))
20079 {
20080 DW_STRING (attr)
20081 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20082 &cu->objfile->per_bfd->storage_obstack);
907af001 20083 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20084 }
907af001 20085 return DW_STRING (attr);
9219021c
DC
20086}
20087
20088/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20089 is none. *EXT_CU is the CU containing DIE on input, and the CU
20090 containing the return value on output. */
9219021c
DC
20091
20092static struct die_info *
f2f0e013 20093dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20094{
20095 struct attribute *attr;
9219021c 20096
f2f0e013 20097 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20098 if (attr == NULL)
20099 return NULL;
20100
f2f0e013 20101 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20102}
20103
c906108c
SS
20104/* Convert a DIE tag into its string name. */
20105
f39c6ffd 20106static const char *
aa1ee363 20107dwarf_tag_name (unsigned tag)
c906108c 20108{
f39c6ffd
TT
20109 const char *name = get_DW_TAG_name (tag);
20110
20111 if (name == NULL)
20112 return "DW_TAG_<unknown>";
20113
20114 return name;
c906108c
SS
20115}
20116
20117/* Convert a DWARF attribute code into its string name. */
20118
f39c6ffd 20119static const char *
aa1ee363 20120dwarf_attr_name (unsigned attr)
c906108c 20121{
f39c6ffd
TT
20122 const char *name;
20123
c764a876 20124#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20125 if (attr == DW_AT_MIPS_fde)
20126 return "DW_AT_MIPS_fde";
20127#else
20128 if (attr == DW_AT_HP_block_index)
20129 return "DW_AT_HP_block_index";
c764a876 20130#endif
f39c6ffd
TT
20131
20132 name = get_DW_AT_name (attr);
20133
20134 if (name == NULL)
20135 return "DW_AT_<unknown>";
20136
20137 return name;
c906108c
SS
20138}
20139
20140/* Convert a DWARF value form code into its string name. */
20141
f39c6ffd 20142static const char *
aa1ee363 20143dwarf_form_name (unsigned form)
c906108c 20144{
f39c6ffd
TT
20145 const char *name = get_DW_FORM_name (form);
20146
20147 if (name == NULL)
20148 return "DW_FORM_<unknown>";
20149
20150 return name;
c906108c
SS
20151}
20152
20153static char *
fba45db2 20154dwarf_bool_name (unsigned mybool)
c906108c
SS
20155{
20156 if (mybool)
20157 return "TRUE";
20158 else
20159 return "FALSE";
20160}
20161
20162/* Convert a DWARF type code into its string name. */
20163
f39c6ffd 20164static const char *
aa1ee363 20165dwarf_type_encoding_name (unsigned enc)
c906108c 20166{
f39c6ffd 20167 const char *name = get_DW_ATE_name (enc);
c906108c 20168
f39c6ffd
TT
20169 if (name == NULL)
20170 return "DW_ATE_<unknown>";
c906108c 20171
f39c6ffd 20172 return name;
c906108c 20173}
c906108c 20174
f9aca02d 20175static void
d97bc12b 20176dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20177{
20178 unsigned int i;
20179
d97bc12b
DE
20180 print_spaces (indent, f);
20181 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 20182 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
20183
20184 if (die->parent != NULL)
20185 {
20186 print_spaces (indent, f);
20187 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 20188 die->parent->offset.sect_off);
d97bc12b
DE
20189 }
20190
20191 print_spaces (indent, f);
20192 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20193 dwarf_bool_name (die->child != NULL));
c906108c 20194
d97bc12b
DE
20195 print_spaces (indent, f);
20196 fprintf_unfiltered (f, " attributes:\n");
20197
c906108c
SS
20198 for (i = 0; i < die->num_attrs; ++i)
20199 {
d97bc12b
DE
20200 print_spaces (indent, f);
20201 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20202 dwarf_attr_name (die->attrs[i].name),
20203 dwarf_form_name (die->attrs[i].form));
d97bc12b 20204
c906108c
SS
20205 switch (die->attrs[i].form)
20206 {
c906108c 20207 case DW_FORM_addr:
3019eac3 20208 case DW_FORM_GNU_addr_index:
d97bc12b 20209 fprintf_unfiltered (f, "address: ");
5af949e3 20210 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20211 break;
20212 case DW_FORM_block2:
20213 case DW_FORM_block4:
20214 case DW_FORM_block:
20215 case DW_FORM_block1:
56eb65bd
SP
20216 fprintf_unfiltered (f, "block: size %s",
20217 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20218 break;
2dc7f7b3 20219 case DW_FORM_exprloc:
56eb65bd
SP
20220 fprintf_unfiltered (f, "expression: size %s",
20221 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20222 break;
4568ecf9
DE
20223 case DW_FORM_ref_addr:
20224 fprintf_unfiltered (f, "ref address: ");
20225 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20226 break;
36586728
TT
20227 case DW_FORM_GNU_ref_alt:
20228 fprintf_unfiltered (f, "alt ref address: ");
20229 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20230 break;
10b3939b
DJ
20231 case DW_FORM_ref1:
20232 case DW_FORM_ref2:
20233 case DW_FORM_ref4:
4568ecf9
DE
20234 case DW_FORM_ref8:
20235 case DW_FORM_ref_udata:
d97bc12b 20236 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20237 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20238 break;
c906108c
SS
20239 case DW_FORM_data1:
20240 case DW_FORM_data2:
20241 case DW_FORM_data4:
ce5d95e1 20242 case DW_FORM_data8:
c906108c
SS
20243 case DW_FORM_udata:
20244 case DW_FORM_sdata:
43bbcdc2
PH
20245 fprintf_unfiltered (f, "constant: %s",
20246 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20247 break;
2dc7f7b3
TT
20248 case DW_FORM_sec_offset:
20249 fprintf_unfiltered (f, "section offset: %s",
20250 pulongest (DW_UNSND (&die->attrs[i])));
20251 break;
55f1336d 20252 case DW_FORM_ref_sig8:
ac9ec31b
DE
20253 fprintf_unfiltered (f, "signature: %s",
20254 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20255 break;
c906108c 20256 case DW_FORM_string:
4bdf3d34 20257 case DW_FORM_strp:
43988095 20258 case DW_FORM_line_strp:
3019eac3 20259 case DW_FORM_GNU_str_index:
36586728 20260 case DW_FORM_GNU_strp_alt:
8285870a 20261 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20262 DW_STRING (&die->attrs[i])
8285870a
JK
20263 ? DW_STRING (&die->attrs[i]) : "",
20264 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20265 break;
20266 case DW_FORM_flag:
20267 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20268 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20269 else
d97bc12b 20270 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20271 break;
2dc7f7b3
TT
20272 case DW_FORM_flag_present:
20273 fprintf_unfiltered (f, "flag: TRUE");
20274 break;
a8329558 20275 case DW_FORM_indirect:
0963b4bd
MS
20276 /* The reader will have reduced the indirect form to
20277 the "base form" so this form should not occur. */
3e43a32a
MS
20278 fprintf_unfiltered (f,
20279 "unexpected attribute form: DW_FORM_indirect");
a8329558 20280 break;
c906108c 20281 default:
d97bc12b 20282 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20283 die->attrs[i].form);
d97bc12b 20284 break;
c906108c 20285 }
d97bc12b 20286 fprintf_unfiltered (f, "\n");
c906108c
SS
20287 }
20288}
20289
f9aca02d 20290static void
d97bc12b 20291dump_die_for_error (struct die_info *die)
c906108c 20292{
d97bc12b
DE
20293 dump_die_shallow (gdb_stderr, 0, die);
20294}
20295
20296static void
20297dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20298{
20299 int indent = level * 4;
20300
20301 gdb_assert (die != NULL);
20302
20303 if (level >= max_level)
20304 return;
20305
20306 dump_die_shallow (f, indent, die);
20307
20308 if (die->child != NULL)
c906108c 20309 {
d97bc12b
DE
20310 print_spaces (indent, f);
20311 fprintf_unfiltered (f, " Children:");
20312 if (level + 1 < max_level)
20313 {
20314 fprintf_unfiltered (f, "\n");
20315 dump_die_1 (f, level + 1, max_level, die->child);
20316 }
20317 else
20318 {
3e43a32a
MS
20319 fprintf_unfiltered (f,
20320 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20321 }
20322 }
20323
20324 if (die->sibling != NULL && level > 0)
20325 {
20326 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20327 }
20328}
20329
d97bc12b
DE
20330/* This is called from the pdie macro in gdbinit.in.
20331 It's not static so gcc will keep a copy callable from gdb. */
20332
20333void
20334dump_die (struct die_info *die, int max_level)
20335{
20336 dump_die_1 (gdb_stdlog, 0, max_level, die);
20337}
20338
f9aca02d 20339static void
51545339 20340store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20341{
51545339 20342 void **slot;
c906108c 20343
b64f50a1
JK
20344 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
20345 INSERT);
51545339
DJ
20346
20347 *slot = die;
c906108c
SS
20348}
20349
b64f50a1
JK
20350/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20351 required kind. */
20352
20353static sect_offset
ff39bb5e 20354dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20355{
4568ecf9 20356 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 20357
7771576e 20358 if (attr_form_is_ref (attr))
b64f50a1 20359 return retval;
93311388 20360
b64f50a1 20361 retval.sect_off = 0;
93311388
DE
20362 complaint (&symfile_complaints,
20363 _("unsupported die ref attribute form: '%s'"),
20364 dwarf_form_name (attr->form));
b64f50a1 20365 return retval;
c906108c
SS
20366}
20367
43bbcdc2
PH
20368/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20369 * the value held by the attribute is not constant. */
a02abb62 20370
43bbcdc2 20371static LONGEST
ff39bb5e 20372dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
20373{
20374 if (attr->form == DW_FORM_sdata)
20375 return DW_SND (attr);
20376 else if (attr->form == DW_FORM_udata
20377 || attr->form == DW_FORM_data1
20378 || attr->form == DW_FORM_data2
20379 || attr->form == DW_FORM_data4
20380 || attr->form == DW_FORM_data8)
20381 return DW_UNSND (attr);
20382 else
20383 {
3e43a32a
MS
20384 complaint (&symfile_complaints,
20385 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20386 dwarf_form_name (attr->form));
20387 return default_value;
20388 }
20389}
20390
348e048f
DE
20391/* Follow reference or signature attribute ATTR of SRC_DIE.
20392 On entry *REF_CU is the CU of SRC_DIE.
20393 On exit *REF_CU is the CU of the result. */
20394
20395static struct die_info *
ff39bb5e 20396follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20397 struct dwarf2_cu **ref_cu)
20398{
20399 struct die_info *die;
20400
7771576e 20401 if (attr_form_is_ref (attr))
348e048f 20402 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20403 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20404 die = follow_die_sig (src_die, attr, ref_cu);
20405 else
20406 {
20407 dump_die_for_error (src_die);
20408 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20409 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20410 }
20411
20412 return die;
03dd20cc
DJ
20413}
20414
5c631832 20415/* Follow reference OFFSET.
673bfd45
DE
20416 On entry *REF_CU is the CU of the source die referencing OFFSET.
20417 On exit *REF_CU is the CU of the result.
20418 Returns NULL if OFFSET is invalid. */
f504f079 20419
f9aca02d 20420static struct die_info *
36586728
TT
20421follow_die_offset (sect_offset offset, int offset_in_dwz,
20422 struct dwarf2_cu **ref_cu)
c906108c 20423{
10b3939b 20424 struct die_info temp_die;
f2f0e013 20425 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20426
348e048f
DE
20427 gdb_assert (cu->per_cu != NULL);
20428
98bfdba5
PA
20429 target_cu = cu;
20430
3019eac3 20431 if (cu->per_cu->is_debug_types)
348e048f
DE
20432 {
20433 /* .debug_types CUs cannot reference anything outside their CU.
20434 If they need to, they have to reference a signatured type via
55f1336d 20435 DW_FORM_ref_sig8. */
348e048f 20436 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20437 return NULL;
348e048f 20438 }
36586728
TT
20439 else if (offset_in_dwz != cu->per_cu->is_dwz
20440 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20441 {
20442 struct dwarf2_per_cu_data *per_cu;
9a619af0 20443
36586728
TT
20444 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20445 cu->objfile);
03dd20cc
DJ
20446
20447 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20448 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20449 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20450
10b3939b
DJ
20451 target_cu = per_cu->cu;
20452 }
98bfdba5
PA
20453 else if (cu->dies == NULL)
20454 {
20455 /* We're loading full DIEs during partial symbol reading. */
20456 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20457 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20458 }
c906108c 20459
f2f0e013 20460 *ref_cu = target_cu;
51545339 20461 temp_die.offset = offset;
9a3c8263
SM
20462 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20463 &temp_die, offset.sect_off);
5c631832 20464}
10b3939b 20465
5c631832
JK
20466/* Follow reference attribute ATTR of SRC_DIE.
20467 On entry *REF_CU is the CU of SRC_DIE.
20468 On exit *REF_CU is the CU of the result. */
20469
20470static struct die_info *
ff39bb5e 20471follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20472 struct dwarf2_cu **ref_cu)
20473{
b64f50a1 20474 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20475 struct dwarf2_cu *cu = *ref_cu;
20476 struct die_info *die;
20477
36586728
TT
20478 die = follow_die_offset (offset,
20479 (attr->form == DW_FORM_GNU_ref_alt
20480 || cu->per_cu->is_dwz),
20481 ref_cu);
5c631832
JK
20482 if (!die)
20483 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20484 "at 0x%x [in module %s]"),
4262abfb
JK
20485 offset.sect_off, src_die->offset.sect_off,
20486 objfile_name (cu->objfile));
348e048f 20487
5c631832
JK
20488 return die;
20489}
20490
d83e736b
JK
20491/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20492 Returned value is intended for DW_OP_call*. Returned
20493 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20494
20495struct dwarf2_locexpr_baton
8b9737bf
TT
20496dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20497 struct dwarf2_per_cu_data *per_cu,
20498 CORE_ADDR (*get_frame_pc) (void *baton),
20499 void *baton)
5c631832 20500{
918dd910 20501 struct dwarf2_cu *cu;
5c631832
JK
20502 struct die_info *die;
20503 struct attribute *attr;
20504 struct dwarf2_locexpr_baton retval;
20505
8cf6f0b1
TT
20506 dw2_setup (per_cu->objfile);
20507
918dd910
JK
20508 if (per_cu->cu == NULL)
20509 load_cu (per_cu);
20510 cu = per_cu->cu;
cc12ce38
DE
20511 if (cu == NULL)
20512 {
20513 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20514 Instead just throw an error, not much else we can do. */
20515 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20516 offset.sect_off, objfile_name (per_cu->objfile));
20517 }
918dd910 20518
36586728 20519 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20520 if (!die)
20521 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20522 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20523
20524 attr = dwarf2_attr (die, DW_AT_location, cu);
20525 if (!attr)
20526 {
e103e986
JK
20527 /* DWARF: "If there is no such attribute, then there is no effect.".
20528 DATA is ignored if SIZE is 0. */
5c631832 20529
e103e986 20530 retval.data = NULL;
5c631832
JK
20531 retval.size = 0;
20532 }
8cf6f0b1
TT
20533 else if (attr_form_is_section_offset (attr))
20534 {
20535 struct dwarf2_loclist_baton loclist_baton;
20536 CORE_ADDR pc = (*get_frame_pc) (baton);
20537 size_t size;
20538
20539 fill_in_loclist_baton (cu, &loclist_baton, attr);
20540
20541 retval.data = dwarf2_find_location_expression (&loclist_baton,
20542 &size, pc);
20543 retval.size = size;
20544 }
5c631832
JK
20545 else
20546 {
20547 if (!attr_form_is_block (attr))
20548 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20549 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20550 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20551
20552 retval.data = DW_BLOCK (attr)->data;
20553 retval.size = DW_BLOCK (attr)->size;
20554 }
20555 retval.per_cu = cu->per_cu;
918dd910 20556
918dd910
JK
20557 age_cached_comp_units ();
20558
5c631832 20559 return retval;
348e048f
DE
20560}
20561
8b9737bf
TT
20562/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20563 offset. */
20564
20565struct dwarf2_locexpr_baton
20566dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20567 struct dwarf2_per_cu_data *per_cu,
20568 CORE_ADDR (*get_frame_pc) (void *baton),
20569 void *baton)
20570{
20571 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20572
20573 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20574}
20575
b6807d98
TT
20576/* Write a constant of a given type as target-ordered bytes into
20577 OBSTACK. */
20578
20579static const gdb_byte *
20580write_constant_as_bytes (struct obstack *obstack,
20581 enum bfd_endian byte_order,
20582 struct type *type,
20583 ULONGEST value,
20584 LONGEST *len)
20585{
20586 gdb_byte *result;
20587
20588 *len = TYPE_LENGTH (type);
224c3ddb 20589 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20590 store_unsigned_integer (result, *len, byte_order, value);
20591
20592 return result;
20593}
20594
20595/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20596 pointer to the constant bytes and set LEN to the length of the
20597 data. If memory is needed, allocate it on OBSTACK. If the DIE
20598 does not have a DW_AT_const_value, return NULL. */
20599
20600const gdb_byte *
20601dwarf2_fetch_constant_bytes (sect_offset offset,
20602 struct dwarf2_per_cu_data *per_cu,
20603 struct obstack *obstack,
20604 LONGEST *len)
20605{
20606 struct dwarf2_cu *cu;
20607 struct die_info *die;
20608 struct attribute *attr;
20609 const gdb_byte *result = NULL;
20610 struct type *type;
20611 LONGEST value;
20612 enum bfd_endian byte_order;
20613
20614 dw2_setup (per_cu->objfile);
20615
20616 if (per_cu->cu == NULL)
20617 load_cu (per_cu);
20618 cu = per_cu->cu;
cc12ce38
DE
20619 if (cu == NULL)
20620 {
20621 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20622 Instead just throw an error, not much else we can do. */
20623 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20624 offset.sect_off, objfile_name (per_cu->objfile));
20625 }
b6807d98
TT
20626
20627 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20628 if (!die)
20629 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20630 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20631
20632
20633 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20634 if (attr == NULL)
20635 return NULL;
20636
20637 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20638 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20639
20640 switch (attr->form)
20641 {
20642 case DW_FORM_addr:
20643 case DW_FORM_GNU_addr_index:
20644 {
20645 gdb_byte *tem;
20646
20647 *len = cu->header.addr_size;
224c3ddb 20648 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20649 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20650 result = tem;
20651 }
20652 break;
20653 case DW_FORM_string:
20654 case DW_FORM_strp:
20655 case DW_FORM_GNU_str_index:
20656 case DW_FORM_GNU_strp_alt:
20657 /* DW_STRING is already allocated on the objfile obstack, point
20658 directly to it. */
20659 result = (const gdb_byte *) DW_STRING (attr);
20660 *len = strlen (DW_STRING (attr));
20661 break;
20662 case DW_FORM_block1:
20663 case DW_FORM_block2:
20664 case DW_FORM_block4:
20665 case DW_FORM_block:
20666 case DW_FORM_exprloc:
20667 result = DW_BLOCK (attr)->data;
20668 *len = DW_BLOCK (attr)->size;
20669 break;
20670
20671 /* The DW_AT_const_value attributes are supposed to carry the
20672 symbol's value "represented as it would be on the target
20673 architecture." By the time we get here, it's already been
20674 converted to host endianness, so we just need to sign- or
20675 zero-extend it as appropriate. */
20676 case DW_FORM_data1:
20677 type = die_type (die, cu);
20678 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20679 if (result == NULL)
20680 result = write_constant_as_bytes (obstack, byte_order,
20681 type, value, len);
20682 break;
20683 case DW_FORM_data2:
20684 type = die_type (die, cu);
20685 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20686 if (result == NULL)
20687 result = write_constant_as_bytes (obstack, byte_order,
20688 type, value, len);
20689 break;
20690 case DW_FORM_data4:
20691 type = die_type (die, cu);
20692 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20693 if (result == NULL)
20694 result = write_constant_as_bytes (obstack, byte_order,
20695 type, value, len);
20696 break;
20697 case DW_FORM_data8:
20698 type = die_type (die, cu);
20699 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20700 if (result == NULL)
20701 result = write_constant_as_bytes (obstack, byte_order,
20702 type, value, len);
20703 break;
20704
20705 case DW_FORM_sdata:
20706 type = die_type (die, cu);
20707 result = write_constant_as_bytes (obstack, byte_order,
20708 type, DW_SND (attr), len);
20709 break;
20710
20711 case DW_FORM_udata:
20712 type = die_type (die, cu);
20713 result = write_constant_as_bytes (obstack, byte_order,
20714 type, DW_UNSND (attr), len);
20715 break;
20716
20717 default:
20718 complaint (&symfile_complaints,
20719 _("unsupported const value attribute form: '%s'"),
20720 dwarf_form_name (attr->form));
20721 break;
20722 }
20723
20724 return result;
20725}
20726
8a9b8146
TT
20727/* Return the type of the DIE at DIE_OFFSET in the CU named by
20728 PER_CU. */
20729
20730struct type *
b64f50a1 20731dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20732 struct dwarf2_per_cu_data *per_cu)
20733{
b64f50a1
JK
20734 sect_offset die_offset_sect;
20735
8a9b8146 20736 dw2_setup (per_cu->objfile);
b64f50a1
JK
20737
20738 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20739 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20740}
20741
ac9ec31b 20742/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20743 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20744 On exit *REF_CU is the CU of the result.
20745 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20746
20747static struct die_info *
ac9ec31b
DE
20748follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20749 struct dwarf2_cu **ref_cu)
348e048f 20750{
348e048f 20751 struct die_info temp_die;
348e048f
DE
20752 struct dwarf2_cu *sig_cu;
20753 struct die_info *die;
20754
ac9ec31b
DE
20755 /* While it might be nice to assert sig_type->type == NULL here,
20756 we can get here for DW_AT_imported_declaration where we need
20757 the DIE not the type. */
348e048f
DE
20758
20759 /* If necessary, add it to the queue and load its DIEs. */
20760
95554aad 20761 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20762 read_signatured_type (sig_type);
348e048f 20763
348e048f 20764 sig_cu = sig_type->per_cu.cu;
69d751e3 20765 gdb_assert (sig_cu != NULL);
3019eac3
DE
20766 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20767 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20768 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20769 temp_die.offset.sect_off);
348e048f
DE
20770 if (die)
20771 {
796a7ff8
DE
20772 /* For .gdb_index version 7 keep track of included TUs.
20773 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20774 if (dwarf2_per_objfile->index_table != NULL
20775 && dwarf2_per_objfile->index_table->version <= 7)
20776 {
20777 VEC_safe_push (dwarf2_per_cu_ptr,
20778 (*ref_cu)->per_cu->imported_symtabs,
20779 sig_cu->per_cu);
20780 }
20781
348e048f
DE
20782 *ref_cu = sig_cu;
20783 return die;
20784 }
20785
ac9ec31b
DE
20786 return NULL;
20787}
20788
20789/* Follow signatured type referenced by ATTR in SRC_DIE.
20790 On entry *REF_CU is the CU of SRC_DIE.
20791 On exit *REF_CU is the CU of the result.
20792 The result is the DIE of the type.
20793 If the referenced type cannot be found an error is thrown. */
20794
20795static struct die_info *
ff39bb5e 20796follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20797 struct dwarf2_cu **ref_cu)
20798{
20799 ULONGEST signature = DW_SIGNATURE (attr);
20800 struct signatured_type *sig_type;
20801 struct die_info *die;
20802
20803 gdb_assert (attr->form == DW_FORM_ref_sig8);
20804
a2ce51a0 20805 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20806 /* sig_type will be NULL if the signatured type is missing from
20807 the debug info. */
20808 if (sig_type == NULL)
20809 {
20810 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20811 " from DIE at 0x%x [in module %s]"),
20812 hex_string (signature), src_die->offset.sect_off,
4262abfb 20813 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20814 }
20815
20816 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20817 if (die == NULL)
20818 {
20819 dump_die_for_error (src_die);
20820 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20821 " from DIE at 0x%x [in module %s]"),
20822 hex_string (signature), src_die->offset.sect_off,
4262abfb 20823 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20824 }
20825
20826 return die;
20827}
20828
20829/* Get the type specified by SIGNATURE referenced in DIE/CU,
20830 reading in and processing the type unit if necessary. */
20831
20832static struct type *
20833get_signatured_type (struct die_info *die, ULONGEST signature,
20834 struct dwarf2_cu *cu)
20835{
20836 struct signatured_type *sig_type;
20837 struct dwarf2_cu *type_cu;
20838 struct die_info *type_die;
20839 struct type *type;
20840
a2ce51a0 20841 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20842 /* sig_type will be NULL if the signatured type is missing from
20843 the debug info. */
20844 if (sig_type == NULL)
20845 {
20846 complaint (&symfile_complaints,
20847 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20848 " from DIE at 0x%x [in module %s]"),
20849 hex_string (signature), die->offset.sect_off,
4262abfb 20850 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20851 return build_error_marker_type (cu, die);
20852 }
20853
20854 /* If we already know the type we're done. */
20855 if (sig_type->type != NULL)
20856 return sig_type->type;
20857
20858 type_cu = cu;
20859 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20860 if (type_die != NULL)
20861 {
20862 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20863 is created. This is important, for example, because for c++ classes
20864 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20865 type = read_type_die (type_die, type_cu);
20866 if (type == NULL)
20867 {
20868 complaint (&symfile_complaints,
20869 _("Dwarf Error: Cannot build signatured type %s"
20870 " referenced from DIE at 0x%x [in module %s]"),
20871 hex_string (signature), die->offset.sect_off,
4262abfb 20872 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20873 type = build_error_marker_type (cu, die);
20874 }
20875 }
20876 else
20877 {
20878 complaint (&symfile_complaints,
20879 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20880 " from DIE at 0x%x [in module %s]"),
20881 hex_string (signature), die->offset.sect_off,
4262abfb 20882 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20883 type = build_error_marker_type (cu, die);
20884 }
20885 sig_type->type = type;
20886
20887 return type;
20888}
20889
20890/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20891 reading in and processing the type unit if necessary. */
20892
20893static struct type *
ff39bb5e 20894get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20895 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20896{
20897 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20898 if (attr_form_is_ref (attr))
ac9ec31b
DE
20899 {
20900 struct dwarf2_cu *type_cu = cu;
20901 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20902
20903 return read_type_die (type_die, type_cu);
20904 }
20905 else if (attr->form == DW_FORM_ref_sig8)
20906 {
20907 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20908 }
20909 else
20910 {
20911 complaint (&symfile_complaints,
20912 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20913 " at 0x%x [in module %s]"),
20914 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20915 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20916 return build_error_marker_type (cu, die);
20917 }
348e048f
DE
20918}
20919
e5fe5e75 20920/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20921
20922static void
e5fe5e75 20923load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20924{
52dc124a 20925 struct signatured_type *sig_type;
348e048f 20926
f4dc4d17
DE
20927 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20928 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20929
6721b2ec
DE
20930 /* We have the per_cu, but we need the signatured_type.
20931 Fortunately this is an easy translation. */
20932 gdb_assert (per_cu->is_debug_types);
20933 sig_type = (struct signatured_type *) per_cu;
348e048f 20934
6721b2ec 20935 gdb_assert (per_cu->cu == NULL);
348e048f 20936
52dc124a 20937 read_signatured_type (sig_type);
348e048f 20938
6721b2ec 20939 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20940}
20941
dee91e82
DE
20942/* die_reader_func for read_signatured_type.
20943 This is identical to load_full_comp_unit_reader,
20944 but is kept separate for now. */
348e048f
DE
20945
20946static void
dee91e82 20947read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20948 const gdb_byte *info_ptr,
dee91e82
DE
20949 struct die_info *comp_unit_die,
20950 int has_children,
20951 void *data)
348e048f 20952{
dee91e82 20953 struct dwarf2_cu *cu = reader->cu;
348e048f 20954
dee91e82
DE
20955 gdb_assert (cu->die_hash == NULL);
20956 cu->die_hash =
20957 htab_create_alloc_ex (cu->header.length / 12,
20958 die_hash,
20959 die_eq,
20960 NULL,
20961 &cu->comp_unit_obstack,
20962 hashtab_obstack_allocate,
20963 dummy_obstack_deallocate);
348e048f 20964
dee91e82
DE
20965 if (has_children)
20966 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20967 &info_ptr, comp_unit_die);
20968 cu->dies = comp_unit_die;
20969 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20970
20971 /* We try not to read any attributes in this function, because not
9cdd5dbd 20972 all CUs needed for references have been loaded yet, and symbol
348e048f 20973 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20974 or we won't be able to build types correctly.
20975 Similarly, if we do not read the producer, we can not apply
20976 producer-specific interpretation. */
95554aad 20977 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20978}
348e048f 20979
3019eac3
DE
20980/* Read in a signatured type and build its CU and DIEs.
20981 If the type is a stub for the real type in a DWO file,
20982 read in the real type from the DWO file as well. */
dee91e82
DE
20983
20984static void
20985read_signatured_type (struct signatured_type *sig_type)
20986{
20987 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20988
3019eac3 20989 gdb_assert (per_cu->is_debug_types);
dee91e82 20990 gdb_assert (per_cu->cu == NULL);
348e048f 20991
f4dc4d17
DE
20992 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20993 read_signatured_type_reader, NULL);
7ee85ab1 20994 sig_type->per_cu.tu_read = 1;
c906108c
SS
20995}
20996
c906108c
SS
20997/* Decode simple location descriptions.
20998 Given a pointer to a dwarf block that defines a location, compute
20999 the location and return the value.
21000
4cecd739
DJ
21001 NOTE drow/2003-11-18: This function is called in two situations
21002 now: for the address of static or global variables (partial symbols
21003 only) and for offsets into structures which are expected to be
21004 (more or less) constant. The partial symbol case should go away,
21005 and only the constant case should remain. That will let this
21006 function complain more accurately. A few special modes are allowed
21007 without complaint for global variables (for instance, global
21008 register values and thread-local values).
c906108c
SS
21009
21010 A location description containing no operations indicates that the
4cecd739 21011 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21012 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21013 callers will only want a very basic result and this can become a
21ae7a4d
JK
21014 complaint.
21015
21016 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21017
21018static CORE_ADDR
e7c27a73 21019decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21020{
e7c27a73 21021 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21022 size_t i;
21023 size_t size = blk->size;
d521ce57 21024 const gdb_byte *data = blk->data;
21ae7a4d
JK
21025 CORE_ADDR stack[64];
21026 int stacki;
21027 unsigned int bytes_read, unsnd;
21028 gdb_byte op;
c906108c 21029
21ae7a4d
JK
21030 i = 0;
21031 stacki = 0;
21032 stack[stacki] = 0;
21033 stack[++stacki] = 0;
21034
21035 while (i < size)
21036 {
21037 op = data[i++];
21038 switch (op)
21039 {
21040 case DW_OP_lit0:
21041 case DW_OP_lit1:
21042 case DW_OP_lit2:
21043 case DW_OP_lit3:
21044 case DW_OP_lit4:
21045 case DW_OP_lit5:
21046 case DW_OP_lit6:
21047 case DW_OP_lit7:
21048 case DW_OP_lit8:
21049 case DW_OP_lit9:
21050 case DW_OP_lit10:
21051 case DW_OP_lit11:
21052 case DW_OP_lit12:
21053 case DW_OP_lit13:
21054 case DW_OP_lit14:
21055 case DW_OP_lit15:
21056 case DW_OP_lit16:
21057 case DW_OP_lit17:
21058 case DW_OP_lit18:
21059 case DW_OP_lit19:
21060 case DW_OP_lit20:
21061 case DW_OP_lit21:
21062 case DW_OP_lit22:
21063 case DW_OP_lit23:
21064 case DW_OP_lit24:
21065 case DW_OP_lit25:
21066 case DW_OP_lit26:
21067 case DW_OP_lit27:
21068 case DW_OP_lit28:
21069 case DW_OP_lit29:
21070 case DW_OP_lit30:
21071 case DW_OP_lit31:
21072 stack[++stacki] = op - DW_OP_lit0;
21073 break;
f1bea926 21074
21ae7a4d
JK
21075 case DW_OP_reg0:
21076 case DW_OP_reg1:
21077 case DW_OP_reg2:
21078 case DW_OP_reg3:
21079 case DW_OP_reg4:
21080 case DW_OP_reg5:
21081 case DW_OP_reg6:
21082 case DW_OP_reg7:
21083 case DW_OP_reg8:
21084 case DW_OP_reg9:
21085 case DW_OP_reg10:
21086 case DW_OP_reg11:
21087 case DW_OP_reg12:
21088 case DW_OP_reg13:
21089 case DW_OP_reg14:
21090 case DW_OP_reg15:
21091 case DW_OP_reg16:
21092 case DW_OP_reg17:
21093 case DW_OP_reg18:
21094 case DW_OP_reg19:
21095 case DW_OP_reg20:
21096 case DW_OP_reg21:
21097 case DW_OP_reg22:
21098 case DW_OP_reg23:
21099 case DW_OP_reg24:
21100 case DW_OP_reg25:
21101 case DW_OP_reg26:
21102 case DW_OP_reg27:
21103 case DW_OP_reg28:
21104 case DW_OP_reg29:
21105 case DW_OP_reg30:
21106 case DW_OP_reg31:
21107 stack[++stacki] = op - DW_OP_reg0;
21108 if (i < size)
21109 dwarf2_complex_location_expr_complaint ();
21110 break;
c906108c 21111
21ae7a4d
JK
21112 case DW_OP_regx:
21113 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21114 i += bytes_read;
21115 stack[++stacki] = unsnd;
21116 if (i < size)
21117 dwarf2_complex_location_expr_complaint ();
21118 break;
c906108c 21119
21ae7a4d
JK
21120 case DW_OP_addr:
21121 stack[++stacki] = read_address (objfile->obfd, &data[i],
21122 cu, &bytes_read);
21123 i += bytes_read;
21124 break;
d53d4ac5 21125
21ae7a4d
JK
21126 case DW_OP_const1u:
21127 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21128 i += 1;
21129 break;
21130
21131 case DW_OP_const1s:
21132 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21133 i += 1;
21134 break;
21135
21136 case DW_OP_const2u:
21137 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21138 i += 2;
21139 break;
21140
21141 case DW_OP_const2s:
21142 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21143 i += 2;
21144 break;
d53d4ac5 21145
21ae7a4d
JK
21146 case DW_OP_const4u:
21147 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21148 i += 4;
21149 break;
21150
21151 case DW_OP_const4s:
21152 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21153 i += 4;
21154 break;
21155
585861ea
JK
21156 case DW_OP_const8u:
21157 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21158 i += 8;
21159 break;
21160
21ae7a4d
JK
21161 case DW_OP_constu:
21162 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21163 &bytes_read);
21164 i += bytes_read;
21165 break;
21166
21167 case DW_OP_consts:
21168 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21169 i += bytes_read;
21170 break;
21171
21172 case DW_OP_dup:
21173 stack[stacki + 1] = stack[stacki];
21174 stacki++;
21175 break;
21176
21177 case DW_OP_plus:
21178 stack[stacki - 1] += stack[stacki];
21179 stacki--;
21180 break;
21181
21182 case DW_OP_plus_uconst:
21183 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21184 &bytes_read);
21185 i += bytes_read;
21186 break;
21187
21188 case DW_OP_minus:
21189 stack[stacki - 1] -= stack[stacki];
21190 stacki--;
21191 break;
21192
21193 case DW_OP_deref:
21194 /* If we're not the last op, then we definitely can't encode
21195 this using GDB's address_class enum. This is valid for partial
21196 global symbols, although the variable's address will be bogus
21197 in the psymtab. */
21198 if (i < size)
21199 dwarf2_complex_location_expr_complaint ();
21200 break;
21201
21202 case DW_OP_GNU_push_tls_address:
4aa4e28b 21203 case DW_OP_form_tls_address:
21ae7a4d
JK
21204 /* The top of the stack has the offset from the beginning
21205 of the thread control block at which the variable is located. */
21206 /* Nothing should follow this operator, so the top of stack would
21207 be returned. */
21208 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21209 address will be bogus in the psymtab. Make it always at least
21210 non-zero to not look as a variable garbage collected by linker
21211 which have DW_OP_addr 0. */
21ae7a4d
JK
21212 if (i < size)
21213 dwarf2_complex_location_expr_complaint ();
585861ea 21214 stack[stacki]++;
21ae7a4d
JK
21215 break;
21216
21217 case DW_OP_GNU_uninit:
21218 break;
21219
3019eac3 21220 case DW_OP_GNU_addr_index:
49f6c839 21221 case DW_OP_GNU_const_index:
3019eac3
DE
21222 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21223 &bytes_read);
21224 i += bytes_read;
21225 break;
21226
21ae7a4d
JK
21227 default:
21228 {
f39c6ffd 21229 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21230
21231 if (name)
21232 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21233 name);
21234 else
21235 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21236 op);
21237 }
21238
21239 return (stack[stacki]);
d53d4ac5 21240 }
3c6e0cb3 21241
21ae7a4d
JK
21242 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21243 outside of the allocated space. Also enforce minimum>0. */
21244 if (stacki >= ARRAY_SIZE (stack) - 1)
21245 {
21246 complaint (&symfile_complaints,
21247 _("location description stack overflow"));
21248 return 0;
21249 }
21250
21251 if (stacki <= 0)
21252 {
21253 complaint (&symfile_complaints,
21254 _("location description stack underflow"));
21255 return 0;
21256 }
21257 }
21258 return (stack[stacki]);
c906108c
SS
21259}
21260
21261/* memory allocation interface */
21262
c906108c 21263static struct dwarf_block *
7b5a2f43 21264dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21265{
8d749320 21266 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21267}
21268
c906108c 21269static struct die_info *
b60c80d6 21270dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21271{
21272 struct die_info *die;
b60c80d6
DJ
21273 size_t size = sizeof (struct die_info);
21274
21275 if (num_attrs > 1)
21276 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21277
b60c80d6 21278 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21279 memset (die, 0, sizeof (struct die_info));
21280 return (die);
21281}
2e276125
JB
21282
21283\f
21284/* Macro support. */
21285
233d95b5
JK
21286/* Return file name relative to the compilation directory of file number I in
21287 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21288 responsible for freeing it. */
233d95b5 21289
2e276125 21290static char *
233d95b5 21291file_file_name (int file, struct line_header *lh)
2e276125 21292{
6a83a1e6
EZ
21293 /* Is the file number a valid index into the line header's file name
21294 table? Remember that file numbers start with one, not zero. */
21295 if (1 <= file && file <= lh->num_file_names)
21296 {
21297 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 21298
afa6c9ab
SL
21299 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
21300 || lh->include_dirs == NULL)
6a83a1e6 21301 return xstrdup (fe->name);
233d95b5 21302 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 21303 fe->name, (char *) NULL);
6a83a1e6 21304 }
2e276125
JB
21305 else
21306 {
6a83a1e6
EZ
21307 /* The compiler produced a bogus file number. We can at least
21308 record the macro definitions made in the file, even if we
21309 won't be able to find the file by name. */
21310 char fake_name[80];
9a619af0 21311
8c042590
PM
21312 xsnprintf (fake_name, sizeof (fake_name),
21313 "<bad macro file number %d>", file);
2e276125 21314
6e70227d 21315 complaint (&symfile_complaints,
6a83a1e6
EZ
21316 _("bad file number in macro information (%d)"),
21317 file);
2e276125 21318
6a83a1e6 21319 return xstrdup (fake_name);
2e276125
JB
21320 }
21321}
21322
233d95b5
JK
21323/* Return the full name of file number I in *LH's file name table.
21324 Use COMP_DIR as the name of the current directory of the
21325 compilation. The result is allocated using xmalloc; the caller is
21326 responsible for freeing it. */
21327static char *
21328file_full_name (int file, struct line_header *lh, const char *comp_dir)
21329{
21330 /* Is the file number a valid index into the line header's file name
21331 table? Remember that file numbers start with one, not zero. */
21332 if (1 <= file && file <= lh->num_file_names)
21333 {
21334 char *relative = file_file_name (file, lh);
21335
21336 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21337 return relative;
b36cec19
PA
21338 return reconcat (relative, comp_dir, SLASH_STRING,
21339 relative, (char *) NULL);
233d95b5
JK
21340 }
21341 else
21342 return file_file_name (file, lh);
21343}
21344
2e276125
JB
21345
21346static struct macro_source_file *
21347macro_start_file (int file, int line,
21348 struct macro_source_file *current_file,
43f3e411 21349 struct line_header *lh)
2e276125 21350{
233d95b5
JK
21351 /* File name relative to the compilation directory of this source file. */
21352 char *file_name = file_file_name (file, lh);
2e276125 21353
2e276125 21354 if (! current_file)
abc9d0dc 21355 {
fc474241
DE
21356 /* Note: We don't create a macro table for this compilation unit
21357 at all until we actually get a filename. */
43f3e411 21358 struct macro_table *macro_table = get_macro_table ();
fc474241 21359
abc9d0dc
TT
21360 /* If we have no current file, then this must be the start_file
21361 directive for the compilation unit's main source file. */
fc474241
DE
21362 current_file = macro_set_main (macro_table, file_name);
21363 macro_define_special (macro_table);
abc9d0dc 21364 }
2e276125 21365 else
233d95b5 21366 current_file = macro_include (current_file, line, file_name);
2e276125 21367
233d95b5 21368 xfree (file_name);
6e70227d 21369
2e276125
JB
21370 return current_file;
21371}
21372
21373
21374/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21375 followed by a null byte. */
21376static char *
21377copy_string (const char *buf, int len)
21378{
224c3ddb 21379 char *s = (char *) xmalloc (len + 1);
9a619af0 21380
2e276125
JB
21381 memcpy (s, buf, len);
21382 s[len] = '\0';
2e276125
JB
21383 return s;
21384}
21385
21386
21387static const char *
21388consume_improper_spaces (const char *p, const char *body)
21389{
21390 if (*p == ' ')
21391 {
4d3c2250 21392 complaint (&symfile_complaints,
3e43a32a
MS
21393 _("macro definition contains spaces "
21394 "in formal argument list:\n`%s'"),
4d3c2250 21395 body);
2e276125
JB
21396
21397 while (*p == ' ')
21398 p++;
21399 }
21400
21401 return p;
21402}
21403
21404
21405static void
21406parse_macro_definition (struct macro_source_file *file, int line,
21407 const char *body)
21408{
21409 const char *p;
21410
21411 /* The body string takes one of two forms. For object-like macro
21412 definitions, it should be:
21413
21414 <macro name> " " <definition>
21415
21416 For function-like macro definitions, it should be:
21417
21418 <macro name> "() " <definition>
21419 or
21420 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21421
21422 Spaces may appear only where explicitly indicated, and in the
21423 <definition>.
21424
21425 The Dwarf 2 spec says that an object-like macro's name is always
21426 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21427 the space when the macro's definition is the empty string.
2e276125
JB
21428
21429 The Dwarf 2 spec says that there should be no spaces between the
21430 formal arguments in a function-like macro's formal argument list,
21431 but versions of GCC around March 2002 include spaces after the
21432 commas. */
21433
21434
21435 /* Find the extent of the macro name. The macro name is terminated
21436 by either a space or null character (for an object-like macro) or
21437 an opening paren (for a function-like macro). */
21438 for (p = body; *p; p++)
21439 if (*p == ' ' || *p == '(')
21440 break;
21441
21442 if (*p == ' ' || *p == '\0')
21443 {
21444 /* It's an object-like macro. */
21445 int name_len = p - body;
21446 char *name = copy_string (body, name_len);
21447 const char *replacement;
21448
21449 if (*p == ' ')
21450 replacement = body + name_len + 1;
21451 else
21452 {
4d3c2250 21453 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21454 replacement = body + name_len;
21455 }
6e70227d 21456
2e276125
JB
21457 macro_define_object (file, line, name, replacement);
21458
21459 xfree (name);
21460 }
21461 else if (*p == '(')
21462 {
21463 /* It's a function-like macro. */
21464 char *name = copy_string (body, p - body);
21465 int argc = 0;
21466 int argv_size = 1;
8d749320 21467 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21468
21469 p++;
21470
21471 p = consume_improper_spaces (p, body);
21472
21473 /* Parse the formal argument list. */
21474 while (*p && *p != ')')
21475 {
21476 /* Find the extent of the current argument name. */
21477 const char *arg_start = p;
21478
21479 while (*p && *p != ',' && *p != ')' && *p != ' ')
21480 p++;
21481
21482 if (! *p || p == arg_start)
4d3c2250 21483 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21484 else
21485 {
21486 /* Make sure argv has room for the new argument. */
21487 if (argc >= argv_size)
21488 {
21489 argv_size *= 2;
224c3ddb 21490 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21491 }
21492
21493 argv[argc++] = copy_string (arg_start, p - arg_start);
21494 }
21495
21496 p = consume_improper_spaces (p, body);
21497
21498 /* Consume the comma, if present. */
21499 if (*p == ',')
21500 {
21501 p++;
21502
21503 p = consume_improper_spaces (p, body);
21504 }
21505 }
21506
21507 if (*p == ')')
21508 {
21509 p++;
21510
21511 if (*p == ' ')
21512 /* Perfectly formed definition, no complaints. */
21513 macro_define_function (file, line, name,
6e70227d 21514 argc, (const char **) argv,
2e276125
JB
21515 p + 1);
21516 else if (*p == '\0')
21517 {
21518 /* Complain, but do define it. */
4d3c2250 21519 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21520 macro_define_function (file, line, name,
6e70227d 21521 argc, (const char **) argv,
2e276125
JB
21522 p);
21523 }
21524 else
21525 /* Just complain. */
4d3c2250 21526 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21527 }
21528 else
21529 /* Just complain. */
4d3c2250 21530 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21531
21532 xfree (name);
21533 {
21534 int i;
21535
21536 for (i = 0; i < argc; i++)
21537 xfree (argv[i]);
21538 }
21539 xfree (argv);
21540 }
21541 else
4d3c2250 21542 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21543}
21544
cf2c3c16
TT
21545/* Skip some bytes from BYTES according to the form given in FORM.
21546 Returns the new pointer. */
2e276125 21547
d521ce57
TT
21548static const gdb_byte *
21549skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21550 enum dwarf_form form,
21551 unsigned int offset_size,
21552 struct dwarf2_section_info *section)
2e276125 21553{
cf2c3c16 21554 unsigned int bytes_read;
2e276125 21555
cf2c3c16 21556 switch (form)
2e276125 21557 {
cf2c3c16
TT
21558 case DW_FORM_data1:
21559 case DW_FORM_flag:
21560 ++bytes;
21561 break;
21562
21563 case DW_FORM_data2:
21564 bytes += 2;
21565 break;
21566
21567 case DW_FORM_data4:
21568 bytes += 4;
21569 break;
21570
21571 case DW_FORM_data8:
21572 bytes += 8;
21573 break;
21574
21575 case DW_FORM_string:
21576 read_direct_string (abfd, bytes, &bytes_read);
21577 bytes += bytes_read;
21578 break;
21579
21580 case DW_FORM_sec_offset:
21581 case DW_FORM_strp:
36586728 21582 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21583 bytes += offset_size;
21584 break;
21585
21586 case DW_FORM_block:
21587 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21588 bytes += bytes_read;
21589 break;
21590
21591 case DW_FORM_block1:
21592 bytes += 1 + read_1_byte (abfd, bytes);
21593 break;
21594 case DW_FORM_block2:
21595 bytes += 2 + read_2_bytes (abfd, bytes);
21596 break;
21597 case DW_FORM_block4:
21598 bytes += 4 + read_4_bytes (abfd, bytes);
21599 break;
21600
21601 case DW_FORM_sdata:
21602 case DW_FORM_udata:
3019eac3
DE
21603 case DW_FORM_GNU_addr_index:
21604 case DW_FORM_GNU_str_index:
d521ce57 21605 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21606 if (bytes == NULL)
21607 {
21608 dwarf2_section_buffer_overflow_complaint (section);
21609 return NULL;
21610 }
cf2c3c16
TT
21611 break;
21612
21613 default:
21614 {
21615 complain:
21616 complaint (&symfile_complaints,
21617 _("invalid form 0x%x in `%s'"),
a32a8923 21618 form, get_section_name (section));
cf2c3c16
TT
21619 return NULL;
21620 }
2e276125
JB
21621 }
21622
cf2c3c16
TT
21623 return bytes;
21624}
757a13d0 21625
cf2c3c16
TT
21626/* A helper for dwarf_decode_macros that handles skipping an unknown
21627 opcode. Returns an updated pointer to the macro data buffer; or,
21628 on error, issues a complaint and returns NULL. */
757a13d0 21629
d521ce57 21630static const gdb_byte *
cf2c3c16 21631skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21632 const gdb_byte **opcode_definitions,
21633 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21634 bfd *abfd,
21635 unsigned int offset_size,
21636 struct dwarf2_section_info *section)
21637{
21638 unsigned int bytes_read, i;
21639 unsigned long arg;
d521ce57 21640 const gdb_byte *defn;
2e276125 21641
cf2c3c16 21642 if (opcode_definitions[opcode] == NULL)
2e276125 21643 {
cf2c3c16
TT
21644 complaint (&symfile_complaints,
21645 _("unrecognized DW_MACFINO opcode 0x%x"),
21646 opcode);
21647 return NULL;
21648 }
2e276125 21649
cf2c3c16
TT
21650 defn = opcode_definitions[opcode];
21651 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21652 defn += bytes_read;
2e276125 21653
cf2c3c16
TT
21654 for (i = 0; i < arg; ++i)
21655 {
aead7601
SM
21656 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21657 (enum dwarf_form) defn[i], offset_size,
f664829e 21658 section);
cf2c3c16
TT
21659 if (mac_ptr == NULL)
21660 {
21661 /* skip_form_bytes already issued the complaint. */
21662 return NULL;
21663 }
21664 }
757a13d0 21665
cf2c3c16
TT
21666 return mac_ptr;
21667}
757a13d0 21668
cf2c3c16
TT
21669/* A helper function which parses the header of a macro section.
21670 If the macro section is the extended (for now called "GNU") type,
21671 then this updates *OFFSET_SIZE. Returns a pointer to just after
21672 the header, or issues a complaint and returns NULL on error. */
757a13d0 21673
d521ce57
TT
21674static const gdb_byte *
21675dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21676 bfd *abfd,
d521ce57 21677 const gdb_byte *mac_ptr,
cf2c3c16
TT
21678 unsigned int *offset_size,
21679 int section_is_gnu)
21680{
21681 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21682
cf2c3c16
TT
21683 if (section_is_gnu)
21684 {
21685 unsigned int version, flags;
757a13d0 21686
cf2c3c16
TT
21687 version = read_2_bytes (abfd, mac_ptr);
21688 if (version != 4)
21689 {
21690 complaint (&symfile_complaints,
21691 _("unrecognized version `%d' in .debug_macro section"),
21692 version);
21693 return NULL;
21694 }
21695 mac_ptr += 2;
757a13d0 21696
cf2c3c16
TT
21697 flags = read_1_byte (abfd, mac_ptr);
21698 ++mac_ptr;
21699 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21700
cf2c3c16
TT
21701 if ((flags & 2) != 0)
21702 /* We don't need the line table offset. */
21703 mac_ptr += *offset_size;
757a13d0 21704
cf2c3c16
TT
21705 /* Vendor opcode descriptions. */
21706 if ((flags & 4) != 0)
21707 {
21708 unsigned int i, count;
757a13d0 21709
cf2c3c16
TT
21710 count = read_1_byte (abfd, mac_ptr);
21711 ++mac_ptr;
21712 for (i = 0; i < count; ++i)
21713 {
21714 unsigned int opcode, bytes_read;
21715 unsigned long arg;
21716
21717 opcode = read_1_byte (abfd, mac_ptr);
21718 ++mac_ptr;
21719 opcode_definitions[opcode] = mac_ptr;
21720 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21721 mac_ptr += bytes_read;
21722 mac_ptr += arg;
21723 }
757a13d0 21724 }
cf2c3c16 21725 }
757a13d0 21726
cf2c3c16
TT
21727 return mac_ptr;
21728}
757a13d0 21729
cf2c3c16 21730/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21731 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21732
21733static void
d521ce57
TT
21734dwarf_decode_macro_bytes (bfd *abfd,
21735 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21736 struct macro_source_file *current_file,
43f3e411 21737 struct line_header *lh,
cf2c3c16 21738 struct dwarf2_section_info *section,
36586728 21739 int section_is_gnu, int section_is_dwz,
cf2c3c16 21740 unsigned int offset_size,
8fc3fc34 21741 htab_t include_hash)
cf2c3c16 21742{
4d663531 21743 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21744 enum dwarf_macro_record_type macinfo_type;
21745 int at_commandline;
d521ce57 21746 const gdb_byte *opcode_definitions[256];
757a13d0 21747
cf2c3c16
TT
21748 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21749 &offset_size, section_is_gnu);
21750 if (mac_ptr == NULL)
21751 {
21752 /* We already issued a complaint. */
21753 return;
21754 }
757a13d0
JK
21755
21756 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21757 GDB is still reading the definitions from command line. First
21758 DW_MACINFO_start_file will need to be ignored as it was already executed
21759 to create CURRENT_FILE for the main source holding also the command line
21760 definitions. On first met DW_MACINFO_start_file this flag is reset to
21761 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21762
21763 at_commandline = 1;
21764
21765 do
21766 {
21767 /* Do we at least have room for a macinfo type byte? */
21768 if (mac_ptr >= mac_end)
21769 {
f664829e 21770 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21771 break;
21772 }
21773
aead7601 21774 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21775 mac_ptr++;
21776
cf2c3c16
TT
21777 /* Note that we rely on the fact that the corresponding GNU and
21778 DWARF constants are the same. */
757a13d0
JK
21779 switch (macinfo_type)
21780 {
21781 /* A zero macinfo type indicates the end of the macro
21782 information. */
21783 case 0:
21784 break;
2e276125 21785
cf2c3c16
TT
21786 case DW_MACRO_GNU_define:
21787 case DW_MACRO_GNU_undef:
21788 case DW_MACRO_GNU_define_indirect:
21789 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21790 case DW_MACRO_GNU_define_indirect_alt:
21791 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21792 {
891d2f0b 21793 unsigned int bytes_read;
2e276125 21794 int line;
d521ce57 21795 const char *body;
cf2c3c16 21796 int is_define;
2e276125 21797
cf2c3c16
TT
21798 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21799 mac_ptr += bytes_read;
21800
21801 if (macinfo_type == DW_MACRO_GNU_define
21802 || macinfo_type == DW_MACRO_GNU_undef)
21803 {
21804 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21805 mac_ptr += bytes_read;
21806 }
21807 else
21808 {
21809 LONGEST str_offset;
21810
21811 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21812 mac_ptr += offset_size;
2e276125 21813
36586728 21814 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21815 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21816 || section_is_dwz)
36586728
TT
21817 {
21818 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21819
21820 body = read_indirect_string_from_dwz (dwz, str_offset);
21821 }
21822 else
21823 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21824 }
21825
21826 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21827 || macinfo_type == DW_MACRO_GNU_define_indirect
21828 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21829 if (! current_file)
757a13d0
JK
21830 {
21831 /* DWARF violation as no main source is present. */
21832 complaint (&symfile_complaints,
21833 _("debug info with no main source gives macro %s "
21834 "on line %d: %s"),
cf2c3c16
TT
21835 is_define ? _("definition") : _("undefinition"),
21836 line, body);
757a13d0
JK
21837 break;
21838 }
3e43a32a
MS
21839 if ((line == 0 && !at_commandline)
21840 || (line != 0 && at_commandline))
4d3c2250 21841 complaint (&symfile_complaints,
757a13d0
JK
21842 _("debug info gives %s macro %s with %s line %d: %s"),
21843 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21844 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21845 line == 0 ? _("zero") : _("non-zero"), line, body);
21846
cf2c3c16 21847 if (is_define)
757a13d0 21848 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21849 else
21850 {
21851 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21852 || macinfo_type == DW_MACRO_GNU_undef_indirect
21853 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21854 macro_undef (current_file, line, body);
21855 }
2e276125
JB
21856 }
21857 break;
21858
cf2c3c16 21859 case DW_MACRO_GNU_start_file:
2e276125 21860 {
891d2f0b 21861 unsigned int bytes_read;
2e276125
JB
21862 int line, file;
21863
21864 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21865 mac_ptr += bytes_read;
21866 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21867 mac_ptr += bytes_read;
21868
3e43a32a
MS
21869 if ((line == 0 && !at_commandline)
21870 || (line != 0 && at_commandline))
757a13d0
JK
21871 complaint (&symfile_complaints,
21872 _("debug info gives source %d included "
21873 "from %s at %s line %d"),
21874 file, at_commandline ? _("command-line") : _("file"),
21875 line == 0 ? _("zero") : _("non-zero"), line);
21876
21877 if (at_commandline)
21878 {
cf2c3c16
TT
21879 /* This DW_MACRO_GNU_start_file was executed in the
21880 pass one. */
757a13d0
JK
21881 at_commandline = 0;
21882 }
21883 else
43f3e411 21884 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21885 }
21886 break;
21887
cf2c3c16 21888 case DW_MACRO_GNU_end_file:
2e276125 21889 if (! current_file)
4d3c2250 21890 complaint (&symfile_complaints,
3e43a32a
MS
21891 _("macro debug info has an unmatched "
21892 "`close_file' directive"));
2e276125
JB
21893 else
21894 {
21895 current_file = current_file->included_by;
21896 if (! current_file)
21897 {
cf2c3c16 21898 enum dwarf_macro_record_type next_type;
2e276125
JB
21899
21900 /* GCC circa March 2002 doesn't produce the zero
21901 type byte marking the end of the compilation
21902 unit. Complain if it's not there, but exit no
21903 matter what. */
21904
21905 /* Do we at least have room for a macinfo type byte? */
21906 if (mac_ptr >= mac_end)
21907 {
f664829e 21908 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21909 return;
21910 }
21911
21912 /* We don't increment mac_ptr here, so this is just
21913 a look-ahead. */
aead7601
SM
21914 next_type
21915 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21916 mac_ptr);
2e276125 21917 if (next_type != 0)
4d3c2250 21918 complaint (&symfile_complaints,
3e43a32a
MS
21919 _("no terminating 0-type entry for "
21920 "macros in `.debug_macinfo' section"));
2e276125
JB
21921
21922 return;
21923 }
21924 }
21925 break;
21926
cf2c3c16 21927 case DW_MACRO_GNU_transparent_include:
36586728 21928 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21929 {
21930 LONGEST offset;
8fc3fc34 21931 void **slot;
a036ba48
TT
21932 bfd *include_bfd = abfd;
21933 struct dwarf2_section_info *include_section = section;
d521ce57 21934 const gdb_byte *include_mac_end = mac_end;
a036ba48 21935 int is_dwz = section_is_dwz;
d521ce57 21936 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21937
21938 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21939 mac_ptr += offset_size;
21940
a036ba48
TT
21941 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21942 {
21943 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21944
4d663531 21945 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21946
a036ba48 21947 include_section = &dwz->macro;
a32a8923 21948 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21949 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21950 is_dwz = 1;
21951 }
21952
21953 new_mac_ptr = include_section->buffer + offset;
21954 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21955
8fc3fc34
TT
21956 if (*slot != NULL)
21957 {
21958 /* This has actually happened; see
21959 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21960 complaint (&symfile_complaints,
21961 _("recursive DW_MACRO_GNU_transparent_include in "
21962 ".debug_macro section"));
21963 }
21964 else
21965 {
d521ce57 21966 *slot = (void *) new_mac_ptr;
36586728 21967
a036ba48 21968 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21969 include_mac_end, current_file, lh,
36586728 21970 section, section_is_gnu, is_dwz,
4d663531 21971 offset_size, include_hash);
8fc3fc34 21972
d521ce57 21973 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21974 }
cf2c3c16
TT
21975 }
21976 break;
21977
2e276125 21978 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21979 if (!section_is_gnu)
21980 {
21981 unsigned int bytes_read;
2e276125 21982
ac298888
TT
21983 /* This reads the constant, but since we don't recognize
21984 any vendor extensions, we ignore it. */
21985 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21986 mac_ptr += bytes_read;
21987 read_direct_string (abfd, mac_ptr, &bytes_read);
21988 mac_ptr += bytes_read;
2e276125 21989
cf2c3c16
TT
21990 /* We don't recognize any vendor extensions. */
21991 break;
21992 }
21993 /* FALLTHROUGH */
21994
21995 default:
21996 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21997 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21998 section);
21999 if (mac_ptr == NULL)
22000 return;
22001 break;
2e276125 22002 }
757a13d0 22003 } while (macinfo_type != 0);
2e276125 22004}
8e19ed76 22005
cf2c3c16 22006static void
09262596 22007dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22008 int section_is_gnu)
cf2c3c16 22009{
bb5ed363 22010 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22011 struct line_header *lh = cu->line_header;
22012 bfd *abfd;
d521ce57 22013 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22014 struct macro_source_file *current_file = 0;
22015 enum dwarf_macro_record_type macinfo_type;
22016 unsigned int offset_size = cu->header.offset_size;
d521ce57 22017 const gdb_byte *opcode_definitions[256];
8fc3fc34 22018 struct cleanup *cleanup;
8fc3fc34 22019 void **slot;
09262596
DE
22020 struct dwarf2_section_info *section;
22021 const char *section_name;
22022
22023 if (cu->dwo_unit != NULL)
22024 {
22025 if (section_is_gnu)
22026 {
22027 section = &cu->dwo_unit->dwo_file->sections.macro;
22028 section_name = ".debug_macro.dwo";
22029 }
22030 else
22031 {
22032 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22033 section_name = ".debug_macinfo.dwo";
22034 }
22035 }
22036 else
22037 {
22038 if (section_is_gnu)
22039 {
22040 section = &dwarf2_per_objfile->macro;
22041 section_name = ".debug_macro";
22042 }
22043 else
22044 {
22045 section = &dwarf2_per_objfile->macinfo;
22046 section_name = ".debug_macinfo";
22047 }
22048 }
cf2c3c16 22049
bb5ed363 22050 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22051 if (section->buffer == NULL)
22052 {
fceca515 22053 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22054 return;
22055 }
a32a8923 22056 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22057
22058 /* First pass: Find the name of the base filename.
22059 This filename is needed in order to process all macros whose definition
22060 (or undefinition) comes from the command line. These macros are defined
22061 before the first DW_MACINFO_start_file entry, and yet still need to be
22062 associated to the base file.
22063
22064 To determine the base file name, we scan the macro definitions until we
22065 reach the first DW_MACINFO_start_file entry. We then initialize
22066 CURRENT_FILE accordingly so that any macro definition found before the
22067 first DW_MACINFO_start_file can still be associated to the base file. */
22068
22069 mac_ptr = section->buffer + offset;
22070 mac_end = section->buffer + section->size;
22071
22072 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22073 &offset_size, section_is_gnu);
22074 if (mac_ptr == NULL)
22075 {
22076 /* We already issued a complaint. */
22077 return;
22078 }
22079
22080 do
22081 {
22082 /* Do we at least have room for a macinfo type byte? */
22083 if (mac_ptr >= mac_end)
22084 {
22085 /* Complaint is printed during the second pass as GDB will probably
22086 stop the first pass earlier upon finding
22087 DW_MACINFO_start_file. */
22088 break;
22089 }
22090
aead7601 22091 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22092 mac_ptr++;
22093
22094 /* Note that we rely on the fact that the corresponding GNU and
22095 DWARF constants are the same. */
22096 switch (macinfo_type)
22097 {
22098 /* A zero macinfo type indicates the end of the macro
22099 information. */
22100 case 0:
22101 break;
22102
22103 case DW_MACRO_GNU_define:
22104 case DW_MACRO_GNU_undef:
22105 /* Only skip the data by MAC_PTR. */
22106 {
22107 unsigned int bytes_read;
22108
22109 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22110 mac_ptr += bytes_read;
22111 read_direct_string (abfd, mac_ptr, &bytes_read);
22112 mac_ptr += bytes_read;
22113 }
22114 break;
22115
22116 case DW_MACRO_GNU_start_file:
22117 {
22118 unsigned int bytes_read;
22119 int line, file;
22120
22121 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22122 mac_ptr += bytes_read;
22123 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22124 mac_ptr += bytes_read;
22125
43f3e411 22126 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22127 }
22128 break;
22129
22130 case DW_MACRO_GNU_end_file:
22131 /* No data to skip by MAC_PTR. */
22132 break;
22133
22134 case DW_MACRO_GNU_define_indirect:
22135 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
22136 case DW_MACRO_GNU_define_indirect_alt:
22137 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
22138 {
22139 unsigned int bytes_read;
22140
22141 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22142 mac_ptr += bytes_read;
22143 mac_ptr += offset_size;
22144 }
22145 break;
22146
22147 case DW_MACRO_GNU_transparent_include:
f7a35f02 22148 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
22149 /* Note that, according to the spec, a transparent include
22150 chain cannot call DW_MACRO_GNU_start_file. So, we can just
22151 skip this opcode. */
22152 mac_ptr += offset_size;
22153 break;
22154
22155 case DW_MACINFO_vendor_ext:
22156 /* Only skip the data by MAC_PTR. */
22157 if (!section_is_gnu)
22158 {
22159 unsigned int bytes_read;
22160
22161 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22162 mac_ptr += bytes_read;
22163 read_direct_string (abfd, mac_ptr, &bytes_read);
22164 mac_ptr += bytes_read;
22165 }
22166 /* FALLTHROUGH */
22167
22168 default:
22169 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22170 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22171 section);
22172 if (mac_ptr == NULL)
22173 return;
22174 break;
22175 }
22176 } while (macinfo_type != 0 && current_file == NULL);
22177
22178 /* Second pass: Process all entries.
22179
22180 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22181 command-line macro definitions/undefinitions. This flag is unset when we
22182 reach the first DW_MACINFO_start_file entry. */
22183
fc4007c9
TT
22184 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22185 htab_eq_pointer,
22186 NULL, xcalloc, xfree));
8fc3fc34 22187 mac_ptr = section->buffer + offset;
fc4007c9 22188 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22189 *slot = (void *) mac_ptr;
8fc3fc34 22190 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22191 current_file, lh, section,
fc4007c9
TT
22192 section_is_gnu, 0, offset_size,
22193 include_hash.get ());
cf2c3c16
TT
22194}
22195
8e19ed76 22196/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22197 if so return true else false. */
380bca97 22198
8e19ed76 22199static int
6e5a29e1 22200attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22201{
22202 return (attr == NULL ? 0 :
22203 attr->form == DW_FORM_block1
22204 || attr->form == DW_FORM_block2
22205 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22206 || attr->form == DW_FORM_block
22207 || attr->form == DW_FORM_exprloc);
8e19ed76 22208}
4c2df51b 22209
c6a0999f
JB
22210/* Return non-zero if ATTR's value is a section offset --- classes
22211 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22212 You may use DW_UNSND (attr) to retrieve such offsets.
22213
22214 Section 7.5.4, "Attribute Encodings", explains that no attribute
22215 may have a value that belongs to more than one of these classes; it
22216 would be ambiguous if we did, because we use the same forms for all
22217 of them. */
380bca97 22218
3690dd37 22219static int
6e5a29e1 22220attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22221{
22222 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22223 || attr->form == DW_FORM_data8
22224 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22225}
22226
3690dd37
JB
22227/* Return non-zero if ATTR's value falls in the 'constant' class, or
22228 zero otherwise. When this function returns true, you can apply
22229 dwarf2_get_attr_constant_value to it.
22230
22231 However, note that for some attributes you must check
22232 attr_form_is_section_offset before using this test. DW_FORM_data4
22233 and DW_FORM_data8 are members of both the constant class, and of
22234 the classes that contain offsets into other debug sections
22235 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22236 that, if an attribute's can be either a constant or one of the
22237 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22238 taken as section offsets, not constants. */
380bca97 22239
3690dd37 22240static int
6e5a29e1 22241attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22242{
22243 switch (attr->form)
22244 {
22245 case DW_FORM_sdata:
22246 case DW_FORM_udata:
22247 case DW_FORM_data1:
22248 case DW_FORM_data2:
22249 case DW_FORM_data4:
22250 case DW_FORM_data8:
22251 return 1;
22252 default:
22253 return 0;
22254 }
22255}
22256
7771576e
SA
22257
22258/* DW_ADDR is always stored already as sect_offset; despite for the forms
22259 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22260
22261static int
6e5a29e1 22262attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22263{
22264 switch (attr->form)
22265 {
22266 case DW_FORM_ref_addr:
22267 case DW_FORM_ref1:
22268 case DW_FORM_ref2:
22269 case DW_FORM_ref4:
22270 case DW_FORM_ref8:
22271 case DW_FORM_ref_udata:
22272 case DW_FORM_GNU_ref_alt:
22273 return 1;
22274 default:
22275 return 0;
22276 }
22277}
22278
3019eac3
DE
22279/* Return the .debug_loc section to use for CU.
22280 For DWO files use .debug_loc.dwo. */
22281
22282static struct dwarf2_section_info *
22283cu_debug_loc_section (struct dwarf2_cu *cu)
22284{
22285 if (cu->dwo_unit)
43988095
JK
22286 {
22287 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22288
22289 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22290 }
22291 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22292 : &dwarf2_per_objfile->loc);
3019eac3
DE
22293}
22294
8cf6f0b1
TT
22295/* A helper function that fills in a dwarf2_loclist_baton. */
22296
22297static void
22298fill_in_loclist_baton (struct dwarf2_cu *cu,
22299 struct dwarf2_loclist_baton *baton,
ff39bb5e 22300 const struct attribute *attr)
8cf6f0b1 22301{
3019eac3
DE
22302 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22303
22304 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22305
22306 baton->per_cu = cu->per_cu;
22307 gdb_assert (baton->per_cu);
22308 /* We don't know how long the location list is, but make sure we
22309 don't run off the edge of the section. */
3019eac3
DE
22310 baton->size = section->size - DW_UNSND (attr);
22311 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22312 baton->base_address = cu->base_address;
f664829e 22313 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22314}
22315
4c2df51b 22316static void
ff39bb5e 22317dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22318 struct dwarf2_cu *cu, int is_block)
4c2df51b 22319{
bb5ed363 22320 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22321 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22322
3690dd37 22323 if (attr_form_is_section_offset (attr)
3019eac3 22324 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22325 the section. If so, fall through to the complaint in the
22326 other branch. */
3019eac3 22327 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22328 {
0d53c4c4 22329 struct dwarf2_loclist_baton *baton;
4c2df51b 22330
8d749320 22331 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22332
8cf6f0b1 22333 fill_in_loclist_baton (cu, baton, attr);
be391dca 22334
d00adf39 22335 if (cu->base_known == 0)
0d53c4c4 22336 complaint (&symfile_complaints,
3e43a32a
MS
22337 _("Location list used without "
22338 "specifying the CU base address."));
4c2df51b 22339
f1e6e072
TT
22340 SYMBOL_ACLASS_INDEX (sym) = (is_block
22341 ? dwarf2_loclist_block_index
22342 : dwarf2_loclist_index);
0d53c4c4
DJ
22343 SYMBOL_LOCATION_BATON (sym) = baton;
22344 }
22345 else
22346 {
22347 struct dwarf2_locexpr_baton *baton;
22348
8d749320 22349 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22350 baton->per_cu = cu->per_cu;
22351 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22352
22353 if (attr_form_is_block (attr))
22354 {
22355 /* Note that we're just copying the block's data pointer
22356 here, not the actual data. We're still pointing into the
6502dd73
DJ
22357 info_buffer for SYM's objfile; right now we never release
22358 that buffer, but when we do clean up properly this may
22359 need to change. */
0d53c4c4
DJ
22360 baton->size = DW_BLOCK (attr)->size;
22361 baton->data = DW_BLOCK (attr)->data;
22362 }
22363 else
22364 {
22365 dwarf2_invalid_attrib_class_complaint ("location description",
22366 SYMBOL_NATURAL_NAME (sym));
22367 baton->size = 0;
0d53c4c4 22368 }
6e70227d 22369
f1e6e072
TT
22370 SYMBOL_ACLASS_INDEX (sym) = (is_block
22371 ? dwarf2_locexpr_block_index
22372 : dwarf2_locexpr_index);
0d53c4c4
DJ
22373 SYMBOL_LOCATION_BATON (sym) = baton;
22374 }
4c2df51b 22375}
6502dd73 22376
9aa1f1e3
TT
22377/* Return the OBJFILE associated with the compilation unit CU. If CU
22378 came from a separate debuginfo file, then the master objfile is
22379 returned. */
ae0d2f24
UW
22380
22381struct objfile *
22382dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22383{
9291a0cd 22384 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22385
22386 /* Return the master objfile, so that we can report and look up the
22387 correct file containing this variable. */
22388 if (objfile->separate_debug_objfile_backlink)
22389 objfile = objfile->separate_debug_objfile_backlink;
22390
22391 return objfile;
22392}
22393
96408a79
SA
22394/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22395 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22396 CU_HEADERP first. */
22397
22398static const struct comp_unit_head *
22399per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22400 struct dwarf2_per_cu_data *per_cu)
22401{
d521ce57 22402 const gdb_byte *info_ptr;
96408a79
SA
22403
22404 if (per_cu->cu)
22405 return &per_cu->cu->header;
22406
8a0459fd 22407 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
22408
22409 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22410 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22411 rcuh_kind::COMPILE);
96408a79
SA
22412
22413 return cu_headerp;
22414}
22415
ae0d2f24
UW
22416/* Return the address size given in the compilation unit header for CU. */
22417
98714339 22418int
ae0d2f24
UW
22419dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22420{
96408a79
SA
22421 struct comp_unit_head cu_header_local;
22422 const struct comp_unit_head *cu_headerp;
c471e790 22423
96408a79
SA
22424 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22425
22426 return cu_headerp->addr_size;
ae0d2f24
UW
22427}
22428
9eae7c52
TT
22429/* Return the offset size given in the compilation unit header for CU. */
22430
22431int
22432dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22433{
96408a79
SA
22434 struct comp_unit_head cu_header_local;
22435 const struct comp_unit_head *cu_headerp;
9c6c53f7 22436
96408a79
SA
22437 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22438
22439 return cu_headerp->offset_size;
22440}
22441
22442/* See its dwarf2loc.h declaration. */
22443
22444int
22445dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22446{
22447 struct comp_unit_head cu_header_local;
22448 const struct comp_unit_head *cu_headerp;
22449
22450 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22451
22452 if (cu_headerp->version == 2)
22453 return cu_headerp->addr_size;
22454 else
22455 return cu_headerp->offset_size;
181cebd4
JK
22456}
22457
9aa1f1e3
TT
22458/* Return the text offset of the CU. The returned offset comes from
22459 this CU's objfile. If this objfile came from a separate debuginfo
22460 file, then the offset may be different from the corresponding
22461 offset in the parent objfile. */
22462
22463CORE_ADDR
22464dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22465{
bb3fa9d0 22466 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22467
22468 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22469}
22470
43988095
JK
22471/* Return DWARF version number of PER_CU. */
22472
22473short
22474dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22475{
22476 return per_cu->dwarf_version;
22477}
22478
348e048f
DE
22479/* Locate the .debug_info compilation unit from CU's objfile which contains
22480 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22481
22482static struct dwarf2_per_cu_data *
b64f50a1 22483dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22484 unsigned int offset_in_dwz,
ae038cb0
DJ
22485 struct objfile *objfile)
22486{
22487 struct dwarf2_per_cu_data *this_cu;
22488 int low, high;
36586728 22489 const sect_offset *cu_off;
ae038cb0 22490
ae038cb0
DJ
22491 low = 0;
22492 high = dwarf2_per_objfile->n_comp_units - 1;
22493 while (high > low)
22494 {
36586728 22495 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22496 int mid = low + (high - low) / 2;
9a619af0 22497
36586728
TT
22498 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22499 cu_off = &mid_cu->offset;
22500 if (mid_cu->is_dwz > offset_in_dwz
22501 || (mid_cu->is_dwz == offset_in_dwz
22502 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22503 high = mid;
22504 else
22505 low = mid + 1;
22506 }
22507 gdb_assert (low == high);
36586728
TT
22508 this_cu = dwarf2_per_objfile->all_comp_units[low];
22509 cu_off = &this_cu->offset;
22510 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22511 {
36586728 22512 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22513 error (_("Dwarf Error: could not find partial DIE containing "
22514 "offset 0x%lx [in module %s]"),
b64f50a1 22515 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22516
b64f50a1
JK
22517 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22518 <= offset.sect_off);
ae038cb0
DJ
22519 return dwarf2_per_objfile->all_comp_units[low-1];
22520 }
22521 else
22522 {
22523 this_cu = dwarf2_per_objfile->all_comp_units[low];
22524 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22525 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22526 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22527 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22528 return this_cu;
22529 }
22530}
22531
23745b47 22532/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22533
9816fde3 22534static void
23745b47 22535init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22536{
9816fde3 22537 memset (cu, 0, sizeof (*cu));
23745b47
DE
22538 per_cu->cu = cu;
22539 cu->per_cu = per_cu;
22540 cu->objfile = per_cu->objfile;
93311388 22541 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22542}
22543
22544/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22545
22546static void
95554aad
TT
22547prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22548 enum language pretend_language)
9816fde3
JK
22549{
22550 struct attribute *attr;
22551
22552 /* Set the language we're debugging. */
22553 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22554 if (attr)
22555 set_cu_language (DW_UNSND (attr), cu);
22556 else
9cded63f 22557 {
95554aad 22558 cu->language = pretend_language;
9cded63f
TT
22559 cu->language_defn = language_def (cu->language);
22560 }
dee91e82 22561
7d45c7c3 22562 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22563}
22564
ae038cb0
DJ
22565/* Release one cached compilation unit, CU. We unlink it from the tree
22566 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22567 the caller is responsible for that.
22568 NOTE: DATA is a void * because this function is also used as a
22569 cleanup routine. */
ae038cb0
DJ
22570
22571static void
68dc6402 22572free_heap_comp_unit (void *data)
ae038cb0 22573{
9a3c8263 22574 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22575
23745b47
DE
22576 gdb_assert (cu->per_cu != NULL);
22577 cu->per_cu->cu = NULL;
ae038cb0
DJ
22578 cu->per_cu = NULL;
22579
22580 obstack_free (&cu->comp_unit_obstack, NULL);
22581
22582 xfree (cu);
22583}
22584
72bf9492 22585/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22586 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22587 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22588
22589static void
22590free_stack_comp_unit (void *data)
22591{
9a3c8263 22592 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22593
23745b47
DE
22594 gdb_assert (cu->per_cu != NULL);
22595 cu->per_cu->cu = NULL;
22596 cu->per_cu = NULL;
22597
72bf9492
DJ
22598 obstack_free (&cu->comp_unit_obstack, NULL);
22599 cu->partial_dies = NULL;
ae038cb0
DJ
22600}
22601
22602/* Free all cached compilation units. */
22603
22604static void
22605free_cached_comp_units (void *data)
22606{
22607 struct dwarf2_per_cu_data *per_cu, **last_chain;
22608
22609 per_cu = dwarf2_per_objfile->read_in_chain;
22610 last_chain = &dwarf2_per_objfile->read_in_chain;
22611 while (per_cu != NULL)
22612 {
22613 struct dwarf2_per_cu_data *next_cu;
22614
22615 next_cu = per_cu->cu->read_in_chain;
22616
68dc6402 22617 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22618 *last_chain = next_cu;
22619
22620 per_cu = next_cu;
22621 }
22622}
22623
22624/* Increase the age counter on each cached compilation unit, and free
22625 any that are too old. */
22626
22627static void
22628age_cached_comp_units (void)
22629{
22630 struct dwarf2_per_cu_data *per_cu, **last_chain;
22631
22632 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22633 per_cu = dwarf2_per_objfile->read_in_chain;
22634 while (per_cu != NULL)
22635 {
22636 per_cu->cu->last_used ++;
b4f54984 22637 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22638 dwarf2_mark (per_cu->cu);
22639 per_cu = per_cu->cu->read_in_chain;
22640 }
22641
22642 per_cu = dwarf2_per_objfile->read_in_chain;
22643 last_chain = &dwarf2_per_objfile->read_in_chain;
22644 while (per_cu != NULL)
22645 {
22646 struct dwarf2_per_cu_data *next_cu;
22647
22648 next_cu = per_cu->cu->read_in_chain;
22649
22650 if (!per_cu->cu->mark)
22651 {
68dc6402 22652 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22653 *last_chain = next_cu;
22654 }
22655 else
22656 last_chain = &per_cu->cu->read_in_chain;
22657
22658 per_cu = next_cu;
22659 }
22660}
22661
22662/* Remove a single compilation unit from the cache. */
22663
22664static void
dee91e82 22665free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22666{
22667 struct dwarf2_per_cu_data *per_cu, **last_chain;
22668
22669 per_cu = dwarf2_per_objfile->read_in_chain;
22670 last_chain = &dwarf2_per_objfile->read_in_chain;
22671 while (per_cu != NULL)
22672 {
22673 struct dwarf2_per_cu_data *next_cu;
22674
22675 next_cu = per_cu->cu->read_in_chain;
22676
dee91e82 22677 if (per_cu == target_per_cu)
ae038cb0 22678 {
68dc6402 22679 free_heap_comp_unit (per_cu->cu);
dee91e82 22680 per_cu->cu = NULL;
ae038cb0
DJ
22681 *last_chain = next_cu;
22682 break;
22683 }
22684 else
22685 last_chain = &per_cu->cu->read_in_chain;
22686
22687 per_cu = next_cu;
22688 }
22689}
22690
fe3e1990
DJ
22691/* Release all extra memory associated with OBJFILE. */
22692
22693void
22694dwarf2_free_objfile (struct objfile *objfile)
22695{
9a3c8263
SM
22696 dwarf2_per_objfile
22697 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22698 dwarf2_objfile_data_key);
fe3e1990
DJ
22699
22700 if (dwarf2_per_objfile == NULL)
22701 return;
22702
22703 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22704 free_cached_comp_units (NULL);
22705
7b9f3c50
DE
22706 if (dwarf2_per_objfile->quick_file_names_table)
22707 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22708
527f3840
JK
22709 if (dwarf2_per_objfile->line_header_hash)
22710 htab_delete (dwarf2_per_objfile->line_header_hash);
22711
fe3e1990
DJ
22712 /* Everything else should be on the objfile obstack. */
22713}
22714
dee91e82
DE
22715/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22716 We store these in a hash table separate from the DIEs, and preserve them
22717 when the DIEs are flushed out of cache.
22718
22719 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22720 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22721 or the type may come from a DWO file. Furthermore, while it's more logical
22722 to use per_cu->section+offset, with Fission the section with the data is in
22723 the DWO file but we don't know that section at the point we need it.
22724 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22725 because we can enter the lookup routine, get_die_type_at_offset, from
22726 outside this file, and thus won't necessarily have PER_CU->cu.
22727 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22728
dee91e82 22729struct dwarf2_per_cu_offset_and_type
1c379e20 22730{
dee91e82 22731 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22732 sect_offset offset;
1c379e20
DJ
22733 struct type *type;
22734};
22735
dee91e82 22736/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22737
22738static hashval_t
dee91e82 22739per_cu_offset_and_type_hash (const void *item)
1c379e20 22740{
9a3c8263
SM
22741 const struct dwarf2_per_cu_offset_and_type *ofs
22742 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22743
dee91e82 22744 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22745}
22746
dee91e82 22747/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22748
22749static int
dee91e82 22750per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22751{
9a3c8263
SM
22752 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22753 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22754 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22755 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22756
dee91e82
DE
22757 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22758 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22759}
22760
22761/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22762 table if necessary. For convenience, return TYPE.
22763
22764 The DIEs reading must have careful ordering to:
22765 * Not cause infite loops trying to read in DIEs as a prerequisite for
22766 reading current DIE.
22767 * Not trying to dereference contents of still incompletely read in types
22768 while reading in other DIEs.
22769 * Enable referencing still incompletely read in types just by a pointer to
22770 the type without accessing its fields.
22771
22772 Therefore caller should follow these rules:
22773 * Try to fetch any prerequisite types we may need to build this DIE type
22774 before building the type and calling set_die_type.
e71ec853 22775 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22776 possible before fetching more types to complete the current type.
22777 * Make the type as complete as possible before fetching more types. */
1c379e20 22778
f792889a 22779static struct type *
1c379e20
DJ
22780set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22781{
dee91e82 22782 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22783 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22784 struct attribute *attr;
22785 struct dynamic_prop prop;
1c379e20 22786
b4ba55a1
JB
22787 /* For Ada types, make sure that the gnat-specific data is always
22788 initialized (if not already set). There are a few types where
22789 we should not be doing so, because the type-specific area is
22790 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22791 where the type-specific area is used to store the floatformat).
22792 But this is not a problem, because the gnat-specific information
22793 is actually not needed for these types. */
22794 if (need_gnat_info (cu)
22795 && TYPE_CODE (type) != TYPE_CODE_FUNC
22796 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22797 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22798 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22799 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22800 && !HAVE_GNAT_AUX_INFO (type))
22801 INIT_GNAT_SPECIFIC (type);
22802
3f2f83dd
KB
22803 /* Read DW_AT_allocated and set in type. */
22804 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22805 if (attr_form_is_block (attr))
22806 {
22807 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22808 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22809 }
22810 else if (attr != NULL)
22811 {
22812 complaint (&symfile_complaints,
22813 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22814 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22815 die->offset.sect_off);
22816 }
22817
22818 /* Read DW_AT_associated and set in type. */
22819 attr = dwarf2_attr (die, DW_AT_associated, cu);
22820 if (attr_form_is_block (attr))
22821 {
22822 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22823 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22824 }
22825 else if (attr != NULL)
22826 {
22827 complaint (&symfile_complaints,
22828 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22829 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22830 die->offset.sect_off);
22831 }
22832
3cdcd0ce
JB
22833 /* Read DW_AT_data_location and set in type. */
22834 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22835 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22836 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22837
dee91e82 22838 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22839 {
dee91e82
DE
22840 dwarf2_per_objfile->die_type_hash =
22841 htab_create_alloc_ex (127,
22842 per_cu_offset_and_type_hash,
22843 per_cu_offset_and_type_eq,
22844 NULL,
22845 &objfile->objfile_obstack,
22846 hashtab_obstack_allocate,
22847 dummy_obstack_deallocate);
f792889a 22848 }
1c379e20 22849
dee91e82 22850 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22851 ofs.offset = die->offset;
22852 ofs.type = type;
dee91e82
DE
22853 slot = (struct dwarf2_per_cu_offset_and_type **)
22854 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22855 if (*slot)
22856 complaint (&symfile_complaints,
22857 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22858 die->offset.sect_off);
8d749320
SM
22859 *slot = XOBNEW (&objfile->objfile_obstack,
22860 struct dwarf2_per_cu_offset_and_type);
1c379e20 22861 **slot = ofs;
f792889a 22862 return type;
1c379e20
DJ
22863}
22864
02142a6c
DE
22865/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22866 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22867
22868static struct type *
b64f50a1 22869get_die_type_at_offset (sect_offset offset,
673bfd45 22870 struct dwarf2_per_cu_data *per_cu)
1c379e20 22871{
dee91e82 22872 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22873
dee91e82 22874 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22875 return NULL;
1c379e20 22876
dee91e82 22877 ofs.per_cu = per_cu;
673bfd45 22878 ofs.offset = offset;
9a3c8263
SM
22879 slot = ((struct dwarf2_per_cu_offset_and_type *)
22880 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22881 if (slot)
22882 return slot->type;
22883 else
22884 return NULL;
22885}
22886
02142a6c 22887/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22888 or return NULL if DIE does not have a saved type. */
22889
22890static struct type *
22891get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22892{
22893 return get_die_type_at_offset (die->offset, cu->per_cu);
22894}
22895
10b3939b
DJ
22896/* Add a dependence relationship from CU to REF_PER_CU. */
22897
22898static void
22899dwarf2_add_dependence (struct dwarf2_cu *cu,
22900 struct dwarf2_per_cu_data *ref_per_cu)
22901{
22902 void **slot;
22903
22904 if (cu->dependencies == NULL)
22905 cu->dependencies
22906 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22907 NULL, &cu->comp_unit_obstack,
22908 hashtab_obstack_allocate,
22909 dummy_obstack_deallocate);
22910
22911 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22912 if (*slot == NULL)
22913 *slot = ref_per_cu;
22914}
1c379e20 22915
f504f079
DE
22916/* Subroutine of dwarf2_mark to pass to htab_traverse.
22917 Set the mark field in every compilation unit in the
ae038cb0
DJ
22918 cache that we must keep because we are keeping CU. */
22919
10b3939b
DJ
22920static int
22921dwarf2_mark_helper (void **slot, void *data)
22922{
22923 struct dwarf2_per_cu_data *per_cu;
22924
22925 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22926
22927 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22928 reading of the chain. As such dependencies remain valid it is not much
22929 useful to track and undo them during QUIT cleanups. */
22930 if (per_cu->cu == NULL)
22931 return 1;
22932
10b3939b
DJ
22933 if (per_cu->cu->mark)
22934 return 1;
22935 per_cu->cu->mark = 1;
22936
22937 if (per_cu->cu->dependencies != NULL)
22938 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22939
22940 return 1;
22941}
22942
f504f079
DE
22943/* Set the mark field in CU and in every other compilation unit in the
22944 cache that we must keep because we are keeping CU. */
22945
ae038cb0
DJ
22946static void
22947dwarf2_mark (struct dwarf2_cu *cu)
22948{
22949 if (cu->mark)
22950 return;
22951 cu->mark = 1;
10b3939b
DJ
22952 if (cu->dependencies != NULL)
22953 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22954}
22955
22956static void
22957dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22958{
22959 while (per_cu)
22960 {
22961 per_cu->cu->mark = 0;
22962 per_cu = per_cu->cu->read_in_chain;
22963 }
72bf9492
DJ
22964}
22965
72bf9492
DJ
22966/* Trivial hash function for partial_die_info: the hash value of a DIE
22967 is its offset in .debug_info for this objfile. */
22968
22969static hashval_t
22970partial_die_hash (const void *item)
22971{
9a3c8263
SM
22972 const struct partial_die_info *part_die
22973 = (const struct partial_die_info *) item;
9a619af0 22974
b64f50a1 22975 return part_die->offset.sect_off;
72bf9492
DJ
22976}
22977
22978/* Trivial comparison function for partial_die_info structures: two DIEs
22979 are equal if they have the same offset. */
22980
22981static int
22982partial_die_eq (const void *item_lhs, const void *item_rhs)
22983{
9a3c8263
SM
22984 const struct partial_die_info *part_die_lhs
22985 = (const struct partial_die_info *) item_lhs;
22986 const struct partial_die_info *part_die_rhs
22987 = (const struct partial_die_info *) item_rhs;
9a619af0 22988
b64f50a1 22989 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22990}
22991
b4f54984
DE
22992static struct cmd_list_element *set_dwarf_cmdlist;
22993static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22994
22995static void
b4f54984 22996set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22997{
b4f54984 22998 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22999 gdb_stdout);
ae038cb0
DJ
23000}
23001
23002static void
b4f54984 23003show_dwarf_cmd (char *args, int from_tty)
6e70227d 23004{
b4f54984 23005 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23006}
23007
4bf44c1c 23008/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23009
23010static void
c1bd65d0 23011dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23012{
9a3c8263 23013 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23014 int ix;
8b70b953 23015
626f2d1c
TT
23016 /* Make sure we don't accidentally use dwarf2_per_objfile while
23017 cleaning up. */
23018 dwarf2_per_objfile = NULL;
23019
59b0c7c1
JB
23020 for (ix = 0; ix < data->n_comp_units; ++ix)
23021 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23022
59b0c7c1 23023 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23024 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23025 data->all_type_units[ix]->per_cu.imported_symtabs);
23026 xfree (data->all_type_units);
95554aad 23027
8b70b953 23028 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23029
23030 if (data->dwo_files)
23031 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23032 if (data->dwp_file)
23033 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23034
23035 if (data->dwz_file && data->dwz_file->dwz_bfd)
23036 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23037}
23038
23039\f
ae2de4f8 23040/* The "save gdb-index" command. */
9291a0cd
TT
23041
23042/* The contents of the hash table we create when building the string
23043 table. */
23044struct strtab_entry
23045{
23046 offset_type offset;
23047 const char *str;
23048};
23049
559a7a62
JK
23050/* Hash function for a strtab_entry.
23051
23052 Function is used only during write_hash_table so no index format backward
23053 compatibility is needed. */
b89be57b 23054
9291a0cd
TT
23055static hashval_t
23056hash_strtab_entry (const void *e)
23057{
9a3c8263 23058 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 23059 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
23060}
23061
23062/* Equality function for a strtab_entry. */
b89be57b 23063
9291a0cd
TT
23064static int
23065eq_strtab_entry (const void *a, const void *b)
23066{
9a3c8263
SM
23067 const struct strtab_entry *ea = (const struct strtab_entry *) a;
23068 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
23069 return !strcmp (ea->str, eb->str);
23070}
23071
23072/* Create a strtab_entry hash table. */
b89be57b 23073
9291a0cd
TT
23074static htab_t
23075create_strtab (void)
23076{
23077 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
23078 xfree, xcalloc, xfree);
23079}
23080
23081/* Add a string to the constant pool. Return the string's offset in
23082 host order. */
b89be57b 23083
9291a0cd
TT
23084static offset_type
23085add_string (htab_t table, struct obstack *cpool, const char *str)
23086{
23087 void **slot;
23088 struct strtab_entry entry;
23089 struct strtab_entry *result;
23090
23091 entry.str = str;
23092 slot = htab_find_slot (table, &entry, INSERT);
23093 if (*slot)
9a3c8263 23094 result = (struct strtab_entry *) *slot;
9291a0cd
TT
23095 else
23096 {
23097 result = XNEW (struct strtab_entry);
23098 result->offset = obstack_object_size (cpool);
23099 result->str = str;
23100 obstack_grow_str0 (cpool, str);
23101 *slot = result;
23102 }
23103 return result->offset;
23104}
23105
23106/* An entry in the symbol table. */
23107struct symtab_index_entry
23108{
23109 /* The name of the symbol. */
23110 const char *name;
23111 /* The offset of the name in the constant pool. */
23112 offset_type index_offset;
23113 /* A sorted vector of the indices of all the CUs that hold an object
23114 of this name. */
23115 VEC (offset_type) *cu_indices;
23116};
23117
23118/* The symbol table. This is a power-of-2-sized hash table. */
23119struct mapped_symtab
23120{
23121 offset_type n_elements;
23122 offset_type size;
23123 struct symtab_index_entry **data;
23124};
23125
23126/* Hash function for a symtab_index_entry. */
b89be57b 23127
9291a0cd
TT
23128static hashval_t
23129hash_symtab_entry (const void *e)
23130{
9a3c8263
SM
23131 const struct symtab_index_entry *entry
23132 = (const struct symtab_index_entry *) e;
9291a0cd
TT
23133 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
23134 sizeof (offset_type) * VEC_length (offset_type,
23135 entry->cu_indices),
23136 0);
23137}
23138
23139/* Equality function for a symtab_index_entry. */
b89be57b 23140
9291a0cd
TT
23141static int
23142eq_symtab_entry (const void *a, const void *b)
23143{
9a3c8263
SM
23144 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
23145 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
23146 int len = VEC_length (offset_type, ea->cu_indices);
23147 if (len != VEC_length (offset_type, eb->cu_indices))
23148 return 0;
23149 return !memcmp (VEC_address (offset_type, ea->cu_indices),
23150 VEC_address (offset_type, eb->cu_indices),
23151 sizeof (offset_type) * len);
23152}
23153
23154/* Destroy a symtab_index_entry. */
b89be57b 23155
9291a0cd
TT
23156static void
23157delete_symtab_entry (void *p)
23158{
9a3c8263 23159 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
23160 VEC_free (offset_type, entry->cu_indices);
23161 xfree (entry);
23162}
23163
23164/* Create a hash table holding symtab_index_entry objects. */
b89be57b 23165
9291a0cd 23166static htab_t
3876f04e 23167create_symbol_hash_table (void)
9291a0cd
TT
23168{
23169 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
23170 delete_symtab_entry, xcalloc, xfree);
23171}
23172
23173/* Create a new mapped symtab object. */
b89be57b 23174
9291a0cd
TT
23175static struct mapped_symtab *
23176create_mapped_symtab (void)
23177{
23178 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
23179 symtab->n_elements = 0;
23180 symtab->size = 1024;
23181 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23182 return symtab;
23183}
23184
23185/* Destroy a mapped_symtab. */
b89be57b 23186
9291a0cd
TT
23187static void
23188cleanup_mapped_symtab (void *p)
23189{
9a3c8263 23190 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
23191 /* The contents of the array are freed when the other hash table is
23192 destroyed. */
23193 xfree (symtab->data);
23194 xfree (symtab);
23195}
23196
23197/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
23198 the slot.
23199
23200 Function is used only during write_hash_table so no index format backward
23201 compatibility is needed. */
b89be57b 23202
9291a0cd
TT
23203static struct symtab_index_entry **
23204find_slot (struct mapped_symtab *symtab, const char *name)
23205{
559a7a62 23206 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
23207
23208 index = hash & (symtab->size - 1);
23209 step = ((hash * 17) & (symtab->size - 1)) | 1;
23210
23211 for (;;)
23212 {
23213 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
23214 return &symtab->data[index];
23215 index = (index + step) & (symtab->size - 1);
23216 }
23217}
23218
23219/* Expand SYMTAB's hash table. */
b89be57b 23220
9291a0cd
TT
23221static void
23222hash_expand (struct mapped_symtab *symtab)
23223{
23224 offset_type old_size = symtab->size;
23225 offset_type i;
23226 struct symtab_index_entry **old_entries = symtab->data;
23227
23228 symtab->size *= 2;
23229 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23230
23231 for (i = 0; i < old_size; ++i)
23232 {
23233 if (old_entries[i])
23234 {
23235 struct symtab_index_entry **slot = find_slot (symtab,
23236 old_entries[i]->name);
23237 *slot = old_entries[i];
23238 }
23239 }
23240
23241 xfree (old_entries);
23242}
23243
156942c7
DE
23244/* Add an entry to SYMTAB. NAME is the name of the symbol.
23245 CU_INDEX is the index of the CU in which the symbol appears.
23246 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23247
9291a0cd
TT
23248static void
23249add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23250 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23251 offset_type cu_index)
23252{
23253 struct symtab_index_entry **slot;
156942c7 23254 offset_type cu_index_and_attrs;
9291a0cd
TT
23255
23256 ++symtab->n_elements;
23257 if (4 * symtab->n_elements / 3 >= symtab->size)
23258 hash_expand (symtab);
23259
23260 slot = find_slot (symtab, name);
23261 if (!*slot)
23262 {
23263 *slot = XNEW (struct symtab_index_entry);
23264 (*slot)->name = name;
156942c7 23265 /* index_offset is set later. */
9291a0cd
TT
23266 (*slot)->cu_indices = NULL;
23267 }
156942c7
DE
23268
23269 cu_index_and_attrs = 0;
23270 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23271 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23272 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23273
23274 /* We don't want to record an index value twice as we want to avoid the
23275 duplication.
23276 We process all global symbols and then all static symbols
23277 (which would allow us to avoid the duplication by only having to check
23278 the last entry pushed), but a symbol could have multiple kinds in one CU.
23279 To keep things simple we don't worry about the duplication here and
23280 sort and uniqufy the list after we've processed all symbols. */
23281 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
23282}
23283
23284/* qsort helper routine for uniquify_cu_indices. */
23285
23286static int
23287offset_type_compare (const void *ap, const void *bp)
23288{
23289 offset_type a = *(offset_type *) ap;
23290 offset_type b = *(offset_type *) bp;
23291
23292 return (a > b) - (b > a);
23293}
23294
23295/* Sort and remove duplicates of all symbols' cu_indices lists. */
23296
23297static void
23298uniquify_cu_indices (struct mapped_symtab *symtab)
23299{
23300 int i;
23301
23302 for (i = 0; i < symtab->size; ++i)
23303 {
23304 struct symtab_index_entry *entry = symtab->data[i];
23305
23306 if (entry
23307 && entry->cu_indices != NULL)
23308 {
23309 unsigned int next_to_insert, next_to_check;
23310 offset_type last_value;
23311
23312 qsort (VEC_address (offset_type, entry->cu_indices),
23313 VEC_length (offset_type, entry->cu_indices),
23314 sizeof (offset_type), offset_type_compare);
23315
23316 last_value = VEC_index (offset_type, entry->cu_indices, 0);
23317 next_to_insert = 1;
23318 for (next_to_check = 1;
23319 next_to_check < VEC_length (offset_type, entry->cu_indices);
23320 ++next_to_check)
23321 {
23322 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
23323 != last_value)
23324 {
23325 last_value = VEC_index (offset_type, entry->cu_indices,
23326 next_to_check);
23327 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
23328 last_value);
23329 ++next_to_insert;
23330 }
23331 }
23332 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
23333 }
23334 }
9291a0cd
TT
23335}
23336
23337/* Add a vector of indices to the constant pool. */
b89be57b 23338
9291a0cd 23339static offset_type
3876f04e 23340add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
23341 struct symtab_index_entry *entry)
23342{
23343 void **slot;
23344
3876f04e 23345 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
23346 if (!*slot)
23347 {
23348 offset_type len = VEC_length (offset_type, entry->cu_indices);
23349 offset_type val = MAYBE_SWAP (len);
23350 offset_type iter;
23351 int i;
23352
23353 *slot = entry;
23354 entry->index_offset = obstack_object_size (cpool);
23355
23356 obstack_grow (cpool, &val, sizeof (val));
23357 for (i = 0;
23358 VEC_iterate (offset_type, entry->cu_indices, i, iter);
23359 ++i)
23360 {
23361 val = MAYBE_SWAP (iter);
23362 obstack_grow (cpool, &val, sizeof (val));
23363 }
23364 }
23365 else
23366 {
9a3c8263
SM
23367 struct symtab_index_entry *old_entry
23368 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
23369 entry->index_offset = old_entry->index_offset;
23370 entry = old_entry;
23371 }
23372 return entry->index_offset;
23373}
23374
23375/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
23376 constant pool entries going into the obstack CPOOL. */
b89be57b 23377
9291a0cd
TT
23378static void
23379write_hash_table (struct mapped_symtab *symtab,
23380 struct obstack *output, struct obstack *cpool)
23381{
23382 offset_type i;
3876f04e 23383 htab_t symbol_hash_table;
9291a0cd
TT
23384 htab_t str_table;
23385
3876f04e 23386 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 23387 str_table = create_strtab ();
3876f04e 23388
9291a0cd
TT
23389 /* We add all the index vectors to the constant pool first, to
23390 ensure alignment is ok. */
23391 for (i = 0; i < symtab->size; ++i)
23392 {
23393 if (symtab->data[i])
3876f04e 23394 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
23395 }
23396
23397 /* Now write out the hash table. */
23398 for (i = 0; i < symtab->size; ++i)
23399 {
23400 offset_type str_off, vec_off;
23401
23402 if (symtab->data[i])
23403 {
23404 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23405 vec_off = symtab->data[i]->index_offset;
23406 }
23407 else
23408 {
23409 /* While 0 is a valid constant pool index, it is not valid
23410 to have 0 for both offsets. */
23411 str_off = 0;
23412 vec_off = 0;
23413 }
23414
23415 str_off = MAYBE_SWAP (str_off);
23416 vec_off = MAYBE_SWAP (vec_off);
23417
23418 obstack_grow (output, &str_off, sizeof (str_off));
23419 obstack_grow (output, &vec_off, sizeof (vec_off));
23420 }
23421
23422 htab_delete (str_table);
3876f04e 23423 htab_delete (symbol_hash_table);
9291a0cd
TT
23424}
23425
0a5429f6
DE
23426/* Struct to map psymtab to CU index in the index file. */
23427struct psymtab_cu_index_map
23428{
23429 struct partial_symtab *psymtab;
23430 unsigned int cu_index;
23431};
23432
23433static hashval_t
23434hash_psymtab_cu_index (const void *item)
23435{
9a3c8263
SM
23436 const struct psymtab_cu_index_map *map
23437 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
23438
23439 return htab_hash_pointer (map->psymtab);
23440}
23441
23442static int
23443eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23444{
9a3c8263
SM
23445 const struct psymtab_cu_index_map *lhs
23446 = (const struct psymtab_cu_index_map *) item_lhs;
23447 const struct psymtab_cu_index_map *rhs
23448 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23449
23450 return lhs->psymtab == rhs->psymtab;
23451}
23452
23453/* Helper struct for building the address table. */
23454struct addrmap_index_data
23455{
23456 struct objfile *objfile;
23457 struct obstack *addr_obstack;
23458 htab_t cu_index_htab;
23459
23460 /* Non-zero if the previous_* fields are valid.
23461 We can't write an entry until we see the next entry (since it is only then
23462 that we know the end of the entry). */
23463 int previous_valid;
23464 /* Index of the CU in the table of all CUs in the index file. */
23465 unsigned int previous_cu_index;
0963b4bd 23466 /* Start address of the CU. */
0a5429f6
DE
23467 CORE_ADDR previous_cu_start;
23468};
23469
23470/* Write an address entry to OBSTACK. */
b89be57b 23471
9291a0cd 23472static void
0a5429f6
DE
23473add_address_entry (struct objfile *objfile, struct obstack *obstack,
23474 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23475{
0a5429f6 23476 offset_type cu_index_to_write;
948f8e3d 23477 gdb_byte addr[8];
9291a0cd
TT
23478 CORE_ADDR baseaddr;
23479
23480 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23481
0a5429f6
DE
23482 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23483 obstack_grow (obstack, addr, 8);
23484 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23485 obstack_grow (obstack, addr, 8);
23486 cu_index_to_write = MAYBE_SWAP (cu_index);
23487 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23488}
23489
23490/* Worker function for traversing an addrmap to build the address table. */
23491
23492static int
23493add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23494{
9a3c8263
SM
23495 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23496 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23497
23498 if (data->previous_valid)
23499 add_address_entry (data->objfile, data->addr_obstack,
23500 data->previous_cu_start, start_addr,
23501 data->previous_cu_index);
23502
23503 data->previous_cu_start = start_addr;
23504 if (pst != NULL)
23505 {
23506 struct psymtab_cu_index_map find_map, *map;
23507 find_map.psymtab = pst;
9a3c8263
SM
23508 map = ((struct psymtab_cu_index_map *)
23509 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23510 gdb_assert (map != NULL);
23511 data->previous_cu_index = map->cu_index;
23512 data->previous_valid = 1;
23513 }
23514 else
23515 data->previous_valid = 0;
23516
23517 return 0;
23518}
23519
23520/* Write OBJFILE's address map to OBSTACK.
23521 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23522 in the index file. */
23523
23524static void
23525write_address_map (struct objfile *objfile, struct obstack *obstack,
23526 htab_t cu_index_htab)
23527{
23528 struct addrmap_index_data addrmap_index_data;
23529
23530 /* When writing the address table, we have to cope with the fact that
23531 the addrmap iterator only provides the start of a region; we have to
23532 wait until the next invocation to get the start of the next region. */
23533
23534 addrmap_index_data.objfile = objfile;
23535 addrmap_index_data.addr_obstack = obstack;
23536 addrmap_index_data.cu_index_htab = cu_index_htab;
23537 addrmap_index_data.previous_valid = 0;
23538
23539 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23540 &addrmap_index_data);
23541
23542 /* It's highly unlikely the last entry (end address = 0xff...ff)
23543 is valid, but we should still handle it.
23544 The end address is recorded as the start of the next region, but that
23545 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23546 anyway. */
23547 if (addrmap_index_data.previous_valid)
23548 add_address_entry (objfile, obstack,
23549 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23550 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23551}
23552
156942c7
DE
23553/* Return the symbol kind of PSYM. */
23554
23555static gdb_index_symbol_kind
23556symbol_kind (struct partial_symbol *psym)
23557{
23558 domain_enum domain = PSYMBOL_DOMAIN (psym);
23559 enum address_class aclass = PSYMBOL_CLASS (psym);
23560
23561 switch (domain)
23562 {
23563 case VAR_DOMAIN:
23564 switch (aclass)
23565 {
23566 case LOC_BLOCK:
23567 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23568 case LOC_TYPEDEF:
23569 return GDB_INDEX_SYMBOL_KIND_TYPE;
23570 case LOC_COMPUTED:
23571 case LOC_CONST_BYTES:
23572 case LOC_OPTIMIZED_OUT:
23573 case LOC_STATIC:
23574 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23575 case LOC_CONST:
23576 /* Note: It's currently impossible to recognize psyms as enum values
23577 short of reading the type info. For now punt. */
23578 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23579 default:
23580 /* There are other LOC_FOO values that one might want to classify
23581 as variables, but dwarf2read.c doesn't currently use them. */
23582 return GDB_INDEX_SYMBOL_KIND_OTHER;
23583 }
23584 case STRUCT_DOMAIN:
23585 return GDB_INDEX_SYMBOL_KIND_TYPE;
23586 default:
23587 return GDB_INDEX_SYMBOL_KIND_OTHER;
23588 }
23589}
23590
9291a0cd 23591/* Add a list of partial symbols to SYMTAB. */
b89be57b 23592
9291a0cd
TT
23593static void
23594write_psymbols (struct mapped_symtab *symtab,
987d643c 23595 htab_t psyms_seen,
9291a0cd
TT
23596 struct partial_symbol **psymp,
23597 int count,
987d643c
TT
23598 offset_type cu_index,
23599 int is_static)
9291a0cd
TT
23600{
23601 for (; count-- > 0; ++psymp)
23602 {
156942c7
DE
23603 struct partial_symbol *psym = *psymp;
23604 void **slot;
987d643c 23605
156942c7 23606 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23607 error (_("Ada is not currently supported by the index"));
987d643c 23608
987d643c 23609 /* Only add a given psymbol once. */
156942c7 23610 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23611 if (!*slot)
23612 {
156942c7
DE
23613 gdb_index_symbol_kind kind = symbol_kind (psym);
23614
23615 *slot = psym;
23616 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23617 is_static, kind, cu_index);
987d643c 23618 }
9291a0cd
TT
23619 }
23620}
23621
23622/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23623 exception if there is an error. */
b89be57b 23624
9291a0cd
TT
23625static void
23626write_obstack (FILE *file, struct obstack *obstack)
23627{
23628 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23629 file)
23630 != obstack_object_size (obstack))
23631 error (_("couldn't data write to file"));
23632}
23633
1fd400ff
TT
23634/* A helper struct used when iterating over debug_types. */
23635struct signatured_type_index_data
23636{
23637 struct objfile *objfile;
23638 struct mapped_symtab *symtab;
23639 struct obstack *types_list;
987d643c 23640 htab_t psyms_seen;
1fd400ff
TT
23641 int cu_index;
23642};
23643
23644/* A helper function that writes a single signatured_type to an
23645 obstack. */
b89be57b 23646
1fd400ff
TT
23647static int
23648write_one_signatured_type (void **slot, void *d)
23649{
9a3c8263
SM
23650 struct signatured_type_index_data *info
23651 = (struct signatured_type_index_data *) d;
1fd400ff 23652 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23653 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23654 gdb_byte val[8];
23655
23656 write_psymbols (info->symtab,
987d643c 23657 info->psyms_seen,
3e43a32a
MS
23658 info->objfile->global_psymbols.list
23659 + psymtab->globals_offset,
987d643c
TT
23660 psymtab->n_global_syms, info->cu_index,
23661 0);
1fd400ff 23662 write_psymbols (info->symtab,
987d643c 23663 info->psyms_seen,
3e43a32a
MS
23664 info->objfile->static_psymbols.list
23665 + psymtab->statics_offset,
987d643c
TT
23666 psymtab->n_static_syms, info->cu_index,
23667 1);
1fd400ff 23668
b64f50a1
JK
23669 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23670 entry->per_cu.offset.sect_off);
1fd400ff 23671 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23672 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23673 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23674 obstack_grow (info->types_list, val, 8);
23675 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23676 obstack_grow (info->types_list, val, 8);
23677
23678 ++info->cu_index;
23679
23680 return 1;
23681}
23682
95554aad
TT
23683/* Recurse into all "included" dependencies and write their symbols as
23684 if they appeared in this psymtab. */
23685
23686static void
23687recursively_write_psymbols (struct objfile *objfile,
23688 struct partial_symtab *psymtab,
23689 struct mapped_symtab *symtab,
23690 htab_t psyms_seen,
23691 offset_type cu_index)
23692{
23693 int i;
23694
23695 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23696 if (psymtab->dependencies[i]->user != NULL)
23697 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23698 symtab, psyms_seen, cu_index);
23699
23700 write_psymbols (symtab,
23701 psyms_seen,
23702 objfile->global_psymbols.list + psymtab->globals_offset,
23703 psymtab->n_global_syms, cu_index,
23704 0);
23705 write_psymbols (symtab,
23706 psyms_seen,
23707 objfile->static_psymbols.list + psymtab->statics_offset,
23708 psymtab->n_static_syms, cu_index,
23709 1);
23710}
23711
9291a0cd 23712/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23713
9291a0cd
TT
23714static void
23715write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23716{
23717 struct cleanup *cleanup;
bef155c3 23718 char *filename;
1fd400ff
TT
23719 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23720 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23721 int i;
23722 FILE *out_file;
23723 struct mapped_symtab *symtab;
23724 offset_type val, size_of_contents, total_len;
23725 struct stat st;
0a5429f6 23726 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23727
9291a0cd
TT
23728 if (dwarf2_per_objfile->using_index)
23729 error (_("Cannot use an index to create the index"));
23730
8b70b953
TT
23731 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23732 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23733
260b681b
DE
23734 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23735 return;
23736
4262abfb
JK
23737 if (stat (objfile_name (objfile), &st) < 0)
23738 perror_with_name (objfile_name (objfile));
9291a0cd 23739
4262abfb 23740 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23741 INDEX_SUFFIX, (char *) NULL);
23742 cleanup = make_cleanup (xfree, filename);
23743
614c279d 23744 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23745 if (!out_file)
23746 error (_("Can't open `%s' for writing"), filename);
23747
bef155c3 23748 gdb::unlinker unlink_file (filename);
9291a0cd
TT
23749
23750 symtab = create_mapped_symtab ();
23751 make_cleanup (cleanup_mapped_symtab, symtab);
23752
23753 obstack_init (&addr_obstack);
23754 make_cleanup_obstack_free (&addr_obstack);
23755
23756 obstack_init (&cu_list);
23757 make_cleanup_obstack_free (&cu_list);
23758
1fd400ff
TT
23759 obstack_init (&types_cu_list);
23760 make_cleanup_obstack_free (&types_cu_list);
23761
fc4007c9
TT
23762 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23763 htab_eq_pointer,
23764 NULL, xcalloc, xfree));
987d643c 23765
0a5429f6
DE
23766 /* While we're scanning CU's create a table that maps a psymtab pointer
23767 (which is what addrmap records) to its index (which is what is recorded
23768 in the index file). This will later be needed to write the address
23769 table. */
fc4007c9
TT
23770 htab_up cu_index_htab (htab_create_alloc (100,
23771 hash_psymtab_cu_index,
23772 eq_psymtab_cu_index,
23773 NULL, xcalloc, xfree));
8d749320
SM
23774 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23775 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23776 make_cleanup (xfree, psymtab_cu_index_map);
23777
23778 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23779 work here. Also, the debug_types entries do not appear in
23780 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23781 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23782 {
3e43a32a
MS
23783 struct dwarf2_per_cu_data *per_cu
23784 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23785 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23786 gdb_byte val[8];
0a5429f6
DE
23787 struct psymtab_cu_index_map *map;
23788 void **slot;
9291a0cd 23789
92fac807
JK
23790 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23791 It may be referenced from a local scope but in such case it does not
23792 need to be present in .gdb_index. */
23793 if (psymtab == NULL)
23794 continue;
23795
95554aad 23796 if (psymtab->user == NULL)
fc4007c9
TT
23797 recursively_write_psymbols (objfile, psymtab, symtab,
23798 psyms_seen.get (), i);
9291a0cd 23799
0a5429f6
DE
23800 map = &psymtab_cu_index_map[i];
23801 map->psymtab = psymtab;
23802 map->cu_index = i;
fc4007c9 23803 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
0a5429f6
DE
23804 gdb_assert (slot != NULL);
23805 gdb_assert (*slot == NULL);
23806 *slot = map;
9291a0cd 23807
b64f50a1
JK
23808 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23809 per_cu->offset.sect_off);
9291a0cd 23810 obstack_grow (&cu_list, val, 8);
e254ef6a 23811 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23812 obstack_grow (&cu_list, val, 8);
23813 }
23814
0a5429f6 23815 /* Dump the address map. */
fc4007c9 23816 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
0a5429f6 23817
1fd400ff
TT
23818 /* Write out the .debug_type entries, if any. */
23819 if (dwarf2_per_objfile->signatured_types)
23820 {
23821 struct signatured_type_index_data sig_data;
23822
23823 sig_data.objfile = objfile;
23824 sig_data.symtab = symtab;
23825 sig_data.types_list = &types_cu_list;
fc4007c9 23826 sig_data.psyms_seen = psyms_seen.get ();
1fd400ff
TT
23827 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23828 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23829 write_one_signatured_type, &sig_data);
23830 }
23831
156942c7
DE
23832 /* Now that we've processed all symbols we can shrink their cu_indices
23833 lists. */
23834 uniquify_cu_indices (symtab);
23835
9291a0cd
TT
23836 obstack_init (&constant_pool);
23837 make_cleanup_obstack_free (&constant_pool);
23838 obstack_init (&symtab_obstack);
23839 make_cleanup_obstack_free (&symtab_obstack);
23840 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23841
23842 obstack_init (&contents);
23843 make_cleanup_obstack_free (&contents);
1fd400ff 23844 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23845 total_len = size_of_contents;
23846
23847 /* The version number. */
796a7ff8 23848 val = MAYBE_SWAP (8);
9291a0cd
TT
23849 obstack_grow (&contents, &val, sizeof (val));
23850
23851 /* The offset of the CU list from the start of the file. */
23852 val = MAYBE_SWAP (total_len);
23853 obstack_grow (&contents, &val, sizeof (val));
23854 total_len += obstack_object_size (&cu_list);
23855
1fd400ff
TT
23856 /* The offset of the types CU list from the start of the file. */
23857 val = MAYBE_SWAP (total_len);
23858 obstack_grow (&contents, &val, sizeof (val));
23859 total_len += obstack_object_size (&types_cu_list);
23860
9291a0cd
TT
23861 /* The offset of the address table from the start of the file. */
23862 val = MAYBE_SWAP (total_len);
23863 obstack_grow (&contents, &val, sizeof (val));
23864 total_len += obstack_object_size (&addr_obstack);
23865
23866 /* The offset of the symbol table from the start of the file. */
23867 val = MAYBE_SWAP (total_len);
23868 obstack_grow (&contents, &val, sizeof (val));
23869 total_len += obstack_object_size (&symtab_obstack);
23870
23871 /* The offset of the constant pool from the start of the file. */
23872 val = MAYBE_SWAP (total_len);
23873 obstack_grow (&contents, &val, sizeof (val));
23874 total_len += obstack_object_size (&constant_pool);
23875
23876 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23877
23878 write_obstack (out_file, &contents);
23879 write_obstack (out_file, &cu_list);
1fd400ff 23880 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23881 write_obstack (out_file, &addr_obstack);
23882 write_obstack (out_file, &symtab_obstack);
23883 write_obstack (out_file, &constant_pool);
23884
23885 fclose (out_file);
23886
bef155c3
TT
23887 /* We want to keep the file. */
23888 unlink_file.keep ();
9291a0cd
TT
23889
23890 do_cleanups (cleanup);
23891}
23892
90476074
TT
23893/* Implementation of the `save gdb-index' command.
23894
23895 Note that the file format used by this command is documented in the
23896 GDB manual. Any changes here must be documented there. */
11570e71 23897
9291a0cd
TT
23898static void
23899save_gdb_index_command (char *arg, int from_tty)
23900{
23901 struct objfile *objfile;
23902
23903 if (!arg || !*arg)
96d19272 23904 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23905
23906 ALL_OBJFILES (objfile)
23907 {
23908 struct stat st;
23909
23910 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23911 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23912 continue;
23913
9a3c8263
SM
23914 dwarf2_per_objfile
23915 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23916 dwarf2_objfile_data_key);
9291a0cd
TT
23917 if (dwarf2_per_objfile)
23918 {
9291a0cd 23919
492d29ea 23920 TRY
9291a0cd
TT
23921 {
23922 write_psymtabs_to_index (objfile, arg);
23923 }
492d29ea
PA
23924 CATCH (except, RETURN_MASK_ERROR)
23925 {
23926 exception_fprintf (gdb_stderr, except,
23927 _("Error while writing index for `%s': "),
23928 objfile_name (objfile));
23929 }
23930 END_CATCH
9291a0cd
TT
23931 }
23932 }
dce234bc
PP
23933}
23934
9291a0cd
TT
23935\f
23936
b4f54984 23937int dwarf_always_disassemble;
9eae7c52
TT
23938
23939static void
b4f54984
DE
23940show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23941 struct cmd_list_element *c, const char *value)
9eae7c52 23942{
3e43a32a
MS
23943 fprintf_filtered (file,
23944 _("Whether to always disassemble "
23945 "DWARF expressions is %s.\n"),
9eae7c52
TT
23946 value);
23947}
23948
900e11f9
JK
23949static void
23950show_check_physname (struct ui_file *file, int from_tty,
23951 struct cmd_list_element *c, const char *value)
23952{
23953 fprintf_filtered (file,
23954 _("Whether to check \"physname\" is %s.\n"),
23955 value);
23956}
23957
6502dd73
DJ
23958void _initialize_dwarf2_read (void);
23959
23960void
23961_initialize_dwarf2_read (void)
23962{
96d19272
JK
23963 struct cmd_list_element *c;
23964
dce234bc 23965 dwarf2_objfile_data_key
c1bd65d0 23966 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23967
b4f54984
DE
23968 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23969Set DWARF specific variables.\n\
23970Configure DWARF variables such as the cache size"),
23971 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23972 0/*allow-unknown*/, &maintenance_set_cmdlist);
23973
b4f54984
DE
23974 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23975Show DWARF specific variables\n\
23976Show DWARF variables such as the cache size"),
23977 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23978 0/*allow-unknown*/, &maintenance_show_cmdlist);
23979
23980 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23981 &dwarf_max_cache_age, _("\
23982Set the upper bound on the age of cached DWARF compilation units."), _("\
23983Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23984A higher limit means that cached compilation units will be stored\n\
23985in memory longer, and more total memory will be used. Zero disables\n\
23986caching, which can slow down startup."),
2c5b56ce 23987 NULL,
b4f54984
DE
23988 show_dwarf_max_cache_age,
23989 &set_dwarf_cmdlist,
23990 &show_dwarf_cmdlist);
d97bc12b 23991
9eae7c52 23992 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23993 &dwarf_always_disassemble, _("\
9eae7c52
TT
23994Set whether `info address' always disassembles DWARF expressions."), _("\
23995Show whether `info address' always disassembles DWARF expressions."), _("\
23996When enabled, DWARF expressions are always printed in an assembly-like\n\
23997syntax. When disabled, expressions will be printed in a more\n\
23998conversational style, when possible."),
23999 NULL,
b4f54984
DE
24000 show_dwarf_always_disassemble,
24001 &set_dwarf_cmdlist,
24002 &show_dwarf_cmdlist);
24003
24004 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24005Set debugging of the DWARF reader."), _("\
24006Show debugging of the DWARF reader."), _("\
24007When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24008reading and symtab expansion. A value of 1 (one) provides basic\n\
24009information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24010 NULL,
24011 NULL,
24012 &setdebuglist, &showdebuglist);
24013
b4f54984
DE
24014 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24015Set debugging of the DWARF DIE reader."), _("\
24016Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24017When enabled (non-zero), DIEs are dumped after they are read in.\n\
24018The value is the maximum depth to print."),
ccce17b0
YQ
24019 NULL,
24020 NULL,
24021 &setdebuglist, &showdebuglist);
9291a0cd 24022
27e0867f
DE
24023 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24024Set debugging of the dwarf line reader."), _("\
24025Show debugging of the dwarf line reader."), _("\
24026When enabled (non-zero), line number entries are dumped as they are read in.\n\
24027A value of 1 (one) provides basic information.\n\
24028A value greater than 1 provides more verbose information."),
24029 NULL,
24030 NULL,
24031 &setdebuglist, &showdebuglist);
24032
900e11f9
JK
24033 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24034Set cross-checking of \"physname\" code against demangler."), _("\
24035Show cross-checking of \"physname\" code against demangler."), _("\
24036When enabled, GDB's internal \"physname\" code is checked against\n\
24037the demangler."),
24038 NULL, show_check_physname,
24039 &setdebuglist, &showdebuglist);
24040
e615022a
DE
24041 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24042 no_class, &use_deprecated_index_sections, _("\
24043Set whether to use deprecated gdb_index sections."), _("\
24044Show whether to use deprecated gdb_index sections."), _("\
24045When enabled, deprecated .gdb_index sections are used anyway.\n\
24046Normally they are ignored either because of a missing feature or\n\
24047performance issue.\n\
24048Warning: This option must be enabled before gdb reads the file."),
24049 NULL,
24050 NULL,
24051 &setlist, &showlist);
24052
96d19272 24053 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24054 _("\
fc1a9d6e 24055Save a gdb-index file.\n\
11570e71 24056Usage: save gdb-index DIRECTORY"),
96d19272
JK
24057 &save_cmdlist);
24058 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24059
24060 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24061 &dwarf2_locexpr_funcs);
24062 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24063 &dwarf2_loclist_funcs);
24064
24065 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24066 &dwarf2_block_frame_base_locexpr_funcs);
24067 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24068 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24069}
This page took 3.999672 seconds and 4 git commands to generate.