Handle DW_OP_form_tls_address
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
618f726f 3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
3a2b436a 1609/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1610 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1611enum pc_bounds_kind
1612{
e385593e 1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1614 PC_BOUNDS_NOT_PRESENT,
1615
e385593e
JK
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
3a2b436a
JK
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625};
1626
1627static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
c906108c 1631
fae299cd
DC
1632static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
801e3a5b
JB
1636static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
a14ed312 1639static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1640 struct dwarf2_cu *);
c906108c 1641
a14ed312 1642static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1643 struct type *, struct dwarf2_cu *);
c906108c 1644
a14ed312 1645static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1646 struct die_info *, struct type *,
e7c27a73 1647 struct dwarf2_cu *);
c906108c 1648
a14ed312 1649static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1650 struct type *,
1651 struct dwarf2_cu *);
c906108c 1652
134d01f1 1653static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1654
e7c27a73 1655static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1656
e7c27a73 1657static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1658
5d7cb8df
JK
1659static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
22cee43f
PMR
1661static struct using_direct **using_directives (enum language);
1662
27aa8d6a
SW
1663static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
74921315
KS
1665static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
f55ee35c
JK
1667static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
38d518c9 1670static const char *namespace_name (struct die_info *die,
e142c38c 1671 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1672
134d01f1 1673static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1674
e7c27a73 1675static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1676
6e70227d 1677static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1678 struct dwarf2_cu *);
1679
bf6af496 1680static struct die_info *read_die_and_siblings_1
d521ce57 1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1682 struct die_info *);
639d11d3 1683
dee91e82 1684static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
639d11d3
DC
1687 struct die_info *parent);
1688
d521ce57
TT
1689static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
3019eac3 1692
d521ce57
TT
1693static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
93311388 1696
e7c27a73 1697static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1698
15d034d0
TT
1699static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
71c25dea 1701
15d034d0 1702static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1703
15d034d0 1704static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
ca69b9e6
DE
1708static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
e142c38c 1711static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1712 struct dwarf2_cu **);
9219021c 1713
f39c6ffd 1714static const char *dwarf_tag_name (unsigned int);
c906108c 1715
f39c6ffd 1716static const char *dwarf_attr_name (unsigned int);
c906108c 1717
f39c6ffd 1718static const char *dwarf_form_name (unsigned int);
c906108c 1719
a14ed312 1720static char *dwarf_bool_name (unsigned int);
c906108c 1721
f39c6ffd 1722static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1723
f9aca02d 1724static struct die_info *sibling_die (struct die_info *);
c906108c 1725
d97bc12b
DE
1726static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728static void dump_die_for_error (struct die_info *);
1729
1730static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
c906108c 1732
d97bc12b 1733/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1734
51545339 1735static void store_in_ref_table (struct die_info *,
10b3939b 1736 struct dwarf2_cu *);
c906108c 1737
ff39bb5e 1738static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1739
ff39bb5e 1740static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1741
348e048f 1742static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1743 const struct attribute *,
348e048f
DE
1744 struct dwarf2_cu **);
1745
10b3939b 1746static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1747 const struct attribute *,
f2f0e013 1748 struct dwarf2_cu **);
c906108c 1749
348e048f 1750static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1751 const struct attribute *,
348e048f
DE
1752 struct dwarf2_cu **);
1753
ac9ec31b
DE
1754static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1758 const struct attribute *,
ac9ec31b
DE
1759 struct dwarf2_cu *);
1760
e5fe5e75 1761static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1762
52dc124a 1763static void read_signatured_type (struct signatured_type *);
348e048f 1764
63e43d3a
PMR
1765static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
c906108c
SS
1769/* memory allocation interface */
1770
7b5a2f43 1771static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1772
b60c80d6 1773static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1774
43f3e411 1775static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1776
6e5a29e1 1777static int attr_form_is_block (const struct attribute *);
8e19ed76 1778
6e5a29e1 1779static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1780
6e5a29e1 1781static int attr_form_is_constant (const struct attribute *);
3690dd37 1782
6e5a29e1 1783static int attr_form_is_ref (const struct attribute *);
7771576e 1784
8cf6f0b1
TT
1785static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
ff39bb5e 1787 const struct attribute *attr);
8cf6f0b1 1788
ff39bb5e 1789static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1790 struct symbol *sym,
f1e6e072
TT
1791 struct dwarf2_cu *cu,
1792 int is_block);
4c2df51b 1793
d521ce57
TT
1794static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
4bb7a0a7 1797
72bf9492
DJ
1798static void free_stack_comp_unit (void *);
1799
72bf9492
DJ
1800static hashval_t partial_die_hash (const void *item);
1801
1802static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
ae038cb0 1804static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1806
9816fde3 1807static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1808 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1809
1810static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
93311388 1813
68dc6402 1814static void free_heap_comp_unit (void *);
ae038cb0
DJ
1815
1816static void free_cached_comp_units (void *);
1817
1818static void age_cached_comp_units (void);
1819
dee91e82 1820static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1821
f792889a
DJ
1822static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1c379e20 1824
ae038cb0
DJ
1825static void create_all_comp_units (struct objfile *);
1826
0e50663e 1827static int create_all_type_units (struct objfile *);
1fd400ff 1828
95554aad
TT
1829static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
10b3939b 1831
95554aad
TT
1832static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
10b3939b 1834
f4dc4d17
DE
1835static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
10b3939b
DJ
1838static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
ae038cb0
DJ
1841static void dwarf2_mark (struct dwarf2_cu *);
1842
1843static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
b64f50a1 1845static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1846 struct dwarf2_per_cu_data *);
673bfd45 1847
f792889a 1848static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1849
9291a0cd
TT
1850static void dwarf2_release_queue (void *dummy);
1851
95554aad
TT
1852static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
a0f42c21 1855static void process_queue (void);
9291a0cd
TT
1856
1857static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
15d034d0 1859 const char **name, const char **comp_dir);
9291a0cd
TT
1860
1861static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
d521ce57 1864static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
d521ce57 1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1868 int is_debug_types_section);
1869
fd820528 1870static void init_cutu_and_read_dies
f4dc4d17
DE
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
3019eac3
DE
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
dee91e82
DE
1875static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1878
673bfd45 1879static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1880
3019eac3
DE
1881static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
57d63ce2
DE
1883static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1886
1887static struct dwp_file *get_dwp_file (void);
1888
3019eac3 1889static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1891
1892static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1893 (struct signatured_type *, const char *, const char *);
3019eac3 1894
89e63ee4
DE
1895static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
3019eac3
DE
1897static void free_dwo_file_cleanup (void *);
1898
95554aad
TT
1899static void process_cu_includes (void);
1900
1b80a9fa 1901static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1902
1903static void free_line_header_voidp (void *arg);
4390d890
DE
1904\f
1905/* Various complaints about symbol reading that don't abort the process. */
1906
1907static void
1908dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909{
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912}
1913
1914static void
1915dwarf2_debug_line_missing_file_complaint (void)
1916{
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919}
1920
1921static void
1922dwarf2_debug_line_missing_end_sequence_complaint (void)
1923{
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927}
1928
1929static void
1930dwarf2_complex_location_expr_complaint (void)
1931{
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933}
1934
1935static void
1936dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938{
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942}
1943
1944static void
1945dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946{
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
a32a8923
DE
1950 get_section_name (section),
1951 get_section_file_name (section));
4390d890 1952}
1b80a9fa 1953
4390d890
DE
1954static void
1955dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956{
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961}
1962
1963static void
1964dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965{
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969}
527f3840
JK
1970
1971/* Hash function for line_header_hash. */
1972
1973static hashval_t
1974line_header_hash (const struct line_header *ofs)
1975{
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977}
1978
1979/* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981static hashval_t
1982line_header_hash_voidp (const void *item)
1983{
9a3c8263 1984 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1985
1986 return line_header_hash (ofs);
1987}
1988
1989/* Equality function for line_header_hash. */
1990
1991static int
1992line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993{
9a3c8263
SM
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999}
2000
4390d890 2001\f
9291a0cd
TT
2002#if WORDS_BIGENDIAN
2003
2004/* Convert VALUE between big- and little-endian. */
2005static offset_type
2006byte_swap (offset_type value)
2007{
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015}
2016
2017#define MAYBE_SWAP(V) byte_swap (V)
2018
2019#else
2020#define MAYBE_SWAP(V) (V)
2021#endif /* WORDS_BIGENDIAN */
2022
31aa7e4e
JB
2023/* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026static CORE_ADDR
2027attr_value_as_address (struct attribute *attr)
2028{
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051}
2052
9291a0cd
TT
2053/* The suffix for an index file. */
2054#define INDEX_SUFFIX ".gdb-index"
2055
c906108c 2056/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
c906108c
SS
2060
2061int
251d32d9
TG
2062dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
c906108c 2064{
9a3c8263
SM
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
8d749320 2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2072
be391dca
TT
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
6502dd73 2076
251d32d9
TG
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
be391dca
TT
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
73869dc2 2081 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2082 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2083 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2085}
2086
2087/* Return the containing section of virtual section SECTION. */
2088
2089static struct dwarf2_section_info *
2090get_containing_section (const struct dwarf2_section_info *section)
2091{
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
c906108c
SS
2094}
2095
a32a8923
DE
2096/* Return the bfd owner of SECTION. */
2097
2098static struct bfd *
2099get_section_bfd_owner (const struct dwarf2_section_info *section)
2100{
73869dc2
DE
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
049412e3 2106 return section->s.section->owner;
a32a8923
DE
2107}
2108
2109/* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112static asection *
2113get_section_bfd_section (const struct dwarf2_section_info *section)
2114{
73869dc2
DE
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
049412e3 2120 return section->s.section;
a32a8923
DE
2121}
2122
2123/* Return the name of SECTION. */
2124
2125static const char *
2126get_section_name (const struct dwarf2_section_info *section)
2127{
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132}
2133
2134/* Return the name of the file SECTION is in. */
2135
2136static const char *
2137get_section_file_name (const struct dwarf2_section_info *section)
2138{
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142}
2143
2144/* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147static int
2148get_section_id (const struct dwarf2_section_info *section)
2149{
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155}
2156
2157/* Return the flags of SECTION.
73869dc2 2158 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2159
2160static int
2161get_section_flags (const struct dwarf2_section_info *section)
2162{
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167}
2168
251d32d9
TG
2169/* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
233a11ab
CS
2171
2172static int
251d32d9
TG
2173section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
233a11ab 2175{
251d32d9
TG
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
233a11ab
CS
2183}
2184
c906108c
SS
2185/* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189static void
251d32d9 2190dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2191{
251d32d9 2192 const struct dwarf2_debug_sections *names;
dc7650b8 2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
dc7650b8
JK
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2207 }
251d32d9 2208 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2209 {
049412e3 2210 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->line))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2217 }
251d32d9 2218 else if (section_is_p (sectp->name, &names->loc))
c906108c 2219 {
049412e3 2220 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2224 {
049412e3 2225 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2227 }
cf2c3c16
TT
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
049412e3 2230 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->str))
c906108c 2234 {
049412e3 2235 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2237 }
3019eac3
DE
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
049412e3 2240 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
251d32d9 2243 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2244 {
049412e3 2245 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2247 }
251d32d9 2248 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2249 {
049412e3 2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2252 }
251d32d9 2253 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2254 {
049412e3 2255 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2257 }
251d32d9 2258 else if (section_is_p (sectp->name, &names->types))
348e048f 2259 {
8b70b953
TT
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
049412e3 2263 type_section.s.section = sectp;
8b70b953
TT
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
348e048f 2268 }
251d32d9 2269 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2270 {
049412e3 2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
dce234bc 2274
b4e1fd61 2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2278}
2279
fceca515
DE
2280/* A helper function that decides whether a section is empty,
2281 or not present. */
9e0ac564
TT
2282
2283static int
19ac8c2e 2284dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2285{
73869dc2
DE
2286 if (section->is_virtual)
2287 return section->size == 0;
049412e3 2288 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2289}
2290
3019eac3
DE
2291/* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
dce234bc 2295 If the section is compressed, uncompress it before returning. */
c906108c 2296
dce234bc
PP
2297static void
2298dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2299{
a32a8923 2300 asection *sectp;
3019eac3 2301 bfd *abfd;
dce234bc 2302 gdb_byte *buf, *retbuf;
c906108c 2303
be391dca
TT
2304 if (info->readin)
2305 return;
dce234bc 2306 info->buffer = NULL;
be391dca 2307 info->readin = 1;
188dd5d6 2308
9e0ac564 2309 if (dwarf2_section_empty_p (info))
dce234bc 2310 return;
c906108c 2311
a32a8923 2312 sectp = get_section_bfd_section (info);
3019eac3 2313
73869dc2
DE
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
4bf44c1c
TT
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2342 {
d521ce57 2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2344 return;
dce234bc 2345 }
dce234bc 2346
224c3ddb 2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2348 info->buffer = buf;
dce234bc
PP
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
ac8035ab 2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
a32a8923
DE
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
dce234bc
PP
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
dce234bc
PP
2371}
2372
9e0ac564
TT
2373/* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380static bfd_size_type
2381dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383{
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387}
2388
dce234bc 2389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2390 SECTION_NAME. */
af34e669 2391
dce234bc 2392void
3017a003
TG
2393dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
d521ce57 2395 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2396 bfd_size_type *sizep)
2397{
2398 struct dwarf2_per_objfile *data
9a3c8263
SM
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
dce234bc 2401 struct dwarf2_section_info *info;
a3b2a86b
TT
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
3017a003
TG
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
dce234bc 2423
9e0ac564 2424 dwarf2_read_section (objfile, info);
dce234bc 2425
a32a8923 2426 *sectp = get_section_bfd_section (info);
dce234bc
PP
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429}
2430
36586728
TT
2431/* A helper function to find the sections for a .dwz file. */
2432
2433static void
2434locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435{
9a3c8263 2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
049412e3 2442 dwz_file->abbrev.s.section = sectp;
36586728
TT
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
049412e3 2447 dwz_file->info.s.section = sectp;
36586728
TT
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
049412e3 2452 dwz_file->str.s.section = sectp;
36586728
TT
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
049412e3 2457 dwz_file->line.s.section = sectp;
36586728
TT
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
049412e3 2462 dwz_file->macro.s.section = sectp;
36586728
TT
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2ec9a5e0
TT
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
049412e3 2467 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
36586728
TT
2470}
2471
4db1a1dc
TT
2472/* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
36586728
TT
2475
2476static struct dwz_file *
2477dwarf2_get_dwz_file (void)
2478{
4db1a1dc
TT
2479 bfd *dwz_bfd;
2480 char *data;
36586728
TT
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
acd13123 2484 bfd_size_type buildid_len_arg;
dc294be5
TT
2485 size_t buildid_len;
2486 bfd_byte *buildid;
36586728
TT
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
4db1a1dc
TT
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2493 &buildid_len_arg, &buildid);
4db1a1dc
TT
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
36586728 2501 cleanup = make_cleanup (xfree, data);
dc294be5 2502 make_cleanup (xfree, buildid);
36586728 2503
acd13123
TT
2504 buildid_len = (size_t) buildid_len_arg;
2505
f9d83a0b 2506 filename = (const char *) data;
36586728
TT
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
4262abfb 2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
dc294be5
TT
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
36586728 2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2524 if (dwz_bfd != NULL)
36586728 2525 {
dc294be5
TT
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
36586728
TT
2531 }
2532
dc294be5
TT
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
36586728
TT
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
13aaf454 2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2549 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2550 return result;
2551}
9291a0cd 2552\f
7b9f3c50
DE
2553/* DWARF quick_symbols_functions support. */
2554
2555/* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560struct quick_file_names
2561{
094b34ac
DE
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
7b9f3c50
DE
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575};
2576
2577/* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580struct dwarf2_per_cu_quick_data
2581{
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
43f3e411 2589 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598};
2599
094b34ac
DE
2600/* Utility hash function for a stmt_list_hash. */
2601
2602static hashval_t
2603hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604{
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611}
2612
2613/* Utility equality function for a stmt_list_hash. */
2614
2615static int
2616eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618{
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626}
2627
7b9f3c50
DE
2628/* Hash function for a quick_file_names. */
2629
2630static hashval_t
2631hash_file_name_entry (const void *e)
2632{
9a3c8263
SM
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
7b9f3c50 2635
094b34ac 2636 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2637}
2638
2639/* Equality function for a quick_file_names. */
2640
2641static int
2642eq_file_name_entry (const void *a, const void *b)
2643{
9a3c8263
SM
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2646
094b34ac 2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2648}
2649
2650/* Delete function for a quick_file_names. */
2651
2652static void
2653delete_file_name_entry (void *e)
2654{
9a3c8263 2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667}
2668
2669/* Create a quick_file_names hash table. */
2670
2671static htab_t
2672create_quick_file_names_table (unsigned int nr_initial_entries)
2673{
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677}
9291a0cd 2678
918dd910
JK
2679/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683static void
2684load_cu (struct dwarf2_per_cu_data *per_cu)
2685{
3019eac3 2686 if (per_cu->is_debug_types)
e5fe5e75 2687 load_full_type_unit (per_cu);
918dd910 2688 else
95554aad 2689 load_full_comp_unit (per_cu, language_minimal);
918dd910 2690
cc12ce38
DE
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2dc860c0
DE
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2695}
2696
a0f42c21 2697/* Read in the symbols for PER_CU. */
2fdf6df6 2698
9291a0cd 2699static void
a0f42c21 2700dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2701{
2702 struct cleanup *back_to;
2703
f4dc4d17
DE
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
9291a0cd
TT
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
95554aad 2711 if (dwarf2_per_objfile->using_index
43f3e411 2712 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
89e63ee4
DE
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
cc12ce38 2722 && per_cu->cu != NULL
89e63ee4
DE
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
95554aad 2729 }
9291a0cd 2730
a0f42c21 2731 process_queue ();
9291a0cd
TT
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738}
2739
2740/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2fdf6df6 2743
43f3e411 2744static struct compunit_symtab *
a0f42c21 2745dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2746{
95554aad 2747 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2748 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
a0f42c21 2752 dw2_do_instantiate_symtab (per_cu);
95554aad 2753 process_cu_includes ();
9291a0cd
TT
2754 do_cleanups (back_to);
2755 }
f194fefb 2756
43f3e411 2757 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2758}
2759
8832e7e3 2760/* Return the CU/TU given its index.
f4dc4d17
DE
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
8832e7e3 2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2768
2769 ...;
2770 }
2771*/
2fdf6df6 2772
1fd400ff 2773static struct dwarf2_per_cu_data *
8832e7e3 2774dw2_get_cutu (int index)
1fd400ff
TT
2775{
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
f4dc4d17 2778 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784}
2785
8832e7e3
DE
2786/* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
f4dc4d17
DE
2789
2790static struct dwarf2_per_cu_data *
8832e7e3 2791dw2_get_cu (int index)
f4dc4d17 2792{
8832e7e3 2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2794
1fd400ff
TT
2795 return dwarf2_per_objfile->all_comp_units[index];
2796}
2797
2ec9a5e0
TT
2798/* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2fdf6df6 2800
74a0d9f6 2801static void
2ec9a5e0
TT
2802create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
9291a0cd
TT
2807{
2808 offset_type i;
9291a0cd 2809
2ec9a5e0 2810 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
74a0d9f6
JK
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
b64f50a1 2822 the_cu->offset.sect_off = offset;
9291a0cd
TT
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
8a0459fd 2825 the_cu->section = section;
9291a0cd
TT
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2830 }
9291a0cd
TT
2831}
2832
2ec9a5e0 2833/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2834 the CU objects for this objfile. */
2ec9a5e0 2835
74a0d9f6 2836static void
2ec9a5e0
TT
2837create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840{
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2847
74a0d9f6
JK
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2850
2851 if (dwz_elements == 0)
74a0d9f6 2852 return;
2ec9a5e0
TT
2853
2854 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2ec9a5e0
TT
2857}
2858
1fd400ff 2859/* Create the signatured type hash table from the index. */
673bfd45 2860
74a0d9f6 2861static void
673bfd45 2862create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2863 struct dwarf2_section_info *section,
673bfd45
DE
2864 const gdb_byte *bytes,
2865 offset_type elements)
1fd400ff
TT
2866{
2867 offset_type i;
673bfd45 2868 htab_t sig_types_hash;
1fd400ff 2869
6aa5f3a6
DE
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
8d749320
SM
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2875
673bfd45 2876 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
52dc124a
DE
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2882 void **slot;
2883
74a0d9f6
JK
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
52dc124a 2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2892 struct signatured_type);
52dc124a 2893 sig_type->signature = signature;
3019eac3
DE
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2896 sig_type->per_cu.section = section;
52dc124a
DE
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
1fd400ff
TT
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
52dc124a
DE
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
1fd400ff 2905
b4dd5633 2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2907 }
2908
673bfd45 2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2910}
2911
9291a0cd
TT
2912/* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2914
9291a0cd
TT
2915static void
2916create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917{
3e29f34a 2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
f652bce2 2943
24a55014 2944 if (lo > hi)
f652bce2 2945 {
24a55014
DE
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2948 hex_string (lo), hex_string (hi));
24a55014 2949 continue;
f652bce2 2950 }
24a55014
DE
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
24a55014 2957 continue;
f652bce2 2958 }
24a55014 2959
3e29f34a
MR
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968}
2969
59d7bcaf
JK
2970/* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2977
9291a0cd 2978static hashval_t
559a7a62 2979mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2980{
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
559a7a62
JK
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
9291a0cd
TT
2991
2992 return r;
2993}
2994
2995/* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2998
9291a0cd
TT
2999static int
3000find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002{
0cf03b49
JK
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
9291a0cd 3005 offset_type slot, step;
559a7a62 3006 int (*cmp) (const char *, const char *);
9291a0cd 3007
0cf03b49
JK
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_java
45280282
IB
3010 || current_language->la_language == language_fortran
3011 || current_language->la_language == language_d)
0cf03b49
JK
3012 {
3013 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3014 not contain any. */
a8719064 3015
72998fb3 3016 if (strchr (name, '(') != NULL)
0cf03b49 3017 {
72998fb3 3018 char *without_params = cp_remove_params (name);
0cf03b49 3019
72998fb3
DE
3020 if (without_params != NULL)
3021 {
3022 make_cleanup (xfree, without_params);
3023 name = without_params;
3024 }
0cf03b49
JK
3025 }
3026 }
3027
559a7a62 3028 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3029 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3030 simulate our NAME being searched is also lowercased. */
3031 hash = mapped_index_string_hash ((index->version == 4
3032 && case_sensitivity == case_sensitive_off
3033 ? 5 : index->version),
3034 name);
3035
3876f04e
DE
3036 slot = hash & (index->symbol_table_slots - 1);
3037 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3038 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3039
3040 for (;;)
3041 {
3042 /* Convert a slot number to an offset into the table. */
3043 offset_type i = 2 * slot;
3044 const char *str;
3876f04e 3045 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3046 {
3047 do_cleanups (back_to);
3048 return 0;
3049 }
9291a0cd 3050
3876f04e 3051 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3052 if (!cmp (name, str))
9291a0cd
TT
3053 {
3054 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3055 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3056 do_cleanups (back_to);
9291a0cd
TT
3057 return 1;
3058 }
3059
3876f04e 3060 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3061 }
3062}
3063
2ec9a5e0
TT
3064/* A helper function that reads the .gdb_index from SECTION and fills
3065 in MAP. FILENAME is the name of the file containing the section;
3066 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3067 ok to use deprecated sections.
3068
3069 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3070 out parameters that are filled in with information about the CU and
3071 TU lists in the section.
3072
3073 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3074
9291a0cd 3075static int
2ec9a5e0
TT
3076read_index_from_section (struct objfile *objfile,
3077 const char *filename,
3078 int deprecated_ok,
3079 struct dwarf2_section_info *section,
3080 struct mapped_index *map,
3081 const gdb_byte **cu_list,
3082 offset_type *cu_list_elements,
3083 const gdb_byte **types_list,
3084 offset_type *types_list_elements)
9291a0cd 3085{
948f8e3d 3086 const gdb_byte *addr;
2ec9a5e0 3087 offset_type version;
b3b272e1 3088 offset_type *metadata;
1fd400ff 3089 int i;
9291a0cd 3090
2ec9a5e0 3091 if (dwarf2_section_empty_p (section))
9291a0cd 3092 return 0;
82430852
JK
3093
3094 /* Older elfutils strip versions could keep the section in the main
3095 executable while splitting it for the separate debug info file. */
a32a8923 3096 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3097 return 0;
3098
2ec9a5e0 3099 dwarf2_read_section (objfile, section);
9291a0cd 3100
2ec9a5e0 3101 addr = section->buffer;
9291a0cd 3102 /* Version check. */
1fd400ff 3103 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3104 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3105 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3106 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3107 indices. */
831adc1f 3108 if (version < 4)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3114 filename);
481860b3
GB
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Index version 4 uses a different hash function than index version
3120 5 and later.
3121
3122 Versions earlier than 6 did not emit psymbols for inlined
3123 functions. Using these files will cause GDB not to be able to
3124 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3125 indices unless the user has done
3126 "set use-deprecated-index-sections on". */
2ec9a5e0 3127 if (version < 6 && !deprecated_ok)
481860b3
GB
3128 {
3129 static int warning_printed = 0;
3130 if (!warning_printed)
3131 {
e615022a
DE
3132 warning (_("\
3133Skipping deprecated .gdb_index section in %s.\n\
3134Do \"set use-deprecated-index-sections on\" before the file is read\n\
3135to use the section anyway."),
2ec9a5e0 3136 filename);
481860b3
GB
3137 warning_printed = 1;
3138 }
3139 return 0;
3140 }
796a7ff8 3141 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3142 of the TU (for symbols coming from TUs),
3143 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3144 Plus gold-generated indices can have duplicate entries for global symbols,
3145 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3146 These are just performance bugs, and we can't distinguish gdb-generated
3147 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3148
481860b3 3149 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3150 longer backward compatible. */
796a7ff8 3151 if (version > 8)
594e8718 3152 return 0;
9291a0cd 3153
559a7a62 3154 map->version = version;
2ec9a5e0 3155 map->total_size = section->size;
9291a0cd
TT
3156
3157 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3158
3159 i = 0;
2ec9a5e0
TT
3160 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3161 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3162 / 8);
1fd400ff
TT
3163 ++i;
3164
2ec9a5e0
TT
3165 *types_list = addr + MAYBE_SWAP (metadata[i]);
3166 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3167 - MAYBE_SWAP (metadata[i]))
3168 / 8);
987d643c 3169 ++i;
1fd400ff
TT
3170
3171 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3172 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3173 - MAYBE_SWAP (metadata[i]));
3174 ++i;
3175
3876f04e
DE
3176 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3177 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3178 - MAYBE_SWAP (metadata[i]))
3179 / (2 * sizeof (offset_type)));
1fd400ff 3180 ++i;
9291a0cd 3181
f9d83a0b 3182 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3183
2ec9a5e0
TT
3184 return 1;
3185}
3186
3187
3188/* Read the index file. If everything went ok, initialize the "quick"
3189 elements of all the CUs and return 1. Otherwise, return 0. */
3190
3191static int
3192dwarf2_read_index (struct objfile *objfile)
3193{
3194 struct mapped_index local_map, *map;
3195 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3196 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3197 struct dwz_file *dwz;
2ec9a5e0 3198
4262abfb 3199 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3200 use_deprecated_index_sections,
3201 &dwarf2_per_objfile->gdb_index, &local_map,
3202 &cu_list, &cu_list_elements,
3203 &types_list, &types_list_elements))
3204 return 0;
3205
0fefef59 3206 /* Don't use the index if it's empty. */
2ec9a5e0 3207 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3208 return 0;
3209
2ec9a5e0
TT
3210 /* If there is a .dwz file, read it so we can get its CU list as
3211 well. */
4db1a1dc
TT
3212 dwz = dwarf2_get_dwz_file ();
3213 if (dwz != NULL)
2ec9a5e0 3214 {
2ec9a5e0
TT
3215 struct mapped_index dwz_map;
3216 const gdb_byte *dwz_types_ignore;
3217 offset_type dwz_types_elements_ignore;
3218
3219 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3220 1,
3221 &dwz->gdb_index, &dwz_map,
3222 &dwz_list, &dwz_list_elements,
3223 &dwz_types_ignore,
3224 &dwz_types_elements_ignore))
3225 {
3226 warning (_("could not read '.gdb_index' section from %s; skipping"),
3227 bfd_get_filename (dwz->dwz_bfd));
3228 return 0;
3229 }
3230 }
3231
74a0d9f6
JK
3232 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3233 dwz_list_elements);
1fd400ff 3234
8b70b953
TT
3235 if (types_list_elements)
3236 {
3237 struct dwarf2_section_info *section;
3238
3239 /* We can only handle a single .debug_types when we have an
3240 index. */
3241 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3242 return 0;
3243
3244 section = VEC_index (dwarf2_section_info_def,
3245 dwarf2_per_objfile->types, 0);
3246
74a0d9f6
JK
3247 create_signatured_type_table_from_index (objfile, section, types_list,
3248 types_list_elements);
8b70b953 3249 }
9291a0cd 3250
2ec9a5e0
TT
3251 create_addrmap_from_index (objfile, &local_map);
3252
8d749320 3253 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3254 *map = local_map;
9291a0cd
TT
3255
3256 dwarf2_per_objfile->index_table = map;
3257 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3258 dwarf2_per_objfile->quick_file_names_table =
3259 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3260
3261 return 1;
3262}
3263
3264/* A helper for the "quick" functions which sets the global
3265 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3266
9291a0cd
TT
3267static void
3268dw2_setup (struct objfile *objfile)
3269{
9a3c8263
SM
3270 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3271 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3272 gdb_assert (dwarf2_per_objfile);
3273}
3274
dee91e82 3275/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3276
dee91e82
DE
3277static void
3278dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3279 const gdb_byte *info_ptr,
dee91e82
DE
3280 struct die_info *comp_unit_die,
3281 int has_children,
3282 void *data)
9291a0cd 3283{
dee91e82
DE
3284 struct dwarf2_cu *cu = reader->cu;
3285 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3286 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3287 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3288 struct line_header *lh;
9291a0cd 3289 struct attribute *attr;
dee91e82 3290 int i;
15d034d0 3291 const char *name, *comp_dir;
7b9f3c50
DE
3292 void **slot;
3293 struct quick_file_names *qfn;
3294 unsigned int line_offset;
9291a0cd 3295
0186c6a7
DE
3296 gdb_assert (! this_cu->is_debug_types);
3297
07261596
TT
3298 /* Our callers never want to match partial units -- instead they
3299 will match the enclosing full CU. */
3300 if (comp_unit_die->tag == DW_TAG_partial_unit)
3301 {
3302 this_cu->v.quick->no_file_data = 1;
3303 return;
3304 }
3305
0186c6a7 3306 lh_cu = this_cu;
7b9f3c50
DE
3307 lh = NULL;
3308 slot = NULL;
3309 line_offset = 0;
dee91e82
DE
3310
3311 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3312 if (attr)
3313 {
7b9f3c50
DE
3314 struct quick_file_names find_entry;
3315
3316 line_offset = DW_UNSND (attr);
3317
3318 /* We may have already read in this line header (TU line header sharing).
3319 If we have we're done. */
094b34ac
DE
3320 find_entry.hash.dwo_unit = cu->dwo_unit;
3321 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3323 &find_entry, INSERT);
3324 if (*slot != NULL)
3325 {
9a3c8263 3326 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3327 return;
7b9f3c50
DE
3328 }
3329
3019eac3 3330 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3331 }
3332 if (lh == NULL)
3333 {
094b34ac 3334 lh_cu->v.quick->no_file_data = 1;
dee91e82 3335 return;
9291a0cd
TT
3336 }
3337
8d749320 3338 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3339 qfn->hash.dwo_unit = cu->dwo_unit;
3340 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3341 gdb_assert (slot != NULL);
3342 *slot = qfn;
9291a0cd 3343
dee91e82 3344 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3345
7b9f3c50 3346 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3347 qfn->file_names =
3348 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3349 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3350 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3351 qfn->real_names = NULL;
9291a0cd 3352
7b9f3c50 3353 free_line_header (lh);
7b9f3c50 3354
094b34ac 3355 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3356}
3357
3358/* A helper for the "quick" functions which attempts to read the line
3359 table for THIS_CU. */
3360
3361static struct quick_file_names *
e4a48d9d 3362dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3363{
0186c6a7
DE
3364 /* This should never be called for TUs. */
3365 gdb_assert (! this_cu->is_debug_types);
3366 /* Nor type unit groups. */
3367 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3368
dee91e82
DE
3369 if (this_cu->v.quick->file_names != NULL)
3370 return this_cu->v.quick->file_names;
3371 /* If we know there is no line data, no point in looking again. */
3372 if (this_cu->v.quick->no_file_data)
3373 return NULL;
3374
0186c6a7 3375 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3376
3377 if (this_cu->v.quick->no_file_data)
3378 return NULL;
3379 return this_cu->v.quick->file_names;
9291a0cd
TT
3380}
3381
3382/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3383 real path for a given file name from the line table. */
2fdf6df6 3384
9291a0cd 3385static const char *
7b9f3c50
DE
3386dw2_get_real_path (struct objfile *objfile,
3387 struct quick_file_names *qfn, int index)
9291a0cd 3388{
7b9f3c50
DE
3389 if (qfn->real_names == NULL)
3390 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3391 qfn->num_file_names, const char *);
9291a0cd 3392
7b9f3c50
DE
3393 if (qfn->real_names[index] == NULL)
3394 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3395
7b9f3c50 3396 return qfn->real_names[index];
9291a0cd
TT
3397}
3398
3399static struct symtab *
3400dw2_find_last_source_symtab (struct objfile *objfile)
3401{
43f3e411 3402 struct compunit_symtab *cust;
9291a0cd 3403 int index;
ae2de4f8 3404
9291a0cd
TT
3405 dw2_setup (objfile);
3406 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3407 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3408 if (cust == NULL)
3409 return NULL;
3410 return compunit_primary_filetab (cust);
9291a0cd
TT
3411}
3412
7b9f3c50
DE
3413/* Traversal function for dw2_forget_cached_source_info. */
3414
3415static int
3416dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3417{
7b9f3c50 3418 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3419
7b9f3c50 3420 if (file_data->real_names)
9291a0cd 3421 {
7b9f3c50 3422 int i;
9291a0cd 3423
7b9f3c50 3424 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3425 {
7b9f3c50
DE
3426 xfree ((void*) file_data->real_names[i]);
3427 file_data->real_names[i] = NULL;
9291a0cd
TT
3428 }
3429 }
7b9f3c50
DE
3430
3431 return 1;
3432}
3433
3434static void
3435dw2_forget_cached_source_info (struct objfile *objfile)
3436{
3437 dw2_setup (objfile);
3438
3439 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3440 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3441}
3442
f8eba3c6
TT
3443/* Helper function for dw2_map_symtabs_matching_filename that expands
3444 the symtabs and calls the iterator. */
3445
3446static int
3447dw2_map_expand_apply (struct objfile *objfile,
3448 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3449 const char *name, const char *real_path,
f8eba3c6
TT
3450 int (*callback) (struct symtab *, void *),
3451 void *data)
3452{
43f3e411 3453 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3454
3455 /* Don't visit already-expanded CUs. */
43f3e411 3456 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3457 return 0;
3458
3459 /* This may expand more than one symtab, and we want to iterate over
3460 all of them. */
a0f42c21 3461 dw2_instantiate_symtab (per_cu);
f8eba3c6 3462
f5b95b50 3463 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3464 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3465}
3466
3467/* Implementation of the map_symtabs_matching_filename method. */
3468
9291a0cd 3469static int
f8eba3c6 3470dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3471 const char *real_path,
f8eba3c6
TT
3472 int (*callback) (struct symtab *, void *),
3473 void *data)
9291a0cd
TT
3474{
3475 int i;
c011a4f4 3476 const char *name_basename = lbasename (name);
9291a0cd
TT
3477
3478 dw2_setup (objfile);
ae2de4f8 3479
848e3e78
DE
3480 /* The rule is CUs specify all the files, including those used by
3481 any TU, so there's no need to scan TUs here. */
f4dc4d17 3482
848e3e78 3483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3484 {
3485 int j;
8832e7e3 3486 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3487 struct quick_file_names *file_data;
9291a0cd 3488
3d7bb9d9 3489 /* We only need to look at symtabs not already expanded. */
43f3e411 3490 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3491 continue;
3492
e4a48d9d 3493 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3494 if (file_data == NULL)
9291a0cd
TT
3495 continue;
3496
7b9f3c50 3497 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3498 {
7b9f3c50 3499 const char *this_name = file_data->file_names[j];
da235a7c 3500 const char *this_real_name;
9291a0cd 3501
af529f8f 3502 if (compare_filenames_for_search (this_name, name))
9291a0cd 3503 {
f5b95b50 3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3505 callback, data))
3506 return 1;
288e77a7 3507 continue;
4aac40c8 3508 }
9291a0cd 3509
c011a4f4
DE
3510 /* Before we invoke realpath, which can get expensive when many
3511 files are involved, do a quick comparison of the basenames. */
3512 if (! basenames_may_differ
3513 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3514 continue;
3515
da235a7c
JK
3516 this_real_name = dw2_get_real_path (objfile, file_data, j);
3517 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3518 {
da235a7c
JK
3519 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3520 callback, data))
3521 return 1;
288e77a7 3522 continue;
da235a7c 3523 }
9291a0cd 3524
da235a7c
JK
3525 if (real_path != NULL)
3526 {
af529f8f
JK
3527 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3528 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3529 if (this_real_name != NULL
af529f8f 3530 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3531 {
f5b95b50 3532 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3533 callback, data))
3534 return 1;
288e77a7 3535 continue;
9291a0cd
TT
3536 }
3537 }
3538 }
3539 }
3540
9291a0cd
TT
3541 return 0;
3542}
3543
da51c347
DE
3544/* Struct used to manage iterating over all CUs looking for a symbol. */
3545
3546struct dw2_symtab_iterator
9291a0cd 3547{
da51c347
DE
3548 /* The internalized form of .gdb_index. */
3549 struct mapped_index *index;
3550 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3551 int want_specific_block;
3552 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3553 Unused if !WANT_SPECIFIC_BLOCK. */
3554 int block_index;
3555 /* The kind of symbol we're looking for. */
3556 domain_enum domain;
3557 /* The list of CUs from the index entry of the symbol,
3558 or NULL if not found. */
3559 offset_type *vec;
3560 /* The next element in VEC to look at. */
3561 int next;
3562 /* The number of elements in VEC, or zero if there is no match. */
3563 int length;
8943b874
DE
3564 /* Have we seen a global version of the symbol?
3565 If so we can ignore all further global instances.
3566 This is to work around gold/15646, inefficient gold-generated
3567 indices. */
3568 int global_seen;
da51c347 3569};
9291a0cd 3570
da51c347
DE
3571/* Initialize the index symtab iterator ITER.
3572 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3573 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3574
9291a0cd 3575static void
da51c347
DE
3576dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3577 struct mapped_index *index,
3578 int want_specific_block,
3579 int block_index,
3580 domain_enum domain,
3581 const char *name)
3582{
3583 iter->index = index;
3584 iter->want_specific_block = want_specific_block;
3585 iter->block_index = block_index;
3586 iter->domain = domain;
3587 iter->next = 0;
8943b874 3588 iter->global_seen = 0;
da51c347
DE
3589
3590 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3591 iter->length = MAYBE_SWAP (*iter->vec);
3592 else
3593 {
3594 iter->vec = NULL;
3595 iter->length = 0;
3596 }
3597}
3598
3599/* Return the next matching CU or NULL if there are no more. */
3600
3601static struct dwarf2_per_cu_data *
3602dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3603{
3604 for ( ; iter->next < iter->length; ++iter->next)
3605 {
3606 offset_type cu_index_and_attrs =
3607 MAYBE_SWAP (iter->vec[iter->next + 1]);
3608 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3609 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3610 int want_static = iter->block_index != GLOBAL_BLOCK;
3611 /* This value is only valid for index versions >= 7. */
3612 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3613 gdb_index_symbol_kind symbol_kind =
3614 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3615 /* Only check the symbol attributes if they're present.
3616 Indices prior to version 7 don't record them,
3617 and indices >= 7 may elide them for certain symbols
3618 (gold does this). */
3619 int attrs_valid =
3620 (iter->index->version >= 7
3621 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3622
3190f0c6
DE
3623 /* Don't crash on bad data. */
3624 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3625 + dwarf2_per_objfile->n_type_units))
3626 {
3627 complaint (&symfile_complaints,
3628 _(".gdb_index entry has bad CU index"
4262abfb
JK
3629 " [in module %s]"),
3630 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3631 continue;
3632 }
3633
8832e7e3 3634 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3635
da51c347 3636 /* Skip if already read in. */
43f3e411 3637 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3638 continue;
3639
8943b874
DE
3640 /* Check static vs global. */
3641 if (attrs_valid)
3642 {
3643 if (iter->want_specific_block
3644 && want_static != is_static)
3645 continue;
3646 /* Work around gold/15646. */
3647 if (!is_static && iter->global_seen)
3648 continue;
3649 if (!is_static)
3650 iter->global_seen = 1;
3651 }
da51c347
DE
3652
3653 /* Only check the symbol's kind if it has one. */
3654 if (attrs_valid)
3655 {
3656 switch (iter->domain)
3657 {
3658 case VAR_DOMAIN:
3659 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3660 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3661 /* Some types are also in VAR_DOMAIN. */
3662 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3663 continue;
3664 break;
3665 case STRUCT_DOMAIN:
3666 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3667 continue;
3668 break;
3669 case LABEL_DOMAIN:
3670 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3671 continue;
3672 break;
3673 default:
3674 break;
3675 }
3676 }
3677
3678 ++iter->next;
3679 return per_cu;
3680 }
3681
3682 return NULL;
3683}
3684
43f3e411 3685static struct compunit_symtab *
da51c347
DE
3686dw2_lookup_symbol (struct objfile *objfile, int block_index,
3687 const char *name, domain_enum domain)
9291a0cd 3688{
43f3e411 3689 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3690 struct mapped_index *index;
3691
9291a0cd
TT
3692 dw2_setup (objfile);
3693
156942c7
DE
3694 index = dwarf2_per_objfile->index_table;
3695
da51c347 3696 /* index is NULL if OBJF_READNOW. */
156942c7 3697 if (index)
9291a0cd 3698 {
da51c347
DE
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3703
da51c347 3704 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3705 {
b2e2f908 3706 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3707 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3708 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3709 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3710
b2e2f908
DE
3711 sym = block_find_symbol (block, name, domain,
3712 block_find_non_opaque_type_preferred,
3713 &with_opaque);
3714
da51c347
DE
3715 /* Some caution must be observed with overloaded functions
3716 and methods, since the index will not contain any overload
3717 information (but NAME might contain it). */
da51c347 3718
b2e2f908
DE
3719 if (sym != NULL
3720 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3721 return stab;
3722 if (with_opaque != NULL
3723 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3724 stab_best = stab;
da51c347
DE
3725
3726 /* Keep looking through other CUs. */
9291a0cd
TT
3727 }
3728 }
9291a0cd 3729
da51c347 3730 return stab_best;
9291a0cd
TT
3731}
3732
3733static void
3734dw2_print_stats (struct objfile *objfile)
3735{
e4a48d9d 3736 int i, total, count;
9291a0cd
TT
3737
3738 dw2_setup (objfile);
e4a48d9d 3739 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3740 count = 0;
e4a48d9d 3741 for (i = 0; i < total; ++i)
9291a0cd 3742 {
8832e7e3 3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3744
43f3e411 3745 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3746 ++count;
3747 }
e4a48d9d 3748 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3749 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3750}
3751
779bd270
DE
3752/* This dumps minimal information about the index.
3753 It is called via "mt print objfiles".
3754 One use is to verify .gdb_index has been loaded by the
3755 gdb.dwarf2/gdb-index.exp testcase. */
3756
9291a0cd
TT
3757static void
3758dw2_dump (struct objfile *objfile)
3759{
779bd270
DE
3760 dw2_setup (objfile);
3761 gdb_assert (dwarf2_per_objfile->using_index);
3762 printf_filtered (".gdb_index:");
3763 if (dwarf2_per_objfile->index_table != NULL)
3764 {
3765 printf_filtered (" version %d\n",
3766 dwarf2_per_objfile->index_table->version);
3767 }
3768 else
3769 printf_filtered (" faked for \"readnow\"\n");
3770 printf_filtered ("\n");
9291a0cd
TT
3771}
3772
3773static void
3189cb12
DE
3774dw2_relocate (struct objfile *objfile,
3775 const struct section_offsets *new_offsets,
3776 const struct section_offsets *delta)
9291a0cd
TT
3777{
3778 /* There's nothing to relocate here. */
3779}
3780
3781static void
3782dw2_expand_symtabs_for_function (struct objfile *objfile,
3783 const char *func_name)
3784{
da51c347
DE
3785 struct mapped_index *index;
3786
3787 dw2_setup (objfile);
3788
3789 index = dwarf2_per_objfile->index_table;
3790
3791 /* index is NULL if OBJF_READNOW. */
3792 if (index)
3793 {
3794 struct dw2_symtab_iterator iter;
3795 struct dwarf2_per_cu_data *per_cu;
3796
3797 /* Note: It doesn't matter what we pass for block_index here. */
3798 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3799 func_name);
3800
3801 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3802 dw2_instantiate_symtab (per_cu);
3803 }
9291a0cd
TT
3804}
3805
3806static void
3807dw2_expand_all_symtabs (struct objfile *objfile)
3808{
3809 int i;
3810
3811 dw2_setup (objfile);
1fd400ff
TT
3812
3813 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3814 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3815 {
8832e7e3 3816 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3817
a0f42c21 3818 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3819 }
3820}
3821
3822static void
652a8996
JK
3823dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3824 const char *fullname)
9291a0cd
TT
3825{
3826 int i;
3827
3828 dw2_setup (objfile);
d4637a04
DE
3829
3830 /* We don't need to consider type units here.
3831 This is only called for examining code, e.g. expand_line_sal.
3832 There can be an order of magnitude (or more) more type units
3833 than comp units, and we avoid them if we can. */
3834
3835 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3836 {
3837 int j;
8832e7e3 3838 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3839 struct quick_file_names *file_data;
9291a0cd 3840
3d7bb9d9 3841 /* We only need to look at symtabs not already expanded. */
43f3e411 3842 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3843 continue;
3844
e4a48d9d 3845 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3846 if (file_data == NULL)
9291a0cd
TT
3847 continue;
3848
7b9f3c50 3849 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3850 {
652a8996
JK
3851 const char *this_fullname = file_data->file_names[j];
3852
3853 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3854 {
a0f42c21 3855 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3856 break;
3857 }
3858 }
3859 }
3860}
3861
9291a0cd 3862static void
ade7ed9e 3863dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3864 const char * name, domain_enum domain,
ade7ed9e 3865 int global,
40658b94
PH
3866 int (*callback) (struct block *,
3867 struct symbol *, void *),
2edb89d3
JK
3868 void *data, symbol_compare_ftype *match,
3869 symbol_compare_ftype *ordered_compare)
9291a0cd 3870{
40658b94 3871 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3872 current language is Ada for a non-Ada objfile using GNU index. As Ada
3873 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3874}
3875
3876static void
f8eba3c6
TT
3877dw2_expand_symtabs_matching
3878 (struct objfile *objfile,
206f2a57
DE
3879 expand_symtabs_file_matcher_ftype *file_matcher,
3880 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3881 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3882 enum search_domain kind,
3883 void *data)
9291a0cd
TT
3884{
3885 int i;
3886 offset_type iter;
4b5246aa 3887 struct mapped_index *index;
9291a0cd
TT
3888
3889 dw2_setup (objfile);
ae2de4f8
DE
3890
3891 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3892 if (!dwarf2_per_objfile->index_table)
3893 return;
4b5246aa 3894 index = dwarf2_per_objfile->index_table;
9291a0cd 3895
7b08b9eb 3896 if (file_matcher != NULL)
24c79950
TT
3897 {
3898 struct cleanup *cleanup;
3899 htab_t visited_found, visited_not_found;
3900
3901 visited_found = htab_create_alloc (10,
3902 htab_hash_pointer, htab_eq_pointer,
3903 NULL, xcalloc, xfree);
3904 cleanup = make_cleanup_htab_delete (visited_found);
3905 visited_not_found = htab_create_alloc (10,
3906 htab_hash_pointer, htab_eq_pointer,
3907 NULL, xcalloc, xfree);
3908 make_cleanup_htab_delete (visited_not_found);
3909
848e3e78
DE
3910 /* The rule is CUs specify all the files, including those used by
3911 any TU, so there's no need to scan TUs here. */
3912
3913 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3914 {
3915 int j;
8832e7e3 3916 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3917 struct quick_file_names *file_data;
3918 void **slot;
7b08b9eb 3919
61d96d7e
DE
3920 QUIT;
3921
24c79950 3922 per_cu->v.quick->mark = 0;
3d7bb9d9 3923
24c79950 3924 /* We only need to look at symtabs not already expanded. */
43f3e411 3925 if (per_cu->v.quick->compunit_symtab)
24c79950 3926 continue;
7b08b9eb 3927
e4a48d9d 3928 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3929 if (file_data == NULL)
3930 continue;
7b08b9eb 3931
24c79950
TT
3932 if (htab_find (visited_not_found, file_data) != NULL)
3933 continue;
3934 else if (htab_find (visited_found, file_data) != NULL)
3935 {
3936 per_cu->v.quick->mark = 1;
3937 continue;
3938 }
3939
3940 for (j = 0; j < file_data->num_file_names; ++j)
3941 {
da235a7c
JK
3942 const char *this_real_name;
3943
fbd9ab74 3944 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3945 {
3946 per_cu->v.quick->mark = 1;
3947 break;
3948 }
da235a7c
JK
3949
3950 /* Before we invoke realpath, which can get expensive when many
3951 files are involved, do a quick comparison of the basenames. */
3952 if (!basenames_may_differ
3953 && !file_matcher (lbasename (file_data->file_names[j]),
3954 data, 1))
3955 continue;
3956
3957 this_real_name = dw2_get_real_path (objfile, file_data, j);
3958 if (file_matcher (this_real_name, data, 0))
3959 {
3960 per_cu->v.quick->mark = 1;
3961 break;
3962 }
24c79950
TT
3963 }
3964
3965 slot = htab_find_slot (per_cu->v.quick->mark
3966 ? visited_found
3967 : visited_not_found,
3968 file_data, INSERT);
3969 *slot = file_data;
3970 }
3971
3972 do_cleanups (cleanup);
3973 }
9291a0cd 3974
3876f04e 3975 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3976 {
3977 offset_type idx = 2 * iter;
3978 const char *name;
3979 offset_type *vec, vec_len, vec_idx;
8943b874 3980 int global_seen = 0;
9291a0cd 3981
61d96d7e
DE
3982 QUIT;
3983
3876f04e 3984 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3985 continue;
3986
3876f04e 3987 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3988
206f2a57 3989 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3990 continue;
3991
3992 /* The name was matched, now expand corresponding CUs that were
3993 marked. */
4b5246aa 3994 vec = (offset_type *) (index->constant_pool
3876f04e 3995 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3996 vec_len = MAYBE_SWAP (vec[0]);
3997 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3998 {
e254ef6a 3999 struct dwarf2_per_cu_data *per_cu;
156942c7 4000 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4001 /* This value is only valid for index versions >= 7. */
4002 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4003 gdb_index_symbol_kind symbol_kind =
4004 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4005 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4006 /* Only check the symbol attributes if they're present.
4007 Indices prior to version 7 don't record them,
4008 and indices >= 7 may elide them for certain symbols
4009 (gold does this). */
4010 int attrs_valid =
4011 (index->version >= 7
4012 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4013
8943b874
DE
4014 /* Work around gold/15646. */
4015 if (attrs_valid)
4016 {
4017 if (!is_static && global_seen)
4018 continue;
4019 if (!is_static)
4020 global_seen = 1;
4021 }
4022
3190f0c6
DE
4023 /* Only check the symbol's kind if it has one. */
4024 if (attrs_valid)
156942c7
DE
4025 {
4026 switch (kind)
4027 {
4028 case VARIABLES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4030 continue;
4031 break;
4032 case FUNCTIONS_DOMAIN:
4033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4034 continue;
4035 break;
4036 case TYPES_DOMAIN:
4037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 default:
4041 break;
4042 }
4043 }
4044
3190f0c6
DE
4045 /* Don't crash on bad data. */
4046 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4047 + dwarf2_per_objfile->n_type_units))
4048 {
4049 complaint (&symfile_complaints,
4050 _(".gdb_index entry has bad CU index"
4262abfb 4051 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4052 continue;
4053 }
4054
8832e7e3 4055 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4056 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4057 {
4058 int symtab_was_null =
4059 (per_cu->v.quick->compunit_symtab == NULL);
4060
4061 dw2_instantiate_symtab (per_cu);
4062
4063 if (expansion_notify != NULL
4064 && symtab_was_null
4065 && per_cu->v.quick->compunit_symtab != NULL)
4066 {
4067 expansion_notify (per_cu->v.quick->compunit_symtab,
4068 data);
4069 }
4070 }
9291a0cd
TT
4071 }
4072 }
4073}
4074
43f3e411 4075/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4076 symtab. */
4077
43f3e411
DE
4078static struct compunit_symtab *
4079recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4080 CORE_ADDR pc)
9703b513
TT
4081{
4082 int i;
4083
43f3e411
DE
4084 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4085 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4086 return cust;
9703b513 4087
43f3e411 4088 if (cust->includes == NULL)
a3ec0bb1
DE
4089 return NULL;
4090
43f3e411 4091 for (i = 0; cust->includes[i]; ++i)
9703b513 4092 {
43f3e411 4093 struct compunit_symtab *s = cust->includes[i];
9703b513 4094
43f3e411 4095 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4096 if (s != NULL)
4097 return s;
4098 }
4099
4100 return NULL;
4101}
4102
43f3e411
DE
4103static struct compunit_symtab *
4104dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4105 struct bound_minimal_symbol msymbol,
4106 CORE_ADDR pc,
4107 struct obj_section *section,
4108 int warn_if_readin)
9291a0cd
TT
4109{
4110 struct dwarf2_per_cu_data *data;
43f3e411 4111 struct compunit_symtab *result;
9291a0cd
TT
4112
4113 dw2_setup (objfile);
4114
4115 if (!objfile->psymtabs_addrmap)
4116 return NULL;
4117
9a3c8263
SM
4118 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4119 pc);
9291a0cd
TT
4120 if (!data)
4121 return NULL;
4122
43f3e411 4123 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4124 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4125 paddress (get_objfile_arch (objfile), pc));
4126
43f3e411
DE
4127 result
4128 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4129 pc);
9703b513
TT
4130 gdb_assert (result != NULL);
4131 return result;
9291a0cd
TT
4132}
4133
9291a0cd 4134static void
44b13c5a 4135dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4136 void *data, int need_fullname)
9291a0cd
TT
4137{
4138 int i;
24c79950
TT
4139 struct cleanup *cleanup;
4140 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4141 NULL, xcalloc, xfree);
9291a0cd 4142
24c79950 4143 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4144 dw2_setup (objfile);
ae2de4f8 4145
848e3e78
DE
4146 /* The rule is CUs specify all the files, including those used by
4147 any TU, so there's no need to scan TUs here.
4148 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4149
848e3e78 4150 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4151 {
8832e7e3 4152 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4153
43f3e411 4154 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4155 {
4156 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4157 INSERT);
4158
4159 *slot = per_cu->v.quick->file_names;
4160 }
4161 }
4162
848e3e78 4163 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4164 {
4165 int j;
8832e7e3 4166 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4167 struct quick_file_names *file_data;
24c79950 4168 void **slot;
9291a0cd 4169
3d7bb9d9 4170 /* We only need to look at symtabs not already expanded. */
43f3e411 4171 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4172 continue;
4173
e4a48d9d 4174 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4175 if (file_data == NULL)
9291a0cd
TT
4176 continue;
4177
24c79950
TT
4178 slot = htab_find_slot (visited, file_data, INSERT);
4179 if (*slot)
4180 {
4181 /* Already visited. */
4182 continue;
4183 }
4184 *slot = file_data;
4185
7b9f3c50 4186 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4187 {
74e2f255
DE
4188 const char *this_real_name;
4189
4190 if (need_fullname)
4191 this_real_name = dw2_get_real_path (objfile, file_data, j);
4192 else
4193 this_real_name = NULL;
7b9f3c50 4194 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4195 }
4196 }
24c79950
TT
4197
4198 do_cleanups (cleanup);
9291a0cd
TT
4199}
4200
4201static int
4202dw2_has_symbols (struct objfile *objfile)
4203{
4204 return 1;
4205}
4206
4207const struct quick_symbol_functions dwarf2_gdb_index_functions =
4208{
4209 dw2_has_symbols,
4210 dw2_find_last_source_symtab,
4211 dw2_forget_cached_source_info,
f8eba3c6 4212 dw2_map_symtabs_matching_filename,
9291a0cd 4213 dw2_lookup_symbol,
9291a0cd
TT
4214 dw2_print_stats,
4215 dw2_dump,
4216 dw2_relocate,
4217 dw2_expand_symtabs_for_function,
4218 dw2_expand_all_symtabs,
652a8996 4219 dw2_expand_symtabs_with_fullname,
40658b94 4220 dw2_map_matching_symbols,
9291a0cd 4221 dw2_expand_symtabs_matching,
43f3e411 4222 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4223 dw2_map_symbol_filenames
4224};
4225
4226/* Initialize for reading DWARF for this objfile. Return 0 if this
4227 file will use psymtabs, or 1 if using the GNU index. */
4228
4229int
4230dwarf2_initialize_objfile (struct objfile *objfile)
4231{
4232 /* If we're about to read full symbols, don't bother with the
4233 indices. In this case we also don't care if some other debug
4234 format is making psymtabs, because they are all about to be
4235 expanded anyway. */
4236 if ((objfile->flags & OBJF_READNOW))
4237 {
4238 int i;
4239
4240 dwarf2_per_objfile->using_index = 1;
4241 create_all_comp_units (objfile);
0e50663e 4242 create_all_type_units (objfile);
7b9f3c50
DE
4243 dwarf2_per_objfile->quick_file_names_table =
4244 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4245
1fd400ff 4246 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4247 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4248 {
8832e7e3 4249 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4250
e254ef6a
DE
4251 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4252 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4253 }
4254
4255 /* Return 1 so that gdb sees the "quick" functions. However,
4256 these functions will be no-ops because we will have expanded
4257 all symtabs. */
4258 return 1;
4259 }
4260
4261 if (dwarf2_read_index (objfile))
4262 return 1;
4263
9291a0cd
TT
4264 return 0;
4265}
4266
4267\f
4268
dce234bc
PP
4269/* Build a partial symbol table. */
4270
4271void
f29dff0a 4272dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4273{
c9bf0622 4274
f29dff0a 4275 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4276 {
4277 init_psymbol_list (objfile, 1024);
4278 }
4279
492d29ea 4280 TRY
c9bf0622
TT
4281 {
4282 /* This isn't really ideal: all the data we allocate on the
4283 objfile's obstack is still uselessly kept around. However,
4284 freeing it seems unsafe. */
4285 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4286
4287 dwarf2_build_psymtabs_hard (objfile);
4288 discard_cleanups (cleanups);
4289 }
492d29ea
PA
4290 CATCH (except, RETURN_MASK_ERROR)
4291 {
4292 exception_print (gdb_stderr, except);
4293 }
4294 END_CATCH
c906108c 4295}
c906108c 4296
1ce1cefd
DE
4297/* Return the total length of the CU described by HEADER. */
4298
4299static unsigned int
4300get_cu_length (const struct comp_unit_head *header)
4301{
4302 return header->initial_length_size + header->length;
4303}
4304
45452591
DE
4305/* Return TRUE if OFFSET is within CU_HEADER. */
4306
4307static inline int
b64f50a1 4308offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4309{
b64f50a1 4310 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4311 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4312
b64f50a1 4313 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4314}
4315
3b80fe9b
DE
4316/* Find the base address of the compilation unit for range lists and
4317 location lists. It will normally be specified by DW_AT_low_pc.
4318 In DWARF-3 draft 4, the base address could be overridden by
4319 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4320 compilation units with discontinuous ranges. */
4321
4322static void
4323dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4324{
4325 struct attribute *attr;
4326
4327 cu->base_known = 0;
4328 cu->base_address = 0;
4329
4330 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4331 if (attr)
4332 {
31aa7e4e 4333 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4334 cu->base_known = 1;
4335 }
4336 else
4337 {
4338 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4339 if (attr)
4340 {
31aa7e4e 4341 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4342 cu->base_known = 1;
4343 }
4344 }
4345}
4346
93311388
DE
4347/* Read in the comp unit header information from the debug_info at info_ptr.
4348 NOTE: This leaves members offset, first_die_offset to be filled in
4349 by the caller. */
107d2387 4350
d521ce57 4351static const gdb_byte *
107d2387 4352read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4353 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4354{
4355 int signed_addr;
891d2f0b 4356 unsigned int bytes_read;
c764a876
DE
4357
4358 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4359 cu_header->initial_length_size = bytes_read;
4360 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4361 info_ptr += bytes_read;
107d2387
AC
4362 cu_header->version = read_2_bytes (abfd, info_ptr);
4363 info_ptr += 2;
b64f50a1
JK
4364 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4365 &bytes_read);
613e1657 4366 info_ptr += bytes_read;
107d2387
AC
4367 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4368 info_ptr += 1;
4369 signed_addr = bfd_get_sign_extend_vma (abfd);
4370 if (signed_addr < 0)
8e65ff28 4371 internal_error (__FILE__, __LINE__,
e2e0b3e5 4372 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4373 cu_header->signed_addr_p = signed_addr;
c764a876 4374
107d2387
AC
4375 return info_ptr;
4376}
4377
36586728
TT
4378/* Helper function that returns the proper abbrev section for
4379 THIS_CU. */
4380
4381static struct dwarf2_section_info *
4382get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4383{
4384 struct dwarf2_section_info *abbrev;
4385
4386 if (this_cu->is_dwz)
4387 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4388 else
4389 abbrev = &dwarf2_per_objfile->abbrev;
4390
4391 return abbrev;
4392}
4393
9ff913ba
DE
4394/* Subroutine of read_and_check_comp_unit_head and
4395 read_and_check_type_unit_head to simplify them.
4396 Perform various error checking on the header. */
4397
4398static void
4399error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4400 struct dwarf2_section_info *section,
4401 struct dwarf2_section_info *abbrev_section)
9ff913ba 4402{
a32a8923 4403 const char *filename = get_section_file_name (section);
9ff913ba
DE
4404
4405 if (header->version != 2 && header->version != 3 && header->version != 4)
4406 error (_("Dwarf Error: wrong version in compilation unit header "
4407 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4408 filename);
4409
b64f50a1 4410 if (header->abbrev_offset.sect_off
36586728 4411 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4412 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4413 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4414 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4415 filename);
4416
4417 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4418 avoid potential 32-bit overflow. */
1ce1cefd 4419 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4420 > section->size)
4421 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4422 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4423 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4424 filename);
4425}
4426
4427/* Read in a CU/TU header and perform some basic error checking.
4428 The contents of the header are stored in HEADER.
4429 The result is a pointer to the start of the first DIE. */
adabb602 4430
d521ce57 4431static const gdb_byte *
9ff913ba
DE
4432read_and_check_comp_unit_head (struct comp_unit_head *header,
4433 struct dwarf2_section_info *section,
4bdcc0c1 4434 struct dwarf2_section_info *abbrev_section,
d521ce57 4435 const gdb_byte *info_ptr,
9ff913ba 4436 int is_debug_types_section)
72bf9492 4437{
d521ce57 4438 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4439 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4440
b64f50a1 4441 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4442
72bf9492
DJ
4443 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4444
460c1c54
CC
4445 /* If we're reading a type unit, skip over the signature and
4446 type_offset fields. */
b0df02fd 4447 if (is_debug_types_section)
460c1c54
CC
4448 info_ptr += 8 /*signature*/ + header->offset_size;
4449
b64f50a1 4450 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4451
4bdcc0c1 4452 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4453
4454 return info_ptr;
4455}
4456
348e048f
DE
4457/* Read in the types comp unit header information from .debug_types entry at
4458 types_ptr. The result is a pointer to one past the end of the header. */
4459
d521ce57 4460static const gdb_byte *
9ff913ba
DE
4461read_and_check_type_unit_head (struct comp_unit_head *header,
4462 struct dwarf2_section_info *section,
4bdcc0c1 4463 struct dwarf2_section_info *abbrev_section,
d521ce57 4464 const gdb_byte *info_ptr,
dee91e82
DE
4465 ULONGEST *signature,
4466 cu_offset *type_offset_in_tu)
348e048f 4467{
d521ce57 4468 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4469 bfd *abfd = get_section_bfd_owner (section);
348e048f 4470
b64f50a1 4471 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4472
9ff913ba 4473 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4474
9ff913ba
DE
4475 /* If we're reading a type unit, skip over the signature and
4476 type_offset fields. */
4477 if (signature != NULL)
4478 *signature = read_8_bytes (abfd, info_ptr);
4479 info_ptr += 8;
dee91e82
DE
4480 if (type_offset_in_tu != NULL)
4481 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4482 header->offset_size);
9ff913ba
DE
4483 info_ptr += header->offset_size;
4484
b64f50a1 4485 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4486
4bdcc0c1 4487 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4488
4489 return info_ptr;
348e048f
DE
4490}
4491
f4dc4d17
DE
4492/* Fetch the abbreviation table offset from a comp or type unit header. */
4493
4494static sect_offset
4495read_abbrev_offset (struct dwarf2_section_info *section,
4496 sect_offset offset)
4497{
a32a8923 4498 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4499 const gdb_byte *info_ptr;
ac298888 4500 unsigned int initial_length_size, offset_size;
f4dc4d17
DE
4501 sect_offset abbrev_offset;
4502
4503 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4504 info_ptr = section->buffer + offset.sect_off;
ac298888 4505 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17
DE
4506 offset_size = initial_length_size == 4 ? 4 : 8;
4507 info_ptr += initial_length_size + 2 /*version*/;
4508 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4509 return abbrev_offset;
4510}
4511
aaa75496
JB
4512/* Allocate a new partial symtab for file named NAME and mark this new
4513 partial symtab as being an include of PST. */
4514
4515static void
d521ce57 4516dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4517 struct objfile *objfile)
4518{
4519 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4520
fbd9ab74
JK
4521 if (!IS_ABSOLUTE_PATH (subpst->filename))
4522 {
4523 /* It shares objfile->objfile_obstack. */
4524 subpst->dirname = pst->dirname;
4525 }
4526
aaa75496
JB
4527 subpst->textlow = 0;
4528 subpst->texthigh = 0;
4529
8d749320
SM
4530 subpst->dependencies
4531 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4532 subpst->dependencies[0] = pst;
4533 subpst->number_of_dependencies = 1;
4534
4535 subpst->globals_offset = 0;
4536 subpst->n_global_syms = 0;
4537 subpst->statics_offset = 0;
4538 subpst->n_static_syms = 0;
43f3e411 4539 subpst->compunit_symtab = NULL;
aaa75496
JB
4540 subpst->read_symtab = pst->read_symtab;
4541 subpst->readin = 0;
4542
4543 /* No private part is necessary for include psymtabs. This property
4544 can be used to differentiate between such include psymtabs and
10b3939b 4545 the regular ones. */
58a9656e 4546 subpst->read_symtab_private = NULL;
aaa75496
JB
4547}
4548
4549/* Read the Line Number Program data and extract the list of files
4550 included by the source file represented by PST. Build an include
d85a05f0 4551 partial symtab for each of these included files. */
aaa75496
JB
4552
4553static void
4554dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4555 struct die_info *die,
4556 struct partial_symtab *pst)
aaa75496 4557{
d85a05f0
DJ
4558 struct line_header *lh = NULL;
4559 struct attribute *attr;
aaa75496 4560
d85a05f0
DJ
4561 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4562 if (attr)
3019eac3 4563 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4564 if (lh == NULL)
4565 return; /* No linetable, so no includes. */
4566
c6da4cef 4567 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4568 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4569
4570 free_line_header (lh);
4571}
4572
348e048f 4573static hashval_t
52dc124a 4574hash_signatured_type (const void *item)
348e048f 4575{
9a3c8263
SM
4576 const struct signatured_type *sig_type
4577 = (const struct signatured_type *) item;
9a619af0 4578
348e048f 4579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4580 return sig_type->signature;
348e048f
DE
4581}
4582
4583static int
52dc124a 4584eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4585{
9a3c8263
SM
4586 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4587 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4588
348e048f
DE
4589 return lhs->signature == rhs->signature;
4590}
4591
1fd400ff
TT
4592/* Allocate a hash table for signatured types. */
4593
4594static htab_t
673bfd45 4595allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4596{
4597 return htab_create_alloc_ex (41,
52dc124a
DE
4598 hash_signatured_type,
4599 eq_signatured_type,
1fd400ff
TT
4600 NULL,
4601 &objfile->objfile_obstack,
4602 hashtab_obstack_allocate,
4603 dummy_obstack_deallocate);
4604}
4605
d467dd73 4606/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4607
4608static int
d467dd73 4609add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4610{
9a3c8263
SM
4611 struct signatured_type *sigt = (struct signatured_type *) *slot;
4612 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4613
b4dd5633 4614 **datap = sigt;
1fd400ff
TT
4615 ++*datap;
4616
4617 return 1;
4618}
4619
c88ee1f0
DE
4620/* Create the hash table of all entries in the .debug_types
4621 (or .debug_types.dwo) section(s).
4622 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4623 otherwise it is NULL.
4624
4625 The result is a pointer to the hash table or NULL if there are no types.
4626
4627 Note: This function processes DWO files only, not DWP files. */
348e048f 4628
3019eac3
DE
4629static htab_t
4630create_debug_types_hash_table (struct dwo_file *dwo_file,
4631 VEC (dwarf2_section_info_def) *types)
348e048f 4632{
3019eac3 4633 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4634 htab_t types_htab = NULL;
8b70b953
TT
4635 int ix;
4636 struct dwarf2_section_info *section;
4bdcc0c1 4637 struct dwarf2_section_info *abbrev_section;
348e048f 4638
3019eac3
DE
4639 if (VEC_empty (dwarf2_section_info_def, types))
4640 return NULL;
348e048f 4641
4bdcc0c1
DE
4642 abbrev_section = (dwo_file != NULL
4643 ? &dwo_file->sections.abbrev
4644 : &dwarf2_per_objfile->abbrev);
4645
b4f54984 4646 if (dwarf_read_debug)
09406207
DE
4647 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4648 dwo_file ? ".dwo" : "",
a32a8923 4649 get_section_file_name (abbrev_section));
09406207 4650
8b70b953 4651 for (ix = 0;
3019eac3 4652 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4653 ++ix)
4654 {
3019eac3 4655 bfd *abfd;
d521ce57 4656 const gdb_byte *info_ptr, *end_ptr;
348e048f 4657
8b70b953
TT
4658 dwarf2_read_section (objfile, section);
4659 info_ptr = section->buffer;
348e048f 4660
8b70b953
TT
4661 if (info_ptr == NULL)
4662 continue;
348e048f 4663
3019eac3 4664 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4665 not present, in which case the bfd is unknown. */
4666 abfd = get_section_bfd_owner (section);
3019eac3 4667
dee91e82
DE
4668 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4669 because we don't need to read any dies: the signature is in the
4670 header. */
8b70b953
TT
4671
4672 end_ptr = info_ptr + section->size;
4673 while (info_ptr < end_ptr)
4674 {
b64f50a1 4675 sect_offset offset;
3019eac3 4676 cu_offset type_offset_in_tu;
8b70b953 4677 ULONGEST signature;
52dc124a 4678 struct signatured_type *sig_type;
3019eac3 4679 struct dwo_unit *dwo_tu;
8b70b953 4680 void **slot;
d521ce57 4681 const gdb_byte *ptr = info_ptr;
9ff913ba 4682 struct comp_unit_head header;
dee91e82 4683 unsigned int length;
348e048f 4684
b64f50a1 4685 offset.sect_off = ptr - section->buffer;
348e048f 4686
8b70b953 4687 /* We need to read the type's signature in order to build the hash
9ff913ba 4688 table, but we don't need anything else just yet. */
348e048f 4689
4bdcc0c1
DE
4690 ptr = read_and_check_type_unit_head (&header, section,
4691 abbrev_section, ptr,
3019eac3 4692 &signature, &type_offset_in_tu);
6caca83c 4693
1ce1cefd 4694 length = get_cu_length (&header);
dee91e82 4695
6caca83c 4696 /* Skip dummy type units. */
dee91e82
DE
4697 if (ptr >= info_ptr + length
4698 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4699 {
1ce1cefd 4700 info_ptr += length;
6caca83c
CC
4701 continue;
4702 }
8b70b953 4703
0349ea22
DE
4704 if (types_htab == NULL)
4705 {
4706 if (dwo_file)
4707 types_htab = allocate_dwo_unit_table (objfile);
4708 else
4709 types_htab = allocate_signatured_type_table (objfile);
4710 }
4711
3019eac3
DE
4712 if (dwo_file)
4713 {
4714 sig_type = NULL;
4715 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4716 struct dwo_unit);
4717 dwo_tu->dwo_file = dwo_file;
4718 dwo_tu->signature = signature;
4719 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4720 dwo_tu->section = section;
3019eac3
DE
4721 dwo_tu->offset = offset;
4722 dwo_tu->length = length;
4723 }
4724 else
4725 {
4726 /* N.B.: type_offset is not usable if this type uses a DWO file.
4727 The real type_offset is in the DWO file. */
4728 dwo_tu = NULL;
4729 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4730 struct signatured_type);
4731 sig_type->signature = signature;
4732 sig_type->type_offset_in_tu = type_offset_in_tu;
4733 sig_type->per_cu.objfile = objfile;
4734 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4735 sig_type->per_cu.section = section;
3019eac3
DE
4736 sig_type->per_cu.offset = offset;
4737 sig_type->per_cu.length = length;
4738 }
8b70b953 4739
3019eac3
DE
4740 slot = htab_find_slot (types_htab,
4741 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4742 INSERT);
8b70b953
TT
4743 gdb_assert (slot != NULL);
4744 if (*slot != NULL)
4745 {
3019eac3
DE
4746 sect_offset dup_offset;
4747
4748 if (dwo_file)
4749 {
9a3c8263
SM
4750 const struct dwo_unit *dup_tu
4751 = (const struct dwo_unit *) *slot;
3019eac3
DE
4752
4753 dup_offset = dup_tu->offset;
4754 }
4755 else
4756 {
9a3c8263
SM
4757 const struct signatured_type *dup_tu
4758 = (const struct signatured_type *) *slot;
3019eac3
DE
4759
4760 dup_offset = dup_tu->per_cu.offset;
4761 }
b3c8eb43 4762
8b70b953 4763 complaint (&symfile_complaints,
c88ee1f0 4764 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4765 " the entry at offset 0x%x, signature %s"),
3019eac3 4766 offset.sect_off, dup_offset.sect_off,
4031ecc5 4767 hex_string (signature));
8b70b953 4768 }
3019eac3 4769 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4770
b4f54984 4771 if (dwarf_read_debug > 1)
4031ecc5 4772 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4773 offset.sect_off,
4031ecc5 4774 hex_string (signature));
348e048f 4775
dee91e82 4776 info_ptr += length;
8b70b953 4777 }
348e048f
DE
4778 }
4779
3019eac3
DE
4780 return types_htab;
4781}
4782
4783/* Create the hash table of all entries in the .debug_types section,
4784 and initialize all_type_units.
4785 The result is zero if there is an error (e.g. missing .debug_types section),
4786 otherwise non-zero. */
4787
4788static int
4789create_all_type_units (struct objfile *objfile)
4790{
4791 htab_t types_htab;
b4dd5633 4792 struct signatured_type **iter;
3019eac3
DE
4793
4794 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4795 if (types_htab == NULL)
4796 {
4797 dwarf2_per_objfile->signatured_types = NULL;
4798 return 0;
4799 }
4800
348e048f
DE
4801 dwarf2_per_objfile->signatured_types = types_htab;
4802
6aa5f3a6
DE
4803 dwarf2_per_objfile->n_type_units
4804 = dwarf2_per_objfile->n_allocated_type_units
4805 = htab_elements (types_htab);
8d749320
SM
4806 dwarf2_per_objfile->all_type_units =
4807 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4808 iter = &dwarf2_per_objfile->all_type_units[0];
4809 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4810 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4811 == dwarf2_per_objfile->n_type_units);
1fd400ff 4812
348e048f
DE
4813 return 1;
4814}
4815
6aa5f3a6
DE
4816/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4817 If SLOT is non-NULL, it is the entry to use in the hash table.
4818 Otherwise we find one. */
4819
4820static struct signatured_type *
4821add_type_unit (ULONGEST sig, void **slot)
4822{
4823 struct objfile *objfile = dwarf2_per_objfile->objfile;
4824 int n_type_units = dwarf2_per_objfile->n_type_units;
4825 struct signatured_type *sig_type;
4826
4827 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4828 ++n_type_units;
4829 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4830 {
4831 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4832 dwarf2_per_objfile->n_allocated_type_units = 1;
4833 dwarf2_per_objfile->n_allocated_type_units *= 2;
4834 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4835 = XRESIZEVEC (struct signatured_type *,
4836 dwarf2_per_objfile->all_type_units,
4837 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4838 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4839 }
4840 dwarf2_per_objfile->n_type_units = n_type_units;
4841
4842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4843 struct signatured_type);
4844 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4845 sig_type->signature = sig;
4846 sig_type->per_cu.is_debug_types = 1;
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 sig_type->per_cu.v.quick =
4850 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4851 struct dwarf2_per_cu_quick_data);
4852 }
4853
4854 if (slot == NULL)
4855 {
4856 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4857 sig_type, INSERT);
4858 }
4859 gdb_assert (*slot == NULL);
4860 *slot = sig_type;
4861 /* The rest of sig_type must be filled in by the caller. */
4862 return sig_type;
4863}
4864
a2ce51a0
DE
4865/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4866 Fill in SIG_ENTRY with DWO_ENTRY. */
4867
4868static void
4869fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4870 struct signatured_type *sig_entry,
4871 struct dwo_unit *dwo_entry)
4872{
7ee85ab1 4873 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4874 gdb_assert (! sig_entry->per_cu.queued);
4875 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4876 if (dwarf2_per_objfile->using_index)
4877 {
4878 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4879 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4880 }
4881 else
4882 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4883 gdb_assert (sig_entry->signature == dwo_entry->signature);
4884 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4885 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4886 gdb_assert (sig_entry->dwo_unit == NULL);
4887
4888 sig_entry->per_cu.section = dwo_entry->section;
4889 sig_entry->per_cu.offset = dwo_entry->offset;
4890 sig_entry->per_cu.length = dwo_entry->length;
4891 sig_entry->per_cu.reading_dwo_directly = 1;
4892 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4893 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4894 sig_entry->dwo_unit = dwo_entry;
4895}
4896
4897/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4898 If we haven't read the TU yet, create the signatured_type data structure
4899 for a TU to be read in directly from a DWO file, bypassing the stub.
4900 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4901 using .gdb_index, then when reading a CU we want to stay in the DWO file
4902 containing that CU. Otherwise we could end up reading several other DWO
4903 files (due to comdat folding) to process the transitive closure of all the
4904 mentioned TUs, and that can be slow. The current DWO file will have every
4905 type signature that it needs.
a2ce51a0
DE
4906 We only do this for .gdb_index because in the psymtab case we already have
4907 to read all the DWOs to build the type unit groups. */
4908
4909static struct signatured_type *
4910lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911{
4912 struct objfile *objfile = dwarf2_per_objfile->objfile;
4913 struct dwo_file *dwo_file;
4914 struct dwo_unit find_dwo_entry, *dwo_entry;
4915 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4916 void **slot;
a2ce51a0
DE
4917
4918 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4919
6aa5f3a6
DE
4920 /* If TU skeletons have been removed then we may not have read in any
4921 TUs yet. */
4922 if (dwarf2_per_objfile->signatured_types == NULL)
4923 {
4924 dwarf2_per_objfile->signatured_types
4925 = allocate_signatured_type_table (objfile);
4926 }
a2ce51a0
DE
4927
4928 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4929 Use the global signatured_types array to do our own comdat-folding
4930 of types. If this is the first time we're reading this TU, and
4931 the TU has an entry in .gdb_index, replace the recorded data from
4932 .gdb_index with this TU. */
a2ce51a0 4933
a2ce51a0 4934 find_sig_entry.signature = sig;
6aa5f3a6
DE
4935 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4936 &find_sig_entry, INSERT);
9a3c8263 4937 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4938
4939 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4940 read. Don't reassign the global entry to point to this DWO if that's
4941 the case. Also note that if the TU is already being read, it may not
4942 have come from a DWO, the program may be a mix of Fission-compiled
4943 code and non-Fission-compiled code. */
4944
4945 /* Have we already tried to read this TU?
4946 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4947 needn't exist in the global table yet). */
4948 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4949 return sig_entry;
4950
6aa5f3a6
DE
4951 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4952 dwo_unit of the TU itself. */
4953 dwo_file = cu->dwo_unit->dwo_file;
4954
a2ce51a0
DE
4955 /* Ok, this is the first time we're reading this TU. */
4956 if (dwo_file->tus == NULL)
4957 return NULL;
4958 find_dwo_entry.signature = sig;
9a3c8263 4959 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4960 if (dwo_entry == NULL)
4961 return NULL;
4962
6aa5f3a6
DE
4963 /* If the global table doesn't have an entry for this TU, add one. */
4964 if (sig_entry == NULL)
4965 sig_entry = add_type_unit (sig, slot);
4966
a2ce51a0 4967 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4968 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4969 return sig_entry;
4970}
4971
a2ce51a0
DE
4972/* Subroutine of lookup_signatured_type.
4973 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4974 then try the DWP file. If the TU stub (skeleton) has been removed then
4975 it won't be in .gdb_index. */
a2ce51a0
DE
4976
4977static struct signatured_type *
4978lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4979{
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwp_file *dwp_file = get_dwp_file ();
4982 struct dwo_unit *dwo_entry;
4983 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4984 void **slot;
a2ce51a0
DE
4985
4986 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4987 gdb_assert (dwp_file != NULL);
4988
6aa5f3a6
DE
4989 /* If TU skeletons have been removed then we may not have read in any
4990 TUs yet. */
4991 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4992 {
6aa5f3a6
DE
4993 dwarf2_per_objfile->signatured_types
4994 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4995 }
4996
6aa5f3a6
DE
4997 find_sig_entry.signature = sig;
4998 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4999 &find_sig_entry, INSERT);
9a3c8263 5000 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5001
5002 /* Have we already tried to read this TU?
5003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5004 needn't exist in the global table yet). */
5005 if (sig_entry != NULL)
5006 return sig_entry;
5007
a2ce51a0
DE
5008 if (dwp_file->tus == NULL)
5009 return NULL;
57d63ce2
DE
5010 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5011 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5012 if (dwo_entry == NULL)
5013 return NULL;
5014
6aa5f3a6 5015 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5016 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5017
a2ce51a0
DE
5018 return sig_entry;
5019}
5020
380bca97 5021/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5022 Returns NULL if signature SIG is not present in the table.
5023 It is up to the caller to complain about this. */
348e048f
DE
5024
5025static struct signatured_type *
a2ce51a0 5026lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5027{
a2ce51a0
DE
5028 if (cu->dwo_unit
5029 && dwarf2_per_objfile->using_index)
5030 {
5031 /* We're in a DWO/DWP file, and we're using .gdb_index.
5032 These cases require special processing. */
5033 if (get_dwp_file () == NULL)
5034 return lookup_dwo_signatured_type (cu, sig);
5035 else
5036 return lookup_dwp_signatured_type (cu, sig);
5037 }
5038 else
5039 {
5040 struct signatured_type find_entry, *entry;
348e048f 5041
a2ce51a0
DE
5042 if (dwarf2_per_objfile->signatured_types == NULL)
5043 return NULL;
5044 find_entry.signature = sig;
9a3c8263
SM
5045 entry = ((struct signatured_type *)
5046 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5047 return entry;
5048 }
348e048f 5049}
42e7ad6c
DE
5050\f
5051/* Low level DIE reading support. */
348e048f 5052
d85a05f0
DJ
5053/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5054
5055static void
5056init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5057 struct dwarf2_cu *cu,
3019eac3
DE
5058 struct dwarf2_section_info *section,
5059 struct dwo_file *dwo_file)
d85a05f0 5060{
fceca515 5061 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5062 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5063 reader->cu = cu;
3019eac3 5064 reader->dwo_file = dwo_file;
dee91e82
DE
5065 reader->die_section = section;
5066 reader->buffer = section->buffer;
f664829e 5067 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5068 reader->comp_dir = NULL;
d85a05f0
DJ
5069}
5070
b0c7bfa9
DE
5071/* Subroutine of init_cutu_and_read_dies to simplify it.
5072 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5073 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5074 already.
5075
5076 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5077 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5078 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5079 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5080 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5081 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5082 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5083 are filled in with the info of the DIE from the DWO file.
5084 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5085 provided an abbrev table to use.
5086 The result is non-zero if a valid (non-dummy) DIE was found. */
5087
5088static int
5089read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5090 struct dwo_unit *dwo_unit,
5091 int abbrev_table_provided,
5092 struct die_info *stub_comp_unit_die,
a2ce51a0 5093 const char *stub_comp_dir,
b0c7bfa9 5094 struct die_reader_specs *result_reader,
d521ce57 5095 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5096 struct die_info **result_comp_unit_die,
5097 int *result_has_children)
5098{
5099 struct objfile *objfile = dwarf2_per_objfile->objfile;
5100 struct dwarf2_cu *cu = this_cu->cu;
5101 struct dwarf2_section_info *section;
5102 bfd *abfd;
d521ce57 5103 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5104 ULONGEST signature; /* Or dwo_id. */
5105 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5106 int i,num_extra_attrs;
5107 struct dwarf2_section_info *dwo_abbrev_section;
5108 struct attribute *attr;
5109 struct die_info *comp_unit_die;
5110
b0aeadb3
DE
5111 /* At most one of these may be provided. */
5112 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5113
b0c7bfa9
DE
5114 /* These attributes aren't processed until later:
5115 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5116 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5117 referenced later. However, these attributes are found in the stub
5118 which we won't have later. In order to not impose this complication
5119 on the rest of the code, we read them here and copy them to the
5120 DWO CU/TU die. */
b0c7bfa9
DE
5121
5122 stmt_list = NULL;
5123 low_pc = NULL;
5124 high_pc = NULL;
5125 ranges = NULL;
5126 comp_dir = NULL;
5127
5128 if (stub_comp_unit_die != NULL)
5129 {
5130 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5131 DWO file. */
5132 if (! this_cu->is_debug_types)
5133 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5134 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5135 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5136 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5137 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5138
5139 /* There should be a DW_AT_addr_base attribute here (if needed).
5140 We need the value before we can process DW_FORM_GNU_addr_index. */
5141 cu->addr_base = 0;
5142 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5143 if (attr)
5144 cu->addr_base = DW_UNSND (attr);
5145
5146 /* There should be a DW_AT_ranges_base attribute here (if needed).
5147 We need the value before we can process DW_AT_ranges. */
5148 cu->ranges_base = 0;
5149 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5150 if (attr)
5151 cu->ranges_base = DW_UNSND (attr);
5152 }
a2ce51a0
DE
5153 else if (stub_comp_dir != NULL)
5154 {
5155 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5156 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5157 comp_dir->name = DW_AT_comp_dir;
5158 comp_dir->form = DW_FORM_string;
5159 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5160 DW_STRING (comp_dir) = stub_comp_dir;
5161 }
b0c7bfa9
DE
5162
5163 /* Set up for reading the DWO CU/TU. */
5164 cu->dwo_unit = dwo_unit;
5165 section = dwo_unit->section;
5166 dwarf2_read_section (objfile, section);
a32a8923 5167 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5168 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5169 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5170 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5171
5172 if (this_cu->is_debug_types)
5173 {
5174 ULONGEST header_signature;
5175 cu_offset type_offset_in_tu;
5176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5177
5178 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5179 dwo_abbrev_section,
5180 info_ptr,
5181 &header_signature,
5182 &type_offset_in_tu);
a2ce51a0
DE
5183 /* This is not an assert because it can be caused by bad debug info. */
5184 if (sig_type->signature != header_signature)
5185 {
5186 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5187 " TU at offset 0x%x [in module %s]"),
5188 hex_string (sig_type->signature),
5189 hex_string (header_signature),
5190 dwo_unit->offset.sect_off,
5191 bfd_get_filename (abfd));
5192 }
b0c7bfa9
DE
5193 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5194 /* For DWOs coming from DWP files, we don't know the CU length
5195 nor the type's offset in the TU until now. */
5196 dwo_unit->length = get_cu_length (&cu->header);
5197 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5198
5199 /* Establish the type offset that can be used to lookup the type.
5200 For DWO files, we don't know it until now. */
5201 sig_type->type_offset_in_section.sect_off =
5202 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5203 }
5204 else
5205 {
5206 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5207 dwo_abbrev_section,
5208 info_ptr, 0);
5209 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5210 /* For DWOs coming from DWP files, we don't know the CU length
5211 until now. */
5212 dwo_unit->length = get_cu_length (&cu->header);
5213 }
5214
02142a6c
DE
5215 /* Replace the CU's original abbrev table with the DWO's.
5216 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5217 if (abbrev_table_provided)
5218 {
5219 /* Don't free the provided abbrev table, the caller of
5220 init_cutu_and_read_dies owns it. */
5221 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5222 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5223 make_cleanup (dwarf2_free_abbrev_table, cu);
5224 }
5225 else
5226 {
5227 dwarf2_free_abbrev_table (cu);
5228 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5229 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5230 }
5231
5232 /* Read in the die, but leave space to copy over the attributes
5233 from the stub. This has the benefit of simplifying the rest of
5234 the code - all the work to maintain the illusion of a single
5235 DW_TAG_{compile,type}_unit DIE is done here. */
5236 num_extra_attrs = ((stmt_list != NULL)
5237 + (low_pc != NULL)
5238 + (high_pc != NULL)
5239 + (ranges != NULL)
5240 + (comp_dir != NULL));
5241 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5242 result_has_children, num_extra_attrs);
5243
5244 /* Copy over the attributes from the stub to the DIE we just read in. */
5245 comp_unit_die = *result_comp_unit_die;
5246 i = comp_unit_die->num_attrs;
5247 if (stmt_list != NULL)
5248 comp_unit_die->attrs[i++] = *stmt_list;
5249 if (low_pc != NULL)
5250 comp_unit_die->attrs[i++] = *low_pc;
5251 if (high_pc != NULL)
5252 comp_unit_die->attrs[i++] = *high_pc;
5253 if (ranges != NULL)
5254 comp_unit_die->attrs[i++] = *ranges;
5255 if (comp_dir != NULL)
5256 comp_unit_die->attrs[i++] = *comp_dir;
5257 comp_unit_die->num_attrs += num_extra_attrs;
5258
b4f54984 5259 if (dwarf_die_debug)
bf6af496
DE
5260 {
5261 fprintf_unfiltered (gdb_stdlog,
5262 "Read die from %s@0x%x of %s:\n",
a32a8923 5263 get_section_name (section),
bf6af496
DE
5264 (unsigned) (begin_info_ptr - section->buffer),
5265 bfd_get_filename (abfd));
b4f54984 5266 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5267 }
5268
a2ce51a0
DE
5269 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5270 TUs by skipping the stub and going directly to the entry in the DWO file.
5271 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5272 to get it via circuitous means. Blech. */
5273 if (comp_dir != NULL)
5274 result_reader->comp_dir = DW_STRING (comp_dir);
5275
b0c7bfa9
DE
5276 /* Skip dummy compilation units. */
5277 if (info_ptr >= begin_info_ptr + dwo_unit->length
5278 || peek_abbrev_code (abfd, info_ptr) == 0)
5279 return 0;
5280
5281 *result_info_ptr = info_ptr;
5282 return 1;
5283}
5284
5285/* Subroutine of init_cutu_and_read_dies to simplify it.
5286 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5287 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5288
5289static struct dwo_unit *
5290lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5291 struct die_info *comp_unit_die)
5292{
5293 struct dwarf2_cu *cu = this_cu->cu;
5294 struct attribute *attr;
5295 ULONGEST signature;
5296 struct dwo_unit *dwo_unit;
5297 const char *comp_dir, *dwo_name;
5298
a2ce51a0
DE
5299 gdb_assert (cu != NULL);
5300
b0c7bfa9 5301 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5302 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5303 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5304
5305 if (this_cu->is_debug_types)
5306 {
5307 struct signatured_type *sig_type;
5308
5309 /* Since this_cu is the first member of struct signatured_type,
5310 we can go from a pointer to one to a pointer to the other. */
5311 sig_type = (struct signatured_type *) this_cu;
5312 signature = sig_type->signature;
5313 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5314 }
5315 else
5316 {
5317 struct attribute *attr;
5318
5319 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5320 if (! attr)
5321 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5322 " [in module %s]"),
4262abfb 5323 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5324 signature = DW_UNSND (attr);
5325 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5326 signature);
5327 }
5328
b0c7bfa9
DE
5329 return dwo_unit;
5330}
5331
a2ce51a0 5332/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5333 See it for a description of the parameters.
5334 Read a TU directly from a DWO file, bypassing the stub.
5335
5336 Note: This function could be a little bit simpler if we shared cleanups
5337 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5338 to do, so we keep this function self-contained. Or we could move this
5339 into our caller, but it's complex enough already. */
a2ce51a0
DE
5340
5341static void
6aa5f3a6
DE
5342init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5343 int use_existing_cu, int keep,
a2ce51a0
DE
5344 die_reader_func_ftype *die_reader_func,
5345 void *data)
5346{
5347 struct dwarf2_cu *cu;
5348 struct signatured_type *sig_type;
6aa5f3a6 5349 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5350 struct die_reader_specs reader;
5351 const gdb_byte *info_ptr;
5352 struct die_info *comp_unit_die;
5353 int has_children;
5354
5355 /* Verify we can do the following downcast, and that we have the
5356 data we need. */
5357 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5358 sig_type = (struct signatured_type *) this_cu;
5359 gdb_assert (sig_type->dwo_unit != NULL);
5360
5361 cleanups = make_cleanup (null_cleanup, NULL);
5362
6aa5f3a6
DE
5363 if (use_existing_cu && this_cu->cu != NULL)
5364 {
5365 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5366 cu = this_cu->cu;
5367 /* There's no need to do the rereading_dwo_cu handling that
5368 init_cutu_and_read_dies does since we don't read the stub. */
5369 }
5370 else
5371 {
5372 /* If !use_existing_cu, this_cu->cu must be NULL. */
5373 gdb_assert (this_cu->cu == NULL);
8d749320 5374 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5375 init_one_comp_unit (cu, this_cu);
5376 /* If an error occurs while loading, release our storage. */
5377 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5378 }
5379
5380 /* A future optimization, if needed, would be to use an existing
5381 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5382 could share abbrev tables. */
a2ce51a0
DE
5383
5384 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5385 0 /* abbrev_table_provided */,
5386 NULL /* stub_comp_unit_die */,
5387 sig_type->dwo_unit->dwo_file->comp_dir,
5388 &reader, &info_ptr,
5389 &comp_unit_die, &has_children) == 0)
5390 {
5391 /* Dummy die. */
5392 do_cleanups (cleanups);
5393 return;
5394 }
5395
5396 /* All the "real" work is done here. */
5397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5398
6aa5f3a6 5399 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5400 but the alternative is making the latter more complex.
5401 This function is only for the special case of using DWO files directly:
5402 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5403 if (free_cu_cleanup != NULL)
a2ce51a0 5404 {
6aa5f3a6
DE
5405 if (keep)
5406 {
5407 /* We've successfully allocated this compilation unit. Let our
5408 caller clean it up when finished with it. */
5409 discard_cleanups (free_cu_cleanup);
a2ce51a0 5410
6aa5f3a6
DE
5411 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5412 So we have to manually free the abbrev table. */
5413 dwarf2_free_abbrev_table (cu);
a2ce51a0 5414
6aa5f3a6
DE
5415 /* Link this CU into read_in_chain. */
5416 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5417 dwarf2_per_objfile->read_in_chain = this_cu;
5418 }
5419 else
5420 do_cleanups (free_cu_cleanup);
a2ce51a0 5421 }
a2ce51a0
DE
5422
5423 do_cleanups (cleanups);
5424}
5425
fd820528 5426/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5427 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5428
f4dc4d17
DE
5429 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5430 Otherwise the table specified in the comp unit header is read in and used.
5431 This is an optimization for when we already have the abbrev table.
5432
dee91e82
DE
5433 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5434 Otherwise, a new CU is allocated with xmalloc.
5435
5436 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5437 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5438
5439 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5440 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5441
70221824 5442static void
fd820528 5443init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5444 struct abbrev_table *abbrev_table,
fd820528
DE
5445 int use_existing_cu, int keep,
5446 die_reader_func_ftype *die_reader_func,
5447 void *data)
c906108c 5448{
dee91e82 5449 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5450 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5451 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5452 struct dwarf2_cu *cu;
d521ce57 5453 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5454 struct die_reader_specs reader;
d85a05f0 5455 struct die_info *comp_unit_die;
dee91e82 5456 int has_children;
d85a05f0 5457 struct attribute *attr;
365156ad 5458 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5459 struct signatured_type *sig_type = NULL;
4bdcc0c1 5460 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5461 /* Non-zero if CU currently points to a DWO file and we need to
5462 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5463 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5464 int rereading_dwo_cu = 0;
c906108c 5465
b4f54984 5466 if (dwarf_die_debug)
09406207
DE
5467 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5468 this_cu->is_debug_types ? "type" : "comp",
5469 this_cu->offset.sect_off);
5470
dee91e82
DE
5471 if (use_existing_cu)
5472 gdb_assert (keep);
23745b47 5473
a2ce51a0
DE
5474 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5475 file (instead of going through the stub), short-circuit all of this. */
5476 if (this_cu->reading_dwo_directly)
5477 {
5478 /* Narrow down the scope of possibilities to have to understand. */
5479 gdb_assert (this_cu->is_debug_types);
5480 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5481 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5482 die_reader_func, data);
a2ce51a0
DE
5483 return;
5484 }
5485
dee91e82
DE
5486 cleanups = make_cleanup (null_cleanup, NULL);
5487
5488 /* This is cheap if the section is already read in. */
5489 dwarf2_read_section (objfile, section);
5490
5491 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5492
5493 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5494
5495 if (use_existing_cu && this_cu->cu != NULL)
5496 {
5497 cu = this_cu->cu;
42e7ad6c
DE
5498 /* If this CU is from a DWO file we need to start over, we need to
5499 refetch the attributes from the skeleton CU.
5500 This could be optimized by retrieving those attributes from when we
5501 were here the first time: the previous comp_unit_die was stored in
5502 comp_unit_obstack. But there's no data yet that we need this
5503 optimization. */
5504 if (cu->dwo_unit != NULL)
5505 rereading_dwo_cu = 1;
dee91e82
DE
5506 }
5507 else
5508 {
5509 /* If !use_existing_cu, this_cu->cu must be NULL. */
5510 gdb_assert (this_cu->cu == NULL);
8d749320 5511 cu = XNEW (struct dwarf2_cu);
dee91e82 5512 init_one_comp_unit (cu, this_cu);
dee91e82 5513 /* If an error occurs while loading, release our storage. */
365156ad 5514 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5515 }
dee91e82 5516
b0c7bfa9 5517 /* Get the header. */
42e7ad6c
DE
5518 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5519 {
5520 /* We already have the header, there's no need to read it in again. */
5521 info_ptr += cu->header.first_die_offset.cu_off;
5522 }
5523 else
5524 {
3019eac3 5525 if (this_cu->is_debug_types)
dee91e82
DE
5526 {
5527 ULONGEST signature;
42e7ad6c 5528 cu_offset type_offset_in_tu;
dee91e82 5529
4bdcc0c1
DE
5530 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5531 abbrev_section, info_ptr,
42e7ad6c
DE
5532 &signature,
5533 &type_offset_in_tu);
dee91e82 5534
42e7ad6c
DE
5535 /* Since per_cu is the first member of struct signatured_type,
5536 we can go from a pointer to one to a pointer to the other. */
5537 sig_type = (struct signatured_type *) this_cu;
5538 gdb_assert (sig_type->signature == signature);
5539 gdb_assert (sig_type->type_offset_in_tu.cu_off
5540 == type_offset_in_tu.cu_off);
dee91e82
DE
5541 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5542
42e7ad6c
DE
5543 /* LENGTH has not been set yet for type units if we're
5544 using .gdb_index. */
1ce1cefd 5545 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5546
5547 /* Establish the type offset that can be used to lookup the type. */
5548 sig_type->type_offset_in_section.sect_off =
5549 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5550 }
5551 else
5552 {
4bdcc0c1
DE
5553 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5554 abbrev_section,
5555 info_ptr, 0);
dee91e82
DE
5556
5557 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5558 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5559 }
5560 }
10b3939b 5561
6caca83c 5562 /* Skip dummy compilation units. */
dee91e82 5563 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5564 || peek_abbrev_code (abfd, info_ptr) == 0)
5565 {
dee91e82 5566 do_cleanups (cleanups);
21b2bd31 5567 return;
6caca83c
CC
5568 }
5569
433df2d4
DE
5570 /* If we don't have them yet, read the abbrevs for this compilation unit.
5571 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5572 done. Note that it's important that if the CU had an abbrev table
5573 on entry we don't free it when we're done: Somewhere up the call stack
5574 it may be in use. */
f4dc4d17
DE
5575 if (abbrev_table != NULL)
5576 {
5577 gdb_assert (cu->abbrev_table == NULL);
5578 gdb_assert (cu->header.abbrev_offset.sect_off
5579 == abbrev_table->offset.sect_off);
5580 cu->abbrev_table = abbrev_table;
5581 }
5582 else if (cu->abbrev_table == NULL)
dee91e82 5583 {
4bdcc0c1 5584 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5585 make_cleanup (dwarf2_free_abbrev_table, cu);
5586 }
42e7ad6c
DE
5587 else if (rereading_dwo_cu)
5588 {
5589 dwarf2_free_abbrev_table (cu);
5590 dwarf2_read_abbrevs (cu, abbrev_section);
5591 }
af703f96 5592
dee91e82 5593 /* Read the top level CU/TU die. */
3019eac3 5594 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5595 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5596
b0c7bfa9
DE
5597 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5598 from the DWO file.
5599 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5600 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5601 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5602 if (attr)
5603 {
3019eac3 5604 struct dwo_unit *dwo_unit;
b0c7bfa9 5605 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5606
5607 if (has_children)
6a506a2d
DE
5608 {
5609 complaint (&symfile_complaints,
5610 _("compilation unit with DW_AT_GNU_dwo_name"
5611 " has children (offset 0x%x) [in module %s]"),
5612 this_cu->offset.sect_off, bfd_get_filename (abfd));
5613 }
b0c7bfa9 5614 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5615 if (dwo_unit != NULL)
3019eac3 5616 {
6a506a2d
DE
5617 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5618 abbrev_table != NULL,
a2ce51a0 5619 comp_unit_die, NULL,
6a506a2d
DE
5620 &reader, &info_ptr,
5621 &dwo_comp_unit_die, &has_children) == 0)
5622 {
5623 /* Dummy die. */
5624 do_cleanups (cleanups);
5625 return;
5626 }
5627 comp_unit_die = dwo_comp_unit_die;
5628 }
5629 else
5630 {
5631 /* Yikes, we couldn't find the rest of the DIE, we only have
5632 the stub. A complaint has already been logged. There's
5633 not much more we can do except pass on the stub DIE to
5634 die_reader_func. We don't want to throw an error on bad
5635 debug info. */
3019eac3
DE
5636 }
5637 }
5638
b0c7bfa9 5639 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5640 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5641
b0c7bfa9 5642 /* Done, clean up. */
365156ad 5643 if (free_cu_cleanup != NULL)
348e048f 5644 {
365156ad
TT
5645 if (keep)
5646 {
5647 /* We've successfully allocated this compilation unit. Let our
5648 caller clean it up when finished with it. */
5649 discard_cleanups (free_cu_cleanup);
dee91e82 5650
365156ad
TT
5651 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5652 So we have to manually free the abbrev table. */
5653 dwarf2_free_abbrev_table (cu);
dee91e82 5654
365156ad
TT
5655 /* Link this CU into read_in_chain. */
5656 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5657 dwarf2_per_objfile->read_in_chain = this_cu;
5658 }
5659 else
5660 do_cleanups (free_cu_cleanup);
348e048f 5661 }
365156ad
TT
5662
5663 do_cleanups (cleanups);
dee91e82
DE
5664}
5665
33e80786
DE
5666/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5667 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5668 to have already done the lookup to find the DWO file).
dee91e82
DE
5669
5670 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5671 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5672
5673 We fill in THIS_CU->length.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5676 linker) then DIE_READER_FUNC will not get called.
5677
5678 THIS_CU->cu is always freed when done.
3019eac3
DE
5679 This is done in order to not leave THIS_CU->cu in a state where we have
5680 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5681
5682static void
5683init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5684 struct dwo_file *dwo_file,
dee91e82
DE
5685 die_reader_func_ftype *die_reader_func,
5686 void *data)
5687{
5688 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5689 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5690 bfd *abfd = get_section_bfd_owner (section);
33e80786 5691 struct dwarf2_section_info *abbrev_section;
dee91e82 5692 struct dwarf2_cu cu;
d521ce57 5693 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5694 struct die_reader_specs reader;
5695 struct cleanup *cleanups;
5696 struct die_info *comp_unit_die;
5697 int has_children;
5698
b4f54984 5699 if (dwarf_die_debug)
09406207
DE
5700 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5701 this_cu->is_debug_types ? "type" : "comp",
5702 this_cu->offset.sect_off);
5703
dee91e82
DE
5704 gdb_assert (this_cu->cu == NULL);
5705
33e80786
DE
5706 abbrev_section = (dwo_file != NULL
5707 ? &dwo_file->sections.abbrev
5708 : get_abbrev_section_for_cu (this_cu));
5709
dee91e82
DE
5710 /* This is cheap if the section is already read in. */
5711 dwarf2_read_section (objfile, section);
5712
5713 init_one_comp_unit (&cu, this_cu);
5714
5715 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5716
5717 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5718 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5719 abbrev_section, info_ptr,
3019eac3 5720 this_cu->is_debug_types);
dee91e82 5721
1ce1cefd 5722 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5723
5724 /* Skip dummy compilation units. */
5725 if (info_ptr >= begin_info_ptr + this_cu->length
5726 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5727 {
dee91e82 5728 do_cleanups (cleanups);
21b2bd31 5729 return;
93311388 5730 }
72bf9492 5731
dee91e82
DE
5732 dwarf2_read_abbrevs (&cu, abbrev_section);
5733 make_cleanup (dwarf2_free_abbrev_table, &cu);
5734
3019eac3 5735 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5736 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5737
5738 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5739
5740 do_cleanups (cleanups);
5741}
5742
3019eac3
DE
5743/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5744 does not lookup the specified DWO file.
5745 This cannot be used to read DWO files.
dee91e82
DE
5746
5747 THIS_CU->cu is always freed when done.
3019eac3
DE
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU.
5750 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5751
5752static void
5753init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756{
33e80786 5757 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5758}
0018ea6f
DE
5759\f
5760/* Type Unit Groups.
dee91e82 5761
0018ea6f
DE
5762 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5763 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5764 so that all types coming from the same compilation (.o file) are grouped
5765 together. A future step could be to put the types in the same symtab as
5766 the CU the types ultimately came from. */
ff013f42 5767
f4dc4d17
DE
5768static hashval_t
5769hash_type_unit_group (const void *item)
5770{
9a3c8263
SM
5771 const struct type_unit_group *tu_group
5772 = (const struct type_unit_group *) item;
f4dc4d17 5773
094b34ac 5774 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5775}
348e048f
DE
5776
5777static int
f4dc4d17 5778eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5779{
9a3c8263
SM
5780 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5781 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5782
094b34ac 5783 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5784}
348e048f 5785
f4dc4d17
DE
5786/* Allocate a hash table for type unit groups. */
5787
5788static htab_t
5789allocate_type_unit_groups_table (void)
5790{
5791 return htab_create_alloc_ex (3,
5792 hash_type_unit_group,
5793 eq_type_unit_group,
5794 NULL,
5795 &dwarf2_per_objfile->objfile->objfile_obstack,
5796 hashtab_obstack_allocate,
5797 dummy_obstack_deallocate);
5798}
dee91e82 5799
f4dc4d17
DE
5800/* Type units that don't have DW_AT_stmt_list are grouped into their own
5801 partial symtabs. We combine several TUs per psymtab to not let the size
5802 of any one psymtab grow too big. */
5803#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5804#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5805
094b34ac 5806/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5807 Create the type_unit_group object used to hold one or more TUs. */
5808
5809static struct type_unit_group *
094b34ac 5810create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5811{
5812 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5813 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5814 struct type_unit_group *tu_group;
f4dc4d17
DE
5815
5816 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5817 struct type_unit_group);
094b34ac 5818 per_cu = &tu_group->per_cu;
f4dc4d17 5819 per_cu->objfile = objfile;
f4dc4d17 5820
094b34ac
DE
5821 if (dwarf2_per_objfile->using_index)
5822 {
5823 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5824 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5825 }
5826 else
5827 {
5828 unsigned int line_offset = line_offset_struct.sect_off;
5829 struct partial_symtab *pst;
5830 char *name;
5831
5832 /* Give the symtab a useful name for debug purposes. */
5833 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5834 name = xstrprintf ("<type_units_%d>",
5835 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5836 else
5837 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5838
5839 pst = create_partial_symtab (per_cu, name);
5840 pst->anonymous = 1;
f4dc4d17 5841
094b34ac
DE
5842 xfree (name);
5843 }
f4dc4d17 5844
094b34ac
DE
5845 tu_group->hash.dwo_unit = cu->dwo_unit;
5846 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5847
5848 return tu_group;
5849}
5850
094b34ac
DE
5851/* Look up the type_unit_group for type unit CU, and create it if necessary.
5852 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5853
5854static struct type_unit_group *
ff39bb5e 5855get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5856{
5857 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5858 struct type_unit_group *tu_group;
5859 void **slot;
5860 unsigned int line_offset;
5861 struct type_unit_group type_unit_group_for_lookup;
5862
5863 if (dwarf2_per_objfile->type_unit_groups == NULL)
5864 {
5865 dwarf2_per_objfile->type_unit_groups =
5866 allocate_type_unit_groups_table ();
5867 }
5868
5869 /* Do we need to create a new group, or can we use an existing one? */
5870
5871 if (stmt_list)
5872 {
5873 line_offset = DW_UNSND (stmt_list);
5874 ++tu_stats->nr_symtab_sharers;
5875 }
5876 else
5877 {
5878 /* Ugh, no stmt_list. Rare, but we have to handle it.
5879 We can do various things here like create one group per TU or
5880 spread them over multiple groups to split up the expansion work.
5881 To avoid worst case scenarios (too many groups or too large groups)
5882 we, umm, group them in bunches. */
5883 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5884 | (tu_stats->nr_stmt_less_type_units
5885 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5886 ++tu_stats->nr_stmt_less_type_units;
5887 }
5888
094b34ac
DE
5889 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5890 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5891 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5892 &type_unit_group_for_lookup, INSERT);
5893 if (*slot != NULL)
5894 {
9a3c8263 5895 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5896 gdb_assert (tu_group != NULL);
5897 }
5898 else
5899 {
5900 sect_offset line_offset_struct;
5901
5902 line_offset_struct.sect_off = line_offset;
094b34ac 5903 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5904 *slot = tu_group;
5905 ++tu_stats->nr_symtabs;
5906 }
5907
5908 return tu_group;
5909}
0018ea6f
DE
5910\f
5911/* Partial symbol tables. */
5912
5913/* Create a psymtab named NAME and assign it to PER_CU.
5914
5915 The caller must fill in the following details:
5916 dirname, textlow, texthigh. */
5917
5918static struct partial_symtab *
5919create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5920{
5921 struct objfile *objfile = per_cu->objfile;
5922 struct partial_symtab *pst;
5923
18a94d75 5924 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5925 objfile->global_psymbols.next,
5926 objfile->static_psymbols.next);
5927
5928 pst->psymtabs_addrmap_supported = 1;
5929
5930 /* This is the glue that links PST into GDB's symbol API. */
5931 pst->read_symtab_private = per_cu;
5932 pst->read_symtab = dwarf2_read_symtab;
5933 per_cu->v.psymtab = pst;
5934
5935 return pst;
5936}
5937
b93601f3
TT
5938/* The DATA object passed to process_psymtab_comp_unit_reader has this
5939 type. */
5940
5941struct process_psymtab_comp_unit_data
5942{
5943 /* True if we are reading a DW_TAG_partial_unit. */
5944
5945 int want_partial_unit;
5946
5947 /* The "pretend" language that is used if the CU doesn't declare a
5948 language. */
5949
5950 enum language pretend_language;
5951};
5952
0018ea6f
DE
5953/* die_reader_func for process_psymtab_comp_unit. */
5954
5955static void
5956process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5957 const gdb_byte *info_ptr,
0018ea6f
DE
5958 struct die_info *comp_unit_die,
5959 int has_children,
5960 void *data)
5961{
5962 struct dwarf2_cu *cu = reader->cu;
5963 struct objfile *objfile = cu->objfile;
3e29f34a 5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5966 CORE_ADDR baseaddr;
5967 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5968 struct partial_symtab *pst;
3a2b436a 5969 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 5970 const char *filename;
9a3c8263
SM
5971 struct process_psymtab_comp_unit_data *info
5972 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5973
b93601f3 5974 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5975 return;
5976
5977 gdb_assert (! per_cu->is_debug_types);
5978
b93601f3 5979 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5980
5981 cu->list_in_scope = &file_symbols;
5982
5983 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5984 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5985 if (filename == NULL)
0018ea6f 5986 filename = "";
0018ea6f
DE
5987
5988 pst = create_partial_symtab (per_cu, filename);
5989
5990 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5991 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5992
5993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5994
5995 dwarf2_find_base_address (comp_unit_die, cu);
5996
5997 /* Possibly set the default values of LOWPC and HIGHPC from
5998 `DW_AT_ranges'. */
3a2b436a
JK
5999 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6000 &best_highpc, cu, pst);
6001 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6002 /* Store the contiguous range if it is not empty; it can be empty for
6003 CUs with no code. */
6004 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6005 gdbarch_adjust_dwarf2_addr (gdbarch,
6006 best_lowpc + baseaddr),
6007 gdbarch_adjust_dwarf2_addr (gdbarch,
6008 best_highpc + baseaddr) - 1,
6009 pst);
0018ea6f
DE
6010
6011 /* Check if comp unit has_children.
6012 If so, read the rest of the partial symbols from this comp unit.
6013 If not, there's no more debug_info for this comp unit. */
6014 if (has_children)
6015 {
6016 struct partial_die_info *first_die;
6017 CORE_ADDR lowpc, highpc;
6018
6019 lowpc = ((CORE_ADDR) -1);
6020 highpc = ((CORE_ADDR) 0);
6021
6022 first_die = load_partial_dies (reader, info_ptr, 1);
6023
6024 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6025 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6026
6027 /* If we didn't find a lowpc, set it to highpc to avoid
6028 complaints from `maint check'. */
6029 if (lowpc == ((CORE_ADDR) -1))
6030 lowpc = highpc;
6031
6032 /* If the compilation unit didn't have an explicit address range,
6033 then use the information extracted from its child dies. */
e385593e 6034 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6035 {
6036 best_lowpc = lowpc;
6037 best_highpc = highpc;
6038 }
6039 }
3e29f34a
MR
6040 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6041 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6042
8763cede 6043 end_psymtab_common (objfile, pst);
0018ea6f
DE
6044
6045 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6046 {
6047 int i;
6048 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6049 struct dwarf2_per_cu_data *iter;
6050
6051 /* Fill in 'dependencies' here; we fill in 'users' in a
6052 post-pass. */
6053 pst->number_of_dependencies = len;
8d749320
SM
6054 pst->dependencies =
6055 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6056 for (i = 0;
6057 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6058 i, iter);
6059 ++i)
6060 pst->dependencies[i] = iter->v.psymtab;
6061
6062 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6063 }
6064
6065 /* Get the list of files included in the current compilation unit,
6066 and build a psymtab for each of them. */
6067 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6068
b4f54984 6069 if (dwarf_read_debug)
0018ea6f
DE
6070 {
6071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6072
6073 fprintf_unfiltered (gdb_stdlog,
6074 "Psymtab for %s unit @0x%x: %s - %s"
6075 ", %d global, %d static syms\n",
6076 per_cu->is_debug_types ? "type" : "comp",
6077 per_cu->offset.sect_off,
6078 paddress (gdbarch, pst->textlow),
6079 paddress (gdbarch, pst->texthigh),
6080 pst->n_global_syms, pst->n_static_syms);
6081 }
6082}
6083
6084/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6085 Process compilation unit THIS_CU for a psymtab. */
6086
6087static void
6088process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6089 int want_partial_unit,
6090 enum language pretend_language)
0018ea6f 6091{
b93601f3
TT
6092 struct process_psymtab_comp_unit_data info;
6093
0018ea6f
DE
6094 /* If this compilation unit was already read in, free the
6095 cached copy in order to read it in again. This is
6096 necessary because we skipped some symbols when we first
6097 read in the compilation unit (see load_partial_dies).
6098 This problem could be avoided, but the benefit is unclear. */
6099 if (this_cu->cu != NULL)
6100 free_one_cached_comp_unit (this_cu);
6101
6102 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6103 info.want_partial_unit = want_partial_unit;
6104 info.pretend_language = pretend_language;
0018ea6f
DE
6105 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6106 process_psymtab_comp_unit_reader,
b93601f3 6107 &info);
0018ea6f
DE
6108
6109 /* Age out any secondary CUs. */
6110 age_cached_comp_units ();
6111}
f4dc4d17
DE
6112
6113/* Reader function for build_type_psymtabs. */
6114
6115static void
6116build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6117 const gdb_byte *info_ptr,
f4dc4d17
DE
6118 struct die_info *type_unit_die,
6119 int has_children,
6120 void *data)
6121{
6122 struct objfile *objfile = dwarf2_per_objfile->objfile;
6123 struct dwarf2_cu *cu = reader->cu;
6124 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6125 struct signatured_type *sig_type;
f4dc4d17
DE
6126 struct type_unit_group *tu_group;
6127 struct attribute *attr;
6128 struct partial_die_info *first_die;
6129 CORE_ADDR lowpc, highpc;
6130 struct partial_symtab *pst;
6131
6132 gdb_assert (data == NULL);
0186c6a7
DE
6133 gdb_assert (per_cu->is_debug_types);
6134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6135
6136 if (! has_children)
6137 return;
6138
6139 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6140 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6141
0186c6a7 6142 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6143
6144 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6145 cu->list_in_scope = &file_symbols;
6146 pst = create_partial_symtab (per_cu, "");
6147 pst->anonymous = 1;
6148
6149 first_die = load_partial_dies (reader, info_ptr, 1);
6150
6151 lowpc = (CORE_ADDR) -1;
6152 highpc = (CORE_ADDR) 0;
6153 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6154
8763cede 6155 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6156}
6157
73051182
DE
6158/* Struct used to sort TUs by their abbreviation table offset. */
6159
6160struct tu_abbrev_offset
6161{
6162 struct signatured_type *sig_type;
6163 sect_offset abbrev_offset;
6164};
6165
6166/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6167
6168static int
6169sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6170{
9a3c8263
SM
6171 const struct tu_abbrev_offset * const *a
6172 = (const struct tu_abbrev_offset * const*) ap;
6173 const struct tu_abbrev_offset * const *b
6174 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6175 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6176 unsigned int boff = (*b)->abbrev_offset.sect_off;
6177
6178 return (aoff > boff) - (aoff < boff);
6179}
6180
6181/* Efficiently read all the type units.
6182 This does the bulk of the work for build_type_psymtabs.
6183
6184 The efficiency is because we sort TUs by the abbrev table they use and
6185 only read each abbrev table once. In one program there are 200K TUs
6186 sharing 8K abbrev tables.
6187
6188 The main purpose of this function is to support building the
6189 dwarf2_per_objfile->type_unit_groups table.
6190 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6191 can collapse the search space by grouping them by stmt_list.
6192 The savings can be significant, in the same program from above the 200K TUs
6193 share 8K stmt_list tables.
6194
6195 FUNC is expected to call get_type_unit_group, which will create the
6196 struct type_unit_group if necessary and add it to
6197 dwarf2_per_objfile->type_unit_groups. */
6198
6199static void
6200build_type_psymtabs_1 (void)
6201{
73051182
DE
6202 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6203 struct cleanup *cleanups;
6204 struct abbrev_table *abbrev_table;
6205 sect_offset abbrev_offset;
6206 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6207 int i;
6208
6209 /* It's up to the caller to not call us multiple times. */
6210 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6211
6212 if (dwarf2_per_objfile->n_type_units == 0)
6213 return;
6214
6215 /* TUs typically share abbrev tables, and there can be way more TUs than
6216 abbrev tables. Sort by abbrev table to reduce the number of times we
6217 read each abbrev table in.
6218 Alternatives are to punt or to maintain a cache of abbrev tables.
6219 This is simpler and efficient enough for now.
6220
6221 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6222 symtab to use). Typically TUs with the same abbrev offset have the same
6223 stmt_list value too so in practice this should work well.
6224
6225 The basic algorithm here is:
6226
6227 sort TUs by abbrev table
6228 for each TU with same abbrev table:
6229 read abbrev table if first user
6230 read TU top level DIE
6231 [IWBN if DWO skeletons had DW_AT_stmt_list]
6232 call FUNC */
6233
b4f54984 6234 if (dwarf_read_debug)
73051182
DE
6235 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6236
6237 /* Sort in a separate table to maintain the order of all_type_units
6238 for .gdb_index: TU indices directly index all_type_units. */
6239 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6240 dwarf2_per_objfile->n_type_units);
6241 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6242 {
6243 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6244
6245 sorted_by_abbrev[i].sig_type = sig_type;
6246 sorted_by_abbrev[i].abbrev_offset =
6247 read_abbrev_offset (sig_type->per_cu.section,
6248 sig_type->per_cu.offset);
6249 }
6250 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6251 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6252 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6253
6254 abbrev_offset.sect_off = ~(unsigned) 0;
6255 abbrev_table = NULL;
6256 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6257
6258 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6259 {
6260 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6261
6262 /* Switch to the next abbrev table if necessary. */
6263 if (abbrev_table == NULL
6264 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6265 {
6266 if (abbrev_table != NULL)
6267 {
6268 abbrev_table_free (abbrev_table);
6269 /* Reset to NULL in case abbrev_table_read_table throws
6270 an error: abbrev_table_free_cleanup will get called. */
6271 abbrev_table = NULL;
6272 }
6273 abbrev_offset = tu->abbrev_offset;
6274 abbrev_table =
6275 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6276 abbrev_offset);
6277 ++tu_stats->nr_uniq_abbrev_tables;
6278 }
6279
6280 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6281 build_type_psymtabs_reader, NULL);
6282 }
6283
73051182 6284 do_cleanups (cleanups);
6aa5f3a6 6285}
73051182 6286
6aa5f3a6
DE
6287/* Print collected type unit statistics. */
6288
6289static void
6290print_tu_stats (void)
6291{
6292 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6293
6294 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6295 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6296 dwarf2_per_objfile->n_type_units);
6297 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6298 tu_stats->nr_uniq_abbrev_tables);
6299 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6300 tu_stats->nr_symtabs);
6301 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6302 tu_stats->nr_symtab_sharers);
6303 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6304 tu_stats->nr_stmt_less_type_units);
6305 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6306 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6307}
6308
f4dc4d17
DE
6309/* Traversal function for build_type_psymtabs. */
6310
6311static int
6312build_type_psymtab_dependencies (void **slot, void *info)
6313{
6314 struct objfile *objfile = dwarf2_per_objfile->objfile;
6315 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6316 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6317 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6318 int len = VEC_length (sig_type_ptr, tu_group->tus);
6319 struct signatured_type *iter;
f4dc4d17
DE
6320 int i;
6321
6322 gdb_assert (len > 0);
0186c6a7 6323 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6324
6325 pst->number_of_dependencies = len;
8d749320
SM
6326 pst->dependencies =
6327 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6328 for (i = 0;
0186c6a7 6329 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6330 ++i)
6331 {
0186c6a7
DE
6332 gdb_assert (iter->per_cu.is_debug_types);
6333 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6334 iter->type_unit_group = tu_group;
f4dc4d17
DE
6335 }
6336
0186c6a7 6337 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6338
6339 return 1;
6340}
6341
6342/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6343 Build partial symbol tables for the .debug_types comp-units. */
6344
6345static void
6346build_type_psymtabs (struct objfile *objfile)
6347{
0e50663e 6348 if (! create_all_type_units (objfile))
348e048f
DE
6349 return;
6350
73051182 6351 build_type_psymtabs_1 ();
6aa5f3a6 6352}
f4dc4d17 6353
6aa5f3a6
DE
6354/* Traversal function for process_skeletonless_type_unit.
6355 Read a TU in a DWO file and build partial symbols for it. */
6356
6357static int
6358process_skeletonless_type_unit (void **slot, void *info)
6359{
6360 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6361 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6362 struct signatured_type find_entry, *entry;
6363
6364 /* If this TU doesn't exist in the global table, add it and read it in. */
6365
6366 if (dwarf2_per_objfile->signatured_types == NULL)
6367 {
6368 dwarf2_per_objfile->signatured_types
6369 = allocate_signatured_type_table (objfile);
6370 }
6371
6372 find_entry.signature = dwo_unit->signature;
6373 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6374 INSERT);
6375 /* If we've already seen this type there's nothing to do. What's happening
6376 is we're doing our own version of comdat-folding here. */
6377 if (*slot != NULL)
6378 return 1;
6379
6380 /* This does the job that create_all_type_units would have done for
6381 this TU. */
6382 entry = add_type_unit (dwo_unit->signature, slot);
6383 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6384 *slot = entry;
6385
6386 /* This does the job that build_type_psymtabs_1 would have done. */
6387 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6388 build_type_psymtabs_reader, NULL);
6389
6390 return 1;
6391}
6392
6393/* Traversal function for process_skeletonless_type_units. */
6394
6395static int
6396process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6397{
6398 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6399
6400 if (dwo_file->tus != NULL)
6401 {
6402 htab_traverse_noresize (dwo_file->tus,
6403 process_skeletonless_type_unit, info);
6404 }
6405
6406 return 1;
6407}
6408
6409/* Scan all TUs of DWO files, verifying we've processed them.
6410 This is needed in case a TU was emitted without its skeleton.
6411 Note: This can't be done until we know what all the DWO files are. */
6412
6413static void
6414process_skeletonless_type_units (struct objfile *objfile)
6415{
6416 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6417 if (get_dwp_file () == NULL
6418 && dwarf2_per_objfile->dwo_files != NULL)
6419 {
6420 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6421 process_dwo_file_for_skeletonless_type_units,
6422 objfile);
6423 }
348e048f
DE
6424}
6425
60606b2c
TT
6426/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6427
6428static void
6429psymtabs_addrmap_cleanup (void *o)
6430{
9a3c8263 6431 struct objfile *objfile = (struct objfile *) o;
ec61707d 6432
60606b2c
TT
6433 objfile->psymtabs_addrmap = NULL;
6434}
6435
95554aad
TT
6436/* Compute the 'user' field for each psymtab in OBJFILE. */
6437
6438static void
6439set_partial_user (struct objfile *objfile)
6440{
6441 int i;
6442
6443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6444 {
8832e7e3 6445 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6446 struct partial_symtab *pst = per_cu->v.psymtab;
6447 int j;
6448
36586728
TT
6449 if (pst == NULL)
6450 continue;
6451
95554aad
TT
6452 for (j = 0; j < pst->number_of_dependencies; ++j)
6453 {
6454 /* Set the 'user' field only if it is not already set. */
6455 if (pst->dependencies[j]->user == NULL)
6456 pst->dependencies[j]->user = pst;
6457 }
6458 }
6459}
6460
93311388
DE
6461/* Build the partial symbol table by doing a quick pass through the
6462 .debug_info and .debug_abbrev sections. */
72bf9492 6463
93311388 6464static void
c67a9c90 6465dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6466{
60606b2c
TT
6467 struct cleanup *back_to, *addrmap_cleanup;
6468 struct obstack temp_obstack;
21b2bd31 6469 int i;
93311388 6470
b4f54984 6471 if (dwarf_read_debug)
45cfd468
DE
6472 {
6473 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6474 objfile_name (objfile));
45cfd468
DE
6475 }
6476
98bfdba5
PA
6477 dwarf2_per_objfile->reading_partial_symbols = 1;
6478
be391dca 6479 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6480
93311388
DE
6481 /* Any cached compilation units will be linked by the per-objfile
6482 read_in_chain. Make sure to free them when we're done. */
6483 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6484
348e048f
DE
6485 build_type_psymtabs (objfile);
6486
93311388 6487 create_all_comp_units (objfile);
c906108c 6488
60606b2c
TT
6489 /* Create a temporary address map on a temporary obstack. We later
6490 copy this to the final obstack. */
6491 obstack_init (&temp_obstack);
6492 make_cleanup_obstack_free (&temp_obstack);
6493 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6494 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6495
21b2bd31 6496 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6497 {
8832e7e3 6498 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6499
b93601f3 6500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6501 }
ff013f42 6502
6aa5f3a6
DE
6503 /* This has to wait until we read the CUs, we need the list of DWOs. */
6504 process_skeletonless_type_units (objfile);
6505
6506 /* Now that all TUs have been processed we can fill in the dependencies. */
6507 if (dwarf2_per_objfile->type_unit_groups != NULL)
6508 {
6509 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6510 build_type_psymtab_dependencies, NULL);
6511 }
6512
b4f54984 6513 if (dwarf_read_debug)
6aa5f3a6
DE
6514 print_tu_stats ();
6515
95554aad
TT
6516 set_partial_user (objfile);
6517
ff013f42
JK
6518 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6519 &objfile->objfile_obstack);
60606b2c 6520 discard_cleanups (addrmap_cleanup);
ff013f42 6521
ae038cb0 6522 do_cleanups (back_to);
45cfd468 6523
b4f54984 6524 if (dwarf_read_debug)
45cfd468 6525 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6526 objfile_name (objfile));
ae038cb0
DJ
6527}
6528
3019eac3 6529/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6530
6531static void
dee91e82 6532load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6533 const gdb_byte *info_ptr,
dee91e82
DE
6534 struct die_info *comp_unit_die,
6535 int has_children,
6536 void *data)
ae038cb0 6537{
dee91e82 6538 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6539
95554aad 6540 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6541
ae038cb0
DJ
6542 /* Check if comp unit has_children.
6543 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6544 If not, there's no more debug_info for this comp unit. */
d85a05f0 6545 if (has_children)
dee91e82
DE
6546 load_partial_dies (reader, info_ptr, 0);
6547}
98bfdba5 6548
dee91e82
DE
6549/* Load the partial DIEs for a secondary CU into memory.
6550 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6551
dee91e82
DE
6552static void
6553load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6554{
f4dc4d17
DE
6555 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6556 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6557}
6558
ae038cb0 6559static void
36586728
TT
6560read_comp_units_from_section (struct objfile *objfile,
6561 struct dwarf2_section_info *section,
6562 unsigned int is_dwz,
6563 int *n_allocated,
6564 int *n_comp_units,
6565 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6566{
d521ce57 6567 const gdb_byte *info_ptr;
a32a8923 6568 bfd *abfd = get_section_bfd_owner (section);
be391dca 6569
b4f54984 6570 if (dwarf_read_debug)
bf6af496 6571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6572 get_section_name (section),
6573 get_section_file_name (section));
bf6af496 6574
36586728 6575 dwarf2_read_section (objfile, section);
ae038cb0 6576
36586728 6577 info_ptr = section->buffer;
6e70227d 6578
36586728 6579 while (info_ptr < section->buffer + section->size)
ae038cb0 6580 {
c764a876 6581 unsigned int length, initial_length_size;
ae038cb0 6582 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6583 sect_offset offset;
ae038cb0 6584
36586728 6585 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6586
6587 /* Read just enough information to find out where the next
6588 compilation unit is. */
36586728 6589 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6590
6591 /* Save the compilation unit for later lookup. */
8d749320 6592 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6593 memset (this_cu, 0, sizeof (*this_cu));
6594 this_cu->offset = offset;
c764a876 6595 this_cu->length = length + initial_length_size;
36586728 6596 this_cu->is_dwz = is_dwz;
9291a0cd 6597 this_cu->objfile = objfile;
8a0459fd 6598 this_cu->section = section;
ae038cb0 6599
36586728 6600 if (*n_comp_units == *n_allocated)
ae038cb0 6601 {
36586728 6602 *n_allocated *= 2;
224c3ddb
SM
6603 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6604 *all_comp_units, *n_allocated);
ae038cb0 6605 }
36586728
TT
6606 (*all_comp_units)[*n_comp_units] = this_cu;
6607 ++*n_comp_units;
ae038cb0
DJ
6608
6609 info_ptr = info_ptr + this_cu->length;
6610 }
36586728
TT
6611}
6612
6613/* Create a list of all compilation units in OBJFILE.
6614 This is only done for -readnow and building partial symtabs. */
6615
6616static void
6617create_all_comp_units (struct objfile *objfile)
6618{
6619 int n_allocated;
6620 int n_comp_units;
6621 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6622 struct dwz_file *dwz;
36586728
TT
6623
6624 n_comp_units = 0;
6625 n_allocated = 10;
8d749320 6626 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6627
6628 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6629 &n_allocated, &n_comp_units, &all_comp_units);
6630
4db1a1dc
TT
6631 dwz = dwarf2_get_dwz_file ();
6632 if (dwz != NULL)
6633 read_comp_units_from_section (objfile, &dwz->info, 1,
6634 &n_allocated, &n_comp_units,
6635 &all_comp_units);
ae038cb0 6636
8d749320
SM
6637 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6638 struct dwarf2_per_cu_data *,
6639 n_comp_units);
ae038cb0
DJ
6640 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6641 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6642 xfree (all_comp_units);
6643 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6644}
6645
5734ee8b 6646/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6647 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6648 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6649 DW_AT_ranges). See the comments of add_partial_subprogram on how
6650 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6651
72bf9492
DJ
6652static void
6653scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6654 CORE_ADDR *highpc, int set_addrmap,
6655 struct dwarf2_cu *cu)
c906108c 6656{
72bf9492 6657 struct partial_die_info *pdi;
c906108c 6658
91c24f0a
DC
6659 /* Now, march along the PDI's, descending into ones which have
6660 interesting children but skipping the children of the other ones,
6661 until we reach the end of the compilation unit. */
c906108c 6662
72bf9492 6663 pdi = first_die;
91c24f0a 6664
72bf9492
DJ
6665 while (pdi != NULL)
6666 {
6667 fixup_partial_die (pdi, cu);
c906108c 6668
f55ee35c 6669 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6670 children, so we need to look at them. Ditto for anonymous
6671 enums. */
933c6fe4 6672
72bf9492 6673 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6674 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6675 || pdi->tag == DW_TAG_imported_unit)
c906108c 6676 {
72bf9492 6677 switch (pdi->tag)
c906108c
SS
6678 {
6679 case DW_TAG_subprogram:
cdc07690 6680 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6681 break;
72929c62 6682 case DW_TAG_constant:
c906108c
SS
6683 case DW_TAG_variable:
6684 case DW_TAG_typedef:
91c24f0a 6685 case DW_TAG_union_type:
72bf9492 6686 if (!pdi->is_declaration)
63d06c5c 6687 {
72bf9492 6688 add_partial_symbol (pdi, cu);
63d06c5c
DC
6689 }
6690 break;
c906108c 6691 case DW_TAG_class_type:
680b30c7 6692 case DW_TAG_interface_type:
c906108c 6693 case DW_TAG_structure_type:
72bf9492 6694 if (!pdi->is_declaration)
c906108c 6695 {
72bf9492 6696 add_partial_symbol (pdi, cu);
c906108c 6697 }
e98c9e7c
TT
6698 if (cu->language == language_rust && pdi->has_children)
6699 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6700 set_addrmap, cu);
c906108c 6701 break;
91c24f0a 6702 case DW_TAG_enumeration_type:
72bf9492
DJ
6703 if (!pdi->is_declaration)
6704 add_partial_enumeration (pdi, cu);
c906108c
SS
6705 break;
6706 case DW_TAG_base_type:
a02abb62 6707 case DW_TAG_subrange_type:
c906108c 6708 /* File scope base type definitions are added to the partial
c5aa993b 6709 symbol table. */
72bf9492 6710 add_partial_symbol (pdi, cu);
c906108c 6711 break;
d9fa45fe 6712 case DW_TAG_namespace:
cdc07690 6713 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6714 break;
5d7cb8df 6715 case DW_TAG_module:
cdc07690 6716 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6717 break;
95554aad
TT
6718 case DW_TAG_imported_unit:
6719 {
6720 struct dwarf2_per_cu_data *per_cu;
6721
f4dc4d17
DE
6722 /* For now we don't handle imported units in type units. */
6723 if (cu->per_cu->is_debug_types)
6724 {
6725 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6726 " supported in type units [in module %s]"),
4262abfb 6727 objfile_name (cu->objfile));
f4dc4d17
DE
6728 }
6729
95554aad 6730 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6731 pdi->is_dwz,
95554aad
TT
6732 cu->objfile);
6733
6734 /* Go read the partial unit, if needed. */
6735 if (per_cu->v.psymtab == NULL)
b93601f3 6736 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6737
f4dc4d17 6738 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6739 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6740 }
6741 break;
74921315
KS
6742 case DW_TAG_imported_declaration:
6743 add_partial_symbol (pdi, cu);
6744 break;
c906108c
SS
6745 default:
6746 break;
6747 }
6748 }
6749
72bf9492
DJ
6750 /* If the die has a sibling, skip to the sibling. */
6751
6752 pdi = pdi->die_sibling;
6753 }
6754}
6755
6756/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6757
72bf9492 6758 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6759 name is concatenated with "::" and the partial DIE's name. For
6760 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6761 Enumerators are an exception; they use the scope of their parent
6762 enumeration type, i.e. the name of the enumeration type is not
6763 prepended to the enumerator.
91c24f0a 6764
72bf9492
DJ
6765 There are two complexities. One is DW_AT_specification; in this
6766 case "parent" means the parent of the target of the specification,
6767 instead of the direct parent of the DIE. The other is compilers
6768 which do not emit DW_TAG_namespace; in this case we try to guess
6769 the fully qualified name of structure types from their members'
6770 linkage names. This must be done using the DIE's children rather
6771 than the children of any DW_AT_specification target. We only need
6772 to do this for structures at the top level, i.e. if the target of
6773 any DW_AT_specification (if any; otherwise the DIE itself) does not
6774 have a parent. */
6775
6776/* Compute the scope prefix associated with PDI's parent, in
6777 compilation unit CU. The result will be allocated on CU's
6778 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6779 field. NULL is returned if no prefix is necessary. */
15d034d0 6780static const char *
72bf9492
DJ
6781partial_die_parent_scope (struct partial_die_info *pdi,
6782 struct dwarf2_cu *cu)
6783{
15d034d0 6784 const char *grandparent_scope;
72bf9492 6785 struct partial_die_info *parent, *real_pdi;
91c24f0a 6786
72bf9492
DJ
6787 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6788 then this means the parent of the specification DIE. */
6789
6790 real_pdi = pdi;
72bf9492 6791 while (real_pdi->has_specification)
36586728
TT
6792 real_pdi = find_partial_die (real_pdi->spec_offset,
6793 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6794
6795 parent = real_pdi->die_parent;
6796 if (parent == NULL)
6797 return NULL;
6798
6799 if (parent->scope_set)
6800 return parent->scope;
6801
6802 fixup_partial_die (parent, cu);
6803
10b3939b 6804 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6805
acebe513
UW
6806 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6807 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6808 Work around this problem here. */
6809 if (cu->language == language_cplus
6e70227d 6810 && parent->tag == DW_TAG_namespace
acebe513
UW
6811 && strcmp (parent->name, "::") == 0
6812 && grandparent_scope == NULL)
6813 {
6814 parent->scope = NULL;
6815 parent->scope_set = 1;
6816 return NULL;
6817 }
6818
9c6c53f7
SA
6819 if (pdi->tag == DW_TAG_enumerator)
6820 /* Enumerators should not get the name of the enumeration as a prefix. */
6821 parent->scope = grandparent_scope;
6822 else if (parent->tag == DW_TAG_namespace
f55ee35c 6823 || parent->tag == DW_TAG_module
72bf9492
DJ
6824 || parent->tag == DW_TAG_structure_type
6825 || parent->tag == DW_TAG_class_type
680b30c7 6826 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6827 || parent->tag == DW_TAG_union_type
6828 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6829 {
6830 if (grandparent_scope == NULL)
6831 parent->scope = parent->name;
6832 else
3e43a32a
MS
6833 parent->scope = typename_concat (&cu->comp_unit_obstack,
6834 grandparent_scope,
f55ee35c 6835 parent->name, 0, cu);
72bf9492 6836 }
72bf9492
DJ
6837 else
6838 {
6839 /* FIXME drow/2004-04-01: What should we be doing with
6840 function-local names? For partial symbols, we should probably be
6841 ignoring them. */
6842 complaint (&symfile_complaints,
e2e0b3e5 6843 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6844 parent->tag, pdi->offset.sect_off);
72bf9492 6845 parent->scope = grandparent_scope;
c906108c
SS
6846 }
6847
72bf9492
DJ
6848 parent->scope_set = 1;
6849 return parent->scope;
6850}
6851
6852/* Return the fully scoped name associated with PDI, from compilation unit
6853 CU. The result will be allocated with malloc. */
4568ecf9 6854
72bf9492
DJ
6855static char *
6856partial_die_full_name (struct partial_die_info *pdi,
6857 struct dwarf2_cu *cu)
6858{
15d034d0 6859 const char *parent_scope;
72bf9492 6860
98bfdba5
PA
6861 /* If this is a template instantiation, we can not work out the
6862 template arguments from partial DIEs. So, unfortunately, we have
6863 to go through the full DIEs. At least any work we do building
6864 types here will be reused if full symbols are loaded later. */
6865 if (pdi->has_template_arguments)
6866 {
6867 fixup_partial_die (pdi, cu);
6868
6869 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6870 {
6871 struct die_info *die;
6872 struct attribute attr;
6873 struct dwarf2_cu *ref_cu = cu;
6874
b64f50a1 6875 /* DW_FORM_ref_addr is using section offset. */
b4069958 6876 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6877 attr.form = DW_FORM_ref_addr;
4568ecf9 6878 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6879 die = follow_die_ref (NULL, &attr, &ref_cu);
6880
6881 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6882 }
6883 }
6884
72bf9492
DJ
6885 parent_scope = partial_die_parent_scope (pdi, cu);
6886 if (parent_scope == NULL)
6887 return NULL;
6888 else
f55ee35c 6889 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6890}
6891
6892static void
72bf9492 6893add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6894{
e7c27a73 6895 struct objfile *objfile = cu->objfile;
3e29f34a 6896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6897 CORE_ADDR addr = 0;
15d034d0 6898 const char *actual_name = NULL;
e142c38c 6899 CORE_ADDR baseaddr;
15d034d0 6900 char *built_actual_name;
e142c38c
DJ
6901
6902 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6903
15d034d0
TT
6904 built_actual_name = partial_die_full_name (pdi, cu);
6905 if (built_actual_name != NULL)
6906 actual_name = built_actual_name;
63d06c5c 6907
72bf9492
DJ
6908 if (actual_name == NULL)
6909 actual_name = pdi->name;
6910
c906108c
SS
6911 switch (pdi->tag)
6912 {
6913 case DW_TAG_subprogram:
3e29f34a 6914 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6915 if (pdi->is_external || cu->language == language_ada)
c906108c 6916 {
2cfa0c8d
JB
6917 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6918 of the global scope. But in Ada, we want to be able to access
6919 nested procedures globally. So all Ada subprograms are stored
6920 in the global scope. */
f47fb265 6921 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6922 built_actual_name != NULL,
f47fb265
MS
6923 VAR_DOMAIN, LOC_BLOCK,
6924 &objfile->global_psymbols,
1762568f 6925 addr, cu->language, objfile);
c906108c
SS
6926 }
6927 else
6928 {
f47fb265 6929 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6930 built_actual_name != NULL,
f47fb265
MS
6931 VAR_DOMAIN, LOC_BLOCK,
6932 &objfile->static_psymbols,
1762568f 6933 addr, cu->language, objfile);
c906108c
SS
6934 }
6935 break;
72929c62
JB
6936 case DW_TAG_constant:
6937 {
6938 struct psymbol_allocation_list *list;
6939
6940 if (pdi->is_external)
6941 list = &objfile->global_psymbols;
6942 else
6943 list = &objfile->static_psymbols;
f47fb265 6944 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6945 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6946 list, 0, cu->language, objfile);
72929c62
JB
6947 }
6948 break;
c906108c 6949 case DW_TAG_variable:
95554aad
TT
6950 if (pdi->d.locdesc)
6951 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6952
95554aad 6953 if (pdi->d.locdesc
caac4577
JG
6954 && addr == 0
6955 && !dwarf2_per_objfile->has_section_at_zero)
6956 {
6957 /* A global or static variable may also have been stripped
6958 out by the linker if unused, in which case its address
6959 will be nullified; do not add such variables into partial
6960 symbol table then. */
6961 }
6962 else if (pdi->is_external)
c906108c
SS
6963 {
6964 /* Global Variable.
6965 Don't enter into the minimal symbol tables as there is
6966 a minimal symbol table entry from the ELF symbols already.
6967 Enter into partial symbol table if it has a location
6968 descriptor or a type.
6969 If the location descriptor is missing, new_symbol will create
6970 a LOC_UNRESOLVED symbol, the address of the variable will then
6971 be determined from the minimal symbol table whenever the variable
6972 is referenced.
6973 The address for the partial symbol table entry is not
6974 used by GDB, but it comes in handy for debugging partial symbol
6975 table building. */
6976
95554aad 6977 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6978 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6979 built_actual_name != NULL,
f47fb265
MS
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->global_psymbols,
1762568f 6982 addr + baseaddr,
f47fb265 6983 cu->language, objfile);
c906108c
SS
6984 }
6985 else
6986 {
ff908ebf
AW
6987 int has_loc = pdi->d.locdesc != NULL;
6988
6989 /* Static Variable. Skip symbols whose value we cannot know (those
6990 without location descriptors or constant values). */
6991 if (!has_loc && !pdi->has_const_value)
decbce07 6992 {
15d034d0 6993 xfree (built_actual_name);
decbce07
MS
6994 return;
6995 }
ff908ebf 6996
f47fb265 6997 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6998 built_actual_name != NULL,
f47fb265
MS
6999 VAR_DOMAIN, LOC_STATIC,
7000 &objfile->static_psymbols,
ff908ebf 7001 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7002 cu->language, objfile);
c906108c
SS
7003 }
7004 break;
7005 case DW_TAG_typedef:
7006 case DW_TAG_base_type:
a02abb62 7007 case DW_TAG_subrange_type:
38d518c9 7008 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7009 built_actual_name != NULL,
176620f1 7010 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7011 &objfile->static_psymbols,
1762568f 7012 0, cu->language, objfile);
c906108c 7013 break;
74921315 7014 case DW_TAG_imported_declaration:
72bf9492
DJ
7015 case DW_TAG_namespace:
7016 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7017 built_actual_name != NULL,
72bf9492
DJ
7018 VAR_DOMAIN, LOC_TYPEDEF,
7019 &objfile->global_psymbols,
1762568f 7020 0, cu->language, objfile);
72bf9492 7021 break;
530e8392
KB
7022 case DW_TAG_module:
7023 add_psymbol_to_list (actual_name, strlen (actual_name),
7024 built_actual_name != NULL,
7025 MODULE_DOMAIN, LOC_TYPEDEF,
7026 &objfile->global_psymbols,
1762568f 7027 0, cu->language, objfile);
530e8392 7028 break;
c906108c 7029 case DW_TAG_class_type:
680b30c7 7030 case DW_TAG_interface_type:
c906108c
SS
7031 case DW_TAG_structure_type:
7032 case DW_TAG_union_type:
7033 case DW_TAG_enumeration_type:
fa4028e9
JB
7034 /* Skip external references. The DWARF standard says in the section
7035 about "Structure, Union, and Class Type Entries": "An incomplete
7036 structure, union or class type is represented by a structure,
7037 union or class entry that does not have a byte size attribute
7038 and that has a DW_AT_declaration attribute." */
7039 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7040 {
15d034d0 7041 xfree (built_actual_name);
decbce07
MS
7042 return;
7043 }
fa4028e9 7044
63d06c5c
DC
7045 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7046 static vs. global. */
38d518c9 7047 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7048 built_actual_name != NULL,
176620f1 7049 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7050 (cu->language == language_cplus
7051 || cu->language == language_java)
63d06c5c
DC
7052 ? &objfile->global_psymbols
7053 : &objfile->static_psymbols,
1762568f 7054 0, cu->language, objfile);
c906108c 7055
c906108c
SS
7056 break;
7057 case DW_TAG_enumerator:
38d518c9 7058 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7059 built_actual_name != NULL,
176620f1 7060 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7061 (cu->language == language_cplus
7062 || cu->language == language_java)
f6fe98ef
DJ
7063 ? &objfile->global_psymbols
7064 : &objfile->static_psymbols,
1762568f 7065 0, cu->language, objfile);
c906108c
SS
7066 break;
7067 default:
7068 break;
7069 }
5c4e30ca 7070
15d034d0 7071 xfree (built_actual_name);
c906108c
SS
7072}
7073
5c4e30ca
DC
7074/* Read a partial die corresponding to a namespace; also, add a symbol
7075 corresponding to that namespace to the symbol table. NAMESPACE is
7076 the name of the enclosing namespace. */
91c24f0a 7077
72bf9492
DJ
7078static void
7079add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7081 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7082{
72bf9492 7083 /* Add a symbol for the namespace. */
e7c27a73 7084
72bf9492 7085 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7086
7087 /* Now scan partial symbols in that namespace. */
7088
91c24f0a 7089 if (pdi->has_children)
cdc07690 7090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7091}
7092
5d7cb8df
JK
7093/* Read a partial die corresponding to a Fortran module. */
7094
7095static void
7096add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7097 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7098{
530e8392
KB
7099 /* Add a symbol for the namespace. */
7100
7101 add_partial_symbol (pdi, cu);
7102
f55ee35c 7103 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7104
7105 if (pdi->has_children)
cdc07690 7106 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7107}
7108
bc30ff58
JB
7109/* Read a partial die corresponding to a subprogram and create a partial
7110 symbol for that subprogram. When the CU language allows it, this
7111 routine also defines a partial symbol for each nested subprogram
cdc07690 7112 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7113 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7114 and highest PC values found in PDI.
6e70227d 7115
cdc07690
YQ
7116 PDI may also be a lexical block, in which case we simply search
7117 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7118 Again, this is only performed when the CU language allows this
7119 type of definitions. */
7120
7121static void
7122add_partial_subprogram (struct partial_die_info *pdi,
7123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7124 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7125{
7126 if (pdi->tag == DW_TAG_subprogram)
7127 {
7128 if (pdi->has_pc_info)
7129 {
7130 if (pdi->lowpc < *lowpc)
7131 *lowpc = pdi->lowpc;
7132 if (pdi->highpc > *highpc)
7133 *highpc = pdi->highpc;
cdc07690 7134 if (set_addrmap)
5734ee8b 7135 {
5734ee8b 7136 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7138 CORE_ADDR baseaddr;
7139 CORE_ADDR highpc;
7140 CORE_ADDR lowpc;
5734ee8b
DJ
7141
7142 baseaddr = ANOFFSET (objfile->section_offsets,
7143 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7144 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7145 pdi->lowpc + baseaddr);
7146 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7147 pdi->highpc + baseaddr);
7148 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7149 cu->per_cu->v.psymtab);
5734ee8b 7150 }
481860b3
GB
7151 }
7152
7153 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7154 {
bc30ff58 7155 if (!pdi->is_declaration)
e8d05480
JB
7156 /* Ignore subprogram DIEs that do not have a name, they are
7157 illegal. Do not emit a complaint at this point, we will
7158 do so when we convert this psymtab into a symtab. */
7159 if (pdi->name)
7160 add_partial_symbol (pdi, cu);
bc30ff58
JB
7161 }
7162 }
6e70227d 7163
bc30ff58
JB
7164 if (! pdi->has_children)
7165 return;
7166
7167 if (cu->language == language_ada)
7168 {
7169 pdi = pdi->die_child;
7170 while (pdi != NULL)
7171 {
7172 fixup_partial_die (pdi, cu);
7173 if (pdi->tag == DW_TAG_subprogram
7174 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7175 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7176 pdi = pdi->die_sibling;
7177 }
7178 }
7179}
7180
91c24f0a
DC
7181/* Read a partial die corresponding to an enumeration type. */
7182
72bf9492
DJ
7183static void
7184add_partial_enumeration (struct partial_die_info *enum_pdi,
7185 struct dwarf2_cu *cu)
91c24f0a 7186{
72bf9492 7187 struct partial_die_info *pdi;
91c24f0a
DC
7188
7189 if (enum_pdi->name != NULL)
72bf9492
DJ
7190 add_partial_symbol (enum_pdi, cu);
7191
7192 pdi = enum_pdi->die_child;
7193 while (pdi)
91c24f0a 7194 {
72bf9492 7195 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7196 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7197 else
72bf9492
DJ
7198 add_partial_symbol (pdi, cu);
7199 pdi = pdi->die_sibling;
91c24f0a 7200 }
91c24f0a
DC
7201}
7202
6caca83c
CC
7203/* Return the initial uleb128 in the die at INFO_PTR. */
7204
7205static unsigned int
d521ce57 7206peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7207{
7208 unsigned int bytes_read;
7209
7210 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7211}
7212
4bb7a0a7
DJ
7213/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7214 Return the corresponding abbrev, or NULL if the number is zero (indicating
7215 an empty DIE). In either case *BYTES_READ will be set to the length of
7216 the initial number. */
7217
7218static struct abbrev_info *
d521ce57 7219peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7220 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7221{
7222 bfd *abfd = cu->objfile->obfd;
7223 unsigned int abbrev_number;
7224 struct abbrev_info *abbrev;
7225
7226 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7227
7228 if (abbrev_number == 0)
7229 return NULL;
7230
433df2d4 7231 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7232 if (!abbrev)
7233 {
422b9917
DE
7234 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7235 " at offset 0x%x [in module %s]"),
7236 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7237 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7238 }
7239
7240 return abbrev;
7241}
7242
93311388
DE
7243/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7244 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7245 DIE. Any children of the skipped DIEs will also be skipped. */
7246
d521ce57
TT
7247static const gdb_byte *
7248skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7249{
dee91e82 7250 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7251 struct abbrev_info *abbrev;
7252 unsigned int bytes_read;
7253
7254 while (1)
7255 {
7256 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7257 if (abbrev == NULL)
7258 return info_ptr + bytes_read;
7259 else
dee91e82 7260 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7261 }
7262}
7263
93311388
DE
7264/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7265 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7266 abbrev corresponding to that skipped uleb128 should be passed in
7267 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7268 children. */
7269
d521ce57
TT
7270static const gdb_byte *
7271skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7272 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7273{
7274 unsigned int bytes_read;
7275 struct attribute attr;
dee91e82
DE
7276 bfd *abfd = reader->abfd;
7277 struct dwarf2_cu *cu = reader->cu;
d521ce57 7278 const gdb_byte *buffer = reader->buffer;
f664829e 7279 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7280 unsigned int form, i;
7281
7282 for (i = 0; i < abbrev->num_attrs; i++)
7283 {
7284 /* The only abbrev we care about is DW_AT_sibling. */
7285 if (abbrev->attrs[i].name == DW_AT_sibling)
7286 {
dee91e82 7287 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7288 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7289 complaint (&symfile_complaints,
7290 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7291 else
b9502d3f
WN
7292 {
7293 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7294 const gdb_byte *sibling_ptr = buffer + off;
7295
7296 if (sibling_ptr < info_ptr)
7297 complaint (&symfile_complaints,
7298 _("DW_AT_sibling points backwards"));
22869d73
KS
7299 else if (sibling_ptr > reader->buffer_end)
7300 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7301 else
7302 return sibling_ptr;
7303 }
4bb7a0a7
DJ
7304 }
7305
7306 /* If it isn't DW_AT_sibling, skip this attribute. */
7307 form = abbrev->attrs[i].form;
7308 skip_attribute:
7309 switch (form)
7310 {
4bb7a0a7 7311 case DW_FORM_ref_addr:
ae411497
TT
7312 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7313 and later it is offset sized. */
7314 if (cu->header.version == 2)
7315 info_ptr += cu->header.addr_size;
7316 else
7317 info_ptr += cu->header.offset_size;
7318 break;
36586728
TT
7319 case DW_FORM_GNU_ref_alt:
7320 info_ptr += cu->header.offset_size;
7321 break;
ae411497 7322 case DW_FORM_addr:
4bb7a0a7
DJ
7323 info_ptr += cu->header.addr_size;
7324 break;
7325 case DW_FORM_data1:
7326 case DW_FORM_ref1:
7327 case DW_FORM_flag:
7328 info_ptr += 1;
7329 break;
2dc7f7b3
TT
7330 case DW_FORM_flag_present:
7331 break;
4bb7a0a7
DJ
7332 case DW_FORM_data2:
7333 case DW_FORM_ref2:
7334 info_ptr += 2;
7335 break;
7336 case DW_FORM_data4:
7337 case DW_FORM_ref4:
7338 info_ptr += 4;
7339 break;
7340 case DW_FORM_data8:
7341 case DW_FORM_ref8:
55f1336d 7342 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7343 info_ptr += 8;
7344 break;
7345 case DW_FORM_string:
9b1c24c8 7346 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7347 info_ptr += bytes_read;
7348 break;
2dc7f7b3 7349 case DW_FORM_sec_offset:
4bb7a0a7 7350 case DW_FORM_strp:
36586728 7351 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7352 info_ptr += cu->header.offset_size;
7353 break;
2dc7f7b3 7354 case DW_FORM_exprloc:
4bb7a0a7
DJ
7355 case DW_FORM_block:
7356 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7357 info_ptr += bytes_read;
7358 break;
7359 case DW_FORM_block1:
7360 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7361 break;
7362 case DW_FORM_block2:
7363 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7364 break;
7365 case DW_FORM_block4:
7366 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7367 break;
7368 case DW_FORM_sdata:
7369 case DW_FORM_udata:
7370 case DW_FORM_ref_udata:
3019eac3
DE
7371 case DW_FORM_GNU_addr_index:
7372 case DW_FORM_GNU_str_index:
d521ce57 7373 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7374 break;
7375 case DW_FORM_indirect:
7376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7377 info_ptr += bytes_read;
7378 /* We need to continue parsing from here, so just go back to
7379 the top. */
7380 goto skip_attribute;
7381
7382 default:
3e43a32a
MS
7383 error (_("Dwarf Error: Cannot handle %s "
7384 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7385 dwarf_form_name (form),
7386 bfd_get_filename (abfd));
7387 }
7388 }
7389
7390 if (abbrev->has_children)
dee91e82 7391 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7392 else
7393 return info_ptr;
7394}
7395
93311388 7396/* Locate ORIG_PDI's sibling.
dee91e82 7397 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7398
d521ce57 7399static const gdb_byte *
dee91e82
DE
7400locate_pdi_sibling (const struct die_reader_specs *reader,
7401 struct partial_die_info *orig_pdi,
d521ce57 7402 const gdb_byte *info_ptr)
91c24f0a
DC
7403{
7404 /* Do we know the sibling already? */
72bf9492 7405
91c24f0a
DC
7406 if (orig_pdi->sibling)
7407 return orig_pdi->sibling;
7408
7409 /* Are there any children to deal with? */
7410
7411 if (!orig_pdi->has_children)
7412 return info_ptr;
7413
4bb7a0a7 7414 /* Skip the children the long way. */
91c24f0a 7415
dee91e82 7416 return skip_children (reader, info_ptr);
91c24f0a
DC
7417}
7418
257e7a09 7419/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7420 not NULL. */
c906108c
SS
7421
7422static void
257e7a09
YQ
7423dwarf2_read_symtab (struct partial_symtab *self,
7424 struct objfile *objfile)
c906108c 7425{
257e7a09 7426 if (self->readin)
c906108c 7427 {
442e4d9c 7428 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7429 self->filename);
442e4d9c
YQ
7430 }
7431 else
7432 {
7433 if (info_verbose)
c906108c 7434 {
442e4d9c 7435 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7436 self->filename);
442e4d9c 7437 gdb_flush (gdb_stdout);
c906108c 7438 }
c906108c 7439
442e4d9c 7440 /* Restore our global data. */
9a3c8263
SM
7441 dwarf2_per_objfile
7442 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7443 dwarf2_objfile_data_key);
10b3939b 7444
442e4d9c
YQ
7445 /* If this psymtab is constructed from a debug-only objfile, the
7446 has_section_at_zero flag will not necessarily be correct. We
7447 can get the correct value for this flag by looking at the data
7448 associated with the (presumably stripped) associated objfile. */
7449 if (objfile->separate_debug_objfile_backlink)
7450 {
7451 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7452 = ((struct dwarf2_per_objfile *)
7453 objfile_data (objfile->separate_debug_objfile_backlink,
7454 dwarf2_objfile_data_key));
9a619af0 7455
442e4d9c
YQ
7456 dwarf2_per_objfile->has_section_at_zero
7457 = dpo_backlink->has_section_at_zero;
7458 }
b2ab525c 7459
442e4d9c 7460 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7461
257e7a09 7462 psymtab_to_symtab_1 (self);
c906108c 7463
442e4d9c
YQ
7464 /* Finish up the debug error message. */
7465 if (info_verbose)
7466 printf_filtered (_("done.\n"));
c906108c 7467 }
95554aad
TT
7468
7469 process_cu_includes ();
c906108c 7470}
9cdd5dbd
DE
7471\f
7472/* Reading in full CUs. */
c906108c 7473
10b3939b
DJ
7474/* Add PER_CU to the queue. */
7475
7476static void
95554aad
TT
7477queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7478 enum language pretend_language)
10b3939b
DJ
7479{
7480 struct dwarf2_queue_item *item;
7481
7482 per_cu->queued = 1;
8d749320 7483 item = XNEW (struct dwarf2_queue_item);
10b3939b 7484 item->per_cu = per_cu;
95554aad 7485 item->pretend_language = pretend_language;
10b3939b
DJ
7486 item->next = NULL;
7487
7488 if (dwarf2_queue == NULL)
7489 dwarf2_queue = item;
7490 else
7491 dwarf2_queue_tail->next = item;
7492
7493 dwarf2_queue_tail = item;
7494}
7495
89e63ee4
DE
7496/* If PER_CU is not yet queued, add it to the queue.
7497 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7498 dependency.
0907af0c 7499 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7500 meaning either PER_CU is already queued or it is already loaded.
7501
7502 N.B. There is an invariant here that if a CU is queued then it is loaded.
7503 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7504
7505static int
89e63ee4 7506maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7507 struct dwarf2_per_cu_data *per_cu,
7508 enum language pretend_language)
7509{
7510 /* We may arrive here during partial symbol reading, if we need full
7511 DIEs to process an unusual case (e.g. template arguments). Do
7512 not queue PER_CU, just tell our caller to load its DIEs. */
7513 if (dwarf2_per_objfile->reading_partial_symbols)
7514 {
7515 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7516 return 1;
7517 return 0;
7518 }
7519
7520 /* Mark the dependence relation so that we don't flush PER_CU
7521 too early. */
89e63ee4
DE
7522 if (dependent_cu != NULL)
7523 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7524
7525 /* If it's already on the queue, we have nothing to do. */
7526 if (per_cu->queued)
7527 return 0;
7528
7529 /* If the compilation unit is already loaded, just mark it as
7530 used. */
7531 if (per_cu->cu != NULL)
7532 {
7533 per_cu->cu->last_used = 0;
7534 return 0;
7535 }
7536
7537 /* Add it to the queue. */
7538 queue_comp_unit (per_cu, pretend_language);
7539
7540 return 1;
7541}
7542
10b3939b
DJ
7543/* Process the queue. */
7544
7545static void
a0f42c21 7546process_queue (void)
10b3939b
DJ
7547{
7548 struct dwarf2_queue_item *item, *next_item;
7549
b4f54984 7550 if (dwarf_read_debug)
45cfd468
DE
7551 {
7552 fprintf_unfiltered (gdb_stdlog,
7553 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7554 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7555 }
7556
03dd20cc
DJ
7557 /* The queue starts out with one item, but following a DIE reference
7558 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7559 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7560 {
cc12ce38
DE
7561 if ((dwarf2_per_objfile->using_index
7562 ? !item->per_cu->v.quick->compunit_symtab
7563 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7564 /* Skip dummy CUs. */
7565 && item->per_cu->cu != NULL)
f4dc4d17
DE
7566 {
7567 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7568 unsigned int debug_print_threshold;
247f5c4f 7569 char buf[100];
f4dc4d17 7570
247f5c4f 7571 if (per_cu->is_debug_types)
f4dc4d17 7572 {
247f5c4f
DE
7573 struct signatured_type *sig_type =
7574 (struct signatured_type *) per_cu;
7575
7576 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7577 hex_string (sig_type->signature),
7578 per_cu->offset.sect_off);
7579 /* There can be 100s of TUs.
7580 Only print them in verbose mode. */
7581 debug_print_threshold = 2;
f4dc4d17 7582 }
247f5c4f 7583 else
73be47f5
DE
7584 {
7585 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7586 debug_print_threshold = 1;
7587 }
247f5c4f 7588
b4f54984 7589 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7591
7592 if (per_cu->is_debug_types)
7593 process_full_type_unit (per_cu, item->pretend_language);
7594 else
7595 process_full_comp_unit (per_cu, item->pretend_language);
7596
b4f54984 7597 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7599 }
10b3939b
DJ
7600
7601 item->per_cu->queued = 0;
7602 next_item = item->next;
7603 xfree (item);
7604 }
7605
7606 dwarf2_queue_tail = NULL;
45cfd468 7607
b4f54984 7608 if (dwarf_read_debug)
45cfd468
DE
7609 {
7610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7611 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7612 }
10b3939b
DJ
7613}
7614
7615/* Free all allocated queue entries. This function only releases anything if
7616 an error was thrown; if the queue was processed then it would have been
7617 freed as we went along. */
7618
7619static void
7620dwarf2_release_queue (void *dummy)
7621{
7622 struct dwarf2_queue_item *item, *last;
7623
7624 item = dwarf2_queue;
7625 while (item)
7626 {
7627 /* Anything still marked queued is likely to be in an
7628 inconsistent state, so discard it. */
7629 if (item->per_cu->queued)
7630 {
7631 if (item->per_cu->cu != NULL)
dee91e82 7632 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7633 item->per_cu->queued = 0;
7634 }
7635
7636 last = item;
7637 item = item->next;
7638 xfree (last);
7639 }
7640
7641 dwarf2_queue = dwarf2_queue_tail = NULL;
7642}
7643
7644/* Read in full symbols for PST, and anything it depends on. */
7645
c906108c 7646static void
fba45db2 7647psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7648{
10b3939b 7649 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7650 int i;
7651
95554aad
TT
7652 if (pst->readin)
7653 return;
7654
aaa75496 7655 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7656 if (!pst->dependencies[i]->readin
7657 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7658 {
7659 /* Inform about additional files that need to be read in. */
7660 if (info_verbose)
7661 {
a3f17187 7662 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7663 fputs_filtered (" ", gdb_stdout);
7664 wrap_here ("");
7665 fputs_filtered ("and ", gdb_stdout);
7666 wrap_here ("");
7667 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7668 wrap_here (""); /* Flush output. */
aaa75496
JB
7669 gdb_flush (gdb_stdout);
7670 }
7671 psymtab_to_symtab_1 (pst->dependencies[i]);
7672 }
7673
9a3c8263 7674 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7675
7676 if (per_cu == NULL)
aaa75496
JB
7677 {
7678 /* It's an include file, no symbols to read for it.
7679 Everything is in the parent symtab. */
7680 pst->readin = 1;
7681 return;
7682 }
c906108c 7683
a0f42c21 7684 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7685}
7686
dee91e82
DE
7687/* Trivial hash function for die_info: the hash value of a DIE
7688 is its offset in .debug_info for this objfile. */
10b3939b 7689
dee91e82
DE
7690static hashval_t
7691die_hash (const void *item)
10b3939b 7692{
9a3c8263 7693 const struct die_info *die = (const struct die_info *) item;
6502dd73 7694
dee91e82
DE
7695 return die->offset.sect_off;
7696}
63d06c5c 7697
dee91e82
DE
7698/* Trivial comparison function for die_info structures: two DIEs
7699 are equal if they have the same offset. */
98bfdba5 7700
dee91e82
DE
7701static int
7702die_eq (const void *item_lhs, const void *item_rhs)
7703{
9a3c8263
SM
7704 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7705 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7706
dee91e82
DE
7707 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7708}
c906108c 7709
dee91e82
DE
7710/* die_reader_func for load_full_comp_unit.
7711 This is identical to read_signatured_type_reader,
7712 but is kept separate for now. */
c906108c 7713
dee91e82
DE
7714static void
7715load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7716 const gdb_byte *info_ptr,
dee91e82
DE
7717 struct die_info *comp_unit_die,
7718 int has_children,
7719 void *data)
7720{
7721 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7722 enum language *language_ptr = (enum language *) data;
6caca83c 7723
dee91e82
DE
7724 gdb_assert (cu->die_hash == NULL);
7725 cu->die_hash =
7726 htab_create_alloc_ex (cu->header.length / 12,
7727 die_hash,
7728 die_eq,
7729 NULL,
7730 &cu->comp_unit_obstack,
7731 hashtab_obstack_allocate,
7732 dummy_obstack_deallocate);
e142c38c 7733
dee91e82
DE
7734 if (has_children)
7735 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7736 &info_ptr, comp_unit_die);
7737 cu->dies = comp_unit_die;
7738 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7739
7740 /* We try not to read any attributes in this function, because not
9cdd5dbd 7741 all CUs needed for references have been loaded yet, and symbol
10b3939b 7742 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7743 or we won't be able to build types correctly.
7744 Similarly, if we do not read the producer, we can not apply
7745 producer-specific interpretation. */
95554aad 7746 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7747}
10b3939b 7748
dee91e82 7749/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7750
dee91e82 7751static void
95554aad
TT
7752load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7753 enum language pretend_language)
dee91e82 7754{
3019eac3 7755 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7756
f4dc4d17
DE
7757 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7758 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7759}
7760
3da10d80
KS
7761/* Add a DIE to the delayed physname list. */
7762
7763static void
7764add_to_method_list (struct type *type, int fnfield_index, int index,
7765 const char *name, struct die_info *die,
7766 struct dwarf2_cu *cu)
7767{
7768 struct delayed_method_info mi;
7769 mi.type = type;
7770 mi.fnfield_index = fnfield_index;
7771 mi.index = index;
7772 mi.name = name;
7773 mi.die = die;
7774 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7775}
7776
7777/* A cleanup for freeing the delayed method list. */
7778
7779static void
7780free_delayed_list (void *ptr)
7781{
7782 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7783 if (cu->method_list != NULL)
7784 {
7785 VEC_free (delayed_method_info, cu->method_list);
7786 cu->method_list = NULL;
7787 }
7788}
7789
7790/* Compute the physnames of any methods on the CU's method list.
7791
7792 The computation of method physnames is delayed in order to avoid the
7793 (bad) condition that one of the method's formal parameters is of an as yet
7794 incomplete type. */
7795
7796static void
7797compute_delayed_physnames (struct dwarf2_cu *cu)
7798{
7799 int i;
7800 struct delayed_method_info *mi;
7801 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7802 {
1d06ead6 7803 const char *physname;
3da10d80
KS
7804 struct fn_fieldlist *fn_flp
7805 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7806 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7807 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7808 = physname ? physname : "";
3da10d80
KS
7809 }
7810}
7811
a766d390
DE
7812/* Go objects should be embedded in a DW_TAG_module DIE,
7813 and it's not clear if/how imported objects will appear.
7814 To keep Go support simple until that's worked out,
7815 go back through what we've read and create something usable.
7816 We could do this while processing each DIE, and feels kinda cleaner,
7817 but that way is more invasive.
7818 This is to, for example, allow the user to type "p var" or "b main"
7819 without having to specify the package name, and allow lookups
7820 of module.object to work in contexts that use the expression
7821 parser. */
7822
7823static void
7824fixup_go_packaging (struct dwarf2_cu *cu)
7825{
7826 char *package_name = NULL;
7827 struct pending *list;
7828 int i;
7829
7830 for (list = global_symbols; list != NULL; list = list->next)
7831 {
7832 for (i = 0; i < list->nsyms; ++i)
7833 {
7834 struct symbol *sym = list->symbol[i];
7835
7836 if (SYMBOL_LANGUAGE (sym) == language_go
7837 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7838 {
7839 char *this_package_name = go_symbol_package_name (sym);
7840
7841 if (this_package_name == NULL)
7842 continue;
7843 if (package_name == NULL)
7844 package_name = this_package_name;
7845 else
7846 {
7847 if (strcmp (package_name, this_package_name) != 0)
7848 complaint (&symfile_complaints,
7849 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7850 (symbol_symtab (sym) != NULL
7851 ? symtab_to_filename_for_display
7852 (symbol_symtab (sym))
4262abfb 7853 : objfile_name (cu->objfile)),
a766d390
DE
7854 this_package_name, package_name);
7855 xfree (this_package_name);
7856 }
7857 }
7858 }
7859 }
7860
7861 if (package_name != NULL)
7862 {
7863 struct objfile *objfile = cu->objfile;
34a68019 7864 const char *saved_package_name
224c3ddb
SM
7865 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7866 package_name,
7867 strlen (package_name));
a766d390 7868 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7869 saved_package_name, objfile);
a766d390
DE
7870 struct symbol *sym;
7871
7872 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7873
e623cf5d 7874 sym = allocate_symbol (objfile);
f85f34ed 7875 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7876 SYMBOL_SET_NAMES (sym, saved_package_name,
7877 strlen (saved_package_name), 0, objfile);
a766d390
DE
7878 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7879 e.g., "main" finds the "main" module and not C's main(). */
7880 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7881 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7882 SYMBOL_TYPE (sym) = type;
7883
7884 add_symbol_to_list (sym, &global_symbols);
7885
7886 xfree (package_name);
7887 }
7888}
7889
95554aad
TT
7890/* Return the symtab for PER_CU. This works properly regardless of
7891 whether we're using the index or psymtabs. */
7892
43f3e411
DE
7893static struct compunit_symtab *
7894get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7895{
7896 return (dwarf2_per_objfile->using_index
43f3e411
DE
7897 ? per_cu->v.quick->compunit_symtab
7898 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7899}
7900
7901/* A helper function for computing the list of all symbol tables
7902 included by PER_CU. */
7903
7904static void
43f3e411 7905recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7906 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7907 struct dwarf2_per_cu_data *per_cu,
43f3e411 7908 struct compunit_symtab *immediate_parent)
95554aad
TT
7909{
7910 void **slot;
7911 int ix;
43f3e411 7912 struct compunit_symtab *cust;
95554aad
TT
7913 struct dwarf2_per_cu_data *iter;
7914
7915 slot = htab_find_slot (all_children, per_cu, INSERT);
7916 if (*slot != NULL)
7917 {
7918 /* This inclusion and its children have been processed. */
7919 return;
7920 }
7921
7922 *slot = per_cu;
7923 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7924 cust = get_compunit_symtab (per_cu);
7925 if (cust != NULL)
ec94af83
DE
7926 {
7927 /* If this is a type unit only add its symbol table if we haven't
7928 seen it yet (type unit per_cu's can share symtabs). */
7929 if (per_cu->is_debug_types)
7930 {
43f3e411 7931 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7932 if (*slot == NULL)
7933 {
43f3e411
DE
7934 *slot = cust;
7935 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7936 if (cust->user == NULL)
7937 cust->user = immediate_parent;
ec94af83
DE
7938 }
7939 }
7940 else
f9125b6c 7941 {
43f3e411
DE
7942 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7943 if (cust->user == NULL)
7944 cust->user = immediate_parent;
f9125b6c 7945 }
ec94af83 7946 }
95554aad
TT
7947
7948 for (ix = 0;
796a7ff8 7949 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7950 ++ix)
ec94af83
DE
7951 {
7952 recursively_compute_inclusions (result, all_children,
43f3e411 7953 all_type_symtabs, iter, cust);
ec94af83 7954 }
95554aad
TT
7955}
7956
43f3e411 7957/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7958 PER_CU. */
7959
7960static void
43f3e411 7961compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7962{
f4dc4d17
DE
7963 gdb_assert (! per_cu->is_debug_types);
7964
796a7ff8 7965 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7966 {
7967 int ix, len;
ec94af83 7968 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7969 struct compunit_symtab *compunit_symtab_iter;
7970 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7971 htab_t all_children, all_type_symtabs;
43f3e411 7972 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7973
7974 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7975 if (cust == NULL)
95554aad
TT
7976 return;
7977
7978 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7979 NULL, xcalloc, xfree);
ec94af83
DE
7980 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7981 NULL, xcalloc, xfree);
95554aad
TT
7982
7983 for (ix = 0;
796a7ff8 7984 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7985 ix, per_cu_iter);
95554aad 7986 ++ix)
ec94af83
DE
7987 {
7988 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7989 all_type_symtabs, per_cu_iter,
43f3e411 7990 cust);
ec94af83 7991 }
95554aad 7992
ec94af83 7993 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7994 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7995 cust->includes
8d749320
SM
7996 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7997 struct compunit_symtab *, len + 1);
95554aad 7998 for (ix = 0;
43f3e411
DE
7999 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8000 compunit_symtab_iter);
95554aad 8001 ++ix)
43f3e411
DE
8002 cust->includes[ix] = compunit_symtab_iter;
8003 cust->includes[len] = NULL;
95554aad 8004
43f3e411 8005 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8006 htab_delete (all_children);
ec94af83 8007 htab_delete (all_type_symtabs);
95554aad
TT
8008 }
8009}
8010
8011/* Compute the 'includes' field for the symtabs of all the CUs we just
8012 read. */
8013
8014static void
8015process_cu_includes (void)
8016{
8017 int ix;
8018 struct dwarf2_per_cu_data *iter;
8019
8020 for (ix = 0;
8021 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8022 ix, iter);
8023 ++ix)
f4dc4d17
DE
8024 {
8025 if (! iter->is_debug_types)
43f3e411 8026 compute_compunit_symtab_includes (iter);
f4dc4d17 8027 }
95554aad
TT
8028
8029 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8030}
8031
9cdd5dbd 8032/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8033 already been loaded into memory. */
8034
8035static void
95554aad
TT
8036process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8037 enum language pretend_language)
10b3939b 8038{
10b3939b 8039 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8040 struct objfile *objfile = per_cu->objfile;
3e29f34a 8041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8042 CORE_ADDR lowpc, highpc;
43f3e411 8043 struct compunit_symtab *cust;
3da10d80 8044 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8045 CORE_ADDR baseaddr;
4359dff1 8046 struct block *static_block;
3e29f34a 8047 CORE_ADDR addr;
10b3939b
DJ
8048
8049 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8050
10b3939b
DJ
8051 buildsym_init ();
8052 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8053 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8054
8055 cu->list_in_scope = &file_symbols;
c906108c 8056
95554aad
TT
8057 cu->language = pretend_language;
8058 cu->language_defn = language_def (cu->language);
8059
c906108c 8060 /* Do line number decoding in read_file_scope () */
10b3939b 8061 process_die (cu->dies, cu);
c906108c 8062
a766d390
DE
8063 /* For now fudge the Go package. */
8064 if (cu->language == language_go)
8065 fixup_go_packaging (cu);
8066
3da10d80
KS
8067 /* Now that we have processed all the DIEs in the CU, all the types
8068 should be complete, and it should now be safe to compute all of the
8069 physnames. */
8070 compute_delayed_physnames (cu);
8071 do_cleanups (delayed_list_cleanup);
8072
fae299cd
DC
8073 /* Some compilers don't define a DW_AT_high_pc attribute for the
8074 compilation unit. If the DW_AT_high_pc is missing, synthesize
8075 it, by scanning the DIE's below the compilation unit. */
10b3939b 8076 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8077
3e29f34a
MR
8078 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8079 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8080
8081 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8082 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8083 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8084 addrmap to help ensure it has an accurate map of pc values belonging to
8085 this comp unit. */
8086 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8087
43f3e411
DE
8088 cust = end_symtab_from_static_block (static_block,
8089 SECT_OFF_TEXT (objfile), 0);
c906108c 8090
43f3e411 8091 if (cust != NULL)
c906108c 8092 {
df15bd07 8093 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8094
8be455d7
JK
8095 /* Set symtab language to language from DW_AT_language. If the
8096 compilation is from a C file generated by language preprocessors, do
8097 not set the language if it was already deduced by start_subfile. */
43f3e411 8098 if (!(cu->language == language_c
40e3ad0e 8099 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8100 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8101
8102 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8103 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8104 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8105 there were bugs in prologue debug info, fixed later in GCC-4.5
8106 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8107
8108 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8109 needed, it would be wrong due to missing DW_AT_producer there.
8110
8111 Still one can confuse GDB by using non-standard GCC compilation
8112 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8113 */
ab260dad 8114 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8115 cust->locations_valid = 1;
e0d00bc7
JK
8116
8117 if (gcc_4_minor >= 5)
43f3e411 8118 cust->epilogue_unwind_valid = 1;
96408a79 8119
43f3e411 8120 cust->call_site_htab = cu->call_site_htab;
c906108c 8121 }
9291a0cd
TT
8122
8123 if (dwarf2_per_objfile->using_index)
43f3e411 8124 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8125 else
8126 {
8127 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8128 pst->compunit_symtab = cust;
9291a0cd
TT
8129 pst->readin = 1;
8130 }
c906108c 8131
95554aad
TT
8132 /* Push it for inclusion processing later. */
8133 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8134
c906108c 8135 do_cleanups (back_to);
f4dc4d17 8136}
45cfd468 8137
f4dc4d17
DE
8138/* Generate full symbol information for type unit PER_CU, whose DIEs have
8139 already been loaded into memory. */
8140
8141static void
8142process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8143 enum language pretend_language)
8144{
8145 struct dwarf2_cu *cu = per_cu->cu;
8146 struct objfile *objfile = per_cu->objfile;
43f3e411 8147 struct compunit_symtab *cust;
f4dc4d17 8148 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8149 struct signatured_type *sig_type;
8150
8151 gdb_assert (per_cu->is_debug_types);
8152 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8153
8154 buildsym_init ();
8155 back_to = make_cleanup (really_free_pendings, NULL);
8156 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8157
8158 cu->list_in_scope = &file_symbols;
8159
8160 cu->language = pretend_language;
8161 cu->language_defn = language_def (cu->language);
8162
8163 /* The symbol tables are set up in read_type_unit_scope. */
8164 process_die (cu->dies, cu);
8165
8166 /* For now fudge the Go package. */
8167 if (cu->language == language_go)
8168 fixup_go_packaging (cu);
8169
8170 /* Now that we have processed all the DIEs in the CU, all the types
8171 should be complete, and it should now be safe to compute all of the
8172 physnames. */
8173 compute_delayed_physnames (cu);
8174 do_cleanups (delayed_list_cleanup);
8175
8176 /* TUs share symbol tables.
8177 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8178 of it with end_expandable_symtab. Otherwise, complete the addition of
8179 this TU's symbols to the existing symtab. */
43f3e411 8180 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8181 {
43f3e411
DE
8182 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8183 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8184
43f3e411 8185 if (cust != NULL)
f4dc4d17
DE
8186 {
8187 /* Set symtab language to language from DW_AT_language. If the
8188 compilation is from a C file generated by language preprocessors,
8189 do not set the language if it was already deduced by
8190 start_subfile. */
43f3e411
DE
8191 if (!(cu->language == language_c
8192 && COMPUNIT_FILETABS (cust)->language != language_c))
8193 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8194 }
8195 }
8196 else
8197 {
0ab9ce85 8198 augment_type_symtab ();
43f3e411 8199 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8200 }
8201
8202 if (dwarf2_per_objfile->using_index)
43f3e411 8203 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8204 else
8205 {
8206 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8207 pst->compunit_symtab = cust;
f4dc4d17 8208 pst->readin = 1;
45cfd468 8209 }
f4dc4d17
DE
8210
8211 do_cleanups (back_to);
c906108c
SS
8212}
8213
95554aad
TT
8214/* Process an imported unit DIE. */
8215
8216static void
8217process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8218{
8219 struct attribute *attr;
8220
f4dc4d17
DE
8221 /* For now we don't handle imported units in type units. */
8222 if (cu->per_cu->is_debug_types)
8223 {
8224 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8225 " supported in type units [in module %s]"),
4262abfb 8226 objfile_name (cu->objfile));
f4dc4d17
DE
8227 }
8228
95554aad
TT
8229 attr = dwarf2_attr (die, DW_AT_import, cu);
8230 if (attr != NULL)
8231 {
8232 struct dwarf2_per_cu_data *per_cu;
95554aad 8233 sect_offset offset;
36586728 8234 int is_dwz;
95554aad
TT
8235
8236 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8237 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8238 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8239
69d751e3 8240 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8241 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8242 load_full_comp_unit (per_cu, cu->language);
8243
796a7ff8 8244 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8245 per_cu);
8246 }
8247}
8248
adde2bff
DE
8249/* Reset the in_process bit of a die. */
8250
8251static void
8252reset_die_in_process (void *arg)
8253{
9a3c8263 8254 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8255
adde2bff
DE
8256 die->in_process = 0;
8257}
8258
c906108c
SS
8259/* Process a die and its children. */
8260
8261static void
e7c27a73 8262process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8263{
adde2bff
DE
8264 struct cleanup *in_process;
8265
8266 /* We should only be processing those not already in process. */
8267 gdb_assert (!die->in_process);
8268
8269 die->in_process = 1;
8270 in_process = make_cleanup (reset_die_in_process,die);
8271
c906108c
SS
8272 switch (die->tag)
8273 {
8274 case DW_TAG_padding:
8275 break;
8276 case DW_TAG_compile_unit:
95554aad 8277 case DW_TAG_partial_unit:
e7c27a73 8278 read_file_scope (die, cu);
c906108c 8279 break;
348e048f
DE
8280 case DW_TAG_type_unit:
8281 read_type_unit_scope (die, cu);
8282 break;
c906108c 8283 case DW_TAG_subprogram:
c906108c 8284 case DW_TAG_inlined_subroutine:
edb3359d 8285 read_func_scope (die, cu);
c906108c
SS
8286 break;
8287 case DW_TAG_lexical_block:
14898363
L
8288 case DW_TAG_try_block:
8289 case DW_TAG_catch_block:
e7c27a73 8290 read_lexical_block_scope (die, cu);
c906108c 8291 break;
96408a79
SA
8292 case DW_TAG_GNU_call_site:
8293 read_call_site_scope (die, cu);
8294 break;
c906108c 8295 case DW_TAG_class_type:
680b30c7 8296 case DW_TAG_interface_type:
c906108c
SS
8297 case DW_TAG_structure_type:
8298 case DW_TAG_union_type:
134d01f1 8299 process_structure_scope (die, cu);
c906108c
SS
8300 break;
8301 case DW_TAG_enumeration_type:
134d01f1 8302 process_enumeration_scope (die, cu);
c906108c 8303 break;
134d01f1 8304
f792889a
DJ
8305 /* These dies have a type, but processing them does not create
8306 a symbol or recurse to process the children. Therefore we can
8307 read them on-demand through read_type_die. */
c906108c 8308 case DW_TAG_subroutine_type:
72019c9c 8309 case DW_TAG_set_type:
c906108c 8310 case DW_TAG_array_type:
c906108c 8311 case DW_TAG_pointer_type:
c906108c 8312 case DW_TAG_ptr_to_member_type:
c906108c 8313 case DW_TAG_reference_type:
c906108c 8314 case DW_TAG_string_type:
c906108c 8315 break;
134d01f1 8316
c906108c 8317 case DW_TAG_base_type:
a02abb62 8318 case DW_TAG_subrange_type:
cb249c71 8319 case DW_TAG_typedef:
134d01f1
DJ
8320 /* Add a typedef symbol for the type definition, if it has a
8321 DW_AT_name. */
f792889a 8322 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8323 break;
c906108c 8324 case DW_TAG_common_block:
e7c27a73 8325 read_common_block (die, cu);
c906108c
SS
8326 break;
8327 case DW_TAG_common_inclusion:
8328 break;
d9fa45fe 8329 case DW_TAG_namespace:
4d4ec4e5 8330 cu->processing_has_namespace_info = 1;
e7c27a73 8331 read_namespace (die, cu);
d9fa45fe 8332 break;
5d7cb8df 8333 case DW_TAG_module:
4d4ec4e5 8334 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8335 read_module (die, cu);
8336 break;
d9fa45fe 8337 case DW_TAG_imported_declaration:
74921315
KS
8338 cu->processing_has_namespace_info = 1;
8339 if (read_namespace_alias (die, cu))
8340 break;
8341 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8342 case DW_TAG_imported_module:
4d4ec4e5 8343 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8344 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8345 || cu->language != language_fortran))
8346 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8347 dwarf_tag_name (die->tag));
8348 read_import_statement (die, cu);
d9fa45fe 8349 break;
95554aad
TT
8350
8351 case DW_TAG_imported_unit:
8352 process_imported_unit_die (die, cu);
8353 break;
8354
c906108c 8355 default:
e7c27a73 8356 new_symbol (die, NULL, cu);
c906108c
SS
8357 break;
8358 }
adde2bff
DE
8359
8360 do_cleanups (in_process);
c906108c 8361}
ca69b9e6
DE
8362\f
8363/* DWARF name computation. */
c906108c 8364
94af9270
KS
8365/* A helper function for dwarf2_compute_name which determines whether DIE
8366 needs to have the name of the scope prepended to the name listed in the
8367 die. */
8368
8369static int
8370die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8371{
1c809c68
TT
8372 struct attribute *attr;
8373
94af9270
KS
8374 switch (die->tag)
8375 {
8376 case DW_TAG_namespace:
8377 case DW_TAG_typedef:
8378 case DW_TAG_class_type:
8379 case DW_TAG_interface_type:
8380 case DW_TAG_structure_type:
8381 case DW_TAG_union_type:
8382 case DW_TAG_enumeration_type:
8383 case DW_TAG_enumerator:
8384 case DW_TAG_subprogram:
08a76f8a 8385 case DW_TAG_inlined_subroutine:
94af9270 8386 case DW_TAG_member:
74921315 8387 case DW_TAG_imported_declaration:
94af9270
KS
8388 return 1;
8389
8390 case DW_TAG_variable:
c2b0a229 8391 case DW_TAG_constant:
94af9270
KS
8392 /* We only need to prefix "globally" visible variables. These include
8393 any variable marked with DW_AT_external or any variable that
8394 lives in a namespace. [Variables in anonymous namespaces
8395 require prefixing, but they are not DW_AT_external.] */
8396
8397 if (dwarf2_attr (die, DW_AT_specification, cu))
8398 {
8399 struct dwarf2_cu *spec_cu = cu;
9a619af0 8400
94af9270
KS
8401 return die_needs_namespace (die_specification (die, &spec_cu),
8402 spec_cu);
8403 }
8404
1c809c68 8405 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8406 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8407 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8408 return 0;
8409 /* A variable in a lexical block of some kind does not need a
8410 namespace, even though in C++ such variables may be external
8411 and have a mangled name. */
8412 if (die->parent->tag == DW_TAG_lexical_block
8413 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8414 || die->parent->tag == DW_TAG_catch_block
8415 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8416 return 0;
8417 return 1;
94af9270
KS
8418
8419 default:
8420 return 0;
8421 }
8422}
8423
98bfdba5
PA
8424/* Retrieve the last character from a mem_file. */
8425
8426static void
8427do_ui_file_peek_last (void *object, const char *buffer, long length)
8428{
8429 char *last_char_p = (char *) object;
8430
8431 if (length > 0)
8432 *last_char_p = buffer[length - 1];
8433}
8434
94af9270 8435/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8436 compute the physname for the object, which include a method's:
8437 - formal parameters (C++/Java),
8438 - receiver type (Go),
8439 - return type (Java).
8440
8441 The term "physname" is a bit confusing.
8442 For C++, for example, it is the demangled name.
8443 For Go, for example, it's the mangled name.
94af9270 8444
af6b7be1
JB
8445 For Ada, return the DIE's linkage name rather than the fully qualified
8446 name. PHYSNAME is ignored..
8447
94af9270
KS
8448 The result is allocated on the objfile_obstack and canonicalized. */
8449
8450static const char *
15d034d0
TT
8451dwarf2_compute_name (const char *name,
8452 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8453 int physname)
8454{
bb5ed363
DE
8455 struct objfile *objfile = cu->objfile;
8456
94af9270
KS
8457 if (name == NULL)
8458 name = dwarf2_name (die, cu);
8459
2ee7123e
DE
8460 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8461 but otherwise compute it by typename_concat inside GDB.
8462 FIXME: Actually this is not really true, or at least not always true.
8463 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8464 Fortran names because there is no mangling standard. So new_symbol_full
8465 will set the demangled name to the result of dwarf2_full_name, and it is
8466 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8467 if (cu->language == language_ada
8468 || (cu->language == language_fortran && physname))
8469 {
8470 /* For Ada unit, we prefer the linkage name over the name, as
8471 the former contains the exported name, which the user expects
8472 to be able to reference. Ideally, we want the user to be able
8473 to reference this entity using either natural or linkage name,
8474 but we haven't started looking at this enhancement yet. */
2ee7123e 8475 const char *linkage_name;
f55ee35c 8476
2ee7123e
DE
8477 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8478 if (linkage_name == NULL)
8479 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8480 if (linkage_name != NULL)
8481 return linkage_name;
f55ee35c
JK
8482 }
8483
94af9270
KS
8484 /* These are the only languages we know how to qualify names in. */
8485 if (name != NULL
f55ee35c 8486 && (cu->language == language_cplus || cu->language == language_java
c44af4eb
TT
8487 || cu->language == language_fortran || cu->language == language_d
8488 || cu->language == language_rust))
94af9270
KS
8489 {
8490 if (die_needs_namespace (die, cu))
8491 {
8492 long length;
0d5cff50 8493 const char *prefix;
94af9270 8494 struct ui_file *buf;
34a68019
TT
8495 char *intermediate_name;
8496 const char *canonical_name = NULL;
94af9270
KS
8497
8498 prefix = determine_prefix (die, cu);
8499 buf = mem_fileopen ();
8500 if (*prefix != '\0')
8501 {
f55ee35c
JK
8502 char *prefixed_name = typename_concat (NULL, prefix, name,
8503 physname, cu);
9a619af0 8504
94af9270
KS
8505 fputs_unfiltered (prefixed_name, buf);
8506 xfree (prefixed_name);
8507 }
8508 else
62d5b8da 8509 fputs_unfiltered (name, buf);
94af9270 8510
98bfdba5
PA
8511 /* Template parameters may be specified in the DIE's DW_AT_name, or
8512 as children with DW_TAG_template_type_param or
8513 DW_TAG_value_type_param. If the latter, add them to the name
8514 here. If the name already has template parameters, then
8515 skip this step; some versions of GCC emit both, and
8516 it is more efficient to use the pre-computed name.
8517
8518 Something to keep in mind about this process: it is very
8519 unlikely, or in some cases downright impossible, to produce
8520 something that will match the mangled name of a function.
8521 If the definition of the function has the same debug info,
8522 we should be able to match up with it anyway. But fallbacks
8523 using the minimal symbol, for instance to find a method
8524 implemented in a stripped copy of libstdc++, will not work.
8525 If we do not have debug info for the definition, we will have to
8526 match them up some other way.
8527
8528 When we do name matching there is a related problem with function
8529 templates; two instantiated function templates are allowed to
8530 differ only by their return types, which we do not add here. */
8531
8532 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8533 {
8534 struct attribute *attr;
8535 struct die_info *child;
8536 int first = 1;
8537
8538 die->building_fullname = 1;
8539
8540 for (child = die->child; child != NULL; child = child->sibling)
8541 {
8542 struct type *type;
12df843f 8543 LONGEST value;
d521ce57 8544 const gdb_byte *bytes;
98bfdba5
PA
8545 struct dwarf2_locexpr_baton *baton;
8546 struct value *v;
8547
8548 if (child->tag != DW_TAG_template_type_param
8549 && child->tag != DW_TAG_template_value_param)
8550 continue;
8551
8552 if (first)
8553 {
8554 fputs_unfiltered ("<", buf);
8555 first = 0;
8556 }
8557 else
8558 fputs_unfiltered (", ", buf);
8559
8560 attr = dwarf2_attr (child, DW_AT_type, cu);
8561 if (attr == NULL)
8562 {
8563 complaint (&symfile_complaints,
8564 _("template parameter missing DW_AT_type"));
8565 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8566 continue;
8567 }
8568 type = die_type (child, cu);
8569
8570 if (child->tag == DW_TAG_template_type_param)
8571 {
79d43c61 8572 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8573 continue;
8574 }
8575
8576 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8577 if (attr == NULL)
8578 {
8579 complaint (&symfile_complaints,
3e43a32a
MS
8580 _("template parameter missing "
8581 "DW_AT_const_value"));
98bfdba5
PA
8582 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8583 continue;
8584 }
8585
8586 dwarf2_const_value_attr (attr, type, name,
8587 &cu->comp_unit_obstack, cu,
8588 &value, &bytes, &baton);
8589
8590 if (TYPE_NOSIGN (type))
8591 /* GDB prints characters as NUMBER 'CHAR'. If that's
8592 changed, this can use value_print instead. */
8593 c_printchar (value, type, buf);
8594 else
8595 {
8596 struct value_print_options opts;
8597
8598 if (baton != NULL)
8599 v = dwarf2_evaluate_loc_desc (type, NULL,
8600 baton->data,
8601 baton->size,
8602 baton->per_cu);
8603 else if (bytes != NULL)
8604 {
8605 v = allocate_value (type);
8606 memcpy (value_contents_writeable (v), bytes,
8607 TYPE_LENGTH (type));
8608 }
8609 else
8610 v = value_from_longest (type, value);
8611
3e43a32a
MS
8612 /* Specify decimal so that we do not depend on
8613 the radix. */
98bfdba5
PA
8614 get_formatted_print_options (&opts, 'd');
8615 opts.raw = 1;
8616 value_print (v, buf, &opts);
8617 release_value (v);
8618 value_free (v);
8619 }
8620 }
8621
8622 die->building_fullname = 0;
8623
8624 if (!first)
8625 {
8626 /* Close the argument list, with a space if necessary
8627 (nested templates). */
8628 char last_char = '\0';
8629 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8630 if (last_char == '>')
8631 fputs_unfiltered (" >", buf);
8632 else
8633 fputs_unfiltered (">", buf);
8634 }
8635 }
8636
94af9270
KS
8637 /* For Java and C++ methods, append formal parameter type
8638 information, if PHYSNAME. */
6e70227d 8639
94af9270
KS
8640 if (physname && die->tag == DW_TAG_subprogram
8641 && (cu->language == language_cplus
8642 || cu->language == language_java))
8643 {
8644 struct type *type = read_type_die (die, cu);
8645
79d43c61
TT
8646 c_type_print_args (type, buf, 1, cu->language,
8647 &type_print_raw_options);
94af9270
KS
8648
8649 if (cu->language == language_java)
8650 {
8651 /* For java, we must append the return type to method
0963b4bd 8652 names. */
94af9270
KS
8653 if (die->tag == DW_TAG_subprogram)
8654 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8655 0, 0, &type_print_raw_options);
94af9270
KS
8656 }
8657 else if (cu->language == language_cplus)
8658 {
60430eff
DJ
8659 /* Assume that an artificial first parameter is
8660 "this", but do not crash if it is not. RealView
8661 marks unnamed (and thus unused) parameters as
8662 artificial; there is no way to differentiate
8663 the two cases. */
94af9270
KS
8664 if (TYPE_NFIELDS (type) > 0
8665 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8666 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8667 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8668 0))))
94af9270
KS
8669 fputs_unfiltered (" const", buf);
8670 }
8671 }
8672
34a68019 8673 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8674 ui_file_delete (buf);
8675
8676 if (cu->language == language_cplus)
34a68019
TT
8677 canonical_name
8678 = dwarf2_canonicalize_name (intermediate_name, cu,
8679 &objfile->per_bfd->storage_obstack);
8680
8681 /* If we only computed INTERMEDIATE_NAME, or if
8682 INTERMEDIATE_NAME is already canonical, then we need to
8683 copy it to the appropriate obstack. */
8684 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8685 name = ((const char *)
8686 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8687 intermediate_name,
8688 strlen (intermediate_name)));
34a68019
TT
8689 else
8690 name = canonical_name;
9a619af0 8691
34a68019 8692 xfree (intermediate_name);
94af9270
KS
8693 }
8694 }
8695
8696 return name;
8697}
8698
0114d602
DJ
8699/* Return the fully qualified name of DIE, based on its DW_AT_name.
8700 If scope qualifiers are appropriate they will be added. The result
34a68019 8701 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8702 not have a name. NAME may either be from a previous call to
8703 dwarf2_name or NULL.
8704
0963b4bd 8705 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8706
8707static const char *
15d034d0 8708dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8709{
94af9270
KS
8710 return dwarf2_compute_name (name, die, cu, 0);
8711}
0114d602 8712
94af9270
KS
8713/* Construct a physname for the given DIE in CU. NAME may either be
8714 from a previous call to dwarf2_name or NULL. The result will be
8715 allocated on the objfile_objstack or NULL if the DIE does not have a
8716 name.
0114d602 8717
94af9270 8718 The output string will be canonicalized (if C++/Java). */
0114d602 8719
94af9270 8720static const char *
15d034d0 8721dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8722{
bb5ed363 8723 struct objfile *objfile = cu->objfile;
900e11f9
JK
8724 const char *retval, *mangled = NULL, *canon = NULL;
8725 struct cleanup *back_to;
8726 int need_copy = 1;
8727
8728 /* In this case dwarf2_compute_name is just a shortcut not building anything
8729 on its own. */
8730 if (!die_needs_namespace (die, cu))
8731 return dwarf2_compute_name (name, die, cu, 1);
8732
8733 back_to = make_cleanup (null_cleanup, NULL);
8734
7d45c7c3
KB
8735 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8736 if (mangled == NULL)
8737 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8738
e98c9e7c
TT
8739 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8740 See https://github.com/rust-lang/rust/issues/32925. */
8741 if (cu->language == language_rust && mangled != NULL
8742 && strchr (mangled, '{') != NULL)
8743 mangled = NULL;
8744
900e11f9
JK
8745 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8746 has computed. */
7d45c7c3 8747 if (mangled != NULL)
900e11f9
JK
8748 {
8749 char *demangled;
8750
900e11f9
JK
8751 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8752 type. It is easier for GDB users to search for such functions as
8753 `name(params)' than `long name(params)'. In such case the minimal
8754 symbol names do not match the full symbol names but for template
8755 functions there is never a need to look up their definition from their
8756 declaration so the only disadvantage remains the minimal symbol
8757 variant `long name(params)' does not have the proper inferior type.
8758 */
8759
a766d390
DE
8760 if (cu->language == language_go)
8761 {
8762 /* This is a lie, but we already lie to the caller new_symbol_full.
8763 new_symbol_full assumes we return the mangled name.
8764 This just undoes that lie until things are cleaned up. */
8765 demangled = NULL;
8766 }
8767 else
8768 {
8de20a37
TT
8769 demangled = gdb_demangle (mangled,
8770 (DMGL_PARAMS | DMGL_ANSI
8771 | (cu->language == language_java
8772 ? DMGL_JAVA | DMGL_RET_POSTFIX
8773 : DMGL_RET_DROP)));
a766d390 8774 }
900e11f9
JK
8775 if (demangled)
8776 {
8777 make_cleanup (xfree, demangled);
8778 canon = demangled;
8779 }
8780 else
8781 {
8782 canon = mangled;
8783 need_copy = 0;
8784 }
8785 }
8786
8787 if (canon == NULL || check_physname)
8788 {
8789 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8790
8791 if (canon != NULL && strcmp (physname, canon) != 0)
8792 {
8793 /* It may not mean a bug in GDB. The compiler could also
8794 compute DW_AT_linkage_name incorrectly. But in such case
8795 GDB would need to be bug-to-bug compatible. */
8796
8797 complaint (&symfile_complaints,
8798 _("Computed physname <%s> does not match demangled <%s> "
8799 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8800 physname, canon, mangled, die->offset.sect_off,
8801 objfile_name (objfile));
900e11f9
JK
8802
8803 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8804 is available here - over computed PHYSNAME. It is safer
8805 against both buggy GDB and buggy compilers. */
8806
8807 retval = canon;
8808 }
8809 else
8810 {
8811 retval = physname;
8812 need_copy = 0;
8813 }
8814 }
8815 else
8816 retval = canon;
8817
8818 if (need_copy)
224c3ddb
SM
8819 retval = ((const char *)
8820 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8821 retval, strlen (retval)));
900e11f9
JK
8822
8823 do_cleanups (back_to);
8824 return retval;
0114d602
DJ
8825}
8826
74921315
KS
8827/* Inspect DIE in CU for a namespace alias. If one exists, record
8828 a new symbol for it.
8829
8830 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8831
8832static int
8833read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8834{
8835 struct attribute *attr;
8836
8837 /* If the die does not have a name, this is not a namespace
8838 alias. */
8839 attr = dwarf2_attr (die, DW_AT_name, cu);
8840 if (attr != NULL)
8841 {
8842 int num;
8843 struct die_info *d = die;
8844 struct dwarf2_cu *imported_cu = cu;
8845
8846 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8847 keep inspecting DIEs until we hit the underlying import. */
8848#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8849 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8850 {
8851 attr = dwarf2_attr (d, DW_AT_import, cu);
8852 if (attr == NULL)
8853 break;
8854
8855 d = follow_die_ref (d, attr, &imported_cu);
8856 if (d->tag != DW_TAG_imported_declaration)
8857 break;
8858 }
8859
8860 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8861 {
8862 complaint (&symfile_complaints,
8863 _("DIE at 0x%x has too many recursively imported "
8864 "declarations"), d->offset.sect_off);
8865 return 0;
8866 }
8867
8868 if (attr != NULL)
8869 {
8870 struct type *type;
8871 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8872
8873 type = get_die_type_at_offset (offset, cu->per_cu);
8874 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8875 {
8876 /* This declaration is a global namespace alias. Add
8877 a symbol for it whose type is the aliased namespace. */
8878 new_symbol (die, type, cu);
8879 return 1;
8880 }
8881 }
8882 }
8883
8884 return 0;
8885}
8886
22cee43f
PMR
8887/* Return the using directives repository (global or local?) to use in the
8888 current context for LANGUAGE.
8889
8890 For Ada, imported declarations can materialize renamings, which *may* be
8891 global. However it is impossible (for now?) in DWARF to distinguish
8892 "external" imported declarations and "static" ones. As all imported
8893 declarations seem to be static in all other languages, make them all CU-wide
8894 global only in Ada. */
8895
8896static struct using_direct **
8897using_directives (enum language language)
8898{
8899 if (language == language_ada && context_stack_depth == 0)
8900 return &global_using_directives;
8901 else
8902 return &local_using_directives;
8903}
8904
27aa8d6a
SW
8905/* Read the import statement specified by the given die and record it. */
8906
8907static void
8908read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8909{
bb5ed363 8910 struct objfile *objfile = cu->objfile;
27aa8d6a 8911 struct attribute *import_attr;
32019081 8912 struct die_info *imported_die, *child_die;
de4affc9 8913 struct dwarf2_cu *imported_cu;
27aa8d6a 8914 const char *imported_name;
794684b6 8915 const char *imported_name_prefix;
13387711
SW
8916 const char *canonical_name;
8917 const char *import_alias;
8918 const char *imported_declaration = NULL;
794684b6 8919 const char *import_prefix;
32019081
JK
8920 VEC (const_char_ptr) *excludes = NULL;
8921 struct cleanup *cleanups;
13387711 8922
27aa8d6a
SW
8923 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8924 if (import_attr == NULL)
8925 {
8926 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8927 dwarf_tag_name (die->tag));
8928 return;
8929 }
8930
de4affc9
CC
8931 imported_cu = cu;
8932 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8933 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8934 if (imported_name == NULL)
8935 {
8936 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8937
8938 The import in the following code:
8939 namespace A
8940 {
8941 typedef int B;
8942 }
8943
8944 int main ()
8945 {
8946 using A::B;
8947 B b;
8948 return b;
8949 }
8950
8951 ...
8952 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8953 <52> DW_AT_decl_file : 1
8954 <53> DW_AT_decl_line : 6
8955 <54> DW_AT_import : <0x75>
8956 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8957 <59> DW_AT_name : B
8958 <5b> DW_AT_decl_file : 1
8959 <5c> DW_AT_decl_line : 2
8960 <5d> DW_AT_type : <0x6e>
8961 ...
8962 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8963 <76> DW_AT_byte_size : 4
8964 <77> DW_AT_encoding : 5 (signed)
8965
8966 imports the wrong die ( 0x75 instead of 0x58 ).
8967 This case will be ignored until the gcc bug is fixed. */
8968 return;
8969 }
8970
82856980
SW
8971 /* Figure out the local name after import. */
8972 import_alias = dwarf2_name (die, cu);
27aa8d6a 8973
794684b6
SW
8974 /* Figure out where the statement is being imported to. */
8975 import_prefix = determine_prefix (die, cu);
8976
8977 /* Figure out what the scope of the imported die is and prepend it
8978 to the name of the imported die. */
de4affc9 8979 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8980
f55ee35c
JK
8981 if (imported_die->tag != DW_TAG_namespace
8982 && imported_die->tag != DW_TAG_module)
794684b6 8983 {
13387711
SW
8984 imported_declaration = imported_name;
8985 canonical_name = imported_name_prefix;
794684b6 8986 }
13387711 8987 else if (strlen (imported_name_prefix) > 0)
12aaed36 8988 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8989 imported_name_prefix,
8990 (cu->language == language_d ? "." : "::"),
8991 imported_name, (char *) NULL);
13387711
SW
8992 else
8993 canonical_name = imported_name;
794684b6 8994
32019081
JK
8995 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8996
8997 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8998 for (child_die = die->child; child_die && child_die->tag;
8999 child_die = sibling_die (child_die))
9000 {
9001 /* DWARF-4: A Fortran use statement with a “rename list” may be
9002 represented by an imported module entry with an import attribute
9003 referring to the module and owned entries corresponding to those
9004 entities that are renamed as part of being imported. */
9005
9006 if (child_die->tag != DW_TAG_imported_declaration)
9007 {
9008 complaint (&symfile_complaints,
9009 _("child DW_TAG_imported_declaration expected "
9010 "- DIE at 0x%x [in module %s]"),
4262abfb 9011 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9012 continue;
9013 }
9014
9015 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9016 if (import_attr == NULL)
9017 {
9018 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9019 dwarf_tag_name (child_die->tag));
9020 continue;
9021 }
9022
9023 imported_cu = cu;
9024 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9025 &imported_cu);
9026 imported_name = dwarf2_name (imported_die, imported_cu);
9027 if (imported_name == NULL)
9028 {
9029 complaint (&symfile_complaints,
9030 _("child DW_TAG_imported_declaration has unknown "
9031 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9032 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9033 continue;
9034 }
9035
9036 VEC_safe_push (const_char_ptr, excludes, imported_name);
9037
9038 process_die (child_die, cu);
9039 }
9040
22cee43f
PMR
9041 add_using_directive (using_directives (cu->language),
9042 import_prefix,
9043 canonical_name,
9044 import_alias,
9045 imported_declaration,
9046 excludes,
9047 0,
9048 &objfile->objfile_obstack);
32019081
JK
9049
9050 do_cleanups (cleanups);
27aa8d6a
SW
9051}
9052
f4dc4d17 9053/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9054
cb1df416
DJ
9055static void
9056free_cu_line_header (void *arg)
9057{
9a3c8263 9058 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9059
9060 free_line_header (cu->line_header);
9061 cu->line_header = NULL;
9062}
9063
1b80a9fa
JK
9064/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9065 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9066 this, it was first present in GCC release 4.3.0. */
9067
9068static int
9069producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9070{
9071 if (!cu->checked_producer)
9072 check_producer (cu);
9073
9074 return cu->producer_is_gcc_lt_4_3;
9075}
9076
9291a0cd
TT
9077static void
9078find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9079 const char **name, const char **comp_dir)
9291a0cd 9080{
9291a0cd
TT
9081 /* Find the filename. Do not use dwarf2_name here, since the filename
9082 is not a source language identifier. */
7d45c7c3
KB
9083 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9084 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9085
7d45c7c3
KB
9086 if (*comp_dir == NULL
9087 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9088 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9089 {
15d034d0
TT
9090 char *d = ldirname (*name);
9091
9092 *comp_dir = d;
9093 if (d != NULL)
9094 make_cleanup (xfree, d);
9291a0cd
TT
9095 }
9096 if (*comp_dir != NULL)
9097 {
9098 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9099 directory, get rid of it. */
e6a959d6 9100 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9101
9102 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9103 *comp_dir = cp + 1;
9104 }
9105
9106 if (*name == NULL)
9107 *name = "<unknown>";
9108}
9109
f4dc4d17
DE
9110/* Handle DW_AT_stmt_list for a compilation unit.
9111 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9112 COMP_DIR is the compilation directory. LOWPC is passed to
9113 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9114
9115static void
9116handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9117 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9118{
527f3840 9119 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9120 struct attribute *attr;
527f3840
JK
9121 unsigned int line_offset;
9122 struct line_header line_header_local;
9123 hashval_t line_header_local_hash;
9124 unsigned u;
9125 void **slot;
9126 int decode_mapping;
2ab95328 9127
f4dc4d17
DE
9128 gdb_assert (! cu->per_cu->is_debug_types);
9129
2ab95328 9130 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9131 if (attr == NULL)
9132 return;
9133
9134 line_offset = DW_UNSND (attr);
9135
9136 /* The line header hash table is only created if needed (it exists to
9137 prevent redundant reading of the line table for partial_units).
9138 If we're given a partial_unit, we'll need it. If we're given a
9139 compile_unit, then use the line header hash table if it's already
9140 created, but don't create one just yet. */
9141
9142 if (dwarf2_per_objfile->line_header_hash == NULL
9143 && die->tag == DW_TAG_partial_unit)
2ab95328 9144 {
527f3840
JK
9145 dwarf2_per_objfile->line_header_hash
9146 = htab_create_alloc_ex (127, line_header_hash_voidp,
9147 line_header_eq_voidp,
9148 free_line_header_voidp,
9149 &objfile->objfile_obstack,
9150 hashtab_obstack_allocate,
9151 dummy_obstack_deallocate);
9152 }
2ab95328 9153
527f3840
JK
9154 line_header_local.offset.sect_off = line_offset;
9155 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9156 line_header_local_hash = line_header_hash (&line_header_local);
9157 if (dwarf2_per_objfile->line_header_hash != NULL)
9158 {
9159 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9160 &line_header_local,
9161 line_header_local_hash, NO_INSERT);
9162
9163 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9164 is not present in *SLOT (since if there is something in *SLOT then
9165 it will be for a partial_unit). */
9166 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9167 {
527f3840 9168 gdb_assert (*slot != NULL);
9a3c8263 9169 cu->line_header = (struct line_header *) *slot;
527f3840 9170 return;
dee91e82 9171 }
2ab95328 9172 }
527f3840
JK
9173
9174 /* dwarf_decode_line_header does not yet provide sufficient information.
9175 We always have to call also dwarf_decode_lines for it. */
9176 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9177 if (cu->line_header == NULL)
9178 return;
9179
9180 if (dwarf2_per_objfile->line_header_hash == NULL)
9181 slot = NULL;
9182 else
9183 {
9184 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9185 &line_header_local,
9186 line_header_local_hash, INSERT);
9187 gdb_assert (slot != NULL);
9188 }
9189 if (slot != NULL && *slot == NULL)
9190 {
9191 /* This newly decoded line number information unit will be owned
9192 by line_header_hash hash table. */
9193 *slot = cu->line_header;
9194 }
9195 else
9196 {
9197 /* We cannot free any current entry in (*slot) as that struct line_header
9198 may be already used by multiple CUs. Create only temporary decoded
9199 line_header for this CU - it may happen at most once for each line
9200 number information unit. And if we're not using line_header_hash
9201 then this is what we want as well. */
9202 gdb_assert (die->tag != DW_TAG_partial_unit);
9203 make_cleanup (free_cu_line_header, cu);
9204 }
9205 decode_mapping = (die->tag != DW_TAG_partial_unit);
9206 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9207 decode_mapping);
2ab95328
TT
9208}
9209
95554aad 9210/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9211
c906108c 9212static void
e7c27a73 9213read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9214{
dee91e82 9215 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9217 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9218 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9219 CORE_ADDR highpc = ((CORE_ADDR) 0);
9220 struct attribute *attr;
15d034d0
TT
9221 const char *name = NULL;
9222 const char *comp_dir = NULL;
c906108c 9223 struct die_info *child_die;
e142c38c 9224 CORE_ADDR baseaddr;
6e70227d 9225
e142c38c 9226 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9227
fae299cd 9228 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9229
9230 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9231 from finish_block. */
2acceee2 9232 if (lowpc == ((CORE_ADDR) -1))
c906108c 9233 lowpc = highpc;
3e29f34a 9234 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9235
9291a0cd 9236 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9237
95554aad 9238 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9239
f4b8a18d
KW
9240 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9241 standardised yet. As a workaround for the language detection we fall
9242 back to the DW_AT_producer string. */
9243 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9244 cu->language = language_opencl;
9245
3019eac3
DE
9246 /* Similar hack for Go. */
9247 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9248 set_cu_language (DW_LANG_Go, cu);
9249
f4dc4d17 9250 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9251
9252 /* Decode line number information if present. We do this before
9253 processing child DIEs, so that the line header table is available
9254 for DW_AT_decl_file. */
c3b7b696 9255 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9256
9257 /* Process all dies in compilation unit. */
9258 if (die->child != NULL)
9259 {
9260 child_die = die->child;
9261 while (child_die && child_die->tag)
9262 {
9263 process_die (child_die, cu);
9264 child_die = sibling_die (child_die);
9265 }
9266 }
9267
9268 /* Decode macro information, if present. Dwarf 2 macro information
9269 refers to information in the line number info statement program
9270 header, so we can only read it if we've read the header
9271 successfully. */
9272 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9273 if (attr && cu->line_header)
9274 {
9275 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9276 complaint (&symfile_complaints,
9277 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9278
43f3e411 9279 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9280 }
9281 else
9282 {
9283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9284 if (attr && cu->line_header)
9285 {
9286 unsigned int macro_offset = DW_UNSND (attr);
9287
43f3e411 9288 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9289 }
9290 }
9291
9292 do_cleanups (back_to);
9293}
9294
f4dc4d17
DE
9295/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9296 Create the set of symtabs used by this TU, or if this TU is sharing
9297 symtabs with another TU and the symtabs have already been created
9298 then restore those symtabs in the line header.
9299 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9300
9301static void
f4dc4d17 9302setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9303{
f4dc4d17
DE
9304 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9305 struct type_unit_group *tu_group;
9306 int first_time;
9307 struct line_header *lh;
3019eac3 9308 struct attribute *attr;
f4dc4d17 9309 unsigned int i, line_offset;
0186c6a7 9310 struct signatured_type *sig_type;
3019eac3 9311
f4dc4d17 9312 gdb_assert (per_cu->is_debug_types);
0186c6a7 9313 sig_type = (struct signatured_type *) per_cu;
3019eac3 9314
f4dc4d17 9315 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9316
f4dc4d17 9317 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9318 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9319 if (sig_type->type_unit_group == NULL)
9320 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9321 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9322
9323 /* If we've already processed this stmt_list there's no real need to
9324 do it again, we could fake it and just recreate the part we need
9325 (file name,index -> symtab mapping). If data shows this optimization
9326 is useful we can do it then. */
43f3e411 9327 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9328
9329 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9330 debug info. */
9331 lh = NULL;
9332 if (attr != NULL)
3019eac3 9333 {
f4dc4d17
DE
9334 line_offset = DW_UNSND (attr);
9335 lh = dwarf_decode_line_header (line_offset, cu);
9336 }
9337 if (lh == NULL)
9338 {
9339 if (first_time)
9340 dwarf2_start_symtab (cu, "", NULL, 0);
9341 else
9342 {
9343 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9344 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9345 }
f4dc4d17 9346 return;
3019eac3
DE
9347 }
9348
f4dc4d17
DE
9349 cu->line_header = lh;
9350 make_cleanup (free_cu_line_header, cu);
3019eac3 9351
f4dc4d17
DE
9352 if (first_time)
9353 {
43f3e411 9354 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9355
1fd60fc0
DE
9356 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9357 still initializing it, and our caller (a few levels up)
9358 process_full_type_unit still needs to know if this is the first
9359 time. */
9360
f4dc4d17
DE
9361 tu_group->num_symtabs = lh->num_file_names;
9362 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9363
f4dc4d17
DE
9364 for (i = 0; i < lh->num_file_names; ++i)
9365 {
d521ce57 9366 const char *dir = NULL;
f4dc4d17 9367 struct file_entry *fe = &lh->file_names[i];
3019eac3 9368
afa6c9ab 9369 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9370 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9371 dwarf2_start_subfile (fe->name, dir);
3019eac3 9372
f4dc4d17
DE
9373 if (current_subfile->symtab == NULL)
9374 {
9375 /* NOTE: start_subfile will recognize when it's been passed
9376 a file it has already seen. So we can't assume there's a
43f3e411 9377 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9378 lh->file_names may contain dups. */
43f3e411
DE
9379 current_subfile->symtab
9380 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9381 }
9382
9383 fe->symtab = current_subfile->symtab;
9384 tu_group->symtabs[i] = fe->symtab;
9385 }
9386 }
9387 else
3019eac3 9388 {
0ab9ce85 9389 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9390
9391 for (i = 0; i < lh->num_file_names; ++i)
9392 {
9393 struct file_entry *fe = &lh->file_names[i];
9394
9395 fe->symtab = tu_group->symtabs[i];
9396 }
3019eac3
DE
9397 }
9398
f4dc4d17
DE
9399 /* The main symtab is allocated last. Type units don't have DW_AT_name
9400 so they don't have a "real" (so to speak) symtab anyway.
9401 There is later code that will assign the main symtab to all symbols
9402 that don't have one. We need to handle the case of a symbol with a
9403 missing symtab (DW_AT_decl_file) anyway. */
9404}
3019eac3 9405
f4dc4d17
DE
9406/* Process DW_TAG_type_unit.
9407 For TUs we want to skip the first top level sibling if it's not the
9408 actual type being defined by this TU. In this case the first top
9409 level sibling is there to provide context only. */
3019eac3 9410
f4dc4d17
DE
9411static void
9412read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9413{
9414 struct die_info *child_die;
3019eac3 9415
f4dc4d17
DE
9416 prepare_one_comp_unit (cu, die, language_minimal);
9417
9418 /* Initialize (or reinitialize) the machinery for building symtabs.
9419 We do this before processing child DIEs, so that the line header table
9420 is available for DW_AT_decl_file. */
9421 setup_type_unit_groups (die, cu);
9422
9423 if (die->child != NULL)
9424 {
9425 child_die = die->child;
9426 while (child_die && child_die->tag)
9427 {
9428 process_die (child_die, cu);
9429 child_die = sibling_die (child_die);
9430 }
9431 }
3019eac3
DE
9432}
9433\f
80626a55
DE
9434/* DWO/DWP files.
9435
9436 http://gcc.gnu.org/wiki/DebugFission
9437 http://gcc.gnu.org/wiki/DebugFissionDWP
9438
9439 To simplify handling of both DWO files ("object" files with the DWARF info)
9440 and DWP files (a file with the DWOs packaged up into one file), we treat
9441 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9442
9443static hashval_t
9444hash_dwo_file (const void *item)
9445{
9a3c8263 9446 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9447 hashval_t hash;
3019eac3 9448
a2ce51a0
DE
9449 hash = htab_hash_string (dwo_file->dwo_name);
9450 if (dwo_file->comp_dir != NULL)
9451 hash += htab_hash_string (dwo_file->comp_dir);
9452 return hash;
3019eac3
DE
9453}
9454
9455static int
9456eq_dwo_file (const void *item_lhs, const void *item_rhs)
9457{
9a3c8263
SM
9458 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9459 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9460
a2ce51a0
DE
9461 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9462 return 0;
9463 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9464 return lhs->comp_dir == rhs->comp_dir;
9465 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9466}
9467
9468/* Allocate a hash table for DWO files. */
9469
9470static htab_t
9471allocate_dwo_file_hash_table (void)
9472{
9473 struct objfile *objfile = dwarf2_per_objfile->objfile;
9474
9475 return htab_create_alloc_ex (41,
9476 hash_dwo_file,
9477 eq_dwo_file,
9478 NULL,
9479 &objfile->objfile_obstack,
9480 hashtab_obstack_allocate,
9481 dummy_obstack_deallocate);
9482}
9483
80626a55
DE
9484/* Lookup DWO file DWO_NAME. */
9485
9486static void **
0ac5b59e 9487lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9488{
9489 struct dwo_file find_entry;
9490 void **slot;
9491
9492 if (dwarf2_per_objfile->dwo_files == NULL)
9493 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9494
9495 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9496 find_entry.dwo_name = dwo_name;
9497 find_entry.comp_dir = comp_dir;
80626a55
DE
9498 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9499
9500 return slot;
9501}
9502
3019eac3
DE
9503static hashval_t
9504hash_dwo_unit (const void *item)
9505{
9a3c8263 9506 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9507
9508 /* This drops the top 32 bits of the id, but is ok for a hash. */
9509 return dwo_unit->signature;
9510}
9511
9512static int
9513eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9514{
9a3c8263
SM
9515 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9516 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9517
9518 /* The signature is assumed to be unique within the DWO file.
9519 So while object file CU dwo_id's always have the value zero,
9520 that's OK, assuming each object file DWO file has only one CU,
9521 and that's the rule for now. */
9522 return lhs->signature == rhs->signature;
9523}
9524
9525/* Allocate a hash table for DWO CUs,TUs.
9526 There is one of these tables for each of CUs,TUs for each DWO file. */
9527
9528static htab_t
9529allocate_dwo_unit_table (struct objfile *objfile)
9530{
9531 /* Start out with a pretty small number.
9532 Generally DWO files contain only one CU and maybe some TUs. */
9533 return htab_create_alloc_ex (3,
9534 hash_dwo_unit,
9535 eq_dwo_unit,
9536 NULL,
9537 &objfile->objfile_obstack,
9538 hashtab_obstack_allocate,
9539 dummy_obstack_deallocate);
9540}
9541
80626a55 9542/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9543
19c3d4c9 9544struct create_dwo_cu_data
3019eac3
DE
9545{
9546 struct dwo_file *dwo_file;
19c3d4c9 9547 struct dwo_unit dwo_unit;
3019eac3
DE
9548};
9549
19c3d4c9 9550/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9551
9552static void
19c3d4c9
DE
9553create_dwo_cu_reader (const struct die_reader_specs *reader,
9554 const gdb_byte *info_ptr,
9555 struct die_info *comp_unit_die,
9556 int has_children,
9557 void *datap)
3019eac3
DE
9558{
9559 struct dwarf2_cu *cu = reader->cu;
3019eac3 9560 sect_offset offset = cu->per_cu->offset;
8a0459fd 9561 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9562 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9563 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9564 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9565 struct attribute *attr;
3019eac3
DE
9566
9567 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9568 if (attr == NULL)
9569 {
19c3d4c9
DE
9570 complaint (&symfile_complaints,
9571 _("Dwarf Error: debug entry at offset 0x%x is missing"
9572 " its dwo_id [in module %s]"),
9573 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9574 return;
9575 }
9576
3019eac3
DE
9577 dwo_unit->dwo_file = dwo_file;
9578 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9579 dwo_unit->section = section;
3019eac3
DE
9580 dwo_unit->offset = offset;
9581 dwo_unit->length = cu->per_cu->length;
9582
b4f54984 9583 if (dwarf_read_debug)
4031ecc5
DE
9584 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9585 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9586}
9587
19c3d4c9
DE
9588/* Create the dwo_unit for the lone CU in DWO_FILE.
9589 Note: This function processes DWO files only, not DWP files. */
3019eac3 9590
19c3d4c9
DE
9591static struct dwo_unit *
9592create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9593{
9594 struct objfile *objfile = dwarf2_per_objfile->objfile;
9595 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9596 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9597 struct create_dwo_cu_data create_dwo_cu_data;
9598 struct dwo_unit *dwo_unit;
3019eac3
DE
9599
9600 dwarf2_read_section (objfile, section);
9601 info_ptr = section->buffer;
9602
9603 if (info_ptr == NULL)
9604 return NULL;
9605
b4f54984 9606 if (dwarf_read_debug)
19c3d4c9
DE
9607 {
9608 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9609 get_section_name (section),
9610 get_section_file_name (section));
19c3d4c9 9611 }
3019eac3 9612
19c3d4c9
DE
9613 create_dwo_cu_data.dwo_file = dwo_file;
9614 dwo_unit = NULL;
3019eac3
DE
9615
9616 end_ptr = info_ptr + section->size;
9617 while (info_ptr < end_ptr)
9618 {
9619 struct dwarf2_per_cu_data per_cu;
9620
19c3d4c9
DE
9621 memset (&create_dwo_cu_data.dwo_unit, 0,
9622 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9623 memset (&per_cu, 0, sizeof (per_cu));
9624 per_cu.objfile = objfile;
9625 per_cu.is_debug_types = 0;
9626 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9627 per_cu.section = section;
3019eac3 9628
33e80786 9629 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9630 create_dwo_cu_reader,
9631 &create_dwo_cu_data);
9632
9633 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9634 {
9635 /* If we've already found one, complain. We only support one
9636 because having more than one requires hacking the dwo_name of
9637 each to match, which is highly unlikely to happen. */
9638 if (dwo_unit != NULL)
9639 {
9640 complaint (&symfile_complaints,
9641 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9642 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9643 break;
9644 }
9645
9646 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9647 *dwo_unit = create_dwo_cu_data.dwo_unit;
9648 }
3019eac3
DE
9649
9650 info_ptr += per_cu.length;
9651 }
9652
19c3d4c9 9653 return dwo_unit;
3019eac3
DE
9654}
9655
80626a55
DE
9656/* DWP file .debug_{cu,tu}_index section format:
9657 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9658
d2415c6c
DE
9659 DWP Version 1:
9660
80626a55
DE
9661 Both index sections have the same format, and serve to map a 64-bit
9662 signature to a set of section numbers. Each section begins with a header,
9663 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9664 indexes, and a pool of 32-bit section numbers. The index sections will be
9665 aligned at 8-byte boundaries in the file.
9666
d2415c6c
DE
9667 The index section header consists of:
9668
9669 V, 32 bit version number
9670 -, 32 bits unused
9671 N, 32 bit number of compilation units or type units in the index
9672 M, 32 bit number of slots in the hash table
80626a55 9673
d2415c6c 9674 Numbers are recorded using the byte order of the application binary.
80626a55 9675
d2415c6c
DE
9676 The hash table begins at offset 16 in the section, and consists of an array
9677 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9678 order of the application binary). Unused slots in the hash table are 0.
9679 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9680
d2415c6c
DE
9681 The parallel table begins immediately after the hash table
9682 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9683 array of 32-bit indexes (using the byte order of the application binary),
9684 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9685 table contains a 32-bit index into the pool of section numbers. For unused
9686 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9687
73869dc2
DE
9688 The pool of section numbers begins immediately following the hash table
9689 (at offset 16 + 12 * M from the beginning of the section). The pool of
9690 section numbers consists of an array of 32-bit words (using the byte order
9691 of the application binary). Each item in the array is indexed starting
9692 from 0. The hash table entry provides the index of the first section
9693 number in the set. Additional section numbers in the set follow, and the
9694 set is terminated by a 0 entry (section number 0 is not used in ELF).
9695
9696 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9697 section must be the first entry in the set, and the .debug_abbrev.dwo must
9698 be the second entry. Other members of the set may follow in any order.
9699
9700 ---
9701
9702 DWP Version 2:
9703
9704 DWP Version 2 combines all the .debug_info, etc. sections into one,
9705 and the entries in the index tables are now offsets into these sections.
9706 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9707 section.
9708
9709 Index Section Contents:
9710 Header
9711 Hash Table of Signatures dwp_hash_table.hash_table
9712 Parallel Table of Indices dwp_hash_table.unit_table
9713 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9714 Table of Section Sizes dwp_hash_table.v2.sizes
9715
9716 The index section header consists of:
9717
9718 V, 32 bit version number
9719 L, 32 bit number of columns in the table of section offsets
9720 N, 32 bit number of compilation units or type units in the index
9721 M, 32 bit number of slots in the hash table
9722
9723 Numbers are recorded using the byte order of the application binary.
9724
9725 The hash table has the same format as version 1.
9726 The parallel table of indices has the same format as version 1,
9727 except that the entries are origin-1 indices into the table of sections
9728 offsets and the table of section sizes.
9729
9730 The table of offsets begins immediately following the parallel table
9731 (at offset 16 + 12 * M from the beginning of the section). The table is
9732 a two-dimensional array of 32-bit words (using the byte order of the
9733 application binary), with L columns and N+1 rows, in row-major order.
9734 Each row in the array is indexed starting from 0. The first row provides
9735 a key to the remaining rows: each column in this row provides an identifier
9736 for a debug section, and the offsets in the same column of subsequent rows
9737 refer to that section. The section identifiers are:
9738
9739 DW_SECT_INFO 1 .debug_info.dwo
9740 DW_SECT_TYPES 2 .debug_types.dwo
9741 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9742 DW_SECT_LINE 4 .debug_line.dwo
9743 DW_SECT_LOC 5 .debug_loc.dwo
9744 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9745 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9746 DW_SECT_MACRO 8 .debug_macro.dwo
9747
9748 The offsets provided by the CU and TU index sections are the base offsets
9749 for the contributions made by each CU or TU to the corresponding section
9750 in the package file. Each CU and TU header contains an abbrev_offset
9751 field, used to find the abbreviations table for that CU or TU within the
9752 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9753 be interpreted as relative to the base offset given in the index section.
9754 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9755 should be interpreted as relative to the base offset for .debug_line.dwo,
9756 and offsets into other debug sections obtained from DWARF attributes should
9757 also be interpreted as relative to the corresponding base offset.
9758
9759 The table of sizes begins immediately following the table of offsets.
9760 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9761 with L columns and N rows, in row-major order. Each row in the array is
9762 indexed starting from 1 (row 0 is shared by the two tables).
9763
9764 ---
9765
9766 Hash table lookup is handled the same in version 1 and 2:
9767
9768 We assume that N and M will not exceed 2^32 - 1.
9769 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9770
d2415c6c
DE
9771 Given a 64-bit compilation unit signature or a type signature S, an entry
9772 in the hash table is located as follows:
80626a55 9773
d2415c6c
DE
9774 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9775 the low-order k bits all set to 1.
80626a55 9776
d2415c6c 9777 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9778
d2415c6c
DE
9779 3) If the hash table entry at index H matches the signature, use that
9780 entry. If the hash table entry at index H is unused (all zeroes),
9781 terminate the search: the signature is not present in the table.
80626a55 9782
d2415c6c 9783 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9784
d2415c6c 9785 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9786 to stop at an unused slot or find the match. */
80626a55
DE
9787
9788/* Create a hash table to map DWO IDs to their CU/TU entry in
9789 .debug_{info,types}.dwo in DWP_FILE.
9790 Returns NULL if there isn't one.
9791 Note: This function processes DWP files only, not DWO files. */
9792
9793static struct dwp_hash_table *
9794create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9795{
9796 struct objfile *objfile = dwarf2_per_objfile->objfile;
9797 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9798 const gdb_byte *index_ptr, *index_end;
80626a55 9799 struct dwarf2_section_info *index;
73869dc2 9800 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9801 struct dwp_hash_table *htab;
9802
9803 if (is_debug_types)
9804 index = &dwp_file->sections.tu_index;
9805 else
9806 index = &dwp_file->sections.cu_index;
9807
9808 if (dwarf2_section_empty_p (index))
9809 return NULL;
9810 dwarf2_read_section (objfile, index);
9811
9812 index_ptr = index->buffer;
9813 index_end = index_ptr + index->size;
9814
9815 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9816 index_ptr += 4;
9817 if (version == 2)
9818 nr_columns = read_4_bytes (dbfd, index_ptr);
9819 else
9820 nr_columns = 0;
9821 index_ptr += 4;
80626a55
DE
9822 nr_units = read_4_bytes (dbfd, index_ptr);
9823 index_ptr += 4;
9824 nr_slots = read_4_bytes (dbfd, index_ptr);
9825 index_ptr += 4;
9826
73869dc2 9827 if (version != 1 && version != 2)
80626a55 9828 {
21aa081e 9829 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9830 " [in module %s]"),
21aa081e 9831 pulongest (version), dwp_file->name);
80626a55
DE
9832 }
9833 if (nr_slots != (nr_slots & -nr_slots))
9834 {
21aa081e 9835 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9836 " is not power of 2 [in module %s]"),
21aa081e 9837 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9838 }
9839
9840 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9841 htab->version = version;
9842 htab->nr_columns = nr_columns;
80626a55
DE
9843 htab->nr_units = nr_units;
9844 htab->nr_slots = nr_slots;
9845 htab->hash_table = index_ptr;
9846 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9847
9848 /* Exit early if the table is empty. */
9849 if (nr_slots == 0 || nr_units == 0
9850 || (version == 2 && nr_columns == 0))
9851 {
9852 /* All must be zero. */
9853 if (nr_slots != 0 || nr_units != 0
9854 || (version == 2 && nr_columns != 0))
9855 {
9856 complaint (&symfile_complaints,
9857 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9858 " all zero [in modules %s]"),
9859 dwp_file->name);
9860 }
9861 return htab;
9862 }
9863
9864 if (version == 1)
9865 {
9866 htab->section_pool.v1.indices =
9867 htab->unit_table + sizeof (uint32_t) * nr_slots;
9868 /* It's harder to decide whether the section is too small in v1.
9869 V1 is deprecated anyway so we punt. */
9870 }
9871 else
9872 {
9873 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9874 int *ids = htab->section_pool.v2.section_ids;
9875 /* Reverse map for error checking. */
9876 int ids_seen[DW_SECT_MAX + 1];
9877 int i;
9878
9879 if (nr_columns < 2)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, too few columns"
9882 " in section table [in module %s]"),
9883 dwp_file->name);
9884 }
9885 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, too many columns"
9888 " in section table [in module %s]"),
9889 dwp_file->name);
9890 }
9891 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9892 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9893 for (i = 0; i < nr_columns; ++i)
9894 {
9895 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9896
9897 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9898 {
9899 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9900 " in section table [in module %s]"),
9901 id, dwp_file->name);
9902 }
9903 if (ids_seen[id] != -1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9906 " id %d in section table [in module %s]"),
9907 id, dwp_file->name);
9908 }
9909 ids_seen[id] = i;
9910 ids[i] = id;
9911 }
9912 /* Must have exactly one info or types section. */
9913 if (((ids_seen[DW_SECT_INFO] != -1)
9914 + (ids_seen[DW_SECT_TYPES] != -1))
9915 != 1)
9916 {
9917 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9918 " DWO info/types section [in module %s]"),
9919 dwp_file->name);
9920 }
9921 /* Must have an abbrev section. */
9922 if (ids_seen[DW_SECT_ABBREV] == -1)
9923 {
9924 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9925 " section [in module %s]"),
9926 dwp_file->name);
9927 }
9928 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9929 htab->section_pool.v2.sizes =
9930 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9931 * nr_units * nr_columns);
9932 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9933 * nr_units * nr_columns))
9934 > index_end)
9935 {
9936 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9937 " [in module %s]"),
9938 dwp_file->name);
9939 }
9940 }
80626a55
DE
9941
9942 return htab;
9943}
9944
9945/* Update SECTIONS with the data from SECTP.
9946
9947 This function is like the other "locate" section routines that are
9948 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9949 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9950
9951 The result is non-zero for success, or zero if an error was found. */
9952
9953static int
73869dc2
DE
9954locate_v1_virtual_dwo_sections (asection *sectp,
9955 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9956{
9957 const struct dwop_section_names *names = &dwop_section_names;
9958
9959 if (section_is_p (sectp->name, &names->abbrev_dwo))
9960 {
9961 /* There can be only one. */
049412e3 9962 if (sections->abbrev.s.section != NULL)
80626a55 9963 return 0;
049412e3 9964 sections->abbrev.s.section = sectp;
80626a55
DE
9965 sections->abbrev.size = bfd_get_section_size (sectp);
9966 }
9967 else if (section_is_p (sectp->name, &names->info_dwo)
9968 || section_is_p (sectp->name, &names->types_dwo))
9969 {
9970 /* There can be only one. */
049412e3 9971 if (sections->info_or_types.s.section != NULL)
80626a55 9972 return 0;
049412e3 9973 sections->info_or_types.s.section = sectp;
80626a55
DE
9974 sections->info_or_types.size = bfd_get_section_size (sectp);
9975 }
9976 else if (section_is_p (sectp->name, &names->line_dwo))
9977 {
9978 /* There can be only one. */
049412e3 9979 if (sections->line.s.section != NULL)
80626a55 9980 return 0;
049412e3 9981 sections->line.s.section = sectp;
80626a55
DE
9982 sections->line.size = bfd_get_section_size (sectp);
9983 }
9984 else if (section_is_p (sectp->name, &names->loc_dwo))
9985 {
9986 /* There can be only one. */
049412e3 9987 if (sections->loc.s.section != NULL)
80626a55 9988 return 0;
049412e3 9989 sections->loc.s.section = sectp;
80626a55
DE
9990 sections->loc.size = bfd_get_section_size (sectp);
9991 }
9992 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9993 {
9994 /* There can be only one. */
049412e3 9995 if (sections->macinfo.s.section != NULL)
80626a55 9996 return 0;
049412e3 9997 sections->macinfo.s.section = sectp;
80626a55
DE
9998 sections->macinfo.size = bfd_get_section_size (sectp);
9999 }
10000 else if (section_is_p (sectp->name, &names->macro_dwo))
10001 {
10002 /* There can be only one. */
049412e3 10003 if (sections->macro.s.section != NULL)
80626a55 10004 return 0;
049412e3 10005 sections->macro.s.section = sectp;
80626a55
DE
10006 sections->macro.size = bfd_get_section_size (sectp);
10007 }
10008 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10009 {
10010 /* There can be only one. */
049412e3 10011 if (sections->str_offsets.s.section != NULL)
80626a55 10012 return 0;
049412e3 10013 sections->str_offsets.s.section = sectp;
80626a55
DE
10014 sections->str_offsets.size = bfd_get_section_size (sectp);
10015 }
10016 else
10017 {
10018 /* No other kind of section is valid. */
10019 return 0;
10020 }
10021
10022 return 1;
10023}
10024
73869dc2
DE
10025/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10026 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10027 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10028 This is for DWP version 1 files. */
80626a55
DE
10029
10030static struct dwo_unit *
73869dc2
DE
10031create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10032 uint32_t unit_index,
10033 const char *comp_dir,
10034 ULONGEST signature, int is_debug_types)
80626a55
DE
10035{
10036 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10037 const struct dwp_hash_table *dwp_htab =
10038 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10039 bfd *dbfd = dwp_file->dbfd;
10040 const char *kind = is_debug_types ? "TU" : "CU";
10041 struct dwo_file *dwo_file;
10042 struct dwo_unit *dwo_unit;
73869dc2 10043 struct virtual_v1_dwo_sections sections;
80626a55
DE
10044 void **dwo_file_slot;
10045 char *virtual_dwo_name;
80626a55
DE
10046 struct cleanup *cleanups;
10047 int i;
10048
73869dc2
DE
10049 gdb_assert (dwp_file->version == 1);
10050
b4f54984 10051 if (dwarf_read_debug)
80626a55 10052 {
73869dc2 10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10054 kind,
73869dc2 10055 pulongest (unit_index), hex_string (signature),
80626a55
DE
10056 dwp_file->name);
10057 }
10058
19ac8c2e 10059 /* Fetch the sections of this DWO unit.
80626a55
DE
10060 Put a limit on the number of sections we look for so that bad data
10061 doesn't cause us to loop forever. */
10062
73869dc2 10063#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10064 (1 /* .debug_info or .debug_types */ \
10065 + 1 /* .debug_abbrev */ \
10066 + 1 /* .debug_line */ \
10067 + 1 /* .debug_loc */ \
10068 + 1 /* .debug_str_offsets */ \
19ac8c2e 10069 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10070 + 1 /* trailing zero */)
10071
10072 memset (&sections, 0, sizeof (sections));
10073 cleanups = make_cleanup (null_cleanup, 0);
10074
73869dc2 10075 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10076 {
10077 asection *sectp;
10078 uint32_t section_nr =
10079 read_4_bytes (dbfd,
73869dc2
DE
10080 dwp_htab->section_pool.v1.indices
10081 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10082
10083 if (section_nr == 0)
10084 break;
10085 if (section_nr >= dwp_file->num_sections)
10086 {
10087 error (_("Dwarf Error: bad DWP hash table, section number too large"
10088 " [in module %s]"),
10089 dwp_file->name);
10090 }
10091
10092 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10093 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10094 {
10095 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10096 " [in module %s]"),
10097 dwp_file->name);
10098 }
10099 }
10100
10101 if (i < 2
a32a8923
DE
10102 || dwarf2_section_empty_p (&sections.info_or_types)
10103 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10104 {
10105 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10106 " [in module %s]"),
10107 dwp_file->name);
10108 }
73869dc2 10109 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10110 {
10111 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10112 " [in module %s]"),
10113 dwp_file->name);
10114 }
10115
10116 /* It's easier for the rest of the code if we fake a struct dwo_file and
10117 have dwo_unit "live" in that. At least for now.
10118
10119 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10120 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10121 file, we can combine them back into a virtual DWO file to save space
10122 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10123 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10124
2792b94d
PM
10125 virtual_dwo_name =
10126 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10127 get_section_id (&sections.abbrev),
10128 get_section_id (&sections.line),
10129 get_section_id (&sections.loc),
10130 get_section_id (&sections.str_offsets));
80626a55
DE
10131 make_cleanup (xfree, virtual_dwo_name);
10132 /* Can we use an existing virtual DWO file? */
0ac5b59e 10133 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10134 /* Create one if necessary. */
10135 if (*dwo_file_slot == NULL)
10136 {
b4f54984 10137 if (dwarf_read_debug)
80626a55
DE
10138 {
10139 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10140 virtual_dwo_name);
10141 }
10142 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10143 dwo_file->dwo_name
10144 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10145 virtual_dwo_name,
10146 strlen (virtual_dwo_name));
0ac5b59e 10147 dwo_file->comp_dir = comp_dir;
80626a55
DE
10148 dwo_file->sections.abbrev = sections.abbrev;
10149 dwo_file->sections.line = sections.line;
10150 dwo_file->sections.loc = sections.loc;
10151 dwo_file->sections.macinfo = sections.macinfo;
10152 dwo_file->sections.macro = sections.macro;
10153 dwo_file->sections.str_offsets = sections.str_offsets;
10154 /* The "str" section is global to the entire DWP file. */
10155 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10156 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10157 there's no need to record it in dwo_file.
10158 Also, we can't simply record type sections in dwo_file because
10159 we record a pointer into the vector in dwo_unit. As we collect more
10160 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10161 for it, invalidating all copies of pointers into the previous
10162 contents. */
80626a55
DE
10163 *dwo_file_slot = dwo_file;
10164 }
10165 else
10166 {
b4f54984 10167 if (dwarf_read_debug)
80626a55
DE
10168 {
10169 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10170 virtual_dwo_name);
10171 }
9a3c8263 10172 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10173 }
10174 do_cleanups (cleanups);
10175
10176 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10177 dwo_unit->dwo_file = dwo_file;
10178 dwo_unit->signature = signature;
8d749320
SM
10179 dwo_unit->section =
10180 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10181 *dwo_unit->section = sections.info_or_types;
57d63ce2 10182 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10183
10184 return dwo_unit;
10185}
10186
73869dc2
DE
10187/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10188 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10189 piece within that section used by a TU/CU, return a virtual section
10190 of just that piece. */
10191
10192static struct dwarf2_section_info
10193create_dwp_v2_section (struct dwarf2_section_info *section,
10194 bfd_size_type offset, bfd_size_type size)
10195{
10196 struct dwarf2_section_info result;
10197 asection *sectp;
10198
10199 gdb_assert (section != NULL);
10200 gdb_assert (!section->is_virtual);
10201
10202 memset (&result, 0, sizeof (result));
10203 result.s.containing_section = section;
10204 result.is_virtual = 1;
10205
10206 if (size == 0)
10207 return result;
10208
10209 sectp = get_section_bfd_section (section);
10210
10211 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10212 bounds of the real section. This is a pretty-rare event, so just
10213 flag an error (easier) instead of a warning and trying to cope. */
10214 if (sectp == NULL
10215 || offset + size > bfd_get_section_size (sectp))
10216 {
10217 bfd *abfd = sectp->owner;
10218
10219 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10220 " in section %s [in module %s]"),
10221 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10222 objfile_name (dwarf2_per_objfile->objfile));
10223 }
10224
10225 result.virtual_offset = offset;
10226 result.size = size;
10227 return result;
10228}
10229
10230/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10231 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10232 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10233 This is for DWP version 2 files. */
10234
10235static struct dwo_unit *
10236create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10237 uint32_t unit_index,
10238 const char *comp_dir,
10239 ULONGEST signature, int is_debug_types)
10240{
10241 struct objfile *objfile = dwarf2_per_objfile->objfile;
10242 const struct dwp_hash_table *dwp_htab =
10243 is_debug_types ? dwp_file->tus : dwp_file->cus;
10244 bfd *dbfd = dwp_file->dbfd;
10245 const char *kind = is_debug_types ? "TU" : "CU";
10246 struct dwo_file *dwo_file;
10247 struct dwo_unit *dwo_unit;
10248 struct virtual_v2_dwo_sections sections;
10249 void **dwo_file_slot;
10250 char *virtual_dwo_name;
73869dc2
DE
10251 struct cleanup *cleanups;
10252 int i;
10253
10254 gdb_assert (dwp_file->version == 2);
10255
b4f54984 10256 if (dwarf_read_debug)
73869dc2
DE
10257 {
10258 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10259 kind,
10260 pulongest (unit_index), hex_string (signature),
10261 dwp_file->name);
10262 }
10263
10264 /* Fetch the section offsets of this DWO unit. */
10265
10266 memset (&sections, 0, sizeof (sections));
10267 cleanups = make_cleanup (null_cleanup, 0);
10268
10269 for (i = 0; i < dwp_htab->nr_columns; ++i)
10270 {
10271 uint32_t offset = read_4_bytes (dbfd,
10272 dwp_htab->section_pool.v2.offsets
10273 + (((unit_index - 1) * dwp_htab->nr_columns
10274 + i)
10275 * sizeof (uint32_t)));
10276 uint32_t size = read_4_bytes (dbfd,
10277 dwp_htab->section_pool.v2.sizes
10278 + (((unit_index - 1) * dwp_htab->nr_columns
10279 + i)
10280 * sizeof (uint32_t)));
10281
10282 switch (dwp_htab->section_pool.v2.section_ids[i])
10283 {
10284 case DW_SECT_INFO:
10285 case DW_SECT_TYPES:
10286 sections.info_or_types_offset = offset;
10287 sections.info_or_types_size = size;
10288 break;
10289 case DW_SECT_ABBREV:
10290 sections.abbrev_offset = offset;
10291 sections.abbrev_size = size;
10292 break;
10293 case DW_SECT_LINE:
10294 sections.line_offset = offset;
10295 sections.line_size = size;
10296 break;
10297 case DW_SECT_LOC:
10298 sections.loc_offset = offset;
10299 sections.loc_size = size;
10300 break;
10301 case DW_SECT_STR_OFFSETS:
10302 sections.str_offsets_offset = offset;
10303 sections.str_offsets_size = size;
10304 break;
10305 case DW_SECT_MACINFO:
10306 sections.macinfo_offset = offset;
10307 sections.macinfo_size = size;
10308 break;
10309 case DW_SECT_MACRO:
10310 sections.macro_offset = offset;
10311 sections.macro_size = size;
10312 break;
10313 }
10314 }
10315
10316 /* It's easier for the rest of the code if we fake a struct dwo_file and
10317 have dwo_unit "live" in that. At least for now.
10318
10319 The DWP file can be made up of a random collection of CUs and TUs.
10320 However, for each CU + set of TUs that came from the same original DWO
10321 file, we can combine them back into a virtual DWO file to save space
10322 (fewer struct dwo_file objects to allocate). Remember that for really
10323 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10324
10325 virtual_dwo_name =
10326 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10327 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10328 (long) (sections.line_size ? sections.line_offset : 0),
10329 (long) (sections.loc_size ? sections.loc_offset : 0),
10330 (long) (sections.str_offsets_size
10331 ? sections.str_offsets_offset : 0));
10332 make_cleanup (xfree, virtual_dwo_name);
10333 /* Can we use an existing virtual DWO file? */
10334 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10335 /* Create one if necessary. */
10336 if (*dwo_file_slot == NULL)
10337 {
b4f54984 10338 if (dwarf_read_debug)
73869dc2
DE
10339 {
10340 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10341 virtual_dwo_name);
10342 }
10343 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10344 dwo_file->dwo_name
10345 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10346 virtual_dwo_name,
10347 strlen (virtual_dwo_name));
73869dc2
DE
10348 dwo_file->comp_dir = comp_dir;
10349 dwo_file->sections.abbrev =
10350 create_dwp_v2_section (&dwp_file->sections.abbrev,
10351 sections.abbrev_offset, sections.abbrev_size);
10352 dwo_file->sections.line =
10353 create_dwp_v2_section (&dwp_file->sections.line,
10354 sections.line_offset, sections.line_size);
10355 dwo_file->sections.loc =
10356 create_dwp_v2_section (&dwp_file->sections.loc,
10357 sections.loc_offset, sections.loc_size);
10358 dwo_file->sections.macinfo =
10359 create_dwp_v2_section (&dwp_file->sections.macinfo,
10360 sections.macinfo_offset, sections.macinfo_size);
10361 dwo_file->sections.macro =
10362 create_dwp_v2_section (&dwp_file->sections.macro,
10363 sections.macro_offset, sections.macro_size);
10364 dwo_file->sections.str_offsets =
10365 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10366 sections.str_offsets_offset,
10367 sections.str_offsets_size);
10368 /* The "str" section is global to the entire DWP file. */
10369 dwo_file->sections.str = dwp_file->sections.str;
10370 /* The info or types section is assigned below to dwo_unit,
10371 there's no need to record it in dwo_file.
10372 Also, we can't simply record type sections in dwo_file because
10373 we record a pointer into the vector in dwo_unit. As we collect more
10374 types we'll grow the vector and eventually have to reallocate space
10375 for it, invalidating all copies of pointers into the previous
10376 contents. */
10377 *dwo_file_slot = dwo_file;
10378 }
10379 else
10380 {
b4f54984 10381 if (dwarf_read_debug)
73869dc2
DE
10382 {
10383 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10384 virtual_dwo_name);
10385 }
9a3c8263 10386 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10387 }
10388 do_cleanups (cleanups);
10389
10390 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10391 dwo_unit->dwo_file = dwo_file;
10392 dwo_unit->signature = signature;
8d749320
SM
10393 dwo_unit->section =
10394 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10395 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10396 ? &dwp_file->sections.types
10397 : &dwp_file->sections.info,
10398 sections.info_or_types_offset,
10399 sections.info_or_types_size);
10400 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10401
10402 return dwo_unit;
10403}
10404
57d63ce2
DE
10405/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10406 Returns NULL if the signature isn't found. */
80626a55
DE
10407
10408static struct dwo_unit *
57d63ce2
DE
10409lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10410 ULONGEST signature, int is_debug_types)
80626a55 10411{
57d63ce2
DE
10412 const struct dwp_hash_table *dwp_htab =
10413 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10414 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10415 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10416 uint32_t hash = signature & mask;
10417 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10418 unsigned int i;
10419 void **slot;
870f88f7 10420 struct dwo_unit find_dwo_cu;
80626a55
DE
10421
10422 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10423 find_dwo_cu.signature = signature;
19ac8c2e
DE
10424 slot = htab_find_slot (is_debug_types
10425 ? dwp_file->loaded_tus
10426 : dwp_file->loaded_cus,
10427 &find_dwo_cu, INSERT);
80626a55
DE
10428
10429 if (*slot != NULL)
9a3c8263 10430 return (struct dwo_unit *) *slot;
80626a55
DE
10431
10432 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10433 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10434 {
10435 ULONGEST signature_in_table;
10436
10437 signature_in_table =
57d63ce2 10438 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10439 if (signature_in_table == signature)
10440 {
57d63ce2
DE
10441 uint32_t unit_index =
10442 read_4_bytes (dbfd,
10443 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10444
73869dc2
DE
10445 if (dwp_file->version == 1)
10446 {
10447 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10448 comp_dir, signature,
10449 is_debug_types);
10450 }
10451 else
10452 {
10453 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10454 comp_dir, signature,
10455 is_debug_types);
10456 }
9a3c8263 10457 return (struct dwo_unit *) *slot;
80626a55
DE
10458 }
10459 if (signature_in_table == 0)
10460 return NULL;
10461 hash = (hash + hash2) & mask;
10462 }
10463
10464 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10465 " [in module %s]"),
10466 dwp_file->name);
10467}
10468
ab5088bf 10469/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10470 Open the file specified by FILE_NAME and hand it off to BFD for
10471 preliminary analysis. Return a newly initialized bfd *, which
10472 includes a canonicalized copy of FILE_NAME.
80626a55 10473 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10474 SEARCH_CWD is true if the current directory is to be searched.
10475 It will be searched before debug-file-directory.
13aaf454
DE
10476 If successful, the file is added to the bfd include table of the
10477 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10478 If unable to find/open the file, return NULL.
3019eac3
DE
10479 NOTE: This function is derived from symfile_bfd_open. */
10480
10481static bfd *
6ac97d4c 10482try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10483{
10484 bfd *sym_bfd;
80626a55 10485 int desc, flags;
3019eac3 10486 char *absolute_name;
9c02c129
DE
10487 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10488 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10489 to debug_file_directory. */
10490 char *search_path;
10491 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10492
6ac97d4c
DE
10493 if (search_cwd)
10494 {
10495 if (*debug_file_directory != '\0')
10496 search_path = concat (".", dirname_separator_string,
b36cec19 10497 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10498 else
10499 search_path = xstrdup (".");
10500 }
9c02c129 10501 else
6ac97d4c 10502 search_path = xstrdup (debug_file_directory);
3019eac3 10503
492c0ab7 10504 flags = OPF_RETURN_REALPATH;
80626a55
DE
10505 if (is_dwp)
10506 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10507 desc = openp (search_path, flags, file_name,
3019eac3 10508 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10509 xfree (search_path);
3019eac3
DE
10510 if (desc < 0)
10511 return NULL;
10512
bb397797 10513 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10514 xfree (absolute_name);
9c02c129
DE
10515 if (sym_bfd == NULL)
10516 return NULL;
3019eac3
DE
10517 bfd_set_cacheable (sym_bfd, 1);
10518
10519 if (!bfd_check_format (sym_bfd, bfd_object))
10520 {
cbb099e8 10521 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10522 return NULL;
10523 }
10524
13aaf454
DE
10525 /* Success. Record the bfd as having been included by the objfile's bfd.
10526 This is important because things like demangled_names_hash lives in the
10527 objfile's per_bfd space and may have references to things like symbol
10528 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10530
3019eac3
DE
10531 return sym_bfd;
10532}
10533
ab5088bf 10534/* Try to open DWO file FILE_NAME.
3019eac3
DE
10535 COMP_DIR is the DW_AT_comp_dir attribute.
10536 The result is the bfd handle of the file.
10537 If there is a problem finding or opening the file, return NULL.
10538 Upon success, the canonicalized path of the file is stored in the bfd,
10539 same as symfile_bfd_open. */
10540
10541static bfd *
ab5088bf 10542open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10543{
10544 bfd *abfd;
3019eac3 10545
80626a55 10546 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10547 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10548
10549 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10550
10551 if (comp_dir != NULL)
10552 {
b36cec19
PA
10553 char *path_to_try = concat (comp_dir, SLASH_STRING,
10554 file_name, (char *) NULL);
3019eac3
DE
10555
10556 /* NOTE: If comp_dir is a relative path, this will also try the
10557 search path, which seems useful. */
6ac97d4c 10558 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10559 xfree (path_to_try);
10560 if (abfd != NULL)
10561 return abfd;
10562 }
10563
10564 /* That didn't work, try debug-file-directory, which, despite its name,
10565 is a list of paths. */
10566
10567 if (*debug_file_directory == '\0')
10568 return NULL;
10569
6ac97d4c 10570 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10571}
10572
80626a55
DE
10573/* This function is mapped across the sections and remembers the offset and
10574 size of each of the DWO debugging sections we are interested in. */
10575
10576static void
10577dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10578{
9a3c8263 10579 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10580 const struct dwop_section_names *names = &dwop_section_names;
10581
10582 if (section_is_p (sectp->name, &names->abbrev_dwo))
10583 {
049412e3 10584 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10585 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->info_dwo))
10588 {
049412e3 10589 dwo_sections->info.s.section = sectp;
80626a55
DE
10590 dwo_sections->info.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->line_dwo))
10593 {
049412e3 10594 dwo_sections->line.s.section = sectp;
80626a55
DE
10595 dwo_sections->line.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->loc_dwo))
10598 {
049412e3 10599 dwo_sections->loc.s.section = sectp;
80626a55
DE
10600 dwo_sections->loc.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10603 {
049412e3 10604 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10605 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10606 }
10607 else if (section_is_p (sectp->name, &names->macro_dwo))
10608 {
049412e3 10609 dwo_sections->macro.s.section = sectp;
80626a55
DE
10610 dwo_sections->macro.size = bfd_get_section_size (sectp);
10611 }
10612 else if (section_is_p (sectp->name, &names->str_dwo))
10613 {
049412e3 10614 dwo_sections->str.s.section = sectp;
80626a55
DE
10615 dwo_sections->str.size = bfd_get_section_size (sectp);
10616 }
10617 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10618 {
049412e3 10619 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10620 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10621 }
10622 else if (section_is_p (sectp->name, &names->types_dwo))
10623 {
10624 struct dwarf2_section_info type_section;
10625
10626 memset (&type_section, 0, sizeof (type_section));
049412e3 10627 type_section.s.section = sectp;
80626a55
DE
10628 type_section.size = bfd_get_section_size (sectp);
10629 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10630 &type_section);
10631 }
10632}
10633
ab5088bf 10634/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10635 by PER_CU. This is for the non-DWP case.
80626a55 10636 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10637
10638static struct dwo_file *
0ac5b59e
DE
10639open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10640 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10641{
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10643 struct dwo_file *dwo_file;
10644 bfd *dbfd;
3019eac3
DE
10645 struct cleanup *cleanups;
10646
ab5088bf 10647 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10648 if (dbfd == NULL)
10649 {
b4f54984 10650 if (dwarf_read_debug)
80626a55
DE
10651 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10652 return NULL;
10653 }
10654 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10655 dwo_file->dwo_name = dwo_name;
10656 dwo_file->comp_dir = comp_dir;
80626a55 10657 dwo_file->dbfd = dbfd;
3019eac3
DE
10658
10659 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10660
80626a55 10661 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10662
19c3d4c9 10663 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10664
10665 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10666 dwo_file->sections.types);
10667
10668 discard_cleanups (cleanups);
10669
b4f54984 10670 if (dwarf_read_debug)
80626a55
DE
10671 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10672
3019eac3
DE
10673 return dwo_file;
10674}
10675
80626a55 10676/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10677 size of each of the DWP debugging sections common to version 1 and 2 that
10678 we are interested in. */
3019eac3 10679
80626a55 10680static void
73869dc2
DE
10681dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10682 void *dwp_file_ptr)
3019eac3 10683{
9a3c8263 10684 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10685 const struct dwop_section_names *names = &dwop_section_names;
10686 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10687
80626a55 10688 /* Record the ELF section number for later lookup: this is what the
73869dc2 10689 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10690 gdb_assert (elf_section_nr < dwp_file->num_sections);
10691 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10692
80626a55
DE
10693 /* Look for specific sections that we need. */
10694 if (section_is_p (sectp->name, &names->str_dwo))
10695 {
049412e3 10696 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10697 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->cu_index))
10700 {
049412e3 10701 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10702 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->tu_index))
10705 {
049412e3 10706 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10707 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10708 }
10709}
3019eac3 10710
73869dc2
DE
10711/* This function is mapped across the sections and remembers the offset and
10712 size of each of the DWP version 2 debugging sections that we are interested
10713 in. This is split into a separate function because we don't know if we
10714 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10715
10716static void
10717dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10718{
9a3c8263 10719 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10720 const struct dwop_section_names *names = &dwop_section_names;
10721 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10722
10723 /* Record the ELF section number for later lookup: this is what the
10724 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10725 gdb_assert (elf_section_nr < dwp_file->num_sections);
10726 dwp_file->elf_sections[elf_section_nr] = sectp;
10727
10728 /* Look for specific sections that we need. */
10729 if (section_is_p (sectp->name, &names->abbrev_dwo))
10730 {
049412e3 10731 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10732 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->info_dwo))
10735 {
049412e3 10736 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10737 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->line_dwo))
10740 {
049412e3 10741 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10742 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->loc_dwo))
10745 {
049412e3 10746 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10747 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10748 }
10749 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10750 {
049412e3 10751 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10752 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10753 }
10754 else if (section_is_p (sectp->name, &names->macro_dwo))
10755 {
049412e3 10756 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10757 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10758 }
10759 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10760 {
049412e3 10761 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10762 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10763 }
10764 else if (section_is_p (sectp->name, &names->types_dwo))
10765 {
049412e3 10766 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10767 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10768 }
10769}
10770
80626a55 10771/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10772
80626a55
DE
10773static hashval_t
10774hash_dwp_loaded_cutus (const void *item)
10775{
9a3c8263 10776 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10777
80626a55
DE
10778 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10779 return dwo_unit->signature;
3019eac3
DE
10780}
10781
80626a55 10782/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10783
80626a55
DE
10784static int
10785eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10786{
9a3c8263
SM
10787 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10788 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10789
80626a55
DE
10790 return dua->signature == dub->signature;
10791}
3019eac3 10792
80626a55 10793/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10794
80626a55
DE
10795static htab_t
10796allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10797{
10798 return htab_create_alloc_ex (3,
10799 hash_dwp_loaded_cutus,
10800 eq_dwp_loaded_cutus,
10801 NULL,
10802 &objfile->objfile_obstack,
10803 hashtab_obstack_allocate,
10804 dummy_obstack_deallocate);
10805}
3019eac3 10806
ab5088bf
DE
10807/* Try to open DWP file FILE_NAME.
10808 The result is the bfd handle of the file.
10809 If there is a problem finding or opening the file, return NULL.
10810 Upon success, the canonicalized path of the file is stored in the bfd,
10811 same as symfile_bfd_open. */
10812
10813static bfd *
10814open_dwp_file (const char *file_name)
10815{
6ac97d4c
DE
10816 bfd *abfd;
10817
10818 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10819 if (abfd != NULL)
10820 return abfd;
10821
10822 /* Work around upstream bug 15652.
10823 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10824 [Whether that's a "bug" is debatable, but it is getting in our way.]
10825 We have no real idea where the dwp file is, because gdb's realpath-ing
10826 of the executable's path may have discarded the needed info.
10827 [IWBN if the dwp file name was recorded in the executable, akin to
10828 .gnu_debuglink, but that doesn't exist yet.]
10829 Strip the directory from FILE_NAME and search again. */
10830 if (*debug_file_directory != '\0')
10831 {
10832 /* Don't implicitly search the current directory here.
10833 If the user wants to search "." to handle this case,
10834 it must be added to debug-file-directory. */
10835 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10836 0 /*search_cwd*/);
10837 }
10838
10839 return NULL;
ab5088bf
DE
10840}
10841
80626a55
DE
10842/* Initialize the use of the DWP file for the current objfile.
10843 By convention the name of the DWP file is ${objfile}.dwp.
10844 The result is NULL if it can't be found. */
a766d390 10845
80626a55 10846static struct dwp_file *
ab5088bf 10847open_and_init_dwp_file (void)
80626a55
DE
10848{
10849 struct objfile *objfile = dwarf2_per_objfile->objfile;
10850 struct dwp_file *dwp_file;
10851 char *dwp_name;
10852 bfd *dbfd;
6c447423 10853 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10854
82bf32bc
JK
10855 /* Try to find first .dwp for the binary file before any symbolic links
10856 resolving. */
6c447423
DE
10857
10858 /* If the objfile is a debug file, find the name of the real binary
10859 file and get the name of dwp file from there. */
10860 if (objfile->separate_debug_objfile_backlink != NULL)
10861 {
10862 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10863 const char *backlink_basename = lbasename (backlink->original_name);
10864 char *debug_dirname = ldirname (objfile->original_name);
10865
10866 make_cleanup (xfree, debug_dirname);
10867 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10868 SLASH_STRING, backlink_basename);
10869 }
10870 else
10871 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10872 make_cleanup (xfree, dwp_name);
80626a55 10873
ab5088bf 10874 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10875 if (dbfd == NULL
10876 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10877 {
10878 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10879 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10880 make_cleanup (xfree, dwp_name);
10881 dbfd = open_dwp_file (dwp_name);
10882 }
10883
80626a55
DE
10884 if (dbfd == NULL)
10885 {
b4f54984 10886 if (dwarf_read_debug)
80626a55
DE
10887 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10888 do_cleanups (cleanups);
10889 return NULL;
3019eac3 10890 }
80626a55 10891 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10892 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10893 dwp_file->dbfd = dbfd;
10894 do_cleanups (cleanups);
c906108c 10895
80626a55
DE
10896 /* +1: section 0 is unused */
10897 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10898 dwp_file->elf_sections =
10899 OBSTACK_CALLOC (&objfile->objfile_obstack,
10900 dwp_file->num_sections, asection *);
10901
73869dc2 10902 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10903
10904 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10905
10906 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10907
73869dc2
DE
10908 /* The DWP file version is stored in the hash table. Oh well. */
10909 if (dwp_file->cus->version != dwp_file->tus->version)
10910 {
10911 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10912 pretty bizarre. We use pulongest here because that's the established
4d65956b 10913 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10914 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10915 " TU version %s [in DWP file %s]"),
10916 pulongest (dwp_file->cus->version),
10917 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10918 }
10919 dwp_file->version = dwp_file->cus->version;
10920
10921 if (dwp_file->version == 2)
10922 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10923
19ac8c2e
DE
10924 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10925 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10926
b4f54984 10927 if (dwarf_read_debug)
80626a55
DE
10928 {
10929 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10930 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10931 " %s CUs, %s TUs\n",
10932 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10933 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10934 }
10935
10936 return dwp_file;
3019eac3 10937}
c906108c 10938
ab5088bf
DE
10939/* Wrapper around open_and_init_dwp_file, only open it once. */
10940
10941static struct dwp_file *
10942get_dwp_file (void)
10943{
10944 if (! dwarf2_per_objfile->dwp_checked)
10945 {
10946 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10947 dwarf2_per_objfile->dwp_checked = 1;
10948 }
10949 return dwarf2_per_objfile->dwp_file;
10950}
10951
80626a55
DE
10952/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10953 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10954 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10955 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10956 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10957
10958 This is called, for example, when wanting to read a variable with a
10959 complex location. Therefore we don't want to do file i/o for every call.
10960 Therefore we don't want to look for a DWO file on every call.
10961 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10962 then we check if we've already seen DWO_NAME, and only THEN do we check
10963 for a DWO file.
10964
1c658ad5 10965 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10966 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10967
3019eac3 10968static struct dwo_unit *
80626a55
DE
10969lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10970 const char *dwo_name, const char *comp_dir,
10971 ULONGEST signature, int is_debug_types)
3019eac3
DE
10972{
10973 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10974 const char *kind = is_debug_types ? "TU" : "CU";
10975 void **dwo_file_slot;
3019eac3 10976 struct dwo_file *dwo_file;
80626a55 10977 struct dwp_file *dwp_file;
cb1df416 10978
6a506a2d
DE
10979 /* First see if there's a DWP file.
10980 If we have a DWP file but didn't find the DWO inside it, don't
10981 look for the original DWO file. It makes gdb behave differently
10982 depending on whether one is debugging in the build tree. */
cf2c3c16 10983
ab5088bf 10984 dwp_file = get_dwp_file ();
80626a55 10985 if (dwp_file != NULL)
cf2c3c16 10986 {
80626a55
DE
10987 const struct dwp_hash_table *dwp_htab =
10988 is_debug_types ? dwp_file->tus : dwp_file->cus;
10989
10990 if (dwp_htab != NULL)
10991 {
10992 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10993 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10994 signature, is_debug_types);
80626a55
DE
10995
10996 if (dwo_cutu != NULL)
10997 {
b4f54984 10998 if (dwarf_read_debug)
80626a55
DE
10999 {
11000 fprintf_unfiltered (gdb_stdlog,
11001 "Virtual DWO %s %s found: @%s\n",
11002 kind, hex_string (signature),
11003 host_address_to_string (dwo_cutu));
11004 }
11005 return dwo_cutu;
11006 }
11007 }
11008 }
6a506a2d 11009 else
80626a55 11010 {
6a506a2d 11011 /* No DWP file, look for the DWO file. */
80626a55 11012
6a506a2d
DE
11013 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11014 if (*dwo_file_slot == NULL)
80626a55 11015 {
6a506a2d
DE
11016 /* Read in the file and build a table of the CUs/TUs it contains. */
11017 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11018 }
6a506a2d 11019 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11020 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11021
6a506a2d 11022 if (dwo_file != NULL)
19c3d4c9 11023 {
6a506a2d
DE
11024 struct dwo_unit *dwo_cutu = NULL;
11025
11026 if (is_debug_types && dwo_file->tus)
11027 {
11028 struct dwo_unit find_dwo_cutu;
11029
11030 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11031 find_dwo_cutu.signature = signature;
9a3c8263
SM
11032 dwo_cutu
11033 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11034 }
11035 else if (!is_debug_types && dwo_file->cu)
80626a55 11036 {
6a506a2d
DE
11037 if (signature == dwo_file->cu->signature)
11038 dwo_cutu = dwo_file->cu;
11039 }
11040
11041 if (dwo_cutu != NULL)
11042 {
b4f54984 11043 if (dwarf_read_debug)
6a506a2d
DE
11044 {
11045 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11046 kind, dwo_name, hex_string (signature),
11047 host_address_to_string (dwo_cutu));
11048 }
11049 return dwo_cutu;
80626a55
DE
11050 }
11051 }
2e276125 11052 }
9cdd5dbd 11053
80626a55
DE
11054 /* We didn't find it. This could mean a dwo_id mismatch, or
11055 someone deleted the DWO/DWP file, or the search path isn't set up
11056 correctly to find the file. */
11057
b4f54984 11058 if (dwarf_read_debug)
80626a55
DE
11059 {
11060 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11061 kind, dwo_name, hex_string (signature));
11062 }
3019eac3 11063
6656a72d
DE
11064 /* This is a warning and not a complaint because it can be caused by
11065 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11066 {
11067 /* Print the name of the DWP file if we looked there, helps the user
11068 better diagnose the problem. */
11069 char *dwp_text = NULL;
11070 struct cleanup *cleanups;
11071
11072 if (dwp_file != NULL)
11073 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11074 cleanups = make_cleanup (xfree, dwp_text);
11075
11076 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11077 " [in module %s]"),
11078 kind, dwo_name, hex_string (signature),
11079 dwp_text != NULL ? dwp_text : "",
11080 this_unit->is_debug_types ? "TU" : "CU",
11081 this_unit->offset.sect_off, objfile_name (objfile));
11082
11083 do_cleanups (cleanups);
11084 }
3019eac3 11085 return NULL;
5fb290d7
DJ
11086}
11087
80626a55
DE
11088/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11089 See lookup_dwo_cutu_unit for details. */
11090
11091static struct dwo_unit *
11092lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11093 const char *dwo_name, const char *comp_dir,
11094 ULONGEST signature)
11095{
11096 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11097}
11098
11099/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11100 See lookup_dwo_cutu_unit for details. */
11101
11102static struct dwo_unit *
11103lookup_dwo_type_unit (struct signatured_type *this_tu,
11104 const char *dwo_name, const char *comp_dir)
11105{
11106 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11107}
11108
89e63ee4
DE
11109/* Traversal function for queue_and_load_all_dwo_tus. */
11110
11111static int
11112queue_and_load_dwo_tu (void **slot, void *info)
11113{
11114 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11115 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11116 ULONGEST signature = dwo_unit->signature;
11117 struct signatured_type *sig_type =
11118 lookup_dwo_signatured_type (per_cu->cu, signature);
11119
11120 if (sig_type != NULL)
11121 {
11122 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11123
11124 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11125 a real dependency of PER_CU on SIG_TYPE. That is detected later
11126 while processing PER_CU. */
11127 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11128 load_full_type_unit (sig_cu);
11129 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11130 }
11131
11132 return 1;
11133}
11134
11135/* Queue all TUs contained in the DWO of PER_CU to be read in.
11136 The DWO may have the only definition of the type, though it may not be
11137 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11138 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11139
11140static void
11141queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11142{
11143 struct dwo_unit *dwo_unit;
11144 struct dwo_file *dwo_file;
11145
11146 gdb_assert (!per_cu->is_debug_types);
11147 gdb_assert (get_dwp_file () == NULL);
11148 gdb_assert (per_cu->cu != NULL);
11149
11150 dwo_unit = per_cu->cu->dwo_unit;
11151 gdb_assert (dwo_unit != NULL);
11152
11153 dwo_file = dwo_unit->dwo_file;
11154 if (dwo_file->tus != NULL)
11155 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11156}
11157
3019eac3
DE
11158/* Free all resources associated with DWO_FILE.
11159 Close the DWO file and munmap the sections.
11160 All memory should be on the objfile obstack. */
348e048f
DE
11161
11162static void
3019eac3 11163free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11164{
348e048f 11165
5c6fa7ab 11166 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11167 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11168
3019eac3
DE
11169 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11170}
348e048f 11171
3019eac3 11172/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11173
3019eac3
DE
11174static void
11175free_dwo_file_cleanup (void *arg)
11176{
11177 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11178 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11179
3019eac3
DE
11180 free_dwo_file (dwo_file, objfile);
11181}
348e048f 11182
3019eac3 11183/* Traversal function for free_dwo_files. */
2ab95328 11184
3019eac3
DE
11185static int
11186free_dwo_file_from_slot (void **slot, void *info)
11187{
11188 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11189 struct objfile *objfile = (struct objfile *) info;
348e048f 11190
3019eac3 11191 free_dwo_file (dwo_file, objfile);
348e048f 11192
3019eac3
DE
11193 return 1;
11194}
348e048f 11195
3019eac3 11196/* Free all resources associated with DWO_FILES. */
348e048f 11197
3019eac3
DE
11198static void
11199free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11200{
11201 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11202}
3019eac3
DE
11203\f
11204/* Read in various DIEs. */
348e048f 11205
d389af10
JK
11206/* qsort helper for inherit_abstract_dies. */
11207
11208static int
11209unsigned_int_compar (const void *ap, const void *bp)
11210{
11211 unsigned int a = *(unsigned int *) ap;
11212 unsigned int b = *(unsigned int *) bp;
11213
11214 return (a > b) - (b > a);
11215}
11216
11217/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11218 Inherit only the children of the DW_AT_abstract_origin DIE not being
11219 already referenced by DW_AT_abstract_origin from the children of the
11220 current DIE. */
d389af10
JK
11221
11222static void
11223inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11224{
11225 struct die_info *child_die;
11226 unsigned die_children_count;
11227 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11228 sect_offset *offsets;
11229 sect_offset *offsets_end, *offsetp;
d389af10
JK
11230 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11231 struct die_info *origin_die;
11232 /* Iterator of the ORIGIN_DIE children. */
11233 struct die_info *origin_child_die;
11234 struct cleanup *cleanups;
11235 struct attribute *attr;
cd02d79d
PA
11236 struct dwarf2_cu *origin_cu;
11237 struct pending **origin_previous_list_in_scope;
d389af10
JK
11238
11239 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11240 if (!attr)
11241 return;
11242
cd02d79d
PA
11243 /* Note that following die references may follow to a die in a
11244 different cu. */
11245
11246 origin_cu = cu;
11247 origin_die = follow_die_ref (die, attr, &origin_cu);
11248
11249 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11250 symbols in. */
11251 origin_previous_list_in_scope = origin_cu->list_in_scope;
11252 origin_cu->list_in_scope = cu->list_in_scope;
11253
edb3359d
DJ
11254 if (die->tag != origin_die->tag
11255 && !(die->tag == DW_TAG_inlined_subroutine
11256 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11257 complaint (&symfile_complaints,
11258 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11259 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11260
11261 child_die = die->child;
11262 die_children_count = 0;
11263 while (child_die && child_die->tag)
11264 {
11265 child_die = sibling_die (child_die);
11266 die_children_count++;
11267 }
8d749320 11268 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11269 cleanups = make_cleanup (xfree, offsets);
11270
11271 offsets_end = offsets;
3ea89b92
PMR
11272 for (child_die = die->child;
11273 child_die && child_die->tag;
11274 child_die = sibling_die (child_die))
11275 {
11276 struct die_info *child_origin_die;
11277 struct dwarf2_cu *child_origin_cu;
11278
11279 /* We are trying to process concrete instance entries:
11280 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11281 it's not relevant to our analysis here. i.e. detecting DIEs that are
11282 present in the abstract instance but not referenced in the concrete
11283 one. */
11284 if (child_die->tag == DW_TAG_GNU_call_site)
11285 continue;
11286
c38f313d
DJ
11287 /* For each CHILD_DIE, find the corresponding child of
11288 ORIGIN_DIE. If there is more than one layer of
11289 DW_AT_abstract_origin, follow them all; there shouldn't be,
11290 but GCC versions at least through 4.4 generate this (GCC PR
11291 40573). */
3ea89b92
PMR
11292 child_origin_die = child_die;
11293 child_origin_cu = cu;
c38f313d
DJ
11294 while (1)
11295 {
cd02d79d
PA
11296 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11297 child_origin_cu);
c38f313d
DJ
11298 if (attr == NULL)
11299 break;
cd02d79d
PA
11300 child_origin_die = follow_die_ref (child_origin_die, attr,
11301 &child_origin_cu);
c38f313d
DJ
11302 }
11303
d389af10
JK
11304 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11305 counterpart may exist. */
c38f313d 11306 if (child_origin_die != child_die)
d389af10 11307 {
edb3359d
DJ
11308 if (child_die->tag != child_origin_die->tag
11309 && !(child_die->tag == DW_TAG_inlined_subroutine
11310 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11311 complaint (&symfile_complaints,
11312 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11313 "different tags"), child_die->offset.sect_off,
11314 child_origin_die->offset.sect_off);
c38f313d
DJ
11315 if (child_origin_die->parent != origin_die)
11316 complaint (&symfile_complaints,
11317 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11318 "different parents"), child_die->offset.sect_off,
11319 child_origin_die->offset.sect_off);
c38f313d
DJ
11320 else
11321 *offsets_end++ = child_origin_die->offset;
d389af10 11322 }
d389af10
JK
11323 }
11324 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11325 unsigned_int_compar);
11326 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11327 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11328 complaint (&symfile_complaints,
11329 _("Multiple children of DIE 0x%x refer "
11330 "to DIE 0x%x as their abstract origin"),
b64f50a1 11331 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11332
11333 offsetp = offsets;
11334 origin_child_die = origin_die->child;
11335 while (origin_child_die && origin_child_die->tag)
11336 {
11337 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11338 while (offsetp < offsets_end
11339 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11340 offsetp++;
b64f50a1
JK
11341 if (offsetp >= offsets_end
11342 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11343 {
adde2bff
DE
11344 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11345 Check whether we're already processing ORIGIN_CHILD_DIE.
11346 This can happen with mutually referenced abstract_origins.
11347 PR 16581. */
11348 if (!origin_child_die->in_process)
11349 process_die (origin_child_die, origin_cu);
d389af10
JK
11350 }
11351 origin_child_die = sibling_die (origin_child_die);
11352 }
cd02d79d 11353 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11354
11355 do_cleanups (cleanups);
11356}
11357
c906108c 11358static void
e7c27a73 11359read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11360{
e7c27a73 11361 struct objfile *objfile = cu->objfile;
3e29f34a 11362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11363 struct context_stack *newobj;
c906108c
SS
11364 CORE_ADDR lowpc;
11365 CORE_ADDR highpc;
11366 struct die_info *child_die;
edb3359d 11367 struct attribute *attr, *call_line, *call_file;
15d034d0 11368 const char *name;
e142c38c 11369 CORE_ADDR baseaddr;
801e3a5b 11370 struct block *block;
edb3359d 11371 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11372 VEC (symbolp) *template_args = NULL;
11373 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11374
11375 if (inlined_func)
11376 {
11377 /* If we do not have call site information, we can't show the
11378 caller of this inlined function. That's too confusing, so
11379 only use the scope for local variables. */
11380 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11381 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11382 if (call_line == NULL || call_file == NULL)
11383 {
11384 read_lexical_block_scope (die, cu);
11385 return;
11386 }
11387 }
c906108c 11388
e142c38c
DJ
11389 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11390
94af9270 11391 name = dwarf2_name (die, cu);
c906108c 11392
e8d05480
JB
11393 /* Ignore functions with missing or empty names. These are actually
11394 illegal according to the DWARF standard. */
11395 if (name == NULL)
11396 {
11397 complaint (&symfile_complaints,
b64f50a1
JK
11398 _("missing name for subprogram DIE at %d"),
11399 die->offset.sect_off);
e8d05480
JB
11400 return;
11401 }
11402
11403 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11404 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11405 <= PC_BOUNDS_INVALID)
e8d05480 11406 {
ae4d0c03
PM
11407 attr = dwarf2_attr (die, DW_AT_external, cu);
11408 if (!attr || !DW_UNSND (attr))
11409 complaint (&symfile_complaints,
3e43a32a
MS
11410 _("cannot get low and high bounds "
11411 "for subprogram DIE at %d"),
b64f50a1 11412 die->offset.sect_off);
e8d05480
JB
11413 return;
11414 }
c906108c 11415
3e29f34a
MR
11416 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11417 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11418
34eaf542
TT
11419 /* If we have any template arguments, then we must allocate a
11420 different sort of symbol. */
11421 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11422 {
11423 if (child_die->tag == DW_TAG_template_type_param
11424 || child_die->tag == DW_TAG_template_value_param)
11425 {
e623cf5d 11426 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11427 templ_func->base.is_cplus_template_function = 1;
11428 break;
11429 }
11430 }
11431
fe978cb0
PA
11432 newobj = push_context (0, lowpc);
11433 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11434 (struct symbol *) templ_func);
4c2df51b 11435
4cecd739
DJ
11436 /* If there is a location expression for DW_AT_frame_base, record
11437 it. */
e142c38c 11438 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11439 if (attr)
fe978cb0 11440 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11441
63e43d3a
PMR
11442 /* If there is a location for the static link, record it. */
11443 newobj->static_link = NULL;
11444 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11445 if (attr)
11446 {
224c3ddb
SM
11447 newobj->static_link
11448 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11449 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11450 }
11451
e142c38c 11452 cu->list_in_scope = &local_symbols;
c906108c 11453
639d11d3 11454 if (die->child != NULL)
c906108c 11455 {
639d11d3 11456 child_die = die->child;
c906108c
SS
11457 while (child_die && child_die->tag)
11458 {
34eaf542
TT
11459 if (child_die->tag == DW_TAG_template_type_param
11460 || child_die->tag == DW_TAG_template_value_param)
11461 {
11462 struct symbol *arg = new_symbol (child_die, NULL, cu);
11463
f1078f66
DJ
11464 if (arg != NULL)
11465 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11466 }
11467 else
11468 process_die (child_die, cu);
c906108c
SS
11469 child_die = sibling_die (child_die);
11470 }
11471 }
11472
d389af10
JK
11473 inherit_abstract_dies (die, cu);
11474
4a811a97
UW
11475 /* If we have a DW_AT_specification, we might need to import using
11476 directives from the context of the specification DIE. See the
11477 comment in determine_prefix. */
11478 if (cu->language == language_cplus
11479 && dwarf2_attr (die, DW_AT_specification, cu))
11480 {
11481 struct dwarf2_cu *spec_cu = cu;
11482 struct die_info *spec_die = die_specification (die, &spec_cu);
11483
11484 while (spec_die)
11485 {
11486 child_die = spec_die->child;
11487 while (child_die && child_die->tag)
11488 {
11489 if (child_die->tag == DW_TAG_imported_module)
11490 process_die (child_die, spec_cu);
11491 child_die = sibling_die (child_die);
11492 }
11493
11494 /* In some cases, GCC generates specification DIEs that
11495 themselves contain DW_AT_specification attributes. */
11496 spec_die = die_specification (spec_die, &spec_cu);
11497 }
11498 }
11499
fe978cb0 11500 newobj = pop_context ();
c906108c 11501 /* Make a block for the local symbols within. */
fe978cb0 11502 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11503 newobj->static_link, lowpc, highpc);
801e3a5b 11504
df8a16a1 11505 /* For C++, set the block's scope. */
45280282
IB
11506 if ((cu->language == language_cplus
11507 || cu->language == language_fortran
c44af4eb
TT
11508 || cu->language == language_d
11509 || cu->language == language_rust)
4d4ec4e5 11510 && cu->processing_has_namespace_info)
195a3f6c
TT
11511 block_set_scope (block, determine_prefix (die, cu),
11512 &objfile->objfile_obstack);
df8a16a1 11513
801e3a5b
JB
11514 /* If we have address ranges, record them. */
11515 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11516
fe978cb0 11517 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11518
34eaf542
TT
11519 /* Attach template arguments to function. */
11520 if (! VEC_empty (symbolp, template_args))
11521 {
11522 gdb_assert (templ_func != NULL);
11523
11524 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11525 templ_func->template_arguments
8d749320
SM
11526 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11527 templ_func->n_template_arguments);
34eaf542
TT
11528 memcpy (templ_func->template_arguments,
11529 VEC_address (symbolp, template_args),
11530 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11531 VEC_free (symbolp, template_args);
11532 }
11533
208d8187
JB
11534 /* In C++, we can have functions nested inside functions (e.g., when
11535 a function declares a class that has methods). This means that
11536 when we finish processing a function scope, we may need to go
11537 back to building a containing block's symbol lists. */
fe978cb0 11538 local_symbols = newobj->locals;
22cee43f 11539 local_using_directives = newobj->local_using_directives;
208d8187 11540
921e78cf
JB
11541 /* If we've finished processing a top-level function, subsequent
11542 symbols go in the file symbol list. */
11543 if (outermost_context_p ())
e142c38c 11544 cu->list_in_scope = &file_symbols;
c906108c
SS
11545}
11546
11547/* Process all the DIES contained within a lexical block scope. Start
11548 a new scope, process the dies, and then close the scope. */
11549
11550static void
e7c27a73 11551read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11552{
e7c27a73 11553 struct objfile *objfile = cu->objfile;
3e29f34a 11554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11555 struct context_stack *newobj;
c906108c
SS
11556 CORE_ADDR lowpc, highpc;
11557 struct die_info *child_die;
e142c38c
DJ
11558 CORE_ADDR baseaddr;
11559
11560 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11561
11562 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11563 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11564 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11565 be nasty. Might be easier to properly extend generic blocks to
af34e669 11566 describe ranges. */
e385593e
JK
11567 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11568 {
11569 case PC_BOUNDS_NOT_PRESENT:
11570 /* DW_TAG_lexical_block has no attributes, process its children as if
11571 there was no wrapping by that DW_TAG_lexical_block.
11572 GCC does no longer produces such DWARF since GCC r224161. */
11573 for (child_die = die->child;
11574 child_die != NULL && child_die->tag;
11575 child_die = sibling_die (child_die))
11576 process_die (child_die, cu);
11577 return;
11578 case PC_BOUNDS_INVALID:
11579 return;
11580 }
3e29f34a
MR
11581 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11582 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11583
11584 push_context (0, lowpc);
639d11d3 11585 if (die->child != NULL)
c906108c 11586 {
639d11d3 11587 child_die = die->child;
c906108c
SS
11588 while (child_die && child_die->tag)
11589 {
e7c27a73 11590 process_die (child_die, cu);
c906108c
SS
11591 child_die = sibling_die (child_die);
11592 }
11593 }
3ea89b92 11594 inherit_abstract_dies (die, cu);
fe978cb0 11595 newobj = pop_context ();
c906108c 11596
22cee43f 11597 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11598 {
801e3a5b 11599 struct block *block
63e43d3a 11600 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11601 newobj->start_addr, highpc);
801e3a5b
JB
11602
11603 /* Note that recording ranges after traversing children, as we
11604 do here, means that recording a parent's ranges entails
11605 walking across all its children's ranges as they appear in
11606 the address map, which is quadratic behavior.
11607
11608 It would be nicer to record the parent's ranges before
11609 traversing its children, simply overriding whatever you find
11610 there. But since we don't even decide whether to create a
11611 block until after we've traversed its children, that's hard
11612 to do. */
11613 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11614 }
fe978cb0 11615 local_symbols = newobj->locals;
22cee43f 11616 local_using_directives = newobj->local_using_directives;
c906108c
SS
11617}
11618
96408a79
SA
11619/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11620
11621static void
11622read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11623{
11624 struct objfile *objfile = cu->objfile;
11625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11626 CORE_ADDR pc, baseaddr;
11627 struct attribute *attr;
11628 struct call_site *call_site, call_site_local;
11629 void **slot;
11630 int nparams;
11631 struct die_info *child_die;
11632
11633 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11634
11635 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11636 if (!attr)
11637 {
11638 complaint (&symfile_complaints,
11639 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11640 "DIE 0x%x [in module %s]"),
4262abfb 11641 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11642 return;
11643 }
31aa7e4e 11644 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11645 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11646
11647 if (cu->call_site_htab == NULL)
11648 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11649 NULL, &objfile->objfile_obstack,
11650 hashtab_obstack_allocate, NULL);
11651 call_site_local.pc = pc;
11652 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11653 if (*slot != NULL)
11654 {
11655 complaint (&symfile_complaints,
11656 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11657 "DIE 0x%x [in module %s]"),
4262abfb
JK
11658 paddress (gdbarch, pc), die->offset.sect_off,
11659 objfile_name (objfile));
96408a79
SA
11660 return;
11661 }
11662
11663 /* Count parameters at the caller. */
11664
11665 nparams = 0;
11666 for (child_die = die->child; child_die && child_die->tag;
11667 child_die = sibling_die (child_die))
11668 {
11669 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11670 {
11671 complaint (&symfile_complaints,
11672 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11673 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11674 child_die->tag, child_die->offset.sect_off,
11675 objfile_name (objfile));
96408a79
SA
11676 continue;
11677 }
11678
11679 nparams++;
11680 }
11681
224c3ddb
SM
11682 call_site
11683 = ((struct call_site *)
11684 obstack_alloc (&objfile->objfile_obstack,
11685 sizeof (*call_site)
11686 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11687 *slot = call_site;
11688 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11689 call_site->pc = pc;
11690
11691 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11692 {
11693 struct die_info *func_die;
11694
11695 /* Skip also over DW_TAG_inlined_subroutine. */
11696 for (func_die = die->parent;
11697 func_die && func_die->tag != DW_TAG_subprogram
11698 && func_die->tag != DW_TAG_subroutine_type;
11699 func_die = func_die->parent);
11700
11701 /* DW_AT_GNU_all_call_sites is a superset
11702 of DW_AT_GNU_all_tail_call_sites. */
11703 if (func_die
11704 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11705 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11706 {
11707 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11708 not complete. But keep CALL_SITE for look ups via call_site_htab,
11709 both the initial caller containing the real return address PC and
11710 the final callee containing the current PC of a chain of tail
11711 calls do not need to have the tail call list complete. But any
11712 function candidate for a virtual tail call frame searched via
11713 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11714 determined unambiguously. */
11715 }
11716 else
11717 {
11718 struct type *func_type = NULL;
11719
11720 if (func_die)
11721 func_type = get_die_type (func_die, cu);
11722 if (func_type != NULL)
11723 {
11724 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11725
11726 /* Enlist this call site to the function. */
11727 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11728 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11729 }
11730 else
11731 complaint (&symfile_complaints,
11732 _("Cannot find function owning DW_TAG_GNU_call_site "
11733 "DIE 0x%x [in module %s]"),
4262abfb 11734 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11735 }
11736 }
11737
11738 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11739 if (attr == NULL)
11740 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11741 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11742 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11743 /* Keep NULL DWARF_BLOCK. */;
11744 else if (attr_form_is_block (attr))
11745 {
11746 struct dwarf2_locexpr_baton *dlbaton;
11747
8d749320 11748 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11749 dlbaton->data = DW_BLOCK (attr)->data;
11750 dlbaton->size = DW_BLOCK (attr)->size;
11751 dlbaton->per_cu = cu->per_cu;
11752
11753 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11754 }
7771576e 11755 else if (attr_form_is_ref (attr))
96408a79 11756 {
96408a79
SA
11757 struct dwarf2_cu *target_cu = cu;
11758 struct die_info *target_die;
11759
ac9ec31b 11760 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11761 gdb_assert (target_cu->objfile == objfile);
11762 if (die_is_declaration (target_die, target_cu))
11763 {
7d45c7c3 11764 const char *target_physname;
9112db09
JK
11765
11766 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11767 target_physname = dwarf2_string_attr (target_die,
11768 DW_AT_linkage_name,
11769 target_cu);
11770 if (target_physname == NULL)
11771 target_physname = dwarf2_string_attr (target_die,
11772 DW_AT_MIPS_linkage_name,
11773 target_cu);
11774 if (target_physname == NULL)
9112db09 11775 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11776 if (target_physname == NULL)
11777 complaint (&symfile_complaints,
11778 _("DW_AT_GNU_call_site_target target DIE has invalid "
11779 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11780 die->offset.sect_off, objfile_name (objfile));
96408a79 11781 else
7d455152 11782 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11783 }
11784 else
11785 {
11786 CORE_ADDR lowpc;
11787
11788 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11789 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11790 <= PC_BOUNDS_INVALID)
96408a79
SA
11791 complaint (&symfile_complaints,
11792 _("DW_AT_GNU_call_site_target target DIE has invalid "
11793 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11794 die->offset.sect_off, objfile_name (objfile));
96408a79 11795 else
3e29f34a
MR
11796 {
11797 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11798 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11799 }
96408a79
SA
11800 }
11801 }
11802 else
11803 complaint (&symfile_complaints,
11804 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11805 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11806 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11807
11808 call_site->per_cu = cu->per_cu;
11809
11810 for (child_die = die->child;
11811 child_die && child_die->tag;
11812 child_die = sibling_die (child_die))
11813 {
96408a79 11814 struct call_site_parameter *parameter;
1788b2d3 11815 struct attribute *loc, *origin;
96408a79
SA
11816
11817 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11818 {
11819 /* Already printed the complaint above. */
11820 continue;
11821 }
11822
11823 gdb_assert (call_site->parameter_count < nparams);
11824 parameter = &call_site->parameter[call_site->parameter_count];
11825
1788b2d3
JK
11826 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11827 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11828 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11829
24c5c679 11830 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11831 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11832 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11833 {
11834 sect_offset offset;
11835
11836 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11837 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11838 if (!offset_in_cu_p (&cu->header, offset))
11839 {
11840 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11841 binding can be done only inside one CU. Such referenced DIE
11842 therefore cannot be even moved to DW_TAG_partial_unit. */
11843 complaint (&symfile_complaints,
11844 _("DW_AT_abstract_origin offset is not in CU for "
11845 "DW_TAG_GNU_call_site child DIE 0x%x "
11846 "[in module %s]"),
4262abfb 11847 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11848 continue;
11849 }
1788b2d3
JK
11850 parameter->u.param_offset.cu_off = (offset.sect_off
11851 - cu->header.offset.sect_off);
11852 }
11853 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11854 {
11855 complaint (&symfile_complaints,
11856 _("No DW_FORM_block* DW_AT_location for "
11857 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11858 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11859 continue;
11860 }
24c5c679 11861 else
96408a79 11862 {
24c5c679
JK
11863 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11864 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11865 if (parameter->u.dwarf_reg != -1)
11866 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11867 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11868 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11869 &parameter->u.fb_offset))
11870 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11871 else
11872 {
11873 complaint (&symfile_complaints,
11874 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11875 "for DW_FORM_block* DW_AT_location is supported for "
11876 "DW_TAG_GNU_call_site child DIE 0x%x "
11877 "[in module %s]"),
4262abfb 11878 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11879 continue;
11880 }
96408a79
SA
11881 }
11882
11883 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11884 if (!attr_form_is_block (attr))
11885 {
11886 complaint (&symfile_complaints,
11887 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11888 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11889 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11890 continue;
11891 }
11892 parameter->value = DW_BLOCK (attr)->data;
11893 parameter->value_size = DW_BLOCK (attr)->size;
11894
11895 /* Parameters are not pre-cleared by memset above. */
11896 parameter->data_value = NULL;
11897 parameter->data_value_size = 0;
11898 call_site->parameter_count++;
11899
11900 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11901 if (attr)
11902 {
11903 if (!attr_form_is_block (attr))
11904 complaint (&symfile_complaints,
11905 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11906 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11907 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11908 else
11909 {
11910 parameter->data_value = DW_BLOCK (attr)->data;
11911 parameter->data_value_size = DW_BLOCK (attr)->size;
11912 }
11913 }
11914 }
11915}
11916
43039443 11917/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11918 Return 1 if the attributes are present and valid, otherwise, return 0.
11919 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11920
11921static int
11922dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11923 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11924 struct partial_symtab *ranges_pst)
43039443
JK
11925{
11926 struct objfile *objfile = cu->objfile;
3e29f34a 11927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11928 struct comp_unit_head *cu_header = &cu->header;
11929 bfd *obfd = objfile->obfd;
11930 unsigned int addr_size = cu_header->addr_size;
11931 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11932 /* Base address selection entry. */
11933 CORE_ADDR base;
11934 int found_base;
11935 unsigned int dummy;
d521ce57 11936 const gdb_byte *buffer;
43039443
JK
11937 int low_set;
11938 CORE_ADDR low = 0;
11939 CORE_ADDR high = 0;
ff013f42 11940 CORE_ADDR baseaddr;
43039443 11941
d00adf39
DE
11942 found_base = cu->base_known;
11943 base = cu->base_address;
43039443 11944
be391dca 11945 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11946 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11947 {
11948 complaint (&symfile_complaints,
11949 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11950 offset);
11951 return 0;
11952 }
dce234bc 11953 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11954
43039443
JK
11955 low_set = 0;
11956
e7030f15 11957 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11958
43039443
JK
11959 while (1)
11960 {
11961 CORE_ADDR range_beginning, range_end;
11962
11963 range_beginning = read_address (obfd, buffer, cu, &dummy);
11964 buffer += addr_size;
11965 range_end = read_address (obfd, buffer, cu, &dummy);
11966 buffer += addr_size;
11967 offset += 2 * addr_size;
11968
11969 /* An end of list marker is a pair of zero addresses. */
11970 if (range_beginning == 0 && range_end == 0)
11971 /* Found the end of list entry. */
11972 break;
11973
11974 /* Each base address selection entry is a pair of 2 values.
11975 The first is the largest possible address, the second is
11976 the base address. Check for a base address here. */
11977 if ((range_beginning & mask) == mask)
11978 {
28d2bfb9
AB
11979 /* If we found the largest possible address, then we already
11980 have the base address in range_end. */
11981 base = range_end;
43039443
JK
11982 found_base = 1;
11983 continue;
11984 }
11985
11986 if (!found_base)
11987 {
11988 /* We have no valid base address for the ranges
11989 data. */
11990 complaint (&symfile_complaints,
11991 _("Invalid .debug_ranges data (no base address)"));
11992 return 0;
11993 }
11994
9277c30c
UW
11995 if (range_beginning > range_end)
11996 {
11997 /* Inverted range entries are invalid. */
11998 complaint (&symfile_complaints,
11999 _("Invalid .debug_ranges data (inverted range)"));
12000 return 0;
12001 }
12002
12003 /* Empty range entries have no effect. */
12004 if (range_beginning == range_end)
12005 continue;
12006
43039443
JK
12007 range_beginning += base;
12008 range_end += base;
12009
01093045
DE
12010 /* A not-uncommon case of bad debug info.
12011 Don't pollute the addrmap with bad data. */
12012 if (range_beginning + baseaddr == 0
12013 && !dwarf2_per_objfile->has_section_at_zero)
12014 {
12015 complaint (&symfile_complaints,
12016 _(".debug_ranges entry has start address of zero"
4262abfb 12017 " [in module %s]"), objfile_name (objfile));
01093045
DE
12018 continue;
12019 }
12020
9277c30c 12021 if (ranges_pst != NULL)
3e29f34a
MR
12022 {
12023 CORE_ADDR lowpc;
12024 CORE_ADDR highpc;
12025
12026 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12027 range_beginning + baseaddr);
12028 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12029 range_end + baseaddr);
12030 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12031 ranges_pst);
12032 }
ff013f42 12033
43039443
JK
12034 /* FIXME: This is recording everything as a low-high
12035 segment of consecutive addresses. We should have a
12036 data structure for discontiguous block ranges
12037 instead. */
12038 if (! low_set)
12039 {
12040 low = range_beginning;
12041 high = range_end;
12042 low_set = 1;
12043 }
12044 else
12045 {
12046 if (range_beginning < low)
12047 low = range_beginning;
12048 if (range_end > high)
12049 high = range_end;
12050 }
12051 }
12052
12053 if (! low_set)
12054 /* If the first entry is an end-of-list marker, the range
12055 describes an empty scope, i.e. no instructions. */
12056 return 0;
12057
12058 if (low_return)
12059 *low_return = low;
12060 if (high_return)
12061 *high_return = high;
12062 return 1;
12063}
12064
3a2b436a
JK
12065/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12066 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12067 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12068
3a2b436a 12069static enum pc_bounds_kind
af34e669 12070dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12071 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12072 struct partial_symtab *pst)
c906108c
SS
12073{
12074 struct attribute *attr;
91da1414 12075 struct attribute *attr_high;
af34e669
DJ
12076 CORE_ADDR low = 0;
12077 CORE_ADDR high = 0;
e385593e 12078 enum pc_bounds_kind ret;
c906108c 12079
91da1414
MW
12080 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12081 if (attr_high)
af34e669 12082 {
e142c38c 12083 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12084 if (attr)
91da1414 12085 {
31aa7e4e
JB
12086 low = attr_value_as_address (attr);
12087 high = attr_value_as_address (attr_high);
12088 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12089 high += low;
91da1414 12090 }
af34e669
DJ
12091 else
12092 /* Found high w/o low attribute. */
e385593e 12093 return PC_BOUNDS_INVALID;
af34e669
DJ
12094
12095 /* Found consecutive range of addresses. */
3a2b436a 12096 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12097 }
c906108c 12098 else
af34e669 12099 {
e142c38c 12100 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12101 if (attr != NULL)
12102 {
ab435259
DE
12103 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12104 We take advantage of the fact that DW_AT_ranges does not appear
12105 in DW_TAG_compile_unit of DWO files. */
12106 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12107 unsigned int ranges_offset = (DW_UNSND (attr)
12108 + (need_ranges_base
12109 ? cu->ranges_base
12110 : 0));
2e3cf129 12111
af34e669 12112 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12113 .debug_ranges section. */
2e3cf129 12114 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12115 return PC_BOUNDS_INVALID;
43039443 12116 /* Found discontinuous range of addresses. */
3a2b436a 12117 ret = PC_BOUNDS_RANGES;
af34e669 12118 }
e385593e
JK
12119 else
12120 return PC_BOUNDS_NOT_PRESENT;
af34e669 12121 }
c906108c 12122
9373cf26
JK
12123 /* read_partial_die has also the strict LOW < HIGH requirement. */
12124 if (high <= low)
e385593e 12125 return PC_BOUNDS_INVALID;
c906108c
SS
12126
12127 /* When using the GNU linker, .gnu.linkonce. sections are used to
12128 eliminate duplicate copies of functions and vtables and such.
12129 The linker will arbitrarily choose one and discard the others.
12130 The AT_*_pc values for such functions refer to local labels in
12131 these sections. If the section from that file was discarded, the
12132 labels are not in the output, so the relocs get a value of 0.
12133 If this is a discarded function, mark the pc bounds as invalid,
12134 so that GDB will ignore it. */
72dca2f5 12135 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12136 return PC_BOUNDS_INVALID;
c906108c
SS
12137
12138 *lowpc = low;
96408a79
SA
12139 if (highpc)
12140 *highpc = high;
af34e669 12141 return ret;
c906108c
SS
12142}
12143
b084d499
JB
12144/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12145 its low and high PC addresses. Do nothing if these addresses could not
12146 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12147 and HIGHPC to the high address if greater than HIGHPC. */
12148
12149static void
12150dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12152 struct dwarf2_cu *cu)
12153{
12154 CORE_ADDR low, high;
12155 struct die_info *child = die->child;
12156
e385593e 12157 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499
JB
12158 {
12159 *lowpc = min (*lowpc, low);
12160 *highpc = max (*highpc, high);
12161 }
12162
12163 /* If the language does not allow nested subprograms (either inside
12164 subprograms or lexical blocks), we're done. */
12165 if (cu->language != language_ada)
12166 return;
6e70227d 12167
b084d499
JB
12168 /* Check all the children of the given DIE. If it contains nested
12169 subprograms, then check their pc bounds. Likewise, we need to
12170 check lexical blocks as well, as they may also contain subprogram
12171 definitions. */
12172 while (child && child->tag)
12173 {
12174 if (child->tag == DW_TAG_subprogram
12175 || child->tag == DW_TAG_lexical_block)
12176 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12177 child = sibling_die (child);
12178 }
12179}
12180
fae299cd
DC
12181/* Get the low and high pc's represented by the scope DIE, and store
12182 them in *LOWPC and *HIGHPC. If the correct values can't be
12183 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12184
12185static void
12186get_scope_pc_bounds (struct die_info *die,
12187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12188 struct dwarf2_cu *cu)
12189{
12190 CORE_ADDR best_low = (CORE_ADDR) -1;
12191 CORE_ADDR best_high = (CORE_ADDR) 0;
12192 CORE_ADDR current_low, current_high;
12193
3a2b436a 12194 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12195 >= PC_BOUNDS_RANGES)
fae299cd
DC
12196 {
12197 best_low = current_low;
12198 best_high = current_high;
12199 }
12200 else
12201 {
12202 struct die_info *child = die->child;
12203
12204 while (child && child->tag)
12205 {
12206 switch (child->tag) {
12207 case DW_TAG_subprogram:
b084d499 12208 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12209 break;
12210 case DW_TAG_namespace:
f55ee35c 12211 case DW_TAG_module:
fae299cd
DC
12212 /* FIXME: carlton/2004-01-16: Should we do this for
12213 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12214 that current GCC's always emit the DIEs corresponding
12215 to definitions of methods of classes as children of a
12216 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12217 the DIEs giving the declarations, which could be
12218 anywhere). But I don't see any reason why the
12219 standards says that they have to be there. */
12220 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12221
12222 if (current_low != ((CORE_ADDR) -1))
12223 {
12224 best_low = min (best_low, current_low);
12225 best_high = max (best_high, current_high);
12226 }
12227 break;
12228 default:
0963b4bd 12229 /* Ignore. */
fae299cd
DC
12230 break;
12231 }
12232
12233 child = sibling_die (child);
12234 }
12235 }
12236
12237 *lowpc = best_low;
12238 *highpc = best_high;
12239}
12240
801e3a5b
JB
12241/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12242 in DIE. */
380bca97 12243
801e3a5b
JB
12244static void
12245dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12246 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12247{
bb5ed363 12248 struct objfile *objfile = cu->objfile;
3e29f34a 12249 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12250 struct attribute *attr;
91da1414 12251 struct attribute *attr_high;
801e3a5b 12252
91da1414
MW
12253 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12254 if (attr_high)
801e3a5b 12255 {
801e3a5b
JB
12256 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12257 if (attr)
12258 {
31aa7e4e
JB
12259 CORE_ADDR low = attr_value_as_address (attr);
12260 CORE_ADDR high = attr_value_as_address (attr_high);
12261
12262 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12263 high += low;
9a619af0 12264
3e29f34a
MR
12265 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12266 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12267 record_block_range (block, low, high - 1);
801e3a5b
JB
12268 }
12269 }
12270
12271 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12272 if (attr)
12273 {
bb5ed363 12274 bfd *obfd = objfile->obfd;
ab435259
DE
12275 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12276 We take advantage of the fact that DW_AT_ranges does not appear
12277 in DW_TAG_compile_unit of DWO files. */
12278 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12279
12280 /* The value of the DW_AT_ranges attribute is the offset of the
12281 address range list in the .debug_ranges section. */
ab435259
DE
12282 unsigned long offset = (DW_UNSND (attr)
12283 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12284 const gdb_byte *buffer;
801e3a5b
JB
12285
12286 /* For some target architectures, but not others, the
12287 read_address function sign-extends the addresses it returns.
12288 To recognize base address selection entries, we need a
12289 mask. */
12290 unsigned int addr_size = cu->header.addr_size;
12291 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12292
12293 /* The base address, to which the next pair is relative. Note
12294 that this 'base' is a DWARF concept: most entries in a range
12295 list are relative, to reduce the number of relocs against the
12296 debugging information. This is separate from this function's
12297 'baseaddr' argument, which GDB uses to relocate debugging
12298 information from a shared library based on the address at
12299 which the library was loaded. */
d00adf39
DE
12300 CORE_ADDR base = cu->base_address;
12301 int base_known = cu->base_known;
801e3a5b 12302
d62bfeaf 12303 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12304 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12305 {
12306 complaint (&symfile_complaints,
12307 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12308 offset);
12309 return;
12310 }
d62bfeaf 12311 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12312
12313 for (;;)
12314 {
12315 unsigned int bytes_read;
12316 CORE_ADDR start, end;
12317
12318 start = read_address (obfd, buffer, cu, &bytes_read);
12319 buffer += bytes_read;
12320 end = read_address (obfd, buffer, cu, &bytes_read);
12321 buffer += bytes_read;
12322
12323 /* Did we find the end of the range list? */
12324 if (start == 0 && end == 0)
12325 break;
12326
12327 /* Did we find a base address selection entry? */
12328 else if ((start & base_select_mask) == base_select_mask)
12329 {
12330 base = end;
12331 base_known = 1;
12332 }
12333
12334 /* We found an ordinary address range. */
12335 else
12336 {
12337 if (!base_known)
12338 {
12339 complaint (&symfile_complaints,
3e43a32a
MS
12340 _("Invalid .debug_ranges data "
12341 "(no base address)"));
801e3a5b
JB
12342 return;
12343 }
12344
9277c30c
UW
12345 if (start > end)
12346 {
12347 /* Inverted range entries are invalid. */
12348 complaint (&symfile_complaints,
12349 _("Invalid .debug_ranges data "
12350 "(inverted range)"));
12351 return;
12352 }
12353
12354 /* Empty range entries have no effect. */
12355 if (start == end)
12356 continue;
12357
01093045
DE
12358 start += base + baseaddr;
12359 end += base + baseaddr;
12360
12361 /* A not-uncommon case of bad debug info.
12362 Don't pollute the addrmap with bad data. */
12363 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12364 {
12365 complaint (&symfile_complaints,
12366 _(".debug_ranges entry has start address of zero"
4262abfb 12367 " [in module %s]"), objfile_name (objfile));
01093045
DE
12368 continue;
12369 }
12370
3e29f34a
MR
12371 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12372 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12373 record_block_range (block, start, end - 1);
801e3a5b
JB
12374 }
12375 }
12376 }
12377}
12378
685b1105
JK
12379/* Check whether the producer field indicates either of GCC < 4.6, or the
12380 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12381
685b1105
JK
12382static void
12383check_producer (struct dwarf2_cu *cu)
60d5a603 12384{
38360086 12385 int major, minor;
60d5a603
JK
12386
12387 if (cu->producer == NULL)
12388 {
12389 /* For unknown compilers expect their behavior is DWARF version
12390 compliant.
12391
12392 GCC started to support .debug_types sections by -gdwarf-4 since
12393 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12394 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12395 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12396 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12397 }
b1ffba5a 12398 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12399 {
38360086
MW
12400 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12401 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12402 }
61012eef 12403 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12404 cu->producer_is_icc = 1;
12405 else
12406 {
12407 /* For other non-GCC compilers, expect their behavior is DWARF version
12408 compliant. */
60d5a603
JK
12409 }
12410
ba919b58 12411 cu->checked_producer = 1;
685b1105 12412}
ba919b58 12413
685b1105
JK
12414/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12415 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12416 during 4.6.0 experimental. */
12417
12418static int
12419producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12420{
12421 if (!cu->checked_producer)
12422 check_producer (cu);
12423
12424 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12425}
12426
12427/* Return the default accessibility type if it is not overriden by
12428 DW_AT_accessibility. */
12429
12430static enum dwarf_access_attribute
12431dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12432{
12433 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12434 {
12435 /* The default DWARF 2 accessibility for members is public, the default
12436 accessibility for inheritance is private. */
12437
12438 if (die->tag != DW_TAG_inheritance)
12439 return DW_ACCESS_public;
12440 else
12441 return DW_ACCESS_private;
12442 }
12443 else
12444 {
12445 /* DWARF 3+ defines the default accessibility a different way. The same
12446 rules apply now for DW_TAG_inheritance as for the members and it only
12447 depends on the container kind. */
12448
12449 if (die->parent->tag == DW_TAG_class_type)
12450 return DW_ACCESS_private;
12451 else
12452 return DW_ACCESS_public;
12453 }
12454}
12455
74ac6d43
TT
12456/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12457 offset. If the attribute was not found return 0, otherwise return
12458 1. If it was found but could not properly be handled, set *OFFSET
12459 to 0. */
12460
12461static int
12462handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12463 LONGEST *offset)
12464{
12465 struct attribute *attr;
12466
12467 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12468 if (attr != NULL)
12469 {
12470 *offset = 0;
12471
12472 /* Note that we do not check for a section offset first here.
12473 This is because DW_AT_data_member_location is new in DWARF 4,
12474 so if we see it, we can assume that a constant form is really
12475 a constant and not a section offset. */
12476 if (attr_form_is_constant (attr))
12477 *offset = dwarf2_get_attr_constant_value (attr, 0);
12478 else if (attr_form_is_section_offset (attr))
12479 dwarf2_complex_location_expr_complaint ();
12480 else if (attr_form_is_block (attr))
12481 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12482 else
12483 dwarf2_complex_location_expr_complaint ();
12484
12485 return 1;
12486 }
12487
12488 return 0;
12489}
12490
c906108c
SS
12491/* Add an aggregate field to the field list. */
12492
12493static void
107d2387 12494dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12495 struct dwarf2_cu *cu)
6e70227d 12496{
e7c27a73 12497 struct objfile *objfile = cu->objfile;
5e2b427d 12498 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12499 struct nextfield *new_field;
12500 struct attribute *attr;
12501 struct field *fp;
15d034d0 12502 const char *fieldname = "";
c906108c
SS
12503
12504 /* Allocate a new field list entry and link it in. */
8d749320 12505 new_field = XNEW (struct nextfield);
b8c9b27d 12506 make_cleanup (xfree, new_field);
c906108c 12507 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12508
12509 if (die->tag == DW_TAG_inheritance)
12510 {
12511 new_field->next = fip->baseclasses;
12512 fip->baseclasses = new_field;
12513 }
12514 else
12515 {
12516 new_field->next = fip->fields;
12517 fip->fields = new_field;
12518 }
c906108c
SS
12519 fip->nfields++;
12520
e142c38c 12521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12522 if (attr)
12523 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12524 else
12525 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12526 if (new_field->accessibility != DW_ACCESS_public)
12527 fip->non_public_fields = 1;
60d5a603 12528
e142c38c 12529 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12530 if (attr)
12531 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12532 else
12533 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12534
12535 fp = &new_field->field;
a9a9bd0f 12536
e142c38c 12537 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12538 {
74ac6d43
TT
12539 LONGEST offset;
12540
a9a9bd0f 12541 /* Data member other than a C++ static data member. */
6e70227d 12542
c906108c 12543 /* Get type of field. */
e7c27a73 12544 fp->type = die_type (die, cu);
c906108c 12545
d6a843b5 12546 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12547
c906108c 12548 /* Get bit size of field (zero if none). */
e142c38c 12549 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12550 if (attr)
12551 {
12552 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12553 }
12554 else
12555 {
12556 FIELD_BITSIZE (*fp) = 0;
12557 }
12558
12559 /* Get bit offset of field. */
74ac6d43
TT
12560 if (handle_data_member_location (die, cu, &offset))
12561 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12562 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12563 if (attr)
12564 {
5e2b427d 12565 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12566 {
12567 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12568 additional bit offset from the MSB of the containing
12569 anonymous object to the MSB of the field. We don't
12570 have to do anything special since we don't need to
12571 know the size of the anonymous object. */
f41f5e61 12572 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12573 }
12574 else
12575 {
12576 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12577 MSB of the anonymous object, subtract off the number of
12578 bits from the MSB of the field to the MSB of the
12579 object, and then subtract off the number of bits of
12580 the field itself. The result is the bit offset of
12581 the LSB of the field. */
c906108c
SS
12582 int anonymous_size;
12583 int bit_offset = DW_UNSND (attr);
12584
e142c38c 12585 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12586 if (attr)
12587 {
12588 /* The size of the anonymous object containing
12589 the bit field is explicit, so use the
12590 indicated size (in bytes). */
12591 anonymous_size = DW_UNSND (attr);
12592 }
12593 else
12594 {
12595 /* The size of the anonymous object containing
12596 the bit field must be inferred from the type
12597 attribute of the data member containing the
12598 bit field. */
12599 anonymous_size = TYPE_LENGTH (fp->type);
12600 }
f41f5e61
PA
12601 SET_FIELD_BITPOS (*fp,
12602 (FIELD_BITPOS (*fp)
12603 + anonymous_size * bits_per_byte
12604 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12605 }
12606 }
12607
12608 /* Get name of field. */
39cbfefa
DJ
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 fieldname = "";
d8151005
DJ
12612
12613 /* The name is already allocated along with this objfile, so we don't
12614 need to duplicate it for the type. */
12615 fp->name = fieldname;
c906108c
SS
12616
12617 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12618 pointer or virtual base class pointer) to private. */
e142c38c 12619 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12620 {
d48cc9dd 12621 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12622 new_field->accessibility = DW_ACCESS_private;
12623 fip->non_public_fields = 1;
12624 }
12625 }
a9a9bd0f 12626 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12627 {
a9a9bd0f
DC
12628 /* C++ static member. */
12629
12630 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12631 is a declaration, but all versions of G++ as of this writing
12632 (so through at least 3.2.1) incorrectly generate
12633 DW_TAG_variable tags. */
6e70227d 12634
ff355380 12635 const char *physname;
c906108c 12636
a9a9bd0f 12637 /* Get name of field. */
39cbfefa
DJ
12638 fieldname = dwarf2_name (die, cu);
12639 if (fieldname == NULL)
c906108c
SS
12640 return;
12641
254e6b9e 12642 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12643 if (attr
12644 /* Only create a symbol if this is an external value.
12645 new_symbol checks this and puts the value in the global symbol
12646 table, which we want. If it is not external, new_symbol
12647 will try to put the value in cu->list_in_scope which is wrong. */
12648 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12649 {
12650 /* A static const member, not much different than an enum as far as
12651 we're concerned, except that we can support more types. */
12652 new_symbol (die, NULL, cu);
12653 }
12654
2df3850c 12655 /* Get physical name. */
ff355380 12656 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12657
d8151005
DJ
12658 /* The name is already allocated along with this objfile, so we don't
12659 need to duplicate it for the type. */
12660 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12661 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12662 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12663 }
12664 else if (die->tag == DW_TAG_inheritance)
12665 {
74ac6d43 12666 LONGEST offset;
d4b96c9a 12667
74ac6d43
TT
12668 /* C++ base class field. */
12669 if (handle_data_member_location (die, cu, &offset))
12670 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12671 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12672 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12673 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12674 fip->nbaseclasses++;
12675 }
12676}
12677
98751a41
JK
12678/* Add a typedef defined in the scope of the FIP's class. */
12679
12680static void
12681dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12682 struct dwarf2_cu *cu)
6e70227d 12683{
98751a41 12684 struct typedef_field_list *new_field;
98751a41 12685 struct typedef_field *fp;
98751a41
JK
12686
12687 /* Allocate a new field list entry and link it in. */
8d749320 12688 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12689 make_cleanup (xfree, new_field);
12690
12691 gdb_assert (die->tag == DW_TAG_typedef);
12692
12693 fp = &new_field->field;
12694
12695 /* Get name of field. */
12696 fp->name = dwarf2_name (die, cu);
12697 if (fp->name == NULL)
12698 return;
12699
12700 fp->type = read_type_die (die, cu);
12701
12702 new_field->next = fip->typedef_field_list;
12703 fip->typedef_field_list = new_field;
12704 fip->typedef_field_list_count++;
12705}
12706
c906108c
SS
12707/* Create the vector of fields, and attach it to the type. */
12708
12709static void
fba45db2 12710dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12711 struct dwarf2_cu *cu)
c906108c
SS
12712{
12713 int nfields = fip->nfields;
12714
12715 /* Record the field count, allocate space for the array of fields,
12716 and create blank accessibility bitfields if necessary. */
12717 TYPE_NFIELDS (type) = nfields;
12718 TYPE_FIELDS (type) = (struct field *)
12719 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12720 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12721
b4ba55a1 12722 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12723 {
12724 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12725
12726 TYPE_FIELD_PRIVATE_BITS (type) =
12727 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12728 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12729
12730 TYPE_FIELD_PROTECTED_BITS (type) =
12731 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12732 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12733
774b6a14
TT
12734 TYPE_FIELD_IGNORE_BITS (type) =
12735 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12736 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12737 }
12738
12739 /* If the type has baseclasses, allocate and clear a bit vector for
12740 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12741 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12742 {
12743 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12744 unsigned char *pointer;
c906108c
SS
12745
12746 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12747 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12748 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12749 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12750 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12751 }
12752
3e43a32a
MS
12753 /* Copy the saved-up fields into the field vector. Start from the head of
12754 the list, adding to the tail of the field array, so that they end up in
12755 the same order in the array in which they were added to the list. */
c906108c
SS
12756 while (nfields-- > 0)
12757 {
7d0ccb61
DJ
12758 struct nextfield *fieldp;
12759
12760 if (fip->fields)
12761 {
12762 fieldp = fip->fields;
12763 fip->fields = fieldp->next;
12764 }
12765 else
12766 {
12767 fieldp = fip->baseclasses;
12768 fip->baseclasses = fieldp->next;
12769 }
12770
12771 TYPE_FIELD (type, nfields) = fieldp->field;
12772 switch (fieldp->accessibility)
c906108c 12773 {
c5aa993b 12774 case DW_ACCESS_private:
b4ba55a1
JB
12775 if (cu->language != language_ada)
12776 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12777 break;
c906108c 12778
c5aa993b 12779 case DW_ACCESS_protected:
b4ba55a1
JB
12780 if (cu->language != language_ada)
12781 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12782 break;
c906108c 12783
c5aa993b
JM
12784 case DW_ACCESS_public:
12785 break;
c906108c 12786
c5aa993b
JM
12787 default:
12788 /* Unknown accessibility. Complain and treat it as public. */
12789 {
e2e0b3e5 12790 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12791 fieldp->accessibility);
c5aa993b
JM
12792 }
12793 break;
c906108c
SS
12794 }
12795 if (nfields < fip->nbaseclasses)
12796 {
7d0ccb61 12797 switch (fieldp->virtuality)
c906108c 12798 {
c5aa993b
JM
12799 case DW_VIRTUALITY_virtual:
12800 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12801 if (cu->language == language_ada)
a73c6dcd 12802 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12803 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12804 break;
c906108c
SS
12805 }
12806 }
c906108c
SS
12807 }
12808}
12809
7d27a96d
TT
12810/* Return true if this member function is a constructor, false
12811 otherwise. */
12812
12813static int
12814dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12815{
12816 const char *fieldname;
fe978cb0 12817 const char *type_name;
7d27a96d
TT
12818 int len;
12819
12820 if (die->parent == NULL)
12821 return 0;
12822
12823 if (die->parent->tag != DW_TAG_structure_type
12824 && die->parent->tag != DW_TAG_union_type
12825 && die->parent->tag != DW_TAG_class_type)
12826 return 0;
12827
12828 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12829 type_name = dwarf2_name (die->parent, cu);
12830 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12831 return 0;
12832
12833 len = strlen (fieldname);
fe978cb0
PA
12834 return (strncmp (fieldname, type_name, len) == 0
12835 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12836}
12837
c906108c
SS
12838/* Add a member function to the proper fieldlist. */
12839
12840static void
107d2387 12841dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12842 struct type *type, struct dwarf2_cu *cu)
c906108c 12843{
e7c27a73 12844 struct objfile *objfile = cu->objfile;
c906108c
SS
12845 struct attribute *attr;
12846 struct fnfieldlist *flp;
12847 int i;
12848 struct fn_field *fnp;
15d034d0 12849 const char *fieldname;
c906108c 12850 struct nextfnfield *new_fnfield;
f792889a 12851 struct type *this_type;
60d5a603 12852 enum dwarf_access_attribute accessibility;
c906108c 12853
b4ba55a1 12854 if (cu->language == language_ada)
a73c6dcd 12855 error (_("unexpected member function in Ada type"));
b4ba55a1 12856
2df3850c 12857 /* Get name of member function. */
39cbfefa
DJ
12858 fieldname = dwarf2_name (die, cu);
12859 if (fieldname == NULL)
2df3850c 12860 return;
c906108c 12861
c906108c
SS
12862 /* Look up member function name in fieldlist. */
12863 for (i = 0; i < fip->nfnfields; i++)
12864 {
27bfe10e 12865 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12866 break;
12867 }
12868
12869 /* Create new list element if necessary. */
12870 if (i < fip->nfnfields)
12871 flp = &fip->fnfieldlists[i];
12872 else
12873 {
12874 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12875 {
12876 fip->fnfieldlists = (struct fnfieldlist *)
12877 xrealloc (fip->fnfieldlists,
12878 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12879 * sizeof (struct fnfieldlist));
c906108c 12880 if (fip->nfnfields == 0)
c13c43fd 12881 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12882 }
12883 flp = &fip->fnfieldlists[fip->nfnfields];
12884 flp->name = fieldname;
12885 flp->length = 0;
12886 flp->head = NULL;
3da10d80 12887 i = fip->nfnfields++;
c906108c
SS
12888 }
12889
12890 /* Create a new member function field and chain it to the field list
0963b4bd 12891 entry. */
8d749320 12892 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12893 make_cleanup (xfree, new_fnfield);
c906108c
SS
12894 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12895 new_fnfield->next = flp->head;
12896 flp->head = new_fnfield;
12897 flp->length++;
12898
12899 /* Fill in the member function field info. */
12900 fnp = &new_fnfield->fnfield;
3da10d80
KS
12901
12902 /* Delay processing of the physname until later. */
12903 if (cu->language == language_cplus || cu->language == language_java)
12904 {
12905 add_to_method_list (type, i, flp->length - 1, fieldname,
12906 die, cu);
12907 }
12908 else
12909 {
1d06ead6 12910 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12911 fnp->physname = physname ? physname : "";
12912 }
12913
c906108c 12914 fnp->type = alloc_type (objfile);
f792889a
DJ
12915 this_type = read_type_die (die, cu);
12916 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12917 {
f792889a 12918 int nparams = TYPE_NFIELDS (this_type);
c906108c 12919
f792889a 12920 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12921 of the method itself (TYPE_CODE_METHOD). */
12922 smash_to_method_type (fnp->type, type,
f792889a
DJ
12923 TYPE_TARGET_TYPE (this_type),
12924 TYPE_FIELDS (this_type),
12925 TYPE_NFIELDS (this_type),
12926 TYPE_VARARGS (this_type));
c906108c
SS
12927
12928 /* Handle static member functions.
c5aa993b 12929 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12930 member functions. G++ helps GDB by marking the first
12931 parameter for non-static member functions (which is the this
12932 pointer) as artificial. We obtain this information from
12933 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12934 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12935 fnp->voffset = VOFFSET_STATIC;
12936 }
12937 else
e2e0b3e5 12938 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12939 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12940
12941 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12942 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12943 fnp->fcontext = die_containing_type (die, cu);
c906108c 12944
3e43a32a
MS
12945 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12946 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12947
12948 /* Get accessibility. */
e142c38c 12949 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12950 if (attr)
aead7601 12951 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12952 else
12953 accessibility = dwarf2_default_access_attribute (die, cu);
12954 switch (accessibility)
c906108c 12955 {
60d5a603
JK
12956 case DW_ACCESS_private:
12957 fnp->is_private = 1;
12958 break;
12959 case DW_ACCESS_protected:
12960 fnp->is_protected = 1;
12961 break;
c906108c
SS
12962 }
12963
b02dede2 12964 /* Check for artificial methods. */
e142c38c 12965 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12966 if (attr && DW_UNSND (attr) != 0)
12967 fnp->is_artificial = 1;
12968
7d27a96d
TT
12969 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12970
0d564a31 12971 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12972 function. For older versions of GCC, this is an offset in the
12973 appropriate virtual table, as specified by DW_AT_containing_type.
12974 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12975 to the object address. */
12976
e142c38c 12977 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12978 if (attr)
8e19ed76 12979 {
aec5aa8b 12980 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12981 {
aec5aa8b
TT
12982 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12983 {
12984 /* Old-style GCC. */
12985 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12986 }
12987 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12988 || (DW_BLOCK (attr)->size > 1
12989 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12990 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12991 {
aec5aa8b
TT
12992 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12993 if ((fnp->voffset % cu->header.addr_size) != 0)
12994 dwarf2_complex_location_expr_complaint ();
12995 else
12996 fnp->voffset /= cu->header.addr_size;
12997 fnp->voffset += 2;
12998 }
12999 else
13000 dwarf2_complex_location_expr_complaint ();
13001
13002 if (!fnp->fcontext)
7e993ebf
KS
13003 {
13004 /* If there is no `this' field and no DW_AT_containing_type,
13005 we cannot actually find a base class context for the
13006 vtable! */
13007 if (TYPE_NFIELDS (this_type) == 0
13008 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13009 {
13010 complaint (&symfile_complaints,
13011 _("cannot determine context for virtual member "
13012 "function \"%s\" (offset %d)"),
13013 fieldname, die->offset.sect_off);
13014 }
13015 else
13016 {
13017 fnp->fcontext
13018 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13019 }
13020 }
aec5aa8b 13021 }
3690dd37 13022 else if (attr_form_is_section_offset (attr))
8e19ed76 13023 {
4d3c2250 13024 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13025 }
13026 else
13027 {
4d3c2250
KB
13028 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13029 fieldname);
8e19ed76 13030 }
0d564a31 13031 }
d48cc9dd
DJ
13032 else
13033 {
13034 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13035 if (attr && DW_UNSND (attr))
13036 {
13037 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13038 complaint (&symfile_complaints,
3e43a32a
MS
13039 _("Member function \"%s\" (offset %d) is virtual "
13040 "but the vtable offset is not specified"),
b64f50a1 13041 fieldname, die->offset.sect_off);
9655fd1a 13042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13043 TYPE_CPLUS_DYNAMIC (type) = 1;
13044 }
13045 }
c906108c
SS
13046}
13047
13048/* Create the vector of member function fields, and attach it to the type. */
13049
13050static void
fba45db2 13051dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13052 struct dwarf2_cu *cu)
c906108c
SS
13053{
13054 struct fnfieldlist *flp;
c906108c
SS
13055 int i;
13056
b4ba55a1 13057 if (cu->language == language_ada)
a73c6dcd 13058 error (_("unexpected member functions in Ada type"));
b4ba55a1 13059
c906108c
SS
13060 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13061 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13062 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13063
13064 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13065 {
13066 struct nextfnfield *nfp = flp->head;
13067 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13068 int k;
13069
13070 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13071 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13072 fn_flp->fn_fields = (struct fn_field *)
13073 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13074 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13075 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13076 }
13077
13078 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13079}
13080
1168df01
JB
13081/* Returns non-zero if NAME is the name of a vtable member in CU's
13082 language, zero otherwise. */
13083static int
13084is_vtable_name (const char *name, struct dwarf2_cu *cu)
13085{
13086 static const char vptr[] = "_vptr";
987504bb 13087 static const char vtable[] = "vtable";
1168df01 13088
987504bb
JJ
13089 /* Look for the C++ and Java forms of the vtable. */
13090 if ((cu->language == language_java
61012eef
GB
13091 && startswith (name, vtable))
13092 || (startswith (name, vptr)
987504bb 13093 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13094 return 1;
13095
13096 return 0;
13097}
13098
c0dd20ea 13099/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13100 functions, with the ABI-specified layout. If TYPE describes
13101 such a structure, smash it into a member function type.
61049d3b
DJ
13102
13103 GCC shouldn't do this; it should just output pointer to member DIEs.
13104 This is GCC PR debug/28767. */
c0dd20ea 13105
0b92b5bb
TT
13106static void
13107quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13108{
09e2d7c7 13109 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13110
13111 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13112 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13113 return;
c0dd20ea
DJ
13114
13115 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13116 if (TYPE_FIELD_NAME (type, 0) == NULL
13117 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13118 || TYPE_FIELD_NAME (type, 1) == NULL
13119 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13120 return;
c0dd20ea
DJ
13121
13122 /* Find the type of the method. */
0b92b5bb 13123 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13124 if (pfn_type == NULL
13125 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13126 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13127 return;
c0dd20ea
DJ
13128
13129 /* Look for the "this" argument. */
13130 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13131 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13132 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13133 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13134 return;
c0dd20ea 13135
09e2d7c7 13136 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13137 new_type = alloc_type (objfile);
09e2d7c7 13138 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13139 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13140 TYPE_VARARGS (pfn_type));
0b92b5bb 13141 smash_to_methodptr_type (type, new_type);
c0dd20ea 13142}
1168df01 13143
685b1105
JK
13144/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13145 (icc). */
13146
13147static int
13148producer_is_icc (struct dwarf2_cu *cu)
13149{
13150 if (!cu->checked_producer)
13151 check_producer (cu);
13152
13153 return cu->producer_is_icc;
13154}
13155
c906108c 13156/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13157 (definition) to create a type for the structure or union. Fill in
13158 the type's name and general properties; the members will not be
83655187
DE
13159 processed until process_structure_scope. A symbol table entry for
13160 the type will also not be done until process_structure_scope (assuming
13161 the type has a name).
c906108c 13162
c767944b
DJ
13163 NOTE: we need to call these functions regardless of whether or not the
13164 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13165 structure or union. This gets the type entered into our set of
83655187 13166 user defined types. */
c906108c 13167
f792889a 13168static struct type *
134d01f1 13169read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13170{
e7c27a73 13171 struct objfile *objfile = cu->objfile;
c906108c
SS
13172 struct type *type;
13173 struct attribute *attr;
15d034d0 13174 const char *name;
c906108c 13175
348e048f
DE
13176 /* If the definition of this type lives in .debug_types, read that type.
13177 Don't follow DW_AT_specification though, that will take us back up
13178 the chain and we want to go down. */
45e58e77 13179 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13180 if (attr)
13181 {
ac9ec31b 13182 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13183
ac9ec31b 13184 /* The type's CU may not be the same as CU.
02142a6c 13185 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13186 return set_die_type (die, type, cu);
13187 }
13188
c0dd20ea 13189 type = alloc_type (objfile);
c906108c 13190 INIT_CPLUS_SPECIFIC (type);
93311388 13191
39cbfefa
DJ
13192 name = dwarf2_name (die, cu);
13193 if (name != NULL)
c906108c 13194 {
987504bb 13195 if (cu->language == language_cplus
45280282 13196 || cu->language == language_java
c44af4eb
TT
13197 || cu->language == language_d
13198 || cu->language == language_rust)
63d06c5c 13199 {
15d034d0 13200 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13201
13202 /* dwarf2_full_name might have already finished building the DIE's
13203 type. If so, there is no need to continue. */
13204 if (get_die_type (die, cu) != NULL)
13205 return get_die_type (die, cu);
13206
13207 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13208 if (die->tag == DW_TAG_structure_type
13209 || die->tag == DW_TAG_class_type)
13210 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13211 }
13212 else
13213 {
d8151005
DJ
13214 /* The name is already allocated along with this objfile, so
13215 we don't need to duplicate it for the type. */
7d455152 13216 TYPE_TAG_NAME (type) = name;
94af9270
KS
13217 if (die->tag == DW_TAG_class_type)
13218 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13219 }
c906108c
SS
13220 }
13221
13222 if (die->tag == DW_TAG_structure_type)
13223 {
13224 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13225 }
13226 else if (die->tag == DW_TAG_union_type)
13227 {
13228 TYPE_CODE (type) = TYPE_CODE_UNION;
13229 }
13230 else
13231 {
4753d33b 13232 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13233 }
13234
0cc2414c
TT
13235 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13236 TYPE_DECLARED_CLASS (type) = 1;
13237
e142c38c 13238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13239 if (attr)
13240 {
155bfbd3
JB
13241 if (attr_form_is_constant (attr))
13242 TYPE_LENGTH (type) = DW_UNSND (attr);
13243 else
13244 {
13245 /* For the moment, dynamic type sizes are not supported
13246 by GDB's struct type. The actual size is determined
13247 on-demand when resolving the type of a given object,
13248 so set the type's length to zero for now. Otherwise,
13249 we record an expression as the length, and that expression
13250 could lead to a very large value, which could eventually
13251 lead to us trying to allocate that much memory when creating
13252 a value of that type. */
13253 TYPE_LENGTH (type) = 0;
13254 }
c906108c
SS
13255 }
13256 else
13257 {
13258 TYPE_LENGTH (type) = 0;
13259 }
13260
422b1cb0 13261 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13262 {
13263 /* ICC does not output the required DW_AT_declaration
13264 on incomplete types, but gives them a size of zero. */
422b1cb0 13265 TYPE_STUB (type) = 1;
685b1105
JK
13266 }
13267 else
13268 TYPE_STUB_SUPPORTED (type) = 1;
13269
dc718098 13270 if (die_is_declaration (die, cu))
876cecd0 13271 TYPE_STUB (type) = 1;
a6c727b2
DJ
13272 else if (attr == NULL && die->child == NULL
13273 && producer_is_realview (cu->producer))
13274 /* RealView does not output the required DW_AT_declaration
13275 on incomplete types. */
13276 TYPE_STUB (type) = 1;
dc718098 13277
c906108c
SS
13278 /* We need to add the type field to the die immediately so we don't
13279 infinitely recurse when dealing with pointers to the structure
0963b4bd 13280 type within the structure itself. */
1c379e20 13281 set_die_type (die, type, cu);
c906108c 13282
7e314c57
JK
13283 /* set_die_type should be already done. */
13284 set_descriptive_type (type, die, cu);
13285
c767944b
DJ
13286 return type;
13287}
13288
13289/* Finish creating a structure or union type, including filling in
13290 its members and creating a symbol for it. */
13291
13292static void
13293process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13294{
13295 struct objfile *objfile = cu->objfile;
ca040673 13296 struct die_info *child_die;
c767944b
DJ
13297 struct type *type;
13298
13299 type = get_die_type (die, cu);
13300 if (type == NULL)
13301 type = read_structure_type (die, cu);
13302
e142c38c 13303 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13304 {
13305 struct field_info fi;
34eaf542 13306 VEC (symbolp) *template_args = NULL;
c767944b 13307 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13308
13309 memset (&fi, 0, sizeof (struct field_info));
13310
639d11d3 13311 child_die = die->child;
c906108c
SS
13312
13313 while (child_die && child_die->tag)
13314 {
a9a9bd0f
DC
13315 if (child_die->tag == DW_TAG_member
13316 || child_die->tag == DW_TAG_variable)
c906108c 13317 {
a9a9bd0f
DC
13318 /* NOTE: carlton/2002-11-05: A C++ static data member
13319 should be a DW_TAG_member that is a declaration, but
13320 all versions of G++ as of this writing (so through at
13321 least 3.2.1) incorrectly generate DW_TAG_variable
13322 tags for them instead. */
e7c27a73 13323 dwarf2_add_field (&fi, child_die, cu);
c906108c 13324 }
8713b1b1 13325 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13326 {
e98c9e7c
TT
13327 /* Rust doesn't have member functions in the C++ sense.
13328 However, it does emit ordinary functions as children
13329 of a struct DIE. */
13330 if (cu->language == language_rust)
13331 read_func_scope (child_die, cu);
13332 else
13333 {
13334 /* C++ member function. */
13335 dwarf2_add_member_fn (&fi, child_die, type, cu);
13336 }
c906108c
SS
13337 }
13338 else if (child_die->tag == DW_TAG_inheritance)
13339 {
13340 /* C++ base class field. */
e7c27a73 13341 dwarf2_add_field (&fi, child_die, cu);
c906108c 13342 }
98751a41
JK
13343 else if (child_die->tag == DW_TAG_typedef)
13344 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13345 else if (child_die->tag == DW_TAG_template_type_param
13346 || child_die->tag == DW_TAG_template_value_param)
13347 {
13348 struct symbol *arg = new_symbol (child_die, NULL, cu);
13349
f1078f66
DJ
13350 if (arg != NULL)
13351 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13352 }
13353
c906108c
SS
13354 child_die = sibling_die (child_die);
13355 }
13356
34eaf542
TT
13357 /* Attach template arguments to type. */
13358 if (! VEC_empty (symbolp, template_args))
13359 {
13360 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13361 TYPE_N_TEMPLATE_ARGUMENTS (type)
13362 = VEC_length (symbolp, template_args);
13363 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13364 = XOBNEWVEC (&objfile->objfile_obstack,
13365 struct symbol *,
13366 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13367 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13368 VEC_address (symbolp, template_args),
13369 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13370 * sizeof (struct symbol *)));
13371 VEC_free (symbolp, template_args);
13372 }
13373
c906108c
SS
13374 /* Attach fields and member functions to the type. */
13375 if (fi.nfields)
e7c27a73 13376 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13377 if (fi.nfnfields)
13378 {
e7c27a73 13379 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13380
c5aa993b 13381 /* Get the type which refers to the base class (possibly this
c906108c 13382 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13383 class from the DW_AT_containing_type attribute. This use of
13384 DW_AT_containing_type is a GNU extension. */
c906108c 13385
e142c38c 13386 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13387 {
e7c27a73 13388 struct type *t = die_containing_type (die, cu);
c906108c 13389
ae6ae975 13390 set_type_vptr_basetype (type, t);
c906108c
SS
13391 if (type == t)
13392 {
c906108c
SS
13393 int i;
13394
13395 /* Our own class provides vtbl ptr. */
13396 for (i = TYPE_NFIELDS (t) - 1;
13397 i >= TYPE_N_BASECLASSES (t);
13398 --i)
13399 {
0d5cff50 13400 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13401
1168df01 13402 if (is_vtable_name (fieldname, cu))
c906108c 13403 {
ae6ae975 13404 set_type_vptr_fieldno (type, i);
c906108c
SS
13405 break;
13406 }
13407 }
13408
13409 /* Complain if virtual function table field not found. */
13410 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13411 complaint (&symfile_complaints,
3e43a32a
MS
13412 _("virtual function table pointer "
13413 "not found when defining class '%s'"),
4d3c2250
KB
13414 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13415 "");
c906108c
SS
13416 }
13417 else
13418 {
ae6ae975 13419 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13420 }
13421 }
f6235d4c 13422 else if (cu->producer
61012eef 13423 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13424 {
13425 /* The IBM XLC compiler does not provide direct indication
13426 of the containing type, but the vtable pointer is
13427 always named __vfp. */
13428
13429 int i;
13430
13431 for (i = TYPE_NFIELDS (type) - 1;
13432 i >= TYPE_N_BASECLASSES (type);
13433 --i)
13434 {
13435 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13436 {
ae6ae975
DE
13437 set_type_vptr_fieldno (type, i);
13438 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13439 break;
13440 }
13441 }
13442 }
c906108c 13443 }
98751a41
JK
13444
13445 /* Copy fi.typedef_field_list linked list elements content into the
13446 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13447 if (fi.typedef_field_list)
13448 {
13449 int i = fi.typedef_field_list_count;
13450
a0d7a4ff 13451 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13452 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13453 = ((struct typedef_field *)
13454 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13455 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13456
13457 /* Reverse the list order to keep the debug info elements order. */
13458 while (--i >= 0)
13459 {
13460 struct typedef_field *dest, *src;
6e70227d 13461
98751a41
JK
13462 dest = &TYPE_TYPEDEF_FIELD (type, i);
13463 src = &fi.typedef_field_list->field;
13464 fi.typedef_field_list = fi.typedef_field_list->next;
13465 *dest = *src;
13466 }
13467 }
c767944b
DJ
13468
13469 do_cleanups (back_to);
eb2a6f42
TT
13470
13471 if (HAVE_CPLUS_STRUCT (type))
13472 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13473 }
63d06c5c 13474
bb5ed363 13475 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13476
90aeadfc
DC
13477 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13478 snapshots) has been known to create a die giving a declaration
13479 for a class that has, as a child, a die giving a definition for a
13480 nested class. So we have to process our children even if the
13481 current die is a declaration. Normally, of course, a declaration
13482 won't have any children at all. */
134d01f1 13483
ca040673
DE
13484 child_die = die->child;
13485
90aeadfc
DC
13486 while (child_die != NULL && child_die->tag)
13487 {
13488 if (child_die->tag == DW_TAG_member
13489 || child_die->tag == DW_TAG_variable
34eaf542
TT
13490 || child_die->tag == DW_TAG_inheritance
13491 || child_die->tag == DW_TAG_template_value_param
13492 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13493 {
90aeadfc 13494 /* Do nothing. */
134d01f1 13495 }
90aeadfc
DC
13496 else
13497 process_die (child_die, cu);
134d01f1 13498
90aeadfc 13499 child_die = sibling_die (child_die);
134d01f1
DJ
13500 }
13501
fa4028e9
JB
13502 /* Do not consider external references. According to the DWARF standard,
13503 these DIEs are identified by the fact that they have no byte_size
13504 attribute, and a declaration attribute. */
13505 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13506 || !die_is_declaration (die, cu))
c767944b 13507 new_symbol (die, type, cu);
134d01f1
DJ
13508}
13509
55426c9d
JB
13510/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13511 update TYPE using some information only available in DIE's children. */
13512
13513static void
13514update_enumeration_type_from_children (struct die_info *die,
13515 struct type *type,
13516 struct dwarf2_cu *cu)
13517{
13518 struct obstack obstack;
60f7655a 13519 struct die_info *child_die;
55426c9d
JB
13520 int unsigned_enum = 1;
13521 int flag_enum = 1;
13522 ULONGEST mask = 0;
13523 struct cleanup *old_chain;
13524
13525 obstack_init (&obstack);
13526 old_chain = make_cleanup_obstack_free (&obstack);
13527
60f7655a
DE
13528 for (child_die = die->child;
13529 child_die != NULL && child_die->tag;
13530 child_die = sibling_die (child_die))
55426c9d
JB
13531 {
13532 struct attribute *attr;
13533 LONGEST value;
13534 const gdb_byte *bytes;
13535 struct dwarf2_locexpr_baton *baton;
13536 const char *name;
60f7655a 13537
55426c9d
JB
13538 if (child_die->tag != DW_TAG_enumerator)
13539 continue;
13540
13541 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13542 if (attr == NULL)
13543 continue;
13544
13545 name = dwarf2_name (child_die, cu);
13546 if (name == NULL)
13547 name = "<anonymous enumerator>";
13548
13549 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13550 &value, &bytes, &baton);
13551 if (value < 0)
13552 {
13553 unsigned_enum = 0;
13554 flag_enum = 0;
13555 }
13556 else if ((mask & value) != 0)
13557 flag_enum = 0;
13558 else
13559 mask |= value;
13560
13561 /* If we already know that the enum type is neither unsigned, nor
13562 a flag type, no need to look at the rest of the enumerates. */
13563 if (!unsigned_enum && !flag_enum)
13564 break;
55426c9d
JB
13565 }
13566
13567 if (unsigned_enum)
13568 TYPE_UNSIGNED (type) = 1;
13569 if (flag_enum)
13570 TYPE_FLAG_ENUM (type) = 1;
13571
13572 do_cleanups (old_chain);
13573}
13574
134d01f1
DJ
13575/* Given a DW_AT_enumeration_type die, set its type. We do not
13576 complete the type's fields yet, or create any symbols. */
c906108c 13577
f792889a 13578static struct type *
134d01f1 13579read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13580{
e7c27a73 13581 struct objfile *objfile = cu->objfile;
c906108c 13582 struct type *type;
c906108c 13583 struct attribute *attr;
0114d602 13584 const char *name;
134d01f1 13585
348e048f
DE
13586 /* If the definition of this type lives in .debug_types, read that type.
13587 Don't follow DW_AT_specification though, that will take us back up
13588 the chain and we want to go down. */
45e58e77 13589 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13590 if (attr)
13591 {
ac9ec31b 13592 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13593
ac9ec31b 13594 /* The type's CU may not be the same as CU.
02142a6c 13595 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13596 return set_die_type (die, type, cu);
13597 }
13598
c906108c
SS
13599 type = alloc_type (objfile);
13600
13601 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13602 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13603 if (name != NULL)
7d455152 13604 TYPE_TAG_NAME (type) = name;
c906108c 13605
0626fc76
TT
13606 attr = dwarf2_attr (die, DW_AT_type, cu);
13607 if (attr != NULL)
13608 {
13609 struct type *underlying_type = die_type (die, cu);
13610
13611 TYPE_TARGET_TYPE (type) = underlying_type;
13612 }
13613
e142c38c 13614 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13615 if (attr)
13616 {
13617 TYPE_LENGTH (type) = DW_UNSND (attr);
13618 }
13619 else
13620 {
13621 TYPE_LENGTH (type) = 0;
13622 }
13623
137033e9
JB
13624 /* The enumeration DIE can be incomplete. In Ada, any type can be
13625 declared as private in the package spec, and then defined only
13626 inside the package body. Such types are known as Taft Amendment
13627 Types. When another package uses such a type, an incomplete DIE
13628 may be generated by the compiler. */
02eb380e 13629 if (die_is_declaration (die, cu))
876cecd0 13630 TYPE_STUB (type) = 1;
02eb380e 13631
0626fc76
TT
13632 /* Finish the creation of this type by using the enum's children.
13633 We must call this even when the underlying type has been provided
13634 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13635 update_enumeration_type_from_children (die, type, cu);
13636
0626fc76
TT
13637 /* If this type has an underlying type that is not a stub, then we
13638 may use its attributes. We always use the "unsigned" attribute
13639 in this situation, because ordinarily we guess whether the type
13640 is unsigned -- but the guess can be wrong and the underlying type
13641 can tell us the reality. However, we defer to a local size
13642 attribute if one exists, because this lets the compiler override
13643 the underlying type if needed. */
13644 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13645 {
13646 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13647 if (TYPE_LENGTH (type) == 0)
13648 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13649 }
13650
3d567982
TT
13651 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13652
f792889a 13653 return set_die_type (die, type, cu);
134d01f1
DJ
13654}
13655
13656/* Given a pointer to a die which begins an enumeration, process all
13657 the dies that define the members of the enumeration, and create the
13658 symbol for the enumeration type.
13659
13660 NOTE: We reverse the order of the element list. */
13661
13662static void
13663process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13664{
f792889a 13665 struct type *this_type;
134d01f1 13666
f792889a
DJ
13667 this_type = get_die_type (die, cu);
13668 if (this_type == NULL)
13669 this_type = read_enumeration_type (die, cu);
9dc481d3 13670
639d11d3 13671 if (die->child != NULL)
c906108c 13672 {
9dc481d3
DE
13673 struct die_info *child_die;
13674 struct symbol *sym;
13675 struct field *fields = NULL;
13676 int num_fields = 0;
15d034d0 13677 const char *name;
9dc481d3 13678
639d11d3 13679 child_die = die->child;
c906108c
SS
13680 while (child_die && child_die->tag)
13681 {
13682 if (child_die->tag != DW_TAG_enumerator)
13683 {
e7c27a73 13684 process_die (child_die, cu);
c906108c
SS
13685 }
13686 else
13687 {
39cbfefa
DJ
13688 name = dwarf2_name (child_die, cu);
13689 if (name)
c906108c 13690 {
f792889a 13691 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13692
13693 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13694 {
13695 fields = (struct field *)
13696 xrealloc (fields,
13697 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13698 * sizeof (struct field));
c906108c
SS
13699 }
13700
3567439c 13701 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13702 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13703 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13704 FIELD_BITSIZE (fields[num_fields]) = 0;
13705
13706 num_fields++;
13707 }
13708 }
13709
13710 child_die = sibling_die (child_die);
13711 }
13712
13713 if (num_fields)
13714 {
f792889a
DJ
13715 TYPE_NFIELDS (this_type) = num_fields;
13716 TYPE_FIELDS (this_type) = (struct field *)
13717 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13718 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13719 sizeof (struct field) * num_fields);
b8c9b27d 13720 xfree (fields);
c906108c 13721 }
c906108c 13722 }
134d01f1 13723
6c83ed52
TT
13724 /* If we are reading an enum from a .debug_types unit, and the enum
13725 is a declaration, and the enum is not the signatured type in the
13726 unit, then we do not want to add a symbol for it. Adding a
13727 symbol would in some cases obscure the true definition of the
13728 enum, giving users an incomplete type when the definition is
13729 actually available. Note that we do not want to do this for all
13730 enums which are just declarations, because C++0x allows forward
13731 enum declarations. */
3019eac3 13732 if (cu->per_cu->is_debug_types
6c83ed52
TT
13733 && die_is_declaration (die, cu))
13734 {
52dc124a 13735 struct signatured_type *sig_type;
6c83ed52 13736
c0f78cd4 13737 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13738 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13739 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13740 return;
13741 }
13742
f792889a 13743 new_symbol (die, this_type, cu);
c906108c
SS
13744}
13745
13746/* Extract all information from a DW_TAG_array_type DIE and put it in
13747 the DIE's type field. For now, this only handles one dimensional
13748 arrays. */
13749
f792889a 13750static struct type *
e7c27a73 13751read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13752{
e7c27a73 13753 struct objfile *objfile = cu->objfile;
c906108c 13754 struct die_info *child_die;
7e314c57 13755 struct type *type;
c906108c
SS
13756 struct type *element_type, *range_type, *index_type;
13757 struct type **range_types = NULL;
13758 struct attribute *attr;
13759 int ndim = 0;
13760 struct cleanup *back_to;
15d034d0 13761 const char *name;
dc53a7ad 13762 unsigned int bit_stride = 0;
c906108c 13763
e7c27a73 13764 element_type = die_type (die, cu);
c906108c 13765
7e314c57
JK
13766 /* The die_type call above may have already set the type for this DIE. */
13767 type = get_die_type (die, cu);
13768 if (type)
13769 return type;
13770
dc53a7ad
JB
13771 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13772 if (attr != NULL)
13773 bit_stride = DW_UNSND (attr) * 8;
13774
13775 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13776 if (attr != NULL)
13777 bit_stride = DW_UNSND (attr);
13778
c906108c
SS
13779 /* Irix 6.2 native cc creates array types without children for
13780 arrays with unspecified length. */
639d11d3 13781 if (die->child == NULL)
c906108c 13782 {
46bf5051 13783 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13784 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13785 type = create_array_type_with_stride (NULL, element_type, range_type,
13786 bit_stride);
f792889a 13787 return set_die_type (die, type, cu);
c906108c
SS
13788 }
13789
13790 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13791 child_die = die->child;
c906108c
SS
13792 while (child_die && child_die->tag)
13793 {
13794 if (child_die->tag == DW_TAG_subrange_type)
13795 {
f792889a 13796 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13797
f792889a 13798 if (child_type != NULL)
a02abb62 13799 {
0963b4bd
MS
13800 /* The range type was succesfully read. Save it for the
13801 array type creation. */
a02abb62
JB
13802 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13803 {
13804 range_types = (struct type **)
13805 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13806 * sizeof (struct type *));
13807 if (ndim == 0)
13808 make_cleanup (free_current_contents, &range_types);
13809 }
f792889a 13810 range_types[ndim++] = child_type;
a02abb62 13811 }
c906108c
SS
13812 }
13813 child_die = sibling_die (child_die);
13814 }
13815
13816 /* Dwarf2 dimensions are output from left to right, create the
13817 necessary array types in backwards order. */
7ca2d3a3 13818
c906108c 13819 type = element_type;
7ca2d3a3
DL
13820
13821 if (read_array_order (die, cu) == DW_ORD_col_major)
13822 {
13823 int i = 0;
9a619af0 13824
7ca2d3a3 13825 while (i < ndim)
dc53a7ad
JB
13826 type = create_array_type_with_stride (NULL, type, range_types[i++],
13827 bit_stride);
7ca2d3a3
DL
13828 }
13829 else
13830 {
13831 while (ndim-- > 0)
dc53a7ad
JB
13832 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13833 bit_stride);
7ca2d3a3 13834 }
c906108c 13835
f5f8a009
EZ
13836 /* Understand Dwarf2 support for vector types (like they occur on
13837 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13838 array type. This is not part of the Dwarf2/3 standard yet, but a
13839 custom vendor extension. The main difference between a regular
13840 array and the vector variant is that vectors are passed by value
13841 to functions. */
e142c38c 13842 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13843 if (attr)
ea37ba09 13844 make_vector_type (type);
f5f8a009 13845
dbc98a8b
KW
13846 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13847 implementation may choose to implement triple vectors using this
13848 attribute. */
13849 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13850 if (attr)
13851 {
13852 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13853 TYPE_LENGTH (type) = DW_UNSND (attr);
13854 else
3e43a32a
MS
13855 complaint (&symfile_complaints,
13856 _("DW_AT_byte_size for array type smaller "
13857 "than the total size of elements"));
dbc98a8b
KW
13858 }
13859
39cbfefa
DJ
13860 name = dwarf2_name (die, cu);
13861 if (name)
13862 TYPE_NAME (type) = name;
6e70227d 13863
0963b4bd 13864 /* Install the type in the die. */
7e314c57
JK
13865 set_die_type (die, type, cu);
13866
13867 /* set_die_type should be already done. */
b4ba55a1
JB
13868 set_descriptive_type (type, die, cu);
13869
c906108c
SS
13870 do_cleanups (back_to);
13871
7e314c57 13872 return type;
c906108c
SS
13873}
13874
7ca2d3a3 13875static enum dwarf_array_dim_ordering
6e70227d 13876read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13877{
13878 struct attribute *attr;
13879
13880 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13881
aead7601
SM
13882 if (attr)
13883 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13884
0963b4bd
MS
13885 /* GNU F77 is a special case, as at 08/2004 array type info is the
13886 opposite order to the dwarf2 specification, but data is still
13887 laid out as per normal fortran.
7ca2d3a3 13888
0963b4bd
MS
13889 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13890 version checking. */
7ca2d3a3 13891
905e0470
PM
13892 if (cu->language == language_fortran
13893 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13894 {
13895 return DW_ORD_row_major;
13896 }
13897
6e70227d 13898 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13899 {
13900 case array_column_major:
13901 return DW_ORD_col_major;
13902 case array_row_major:
13903 default:
13904 return DW_ORD_row_major;
13905 };
13906}
13907
72019c9c 13908/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13909 the DIE's type field. */
72019c9c 13910
f792889a 13911static struct type *
72019c9c
GM
13912read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13913{
7e314c57
JK
13914 struct type *domain_type, *set_type;
13915 struct attribute *attr;
f792889a 13916
7e314c57
JK
13917 domain_type = die_type (die, cu);
13918
13919 /* The die_type call above may have already set the type for this DIE. */
13920 set_type = get_die_type (die, cu);
13921 if (set_type)
13922 return set_type;
13923
13924 set_type = create_set_type (NULL, domain_type);
13925
13926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13927 if (attr)
13928 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13929
f792889a 13930 return set_die_type (die, set_type, cu);
72019c9c 13931}
7ca2d3a3 13932
0971de02
TT
13933/* A helper for read_common_block that creates a locexpr baton.
13934 SYM is the symbol which we are marking as computed.
13935 COMMON_DIE is the DIE for the common block.
13936 COMMON_LOC is the location expression attribute for the common
13937 block itself.
13938 MEMBER_LOC is the location expression attribute for the particular
13939 member of the common block that we are processing.
13940 CU is the CU from which the above come. */
13941
13942static void
13943mark_common_block_symbol_computed (struct symbol *sym,
13944 struct die_info *common_die,
13945 struct attribute *common_loc,
13946 struct attribute *member_loc,
13947 struct dwarf2_cu *cu)
13948{
13949 struct objfile *objfile = dwarf2_per_objfile->objfile;
13950 struct dwarf2_locexpr_baton *baton;
13951 gdb_byte *ptr;
13952 unsigned int cu_off;
13953 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13954 LONGEST offset = 0;
13955
13956 gdb_assert (common_loc && member_loc);
13957 gdb_assert (attr_form_is_block (common_loc));
13958 gdb_assert (attr_form_is_block (member_loc)
13959 || attr_form_is_constant (member_loc));
13960
8d749320 13961 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13962 baton->per_cu = cu->per_cu;
13963 gdb_assert (baton->per_cu);
13964
13965 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13966
13967 if (attr_form_is_constant (member_loc))
13968 {
13969 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13970 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13971 }
13972 else
13973 baton->size += DW_BLOCK (member_loc)->size;
13974
224c3ddb 13975 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13976 baton->data = ptr;
13977
13978 *ptr++ = DW_OP_call4;
13979 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13980 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13981 ptr += 4;
13982
13983 if (attr_form_is_constant (member_loc))
13984 {
13985 *ptr++ = DW_OP_addr;
13986 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13987 ptr += cu->header.addr_size;
13988 }
13989 else
13990 {
13991 /* We have to copy the data here, because DW_OP_call4 will only
13992 use a DW_AT_location attribute. */
13993 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13994 ptr += DW_BLOCK (member_loc)->size;
13995 }
13996
13997 *ptr++ = DW_OP_plus;
13998 gdb_assert (ptr - baton->data == baton->size);
13999
0971de02 14000 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14001 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14002}
14003
4357ac6c
TT
14004/* Create appropriate locally-scoped variables for all the
14005 DW_TAG_common_block entries. Also create a struct common_block
14006 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14007 is used to sepate the common blocks name namespace from regular
14008 variable names. */
c906108c
SS
14009
14010static void
e7c27a73 14011read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14012{
0971de02
TT
14013 struct attribute *attr;
14014
14015 attr = dwarf2_attr (die, DW_AT_location, cu);
14016 if (attr)
14017 {
14018 /* Support the .debug_loc offsets. */
14019 if (attr_form_is_block (attr))
14020 {
14021 /* Ok. */
14022 }
14023 else if (attr_form_is_section_offset (attr))
14024 {
14025 dwarf2_complex_location_expr_complaint ();
14026 attr = NULL;
14027 }
14028 else
14029 {
14030 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14031 "common block member");
14032 attr = NULL;
14033 }
14034 }
14035
639d11d3 14036 if (die->child != NULL)
c906108c 14037 {
4357ac6c
TT
14038 struct objfile *objfile = cu->objfile;
14039 struct die_info *child_die;
14040 size_t n_entries = 0, size;
14041 struct common_block *common_block;
14042 struct symbol *sym;
74ac6d43 14043
4357ac6c
TT
14044 for (child_die = die->child;
14045 child_die && child_die->tag;
14046 child_die = sibling_die (child_die))
14047 ++n_entries;
14048
14049 size = (sizeof (struct common_block)
14050 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14051 common_block
14052 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14053 size);
4357ac6c
TT
14054 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14055 common_block->n_entries = 0;
14056
14057 for (child_die = die->child;
14058 child_die && child_die->tag;
14059 child_die = sibling_die (child_die))
14060 {
14061 /* Create the symbol in the DW_TAG_common_block block in the current
14062 symbol scope. */
e7c27a73 14063 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14064 if (sym != NULL)
14065 {
14066 struct attribute *member_loc;
14067
14068 common_block->contents[common_block->n_entries++] = sym;
14069
14070 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14071 cu);
14072 if (member_loc)
14073 {
14074 /* GDB has handled this for a long time, but it is
14075 not specified by DWARF. It seems to have been
14076 emitted by gfortran at least as recently as:
14077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14078 complaint (&symfile_complaints,
14079 _("Variable in common block has "
14080 "DW_AT_data_member_location "
14081 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14082 child_die->offset.sect_off,
14083 objfile_name (cu->objfile));
0971de02
TT
14084
14085 if (attr_form_is_section_offset (member_loc))
14086 dwarf2_complex_location_expr_complaint ();
14087 else if (attr_form_is_constant (member_loc)
14088 || attr_form_is_block (member_loc))
14089 {
14090 if (attr)
14091 mark_common_block_symbol_computed (sym, die, attr,
14092 member_loc, cu);
14093 }
14094 else
14095 dwarf2_complex_location_expr_complaint ();
14096 }
14097 }
c906108c 14098 }
4357ac6c
TT
14099
14100 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14101 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14102 }
14103}
14104
0114d602 14105/* Create a type for a C++ namespace. */
d9fa45fe 14106
0114d602
DJ
14107static struct type *
14108read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14109{
e7c27a73 14110 struct objfile *objfile = cu->objfile;
0114d602 14111 const char *previous_prefix, *name;
9219021c 14112 int is_anonymous;
0114d602
DJ
14113 struct type *type;
14114
14115 /* For extensions, reuse the type of the original namespace. */
14116 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14117 {
14118 struct die_info *ext_die;
14119 struct dwarf2_cu *ext_cu = cu;
9a619af0 14120
0114d602
DJ
14121 ext_die = dwarf2_extension (die, &ext_cu);
14122 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14123
14124 /* EXT_CU may not be the same as CU.
02142a6c 14125 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14126 return set_die_type (die, type, cu);
14127 }
9219021c 14128
e142c38c 14129 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14130
14131 /* Now build the name of the current namespace. */
14132
0114d602
DJ
14133 previous_prefix = determine_prefix (die, cu);
14134 if (previous_prefix[0] != '\0')
14135 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14136 previous_prefix, name, 0, cu);
0114d602
DJ
14137
14138 /* Create the type. */
14139 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14140 objfile);
abee88f2 14141 TYPE_NAME (type) = name;
0114d602
DJ
14142 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14143
60531b24 14144 return set_die_type (die, type, cu);
0114d602
DJ
14145}
14146
22cee43f 14147/* Read a namespace scope. */
0114d602
DJ
14148
14149static void
14150read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14151{
14152 struct objfile *objfile = cu->objfile;
0114d602 14153 int is_anonymous;
9219021c 14154
5c4e30ca
DC
14155 /* Add a symbol associated to this if we haven't seen the namespace
14156 before. Also, add a using directive if it's an anonymous
14157 namespace. */
9219021c 14158
f2f0e013 14159 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14160 {
14161 struct type *type;
14162
0114d602 14163 type = read_type_die (die, cu);
e7c27a73 14164 new_symbol (die, type, cu);
5c4e30ca 14165
e8e80198 14166 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14167 if (is_anonymous)
0114d602
DJ
14168 {
14169 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14170
22cee43f
PMR
14171 add_using_directive (using_directives (cu->language),
14172 previous_prefix, TYPE_NAME (type), NULL,
14173 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14174 }
5c4e30ca 14175 }
9219021c 14176
639d11d3 14177 if (die->child != NULL)
d9fa45fe 14178 {
639d11d3 14179 struct die_info *child_die = die->child;
6e70227d 14180
d9fa45fe
DC
14181 while (child_die && child_die->tag)
14182 {
e7c27a73 14183 process_die (child_die, cu);
d9fa45fe
DC
14184 child_die = sibling_die (child_die);
14185 }
14186 }
38d518c9
EZ
14187}
14188
f55ee35c
JK
14189/* Read a Fortran module as type. This DIE can be only a declaration used for
14190 imported module. Still we need that type as local Fortran "use ... only"
14191 declaration imports depend on the created type in determine_prefix. */
14192
14193static struct type *
14194read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14195{
14196 struct objfile *objfile = cu->objfile;
15d034d0 14197 const char *module_name;
f55ee35c
JK
14198 struct type *type;
14199
14200 module_name = dwarf2_name (die, cu);
14201 if (!module_name)
3e43a32a
MS
14202 complaint (&symfile_complaints,
14203 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14204 die->offset.sect_off);
f55ee35c
JK
14205 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14206
14207 /* determine_prefix uses TYPE_TAG_NAME. */
14208 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14209
14210 return set_die_type (die, type, cu);
14211}
14212
5d7cb8df
JK
14213/* Read a Fortran module. */
14214
14215static void
14216read_module (struct die_info *die, struct dwarf2_cu *cu)
14217{
14218 struct die_info *child_die = die->child;
530e8392
KB
14219 struct type *type;
14220
14221 type = read_type_die (die, cu);
14222 new_symbol (die, type, cu);
5d7cb8df 14223
5d7cb8df
JK
14224 while (child_die && child_die->tag)
14225 {
14226 process_die (child_die, cu);
14227 child_die = sibling_die (child_die);
14228 }
14229}
14230
38d518c9
EZ
14231/* Return the name of the namespace represented by DIE. Set
14232 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14233 namespace. */
14234
14235static const char *
e142c38c 14236namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14237{
14238 struct die_info *current_die;
14239 const char *name = NULL;
14240
14241 /* Loop through the extensions until we find a name. */
14242
14243 for (current_die = die;
14244 current_die != NULL;
f2f0e013 14245 current_die = dwarf2_extension (die, &cu))
38d518c9 14246 {
96553a0c
DE
14247 /* We don't use dwarf2_name here so that we can detect the absence
14248 of a name -> anonymous namespace. */
7d45c7c3 14249 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14250
38d518c9
EZ
14251 if (name != NULL)
14252 break;
14253 }
14254
14255 /* Is it an anonymous namespace? */
14256
14257 *is_anonymous = (name == NULL);
14258 if (*is_anonymous)
2b1dbab0 14259 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14260
14261 return name;
d9fa45fe
DC
14262}
14263
c906108c
SS
14264/* Extract all information from a DW_TAG_pointer_type DIE and add to
14265 the user defined type vector. */
14266
f792889a 14267static struct type *
e7c27a73 14268read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14269{
5e2b427d 14270 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14271 struct comp_unit_head *cu_header = &cu->header;
c906108c 14272 struct type *type;
8b2dbe47
KB
14273 struct attribute *attr_byte_size;
14274 struct attribute *attr_address_class;
14275 int byte_size, addr_class;
7e314c57
JK
14276 struct type *target_type;
14277
14278 target_type = die_type (die, cu);
c906108c 14279
7e314c57
JK
14280 /* The die_type call above may have already set the type for this DIE. */
14281 type = get_die_type (die, cu);
14282 if (type)
14283 return type;
14284
14285 type = lookup_pointer_type (target_type);
8b2dbe47 14286
e142c38c 14287 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14288 if (attr_byte_size)
14289 byte_size = DW_UNSND (attr_byte_size);
c906108c 14290 else
8b2dbe47
KB
14291 byte_size = cu_header->addr_size;
14292
e142c38c 14293 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14294 if (attr_address_class)
14295 addr_class = DW_UNSND (attr_address_class);
14296 else
14297 addr_class = DW_ADDR_none;
14298
14299 /* If the pointer size or address class is different than the
14300 default, create a type variant marked as such and set the
14301 length accordingly. */
14302 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14303 {
5e2b427d 14304 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14305 {
14306 int type_flags;
14307
849957d9 14308 type_flags = gdbarch_address_class_type_flags
5e2b427d 14309 (gdbarch, byte_size, addr_class);
876cecd0
TT
14310 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14311 == 0);
8b2dbe47
KB
14312 type = make_type_with_address_space (type, type_flags);
14313 }
14314 else if (TYPE_LENGTH (type) != byte_size)
14315 {
3e43a32a
MS
14316 complaint (&symfile_complaints,
14317 _("invalid pointer size %d"), byte_size);
8b2dbe47 14318 }
6e70227d 14319 else
9a619af0
MS
14320 {
14321 /* Should we also complain about unhandled address classes? */
14322 }
c906108c 14323 }
8b2dbe47
KB
14324
14325 TYPE_LENGTH (type) = byte_size;
f792889a 14326 return set_die_type (die, type, cu);
c906108c
SS
14327}
14328
14329/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14330 the user defined type vector. */
14331
f792889a 14332static struct type *
e7c27a73 14333read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14334{
14335 struct type *type;
14336 struct type *to_type;
14337 struct type *domain;
14338
e7c27a73
DJ
14339 to_type = die_type (die, cu);
14340 domain = die_containing_type (die, cu);
0d5de010 14341
7e314c57
JK
14342 /* The calls above may have already set the type for this DIE. */
14343 type = get_die_type (die, cu);
14344 if (type)
14345 return type;
14346
0d5de010
DJ
14347 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14348 type = lookup_methodptr_type (to_type);
7078baeb
TT
14349 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14350 {
14351 struct type *new_type = alloc_type (cu->objfile);
14352
14353 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14354 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14355 TYPE_VARARGS (to_type));
14356 type = lookup_methodptr_type (new_type);
14357 }
0d5de010
DJ
14358 else
14359 type = lookup_memberptr_type (to_type, domain);
c906108c 14360
f792889a 14361 return set_die_type (die, type, cu);
c906108c
SS
14362}
14363
14364/* Extract all information from a DW_TAG_reference_type DIE and add to
14365 the user defined type vector. */
14366
f792889a 14367static struct type *
e7c27a73 14368read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14369{
e7c27a73 14370 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14371 struct type *type, *target_type;
c906108c
SS
14372 struct attribute *attr;
14373
7e314c57
JK
14374 target_type = die_type (die, cu);
14375
14376 /* The die_type call above may have already set the type for this DIE. */
14377 type = get_die_type (die, cu);
14378 if (type)
14379 return type;
14380
14381 type = lookup_reference_type (target_type);
e142c38c 14382 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14383 if (attr)
14384 {
14385 TYPE_LENGTH (type) = DW_UNSND (attr);
14386 }
14387 else
14388 {
107d2387 14389 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14390 }
f792889a 14391 return set_die_type (die, type, cu);
c906108c
SS
14392}
14393
cf363f18
MW
14394/* Add the given cv-qualifiers to the element type of the array. GCC
14395 outputs DWARF type qualifiers that apply to an array, not the
14396 element type. But GDB relies on the array element type to carry
14397 the cv-qualifiers. This mimics section 6.7.3 of the C99
14398 specification. */
14399
14400static struct type *
14401add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14402 struct type *base_type, int cnst, int voltl)
14403{
14404 struct type *el_type, *inner_array;
14405
14406 base_type = copy_type (base_type);
14407 inner_array = base_type;
14408
14409 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14410 {
14411 TYPE_TARGET_TYPE (inner_array) =
14412 copy_type (TYPE_TARGET_TYPE (inner_array));
14413 inner_array = TYPE_TARGET_TYPE (inner_array);
14414 }
14415
14416 el_type = TYPE_TARGET_TYPE (inner_array);
14417 cnst |= TYPE_CONST (el_type);
14418 voltl |= TYPE_VOLATILE (el_type);
14419 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14420
14421 return set_die_type (die, base_type, cu);
14422}
14423
f792889a 14424static struct type *
e7c27a73 14425read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14426{
f792889a 14427 struct type *base_type, *cv_type;
c906108c 14428
e7c27a73 14429 base_type = die_type (die, cu);
7e314c57
JK
14430
14431 /* The die_type call above may have already set the type for this DIE. */
14432 cv_type = get_die_type (die, cu);
14433 if (cv_type)
14434 return cv_type;
14435
2f608a3a
KW
14436 /* In case the const qualifier is applied to an array type, the element type
14437 is so qualified, not the array type (section 6.7.3 of C99). */
14438 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14439 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14440
f792889a
DJ
14441 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14442 return set_die_type (die, cv_type, cu);
c906108c
SS
14443}
14444
f792889a 14445static struct type *
e7c27a73 14446read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14447{
f792889a 14448 struct type *base_type, *cv_type;
c906108c 14449
e7c27a73 14450 base_type = die_type (die, cu);
7e314c57
JK
14451
14452 /* The die_type call above may have already set the type for this DIE. */
14453 cv_type = get_die_type (die, cu);
14454 if (cv_type)
14455 return cv_type;
14456
cf363f18
MW
14457 /* In case the volatile qualifier is applied to an array type, the
14458 element type is so qualified, not the array type (section 6.7.3
14459 of C99). */
14460 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14461 return add_array_cv_type (die, cu, base_type, 0, 1);
14462
f792889a
DJ
14463 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14464 return set_die_type (die, cv_type, cu);
c906108c
SS
14465}
14466
06d66ee9
TT
14467/* Handle DW_TAG_restrict_type. */
14468
14469static struct type *
14470read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14471{
14472 struct type *base_type, *cv_type;
14473
14474 base_type = die_type (die, cu);
14475
14476 /* The die_type call above may have already set the type for this DIE. */
14477 cv_type = get_die_type (die, cu);
14478 if (cv_type)
14479 return cv_type;
14480
14481 cv_type = make_restrict_type (base_type);
14482 return set_die_type (die, cv_type, cu);
14483}
14484
a2c2acaf
MW
14485/* Handle DW_TAG_atomic_type. */
14486
14487static struct type *
14488read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14489{
14490 struct type *base_type, *cv_type;
14491
14492 base_type = die_type (die, cu);
14493
14494 /* The die_type call above may have already set the type for this DIE. */
14495 cv_type = get_die_type (die, cu);
14496 if (cv_type)
14497 return cv_type;
14498
14499 cv_type = make_atomic_type (base_type);
14500 return set_die_type (die, cv_type, cu);
14501}
14502
c906108c
SS
14503/* Extract all information from a DW_TAG_string_type DIE and add to
14504 the user defined type vector. It isn't really a user defined type,
14505 but it behaves like one, with other DIE's using an AT_user_def_type
14506 attribute to reference it. */
14507
f792889a 14508static struct type *
e7c27a73 14509read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14510{
e7c27a73 14511 struct objfile *objfile = cu->objfile;
3b7538c0 14512 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14513 struct type *type, *range_type, *index_type, *char_type;
14514 struct attribute *attr;
14515 unsigned int length;
14516
e142c38c 14517 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14518 if (attr)
14519 {
14520 length = DW_UNSND (attr);
14521 }
14522 else
14523 {
0963b4bd 14524 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14525 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14526 if (attr)
14527 {
14528 length = DW_UNSND (attr);
14529 }
14530 else
14531 {
14532 length = 1;
14533 }
c906108c 14534 }
6ccb9162 14535
46bf5051 14536 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14537 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14538 char_type = language_string_char_type (cu->language_defn, gdbarch);
14539 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14540
f792889a 14541 return set_die_type (die, type, cu);
c906108c
SS
14542}
14543
4d804846
JB
14544/* Assuming that DIE corresponds to a function, returns nonzero
14545 if the function is prototyped. */
14546
14547static int
14548prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14549{
14550 struct attribute *attr;
14551
14552 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14553 if (attr && (DW_UNSND (attr) != 0))
14554 return 1;
14555
14556 /* The DWARF standard implies that the DW_AT_prototyped attribute
14557 is only meaninful for C, but the concept also extends to other
14558 languages that allow unprototyped functions (Eg: Objective C).
14559 For all other languages, assume that functions are always
14560 prototyped. */
14561 if (cu->language != language_c
14562 && cu->language != language_objc
14563 && cu->language != language_opencl)
14564 return 1;
14565
14566 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14567 prototyped and unprototyped functions; default to prototyped,
14568 since that is more common in modern code (and RealView warns
14569 about unprototyped functions). */
14570 if (producer_is_realview (cu->producer))
14571 return 1;
14572
14573 return 0;
14574}
14575
c906108c
SS
14576/* Handle DIES due to C code like:
14577
14578 struct foo
c5aa993b
JM
14579 {
14580 int (*funcp)(int a, long l);
14581 int b;
14582 };
c906108c 14583
0963b4bd 14584 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14585
f792889a 14586static struct type *
e7c27a73 14587read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14588{
bb5ed363 14589 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14590 struct type *type; /* Type that this function returns. */
14591 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14592 struct attribute *attr;
14593
e7c27a73 14594 type = die_type (die, cu);
7e314c57
JK
14595
14596 /* The die_type call above may have already set the type for this DIE. */
14597 ftype = get_die_type (die, cu);
14598 if (ftype)
14599 return ftype;
14600
0c8b41f1 14601 ftype = lookup_function_type (type);
c906108c 14602
4d804846 14603 if (prototyped_function_p (die, cu))
a6c727b2 14604 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14605
c055b101
CV
14606 /* Store the calling convention in the type if it's available in
14607 the subroutine die. Otherwise set the calling convention to
14608 the default value DW_CC_normal. */
14609 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14610 if (attr)
14611 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14612 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14613 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14614 else
14615 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14616
743649fd
MW
14617 /* Record whether the function returns normally to its caller or not
14618 if the DWARF producer set that information. */
14619 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14620 if (attr && (DW_UNSND (attr) != 0))
14621 TYPE_NO_RETURN (ftype) = 1;
14622
76c10ea2
GM
14623 /* We need to add the subroutine type to the die immediately so
14624 we don't infinitely recurse when dealing with parameters
0963b4bd 14625 declared as the same subroutine type. */
76c10ea2 14626 set_die_type (die, ftype, cu);
6e70227d 14627
639d11d3 14628 if (die->child != NULL)
c906108c 14629 {
bb5ed363 14630 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14631 struct die_info *child_die;
8072405b 14632 int nparams, iparams;
c906108c
SS
14633
14634 /* Count the number of parameters.
14635 FIXME: GDB currently ignores vararg functions, but knows about
14636 vararg member functions. */
8072405b 14637 nparams = 0;
639d11d3 14638 child_die = die->child;
c906108c
SS
14639 while (child_die && child_die->tag)
14640 {
14641 if (child_die->tag == DW_TAG_formal_parameter)
14642 nparams++;
14643 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14644 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14645 child_die = sibling_die (child_die);
14646 }
14647
14648 /* Allocate storage for parameters and fill them in. */
14649 TYPE_NFIELDS (ftype) = nparams;
14650 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14651 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14652
8072405b
JK
14653 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14654 even if we error out during the parameters reading below. */
14655 for (iparams = 0; iparams < nparams; iparams++)
14656 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14657
14658 iparams = 0;
639d11d3 14659 child_die = die->child;
c906108c
SS
14660 while (child_die && child_die->tag)
14661 {
14662 if (child_die->tag == DW_TAG_formal_parameter)
14663 {
3ce3b1ba
PA
14664 struct type *arg_type;
14665
14666 /* DWARF version 2 has no clean way to discern C++
14667 static and non-static member functions. G++ helps
14668 GDB by marking the first parameter for non-static
14669 member functions (which is the this pointer) as
14670 artificial. We pass this information to
14671 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14672
14673 DWARF version 3 added DW_AT_object_pointer, which GCC
14674 4.5 does not yet generate. */
e142c38c 14675 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14676 if (attr)
14677 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14678 else
418835cc
KS
14679 {
14680 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14681
14682 /* GCC/43521: In java, the formal parameter
14683 "this" is sometimes not marked with DW_AT_artificial. */
14684 if (cu->language == language_java)
14685 {
14686 const char *name = dwarf2_name (child_die, cu);
9a619af0 14687
418835cc
KS
14688 if (name && !strcmp (name, "this"))
14689 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14690 }
14691 }
3ce3b1ba
PA
14692 arg_type = die_type (child_die, cu);
14693
14694 /* RealView does not mark THIS as const, which the testsuite
14695 expects. GCC marks THIS as const in method definitions,
14696 but not in the class specifications (GCC PR 43053). */
14697 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14698 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14699 {
14700 int is_this = 0;
14701 struct dwarf2_cu *arg_cu = cu;
14702 const char *name = dwarf2_name (child_die, cu);
14703
14704 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14705 if (attr)
14706 {
14707 /* If the compiler emits this, use it. */
14708 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14709 is_this = 1;
14710 }
14711 else if (name && strcmp (name, "this") == 0)
14712 /* Function definitions will have the argument names. */
14713 is_this = 1;
14714 else if (name == NULL && iparams == 0)
14715 /* Declarations may not have the names, so like
14716 elsewhere in GDB, assume an artificial first
14717 argument is "this". */
14718 is_this = 1;
14719
14720 if (is_this)
14721 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14722 arg_type, 0);
14723 }
14724
14725 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14726 iparams++;
14727 }
14728 child_die = sibling_die (child_die);
14729 }
14730 }
14731
76c10ea2 14732 return ftype;
c906108c
SS
14733}
14734
f792889a 14735static struct type *
e7c27a73 14736read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14737{
e7c27a73 14738 struct objfile *objfile = cu->objfile;
0114d602 14739 const char *name = NULL;
3c8e0968 14740 struct type *this_type, *target_type;
c906108c 14741
94af9270 14742 name = dwarf2_full_name (NULL, die, cu);
f792889a 14743 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14744 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14745 TYPE_NAME (this_type) = name;
f792889a 14746 set_die_type (die, this_type, cu);
3c8e0968
DE
14747 target_type = die_type (die, cu);
14748 if (target_type != this_type)
14749 TYPE_TARGET_TYPE (this_type) = target_type;
14750 else
14751 {
14752 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14753 spec and cause infinite loops in GDB. */
14754 complaint (&symfile_complaints,
14755 _("Self-referential DW_TAG_typedef "
14756 "- DIE at 0x%x [in module %s]"),
4262abfb 14757 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14758 TYPE_TARGET_TYPE (this_type) = NULL;
14759 }
f792889a 14760 return this_type;
c906108c
SS
14761}
14762
14763/* Find a representation of a given base type and install
14764 it in the TYPE field of the die. */
14765
f792889a 14766static struct type *
e7c27a73 14767read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14768{
e7c27a73 14769 struct objfile *objfile = cu->objfile;
c906108c
SS
14770 struct type *type;
14771 struct attribute *attr;
14772 int encoding = 0, size = 0;
15d034d0 14773 const char *name;
6ccb9162
UW
14774 enum type_code code = TYPE_CODE_INT;
14775 int type_flags = 0;
14776 struct type *target_type = NULL;
c906108c 14777
e142c38c 14778 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14779 if (attr)
14780 {
14781 encoding = DW_UNSND (attr);
14782 }
e142c38c 14783 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14784 if (attr)
14785 {
14786 size = DW_UNSND (attr);
14787 }
39cbfefa 14788 name = dwarf2_name (die, cu);
6ccb9162 14789 if (!name)
c906108c 14790 {
6ccb9162
UW
14791 complaint (&symfile_complaints,
14792 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14793 }
6ccb9162
UW
14794
14795 switch (encoding)
c906108c 14796 {
6ccb9162
UW
14797 case DW_ATE_address:
14798 /* Turn DW_ATE_address into a void * pointer. */
14799 code = TYPE_CODE_PTR;
14800 type_flags |= TYPE_FLAG_UNSIGNED;
14801 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14802 break;
14803 case DW_ATE_boolean:
14804 code = TYPE_CODE_BOOL;
14805 type_flags |= TYPE_FLAG_UNSIGNED;
14806 break;
14807 case DW_ATE_complex_float:
14808 code = TYPE_CODE_COMPLEX;
14809 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14810 break;
14811 case DW_ATE_decimal_float:
14812 code = TYPE_CODE_DECFLOAT;
14813 break;
14814 case DW_ATE_float:
14815 code = TYPE_CODE_FLT;
14816 break;
14817 case DW_ATE_signed:
14818 break;
14819 case DW_ATE_unsigned:
14820 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14821 if (cu->language == language_fortran
14822 && name
61012eef 14823 && startswith (name, "character("))
3b2b8fea 14824 code = TYPE_CODE_CHAR;
6ccb9162
UW
14825 break;
14826 case DW_ATE_signed_char:
6e70227d 14827 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14828 || cu->language == language_pascal
14829 || cu->language == language_fortran)
6ccb9162
UW
14830 code = TYPE_CODE_CHAR;
14831 break;
14832 case DW_ATE_unsigned_char:
868a0084 14833 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 14834 || cu->language == language_pascal
c44af4eb
TT
14835 || cu->language == language_fortran
14836 || cu->language == language_rust)
6ccb9162
UW
14837 code = TYPE_CODE_CHAR;
14838 type_flags |= TYPE_FLAG_UNSIGNED;
14839 break;
75079b2b
TT
14840 case DW_ATE_UTF:
14841 /* We just treat this as an integer and then recognize the
14842 type by name elsewhere. */
14843 break;
14844
6ccb9162
UW
14845 default:
14846 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14847 dwarf_type_encoding_name (encoding));
14848 break;
c906108c 14849 }
6ccb9162 14850
0114d602
DJ
14851 type = init_type (code, size, type_flags, NULL, objfile);
14852 TYPE_NAME (type) = name;
6ccb9162
UW
14853 TYPE_TARGET_TYPE (type) = target_type;
14854
0114d602 14855 if (name && strcmp (name, "char") == 0)
876cecd0 14856 TYPE_NOSIGN (type) = 1;
0114d602 14857
f792889a 14858 return set_die_type (die, type, cu);
c906108c
SS
14859}
14860
80180f79
SA
14861/* Parse dwarf attribute if it's a block, reference or constant and put the
14862 resulting value of the attribute into struct bound_prop.
14863 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14864
14865static int
14866attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14867 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14868{
14869 struct dwarf2_property_baton *baton;
14870 struct obstack *obstack = &cu->objfile->objfile_obstack;
14871
14872 if (attr == NULL || prop == NULL)
14873 return 0;
14874
14875 if (attr_form_is_block (attr))
14876 {
8d749320 14877 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14878 baton->referenced_type = NULL;
14879 baton->locexpr.per_cu = cu->per_cu;
14880 baton->locexpr.size = DW_BLOCK (attr)->size;
14881 baton->locexpr.data = DW_BLOCK (attr)->data;
14882 prop->data.baton = baton;
14883 prop->kind = PROP_LOCEXPR;
14884 gdb_assert (prop->data.baton != NULL);
14885 }
14886 else if (attr_form_is_ref (attr))
14887 {
14888 struct dwarf2_cu *target_cu = cu;
14889 struct die_info *target_die;
14890 struct attribute *target_attr;
14891
14892 target_die = follow_die_ref (die, attr, &target_cu);
14893 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14894 if (target_attr == NULL)
14895 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14896 target_cu);
80180f79
SA
14897 if (target_attr == NULL)
14898 return 0;
14899
df25ebbd 14900 switch (target_attr->name)
80180f79 14901 {
df25ebbd
JB
14902 case DW_AT_location:
14903 if (attr_form_is_section_offset (target_attr))
14904 {
8d749320 14905 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14906 baton->referenced_type = die_type (target_die, target_cu);
14907 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14908 prop->data.baton = baton;
14909 prop->kind = PROP_LOCLIST;
14910 gdb_assert (prop->data.baton != NULL);
14911 }
14912 else if (attr_form_is_block (target_attr))
14913 {
8d749320 14914 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14915 baton->referenced_type = die_type (target_die, target_cu);
14916 baton->locexpr.per_cu = cu->per_cu;
14917 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14918 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14919 prop->data.baton = baton;
14920 prop->kind = PROP_LOCEXPR;
14921 gdb_assert (prop->data.baton != NULL);
14922 }
14923 else
14924 {
14925 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14926 "dynamic property");
14927 return 0;
14928 }
14929 break;
14930 case DW_AT_data_member_location:
14931 {
14932 LONGEST offset;
14933
14934 if (!handle_data_member_location (target_die, target_cu,
14935 &offset))
14936 return 0;
14937
8d749320 14938 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14939 baton->referenced_type = read_type_die (target_die->parent,
14940 target_cu);
df25ebbd
JB
14941 baton->offset_info.offset = offset;
14942 baton->offset_info.type = die_type (target_die, target_cu);
14943 prop->data.baton = baton;
14944 prop->kind = PROP_ADDR_OFFSET;
14945 break;
14946 }
80180f79
SA
14947 }
14948 }
14949 else if (attr_form_is_constant (attr))
14950 {
14951 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14952 prop->kind = PROP_CONST;
14953 }
14954 else
14955 {
14956 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14957 dwarf2_name (die, cu));
14958 return 0;
14959 }
14960
14961 return 1;
14962}
14963
a02abb62
JB
14964/* Read the given DW_AT_subrange DIE. */
14965
f792889a 14966static struct type *
a02abb62
JB
14967read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14968{
4c9ad8c2 14969 struct type *base_type, *orig_base_type;
a02abb62
JB
14970 struct type *range_type;
14971 struct attribute *attr;
729efb13 14972 struct dynamic_prop low, high;
4fae6e18 14973 int low_default_is_valid;
c451ebe5 14974 int high_bound_is_count = 0;
15d034d0 14975 const char *name;
43bbcdc2 14976 LONGEST negative_mask;
e77813c8 14977
4c9ad8c2
TT
14978 orig_base_type = die_type (die, cu);
14979 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14980 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14981 creating the range type, but we use the result of check_typedef
14982 when examining properties of the type. */
14983 base_type = check_typedef (orig_base_type);
a02abb62 14984
7e314c57
JK
14985 /* The die_type call above may have already set the type for this DIE. */
14986 range_type = get_die_type (die, cu);
14987 if (range_type)
14988 return range_type;
14989
729efb13
SA
14990 low.kind = PROP_CONST;
14991 high.kind = PROP_CONST;
14992 high.data.const_val = 0;
14993
4fae6e18
JK
14994 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14995 omitting DW_AT_lower_bound. */
14996 switch (cu->language)
6e70227d 14997 {
4fae6e18
JK
14998 case language_c:
14999 case language_cplus:
729efb13 15000 low.data.const_val = 0;
4fae6e18
JK
15001 low_default_is_valid = 1;
15002 break;
15003 case language_fortran:
729efb13 15004 low.data.const_val = 1;
4fae6e18
JK
15005 low_default_is_valid = 1;
15006 break;
15007 case language_d:
15008 case language_java:
15009 case language_objc:
c44af4eb 15010 case language_rust:
729efb13 15011 low.data.const_val = 0;
4fae6e18
JK
15012 low_default_is_valid = (cu->header.version >= 4);
15013 break;
15014 case language_ada:
15015 case language_m2:
15016 case language_pascal:
729efb13 15017 low.data.const_val = 1;
4fae6e18
JK
15018 low_default_is_valid = (cu->header.version >= 4);
15019 break;
15020 default:
729efb13 15021 low.data.const_val = 0;
4fae6e18
JK
15022 low_default_is_valid = 0;
15023 break;
a02abb62
JB
15024 }
15025
e142c38c 15026 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15027 if (attr)
11c1ba78 15028 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15029 else if (!low_default_is_valid)
15030 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15031 "- DIE at 0x%x [in module %s]"),
4262abfb 15032 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15033
e142c38c 15034 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15035 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15036 {
15037 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15038 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15039 {
c451ebe5
SA
15040 /* If bounds are constant do the final calculation here. */
15041 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15042 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15043 else
15044 high_bound_is_count = 1;
c2ff108b 15045 }
e77813c8
PM
15046 }
15047
15048 /* Dwarf-2 specifications explicitly allows to create subrange types
15049 without specifying a base type.
15050 In that case, the base type must be set to the type of
15051 the lower bound, upper bound or count, in that order, if any of these
15052 three attributes references an object that has a type.
15053 If no base type is found, the Dwarf-2 specifications say that
15054 a signed integer type of size equal to the size of an address should
15055 be used.
15056 For the following C code: `extern char gdb_int [];'
15057 GCC produces an empty range DIE.
15058 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15059 high bound or count are not yet handled by this code. */
e77813c8
PM
15060 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15061 {
15062 struct objfile *objfile = cu->objfile;
15063 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15064 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15065 struct type *int_type = objfile_type (objfile)->builtin_int;
15066
15067 /* Test "int", "long int", and "long long int" objfile types,
15068 and select the first one having a size above or equal to the
15069 architecture address size. */
15070 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15071 base_type = int_type;
15072 else
15073 {
15074 int_type = objfile_type (objfile)->builtin_long;
15075 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15076 base_type = int_type;
15077 else
15078 {
15079 int_type = objfile_type (objfile)->builtin_long_long;
15080 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15081 base_type = int_type;
15082 }
15083 }
15084 }
a02abb62 15085
dbb9c2b1
JB
15086 /* Normally, the DWARF producers are expected to use a signed
15087 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15088 But this is unfortunately not always the case, as witnessed
15089 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15090 is used instead. To work around that ambiguity, we treat
15091 the bounds as signed, and thus sign-extend their values, when
15092 the base type is signed. */
6e70227d 15093 negative_mask =
66c6502d 15094 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15095 if (low.kind == PROP_CONST
15096 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15097 low.data.const_val |= negative_mask;
15098 if (high.kind == PROP_CONST
15099 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15100 high.data.const_val |= negative_mask;
43bbcdc2 15101
729efb13 15102 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15103
c451ebe5
SA
15104 if (high_bound_is_count)
15105 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15106
c2ff108b
JK
15107 /* Ada expects an empty array on no boundary attributes. */
15108 if (attr == NULL && cu->language != language_ada)
729efb13 15109 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15110
39cbfefa
DJ
15111 name = dwarf2_name (die, cu);
15112 if (name)
15113 TYPE_NAME (range_type) = name;
6e70227d 15114
e142c38c 15115 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15116 if (attr)
15117 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15118
7e314c57
JK
15119 set_die_type (die, range_type, cu);
15120
15121 /* set_die_type should be already done. */
b4ba55a1
JB
15122 set_descriptive_type (range_type, die, cu);
15123
7e314c57 15124 return range_type;
a02abb62 15125}
6e70227d 15126
f792889a 15127static struct type *
81a17f79
JB
15128read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15129{
15130 struct type *type;
81a17f79 15131
81a17f79
JB
15132 /* For now, we only support the C meaning of an unspecified type: void. */
15133
0114d602
DJ
15134 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15135 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15136
f792889a 15137 return set_die_type (die, type, cu);
81a17f79 15138}
a02abb62 15139
639d11d3
DC
15140/* Read a single die and all its descendents. Set the die's sibling
15141 field to NULL; set other fields in the die correctly, and set all
15142 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15143 location of the info_ptr after reading all of those dies. PARENT
15144 is the parent of the die in question. */
15145
15146static struct die_info *
dee91e82 15147read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15148 const gdb_byte *info_ptr,
15149 const gdb_byte **new_info_ptr,
dee91e82 15150 struct die_info *parent)
639d11d3
DC
15151{
15152 struct die_info *die;
d521ce57 15153 const gdb_byte *cur_ptr;
639d11d3
DC
15154 int has_children;
15155
bf6af496 15156 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15157 if (die == NULL)
15158 {
15159 *new_info_ptr = cur_ptr;
15160 return NULL;
15161 }
93311388 15162 store_in_ref_table (die, reader->cu);
639d11d3
DC
15163
15164 if (has_children)
bf6af496 15165 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15166 else
15167 {
15168 die->child = NULL;
15169 *new_info_ptr = cur_ptr;
15170 }
15171
15172 die->sibling = NULL;
15173 die->parent = parent;
15174 return die;
15175}
15176
15177/* Read a die, all of its descendents, and all of its siblings; set
15178 all of the fields of all of the dies correctly. Arguments are as
15179 in read_die_and_children. */
15180
15181static struct die_info *
bf6af496 15182read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15183 const gdb_byte *info_ptr,
15184 const gdb_byte **new_info_ptr,
bf6af496 15185 struct die_info *parent)
639d11d3
DC
15186{
15187 struct die_info *first_die, *last_sibling;
d521ce57 15188 const gdb_byte *cur_ptr;
639d11d3 15189
c906108c 15190 cur_ptr = info_ptr;
639d11d3
DC
15191 first_die = last_sibling = NULL;
15192
15193 while (1)
c906108c 15194 {
639d11d3 15195 struct die_info *die
dee91e82 15196 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15197
1d325ec1 15198 if (die == NULL)
c906108c 15199 {
639d11d3
DC
15200 *new_info_ptr = cur_ptr;
15201 return first_die;
c906108c 15202 }
1d325ec1
DJ
15203
15204 if (!first_die)
15205 first_die = die;
c906108c 15206 else
1d325ec1
DJ
15207 last_sibling->sibling = die;
15208
15209 last_sibling = die;
c906108c 15210 }
c906108c
SS
15211}
15212
bf6af496
DE
15213/* Read a die, all of its descendents, and all of its siblings; set
15214 all of the fields of all of the dies correctly. Arguments are as
15215 in read_die_and_children.
15216 This the main entry point for reading a DIE and all its children. */
15217
15218static struct die_info *
15219read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15220 const gdb_byte *info_ptr,
15221 const gdb_byte **new_info_ptr,
bf6af496
DE
15222 struct die_info *parent)
15223{
15224 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15225 new_info_ptr, parent);
15226
b4f54984 15227 if (dwarf_die_debug)
bf6af496
DE
15228 {
15229 fprintf_unfiltered (gdb_stdlog,
15230 "Read die from %s@0x%x of %s:\n",
a32a8923 15231 get_section_name (reader->die_section),
bf6af496
DE
15232 (unsigned) (info_ptr - reader->die_section->buffer),
15233 bfd_get_filename (reader->abfd));
b4f54984 15234 dump_die (die, dwarf_die_debug);
bf6af496
DE
15235 }
15236
15237 return die;
15238}
15239
3019eac3
DE
15240/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15241 attributes.
15242 The caller is responsible for filling in the extra attributes
15243 and updating (*DIEP)->num_attrs.
15244 Set DIEP to point to a newly allocated die with its information,
15245 except for its child, sibling, and parent fields.
15246 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15247
d521ce57 15248static const gdb_byte *
3019eac3 15249read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15250 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15251 int *has_children, int num_extra_attrs)
93311388 15252{
b64f50a1
JK
15253 unsigned int abbrev_number, bytes_read, i;
15254 sect_offset offset;
93311388
DE
15255 struct abbrev_info *abbrev;
15256 struct die_info *die;
15257 struct dwarf2_cu *cu = reader->cu;
15258 bfd *abfd = reader->abfd;
15259
b64f50a1 15260 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15261 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15262 info_ptr += bytes_read;
15263 if (!abbrev_number)
15264 {
15265 *diep = NULL;
15266 *has_children = 0;
15267 return info_ptr;
15268 }
15269
433df2d4 15270 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15271 if (!abbrev)
348e048f
DE
15272 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15273 abbrev_number,
15274 bfd_get_filename (abfd));
15275
3019eac3 15276 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15277 die->offset = offset;
15278 die->tag = abbrev->tag;
15279 die->abbrev = abbrev_number;
15280
3019eac3
DE
15281 /* Make the result usable.
15282 The caller needs to update num_attrs after adding the extra
15283 attributes. */
93311388
DE
15284 die->num_attrs = abbrev->num_attrs;
15285
15286 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15287 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15288 info_ptr);
93311388
DE
15289
15290 *diep = die;
15291 *has_children = abbrev->has_children;
15292 return info_ptr;
15293}
15294
3019eac3
DE
15295/* Read a die and all its attributes.
15296 Set DIEP to point to a newly allocated die with its information,
15297 except for its child, sibling, and parent fields.
15298 Set HAS_CHILDREN to tell whether the die has children or not. */
15299
d521ce57 15300static const gdb_byte *
3019eac3 15301read_full_die (const struct die_reader_specs *reader,
d521ce57 15302 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15303 int *has_children)
15304{
d521ce57 15305 const gdb_byte *result;
bf6af496
DE
15306
15307 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15308
b4f54984 15309 if (dwarf_die_debug)
bf6af496
DE
15310 {
15311 fprintf_unfiltered (gdb_stdlog,
15312 "Read die from %s@0x%x of %s:\n",
a32a8923 15313 get_section_name (reader->die_section),
bf6af496
DE
15314 (unsigned) (info_ptr - reader->die_section->buffer),
15315 bfd_get_filename (reader->abfd));
b4f54984 15316 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15317 }
15318
15319 return result;
3019eac3 15320}
433df2d4
DE
15321\f
15322/* Abbreviation tables.
3019eac3 15323
433df2d4 15324 In DWARF version 2, the description of the debugging information is
c906108c
SS
15325 stored in a separate .debug_abbrev section. Before we read any
15326 dies from a section we read in all abbreviations and install them
433df2d4
DE
15327 in a hash table. */
15328
15329/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15330
15331static struct abbrev_info *
15332abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15333{
15334 struct abbrev_info *abbrev;
15335
8d749320 15336 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15337 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15338
433df2d4
DE
15339 return abbrev;
15340}
15341
15342/* Add an abbreviation to the table. */
c906108c
SS
15343
15344static void
433df2d4
DE
15345abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15346 unsigned int abbrev_number,
15347 struct abbrev_info *abbrev)
15348{
15349 unsigned int hash_number;
15350
15351 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15352 abbrev->next = abbrev_table->abbrevs[hash_number];
15353 abbrev_table->abbrevs[hash_number] = abbrev;
15354}
dee91e82 15355
433df2d4
DE
15356/* Look up an abbrev in the table.
15357 Returns NULL if the abbrev is not found. */
15358
15359static struct abbrev_info *
15360abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15361 unsigned int abbrev_number)
c906108c 15362{
433df2d4
DE
15363 unsigned int hash_number;
15364 struct abbrev_info *abbrev;
15365
15366 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15367 abbrev = abbrev_table->abbrevs[hash_number];
15368
15369 while (abbrev)
15370 {
15371 if (abbrev->number == abbrev_number)
15372 return abbrev;
15373 abbrev = abbrev->next;
15374 }
15375 return NULL;
15376}
15377
15378/* Read in an abbrev table. */
15379
15380static struct abbrev_table *
15381abbrev_table_read_table (struct dwarf2_section_info *section,
15382 sect_offset offset)
15383{
15384 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15385 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15386 struct abbrev_table *abbrev_table;
d521ce57 15387 const gdb_byte *abbrev_ptr;
c906108c
SS
15388 struct abbrev_info *cur_abbrev;
15389 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15390 unsigned int abbrev_form;
f3dd6933
DJ
15391 struct attr_abbrev *cur_attrs;
15392 unsigned int allocated_attrs;
c906108c 15393
70ba0933 15394 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15395 abbrev_table->offset = offset;
433df2d4 15396 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15397 abbrev_table->abbrevs =
15398 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15399 ABBREV_HASH_SIZE);
433df2d4
DE
15400 memset (abbrev_table->abbrevs, 0,
15401 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15402
433df2d4
DE
15403 dwarf2_read_section (objfile, section);
15404 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15405 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15406 abbrev_ptr += bytes_read;
15407
f3dd6933 15408 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15409 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15410
0963b4bd 15411 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15412 while (abbrev_number)
15413 {
433df2d4 15414 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15415
15416 /* read in abbrev header */
15417 cur_abbrev->number = abbrev_number;
aead7601
SM
15418 cur_abbrev->tag
15419 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15420 abbrev_ptr += bytes_read;
15421 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15422 abbrev_ptr += 1;
15423
15424 /* now read in declarations */
15425 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15426 abbrev_ptr += bytes_read;
15427 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15428 abbrev_ptr += bytes_read;
15429 while (abbrev_name)
15430 {
f3dd6933 15431 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15432 {
f3dd6933
DJ
15433 allocated_attrs += ATTR_ALLOC_CHUNK;
15434 cur_attrs
224c3ddb 15435 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15436 }
ae038cb0 15437
aead7601
SM
15438 cur_attrs[cur_abbrev->num_attrs].name
15439 = (enum dwarf_attribute) abbrev_name;
15440 cur_attrs[cur_abbrev->num_attrs++].form
15441 = (enum dwarf_form) abbrev_form;
c906108c
SS
15442 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15443 abbrev_ptr += bytes_read;
15444 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15445 abbrev_ptr += bytes_read;
15446 }
15447
8d749320
SM
15448 cur_abbrev->attrs =
15449 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15450 cur_abbrev->num_attrs);
f3dd6933
DJ
15451 memcpy (cur_abbrev->attrs, cur_attrs,
15452 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15453
433df2d4 15454 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15455
15456 /* Get next abbreviation.
15457 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15458 always properly terminated with an abbrev number of 0.
15459 Exit loop if we encounter an abbreviation which we have
15460 already read (which means we are about to read the abbreviations
15461 for the next compile unit) or if the end of the abbreviation
15462 table is reached. */
433df2d4 15463 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15464 break;
15465 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15466 abbrev_ptr += bytes_read;
433df2d4 15467 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15468 break;
15469 }
f3dd6933
DJ
15470
15471 xfree (cur_attrs);
433df2d4 15472 return abbrev_table;
c906108c
SS
15473}
15474
433df2d4 15475/* Free the resources held by ABBREV_TABLE. */
c906108c 15476
c906108c 15477static void
433df2d4 15478abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15479{
433df2d4
DE
15480 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15481 xfree (abbrev_table);
c906108c
SS
15482}
15483
f4dc4d17
DE
15484/* Same as abbrev_table_free but as a cleanup.
15485 We pass in a pointer to the pointer to the table so that we can
15486 set the pointer to NULL when we're done. It also simplifies
73051182 15487 build_type_psymtabs_1. */
f4dc4d17
DE
15488
15489static void
15490abbrev_table_free_cleanup (void *table_ptr)
15491{
9a3c8263 15492 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15493
15494 if (*abbrev_table_ptr != NULL)
15495 abbrev_table_free (*abbrev_table_ptr);
15496 *abbrev_table_ptr = NULL;
15497}
15498
433df2d4
DE
15499/* Read the abbrev table for CU from ABBREV_SECTION. */
15500
15501static void
15502dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15503 struct dwarf2_section_info *abbrev_section)
c906108c 15504{
433df2d4
DE
15505 cu->abbrev_table =
15506 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15507}
c906108c 15508
433df2d4 15509/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15510
433df2d4
DE
15511static void
15512dwarf2_free_abbrev_table (void *ptr_to_cu)
15513{
9a3c8263 15514 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15515
a2ce51a0
DE
15516 if (cu->abbrev_table != NULL)
15517 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15518 /* Set this to NULL so that we SEGV if we try to read it later,
15519 and also because free_comp_unit verifies this is NULL. */
15520 cu->abbrev_table = NULL;
15521}
15522\f
72bf9492
DJ
15523/* Returns nonzero if TAG represents a type that we might generate a partial
15524 symbol for. */
15525
15526static int
15527is_type_tag_for_partial (int tag)
15528{
15529 switch (tag)
15530 {
15531#if 0
15532 /* Some types that would be reasonable to generate partial symbols for,
15533 that we don't at present. */
15534 case DW_TAG_array_type:
15535 case DW_TAG_file_type:
15536 case DW_TAG_ptr_to_member_type:
15537 case DW_TAG_set_type:
15538 case DW_TAG_string_type:
15539 case DW_TAG_subroutine_type:
15540#endif
15541 case DW_TAG_base_type:
15542 case DW_TAG_class_type:
680b30c7 15543 case DW_TAG_interface_type:
72bf9492
DJ
15544 case DW_TAG_enumeration_type:
15545 case DW_TAG_structure_type:
15546 case DW_TAG_subrange_type:
15547 case DW_TAG_typedef:
15548 case DW_TAG_union_type:
15549 return 1;
15550 default:
15551 return 0;
15552 }
15553}
15554
15555/* Load all DIEs that are interesting for partial symbols into memory. */
15556
15557static struct partial_die_info *
dee91e82 15558load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15559 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15560{
dee91e82 15561 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15562 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15563 struct partial_die_info *part_die;
15564 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15565 struct abbrev_info *abbrev;
15566 unsigned int bytes_read;
5afb4e99 15567 unsigned int load_all = 0;
72bf9492
DJ
15568 int nesting_level = 1;
15569
15570 parent_die = NULL;
15571 last_die = NULL;
15572
7adf1e79
DE
15573 gdb_assert (cu->per_cu != NULL);
15574 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15575 load_all = 1;
15576
72bf9492
DJ
15577 cu->partial_dies
15578 = htab_create_alloc_ex (cu->header.length / 12,
15579 partial_die_hash,
15580 partial_die_eq,
15581 NULL,
15582 &cu->comp_unit_obstack,
15583 hashtab_obstack_allocate,
15584 dummy_obstack_deallocate);
15585
8d749320 15586 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15587
15588 while (1)
15589 {
15590 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15591
15592 /* A NULL abbrev means the end of a series of children. */
15593 if (abbrev == NULL)
15594 {
15595 if (--nesting_level == 0)
15596 {
15597 /* PART_DIE was probably the last thing allocated on the
15598 comp_unit_obstack, so we could call obstack_free
15599 here. We don't do that because the waste is small,
15600 and will be cleaned up when we're done with this
15601 compilation unit. This way, we're also more robust
15602 against other users of the comp_unit_obstack. */
15603 return first_die;
15604 }
15605 info_ptr += bytes_read;
15606 last_die = parent_die;
15607 parent_die = parent_die->die_parent;
15608 continue;
15609 }
15610
98bfdba5
PA
15611 /* Check for template arguments. We never save these; if
15612 they're seen, we just mark the parent, and go on our way. */
15613 if (parent_die != NULL
15614 && cu->language == language_cplus
15615 && (abbrev->tag == DW_TAG_template_type_param
15616 || abbrev->tag == DW_TAG_template_value_param))
15617 {
15618 parent_die->has_template_arguments = 1;
15619
15620 if (!load_all)
15621 {
15622 /* We don't need a partial DIE for the template argument. */
dee91e82 15623 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15624 continue;
15625 }
15626 }
15627
0d99eb77 15628 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15629 Skip their other children. */
15630 if (!load_all
15631 && cu->language == language_cplus
15632 && parent_die != NULL
15633 && parent_die->tag == DW_TAG_subprogram)
15634 {
dee91e82 15635 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15636 continue;
15637 }
15638
5afb4e99
DJ
15639 /* Check whether this DIE is interesting enough to save. Normally
15640 we would not be interested in members here, but there may be
15641 later variables referencing them via DW_AT_specification (for
15642 static members). */
15643 if (!load_all
15644 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15645 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15646 && abbrev->tag != DW_TAG_enumerator
15647 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15648 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15649 && abbrev->tag != DW_TAG_variable
5afb4e99 15650 && abbrev->tag != DW_TAG_namespace
f55ee35c 15651 && abbrev->tag != DW_TAG_module
95554aad 15652 && abbrev->tag != DW_TAG_member
74921315
KS
15653 && abbrev->tag != DW_TAG_imported_unit
15654 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15655 {
15656 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15657 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15658 continue;
15659 }
15660
dee91e82
DE
15661 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15662 info_ptr);
72bf9492
DJ
15663
15664 /* This two-pass algorithm for processing partial symbols has a
15665 high cost in cache pressure. Thus, handle some simple cases
15666 here which cover the majority of C partial symbols. DIEs
15667 which neither have specification tags in them, nor could have
15668 specification tags elsewhere pointing at them, can simply be
15669 processed and discarded.
15670
15671 This segment is also optional; scan_partial_symbols and
15672 add_partial_symbol will handle these DIEs if we chain
15673 them in normally. When compilers which do not emit large
15674 quantities of duplicate debug information are more common,
15675 this code can probably be removed. */
15676
15677 /* Any complete simple types at the top level (pretty much all
15678 of them, for a language without namespaces), can be processed
15679 directly. */
15680 if (parent_die == NULL
15681 && part_die->has_specification == 0
15682 && part_die->is_declaration == 0
d8228535 15683 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15684 || part_die->tag == DW_TAG_base_type
15685 || part_die->tag == DW_TAG_subrange_type))
15686 {
15687 if (building_psymtab && part_die->name != NULL)
04a679b8 15688 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15689 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15690 &objfile->static_psymbols,
1762568f 15691 0, cu->language, objfile);
dee91e82 15692 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15693 continue;
15694 }
15695
d8228535
JK
15696 /* The exception for DW_TAG_typedef with has_children above is
15697 a workaround of GCC PR debug/47510. In the case of this complaint
15698 type_name_no_tag_or_error will error on such types later.
15699
15700 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15701 it could not find the child DIEs referenced later, this is checked
15702 above. In correct DWARF DW_TAG_typedef should have no children. */
15703
15704 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15705 complaint (&symfile_complaints,
15706 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15707 "- DIE at 0x%x [in module %s]"),
4262abfb 15708 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15709
72bf9492
DJ
15710 /* If we're at the second level, and we're an enumerator, and
15711 our parent has no specification (meaning possibly lives in a
15712 namespace elsewhere), then we can add the partial symbol now
15713 instead of queueing it. */
15714 if (part_die->tag == DW_TAG_enumerator
15715 && parent_die != NULL
15716 && parent_die->die_parent == NULL
15717 && parent_die->tag == DW_TAG_enumeration_type
15718 && parent_die->has_specification == 0)
15719 {
15720 if (part_die->name == NULL)
3e43a32a
MS
15721 complaint (&symfile_complaints,
15722 _("malformed enumerator DIE ignored"));
72bf9492 15723 else if (building_psymtab)
04a679b8 15724 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15725 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15726 (cu->language == language_cplus
15727 || cu->language == language_java)
bb5ed363
DE
15728 ? &objfile->global_psymbols
15729 : &objfile->static_psymbols,
1762568f 15730 0, cu->language, objfile);
72bf9492 15731
dee91e82 15732 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15733 continue;
15734 }
15735
15736 /* We'll save this DIE so link it in. */
15737 part_die->die_parent = parent_die;
15738 part_die->die_sibling = NULL;
15739 part_die->die_child = NULL;
15740
15741 if (last_die && last_die == parent_die)
15742 last_die->die_child = part_die;
15743 else if (last_die)
15744 last_die->die_sibling = part_die;
15745
15746 last_die = part_die;
15747
15748 if (first_die == NULL)
15749 first_die = part_die;
15750
15751 /* Maybe add the DIE to the hash table. Not all DIEs that we
15752 find interesting need to be in the hash table, because we
15753 also have the parent/sibling/child chains; only those that we
15754 might refer to by offset later during partial symbol reading.
15755
15756 For now this means things that might have be the target of a
15757 DW_AT_specification, DW_AT_abstract_origin, or
15758 DW_AT_extension. DW_AT_extension will refer only to
15759 namespaces; DW_AT_abstract_origin refers to functions (and
15760 many things under the function DIE, but we do not recurse
15761 into function DIEs during partial symbol reading) and
15762 possibly variables as well; DW_AT_specification refers to
15763 declarations. Declarations ought to have the DW_AT_declaration
15764 flag. It happens that GCC forgets to put it in sometimes, but
15765 only for functions, not for types.
15766
15767 Adding more things than necessary to the hash table is harmless
15768 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15769 wasted time in find_partial_die, when we reread the compilation
15770 unit with load_all_dies set. */
72bf9492 15771
5afb4e99 15772 if (load_all
72929c62 15773 || abbrev->tag == DW_TAG_constant
5afb4e99 15774 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15775 || abbrev->tag == DW_TAG_variable
15776 || abbrev->tag == DW_TAG_namespace
15777 || part_die->is_declaration)
15778 {
15779 void **slot;
15780
15781 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15782 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15783 *slot = part_die;
15784 }
15785
8d749320 15786 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15787
15788 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15789 we have no reason to follow the children of structures; for other
98bfdba5
PA
15790 languages we have to, so that we can get at method physnames
15791 to infer fully qualified class names, for DW_AT_specification,
15792 and for C++ template arguments. For C++, we also look one level
15793 inside functions to find template arguments (if the name of the
15794 function does not already contain the template arguments).
bc30ff58
JB
15795
15796 For Ada, we need to scan the children of subprograms and lexical
15797 blocks as well because Ada allows the definition of nested
15798 entities that could be interesting for the debugger, such as
15799 nested subprograms for instance. */
72bf9492 15800 if (last_die->has_children
5afb4e99
DJ
15801 && (load_all
15802 || last_die->tag == DW_TAG_namespace
f55ee35c 15803 || last_die->tag == DW_TAG_module
72bf9492 15804 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15805 || (cu->language == language_cplus
15806 && last_die->tag == DW_TAG_subprogram
15807 && (last_die->name == NULL
15808 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15809 || (cu->language != language_c
15810 && (last_die->tag == DW_TAG_class_type
680b30c7 15811 || last_die->tag == DW_TAG_interface_type
72bf9492 15812 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15813 || last_die->tag == DW_TAG_union_type))
15814 || (cu->language == language_ada
15815 && (last_die->tag == DW_TAG_subprogram
15816 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15817 {
15818 nesting_level++;
15819 parent_die = last_die;
15820 continue;
15821 }
15822
15823 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15824 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15825
15826 /* Back to the top, do it again. */
15827 }
15828}
15829
c906108c
SS
15830/* Read a minimal amount of information into the minimal die structure. */
15831
d521ce57 15832static const gdb_byte *
dee91e82
DE
15833read_partial_die (const struct die_reader_specs *reader,
15834 struct partial_die_info *part_die,
15835 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15836 const gdb_byte *info_ptr)
c906108c 15837{
dee91e82 15838 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15839 struct objfile *objfile = cu->objfile;
d521ce57 15840 const gdb_byte *buffer = reader->buffer;
fa238c03 15841 unsigned int i;
c906108c 15842 struct attribute attr;
c5aa993b 15843 int has_low_pc_attr = 0;
c906108c 15844 int has_high_pc_attr = 0;
91da1414 15845 int high_pc_relative = 0;
c906108c 15846
72bf9492 15847 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15848
b64f50a1 15849 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15850
15851 info_ptr += abbrev_len;
15852
15853 if (abbrev == NULL)
15854 return info_ptr;
15855
c906108c
SS
15856 part_die->tag = abbrev->tag;
15857 part_die->has_children = abbrev->has_children;
c906108c
SS
15858
15859 for (i = 0; i < abbrev->num_attrs; ++i)
15860 {
dee91e82 15861 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15862
15863 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15864 partial symbol table. */
c906108c
SS
15865 switch (attr.name)
15866 {
15867 case DW_AT_name:
71c25dea
TT
15868 switch (part_die->tag)
15869 {
15870 case DW_TAG_compile_unit:
95554aad 15871 case DW_TAG_partial_unit:
348e048f 15872 case DW_TAG_type_unit:
71c25dea
TT
15873 /* Compilation units have a DW_AT_name that is a filename, not
15874 a source language identifier. */
15875 case DW_TAG_enumeration_type:
15876 case DW_TAG_enumerator:
15877 /* These tags always have simple identifiers already; no need
15878 to canonicalize them. */
15879 part_die->name = DW_STRING (&attr);
15880 break;
15881 default:
15882 part_die->name
15883 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15884 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15885 break;
15886 }
c906108c 15887 break;
31ef98ae 15888 case DW_AT_linkage_name:
c906108c 15889 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15890 /* Note that both forms of linkage name might appear. We
15891 assume they will be the same, and we only store the last
15892 one we see. */
94af9270
KS
15893 if (cu->language == language_ada)
15894 part_die->name = DW_STRING (&attr);
abc72ce4 15895 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15896 break;
15897 case DW_AT_low_pc:
15898 has_low_pc_attr = 1;
31aa7e4e 15899 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15900 break;
15901 case DW_AT_high_pc:
15902 has_high_pc_attr = 1;
31aa7e4e
JB
15903 part_die->highpc = attr_value_as_address (&attr);
15904 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15905 high_pc_relative = 1;
c906108c
SS
15906 break;
15907 case DW_AT_location:
0963b4bd 15908 /* Support the .debug_loc offsets. */
8e19ed76
PS
15909 if (attr_form_is_block (&attr))
15910 {
95554aad 15911 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15912 }
3690dd37 15913 else if (attr_form_is_section_offset (&attr))
8e19ed76 15914 {
4d3c2250 15915 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15916 }
15917 else
15918 {
4d3c2250
KB
15919 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15920 "partial symbol information");
8e19ed76 15921 }
c906108c 15922 break;
c906108c
SS
15923 case DW_AT_external:
15924 part_die->is_external = DW_UNSND (&attr);
15925 break;
15926 case DW_AT_declaration:
15927 part_die->is_declaration = DW_UNSND (&attr);
15928 break;
15929 case DW_AT_type:
15930 part_die->has_type = 1;
15931 break;
15932 case DW_AT_abstract_origin:
15933 case DW_AT_specification:
72bf9492
DJ
15934 case DW_AT_extension:
15935 part_die->has_specification = 1;
c764a876 15936 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15937 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15938 || cu->per_cu->is_dwz);
c906108c
SS
15939 break;
15940 case DW_AT_sibling:
15941 /* Ignore absolute siblings, they might point outside of
15942 the current compile unit. */
15943 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15944 complaint (&symfile_complaints,
15945 _("ignoring absolute DW_AT_sibling"));
c906108c 15946 else
b9502d3f
WN
15947 {
15948 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15949 const gdb_byte *sibling_ptr = buffer + off;
15950
15951 if (sibling_ptr < info_ptr)
15952 complaint (&symfile_complaints,
15953 _("DW_AT_sibling points backwards"));
22869d73
KS
15954 else if (sibling_ptr > reader->buffer_end)
15955 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15956 else
15957 part_die->sibling = sibling_ptr;
15958 }
c906108c 15959 break;
fa4028e9
JB
15960 case DW_AT_byte_size:
15961 part_die->has_byte_size = 1;
15962 break;
ff908ebf
AW
15963 case DW_AT_const_value:
15964 part_die->has_const_value = 1;
15965 break;
68511cec
CES
15966 case DW_AT_calling_convention:
15967 /* DWARF doesn't provide a way to identify a program's source-level
15968 entry point. DW_AT_calling_convention attributes are only meant
15969 to describe functions' calling conventions.
15970
15971 However, because it's a necessary piece of information in
15972 Fortran, and because DW_CC_program is the only piece of debugging
15973 information whose definition refers to a 'main program' at all,
15974 several compilers have begun marking Fortran main programs with
15975 DW_CC_program --- even when those functions use the standard
15976 calling conventions.
15977
15978 So until DWARF specifies a way to provide this information and
15979 compilers pick up the new representation, we'll support this
15980 practice. */
15981 if (DW_UNSND (&attr) == DW_CC_program
dc365182
JH
15982 && cu->language == language_fortran
15983 && part_die->name != NULL)
3d548a53 15984 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15985 break;
481860b3
GB
15986 case DW_AT_inline:
15987 if (DW_UNSND (&attr) == DW_INL_inlined
15988 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15989 part_die->may_be_inlined = 1;
15990 break;
95554aad
TT
15991
15992 case DW_AT_import:
15993 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15994 {
15995 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15996 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15997 || cu->per_cu->is_dwz);
15998 }
95554aad
TT
15999 break;
16000
c906108c
SS
16001 default:
16002 break;
16003 }
16004 }
16005
91da1414
MW
16006 if (high_pc_relative)
16007 part_die->highpc += part_die->lowpc;
16008
9373cf26
JK
16009 if (has_low_pc_attr && has_high_pc_attr)
16010 {
16011 /* When using the GNU linker, .gnu.linkonce. sections are used to
16012 eliminate duplicate copies of functions and vtables and such.
16013 The linker will arbitrarily choose one and discard the others.
16014 The AT_*_pc values for such functions refer to local labels in
16015 these sections. If the section from that file was discarded, the
16016 labels are not in the output, so the relocs get a value of 0.
16017 If this is a discarded function, mark the pc bounds as invalid,
16018 so that GDB will ignore it. */
16019 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16020 {
bb5ed363 16021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16022
16023 complaint (&symfile_complaints,
16024 _("DW_AT_low_pc %s is zero "
16025 "for DIE at 0x%x [in module %s]"),
16026 paddress (gdbarch, part_die->lowpc),
4262abfb 16027 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16028 }
16029 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16030 else if (part_die->lowpc >= part_die->highpc)
16031 {
bb5ed363 16032 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16033
16034 complaint (&symfile_complaints,
16035 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16036 "for DIE at 0x%x [in module %s]"),
16037 paddress (gdbarch, part_die->lowpc),
16038 paddress (gdbarch, part_die->highpc),
4262abfb 16039 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16040 }
16041 else
16042 part_die->has_pc_info = 1;
16043 }
85cbf3d3 16044
c906108c
SS
16045 return info_ptr;
16046}
16047
72bf9492
DJ
16048/* Find a cached partial DIE at OFFSET in CU. */
16049
16050static struct partial_die_info *
b64f50a1 16051find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16052{
16053 struct partial_die_info *lookup_die = NULL;
16054 struct partial_die_info part_die;
16055
16056 part_die.offset = offset;
9a3c8263
SM
16057 lookup_die = ((struct partial_die_info *)
16058 htab_find_with_hash (cu->partial_dies, &part_die,
16059 offset.sect_off));
72bf9492 16060
72bf9492
DJ
16061 return lookup_die;
16062}
16063
348e048f
DE
16064/* Find a partial DIE at OFFSET, which may or may not be in CU,
16065 except in the case of .debug_types DIEs which do not reference
16066 outside their CU (they do however referencing other types via
55f1336d 16067 DW_FORM_ref_sig8). */
72bf9492
DJ
16068
16069static struct partial_die_info *
36586728 16070find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16071{
bb5ed363 16072 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16073 struct dwarf2_per_cu_data *per_cu = NULL;
16074 struct partial_die_info *pd = NULL;
72bf9492 16075
36586728
TT
16076 if (offset_in_dwz == cu->per_cu->is_dwz
16077 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16078 {
16079 pd = find_partial_die_in_comp_unit (offset, cu);
16080 if (pd != NULL)
16081 return pd;
0d99eb77
DE
16082 /* We missed recording what we needed.
16083 Load all dies and try again. */
16084 per_cu = cu->per_cu;
5afb4e99 16085 }
0d99eb77
DE
16086 else
16087 {
16088 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16089 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16090 {
16091 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16092 " external reference to offset 0x%lx [in module %s].\n"),
16093 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16094 bfd_get_filename (objfile->obfd));
16095 }
36586728
TT
16096 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16097 objfile);
72bf9492 16098
0d99eb77
DE
16099 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16100 load_partial_comp_unit (per_cu);
ae038cb0 16101
0d99eb77
DE
16102 per_cu->cu->last_used = 0;
16103 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16104 }
5afb4e99 16105
dee91e82
DE
16106 /* If we didn't find it, and not all dies have been loaded,
16107 load them all and try again. */
16108
5afb4e99
DJ
16109 if (pd == NULL && per_cu->load_all_dies == 0)
16110 {
5afb4e99 16111 per_cu->load_all_dies = 1;
fd820528
DE
16112
16113 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16114 THIS_CU->cu may already be in use. So we can't just free it and
16115 replace its DIEs with the ones we read in. Instead, we leave those
16116 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16117 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16118 set. */
dee91e82 16119 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16120
16121 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16122 }
16123
16124 if (pd == NULL)
16125 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16126 _("could not find partial DIE 0x%x "
16127 "in cache [from module %s]\n"),
b64f50a1 16128 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16129 return pd;
72bf9492
DJ
16130}
16131
abc72ce4
DE
16132/* See if we can figure out if the class lives in a namespace. We do
16133 this by looking for a member function; its demangled name will
16134 contain namespace info, if there is any. */
16135
16136static void
16137guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16138 struct dwarf2_cu *cu)
16139{
16140 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16141 what template types look like, because the demangler
16142 frequently doesn't give the same name as the debug info. We
16143 could fix this by only using the demangled name to get the
16144 prefix (but see comment in read_structure_type). */
16145
16146 struct partial_die_info *real_pdi;
16147 struct partial_die_info *child_pdi;
16148
16149 /* If this DIE (this DIE's specification, if any) has a parent, then
16150 we should not do this. We'll prepend the parent's fully qualified
16151 name when we create the partial symbol. */
16152
16153 real_pdi = struct_pdi;
16154 while (real_pdi->has_specification)
36586728
TT
16155 real_pdi = find_partial_die (real_pdi->spec_offset,
16156 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16157
16158 if (real_pdi->die_parent != NULL)
16159 return;
16160
16161 for (child_pdi = struct_pdi->die_child;
16162 child_pdi != NULL;
16163 child_pdi = child_pdi->die_sibling)
16164 {
16165 if (child_pdi->tag == DW_TAG_subprogram
16166 && child_pdi->linkage_name != NULL)
16167 {
16168 char *actual_class_name
16169 = language_class_name_from_physname (cu->language_defn,
16170 child_pdi->linkage_name);
16171 if (actual_class_name != NULL)
16172 {
16173 struct_pdi->name
224c3ddb
SM
16174 = ((const char *)
16175 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16176 actual_class_name,
16177 strlen (actual_class_name)));
abc72ce4
DE
16178 xfree (actual_class_name);
16179 }
16180 break;
16181 }
16182 }
16183}
16184
72bf9492
DJ
16185/* Adjust PART_DIE before generating a symbol for it. This function
16186 may set the is_external flag or change the DIE's name. */
16187
16188static void
16189fixup_partial_die (struct partial_die_info *part_die,
16190 struct dwarf2_cu *cu)
16191{
abc72ce4
DE
16192 /* Once we've fixed up a die, there's no point in doing so again.
16193 This also avoids a memory leak if we were to call
16194 guess_partial_die_structure_name multiple times. */
16195 if (part_die->fixup_called)
16196 return;
16197
72bf9492
DJ
16198 /* If we found a reference attribute and the DIE has no name, try
16199 to find a name in the referred to DIE. */
16200
16201 if (part_die->name == NULL && part_die->has_specification)
16202 {
16203 struct partial_die_info *spec_die;
72bf9492 16204
36586728
TT
16205 spec_die = find_partial_die (part_die->spec_offset,
16206 part_die->spec_is_dwz, cu);
72bf9492 16207
10b3939b 16208 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16209
16210 if (spec_die->name)
16211 {
16212 part_die->name = spec_die->name;
16213
16214 /* Copy DW_AT_external attribute if it is set. */
16215 if (spec_die->is_external)
16216 part_die->is_external = spec_die->is_external;
16217 }
16218 }
16219
16220 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16221
16222 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16223 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16224
abc72ce4
DE
16225 /* If there is no parent die to provide a namespace, and there are
16226 children, see if we can determine the namespace from their linkage
122d1940 16227 name. */
abc72ce4 16228 if (cu->language == language_cplus
8b70b953 16229 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16230 && part_die->die_parent == NULL
16231 && part_die->has_children
16232 && (part_die->tag == DW_TAG_class_type
16233 || part_die->tag == DW_TAG_structure_type
16234 || part_die->tag == DW_TAG_union_type))
16235 guess_partial_die_structure_name (part_die, cu);
16236
53832f31
TT
16237 /* GCC might emit a nameless struct or union that has a linkage
16238 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16239 if (part_die->name == NULL
96408a79
SA
16240 && (part_die->tag == DW_TAG_class_type
16241 || part_die->tag == DW_TAG_interface_type
16242 || part_die->tag == DW_TAG_structure_type
16243 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16244 && part_die->linkage_name != NULL)
16245 {
16246 char *demangled;
16247
8de20a37 16248 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16249 if (demangled)
16250 {
96408a79
SA
16251 const char *base;
16252
16253 /* Strip any leading namespaces/classes, keep only the base name.
16254 DW_AT_name for named DIEs does not contain the prefixes. */
16255 base = strrchr (demangled, ':');
16256 if (base && base > demangled && base[-1] == ':')
16257 base++;
16258 else
16259 base = demangled;
16260
34a68019 16261 part_die->name
224c3ddb
SM
16262 = ((const char *)
16263 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16264 base, strlen (base)));
53832f31
TT
16265 xfree (demangled);
16266 }
16267 }
16268
abc72ce4 16269 part_die->fixup_called = 1;
72bf9492
DJ
16270}
16271
a8329558 16272/* Read an attribute value described by an attribute form. */
c906108c 16273
d521ce57 16274static const gdb_byte *
dee91e82
DE
16275read_attribute_value (const struct die_reader_specs *reader,
16276 struct attribute *attr, unsigned form,
d521ce57 16277 const gdb_byte *info_ptr)
c906108c 16278{
dee91e82 16279 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16280 struct objfile *objfile = cu->objfile;
16281 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16282 bfd *abfd = reader->abfd;
e7c27a73 16283 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16284 unsigned int bytes_read;
16285 struct dwarf_block *blk;
16286
aead7601 16287 attr->form = (enum dwarf_form) form;
a8329558 16288 switch (form)
c906108c 16289 {
c906108c 16290 case DW_FORM_ref_addr:
ae411497 16291 if (cu->header.version == 2)
4568ecf9 16292 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16293 else
4568ecf9
DE
16294 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16295 &cu->header, &bytes_read);
ae411497
TT
16296 info_ptr += bytes_read;
16297 break;
36586728
TT
16298 case DW_FORM_GNU_ref_alt:
16299 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16300 info_ptr += bytes_read;
16301 break;
ae411497 16302 case DW_FORM_addr:
e7c27a73 16303 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16304 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16305 info_ptr += bytes_read;
c906108c
SS
16306 break;
16307 case DW_FORM_block2:
7b5a2f43 16308 blk = dwarf_alloc_block (cu);
c906108c
SS
16309 blk->size = read_2_bytes (abfd, info_ptr);
16310 info_ptr += 2;
16311 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16312 info_ptr += blk->size;
16313 DW_BLOCK (attr) = blk;
16314 break;
16315 case DW_FORM_block4:
7b5a2f43 16316 blk = dwarf_alloc_block (cu);
c906108c
SS
16317 blk->size = read_4_bytes (abfd, info_ptr);
16318 info_ptr += 4;
16319 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16320 info_ptr += blk->size;
16321 DW_BLOCK (attr) = blk;
16322 break;
16323 case DW_FORM_data2:
16324 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16325 info_ptr += 2;
16326 break;
16327 case DW_FORM_data4:
16328 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16329 info_ptr += 4;
16330 break;
16331 case DW_FORM_data8:
16332 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16333 info_ptr += 8;
16334 break;
2dc7f7b3
TT
16335 case DW_FORM_sec_offset:
16336 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16337 info_ptr += bytes_read;
16338 break;
c906108c 16339 case DW_FORM_string:
9b1c24c8 16340 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16341 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16342 info_ptr += bytes_read;
16343 break;
4bdf3d34 16344 case DW_FORM_strp:
36586728
TT
16345 if (!cu->per_cu->is_dwz)
16346 {
16347 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16348 &bytes_read);
16349 DW_STRING_IS_CANONICAL (attr) = 0;
16350 info_ptr += bytes_read;
16351 break;
16352 }
16353 /* FALLTHROUGH */
16354 case DW_FORM_GNU_strp_alt:
16355 {
16356 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16357 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16358 &bytes_read);
16359
16360 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16361 DW_STRING_IS_CANONICAL (attr) = 0;
16362 info_ptr += bytes_read;
16363 }
4bdf3d34 16364 break;
2dc7f7b3 16365 case DW_FORM_exprloc:
c906108c 16366 case DW_FORM_block:
7b5a2f43 16367 blk = dwarf_alloc_block (cu);
c906108c
SS
16368 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16369 info_ptr += bytes_read;
16370 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16371 info_ptr += blk->size;
16372 DW_BLOCK (attr) = blk;
16373 break;
16374 case DW_FORM_block1:
7b5a2f43 16375 blk = dwarf_alloc_block (cu);
c906108c
SS
16376 blk->size = read_1_byte (abfd, info_ptr);
16377 info_ptr += 1;
16378 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16379 info_ptr += blk->size;
16380 DW_BLOCK (attr) = blk;
16381 break;
16382 case DW_FORM_data1:
16383 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16384 info_ptr += 1;
16385 break;
16386 case DW_FORM_flag:
16387 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16388 info_ptr += 1;
16389 break;
2dc7f7b3
TT
16390 case DW_FORM_flag_present:
16391 DW_UNSND (attr) = 1;
16392 break;
c906108c
SS
16393 case DW_FORM_sdata:
16394 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16395 info_ptr += bytes_read;
16396 break;
16397 case DW_FORM_udata:
16398 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16399 info_ptr += bytes_read;
16400 break;
16401 case DW_FORM_ref1:
4568ecf9
DE
16402 DW_UNSND (attr) = (cu->header.offset.sect_off
16403 + read_1_byte (abfd, info_ptr));
c906108c
SS
16404 info_ptr += 1;
16405 break;
16406 case DW_FORM_ref2:
4568ecf9
DE
16407 DW_UNSND (attr) = (cu->header.offset.sect_off
16408 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16409 info_ptr += 2;
16410 break;
16411 case DW_FORM_ref4:
4568ecf9
DE
16412 DW_UNSND (attr) = (cu->header.offset.sect_off
16413 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16414 info_ptr += 4;
16415 break;
613e1657 16416 case DW_FORM_ref8:
4568ecf9
DE
16417 DW_UNSND (attr) = (cu->header.offset.sect_off
16418 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16419 info_ptr += 8;
16420 break;
55f1336d 16421 case DW_FORM_ref_sig8:
ac9ec31b 16422 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16423 info_ptr += 8;
16424 break;
c906108c 16425 case DW_FORM_ref_udata:
4568ecf9
DE
16426 DW_UNSND (attr) = (cu->header.offset.sect_off
16427 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16428 info_ptr += bytes_read;
16429 break;
c906108c 16430 case DW_FORM_indirect:
a8329558
KW
16431 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16432 info_ptr += bytes_read;
dee91e82 16433 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16434 break;
3019eac3
DE
16435 case DW_FORM_GNU_addr_index:
16436 if (reader->dwo_file == NULL)
16437 {
16438 /* For now flag a hard error.
16439 Later we can turn this into a complaint. */
16440 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16441 dwarf_form_name (form),
16442 bfd_get_filename (abfd));
16443 }
16444 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16445 info_ptr += bytes_read;
16446 break;
16447 case DW_FORM_GNU_str_index:
16448 if (reader->dwo_file == NULL)
16449 {
16450 /* For now flag a hard error.
16451 Later we can turn this into a complaint if warranted. */
16452 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16453 dwarf_form_name (form),
16454 bfd_get_filename (abfd));
16455 }
16456 {
16457 ULONGEST str_index =
16458 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16459
342587c4 16460 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16461 DW_STRING_IS_CANONICAL (attr) = 0;
16462 info_ptr += bytes_read;
16463 }
16464 break;
c906108c 16465 default:
8a3fe4f8 16466 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16467 dwarf_form_name (form),
16468 bfd_get_filename (abfd));
c906108c 16469 }
28e94949 16470
36586728 16471 /* Super hack. */
7771576e 16472 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16473 attr->form = DW_FORM_GNU_ref_alt;
16474
28e94949
JB
16475 /* We have seen instances where the compiler tried to emit a byte
16476 size attribute of -1 which ended up being encoded as an unsigned
16477 0xffffffff. Although 0xffffffff is technically a valid size value,
16478 an object of this size seems pretty unlikely so we can relatively
16479 safely treat these cases as if the size attribute was invalid and
16480 treat them as zero by default. */
16481 if (attr->name == DW_AT_byte_size
16482 && form == DW_FORM_data4
16483 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16484 {
16485 complaint
16486 (&symfile_complaints,
43bbcdc2
PH
16487 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16488 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16489 DW_UNSND (attr) = 0;
16490 }
28e94949 16491
c906108c
SS
16492 return info_ptr;
16493}
16494
a8329558
KW
16495/* Read an attribute described by an abbreviated attribute. */
16496
d521ce57 16497static const gdb_byte *
dee91e82
DE
16498read_attribute (const struct die_reader_specs *reader,
16499 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16500 const gdb_byte *info_ptr)
a8329558
KW
16501{
16502 attr->name = abbrev->name;
dee91e82 16503 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16504}
16505
0963b4bd 16506/* Read dwarf information from a buffer. */
c906108c
SS
16507
16508static unsigned int
a1855c1d 16509read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16510{
fe1b8b76 16511 return bfd_get_8 (abfd, buf);
c906108c
SS
16512}
16513
16514static int
a1855c1d 16515read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16516{
fe1b8b76 16517 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16518}
16519
16520static unsigned int
a1855c1d 16521read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16522{
fe1b8b76 16523 return bfd_get_16 (abfd, buf);
c906108c
SS
16524}
16525
21ae7a4d 16526static int
a1855c1d 16527read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16528{
16529 return bfd_get_signed_16 (abfd, buf);
16530}
16531
c906108c 16532static unsigned int
a1855c1d 16533read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16534{
fe1b8b76 16535 return bfd_get_32 (abfd, buf);
c906108c
SS
16536}
16537
21ae7a4d 16538static int
a1855c1d 16539read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16540{
16541 return bfd_get_signed_32 (abfd, buf);
16542}
16543
93311388 16544static ULONGEST
a1855c1d 16545read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16546{
fe1b8b76 16547 return bfd_get_64 (abfd, buf);
c906108c
SS
16548}
16549
16550static CORE_ADDR
d521ce57 16551read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16552 unsigned int *bytes_read)
c906108c 16553{
e7c27a73 16554 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16555 CORE_ADDR retval = 0;
16556
107d2387 16557 if (cu_header->signed_addr_p)
c906108c 16558 {
107d2387
AC
16559 switch (cu_header->addr_size)
16560 {
16561 case 2:
fe1b8b76 16562 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16563 break;
16564 case 4:
fe1b8b76 16565 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16566 break;
16567 case 8:
fe1b8b76 16568 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16569 break;
16570 default:
8e65ff28 16571 internal_error (__FILE__, __LINE__,
e2e0b3e5 16572 _("read_address: bad switch, signed [in module %s]"),
659b0389 16573 bfd_get_filename (abfd));
107d2387
AC
16574 }
16575 }
16576 else
16577 {
16578 switch (cu_header->addr_size)
16579 {
16580 case 2:
fe1b8b76 16581 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16582 break;
16583 case 4:
fe1b8b76 16584 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16585 break;
16586 case 8:
fe1b8b76 16587 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16588 break;
16589 default:
8e65ff28 16590 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16591 _("read_address: bad switch, "
16592 "unsigned [in module %s]"),
659b0389 16593 bfd_get_filename (abfd));
107d2387 16594 }
c906108c 16595 }
64367e0a 16596
107d2387
AC
16597 *bytes_read = cu_header->addr_size;
16598 return retval;
c906108c
SS
16599}
16600
f7ef9339 16601/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16602 specification allows the initial length to take up either 4 bytes
16603 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16604 bytes describe the length and all offsets will be 8 bytes in length
16605 instead of 4.
16606
f7ef9339
KB
16607 An older, non-standard 64-bit format is also handled by this
16608 function. The older format in question stores the initial length
16609 as an 8-byte quantity without an escape value. Lengths greater
16610 than 2^32 aren't very common which means that the initial 4 bytes
16611 is almost always zero. Since a length value of zero doesn't make
16612 sense for the 32-bit format, this initial zero can be considered to
16613 be an escape value which indicates the presence of the older 64-bit
16614 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16615 greater than 4GB. If it becomes necessary to handle lengths
16616 somewhat larger than 4GB, we could allow other small values (such
16617 as the non-sensical values of 1, 2, and 3) to also be used as
16618 escape values indicating the presence of the old format.
f7ef9339 16619
917c78fc
MK
16620 The value returned via bytes_read should be used to increment the
16621 relevant pointer after calling read_initial_length().
c764a876 16622
613e1657
KB
16623 [ Note: read_initial_length() and read_offset() are based on the
16624 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16625 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16626 from:
16627
f7ef9339 16628 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16629
613e1657
KB
16630 This document is only a draft and is subject to change. (So beware.)
16631
f7ef9339 16632 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16633 determined empirically by examining 64-bit ELF files produced by
16634 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16635
16636 - Kevin, July 16, 2002
613e1657
KB
16637 ] */
16638
16639static LONGEST
d521ce57 16640read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16641{
fe1b8b76 16642 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16643
dd373385 16644 if (length == 0xffffffff)
613e1657 16645 {
fe1b8b76 16646 length = bfd_get_64 (abfd, buf + 4);
613e1657 16647 *bytes_read = 12;
613e1657 16648 }
dd373385 16649 else if (length == 0)
f7ef9339 16650 {
dd373385 16651 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16652 length = bfd_get_64 (abfd, buf);
f7ef9339 16653 *bytes_read = 8;
f7ef9339 16654 }
613e1657
KB
16655 else
16656 {
16657 *bytes_read = 4;
613e1657
KB
16658 }
16659
c764a876
DE
16660 return length;
16661}
dd373385 16662
c764a876
DE
16663/* Cover function for read_initial_length.
16664 Returns the length of the object at BUF, and stores the size of the
16665 initial length in *BYTES_READ and stores the size that offsets will be in
16666 *OFFSET_SIZE.
16667 If the initial length size is not equivalent to that specified in
16668 CU_HEADER then issue a complaint.
16669 This is useful when reading non-comp-unit headers. */
dd373385 16670
c764a876 16671static LONGEST
d521ce57 16672read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16673 const struct comp_unit_head *cu_header,
16674 unsigned int *bytes_read,
16675 unsigned int *offset_size)
16676{
16677 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16678
16679 gdb_assert (cu_header->initial_length_size == 4
16680 || cu_header->initial_length_size == 8
16681 || cu_header->initial_length_size == 12);
16682
16683 if (cu_header->initial_length_size != *bytes_read)
16684 complaint (&symfile_complaints,
16685 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16686
c764a876 16687 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16688 return length;
613e1657
KB
16689}
16690
16691/* Read an offset from the data stream. The size of the offset is
917c78fc 16692 given by cu_header->offset_size. */
613e1657
KB
16693
16694static LONGEST
d521ce57
TT
16695read_offset (bfd *abfd, const gdb_byte *buf,
16696 const struct comp_unit_head *cu_header,
891d2f0b 16697 unsigned int *bytes_read)
c764a876
DE
16698{
16699 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16700
c764a876
DE
16701 *bytes_read = cu_header->offset_size;
16702 return offset;
16703}
16704
16705/* Read an offset from the data stream. */
16706
16707static LONGEST
d521ce57 16708read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16709{
16710 LONGEST retval = 0;
16711
c764a876 16712 switch (offset_size)
613e1657
KB
16713 {
16714 case 4:
fe1b8b76 16715 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16716 break;
16717 case 8:
fe1b8b76 16718 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16719 break;
16720 default:
8e65ff28 16721 internal_error (__FILE__, __LINE__,
c764a876 16722 _("read_offset_1: bad switch [in module %s]"),
659b0389 16723 bfd_get_filename (abfd));
613e1657
KB
16724 }
16725
917c78fc 16726 return retval;
613e1657
KB
16727}
16728
d521ce57
TT
16729static const gdb_byte *
16730read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16731{
16732 /* If the size of a host char is 8 bits, we can return a pointer
16733 to the buffer, otherwise we have to copy the data to a buffer
16734 allocated on the temporary obstack. */
4bdf3d34 16735 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16736 return buf;
c906108c
SS
16737}
16738
d521ce57
TT
16739static const char *
16740read_direct_string (bfd *abfd, const gdb_byte *buf,
16741 unsigned int *bytes_read_ptr)
c906108c
SS
16742{
16743 /* If the size of a host char is 8 bits, we can return a pointer
16744 to the string, otherwise we have to copy the string to a buffer
16745 allocated on the temporary obstack. */
4bdf3d34 16746 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16747 if (*buf == '\0')
16748 {
16749 *bytes_read_ptr = 1;
16750 return NULL;
16751 }
d521ce57
TT
16752 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16753 return (const char *) buf;
4bdf3d34
JJ
16754}
16755
d521ce57 16756static const char *
cf2c3c16 16757read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16758{
be391dca 16759 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16760 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16761 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16762 bfd_get_filename (abfd));
dce234bc 16763 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16764 error (_("DW_FORM_strp pointing outside of "
16765 ".debug_str section [in module %s]"),
16766 bfd_get_filename (abfd));
4bdf3d34 16767 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16768 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16769 return NULL;
d521ce57 16770 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16771}
16772
36586728
TT
16773/* Read a string at offset STR_OFFSET in the .debug_str section from
16774 the .dwz file DWZ. Throw an error if the offset is too large. If
16775 the string consists of a single NUL byte, return NULL; otherwise
16776 return a pointer to the string. */
16777
d521ce57 16778static const char *
36586728
TT
16779read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16780{
16781 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16782
16783 if (dwz->str.buffer == NULL)
16784 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16785 "section [in module %s]"),
16786 bfd_get_filename (dwz->dwz_bfd));
16787 if (str_offset >= dwz->str.size)
16788 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16789 ".debug_str section [in module %s]"),
16790 bfd_get_filename (dwz->dwz_bfd));
16791 gdb_assert (HOST_CHAR_BIT == 8);
16792 if (dwz->str.buffer[str_offset] == '\0')
16793 return NULL;
d521ce57 16794 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16795}
16796
d521ce57
TT
16797static const char *
16798read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16799 const struct comp_unit_head *cu_header,
16800 unsigned int *bytes_read_ptr)
16801{
16802 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16803
16804 return read_indirect_string_at_offset (abfd, str_offset);
16805}
16806
12df843f 16807static ULONGEST
d521ce57
TT
16808read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16809 unsigned int *bytes_read_ptr)
c906108c 16810{
12df843f 16811 ULONGEST result;
ce5d95e1 16812 unsigned int num_read;
870f88f7 16813 int shift;
c906108c
SS
16814 unsigned char byte;
16815
16816 result = 0;
16817 shift = 0;
16818 num_read = 0;
c906108c
SS
16819 while (1)
16820 {
fe1b8b76 16821 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16822 buf++;
16823 num_read++;
12df843f 16824 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16825 if ((byte & 128) == 0)
16826 {
16827 break;
16828 }
16829 shift += 7;
16830 }
16831 *bytes_read_ptr = num_read;
16832 return result;
16833}
16834
12df843f 16835static LONGEST
d521ce57
TT
16836read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16837 unsigned int *bytes_read_ptr)
c906108c 16838{
12df843f 16839 LONGEST result;
870f88f7 16840 int shift, num_read;
c906108c
SS
16841 unsigned char byte;
16842
16843 result = 0;
16844 shift = 0;
c906108c 16845 num_read = 0;
c906108c
SS
16846 while (1)
16847 {
fe1b8b76 16848 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16849 buf++;
16850 num_read++;
12df843f 16851 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16852 shift += 7;
16853 if ((byte & 128) == 0)
16854 {
16855 break;
16856 }
16857 }
77e0b926 16858 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16859 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16860 *bytes_read_ptr = num_read;
16861 return result;
16862}
16863
3019eac3
DE
16864/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16865 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16866 ADDR_SIZE is the size of addresses from the CU header. */
16867
16868static CORE_ADDR
16869read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16870{
16871 struct objfile *objfile = dwarf2_per_objfile->objfile;
16872 bfd *abfd = objfile->obfd;
16873 const gdb_byte *info_ptr;
16874
16875 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16876 if (dwarf2_per_objfile->addr.buffer == NULL)
16877 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16878 objfile_name (objfile));
3019eac3
DE
16879 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16880 error (_("DW_FORM_addr_index pointing outside of "
16881 ".debug_addr section [in module %s]"),
4262abfb 16882 objfile_name (objfile));
3019eac3
DE
16883 info_ptr = (dwarf2_per_objfile->addr.buffer
16884 + addr_base + addr_index * addr_size);
16885 if (addr_size == 4)
16886 return bfd_get_32 (abfd, info_ptr);
16887 else
16888 return bfd_get_64 (abfd, info_ptr);
16889}
16890
16891/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16892
16893static CORE_ADDR
16894read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16895{
16896 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16897}
16898
16899/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16900
16901static CORE_ADDR
d521ce57 16902read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16903 unsigned int *bytes_read)
16904{
16905 bfd *abfd = cu->objfile->obfd;
16906 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16907
16908 return read_addr_index (cu, addr_index);
16909}
16910
16911/* Data structure to pass results from dwarf2_read_addr_index_reader
16912 back to dwarf2_read_addr_index. */
16913
16914struct dwarf2_read_addr_index_data
16915{
16916 ULONGEST addr_base;
16917 int addr_size;
16918};
16919
16920/* die_reader_func for dwarf2_read_addr_index. */
16921
16922static void
16923dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16924 const gdb_byte *info_ptr,
3019eac3
DE
16925 struct die_info *comp_unit_die,
16926 int has_children,
16927 void *data)
16928{
16929 struct dwarf2_cu *cu = reader->cu;
16930 struct dwarf2_read_addr_index_data *aidata =
16931 (struct dwarf2_read_addr_index_data *) data;
16932
16933 aidata->addr_base = cu->addr_base;
16934 aidata->addr_size = cu->header.addr_size;
16935}
16936
16937/* Given an index in .debug_addr, fetch the value.
16938 NOTE: This can be called during dwarf expression evaluation,
16939 long after the debug information has been read, and thus per_cu->cu
16940 may no longer exist. */
16941
16942CORE_ADDR
16943dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16944 unsigned int addr_index)
16945{
16946 struct objfile *objfile = per_cu->objfile;
16947 struct dwarf2_cu *cu = per_cu->cu;
16948 ULONGEST addr_base;
16949 int addr_size;
16950
16951 /* This is intended to be called from outside this file. */
16952 dw2_setup (objfile);
16953
16954 /* We need addr_base and addr_size.
16955 If we don't have PER_CU->cu, we have to get it.
16956 Nasty, but the alternative is storing the needed info in PER_CU,
16957 which at this point doesn't seem justified: it's not clear how frequently
16958 it would get used and it would increase the size of every PER_CU.
16959 Entry points like dwarf2_per_cu_addr_size do a similar thing
16960 so we're not in uncharted territory here.
16961 Alas we need to be a bit more complicated as addr_base is contained
16962 in the DIE.
16963
16964 We don't need to read the entire CU(/TU).
16965 We just need the header and top level die.
a1b64ce1 16966
3019eac3 16967 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16968 For now we skip this optimization. */
3019eac3
DE
16969
16970 if (cu != NULL)
16971 {
16972 addr_base = cu->addr_base;
16973 addr_size = cu->header.addr_size;
16974 }
16975 else
16976 {
16977 struct dwarf2_read_addr_index_data aidata;
16978
a1b64ce1
DE
16979 /* Note: We can't use init_cutu_and_read_dies_simple here,
16980 we need addr_base. */
16981 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16982 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16983 addr_base = aidata.addr_base;
16984 addr_size = aidata.addr_size;
16985 }
16986
16987 return read_addr_index_1 (addr_index, addr_base, addr_size);
16988}
16989
57d63ce2
DE
16990/* Given a DW_FORM_GNU_str_index, fetch the string.
16991 This is only used by the Fission support. */
3019eac3 16992
d521ce57 16993static const char *
342587c4 16994read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16995{
16996 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16997 const char *objf_name = objfile_name (objfile);
3019eac3 16998 bfd *abfd = objfile->obfd;
342587c4 16999 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17000 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17001 struct dwarf2_section_info *str_offsets_section =
17002 &reader->dwo_file->sections.str_offsets;
d521ce57 17003 const gdb_byte *info_ptr;
3019eac3 17004 ULONGEST str_offset;
57d63ce2 17005 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17006
73869dc2
DE
17007 dwarf2_read_section (objfile, str_section);
17008 dwarf2_read_section (objfile, str_offsets_section);
17009 if (str_section->buffer == NULL)
57d63ce2 17010 error (_("%s used without .debug_str.dwo section"
3019eac3 17011 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17012 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17013 if (str_offsets_section->buffer == NULL)
57d63ce2 17014 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 17015 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17016 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17017 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17018 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 17019 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17020 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17021 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17022 + str_index * cu->header.offset_size);
17023 if (cu->header.offset_size == 4)
17024 str_offset = bfd_get_32 (abfd, info_ptr);
17025 else
17026 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17027 if (str_offset >= str_section->size)
57d63ce2 17028 error (_("Offset from %s pointing outside of"
3019eac3 17029 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17030 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17031 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17032}
17033
3019eac3
DE
17034/* Return the length of an LEB128 number in BUF. */
17035
17036static int
17037leb128_size (const gdb_byte *buf)
17038{
17039 const gdb_byte *begin = buf;
17040 gdb_byte byte;
17041
17042 while (1)
17043 {
17044 byte = *buf++;
17045 if ((byte & 128) == 0)
17046 return buf - begin;
17047 }
17048}
17049
c906108c 17050static void
e142c38c 17051set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17052{
17053 switch (lang)
17054 {
17055 case DW_LANG_C89:
76bee0cc 17056 case DW_LANG_C99:
0cfd832f 17057 case DW_LANG_C11:
c906108c 17058 case DW_LANG_C:
d1be3247 17059 case DW_LANG_UPC:
e142c38c 17060 cu->language = language_c;
c906108c
SS
17061 break;
17062 case DW_LANG_C_plus_plus:
0cfd832f
MW
17063 case DW_LANG_C_plus_plus_11:
17064 case DW_LANG_C_plus_plus_14:
e142c38c 17065 cu->language = language_cplus;
c906108c 17066 break;
6aecb9c2
JB
17067 case DW_LANG_D:
17068 cu->language = language_d;
17069 break;
c906108c
SS
17070 case DW_LANG_Fortran77:
17071 case DW_LANG_Fortran90:
b21b22e0 17072 case DW_LANG_Fortran95:
f7de9aab
MW
17073 case DW_LANG_Fortran03:
17074 case DW_LANG_Fortran08:
e142c38c 17075 cu->language = language_fortran;
c906108c 17076 break;
a766d390
DE
17077 case DW_LANG_Go:
17078 cu->language = language_go;
17079 break;
c906108c 17080 case DW_LANG_Mips_Assembler:
e142c38c 17081 cu->language = language_asm;
c906108c 17082 break;
bebd888e 17083 case DW_LANG_Java:
e142c38c 17084 cu->language = language_java;
bebd888e 17085 break;
c906108c 17086 case DW_LANG_Ada83:
8aaf0b47 17087 case DW_LANG_Ada95:
bc5f45f8
JB
17088 cu->language = language_ada;
17089 break;
72019c9c
GM
17090 case DW_LANG_Modula2:
17091 cu->language = language_m2;
17092 break;
fe8e67fd
PM
17093 case DW_LANG_Pascal83:
17094 cu->language = language_pascal;
17095 break;
22566fbd
DJ
17096 case DW_LANG_ObjC:
17097 cu->language = language_objc;
17098 break;
c44af4eb
TT
17099 case DW_LANG_Rust:
17100 case DW_LANG_Rust_old:
17101 cu->language = language_rust;
17102 break;
c906108c
SS
17103 case DW_LANG_Cobol74:
17104 case DW_LANG_Cobol85:
c906108c 17105 default:
e142c38c 17106 cu->language = language_minimal;
c906108c
SS
17107 break;
17108 }
e142c38c 17109 cu->language_defn = language_def (cu->language);
c906108c
SS
17110}
17111
17112/* Return the named attribute or NULL if not there. */
17113
17114static struct attribute *
e142c38c 17115dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17116{
a48e046c 17117 for (;;)
c906108c 17118 {
a48e046c
TT
17119 unsigned int i;
17120 struct attribute *spec = NULL;
17121
17122 for (i = 0; i < die->num_attrs; ++i)
17123 {
17124 if (die->attrs[i].name == name)
17125 return &die->attrs[i];
17126 if (die->attrs[i].name == DW_AT_specification
17127 || die->attrs[i].name == DW_AT_abstract_origin)
17128 spec = &die->attrs[i];
17129 }
17130
17131 if (!spec)
17132 break;
c906108c 17133
f2f0e013 17134 die = follow_die_ref (die, spec, &cu);
f2f0e013 17135 }
c5aa993b 17136
c906108c
SS
17137 return NULL;
17138}
17139
348e048f
DE
17140/* Return the named attribute or NULL if not there,
17141 but do not follow DW_AT_specification, etc.
17142 This is for use in contexts where we're reading .debug_types dies.
17143 Following DW_AT_specification, DW_AT_abstract_origin will take us
17144 back up the chain, and we want to go down. */
17145
17146static struct attribute *
45e58e77 17147dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17148{
17149 unsigned int i;
17150
17151 for (i = 0; i < die->num_attrs; ++i)
17152 if (die->attrs[i].name == name)
17153 return &die->attrs[i];
17154
17155 return NULL;
17156}
17157
7d45c7c3
KB
17158/* Return the string associated with a string-typed attribute, or NULL if it
17159 is either not found or is of an incorrect type. */
17160
17161static const char *
17162dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17163{
17164 struct attribute *attr;
17165 const char *str = NULL;
17166
17167 attr = dwarf2_attr (die, name, cu);
17168
17169 if (attr != NULL)
17170 {
17171 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17172 || attr->form == DW_FORM_GNU_strp_alt)
17173 str = DW_STRING (attr);
17174 else
17175 complaint (&symfile_complaints,
17176 _("string type expected for attribute %s for "
17177 "DIE at 0x%x in module %s"),
17178 dwarf_attr_name (name), die->offset.sect_off,
17179 objfile_name (cu->objfile));
17180 }
17181
17182 return str;
17183}
17184
05cf31d1
JB
17185/* Return non-zero iff the attribute NAME is defined for the given DIE,
17186 and holds a non-zero value. This function should only be used for
2dc7f7b3 17187 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17188
17189static int
17190dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17191{
17192 struct attribute *attr = dwarf2_attr (die, name, cu);
17193
17194 return (attr && DW_UNSND (attr));
17195}
17196
3ca72b44 17197static int
e142c38c 17198die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17199{
05cf31d1
JB
17200 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17201 which value is non-zero. However, we have to be careful with
17202 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17203 (via dwarf2_flag_true_p) follows this attribute. So we may
17204 end up accidently finding a declaration attribute that belongs
17205 to a different DIE referenced by the specification attribute,
17206 even though the given DIE does not have a declaration attribute. */
17207 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17208 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17209}
17210
63d06c5c 17211/* Return the die giving the specification for DIE, if there is
f2f0e013 17212 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17213 containing the return value on output. If there is no
17214 specification, but there is an abstract origin, that is
17215 returned. */
63d06c5c
DC
17216
17217static struct die_info *
f2f0e013 17218die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17219{
f2f0e013
DJ
17220 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17221 *spec_cu);
63d06c5c 17222
edb3359d
DJ
17223 if (spec_attr == NULL)
17224 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17225
63d06c5c
DC
17226 if (spec_attr == NULL)
17227 return NULL;
17228 else
f2f0e013 17229 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17230}
c906108c 17231
debd256d 17232/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17233 refers to.
17234 NOTE: This is also used as a "cleanup" function. */
17235
debd256d
JB
17236static void
17237free_line_header (struct line_header *lh)
17238{
17239 if (lh->standard_opcode_lengths)
a8bc7b56 17240 xfree (lh->standard_opcode_lengths);
debd256d
JB
17241
17242 /* Remember that all the lh->file_names[i].name pointers are
17243 pointers into debug_line_buffer, and don't need to be freed. */
17244 if (lh->file_names)
a8bc7b56 17245 xfree (lh->file_names);
debd256d
JB
17246
17247 /* Similarly for the include directory names. */
17248 if (lh->include_dirs)
a8bc7b56 17249 xfree (lh->include_dirs);
debd256d 17250
a8bc7b56 17251 xfree (lh);
debd256d
JB
17252}
17253
527f3840
JK
17254/* Stub for free_line_header to match void * callback types. */
17255
17256static void
17257free_line_header_voidp (void *arg)
17258{
9a3c8263 17259 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17260
17261 free_line_header (lh);
17262}
17263
debd256d 17264/* Add an entry to LH's include directory table. */
ae2de4f8 17265
debd256d 17266static void
d521ce57 17267add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17268{
27e0867f
DE
17269 if (dwarf_line_debug >= 2)
17270 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17271 lh->num_include_dirs + 1, include_dir);
17272
debd256d
JB
17273 /* Grow the array if necessary. */
17274 if (lh->include_dirs_size == 0)
c5aa993b 17275 {
debd256d 17276 lh->include_dirs_size = 1; /* for testing */
8d749320 17277 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17278 }
17279 else if (lh->num_include_dirs >= lh->include_dirs_size)
17280 {
17281 lh->include_dirs_size *= 2;
8d749320
SM
17282 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17283 lh->include_dirs_size);
c5aa993b 17284 }
c906108c 17285
debd256d
JB
17286 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17287}
6e70227d 17288
debd256d 17289/* Add an entry to LH's file name table. */
ae2de4f8 17290
debd256d
JB
17291static void
17292add_file_name (struct line_header *lh,
d521ce57 17293 const char *name,
debd256d
JB
17294 unsigned int dir_index,
17295 unsigned int mod_time,
17296 unsigned int length)
17297{
17298 struct file_entry *fe;
17299
27e0867f
DE
17300 if (dwarf_line_debug >= 2)
17301 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17302 lh->num_file_names + 1, name);
17303
debd256d
JB
17304 /* Grow the array if necessary. */
17305 if (lh->file_names_size == 0)
17306 {
17307 lh->file_names_size = 1; /* for testing */
8d749320 17308 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17309 }
17310 else if (lh->num_file_names >= lh->file_names_size)
17311 {
17312 lh->file_names_size *= 2;
224c3ddb
SM
17313 lh->file_names
17314 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17315 }
17316
17317 fe = &lh->file_names[lh->num_file_names++];
17318 fe->name = name;
17319 fe->dir_index = dir_index;
17320 fe->mod_time = mod_time;
17321 fe->length = length;
aaa75496 17322 fe->included_p = 0;
cb1df416 17323 fe->symtab = NULL;
debd256d 17324}
6e70227d 17325
83769d0b 17326/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17327
17328static struct dwarf2_section_info *
17329get_debug_line_section (struct dwarf2_cu *cu)
17330{
17331 struct dwarf2_section_info *section;
17332
17333 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17334 DWO file. */
17335 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17336 section = &cu->dwo_unit->dwo_file->sections.line;
17337 else if (cu->per_cu->is_dwz)
17338 {
17339 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17340
17341 section = &dwz->line;
17342 }
17343 else
17344 section = &dwarf2_per_objfile->line;
17345
17346 return section;
17347}
17348
debd256d 17349/* Read the statement program header starting at OFFSET in
3019eac3 17350 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17351 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17352 Returns NULL if there is a problem reading the header, e.g., if it
17353 has a version we don't understand.
debd256d
JB
17354
17355 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17356 the returned object point into the dwarf line section buffer,
17357 and must not be freed. */
ae2de4f8 17358
debd256d 17359static struct line_header *
3019eac3 17360dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17361{
17362 struct cleanup *back_to;
17363 struct line_header *lh;
d521ce57 17364 const gdb_byte *line_ptr;
c764a876 17365 unsigned int bytes_read, offset_size;
debd256d 17366 int i;
d521ce57 17367 const char *cur_dir, *cur_file;
3019eac3
DE
17368 struct dwarf2_section_info *section;
17369 bfd *abfd;
17370
36586728 17371 section = get_debug_line_section (cu);
3019eac3
DE
17372 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17373 if (section->buffer == NULL)
debd256d 17374 {
3019eac3
DE
17375 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17376 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17377 else
17378 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17379 return 0;
17380 }
17381
fceca515
DE
17382 /* We can't do this until we know the section is non-empty.
17383 Only then do we know we have such a section. */
a32a8923 17384 abfd = get_section_bfd_owner (section);
fceca515 17385
a738430d
MK
17386 /* Make sure that at least there's room for the total_length field.
17387 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17388 if (offset + 4 >= section->size)
debd256d 17389 {
4d3c2250 17390 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17391 return 0;
17392 }
17393
8d749320 17394 lh = XNEW (struct line_header);
debd256d
JB
17395 memset (lh, 0, sizeof (*lh));
17396 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17397 (void *) lh);
17398
527f3840
JK
17399 lh->offset.sect_off = offset;
17400 lh->offset_in_dwz = cu->per_cu->is_dwz;
17401
3019eac3 17402 line_ptr = section->buffer + offset;
debd256d 17403
a738430d 17404 /* Read in the header. */
6e70227d 17405 lh->total_length =
c764a876
DE
17406 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17407 &bytes_read, &offset_size);
debd256d 17408 line_ptr += bytes_read;
3019eac3 17409 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17410 {
4d3c2250 17411 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17412 do_cleanups (back_to);
debd256d
JB
17413 return 0;
17414 }
17415 lh->statement_program_end = line_ptr + lh->total_length;
17416 lh->version = read_2_bytes (abfd, line_ptr);
17417 line_ptr += 2;
cd366ee8
DE
17418 if (lh->version > 4)
17419 {
17420 /* This is a version we don't understand. The format could have
17421 changed in ways we don't handle properly so just punt. */
17422 complaint (&symfile_complaints,
17423 _("unsupported version in .debug_line section"));
17424 return NULL;
17425 }
c764a876
DE
17426 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17427 line_ptr += offset_size;
debd256d
JB
17428 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17429 line_ptr += 1;
2dc7f7b3
TT
17430 if (lh->version >= 4)
17431 {
17432 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17433 line_ptr += 1;
17434 }
17435 else
17436 lh->maximum_ops_per_instruction = 1;
17437
17438 if (lh->maximum_ops_per_instruction == 0)
17439 {
17440 lh->maximum_ops_per_instruction = 1;
17441 complaint (&symfile_complaints,
3e43a32a
MS
17442 _("invalid maximum_ops_per_instruction "
17443 "in `.debug_line' section"));
2dc7f7b3
TT
17444 }
17445
debd256d
JB
17446 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17447 line_ptr += 1;
17448 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17449 line_ptr += 1;
17450 lh->line_range = read_1_byte (abfd, line_ptr);
17451 line_ptr += 1;
17452 lh->opcode_base = read_1_byte (abfd, line_ptr);
17453 line_ptr += 1;
8d749320 17454 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17455
17456 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17457 for (i = 1; i < lh->opcode_base; ++i)
17458 {
17459 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17460 line_ptr += 1;
17461 }
17462
a738430d 17463 /* Read directory table. */
9b1c24c8 17464 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17465 {
17466 line_ptr += bytes_read;
17467 add_include_dir (lh, cur_dir);
17468 }
17469 line_ptr += bytes_read;
17470
a738430d 17471 /* Read file name table. */
9b1c24c8 17472 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17473 {
17474 unsigned int dir_index, mod_time, length;
17475
17476 line_ptr += bytes_read;
17477 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17478 line_ptr += bytes_read;
17479 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17480 line_ptr += bytes_read;
17481 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17482 line_ptr += bytes_read;
17483
17484 add_file_name (lh, cur_file, dir_index, mod_time, length);
17485 }
17486 line_ptr += bytes_read;
6e70227d 17487 lh->statement_program_start = line_ptr;
debd256d 17488
3019eac3 17489 if (line_ptr > (section->buffer + section->size))
4d3c2250 17490 complaint (&symfile_complaints,
3e43a32a
MS
17491 _("line number info header doesn't "
17492 "fit in `.debug_line' section"));
debd256d
JB
17493
17494 discard_cleanups (back_to);
17495 return lh;
17496}
c906108c 17497
c6da4cef
DE
17498/* Subroutine of dwarf_decode_lines to simplify it.
17499 Return the file name of the psymtab for included file FILE_INDEX
17500 in line header LH of PST.
17501 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17502 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17503 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17504
17505 The function creates dangling cleanup registration. */
c6da4cef 17506
d521ce57 17507static const char *
c6da4cef
DE
17508psymtab_include_file_name (const struct line_header *lh, int file_index,
17509 const struct partial_symtab *pst,
17510 const char *comp_dir)
17511{
17512 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17513 const char *include_name = fe.name;
17514 const char *include_name_to_compare = include_name;
17515 const char *dir_name = NULL;
72b9f47f
TT
17516 const char *pst_filename;
17517 char *copied_name = NULL;
c6da4cef
DE
17518 int file_is_pst;
17519
afa6c9ab 17520 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17521 dir_name = lh->include_dirs[fe.dir_index - 1];
17522
17523 if (!IS_ABSOLUTE_PATH (include_name)
17524 && (dir_name != NULL || comp_dir != NULL))
17525 {
17526 /* Avoid creating a duplicate psymtab for PST.
17527 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17528 Before we do the comparison, however, we need to account
17529 for DIR_NAME and COMP_DIR.
17530 First prepend dir_name (if non-NULL). If we still don't
17531 have an absolute path prepend comp_dir (if non-NULL).
17532 However, the directory we record in the include-file's
17533 psymtab does not contain COMP_DIR (to match the
17534 corresponding symtab(s)).
17535
17536 Example:
17537
17538 bash$ cd /tmp
17539 bash$ gcc -g ./hello.c
17540 include_name = "hello.c"
17541 dir_name = "."
17542 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17543 DW_AT_name = "./hello.c"
17544
17545 */
c6da4cef
DE
17546
17547 if (dir_name != NULL)
17548 {
d521ce57
TT
17549 char *tem = concat (dir_name, SLASH_STRING,
17550 include_name, (char *)NULL);
17551
17552 make_cleanup (xfree, tem);
17553 include_name = tem;
c6da4cef 17554 include_name_to_compare = include_name;
c6da4cef
DE
17555 }
17556 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17557 {
d521ce57
TT
17558 char *tem = concat (comp_dir, SLASH_STRING,
17559 include_name, (char *)NULL);
17560
17561 make_cleanup (xfree, tem);
17562 include_name_to_compare = tem;
c6da4cef
DE
17563 }
17564 }
17565
17566 pst_filename = pst->filename;
17567 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17568 {
72b9f47f
TT
17569 copied_name = concat (pst->dirname, SLASH_STRING,
17570 pst_filename, (char *)NULL);
17571 pst_filename = copied_name;
c6da4cef
DE
17572 }
17573
1e3fad37 17574 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17575
72b9f47f
TT
17576 if (copied_name != NULL)
17577 xfree (copied_name);
c6da4cef
DE
17578
17579 if (file_is_pst)
17580 return NULL;
17581 return include_name;
17582}
17583
d9b3de22
DE
17584/* State machine to track the state of the line number program. */
17585
17586typedef struct
17587{
17588 /* These are part of the standard DWARF line number state machine. */
17589
17590 unsigned char op_index;
17591 unsigned int file;
17592 unsigned int line;
17593 CORE_ADDR address;
17594 int is_stmt;
17595 unsigned int discriminator;
17596
17597 /* Additional bits of state we need to track. */
17598
17599 /* The last file that we called dwarf2_start_subfile for.
17600 This is only used for TLLs. */
17601 unsigned int last_file;
17602 /* The last file a line number was recorded for. */
17603 struct subfile *last_subfile;
17604
17605 /* The function to call to record a line. */
17606 record_line_ftype *record_line;
17607
17608 /* The last line number that was recorded, used to coalesce
17609 consecutive entries for the same line. This can happen, for
17610 example, when discriminators are present. PR 17276. */
17611 unsigned int last_line;
17612 int line_has_non_zero_discriminator;
17613} lnp_state_machine;
17614
17615/* There's a lot of static state to pass to dwarf_record_line.
17616 This keeps it all together. */
17617
17618typedef struct
17619{
17620 /* The gdbarch. */
17621 struct gdbarch *gdbarch;
17622
17623 /* The line number header. */
17624 struct line_header *line_header;
17625
17626 /* Non-zero if we're recording lines.
17627 Otherwise we're building partial symtabs and are just interested in
17628 finding include files mentioned by the line number program. */
17629 int record_lines_p;
17630} lnp_reader_state;
17631
c91513d8
PP
17632/* Ignore this record_line request. */
17633
17634static void
17635noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17636{
17637 return;
17638}
17639
a05a36a5
DE
17640/* Return non-zero if we should add LINE to the line number table.
17641 LINE is the line to add, LAST_LINE is the last line that was added,
17642 LAST_SUBFILE is the subfile for LAST_LINE.
17643 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17644 had a non-zero discriminator.
17645
17646 We have to be careful in the presence of discriminators.
17647 E.g., for this line:
17648
17649 for (i = 0; i < 100000; i++);
17650
17651 clang can emit four line number entries for that one line,
17652 each with a different discriminator.
17653 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17654
17655 However, we want gdb to coalesce all four entries into one.
17656 Otherwise the user could stepi into the middle of the line and
17657 gdb would get confused about whether the pc really was in the
17658 middle of the line.
17659
17660 Things are further complicated by the fact that two consecutive
17661 line number entries for the same line is a heuristic used by gcc
17662 to denote the end of the prologue. So we can't just discard duplicate
17663 entries, we have to be selective about it. The heuristic we use is
17664 that we only collapse consecutive entries for the same line if at least
17665 one of those entries has a non-zero discriminator. PR 17276.
17666
17667 Note: Addresses in the line number state machine can never go backwards
17668 within one sequence, thus this coalescing is ok. */
17669
17670static int
17671dwarf_record_line_p (unsigned int line, unsigned int last_line,
17672 int line_has_non_zero_discriminator,
17673 struct subfile *last_subfile)
17674{
17675 if (current_subfile != last_subfile)
17676 return 1;
17677 if (line != last_line)
17678 return 1;
17679 /* Same line for the same file that we've seen already.
17680 As a last check, for pr 17276, only record the line if the line
17681 has never had a non-zero discriminator. */
17682 if (!line_has_non_zero_discriminator)
17683 return 1;
17684 return 0;
17685}
17686
252a6764
DE
17687/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17688 in the line table of subfile SUBFILE. */
17689
17690static void
d9b3de22
DE
17691dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17692 unsigned int line, CORE_ADDR address,
17693 record_line_ftype p_record_line)
252a6764
DE
17694{
17695 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17696
27e0867f
DE
17697 if (dwarf_line_debug)
17698 {
17699 fprintf_unfiltered (gdb_stdlog,
17700 "Recording line %u, file %s, address %s\n",
17701 line, lbasename (subfile->name),
17702 paddress (gdbarch, address));
17703 }
17704
d5962de5 17705 (*p_record_line) (subfile, line, addr);
252a6764
DE
17706}
17707
17708/* Subroutine of dwarf_decode_lines_1 to simplify it.
17709 Mark the end of a set of line number records.
d9b3de22 17710 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17711 If SUBFILE is NULL the request is ignored. */
17712
17713static void
17714dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17715 CORE_ADDR address, record_line_ftype p_record_line)
17716{
27e0867f
DE
17717 if (subfile == NULL)
17718 return;
17719
17720 if (dwarf_line_debug)
17721 {
17722 fprintf_unfiltered (gdb_stdlog,
17723 "Finishing current line, file %s, address %s\n",
17724 lbasename (subfile->name),
17725 paddress (gdbarch, address));
17726 }
17727
d9b3de22
DE
17728 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17729}
17730
17731/* Record the line in STATE.
17732 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17733
17734static void
17735dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17736 int end_sequence)
17737{
17738 const struct line_header *lh = reader->line_header;
17739 unsigned int file, line, discriminator;
17740 int is_stmt;
17741
17742 file = state->file;
17743 line = state->line;
17744 is_stmt = state->is_stmt;
17745 discriminator = state->discriminator;
17746
17747 if (dwarf_line_debug)
17748 {
17749 fprintf_unfiltered (gdb_stdlog,
17750 "Processing actual line %u: file %u,"
17751 " address %s, is_stmt %u, discrim %u\n",
17752 line, file,
17753 paddress (reader->gdbarch, state->address),
17754 is_stmt, discriminator);
17755 }
17756
17757 if (file == 0 || file - 1 >= lh->num_file_names)
17758 dwarf2_debug_line_missing_file_complaint ();
17759 /* For now we ignore lines not starting on an instruction boundary.
17760 But not when processing end_sequence for compatibility with the
17761 previous version of the code. */
17762 else if (state->op_index == 0 || end_sequence)
17763 {
17764 lh->file_names[file - 1].included_p = 1;
17765 if (reader->record_lines_p && is_stmt)
17766 {
e815d2d2 17767 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17768 {
17769 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17770 state->address, state->record_line);
17771 }
17772
17773 if (!end_sequence)
17774 {
17775 if (dwarf_record_line_p (line, state->last_line,
17776 state->line_has_non_zero_discriminator,
17777 state->last_subfile))
17778 {
17779 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17780 line, state->address,
17781 state->record_line);
17782 }
17783 state->last_subfile = current_subfile;
17784 state->last_line = line;
17785 }
17786 }
17787 }
17788}
17789
17790/* Initialize STATE for the start of a line number program. */
17791
17792static void
17793init_lnp_state_machine (lnp_state_machine *state,
17794 const lnp_reader_state *reader)
17795{
17796 memset (state, 0, sizeof (*state));
17797
17798 /* Just starting, there is no "last file". */
17799 state->last_file = 0;
17800 state->last_subfile = NULL;
17801
17802 state->record_line = record_line;
17803
17804 state->last_line = 0;
17805 state->line_has_non_zero_discriminator = 0;
17806
17807 /* Initialize these according to the DWARF spec. */
17808 state->op_index = 0;
17809 state->file = 1;
17810 state->line = 1;
17811 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17812 was a line entry for it so that the backend has a chance to adjust it
17813 and also record it in case it needs it. This is currently used by MIPS
17814 code, cf. `mips_adjust_dwarf2_line'. */
17815 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17816 state->is_stmt = reader->line_header->default_is_stmt;
17817 state->discriminator = 0;
252a6764
DE
17818}
17819
924c2928
DE
17820/* Check address and if invalid nop-out the rest of the lines in this
17821 sequence. */
17822
17823static void
d9b3de22 17824check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17825 const gdb_byte *line_ptr,
17826 CORE_ADDR lowpc, CORE_ADDR address)
17827{
17828 /* If address < lowpc then it's not a usable value, it's outside the
17829 pc range of the CU. However, we restrict the test to only address
17830 values of zero to preserve GDB's previous behaviour which is to
17831 handle the specific case of a function being GC'd by the linker. */
17832
17833 if (address == 0 && address < lowpc)
17834 {
17835 /* This line table is for a function which has been
17836 GCd by the linker. Ignore it. PR gdb/12528 */
17837
17838 struct objfile *objfile = cu->objfile;
17839 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17840
17841 complaint (&symfile_complaints,
17842 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17843 line_offset, objfile_name (objfile));
d9b3de22
DE
17844 state->record_line = noop_record_line;
17845 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17846 until we see DW_LNE_end_sequence. */
17847 }
17848}
17849
f3f5162e 17850/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17851 Process the line number information in LH.
17852 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17853 program in order to set included_p for every referenced header. */
debd256d 17854
c906108c 17855static void
43f3e411
DE
17856dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17857 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17858{
d521ce57
TT
17859 const gdb_byte *line_ptr, *extended_end;
17860 const gdb_byte *line_end;
a8c50c1f 17861 unsigned int bytes_read, extended_len;
699ca60a 17862 unsigned char op_code, extended_op;
e142c38c
DJ
17863 CORE_ADDR baseaddr;
17864 struct objfile *objfile = cu->objfile;
f3f5162e 17865 bfd *abfd = objfile->obfd;
fbf65064 17866 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17867 /* Non-zero if we're recording line info (as opposed to building partial
17868 symtabs). */
17869 int record_lines_p = !decode_for_pst_p;
17870 /* A collection of things we need to pass to dwarf_record_line. */
17871 lnp_reader_state reader_state;
e142c38c
DJ
17872
17873 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17874
debd256d
JB
17875 line_ptr = lh->statement_program_start;
17876 line_end = lh->statement_program_end;
c906108c 17877
d9b3de22
DE
17878 reader_state.gdbarch = gdbarch;
17879 reader_state.line_header = lh;
17880 reader_state.record_lines_p = record_lines_p;
17881
c906108c
SS
17882 /* Read the statement sequences until there's nothing left. */
17883 while (line_ptr < line_end)
17884 {
d9b3de22
DE
17885 /* The DWARF line number program state machine. */
17886 lnp_state_machine state_machine;
c906108c 17887 int end_sequence = 0;
d9b3de22
DE
17888
17889 /* Reset the state machine at the start of each sequence. */
17890 init_lnp_state_machine (&state_machine, &reader_state);
17891
17892 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17893 {
aaa75496 17894 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17895 /* lh->include_dirs and lh->file_names are 0-based, but the
17896 directory and file name numbers in the statement program
17897 are 1-based. */
d9b3de22 17898 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17899 const char *dir = NULL;
a738430d 17900
afa6c9ab 17901 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17902 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17903
4d663531 17904 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17905 }
17906
a738430d 17907 /* Decode the table. */
d9b3de22 17908 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17909 {
17910 op_code = read_1_byte (abfd, line_ptr);
17911 line_ptr += 1;
9aa1fe7e 17912
debd256d 17913 if (op_code >= lh->opcode_base)
6e70227d 17914 {
8e07a239 17915 /* Special opcode. */
699ca60a 17916 unsigned char adj_opcode;
3e29f34a 17917 CORE_ADDR addr_adj;
a05a36a5 17918 int line_delta;
8e07a239 17919
debd256d 17920 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17921 addr_adj = (((state_machine.op_index
17922 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17923 / lh->maximum_ops_per_instruction)
17924 * lh->minimum_instruction_length);
d9b3de22
DE
17925 state_machine.address
17926 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17927 state_machine.op_index = ((state_machine.op_index
17928 + (adj_opcode / lh->line_range))
17929 % lh->maximum_ops_per_instruction);
a05a36a5 17930 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17931 state_machine.line += line_delta;
a05a36a5 17932 if (line_delta != 0)
d9b3de22
DE
17933 state_machine.line_has_non_zero_discriminator
17934 = state_machine.discriminator != 0;
17935
17936 dwarf_record_line (&reader_state, &state_machine, 0);
17937 state_machine.discriminator = 0;
9aa1fe7e
GK
17938 }
17939 else switch (op_code)
c906108c
SS
17940 {
17941 case DW_LNS_extended_op:
3e43a32a
MS
17942 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17943 &bytes_read);
473b7be6 17944 line_ptr += bytes_read;
a8c50c1f 17945 extended_end = line_ptr + extended_len;
c906108c
SS
17946 extended_op = read_1_byte (abfd, line_ptr);
17947 line_ptr += 1;
17948 switch (extended_op)
17949 {
17950 case DW_LNE_end_sequence:
d9b3de22 17951 state_machine.record_line = record_line;
c906108c 17952 end_sequence = 1;
c906108c
SS
17953 break;
17954 case DW_LNE_set_address:
d9b3de22
DE
17955 {
17956 CORE_ADDR address
17957 = read_address (abfd, line_ptr, cu, &bytes_read);
17958
17959 line_ptr += bytes_read;
17960 check_line_address (cu, &state_machine, line_ptr,
17961 lowpc, address);
17962 state_machine.op_index = 0;
17963 address += baseaddr;
17964 state_machine.address
17965 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17966 }
c906108c
SS
17967 break;
17968 case DW_LNE_define_file:
debd256d 17969 {
d521ce57 17970 const char *cur_file;
debd256d 17971 unsigned int dir_index, mod_time, length;
6e70227d 17972
3e43a32a
MS
17973 cur_file = read_direct_string (abfd, line_ptr,
17974 &bytes_read);
debd256d
JB
17975 line_ptr += bytes_read;
17976 dir_index =
17977 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17978 line_ptr += bytes_read;
17979 mod_time =
17980 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17981 line_ptr += bytes_read;
17982 length =
17983 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17984 line_ptr += bytes_read;
17985 add_file_name (lh, cur_file, dir_index, mod_time, length);
17986 }
c906108c 17987 break;
d0c6ba3d
CC
17988 case DW_LNE_set_discriminator:
17989 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17990 just ignore it. We still need to check its value though:
17991 if there are consecutive entries for the same
17992 (non-prologue) line we want to coalesce them.
17993 PR 17276. */
d9b3de22
DE
17994 state_machine.discriminator
17995 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17996 state_machine.line_has_non_zero_discriminator
17997 |= state_machine.discriminator != 0;
a05a36a5 17998 line_ptr += bytes_read;
d0c6ba3d 17999 break;
c906108c 18000 default:
4d3c2250 18001 complaint (&symfile_complaints,
e2e0b3e5 18002 _("mangled .debug_line section"));
debd256d 18003 return;
c906108c 18004 }
a8c50c1f
DJ
18005 /* Make sure that we parsed the extended op correctly. If e.g.
18006 we expected a different address size than the producer used,
18007 we may have read the wrong number of bytes. */
18008 if (line_ptr != extended_end)
18009 {
18010 complaint (&symfile_complaints,
18011 _("mangled .debug_line section"));
18012 return;
18013 }
c906108c
SS
18014 break;
18015 case DW_LNS_copy:
d9b3de22
DE
18016 dwarf_record_line (&reader_state, &state_machine, 0);
18017 state_machine.discriminator = 0;
c906108c
SS
18018 break;
18019 case DW_LNS_advance_pc:
2dc7f7b3
TT
18020 {
18021 CORE_ADDR adjust
18022 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 18023 CORE_ADDR addr_adj;
2dc7f7b3 18024
d9b3de22 18025 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18026 / lh->maximum_ops_per_instruction)
18027 * lh->minimum_instruction_length);
d9b3de22
DE
18028 state_machine.address
18029 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18030 state_machine.op_index = ((state_machine.op_index + adjust)
18031 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18032 line_ptr += bytes_read;
18033 }
c906108c
SS
18034 break;
18035 case DW_LNS_advance_line:
a05a36a5
DE
18036 {
18037 int line_delta
18038 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18039
d9b3de22 18040 state_machine.line += line_delta;
a05a36a5 18041 if (line_delta != 0)
d9b3de22
DE
18042 state_machine.line_has_non_zero_discriminator
18043 = state_machine.discriminator != 0;
a05a36a5
DE
18044 line_ptr += bytes_read;
18045 }
c906108c
SS
18046 break;
18047 case DW_LNS_set_file:
d9b3de22
DE
18048 {
18049 /* The arrays lh->include_dirs and lh->file_names are
18050 0-based, but the directory and file name numbers in
18051 the statement program are 1-based. */
18052 struct file_entry *fe;
18053 const char *dir = NULL;
18054
18055 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18056 &bytes_read);
18057 line_ptr += bytes_read;
18058 if (state_machine.file == 0
18059 || state_machine.file - 1 >= lh->num_file_names)
18060 dwarf2_debug_line_missing_file_complaint ();
18061 else
18062 {
18063 fe = &lh->file_names[state_machine.file - 1];
18064 if (fe->dir_index && lh->include_dirs != NULL)
18065 dir = lh->include_dirs[fe->dir_index - 1];
18066 if (record_lines_p)
18067 {
18068 state_machine.last_subfile = current_subfile;
18069 state_machine.line_has_non_zero_discriminator
18070 = state_machine.discriminator != 0;
18071 dwarf2_start_subfile (fe->name, dir);
18072 }
18073 }
18074 }
c906108c
SS
18075 break;
18076 case DW_LNS_set_column:
0ad93d4f 18077 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18078 line_ptr += bytes_read;
18079 break;
18080 case DW_LNS_negate_stmt:
d9b3de22 18081 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18082 break;
18083 case DW_LNS_set_basic_block:
c906108c 18084 break;
c2c6d25f
JM
18085 /* Add to the address register of the state machine the
18086 address increment value corresponding to special opcode
a738430d
MK
18087 255. I.e., this value is scaled by the minimum
18088 instruction length since special opcode 255 would have
b021a221 18089 scaled the increment. */
c906108c 18090 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18091 {
18092 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18093 CORE_ADDR addr_adj;
2dc7f7b3 18094
d9b3de22 18095 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18096 / lh->maximum_ops_per_instruction)
18097 * lh->minimum_instruction_length);
d9b3de22
DE
18098 state_machine.address
18099 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18100 state_machine.op_index = ((state_machine.op_index + adjust)
18101 % lh->maximum_ops_per_instruction);
2dc7f7b3 18102 }
c906108c
SS
18103 break;
18104 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18105 {
18106 CORE_ADDR addr_adj;
18107
18108 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18109 state_machine.address
18110 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18111 state_machine.op_index = 0;
3e29f34a
MR
18112 line_ptr += 2;
18113 }
c906108c 18114 break;
9aa1fe7e 18115 default:
a738430d
MK
18116 {
18117 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18118 int i;
a738430d 18119
debd256d 18120 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18121 {
18122 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18123 line_ptr += bytes_read;
18124 }
18125 }
c906108c
SS
18126 }
18127 }
d9b3de22
DE
18128
18129 if (!end_sequence)
18130 dwarf2_debug_line_missing_end_sequence_complaint ();
18131
18132 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18133 in which case we still finish recording the last line). */
18134 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18135 }
f3f5162e
DE
18136}
18137
18138/* Decode the Line Number Program (LNP) for the given line_header
18139 structure and CU. The actual information extracted and the type
18140 of structures created from the LNP depends on the value of PST.
18141
18142 1. If PST is NULL, then this procedure uses the data from the program
18143 to create all necessary symbol tables, and their linetables.
18144
18145 2. If PST is not NULL, this procedure reads the program to determine
18146 the list of files included by the unit represented by PST, and
18147 builds all the associated partial symbol tables.
18148
18149 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18150 It is used for relative paths in the line table.
18151 NOTE: When processing partial symtabs (pst != NULL),
18152 comp_dir == pst->dirname.
18153
18154 NOTE: It is important that psymtabs have the same file name (via strcmp)
18155 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18156 symtab we don't use it in the name of the psymtabs we create.
18157 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18158 A good testcase for this is mb-inline.exp.
18159
527f3840
JK
18160 LOWPC is the lowest address in CU (or 0 if not known).
18161
18162 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18163 for its PC<->lines mapping information. Otherwise only the filename
18164 table is read in. */
f3f5162e
DE
18165
18166static void
18167dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18168 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18169 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18170{
18171 struct objfile *objfile = cu->objfile;
18172 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18173
527f3840
JK
18174 if (decode_mapping)
18175 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18176
18177 if (decode_for_pst_p)
18178 {
18179 int file_index;
18180
18181 /* Now that we're done scanning the Line Header Program, we can
18182 create the psymtab of each included file. */
18183 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18184 if (lh->file_names[file_index].included_p == 1)
18185 {
d521ce57 18186 const char *include_name =
c6da4cef
DE
18187 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18188 if (include_name != NULL)
aaa75496
JB
18189 dwarf2_create_include_psymtab (include_name, pst, objfile);
18190 }
18191 }
cb1df416
DJ
18192 else
18193 {
18194 /* Make sure a symtab is created for every file, even files
18195 which contain only variables (i.e. no code with associated
18196 line numbers). */
43f3e411 18197 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18198 int i;
cb1df416
DJ
18199
18200 for (i = 0; i < lh->num_file_names; i++)
18201 {
d521ce57 18202 const char *dir = NULL;
f3f5162e 18203 struct file_entry *fe;
9a619af0 18204
cb1df416 18205 fe = &lh->file_names[i];
afa6c9ab 18206 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18207 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18208 dwarf2_start_subfile (fe->name, dir);
cb1df416 18209
cb1df416 18210 if (current_subfile->symtab == NULL)
43f3e411
DE
18211 {
18212 current_subfile->symtab
18213 = allocate_symtab (cust, current_subfile->name);
18214 }
cb1df416
DJ
18215 fe->symtab = current_subfile->symtab;
18216 }
18217 }
c906108c
SS
18218}
18219
18220/* Start a subfile for DWARF. FILENAME is the name of the file and
18221 DIRNAME the name of the source directory which contains FILENAME
4d663531 18222 or NULL if not known.
c906108c
SS
18223 This routine tries to keep line numbers from identical absolute and
18224 relative file names in a common subfile.
18225
18226 Using the `list' example from the GDB testsuite, which resides in
18227 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18228 of /srcdir/list0.c yields the following debugging information for list0.c:
18229
c5aa993b 18230 DW_AT_name: /srcdir/list0.c
4d663531 18231 DW_AT_comp_dir: /compdir
357e46e7 18232 files.files[0].name: list0.h
c5aa993b 18233 files.files[0].dir: /srcdir
357e46e7 18234 files.files[1].name: list0.c
c5aa993b 18235 files.files[1].dir: /srcdir
c906108c
SS
18236
18237 The line number information for list0.c has to end up in a single
4f1520fb
FR
18238 subfile, so that `break /srcdir/list0.c:1' works as expected.
18239 start_subfile will ensure that this happens provided that we pass the
18240 concatenation of files.files[1].dir and files.files[1].name as the
18241 subfile's name. */
c906108c
SS
18242
18243static void
4d663531 18244dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18245{
d521ce57 18246 char *copy = NULL;
4f1520fb 18247
4d663531 18248 /* In order not to lose the line information directory,
4f1520fb
FR
18249 we concatenate it to the filename when it makes sense.
18250 Note that the Dwarf3 standard says (speaking of filenames in line
18251 information): ``The directory index is ignored for file names
18252 that represent full path names''. Thus ignoring dirname in the
18253 `else' branch below isn't an issue. */
c906108c 18254
d5166ae1 18255 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18256 {
18257 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18258 filename = copy;
18259 }
c906108c 18260
4d663531 18261 start_subfile (filename);
4f1520fb 18262
d521ce57
TT
18263 if (copy != NULL)
18264 xfree (copy);
c906108c
SS
18265}
18266
f4dc4d17
DE
18267/* Start a symtab for DWARF.
18268 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18269
43f3e411 18270static struct compunit_symtab *
f4dc4d17 18271dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18272 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18273{
43f3e411
DE
18274 struct compunit_symtab *cust
18275 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18276
f4dc4d17
DE
18277 record_debugformat ("DWARF 2");
18278 record_producer (cu->producer);
18279
18280 /* We assume that we're processing GCC output. */
18281 processing_gcc_compilation = 2;
18282
4d4ec4e5 18283 cu->processing_has_namespace_info = 0;
43f3e411
DE
18284
18285 return cust;
f4dc4d17
DE
18286}
18287
4c2df51b
DJ
18288static void
18289var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18290 struct dwarf2_cu *cu)
4c2df51b 18291{
e7c27a73
DJ
18292 struct objfile *objfile = cu->objfile;
18293 struct comp_unit_head *cu_header = &cu->header;
18294
4c2df51b
DJ
18295 /* NOTE drow/2003-01-30: There used to be a comment and some special
18296 code here to turn a symbol with DW_AT_external and a
18297 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18298 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18299 with some versions of binutils) where shared libraries could have
18300 relocations against symbols in their debug information - the
18301 minimal symbol would have the right address, but the debug info
18302 would not. It's no longer necessary, because we will explicitly
18303 apply relocations when we read in the debug information now. */
18304
18305 /* A DW_AT_location attribute with no contents indicates that a
18306 variable has been optimized away. */
18307 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18308 {
f1e6e072 18309 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18310 return;
18311 }
18312
18313 /* Handle one degenerate form of location expression specially, to
18314 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18315 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18316 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18317
18318 if (attr_form_is_block (attr)
3019eac3
DE
18319 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18320 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18321 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18322 && (DW_BLOCK (attr)->size
18323 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18324 {
891d2f0b 18325 unsigned int dummy;
4c2df51b 18326
3019eac3
DE
18327 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18328 SYMBOL_VALUE_ADDRESS (sym) =
18329 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18330 else
18331 SYMBOL_VALUE_ADDRESS (sym) =
18332 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18333 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18334 fixup_symbol_section (sym, objfile);
18335 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18336 SYMBOL_SECTION (sym));
4c2df51b
DJ
18337 return;
18338 }
18339
18340 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18341 expression evaluator, and use LOC_COMPUTED only when necessary
18342 (i.e. when the value of a register or memory location is
18343 referenced, or a thread-local block, etc.). Then again, it might
18344 not be worthwhile. I'm assuming that it isn't unless performance
18345 or memory numbers show me otherwise. */
18346
f1e6e072 18347 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18348
f1e6e072 18349 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18350 cu->has_loclist = 1;
4c2df51b
DJ
18351}
18352
c906108c
SS
18353/* Given a pointer to a DWARF information entry, figure out if we need
18354 to make a symbol table entry for it, and if so, create a new entry
18355 and return a pointer to it.
18356 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18357 used the passed type.
18358 If SPACE is not NULL, use it to hold the new symbol. If it is
18359 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18360
18361static struct symbol *
34eaf542
TT
18362new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18363 struct symbol *space)
c906108c 18364{
e7c27a73 18365 struct objfile *objfile = cu->objfile;
3e29f34a 18366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18367 struct symbol *sym = NULL;
15d034d0 18368 const char *name;
c906108c
SS
18369 struct attribute *attr = NULL;
18370 struct attribute *attr2 = NULL;
e142c38c 18371 CORE_ADDR baseaddr;
e37fd15a
SW
18372 struct pending **list_to_add = NULL;
18373
edb3359d 18374 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18375
18376 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18377
94af9270 18378 name = dwarf2_name (die, cu);
c906108c
SS
18379 if (name)
18380 {
94af9270 18381 const char *linkagename;
34eaf542 18382 int suppress_add = 0;
94af9270 18383
34eaf542
TT
18384 if (space)
18385 sym = space;
18386 else
e623cf5d 18387 sym = allocate_symbol (objfile);
c906108c 18388 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18389
18390 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18391 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18392 linkagename = dwarf2_physname (name, die, cu);
18393 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18394
f55ee35c
JK
18395 /* Fortran does not have mangling standard and the mangling does differ
18396 between gfortran, iFort etc. */
18397 if (cu->language == language_fortran
b250c185 18398 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18399 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18400 dwarf2_full_name (name, die, cu),
29df156d 18401 NULL);
f55ee35c 18402
c906108c 18403 /* Default assumptions.
c5aa993b 18404 Use the passed type or decode it from the die. */
176620f1 18405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18406 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18407 if (type != NULL)
18408 SYMBOL_TYPE (sym) = type;
18409 else
e7c27a73 18410 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18411 attr = dwarf2_attr (die,
18412 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18413 cu);
c906108c
SS
18414 if (attr)
18415 {
18416 SYMBOL_LINE (sym) = DW_UNSND (attr);
18417 }
cb1df416 18418
edb3359d
DJ
18419 attr = dwarf2_attr (die,
18420 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18421 cu);
cb1df416
DJ
18422 if (attr)
18423 {
18424 int file_index = DW_UNSND (attr);
9a619af0 18425
cb1df416
DJ
18426 if (cu->line_header == NULL
18427 || file_index > cu->line_header->num_file_names)
18428 complaint (&symfile_complaints,
18429 _("file index out of range"));
1c3d648d 18430 else if (file_index > 0)
cb1df416
DJ
18431 {
18432 struct file_entry *fe;
9a619af0 18433
cb1df416 18434 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18435 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18436 }
18437 }
18438
c906108c
SS
18439 switch (die->tag)
18440 {
18441 case DW_TAG_label:
e142c38c 18442 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18443 if (attr)
3e29f34a
MR
18444 {
18445 CORE_ADDR addr;
18446
18447 addr = attr_value_as_address (attr);
18448 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18449 SYMBOL_VALUE_ADDRESS (sym) = addr;
18450 }
0f5238ed
TT
18451 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18452 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18453 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18454 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18455 break;
18456 case DW_TAG_subprogram:
18457 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18458 finish_block. */
f1e6e072 18459 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18460 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18461 if ((attr2 && (DW_UNSND (attr2) != 0))
18462 || cu->language == language_ada)
c906108c 18463 {
2cfa0c8d
JB
18464 /* Subprograms marked external are stored as a global symbol.
18465 Ada subprograms, whether marked external or not, are always
18466 stored as a global symbol, because we want to be able to
18467 access them globally. For instance, we want to be able
18468 to break on a nested subprogram without having to
18469 specify the context. */
e37fd15a 18470 list_to_add = &global_symbols;
c906108c
SS
18471 }
18472 else
18473 {
e37fd15a 18474 list_to_add = cu->list_in_scope;
c906108c
SS
18475 }
18476 break;
edb3359d
DJ
18477 case DW_TAG_inlined_subroutine:
18478 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18479 finish_block. */
f1e6e072 18480 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18481 SYMBOL_INLINED (sym) = 1;
481860b3 18482 list_to_add = cu->list_in_scope;
edb3359d 18483 break;
34eaf542
TT
18484 case DW_TAG_template_value_param:
18485 suppress_add = 1;
18486 /* Fall through. */
72929c62 18487 case DW_TAG_constant:
c906108c 18488 case DW_TAG_variable:
254e6b9e 18489 case DW_TAG_member:
0963b4bd
MS
18490 /* Compilation with minimal debug info may result in
18491 variables with missing type entries. Change the
18492 misleading `void' type to something sensible. */
c906108c 18493 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18494 SYMBOL_TYPE (sym)
46bf5051 18495 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18496
e142c38c 18497 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18498 /* In the case of DW_TAG_member, we should only be called for
18499 static const members. */
18500 if (die->tag == DW_TAG_member)
18501 {
3863f96c
DE
18502 /* dwarf2_add_field uses die_is_declaration,
18503 so we do the same. */
254e6b9e
DE
18504 gdb_assert (die_is_declaration (die, cu));
18505 gdb_assert (attr);
18506 }
c906108c
SS
18507 if (attr)
18508 {
e7c27a73 18509 dwarf2_const_value (attr, sym, cu);
e142c38c 18510 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18511 if (!suppress_add)
34eaf542
TT
18512 {
18513 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18514 list_to_add = &global_symbols;
34eaf542 18515 else
e37fd15a 18516 list_to_add = cu->list_in_scope;
34eaf542 18517 }
c906108c
SS
18518 break;
18519 }
e142c38c 18520 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18521 if (attr)
18522 {
e7c27a73 18523 var_decode_location (attr, sym, cu);
e142c38c 18524 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18525
18526 /* Fortran explicitly imports any global symbols to the local
18527 scope by DW_TAG_common_block. */
18528 if (cu->language == language_fortran && die->parent
18529 && die->parent->tag == DW_TAG_common_block)
18530 attr2 = NULL;
18531
caac4577
JG
18532 if (SYMBOL_CLASS (sym) == LOC_STATIC
18533 && SYMBOL_VALUE_ADDRESS (sym) == 0
18534 && !dwarf2_per_objfile->has_section_at_zero)
18535 {
18536 /* When a static variable is eliminated by the linker,
18537 the corresponding debug information is not stripped
18538 out, but the variable address is set to null;
18539 do not add such variables into symbol table. */
18540 }
18541 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18542 {
f55ee35c
JK
18543 /* Workaround gfortran PR debug/40040 - it uses
18544 DW_AT_location for variables in -fPIC libraries which may
18545 get overriden by other libraries/executable and get
18546 a different address. Resolve it by the minimal symbol
18547 which may come from inferior's executable using copy
18548 relocation. Make this workaround only for gfortran as for
18549 other compilers GDB cannot guess the minimal symbol
18550 Fortran mangling kind. */
18551 if (cu->language == language_fortran && die->parent
18552 && die->parent->tag == DW_TAG_module
18553 && cu->producer
28586665 18554 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18555 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18556
1c809c68
TT
18557 /* A variable with DW_AT_external is never static,
18558 but it may be block-scoped. */
18559 list_to_add = (cu->list_in_scope == &file_symbols
18560 ? &global_symbols : cu->list_in_scope);
1c809c68 18561 }
c906108c 18562 else
e37fd15a 18563 list_to_add = cu->list_in_scope;
c906108c
SS
18564 }
18565 else
18566 {
18567 /* We do not know the address of this symbol.
c5aa993b
JM
18568 If it is an external symbol and we have type information
18569 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18570 The address of the variable will then be determined from
18571 the minimal symbol table whenever the variable is
18572 referenced. */
e142c38c 18573 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18574
18575 /* Fortran explicitly imports any global symbols to the local
18576 scope by DW_TAG_common_block. */
18577 if (cu->language == language_fortran && die->parent
18578 && die->parent->tag == DW_TAG_common_block)
18579 {
18580 /* SYMBOL_CLASS doesn't matter here because
18581 read_common_block is going to reset it. */
18582 if (!suppress_add)
18583 list_to_add = cu->list_in_scope;
18584 }
18585 else if (attr2 && (DW_UNSND (attr2) != 0)
18586 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18587 {
0fe7935b
DJ
18588 /* A variable with DW_AT_external is never static, but it
18589 may be block-scoped. */
18590 list_to_add = (cu->list_in_scope == &file_symbols
18591 ? &global_symbols : cu->list_in_scope);
18592
f1e6e072 18593 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18594 }
442ddf59
JK
18595 else if (!die_is_declaration (die, cu))
18596 {
18597 /* Use the default LOC_OPTIMIZED_OUT class. */
18598 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18599 if (!suppress_add)
18600 list_to_add = cu->list_in_scope;
442ddf59 18601 }
c906108c
SS
18602 }
18603 break;
18604 case DW_TAG_formal_parameter:
edb3359d
DJ
18605 /* If we are inside a function, mark this as an argument. If
18606 not, we might be looking at an argument to an inlined function
18607 when we do not have enough information to show inlined frames;
18608 pretend it's a local variable in that case so that the user can
18609 still see it. */
18610 if (context_stack_depth > 0
18611 && context_stack[context_stack_depth - 1].name != NULL)
18612 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18613 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18614 if (attr)
18615 {
e7c27a73 18616 var_decode_location (attr, sym, cu);
c906108c 18617 }
e142c38c 18618 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18619 if (attr)
18620 {
e7c27a73 18621 dwarf2_const_value (attr, sym, cu);
c906108c 18622 }
f346a30d 18623
e37fd15a 18624 list_to_add = cu->list_in_scope;
c906108c
SS
18625 break;
18626 case DW_TAG_unspecified_parameters:
18627 /* From varargs functions; gdb doesn't seem to have any
18628 interest in this information, so just ignore it for now.
18629 (FIXME?) */
18630 break;
34eaf542
TT
18631 case DW_TAG_template_type_param:
18632 suppress_add = 1;
18633 /* Fall through. */
c906108c 18634 case DW_TAG_class_type:
680b30c7 18635 case DW_TAG_interface_type:
c906108c
SS
18636 case DW_TAG_structure_type:
18637 case DW_TAG_union_type:
72019c9c 18638 case DW_TAG_set_type:
c906108c 18639 case DW_TAG_enumeration_type:
f1e6e072 18640 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18641 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18642
63d06c5c 18643 {
987504bb 18644 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18645 really ever be static objects: otherwise, if you try
18646 to, say, break of a class's method and you're in a file
18647 which doesn't mention that class, it won't work unless
18648 the check for all static symbols in lookup_symbol_aux
18649 saves you. See the OtherFileClass tests in
18650 gdb.c++/namespace.exp. */
18651
e37fd15a 18652 if (!suppress_add)
34eaf542 18653 {
34eaf542
TT
18654 list_to_add = (cu->list_in_scope == &file_symbols
18655 && (cu->language == language_cplus
18656 || cu->language == language_java)
18657 ? &global_symbols : cu->list_in_scope);
63d06c5c 18658
64382290
TT
18659 /* The semantics of C++ state that "struct foo {
18660 ... }" also defines a typedef for "foo". A Java
18661 class declaration also defines a typedef for the
18662 class. */
18663 if (cu->language == language_cplus
18664 || cu->language == language_java
45280282 18665 || cu->language == language_ada
c44af4eb
TT
18666 || cu->language == language_d
18667 || cu->language == language_rust)
64382290
TT
18668 {
18669 /* The symbol's name is already allocated along
18670 with this objfile, so we don't need to
18671 duplicate it for the type. */
18672 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18673 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18674 }
63d06c5c
DC
18675 }
18676 }
c906108c
SS
18677 break;
18678 case DW_TAG_typedef:
f1e6e072 18679 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18680 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18681 list_to_add = cu->list_in_scope;
63d06c5c 18682 break;
c906108c 18683 case DW_TAG_base_type:
a02abb62 18684 case DW_TAG_subrange_type:
f1e6e072 18685 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18686 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18687 list_to_add = cu->list_in_scope;
c906108c
SS
18688 break;
18689 case DW_TAG_enumerator:
e142c38c 18690 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18691 if (attr)
18692 {
e7c27a73 18693 dwarf2_const_value (attr, sym, cu);
c906108c 18694 }
63d06c5c
DC
18695 {
18696 /* NOTE: carlton/2003-11-10: See comment above in the
18697 DW_TAG_class_type, etc. block. */
18698
e142c38c 18699 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18700 && (cu->language == language_cplus
18701 || cu->language == language_java)
e142c38c 18702 ? &global_symbols : cu->list_in_scope);
63d06c5c 18703 }
c906108c 18704 break;
74921315 18705 case DW_TAG_imported_declaration:
5c4e30ca 18706 case DW_TAG_namespace:
f1e6e072 18707 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18708 list_to_add = &global_symbols;
5c4e30ca 18709 break;
530e8392
KB
18710 case DW_TAG_module:
18711 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18712 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18713 list_to_add = &global_symbols;
18714 break;
4357ac6c 18715 case DW_TAG_common_block:
f1e6e072 18716 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18717 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18718 add_symbol_to_list (sym, cu->list_in_scope);
18719 break;
c906108c
SS
18720 default:
18721 /* Not a tag we recognize. Hopefully we aren't processing
18722 trash data, but since we must specifically ignore things
18723 we don't recognize, there is nothing else we should do at
0963b4bd 18724 this point. */
e2e0b3e5 18725 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18726 dwarf_tag_name (die->tag));
c906108c
SS
18727 break;
18728 }
df8a16a1 18729
e37fd15a
SW
18730 if (suppress_add)
18731 {
18732 sym->hash_next = objfile->template_symbols;
18733 objfile->template_symbols = sym;
18734 list_to_add = NULL;
18735 }
18736
18737 if (list_to_add != NULL)
18738 add_symbol_to_list (sym, list_to_add);
18739
df8a16a1
DJ
18740 /* For the benefit of old versions of GCC, check for anonymous
18741 namespaces based on the demangled name. */
4d4ec4e5 18742 if (!cu->processing_has_namespace_info
94af9270 18743 && cu->language == language_cplus)
a10964d1 18744 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18745 }
18746 return (sym);
18747}
18748
34eaf542
TT
18749/* A wrapper for new_symbol_full that always allocates a new symbol. */
18750
18751static struct symbol *
18752new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18753{
18754 return new_symbol_full (die, type, cu, NULL);
18755}
18756
98bfdba5
PA
18757/* Given an attr with a DW_FORM_dataN value in host byte order,
18758 zero-extend it as appropriate for the symbol's type. The DWARF
18759 standard (v4) is not entirely clear about the meaning of using
18760 DW_FORM_dataN for a constant with a signed type, where the type is
18761 wider than the data. The conclusion of a discussion on the DWARF
18762 list was that this is unspecified. We choose to always zero-extend
18763 because that is the interpretation long in use by GCC. */
c906108c 18764
98bfdba5 18765static gdb_byte *
ff39bb5e 18766dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18767 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18768{
e7c27a73 18769 struct objfile *objfile = cu->objfile;
e17a4113
UW
18770 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18771 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18772 LONGEST l = DW_UNSND (attr);
18773
18774 if (bits < sizeof (*value) * 8)
18775 {
18776 l &= ((LONGEST) 1 << bits) - 1;
18777 *value = l;
18778 }
18779 else if (bits == sizeof (*value) * 8)
18780 *value = l;
18781 else
18782 {
224c3ddb 18783 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18784 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18785 return bytes;
18786 }
18787
18788 return NULL;
18789}
18790
18791/* Read a constant value from an attribute. Either set *VALUE, or if
18792 the value does not fit in *VALUE, set *BYTES - either already
18793 allocated on the objfile obstack, or newly allocated on OBSTACK,
18794 or, set *BATON, if we translated the constant to a location
18795 expression. */
18796
18797static void
ff39bb5e 18798dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18799 const char *name, struct obstack *obstack,
18800 struct dwarf2_cu *cu,
d521ce57 18801 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18802 struct dwarf2_locexpr_baton **baton)
18803{
18804 struct objfile *objfile = cu->objfile;
18805 struct comp_unit_head *cu_header = &cu->header;
c906108c 18806 struct dwarf_block *blk;
98bfdba5
PA
18807 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18808 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18809
18810 *value = 0;
18811 *bytes = NULL;
18812 *baton = NULL;
c906108c
SS
18813
18814 switch (attr->form)
18815 {
18816 case DW_FORM_addr:
3019eac3 18817 case DW_FORM_GNU_addr_index:
ac56253d 18818 {
ac56253d
TT
18819 gdb_byte *data;
18820
98bfdba5
PA
18821 if (TYPE_LENGTH (type) != cu_header->addr_size)
18822 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18823 cu_header->addr_size,
98bfdba5 18824 TYPE_LENGTH (type));
ac56253d
TT
18825 /* Symbols of this form are reasonably rare, so we just
18826 piggyback on the existing location code rather than writing
18827 a new implementation of symbol_computed_ops. */
8d749320 18828 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18829 (*baton)->per_cu = cu->per_cu;
18830 gdb_assert ((*baton)->per_cu);
ac56253d 18831
98bfdba5 18832 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18833 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18834 (*baton)->data = data;
ac56253d
TT
18835
18836 data[0] = DW_OP_addr;
18837 store_unsigned_integer (&data[1], cu_header->addr_size,
18838 byte_order, DW_ADDR (attr));
18839 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18840 }
c906108c 18841 break;
4ac36638 18842 case DW_FORM_string:
93b5768b 18843 case DW_FORM_strp:
3019eac3 18844 case DW_FORM_GNU_str_index:
36586728 18845 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18846 /* DW_STRING is already allocated on the objfile obstack, point
18847 directly to it. */
d521ce57 18848 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18849 break;
c906108c
SS
18850 case DW_FORM_block1:
18851 case DW_FORM_block2:
18852 case DW_FORM_block4:
18853 case DW_FORM_block:
2dc7f7b3 18854 case DW_FORM_exprloc:
c906108c 18855 blk = DW_BLOCK (attr);
98bfdba5
PA
18856 if (TYPE_LENGTH (type) != blk->size)
18857 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18858 TYPE_LENGTH (type));
18859 *bytes = blk->data;
c906108c 18860 break;
2df3850c
JM
18861
18862 /* The DW_AT_const_value attributes are supposed to carry the
18863 symbol's value "represented as it would be on the target
18864 architecture." By the time we get here, it's already been
18865 converted to host endianness, so we just need to sign- or
18866 zero-extend it as appropriate. */
18867 case DW_FORM_data1:
3aef2284 18868 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18869 break;
c906108c 18870 case DW_FORM_data2:
3aef2284 18871 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18872 break;
c906108c 18873 case DW_FORM_data4:
3aef2284 18874 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18875 break;
c906108c 18876 case DW_FORM_data8:
3aef2284 18877 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18878 break;
18879
c906108c 18880 case DW_FORM_sdata:
98bfdba5 18881 *value = DW_SND (attr);
2df3850c
JM
18882 break;
18883
c906108c 18884 case DW_FORM_udata:
98bfdba5 18885 *value = DW_UNSND (attr);
c906108c 18886 break;
2df3850c 18887
c906108c 18888 default:
4d3c2250 18889 complaint (&symfile_complaints,
e2e0b3e5 18890 _("unsupported const value attribute form: '%s'"),
4d3c2250 18891 dwarf_form_name (attr->form));
98bfdba5 18892 *value = 0;
c906108c
SS
18893 break;
18894 }
18895}
18896
2df3850c 18897
98bfdba5
PA
18898/* Copy constant value from an attribute to a symbol. */
18899
2df3850c 18900static void
ff39bb5e 18901dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18902 struct dwarf2_cu *cu)
2df3850c 18903{
98bfdba5 18904 struct objfile *objfile = cu->objfile;
12df843f 18905 LONGEST value;
d521ce57 18906 const gdb_byte *bytes;
98bfdba5 18907 struct dwarf2_locexpr_baton *baton;
2df3850c 18908
98bfdba5
PA
18909 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18910 SYMBOL_PRINT_NAME (sym),
18911 &objfile->objfile_obstack, cu,
18912 &value, &bytes, &baton);
2df3850c 18913
98bfdba5
PA
18914 if (baton != NULL)
18915 {
98bfdba5 18916 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18917 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18918 }
18919 else if (bytes != NULL)
18920 {
18921 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18922 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18923 }
18924 else
18925 {
18926 SYMBOL_VALUE (sym) = value;
f1e6e072 18927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18928 }
2df3850c
JM
18929}
18930
c906108c
SS
18931/* Return the type of the die in question using its DW_AT_type attribute. */
18932
18933static struct type *
e7c27a73 18934die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18935{
c906108c 18936 struct attribute *type_attr;
c906108c 18937
e142c38c 18938 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18939 if (!type_attr)
18940 {
18941 /* A missing DW_AT_type represents a void type. */
46bf5051 18942 return objfile_type (cu->objfile)->builtin_void;
c906108c 18943 }
348e048f 18944
673bfd45 18945 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18946}
18947
b4ba55a1
JB
18948/* True iff CU's producer generates GNAT Ada auxiliary information
18949 that allows to find parallel types through that information instead
18950 of having to do expensive parallel lookups by type name. */
18951
18952static int
18953need_gnat_info (struct dwarf2_cu *cu)
18954{
18955 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18956 of GNAT produces this auxiliary information, without any indication
18957 that it is produced. Part of enhancing the FSF version of GNAT
18958 to produce that information will be to put in place an indicator
18959 that we can use in order to determine whether the descriptive type
18960 info is available or not. One suggestion that has been made is
18961 to use a new attribute, attached to the CU die. For now, assume
18962 that the descriptive type info is not available. */
18963 return 0;
18964}
18965
b4ba55a1
JB
18966/* Return the auxiliary type of the die in question using its
18967 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18968 attribute is not present. */
18969
18970static struct type *
18971die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18972{
b4ba55a1 18973 struct attribute *type_attr;
b4ba55a1
JB
18974
18975 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18976 if (!type_attr)
18977 return NULL;
18978
673bfd45 18979 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18980}
18981
18982/* If DIE has a descriptive_type attribute, then set the TYPE's
18983 descriptive type accordingly. */
18984
18985static void
18986set_descriptive_type (struct type *type, struct die_info *die,
18987 struct dwarf2_cu *cu)
18988{
18989 struct type *descriptive_type = die_descriptive_type (die, cu);
18990
18991 if (descriptive_type)
18992 {
18993 ALLOCATE_GNAT_AUX_TYPE (type);
18994 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18995 }
18996}
18997
c906108c
SS
18998/* Return the containing type of the die in question using its
18999 DW_AT_containing_type attribute. */
19000
19001static struct type *
e7c27a73 19002die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19003{
c906108c 19004 struct attribute *type_attr;
c906108c 19005
e142c38c 19006 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19007 if (!type_attr)
19008 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19009 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19010
673bfd45 19011 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19012}
19013
ac9ec31b
DE
19014/* Return an error marker type to use for the ill formed type in DIE/CU. */
19015
19016static struct type *
19017build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19018{
19019 struct objfile *objfile = dwarf2_per_objfile->objfile;
19020 char *message, *saved;
19021
19022 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19023 objfile_name (objfile),
ac9ec31b
DE
19024 cu->header.offset.sect_off,
19025 die->offset.sect_off);
224c3ddb
SM
19026 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19027 message, strlen (message));
ac9ec31b
DE
19028 xfree (message);
19029
19030 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
19031}
19032
673bfd45 19033/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19034 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19035 DW_AT_containing_type.
673bfd45
DE
19036 If there is no type substitute an error marker. */
19037
c906108c 19038static struct type *
ff39bb5e 19039lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19040 struct dwarf2_cu *cu)
c906108c 19041{
bb5ed363 19042 struct objfile *objfile = cu->objfile;
f792889a
DJ
19043 struct type *this_type;
19044
ac9ec31b
DE
19045 gdb_assert (attr->name == DW_AT_type
19046 || attr->name == DW_AT_GNAT_descriptive_type
19047 || attr->name == DW_AT_containing_type);
19048
673bfd45
DE
19049 /* First see if we have it cached. */
19050
36586728
TT
19051 if (attr->form == DW_FORM_GNU_ref_alt)
19052 {
19053 struct dwarf2_per_cu_data *per_cu;
19054 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19055
19056 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19057 this_type = get_die_type_at_offset (offset, per_cu);
19058 }
7771576e 19059 else if (attr_form_is_ref (attr))
673bfd45 19060 {
b64f50a1 19061 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19062
19063 this_type = get_die_type_at_offset (offset, cu->per_cu);
19064 }
55f1336d 19065 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19066 {
ac9ec31b 19067 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19068
ac9ec31b 19069 return get_signatured_type (die, signature, cu);
673bfd45
DE
19070 }
19071 else
19072 {
ac9ec31b
DE
19073 complaint (&symfile_complaints,
19074 _("Dwarf Error: Bad type attribute %s in DIE"
19075 " at 0x%x [in module %s]"),
19076 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19077 objfile_name (objfile));
ac9ec31b 19078 return build_error_marker_type (cu, die);
673bfd45
DE
19079 }
19080
19081 /* If not cached we need to read it in. */
19082
19083 if (this_type == NULL)
19084 {
ac9ec31b 19085 struct die_info *type_die = NULL;
673bfd45
DE
19086 struct dwarf2_cu *type_cu = cu;
19087
7771576e 19088 if (attr_form_is_ref (attr))
ac9ec31b
DE
19089 type_die = follow_die_ref (die, attr, &type_cu);
19090 if (type_die == NULL)
19091 return build_error_marker_type (cu, die);
19092 /* If we find the type now, it's probably because the type came
3019eac3
DE
19093 from an inter-CU reference and the type's CU got expanded before
19094 ours. */
ac9ec31b 19095 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19096 }
19097
19098 /* If we still don't have a type use an error marker. */
19099
19100 if (this_type == NULL)
ac9ec31b 19101 return build_error_marker_type (cu, die);
673bfd45 19102
f792889a 19103 return this_type;
c906108c
SS
19104}
19105
673bfd45
DE
19106/* Return the type in DIE, CU.
19107 Returns NULL for invalid types.
19108
02142a6c 19109 This first does a lookup in die_type_hash,
673bfd45
DE
19110 and only reads the die in if necessary.
19111
19112 NOTE: This can be called when reading in partial or full symbols. */
19113
f792889a 19114static struct type *
e7c27a73 19115read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19116{
f792889a
DJ
19117 struct type *this_type;
19118
19119 this_type = get_die_type (die, cu);
19120 if (this_type)
19121 return this_type;
19122
673bfd45
DE
19123 return read_type_die_1 (die, cu);
19124}
19125
19126/* Read the type in DIE, CU.
19127 Returns NULL for invalid types. */
19128
19129static struct type *
19130read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19131{
19132 struct type *this_type = NULL;
19133
c906108c
SS
19134 switch (die->tag)
19135 {
19136 case DW_TAG_class_type:
680b30c7 19137 case DW_TAG_interface_type:
c906108c
SS
19138 case DW_TAG_structure_type:
19139 case DW_TAG_union_type:
f792889a 19140 this_type = read_structure_type (die, cu);
c906108c
SS
19141 break;
19142 case DW_TAG_enumeration_type:
f792889a 19143 this_type = read_enumeration_type (die, cu);
c906108c
SS
19144 break;
19145 case DW_TAG_subprogram:
19146 case DW_TAG_subroutine_type:
edb3359d 19147 case DW_TAG_inlined_subroutine:
f792889a 19148 this_type = read_subroutine_type (die, cu);
c906108c
SS
19149 break;
19150 case DW_TAG_array_type:
f792889a 19151 this_type = read_array_type (die, cu);
c906108c 19152 break;
72019c9c 19153 case DW_TAG_set_type:
f792889a 19154 this_type = read_set_type (die, cu);
72019c9c 19155 break;
c906108c 19156 case DW_TAG_pointer_type:
f792889a 19157 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19158 break;
19159 case DW_TAG_ptr_to_member_type:
f792889a 19160 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19161 break;
19162 case DW_TAG_reference_type:
f792889a 19163 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19164 break;
19165 case DW_TAG_const_type:
f792889a 19166 this_type = read_tag_const_type (die, cu);
c906108c
SS
19167 break;
19168 case DW_TAG_volatile_type:
f792889a 19169 this_type = read_tag_volatile_type (die, cu);
c906108c 19170 break;
06d66ee9
TT
19171 case DW_TAG_restrict_type:
19172 this_type = read_tag_restrict_type (die, cu);
19173 break;
c906108c 19174 case DW_TAG_string_type:
f792889a 19175 this_type = read_tag_string_type (die, cu);
c906108c
SS
19176 break;
19177 case DW_TAG_typedef:
f792889a 19178 this_type = read_typedef (die, cu);
c906108c 19179 break;
a02abb62 19180 case DW_TAG_subrange_type:
f792889a 19181 this_type = read_subrange_type (die, cu);
a02abb62 19182 break;
c906108c 19183 case DW_TAG_base_type:
f792889a 19184 this_type = read_base_type (die, cu);
c906108c 19185 break;
81a17f79 19186 case DW_TAG_unspecified_type:
f792889a 19187 this_type = read_unspecified_type (die, cu);
81a17f79 19188 break;
0114d602
DJ
19189 case DW_TAG_namespace:
19190 this_type = read_namespace_type (die, cu);
19191 break;
f55ee35c
JK
19192 case DW_TAG_module:
19193 this_type = read_module_type (die, cu);
19194 break;
a2c2acaf
MW
19195 case DW_TAG_atomic_type:
19196 this_type = read_tag_atomic_type (die, cu);
19197 break;
c906108c 19198 default:
3e43a32a
MS
19199 complaint (&symfile_complaints,
19200 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19201 dwarf_tag_name (die->tag));
c906108c
SS
19202 break;
19203 }
63d06c5c 19204
f792889a 19205 return this_type;
63d06c5c
DC
19206}
19207
abc72ce4
DE
19208/* See if we can figure out if the class lives in a namespace. We do
19209 this by looking for a member function; its demangled name will
19210 contain namespace info, if there is any.
19211 Return the computed name or NULL.
19212 Space for the result is allocated on the objfile's obstack.
19213 This is the full-die version of guess_partial_die_structure_name.
19214 In this case we know DIE has no useful parent. */
19215
19216static char *
19217guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19218{
19219 struct die_info *spec_die;
19220 struct dwarf2_cu *spec_cu;
19221 struct die_info *child;
19222
19223 spec_cu = cu;
19224 spec_die = die_specification (die, &spec_cu);
19225 if (spec_die != NULL)
19226 {
19227 die = spec_die;
19228 cu = spec_cu;
19229 }
19230
19231 for (child = die->child;
19232 child != NULL;
19233 child = child->sibling)
19234 {
19235 if (child->tag == DW_TAG_subprogram)
19236 {
7d45c7c3 19237 const char *linkage_name;
abc72ce4 19238
7d45c7c3
KB
19239 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19240 if (linkage_name == NULL)
19241 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19242 cu);
19243 if (linkage_name != NULL)
abc72ce4
DE
19244 {
19245 char *actual_name
19246 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19247 linkage_name);
abc72ce4
DE
19248 char *name = NULL;
19249
19250 if (actual_name != NULL)
19251 {
15d034d0 19252 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19253
19254 if (die_name != NULL
19255 && strcmp (die_name, actual_name) != 0)
19256 {
19257 /* Strip off the class name from the full name.
19258 We want the prefix. */
19259 int die_name_len = strlen (die_name);
19260 int actual_name_len = strlen (actual_name);
19261
19262 /* Test for '::' as a sanity check. */
19263 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19264 && actual_name[actual_name_len
19265 - die_name_len - 1] == ':')
224c3ddb
SM
19266 name = (char *) obstack_copy0 (
19267 &cu->objfile->per_bfd->storage_obstack,
19268 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19269 }
19270 }
19271 xfree (actual_name);
19272 return name;
19273 }
19274 }
19275 }
19276
19277 return NULL;
19278}
19279
96408a79
SA
19280/* GCC might emit a nameless typedef that has a linkage name. Determine the
19281 prefix part in such case. See
19282 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19283
19284static char *
19285anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19286{
19287 struct attribute *attr;
e6a959d6 19288 const char *base;
96408a79
SA
19289
19290 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19291 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19292 return NULL;
19293
7d45c7c3 19294 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19295 return NULL;
19296
19297 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19298 if (attr == NULL)
19299 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19300 if (attr == NULL || DW_STRING (attr) == NULL)
19301 return NULL;
19302
19303 /* dwarf2_name had to be already called. */
19304 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19305
19306 /* Strip the base name, keep any leading namespaces/classes. */
19307 base = strrchr (DW_STRING (attr), ':');
19308 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19309 return "";
19310
224c3ddb
SM
19311 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19312 DW_STRING (attr),
19313 &base[-1] - DW_STRING (attr));
96408a79
SA
19314}
19315
fdde2d81 19316/* Return the name of the namespace/class that DIE is defined within,
0114d602 19317 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19318
0114d602
DJ
19319 For example, if we're within the method foo() in the following
19320 code:
19321
19322 namespace N {
19323 class C {
19324 void foo () {
19325 }
19326 };
19327 }
19328
19329 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19330
0d5cff50 19331static const char *
e142c38c 19332determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19333{
0114d602
DJ
19334 struct die_info *parent, *spec_die;
19335 struct dwarf2_cu *spec_cu;
19336 struct type *parent_type;
96408a79 19337 char *retval;
63d06c5c 19338
f55ee35c 19339 if (cu->language != language_cplus && cu->language != language_java
c44af4eb
TT
19340 && cu->language != language_fortran && cu->language != language_d
19341 && cu->language != language_rust)
0114d602
DJ
19342 return "";
19343
96408a79
SA
19344 retval = anonymous_struct_prefix (die, cu);
19345 if (retval)
19346 return retval;
19347
0114d602
DJ
19348 /* We have to be careful in the presence of DW_AT_specification.
19349 For example, with GCC 3.4, given the code
19350
19351 namespace N {
19352 void foo() {
19353 // Definition of N::foo.
19354 }
19355 }
19356
19357 then we'll have a tree of DIEs like this:
19358
19359 1: DW_TAG_compile_unit
19360 2: DW_TAG_namespace // N
19361 3: DW_TAG_subprogram // declaration of N::foo
19362 4: DW_TAG_subprogram // definition of N::foo
19363 DW_AT_specification // refers to die #3
19364
19365 Thus, when processing die #4, we have to pretend that we're in
19366 the context of its DW_AT_specification, namely the contex of die
19367 #3. */
19368 spec_cu = cu;
19369 spec_die = die_specification (die, &spec_cu);
19370 if (spec_die == NULL)
19371 parent = die->parent;
19372 else
63d06c5c 19373 {
0114d602
DJ
19374 parent = spec_die->parent;
19375 cu = spec_cu;
63d06c5c 19376 }
0114d602
DJ
19377
19378 if (parent == NULL)
19379 return "";
98bfdba5
PA
19380 else if (parent->building_fullname)
19381 {
19382 const char *name;
19383 const char *parent_name;
19384
19385 /* It has been seen on RealView 2.2 built binaries,
19386 DW_TAG_template_type_param types actually _defined_ as
19387 children of the parent class:
19388
19389 enum E {};
19390 template class <class Enum> Class{};
19391 Class<enum E> class_e;
19392
19393 1: DW_TAG_class_type (Class)
19394 2: DW_TAG_enumeration_type (E)
19395 3: DW_TAG_enumerator (enum1:0)
19396 3: DW_TAG_enumerator (enum2:1)
19397 ...
19398 2: DW_TAG_template_type_param
19399 DW_AT_type DW_FORM_ref_udata (E)
19400
19401 Besides being broken debug info, it can put GDB into an
19402 infinite loop. Consider:
19403
19404 When we're building the full name for Class<E>, we'll start
19405 at Class, and go look over its template type parameters,
19406 finding E. We'll then try to build the full name of E, and
19407 reach here. We're now trying to build the full name of E,
19408 and look over the parent DIE for containing scope. In the
19409 broken case, if we followed the parent DIE of E, we'd again
19410 find Class, and once again go look at its template type
19411 arguments, etc., etc. Simply don't consider such parent die
19412 as source-level parent of this die (it can't be, the language
19413 doesn't allow it), and break the loop here. */
19414 name = dwarf2_name (die, cu);
19415 parent_name = dwarf2_name (parent, cu);
19416 complaint (&symfile_complaints,
19417 _("template param type '%s' defined within parent '%s'"),
19418 name ? name : "<unknown>",
19419 parent_name ? parent_name : "<unknown>");
19420 return "";
19421 }
63d06c5c 19422 else
0114d602
DJ
19423 switch (parent->tag)
19424 {
63d06c5c 19425 case DW_TAG_namespace:
0114d602 19426 parent_type = read_type_die (parent, cu);
acebe513
UW
19427 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19428 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19429 Work around this problem here. */
19430 if (cu->language == language_cplus
19431 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19432 return "";
0114d602
DJ
19433 /* We give a name to even anonymous namespaces. */
19434 return TYPE_TAG_NAME (parent_type);
63d06c5c 19435 case DW_TAG_class_type:
680b30c7 19436 case DW_TAG_interface_type:
63d06c5c 19437 case DW_TAG_structure_type:
0114d602 19438 case DW_TAG_union_type:
f55ee35c 19439 case DW_TAG_module:
0114d602
DJ
19440 parent_type = read_type_die (parent, cu);
19441 if (TYPE_TAG_NAME (parent_type) != NULL)
19442 return TYPE_TAG_NAME (parent_type);
19443 else
19444 /* An anonymous structure is only allowed non-static data
19445 members; no typedefs, no member functions, et cetera.
19446 So it does not need a prefix. */
19447 return "";
abc72ce4 19448 case DW_TAG_compile_unit:
95554aad 19449 case DW_TAG_partial_unit:
abc72ce4
DE
19450 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19451 if (cu->language == language_cplus
8b70b953 19452 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19453 && die->child != NULL
19454 && (die->tag == DW_TAG_class_type
19455 || die->tag == DW_TAG_structure_type
19456 || die->tag == DW_TAG_union_type))
19457 {
19458 char *name = guess_full_die_structure_name (die, cu);
19459 if (name != NULL)
19460 return name;
19461 }
19462 return "";
3d567982
TT
19463 case DW_TAG_enumeration_type:
19464 parent_type = read_type_die (parent, cu);
19465 if (TYPE_DECLARED_CLASS (parent_type))
19466 {
19467 if (TYPE_TAG_NAME (parent_type) != NULL)
19468 return TYPE_TAG_NAME (parent_type);
19469 return "";
19470 }
19471 /* Fall through. */
63d06c5c 19472 default:
8176b9b8 19473 return determine_prefix (parent, cu);
63d06c5c 19474 }
63d06c5c
DC
19475}
19476
3e43a32a
MS
19477/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19478 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19479 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19480 an obconcat, otherwise allocate storage for the result. The CU argument is
19481 used to determine the language and hence, the appropriate separator. */
987504bb 19482
f55ee35c 19483#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19484
19485static char *
f55ee35c
JK
19486typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19487 int physname, struct dwarf2_cu *cu)
63d06c5c 19488{
f55ee35c 19489 const char *lead = "";
5c315b68 19490 const char *sep;
63d06c5c 19491
3e43a32a
MS
19492 if (suffix == NULL || suffix[0] == '\0'
19493 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19494 sep = "";
19495 else if (cu->language == language_java)
19496 sep = ".";
45280282
IB
19497 else if (cu->language == language_d)
19498 {
19499 /* For D, the 'main' function could be defined in any module, but it
19500 should never be prefixed. */
19501 if (strcmp (suffix, "D main") == 0)
19502 {
19503 prefix = "";
19504 sep = "";
19505 }
19506 else
19507 sep = ".";
19508 }
f55ee35c
JK
19509 else if (cu->language == language_fortran && physname)
19510 {
19511 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19512 DW_AT_MIPS_linkage_name is preferred and used instead. */
19513
19514 lead = "__";
19515 sep = "_MOD_";
19516 }
987504bb
JJ
19517 else
19518 sep = "::";
63d06c5c 19519
6dd47d34
DE
19520 if (prefix == NULL)
19521 prefix = "";
19522 if (suffix == NULL)
19523 suffix = "";
19524
987504bb
JJ
19525 if (obs == NULL)
19526 {
3e43a32a 19527 char *retval
224c3ddb
SM
19528 = ((char *)
19529 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19530
f55ee35c
JK
19531 strcpy (retval, lead);
19532 strcat (retval, prefix);
6dd47d34
DE
19533 strcat (retval, sep);
19534 strcat (retval, suffix);
63d06c5c
DC
19535 return retval;
19536 }
987504bb
JJ
19537 else
19538 {
19539 /* We have an obstack. */
f55ee35c 19540 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19541 }
63d06c5c
DC
19542}
19543
c906108c
SS
19544/* Return sibling of die, NULL if no sibling. */
19545
f9aca02d 19546static struct die_info *
fba45db2 19547sibling_die (struct die_info *die)
c906108c 19548{
639d11d3 19549 return die->sibling;
c906108c
SS
19550}
19551
71c25dea
TT
19552/* Get name of a die, return NULL if not found. */
19553
15d034d0
TT
19554static const char *
19555dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19556 struct obstack *obstack)
19557{
19558 if (name && cu->language == language_cplus)
19559 {
19560 char *canon_name = cp_canonicalize_string (name);
19561
19562 if (canon_name != NULL)
19563 {
19564 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19565 name = (const char *) obstack_copy0 (obstack, canon_name,
19566 strlen (canon_name));
71c25dea
TT
19567 xfree (canon_name);
19568 }
19569 }
19570
19571 return name;
c906108c
SS
19572}
19573
96553a0c
DE
19574/* Get name of a die, return NULL if not found.
19575 Anonymous namespaces are converted to their magic string. */
9219021c 19576
15d034d0 19577static const char *
e142c38c 19578dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19579{
19580 struct attribute *attr;
19581
e142c38c 19582 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19583 if ((!attr || !DW_STRING (attr))
96553a0c 19584 && die->tag != DW_TAG_namespace
53832f31
TT
19585 && die->tag != DW_TAG_class_type
19586 && die->tag != DW_TAG_interface_type
19587 && die->tag != DW_TAG_structure_type
19588 && die->tag != DW_TAG_union_type)
71c25dea
TT
19589 return NULL;
19590
19591 switch (die->tag)
19592 {
19593 case DW_TAG_compile_unit:
95554aad 19594 case DW_TAG_partial_unit:
71c25dea
TT
19595 /* Compilation units have a DW_AT_name that is a filename, not
19596 a source language identifier. */
19597 case DW_TAG_enumeration_type:
19598 case DW_TAG_enumerator:
19599 /* These tags always have simple identifiers already; no need
19600 to canonicalize them. */
19601 return DW_STRING (attr);
907af001 19602
96553a0c
DE
19603 case DW_TAG_namespace:
19604 if (attr != NULL && DW_STRING (attr) != NULL)
19605 return DW_STRING (attr);
19606 return CP_ANONYMOUS_NAMESPACE_STR;
19607
418835cc
KS
19608 case DW_TAG_subprogram:
19609 /* Java constructors will all be named "<init>", so return
19610 the class name when we see this special case. */
19611 if (cu->language == language_java
19612 && DW_STRING (attr) != NULL
19613 && strcmp (DW_STRING (attr), "<init>") == 0)
19614 {
19615 struct dwarf2_cu *spec_cu = cu;
19616 struct die_info *spec_die;
19617
19618 /* GCJ will output '<init>' for Java constructor names.
19619 For this special case, return the name of the parent class. */
19620
cdc07690 19621 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19622 If so, use the name of the specified DIE. */
19623 spec_die = die_specification (die, &spec_cu);
19624 if (spec_die != NULL)
19625 return dwarf2_name (spec_die, spec_cu);
19626
19627 do
19628 {
19629 die = die->parent;
19630 if (die->tag == DW_TAG_class_type)
19631 return dwarf2_name (die, cu);
19632 }
95554aad
TT
19633 while (die->tag != DW_TAG_compile_unit
19634 && die->tag != DW_TAG_partial_unit);
418835cc 19635 }
907af001
UW
19636 break;
19637
19638 case DW_TAG_class_type:
19639 case DW_TAG_interface_type:
19640 case DW_TAG_structure_type:
19641 case DW_TAG_union_type:
19642 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19643 structures or unions. These were of the form "._%d" in GCC 4.1,
19644 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19645 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19646 if (attr && DW_STRING (attr)
61012eef
GB
19647 && (startswith (DW_STRING (attr), "._")
19648 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19649 return NULL;
53832f31
TT
19650
19651 /* GCC might emit a nameless typedef that has a linkage name. See
19652 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19653 if (!attr || DW_STRING (attr) == NULL)
19654 {
df5c6c50 19655 char *demangled = NULL;
53832f31
TT
19656
19657 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19658 if (attr == NULL)
19659 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19660
19661 if (attr == NULL || DW_STRING (attr) == NULL)
19662 return NULL;
19663
df5c6c50
JK
19664 /* Avoid demangling DW_STRING (attr) the second time on a second
19665 call for the same DIE. */
19666 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19667 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19668
19669 if (demangled)
19670 {
e6a959d6 19671 const char *base;
96408a79 19672
53832f31 19673 /* FIXME: we already did this for the partial symbol... */
34a68019 19674 DW_STRING (attr)
224c3ddb
SM
19675 = ((const char *)
19676 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19677 demangled, strlen (demangled)));
53832f31
TT
19678 DW_STRING_IS_CANONICAL (attr) = 1;
19679 xfree (demangled);
96408a79
SA
19680
19681 /* Strip any leading namespaces/classes, keep only the base name.
19682 DW_AT_name for named DIEs does not contain the prefixes. */
19683 base = strrchr (DW_STRING (attr), ':');
19684 if (base && base > DW_STRING (attr) && base[-1] == ':')
19685 return &base[1];
19686 else
19687 return DW_STRING (attr);
53832f31
TT
19688 }
19689 }
907af001
UW
19690 break;
19691
71c25dea 19692 default:
907af001
UW
19693 break;
19694 }
19695
19696 if (!DW_STRING_IS_CANONICAL (attr))
19697 {
19698 DW_STRING (attr)
19699 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19700 &cu->objfile->per_bfd->storage_obstack);
907af001 19701 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19702 }
907af001 19703 return DW_STRING (attr);
9219021c
DC
19704}
19705
19706/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19707 is none. *EXT_CU is the CU containing DIE on input, and the CU
19708 containing the return value on output. */
9219021c
DC
19709
19710static struct die_info *
f2f0e013 19711dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19712{
19713 struct attribute *attr;
9219021c 19714
f2f0e013 19715 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19716 if (attr == NULL)
19717 return NULL;
19718
f2f0e013 19719 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19720}
19721
c906108c
SS
19722/* Convert a DIE tag into its string name. */
19723
f39c6ffd 19724static const char *
aa1ee363 19725dwarf_tag_name (unsigned tag)
c906108c 19726{
f39c6ffd
TT
19727 const char *name = get_DW_TAG_name (tag);
19728
19729 if (name == NULL)
19730 return "DW_TAG_<unknown>";
19731
19732 return name;
c906108c
SS
19733}
19734
19735/* Convert a DWARF attribute code into its string name. */
19736
f39c6ffd 19737static const char *
aa1ee363 19738dwarf_attr_name (unsigned attr)
c906108c 19739{
f39c6ffd
TT
19740 const char *name;
19741
c764a876 19742#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19743 if (attr == DW_AT_MIPS_fde)
19744 return "DW_AT_MIPS_fde";
19745#else
19746 if (attr == DW_AT_HP_block_index)
19747 return "DW_AT_HP_block_index";
c764a876 19748#endif
f39c6ffd
TT
19749
19750 name = get_DW_AT_name (attr);
19751
19752 if (name == NULL)
19753 return "DW_AT_<unknown>";
19754
19755 return name;
c906108c
SS
19756}
19757
19758/* Convert a DWARF value form code into its string name. */
19759
f39c6ffd 19760static const char *
aa1ee363 19761dwarf_form_name (unsigned form)
c906108c 19762{
f39c6ffd
TT
19763 const char *name = get_DW_FORM_name (form);
19764
19765 if (name == NULL)
19766 return "DW_FORM_<unknown>";
19767
19768 return name;
c906108c
SS
19769}
19770
19771static char *
fba45db2 19772dwarf_bool_name (unsigned mybool)
c906108c
SS
19773{
19774 if (mybool)
19775 return "TRUE";
19776 else
19777 return "FALSE";
19778}
19779
19780/* Convert a DWARF type code into its string name. */
19781
f39c6ffd 19782static const char *
aa1ee363 19783dwarf_type_encoding_name (unsigned enc)
c906108c 19784{
f39c6ffd 19785 const char *name = get_DW_ATE_name (enc);
c906108c 19786
f39c6ffd
TT
19787 if (name == NULL)
19788 return "DW_ATE_<unknown>";
c906108c 19789
f39c6ffd 19790 return name;
c906108c 19791}
c906108c 19792
f9aca02d 19793static void
d97bc12b 19794dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19795{
19796 unsigned int i;
19797
d97bc12b
DE
19798 print_spaces (indent, f);
19799 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19800 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19801
19802 if (die->parent != NULL)
19803 {
19804 print_spaces (indent, f);
19805 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19806 die->parent->offset.sect_off);
d97bc12b
DE
19807 }
19808
19809 print_spaces (indent, f);
19810 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19811 dwarf_bool_name (die->child != NULL));
c906108c 19812
d97bc12b
DE
19813 print_spaces (indent, f);
19814 fprintf_unfiltered (f, " attributes:\n");
19815
c906108c
SS
19816 for (i = 0; i < die->num_attrs; ++i)
19817 {
d97bc12b
DE
19818 print_spaces (indent, f);
19819 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19820 dwarf_attr_name (die->attrs[i].name),
19821 dwarf_form_name (die->attrs[i].form));
d97bc12b 19822
c906108c
SS
19823 switch (die->attrs[i].form)
19824 {
c906108c 19825 case DW_FORM_addr:
3019eac3 19826 case DW_FORM_GNU_addr_index:
d97bc12b 19827 fprintf_unfiltered (f, "address: ");
5af949e3 19828 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19829 break;
19830 case DW_FORM_block2:
19831 case DW_FORM_block4:
19832 case DW_FORM_block:
19833 case DW_FORM_block1:
56eb65bd
SP
19834 fprintf_unfiltered (f, "block: size %s",
19835 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19836 break;
2dc7f7b3 19837 case DW_FORM_exprloc:
56eb65bd
SP
19838 fprintf_unfiltered (f, "expression: size %s",
19839 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19840 break;
4568ecf9
DE
19841 case DW_FORM_ref_addr:
19842 fprintf_unfiltered (f, "ref address: ");
19843 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19844 break;
36586728
TT
19845 case DW_FORM_GNU_ref_alt:
19846 fprintf_unfiltered (f, "alt ref address: ");
19847 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19848 break;
10b3939b
DJ
19849 case DW_FORM_ref1:
19850 case DW_FORM_ref2:
19851 case DW_FORM_ref4:
4568ecf9
DE
19852 case DW_FORM_ref8:
19853 case DW_FORM_ref_udata:
d97bc12b 19854 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19855 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19856 break;
c906108c
SS
19857 case DW_FORM_data1:
19858 case DW_FORM_data2:
19859 case DW_FORM_data4:
ce5d95e1 19860 case DW_FORM_data8:
c906108c
SS
19861 case DW_FORM_udata:
19862 case DW_FORM_sdata:
43bbcdc2
PH
19863 fprintf_unfiltered (f, "constant: %s",
19864 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19865 break;
2dc7f7b3
TT
19866 case DW_FORM_sec_offset:
19867 fprintf_unfiltered (f, "section offset: %s",
19868 pulongest (DW_UNSND (&die->attrs[i])));
19869 break;
55f1336d 19870 case DW_FORM_ref_sig8:
ac9ec31b
DE
19871 fprintf_unfiltered (f, "signature: %s",
19872 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19873 break;
c906108c 19874 case DW_FORM_string:
4bdf3d34 19875 case DW_FORM_strp:
3019eac3 19876 case DW_FORM_GNU_str_index:
36586728 19877 case DW_FORM_GNU_strp_alt:
8285870a 19878 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19879 DW_STRING (&die->attrs[i])
8285870a
JK
19880 ? DW_STRING (&die->attrs[i]) : "",
19881 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19882 break;
19883 case DW_FORM_flag:
19884 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19885 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19886 else
d97bc12b 19887 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19888 break;
2dc7f7b3
TT
19889 case DW_FORM_flag_present:
19890 fprintf_unfiltered (f, "flag: TRUE");
19891 break;
a8329558 19892 case DW_FORM_indirect:
0963b4bd
MS
19893 /* The reader will have reduced the indirect form to
19894 the "base form" so this form should not occur. */
3e43a32a
MS
19895 fprintf_unfiltered (f,
19896 "unexpected attribute form: DW_FORM_indirect");
a8329558 19897 break;
c906108c 19898 default:
d97bc12b 19899 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19900 die->attrs[i].form);
d97bc12b 19901 break;
c906108c 19902 }
d97bc12b 19903 fprintf_unfiltered (f, "\n");
c906108c
SS
19904 }
19905}
19906
f9aca02d 19907static void
d97bc12b 19908dump_die_for_error (struct die_info *die)
c906108c 19909{
d97bc12b
DE
19910 dump_die_shallow (gdb_stderr, 0, die);
19911}
19912
19913static void
19914dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19915{
19916 int indent = level * 4;
19917
19918 gdb_assert (die != NULL);
19919
19920 if (level >= max_level)
19921 return;
19922
19923 dump_die_shallow (f, indent, die);
19924
19925 if (die->child != NULL)
c906108c 19926 {
d97bc12b
DE
19927 print_spaces (indent, f);
19928 fprintf_unfiltered (f, " Children:");
19929 if (level + 1 < max_level)
19930 {
19931 fprintf_unfiltered (f, "\n");
19932 dump_die_1 (f, level + 1, max_level, die->child);
19933 }
19934 else
19935 {
3e43a32a
MS
19936 fprintf_unfiltered (f,
19937 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19938 }
19939 }
19940
19941 if (die->sibling != NULL && level > 0)
19942 {
19943 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19944 }
19945}
19946
d97bc12b
DE
19947/* This is called from the pdie macro in gdbinit.in.
19948 It's not static so gcc will keep a copy callable from gdb. */
19949
19950void
19951dump_die (struct die_info *die, int max_level)
19952{
19953 dump_die_1 (gdb_stdlog, 0, max_level, die);
19954}
19955
f9aca02d 19956static void
51545339 19957store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19958{
51545339 19959 void **slot;
c906108c 19960
b64f50a1
JK
19961 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19962 INSERT);
51545339
DJ
19963
19964 *slot = die;
c906108c
SS
19965}
19966
b64f50a1
JK
19967/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19968 required kind. */
19969
19970static sect_offset
ff39bb5e 19971dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19972{
4568ecf9 19973 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19974
7771576e 19975 if (attr_form_is_ref (attr))
b64f50a1 19976 return retval;
93311388 19977
b64f50a1 19978 retval.sect_off = 0;
93311388
DE
19979 complaint (&symfile_complaints,
19980 _("unsupported die ref attribute form: '%s'"),
19981 dwarf_form_name (attr->form));
b64f50a1 19982 return retval;
c906108c
SS
19983}
19984
43bbcdc2
PH
19985/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19986 * the value held by the attribute is not constant. */
a02abb62 19987
43bbcdc2 19988static LONGEST
ff39bb5e 19989dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19990{
19991 if (attr->form == DW_FORM_sdata)
19992 return DW_SND (attr);
19993 else if (attr->form == DW_FORM_udata
19994 || attr->form == DW_FORM_data1
19995 || attr->form == DW_FORM_data2
19996 || attr->form == DW_FORM_data4
19997 || attr->form == DW_FORM_data8)
19998 return DW_UNSND (attr);
19999 else
20000 {
3e43a32a
MS
20001 complaint (&symfile_complaints,
20002 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20003 dwarf_form_name (attr->form));
20004 return default_value;
20005 }
20006}
20007
348e048f
DE
20008/* Follow reference or signature attribute ATTR of SRC_DIE.
20009 On entry *REF_CU is the CU of SRC_DIE.
20010 On exit *REF_CU is the CU of the result. */
20011
20012static struct die_info *
ff39bb5e 20013follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20014 struct dwarf2_cu **ref_cu)
20015{
20016 struct die_info *die;
20017
7771576e 20018 if (attr_form_is_ref (attr))
348e048f 20019 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20020 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20021 die = follow_die_sig (src_die, attr, ref_cu);
20022 else
20023 {
20024 dump_die_for_error (src_die);
20025 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20026 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20027 }
20028
20029 return die;
03dd20cc
DJ
20030}
20031
5c631832 20032/* Follow reference OFFSET.
673bfd45
DE
20033 On entry *REF_CU is the CU of the source die referencing OFFSET.
20034 On exit *REF_CU is the CU of the result.
20035 Returns NULL if OFFSET is invalid. */
f504f079 20036
f9aca02d 20037static struct die_info *
36586728
TT
20038follow_die_offset (sect_offset offset, int offset_in_dwz,
20039 struct dwarf2_cu **ref_cu)
c906108c 20040{
10b3939b 20041 struct die_info temp_die;
f2f0e013 20042 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20043
348e048f
DE
20044 gdb_assert (cu->per_cu != NULL);
20045
98bfdba5
PA
20046 target_cu = cu;
20047
3019eac3 20048 if (cu->per_cu->is_debug_types)
348e048f
DE
20049 {
20050 /* .debug_types CUs cannot reference anything outside their CU.
20051 If they need to, they have to reference a signatured type via
55f1336d 20052 DW_FORM_ref_sig8. */
348e048f 20053 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20054 return NULL;
348e048f 20055 }
36586728
TT
20056 else if (offset_in_dwz != cu->per_cu->is_dwz
20057 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20058 {
20059 struct dwarf2_per_cu_data *per_cu;
9a619af0 20060
36586728
TT
20061 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20062 cu->objfile);
03dd20cc
DJ
20063
20064 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20065 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20066 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20067
10b3939b
DJ
20068 target_cu = per_cu->cu;
20069 }
98bfdba5
PA
20070 else if (cu->dies == NULL)
20071 {
20072 /* We're loading full DIEs during partial symbol reading. */
20073 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20074 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20075 }
c906108c 20076
f2f0e013 20077 *ref_cu = target_cu;
51545339 20078 temp_die.offset = offset;
9a3c8263
SM
20079 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20080 &temp_die, offset.sect_off);
5c631832 20081}
10b3939b 20082
5c631832
JK
20083/* Follow reference attribute ATTR of SRC_DIE.
20084 On entry *REF_CU is the CU of SRC_DIE.
20085 On exit *REF_CU is the CU of the result. */
20086
20087static struct die_info *
ff39bb5e 20088follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20089 struct dwarf2_cu **ref_cu)
20090{
b64f50a1 20091 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20092 struct dwarf2_cu *cu = *ref_cu;
20093 struct die_info *die;
20094
36586728
TT
20095 die = follow_die_offset (offset,
20096 (attr->form == DW_FORM_GNU_ref_alt
20097 || cu->per_cu->is_dwz),
20098 ref_cu);
5c631832
JK
20099 if (!die)
20100 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20101 "at 0x%x [in module %s]"),
4262abfb
JK
20102 offset.sect_off, src_die->offset.sect_off,
20103 objfile_name (cu->objfile));
348e048f 20104
5c631832
JK
20105 return die;
20106}
20107
d83e736b
JK
20108/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20109 Returned value is intended for DW_OP_call*. Returned
20110 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20111
20112struct dwarf2_locexpr_baton
8b9737bf
TT
20113dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20114 struct dwarf2_per_cu_data *per_cu,
20115 CORE_ADDR (*get_frame_pc) (void *baton),
20116 void *baton)
5c631832 20117{
918dd910 20118 struct dwarf2_cu *cu;
5c631832
JK
20119 struct die_info *die;
20120 struct attribute *attr;
20121 struct dwarf2_locexpr_baton retval;
20122
8cf6f0b1
TT
20123 dw2_setup (per_cu->objfile);
20124
918dd910
JK
20125 if (per_cu->cu == NULL)
20126 load_cu (per_cu);
20127 cu = per_cu->cu;
cc12ce38
DE
20128 if (cu == NULL)
20129 {
20130 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20131 Instead just throw an error, not much else we can do. */
20132 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20133 offset.sect_off, objfile_name (per_cu->objfile));
20134 }
918dd910 20135
36586728 20136 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20137 if (!die)
20138 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20139 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20140
20141 attr = dwarf2_attr (die, DW_AT_location, cu);
20142 if (!attr)
20143 {
e103e986
JK
20144 /* DWARF: "If there is no such attribute, then there is no effect.".
20145 DATA is ignored if SIZE is 0. */
5c631832 20146
e103e986 20147 retval.data = NULL;
5c631832
JK
20148 retval.size = 0;
20149 }
8cf6f0b1
TT
20150 else if (attr_form_is_section_offset (attr))
20151 {
20152 struct dwarf2_loclist_baton loclist_baton;
20153 CORE_ADDR pc = (*get_frame_pc) (baton);
20154 size_t size;
20155
20156 fill_in_loclist_baton (cu, &loclist_baton, attr);
20157
20158 retval.data = dwarf2_find_location_expression (&loclist_baton,
20159 &size, pc);
20160 retval.size = size;
20161 }
5c631832
JK
20162 else
20163 {
20164 if (!attr_form_is_block (attr))
20165 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20166 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20167 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20168
20169 retval.data = DW_BLOCK (attr)->data;
20170 retval.size = DW_BLOCK (attr)->size;
20171 }
20172 retval.per_cu = cu->per_cu;
918dd910 20173
918dd910
JK
20174 age_cached_comp_units ();
20175
5c631832 20176 return retval;
348e048f
DE
20177}
20178
8b9737bf
TT
20179/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20180 offset. */
20181
20182struct dwarf2_locexpr_baton
20183dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20184 struct dwarf2_per_cu_data *per_cu,
20185 CORE_ADDR (*get_frame_pc) (void *baton),
20186 void *baton)
20187{
20188 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20189
20190 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20191}
20192
b6807d98
TT
20193/* Write a constant of a given type as target-ordered bytes into
20194 OBSTACK. */
20195
20196static const gdb_byte *
20197write_constant_as_bytes (struct obstack *obstack,
20198 enum bfd_endian byte_order,
20199 struct type *type,
20200 ULONGEST value,
20201 LONGEST *len)
20202{
20203 gdb_byte *result;
20204
20205 *len = TYPE_LENGTH (type);
224c3ddb 20206 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20207 store_unsigned_integer (result, *len, byte_order, value);
20208
20209 return result;
20210}
20211
20212/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20213 pointer to the constant bytes and set LEN to the length of the
20214 data. If memory is needed, allocate it on OBSTACK. If the DIE
20215 does not have a DW_AT_const_value, return NULL. */
20216
20217const gdb_byte *
20218dwarf2_fetch_constant_bytes (sect_offset offset,
20219 struct dwarf2_per_cu_data *per_cu,
20220 struct obstack *obstack,
20221 LONGEST *len)
20222{
20223 struct dwarf2_cu *cu;
20224 struct die_info *die;
20225 struct attribute *attr;
20226 const gdb_byte *result = NULL;
20227 struct type *type;
20228 LONGEST value;
20229 enum bfd_endian byte_order;
20230
20231 dw2_setup (per_cu->objfile);
20232
20233 if (per_cu->cu == NULL)
20234 load_cu (per_cu);
20235 cu = per_cu->cu;
cc12ce38
DE
20236 if (cu == NULL)
20237 {
20238 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20239 Instead just throw an error, not much else we can do. */
20240 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20241 offset.sect_off, objfile_name (per_cu->objfile));
20242 }
b6807d98
TT
20243
20244 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20245 if (!die)
20246 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20247 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20248
20249
20250 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20251 if (attr == NULL)
20252 return NULL;
20253
20254 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20255 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20256
20257 switch (attr->form)
20258 {
20259 case DW_FORM_addr:
20260 case DW_FORM_GNU_addr_index:
20261 {
20262 gdb_byte *tem;
20263
20264 *len = cu->header.addr_size;
224c3ddb 20265 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20266 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20267 result = tem;
20268 }
20269 break;
20270 case DW_FORM_string:
20271 case DW_FORM_strp:
20272 case DW_FORM_GNU_str_index:
20273 case DW_FORM_GNU_strp_alt:
20274 /* DW_STRING is already allocated on the objfile obstack, point
20275 directly to it. */
20276 result = (const gdb_byte *) DW_STRING (attr);
20277 *len = strlen (DW_STRING (attr));
20278 break;
20279 case DW_FORM_block1:
20280 case DW_FORM_block2:
20281 case DW_FORM_block4:
20282 case DW_FORM_block:
20283 case DW_FORM_exprloc:
20284 result = DW_BLOCK (attr)->data;
20285 *len = DW_BLOCK (attr)->size;
20286 break;
20287
20288 /* The DW_AT_const_value attributes are supposed to carry the
20289 symbol's value "represented as it would be on the target
20290 architecture." By the time we get here, it's already been
20291 converted to host endianness, so we just need to sign- or
20292 zero-extend it as appropriate. */
20293 case DW_FORM_data1:
20294 type = die_type (die, cu);
20295 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20296 if (result == NULL)
20297 result = write_constant_as_bytes (obstack, byte_order,
20298 type, value, len);
20299 break;
20300 case DW_FORM_data2:
20301 type = die_type (die, cu);
20302 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20303 if (result == NULL)
20304 result = write_constant_as_bytes (obstack, byte_order,
20305 type, value, len);
20306 break;
20307 case DW_FORM_data4:
20308 type = die_type (die, cu);
20309 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20310 if (result == NULL)
20311 result = write_constant_as_bytes (obstack, byte_order,
20312 type, value, len);
20313 break;
20314 case DW_FORM_data8:
20315 type = die_type (die, cu);
20316 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20317 if (result == NULL)
20318 result = write_constant_as_bytes (obstack, byte_order,
20319 type, value, len);
20320 break;
20321
20322 case DW_FORM_sdata:
20323 type = die_type (die, cu);
20324 result = write_constant_as_bytes (obstack, byte_order,
20325 type, DW_SND (attr), len);
20326 break;
20327
20328 case DW_FORM_udata:
20329 type = die_type (die, cu);
20330 result = write_constant_as_bytes (obstack, byte_order,
20331 type, DW_UNSND (attr), len);
20332 break;
20333
20334 default:
20335 complaint (&symfile_complaints,
20336 _("unsupported const value attribute form: '%s'"),
20337 dwarf_form_name (attr->form));
20338 break;
20339 }
20340
20341 return result;
20342}
20343
8a9b8146
TT
20344/* Return the type of the DIE at DIE_OFFSET in the CU named by
20345 PER_CU. */
20346
20347struct type *
b64f50a1 20348dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20349 struct dwarf2_per_cu_data *per_cu)
20350{
b64f50a1
JK
20351 sect_offset die_offset_sect;
20352
8a9b8146 20353 dw2_setup (per_cu->objfile);
b64f50a1
JK
20354
20355 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20356 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20357}
20358
ac9ec31b 20359/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20360 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20361 On exit *REF_CU is the CU of the result.
20362 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20363
20364static struct die_info *
ac9ec31b
DE
20365follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20366 struct dwarf2_cu **ref_cu)
348e048f 20367{
348e048f 20368 struct die_info temp_die;
348e048f
DE
20369 struct dwarf2_cu *sig_cu;
20370 struct die_info *die;
20371
ac9ec31b
DE
20372 /* While it might be nice to assert sig_type->type == NULL here,
20373 we can get here for DW_AT_imported_declaration where we need
20374 the DIE not the type. */
348e048f
DE
20375
20376 /* If necessary, add it to the queue and load its DIEs. */
20377
95554aad 20378 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20379 read_signatured_type (sig_type);
348e048f 20380
348e048f 20381 sig_cu = sig_type->per_cu.cu;
69d751e3 20382 gdb_assert (sig_cu != NULL);
3019eac3
DE
20383 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20384 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20385 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20386 temp_die.offset.sect_off);
348e048f
DE
20387 if (die)
20388 {
796a7ff8
DE
20389 /* For .gdb_index version 7 keep track of included TUs.
20390 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20391 if (dwarf2_per_objfile->index_table != NULL
20392 && dwarf2_per_objfile->index_table->version <= 7)
20393 {
20394 VEC_safe_push (dwarf2_per_cu_ptr,
20395 (*ref_cu)->per_cu->imported_symtabs,
20396 sig_cu->per_cu);
20397 }
20398
348e048f
DE
20399 *ref_cu = sig_cu;
20400 return die;
20401 }
20402
ac9ec31b
DE
20403 return NULL;
20404}
20405
20406/* Follow signatured type referenced by ATTR in SRC_DIE.
20407 On entry *REF_CU is the CU of SRC_DIE.
20408 On exit *REF_CU is the CU of the result.
20409 The result is the DIE of the type.
20410 If the referenced type cannot be found an error is thrown. */
20411
20412static struct die_info *
ff39bb5e 20413follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20414 struct dwarf2_cu **ref_cu)
20415{
20416 ULONGEST signature = DW_SIGNATURE (attr);
20417 struct signatured_type *sig_type;
20418 struct die_info *die;
20419
20420 gdb_assert (attr->form == DW_FORM_ref_sig8);
20421
a2ce51a0 20422 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20423 /* sig_type will be NULL if the signatured type is missing from
20424 the debug info. */
20425 if (sig_type == NULL)
20426 {
20427 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20428 " from DIE at 0x%x [in module %s]"),
20429 hex_string (signature), src_die->offset.sect_off,
4262abfb 20430 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20431 }
20432
20433 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20434 if (die == NULL)
20435 {
20436 dump_die_for_error (src_die);
20437 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20438 " from DIE at 0x%x [in module %s]"),
20439 hex_string (signature), src_die->offset.sect_off,
4262abfb 20440 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20441 }
20442
20443 return die;
20444}
20445
20446/* Get the type specified by SIGNATURE referenced in DIE/CU,
20447 reading in and processing the type unit if necessary. */
20448
20449static struct type *
20450get_signatured_type (struct die_info *die, ULONGEST signature,
20451 struct dwarf2_cu *cu)
20452{
20453 struct signatured_type *sig_type;
20454 struct dwarf2_cu *type_cu;
20455 struct die_info *type_die;
20456 struct type *type;
20457
a2ce51a0 20458 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20459 /* sig_type will be NULL if the signatured type is missing from
20460 the debug info. */
20461 if (sig_type == NULL)
20462 {
20463 complaint (&symfile_complaints,
20464 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20465 " from DIE at 0x%x [in module %s]"),
20466 hex_string (signature), die->offset.sect_off,
4262abfb 20467 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20468 return build_error_marker_type (cu, die);
20469 }
20470
20471 /* If we already know the type we're done. */
20472 if (sig_type->type != NULL)
20473 return sig_type->type;
20474
20475 type_cu = cu;
20476 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20477 if (type_die != NULL)
20478 {
20479 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20480 is created. This is important, for example, because for c++ classes
20481 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20482 type = read_type_die (type_die, type_cu);
20483 if (type == NULL)
20484 {
20485 complaint (&symfile_complaints,
20486 _("Dwarf Error: Cannot build signatured type %s"
20487 " referenced from DIE at 0x%x [in module %s]"),
20488 hex_string (signature), die->offset.sect_off,
4262abfb 20489 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20490 type = build_error_marker_type (cu, die);
20491 }
20492 }
20493 else
20494 {
20495 complaint (&symfile_complaints,
20496 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20497 " from DIE at 0x%x [in module %s]"),
20498 hex_string (signature), die->offset.sect_off,
4262abfb 20499 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20500 type = build_error_marker_type (cu, die);
20501 }
20502 sig_type->type = type;
20503
20504 return type;
20505}
20506
20507/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20508 reading in and processing the type unit if necessary. */
20509
20510static struct type *
ff39bb5e 20511get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20512 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20513{
20514 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20515 if (attr_form_is_ref (attr))
ac9ec31b
DE
20516 {
20517 struct dwarf2_cu *type_cu = cu;
20518 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20519
20520 return read_type_die (type_die, type_cu);
20521 }
20522 else if (attr->form == DW_FORM_ref_sig8)
20523 {
20524 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20525 }
20526 else
20527 {
20528 complaint (&symfile_complaints,
20529 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20530 " at 0x%x [in module %s]"),
20531 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20532 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20533 return build_error_marker_type (cu, die);
20534 }
348e048f
DE
20535}
20536
e5fe5e75 20537/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20538
20539static void
e5fe5e75 20540load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20541{
52dc124a 20542 struct signatured_type *sig_type;
348e048f 20543
f4dc4d17
DE
20544 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20545 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20546
6721b2ec
DE
20547 /* We have the per_cu, but we need the signatured_type.
20548 Fortunately this is an easy translation. */
20549 gdb_assert (per_cu->is_debug_types);
20550 sig_type = (struct signatured_type *) per_cu;
348e048f 20551
6721b2ec 20552 gdb_assert (per_cu->cu == NULL);
348e048f 20553
52dc124a 20554 read_signatured_type (sig_type);
348e048f 20555
6721b2ec 20556 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20557}
20558
dee91e82
DE
20559/* die_reader_func for read_signatured_type.
20560 This is identical to load_full_comp_unit_reader,
20561 but is kept separate for now. */
348e048f
DE
20562
20563static void
dee91e82 20564read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20565 const gdb_byte *info_ptr,
dee91e82
DE
20566 struct die_info *comp_unit_die,
20567 int has_children,
20568 void *data)
348e048f 20569{
dee91e82 20570 struct dwarf2_cu *cu = reader->cu;
348e048f 20571
dee91e82
DE
20572 gdb_assert (cu->die_hash == NULL);
20573 cu->die_hash =
20574 htab_create_alloc_ex (cu->header.length / 12,
20575 die_hash,
20576 die_eq,
20577 NULL,
20578 &cu->comp_unit_obstack,
20579 hashtab_obstack_allocate,
20580 dummy_obstack_deallocate);
348e048f 20581
dee91e82
DE
20582 if (has_children)
20583 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20584 &info_ptr, comp_unit_die);
20585 cu->dies = comp_unit_die;
20586 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20587
20588 /* We try not to read any attributes in this function, because not
9cdd5dbd 20589 all CUs needed for references have been loaded yet, and symbol
348e048f 20590 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20591 or we won't be able to build types correctly.
20592 Similarly, if we do not read the producer, we can not apply
20593 producer-specific interpretation. */
95554aad 20594 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20595}
348e048f 20596
3019eac3
DE
20597/* Read in a signatured type and build its CU and DIEs.
20598 If the type is a stub for the real type in a DWO file,
20599 read in the real type from the DWO file as well. */
dee91e82
DE
20600
20601static void
20602read_signatured_type (struct signatured_type *sig_type)
20603{
20604 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20605
3019eac3 20606 gdb_assert (per_cu->is_debug_types);
dee91e82 20607 gdb_assert (per_cu->cu == NULL);
348e048f 20608
f4dc4d17
DE
20609 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20610 read_signatured_type_reader, NULL);
7ee85ab1 20611 sig_type->per_cu.tu_read = 1;
c906108c
SS
20612}
20613
c906108c
SS
20614/* Decode simple location descriptions.
20615 Given a pointer to a dwarf block that defines a location, compute
20616 the location and return the value.
20617
4cecd739
DJ
20618 NOTE drow/2003-11-18: This function is called in two situations
20619 now: for the address of static or global variables (partial symbols
20620 only) and for offsets into structures which are expected to be
20621 (more or less) constant. The partial symbol case should go away,
20622 and only the constant case should remain. That will let this
20623 function complain more accurately. A few special modes are allowed
20624 without complaint for global variables (for instance, global
20625 register values and thread-local values).
c906108c
SS
20626
20627 A location description containing no operations indicates that the
4cecd739 20628 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20629 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20630 callers will only want a very basic result and this can become a
21ae7a4d
JK
20631 complaint.
20632
20633 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20634
20635static CORE_ADDR
e7c27a73 20636decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20637{
e7c27a73 20638 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20639 size_t i;
20640 size_t size = blk->size;
d521ce57 20641 const gdb_byte *data = blk->data;
21ae7a4d
JK
20642 CORE_ADDR stack[64];
20643 int stacki;
20644 unsigned int bytes_read, unsnd;
20645 gdb_byte op;
c906108c 20646
21ae7a4d
JK
20647 i = 0;
20648 stacki = 0;
20649 stack[stacki] = 0;
20650 stack[++stacki] = 0;
20651
20652 while (i < size)
20653 {
20654 op = data[i++];
20655 switch (op)
20656 {
20657 case DW_OP_lit0:
20658 case DW_OP_lit1:
20659 case DW_OP_lit2:
20660 case DW_OP_lit3:
20661 case DW_OP_lit4:
20662 case DW_OP_lit5:
20663 case DW_OP_lit6:
20664 case DW_OP_lit7:
20665 case DW_OP_lit8:
20666 case DW_OP_lit9:
20667 case DW_OP_lit10:
20668 case DW_OP_lit11:
20669 case DW_OP_lit12:
20670 case DW_OP_lit13:
20671 case DW_OP_lit14:
20672 case DW_OP_lit15:
20673 case DW_OP_lit16:
20674 case DW_OP_lit17:
20675 case DW_OP_lit18:
20676 case DW_OP_lit19:
20677 case DW_OP_lit20:
20678 case DW_OP_lit21:
20679 case DW_OP_lit22:
20680 case DW_OP_lit23:
20681 case DW_OP_lit24:
20682 case DW_OP_lit25:
20683 case DW_OP_lit26:
20684 case DW_OP_lit27:
20685 case DW_OP_lit28:
20686 case DW_OP_lit29:
20687 case DW_OP_lit30:
20688 case DW_OP_lit31:
20689 stack[++stacki] = op - DW_OP_lit0;
20690 break;
f1bea926 20691
21ae7a4d
JK
20692 case DW_OP_reg0:
20693 case DW_OP_reg1:
20694 case DW_OP_reg2:
20695 case DW_OP_reg3:
20696 case DW_OP_reg4:
20697 case DW_OP_reg5:
20698 case DW_OP_reg6:
20699 case DW_OP_reg7:
20700 case DW_OP_reg8:
20701 case DW_OP_reg9:
20702 case DW_OP_reg10:
20703 case DW_OP_reg11:
20704 case DW_OP_reg12:
20705 case DW_OP_reg13:
20706 case DW_OP_reg14:
20707 case DW_OP_reg15:
20708 case DW_OP_reg16:
20709 case DW_OP_reg17:
20710 case DW_OP_reg18:
20711 case DW_OP_reg19:
20712 case DW_OP_reg20:
20713 case DW_OP_reg21:
20714 case DW_OP_reg22:
20715 case DW_OP_reg23:
20716 case DW_OP_reg24:
20717 case DW_OP_reg25:
20718 case DW_OP_reg26:
20719 case DW_OP_reg27:
20720 case DW_OP_reg28:
20721 case DW_OP_reg29:
20722 case DW_OP_reg30:
20723 case DW_OP_reg31:
20724 stack[++stacki] = op - DW_OP_reg0;
20725 if (i < size)
20726 dwarf2_complex_location_expr_complaint ();
20727 break;
c906108c 20728
21ae7a4d
JK
20729 case DW_OP_regx:
20730 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20731 i += bytes_read;
20732 stack[++stacki] = unsnd;
20733 if (i < size)
20734 dwarf2_complex_location_expr_complaint ();
20735 break;
c906108c 20736
21ae7a4d
JK
20737 case DW_OP_addr:
20738 stack[++stacki] = read_address (objfile->obfd, &data[i],
20739 cu, &bytes_read);
20740 i += bytes_read;
20741 break;
d53d4ac5 20742
21ae7a4d
JK
20743 case DW_OP_const1u:
20744 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20745 i += 1;
20746 break;
20747
20748 case DW_OP_const1s:
20749 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20750 i += 1;
20751 break;
20752
20753 case DW_OP_const2u:
20754 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20755 i += 2;
20756 break;
20757
20758 case DW_OP_const2s:
20759 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20760 i += 2;
20761 break;
d53d4ac5 20762
21ae7a4d
JK
20763 case DW_OP_const4u:
20764 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20765 i += 4;
20766 break;
20767
20768 case DW_OP_const4s:
20769 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20770 i += 4;
20771 break;
20772
585861ea
JK
20773 case DW_OP_const8u:
20774 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20775 i += 8;
20776 break;
20777
21ae7a4d
JK
20778 case DW_OP_constu:
20779 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20780 &bytes_read);
20781 i += bytes_read;
20782 break;
20783
20784 case DW_OP_consts:
20785 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20786 i += bytes_read;
20787 break;
20788
20789 case DW_OP_dup:
20790 stack[stacki + 1] = stack[stacki];
20791 stacki++;
20792 break;
20793
20794 case DW_OP_plus:
20795 stack[stacki - 1] += stack[stacki];
20796 stacki--;
20797 break;
20798
20799 case DW_OP_plus_uconst:
20800 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20801 &bytes_read);
20802 i += bytes_read;
20803 break;
20804
20805 case DW_OP_minus:
20806 stack[stacki - 1] -= stack[stacki];
20807 stacki--;
20808 break;
20809
20810 case DW_OP_deref:
20811 /* If we're not the last op, then we definitely can't encode
20812 this using GDB's address_class enum. This is valid for partial
20813 global symbols, although the variable's address will be bogus
20814 in the psymtab. */
20815 if (i < size)
20816 dwarf2_complex_location_expr_complaint ();
20817 break;
20818
20819 case DW_OP_GNU_push_tls_address:
4aa4e28b 20820 case DW_OP_form_tls_address:
21ae7a4d
JK
20821 /* The top of the stack has the offset from the beginning
20822 of the thread control block at which the variable is located. */
20823 /* Nothing should follow this operator, so the top of stack would
20824 be returned. */
20825 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20826 address will be bogus in the psymtab. Make it always at least
20827 non-zero to not look as a variable garbage collected by linker
20828 which have DW_OP_addr 0. */
21ae7a4d
JK
20829 if (i < size)
20830 dwarf2_complex_location_expr_complaint ();
585861ea 20831 stack[stacki]++;
21ae7a4d
JK
20832 break;
20833
20834 case DW_OP_GNU_uninit:
20835 break;
20836
3019eac3 20837 case DW_OP_GNU_addr_index:
49f6c839 20838 case DW_OP_GNU_const_index:
3019eac3
DE
20839 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20840 &bytes_read);
20841 i += bytes_read;
20842 break;
20843
21ae7a4d
JK
20844 default:
20845 {
f39c6ffd 20846 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20847
20848 if (name)
20849 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20850 name);
20851 else
20852 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20853 op);
20854 }
20855
20856 return (stack[stacki]);
d53d4ac5 20857 }
3c6e0cb3 20858
21ae7a4d
JK
20859 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20860 outside of the allocated space. Also enforce minimum>0. */
20861 if (stacki >= ARRAY_SIZE (stack) - 1)
20862 {
20863 complaint (&symfile_complaints,
20864 _("location description stack overflow"));
20865 return 0;
20866 }
20867
20868 if (stacki <= 0)
20869 {
20870 complaint (&symfile_complaints,
20871 _("location description stack underflow"));
20872 return 0;
20873 }
20874 }
20875 return (stack[stacki]);
c906108c
SS
20876}
20877
20878/* memory allocation interface */
20879
c906108c 20880static struct dwarf_block *
7b5a2f43 20881dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20882{
8d749320 20883 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20884}
20885
c906108c 20886static struct die_info *
b60c80d6 20887dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20888{
20889 struct die_info *die;
b60c80d6
DJ
20890 size_t size = sizeof (struct die_info);
20891
20892 if (num_attrs > 1)
20893 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20894
b60c80d6 20895 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20896 memset (die, 0, sizeof (struct die_info));
20897 return (die);
20898}
2e276125
JB
20899
20900\f
20901/* Macro support. */
20902
233d95b5
JK
20903/* Return file name relative to the compilation directory of file number I in
20904 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20905 responsible for freeing it. */
233d95b5 20906
2e276125 20907static char *
233d95b5 20908file_file_name (int file, struct line_header *lh)
2e276125 20909{
6a83a1e6
EZ
20910 /* Is the file number a valid index into the line header's file name
20911 table? Remember that file numbers start with one, not zero. */
20912 if (1 <= file && file <= lh->num_file_names)
20913 {
20914 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20915
afa6c9ab
SL
20916 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20917 || lh->include_dirs == NULL)
6a83a1e6 20918 return xstrdup (fe->name);
233d95b5 20919 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 20920 fe->name, (char *) NULL);
6a83a1e6 20921 }
2e276125
JB
20922 else
20923 {
6a83a1e6
EZ
20924 /* The compiler produced a bogus file number. We can at least
20925 record the macro definitions made in the file, even if we
20926 won't be able to find the file by name. */
20927 char fake_name[80];
9a619af0 20928
8c042590
PM
20929 xsnprintf (fake_name, sizeof (fake_name),
20930 "<bad macro file number %d>", file);
2e276125 20931
6e70227d 20932 complaint (&symfile_complaints,
6a83a1e6
EZ
20933 _("bad file number in macro information (%d)"),
20934 file);
2e276125 20935
6a83a1e6 20936 return xstrdup (fake_name);
2e276125
JB
20937 }
20938}
20939
233d95b5
JK
20940/* Return the full name of file number I in *LH's file name table.
20941 Use COMP_DIR as the name of the current directory of the
20942 compilation. The result is allocated using xmalloc; the caller is
20943 responsible for freeing it. */
20944static char *
20945file_full_name (int file, struct line_header *lh, const char *comp_dir)
20946{
20947 /* Is the file number a valid index into the line header's file name
20948 table? Remember that file numbers start with one, not zero. */
20949 if (1 <= file && file <= lh->num_file_names)
20950 {
20951 char *relative = file_file_name (file, lh);
20952
20953 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20954 return relative;
b36cec19
PA
20955 return reconcat (relative, comp_dir, SLASH_STRING,
20956 relative, (char *) NULL);
233d95b5
JK
20957 }
20958 else
20959 return file_file_name (file, lh);
20960}
20961
2e276125
JB
20962
20963static struct macro_source_file *
20964macro_start_file (int file, int line,
20965 struct macro_source_file *current_file,
43f3e411 20966 struct line_header *lh)
2e276125 20967{
233d95b5
JK
20968 /* File name relative to the compilation directory of this source file. */
20969 char *file_name = file_file_name (file, lh);
2e276125 20970
2e276125 20971 if (! current_file)
abc9d0dc 20972 {
fc474241
DE
20973 /* Note: We don't create a macro table for this compilation unit
20974 at all until we actually get a filename. */
43f3e411 20975 struct macro_table *macro_table = get_macro_table ();
fc474241 20976
abc9d0dc
TT
20977 /* If we have no current file, then this must be the start_file
20978 directive for the compilation unit's main source file. */
fc474241
DE
20979 current_file = macro_set_main (macro_table, file_name);
20980 macro_define_special (macro_table);
abc9d0dc 20981 }
2e276125 20982 else
233d95b5 20983 current_file = macro_include (current_file, line, file_name);
2e276125 20984
233d95b5 20985 xfree (file_name);
6e70227d 20986
2e276125
JB
20987 return current_file;
20988}
20989
20990
20991/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20992 followed by a null byte. */
20993static char *
20994copy_string (const char *buf, int len)
20995{
224c3ddb 20996 char *s = (char *) xmalloc (len + 1);
9a619af0 20997
2e276125
JB
20998 memcpy (s, buf, len);
20999 s[len] = '\0';
2e276125
JB
21000 return s;
21001}
21002
21003
21004static const char *
21005consume_improper_spaces (const char *p, const char *body)
21006{
21007 if (*p == ' ')
21008 {
4d3c2250 21009 complaint (&symfile_complaints,
3e43a32a
MS
21010 _("macro definition contains spaces "
21011 "in formal argument list:\n`%s'"),
4d3c2250 21012 body);
2e276125
JB
21013
21014 while (*p == ' ')
21015 p++;
21016 }
21017
21018 return p;
21019}
21020
21021
21022static void
21023parse_macro_definition (struct macro_source_file *file, int line,
21024 const char *body)
21025{
21026 const char *p;
21027
21028 /* The body string takes one of two forms. For object-like macro
21029 definitions, it should be:
21030
21031 <macro name> " " <definition>
21032
21033 For function-like macro definitions, it should be:
21034
21035 <macro name> "() " <definition>
21036 or
21037 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21038
21039 Spaces may appear only where explicitly indicated, and in the
21040 <definition>.
21041
21042 The Dwarf 2 spec says that an object-like macro's name is always
21043 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21044 the space when the macro's definition is the empty string.
2e276125
JB
21045
21046 The Dwarf 2 spec says that there should be no spaces between the
21047 formal arguments in a function-like macro's formal argument list,
21048 but versions of GCC around March 2002 include spaces after the
21049 commas. */
21050
21051
21052 /* Find the extent of the macro name. The macro name is terminated
21053 by either a space or null character (for an object-like macro) or
21054 an opening paren (for a function-like macro). */
21055 for (p = body; *p; p++)
21056 if (*p == ' ' || *p == '(')
21057 break;
21058
21059 if (*p == ' ' || *p == '\0')
21060 {
21061 /* It's an object-like macro. */
21062 int name_len = p - body;
21063 char *name = copy_string (body, name_len);
21064 const char *replacement;
21065
21066 if (*p == ' ')
21067 replacement = body + name_len + 1;
21068 else
21069 {
4d3c2250 21070 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21071 replacement = body + name_len;
21072 }
6e70227d 21073
2e276125
JB
21074 macro_define_object (file, line, name, replacement);
21075
21076 xfree (name);
21077 }
21078 else if (*p == '(')
21079 {
21080 /* It's a function-like macro. */
21081 char *name = copy_string (body, p - body);
21082 int argc = 0;
21083 int argv_size = 1;
8d749320 21084 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21085
21086 p++;
21087
21088 p = consume_improper_spaces (p, body);
21089
21090 /* Parse the formal argument list. */
21091 while (*p && *p != ')')
21092 {
21093 /* Find the extent of the current argument name. */
21094 const char *arg_start = p;
21095
21096 while (*p && *p != ',' && *p != ')' && *p != ' ')
21097 p++;
21098
21099 if (! *p || p == arg_start)
4d3c2250 21100 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21101 else
21102 {
21103 /* Make sure argv has room for the new argument. */
21104 if (argc >= argv_size)
21105 {
21106 argv_size *= 2;
224c3ddb 21107 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21108 }
21109
21110 argv[argc++] = copy_string (arg_start, p - arg_start);
21111 }
21112
21113 p = consume_improper_spaces (p, body);
21114
21115 /* Consume the comma, if present. */
21116 if (*p == ',')
21117 {
21118 p++;
21119
21120 p = consume_improper_spaces (p, body);
21121 }
21122 }
21123
21124 if (*p == ')')
21125 {
21126 p++;
21127
21128 if (*p == ' ')
21129 /* Perfectly formed definition, no complaints. */
21130 macro_define_function (file, line, name,
6e70227d 21131 argc, (const char **) argv,
2e276125
JB
21132 p + 1);
21133 else if (*p == '\0')
21134 {
21135 /* Complain, but do define it. */
4d3c2250 21136 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21137 macro_define_function (file, line, name,
6e70227d 21138 argc, (const char **) argv,
2e276125
JB
21139 p);
21140 }
21141 else
21142 /* Just complain. */
4d3c2250 21143 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21144 }
21145 else
21146 /* Just complain. */
4d3c2250 21147 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21148
21149 xfree (name);
21150 {
21151 int i;
21152
21153 for (i = 0; i < argc; i++)
21154 xfree (argv[i]);
21155 }
21156 xfree (argv);
21157 }
21158 else
4d3c2250 21159 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21160}
21161
cf2c3c16
TT
21162/* Skip some bytes from BYTES according to the form given in FORM.
21163 Returns the new pointer. */
2e276125 21164
d521ce57
TT
21165static const gdb_byte *
21166skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21167 enum dwarf_form form,
21168 unsigned int offset_size,
21169 struct dwarf2_section_info *section)
2e276125 21170{
cf2c3c16 21171 unsigned int bytes_read;
2e276125 21172
cf2c3c16 21173 switch (form)
2e276125 21174 {
cf2c3c16
TT
21175 case DW_FORM_data1:
21176 case DW_FORM_flag:
21177 ++bytes;
21178 break;
21179
21180 case DW_FORM_data2:
21181 bytes += 2;
21182 break;
21183
21184 case DW_FORM_data4:
21185 bytes += 4;
21186 break;
21187
21188 case DW_FORM_data8:
21189 bytes += 8;
21190 break;
21191
21192 case DW_FORM_string:
21193 read_direct_string (abfd, bytes, &bytes_read);
21194 bytes += bytes_read;
21195 break;
21196
21197 case DW_FORM_sec_offset:
21198 case DW_FORM_strp:
36586728 21199 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21200 bytes += offset_size;
21201 break;
21202
21203 case DW_FORM_block:
21204 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21205 bytes += bytes_read;
21206 break;
21207
21208 case DW_FORM_block1:
21209 bytes += 1 + read_1_byte (abfd, bytes);
21210 break;
21211 case DW_FORM_block2:
21212 bytes += 2 + read_2_bytes (abfd, bytes);
21213 break;
21214 case DW_FORM_block4:
21215 bytes += 4 + read_4_bytes (abfd, bytes);
21216 break;
21217
21218 case DW_FORM_sdata:
21219 case DW_FORM_udata:
3019eac3
DE
21220 case DW_FORM_GNU_addr_index:
21221 case DW_FORM_GNU_str_index:
d521ce57 21222 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21223 if (bytes == NULL)
21224 {
21225 dwarf2_section_buffer_overflow_complaint (section);
21226 return NULL;
21227 }
cf2c3c16
TT
21228 break;
21229
21230 default:
21231 {
21232 complain:
21233 complaint (&symfile_complaints,
21234 _("invalid form 0x%x in `%s'"),
a32a8923 21235 form, get_section_name (section));
cf2c3c16
TT
21236 return NULL;
21237 }
2e276125
JB
21238 }
21239
cf2c3c16
TT
21240 return bytes;
21241}
757a13d0 21242
cf2c3c16
TT
21243/* A helper for dwarf_decode_macros that handles skipping an unknown
21244 opcode. Returns an updated pointer to the macro data buffer; or,
21245 on error, issues a complaint and returns NULL. */
757a13d0 21246
d521ce57 21247static const gdb_byte *
cf2c3c16 21248skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21249 const gdb_byte **opcode_definitions,
21250 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21251 bfd *abfd,
21252 unsigned int offset_size,
21253 struct dwarf2_section_info *section)
21254{
21255 unsigned int bytes_read, i;
21256 unsigned long arg;
d521ce57 21257 const gdb_byte *defn;
2e276125 21258
cf2c3c16 21259 if (opcode_definitions[opcode] == NULL)
2e276125 21260 {
cf2c3c16
TT
21261 complaint (&symfile_complaints,
21262 _("unrecognized DW_MACFINO opcode 0x%x"),
21263 opcode);
21264 return NULL;
21265 }
2e276125 21266
cf2c3c16
TT
21267 defn = opcode_definitions[opcode];
21268 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21269 defn += bytes_read;
2e276125 21270
cf2c3c16
TT
21271 for (i = 0; i < arg; ++i)
21272 {
aead7601
SM
21273 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21274 (enum dwarf_form) defn[i], offset_size,
f664829e 21275 section);
cf2c3c16
TT
21276 if (mac_ptr == NULL)
21277 {
21278 /* skip_form_bytes already issued the complaint. */
21279 return NULL;
21280 }
21281 }
757a13d0 21282
cf2c3c16
TT
21283 return mac_ptr;
21284}
757a13d0 21285
cf2c3c16
TT
21286/* A helper function which parses the header of a macro section.
21287 If the macro section is the extended (for now called "GNU") type,
21288 then this updates *OFFSET_SIZE. Returns a pointer to just after
21289 the header, or issues a complaint and returns NULL on error. */
757a13d0 21290
d521ce57
TT
21291static const gdb_byte *
21292dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21293 bfd *abfd,
d521ce57 21294 const gdb_byte *mac_ptr,
cf2c3c16
TT
21295 unsigned int *offset_size,
21296 int section_is_gnu)
21297{
21298 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21299
cf2c3c16
TT
21300 if (section_is_gnu)
21301 {
21302 unsigned int version, flags;
757a13d0 21303
cf2c3c16
TT
21304 version = read_2_bytes (abfd, mac_ptr);
21305 if (version != 4)
21306 {
21307 complaint (&symfile_complaints,
21308 _("unrecognized version `%d' in .debug_macro section"),
21309 version);
21310 return NULL;
21311 }
21312 mac_ptr += 2;
757a13d0 21313
cf2c3c16
TT
21314 flags = read_1_byte (abfd, mac_ptr);
21315 ++mac_ptr;
21316 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21317
cf2c3c16
TT
21318 if ((flags & 2) != 0)
21319 /* We don't need the line table offset. */
21320 mac_ptr += *offset_size;
757a13d0 21321
cf2c3c16
TT
21322 /* Vendor opcode descriptions. */
21323 if ((flags & 4) != 0)
21324 {
21325 unsigned int i, count;
757a13d0 21326
cf2c3c16
TT
21327 count = read_1_byte (abfd, mac_ptr);
21328 ++mac_ptr;
21329 for (i = 0; i < count; ++i)
21330 {
21331 unsigned int opcode, bytes_read;
21332 unsigned long arg;
21333
21334 opcode = read_1_byte (abfd, mac_ptr);
21335 ++mac_ptr;
21336 opcode_definitions[opcode] = mac_ptr;
21337 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21338 mac_ptr += bytes_read;
21339 mac_ptr += arg;
21340 }
757a13d0 21341 }
cf2c3c16 21342 }
757a13d0 21343
cf2c3c16
TT
21344 return mac_ptr;
21345}
757a13d0 21346
cf2c3c16 21347/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21348 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21349
21350static void
d521ce57
TT
21351dwarf_decode_macro_bytes (bfd *abfd,
21352 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21353 struct macro_source_file *current_file,
43f3e411 21354 struct line_header *lh,
cf2c3c16 21355 struct dwarf2_section_info *section,
36586728 21356 int section_is_gnu, int section_is_dwz,
cf2c3c16 21357 unsigned int offset_size,
8fc3fc34 21358 htab_t include_hash)
cf2c3c16 21359{
4d663531 21360 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21361 enum dwarf_macro_record_type macinfo_type;
21362 int at_commandline;
d521ce57 21363 const gdb_byte *opcode_definitions[256];
757a13d0 21364
cf2c3c16
TT
21365 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21366 &offset_size, section_is_gnu);
21367 if (mac_ptr == NULL)
21368 {
21369 /* We already issued a complaint. */
21370 return;
21371 }
757a13d0
JK
21372
21373 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21374 GDB is still reading the definitions from command line. First
21375 DW_MACINFO_start_file will need to be ignored as it was already executed
21376 to create CURRENT_FILE for the main source holding also the command line
21377 definitions. On first met DW_MACINFO_start_file this flag is reset to
21378 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21379
21380 at_commandline = 1;
21381
21382 do
21383 {
21384 /* Do we at least have room for a macinfo type byte? */
21385 if (mac_ptr >= mac_end)
21386 {
f664829e 21387 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21388 break;
21389 }
21390
aead7601 21391 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21392 mac_ptr++;
21393
cf2c3c16
TT
21394 /* Note that we rely on the fact that the corresponding GNU and
21395 DWARF constants are the same. */
757a13d0
JK
21396 switch (macinfo_type)
21397 {
21398 /* A zero macinfo type indicates the end of the macro
21399 information. */
21400 case 0:
21401 break;
2e276125 21402
cf2c3c16
TT
21403 case DW_MACRO_GNU_define:
21404 case DW_MACRO_GNU_undef:
21405 case DW_MACRO_GNU_define_indirect:
21406 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21407 case DW_MACRO_GNU_define_indirect_alt:
21408 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21409 {
891d2f0b 21410 unsigned int bytes_read;
2e276125 21411 int line;
d521ce57 21412 const char *body;
cf2c3c16 21413 int is_define;
2e276125 21414
cf2c3c16
TT
21415 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21416 mac_ptr += bytes_read;
21417
21418 if (macinfo_type == DW_MACRO_GNU_define
21419 || macinfo_type == DW_MACRO_GNU_undef)
21420 {
21421 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21422 mac_ptr += bytes_read;
21423 }
21424 else
21425 {
21426 LONGEST str_offset;
21427
21428 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21429 mac_ptr += offset_size;
2e276125 21430
36586728 21431 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21432 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21433 || section_is_dwz)
36586728
TT
21434 {
21435 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21436
21437 body = read_indirect_string_from_dwz (dwz, str_offset);
21438 }
21439 else
21440 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21441 }
21442
21443 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21444 || macinfo_type == DW_MACRO_GNU_define_indirect
21445 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21446 if (! current_file)
757a13d0
JK
21447 {
21448 /* DWARF violation as no main source is present. */
21449 complaint (&symfile_complaints,
21450 _("debug info with no main source gives macro %s "
21451 "on line %d: %s"),
cf2c3c16
TT
21452 is_define ? _("definition") : _("undefinition"),
21453 line, body);
757a13d0
JK
21454 break;
21455 }
3e43a32a
MS
21456 if ((line == 0 && !at_commandline)
21457 || (line != 0 && at_commandline))
4d3c2250 21458 complaint (&symfile_complaints,
757a13d0
JK
21459 _("debug info gives %s macro %s with %s line %d: %s"),
21460 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21461 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21462 line == 0 ? _("zero") : _("non-zero"), line, body);
21463
cf2c3c16 21464 if (is_define)
757a13d0 21465 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21466 else
21467 {
21468 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21469 || macinfo_type == DW_MACRO_GNU_undef_indirect
21470 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21471 macro_undef (current_file, line, body);
21472 }
2e276125
JB
21473 }
21474 break;
21475
cf2c3c16 21476 case DW_MACRO_GNU_start_file:
2e276125 21477 {
891d2f0b 21478 unsigned int bytes_read;
2e276125
JB
21479 int line, file;
21480
21481 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21482 mac_ptr += bytes_read;
21483 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21484 mac_ptr += bytes_read;
21485
3e43a32a
MS
21486 if ((line == 0 && !at_commandline)
21487 || (line != 0 && at_commandline))
757a13d0
JK
21488 complaint (&symfile_complaints,
21489 _("debug info gives source %d included "
21490 "from %s at %s line %d"),
21491 file, at_commandline ? _("command-line") : _("file"),
21492 line == 0 ? _("zero") : _("non-zero"), line);
21493
21494 if (at_commandline)
21495 {
cf2c3c16
TT
21496 /* This DW_MACRO_GNU_start_file was executed in the
21497 pass one. */
757a13d0
JK
21498 at_commandline = 0;
21499 }
21500 else
43f3e411 21501 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21502 }
21503 break;
21504
cf2c3c16 21505 case DW_MACRO_GNU_end_file:
2e276125 21506 if (! current_file)
4d3c2250 21507 complaint (&symfile_complaints,
3e43a32a
MS
21508 _("macro debug info has an unmatched "
21509 "`close_file' directive"));
2e276125
JB
21510 else
21511 {
21512 current_file = current_file->included_by;
21513 if (! current_file)
21514 {
cf2c3c16 21515 enum dwarf_macro_record_type next_type;
2e276125
JB
21516
21517 /* GCC circa March 2002 doesn't produce the zero
21518 type byte marking the end of the compilation
21519 unit. Complain if it's not there, but exit no
21520 matter what. */
21521
21522 /* Do we at least have room for a macinfo type byte? */
21523 if (mac_ptr >= mac_end)
21524 {
f664829e 21525 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21526 return;
21527 }
21528
21529 /* We don't increment mac_ptr here, so this is just
21530 a look-ahead. */
aead7601
SM
21531 next_type
21532 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21533 mac_ptr);
2e276125 21534 if (next_type != 0)
4d3c2250 21535 complaint (&symfile_complaints,
3e43a32a
MS
21536 _("no terminating 0-type entry for "
21537 "macros in `.debug_macinfo' section"));
2e276125
JB
21538
21539 return;
21540 }
21541 }
21542 break;
21543
cf2c3c16 21544 case DW_MACRO_GNU_transparent_include:
36586728 21545 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21546 {
21547 LONGEST offset;
8fc3fc34 21548 void **slot;
a036ba48
TT
21549 bfd *include_bfd = abfd;
21550 struct dwarf2_section_info *include_section = section;
d521ce57 21551 const gdb_byte *include_mac_end = mac_end;
a036ba48 21552 int is_dwz = section_is_dwz;
d521ce57 21553 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21554
21555 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21556 mac_ptr += offset_size;
21557
a036ba48
TT
21558 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21559 {
21560 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21561
4d663531 21562 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21563
a036ba48 21564 include_section = &dwz->macro;
a32a8923 21565 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21566 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21567 is_dwz = 1;
21568 }
21569
21570 new_mac_ptr = include_section->buffer + offset;
21571 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21572
8fc3fc34
TT
21573 if (*slot != NULL)
21574 {
21575 /* This has actually happened; see
21576 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21577 complaint (&symfile_complaints,
21578 _("recursive DW_MACRO_GNU_transparent_include in "
21579 ".debug_macro section"));
21580 }
21581 else
21582 {
d521ce57 21583 *slot = (void *) new_mac_ptr;
36586728 21584
a036ba48 21585 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21586 include_mac_end, current_file, lh,
36586728 21587 section, section_is_gnu, is_dwz,
4d663531 21588 offset_size, include_hash);
8fc3fc34 21589
d521ce57 21590 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21591 }
cf2c3c16
TT
21592 }
21593 break;
21594
2e276125 21595 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21596 if (!section_is_gnu)
21597 {
21598 unsigned int bytes_read;
2e276125 21599
ac298888
TT
21600 /* This reads the constant, but since we don't recognize
21601 any vendor extensions, we ignore it. */
21602 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21603 mac_ptr += bytes_read;
21604 read_direct_string (abfd, mac_ptr, &bytes_read);
21605 mac_ptr += bytes_read;
2e276125 21606
cf2c3c16
TT
21607 /* We don't recognize any vendor extensions. */
21608 break;
21609 }
21610 /* FALLTHROUGH */
21611
21612 default:
21613 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21614 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21615 section);
21616 if (mac_ptr == NULL)
21617 return;
21618 break;
2e276125 21619 }
757a13d0 21620 } while (macinfo_type != 0);
2e276125 21621}
8e19ed76 21622
cf2c3c16 21623static void
09262596 21624dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21625 int section_is_gnu)
cf2c3c16 21626{
bb5ed363 21627 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21628 struct line_header *lh = cu->line_header;
21629 bfd *abfd;
d521ce57 21630 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21631 struct macro_source_file *current_file = 0;
21632 enum dwarf_macro_record_type macinfo_type;
21633 unsigned int offset_size = cu->header.offset_size;
d521ce57 21634 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21635 struct cleanup *cleanup;
21636 htab_t include_hash;
21637 void **slot;
09262596
DE
21638 struct dwarf2_section_info *section;
21639 const char *section_name;
21640
21641 if (cu->dwo_unit != NULL)
21642 {
21643 if (section_is_gnu)
21644 {
21645 section = &cu->dwo_unit->dwo_file->sections.macro;
21646 section_name = ".debug_macro.dwo";
21647 }
21648 else
21649 {
21650 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21651 section_name = ".debug_macinfo.dwo";
21652 }
21653 }
21654 else
21655 {
21656 if (section_is_gnu)
21657 {
21658 section = &dwarf2_per_objfile->macro;
21659 section_name = ".debug_macro";
21660 }
21661 else
21662 {
21663 section = &dwarf2_per_objfile->macinfo;
21664 section_name = ".debug_macinfo";
21665 }
21666 }
cf2c3c16 21667
bb5ed363 21668 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21669 if (section->buffer == NULL)
21670 {
fceca515 21671 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21672 return;
21673 }
a32a8923 21674 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21675
21676 /* First pass: Find the name of the base filename.
21677 This filename is needed in order to process all macros whose definition
21678 (or undefinition) comes from the command line. These macros are defined
21679 before the first DW_MACINFO_start_file entry, and yet still need to be
21680 associated to the base file.
21681
21682 To determine the base file name, we scan the macro definitions until we
21683 reach the first DW_MACINFO_start_file entry. We then initialize
21684 CURRENT_FILE accordingly so that any macro definition found before the
21685 first DW_MACINFO_start_file can still be associated to the base file. */
21686
21687 mac_ptr = section->buffer + offset;
21688 mac_end = section->buffer + section->size;
21689
21690 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21691 &offset_size, section_is_gnu);
21692 if (mac_ptr == NULL)
21693 {
21694 /* We already issued a complaint. */
21695 return;
21696 }
21697
21698 do
21699 {
21700 /* Do we at least have room for a macinfo type byte? */
21701 if (mac_ptr >= mac_end)
21702 {
21703 /* Complaint is printed during the second pass as GDB will probably
21704 stop the first pass earlier upon finding
21705 DW_MACINFO_start_file. */
21706 break;
21707 }
21708
aead7601 21709 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21710 mac_ptr++;
21711
21712 /* Note that we rely on the fact that the corresponding GNU and
21713 DWARF constants are the same. */
21714 switch (macinfo_type)
21715 {
21716 /* A zero macinfo type indicates the end of the macro
21717 information. */
21718 case 0:
21719 break;
21720
21721 case DW_MACRO_GNU_define:
21722 case DW_MACRO_GNU_undef:
21723 /* Only skip the data by MAC_PTR. */
21724 {
21725 unsigned int bytes_read;
21726
21727 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21728 mac_ptr += bytes_read;
21729 read_direct_string (abfd, mac_ptr, &bytes_read);
21730 mac_ptr += bytes_read;
21731 }
21732 break;
21733
21734 case DW_MACRO_GNU_start_file:
21735 {
21736 unsigned int bytes_read;
21737 int line, file;
21738
21739 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21740 mac_ptr += bytes_read;
21741 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21742 mac_ptr += bytes_read;
21743
43f3e411 21744 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21745 }
21746 break;
21747
21748 case DW_MACRO_GNU_end_file:
21749 /* No data to skip by MAC_PTR. */
21750 break;
21751
21752 case DW_MACRO_GNU_define_indirect:
21753 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21754 case DW_MACRO_GNU_define_indirect_alt:
21755 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21756 {
21757 unsigned int bytes_read;
21758
21759 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21760 mac_ptr += bytes_read;
21761 mac_ptr += offset_size;
21762 }
21763 break;
21764
21765 case DW_MACRO_GNU_transparent_include:
f7a35f02 21766 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21767 /* Note that, according to the spec, a transparent include
21768 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21769 skip this opcode. */
21770 mac_ptr += offset_size;
21771 break;
21772
21773 case DW_MACINFO_vendor_ext:
21774 /* Only skip the data by MAC_PTR. */
21775 if (!section_is_gnu)
21776 {
21777 unsigned int bytes_read;
21778
21779 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21780 mac_ptr += bytes_read;
21781 read_direct_string (abfd, mac_ptr, &bytes_read);
21782 mac_ptr += bytes_read;
21783 }
21784 /* FALLTHROUGH */
21785
21786 default:
21787 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21788 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21789 section);
21790 if (mac_ptr == NULL)
21791 return;
21792 break;
21793 }
21794 } while (macinfo_type != 0 && current_file == NULL);
21795
21796 /* Second pass: Process all entries.
21797
21798 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21799 command-line macro definitions/undefinitions. This flag is unset when we
21800 reach the first DW_MACINFO_start_file entry. */
21801
8fc3fc34
TT
21802 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21803 NULL, xcalloc, xfree);
21804 cleanup = make_cleanup_htab_delete (include_hash);
21805 mac_ptr = section->buffer + offset;
21806 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21807 *slot = (void *) mac_ptr;
8fc3fc34 21808 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21809 current_file, lh, section,
4d663531 21810 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21811 do_cleanups (cleanup);
cf2c3c16
TT
21812}
21813
8e19ed76 21814/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21815 if so return true else false. */
380bca97 21816
8e19ed76 21817static int
6e5a29e1 21818attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21819{
21820 return (attr == NULL ? 0 :
21821 attr->form == DW_FORM_block1
21822 || attr->form == DW_FORM_block2
21823 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21824 || attr->form == DW_FORM_block
21825 || attr->form == DW_FORM_exprloc);
8e19ed76 21826}
4c2df51b 21827
c6a0999f
JB
21828/* Return non-zero if ATTR's value is a section offset --- classes
21829 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21830 You may use DW_UNSND (attr) to retrieve such offsets.
21831
21832 Section 7.5.4, "Attribute Encodings", explains that no attribute
21833 may have a value that belongs to more than one of these classes; it
21834 would be ambiguous if we did, because we use the same forms for all
21835 of them. */
380bca97 21836
3690dd37 21837static int
6e5a29e1 21838attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21839{
21840 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21841 || attr->form == DW_FORM_data8
21842 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21843}
21844
3690dd37
JB
21845/* Return non-zero if ATTR's value falls in the 'constant' class, or
21846 zero otherwise. When this function returns true, you can apply
21847 dwarf2_get_attr_constant_value to it.
21848
21849 However, note that for some attributes you must check
21850 attr_form_is_section_offset before using this test. DW_FORM_data4
21851 and DW_FORM_data8 are members of both the constant class, and of
21852 the classes that contain offsets into other debug sections
21853 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21854 that, if an attribute's can be either a constant or one of the
21855 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21856 taken as section offsets, not constants. */
380bca97 21857
3690dd37 21858static int
6e5a29e1 21859attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21860{
21861 switch (attr->form)
21862 {
21863 case DW_FORM_sdata:
21864 case DW_FORM_udata:
21865 case DW_FORM_data1:
21866 case DW_FORM_data2:
21867 case DW_FORM_data4:
21868 case DW_FORM_data8:
21869 return 1;
21870 default:
21871 return 0;
21872 }
21873}
21874
7771576e
SA
21875
21876/* DW_ADDR is always stored already as sect_offset; despite for the forms
21877 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21878
21879static int
6e5a29e1 21880attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21881{
21882 switch (attr->form)
21883 {
21884 case DW_FORM_ref_addr:
21885 case DW_FORM_ref1:
21886 case DW_FORM_ref2:
21887 case DW_FORM_ref4:
21888 case DW_FORM_ref8:
21889 case DW_FORM_ref_udata:
21890 case DW_FORM_GNU_ref_alt:
21891 return 1;
21892 default:
21893 return 0;
21894 }
21895}
21896
3019eac3
DE
21897/* Return the .debug_loc section to use for CU.
21898 For DWO files use .debug_loc.dwo. */
21899
21900static struct dwarf2_section_info *
21901cu_debug_loc_section (struct dwarf2_cu *cu)
21902{
21903 if (cu->dwo_unit)
21904 return &cu->dwo_unit->dwo_file->sections.loc;
21905 return &dwarf2_per_objfile->loc;
21906}
21907
8cf6f0b1
TT
21908/* A helper function that fills in a dwarf2_loclist_baton. */
21909
21910static void
21911fill_in_loclist_baton (struct dwarf2_cu *cu,
21912 struct dwarf2_loclist_baton *baton,
ff39bb5e 21913 const struct attribute *attr)
8cf6f0b1 21914{
3019eac3
DE
21915 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21916
21917 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21918
21919 baton->per_cu = cu->per_cu;
21920 gdb_assert (baton->per_cu);
21921 /* We don't know how long the location list is, but make sure we
21922 don't run off the edge of the section. */
3019eac3
DE
21923 baton->size = section->size - DW_UNSND (attr);
21924 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21925 baton->base_address = cu->base_address;
f664829e 21926 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21927}
21928
4c2df51b 21929static void
ff39bb5e 21930dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21931 struct dwarf2_cu *cu, int is_block)
4c2df51b 21932{
bb5ed363 21933 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21934 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21935
3690dd37 21936 if (attr_form_is_section_offset (attr)
3019eac3 21937 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21938 the section. If so, fall through to the complaint in the
21939 other branch. */
3019eac3 21940 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21941 {
0d53c4c4 21942 struct dwarf2_loclist_baton *baton;
4c2df51b 21943
8d749320 21944 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21945
8cf6f0b1 21946 fill_in_loclist_baton (cu, baton, attr);
be391dca 21947
d00adf39 21948 if (cu->base_known == 0)
0d53c4c4 21949 complaint (&symfile_complaints,
3e43a32a
MS
21950 _("Location list used without "
21951 "specifying the CU base address."));
4c2df51b 21952
f1e6e072
TT
21953 SYMBOL_ACLASS_INDEX (sym) = (is_block
21954 ? dwarf2_loclist_block_index
21955 : dwarf2_loclist_index);
0d53c4c4
DJ
21956 SYMBOL_LOCATION_BATON (sym) = baton;
21957 }
21958 else
21959 {
21960 struct dwarf2_locexpr_baton *baton;
21961
8d749320 21962 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21963 baton->per_cu = cu->per_cu;
21964 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21965
21966 if (attr_form_is_block (attr))
21967 {
21968 /* Note that we're just copying the block's data pointer
21969 here, not the actual data. We're still pointing into the
6502dd73
DJ
21970 info_buffer for SYM's objfile; right now we never release
21971 that buffer, but when we do clean up properly this may
21972 need to change. */
0d53c4c4
DJ
21973 baton->size = DW_BLOCK (attr)->size;
21974 baton->data = DW_BLOCK (attr)->data;
21975 }
21976 else
21977 {
21978 dwarf2_invalid_attrib_class_complaint ("location description",
21979 SYMBOL_NATURAL_NAME (sym));
21980 baton->size = 0;
0d53c4c4 21981 }
6e70227d 21982
f1e6e072
TT
21983 SYMBOL_ACLASS_INDEX (sym) = (is_block
21984 ? dwarf2_locexpr_block_index
21985 : dwarf2_locexpr_index);
0d53c4c4
DJ
21986 SYMBOL_LOCATION_BATON (sym) = baton;
21987 }
4c2df51b 21988}
6502dd73 21989
9aa1f1e3
TT
21990/* Return the OBJFILE associated with the compilation unit CU. If CU
21991 came from a separate debuginfo file, then the master objfile is
21992 returned. */
ae0d2f24
UW
21993
21994struct objfile *
21995dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21996{
9291a0cd 21997 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21998
21999 /* Return the master objfile, so that we can report and look up the
22000 correct file containing this variable. */
22001 if (objfile->separate_debug_objfile_backlink)
22002 objfile = objfile->separate_debug_objfile_backlink;
22003
22004 return objfile;
22005}
22006
96408a79
SA
22007/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22008 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22009 CU_HEADERP first. */
22010
22011static const struct comp_unit_head *
22012per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22013 struct dwarf2_per_cu_data *per_cu)
22014{
d521ce57 22015 const gdb_byte *info_ptr;
96408a79
SA
22016
22017 if (per_cu->cu)
22018 return &per_cu->cu->header;
22019
8a0459fd 22020 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
22021
22022 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 22023 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
22024
22025 return cu_headerp;
22026}
22027
ae0d2f24
UW
22028/* Return the address size given in the compilation unit header for CU. */
22029
98714339 22030int
ae0d2f24
UW
22031dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22032{
96408a79
SA
22033 struct comp_unit_head cu_header_local;
22034 const struct comp_unit_head *cu_headerp;
c471e790 22035
96408a79
SA
22036 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22037
22038 return cu_headerp->addr_size;
ae0d2f24
UW
22039}
22040
9eae7c52
TT
22041/* Return the offset size given in the compilation unit header for CU. */
22042
22043int
22044dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22045{
96408a79
SA
22046 struct comp_unit_head cu_header_local;
22047 const struct comp_unit_head *cu_headerp;
9c6c53f7 22048
96408a79
SA
22049 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22050
22051 return cu_headerp->offset_size;
22052}
22053
22054/* See its dwarf2loc.h declaration. */
22055
22056int
22057dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22058{
22059 struct comp_unit_head cu_header_local;
22060 const struct comp_unit_head *cu_headerp;
22061
22062 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22063
22064 if (cu_headerp->version == 2)
22065 return cu_headerp->addr_size;
22066 else
22067 return cu_headerp->offset_size;
181cebd4
JK
22068}
22069
9aa1f1e3
TT
22070/* Return the text offset of the CU. The returned offset comes from
22071 this CU's objfile. If this objfile came from a separate debuginfo
22072 file, then the offset may be different from the corresponding
22073 offset in the parent objfile. */
22074
22075CORE_ADDR
22076dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22077{
bb3fa9d0 22078 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22079
22080 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22081}
22082
348e048f
DE
22083/* Locate the .debug_info compilation unit from CU's objfile which contains
22084 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22085
22086static struct dwarf2_per_cu_data *
b64f50a1 22087dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22088 unsigned int offset_in_dwz,
ae038cb0
DJ
22089 struct objfile *objfile)
22090{
22091 struct dwarf2_per_cu_data *this_cu;
22092 int low, high;
36586728 22093 const sect_offset *cu_off;
ae038cb0 22094
ae038cb0
DJ
22095 low = 0;
22096 high = dwarf2_per_objfile->n_comp_units - 1;
22097 while (high > low)
22098 {
36586728 22099 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22100 int mid = low + (high - low) / 2;
9a619af0 22101
36586728
TT
22102 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22103 cu_off = &mid_cu->offset;
22104 if (mid_cu->is_dwz > offset_in_dwz
22105 || (mid_cu->is_dwz == offset_in_dwz
22106 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22107 high = mid;
22108 else
22109 low = mid + 1;
22110 }
22111 gdb_assert (low == high);
36586728
TT
22112 this_cu = dwarf2_per_objfile->all_comp_units[low];
22113 cu_off = &this_cu->offset;
22114 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22115 {
36586728 22116 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22117 error (_("Dwarf Error: could not find partial DIE containing "
22118 "offset 0x%lx [in module %s]"),
b64f50a1 22119 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22120
b64f50a1
JK
22121 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22122 <= offset.sect_off);
ae038cb0
DJ
22123 return dwarf2_per_objfile->all_comp_units[low-1];
22124 }
22125 else
22126 {
22127 this_cu = dwarf2_per_objfile->all_comp_units[low];
22128 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22129 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22130 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22131 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22132 return this_cu;
22133 }
22134}
22135
23745b47 22136/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22137
9816fde3 22138static void
23745b47 22139init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22140{
9816fde3 22141 memset (cu, 0, sizeof (*cu));
23745b47
DE
22142 per_cu->cu = cu;
22143 cu->per_cu = per_cu;
22144 cu->objfile = per_cu->objfile;
93311388 22145 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22146}
22147
22148/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22149
22150static void
95554aad
TT
22151prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22152 enum language pretend_language)
9816fde3
JK
22153{
22154 struct attribute *attr;
22155
22156 /* Set the language we're debugging. */
22157 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22158 if (attr)
22159 set_cu_language (DW_UNSND (attr), cu);
22160 else
9cded63f 22161 {
95554aad 22162 cu->language = pretend_language;
9cded63f
TT
22163 cu->language_defn = language_def (cu->language);
22164 }
dee91e82 22165
7d45c7c3 22166 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22167}
22168
ae038cb0
DJ
22169/* Release one cached compilation unit, CU. We unlink it from the tree
22170 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22171 the caller is responsible for that.
22172 NOTE: DATA is a void * because this function is also used as a
22173 cleanup routine. */
ae038cb0
DJ
22174
22175static void
68dc6402 22176free_heap_comp_unit (void *data)
ae038cb0 22177{
9a3c8263 22178 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22179
23745b47
DE
22180 gdb_assert (cu->per_cu != NULL);
22181 cu->per_cu->cu = NULL;
ae038cb0
DJ
22182 cu->per_cu = NULL;
22183
22184 obstack_free (&cu->comp_unit_obstack, NULL);
22185
22186 xfree (cu);
22187}
22188
72bf9492 22189/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22190 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22191 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22192
22193static void
22194free_stack_comp_unit (void *data)
22195{
9a3c8263 22196 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22197
23745b47
DE
22198 gdb_assert (cu->per_cu != NULL);
22199 cu->per_cu->cu = NULL;
22200 cu->per_cu = NULL;
22201
72bf9492
DJ
22202 obstack_free (&cu->comp_unit_obstack, NULL);
22203 cu->partial_dies = NULL;
ae038cb0
DJ
22204}
22205
22206/* Free all cached compilation units. */
22207
22208static void
22209free_cached_comp_units (void *data)
22210{
22211 struct dwarf2_per_cu_data *per_cu, **last_chain;
22212
22213 per_cu = dwarf2_per_objfile->read_in_chain;
22214 last_chain = &dwarf2_per_objfile->read_in_chain;
22215 while (per_cu != NULL)
22216 {
22217 struct dwarf2_per_cu_data *next_cu;
22218
22219 next_cu = per_cu->cu->read_in_chain;
22220
68dc6402 22221 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22222 *last_chain = next_cu;
22223
22224 per_cu = next_cu;
22225 }
22226}
22227
22228/* Increase the age counter on each cached compilation unit, and free
22229 any that are too old. */
22230
22231static void
22232age_cached_comp_units (void)
22233{
22234 struct dwarf2_per_cu_data *per_cu, **last_chain;
22235
22236 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22237 per_cu = dwarf2_per_objfile->read_in_chain;
22238 while (per_cu != NULL)
22239 {
22240 per_cu->cu->last_used ++;
b4f54984 22241 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22242 dwarf2_mark (per_cu->cu);
22243 per_cu = per_cu->cu->read_in_chain;
22244 }
22245
22246 per_cu = dwarf2_per_objfile->read_in_chain;
22247 last_chain = &dwarf2_per_objfile->read_in_chain;
22248 while (per_cu != NULL)
22249 {
22250 struct dwarf2_per_cu_data *next_cu;
22251
22252 next_cu = per_cu->cu->read_in_chain;
22253
22254 if (!per_cu->cu->mark)
22255 {
68dc6402 22256 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22257 *last_chain = next_cu;
22258 }
22259 else
22260 last_chain = &per_cu->cu->read_in_chain;
22261
22262 per_cu = next_cu;
22263 }
22264}
22265
22266/* Remove a single compilation unit from the cache. */
22267
22268static void
dee91e82 22269free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22270{
22271 struct dwarf2_per_cu_data *per_cu, **last_chain;
22272
22273 per_cu = dwarf2_per_objfile->read_in_chain;
22274 last_chain = &dwarf2_per_objfile->read_in_chain;
22275 while (per_cu != NULL)
22276 {
22277 struct dwarf2_per_cu_data *next_cu;
22278
22279 next_cu = per_cu->cu->read_in_chain;
22280
dee91e82 22281 if (per_cu == target_per_cu)
ae038cb0 22282 {
68dc6402 22283 free_heap_comp_unit (per_cu->cu);
dee91e82 22284 per_cu->cu = NULL;
ae038cb0
DJ
22285 *last_chain = next_cu;
22286 break;
22287 }
22288 else
22289 last_chain = &per_cu->cu->read_in_chain;
22290
22291 per_cu = next_cu;
22292 }
22293}
22294
fe3e1990
DJ
22295/* Release all extra memory associated with OBJFILE. */
22296
22297void
22298dwarf2_free_objfile (struct objfile *objfile)
22299{
9a3c8263
SM
22300 dwarf2_per_objfile
22301 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22302 dwarf2_objfile_data_key);
fe3e1990
DJ
22303
22304 if (dwarf2_per_objfile == NULL)
22305 return;
22306
22307 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22308 free_cached_comp_units (NULL);
22309
7b9f3c50
DE
22310 if (dwarf2_per_objfile->quick_file_names_table)
22311 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22312
527f3840
JK
22313 if (dwarf2_per_objfile->line_header_hash)
22314 htab_delete (dwarf2_per_objfile->line_header_hash);
22315
fe3e1990
DJ
22316 /* Everything else should be on the objfile obstack. */
22317}
22318
dee91e82
DE
22319/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22320 We store these in a hash table separate from the DIEs, and preserve them
22321 when the DIEs are flushed out of cache.
22322
22323 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22324 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22325 or the type may come from a DWO file. Furthermore, while it's more logical
22326 to use per_cu->section+offset, with Fission the section with the data is in
22327 the DWO file but we don't know that section at the point we need it.
22328 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22329 because we can enter the lookup routine, get_die_type_at_offset, from
22330 outside this file, and thus won't necessarily have PER_CU->cu.
22331 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22332
dee91e82 22333struct dwarf2_per_cu_offset_and_type
1c379e20 22334{
dee91e82 22335 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22336 sect_offset offset;
1c379e20
DJ
22337 struct type *type;
22338};
22339
dee91e82 22340/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22341
22342static hashval_t
dee91e82 22343per_cu_offset_and_type_hash (const void *item)
1c379e20 22344{
9a3c8263
SM
22345 const struct dwarf2_per_cu_offset_and_type *ofs
22346 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22347
dee91e82 22348 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22349}
22350
dee91e82 22351/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22352
22353static int
dee91e82 22354per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22355{
9a3c8263
SM
22356 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22357 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22358 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22359 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22360
dee91e82
DE
22361 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22362 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22363}
22364
22365/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22366 table if necessary. For convenience, return TYPE.
22367
22368 The DIEs reading must have careful ordering to:
22369 * Not cause infite loops trying to read in DIEs as a prerequisite for
22370 reading current DIE.
22371 * Not trying to dereference contents of still incompletely read in types
22372 while reading in other DIEs.
22373 * Enable referencing still incompletely read in types just by a pointer to
22374 the type without accessing its fields.
22375
22376 Therefore caller should follow these rules:
22377 * Try to fetch any prerequisite types we may need to build this DIE type
22378 before building the type and calling set_die_type.
e71ec853 22379 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22380 possible before fetching more types to complete the current type.
22381 * Make the type as complete as possible before fetching more types. */
1c379e20 22382
f792889a 22383static struct type *
1c379e20
DJ
22384set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22385{
dee91e82 22386 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22387 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22388 struct attribute *attr;
22389 struct dynamic_prop prop;
1c379e20 22390
b4ba55a1
JB
22391 /* For Ada types, make sure that the gnat-specific data is always
22392 initialized (if not already set). There are a few types where
22393 we should not be doing so, because the type-specific area is
22394 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22395 where the type-specific area is used to store the floatformat).
22396 But this is not a problem, because the gnat-specific information
22397 is actually not needed for these types. */
22398 if (need_gnat_info (cu)
22399 && TYPE_CODE (type) != TYPE_CODE_FUNC
22400 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22401 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22402 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22403 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22404 && !HAVE_GNAT_AUX_INFO (type))
22405 INIT_GNAT_SPECIFIC (type);
22406
3f2f83dd
KB
22407 /* Read DW_AT_allocated and set in type. */
22408 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22409 if (attr_form_is_block (attr))
22410 {
22411 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22412 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22413 }
22414 else if (attr != NULL)
22415 {
22416 complaint (&symfile_complaints,
22417 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22418 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22419 die->offset.sect_off);
22420 }
22421
22422 /* Read DW_AT_associated and set in type. */
22423 attr = dwarf2_attr (die, DW_AT_associated, cu);
22424 if (attr_form_is_block (attr))
22425 {
22426 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22427 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22428 }
22429 else if (attr != NULL)
22430 {
22431 complaint (&symfile_complaints,
22432 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22433 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22434 die->offset.sect_off);
22435 }
22436
3cdcd0ce
JB
22437 /* Read DW_AT_data_location and set in type. */
22438 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22439 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22440 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22441
dee91e82 22442 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22443 {
dee91e82
DE
22444 dwarf2_per_objfile->die_type_hash =
22445 htab_create_alloc_ex (127,
22446 per_cu_offset_and_type_hash,
22447 per_cu_offset_and_type_eq,
22448 NULL,
22449 &objfile->objfile_obstack,
22450 hashtab_obstack_allocate,
22451 dummy_obstack_deallocate);
f792889a 22452 }
1c379e20 22453
dee91e82 22454 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22455 ofs.offset = die->offset;
22456 ofs.type = type;
dee91e82
DE
22457 slot = (struct dwarf2_per_cu_offset_and_type **)
22458 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22459 if (*slot)
22460 complaint (&symfile_complaints,
22461 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22462 die->offset.sect_off);
8d749320
SM
22463 *slot = XOBNEW (&objfile->objfile_obstack,
22464 struct dwarf2_per_cu_offset_and_type);
1c379e20 22465 **slot = ofs;
f792889a 22466 return type;
1c379e20
DJ
22467}
22468
02142a6c
DE
22469/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22470 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22471
22472static struct type *
b64f50a1 22473get_die_type_at_offset (sect_offset offset,
673bfd45 22474 struct dwarf2_per_cu_data *per_cu)
1c379e20 22475{
dee91e82 22476 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22477
dee91e82 22478 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22479 return NULL;
1c379e20 22480
dee91e82 22481 ofs.per_cu = per_cu;
673bfd45 22482 ofs.offset = offset;
9a3c8263
SM
22483 slot = ((struct dwarf2_per_cu_offset_and_type *)
22484 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22485 if (slot)
22486 return slot->type;
22487 else
22488 return NULL;
22489}
22490
02142a6c 22491/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22492 or return NULL if DIE does not have a saved type. */
22493
22494static struct type *
22495get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22496{
22497 return get_die_type_at_offset (die->offset, cu->per_cu);
22498}
22499
10b3939b
DJ
22500/* Add a dependence relationship from CU to REF_PER_CU. */
22501
22502static void
22503dwarf2_add_dependence (struct dwarf2_cu *cu,
22504 struct dwarf2_per_cu_data *ref_per_cu)
22505{
22506 void **slot;
22507
22508 if (cu->dependencies == NULL)
22509 cu->dependencies
22510 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22511 NULL, &cu->comp_unit_obstack,
22512 hashtab_obstack_allocate,
22513 dummy_obstack_deallocate);
22514
22515 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22516 if (*slot == NULL)
22517 *slot = ref_per_cu;
22518}
1c379e20 22519
f504f079
DE
22520/* Subroutine of dwarf2_mark to pass to htab_traverse.
22521 Set the mark field in every compilation unit in the
ae038cb0
DJ
22522 cache that we must keep because we are keeping CU. */
22523
10b3939b
DJ
22524static int
22525dwarf2_mark_helper (void **slot, void *data)
22526{
22527 struct dwarf2_per_cu_data *per_cu;
22528
22529 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22530
22531 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22532 reading of the chain. As such dependencies remain valid it is not much
22533 useful to track and undo them during QUIT cleanups. */
22534 if (per_cu->cu == NULL)
22535 return 1;
22536
10b3939b
DJ
22537 if (per_cu->cu->mark)
22538 return 1;
22539 per_cu->cu->mark = 1;
22540
22541 if (per_cu->cu->dependencies != NULL)
22542 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22543
22544 return 1;
22545}
22546
f504f079
DE
22547/* Set the mark field in CU and in every other compilation unit in the
22548 cache that we must keep because we are keeping CU. */
22549
ae038cb0
DJ
22550static void
22551dwarf2_mark (struct dwarf2_cu *cu)
22552{
22553 if (cu->mark)
22554 return;
22555 cu->mark = 1;
10b3939b
DJ
22556 if (cu->dependencies != NULL)
22557 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22558}
22559
22560static void
22561dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22562{
22563 while (per_cu)
22564 {
22565 per_cu->cu->mark = 0;
22566 per_cu = per_cu->cu->read_in_chain;
22567 }
72bf9492
DJ
22568}
22569
72bf9492
DJ
22570/* Trivial hash function for partial_die_info: the hash value of a DIE
22571 is its offset in .debug_info for this objfile. */
22572
22573static hashval_t
22574partial_die_hash (const void *item)
22575{
9a3c8263
SM
22576 const struct partial_die_info *part_die
22577 = (const struct partial_die_info *) item;
9a619af0 22578
b64f50a1 22579 return part_die->offset.sect_off;
72bf9492
DJ
22580}
22581
22582/* Trivial comparison function for partial_die_info structures: two DIEs
22583 are equal if they have the same offset. */
22584
22585static int
22586partial_die_eq (const void *item_lhs, const void *item_rhs)
22587{
9a3c8263
SM
22588 const struct partial_die_info *part_die_lhs
22589 = (const struct partial_die_info *) item_lhs;
22590 const struct partial_die_info *part_die_rhs
22591 = (const struct partial_die_info *) item_rhs;
9a619af0 22592
b64f50a1 22593 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22594}
22595
b4f54984
DE
22596static struct cmd_list_element *set_dwarf_cmdlist;
22597static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22598
22599static void
b4f54984 22600set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22601{
b4f54984 22602 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22603 gdb_stdout);
ae038cb0
DJ
22604}
22605
22606static void
b4f54984 22607show_dwarf_cmd (char *args, int from_tty)
6e70227d 22608{
b4f54984 22609 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22610}
22611
4bf44c1c 22612/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22613
22614static void
c1bd65d0 22615dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22616{
9a3c8263 22617 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22618 int ix;
8b70b953 22619
626f2d1c
TT
22620 /* Make sure we don't accidentally use dwarf2_per_objfile while
22621 cleaning up. */
22622 dwarf2_per_objfile = NULL;
22623
59b0c7c1
JB
22624 for (ix = 0; ix < data->n_comp_units; ++ix)
22625 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22626
59b0c7c1 22627 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22628 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22629 data->all_type_units[ix]->per_cu.imported_symtabs);
22630 xfree (data->all_type_units);
95554aad 22631
8b70b953 22632 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22633
22634 if (data->dwo_files)
22635 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22636 if (data->dwp_file)
22637 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22638
22639 if (data->dwz_file && data->dwz_file->dwz_bfd)
22640 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22641}
22642
22643\f
ae2de4f8 22644/* The "save gdb-index" command. */
9291a0cd
TT
22645
22646/* The contents of the hash table we create when building the string
22647 table. */
22648struct strtab_entry
22649{
22650 offset_type offset;
22651 const char *str;
22652};
22653
559a7a62
JK
22654/* Hash function for a strtab_entry.
22655
22656 Function is used only during write_hash_table so no index format backward
22657 compatibility is needed. */
b89be57b 22658
9291a0cd
TT
22659static hashval_t
22660hash_strtab_entry (const void *e)
22661{
9a3c8263 22662 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22663 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22664}
22665
22666/* Equality function for a strtab_entry. */
b89be57b 22667
9291a0cd
TT
22668static int
22669eq_strtab_entry (const void *a, const void *b)
22670{
9a3c8263
SM
22671 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22672 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22673 return !strcmp (ea->str, eb->str);
22674}
22675
22676/* Create a strtab_entry hash table. */
b89be57b 22677
9291a0cd
TT
22678static htab_t
22679create_strtab (void)
22680{
22681 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22682 xfree, xcalloc, xfree);
22683}
22684
22685/* Add a string to the constant pool. Return the string's offset in
22686 host order. */
b89be57b 22687
9291a0cd
TT
22688static offset_type
22689add_string (htab_t table, struct obstack *cpool, const char *str)
22690{
22691 void **slot;
22692 struct strtab_entry entry;
22693 struct strtab_entry *result;
22694
22695 entry.str = str;
22696 slot = htab_find_slot (table, &entry, INSERT);
22697 if (*slot)
9a3c8263 22698 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22699 else
22700 {
22701 result = XNEW (struct strtab_entry);
22702 result->offset = obstack_object_size (cpool);
22703 result->str = str;
22704 obstack_grow_str0 (cpool, str);
22705 *slot = result;
22706 }
22707 return result->offset;
22708}
22709
22710/* An entry in the symbol table. */
22711struct symtab_index_entry
22712{
22713 /* The name of the symbol. */
22714 const char *name;
22715 /* The offset of the name in the constant pool. */
22716 offset_type index_offset;
22717 /* A sorted vector of the indices of all the CUs that hold an object
22718 of this name. */
22719 VEC (offset_type) *cu_indices;
22720};
22721
22722/* The symbol table. This is a power-of-2-sized hash table. */
22723struct mapped_symtab
22724{
22725 offset_type n_elements;
22726 offset_type size;
22727 struct symtab_index_entry **data;
22728};
22729
22730/* Hash function for a symtab_index_entry. */
b89be57b 22731
9291a0cd
TT
22732static hashval_t
22733hash_symtab_entry (const void *e)
22734{
9a3c8263
SM
22735 const struct symtab_index_entry *entry
22736 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22737 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22738 sizeof (offset_type) * VEC_length (offset_type,
22739 entry->cu_indices),
22740 0);
22741}
22742
22743/* Equality function for a symtab_index_entry. */
b89be57b 22744
9291a0cd
TT
22745static int
22746eq_symtab_entry (const void *a, const void *b)
22747{
9a3c8263
SM
22748 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22749 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22750 int len = VEC_length (offset_type, ea->cu_indices);
22751 if (len != VEC_length (offset_type, eb->cu_indices))
22752 return 0;
22753 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22754 VEC_address (offset_type, eb->cu_indices),
22755 sizeof (offset_type) * len);
22756}
22757
22758/* Destroy a symtab_index_entry. */
b89be57b 22759
9291a0cd
TT
22760static void
22761delete_symtab_entry (void *p)
22762{
9a3c8263 22763 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22764 VEC_free (offset_type, entry->cu_indices);
22765 xfree (entry);
22766}
22767
22768/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22769
9291a0cd 22770static htab_t
3876f04e 22771create_symbol_hash_table (void)
9291a0cd
TT
22772{
22773 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22774 delete_symtab_entry, xcalloc, xfree);
22775}
22776
22777/* Create a new mapped symtab object. */
b89be57b 22778
9291a0cd
TT
22779static struct mapped_symtab *
22780create_mapped_symtab (void)
22781{
22782 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22783 symtab->n_elements = 0;
22784 symtab->size = 1024;
22785 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22786 return symtab;
22787}
22788
22789/* Destroy a mapped_symtab. */
b89be57b 22790
9291a0cd
TT
22791static void
22792cleanup_mapped_symtab (void *p)
22793{
9a3c8263 22794 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22795 /* The contents of the array are freed when the other hash table is
22796 destroyed. */
22797 xfree (symtab->data);
22798 xfree (symtab);
22799}
22800
22801/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22802 the slot.
22803
22804 Function is used only during write_hash_table so no index format backward
22805 compatibility is needed. */
b89be57b 22806
9291a0cd
TT
22807static struct symtab_index_entry **
22808find_slot (struct mapped_symtab *symtab, const char *name)
22809{
559a7a62 22810 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22811
22812 index = hash & (symtab->size - 1);
22813 step = ((hash * 17) & (symtab->size - 1)) | 1;
22814
22815 for (;;)
22816 {
22817 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22818 return &symtab->data[index];
22819 index = (index + step) & (symtab->size - 1);
22820 }
22821}
22822
22823/* Expand SYMTAB's hash table. */
b89be57b 22824
9291a0cd
TT
22825static void
22826hash_expand (struct mapped_symtab *symtab)
22827{
22828 offset_type old_size = symtab->size;
22829 offset_type i;
22830 struct symtab_index_entry **old_entries = symtab->data;
22831
22832 symtab->size *= 2;
22833 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22834
22835 for (i = 0; i < old_size; ++i)
22836 {
22837 if (old_entries[i])
22838 {
22839 struct symtab_index_entry **slot = find_slot (symtab,
22840 old_entries[i]->name);
22841 *slot = old_entries[i];
22842 }
22843 }
22844
22845 xfree (old_entries);
22846}
22847
156942c7
DE
22848/* Add an entry to SYMTAB. NAME is the name of the symbol.
22849 CU_INDEX is the index of the CU in which the symbol appears.
22850 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22851
9291a0cd
TT
22852static void
22853add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22854 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22855 offset_type cu_index)
22856{
22857 struct symtab_index_entry **slot;
156942c7 22858 offset_type cu_index_and_attrs;
9291a0cd
TT
22859
22860 ++symtab->n_elements;
22861 if (4 * symtab->n_elements / 3 >= symtab->size)
22862 hash_expand (symtab);
22863
22864 slot = find_slot (symtab, name);
22865 if (!*slot)
22866 {
22867 *slot = XNEW (struct symtab_index_entry);
22868 (*slot)->name = name;
156942c7 22869 /* index_offset is set later. */
9291a0cd
TT
22870 (*slot)->cu_indices = NULL;
22871 }
156942c7
DE
22872
22873 cu_index_and_attrs = 0;
22874 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22875 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22876 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22877
22878 /* We don't want to record an index value twice as we want to avoid the
22879 duplication.
22880 We process all global symbols and then all static symbols
22881 (which would allow us to avoid the duplication by only having to check
22882 the last entry pushed), but a symbol could have multiple kinds in one CU.
22883 To keep things simple we don't worry about the duplication here and
22884 sort and uniqufy the list after we've processed all symbols. */
22885 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22886}
22887
22888/* qsort helper routine for uniquify_cu_indices. */
22889
22890static int
22891offset_type_compare (const void *ap, const void *bp)
22892{
22893 offset_type a = *(offset_type *) ap;
22894 offset_type b = *(offset_type *) bp;
22895
22896 return (a > b) - (b > a);
22897}
22898
22899/* Sort and remove duplicates of all symbols' cu_indices lists. */
22900
22901static void
22902uniquify_cu_indices (struct mapped_symtab *symtab)
22903{
22904 int i;
22905
22906 for (i = 0; i < symtab->size; ++i)
22907 {
22908 struct symtab_index_entry *entry = symtab->data[i];
22909
22910 if (entry
22911 && entry->cu_indices != NULL)
22912 {
22913 unsigned int next_to_insert, next_to_check;
22914 offset_type last_value;
22915
22916 qsort (VEC_address (offset_type, entry->cu_indices),
22917 VEC_length (offset_type, entry->cu_indices),
22918 sizeof (offset_type), offset_type_compare);
22919
22920 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22921 next_to_insert = 1;
22922 for (next_to_check = 1;
22923 next_to_check < VEC_length (offset_type, entry->cu_indices);
22924 ++next_to_check)
22925 {
22926 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22927 != last_value)
22928 {
22929 last_value = VEC_index (offset_type, entry->cu_indices,
22930 next_to_check);
22931 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22932 last_value);
22933 ++next_to_insert;
22934 }
22935 }
22936 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22937 }
22938 }
9291a0cd
TT
22939}
22940
22941/* Add a vector of indices to the constant pool. */
b89be57b 22942
9291a0cd 22943static offset_type
3876f04e 22944add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22945 struct symtab_index_entry *entry)
22946{
22947 void **slot;
22948
3876f04e 22949 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22950 if (!*slot)
22951 {
22952 offset_type len = VEC_length (offset_type, entry->cu_indices);
22953 offset_type val = MAYBE_SWAP (len);
22954 offset_type iter;
22955 int i;
22956
22957 *slot = entry;
22958 entry->index_offset = obstack_object_size (cpool);
22959
22960 obstack_grow (cpool, &val, sizeof (val));
22961 for (i = 0;
22962 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22963 ++i)
22964 {
22965 val = MAYBE_SWAP (iter);
22966 obstack_grow (cpool, &val, sizeof (val));
22967 }
22968 }
22969 else
22970 {
9a3c8263
SM
22971 struct symtab_index_entry *old_entry
22972 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22973 entry->index_offset = old_entry->index_offset;
22974 entry = old_entry;
22975 }
22976 return entry->index_offset;
22977}
22978
22979/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22980 constant pool entries going into the obstack CPOOL. */
b89be57b 22981
9291a0cd
TT
22982static void
22983write_hash_table (struct mapped_symtab *symtab,
22984 struct obstack *output, struct obstack *cpool)
22985{
22986 offset_type i;
3876f04e 22987 htab_t symbol_hash_table;
9291a0cd
TT
22988 htab_t str_table;
22989
3876f04e 22990 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22991 str_table = create_strtab ();
3876f04e 22992
9291a0cd
TT
22993 /* We add all the index vectors to the constant pool first, to
22994 ensure alignment is ok. */
22995 for (i = 0; i < symtab->size; ++i)
22996 {
22997 if (symtab->data[i])
3876f04e 22998 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22999 }
23000
23001 /* Now write out the hash table. */
23002 for (i = 0; i < symtab->size; ++i)
23003 {
23004 offset_type str_off, vec_off;
23005
23006 if (symtab->data[i])
23007 {
23008 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23009 vec_off = symtab->data[i]->index_offset;
23010 }
23011 else
23012 {
23013 /* While 0 is a valid constant pool index, it is not valid
23014 to have 0 for both offsets. */
23015 str_off = 0;
23016 vec_off = 0;
23017 }
23018
23019 str_off = MAYBE_SWAP (str_off);
23020 vec_off = MAYBE_SWAP (vec_off);
23021
23022 obstack_grow (output, &str_off, sizeof (str_off));
23023 obstack_grow (output, &vec_off, sizeof (vec_off));
23024 }
23025
23026 htab_delete (str_table);
3876f04e 23027 htab_delete (symbol_hash_table);
9291a0cd
TT
23028}
23029
0a5429f6
DE
23030/* Struct to map psymtab to CU index in the index file. */
23031struct psymtab_cu_index_map
23032{
23033 struct partial_symtab *psymtab;
23034 unsigned int cu_index;
23035};
23036
23037static hashval_t
23038hash_psymtab_cu_index (const void *item)
23039{
9a3c8263
SM
23040 const struct psymtab_cu_index_map *map
23041 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
23042
23043 return htab_hash_pointer (map->psymtab);
23044}
23045
23046static int
23047eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23048{
9a3c8263
SM
23049 const struct psymtab_cu_index_map *lhs
23050 = (const struct psymtab_cu_index_map *) item_lhs;
23051 const struct psymtab_cu_index_map *rhs
23052 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23053
23054 return lhs->psymtab == rhs->psymtab;
23055}
23056
23057/* Helper struct for building the address table. */
23058struct addrmap_index_data
23059{
23060 struct objfile *objfile;
23061 struct obstack *addr_obstack;
23062 htab_t cu_index_htab;
23063
23064 /* Non-zero if the previous_* fields are valid.
23065 We can't write an entry until we see the next entry (since it is only then
23066 that we know the end of the entry). */
23067 int previous_valid;
23068 /* Index of the CU in the table of all CUs in the index file. */
23069 unsigned int previous_cu_index;
0963b4bd 23070 /* Start address of the CU. */
0a5429f6
DE
23071 CORE_ADDR previous_cu_start;
23072};
23073
23074/* Write an address entry to OBSTACK. */
b89be57b 23075
9291a0cd 23076static void
0a5429f6
DE
23077add_address_entry (struct objfile *objfile, struct obstack *obstack,
23078 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23079{
0a5429f6 23080 offset_type cu_index_to_write;
948f8e3d 23081 gdb_byte addr[8];
9291a0cd
TT
23082 CORE_ADDR baseaddr;
23083
23084 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23085
0a5429f6
DE
23086 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23087 obstack_grow (obstack, addr, 8);
23088 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23089 obstack_grow (obstack, addr, 8);
23090 cu_index_to_write = MAYBE_SWAP (cu_index);
23091 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23092}
23093
23094/* Worker function for traversing an addrmap to build the address table. */
23095
23096static int
23097add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23098{
9a3c8263
SM
23099 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23100 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23101
23102 if (data->previous_valid)
23103 add_address_entry (data->objfile, data->addr_obstack,
23104 data->previous_cu_start, start_addr,
23105 data->previous_cu_index);
23106
23107 data->previous_cu_start = start_addr;
23108 if (pst != NULL)
23109 {
23110 struct psymtab_cu_index_map find_map, *map;
23111 find_map.psymtab = pst;
9a3c8263
SM
23112 map = ((struct psymtab_cu_index_map *)
23113 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23114 gdb_assert (map != NULL);
23115 data->previous_cu_index = map->cu_index;
23116 data->previous_valid = 1;
23117 }
23118 else
23119 data->previous_valid = 0;
23120
23121 return 0;
23122}
23123
23124/* Write OBJFILE's address map to OBSTACK.
23125 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23126 in the index file. */
23127
23128static void
23129write_address_map (struct objfile *objfile, struct obstack *obstack,
23130 htab_t cu_index_htab)
23131{
23132 struct addrmap_index_data addrmap_index_data;
23133
23134 /* When writing the address table, we have to cope with the fact that
23135 the addrmap iterator only provides the start of a region; we have to
23136 wait until the next invocation to get the start of the next region. */
23137
23138 addrmap_index_data.objfile = objfile;
23139 addrmap_index_data.addr_obstack = obstack;
23140 addrmap_index_data.cu_index_htab = cu_index_htab;
23141 addrmap_index_data.previous_valid = 0;
23142
23143 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23144 &addrmap_index_data);
23145
23146 /* It's highly unlikely the last entry (end address = 0xff...ff)
23147 is valid, but we should still handle it.
23148 The end address is recorded as the start of the next region, but that
23149 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23150 anyway. */
23151 if (addrmap_index_data.previous_valid)
23152 add_address_entry (objfile, obstack,
23153 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23154 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23155}
23156
156942c7
DE
23157/* Return the symbol kind of PSYM. */
23158
23159static gdb_index_symbol_kind
23160symbol_kind (struct partial_symbol *psym)
23161{
23162 domain_enum domain = PSYMBOL_DOMAIN (psym);
23163 enum address_class aclass = PSYMBOL_CLASS (psym);
23164
23165 switch (domain)
23166 {
23167 case VAR_DOMAIN:
23168 switch (aclass)
23169 {
23170 case LOC_BLOCK:
23171 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23172 case LOC_TYPEDEF:
23173 return GDB_INDEX_SYMBOL_KIND_TYPE;
23174 case LOC_COMPUTED:
23175 case LOC_CONST_BYTES:
23176 case LOC_OPTIMIZED_OUT:
23177 case LOC_STATIC:
23178 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23179 case LOC_CONST:
23180 /* Note: It's currently impossible to recognize psyms as enum values
23181 short of reading the type info. For now punt. */
23182 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23183 default:
23184 /* There are other LOC_FOO values that one might want to classify
23185 as variables, but dwarf2read.c doesn't currently use them. */
23186 return GDB_INDEX_SYMBOL_KIND_OTHER;
23187 }
23188 case STRUCT_DOMAIN:
23189 return GDB_INDEX_SYMBOL_KIND_TYPE;
23190 default:
23191 return GDB_INDEX_SYMBOL_KIND_OTHER;
23192 }
23193}
23194
9291a0cd 23195/* Add a list of partial symbols to SYMTAB. */
b89be57b 23196
9291a0cd
TT
23197static void
23198write_psymbols (struct mapped_symtab *symtab,
987d643c 23199 htab_t psyms_seen,
9291a0cd
TT
23200 struct partial_symbol **psymp,
23201 int count,
987d643c
TT
23202 offset_type cu_index,
23203 int is_static)
9291a0cd
TT
23204{
23205 for (; count-- > 0; ++psymp)
23206 {
156942c7
DE
23207 struct partial_symbol *psym = *psymp;
23208 void **slot;
987d643c 23209
156942c7 23210 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23211 error (_("Ada is not currently supported by the index"));
987d643c 23212
987d643c 23213 /* Only add a given psymbol once. */
156942c7 23214 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23215 if (!*slot)
23216 {
156942c7
DE
23217 gdb_index_symbol_kind kind = symbol_kind (psym);
23218
23219 *slot = psym;
23220 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23221 is_static, kind, cu_index);
987d643c 23222 }
9291a0cd
TT
23223 }
23224}
23225
23226/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23227 exception if there is an error. */
b89be57b 23228
9291a0cd
TT
23229static void
23230write_obstack (FILE *file, struct obstack *obstack)
23231{
23232 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23233 file)
23234 != obstack_object_size (obstack))
23235 error (_("couldn't data write to file"));
23236}
23237
23238/* Unlink a file if the argument is not NULL. */
b89be57b 23239
9291a0cd
TT
23240static void
23241unlink_if_set (void *p)
23242{
9a3c8263 23243 char **filename = (char **) p;
9291a0cd
TT
23244 if (*filename)
23245 unlink (*filename);
23246}
23247
1fd400ff
TT
23248/* A helper struct used when iterating over debug_types. */
23249struct signatured_type_index_data
23250{
23251 struct objfile *objfile;
23252 struct mapped_symtab *symtab;
23253 struct obstack *types_list;
987d643c 23254 htab_t psyms_seen;
1fd400ff
TT
23255 int cu_index;
23256};
23257
23258/* A helper function that writes a single signatured_type to an
23259 obstack. */
b89be57b 23260
1fd400ff
TT
23261static int
23262write_one_signatured_type (void **slot, void *d)
23263{
9a3c8263
SM
23264 struct signatured_type_index_data *info
23265 = (struct signatured_type_index_data *) d;
1fd400ff 23266 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23267 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23268 gdb_byte val[8];
23269
23270 write_psymbols (info->symtab,
987d643c 23271 info->psyms_seen,
3e43a32a
MS
23272 info->objfile->global_psymbols.list
23273 + psymtab->globals_offset,
987d643c
TT
23274 psymtab->n_global_syms, info->cu_index,
23275 0);
1fd400ff 23276 write_psymbols (info->symtab,
987d643c 23277 info->psyms_seen,
3e43a32a
MS
23278 info->objfile->static_psymbols.list
23279 + psymtab->statics_offset,
987d643c
TT
23280 psymtab->n_static_syms, info->cu_index,
23281 1);
1fd400ff 23282
b64f50a1
JK
23283 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23284 entry->per_cu.offset.sect_off);
1fd400ff 23285 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23286 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23287 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23288 obstack_grow (info->types_list, val, 8);
23289 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23290 obstack_grow (info->types_list, val, 8);
23291
23292 ++info->cu_index;
23293
23294 return 1;
23295}
23296
95554aad
TT
23297/* Recurse into all "included" dependencies and write their symbols as
23298 if they appeared in this psymtab. */
23299
23300static void
23301recursively_write_psymbols (struct objfile *objfile,
23302 struct partial_symtab *psymtab,
23303 struct mapped_symtab *symtab,
23304 htab_t psyms_seen,
23305 offset_type cu_index)
23306{
23307 int i;
23308
23309 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23310 if (psymtab->dependencies[i]->user != NULL)
23311 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23312 symtab, psyms_seen, cu_index);
23313
23314 write_psymbols (symtab,
23315 psyms_seen,
23316 objfile->global_psymbols.list + psymtab->globals_offset,
23317 psymtab->n_global_syms, cu_index,
23318 0);
23319 write_psymbols (symtab,
23320 psyms_seen,
23321 objfile->static_psymbols.list + psymtab->statics_offset,
23322 psymtab->n_static_syms, cu_index,
23323 1);
23324}
23325
9291a0cd 23326/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23327
9291a0cd
TT
23328static void
23329write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23330{
23331 struct cleanup *cleanup;
23332 char *filename, *cleanup_filename;
1fd400ff
TT
23333 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23334 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23335 int i;
23336 FILE *out_file;
23337 struct mapped_symtab *symtab;
23338 offset_type val, size_of_contents, total_len;
23339 struct stat st;
987d643c 23340 htab_t psyms_seen;
0a5429f6
DE
23341 htab_t cu_index_htab;
23342 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23343
9291a0cd
TT
23344 if (dwarf2_per_objfile->using_index)
23345 error (_("Cannot use an index to create the index"));
23346
8b70b953
TT
23347 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23348 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23349
260b681b
DE
23350 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23351 return;
23352
4262abfb
JK
23353 if (stat (objfile_name (objfile), &st) < 0)
23354 perror_with_name (objfile_name (objfile));
9291a0cd 23355
4262abfb 23356 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23357 INDEX_SUFFIX, (char *) NULL);
23358 cleanup = make_cleanup (xfree, filename);
23359
614c279d 23360 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23361 if (!out_file)
23362 error (_("Can't open `%s' for writing"), filename);
23363
23364 cleanup_filename = filename;
23365 make_cleanup (unlink_if_set, &cleanup_filename);
23366
23367 symtab = create_mapped_symtab ();
23368 make_cleanup (cleanup_mapped_symtab, symtab);
23369
23370 obstack_init (&addr_obstack);
23371 make_cleanup_obstack_free (&addr_obstack);
23372
23373 obstack_init (&cu_list);
23374 make_cleanup_obstack_free (&cu_list);
23375
1fd400ff
TT
23376 obstack_init (&types_cu_list);
23377 make_cleanup_obstack_free (&types_cu_list);
23378
987d643c
TT
23379 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23380 NULL, xcalloc, xfree);
96408a79 23381 make_cleanup_htab_delete (psyms_seen);
987d643c 23382
0a5429f6
DE
23383 /* While we're scanning CU's create a table that maps a psymtab pointer
23384 (which is what addrmap records) to its index (which is what is recorded
23385 in the index file). This will later be needed to write the address
23386 table. */
23387 cu_index_htab = htab_create_alloc (100,
23388 hash_psymtab_cu_index,
23389 eq_psymtab_cu_index,
23390 NULL, xcalloc, xfree);
96408a79 23391 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23392 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23393 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23394 make_cleanup (xfree, psymtab_cu_index_map);
23395
23396 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23397 work here. Also, the debug_types entries do not appear in
23398 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23399 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23400 {
3e43a32a
MS
23401 struct dwarf2_per_cu_data *per_cu
23402 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23403 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23404 gdb_byte val[8];
0a5429f6
DE
23405 struct psymtab_cu_index_map *map;
23406 void **slot;
9291a0cd 23407
92fac807
JK
23408 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23409 It may be referenced from a local scope but in such case it does not
23410 need to be present in .gdb_index. */
23411 if (psymtab == NULL)
23412 continue;
23413
95554aad
TT
23414 if (psymtab->user == NULL)
23415 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23416
0a5429f6
DE
23417 map = &psymtab_cu_index_map[i];
23418 map->psymtab = psymtab;
23419 map->cu_index = i;
23420 slot = htab_find_slot (cu_index_htab, map, INSERT);
23421 gdb_assert (slot != NULL);
23422 gdb_assert (*slot == NULL);
23423 *slot = map;
9291a0cd 23424
b64f50a1
JK
23425 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23426 per_cu->offset.sect_off);
9291a0cd 23427 obstack_grow (&cu_list, val, 8);
e254ef6a 23428 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23429 obstack_grow (&cu_list, val, 8);
23430 }
23431
0a5429f6
DE
23432 /* Dump the address map. */
23433 write_address_map (objfile, &addr_obstack, cu_index_htab);
23434
1fd400ff
TT
23435 /* Write out the .debug_type entries, if any. */
23436 if (dwarf2_per_objfile->signatured_types)
23437 {
23438 struct signatured_type_index_data sig_data;
23439
23440 sig_data.objfile = objfile;
23441 sig_data.symtab = symtab;
23442 sig_data.types_list = &types_cu_list;
987d643c 23443 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23444 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23445 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23446 write_one_signatured_type, &sig_data);
23447 }
23448
156942c7
DE
23449 /* Now that we've processed all symbols we can shrink their cu_indices
23450 lists. */
23451 uniquify_cu_indices (symtab);
23452
9291a0cd
TT
23453 obstack_init (&constant_pool);
23454 make_cleanup_obstack_free (&constant_pool);
23455 obstack_init (&symtab_obstack);
23456 make_cleanup_obstack_free (&symtab_obstack);
23457 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23458
23459 obstack_init (&contents);
23460 make_cleanup_obstack_free (&contents);
1fd400ff 23461 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23462 total_len = size_of_contents;
23463
23464 /* The version number. */
796a7ff8 23465 val = MAYBE_SWAP (8);
9291a0cd
TT
23466 obstack_grow (&contents, &val, sizeof (val));
23467
23468 /* The offset of the CU list from the start of the file. */
23469 val = MAYBE_SWAP (total_len);
23470 obstack_grow (&contents, &val, sizeof (val));
23471 total_len += obstack_object_size (&cu_list);
23472
1fd400ff
TT
23473 /* The offset of the types CU list from the start of the file. */
23474 val = MAYBE_SWAP (total_len);
23475 obstack_grow (&contents, &val, sizeof (val));
23476 total_len += obstack_object_size (&types_cu_list);
23477
9291a0cd
TT
23478 /* The offset of the address table from the start of the file. */
23479 val = MAYBE_SWAP (total_len);
23480 obstack_grow (&contents, &val, sizeof (val));
23481 total_len += obstack_object_size (&addr_obstack);
23482
23483 /* The offset of the symbol table from the start of the file. */
23484 val = MAYBE_SWAP (total_len);
23485 obstack_grow (&contents, &val, sizeof (val));
23486 total_len += obstack_object_size (&symtab_obstack);
23487
23488 /* The offset of the constant pool from the start of the file. */
23489 val = MAYBE_SWAP (total_len);
23490 obstack_grow (&contents, &val, sizeof (val));
23491 total_len += obstack_object_size (&constant_pool);
23492
23493 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23494
23495 write_obstack (out_file, &contents);
23496 write_obstack (out_file, &cu_list);
1fd400ff 23497 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23498 write_obstack (out_file, &addr_obstack);
23499 write_obstack (out_file, &symtab_obstack);
23500 write_obstack (out_file, &constant_pool);
23501
23502 fclose (out_file);
23503
23504 /* We want to keep the file, so we set cleanup_filename to NULL
23505 here. See unlink_if_set. */
23506 cleanup_filename = NULL;
23507
23508 do_cleanups (cleanup);
23509}
23510
90476074
TT
23511/* Implementation of the `save gdb-index' command.
23512
23513 Note that the file format used by this command is documented in the
23514 GDB manual. Any changes here must be documented there. */
11570e71 23515
9291a0cd
TT
23516static void
23517save_gdb_index_command (char *arg, int from_tty)
23518{
23519 struct objfile *objfile;
23520
23521 if (!arg || !*arg)
96d19272 23522 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23523
23524 ALL_OBJFILES (objfile)
23525 {
23526 struct stat st;
23527
23528 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23529 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23530 continue;
23531
9a3c8263
SM
23532 dwarf2_per_objfile
23533 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23534 dwarf2_objfile_data_key);
9291a0cd
TT
23535 if (dwarf2_per_objfile)
23536 {
9291a0cd 23537
492d29ea 23538 TRY
9291a0cd
TT
23539 {
23540 write_psymtabs_to_index (objfile, arg);
23541 }
492d29ea
PA
23542 CATCH (except, RETURN_MASK_ERROR)
23543 {
23544 exception_fprintf (gdb_stderr, except,
23545 _("Error while writing index for `%s': "),
23546 objfile_name (objfile));
23547 }
23548 END_CATCH
9291a0cd
TT
23549 }
23550 }
dce234bc
PP
23551}
23552
9291a0cd
TT
23553\f
23554
b4f54984 23555int dwarf_always_disassemble;
9eae7c52
TT
23556
23557static void
b4f54984
DE
23558show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23559 struct cmd_list_element *c, const char *value)
9eae7c52 23560{
3e43a32a
MS
23561 fprintf_filtered (file,
23562 _("Whether to always disassemble "
23563 "DWARF expressions is %s.\n"),
9eae7c52
TT
23564 value);
23565}
23566
900e11f9
JK
23567static void
23568show_check_physname (struct ui_file *file, int from_tty,
23569 struct cmd_list_element *c, const char *value)
23570{
23571 fprintf_filtered (file,
23572 _("Whether to check \"physname\" is %s.\n"),
23573 value);
23574}
23575
6502dd73
DJ
23576void _initialize_dwarf2_read (void);
23577
23578void
23579_initialize_dwarf2_read (void)
23580{
96d19272
JK
23581 struct cmd_list_element *c;
23582
dce234bc 23583 dwarf2_objfile_data_key
c1bd65d0 23584 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23585
b4f54984
DE
23586 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23587Set DWARF specific variables.\n\
23588Configure DWARF variables such as the cache size"),
23589 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23590 0/*allow-unknown*/, &maintenance_set_cmdlist);
23591
b4f54984
DE
23592 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23593Show DWARF specific variables\n\
23594Show DWARF variables such as the cache size"),
23595 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23596 0/*allow-unknown*/, &maintenance_show_cmdlist);
23597
23598 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23599 &dwarf_max_cache_age, _("\
23600Set the upper bound on the age of cached DWARF compilation units."), _("\
23601Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23602A higher limit means that cached compilation units will be stored\n\
23603in memory longer, and more total memory will be used. Zero disables\n\
23604caching, which can slow down startup."),
2c5b56ce 23605 NULL,
b4f54984
DE
23606 show_dwarf_max_cache_age,
23607 &set_dwarf_cmdlist,
23608 &show_dwarf_cmdlist);
d97bc12b 23609
9eae7c52 23610 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23611 &dwarf_always_disassemble, _("\
9eae7c52
TT
23612Set whether `info address' always disassembles DWARF expressions."), _("\
23613Show whether `info address' always disassembles DWARF expressions."), _("\
23614When enabled, DWARF expressions are always printed in an assembly-like\n\
23615syntax. When disabled, expressions will be printed in a more\n\
23616conversational style, when possible."),
23617 NULL,
b4f54984
DE
23618 show_dwarf_always_disassemble,
23619 &set_dwarf_cmdlist,
23620 &show_dwarf_cmdlist);
23621
23622 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23623Set debugging of the DWARF reader."), _("\
23624Show debugging of the DWARF reader."), _("\
23625When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23626reading and symtab expansion. A value of 1 (one) provides basic\n\
23627information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23628 NULL,
23629 NULL,
23630 &setdebuglist, &showdebuglist);
23631
b4f54984
DE
23632 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23633Set debugging of the DWARF DIE reader."), _("\
23634Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23635When enabled (non-zero), DIEs are dumped after they are read in.\n\
23636The value is the maximum depth to print."),
ccce17b0
YQ
23637 NULL,
23638 NULL,
23639 &setdebuglist, &showdebuglist);
9291a0cd 23640
27e0867f
DE
23641 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23642Set debugging of the dwarf line reader."), _("\
23643Show debugging of the dwarf line reader."), _("\
23644When enabled (non-zero), line number entries are dumped as they are read in.\n\
23645A value of 1 (one) provides basic information.\n\
23646A value greater than 1 provides more verbose information."),
23647 NULL,
23648 NULL,
23649 &setdebuglist, &showdebuglist);
23650
900e11f9
JK
23651 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23652Set cross-checking of \"physname\" code against demangler."), _("\
23653Show cross-checking of \"physname\" code against demangler."), _("\
23654When enabled, GDB's internal \"physname\" code is checked against\n\
23655the demangler."),
23656 NULL, show_check_physname,
23657 &setdebuglist, &showdebuglist);
23658
e615022a
DE
23659 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23660 no_class, &use_deprecated_index_sections, _("\
23661Set whether to use deprecated gdb_index sections."), _("\
23662Show whether to use deprecated gdb_index sections."), _("\
23663When enabled, deprecated .gdb_index sections are used anyway.\n\
23664Normally they are ignored either because of a missing feature or\n\
23665performance issue.\n\
23666Warning: This option must be enabled before gdb reads the file."),
23667 NULL,
23668 NULL,
23669 &setlist, &showlist);
23670
96d19272 23671 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23672 _("\
fc1a9d6e 23673Save a gdb-index file.\n\
11570e71 23674Usage: save gdb-index DIRECTORY"),
96d19272
JK
23675 &save_cmdlist);
23676 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23677
23678 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23679 &dwarf2_locexpr_funcs);
23680 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23681 &dwarf2_loclist_funcs);
23682
23683 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23684 &dwarf2_block_frame_base_locexpr_funcs);
23685 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23686 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23687}
This page took 5.411152 seconds and 4 git commands to generate.