Handle copy relocations
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
42a4f53d 3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c 31#include "defs.h"
4de283e4 32#include "dwarf2read.h"
d55e5aa6
TT
33#include "dwarf-index-cache.h"
34#include "dwarf-index-common.h"
4de283e4
TT
35#include "bfd.h"
36#include "elf-bfd.h"
37#include "symtab.h"
38#include "gdbtypes.h"
39#include "objfiles.h"
d55e5aa6 40#include "dwarf2.h"
4de283e4
TT
41#include "buildsym.h"
42#include "demangle.h"
43#include "gdb-demangle.h"
44#include "expression.h"
45#include "filenames.h" /* for DOSish file names */
46#include "macrotab.h"
47#include "language.h"
48#include "complaints.h"
d55e5aa6
TT
49#include "dwarf2expr.h"
50#include "dwarf2loc.h"
4de283e4
TT
51#include "cp-support.h"
52#include "hashtab.h"
53#include "command.h"
d55e5aa6 54#include "gdbcmd.h"
4de283e4
TT
55#include "block.h"
56#include "addrmap.h"
57#include "typeprint.h"
58#include "psympriv.h"
59#include <sys/stat.h>
60#include "completer.h"
268a13a5 61#include "gdbsupport/vec.h"
4de283e4 62#include "c-lang.h"
d55e5aa6 63#include "go-lang.h"
4de283e4
TT
64#include "valprint.h"
65#include "gdbcore.h" /* for gnutarget */
66#include "gdb/gdb-index.h"
67#include <ctype.h>
68#include "gdb_bfd.h"
69#include "f-lang.h"
70#include "source.h"
268a13a5 71#include "gdbsupport/filestuff.h"
4de283e4 72#include "build-id.h"
d55e5aa6 73#include "namespace.h"
268a13a5
TT
74#include "gdbsupport/gdb_unlinker.h"
75#include "gdbsupport/function-view.h"
76#include "gdbsupport/gdb_optional.h"
77#include "gdbsupport/underlying.h"
78#include "gdbsupport/byte-vector.h"
79#include "gdbsupport/hash_enum.h"
4de283e4 80#include "filename-seen-cache.h"
b32b108a 81#include "producer.h"
4de283e4
TT
82#include <fcntl.h>
83#include <sys/types.h>
84#include <algorithm>
85#include <unordered_set>
86#include <unordered_map>
268a13a5 87#include "gdbsupport/selftest.h"
4de283e4
TT
88#include <cmath>
89#include <set>
90#include <forward_list>
c9317f21 91#include "rust-lang.h"
268a13a5 92#include "gdbsupport/pathstuff.h"
437afbb8 93
73be47f5
DE
94/* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
b4f54984
DE
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97static unsigned int dwarf_read_debug = 0;
45cfd468 98
d97bc12b 99/* When non-zero, dump DIEs after they are read in. */
b4f54984 100static unsigned int dwarf_die_debug = 0;
d97bc12b 101
27e0867f
DE
102/* When non-zero, dump line number entries as they are read in. */
103static unsigned int dwarf_line_debug = 0;
104
491144b5
CB
105/* When true, cross-check physname against demangler. */
106static bool check_physname = false;
900e11f9 107
491144b5
CB
108/* When true, do not reject deprecated .gdb_index sections. */
109static bool use_deprecated_index_sections = false;
481860b3 110
5bfd760d 111static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
6502dd73 112
f1e6e072
TT
113/* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115static int dwarf2_locexpr_index;
116static int dwarf2_loclist_index;
117static int dwarf2_locexpr_block_index;
118static int dwarf2_loclist_block_index;
119
3f563c84
PA
120/* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133struct name_component
134{
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143};
144
44ed8f3e
PA
145/* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148struct mapped_index_base
149{
22ca247e
TT
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
44ed8f3e
PA
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
3b00ef10
TT
182 find_name_components_bounds (const lookup_name_info &ln_no_params,
183 enum language lang) const;
44ed8f3e
PA
184
185 /* Prevent deleting/destroying via a base class pointer. */
186protected:
187 ~mapped_index_base() = default;
188};
189
9291a0cd
TT
190/* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
fc898b42 192struct mapped_index final : public mapped_index_base
9291a0cd 193{
f00a2de2
PA
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
559a7a62 201 /* Index data format version. */
3063847f 202 int version = 0;
559a7a62 203
f00a2de2
PA
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
b11b1f88 206
3876f04e 207 /* The symbol table, implemented as a hash table. */
f00a2de2 208 gdb::array_view<symbol_table_slot> symbol_table;
b11b1f88 209
9291a0cd 210 /* A pointer to the constant pool. */
3063847f 211 const char *constant_pool = nullptr;
3f563c84 212
44ed8f3e
PA
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
9ab08412 216 return bucket.name == 0 && bucket.vec == 0;
44ed8f3e 217 }
5c58de74 218
3f563c84
PA
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
44ed8f3e 221 const char *symbol_name_at (offset_type idx) const override
f00a2de2 222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
5c58de74 223
44ed8f3e
PA
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
9291a0cd
TT
226};
227
927aa2e7
JK
228/* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
fc898b42 230struct mapped_debug_names final : public mapped_index_base
927aa2e7 231{
ed2dc618
SM
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
927aa2e7
JK
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
44ed8f3e
PA
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
927aa2e7
JK
278};
279
cd4fb1b2 280/* See dwarf2read.h. */
ed2dc618 281
cd4fb1b2 282dwarf2_per_objfile *
ed2dc618
SM
283get_dwarf2_per_objfile (struct objfile *objfile)
284{
5bfd760d 285 return dwarf2_objfile_data_key.get (objfile);
ed2dc618 286}
c906108c 287
251d32d9 288/* Default names of the debugging sections. */
c906108c 289
233a11ab
CS
290/* Note that if the debugging section has been compressed, it might
291 have a name like .zdebug_info. */
292
9cdd5dbd
DE
293static const struct dwarf2_debug_sections dwarf2_elf_names =
294{
251d32d9
TG
295 { ".debug_info", ".zdebug_info" },
296 { ".debug_abbrev", ".zdebug_abbrev" },
297 { ".debug_line", ".zdebug_line" },
298 { ".debug_loc", ".zdebug_loc" },
43988095 299 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 300 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 301 { ".debug_macro", ".zdebug_macro" },
251d32d9 302 { ".debug_str", ".zdebug_str" },
43988095 303 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 304 { ".debug_ranges", ".zdebug_ranges" },
43988095 305 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 306 { ".debug_types", ".zdebug_types" },
3019eac3 307 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
308 { ".debug_frame", ".zdebug_frame" },
309 { ".eh_frame", NULL },
24d3216f 310 { ".gdb_index", ".zgdb_index" },
927aa2e7
JK
311 { ".debug_names", ".zdebug_names" },
312 { ".debug_aranges", ".zdebug_aranges" },
24d3216f 313 23
251d32d9 314};
c906108c 315
80626a55 316/* List of DWO/DWP sections. */
3019eac3 317
80626a55 318static const struct dwop_section_names
3019eac3
DE
319{
320 struct dwarf2_section_names abbrev_dwo;
321 struct dwarf2_section_names info_dwo;
322 struct dwarf2_section_names line_dwo;
323 struct dwarf2_section_names loc_dwo;
43988095 324 struct dwarf2_section_names loclists_dwo;
09262596
DE
325 struct dwarf2_section_names macinfo_dwo;
326 struct dwarf2_section_names macro_dwo;
3019eac3
DE
327 struct dwarf2_section_names str_dwo;
328 struct dwarf2_section_names str_offsets_dwo;
329 struct dwarf2_section_names types_dwo;
80626a55
DE
330 struct dwarf2_section_names cu_index;
331 struct dwarf2_section_names tu_index;
3019eac3 332}
80626a55 333dwop_section_names =
3019eac3
DE
334{
335 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
336 { ".debug_info.dwo", ".zdebug_info.dwo" },
337 { ".debug_line.dwo", ".zdebug_line.dwo" },
338 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 339 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
340 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
341 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
342 { ".debug_str.dwo", ".zdebug_str.dwo" },
343 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
344 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
345 { ".debug_cu_index", ".zdebug_cu_index" },
346 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
347};
348
c906108c
SS
349/* local data types */
350
107d2387
AC
351/* The data in a compilation unit header, after target2host
352 translation, looks like this. */
c906108c 353struct comp_unit_head
a738430d 354{
c764a876 355 unsigned int length;
a738430d 356 short version;
a738430d
MK
357 unsigned char addr_size;
358 unsigned char signed_addr_p;
9c541725 359 sect_offset abbrev_sect_off;
57349743 360
a738430d
MK
361 /* Size of file offsets; either 4 or 8. */
362 unsigned int offset_size;
57349743 363
a738430d
MK
364 /* Size of the length field; either 4 or 12. */
365 unsigned int initial_length_size;
57349743 366
43988095
JK
367 enum dwarf_unit_type unit_type;
368
a738430d
MK
369 /* Offset to the first byte of this compilation unit header in the
370 .debug_info section, for resolving relative reference dies. */
9c541725 371 sect_offset sect_off;
57349743 372
d00adf39
DE
373 /* Offset to first die in this cu from the start of the cu.
374 This will be the first byte following the compilation unit header. */
9c541725 375 cu_offset first_die_cu_offset;
43988095 376
a084a2a6
AT
377
378 /* 64-bit signature of this unit. For type units, it denotes the signature of
379 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
380 Also used in DWARF 5, to denote the dwo id when the unit type is
381 DW_UT_skeleton or DW_UT_split_compile. */
43988095
JK
382 ULONGEST signature;
383
384 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 385 cu_offset type_cu_offset_in_tu;
a738430d 386};
c906108c 387
3da10d80
KS
388/* Type used for delaying computation of method physnames.
389 See comments for compute_delayed_physnames. */
390struct delayed_method_info
391{
392 /* The type to which the method is attached, i.e., its parent class. */
393 struct type *type;
394
395 /* The index of the method in the type's function fieldlists. */
396 int fnfield_index;
397
398 /* The index of the method in the fieldlist. */
399 int index;
400
401 /* The name of the DIE. */
402 const char *name;
403
404 /* The DIE associated with this method. */
405 struct die_info *die;
406};
407
e7c27a73
DJ
408/* Internal state when decoding a particular compilation unit. */
409struct dwarf2_cu
410{
fcd3b13d
SM
411 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
412 ~dwarf2_cu ();
413
414 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
415
c24bdb02
KS
416 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
417 Create the set of symtabs used by this TU, or if this TU is sharing
418 symtabs with another TU and the symtabs have already been created
419 then restore those symtabs in the line header.
420 We don't need the pc/line-number mapping for type units. */
421 void setup_type_unit_groups (struct die_info *die);
422
423 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
424 buildsym_compunit constructor. */
425 struct compunit_symtab *start_symtab (const char *name,
426 const char *comp_dir,
427 CORE_ADDR low_pc);
428
429 /* Reset the builder. */
430 void reset_builder () { m_builder.reset (); }
431
d00adf39 432 /* The header of the compilation unit. */
fcd3b13d 433 struct comp_unit_head header {};
e142c38c 434
d00adf39 435 /* Base address of this compilation unit. */
fcd3b13d 436 CORE_ADDR base_address = 0;
d00adf39
DE
437
438 /* Non-zero if base_address has been set. */
fcd3b13d 439 int base_known = 0;
d00adf39 440
e142c38c 441 /* The language we are debugging. */
fcd3b13d
SM
442 enum language language = language_unknown;
443 const struct language_defn *language_defn = nullptr;
e142c38c 444
fcd3b13d 445 const char *producer = nullptr;
b0f35d58 446
c24bdb02 447private:
804d2729
TT
448 /* The symtab builder for this CU. This is only non-NULL when full
449 symbols are being read. */
c24bdb02 450 std::unique_ptr<buildsym_compunit> m_builder;
804d2729 451
c24bdb02 452public:
e142c38c
DJ
453 /* The generic symbol table building routines have separate lists for
454 file scope symbols and all all other scopes (local scopes). So
455 we need to select the right one to pass to add_symbol_to_list().
456 We do it by keeping a pointer to the correct list in list_in_scope.
457
458 FIXME: The original dwarf code just treated the file scope as the
459 first local scope, and all other local scopes as nested local
460 scopes, and worked fine. Check to see if we really need to
461 distinguish these in buildsym.c. */
fcd3b13d 462 struct pending **list_in_scope = nullptr;
e142c38c 463
b64f50a1
JK
464 /* Hash table holding all the loaded partial DIEs
465 with partial_die->offset.SECT_OFF as hash. */
fcd3b13d 466 htab_t partial_dies = nullptr;
72bf9492
DJ
467
468 /* Storage for things with the same lifetime as this read-in compilation
469 unit, including partial DIEs. */
fcd3b13d 470 auto_obstack comp_unit_obstack;
72bf9492 471
ae038cb0
DJ
472 /* When multiple dwarf2_cu structures are living in memory, this field
473 chains them all together, so that they can be released efficiently.
474 We will probably also want a generation counter so that most-recently-used
475 compilation units are cached... */
fcd3b13d 476 struct dwarf2_per_cu_data *read_in_chain = nullptr;
ae038cb0 477
69d751e3 478 /* Backlink to our per_cu entry. */
ae038cb0
DJ
479 struct dwarf2_per_cu_data *per_cu;
480
481 /* How many compilation units ago was this CU last referenced? */
fcd3b13d 482 int last_used = 0;
ae038cb0 483
b64f50a1
JK
484 /* A hash table of DIE cu_offset for following references with
485 die_info->offset.sect_off as hash. */
fcd3b13d 486 htab_t die_hash = nullptr;
10b3939b
DJ
487
488 /* Full DIEs if read in. */
fcd3b13d 489 struct die_info *dies = nullptr;
10b3939b
DJ
490
491 /* A set of pointers to dwarf2_per_cu_data objects for compilation
492 units referenced by this one. Only set during full symbol processing;
493 partial symbol tables do not have dependencies. */
fcd3b13d 494 htab_t dependencies = nullptr;
10b3939b 495
cb1df416 496 /* Header data from the line table, during full symbol processing. */
fcd3b13d 497 struct line_header *line_header = nullptr;
4c8aa72d
PA
498 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
499 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
500 this is the DW_TAG_compile_unit die for this CU. We'll hold on
501 to the line header as long as this DIE is being processed. See
502 process_die_scope. */
fcd3b13d 503 die_info *line_header_die_owner = nullptr;
cb1df416 504
3da10d80
KS
505 /* A list of methods which need to have physnames computed
506 after all type information has been read. */
c89b44cd 507 std::vector<delayed_method_info> method_list;
3da10d80 508
96408a79 509 /* To be copied to symtab->call_site_htab. */
fcd3b13d 510 htab_t call_site_htab = nullptr;
96408a79 511
034e5797
DE
512 /* Non-NULL if this CU came from a DWO file.
513 There is an invariant here that is important to remember:
514 Except for attributes copied from the top level DIE in the "main"
515 (or "stub") file in preparation for reading the DWO file
516 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
517 Either there isn't a DWO file (in which case this is NULL and the point
518 is moot), or there is and either we're not going to read it (in which
519 case this is NULL) or there is and we are reading it (in which case this
520 is non-NULL). */
fcd3b13d 521 struct dwo_unit *dwo_unit = nullptr;
3019eac3
DE
522
523 /* The DW_AT_addr_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE. */
fcd3b13d 526 ULONGEST addr_base = 0;
3019eac3 527
2e3cf129
DE
528 /* The DW_AT_ranges_base attribute if present, zero otherwise
529 (zero is a valid value though).
1dbab08b 530 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 531 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
532 be used without needing to know whether DWO files are in use or not.
533 N.B. This does not apply to DW_AT_ranges appearing in
534 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
535 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
536 DW_AT_ranges_base *would* have to be applied, and we'd have to care
537 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
fcd3b13d 538 ULONGEST ranges_base = 0;
2e3cf129 539
c9317f21
TT
540 /* When reading debug info generated by older versions of rustc, we
541 have to rewrite some union types to be struct types with a
542 variant part. This rewriting must be done after the CU is fully
543 read in, because otherwise at the point of rewriting some struct
544 type might not have been fully processed. So, we keep a list of
545 all such types here and process them after expansion. */
546 std::vector<struct type *> rust_unions;
547
ae038cb0 548 /* Mark used when releasing cached dies. */
9068261f 549 bool mark : 1;
ae038cb0 550
8be455d7
JK
551 /* This CU references .debug_loc. See the symtab->locations_valid field.
552 This test is imperfect as there may exist optimized debug code not using
553 any location list and still facing inlining issues if handled as
554 unoptimized code. For a future better test see GCC PR other/32998. */
9068261f 555 bool has_loclist : 1;
ba919b58 556
9068261f 557 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
1b80a9fa
JK
558 if all the producer_is_* fields are valid. This information is cached
559 because profiling CU expansion showed excessive time spent in
560 producer_is_gxx_lt_4_6. */
9068261f
AB
561 bool checked_producer : 1;
562 bool producer_is_gxx_lt_4_6 : 1;
563 bool producer_is_gcc_lt_4_3 : 1;
eb77c9df 564 bool producer_is_icc : 1;
9068261f 565 bool producer_is_icc_lt_14 : 1;
c258c396 566 bool producer_is_codewarrior : 1;
4d4ec4e5 567
9068261f 568 /* When true, the file that we're processing is known to have
4d4ec4e5
TT
569 debugging info for C++ namespaces. GCC 3.3.x did not produce
570 this information, but later versions do. */
571
9068261f 572 bool processing_has_namespace_info : 1;
d590ff25
YQ
573
574 struct partial_die_info *find_partial_die (sect_offset sect_off);
c24bdb02
KS
575
576 /* If this CU was inherited by another CU (via specification,
577 abstract_origin, etc), this is the ancestor CU. */
578 dwarf2_cu *ancestor;
579
580 /* Get the buildsym_compunit for this CU. */
581 buildsym_compunit *get_builder ()
582 {
583 /* If this CU has a builder associated with it, use that. */
584 if (m_builder != nullptr)
585 return m_builder.get ();
586
587 /* Otherwise, search ancestors for a valid builder. */
588 if (ancestor != nullptr)
589 return ancestor->get_builder ();
590
591 return nullptr;
592 }
e7c27a73
DJ
593};
594
094b34ac
DE
595/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
596 This includes type_unit_group and quick_file_names. */
597
598struct stmt_list_hash
599{
600 /* The DWO unit this table is from or NULL if there is none. */
601 struct dwo_unit *dwo_unit;
602
603 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 604 sect_offset line_sect_off;
094b34ac
DE
605};
606
f4dc4d17
DE
607/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
608 an object of this type. */
609
610struct type_unit_group
611{
0186c6a7 612 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
613 To simplify things we create an artificial CU that "includes" all the
614 type units using this stmt_list so that the rest of the code still has
615 a "per_cu" handle on the symtab.
616 This PER_CU is recognized by having no section. */
8a0459fd 617#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
618 struct dwarf2_per_cu_data per_cu;
619
0186c6a7
DE
620 /* The TUs that share this DW_AT_stmt_list entry.
621 This is added to while parsing type units to build partial symtabs,
622 and is deleted afterwards and not used again. */
df07e2c7 623 std::vector <signatured_type *> *tus;
f4dc4d17 624
43f3e411 625 /* The compunit symtab.
094b34ac 626 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
627 so we create an essentially anonymous symtab as the compunit symtab. */
628 struct compunit_symtab *compunit_symtab;
f4dc4d17 629
094b34ac
DE
630 /* The data used to construct the hash key. */
631 struct stmt_list_hash hash;
f4dc4d17
DE
632
633 /* The number of symtabs from the line header.
634 The value here must match line_header.num_file_names. */
635 unsigned int num_symtabs;
636
637 /* The symbol tables for this TU (obtained from the files listed in
638 DW_AT_stmt_list).
639 WARNING: The order of entries here must match the order of entries
640 in the line header. After the first TU using this type_unit_group, the
641 line header for the subsequent TUs is recreated from this. This is done
642 because we need to use the same symtabs for each TU using the same
643 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
644 there's no guarantee the line header doesn't have duplicate entries. */
645 struct symtab **symtabs;
646};
647
73869dc2 648/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
649
650struct dwo_sections
651{
652 struct dwarf2_section_info abbrev;
3019eac3
DE
653 struct dwarf2_section_info line;
654 struct dwarf2_section_info loc;
43988095 655 struct dwarf2_section_info loclists;
09262596
DE
656 struct dwarf2_section_info macinfo;
657 struct dwarf2_section_info macro;
3019eac3
DE
658 struct dwarf2_section_info str;
659 struct dwarf2_section_info str_offsets;
80626a55
DE
660 /* In the case of a virtual DWO file, these two are unused. */
661 struct dwarf2_section_info info;
fd5866f6 662 std::vector<dwarf2_section_info> types;
3019eac3
DE
663};
664
c88ee1f0 665/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
666
667struct dwo_unit
668{
669 /* Backlink to the containing struct dwo_file. */
670 struct dwo_file *dwo_file;
671
672 /* The "id" that distinguishes this CU/TU.
673 .debug_info calls this "dwo_id", .debug_types calls this "signature".
674 Since signatures came first, we stick with it for consistency. */
675 ULONGEST signature;
676
677 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 678 struct dwarf2_section_info *section;
3019eac3 679
9c541725
PA
680 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
681 sect_offset sect_off;
3019eac3
DE
682 unsigned int length;
683
684 /* For types, offset in the type's DIE of the type defined by this TU. */
685 cu_offset type_offset_in_tu;
686};
687
73869dc2
DE
688/* include/dwarf2.h defines the DWP section codes.
689 It defines a max value but it doesn't define a min value, which we
690 use for error checking, so provide one. */
691
692enum dwp_v2_section_ids
693{
694 DW_SECT_MIN = 1
695};
696
80626a55 697/* Data for one DWO file.
57d63ce2
DE
698
699 This includes virtual DWO files (a virtual DWO file is a DWO file as it
700 appears in a DWP file). DWP files don't really have DWO files per se -
701 comdat folding of types "loses" the DWO file they came from, and from
702 a high level view DWP files appear to contain a mass of random types.
703 However, to maintain consistency with the non-DWP case we pretend DWP
704 files contain virtual DWO files, and we assign each TU with one virtual
705 DWO file (generally based on the line and abbrev section offsets -
706 a heuristic that seems to work in practice). */
3019eac3
DE
707
708struct dwo_file
709{
51ac9db5
SM
710 dwo_file () = default;
711 DISABLE_COPY_AND_ASSIGN (dwo_file);
712
0ac5b59e 713 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
714 For virtual DWO files the name is constructed from the section offsets
715 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
716 from related CU+TUs. */
51ac9db5 717 const char *dwo_name = nullptr;
0ac5b59e
DE
718
719 /* The DW_AT_comp_dir attribute. */
51ac9db5 720 const char *comp_dir = nullptr;
3019eac3 721
80626a55
DE
722 /* The bfd, when the file is open. Otherwise this is NULL.
723 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
fb1eb2f9 724 gdb_bfd_ref_ptr dbfd;
3019eac3 725
73869dc2
DE
726 /* The sections that make up this DWO file.
727 Remember that for virtual DWO files in DWP V2, these are virtual
728 sections (for lack of a better name). */
51ac9db5 729 struct dwo_sections sections {};
3019eac3 730
33c5cd75
DB
731 /* The CUs in the file.
732 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
733 an extension to handle LLVM's Link Time Optimization output (where
734 multiple source files may be compiled into a single object/dwo pair). */
51ac9db5 735 htab_t cus {};
3019eac3
DE
736
737 /* Table of TUs in the file.
738 Each element is a struct dwo_unit. */
51ac9db5 739 htab_t tus {};
3019eac3
DE
740};
741
80626a55
DE
742/* These sections are what may appear in a DWP file. */
743
744struct dwp_sections
745{
73869dc2 746 /* These are used by both DWP version 1 and 2. */
80626a55
DE
747 struct dwarf2_section_info str;
748 struct dwarf2_section_info cu_index;
749 struct dwarf2_section_info tu_index;
73869dc2
DE
750
751 /* These are only used by DWP version 2 files.
752 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
753 sections are referenced by section number, and are not recorded here.
754 In DWP version 2 there is at most one copy of all these sections, each
755 section being (effectively) comprised of the concatenation of all of the
756 individual sections that exist in the version 1 format.
757 To keep the code simple we treat each of these concatenated pieces as a
758 section itself (a virtual section?). */
759 struct dwarf2_section_info abbrev;
760 struct dwarf2_section_info info;
761 struct dwarf2_section_info line;
762 struct dwarf2_section_info loc;
763 struct dwarf2_section_info macinfo;
764 struct dwarf2_section_info macro;
765 struct dwarf2_section_info str_offsets;
766 struct dwarf2_section_info types;
80626a55
DE
767};
768
73869dc2
DE
769/* These sections are what may appear in a virtual DWO file in DWP version 1.
770 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 771
73869dc2 772struct virtual_v1_dwo_sections
80626a55
DE
773{
774 struct dwarf2_section_info abbrev;
775 struct dwarf2_section_info line;
776 struct dwarf2_section_info loc;
777 struct dwarf2_section_info macinfo;
778 struct dwarf2_section_info macro;
779 struct dwarf2_section_info str_offsets;
780 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 781 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
782 struct dwarf2_section_info info_or_types;
783};
784
73869dc2
DE
785/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
786 In version 2, the sections of the DWO files are concatenated together
787 and stored in one section of that name. Thus each ELF section contains
788 several "virtual" sections. */
789
790struct virtual_v2_dwo_sections
791{
792 bfd_size_type abbrev_offset;
793 bfd_size_type abbrev_size;
794
795 bfd_size_type line_offset;
796 bfd_size_type line_size;
797
798 bfd_size_type loc_offset;
799 bfd_size_type loc_size;
800
801 bfd_size_type macinfo_offset;
802 bfd_size_type macinfo_size;
803
804 bfd_size_type macro_offset;
805 bfd_size_type macro_size;
806
807 bfd_size_type str_offsets_offset;
808 bfd_size_type str_offsets_size;
809
810 /* Each DWP hash table entry records one CU or one TU.
811 That is recorded here, and copied to dwo_unit.section. */
812 bfd_size_type info_or_types_offset;
813 bfd_size_type info_or_types_size;
814};
815
80626a55
DE
816/* Contents of DWP hash tables. */
817
818struct dwp_hash_table
819{
73869dc2 820 uint32_t version, nr_columns;
80626a55 821 uint32_t nr_units, nr_slots;
73869dc2
DE
822 const gdb_byte *hash_table, *unit_table;
823 union
824 {
825 struct
826 {
827 const gdb_byte *indices;
828 } v1;
829 struct
830 {
831 /* This is indexed by column number and gives the id of the section
832 in that column. */
833#define MAX_NR_V2_DWO_SECTIONS \
834 (1 /* .debug_info or .debug_types */ \
835 + 1 /* .debug_abbrev */ \
836 + 1 /* .debug_line */ \
837 + 1 /* .debug_loc */ \
838 + 1 /* .debug_str_offsets */ \
839 + 1 /* .debug_macro or .debug_macinfo */)
840 int section_ids[MAX_NR_V2_DWO_SECTIONS];
841 const gdb_byte *offsets;
842 const gdb_byte *sizes;
843 } v2;
844 } section_pool;
80626a55
DE
845};
846
847/* Data for one DWP file. */
848
849struct dwp_file
850{
400174b1
TT
851 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
852 : name (name_),
853 dbfd (std::move (abfd))
854 {
855 }
856
80626a55
DE
857 /* Name of the file. */
858 const char *name;
859
73869dc2 860 /* File format version. */
400174b1 861 int version = 0;
73869dc2 862
93417882 863 /* The bfd. */
400174b1 864 gdb_bfd_ref_ptr dbfd;
80626a55
DE
865
866 /* Section info for this file. */
400174b1 867 struct dwp_sections sections {};
80626a55 868
57d63ce2 869 /* Table of CUs in the file. */
400174b1 870 const struct dwp_hash_table *cus = nullptr;
80626a55
DE
871
872 /* Table of TUs in the file. */
400174b1 873 const struct dwp_hash_table *tus = nullptr;
80626a55 874
19ac8c2e 875 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
400174b1
TT
876 htab_t loaded_cus {};
877 htab_t loaded_tus {};
80626a55 878
73869dc2
DE
879 /* Table to map ELF section numbers to their sections.
880 This is only needed for the DWP V1 file format. */
400174b1
TT
881 unsigned int num_sections = 0;
882 asection **elf_sections = nullptr;
80626a55
DE
883};
884
0963b4bd
MS
885/* Struct used to pass misc. parameters to read_die_and_children, et
886 al. which are used for both .debug_info and .debug_types dies.
887 All parameters here are unchanging for the life of the call. This
dee91e82 888 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
889
890struct die_reader_specs
891{
a32a8923 892 /* The bfd of die_section. */
93311388
DE
893 bfd* abfd;
894
895 /* The CU of the DIE we are parsing. */
896 struct dwarf2_cu *cu;
897
80626a55 898 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
899 struct dwo_file *dwo_file;
900
dee91e82 901 /* The section the die comes from.
3019eac3 902 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
903 struct dwarf2_section_info *die_section;
904
905 /* die_section->buffer. */
d521ce57 906 const gdb_byte *buffer;
f664829e
DE
907
908 /* The end of the buffer. */
909 const gdb_byte *buffer_end;
a2ce51a0
DE
910
911 /* The value of the DW_AT_comp_dir attribute. */
912 const char *comp_dir;
685af9cd
TT
913
914 /* The abbreviation table to use when reading the DIEs. */
915 struct abbrev_table *abbrev_table;
93311388
DE
916};
917
fd820528 918/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 919typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 920 const gdb_byte *info_ptr,
dee91e82
DE
921 struct die_info *comp_unit_die,
922 int has_children,
923 void *data);
924
ecfb656c
PA
925/* A 1-based directory index. This is a strong typedef to prevent
926 accidentally using a directory index as a 0-based index into an
927 array/vector. */
928enum class dir_index : unsigned int {};
929
930/* Likewise, a 1-based file name index. */
931enum class file_name_index : unsigned int {};
932
52059ffd
TT
933struct file_entry
934{
fff8551c
PA
935 file_entry () = default;
936
ecfb656c 937 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
938 unsigned int mod_time_, unsigned int length_)
939 : name (name_),
ecfb656c 940 d_index (d_index_),
fff8551c
PA
941 mod_time (mod_time_),
942 length (length_)
943 {}
944
ecfb656c
PA
945 /* Return the include directory at D_INDEX stored in LH. Returns
946 NULL if D_INDEX is out of bounds. */
8c43009f
PA
947 const char *include_dir (const line_header *lh) const;
948
fff8551c
PA
949 /* The file name. Note this is an observing pointer. The memory is
950 owned by debug_line_buffer. */
951 const char *name {};
952
8c43009f 953 /* The directory index (1-based). */
ecfb656c 954 dir_index d_index {};
fff8551c
PA
955
956 unsigned int mod_time {};
957
958 unsigned int length {};
959
960 /* True if referenced by the Line Number Program. */
961 bool included_p {};
962
83769d0b 963 /* The associated symbol table, if any. */
fff8551c 964 struct symtab *symtab {};
52059ffd
TT
965};
966
debd256d
JB
967/* The line number information for a compilation unit (found in the
968 .debug_line section) begins with a "statement program header",
969 which contains the following information. */
970struct line_header
971{
fff8551c
PA
972 line_header ()
973 : offset_in_dwz {}
974 {}
975
976 /* Add an entry to the include directory table. */
977 void add_include_dir (const char *include_dir);
978
979 /* Add an entry to the file name table. */
ecfb656c 980 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
981 unsigned int mod_time, unsigned int length);
982
ecfb656c 983 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 984 is out of bounds. */
ecfb656c 985 const char *include_dir_at (dir_index index) const
8c43009f 986 {
ecfb656c
PA
987 /* Convert directory index number (1-based) to vector index
988 (0-based). */
989 size_t vec_index = to_underlying (index) - 1;
990
991 if (vec_index >= include_dirs.size ())
8c43009f 992 return NULL;
ecfb656c 993 return include_dirs[vec_index];
8c43009f
PA
994 }
995
ecfb656c 996 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 997 is out of bounds. */
ecfb656c 998 file_entry *file_name_at (file_name_index index)
8c43009f 999 {
ecfb656c
PA
1000 /* Convert file name index number (1-based) to vector index
1001 (0-based). */
1002 size_t vec_index = to_underlying (index) - 1;
1003
1004 if (vec_index >= file_names.size ())
fff8551c 1005 return NULL;
ecfb656c 1006 return &file_names[vec_index];
fff8551c
PA
1007 }
1008
527f3840 1009 /* Offset of line number information in .debug_line section. */
9c541725 1010 sect_offset sect_off {};
527f3840
JK
1011
1012 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1013 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1014
1015 unsigned int total_length {};
1016 unsigned short version {};
1017 unsigned int header_length {};
1018 unsigned char minimum_instruction_length {};
1019 unsigned char maximum_ops_per_instruction {};
1020 unsigned char default_is_stmt {};
1021 int line_base {};
1022 unsigned char line_range {};
1023 unsigned char opcode_base {};
debd256d
JB
1024
1025 /* standard_opcode_lengths[i] is the number of operands for the
1026 standard opcode whose value is i. This means that
1027 standard_opcode_lengths[0] is unused, and the last meaningful
1028 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1029 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1030
fff8551c
PA
1031 /* The include_directories table. Note these are observing
1032 pointers. The memory is owned by debug_line_buffer. */
1033 std::vector<const char *> include_dirs;
debd256d 1034
fff8551c
PA
1035 /* The file_names table. */
1036 std::vector<file_entry> file_names;
debd256d
JB
1037
1038 /* The start and end of the statement program following this
6502dd73 1039 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1040 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1041};
c906108c 1042
fff8551c
PA
1043typedef std::unique_ptr<line_header> line_header_up;
1044
8c43009f
PA
1045const char *
1046file_entry::include_dir (const line_header *lh) const
1047{
ecfb656c 1048 return lh->include_dir_at (d_index);
8c43009f
PA
1049}
1050
c906108c 1051/* When we construct a partial symbol table entry we only
0963b4bd 1052 need this much information. */
6f06d47b 1053struct partial_die_info : public allocate_on_obstack
c906108c 1054 {
6f06d47b
YQ
1055 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1056
1057 /* Disable assign but still keep copy ctor, which is needed
1058 load_partial_dies. */
1059 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1060
52356b79
YQ
1061 /* Adjust the partial die before generating a symbol for it. This
1062 function may set the is_external flag or change the DIE's
1063 name. */
1064 void fixup (struct dwarf2_cu *cu);
1065
48fbe735
YQ
1066 /* Read a minimal amount of information into the minimal die
1067 structure. */
1068 const gdb_byte *read (const struct die_reader_specs *reader,
1069 const struct abbrev_info &abbrev,
1070 const gdb_byte *info_ptr);
1071
72bf9492 1072 /* Offset of this DIE. */
6f06d47b 1073 const sect_offset sect_off;
72bf9492
DJ
1074
1075 /* DWARF-2 tag for this DIE. */
6f06d47b 1076 const ENUM_BITFIELD(dwarf_tag) tag : 16;
72bf9492 1077
72bf9492 1078 /* Assorted flags describing the data found in this DIE. */
6f06d47b
YQ
1079 const unsigned int has_children : 1;
1080
72bf9492
DJ
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
481860b3 1086 unsigned int may_be_inlined : 1;
72bf9492 1087
0c1b455e
TT
1088 /* This DIE has been marked DW_AT_main_subprogram. */
1089 unsigned int main_subprogram : 1;
1090
72bf9492
DJ
1091 /* Flag set if the SCOPE field of this structure has been
1092 computed. */
1093 unsigned int scope_set : 1;
1094
fa4028e9
JB
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1097
ff908ebf
AW
1098 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1099 unsigned int has_const_value : 1;
1100
98bfdba5
PA
1101 /* Flag set if any of the DIE's children are template arguments. */
1102 unsigned int has_template_arguments : 1;
1103
52356b79 1104 /* Flag set if fixup has been called on this die. */
abc72ce4
DE
1105 unsigned int fixup_called : 1;
1106
36586728
TT
1107 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1108 unsigned int is_dwz : 1;
1109
1110 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1111 unsigned int spec_is_dwz : 1;
1112
72bf9492 1113 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1114 sometimes a default name for unnamed DIEs. */
6f06d47b 1115 const char *name = nullptr;
72bf9492 1116
abc72ce4 1117 /* The linkage name, if present. */
6f06d47b 1118 const char *linkage_name = nullptr;
abc72ce4 1119
72bf9492
DJ
1120 /* The scope to prepend to our children. This is generally
1121 allocated on the comp_unit_obstack, so will disappear
1122 when this compilation unit leaves the cache. */
6f06d47b 1123 const char *scope = nullptr;
72bf9492 1124
95554aad
TT
1125 /* Some data associated with the partial DIE. The tag determines
1126 which field is live. */
1127 union
1128 {
1129 /* The location description associated with this DIE, if any. */
1130 struct dwarf_block *locdesc;
1131 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1132 sect_offset sect_off;
6f06d47b 1133 } d {};
72bf9492
DJ
1134
1135 /* If HAS_PC_INFO, the PC range associated with this DIE. */
6f06d47b
YQ
1136 CORE_ADDR lowpc = 0;
1137 CORE_ADDR highpc = 0;
72bf9492 1138
93311388 1139 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1140 DW_AT_sibling, if any. */
48fbe735
YQ
1141 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1142 could return DW_AT_sibling values to its caller load_partial_dies. */
6f06d47b 1143 const gdb_byte *sibling = nullptr;
72bf9492
DJ
1144
1145 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1146 DW_AT_specification (or DW_AT_abstract_origin or
1147 DW_AT_extension). */
6f06d47b 1148 sect_offset spec_offset {};
72bf9492
DJ
1149
1150 /* Pointers to this DIE's parent, first child, and next sibling,
1151 if any. */
6f06d47b
YQ
1152 struct partial_die_info *die_parent = nullptr;
1153 struct partial_die_info *die_child = nullptr;
1154 struct partial_die_info *die_sibling = nullptr;
1155
1156 friend struct partial_die_info *
1157 dwarf2_cu::find_partial_die (sect_offset sect_off);
1158
1159 private:
1160 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1161 partial_die_info (sect_offset sect_off)
1162 : partial_die_info (sect_off, DW_TAG_padding, 0)
1163 {
1164 }
1165
1166 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1167 int has_children_)
1168 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1169 {
1170 is_external = 0;
1171 is_declaration = 0;
1172 has_type = 0;
1173 has_specification = 0;
1174 has_pc_info = 0;
1175 may_be_inlined = 0;
1176 main_subprogram = 0;
1177 scope_set = 0;
1178 has_byte_size = 0;
1179 has_const_value = 0;
1180 has_template_arguments = 0;
1181 fixup_called = 0;
1182 is_dwz = 0;
1183 spec_is_dwz = 0;
1184 }
c906108c
SS
1185 };
1186
0963b4bd 1187/* This data structure holds the information of an abbrev. */
c906108c
SS
1188struct abbrev_info
1189 {
1190 unsigned int number; /* number identifying abbrev */
1191 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1192 unsigned short has_children; /* boolean */
1193 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1194 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1195 struct abbrev_info *next; /* next in chain */
1196 };
1197
1198struct attr_abbrev
1199 {
9d25dd43
DE
1200 ENUM_BITFIELD(dwarf_attribute) name : 16;
1201 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1202
1203 /* It is valid only if FORM is DW_FORM_implicit_const. */
1204 LONGEST implicit_const;
c906108c
SS
1205 };
1206
433df2d4
DE
1207/* Size of abbrev_table.abbrev_hash_table. */
1208#define ABBREV_HASH_SIZE 121
1209
1210/* Top level data structure to contain an abbreviation table. */
1211
1212struct abbrev_table
1213{
685af9cd
TT
1214 explicit abbrev_table (sect_offset off)
1215 : sect_off (off)
1216 {
4a17f768 1217 m_abbrevs =
685af9cd 1218 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
4a17f768 1219 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
685af9cd
TT
1220 }
1221
1222 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1223
1224 /* Allocate space for a struct abbrev_info object in
1225 ABBREV_TABLE. */
1226 struct abbrev_info *alloc_abbrev ();
1227
1228 /* Add an abbreviation to the table. */
1229 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1230
1231 /* Look up an abbrev in the table.
1232 Returns NULL if the abbrev is not found. */
1233
1234 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1235
1236
f4dc4d17
DE
1237 /* Where the abbrev table came from.
1238 This is used as a sanity check when the table is used. */
685af9cd 1239 const sect_offset sect_off;
433df2d4
DE
1240
1241 /* Storage for the abbrev table. */
685af9cd 1242 auto_obstack abbrev_obstack;
433df2d4 1243
4a17f768
YQ
1244private:
1245
433df2d4
DE
1246 /* Hash table of abbrevs.
1247 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1248 It could be statically allocated, but the previous code didn't so we
1249 don't either. */
4a17f768 1250 struct abbrev_info **m_abbrevs;
433df2d4
DE
1251};
1252
685af9cd
TT
1253typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1254
0963b4bd 1255/* Attributes have a name and a value. */
b60c80d6
DJ
1256struct attribute
1257 {
9d25dd43 1258 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1259 ENUM_BITFIELD(dwarf_form) form : 15;
1260
1261 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1262 field should be in u.str (existing only for DW_STRING) but it is kept
1263 here for better struct attribute alignment. */
1264 unsigned int string_is_canonical : 1;
1265
b60c80d6
DJ
1266 union
1267 {
15d034d0 1268 const char *str;
b60c80d6 1269 struct dwarf_block *blk;
43bbcdc2
PH
1270 ULONGEST unsnd;
1271 LONGEST snd;
b60c80d6 1272 CORE_ADDR addr;
ac9ec31b 1273 ULONGEST signature;
b60c80d6
DJ
1274 }
1275 u;
1276 };
1277
0963b4bd 1278/* This data structure holds a complete die structure. */
c906108c
SS
1279struct die_info
1280 {
76815b17
DE
1281 /* DWARF-2 tag for this DIE. */
1282 ENUM_BITFIELD(dwarf_tag) tag : 16;
1283
1284 /* Number of attributes */
98bfdba5
PA
1285 unsigned char num_attrs;
1286
1287 /* True if we're presently building the full type name for the
1288 type derived from this DIE. */
1289 unsigned char building_fullname : 1;
76815b17 1290
adde2bff
DE
1291 /* True if this die is in process. PR 16581. */
1292 unsigned char in_process : 1;
1293
76815b17
DE
1294 /* Abbrev number */
1295 unsigned int abbrev;
1296
93311388 1297 /* Offset in .debug_info or .debug_types section. */
9c541725 1298 sect_offset sect_off;
78ba4af6
JB
1299
1300 /* The dies in a compilation unit form an n-ary tree. PARENT
1301 points to this die's parent; CHILD points to the first child of
1302 this node; and all the children of a given node are chained
4950bc1c 1303 together via their SIBLING fields. */
639d11d3
DC
1304 struct die_info *child; /* Its first child, if any. */
1305 struct die_info *sibling; /* Its next sibling, if any. */
1306 struct die_info *parent; /* Its parent, if any. */
c906108c 1307
b60c80d6
DJ
1308 /* An array of attributes, with NUM_ATTRS elements. There may be
1309 zero, but it's not common and zero-sized arrays are not
1310 sufficiently portable C. */
1311 struct attribute attrs[1];
c906108c
SS
1312 };
1313
0963b4bd 1314/* Get at parts of an attribute structure. */
c906108c
SS
1315
1316#define DW_STRING(attr) ((attr)->u.str)
8285870a 1317#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1318#define DW_UNSND(attr) ((attr)->u.unsnd)
1319#define DW_BLOCK(attr) ((attr)->u.blk)
1320#define DW_SND(attr) ((attr)->u.snd)
1321#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1322#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1323
0963b4bd 1324/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1325struct dwarf_block
1326 {
56eb65bd 1327 size_t size;
1d6edc3c
JK
1328
1329 /* Valid only if SIZE is not zero. */
d521ce57 1330 const gdb_byte *data;
c906108c
SS
1331 };
1332
c906108c
SS
1333#ifndef ATTR_ALLOC_CHUNK
1334#define ATTR_ALLOC_CHUNK 4
1335#endif
1336
c906108c
SS
1337/* Allocate fields for structs, unions and enums in this size. */
1338#ifndef DW_FIELD_ALLOC_CHUNK
1339#define DW_FIELD_ALLOC_CHUNK 4
1340#endif
1341
c906108c
SS
1342/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1343 but this would require a corresponding change in unpack_field_as_long
1344 and friends. */
1345static int bits_per_byte = 8;
1346
2ddeaf8a
TT
1347/* When reading a variant or variant part, we track a bit more
1348 information about the field, and store it in an object of this
1349 type. */
1350
1351struct variant_field
1352{
1353 /* If we see a DW_TAG_variant, then this will be the discriminant
1354 value. */
1355 ULONGEST discriminant_value;
1356 /* If we see a DW_TAG_variant, then this will be set if this is the
1357 default branch. */
1358 bool default_branch;
1359 /* While reading a DW_TAG_variant_part, this will be set if this
1360 field is the discriminant. */
1361 bool is_discriminant;
1362};
1363
52059ffd
TT
1364struct nextfield
1365{
be2daae6
TT
1366 int accessibility = 0;
1367 int virtuality = 0;
2ddeaf8a 1368 /* Extra information to describe a variant or variant part. */
be2daae6
TT
1369 struct variant_field variant {};
1370 struct field field {};
52059ffd
TT
1371};
1372
1373struct fnfieldlist
1374{
be2daae6
TT
1375 const char *name = nullptr;
1376 std::vector<struct fn_field> fnfields;
52059ffd
TT
1377};
1378
c906108c
SS
1379/* The routines that read and process dies for a C struct or C++ class
1380 pass lists of data member fields and lists of member function fields
1381 in an instance of a field_info structure, as defined below. */
1382struct field_info
c5aa993b 1383 {
0963b4bd 1384 /* List of data member and baseclasses fields. */
be2daae6
TT
1385 std::vector<struct nextfield> fields;
1386 std::vector<struct nextfield> baseclasses;
c906108c 1387
7d0ccb61 1388 /* Number of fields (including baseclasses). */
be2daae6 1389 int nfields = 0;
c906108c 1390
c5aa993b 1391 /* Set if the accesibility of one of the fields is not public. */
be2daae6 1392 int non_public_fields = 0;
c906108c 1393
c5aa993b
JM
1394 /* Member function fieldlist array, contains name of possibly overloaded
1395 member function, number of overloaded member functions and a pointer
1396 to the head of the member function field chain. */
be2daae6 1397 std::vector<struct fnfieldlist> fnfieldlists;
98751a41
JK
1398
1399 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1400 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
be2daae6 1401 std::vector<struct decl_field> typedef_field_list;
883fd55a
KS
1402
1403 /* Nested types defined by this class and the number of elements in this
1404 list. */
be2daae6 1405 std::vector<struct decl_field> nested_types_list;
c5aa993b 1406 };
c906108c 1407
10b3939b
DJ
1408/* One item on the queue of compilation units to read in full symbols
1409 for. */
1410struct dwarf2_queue_item
1411{
1412 struct dwarf2_per_cu_data *per_cu;
95554aad 1413 enum language pretend_language;
10b3939b
DJ
1414 struct dwarf2_queue_item *next;
1415};
1416
1417/* The current queue. */
1418static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1419
ae038cb0
DJ
1420/* Loaded secondary compilation units are kept in memory until they
1421 have not been referenced for the processing of this many
1422 compilation units. Set this to zero to disable caching. Cache
1423 sizes of up to at least twenty will improve startup time for
1424 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1425static int dwarf_max_cache_age = 5;
920d2a44 1426static void
b4f54984
DE
1427show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1428 struct cmd_list_element *c, const char *value)
920d2a44 1429{
3e43a32a 1430 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1431 "DWARF compilation units is %s.\n"),
920d2a44
AC
1432 value);
1433}
4390d890 1434\f
c906108c
SS
1435/* local function prototypes */
1436
a32a8923
DE
1437static const char *get_section_name (const struct dwarf2_section_info *);
1438
1439static const char *get_section_file_name (const struct dwarf2_section_info *);
1440
918dd910
JK
1441static void dwarf2_find_base_address (struct die_info *die,
1442 struct dwarf2_cu *cu);
1443
0018ea6f
DE
1444static struct partial_symtab *create_partial_symtab
1445 (struct dwarf2_per_cu_data *per_cu, const char *name);
1446
f1902523
JK
1447static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1448 const gdb_byte *info_ptr,
1449 struct die_info *type_unit_die,
1450 int has_children, void *data);
1451
ed2dc618
SM
1452static void dwarf2_build_psymtabs_hard
1453 (struct dwarf2_per_objfile *dwarf2_per_objfile);
c906108c 1454
72bf9492
DJ
1455static void scan_partial_symbols (struct partial_die_info *,
1456 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1457 int, struct dwarf2_cu *);
c906108c 1458
72bf9492
DJ
1459static void add_partial_symbol (struct partial_die_info *,
1460 struct dwarf2_cu *);
63d06c5c 1461
72bf9492
DJ
1462static void add_partial_namespace (struct partial_die_info *pdi,
1463 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1464 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1465
5d7cb8df 1466static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1467 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1468 struct dwarf2_cu *cu);
1469
72bf9492
DJ
1470static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1471 struct dwarf2_cu *cu);
91c24f0a 1472
bc30ff58
JB
1473static void add_partial_subprogram (struct partial_die_info *pdi,
1474 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1475 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1476
257e7a09
YQ
1477static void dwarf2_read_symtab (struct partial_symtab *,
1478 struct objfile *);
c906108c 1479
a14ed312 1480static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1481
685af9cd 1482static abbrev_table_up abbrev_table_read_table
ed2dc618
SM
1483 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1484 sect_offset);
433df2d4 1485
d521ce57 1486static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1487
dee91e82 1488static struct partial_die_info *load_partial_dies
d521ce57 1489 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1490
fb816e8b
TV
1491/* A pair of partial_die_info and compilation unit. */
1492struct cu_partial_die_info
1493{
1494 /* The compilation unit of the partial_die_info. */
1495 struct dwarf2_cu *cu;
1496 /* A partial_die_info. */
1497 struct partial_die_info *pdi;
122cf0f2
AB
1498
1499 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1500 : cu (cu),
1501 pdi (pdi)
1502 { /* Nothhing. */ }
1503
1504private:
1505 cu_partial_die_info () = delete;
fb816e8b
TV
1506};
1507
122cf0f2
AB
1508static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1509 struct dwarf2_cu *);
72bf9492 1510
d521ce57
TT
1511static const gdb_byte *read_attribute (const struct die_reader_specs *,
1512 struct attribute *, struct attr_abbrev *,
1513 const gdb_byte *);
a8329558 1514
a1855c1d 1515static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1516
a1855c1d 1517static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1518
a1855c1d 1519static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1520
15f18d14
AT
1521/* Read the next three bytes (little-endian order) as an unsigned integer. */
1522static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1523
a1855c1d 1524static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1525
a1855c1d 1526static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1527
d521ce57 1528static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1529 unsigned int *);
c906108c 1530
d521ce57 1531static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1532
1533static LONGEST read_checked_initial_length_and_offset
d521ce57 1534 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1535 unsigned int *, unsigned int *);
613e1657 1536
d521ce57
TT
1537static LONGEST read_offset (bfd *, const gdb_byte *,
1538 const struct comp_unit_head *,
c764a876
DE
1539 unsigned int *);
1540
d521ce57 1541static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1542
ed2dc618
SM
1543static sect_offset read_abbrev_offset
1544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1545 struct dwarf2_section_info *, sect_offset);
f4dc4d17 1546
d521ce57 1547static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1548
d521ce57 1549static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1550
ed2dc618
SM
1551static const char *read_indirect_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
4bdf3d34 1554
ed2dc618
SM
1555static const char *read_indirect_line_string
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1557 const struct comp_unit_head *, unsigned int *);
36586728 1558
ed2dc618
SM
1559static const char *read_indirect_string_at_offset
1560 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1561 LONGEST str_offset);
927aa2e7 1562
ed2dc618
SM
1563static const char *read_indirect_string_from_dwz
1564 (struct objfile *objfile, struct dwz_file *, LONGEST);
c906108c 1565
d521ce57 1566static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1567
d521ce57
TT
1568static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1569 const gdb_byte *,
3019eac3
DE
1570 unsigned int *);
1571
d521ce57 1572static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1573 ULONGEST str_index);
3019eac3 1574
e142c38c 1575static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1576
e142c38c
DJ
1577static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1578 struct dwarf2_cu *);
c906108c 1579
348e048f 1580static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1581 unsigned int);
348e048f 1582
7d45c7c3
KB
1583static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1584 struct dwarf2_cu *cu);
1585
a084a2a6
AT
1586static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1587
05cf31d1
JB
1588static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1589 struct dwarf2_cu *cu);
1590
e142c38c 1591static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1592
e142c38c 1593static struct die_info *die_specification (struct die_info *die,
f2f0e013 1594 struct dwarf2_cu **);
63d06c5c 1595
9c541725 1596static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1597 struct dwarf2_cu *cu);
debd256d 1598
f3f5162e 1599static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1600 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1601 CORE_ADDR, int decode_mapping);
c906108c 1602
804d2729
TT
1603static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1604 const char *);
c906108c 1605
a14ed312 1606static struct symbol *new_symbol (struct die_info *, struct type *,
5e2db402 1607 struct dwarf2_cu *, struct symbol * = NULL);
34eaf542 1608
ff39bb5e 1609static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1610 struct dwarf2_cu *);
c906108c 1611
ff39bb5e 1612static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1613 struct type *type,
1614 const char *name,
1615 struct obstack *obstack,
12df843f 1616 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1617 const gdb_byte **bytes,
98bfdba5 1618 struct dwarf2_locexpr_baton **baton);
2df3850c 1619
e7c27a73 1620static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1621
b4ba55a1
JB
1622static int need_gnat_info (struct dwarf2_cu *);
1623
3e43a32a
MS
1624static struct type *die_descriptive_type (struct die_info *,
1625 struct dwarf2_cu *);
b4ba55a1
JB
1626
1627static void set_descriptive_type (struct type *, struct die_info *,
1628 struct dwarf2_cu *);
1629
e7c27a73
DJ
1630static struct type *die_containing_type (struct die_info *,
1631 struct dwarf2_cu *);
c906108c 1632
ff39bb5e 1633static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1634 struct dwarf2_cu *);
c906108c 1635
f792889a 1636static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1637
673bfd45
DE
1638static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1639
0d5cff50 1640static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1641
6e70227d 1642static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1643 const char *suffix, int physname,
1644 struct dwarf2_cu *cu);
63d06c5c 1645
e7c27a73 1646static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1647
348e048f
DE
1648static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1649
e7c27a73 1650static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1651
e7c27a73 1652static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1653
96408a79
SA
1654static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1655
71a3c369
TT
1656static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1657
ff013f42
JK
1658static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *, struct partial_symtab *);
1660
3a2b436a 1661/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1662 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1663enum pc_bounds_kind
1664{
e385593e 1665 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1666 PC_BOUNDS_NOT_PRESENT,
1667
e385593e
JK
1668 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1669 were present but they do not form a valid range of PC addresses. */
1670 PC_BOUNDS_INVALID,
1671
3a2b436a
JK
1672 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1673 PC_BOUNDS_RANGES,
1674
1675 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1676 PC_BOUNDS_HIGH_LOW,
1677};
1678
1679static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1680 CORE_ADDR *, CORE_ADDR *,
1681 struct dwarf2_cu *,
1682 struct partial_symtab *);
c906108c 1683
fae299cd
DC
1684static void get_scope_pc_bounds (struct die_info *,
1685 CORE_ADDR *, CORE_ADDR *,
1686 struct dwarf2_cu *);
1687
801e3a5b
JB
1688static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1689 CORE_ADDR, struct dwarf2_cu *);
1690
a14ed312 1691static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1692 struct dwarf2_cu *);
c906108c 1693
a14ed312 1694static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1695 struct type *, struct dwarf2_cu *);
c906108c 1696
a14ed312 1697static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1698 struct die_info *, struct type *,
e7c27a73 1699 struct dwarf2_cu *);
c906108c 1700
a14ed312 1701static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1702 struct type *,
1703 struct dwarf2_cu *);
c906108c 1704
134d01f1 1705static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1706
e7c27a73 1707static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1708
e7c27a73 1709static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1710
5d7cb8df
JK
1711static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1712
804d2729 1713static struct using_direct **using_directives (struct dwarf2_cu *cu);
22cee43f 1714
27aa8d6a
SW
1715static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1716
74921315
KS
1717static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1718
f55ee35c
JK
1719static struct type *read_module_type (struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
38d518c9 1722static const char *namespace_name (struct die_info *die,
e142c38c 1723 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1724
134d01f1 1725static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1726
e7c27a73 1727static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1728
6e70227d 1729static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1730 struct dwarf2_cu *);
1731
bf6af496 1732static struct die_info *read_die_and_siblings_1
d521ce57 1733 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1734 struct die_info *);
639d11d3 1735
dee91e82 1736static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1737 const gdb_byte *info_ptr,
1738 const gdb_byte **new_info_ptr,
639d11d3
DC
1739 struct die_info *parent);
1740
d521ce57
TT
1741static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1742 struct die_info **, const gdb_byte *,
1743 int *, int);
3019eac3 1744
d521ce57
TT
1745static const gdb_byte *read_full_die (const struct die_reader_specs *,
1746 struct die_info **, const gdb_byte *,
1747 int *);
93311388 1748
e7c27a73 1749static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1750
15d034d0
TT
1751static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1752 struct obstack *);
71c25dea 1753
15d034d0 1754static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1755
15d034d0 1756static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1757 struct die_info *die,
1758 struct dwarf2_cu *cu);
1759
ca69b9e6
DE
1760static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1762
e142c38c 1763static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1764 struct dwarf2_cu **);
9219021c 1765
f39c6ffd 1766static const char *dwarf_tag_name (unsigned int);
c906108c 1767
f39c6ffd 1768static const char *dwarf_attr_name (unsigned int);
c906108c 1769
a084a2a6
AT
1770static const char *dwarf_unit_type_name (int unit_type);
1771
f39c6ffd 1772static const char *dwarf_form_name (unsigned int);
c906108c 1773
a121b7c1 1774static const char *dwarf_bool_name (unsigned int);
c906108c 1775
f39c6ffd 1776static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1777
f9aca02d 1778static struct die_info *sibling_die (struct die_info *);
c906108c 1779
d97bc12b
DE
1780static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1781
1782static void dump_die_for_error (struct die_info *);
1783
1784static void dump_die_1 (struct ui_file *, int level, int max_level,
1785 struct die_info *);
c906108c 1786
d97bc12b 1787/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1788
51545339 1789static void store_in_ref_table (struct die_info *,
10b3939b 1790 struct dwarf2_cu *);
c906108c 1791
ff39bb5e 1792static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1793
ff39bb5e 1794static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1795
348e048f 1796static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1797 const struct attribute *,
348e048f
DE
1798 struct dwarf2_cu **);
1799
10b3939b 1800static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1801 const struct attribute *,
f2f0e013 1802 struct dwarf2_cu **);
c906108c 1803
348e048f 1804static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1805 const struct attribute *,
348e048f
DE
1806 struct dwarf2_cu **);
1807
ac9ec31b
DE
1808static struct type *get_signatured_type (struct die_info *, ULONGEST,
1809 struct dwarf2_cu *);
1810
1811static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1812 const struct attribute *,
ac9ec31b
DE
1813 struct dwarf2_cu *);
1814
e5fe5e75 1815static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1816
52dc124a 1817static void read_signatured_type (struct signatured_type *);
348e048f 1818
63e43d3a
PMR
1819static int attr_to_dynamic_prop (const struct attribute *attr,
1820 struct die_info *die, struct dwarf2_cu *cu,
9a49df9d 1821 struct dynamic_prop *prop, struct type *type);
63e43d3a 1822
c906108c
SS
1823/* memory allocation interface */
1824
7b5a2f43 1825static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1826
b60c80d6 1827static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1828
43f3e411 1829static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1830
6e5a29e1 1831static int attr_form_is_block (const struct attribute *);
8e19ed76 1832
6e5a29e1 1833static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1834
6e5a29e1 1835static int attr_form_is_constant (const struct attribute *);
3690dd37 1836
6e5a29e1 1837static int attr_form_is_ref (const struct attribute *);
7771576e 1838
8cf6f0b1
TT
1839static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1840 struct dwarf2_loclist_baton *baton,
ff39bb5e 1841 const struct attribute *attr);
8cf6f0b1 1842
ff39bb5e 1843static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1844 struct symbol *sym,
f1e6e072
TT
1845 struct dwarf2_cu *cu,
1846 int is_block);
4c2df51b 1847
d521ce57
TT
1848static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1849 const gdb_byte *info_ptr,
1850 struct abbrev_info *abbrev);
4bb7a0a7 1851
72bf9492
DJ
1852static hashval_t partial_die_hash (const void *item);
1853
1854static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1855
ae038cb0 1856static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
ed2dc618
SM
1857 (sect_offset sect_off, unsigned int offset_in_dwz,
1858 struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1859
9816fde3 1860static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1861 struct die_info *comp_unit_die,
1862 enum language pretend_language);
93311388 1863
ed2dc618 1864static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1865
dee91e82 1866static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1867
f792889a
DJ
1868static struct type *set_die_type (struct die_info *, struct type *,
1869 struct dwarf2_cu *);
1c379e20 1870
ed2dc618 1871static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1872
ed2dc618 1873static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1fd400ff 1874
58f0c718 1875static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
95554aad 1876 enum language);
10b3939b 1877
95554aad
TT
1878static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1879 enum language);
10b3939b 1880
f4dc4d17
DE
1881static void process_full_type_unit (struct dwarf2_per_cu_data *,
1882 enum language);
1883
10b3939b
DJ
1884static void dwarf2_add_dependence (struct dwarf2_cu *,
1885 struct dwarf2_per_cu_data *);
1886
ae038cb0
DJ
1887static void dwarf2_mark (struct dwarf2_cu *);
1888
1889static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1890
b64f50a1 1891static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1892 struct dwarf2_per_cu_data *);
673bfd45 1893
f792889a 1894static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1895
95554aad
TT
1896static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1897 enum language pretend_language);
1898
ed2dc618 1899static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
9291a0cd 1900
9a49df9d
AB
1901static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1902static struct type *dwarf2_per_cu_addr_sized_int_type
1903 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1904
b303c6f6
AB
1905/* Class, the destructor of which frees all allocated queue entries. This
1906 will only have work to do if an error was thrown while processing the
1907 dwarf. If no error was thrown then the queue entries should have all
1908 been processed, and freed, as we went along. */
1909
1910class dwarf2_queue_guard
1911{
1912public:
1913 dwarf2_queue_guard () = default;
1914
1915 /* Free any entries remaining on the queue. There should only be
1916 entries left if we hit an error while processing the dwarf. */
1917 ~dwarf2_queue_guard ()
1918 {
1919 struct dwarf2_queue_item *item, *last;
1920
1921 item = dwarf2_queue;
1922 while (item)
1923 {
1924 /* Anything still marked queued is likely to be in an
1925 inconsistent state, so discard it. */
1926 if (item->per_cu->queued)
1927 {
1928 if (item->per_cu->cu != NULL)
1929 free_one_cached_comp_unit (item->per_cu);
1930 item->per_cu->queued = 0;
1931 }
1932
1933 last = item;
1934 item = item->next;
1935 xfree (last);
1936 }
1937
1938 dwarf2_queue = dwarf2_queue_tail = NULL;
1939 }
1940};
1941
d721ba37
PA
1942/* The return type of find_file_and_directory. Note, the enclosed
1943 string pointers are only valid while this object is valid. */
1944
1945struct file_and_directory
1946{
1947 /* The filename. This is never NULL. */
1948 const char *name;
1949
1950 /* The compilation directory. NULL if not known. If we needed to
1951 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1952 points directly to the DW_AT_comp_dir string attribute owned by
1953 the obstack that owns the DIE. */
1954 const char *comp_dir;
1955
1956 /* If we needed to build a new string for comp_dir, this is what
1957 owns the storage. */
1958 std::string comp_dir_storage;
1959};
1960
1961static file_and_directory find_file_and_directory (struct die_info *die,
1962 struct dwarf2_cu *cu);
9291a0cd
TT
1963
1964static char *file_full_name (int file, struct line_header *lh,
1965 const char *comp_dir);
1966
43988095
JK
1967/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1968enum class rcuh_kind { COMPILE, TYPE };
1969
d521ce57 1970static const gdb_byte *read_and_check_comp_unit_head
ed2dc618
SM
1971 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1972 struct comp_unit_head *header,
36586728 1973 struct dwarf2_section_info *section,
d521ce57 1974 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1975 rcuh_kind section_kind);
36586728 1976
fd820528 1977static void init_cutu_and_read_dies
f4dc4d17 1978 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
58f0c718 1979 int use_existing_cu, int keep, bool skip_partial,
3019eac3
DE
1980 die_reader_func_ftype *die_reader_func, void *data);
1981
dee91e82
DE
1982static void init_cutu_and_read_dies_simple
1983 (struct dwarf2_per_cu_data *this_cu,
1984 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1985
673bfd45 1986static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1987
3019eac3
DE
1988static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1989
57d63ce2 1990static struct dwo_unit *lookup_dwo_unit_in_dwp
ed2dc618
SM
1991 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1992 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 1993 ULONGEST signature, int is_debug_types);
a2ce51a0 1994
ed2dc618
SM
1995static struct dwp_file *get_dwp_file
1996 (struct dwarf2_per_objfile *dwarf2_per_objfile);
a2ce51a0 1997
3019eac3 1998static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1999 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2000
2001static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2002 (struct signatured_type *, const char *, const char *);
3019eac3 2003
89e63ee4
DE
2004static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2005
263db9a1
TT
2006/* A unique pointer to a dwo_file. */
2007
51ac9db5 2008typedef std::unique_ptr<struct dwo_file> dwo_file_up;
263db9a1 2009
ed2dc618 2010static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
95554aad 2011
1b80a9fa 2012static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2013
2014static void free_line_header_voidp (void *arg);
4390d890
DE
2015\f
2016/* Various complaints about symbol reading that don't abort the process. */
2017
2018static void
2019dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2020{
b98664d3 2021 complaint (_("statement list doesn't fit in .debug_line section"));
4390d890
DE
2022}
2023
2024static void
2025dwarf2_debug_line_missing_file_complaint (void)
2026{
b98664d3 2027 complaint (_(".debug_line section has line data without a file"));
4390d890
DE
2028}
2029
2030static void
2031dwarf2_debug_line_missing_end_sequence_complaint (void)
2032{
b98664d3 2033 complaint (_(".debug_line section has line "
4390d890
DE
2034 "program sequence without an end"));
2035}
2036
2037static void
2038dwarf2_complex_location_expr_complaint (void)
2039{
b98664d3 2040 complaint (_("location expression too complex"));
4390d890
DE
2041}
2042
2043static void
2044dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2045 int arg3)
2046{
b98664d3 2047 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
4390d890
DE
2048 arg1, arg2, arg3);
2049}
2050
2051static void
2052dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2053{
b98664d3 2054 complaint (_("debug info runs off end of %s section"
4390d890 2055 " [in module %s]"),
a32a8923
DE
2056 get_section_name (section),
2057 get_section_file_name (section));
4390d890 2058}
1b80a9fa 2059
4390d890
DE
2060static void
2061dwarf2_macro_malformed_definition_complaint (const char *arg1)
2062{
b98664d3 2063 complaint (_("macro debug info contains a "
4390d890
DE
2064 "malformed macro definition:\n`%s'"),
2065 arg1);
2066}
2067
2068static void
2069dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2070{
b98664d3 2071 complaint (_("invalid attribute class or form for '%s' in '%s'"),
4390d890
DE
2072 arg1, arg2);
2073}
527f3840
JK
2074
2075/* Hash function for line_header_hash. */
2076
2077static hashval_t
2078line_header_hash (const struct line_header *ofs)
2079{
9c541725 2080 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2081}
2082
2083/* Hash function for htab_create_alloc_ex for line_header_hash. */
2084
2085static hashval_t
2086line_header_hash_voidp (const void *item)
2087{
9a3c8263 2088 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2089
2090 return line_header_hash (ofs);
2091}
2092
2093/* Equality function for line_header_hash. */
2094
2095static int
2096line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2097{
9a3c8263
SM
2098 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2099 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2100
9c541725 2101 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2102 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2103}
2104
4390d890 2105\f
9291a0cd 2106
31aa7e4e
JB
2107/* Read the given attribute value as an address, taking the attribute's
2108 form into account. */
2109
2110static CORE_ADDR
2111attr_value_as_address (struct attribute *attr)
2112{
2113 CORE_ADDR addr;
2114
336d760d
AT
2115 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2116 && attr->form != DW_FORM_GNU_addr_index)
31aa7e4e
JB
2117 {
2118 /* Aside from a few clearly defined exceptions, attributes that
2119 contain an address must always be in DW_FORM_addr form.
2120 Unfortunately, some compilers happen to be violating this
2121 requirement by encoding addresses using other forms, such
2122 as DW_FORM_data4 for example. For those broken compilers,
2123 we try to do our best, without any guarantee of success,
2124 to interpret the address correctly. It would also be nice
2125 to generate a complaint, but that would require us to maintain
2126 a list of legitimate cases where a non-address form is allowed,
2127 as well as update callers to pass in at least the CU's DWARF
2128 version. This is more overhead than what we're willing to
2129 expand for a pretty rare case. */
2130 addr = DW_UNSND (attr);
2131 }
2132 else
2133 addr = DW_ADDR (attr);
2134
2135 return addr;
2136}
2137
330cdd98
PA
2138/* See declaration. */
2139
2140dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
4b610737
TT
2141 const dwarf2_debug_sections *names,
2142 bool can_copy_)
2143 : objfile (objfile_),
2144 can_copy (can_copy_)
330cdd98
PA
2145{
2146 if (names == NULL)
2147 names = &dwarf2_elf_names;
2148
2149 bfd *obfd = objfile->obfd;
2150
2151 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2152 locate_sections (obfd, sec, *names);
2153}
2154
2155dwarf2_per_objfile::~dwarf2_per_objfile ()
2156{
2157 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2158 free_cached_comp_units ();
2159
2160 if (quick_file_names_table)
2161 htab_delete (quick_file_names_table);
2162
2163 if (line_header_hash)
2164 htab_delete (line_header_hash);
2165
b76e467d
SM
2166 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2167 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
fc8e7e75 2168
b2bdb8cf
SM
2169 for (signatured_type *sig_type : all_type_units)
2170 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
fc8e7e75 2171
330cdd98
PA
2172 /* Everything else should be on the objfile obstack. */
2173}
2174
2175/* See declaration. */
2176
2177void
2178dwarf2_per_objfile::free_cached_comp_units ()
2179{
2180 dwarf2_per_cu_data *per_cu = read_in_chain;
2181 dwarf2_per_cu_data **last_chain = &read_in_chain;
2182 while (per_cu != NULL)
2183 {
2184 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2185
fcd3b13d 2186 delete per_cu->cu;
330cdd98
PA
2187 *last_chain = next_cu;
2188 per_cu = next_cu;
2189 }
2190}
2191
11ed8cad
TT
2192/* A helper class that calls free_cached_comp_units on
2193 destruction. */
2194
2195class free_cached_comp_units
2196{
2197public:
2198
2199 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2200 : m_per_objfile (per_objfile)
2201 {
2202 }
2203
2204 ~free_cached_comp_units ()
2205 {
2206 m_per_objfile->free_cached_comp_units ();
2207 }
2208
2209 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2210
2211private:
2212
2213 dwarf2_per_objfile *m_per_objfile;
2214};
2215
c906108c 2216/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2217 information and return true if we have enough to do something.
2218 NAMES points to the dwarf2 section names, or is NULL if the standard
4b610737
TT
2219 ELF names are used. CAN_COPY is true for formats where symbol
2220 interposition is possible and so symbol values must follow copy
2221 relocation rules. */
c906108c
SS
2222
2223int
251d32d9 2224dwarf2_has_info (struct objfile *objfile,
4b610737
TT
2225 const struct dwarf2_debug_sections *names,
2226 bool can_copy)
c906108c 2227{
97cbe998
SDJ
2228 if (objfile->flags & OBJF_READNEVER)
2229 return 0;
2230
ed2dc618
SM
2231 struct dwarf2_per_objfile *dwarf2_per_objfile
2232 = get_dwarf2_per_objfile (objfile);
2233
2234 if (dwarf2_per_objfile == NULL)
5bfd760d 2235 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
4b610737
TT
2236 names,
2237 can_copy);
5bfd760d 2238
73869dc2 2239 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2240 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2241 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2242 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2243}
2244
2245/* Return the containing section of virtual section SECTION. */
2246
2247static struct dwarf2_section_info *
2248get_containing_section (const struct dwarf2_section_info *section)
2249{
2250 gdb_assert (section->is_virtual);
2251 return section->s.containing_section;
c906108c
SS
2252}
2253
a32a8923
DE
2254/* Return the bfd owner of SECTION. */
2255
2256static struct bfd *
2257get_section_bfd_owner (const struct dwarf2_section_info *section)
2258{
73869dc2
DE
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
049412e3 2264 return section->s.section->owner;
a32a8923
DE
2265}
2266
2267/* Return the bfd section of SECTION.
2268 Returns NULL if the section is not present. */
2269
2270static asection *
2271get_section_bfd_section (const struct dwarf2_section_info *section)
2272{
73869dc2
DE
2273 if (section->is_virtual)
2274 {
2275 section = get_containing_section (section);
2276 gdb_assert (!section->is_virtual);
2277 }
049412e3 2278 return section->s.section;
a32a8923
DE
2279}
2280
2281/* Return the name of SECTION. */
2282
2283static const char *
2284get_section_name (const struct dwarf2_section_info *section)
2285{
2286 asection *sectp = get_section_bfd_section (section);
2287
2288 gdb_assert (sectp != NULL);
fd361982 2289 return bfd_section_name (sectp);
a32a8923
DE
2290}
2291
2292/* Return the name of the file SECTION is in. */
2293
2294static const char *
2295get_section_file_name (const struct dwarf2_section_info *section)
2296{
2297 bfd *abfd = get_section_bfd_owner (section);
2298
2299 return bfd_get_filename (abfd);
2300}
2301
2302/* Return the id of SECTION.
2303 Returns 0 if SECTION doesn't exist. */
2304
2305static int
2306get_section_id (const struct dwarf2_section_info *section)
2307{
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 if (sectp == NULL)
2311 return 0;
2312 return sectp->id;
2313}
2314
2315/* Return the flags of SECTION.
73869dc2 2316 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2317
2318static int
2319get_section_flags (const struct dwarf2_section_info *section)
2320{
2321 asection *sectp = get_section_bfd_section (section);
2322
2323 gdb_assert (sectp != NULL);
fd361982 2324 return bfd_section_flags (sectp);
a32a8923
DE
2325}
2326
251d32d9
TG
2327/* When loading sections, we look either for uncompressed section or for
2328 compressed section names. */
233a11ab
CS
2329
2330static int
251d32d9
TG
2331section_is_p (const char *section_name,
2332 const struct dwarf2_section_names *names)
233a11ab 2333{
251d32d9
TG
2334 if (names->normal != NULL
2335 && strcmp (section_name, names->normal) == 0)
2336 return 1;
2337 if (names->compressed != NULL
2338 && strcmp (section_name, names->compressed) == 0)
2339 return 1;
2340 return 0;
233a11ab
CS
2341}
2342
330cdd98 2343/* See declaration. */
c906108c 2344
330cdd98
PA
2345void
2346dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2347 const dwarf2_debug_sections &names)
c906108c 2348{
fd361982 2349 flagword aflag = bfd_section_flags (sectp);
251d32d9 2350
dc7650b8
JK
2351 if ((aflag & SEC_HAS_CONTENTS) == 0)
2352 {
2353 }
330cdd98 2354 else if (section_is_p (sectp->name, &names.info))
c906108c 2355 {
330cdd98 2356 this->info.s.section = sectp;
fd361982 2357 this->info.size = bfd_section_size (sectp);
c906108c 2358 }
330cdd98 2359 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2360 {
330cdd98 2361 this->abbrev.s.section = sectp;
fd361982 2362 this->abbrev.size = bfd_section_size (sectp);
c906108c 2363 }
330cdd98 2364 else if (section_is_p (sectp->name, &names.line))
c906108c 2365 {
330cdd98 2366 this->line.s.section = sectp;
fd361982 2367 this->line.size = bfd_section_size (sectp);
c906108c 2368 }
330cdd98 2369 else if (section_is_p (sectp->name, &names.loc))
c906108c 2370 {
330cdd98 2371 this->loc.s.section = sectp;
fd361982 2372 this->loc.size = bfd_section_size (sectp);
c906108c 2373 }
330cdd98 2374 else if (section_is_p (sectp->name, &names.loclists))
43988095 2375 {
330cdd98 2376 this->loclists.s.section = sectp;
fd361982 2377 this->loclists.size = bfd_section_size (sectp);
43988095 2378 }
330cdd98 2379 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2380 {
330cdd98 2381 this->macinfo.s.section = sectp;
fd361982 2382 this->macinfo.size = bfd_section_size (sectp);
c906108c 2383 }
330cdd98 2384 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2385 {
330cdd98 2386 this->macro.s.section = sectp;
fd361982 2387 this->macro.size = bfd_section_size (sectp);
cf2c3c16 2388 }
330cdd98 2389 else if (section_is_p (sectp->name, &names.str))
c906108c 2390 {
330cdd98 2391 this->str.s.section = sectp;
fd361982 2392 this->str.size = bfd_section_size (sectp);
c906108c 2393 }
330cdd98 2394 else if (section_is_p (sectp->name, &names.line_str))
43988095 2395 {
330cdd98 2396 this->line_str.s.section = sectp;
fd361982 2397 this->line_str.size = bfd_section_size (sectp);
43988095 2398 }
330cdd98 2399 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2400 {
330cdd98 2401 this->addr.s.section = sectp;
fd361982 2402 this->addr.size = bfd_section_size (sectp);
3019eac3 2403 }
330cdd98 2404 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2405 {
330cdd98 2406 this->frame.s.section = sectp;
fd361982 2407 this->frame.size = bfd_section_size (sectp);
b6af0555 2408 }
330cdd98 2409 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2410 {
330cdd98 2411 this->eh_frame.s.section = sectp;
fd361982 2412 this->eh_frame.size = bfd_section_size (sectp);
b6af0555 2413 }
330cdd98 2414 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2415 {
330cdd98 2416 this->ranges.s.section = sectp;
fd361982 2417 this->ranges.size = bfd_section_size (sectp);
af34e669 2418 }
330cdd98 2419 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2420 {
330cdd98 2421 this->rnglists.s.section = sectp;
fd361982 2422 this->rnglists.size = bfd_section_size (sectp);
43988095 2423 }
330cdd98 2424 else if (section_is_p (sectp->name, &names.types))
348e048f 2425 {
8b70b953
TT
2426 struct dwarf2_section_info type_section;
2427
2428 memset (&type_section, 0, sizeof (type_section));
049412e3 2429 type_section.s.section = sectp;
fd361982 2430 type_section.size = bfd_section_size (sectp);
8b70b953 2431
fd5866f6 2432 this->types.push_back (type_section);
348e048f 2433 }
330cdd98 2434 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2435 {
330cdd98 2436 this->gdb_index.s.section = sectp;
fd361982 2437 this->gdb_index.size = bfd_section_size (sectp);
9291a0cd 2438 }
927aa2e7
JK
2439 else if (section_is_p (sectp->name, &names.debug_names))
2440 {
2441 this->debug_names.s.section = sectp;
fd361982 2442 this->debug_names.size = bfd_section_size (sectp);
927aa2e7
JK
2443 }
2444 else if (section_is_p (sectp->name, &names.debug_aranges))
2445 {
2446 this->debug_aranges.s.section = sectp;
fd361982 2447 this->debug_aranges.size = bfd_section_size (sectp);
927aa2e7 2448 }
dce234bc 2449
fd361982
AM
2450 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2451 && bfd_section_vma (sectp) == 0)
330cdd98 2452 this->has_section_at_zero = true;
c906108c
SS
2453}
2454
fceca515
DE
2455/* A helper function that decides whether a section is empty,
2456 or not present. */
9e0ac564
TT
2457
2458static int
19ac8c2e 2459dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2460{
73869dc2
DE
2461 if (section->is_virtual)
2462 return section->size == 0;
049412e3 2463 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2464}
2465
cd4fb1b2 2466/* See dwarf2read.h. */
c906108c 2467
cd4fb1b2
SM
2468void
2469dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
c906108c 2470{
a32a8923 2471 asection *sectp;
3019eac3 2472 bfd *abfd;
dce234bc 2473 gdb_byte *buf, *retbuf;
c906108c 2474
be391dca
TT
2475 if (info->readin)
2476 return;
dce234bc 2477 info->buffer = NULL;
dc4ccb6f 2478 info->readin = true;
188dd5d6 2479
9e0ac564 2480 if (dwarf2_section_empty_p (info))
dce234bc 2481 return;
c906108c 2482
a32a8923 2483 sectp = get_section_bfd_section (info);
3019eac3 2484
73869dc2
DE
2485 /* If this is a virtual section we need to read in the real one first. */
2486 if (info->is_virtual)
2487 {
2488 struct dwarf2_section_info *containing_section =
2489 get_containing_section (info);
2490
2491 gdb_assert (sectp != NULL);
2492 if ((sectp->flags & SEC_RELOC) != 0)
2493 {
2494 error (_("Dwarf Error: DWP format V2 with relocations is not"
2495 " supported in section %s [in module %s]"),
2496 get_section_name (info), get_section_file_name (info));
2497 }
2498 dwarf2_read_section (objfile, containing_section);
2499 /* Other code should have already caught virtual sections that don't
2500 fit. */
2501 gdb_assert (info->virtual_offset + info->size
2502 <= containing_section->size);
2503 /* If the real section is empty or there was a problem reading the
2504 section we shouldn't get here. */
2505 gdb_assert (containing_section->buffer != NULL);
2506 info->buffer = containing_section->buffer + info->virtual_offset;
2507 return;
2508 }
2509
4bf44c1c
TT
2510 /* If the section has relocations, we must read it ourselves.
2511 Otherwise we attach it to the BFD. */
2512 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2513 {
d521ce57 2514 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2515 return;
dce234bc 2516 }
dce234bc 2517
224c3ddb 2518 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2519 info->buffer = buf;
dce234bc
PP
2520
2521 /* When debugging .o files, we may need to apply relocations; see
2522 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2523 We never compress sections in .o files, so we only need to
2524 try this when the section is not compressed. */
ac8035ab 2525 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2526 if (retbuf != NULL)
2527 {
2528 info->buffer = retbuf;
2529 return;
2530 }
2531
a32a8923
DE
2532 abfd = get_section_bfd_owner (info);
2533 gdb_assert (abfd != NULL);
2534
dce234bc
PP
2535 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2536 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2537 {
2538 error (_("Dwarf Error: Can't read DWARF data"
2539 " in section %s [in module %s]"),
fd361982 2540 bfd_section_name (sectp), bfd_get_filename (abfd));
19ac8c2e 2541 }
dce234bc
PP
2542}
2543
9e0ac564
TT
2544/* A helper function that returns the size of a section in a safe way.
2545 If you are positive that the section has been read before using the
2546 size, then it is safe to refer to the dwarf2_section_info object's
2547 "size" field directly. In other cases, you must call this
2548 function, because for compressed sections the size field is not set
2549 correctly until the section has been read. */
2550
2551static bfd_size_type
2552dwarf2_section_size (struct objfile *objfile,
2553 struct dwarf2_section_info *info)
2554{
2555 if (!info->readin)
2556 dwarf2_read_section (objfile, info);
2557 return info->size;
2558}
2559
dce234bc 2560/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2561 SECTION_NAME. */
af34e669 2562
dce234bc 2563void
3017a003
TG
2564dwarf2_get_section_info (struct objfile *objfile,
2565 enum dwarf2_section_enum sect,
d521ce57 2566 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2567 bfd_size_type *sizep)
2568{
5bfd760d 2569 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
dce234bc 2570 struct dwarf2_section_info *info;
a3b2a86b
TT
2571
2572 /* We may see an objfile without any DWARF, in which case we just
2573 return nothing. */
2574 if (data == NULL)
2575 {
2576 *sectp = NULL;
2577 *bufp = NULL;
2578 *sizep = 0;
2579 return;
2580 }
3017a003
TG
2581 switch (sect)
2582 {
2583 case DWARF2_DEBUG_FRAME:
2584 info = &data->frame;
2585 break;
2586 case DWARF2_EH_FRAME:
2587 info = &data->eh_frame;
2588 break;
2589 default:
2590 gdb_assert_not_reached ("unexpected section");
2591 }
dce234bc 2592
9e0ac564 2593 dwarf2_read_section (objfile, info);
dce234bc 2594
a32a8923 2595 *sectp = get_section_bfd_section (info);
dce234bc
PP
2596 *bufp = info->buffer;
2597 *sizep = info->size;
2598}
2599
36586728
TT
2600/* A helper function to find the sections for a .dwz file. */
2601
2602static void
2603locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2604{
9a3c8263 2605 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2606
2607 /* Note that we only support the standard ELF names, because .dwz
2608 is ELF-only (at the time of writing). */
2609 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2610 {
049412e3 2611 dwz_file->abbrev.s.section = sectp;
fd361982 2612 dwz_file->abbrev.size = bfd_section_size (sectp);
36586728
TT
2613 }
2614 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2615 {
049412e3 2616 dwz_file->info.s.section = sectp;
fd361982 2617 dwz_file->info.size = bfd_section_size (sectp);
36586728
TT
2618 }
2619 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2620 {
049412e3 2621 dwz_file->str.s.section = sectp;
fd361982 2622 dwz_file->str.size = bfd_section_size (sectp);
36586728
TT
2623 }
2624 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2625 {
049412e3 2626 dwz_file->line.s.section = sectp;
fd361982 2627 dwz_file->line.size = bfd_section_size (sectp);
36586728
TT
2628 }
2629 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2630 {
049412e3 2631 dwz_file->macro.s.section = sectp;
fd361982 2632 dwz_file->macro.size = bfd_section_size (sectp);
36586728 2633 }
2ec9a5e0
TT
2634 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2635 {
049412e3 2636 dwz_file->gdb_index.s.section = sectp;
fd361982 2637 dwz_file->gdb_index.size = bfd_section_size (sectp);
2ec9a5e0 2638 }
927aa2e7
JK
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2640 {
2641 dwz_file->debug_names.s.section = sectp;
fd361982 2642 dwz_file->debug_names.size = bfd_section_size (sectp);
927aa2e7 2643 }
36586728
TT
2644}
2645
c4973306 2646/* See dwarf2read.h. */
36586728 2647
c4973306 2648struct dwz_file *
ed2dc618 2649dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 2650{
36586728 2651 const char *filename;
acd13123 2652 bfd_size_type buildid_len_arg;
dc294be5
TT
2653 size_t buildid_len;
2654 bfd_byte *buildid;
36586728
TT
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
7ff8cb8c 2657 return dwarf2_per_objfile->dwz_file.get ();
36586728 2658
4db1a1dc 2659 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
4db1a1dc
TT
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
791afaa2
TT
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2672
acd13123
TT
2673 buildid_len = (size_t) buildid_len_arg;
2674
791afaa2 2675 filename = data.get ();
d721ba37
PA
2676
2677 std::string abs_storage;
36586728
TT
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
14278e1f
TT
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2682
14278e1f 2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2684 filename = abs_storage.c_str ();
36586728
TT
2685 }
2686
dc294be5
TT
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
192b62ce 2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2690 if (dwz_bfd != NULL)
36586728 2691 {
192b62ce 2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
0f58c9e8 2693 dwz_bfd.reset (nullptr);
36586728
TT
2694 }
2695
dc294be5
TT
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
7ff8cb8c
TT
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
36586728 2705
7ff8cb8c
TT
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
36586728 2708
7ff8cb8c
TT
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
36586728 2713}
9291a0cd 2714\f
7b9f3c50
DE
2715/* DWARF quick_symbols_functions support. */
2716
2717/* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722struct quick_file_names
2723{
094b34ac
DE
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
7b9f3c50
DE
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737};
2738
2739/* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742struct dwarf2_per_cu_quick_data
2743{
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
43f3e411 2751 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760};
2761
094b34ac
DE
2762/* Utility hash function for a stmt_list_hash. */
2763
2764static hashval_t
2765hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766{
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2771 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2772 return v;
2773}
2774
2775/* Utility equality function for a stmt_list_hash. */
2776
2777static int
2778eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780{
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
9c541725 2787 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2788}
2789
7b9f3c50
DE
2790/* Hash function for a quick_file_names. */
2791
2792static hashval_t
2793hash_file_name_entry (const void *e)
2794{
9a3c8263
SM
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
7b9f3c50 2797
094b34ac 2798 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2799}
2800
2801/* Equality function for a quick_file_names. */
2802
2803static int
2804eq_file_name_entry (const void *a, const void *b)
2805{
9a3c8263
SM
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2808
094b34ac 2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2810}
2811
2812/* Delete function for a quick_file_names. */
2813
2814static void
2815delete_file_name_entry (void *e)
2816{
9a3c8263 2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829}
2830
2831/* Create a quick_file_names hash table. */
2832
2833static htab_t
2834create_quick_file_names_table (unsigned int nr_initial_entries)
2835{
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839}
9291a0cd 2840
918dd910
JK
2841/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845static void
58f0c718 2846load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
918dd910 2847{
3019eac3 2848 if (per_cu->is_debug_types)
e5fe5e75 2849 load_full_type_unit (per_cu);
918dd910 2850 else
58f0c718 2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
918dd910 2852
cc12ce38
DE
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2dc860c0
DE
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2857}
2858
a0f42c21 2859/* Read in the symbols for PER_CU. */
2fdf6df6 2860
9291a0cd 2861static void
58f0c718 2862dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2863{
ed2dc618 2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9291a0cd 2865
f4dc4d17
DE
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
b303c6f6
AB
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
9291a0cd 2875
95554aad 2876 if (dwarf2_per_objfile->using_index
43f3e411 2877 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
58f0c718 2881 load_cu (per_cu, skip_partial);
89e63ee4
DE
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
cc12ce38 2887 && per_cu->cu != NULL
89e63ee4
DE
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
ed2dc618 2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
89e63ee4 2893 queue_and_load_all_dwo_tus (per_cu);
95554aad 2894 }
9291a0cd 2895
ed2dc618 2896 process_queue (dwarf2_per_objfile);
9291a0cd
TT
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
ed2dc618 2900 age_cached_comp_units (dwarf2_per_objfile);
9291a0cd
TT
2901}
2902
2903/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2fdf6df6 2906
43f3e411 2907static struct compunit_symtab *
58f0c718 2908dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2909{
ed2dc618
SM
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
95554aad 2912 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2913 if (!per_cu->v.quick->compunit_symtab)
9291a0cd 2914 {
11ed8cad 2915 free_cached_comp_units freer (dwarf2_per_objfile);
c83dd867 2916 scoped_restore decrementer = increment_reading_symtab ();
58f0c718 2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
ed2dc618 2918 process_cu_includes (dwarf2_per_objfile);
9291a0cd 2919 }
f194fefb 2920
43f3e411 2921 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2922}
2923
ff4c9fec 2924/* See declaration. */
f4dc4d17 2925
ff4c9fec
SM
2926dwarf2_per_cu_data *
2927dwarf2_per_objfile::get_cutu (int index)
2928{
b76e467d 2929 if (index >= this->all_comp_units.size ())
ff4c9fec 2930 {
b76e467d 2931 index -= this->all_comp_units.size ();
b2bdb8cf 2932 gdb_assert (index < this->all_type_units.size ());
ff4c9fec
SM
2933 return &this->all_type_units[index]->per_cu;
2934 }
f4dc4d17 2935
ff4c9fec
SM
2936 return this->all_comp_units[index];
2937}
f4dc4d17 2938
ff4c9fec 2939/* See declaration. */
2fdf6df6 2940
ff4c9fec
SM
2941dwarf2_per_cu_data *
2942dwarf2_per_objfile::get_cu (int index)
1fd400ff 2943{
b76e467d 2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
f4dc4d17 2945
ff4c9fec 2946 return this->all_comp_units[index];
f4dc4d17
DE
2947}
2948
ff4c9fec 2949/* See declaration. */
f4dc4d17 2950
ff4c9fec
SM
2951signatured_type *
2952dwarf2_per_objfile::get_tu (int index)
f4dc4d17 2953{
b2bdb8cf 2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
f4dc4d17 2955
ff4c9fec 2956 return this->all_type_units[index];
1fd400ff
TT
2957}
2958
4b514bc8
JK
2959/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963static dwarf2_per_cu_data *
ed2dc618 2964create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4b514bc8
JK
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968{
ed2dc618 2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
4b514bc8
JK
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
e3b94546 2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
4b514bc8
JK
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981}
2982
2ec9a5e0
TT
2983/* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2fdf6df6 2985
74a0d9f6 2986static void
12359b5e 2987create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
b76e467d 2990 int is_dwz)
9291a0cd 2991{
12359b5e 2992 for (offset_type i = 0; i < n_elements; i += 2)
9291a0cd 2993 {
74a0d9f6 2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2999 cu_list += 2 * 8;
3000
b76e467d 3001 dwarf2_per_cu_data *per_cu
ed2dc618
SM
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
b76e467d 3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
9291a0cd 3005 }
9291a0cd
TT
3006}
3007
2ec9a5e0 3008/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3009 the CU objects for this objfile. */
2ec9a5e0 3010
74a0d9f6 3011static void
12359b5e 3012create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015{
b76e467d
SM
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
2ec9a5e0 3019
12359b5e 3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
b76e467d 3021 &dwarf2_per_objfile->info, 0);
2ec9a5e0
TT
3022
3023 if (dwz_elements == 0)
74a0d9f6 3024 return;
2ec9a5e0 3025
12359b5e
SM
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
b76e467d 3028 &dwz->info, 1);
2ec9a5e0
TT
3029}
3030
1fd400ff 3031/* Create the signatured type hash table from the index. */
673bfd45 3032
74a0d9f6 3033static void
12359b5e
SM
3034create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
1fd400ff 3039{
12359b5e 3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
1fd400ff 3041
b2bdb8cf
SM
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
1fd400ff 3044
12359b5e 3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff 3046
12359b5e 3047 for (offset_type i = 0; i < elements; i += 3)
1fd400ff 3048 {
52dc124a 3049 struct signatured_type *sig_type;
9c541725 3050 ULONGEST signature;
1fd400ff 3051 void **slot;
9c541725 3052 cu_offset type_offset_in_tu;
1fd400ff 3053
74a0d9f6 3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
52dc124a 3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3064 struct signatured_type);
52dc124a 3065 sig_type->signature = signature;
9c541725 3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3067 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3068 sig_type->per_cu.section = section;
9c541725 3069 sig_type->per_cu.sect_off = sect_off;
e3b94546 3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
52dc124a 3071 sig_type->per_cu.v.quick
1fd400ff
TT
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
52dc124a
DE
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
1fd400ff 3077
b2bdb8cf 3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
1fd400ff
TT
3079 }
3080
673bfd45 3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3082}
3083
927aa2e7
JK
3084/* Create the signatured type hash table from .debug_names. */
3085
3086static void
3087create_signatured_type_table_from_debug_names
ed2dc618 3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092{
ed2dc618
SM
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
927aa2e7
JK
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
b2bdb8cf
SM
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
927aa2e7
JK
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
927aa2e7 3106 void **slot;
927aa2e7
JK
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
ed2dc618
SM
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
927aa2e7
JK
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
e3b94546 3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
927aa2e7
JK
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
b2bdb8cf 3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
927aa2e7
JK
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139}
3140
9291a0cd
TT
3141/* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3143
9291a0cd 3144static void
ed2dc618
SM
3145create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
9291a0cd 3147{
ed2dc618 3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3150 const gdb_byte *iter, *end;
9291a0cd 3151 struct addrmap *mutable_map;
9291a0cd
TT
3152 CORE_ADDR baseaddr;
3153
8268c778
PA
3154 auto_obstack temp_obstack;
3155
9291a0cd
TT
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
f00a2de2
PA
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
9291a0cd
TT
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
f652bce2 3172
24a55014 3173 if (lo > hi)
f652bce2 3174 {
b98664d3 3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3176 hex_string (lo), hex_string (hi));
24a55014 3177 continue;
f652bce2 3178 }
24a55014 3179
b76e467d 3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
f652bce2 3181 {
b98664d3 3182 complaint (_(".gdb_index address table has invalid CU number %u"),
f652bce2 3183 (unsigned) cu_index);
24a55014 3184 continue;
f652bce2 3185 }
24a55014 3186
79748972
TT
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
ed2dc618 3189 addrmap_set_empty (mutable_map, lo, hi - 1,
ff4c9fec 3190 dwarf2_per_objfile->get_cu (cu_index));
9291a0cd
TT
3191 }
3192
d320c2b5 3193 objfile->partial_symtabs->psymtabs_addrmap
5923a04c 3194 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
9291a0cd
TT
3195}
3196
927aa2e7
JK
3197/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200static void
ed2dc618 3201create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3202 struct dwarf2_section_info *section)
3203{
ed2dc618 3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
b76e467d 3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 3218 {
927aa2e7
JK
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
9d8780f0
SM
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
927aa2e7
JK
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
47e3f474 3250 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
47e3f474
TV
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer),
927aa2e7
JK
3255 plongest (bytes_read + entry_length),
3256 pulongest (section->size));
3257 return;
3258 }
3259
3260 /* The version number. */
3261 const uint16_t version = read_2_bytes (abfd, addr);
3262 addr += 2;
3263 if (version != 2)
3264 {
47e3f474 3265 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7 3266 "has unsupported version %d, ignoring .debug_aranges."),
47e3f474
TV
3267 objfile_name (objfile),
3268 plongest (entry_addr - section->buffer), version);
927aa2e7
JK
3269 return;
3270 }
3271
3272 const uint64_t debug_info_offset
3273 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3274 addr += offset_size;
3275 const auto per_cu_it
3276 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3277 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3278 {
47e3f474 3279 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3280 "debug_info_offset %s does not exists, "
3281 "ignoring .debug_aranges."),
47e3f474
TV
3282 objfile_name (objfile),
3283 plongest (entry_addr - section->buffer),
927aa2e7
JK
3284 pulongest (debug_info_offset));
3285 return;
3286 }
3287 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3288
3289 const uint8_t address_size = *addr++;
3290 if (address_size < 1 || address_size > 8)
3291 {
47e3f474 3292 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7 3293 "address_size %u is invalid, ignoring .debug_aranges."),
47e3f474
TV
3294 objfile_name (objfile),
3295 plongest (entry_addr - section->buffer), address_size);
927aa2e7
JK
3296 return;
3297 }
3298
3299 const uint8_t segment_selector_size = *addr++;
3300 if (segment_selector_size != 0)
3301 {
47e3f474 3302 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3303 "segment_selector_size %u is not supported, "
3304 "ignoring .debug_aranges."),
47e3f474
TV
3305 objfile_name (objfile),
3306 plongest (entry_addr - section->buffer),
927aa2e7
JK
3307 segment_selector_size);
3308 return;
3309 }
3310
3311 /* Must pad to an alignment boundary that is twice the address
3312 size. It is undocumented by the DWARF standard but GCC does
3313 use it. */
3314 for (size_t padding = ((-(addr - section->buffer))
3315 & (2 * address_size - 1));
3316 padding > 0; padding--)
3317 if (*addr++ != 0)
3318 {
47e3f474 3319 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7 3320 "padding is not zero, ignoring .debug_aranges."),
47e3f474
TV
3321 objfile_name (objfile),
3322 plongest (entry_addr - section->buffer));
927aa2e7
JK
3323 return;
3324 }
3325
3326 for (;;)
3327 {
3328 if (addr + 2 * address_size > entry_end)
3329 {
47e3f474 3330 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3331 "address list is not properly terminated, "
3332 "ignoring .debug_aranges."),
47e3f474
TV
3333 objfile_name (objfile),
3334 plongest (entry_addr - section->buffer));
927aa2e7
JK
3335 return;
3336 }
3337 ULONGEST start = extract_unsigned_integer (addr, address_size,
3338 dwarf5_byte_order);
3339 addr += address_size;
3340 ULONGEST length = extract_unsigned_integer (addr, address_size,
3341 dwarf5_byte_order);
3342 addr += address_size;
3343 if (start == 0 && length == 0)
3344 break;
3345 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3346 {
3347 /* Symbol was eliminated due to a COMDAT group. */
3348 continue;
3349 }
3350 ULONGEST end = start + length;
79748972
TT
3351 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3352 - baseaddr);
3353 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3354 - baseaddr);
927aa2e7
JK
3355 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3356 }
3357 }
3358
d320c2b5 3359 objfile->partial_symtabs->psymtabs_addrmap
5923a04c 3360 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
927aa2e7
JK
3361}
3362
9291a0cd
TT
3363/* Find a slot in the mapped index INDEX for the object named NAME.
3364 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3365 constant pool and return true. If NAME cannot be found, return
3366 false. */
2fdf6df6 3367
109483d9 3368static bool
9291a0cd
TT
3369find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3370 offset_type **vec_out)
3371{
0cf03b49 3372 offset_type hash;
9291a0cd 3373 offset_type slot, step;
559a7a62 3374 int (*cmp) (const char *, const char *);
9291a0cd 3375
791afaa2 3376 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3377 if (current_language->la_language == language_cplus
45280282
IB
3378 || current_language->la_language == language_fortran
3379 || current_language->la_language == language_d)
0cf03b49
JK
3380 {
3381 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3382 not contain any. */
a8719064 3383
72998fb3 3384 if (strchr (name, '(') != NULL)
0cf03b49 3385 {
109483d9 3386 without_params = cp_remove_params (name);
0cf03b49 3387
72998fb3 3388 if (without_params != NULL)
791afaa2 3389 name = without_params.get ();
0cf03b49
JK
3390 }
3391 }
3392
559a7a62 3393 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3394 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3395 simulate our NAME being searched is also lowercased. */
3396 hash = mapped_index_string_hash ((index->version == 4
3397 && case_sensitivity == case_sensitive_off
3398 ? 5 : index->version),
3399 name);
3400
f00a2de2
PA
3401 slot = hash & (index->symbol_table.size () - 1);
3402 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
559a7a62 3403 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3404
3405 for (;;)
3406 {
9291a0cd 3407 const char *str;
f00a2de2
PA
3408
3409 const auto &bucket = index->symbol_table[slot];
3410 if (bucket.name == 0 && bucket.vec == 0)
109483d9 3411 return false;
9291a0cd 3412
f00a2de2 3413 str = index->constant_pool + MAYBE_SWAP (bucket.name);
559a7a62 3414 if (!cmp (name, str))
9291a0cd
TT
3415 {
3416 *vec_out = (offset_type *) (index->constant_pool
f00a2de2 3417 + MAYBE_SWAP (bucket.vec));
109483d9 3418 return true;
9291a0cd
TT
3419 }
3420
f00a2de2 3421 slot = (slot + step) & (index->symbol_table.size () - 1);
9291a0cd
TT
3422 }
3423}
3424
4485a1c1
SM
3425/* A helper function that reads the .gdb_index from BUFFER and fills
3426 in MAP. FILENAME is the name of the file containing the data;
d33bc52e 3427 it is used for error reporting. DEPRECATED_OK is true if it is
2ec9a5e0
TT
3428 ok to use deprecated sections.
3429
3430 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3431 out parameters that are filled in with information about the CU and
3432 TU lists in the section.
3433
4485a1c1 3434 Returns true if all went well, false otherwise. */
2fdf6df6 3435
d33bc52e 3436static bool
4485a1c1
SM
3437read_gdb_index_from_buffer (struct objfile *objfile,
3438 const char *filename,
3439 bool deprecated_ok,
3440 gdb::array_view<const gdb_byte> buffer,
3441 struct mapped_index *map,
3442 const gdb_byte **cu_list,
3443 offset_type *cu_list_elements,
3444 const gdb_byte **types_list,
3445 offset_type *types_list_elements)
3446{
3447 const gdb_byte *addr = &buffer[0];
82430852 3448
9291a0cd 3449 /* Version check. */
4485a1c1 3450 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3451 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3452 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3453 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3454 indices. */
831adc1f 3455 if (version < 4)
481860b3
GB
3456 {
3457 static int warning_printed = 0;
3458 if (!warning_printed)
3459 {
3460 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3461 filename);
481860b3
GB
3462 warning_printed = 1;
3463 }
3464 return 0;
3465 }
3466 /* Index version 4 uses a different hash function than index version
3467 5 and later.
3468
3469 Versions earlier than 6 did not emit psymbols for inlined
3470 functions. Using these files will cause GDB not to be able to
3471 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3472 indices unless the user has done
3473 "set use-deprecated-index-sections on". */
2ec9a5e0 3474 if (version < 6 && !deprecated_ok)
481860b3
GB
3475 {
3476 static int warning_printed = 0;
3477 if (!warning_printed)
3478 {
e615022a
DE
3479 warning (_("\
3480Skipping deprecated .gdb_index section in %s.\n\
3481Do \"set use-deprecated-index-sections on\" before the file is read\n\
3482to use the section anyway."),
2ec9a5e0 3483 filename);
481860b3
GB
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
796a7ff8 3488 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3489 of the TU (for symbols coming from TUs),
3490 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3491 Plus gold-generated indices can have duplicate entries for global symbols,
3492 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3493 These are just performance bugs, and we can't distinguish gdb-generated
3494 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3495
481860b3 3496 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3497 longer backward compatible. */
796a7ff8 3498 if (version > 8)
594e8718 3499 return 0;
9291a0cd 3500
559a7a62 3501 map->version = version;
9291a0cd 3502
4485a1c1 3503 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff 3504
4485a1c1 3505 int i = 0;
2ec9a5e0
TT
3506 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3507 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3508 / 8);
1fd400ff
TT
3509 ++i;
3510
2ec9a5e0
TT
3511 *types_list = addr + MAYBE_SWAP (metadata[i]);
3512 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3513 - MAYBE_SWAP (metadata[i]))
3514 / 8);
987d643c 3515 ++i;
1fd400ff 3516
f00a2de2
PA
3517 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->address_table
3520 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
1fd400ff
TT
3521 ++i;
3522
f00a2de2
PA
3523 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3524 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3525 map->symbol_table
3526 = gdb::array_view<mapped_index::symbol_table_slot>
3527 ((mapped_index::symbol_table_slot *) symbol_table,
3528 (mapped_index::symbol_table_slot *) symbol_table_end);
9291a0cd 3529
f00a2de2 3530 ++i;
f9d83a0b 3531 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3532
2ec9a5e0
TT
3533 return 1;
3534}
3535
4485a1c1
SM
3536/* Callback types for dwarf2_read_gdb_index. */
3537
3538typedef gdb::function_view
3539 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3540 get_gdb_index_contents_ftype;
3541typedef gdb::function_view
3542 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3543 get_gdb_index_contents_dwz_ftype;
3544
927aa2e7 3545/* Read .gdb_index. If everything went ok, initialize the "quick"
2ec9a5e0
TT
3546 elements of all the CUs and return 1. Otherwise, return 0. */
3547
3548static int
4485a1c1
SM
3549dwarf2_read_gdb_index
3550 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3551 get_gdb_index_contents_ftype get_gdb_index_contents,
3552 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2ec9a5e0 3553{
2ec9a5e0
TT
3554 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3555 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3556 struct dwz_file *dwz;
12359b5e 3557 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ec9a5e0 3558
4485a1c1
SM
3559 gdb::array_view<const gdb_byte> main_index_contents
3560 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3561
3562 if (main_index_contents.empty ())
3563 return 0;
3564
3063847f 3565 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
4485a1c1
SM
3566 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3567 use_deprecated_index_sections,
3568 main_index_contents, map.get (), &cu_list,
3569 &cu_list_elements, &types_list,
3570 &types_list_elements))
2ec9a5e0
TT
3571 return 0;
3572
0fefef59 3573 /* Don't use the index if it's empty. */
3063847f 3574 if (map->symbol_table.empty ())
0fefef59
DE
3575 return 0;
3576
2ec9a5e0
TT
3577 /* If there is a .dwz file, read it so we can get its CU list as
3578 well. */
ed2dc618 3579 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 3580 if (dwz != NULL)
2ec9a5e0 3581 {
2ec9a5e0
TT
3582 struct mapped_index dwz_map;
3583 const gdb_byte *dwz_types_ignore;
3584 offset_type dwz_types_elements_ignore;
3585
4485a1c1
SM
3586 gdb::array_view<const gdb_byte> dwz_index_content
3587 = get_gdb_index_contents_dwz (objfile, dwz);
3588
3589 if (dwz_index_content.empty ())
3590 return 0;
3591
3592 if (!read_gdb_index_from_buffer (objfile,
00f93c44
AM
3593 bfd_get_filename (dwz->dwz_bfd.get ()),
3594 1, dwz_index_content, &dwz_map,
4485a1c1
SM
3595 &dwz_list, &dwz_list_elements,
3596 &dwz_types_ignore,
3597 &dwz_types_elements_ignore))
2ec9a5e0
TT
3598 {
3599 warning (_("could not read '.gdb_index' section from %s; skipping"),
00f93c44 3600 bfd_get_filename (dwz->dwz_bfd.get ()));
2ec9a5e0
TT
3601 return 0;
3602 }
3603 }
3604
12359b5e
SM
3605 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3606 dwz_list, dwz_list_elements);
1fd400ff 3607
8b70b953
TT
3608 if (types_list_elements)
3609 {
8b70b953
TT
3610 /* We can only handle a single .debug_types when we have an
3611 index. */
fd5866f6 3612 if (dwarf2_per_objfile->types.size () != 1)
8b70b953
TT
3613 return 0;
3614
fd5866f6 3615 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
8b70b953 3616
12359b5e
SM
3617 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3618 types_list, types_list_elements);
8b70b953 3619 }
9291a0cd 3620
3063847f 3621 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
9291a0cd 3622
3063847f 3623 dwarf2_per_objfile->index_table = std::move (map);
9291a0cd 3624 dwarf2_per_objfile->using_index = 1;
7b9f3c50 3625 dwarf2_per_objfile->quick_file_names_table =
b76e467d 3626 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd
TT
3627
3628 return 1;
3629}
3630
dee91e82 3631/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3632
dee91e82
DE
3633static void
3634dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3635 const gdb_byte *info_ptr,
dee91e82
DE
3636 struct die_info *comp_unit_die,
3637 int has_children,
3638 void *data)
9291a0cd 3639{
dee91e82 3640 struct dwarf2_cu *cu = reader->cu;
ed2dc618 3641 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
518817b3
SM
3642 struct dwarf2_per_objfile *dwarf2_per_objfile
3643 = cu->per_cu->dwarf2_per_objfile;
dee91e82 3644 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3645 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3646 struct attribute *attr;
dee91e82 3647 int i;
7b9f3c50
DE
3648 void **slot;
3649 struct quick_file_names *qfn;
9291a0cd 3650
0186c6a7
DE
3651 gdb_assert (! this_cu->is_debug_types);
3652
07261596
TT
3653 /* Our callers never want to match partial units -- instead they
3654 will match the enclosing full CU. */
3655 if (comp_unit_die->tag == DW_TAG_partial_unit)
3656 {
3657 this_cu->v.quick->no_file_data = 1;
3658 return;
3659 }
3660
0186c6a7 3661 lh_cu = this_cu;
7b9f3c50 3662 slot = NULL;
dee91e82 3663
fff8551c 3664 line_header_up lh;
9c541725 3665 sect_offset line_offset {};
fff8551c 3666
dee91e82 3667 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3668 if (attr)
3669 {
7b9f3c50
DE
3670 struct quick_file_names find_entry;
3671
9c541725 3672 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3673
3674 /* We may have already read in this line header (TU line header sharing).
3675 If we have we're done. */
094b34ac 3676 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3677 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3678 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3679 &find_entry, INSERT);
3680 if (*slot != NULL)
3681 {
9a3c8263 3682 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3683 return;
7b9f3c50
DE
3684 }
3685
3019eac3 3686 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3687 }
3688 if (lh == NULL)
3689 {
094b34ac 3690 lh_cu->v.quick->no_file_data = 1;
dee91e82 3691 return;
9291a0cd
TT
3692 }
3693
8d749320 3694 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3695 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3696 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3697 gdb_assert (slot != NULL);
3698 *slot = qfn;
9291a0cd 3699
d721ba37 3700 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3701
aa391654
TT
3702 int offset = 0;
3703 if (strcmp (fnd.name, "<unknown>") != 0)
3704 ++offset;
3705
3706 qfn->num_file_names = offset + lh->file_names.size ();
8d749320 3707 qfn->file_names =
aa391654
TT
3708 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3709 if (offset != 0)
3710 qfn->file_names[0] = xstrdup (fnd.name);
fff8551c 3711 for (i = 0; i < lh->file_names.size (); ++i)
aa391654 3712 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3713 qfn->real_names = NULL;
9291a0cd 3714
094b34ac 3715 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3716}
3717
3718/* A helper for the "quick" functions which attempts to read the line
3719 table for THIS_CU. */
3720
3721static struct quick_file_names *
e4a48d9d 3722dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3723{
0186c6a7
DE
3724 /* This should never be called for TUs. */
3725 gdb_assert (! this_cu->is_debug_types);
3726 /* Nor type unit groups. */
3727 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3728
dee91e82
DE
3729 if (this_cu->v.quick->file_names != NULL)
3730 return this_cu->v.quick->file_names;
3731 /* If we know there is no line data, no point in looking again. */
3732 if (this_cu->v.quick->no_file_data)
3733 return NULL;
3734
0186c6a7 3735 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3736
3737 if (this_cu->v.quick->no_file_data)
3738 return NULL;
3739 return this_cu->v.quick->file_names;
9291a0cd
TT
3740}
3741
3742/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3743 real path for a given file name from the line table. */
2fdf6df6 3744
9291a0cd 3745static const char *
7b9f3c50
DE
3746dw2_get_real_path (struct objfile *objfile,
3747 struct quick_file_names *qfn, int index)
9291a0cd 3748{
7b9f3c50
DE
3749 if (qfn->real_names == NULL)
3750 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3751 qfn->num_file_names, const char *);
9291a0cd 3752
7b9f3c50 3753 if (qfn->real_names[index] == NULL)
14278e1f 3754 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3755
7b9f3c50 3756 return qfn->real_names[index];
9291a0cd
TT
3757}
3758
3759static struct symtab *
3760dw2_find_last_source_symtab (struct objfile *objfile)
3761{
ed2dc618
SM
3762 struct dwarf2_per_objfile *dwarf2_per_objfile
3763 = get_dwarf2_per_objfile (objfile);
b76e467d 3764 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
58f0c718 3765 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
ae2de4f8 3766
43f3e411
DE
3767 if (cust == NULL)
3768 return NULL;
ed2dc618 3769
43f3e411 3770 return compunit_primary_filetab (cust);
9291a0cd
TT
3771}
3772
7b9f3c50
DE
3773/* Traversal function for dw2_forget_cached_source_info. */
3774
3775static int
3776dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3777{
7b9f3c50 3778 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3779
7b9f3c50 3780 if (file_data->real_names)
9291a0cd 3781 {
7b9f3c50 3782 int i;
9291a0cd 3783
7b9f3c50 3784 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3785 {
7b9f3c50
DE
3786 xfree ((void*) file_data->real_names[i]);
3787 file_data->real_names[i] = NULL;
9291a0cd
TT
3788 }
3789 }
7b9f3c50
DE
3790
3791 return 1;
3792}
3793
3794static void
3795dw2_forget_cached_source_info (struct objfile *objfile)
3796{
ed2dc618
SM
3797 struct dwarf2_per_objfile *dwarf2_per_objfile
3798 = get_dwarf2_per_objfile (objfile);
7b9f3c50
DE
3799
3800 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3801 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3802}
3803
f8eba3c6
TT
3804/* Helper function for dw2_map_symtabs_matching_filename that expands
3805 the symtabs and calls the iterator. */
3806
3807static int
3808dw2_map_expand_apply (struct objfile *objfile,
3809 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3810 const char *name, const char *real_path,
14bc53a8 3811 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3812{
43f3e411 3813 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3814
3815 /* Don't visit already-expanded CUs. */
43f3e411 3816 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3817 return 0;
3818
3819 /* This may expand more than one symtab, and we want to iterate over
3820 all of them. */
58f0c718 3821 dw2_instantiate_symtab (per_cu, false);
f8eba3c6 3822
14bc53a8
PA
3823 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3824 last_made, callback);
f8eba3c6
TT
3825}
3826
3827/* Implementation of the map_symtabs_matching_filename method. */
3828
14bc53a8
PA
3829static bool
3830dw2_map_symtabs_matching_filename
3831 (struct objfile *objfile, const char *name, const char *real_path,
3832 gdb::function_view<bool (symtab *)> callback)
9291a0cd 3833{
c011a4f4 3834 const char *name_basename = lbasename (name);
ed2dc618
SM
3835 struct dwarf2_per_objfile *dwarf2_per_objfile
3836 = get_dwarf2_per_objfile (objfile);
ae2de4f8 3837
848e3e78
DE
3838 /* The rule is CUs specify all the files, including those used by
3839 any TU, so there's no need to scan TUs here. */
f4dc4d17 3840
b76e467d 3841 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 3842 {
3d7bb9d9 3843 /* We only need to look at symtabs not already expanded. */
43f3e411 3844 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3845 continue;
3846
b76e467d 3847 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 3848 if (file_data == NULL)
9291a0cd
TT
3849 continue;
3850
b76e467d 3851 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3852 {
7b9f3c50 3853 const char *this_name = file_data->file_names[j];
da235a7c 3854 const char *this_real_name;
9291a0cd 3855
af529f8f 3856 if (compare_filenames_for_search (this_name, name))
9291a0cd 3857 {
f5b95b50 3858 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3859 callback))
3860 return true;
288e77a7 3861 continue;
4aac40c8 3862 }
9291a0cd 3863
c011a4f4
DE
3864 /* Before we invoke realpath, which can get expensive when many
3865 files are involved, do a quick comparison of the basenames. */
3866 if (! basenames_may_differ
3867 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3868 continue;
3869
da235a7c
JK
3870 this_real_name = dw2_get_real_path (objfile, file_data, j);
3871 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3872 {
da235a7c 3873 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3874 callback))
3875 return true;
288e77a7 3876 continue;
da235a7c 3877 }
9291a0cd 3878
da235a7c
JK
3879 if (real_path != NULL)
3880 {
af529f8f
JK
3881 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3882 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3883 if (this_real_name != NULL
af529f8f 3884 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3885 {
f5b95b50 3886 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3887 callback))
3888 return true;
288e77a7 3889 continue;
9291a0cd
TT
3890 }
3891 }
3892 }
3893 }
3894
14bc53a8 3895 return false;
9291a0cd
TT
3896}
3897
da51c347
DE
3898/* Struct used to manage iterating over all CUs looking for a symbol. */
3899
3900struct dw2_symtab_iterator
9291a0cd 3901{
ed2dc618
SM
3902 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3903 struct dwarf2_per_objfile *dwarf2_per_objfile;
2b79f376
SM
3904 /* If set, only look for symbols that match that block. Valid values are
3905 GLOBAL_BLOCK and STATIC_BLOCK. */
c7f839cb 3906 gdb::optional<block_enum> block_index;
da51c347
DE
3907 /* The kind of symbol we're looking for. */
3908 domain_enum domain;
3909 /* The list of CUs from the index entry of the symbol,
3910 or NULL if not found. */
3911 offset_type *vec;
3912 /* The next element in VEC to look at. */
3913 int next;
3914 /* The number of elements in VEC, or zero if there is no match. */
3915 int length;
8943b874
DE
3916 /* Have we seen a global version of the symbol?
3917 If so we can ignore all further global instances.
3918 This is to work around gold/15646, inefficient gold-generated
3919 indices. */
3920 int global_seen;
da51c347 3921};
9291a0cd 3922
2b79f376 3923/* Initialize the index symtab iterator ITER. */
2fdf6df6 3924
9291a0cd 3925static void
da51c347 3926dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
ed2dc618 3927 struct dwarf2_per_objfile *dwarf2_per_objfile,
c7f839cb 3928 gdb::optional<block_enum> block_index,
da51c347
DE
3929 domain_enum domain,
3930 const char *name)
3931{
ed2dc618 3932 iter->dwarf2_per_objfile = dwarf2_per_objfile;
da51c347
DE
3933 iter->block_index = block_index;
3934 iter->domain = domain;
3935 iter->next = 0;
8943b874 3936 iter->global_seen = 0;
da51c347 3937
3063847f 3938 mapped_index *index = dwarf2_per_objfile->index_table.get ();
ed2dc618
SM
3939
3940 /* index is NULL if OBJF_READNOW. */
3941 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
da51c347
DE
3942 iter->length = MAYBE_SWAP (*iter->vec);
3943 else
3944 {
3945 iter->vec = NULL;
3946 iter->length = 0;
3947 }
3948}
3949
3950/* Return the next matching CU or NULL if there are no more. */
3951
3952static struct dwarf2_per_cu_data *
3953dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3954{
ed2dc618
SM
3955 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3956
da51c347
DE
3957 for ( ; iter->next < iter->length; ++iter->next)
3958 {
3959 offset_type cu_index_and_attrs =
3960 MAYBE_SWAP (iter->vec[iter->next + 1]);
3961 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
da51c347
DE
3962 gdb_index_symbol_kind symbol_kind =
3963 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3968 int attrs_valid =
ed2dc618 3969 (dwarf2_per_objfile->index_table->version >= 7
da51c347
DE
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971
3190f0c6 3972 /* Don't crash on bad data. */
b76e467d 3973 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 3974 + dwarf2_per_objfile->all_type_units.size ()))
3190f0c6 3975 {
b98664d3 3976 complaint (_(".gdb_index entry has bad CU index"
4262abfb
JK
3977 " [in module %s]"),
3978 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3979 continue;
3980 }
3981
ff4c9fec 3982 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3190f0c6 3983
da51c347 3984 /* Skip if already read in. */
43f3e411 3985 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3986 continue;
3987
8943b874
DE
3988 /* Check static vs global. */
3989 if (attrs_valid)
3990 {
2b79f376
SM
3991 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3992
3993 if (iter->block_index.has_value ())
3994 {
3995 bool want_static = *iter->block_index == STATIC_BLOCK;
3996
3997 if (is_static != want_static)
3998 continue;
3999 }
4000
8943b874
DE
4001 /* Work around gold/15646. */
4002 if (!is_static && iter->global_seen)
4003 continue;
4004 if (!is_static)
4005 iter->global_seen = 1;
4006 }
da51c347
DE
4007
4008 /* Only check the symbol's kind if it has one. */
4009 if (attrs_valid)
4010 {
4011 switch (iter->domain)
4012 {
4013 case VAR_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4015 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4016 /* Some types are also in VAR_DOMAIN. */
4017 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4018 continue;
4019 break;
4020 case STRUCT_DOMAIN:
4021 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4022 continue;
4023 break;
4024 case LABEL_DOMAIN:
4025 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4026 continue;
4027 break;
4028 default:
4029 break;
4030 }
4031 }
4032
4033 ++iter->next;
4034 return per_cu;
4035 }
4036
4037 return NULL;
4038}
4039
43f3e411 4040static struct compunit_symtab *
c7f839cb 4041dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
da51c347 4042 const char *name, domain_enum domain)
9291a0cd 4043{
43f3e411 4044 struct compunit_symtab *stab_best = NULL;
ed2dc618
SM
4045 struct dwarf2_per_objfile *dwarf2_per_objfile
4046 = get_dwarf2_per_objfile (objfile);
9291a0cd 4047
b5ec771e
PA
4048 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4049
ed2dc618
SM
4050 struct dw2_symtab_iterator iter;
4051 struct dwarf2_per_cu_data *per_cu;
da51c347 4052
2b79f376 4053 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
9291a0cd 4054
ed2dc618
SM
4055 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4056 {
4057 struct symbol *sym, *with_opaque = NULL;
58f0c718 4058 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
ed2dc618 4059 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
582942f4 4060 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 4061
ed2dc618
SM
4062 sym = block_find_symbol (block, name, domain,
4063 block_find_non_opaque_type_preferred,
4064 &with_opaque);
b2e2f908 4065
ed2dc618
SM
4066 /* Some caution must be observed with overloaded functions
4067 and methods, since the index will not contain any overload
4068 information (but NAME might contain it). */
da51c347 4069
ed2dc618
SM
4070 if (sym != NULL
4071 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4072 return stab;
4073 if (with_opaque != NULL
4074 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4075 stab_best = stab;
da51c347 4076
ed2dc618 4077 /* Keep looking through other CUs. */
9291a0cd 4078 }
9291a0cd 4079
da51c347 4080 return stab_best;
9291a0cd
TT
4081}
4082
4083static void
4084dw2_print_stats (struct objfile *objfile)
4085{
ed2dc618
SM
4086 struct dwarf2_per_objfile *dwarf2_per_objfile
4087 = get_dwarf2_per_objfile (objfile);
b76e467d 4088 int total = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4089 + dwarf2_per_objfile->all_type_units.size ());
ed2dc618 4090 int count = 0;
9291a0cd 4091
ed2dc618 4092 for (int i = 0; i < total; ++i)
9291a0cd 4093 {
ff4c9fec 4094 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4095
43f3e411 4096 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4097 ++count;
4098 }
e4a48d9d 4099 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
4100 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4101}
4102
779bd270
DE
4103/* This dumps minimal information about the index.
4104 It is called via "mt print objfiles".
4105 One use is to verify .gdb_index has been loaded by the
4106 gdb.dwarf2/gdb-index.exp testcase. */
4107
9291a0cd
TT
4108static void
4109dw2_dump (struct objfile *objfile)
4110{
ed2dc618
SM
4111 struct dwarf2_per_objfile *dwarf2_per_objfile
4112 = get_dwarf2_per_objfile (objfile);
4113
779bd270
DE
4114 gdb_assert (dwarf2_per_objfile->using_index);
4115 printf_filtered (".gdb_index:");
4116 if (dwarf2_per_objfile->index_table != NULL)
4117 {
4118 printf_filtered (" version %d\n",
4119 dwarf2_per_objfile->index_table->version);
4120 }
4121 else
4122 printf_filtered (" faked for \"readnow\"\n");
4123 printf_filtered ("\n");
9291a0cd
TT
4124}
4125
9291a0cd
TT
4126static void
4127dw2_expand_symtabs_for_function (struct objfile *objfile,
4128 const char *func_name)
4129{
ed2dc618
SM
4130 struct dwarf2_per_objfile *dwarf2_per_objfile
4131 = get_dwarf2_per_objfile (objfile);
da51c347 4132
ed2dc618
SM
4133 struct dw2_symtab_iterator iter;
4134 struct dwarf2_per_cu_data *per_cu;
da51c347 4135
2b79f376 4136 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
da51c347 4137
ed2dc618 4138 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
58f0c718 4139 dw2_instantiate_symtab (per_cu, false);
da51c347 4140
9291a0cd
TT
4141}
4142
4143static void
4144dw2_expand_all_symtabs (struct objfile *objfile)
4145{
ed2dc618
SM
4146 struct dwarf2_per_objfile *dwarf2_per_objfile
4147 = get_dwarf2_per_objfile (objfile);
b76e467d 4148 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4149 + dwarf2_per_objfile->all_type_units.size ());
9291a0cd 4150
ed2dc618 4151 for (int i = 0; i < total_units; ++i)
9291a0cd 4152 {
ff4c9fec 4153 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4154
58f0c718
TT
4155 /* We don't want to directly expand a partial CU, because if we
4156 read it with the wrong language, then assertion failures can
4157 be triggered later on. See PR symtab/23010. So, tell
4158 dw2_instantiate_symtab to skip partial CUs -- any important
4159 partial CU will be read via DW_TAG_imported_unit anyway. */
4160 dw2_instantiate_symtab (per_cu, true);
9291a0cd
TT
4161 }
4162}
4163
4164static void
652a8996
JK
4165dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4166 const char *fullname)
9291a0cd 4167{
ed2dc618
SM
4168 struct dwarf2_per_objfile *dwarf2_per_objfile
4169 = get_dwarf2_per_objfile (objfile);
d4637a04
DE
4170
4171 /* We don't need to consider type units here.
4172 This is only called for examining code, e.g. expand_line_sal.
4173 There can be an order of magnitude (or more) more type units
4174 than comp units, and we avoid them if we can. */
4175
b76e467d 4176 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 4177 {
3d7bb9d9 4178 /* We only need to look at symtabs not already expanded. */
43f3e411 4179 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4180 continue;
4181
b76e467d 4182 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 4183 if (file_data == NULL)
9291a0cd
TT
4184 continue;
4185
b76e467d 4186 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4187 {
652a8996
JK
4188 const char *this_fullname = file_data->file_names[j];
4189
4190 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4191 {
58f0c718 4192 dw2_instantiate_symtab (per_cu, false);
9291a0cd
TT
4193 break;
4194 }
4195 }
4196 }
4197}
4198
9291a0cd 4199static void
199b4314
TT
4200dw2_map_matching_symbols
4201 (struct objfile *objfile,
b054970d 4202 const lookup_name_info &name, domain_enum domain,
199b4314
TT
4203 int global,
4204 gdb::function_view<symbol_found_callback_ftype> callback,
199b4314 4205 symbol_compare_ftype *ordered_compare)
9291a0cd 4206{
40658b94 4207 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4208 current language is Ada for a non-Ada objfile using GNU index. As Ada
4209 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4210}
4211
e1ef7d7a
PA
4212/* Starting from a search name, return the string that finds the upper
4213 bound of all strings that start with SEARCH_NAME in a sorted name
4214 list. Returns the empty string to indicate that the upper bound is
4215 the end of the list. */
4216
4217static std::string
4218make_sort_after_prefix_name (const char *search_name)
4219{
4220 /* When looking to complete "func", we find the upper bound of all
4221 symbols that start with "func" by looking for where we'd insert
4222 the closest string that would follow "func" in lexicographical
4223 order. Usually, that's "func"-with-last-character-incremented,
4224 i.e. "fund". Mind non-ASCII characters, though. Usually those
4225 will be UTF-8 multi-byte sequences, but we can't be certain.
4226 Especially mind the 0xff character, which is a valid character in
4227 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4228 rule out compilers allowing it in identifiers. Note that
4229 conveniently, strcmp/strcasecmp are specified to compare
4230 characters interpreted as unsigned char. So what we do is treat
4231 the whole string as a base 256 number composed of a sequence of
4232 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4233 to 0, and carries 1 to the following more-significant position.
4234 If the very first character in SEARCH_NAME ends up incremented
4235 and carries/overflows, then the upper bound is the end of the
4236 list. The string after the empty string is also the empty
4237 string.
4238
4239 Some examples of this operation:
4240
4241 SEARCH_NAME => "+1" RESULT
4242
4243 "abc" => "abd"
4244 "ab\xff" => "ac"
4245 "\xff" "a" "\xff" => "\xff" "b"
4246 "\xff" => ""
4247 "\xff\xff" => ""
4248 "" => ""
4249
4250 Then, with these symbols for example:
4251
4252 func
4253 func1
4254 fund
4255
4256 completing "func" looks for symbols between "func" and
4257 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4258 which finds "func" and "func1", but not "fund".
4259
4260 And with:
4261
4262 funcÿ (Latin1 'ÿ' [0xff])
4263 funcÿ1
4264 fund
4265
4266 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4267 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4268
4269 And with:
4270
4271 ÿÿ (Latin1 'ÿ' [0xff])
4272 ÿÿ1
4273
4274 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4275 the end of the list.
4276 */
4277 std::string after = search_name;
4278 while (!after.empty () && (unsigned char) after.back () == 0xff)
4279 after.pop_back ();
4280 if (!after.empty ())
4281 after.back () = (unsigned char) after.back () + 1;
4282 return after;
4283}
4284
5c58de74 4285/* See declaration. */
61d96d7e 4286
5c58de74
PA
4287std::pair<std::vector<name_component>::const_iterator,
4288 std::vector<name_component>::const_iterator>
44ed8f3e 4289mapped_index_base::find_name_components_bounds
3b00ef10 4290 (const lookup_name_info &lookup_name_without_params, language lang) const
3f563c84 4291{
5c58de74
PA
4292 auto *name_cmp
4293 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3f563c84 4294
3b00ef10
TT
4295 const char *lang_name
4296 = lookup_name_without_params.language_lookup_name (lang).c_str ();
9291a0cd 4297
3f563c84
PA
4298 /* Comparison function object for lower_bound that matches against a
4299 given symbol name. */
4300 auto lookup_compare_lower = [&] (const name_component &elem,
4301 const char *name)
4302 {
5c58de74 4303 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4304 const char *elem_name = elem_qualified + elem.name_offset;
4305 return name_cmp (elem_name, name) < 0;
4306 };
4307
4308 /* Comparison function object for upper_bound that matches against a
4309 given symbol name. */
4310 auto lookup_compare_upper = [&] (const char *name,
4311 const name_component &elem)
4312 {
5c58de74 4313 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4314 const char *elem_name = elem_qualified + elem.name_offset;
4315 return name_cmp (name, elem_name) < 0;
4316 };
4317
5c58de74
PA
4318 auto begin = this->name_components.begin ();
4319 auto end = this->name_components.end ();
3f563c84
PA
4320
4321 /* Find the lower bound. */
4322 auto lower = [&] ()
4323 {
3b00ef10 4324 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3f563c84
PA
4325 return begin;
4326 else
3b00ef10 4327 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3f563c84
PA
4328 } ();
4329
4330 /* Find the upper bound. */
4331 auto upper = [&] ()
4332 {
5c58de74 4333 if (lookup_name_without_params.completion_mode ())
3f563c84 4334 {
e1ef7d7a
PA
4335 /* In completion mode, we want UPPER to point past all
4336 symbols names that have the same prefix. I.e., with
4337 these symbols, and completing "func":
4338
4339 function << lower bound
4340 function1
4341 other_function << upper bound
4342
4343 We find the upper bound by looking for the insertion
4344 point of "func"-with-last-character-incremented,
4345 i.e. "fund". */
3b00ef10 4346 std::string after = make_sort_after_prefix_name (lang_name);
e1ef7d7a 4347 if (after.empty ())
3f563c84 4348 return end;
e6b2f5ef
PA
4349 return std::lower_bound (lower, end, after.c_str (),
4350 lookup_compare_lower);
3f563c84
PA
4351 }
4352 else
3b00ef10 4353 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3f563c84
PA
4354 } ();
4355
5c58de74
PA
4356 return {lower, upper};
4357}
4358
4359/* See declaration. */
4360
4361void
44ed8f3e 4362mapped_index_base::build_name_components ()
5c58de74
PA
4363{
4364 if (!this->name_components.empty ())
4365 return;
4366
4367 this->name_components_casing = case_sensitivity;
4368 auto *name_cmp
4369 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4370
4371 /* The code below only knows how to break apart components of C++
4372 symbol names (and other languages that use '::' as
3b00ef10 4373 namespace/module separator) and Ada symbol names. */
44ed8f3e
PA
4374 auto count = this->symbol_name_count ();
4375 for (offset_type idx = 0; idx < count; idx++)
5c58de74 4376 {
44ed8f3e 4377 if (this->symbol_name_slot_invalid (idx))
5c58de74
PA
4378 continue;
4379
4380 const char *name = this->symbol_name_at (idx);
4381
4382 /* Add each name component to the name component table. */
4383 unsigned int previous_len = 0;
3b00ef10
TT
4384
4385 if (strstr (name, "::") != nullptr)
4386 {
4387 for (unsigned int current_len = cp_find_first_component (name);
4388 name[current_len] != '\0';
4389 current_len += cp_find_first_component (name + current_len))
4390 {
4391 gdb_assert (name[current_len] == ':');
4392 this->name_components.push_back ({previous_len, idx});
4393 /* Skip the '::'. */
4394 current_len += 2;
4395 previous_len = current_len;
4396 }
4397 }
4398 else
5c58de74 4399 {
3b00ef10
TT
4400 /* Handle the Ada encoded (aka mangled) form here. */
4401 for (const char *iter = strstr (name, "__");
4402 iter != nullptr;
4403 iter = strstr (iter, "__"))
4404 {
4405 this->name_components.push_back ({previous_len, idx});
4406 iter += 2;
4407 previous_len = iter - name;
4408 }
5c58de74 4409 }
3b00ef10 4410
5c58de74
PA
4411 this->name_components.push_back ({previous_len, idx});
4412 }
4413
4414 /* Sort name_components elements by name. */
4415 auto name_comp_compare = [&] (const name_component &left,
4416 const name_component &right)
4417 {
4418 const char *left_qualified = this->symbol_name_at (left.idx);
4419 const char *right_qualified = this->symbol_name_at (right.idx);
4420
4421 const char *left_name = left_qualified + left.name_offset;
4422 const char *right_name = right_qualified + right.name_offset;
4423
4424 return name_cmp (left_name, right_name) < 0;
4425 };
4426
4427 std::sort (this->name_components.begin (),
4428 this->name_components.end (),
4429 name_comp_compare);
4430}
4431
4432/* Helper for dw2_expand_symtabs_matching that works with a
44ed8f3e
PA
4433 mapped_index_base instead of the containing objfile. This is split
4434 to a separate function in order to be able to unit test the
4435 name_components matching using a mock mapped_index_base. For each
5c58de74 4436 symbol name that matches, calls MATCH_CALLBACK, passing it the
44ed8f3e 4437 symbol's index in the mapped_index_base symbol table. */
5c58de74
PA
4438
4439static void
4440dw2_expand_symtabs_matching_symbol
44ed8f3e 4441 (mapped_index_base &index,
5c58de74
PA
4442 const lookup_name_info &lookup_name_in,
4443 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4444 enum search_domain kind,
3b00ef10 4445 gdb::function_view<bool (offset_type)> match_callback)
5c58de74
PA
4446{
4447 lookup_name_info lookup_name_without_params
4448 = lookup_name_in.make_ignore_params ();
5c58de74
PA
4449
4450 /* Build the symbol name component sorted vector, if we haven't
4451 yet. */
4452 index.build_name_components ();
4453
3f563c84
PA
4454 /* The same symbol may appear more than once in the range though.
4455 E.g., if we're looking for symbols that complete "w", and we have
4456 a symbol named "w1::w2", we'll find the two name components for
4457 that same symbol in the range. To be sure we only call the
4458 callback once per symbol, we first collect the symbol name
4459 indexes that matched in a temporary vector and ignore
4460 duplicates. */
4461 std::vector<offset_type> matches;
3f563c84 4462
3b00ef10
TT
4463 struct name_and_matcher
4464 {
4465 symbol_name_matcher_ftype *matcher;
4466 const std::string &name;
4467
4468 bool operator== (const name_and_matcher &other) const
3f563c84 4469 {
3b00ef10
TT
4470 return matcher == other.matcher && name == other.name;
4471 }
4472 };
4473
4474 /* A vector holding all the different symbol name matchers, for all
4475 languages. */
4476 std::vector<name_and_matcher> matchers;
4477
4478 for (int i = 0; i < nr_languages; i++)
4479 {
4480 enum language lang_e = (enum language) i;
4481
4482 const language_defn *lang = language_def (lang_e);
4483 symbol_name_matcher_ftype *name_matcher
4484 = get_symbol_name_matcher (lang, lookup_name_without_params);
3f563c84 4485
3b00ef10
TT
4486 name_and_matcher key {
4487 name_matcher,
4488 lookup_name_without_params.language_lookup_name (lang_e)
4489 };
4490
4491 /* Don't insert the same comparison routine more than once.
4492 Note that we do this linear walk. This is not a problem in
4493 practice because the number of supported languages is
4494 low. */
4495 if (std::find (matchers.begin (), matchers.end (), key)
4496 != matchers.end ())
9291a0cd 4497 continue;
3b00ef10
TT
4498 matchers.push_back (std::move (key));
4499
4500 auto bounds
4501 = index.find_name_components_bounds (lookup_name_without_params,
4502 lang_e);
4503
4504 /* Now for each symbol name in range, check to see if we have a name
4505 match, and if so, call the MATCH_CALLBACK callback. */
4506
4507 for (; bounds.first != bounds.second; ++bounds.first)
4508 {
4509 const char *qualified = index.symbol_name_at (bounds.first->idx);
4510
4511 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4512 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4513 continue;
9291a0cd 4514
3b00ef10
TT
4515 matches.push_back (bounds.first->idx);
4516 }
3f563c84
PA
4517 }
4518
4519 std::sort (matches.begin (), matches.end ());
4520
4521 /* Finally call the callback, once per match. */
4522 ULONGEST prev = -1;
4523 for (offset_type idx : matches)
4524 {
4525 if (prev != idx)
4526 {
3b00ef10
TT
4527 if (!match_callback (idx))
4528 break;
3f563c84
PA
4529 prev = idx;
4530 }
4531 }
4532
4533 /* Above we use a type wider than idx's for 'prev', since 0 and
4534 (offset_type)-1 are both possible values. */
4535 static_assert (sizeof (prev) > sizeof (offset_type), "");
4536}
4537
c62446b1
PA
4538#if GDB_SELF_TEST
4539
4540namespace selftests { namespace dw2_expand_symtabs_matching {
4541
a3c5fafd
PA
4542/* A mock .gdb_index/.debug_names-like name index table, enough to
4543 exercise dw2_expand_symtabs_matching_symbol, which works with the
4544 mapped_index_base interface. Builds an index from the symbol list
4545 passed as parameter to the constructor. */
4546class mock_mapped_index : public mapped_index_base
c62446b1
PA
4547{
4548public:
a3c5fafd
PA
4549 mock_mapped_index (gdb::array_view<const char *> symbols)
4550 : m_symbol_table (symbols)
c62446b1
PA
4551 {}
4552
a3c5fafd 4553 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
c62446b1 4554
a3c5fafd 4555 /* Return the number of names in the symbol table. */
632e107b 4556 size_t symbol_name_count () const override
c62446b1 4557 {
a3c5fafd 4558 return m_symbol_table.size ();
c62446b1
PA
4559 }
4560
a3c5fafd 4561 /* Get the name of the symbol at IDX in the symbol table. */
632e107b 4562 const char *symbol_name_at (offset_type idx) const override
a3c5fafd
PA
4563 {
4564 return m_symbol_table[idx];
4565 }
c62446b1 4566
a3c5fafd
PA
4567private:
4568 gdb::array_view<const char *> m_symbol_table;
c62446b1
PA
4569};
4570
4571/* Convenience function that converts a NULL pointer to a "<null>"
4572 string, to pass to print routines. */
4573
4574static const char *
4575string_or_null (const char *str)
4576{
4577 return str != NULL ? str : "<null>";
4578}
4579
4580/* Check if a lookup_name_info built from
4581 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4582 index. EXPECTED_LIST is the list of expected matches, in expected
4583 matching order. If no match expected, then an empty list is
4584 specified. Returns true on success. On failure prints a warning
4585 indicating the file:line that failed, and returns false. */
4586
4587static bool
4588check_match (const char *file, int line,
4589 mock_mapped_index &mock_index,
4590 const char *name, symbol_name_match_type match_type,
4591 bool completion_mode,
4592 std::initializer_list<const char *> expected_list)
4593{
4594 lookup_name_info lookup_name (name, match_type, completion_mode);
4595
4596 bool matched = true;
4597
4598 auto mismatch = [&] (const char *expected_str,
4599 const char *got)
4600 {
4601 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4602 "expected=\"%s\", got=\"%s\"\n"),
4603 file, line,
4604 (match_type == symbol_name_match_type::FULL
4605 ? "FULL" : "WILD"),
4606 name, string_or_null (expected_str), string_or_null (got));
4607 matched = false;
4608 };
4609
4610 auto expected_it = expected_list.begin ();
4611 auto expected_end = expected_list.end ();
4612
a3c5fafd 4613 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
c62446b1
PA
4614 NULL, ALL_DOMAIN,
4615 [&] (offset_type idx)
4616 {
a3c5fafd 4617 const char *matched_name = mock_index.symbol_name_at (idx);
c62446b1
PA
4618 const char *expected_str
4619 = expected_it == expected_end ? NULL : *expected_it++;
4620
4621 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4622 mismatch (expected_str, matched_name);
3b00ef10 4623 return true;
c62446b1
PA
4624 });
4625
4626 const char *expected_str
4627 = expected_it == expected_end ? NULL : *expected_it++;
4628 if (expected_str != NULL)
4629 mismatch (expected_str, NULL);
4630
4631 return matched;
4632}
4633
4634/* The symbols added to the mock mapped_index for testing (in
4635 canonical form). */
4636static const char *test_symbols[] = {
4637 "function",
4638 "std::bar",
4639 "std::zfunction",
4640 "std::zfunction2",
4641 "w1::w2",
4642 "ns::foo<char*>",
4643 "ns::foo<int>",
4644 "ns::foo<long>",
a20714ff
PA
4645 "ns2::tmpl<int>::foo2",
4646 "(anonymous namespace)::A::B::C",
c62446b1 4647
e1ef7d7a
PA
4648 /* These are used to check that the increment-last-char in the
4649 matching algorithm for completion doesn't match "t1_fund" when
4650 completing "t1_func". */
4651 "t1_func",
4652 "t1_func1",
4653 "t1_fund",
4654 "t1_fund1",
4655
4656 /* A UTF-8 name with multi-byte sequences to make sure that
4657 cp-name-parser understands this as a single identifier ("função"
4658 is "function" in PT). */
4659 u8"u8função",
4660
4661 /* \377 (0xff) is Latin1 'ÿ'. */
4662 "yfunc\377",
4663
4664 /* \377 (0xff) is Latin1 'ÿ'. */
4665 "\377",
4666 "\377\377123",
4667
c62446b1
PA
4668 /* A name with all sorts of complications. Starts with "z" to make
4669 it easier for the completion tests below. */
4670#define Z_SYM_NAME \
4671 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4672 "::tuple<(anonymous namespace)::ui*, " \
4673 "std::default_delete<(anonymous namespace)::ui>, void>"
4674
4675 Z_SYM_NAME
4676};
4677
a3c5fafd
PA
4678/* Returns true if the mapped_index_base::find_name_component_bounds
4679 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4680 in completion mode. */
5c58de74
PA
4681
4682static bool
a3c5fafd 4683check_find_bounds_finds (mapped_index_base &index,
5c58de74
PA
4684 const char *search_name,
4685 gdb::array_view<const char *> expected_syms)
4686{
4687 lookup_name_info lookup_name (search_name,
4688 symbol_name_match_type::FULL, true);
4689
3b00ef10
TT
4690 auto bounds = index.find_name_components_bounds (lookup_name,
4691 language_cplus);
5c58de74
PA
4692
4693 size_t distance = std::distance (bounds.first, bounds.second);
4694 if (distance != expected_syms.size ())
4695 return false;
4696
4697 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4698 {
4699 auto nc_elem = bounds.first + exp_elem;
4700 const char *qualified = index.symbol_name_at (nc_elem->idx);
4701 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4702 return false;
4703 }
4704
4705 return true;
4706}
4707
4708/* Test the lower-level mapped_index::find_name_component_bounds
4709 method. */
4710
c62446b1 4711static void
5c58de74
PA
4712test_mapped_index_find_name_component_bounds ()
4713{
4714 mock_mapped_index mock_index (test_symbols);
4715
a3c5fafd 4716 mock_index.build_name_components ();
5c58de74
PA
4717
4718 /* Test the lower-level mapped_index::find_name_component_bounds
4719 method in completion mode. */
4720 {
4721 static const char *expected_syms[] = {
4722 "t1_func",
4723 "t1_func1",
5c58de74
PA
4724 };
4725
a3c5fafd 4726 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4727 "t1_func", expected_syms));
4728 }
4729
4730 /* Check that the increment-last-char in the name matching algorithm
4731 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4732 {
4733 static const char *expected_syms1[] = {
4734 "\377",
4735 "\377\377123",
4736 };
a3c5fafd 4737 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4738 "\377", expected_syms1));
4739
4740 static const char *expected_syms2[] = {
4741 "\377\377123",
4742 };
a3c5fafd 4743 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4744 "\377\377", expected_syms2));
4745 }
4746}
4747
4748/* Test dw2_expand_symtabs_matching_symbol. */
4749
4750static void
4751test_dw2_expand_symtabs_matching_symbol ()
c62446b1
PA
4752{
4753 mock_mapped_index mock_index (test_symbols);
4754
4755 /* We let all tests run until the end even if some fails, for debug
4756 convenience. */
4757 bool any_mismatch = false;
4758
4759 /* Create the expected symbols list (an initializer_list). Needed
4760 because lists have commas, and we need to pass them to CHECK,
4761 which is a macro. */
4762#define EXPECT(...) { __VA_ARGS__ }
4763
4764 /* Wrapper for check_match that passes down the current
4765 __FILE__/__LINE__. */
4766#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4767 any_mismatch |= !check_match (__FILE__, __LINE__, \
4768 mock_index, \
4769 NAME, MATCH_TYPE, COMPLETION_MODE, \
4770 EXPECTED_LIST)
4771
4772 /* Identity checks. */
4773 for (const char *sym : test_symbols)
4774 {
4775 /* Should be able to match all existing symbols. */
4776 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4777 EXPECT (sym));
4778
4779 /* Should be able to match all existing symbols with
4780 parameters. */
4781 std::string with_params = std::string (sym) + "(int)";
4782 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4783 EXPECT (sym));
4784
4785 /* Should be able to match all existing symbols with
4786 parameters and qualifiers. */
4787 with_params = std::string (sym) + " ( int ) const";
4788 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4789 EXPECT (sym));
4790
4791 /* This should really find sym, but cp-name-parser.y doesn't
4792 know about lvalue/rvalue qualifiers yet. */
4793 with_params = std::string (sym) + " ( int ) &&";
4794 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4795 {});
4796 }
4797
e1ef7d7a
PA
4798 /* Check that the name matching algorithm for completion doesn't get
4799 confused with Latin1 'ÿ' / 0xff. */
4800 {
4801 static const char str[] = "\377";
4802 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4803 EXPECT ("\377", "\377\377123"));
4804 }
4805
4806 /* Check that the increment-last-char in the matching algorithm for
4807 completion doesn't match "t1_fund" when completing "t1_func". */
4808 {
4809 static const char str[] = "t1_func";
4810 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4811 EXPECT ("t1_func", "t1_func1"));
4812 }
4813
c62446b1
PA
4814 /* Check that completion mode works at each prefix of the expected
4815 symbol name. */
4816 {
4817 static const char str[] = "function(int)";
4818 size_t len = strlen (str);
4819 std::string lookup;
4820
4821 for (size_t i = 1; i < len; i++)
4822 {
4823 lookup.assign (str, i);
4824 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4825 EXPECT ("function"));
4826 }
4827 }
4828
4829 /* While "w" is a prefix of both components, the match function
4830 should still only be called once. */
4831 {
4832 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4833 EXPECT ("w1::w2"));
a20714ff
PA
4834 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4835 EXPECT ("w1::w2"));
c62446b1
PA
4836 }
4837
4838 /* Same, with a "complicated" symbol. */
4839 {
4840 static const char str[] = Z_SYM_NAME;
4841 size_t len = strlen (str);
4842 std::string lookup;
4843
4844 for (size_t i = 1; i < len; i++)
4845 {
4846 lookup.assign (str, i);
4847 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4848 EXPECT (Z_SYM_NAME));
4849 }
4850 }
4851
4852 /* In FULL mode, an incomplete symbol doesn't match. */
4853 {
4854 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4855 {});
4856 }
4857
4858 /* A complete symbol with parameters matches any overload, since the
4859 index has no overload info. */
4860 {
4861 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4862 EXPECT ("std::zfunction", "std::zfunction2"));
a20714ff
PA
4863 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4864 EXPECT ("std::zfunction", "std::zfunction2"));
4865 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4866 EXPECT ("std::zfunction", "std::zfunction2"));
c62446b1
PA
4867 }
4868
4869 /* Check that whitespace is ignored appropriately. A symbol with a
4870 template argument list. */
4871 {
4872 static const char expected[] = "ns::foo<int>";
4873 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4874 EXPECT (expected));
a20714ff
PA
4875 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4876 EXPECT (expected));
c62446b1
PA
4877 }
4878
4879 /* Check that whitespace is ignored appropriately. A symbol with a
4880 template argument list that includes a pointer. */
4881 {
4882 static const char expected[] = "ns::foo<char*>";
4883 /* Try both completion and non-completion modes. */
4884 static const bool completion_mode[2] = {false, true};
4885 for (size_t i = 0; i < 2; i++)
4886 {
4887 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4888 completion_mode[i], EXPECT (expected));
a20714ff
PA
4889 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4890 completion_mode[i], EXPECT (expected));
c62446b1
PA
4891
4892 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4893 completion_mode[i], EXPECT (expected));
a20714ff
PA
4894 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4895 completion_mode[i], EXPECT (expected));
c62446b1
PA
4896 }
4897 }
4898
4899 {
4900 /* Check method qualifiers are ignored. */
4901 static const char expected[] = "ns::foo<char*>";
4902 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4903 symbol_name_match_type::FULL, true, EXPECT (expected));
4904 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4905 symbol_name_match_type::FULL, true, EXPECT (expected));
a20714ff
PA
4906 CHECK_MATCH ("foo < char * > ( int ) const",
4907 symbol_name_match_type::WILD, true, EXPECT (expected));
4908 CHECK_MATCH ("foo < char * > ( int ) &&",
4909 symbol_name_match_type::WILD, true, EXPECT (expected));
c62446b1
PA
4910 }
4911
4912 /* Test lookup names that don't match anything. */
4913 {
a20714ff
PA
4914 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4915 {});
4916
c62446b1
PA
4917 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4918 {});
4919 }
4920
a20714ff
PA
4921 /* Some wild matching tests, exercising "(anonymous namespace)",
4922 which should not be confused with a parameter list. */
4923 {
4924 static const char *syms[] = {
4925 "A::B::C",
4926 "B::C",
4927 "C",
4928 "A :: B :: C ( int )",
4929 "B :: C ( int )",
4930 "C ( int )",
4931 };
4932
4933 for (const char *s : syms)
4934 {
4935 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4936 EXPECT ("(anonymous namespace)::A::B::C"));
4937 }
4938 }
4939
4940 {
4941 static const char expected[] = "ns2::tmpl<int>::foo2";
4942 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4943 EXPECT (expected));
4944 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4945 EXPECT (expected));
4946 }
4947
c62446b1
PA
4948 SELF_CHECK (!any_mismatch);
4949
4950#undef EXPECT
4951#undef CHECK_MATCH
4952}
4953
5c58de74
PA
4954static void
4955run_test ()
4956{
4957 test_mapped_index_find_name_component_bounds ();
4958 test_dw2_expand_symtabs_matching_symbol ();
4959}
4960
c62446b1
PA
4961}} // namespace selftests::dw2_expand_symtabs_matching
4962
4963#endif /* GDB_SELF_TEST */
4964
4b514bc8
JK
4965/* If FILE_MATCHER is NULL or if PER_CU has
4966 dwarf2_per_cu_quick_data::MARK set (see
4967 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4968 EXPANSION_NOTIFY on it. */
4969
4970static void
4971dw2_expand_symtabs_matching_one
4972 (struct dwarf2_per_cu_data *per_cu,
4973 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4974 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4975{
4976 if (file_matcher == NULL || per_cu->v.quick->mark)
4977 {
4978 bool symtab_was_null
4979 = (per_cu->v.quick->compunit_symtab == NULL);
4980
58f0c718 4981 dw2_instantiate_symtab (per_cu, false);
4b514bc8
JK
4982
4983 if (expansion_notify != NULL
4984 && symtab_was_null
4985 && per_cu->v.quick->compunit_symtab != NULL)
4986 expansion_notify (per_cu->v.quick->compunit_symtab);
4987 }
4988}
4989
3f563c84
PA
4990/* Helper for dw2_expand_matching symtabs. Called on each symbol
4991 matched, to expand corresponding CUs that were marked. IDX is the
4992 index of the symbol name that matched. */
4993
4994static void
4995dw2_expand_marked_cus
ed2dc618 4996 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
3f563c84
PA
4997 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4998 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4999 search_domain kind)
5000{
3f563c84
PA
5001 offset_type *vec, vec_len, vec_idx;
5002 bool global_seen = false;
ed2dc618 5003 mapped_index &index = *dwarf2_per_objfile->index_table;
3f563c84 5004
61920122 5005 vec = (offset_type *) (index.constant_pool
f00a2de2 5006 + MAYBE_SWAP (index.symbol_table[idx].vec));
61920122
PA
5007 vec_len = MAYBE_SWAP (vec[0]);
5008 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5009 {
61920122
PA
5010 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5011 /* This value is only valid for index versions >= 7. */
5012 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5013 gdb_index_symbol_kind symbol_kind =
5014 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5015 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5016 /* Only check the symbol attributes if they're present.
5017 Indices prior to version 7 don't record them,
5018 and indices >= 7 may elide them for certain symbols
5019 (gold does this). */
5020 int attrs_valid =
5021 (index.version >= 7
5022 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5023
5024 /* Work around gold/15646. */
5025 if (attrs_valid)
9291a0cd 5026 {
61920122
PA
5027 if (!is_static && global_seen)
5028 continue;
5029 if (!is_static)
5030 global_seen = true;
5031 }
3190f0c6 5032
61920122
PA
5033 /* Only check the symbol's kind if it has one. */
5034 if (attrs_valid)
5035 {
5036 switch (kind)
8943b874 5037 {
61920122
PA
5038 case VARIABLES_DOMAIN:
5039 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5040 continue;
5041 break;
5042 case FUNCTIONS_DOMAIN:
5043 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
8943b874 5044 continue;
61920122
PA
5045 break;
5046 case TYPES_DOMAIN:
5047 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5048 continue;
5049 break;
5050 default:
5051 break;
8943b874 5052 }
61920122 5053 }
8943b874 5054
61920122 5055 /* Don't crash on bad data. */
b76e467d 5056 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 5057 + dwarf2_per_objfile->all_type_units.size ()))
61920122 5058 {
b98664d3 5059 complaint (_(".gdb_index entry has bad CU index"
ed2dc618
SM
5060 " [in module %s]"),
5061 objfile_name (dwarf2_per_objfile->objfile));
61920122
PA
5062 continue;
5063 }
5064
ff4c9fec 5065 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4b514bc8
JK
5066 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5067 expansion_notify);
61920122
PA
5068 }
5069}
5070
4b514bc8
JK
5071/* If FILE_MATCHER is non-NULL, set all the
5072 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5073 that match FILE_MATCHER. */
5074
61920122 5075static void
4b514bc8 5076dw_expand_symtabs_matching_file_matcher
ed2dc618
SM
5077 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5078 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
61920122 5079{
4b514bc8 5080 if (file_matcher == NULL)
61920122
PA
5081 return;
5082
4b514bc8
JK
5083 objfile *const objfile = dwarf2_per_objfile->objfile;
5084
5085 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5086 htab_eq_pointer,
5087 NULL, xcalloc, xfree));
5088 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
61920122
PA
5089 htab_eq_pointer,
5090 NULL, xcalloc, xfree));
61920122 5091
4b514bc8
JK
5092 /* The rule is CUs specify all the files, including those used by
5093 any TU, so there's no need to scan TUs here. */
61920122 5094
b76e467d 5095 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5096 {
927aa2e7
JK
5097 QUIT;
5098
5099 per_cu->v.quick->mark = 0;
5100
5101 /* We only need to look at symtabs not already expanded. */
5102 if (per_cu->v.quick->compunit_symtab)
5103 continue;
5104
b76e467d 5105 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5106 if (file_data == NULL)
5107 continue;
5108
5109 if (htab_find (visited_not_found.get (), file_data) != NULL)
5110 continue;
5111 else if (htab_find (visited_found.get (), file_data) != NULL)
5112 {
5113 per_cu->v.quick->mark = 1;
5114 continue;
5115 }
5116
b76e467d 5117 for (int j = 0; j < file_data->num_file_names; ++j)
927aa2e7
JK
5118 {
5119 const char *this_real_name;
5120
5121 if (file_matcher (file_data->file_names[j], false))
5122 {
5123 per_cu->v.quick->mark = 1;
5124 break;
5125 }
5126
5127 /* Before we invoke realpath, which can get expensive when many
5128 files are involved, do a quick comparison of the basenames. */
5129 if (!basenames_may_differ
5130 && !file_matcher (lbasename (file_data->file_names[j]),
5131 true))
5132 continue;
5133
5134 this_real_name = dw2_get_real_path (objfile, file_data, j);
5135 if (file_matcher (this_real_name, false))
5136 {
5137 per_cu->v.quick->mark = 1;
5138 break;
5139 }
5140 }
5141
b76e467d
SM
5142 void **slot = htab_find_slot (per_cu->v.quick->mark
5143 ? visited_found.get ()
5144 : visited_not_found.get (),
5145 file_data, INSERT);
927aa2e7
JK
5146 *slot = file_data;
5147 }
5148}
5149
5150static void
5151dw2_expand_symtabs_matching
5152 (struct objfile *objfile,
5153 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5154 const lookup_name_info &lookup_name,
5155 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5156 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5157 enum search_domain kind)
5158{
ed2dc618
SM
5159 struct dwarf2_per_objfile *dwarf2_per_objfile
5160 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5161
5162 /* index_table is NULL if OBJF_READNOW. */
5163 if (!dwarf2_per_objfile->index_table)
5164 return;
5165
ed2dc618 5166 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
927aa2e7
JK
5167
5168 mapped_index &index = *dwarf2_per_objfile->index_table;
5169
5170 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5171 symbol_matcher,
5172 kind, [&] (offset_type idx)
5173 {
ed2dc618 5174 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
927aa2e7 5175 expansion_notify, kind);
3b00ef10 5176 return true;
927aa2e7
JK
5177 });
5178}
5179
5180/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5181 symtab. */
5182
5183static struct compunit_symtab *
5184recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5185 CORE_ADDR pc)
5186{
5187 int i;
5188
5189 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5190 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5191 return cust;
5192
5193 if (cust->includes == NULL)
5194 return NULL;
5195
5196 for (i = 0; cust->includes[i]; ++i)
5197 {
5198 struct compunit_symtab *s = cust->includes[i];
5199
5200 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5201 if (s != NULL)
5202 return s;
5203 }
5204
5205 return NULL;
5206}
5207
5208static struct compunit_symtab *
5209dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5210 struct bound_minimal_symbol msymbol,
5211 CORE_ADDR pc,
5212 struct obj_section *section,
5213 int warn_if_readin)
5214{
5215 struct dwarf2_per_cu_data *data;
5216 struct compunit_symtab *result;
5217
d320c2b5 5218 if (!objfile->partial_symtabs->psymtabs_addrmap)
927aa2e7
JK
5219 return NULL;
5220
79748972
TT
5221 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5222 SECT_OFF_TEXT (objfile));
d320c2b5
TT
5223 data = (struct dwarf2_per_cu_data *) addrmap_find
5224 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
927aa2e7
JK
5225 if (!data)
5226 return NULL;
5227
5228 if (warn_if_readin && data->v.quick->compunit_symtab)
5229 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5230 paddress (get_objfile_arch (objfile), pc));
5231
5232 result
58f0c718
TT
5233 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5234 false),
927aa2e7
JK
5235 pc);
5236 gdb_assert (result != NULL);
5237 return result;
5238}
5239
5240static void
5241dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5242 void *data, int need_fullname)
5243{
ed2dc618
SM
5244 struct dwarf2_per_objfile *dwarf2_per_objfile
5245 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5246
5247 if (!dwarf2_per_objfile->filenames_cache)
5248 {
5249 dwarf2_per_objfile->filenames_cache.emplace ();
5250
5251 htab_up visited (htab_create_alloc (10,
5252 htab_hash_pointer, htab_eq_pointer,
5253 NULL, xcalloc, xfree));
5254
5255 /* The rule is CUs specify all the files, including those used
5256 by any TU, so there's no need to scan TUs here. We can
5257 ignore file names coming from already-expanded CUs. */
5258
b76e467d 5259 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5260 {
927aa2e7
JK
5261 if (per_cu->v.quick->compunit_symtab)
5262 {
5263 void **slot = htab_find_slot (visited.get (),
5264 per_cu->v.quick->file_names,
5265 INSERT);
5266
5267 *slot = per_cu->v.quick->file_names;
5268 }
5269 }
5270
b76e467d 5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5272 {
927aa2e7
JK
5273 /* We only need to look at symtabs not already expanded. */
5274 if (per_cu->v.quick->compunit_symtab)
5275 continue;
5276
b76e467d 5277 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5278 if (file_data == NULL)
5279 continue;
5280
b76e467d 5281 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
927aa2e7
JK
5282 if (*slot)
5283 {
5284 /* Already visited. */
5285 continue;
5286 }
5287 *slot = file_data;
5288
5289 for (int j = 0; j < file_data->num_file_names; ++j)
5290 {
5291 const char *filename = file_data->file_names[j];
5292 dwarf2_per_objfile->filenames_cache->seen (filename);
5293 }
5294 }
5295 }
5296
5297 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5298 {
5299 gdb::unique_xmalloc_ptr<char> this_real_name;
5300
5301 if (need_fullname)
5302 this_real_name = gdb_realpath (filename);
5303 (*fun) (filename, this_real_name.get (), data);
5304 });
5305}
5306
5307static int
5308dw2_has_symbols (struct objfile *objfile)
5309{
5310 return 1;
5311}
5312
5313const struct quick_symbol_functions dwarf2_gdb_index_functions =
5314{
5315 dw2_has_symbols,
5316 dw2_find_last_source_symtab,
5317 dw2_forget_cached_source_info,
5318 dw2_map_symtabs_matching_filename,
5319 dw2_lookup_symbol,
5320 dw2_print_stats,
5321 dw2_dump,
927aa2e7
JK
5322 dw2_expand_symtabs_for_function,
5323 dw2_expand_all_symtabs,
5324 dw2_expand_symtabs_with_fullname,
5325 dw2_map_matching_symbols,
5326 dw2_expand_symtabs_matching,
5327 dw2_find_pc_sect_compunit_symtab,
5328 NULL,
5329 dw2_map_symbol_filenames
5330};
5331
5332/* DWARF-5 debug_names reader. */
5333
5334/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5335static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5336
5337/* A helper function that reads the .debug_names section in SECTION
5338 and fills in MAP. FILENAME is the name of the file containing the
5339 section; it is used for error reporting.
5340
5341 Returns true if all went well, false otherwise. */
5342
5343static bool
5344read_debug_names_from_section (struct objfile *objfile,
5345 const char *filename,
5346 struct dwarf2_section_info *section,
5347 mapped_debug_names &map)
5348{
5349 if (dwarf2_section_empty_p (section))
5350 return false;
5351
5352 /* Older elfutils strip versions could keep the section in the main
5353 executable while splitting it for the separate debug info file. */
5354 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5355 return false;
5356
5357 dwarf2_read_section (objfile, section);
5358
5359 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5360
5361 const gdb_byte *addr = section->buffer;
5362
5363 bfd *const abfd = get_section_bfd_owner (section);
5364
5365 unsigned int bytes_read;
5366 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5367 addr += bytes_read;
5368
5369 map.dwarf5_is_dwarf64 = bytes_read != 4;
5370 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5371 if (bytes_read + length != section->size)
5372 {
5373 /* There may be multiple per-CU indices. */
5374 warning (_("Section .debug_names in %s length %s does not match "
5375 "section length %s, ignoring .debug_names."),
5376 filename, plongest (bytes_read + length),
5377 pulongest (section->size));
5378 return false;
5379 }
5380
5381 /* The version number. */
5382 uint16_t version = read_2_bytes (abfd, addr);
5383 addr += 2;
5384 if (version != 5)
5385 {
5386 warning (_("Section .debug_names in %s has unsupported version %d, "
5387 "ignoring .debug_names."),
5388 filename, version);
5389 return false;
5390 }
5391
5392 /* Padding. */
5393 uint16_t padding = read_2_bytes (abfd, addr);
5394 addr += 2;
5395 if (padding != 0)
5396 {
5397 warning (_("Section .debug_names in %s has unsupported padding %d, "
5398 "ignoring .debug_names."),
5399 filename, padding);
5400 return false;
5401 }
5402
5403 /* comp_unit_count - The number of CUs in the CU list. */
5404 map.cu_count = read_4_bytes (abfd, addr);
5405 addr += 4;
5406
5407 /* local_type_unit_count - The number of TUs in the local TU
5408 list. */
5409 map.tu_count = read_4_bytes (abfd, addr);
5410 addr += 4;
5411
5412 /* foreign_type_unit_count - The number of TUs in the foreign TU
5413 list. */
5414 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5415 addr += 4;
5416 if (foreign_tu_count != 0)
5417 {
5418 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5419 "ignoring .debug_names."),
5420 filename, static_cast<unsigned long> (foreign_tu_count));
5421 return false;
5422 }
5423
5424 /* bucket_count - The number of hash buckets in the hash lookup
5425 table. */
5426 map.bucket_count = read_4_bytes (abfd, addr);
5427 addr += 4;
5428
5429 /* name_count - The number of unique names in the index. */
5430 map.name_count = read_4_bytes (abfd, addr);
5431 addr += 4;
5432
5433 /* abbrev_table_size - The size in bytes of the abbreviations
5434 table. */
5435 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5436 addr += 4;
5437
5438 /* augmentation_string_size - The size in bytes of the augmentation
5439 string. This value is rounded up to a multiple of 4. */
5440 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5441 addr += 4;
5442 map.augmentation_is_gdb = ((augmentation_string_size
5443 == sizeof (dwarf5_augmentation))
5444 && memcmp (addr, dwarf5_augmentation,
5445 sizeof (dwarf5_augmentation)) == 0);
5446 augmentation_string_size += (-augmentation_string_size) & 3;
5447 addr += augmentation_string_size;
5448
5449 /* List of CUs */
5450 map.cu_table_reordered = addr;
5451 addr += map.cu_count * map.offset_size;
5452
5453 /* List of Local TUs */
5454 map.tu_table_reordered = addr;
5455 addr += map.tu_count * map.offset_size;
5456
5457 /* Hash Lookup Table */
5458 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5459 addr += map.bucket_count * 4;
5460 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5461 addr += map.name_count * 4;
5462
5463 /* Name Table */
5464 map.name_table_string_offs_reordered = addr;
5465 addr += map.name_count * map.offset_size;
5466 map.name_table_entry_offs_reordered = addr;
5467 addr += map.name_count * map.offset_size;
5468
5469 const gdb_byte *abbrev_table_start = addr;
5470 for (;;)
5471 {
927aa2e7
JK
5472 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5473 addr += bytes_read;
5474 if (index_num == 0)
5475 break;
5476
5477 const auto insertpair
5478 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5479 if (!insertpair.second)
5480 {
5481 warning (_("Section .debug_names in %s has duplicate index %s, "
5482 "ignoring .debug_names."),
5483 filename, pulongest (index_num));
5484 return false;
5485 }
5486 mapped_debug_names::index_val &indexval = insertpair.first->second;
5487 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5488 addr += bytes_read;
5489
5490 for (;;)
5491 {
5492 mapped_debug_names::index_val::attr attr;
5493 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5494 addr += bytes_read;
5495 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5496 addr += bytes_read;
5497 if (attr.form == DW_FORM_implicit_const)
5498 {
5499 attr.implicit_const = read_signed_leb128 (abfd, addr,
5500 &bytes_read);
5501 addr += bytes_read;
5502 }
5503 if (attr.dw_idx == 0 && attr.form == 0)
5504 break;
5505 indexval.attr_vec.push_back (std::move (attr));
5506 }
5507 }
5508 if (addr != abbrev_table_start + abbrev_table_size)
5509 {
5510 warning (_("Section .debug_names in %s has abbreviation_table "
47e3f474
TV
5511 "of size %s vs. written as %u, ignoring .debug_names."),
5512 filename, plongest (addr - abbrev_table_start),
5513 abbrev_table_size);
927aa2e7
JK
5514 return false;
5515 }
5516 map.entry_pool = addr;
5517
5518 return true;
5519}
5520
5521/* A helper for create_cus_from_debug_names that handles the MAP's CU
5522 list. */
5523
5524static void
ed2dc618 5525create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5526 const mapped_debug_names &map,
5527 dwarf2_section_info &section,
b76e467d 5528 bool is_dwz)
927aa2e7
JK
5529{
5530 sect_offset sect_off_prev;
5531 for (uint32_t i = 0; i <= map.cu_count; ++i)
5532 {
5533 sect_offset sect_off_next;
5534 if (i < map.cu_count)
5535 {
5536 sect_off_next
5537 = (sect_offset) (extract_unsigned_integer
5538 (map.cu_table_reordered + i * map.offset_size,
5539 map.offset_size,
5540 map.dwarf5_byte_order));
5541 }
5542 else
5543 sect_off_next = (sect_offset) section.size;
5544 if (i >= 1)
5545 {
5546 const ULONGEST length = sect_off_next - sect_off_prev;
b76e467d 5547 dwarf2_per_cu_data *per_cu
ed2dc618 5548 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
927aa2e7 5549 sect_off_prev, length);
b76e467d 5550 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
927aa2e7
JK
5551 }
5552 sect_off_prev = sect_off_next;
5553 }
5554}
5555
5556/* Read the CU list from the mapped index, and use it to create all
ed2dc618 5557 the CU objects for this dwarf2_per_objfile. */
927aa2e7
JK
5558
5559static void
ed2dc618 5560create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5561 const mapped_debug_names &map,
5562 const mapped_debug_names &dwz_map)
5563{
b76e467d
SM
5564 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5565 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
927aa2e7 5566
ed2dc618
SM
5567 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5568 dwarf2_per_objfile->info,
b76e467d 5569 false /* is_dwz */);
927aa2e7
JK
5570
5571 if (dwz_map.cu_count == 0)
5572 return;
5573
ed2dc618
SM
5574 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5575 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
b76e467d 5576 true /* is_dwz */);
927aa2e7
JK
5577}
5578
5579/* Read .debug_names. If everything went ok, initialize the "quick"
5580 elements of all the CUs and return true. Otherwise, return false. */
5581
5582static bool
ed2dc618 5583dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
927aa2e7 5584{
22ca247e
TT
5585 std::unique_ptr<mapped_debug_names> map
5586 (new mapped_debug_names (dwarf2_per_objfile));
ed2dc618
SM
5587 mapped_debug_names dwz_map (dwarf2_per_objfile);
5588 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
5589
5590 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5591 &dwarf2_per_objfile->debug_names,
22ca247e 5592 *map))
927aa2e7
JK
5593 return false;
5594
5595 /* Don't use the index if it's empty. */
22ca247e 5596 if (map->name_count == 0)
927aa2e7
JK
5597 return false;
5598
5599 /* If there is a .dwz file, read it so we can get its CU list as
5600 well. */
ed2dc618 5601 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
927aa2e7
JK
5602 if (dwz != NULL)
5603 {
5604 if (!read_debug_names_from_section (objfile,
00f93c44 5605 bfd_get_filename (dwz->dwz_bfd.get ()),
927aa2e7
JK
5606 &dwz->debug_names, dwz_map))
5607 {
5608 warning (_("could not read '.debug_names' section from %s; skipping"),
00f93c44 5609 bfd_get_filename (dwz->dwz_bfd.get ()));
927aa2e7
JK
5610 return false;
5611 }
5612 }
5613
22ca247e 5614 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
927aa2e7 5615
22ca247e 5616 if (map->tu_count != 0)
927aa2e7
JK
5617 {
5618 /* We can only handle a single .debug_types when we have an
5619 index. */
fd5866f6 5620 if (dwarf2_per_objfile->types.size () != 1)
927aa2e7
JK
5621 return false;
5622
fd5866f6 5623 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
927aa2e7
JK
5624
5625 create_signatured_type_table_from_debug_names
22ca247e 5626 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
927aa2e7
JK
5627 }
5628
ed2dc618
SM
5629 create_addrmap_from_aranges (dwarf2_per_objfile,
5630 &dwarf2_per_objfile->debug_aranges);
927aa2e7 5631
22ca247e 5632 dwarf2_per_objfile->debug_names_table = std::move (map);
927aa2e7
JK
5633 dwarf2_per_objfile->using_index = 1;
5634 dwarf2_per_objfile->quick_file_names_table =
b76e467d 5635 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
927aa2e7
JK
5636
5637 return true;
5638}
5639
927aa2e7
JK
5640/* Type used to manage iterating over all CUs looking for a symbol for
5641 .debug_names. */
5642
5643class dw2_debug_names_iterator
5644{
5645public:
927aa2e7 5646 dw2_debug_names_iterator (const mapped_debug_names &map,
2b79f376
SM
5647 gdb::optional<block_enum> block_index,
5648 domain_enum domain,
927aa2e7 5649 const char *name)
2b79f376 5650 : m_map (map), m_block_index (block_index), m_domain (domain),
927aa2e7
JK
5651 m_addr (find_vec_in_debug_names (map, name))
5652 {}
5653
5654 dw2_debug_names_iterator (const mapped_debug_names &map,
5655 search_domain search, uint32_t namei)
5656 : m_map (map),
5657 m_search (search),
5658 m_addr (find_vec_in_debug_names (map, namei))
5659 {}
5660
3b00ef10
TT
5661 dw2_debug_names_iterator (const mapped_debug_names &map,
5662 block_enum block_index, domain_enum domain,
5663 uint32_t namei)
5664 : m_map (map), m_block_index (block_index), m_domain (domain),
5665 m_addr (find_vec_in_debug_names (map, namei))
5666 {}
5667
927aa2e7
JK
5668 /* Return the next matching CU or NULL if there are no more. */
5669 dwarf2_per_cu_data *next ();
5670
5671private:
5672 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5673 const char *name);
5674 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5675 uint32_t namei);
5676
5677 /* The internalized form of .debug_names. */
5678 const mapped_debug_names &m_map;
5679
2b79f376
SM
5680 /* If set, only look for symbols that match that block. Valid values are
5681 GLOBAL_BLOCK and STATIC_BLOCK. */
5682 const gdb::optional<block_enum> m_block_index;
927aa2e7
JK
5683
5684 /* The kind of symbol we're looking for. */
5685 const domain_enum m_domain = UNDEF_DOMAIN;
5686 const search_domain m_search = ALL_DOMAIN;
5687
5688 /* The list of CUs from the index entry of the symbol, or NULL if
5689 not found. */
5690 const gdb_byte *m_addr;
5691};
5692
5693const char *
5694mapped_debug_names::namei_to_name (uint32_t namei) const
5695{
5696 const ULONGEST namei_string_offs
5697 = extract_unsigned_integer ((name_table_string_offs_reordered
5698 + namei * offset_size),
5699 offset_size,
5700 dwarf5_byte_order);
5701 return read_indirect_string_at_offset
ed2dc618 5702 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
927aa2e7
JK
5703}
5704
5705/* Find a slot in .debug_names for the object named NAME. If NAME is
5706 found, return pointer to its pool data. If NAME cannot be found,
5707 return NULL. */
5708
5709const gdb_byte *
5710dw2_debug_names_iterator::find_vec_in_debug_names
5711 (const mapped_debug_names &map, const char *name)
5712{
5713 int (*cmp) (const char *, const char *);
5714
54ee4252 5715 gdb::unique_xmalloc_ptr<char> without_params;
927aa2e7
JK
5716 if (current_language->la_language == language_cplus
5717 || current_language->la_language == language_fortran
5718 || current_language->la_language == language_d)
5719 {
5720 /* NAME is already canonical. Drop any qualifiers as
5721 .debug_names does not contain any. */
5722
5723 if (strchr (name, '(') != NULL)
5724 {
54ee4252 5725 without_params = cp_remove_params (name);
927aa2e7 5726 if (without_params != NULL)
54ee4252 5727 name = without_params.get ();
927aa2e7
JK
5728 }
5729 }
5730
5731 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5732
5733 const uint32_t full_hash = dwarf5_djb_hash (name);
5734 uint32_t namei
5735 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5736 (map.bucket_table_reordered
5737 + (full_hash % map.bucket_count)), 4,
5738 map.dwarf5_byte_order);
5739 if (namei == 0)
5740 return NULL;
5741 --namei;
5742 if (namei >= map.name_count)
5743 {
b98664d3 5744 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5745 "[in module %s]"),
5746 namei, map.name_count,
ed2dc618 5747 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5748 return NULL;
5749 }
5750
5751 for (;;)
5752 {
5753 const uint32_t namei_full_hash
5754 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5755 (map.hash_table_reordered + namei), 4,
5756 map.dwarf5_byte_order);
5757 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5758 return NULL;
5759
5760 if (full_hash == namei_full_hash)
5761 {
5762 const char *const namei_string = map.namei_to_name (namei);
5763
5764#if 0 /* An expensive sanity check. */
5765 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5766 {
b98664d3 5767 complaint (_("Wrong .debug_names hash for string at index %u "
927aa2e7
JK
5768 "[in module %s]"),
5769 namei, objfile_name (dwarf2_per_objfile->objfile));
5770 return NULL;
5771 }
5772#endif
5773
5774 if (cmp (namei_string, name) == 0)
5775 {
5776 const ULONGEST namei_entry_offs
5777 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5778 + namei * map.offset_size),
5779 map.offset_size, map.dwarf5_byte_order);
5780 return map.entry_pool + namei_entry_offs;
5781 }
5782 }
5783
5784 ++namei;
5785 if (namei >= map.name_count)
5786 return NULL;
5787 }
5788}
5789
5790const gdb_byte *
5791dw2_debug_names_iterator::find_vec_in_debug_names
5792 (const mapped_debug_names &map, uint32_t namei)
5793{
5794 if (namei >= map.name_count)
5795 {
b98664d3 5796 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5797 "[in module %s]"),
5798 namei, map.name_count,
ed2dc618 5799 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5800 return NULL;
5801 }
5802
5803 const ULONGEST namei_entry_offs
5804 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5805 + namei * map.offset_size),
5806 map.offset_size, map.dwarf5_byte_order);
5807 return map.entry_pool + namei_entry_offs;
5808}
5809
5810/* See dw2_debug_names_iterator. */
5811
5812dwarf2_per_cu_data *
5813dw2_debug_names_iterator::next ()
5814{
5815 if (m_addr == NULL)
5816 return NULL;
5817
ed2dc618
SM
5818 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5819 struct objfile *objfile = dwarf2_per_objfile->objfile;
5820 bfd *const abfd = objfile->obfd;
927aa2e7
JK
5821
5822 again:
5823
5824 unsigned int bytes_read;
5825 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5826 m_addr += bytes_read;
5827 if (abbrev == 0)
5828 return NULL;
5829
5830 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5831 if (indexval_it == m_map.abbrev_map.cend ())
5832 {
b98664d3 5833 complaint (_("Wrong .debug_names undefined abbrev code %s "
927aa2e7 5834 "[in module %s]"),
ed2dc618 5835 pulongest (abbrev), objfile_name (objfile));
927aa2e7
JK
5836 return NULL;
5837 }
5838 const mapped_debug_names::index_val &indexval = indexval_it->second;
beadd3e8
SM
5839 enum class symbol_linkage {
5840 unknown,
5841 static_,
5842 extern_,
23c13d42 5843 } symbol_linkage_ = symbol_linkage::unknown;
927aa2e7
JK
5844 dwarf2_per_cu_data *per_cu = NULL;
5845 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5846 {
5847 ULONGEST ull;
5848 switch (attr.form)
5849 {
5850 case DW_FORM_implicit_const:
5851 ull = attr.implicit_const;
5852 break;
5853 case DW_FORM_flag_present:
5854 ull = 1;
5855 break;
5856 case DW_FORM_udata:
5857 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 break;
5860 default:
b98664d3 5861 complaint (_("Unsupported .debug_names form %s [in module %s]"),
927aa2e7 5862 dwarf_form_name (attr.form),
ed2dc618 5863 objfile_name (objfile));
927aa2e7
JK
5864 return NULL;
5865 }
5866 switch (attr.dw_idx)
5867 {
5868 case DW_IDX_compile_unit:
5869 /* Don't crash on bad data. */
b76e467d 5870 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
927aa2e7 5871 {
b98664d3 5872 complaint (_(".debug_names entry has bad CU index %s"
927aa2e7
JK
5873 " [in module %s]"),
5874 pulongest (ull),
5875 objfile_name (dwarf2_per_objfile->objfile));
5876 continue;
5877 }
ff4c9fec 5878 per_cu = dwarf2_per_objfile->get_cutu (ull);
927aa2e7 5879 break;
8af5c486
JK
5880 case DW_IDX_type_unit:
5881 /* Don't crash on bad data. */
b2bdb8cf 5882 if (ull >= dwarf2_per_objfile->all_type_units.size ())
8af5c486 5883 {
b98664d3 5884 complaint (_(".debug_names entry has bad TU index %s"
8af5c486
JK
5885 " [in module %s]"),
5886 pulongest (ull),
5887 objfile_name (dwarf2_per_objfile->objfile));
5888 continue;
5889 }
ff4c9fec 5890 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
8af5c486 5891 break;
927aa2e7
JK
5892 case DW_IDX_GNU_internal:
5893 if (!m_map.augmentation_is_gdb)
5894 break;
23c13d42 5895 symbol_linkage_ = symbol_linkage::static_;
927aa2e7
JK
5896 break;
5897 case DW_IDX_GNU_external:
5898 if (!m_map.augmentation_is_gdb)
5899 break;
23c13d42 5900 symbol_linkage_ = symbol_linkage::extern_;
927aa2e7
JK
5901 break;
5902 }
5903 }
5904
5905 /* Skip if already read in. */
5906 if (per_cu->v.quick->compunit_symtab)
5907 goto again;
5908
5909 /* Check static vs global. */
23c13d42 5910 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
927aa2e7 5911 {
2b79f376 5912 const bool want_static = *m_block_index == STATIC_BLOCK;
23c13d42
SM
5913 const bool symbol_is_static =
5914 symbol_linkage_ == symbol_linkage::static_;
beadd3e8 5915 if (want_static != symbol_is_static)
2b79f376 5916 goto again;
927aa2e7
JK
5917 }
5918
5919 /* Match dw2_symtab_iter_next, symbol_kind
5920 and debug_names::psymbol_tag. */
5921 switch (m_domain)
5922 {
5923 case VAR_DOMAIN:
5924 switch (indexval.dwarf_tag)
5925 {
5926 case DW_TAG_variable:
5927 case DW_TAG_subprogram:
5928 /* Some types are also in VAR_DOMAIN. */
5929 case DW_TAG_typedef:
5930 case DW_TAG_structure_type:
5931 break;
5932 default:
5933 goto again;
5934 }
5935 break;
5936 case STRUCT_DOMAIN:
5937 switch (indexval.dwarf_tag)
5938 {
5939 case DW_TAG_typedef:
5940 case DW_TAG_structure_type:
5941 break;
5942 default:
5943 goto again;
5944 }
5945 break;
5946 case LABEL_DOMAIN:
5947 switch (indexval.dwarf_tag)
5948 {
5949 case 0:
5950 case DW_TAG_variable:
5951 break;
5952 default:
5953 goto again;
5954 }
5955 break;
5956 default:
5957 break;
5958 }
5959
5960 /* Match dw2_expand_symtabs_matching, symbol_kind and
5961 debug_names::psymbol_tag. */
5962 switch (m_search)
4b514bc8 5963 {
927aa2e7
JK
5964 case VARIABLES_DOMAIN:
5965 switch (indexval.dwarf_tag)
4b514bc8 5966 {
927aa2e7
JK
5967 case DW_TAG_variable:
5968 break;
5969 default:
5970 goto again;
4b514bc8 5971 }
927aa2e7
JK
5972 break;
5973 case FUNCTIONS_DOMAIN:
5974 switch (indexval.dwarf_tag)
4b514bc8 5975 {
927aa2e7
JK
5976 case DW_TAG_subprogram:
5977 break;
5978 default:
5979 goto again;
4b514bc8 5980 }
927aa2e7
JK
5981 break;
5982 case TYPES_DOMAIN:
5983 switch (indexval.dwarf_tag)
5984 {
5985 case DW_TAG_typedef:
5986 case DW_TAG_structure_type:
5987 break;
5988 default:
5989 goto again;
5990 }
5991 break;
5992 default:
5993 break;
4b514bc8 5994 }
927aa2e7
JK
5995
5996 return per_cu;
4b514bc8 5997}
61920122 5998
927aa2e7 5999static struct compunit_symtab *
c7f839cb 6000dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
927aa2e7 6001 const char *name, domain_enum domain)
4b514bc8 6002{
ed2dc618
SM
6003 struct dwarf2_per_objfile *dwarf2_per_objfile
6004 = get_dwarf2_per_objfile (objfile);
61920122 6005
927aa2e7
JK
6006 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6007 if (!mapp)
61920122 6008 {
927aa2e7
JK
6009 /* index is NULL if OBJF_READNOW. */
6010 return NULL;
6011 }
6012 const auto &map = *mapp;
9291a0cd 6013
2b79f376 6014 dw2_debug_names_iterator iter (map, block_index, domain, name);
9703b513 6015
927aa2e7
JK
6016 struct compunit_symtab *stab_best = NULL;
6017 struct dwarf2_per_cu_data *per_cu;
6018 while ((per_cu = iter.next ()) != NULL)
6019 {
6020 struct symbol *sym, *with_opaque = NULL;
58f0c718 6021 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
927aa2e7 6022 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
582942f4 6023 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
9703b513 6024
927aa2e7
JK
6025 sym = block_find_symbol (block, name, domain,
6026 block_find_non_opaque_type_preferred,
6027 &with_opaque);
9703b513 6028
927aa2e7
JK
6029 /* Some caution must be observed with overloaded functions and
6030 methods, since the index will not contain any overload
6031 information (but NAME might contain it). */
a3ec0bb1 6032
927aa2e7
JK
6033 if (sym != NULL
6034 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6035 return stab;
6036 if (with_opaque != NULL
6037 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6038 stab_best = stab;
9703b513 6039
927aa2e7 6040 /* Keep looking through other CUs. */
9703b513
TT
6041 }
6042
927aa2e7 6043 return stab_best;
9703b513
TT
6044}
6045
927aa2e7
JK
6046/* This dumps minimal information about .debug_names. It is called
6047 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6048 uses this to verify that .debug_names has been loaded. */
9291a0cd 6049
927aa2e7
JK
6050static void
6051dw2_debug_names_dump (struct objfile *objfile)
6052{
ed2dc618
SM
6053 struct dwarf2_per_objfile *dwarf2_per_objfile
6054 = get_dwarf2_per_objfile (objfile);
6055
927aa2e7
JK
6056 gdb_assert (dwarf2_per_objfile->using_index);
6057 printf_filtered (".debug_names:");
6058 if (dwarf2_per_objfile->debug_names_table)
6059 printf_filtered (" exists\n");
6060 else
6061 printf_filtered (" faked for \"readnow\"\n");
6062 printf_filtered ("\n");
9291a0cd
TT
6063}
6064
9291a0cd 6065static void
927aa2e7
JK
6066dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6067 const char *func_name)
9291a0cd 6068{
ed2dc618
SM
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
ae2de4f8 6071
927aa2e7
JK
6072 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6073 if (dwarf2_per_objfile->debug_names_table)
24c79950 6074 {
927aa2e7 6075 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
24c79950 6076
2b79f376 6077 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
24c79950 6078
927aa2e7
JK
6079 struct dwarf2_per_cu_data *per_cu;
6080 while ((per_cu = iter.next ()) != NULL)
58f0c718 6081 dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6082 }
6083}
24c79950 6084
3b00ef10
TT
6085static void
6086dw2_debug_names_map_matching_symbols
6087 (struct objfile *objfile,
6088 const lookup_name_info &name, domain_enum domain,
6089 int global,
6090 gdb::function_view<symbol_found_callback_ftype> callback,
6091 symbol_compare_ftype *ordered_compare)
6092{
6093 struct dwarf2_per_objfile *dwarf2_per_objfile
6094 = get_dwarf2_per_objfile (objfile);
6095
6096 /* debug_names_table is NULL if OBJF_READNOW. */
6097 if (!dwarf2_per_objfile->debug_names_table)
6098 return;
6099
6100 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6101 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6102
6103 const char *match_name = name.ada ().lookup_name ().c_str ();
6104 auto matcher = [&] (const char *symname)
6105 {
6106 if (ordered_compare == nullptr)
6107 return true;
6108 return ordered_compare (symname, match_name) == 0;
6109 };
6110
6111 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6112 [&] (offset_type namei)
6113 {
6114 /* The name was matched, now expand corresponding CUs that were
6115 marked. */
6116 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6117
6118 struct dwarf2_per_cu_data *per_cu;
6119 while ((per_cu = iter.next ()) != NULL)
6120 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6121 return true;
6122 });
6123
6124 /* It's a shame we couldn't do this inside the
6125 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6126 that have already been expanded. Instead, this loop matches what
6127 the psymtab code does. */
6128 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6129 {
6130 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6131 if (cust != nullptr)
6132 {
6133 const struct block *block
6134 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6135 if (!iterate_over_symbols_terminated (block, name,
6136 domain, callback))
6137 break;
6138 }
6139 }
6140}
6141
927aa2e7
JK
6142static void
6143dw2_debug_names_expand_symtabs_matching
6144 (struct objfile *objfile,
6145 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6146 const lookup_name_info &lookup_name,
6147 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6148 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6149 enum search_domain kind)
6150{
ed2dc618
SM
6151 struct dwarf2_per_objfile *dwarf2_per_objfile
6152 = get_dwarf2_per_objfile (objfile);
9291a0cd 6153
927aa2e7
JK
6154 /* debug_names_table is NULL if OBJF_READNOW. */
6155 if (!dwarf2_per_objfile->debug_names_table)
6156 return;
9291a0cd 6157
ed2dc618 6158 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
24c79950 6159
44ed8f3e 6160 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
bbf2f4df 6161
44ed8f3e
PA
6162 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6163 symbol_matcher,
6164 kind, [&] (offset_type namei)
927aa2e7 6165 {
927aa2e7
JK
6166 /* The name was matched, now expand corresponding CUs that were
6167 marked. */
6168 dw2_debug_names_iterator iter (map, kind, namei);
bbf2f4df 6169
927aa2e7
JK
6170 struct dwarf2_per_cu_data *per_cu;
6171 while ((per_cu = iter.next ()) != NULL)
6172 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6173 expansion_notify);
3b00ef10 6174 return true;
44ed8f3e 6175 });
9291a0cd
TT
6176}
6177
927aa2e7 6178const struct quick_symbol_functions dwarf2_debug_names_functions =
9291a0cd
TT
6179{
6180 dw2_has_symbols,
6181 dw2_find_last_source_symtab,
6182 dw2_forget_cached_source_info,
f8eba3c6 6183 dw2_map_symtabs_matching_filename,
927aa2e7 6184 dw2_debug_names_lookup_symbol,
9291a0cd 6185 dw2_print_stats,
927aa2e7 6186 dw2_debug_names_dump,
927aa2e7 6187 dw2_debug_names_expand_symtabs_for_function,
9291a0cd 6188 dw2_expand_all_symtabs,
652a8996 6189 dw2_expand_symtabs_with_fullname,
3b00ef10 6190 dw2_debug_names_map_matching_symbols,
927aa2e7 6191 dw2_debug_names_expand_symtabs_matching,
43f3e411 6192 dw2_find_pc_sect_compunit_symtab,
71a3c369 6193 NULL,
9291a0cd
TT
6194 dw2_map_symbol_filenames
6195};
6196
4485a1c1
SM
6197/* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6198 to either a dwarf2_per_objfile or dwz_file object. */
6199
6200template <typename T>
6201static gdb::array_view<const gdb_byte>
6202get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6203{
6204 dwarf2_section_info *section = &section_owner->gdb_index;
6205
6206 if (dwarf2_section_empty_p (section))
6207 return {};
6208
6209 /* Older elfutils strip versions could keep the section in the main
6210 executable while splitting it for the separate debug info file. */
6211 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6212 return {};
6213
6214 dwarf2_read_section (obj, section);
6215
8bebfcda
PA
6216 /* dwarf2_section_info::size is a bfd_size_type, while
6217 gdb::array_view works with size_t. On 32-bit hosts, with
6218 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6219 is 32-bit. So we need an explicit narrowing conversion here.
6220 This is fine, because it's impossible to allocate or mmap an
6221 array/buffer larger than what size_t can represent. */
6222 return gdb::make_array_view (section->buffer, section->size);
4485a1c1
SM
6223}
6224
87d6a7aa
SM
6225/* Lookup the index cache for the contents of the index associated to
6226 DWARF2_OBJ. */
6227
6228static gdb::array_view<const gdb_byte>
6229get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6230{
6231 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6232 if (build_id == nullptr)
6233 return {};
6234
6235 return global_index_cache.lookup_gdb_index (build_id,
6236 &dwarf2_obj->index_cache_res);
6237}
6238
6239/* Same as the above, but for DWZ. */
6240
6241static gdb::array_view<const gdb_byte>
6242get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6243{
6244 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6245 if (build_id == nullptr)
6246 return {};
6247
6248 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6249}
6250
3c0aa29a 6251/* See symfile.h. */
9291a0cd 6252
3c0aa29a
PA
6253bool
6254dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
9291a0cd 6255{
ed2dc618
SM
6256 struct dwarf2_per_objfile *dwarf2_per_objfile
6257 = get_dwarf2_per_objfile (objfile);
6258
9291a0cd
TT
6259 /* If we're about to read full symbols, don't bother with the
6260 indices. In this case we also don't care if some other debug
6261 format is making psymtabs, because they are all about to be
6262 expanded anyway. */
6263 if ((objfile->flags & OBJF_READNOW))
6264 {
9291a0cd 6265 dwarf2_per_objfile->using_index = 1;
ed2dc618
SM
6266 create_all_comp_units (dwarf2_per_objfile);
6267 create_all_type_units (dwarf2_per_objfile);
b76e467d
SM
6268 dwarf2_per_objfile->quick_file_names_table
6269 = create_quick_file_names_table
6270 (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd 6271
b76e467d 6272 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 6273 + dwarf2_per_objfile->all_type_units.size ()); ++i)
9291a0cd 6274 {
ff4c9fec 6275 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 6276
e254ef6a
DE
6277 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6278 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
6279 }
6280
6281 /* Return 1 so that gdb sees the "quick" functions. However,
6282 these functions will be no-ops because we will have expanded
6283 all symtabs. */
3c0aa29a
PA
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
9291a0cd
TT
6286 }
6287
ed2dc618 6288 if (dwarf2_read_debug_names (dwarf2_per_objfile))
3c0aa29a
PA
6289 {
6290 *index_kind = dw_index_kind::DEBUG_NAMES;
6291 return true;
6292 }
927aa2e7 6293
4485a1c1
SM
6294 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6295 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6296 get_gdb_index_contents_from_section<dwz_file>))
3c0aa29a
PA
6297 {
6298 *index_kind = dw_index_kind::GDB_INDEX;
6299 return true;
6300 }
9291a0cd 6301
87d6a7aa
SM
6302 /* ... otherwise, try to find the index in the index cache. */
6303 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6304 get_gdb_index_contents_from_cache,
6305 get_gdb_index_contents_from_cache_dwz))
6306 {
6307 global_index_cache.hit ();
6308 *index_kind = dw_index_kind::GDB_INDEX;
6309 return true;
6310 }
6311
6312 global_index_cache.miss ();
3c0aa29a 6313 return false;
9291a0cd
TT
6314}
6315
6316\f
6317
dce234bc
PP
6318/* Build a partial symbol table. */
6319
6320void
f29dff0a 6321dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 6322{
ed2dc618
SM
6323 struct dwarf2_per_objfile *dwarf2_per_objfile
6324 = get_dwarf2_per_objfile (objfile);
c9bf0622 6325
6eee24ce 6326 init_psymbol_list (objfile, 1024);
c906108c 6327
a70b8144 6328 try
c9bf0622
TT
6329 {
6330 /* This isn't really ideal: all the data we allocate on the
6331 objfile's obstack is still uselessly kept around. However,
6332 freeing it seems unsafe. */
906768f9 6333 psymtab_discarder psymtabs (objfile);
ed2dc618 6334 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
906768f9 6335 psymtabs.keep ();
87d6a7aa
SM
6336
6337 /* (maybe) store an index in the cache. */
6338 global_index_cache.store (dwarf2_per_objfile);
c9bf0622 6339 }
230d2906 6340 catch (const gdb_exception_error &except)
492d29ea
PA
6341 {
6342 exception_print (gdb_stderr, except);
6343 }
c906108c 6344}
c906108c 6345
1ce1cefd
DE
6346/* Return the total length of the CU described by HEADER. */
6347
6348static unsigned int
6349get_cu_length (const struct comp_unit_head *header)
6350{
6351 return header->initial_length_size + header->length;
6352}
6353
9c541725 6354/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 6355
9c541725
PA
6356static inline bool
6357offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 6358{
9c541725
PA
6359 sect_offset bottom = cu_header->sect_off;
6360 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 6361
9c541725 6362 return sect_off >= bottom && sect_off < top;
45452591
DE
6363}
6364
3b80fe9b
DE
6365/* Find the base address of the compilation unit for range lists and
6366 location lists. It will normally be specified by DW_AT_low_pc.
6367 In DWARF-3 draft 4, the base address could be overridden by
6368 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6369 compilation units with discontinuous ranges. */
6370
6371static void
6372dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6373{
6374 struct attribute *attr;
6375
6376 cu->base_known = 0;
6377 cu->base_address = 0;
6378
6379 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6380 if (attr)
6381 {
31aa7e4e 6382 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6383 cu->base_known = 1;
6384 }
6385 else
6386 {
6387 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6388 if (attr)
6389 {
31aa7e4e 6390 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6391 cu->base_known = 1;
6392 }
6393 }
6394}
6395
93311388 6396/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 6397 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
6398 NOTE: This leaves members offset, first_die_offset to be filled in
6399 by the caller. */
107d2387 6400
d521ce57 6401static const gdb_byte *
107d2387 6402read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
6403 const gdb_byte *info_ptr,
6404 struct dwarf2_section_info *section,
6405 rcuh_kind section_kind)
107d2387
AC
6406{
6407 int signed_addr;
891d2f0b 6408 unsigned int bytes_read;
43988095
JK
6409 const char *filename = get_section_file_name (section);
6410 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
6411
6412 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6413 cu_header->initial_length_size = bytes_read;
6414 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 6415 info_ptr += bytes_read;
107d2387 6416 cu_header->version = read_2_bytes (abfd, info_ptr);
1ea5da02
TV
6417 if (cu_header->version < 2 || cu_header->version > 5)
6418 error (_("Dwarf Error: wrong version in compilation unit header "
6419 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6420 cu_header->version, filename);
107d2387 6421 info_ptr += 2;
43988095
JK
6422 if (cu_header->version < 5)
6423 switch (section_kind)
6424 {
6425 case rcuh_kind::COMPILE:
6426 cu_header->unit_type = DW_UT_compile;
6427 break;
6428 case rcuh_kind::TYPE:
6429 cu_header->unit_type = DW_UT_type;
6430 break;
6431 default:
6432 internal_error (__FILE__, __LINE__,
6433 _("read_comp_unit_head: invalid section_kind"));
6434 }
6435 else
6436 {
6437 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6438 (read_1_byte (abfd, info_ptr));
6439 info_ptr += 1;
6440 switch (cu_header->unit_type)
6441 {
6442 case DW_UT_compile:
a084a2a6
AT
6443 case DW_UT_partial:
6444 case DW_UT_skeleton:
6445 case DW_UT_split_compile:
43988095
JK
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
a084a2a6
AT
6448 "(is %s, should be %s) [in module %s]"),
6449 dwarf_unit_type_name (cu_header->unit_type),
6450 dwarf_unit_type_name (DW_UT_type), filename);
43988095
JK
6451 break;
6452 case DW_UT_type:
a084a2a6 6453 case DW_UT_split_type:
43988095
JK
6454 section_kind = rcuh_kind::TYPE;
6455 break;
6456 default:
6457 error (_("Dwarf Error: wrong unit_type in compilation unit header "
a084a2a6
AT
6458 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6459 "[in module %s]"), cu_header->unit_type,
6460 dwarf_unit_type_name (DW_UT_compile),
6461 dwarf_unit_type_name (DW_UT_skeleton),
6462 dwarf_unit_type_name (DW_UT_split_compile),
6463 dwarf_unit_type_name (DW_UT_type),
6464 dwarf_unit_type_name (DW_UT_split_type), filename);
43988095
JK
6465 }
6466
6467 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6468 info_ptr += 1;
6469 }
9c541725
PA
6470 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6471 cu_header,
6472 &bytes_read);
613e1657 6473 info_ptr += bytes_read;
43988095
JK
6474 if (cu_header->version < 5)
6475 {
6476 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6477 info_ptr += 1;
6478 }
107d2387
AC
6479 signed_addr = bfd_get_sign_extend_vma (abfd);
6480 if (signed_addr < 0)
8e65ff28 6481 internal_error (__FILE__, __LINE__,
e2e0b3e5 6482 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 6483 cu_header->signed_addr_p = signed_addr;
c764a876 6484
a084a2a6
AT
6485 bool header_has_signature = section_kind == rcuh_kind::TYPE
6486 || cu_header->unit_type == DW_UT_skeleton
6487 || cu_header->unit_type == DW_UT_split_compile;
43988095 6488
a084a2a6
AT
6489 if (header_has_signature)
6490 {
43988095
JK
6491 cu_header->signature = read_8_bytes (abfd, info_ptr);
6492 info_ptr += 8;
a084a2a6 6493 }
43988095 6494
a084a2a6
AT
6495 if (section_kind == rcuh_kind::TYPE)
6496 {
6497 LONGEST type_offset;
43988095
JK
6498 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6499 info_ptr += bytes_read;
9c541725
PA
6500 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6501 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
6502 error (_("Dwarf Error: Too big type_offset in compilation unit "
6503 "header (is %s) [in module %s]"), plongest (type_offset),
6504 filename);
6505 }
6506
107d2387
AC
6507 return info_ptr;
6508}
6509
36586728
TT
6510/* Helper function that returns the proper abbrev section for
6511 THIS_CU. */
6512
6513static struct dwarf2_section_info *
6514get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6515{
6516 struct dwarf2_section_info *abbrev;
ed2dc618 6517 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
36586728
TT
6518
6519 if (this_cu->is_dwz)
ed2dc618 6520 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
36586728
TT
6521 else
6522 abbrev = &dwarf2_per_objfile->abbrev;
6523
6524 return abbrev;
6525}
6526
9ff913ba
DE
6527/* Subroutine of read_and_check_comp_unit_head and
6528 read_and_check_type_unit_head to simplify them.
6529 Perform various error checking on the header. */
6530
6531static void
ed2dc618
SM
6532error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6533 struct comp_unit_head *header,
4bdcc0c1
DE
6534 struct dwarf2_section_info *section,
6535 struct dwarf2_section_info *abbrev_section)
9ff913ba 6536{
a32a8923 6537 const char *filename = get_section_file_name (section);
9ff913ba 6538
9c541725 6539 if (to_underlying (header->abbrev_sect_off)
36586728 6540 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9d8780f0
SM
6541 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6542 "(offset %s + 6) [in module %s]"),
6543 sect_offset_str (header->abbrev_sect_off),
6544 sect_offset_str (header->sect_off),
9ff913ba
DE
6545 filename);
6546
9c541725 6547 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 6548 avoid potential 32-bit overflow. */
9c541725 6549 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 6550 > section->size)
9c541725 6551 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
9d8780f0
SM
6552 "(offset %s + 0) [in module %s]"),
6553 header->length, sect_offset_str (header->sect_off),
9ff913ba
DE
6554 filename);
6555}
6556
6557/* Read in a CU/TU header and perform some basic error checking.
6558 The contents of the header are stored in HEADER.
6559 The result is a pointer to the start of the first DIE. */
adabb602 6560
d521ce57 6561static const gdb_byte *
ed2dc618
SM
6562read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6563 struct comp_unit_head *header,
9ff913ba 6564 struct dwarf2_section_info *section,
4bdcc0c1 6565 struct dwarf2_section_info *abbrev_section,
d521ce57 6566 const gdb_byte *info_ptr,
43988095 6567 rcuh_kind section_kind)
72bf9492 6568{
d521ce57 6569 const gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492 6570
9c541725 6571 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 6572
43988095 6573 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 6574
9c541725 6575 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 6576
ed2dc618
SM
6577 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6578 abbrev_section);
9ff913ba
DE
6579
6580 return info_ptr;
348e048f
DE
6581}
6582
f4dc4d17
DE
6583/* Fetch the abbreviation table offset from a comp or type unit header. */
6584
6585static sect_offset
ed2dc618
SM
6586read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6587 struct dwarf2_section_info *section,
9c541725 6588 sect_offset sect_off)
f4dc4d17 6589{
a32a8923 6590 bfd *abfd = get_section_bfd_owner (section);
d521ce57 6591 const gdb_byte *info_ptr;
ac298888 6592 unsigned int initial_length_size, offset_size;
43988095 6593 uint16_t version;
f4dc4d17
DE
6594
6595 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 6596 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 6597 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 6598 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
6599 info_ptr += initial_length_size;
6600
6601 version = read_2_bytes (abfd, info_ptr);
6602 info_ptr += 2;
6603 if (version >= 5)
6604 {
6605 /* Skip unit type and address size. */
6606 info_ptr += 2;
6607 }
6608
9c541725 6609 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
6610}
6611
aaa75496
JB
6612/* Allocate a new partial symtab for file named NAME and mark this new
6613 partial symtab as being an include of PST. */
6614
6615static void
d521ce57 6616dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
6617 struct objfile *objfile)
6618{
6619 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6620
fbd9ab74
JK
6621 if (!IS_ABSOLUTE_PATH (subpst->filename))
6622 {
6623 /* It shares objfile->objfile_obstack. */
6624 subpst->dirname = pst->dirname;
6625 }
6626
a9342b62 6627 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
aaa75496
JB
6628 subpst->dependencies[0] = pst;
6629 subpst->number_of_dependencies = 1;
6630
aaa75496 6631 subpst->read_symtab = pst->read_symtab;
aaa75496
JB
6632
6633 /* No private part is necessary for include psymtabs. This property
6634 can be used to differentiate between such include psymtabs and
10b3939b 6635 the regular ones. */
58a9656e 6636 subpst->read_symtab_private = NULL;
aaa75496
JB
6637}
6638
6639/* Read the Line Number Program data and extract the list of files
6640 included by the source file represented by PST. Build an include
d85a05f0 6641 partial symtab for each of these included files. */
aaa75496
JB
6642
6643static void
6644dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
6645 struct die_info *die,
6646 struct partial_symtab *pst)
aaa75496 6647{
fff8551c 6648 line_header_up lh;
d85a05f0 6649 struct attribute *attr;
aaa75496 6650
d85a05f0
DJ
6651 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6652 if (attr)
9c541725 6653 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
6654 if (lh == NULL)
6655 return; /* No linetable, so no includes. */
6656
79748972
TT
6657 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6658 that we pass in the raw text_low here; that is ok because we're
6659 only decoding the line table to make include partial symtabs, and
6660 so the addresses aren't really used. */
4ae976d1 6661 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
79748972 6662 pst->raw_text_low (), 1);
aaa75496
JB
6663}
6664
348e048f 6665static hashval_t
52dc124a 6666hash_signatured_type (const void *item)
348e048f 6667{
9a3c8263
SM
6668 const struct signatured_type *sig_type
6669 = (const struct signatured_type *) item;
9a619af0 6670
348e048f 6671 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 6672 return sig_type->signature;
348e048f
DE
6673}
6674
6675static int
52dc124a 6676eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 6677{
9a3c8263
SM
6678 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6679 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 6680
348e048f
DE
6681 return lhs->signature == rhs->signature;
6682}
6683
1fd400ff
TT
6684/* Allocate a hash table for signatured types. */
6685
6686static htab_t
673bfd45 6687allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
6688{
6689 return htab_create_alloc_ex (41,
52dc124a
DE
6690 hash_signatured_type,
6691 eq_signatured_type,
1fd400ff
TT
6692 NULL,
6693 &objfile->objfile_obstack,
6694 hashtab_obstack_allocate,
6695 dummy_obstack_deallocate);
6696}
6697
d467dd73 6698/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
6699
6700static int
d467dd73 6701add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 6702{
9a3c8263 6703 struct signatured_type *sigt = (struct signatured_type *) *slot;
b2bdb8cf
SM
6704 std::vector<signatured_type *> *all_type_units
6705 = (std::vector<signatured_type *> *) datum;
1fd400ff 6706
b2bdb8cf 6707 all_type_units->push_back (sigt);
1fd400ff
TT
6708
6709 return 1;
6710}
6711
78d4d2c5 6712/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
6713 and fill them into TYPES_HTAB. It will process only type units,
6714 therefore DW_UT_type. */
c88ee1f0 6715
78d4d2c5 6716static void
ed2dc618
SM
6717create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6718 struct dwo_file *dwo_file,
43988095
JK
6719 dwarf2_section_info *section, htab_t &types_htab,
6720 rcuh_kind section_kind)
348e048f 6721{
3019eac3 6722 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 6723 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
6724 bfd *abfd;
6725 const gdb_byte *info_ptr, *end_ptr;
348e048f 6726
4bdcc0c1
DE
6727 abbrev_section = (dwo_file != NULL
6728 ? &dwo_file->sections.abbrev
6729 : &dwarf2_per_objfile->abbrev);
6730
b4f54984 6731 if (dwarf_read_debug)
43988095
JK
6732 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6733 get_section_name (section),
a32a8923 6734 get_section_file_name (abbrev_section));
09406207 6735
78d4d2c5
JK
6736 dwarf2_read_section (objfile, section);
6737 info_ptr = section->buffer;
348e048f 6738
78d4d2c5
JK
6739 if (info_ptr == NULL)
6740 return;
348e048f 6741
78d4d2c5
JK
6742 /* We can't set abfd until now because the section may be empty or
6743 not present, in which case the bfd is unknown. */
6744 abfd = get_section_bfd_owner (section);
348e048f 6745
78d4d2c5
JK
6746 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6747 because we don't need to read any dies: the signature is in the
6748 header. */
3019eac3 6749
78d4d2c5
JK
6750 end_ptr = info_ptr + section->size;
6751 while (info_ptr < end_ptr)
6752 {
78d4d2c5
JK
6753 struct signatured_type *sig_type;
6754 struct dwo_unit *dwo_tu;
6755 void **slot;
6756 const gdb_byte *ptr = info_ptr;
6757 struct comp_unit_head header;
6758 unsigned int length;
8b70b953 6759
9c541725 6760 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 6761
a49dd8dd
JK
6762 /* Initialize it due to a false compiler warning. */
6763 header.signature = -1;
9c541725 6764 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 6765
78d4d2c5
JK
6766 /* We need to read the type's signature in order to build the hash
6767 table, but we don't need anything else just yet. */
348e048f 6768
ed2dc618 6769 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
43988095 6770 abbrev_section, ptr, section_kind);
348e048f 6771
78d4d2c5 6772 length = get_cu_length (&header);
6caca83c 6773
78d4d2c5
JK
6774 /* Skip dummy type units. */
6775 if (ptr >= info_ptr + length
43988095
JK
6776 || peek_abbrev_code (abfd, ptr) == 0
6777 || header.unit_type != DW_UT_type)
78d4d2c5
JK
6778 {
6779 info_ptr += length;
6780 continue;
6781 }
dee91e82 6782
78d4d2c5
JK
6783 if (types_htab == NULL)
6784 {
6785 if (dwo_file)
6786 types_htab = allocate_dwo_unit_table (objfile);
6787 else
6788 types_htab = allocate_signatured_type_table (objfile);
6789 }
8b70b953 6790
78d4d2c5
JK
6791 if (dwo_file)
6792 {
6793 sig_type = NULL;
6794 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6795 struct dwo_unit);
6796 dwo_tu->dwo_file = dwo_file;
43988095 6797 dwo_tu->signature = header.signature;
9c541725 6798 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 6799 dwo_tu->section = section;
9c541725 6800 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
6801 dwo_tu->length = length;
6802 }
6803 else
6804 {
6805 /* N.B.: type_offset is not usable if this type uses a DWO file.
6806 The real type_offset is in the DWO file. */
6807 dwo_tu = NULL;
6808 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6809 struct signatured_type);
43988095 6810 sig_type->signature = header.signature;
9c541725 6811 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
e3b94546 6812 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
78d4d2c5
JK
6813 sig_type->per_cu.is_debug_types = 1;
6814 sig_type->per_cu.section = section;
9c541725 6815 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
6816 sig_type->per_cu.length = length;
6817 }
6818
6819 slot = htab_find_slot (types_htab,
6820 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6821 INSERT);
6822 gdb_assert (slot != NULL);
6823 if (*slot != NULL)
6824 {
9c541725 6825 sect_offset dup_sect_off;
0349ea22 6826
3019eac3
DE
6827 if (dwo_file)
6828 {
78d4d2c5
JK
6829 const struct dwo_unit *dup_tu
6830 = (const struct dwo_unit *) *slot;
6831
9c541725 6832 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
6833 }
6834 else
6835 {
78d4d2c5
JK
6836 const struct signatured_type *dup_tu
6837 = (const struct signatured_type *) *slot;
6838
9c541725 6839 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 6840 }
8b70b953 6841
b98664d3 6842 complaint (_("debug type entry at offset %s is duplicate to"
9d8780f0
SM
6843 " the entry at offset %s, signature %s"),
6844 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
43988095 6845 hex_string (header.signature));
78d4d2c5
JK
6846 }
6847 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 6848
78d4d2c5 6849 if (dwarf_read_debug > 1)
9d8780f0
SM
6850 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6851 sect_offset_str (sect_off),
43988095 6852 hex_string (header.signature));
3019eac3 6853
78d4d2c5
JK
6854 info_ptr += length;
6855 }
6856}
3019eac3 6857
78d4d2c5
JK
6858/* Create the hash table of all entries in the .debug_types
6859 (or .debug_types.dwo) section(s).
6860 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6861 otherwise it is NULL.
b3c8eb43 6862
78d4d2c5 6863 The result is a pointer to the hash table or NULL if there are no types.
348e048f 6864
78d4d2c5 6865 Note: This function processes DWO files only, not DWP files. */
348e048f 6866
78d4d2c5 6867static void
ed2dc618
SM
6868create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6869 struct dwo_file *dwo_file,
fd5866f6 6870 gdb::array_view<dwarf2_section_info> type_sections,
78d4d2c5
JK
6871 htab_t &types_htab)
6872{
fd5866f6
SM
6873 for (dwarf2_section_info &section : type_sections)
6874 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
ed2dc618 6875 types_htab, rcuh_kind::TYPE);
3019eac3
DE
6876}
6877
6878/* Create the hash table of all entries in the .debug_types section,
6879 and initialize all_type_units.
6880 The result is zero if there is an error (e.g. missing .debug_types section),
6881 otherwise non-zero. */
6882
6883static int
ed2dc618 6884create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
3019eac3 6885{
78d4d2c5 6886 htab_t types_htab = NULL;
3019eac3 6887
ed2dc618
SM
6888 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6889 &dwarf2_per_objfile->info, types_htab,
43988095 6890 rcuh_kind::COMPILE);
ed2dc618
SM
6891 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6892 dwarf2_per_objfile->types, types_htab);
3019eac3
DE
6893 if (types_htab == NULL)
6894 {
6895 dwarf2_per_objfile->signatured_types = NULL;
6896 return 0;
6897 }
6898
348e048f
DE
6899 dwarf2_per_objfile->signatured_types = types_htab;
6900
b2bdb8cf
SM
6901 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6902 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6903
6904 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6905 &dwarf2_per_objfile->all_type_units);
1fd400ff 6906
348e048f
DE
6907 return 1;
6908}
6909
6aa5f3a6
DE
6910/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6911 If SLOT is non-NULL, it is the entry to use in the hash table.
6912 Otherwise we find one. */
6913
6914static struct signatured_type *
ed2dc618
SM
6915add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6916 void **slot)
6aa5f3a6
DE
6917{
6918 struct objfile *objfile = dwarf2_per_objfile->objfile;
6aa5f3a6 6919
b2bdb8cf
SM
6920 if (dwarf2_per_objfile->all_type_units.size ()
6921 == dwarf2_per_objfile->all_type_units.capacity ())
6922 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6aa5f3a6 6923
b2bdb8cf
SM
6924 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6925 struct signatured_type);
6926
6927 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6aa5f3a6
DE
6928 sig_type->signature = sig;
6929 sig_type->per_cu.is_debug_types = 1;
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 sig_type->per_cu.v.quick =
6933 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6934 struct dwarf2_per_cu_quick_data);
6935 }
6936
6937 if (slot == NULL)
6938 {
6939 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6940 sig_type, INSERT);
6941 }
6942 gdb_assert (*slot == NULL);
6943 *slot = sig_type;
6944 /* The rest of sig_type must be filled in by the caller. */
6945 return sig_type;
6946}
6947
a2ce51a0
DE
6948/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6949 Fill in SIG_ENTRY with DWO_ENTRY. */
6950
6951static void
ed2dc618 6952fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
a2ce51a0
DE
6953 struct signatured_type *sig_entry,
6954 struct dwo_unit *dwo_entry)
6955{
7ee85ab1 6956 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
6957 gdb_assert (! sig_entry->per_cu.queued);
6958 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
6959 if (dwarf2_per_objfile->using_index)
6960 {
6961 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 6962 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
6963 }
6964 else
6965 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 6966 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 6967 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 6968 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
6969 gdb_assert (sig_entry->dwo_unit == NULL);
6970
6971 sig_entry->per_cu.section = dwo_entry->section;
9c541725 6972 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
6973 sig_entry->per_cu.length = dwo_entry->length;
6974 sig_entry->per_cu.reading_dwo_directly = 1;
e3b94546 6975 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
a2ce51a0
DE
6976 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6977 sig_entry->dwo_unit = dwo_entry;
6978}
6979
6980/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
6981 If we haven't read the TU yet, create the signatured_type data structure
6982 for a TU to be read in directly from a DWO file, bypassing the stub.
6983 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6984 using .gdb_index, then when reading a CU we want to stay in the DWO file
6985 containing that CU. Otherwise we could end up reading several other DWO
6986 files (due to comdat folding) to process the transitive closure of all the
6987 mentioned TUs, and that can be slow. The current DWO file will have every
6988 type signature that it needs.
a2ce51a0
DE
6989 We only do this for .gdb_index because in the psymtab case we already have
6990 to read all the DWOs to build the type unit groups. */
6991
6992static struct signatured_type *
6993lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6994{
518817b3
SM
6995 struct dwarf2_per_objfile *dwarf2_per_objfile
6996 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0
DE
6997 struct objfile *objfile = dwarf2_per_objfile->objfile;
6998 struct dwo_file *dwo_file;
6999 struct dwo_unit find_dwo_entry, *dwo_entry;
7000 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 7001 void **slot;
a2ce51a0
DE
7002
7003 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7004
6aa5f3a6
DE
7005 /* If TU skeletons have been removed then we may not have read in any
7006 TUs yet. */
7007 if (dwarf2_per_objfile->signatured_types == NULL)
7008 {
7009 dwarf2_per_objfile->signatured_types
7010 = allocate_signatured_type_table (objfile);
7011 }
a2ce51a0
DE
7012
7013 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
7014 Use the global signatured_types array to do our own comdat-folding
7015 of types. If this is the first time we're reading this TU, and
7016 the TU has an entry in .gdb_index, replace the recorded data from
7017 .gdb_index with this TU. */
a2ce51a0 7018
a2ce51a0 7019 find_sig_entry.signature = sig;
6aa5f3a6
DE
7020 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7021 &find_sig_entry, INSERT);
9a3c8263 7022 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
7023
7024 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
7025 read. Don't reassign the global entry to point to this DWO if that's
7026 the case. Also note that if the TU is already being read, it may not
7027 have come from a DWO, the program may be a mix of Fission-compiled
7028 code and non-Fission-compiled code. */
7029
7030 /* Have we already tried to read this TU?
7031 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7032 needn't exist in the global table yet). */
7033 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
7034 return sig_entry;
7035
6aa5f3a6
DE
7036 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7037 dwo_unit of the TU itself. */
7038 dwo_file = cu->dwo_unit->dwo_file;
7039
a2ce51a0
DE
7040 /* Ok, this is the first time we're reading this TU. */
7041 if (dwo_file->tus == NULL)
7042 return NULL;
7043 find_dwo_entry.signature = sig;
9a3c8263 7044 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
7045 if (dwo_entry == NULL)
7046 return NULL;
7047
6aa5f3a6
DE
7048 /* If the global table doesn't have an entry for this TU, add one. */
7049 if (sig_entry == NULL)
ed2dc618 7050 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6aa5f3a6 7051
ed2dc618 7052 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
89e63ee4 7053 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
7054 return sig_entry;
7055}
7056
a2ce51a0
DE
7057/* Subroutine of lookup_signatured_type.
7058 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
7059 then try the DWP file. If the TU stub (skeleton) has been removed then
7060 it won't be in .gdb_index. */
a2ce51a0
DE
7061
7062static struct signatured_type *
7063lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7064{
518817b3
SM
7065 struct dwarf2_per_objfile *dwarf2_per_objfile
7066 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0 7067 struct objfile *objfile = dwarf2_per_objfile->objfile;
ed2dc618 7068 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
a2ce51a0
DE
7069 struct dwo_unit *dwo_entry;
7070 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 7071 void **slot;
a2ce51a0
DE
7072
7073 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7074 gdb_assert (dwp_file != NULL);
7075
6aa5f3a6
DE
7076 /* If TU skeletons have been removed then we may not have read in any
7077 TUs yet. */
7078 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 7079 {
6aa5f3a6
DE
7080 dwarf2_per_objfile->signatured_types
7081 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
7082 }
7083
6aa5f3a6
DE
7084 find_sig_entry.signature = sig;
7085 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7086 &find_sig_entry, INSERT);
9a3c8263 7087 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
7088
7089 /* Have we already tried to read this TU?
7090 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7091 needn't exist in the global table yet). */
7092 if (sig_entry != NULL)
7093 return sig_entry;
7094
a2ce51a0
DE
7095 if (dwp_file->tus == NULL)
7096 return NULL;
ed2dc618 7097 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
57d63ce2 7098 sig, 1 /* is_debug_types */);
a2ce51a0
DE
7099 if (dwo_entry == NULL)
7100 return NULL;
7101
ed2dc618
SM
7102 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7103 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
a2ce51a0 7104
a2ce51a0
DE
7105 return sig_entry;
7106}
7107
380bca97 7108/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
7109 Returns NULL if signature SIG is not present in the table.
7110 It is up to the caller to complain about this. */
348e048f
DE
7111
7112static struct signatured_type *
a2ce51a0 7113lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 7114{
518817b3
SM
7115 struct dwarf2_per_objfile *dwarf2_per_objfile
7116 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 7117
a2ce51a0
DE
7118 if (cu->dwo_unit
7119 && dwarf2_per_objfile->using_index)
7120 {
7121 /* We're in a DWO/DWP file, and we're using .gdb_index.
7122 These cases require special processing. */
ed2dc618 7123 if (get_dwp_file (dwarf2_per_objfile) == NULL)
a2ce51a0
DE
7124 return lookup_dwo_signatured_type (cu, sig);
7125 else
7126 return lookup_dwp_signatured_type (cu, sig);
7127 }
7128 else
7129 {
7130 struct signatured_type find_entry, *entry;
348e048f 7131
a2ce51a0
DE
7132 if (dwarf2_per_objfile->signatured_types == NULL)
7133 return NULL;
7134 find_entry.signature = sig;
9a3c8263
SM
7135 entry = ((struct signatured_type *)
7136 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
7137 return entry;
7138 }
348e048f 7139}
42e7ad6c
DE
7140\f
7141/* Low level DIE reading support. */
348e048f 7142
d85a05f0
DJ
7143/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7144
7145static void
7146init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 7147 struct dwarf2_cu *cu,
3019eac3 7148 struct dwarf2_section_info *section,
685af9cd
TT
7149 struct dwo_file *dwo_file,
7150 struct abbrev_table *abbrev_table)
d85a05f0 7151{
fceca515 7152 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 7153 reader->abfd = get_section_bfd_owner (section);
d85a05f0 7154 reader->cu = cu;
3019eac3 7155 reader->dwo_file = dwo_file;
dee91e82
DE
7156 reader->die_section = section;
7157 reader->buffer = section->buffer;
f664829e 7158 reader->buffer_end = section->buffer + section->size;
a2ce51a0 7159 reader->comp_dir = NULL;
685af9cd 7160 reader->abbrev_table = abbrev_table;
d85a05f0
DJ
7161}
7162
b0c7bfa9
DE
7163/* Subroutine of init_cutu_and_read_dies to simplify it.
7164 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7165 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7166 already.
7167
7168 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7169 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
7170 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7171 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
7172 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7173 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
7174 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7175 are filled in with the info of the DIE from the DWO file.
685af9cd
TT
7176 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7177 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7178 kept around for at least as long as *RESULT_READER.
7179
b0c7bfa9
DE
7180 The result is non-zero if a valid (non-dummy) DIE was found. */
7181
7182static int
7183read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7184 struct dwo_unit *dwo_unit,
b0c7bfa9 7185 struct die_info *stub_comp_unit_die,
a2ce51a0 7186 const char *stub_comp_dir,
b0c7bfa9 7187 struct die_reader_specs *result_reader,
d521ce57 7188 const gdb_byte **result_info_ptr,
b0c7bfa9 7189 struct die_info **result_comp_unit_die,
685af9cd
TT
7190 int *result_has_children,
7191 abbrev_table_up *result_dwo_abbrev_table)
b0c7bfa9 7192{
ed2dc618 7193 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
b0c7bfa9
DE
7194 struct objfile *objfile = dwarf2_per_objfile->objfile;
7195 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9 7196 bfd *abfd;
d521ce57 7197 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
7198 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7199 int i,num_extra_attrs;
7200 struct dwarf2_section_info *dwo_abbrev_section;
7201 struct attribute *attr;
7202 struct die_info *comp_unit_die;
7203
b0aeadb3
DE
7204 /* At most one of these may be provided. */
7205 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 7206
b0c7bfa9
DE
7207 /* These attributes aren't processed until later:
7208 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
7209 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7210 referenced later. However, these attributes are found in the stub
7211 which we won't have later. In order to not impose this complication
7212 on the rest of the code, we read them here and copy them to the
7213 DWO CU/TU die. */
b0c7bfa9
DE
7214
7215 stmt_list = NULL;
7216 low_pc = NULL;
7217 high_pc = NULL;
7218 ranges = NULL;
7219 comp_dir = NULL;
7220
7221 if (stub_comp_unit_die != NULL)
7222 {
7223 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7224 DWO file. */
7225 if (! this_cu->is_debug_types)
7226 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7227 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7228 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7229 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7230 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7231
7232 /* There should be a DW_AT_addr_base attribute here (if needed).
336d760d
AT
7233 We need the value before we can process DW_FORM_GNU_addr_index
7234 or DW_FORM_addrx. */
b0c7bfa9
DE
7235 cu->addr_base = 0;
7236 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7237 if (attr)
7238 cu->addr_base = DW_UNSND (attr);
7239
7240 /* There should be a DW_AT_ranges_base attribute here (if needed).
7241 We need the value before we can process DW_AT_ranges. */
7242 cu->ranges_base = 0;
7243 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7244 if (attr)
7245 cu->ranges_base = DW_UNSND (attr);
7246 }
a2ce51a0
DE
7247 else if (stub_comp_dir != NULL)
7248 {
7249 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 7250 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
7251 comp_dir->name = DW_AT_comp_dir;
7252 comp_dir->form = DW_FORM_string;
7253 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7254 DW_STRING (comp_dir) = stub_comp_dir;
7255 }
b0c7bfa9
DE
7256
7257 /* Set up for reading the DWO CU/TU. */
7258 cu->dwo_unit = dwo_unit;
685af9cd 7259 dwarf2_section_info *section = dwo_unit->section;
b0c7bfa9 7260 dwarf2_read_section (objfile, section);
a32a8923 7261 abfd = get_section_bfd_owner (section);
9c541725
PA
7262 begin_info_ptr = info_ptr = (section->buffer
7263 + to_underlying (dwo_unit->sect_off));
b0c7bfa9 7264 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
b0c7bfa9
DE
7265
7266 if (this_cu->is_debug_types)
7267 {
b0c7bfa9
DE
7268 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7269
ed2dc618
SM
7270 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7271 &cu->header, section,
b0c7bfa9 7272 dwo_abbrev_section,
43988095 7273 info_ptr, rcuh_kind::TYPE);
a2ce51a0 7274 /* This is not an assert because it can be caused by bad debug info. */
43988095 7275 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
7276 {
7277 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
9d8780f0 7278 " TU at offset %s [in module %s]"),
a2ce51a0 7279 hex_string (sig_type->signature),
43988095 7280 hex_string (cu->header.signature),
9d8780f0 7281 sect_offset_str (dwo_unit->sect_off),
a2ce51a0
DE
7282 bfd_get_filename (abfd));
7283 }
9c541725 7284 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7285 /* For DWOs coming from DWP files, we don't know the CU length
7286 nor the type's offset in the TU until now. */
7287 dwo_unit->length = get_cu_length (&cu->header);
9c541725 7288 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
7289
7290 /* Establish the type offset that can be used to lookup the type.
7291 For DWO files, we don't know it until now. */
9c541725
PA
7292 sig_type->type_offset_in_section
7293 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
7294 }
7295 else
7296 {
ed2dc618
SM
7297 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7298 &cu->header, section,
b0c7bfa9 7299 dwo_abbrev_section,
43988095 7300 info_ptr, rcuh_kind::COMPILE);
9c541725 7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7302 /* For DWOs coming from DWP files, we don't know the CU length
7303 until now. */
7304 dwo_unit->length = get_cu_length (&cu->header);
7305 }
7306
685af9cd
TT
7307 *result_dwo_abbrev_table
7308 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7309 cu->header.abbrev_sect_off);
7310 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7311 result_dwo_abbrev_table->get ());
b0c7bfa9
DE
7312
7313 /* Read in the die, but leave space to copy over the attributes
7314 from the stub. This has the benefit of simplifying the rest of
7315 the code - all the work to maintain the illusion of a single
7316 DW_TAG_{compile,type}_unit DIE is done here. */
7317 num_extra_attrs = ((stmt_list != NULL)
7318 + (low_pc != NULL)
7319 + (high_pc != NULL)
7320 + (ranges != NULL)
7321 + (comp_dir != NULL));
7322 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7323 result_has_children, num_extra_attrs);
7324
7325 /* Copy over the attributes from the stub to the DIE we just read in. */
7326 comp_unit_die = *result_comp_unit_die;
7327 i = comp_unit_die->num_attrs;
7328 if (stmt_list != NULL)
7329 comp_unit_die->attrs[i++] = *stmt_list;
7330 if (low_pc != NULL)
7331 comp_unit_die->attrs[i++] = *low_pc;
7332 if (high_pc != NULL)
7333 comp_unit_die->attrs[i++] = *high_pc;
7334 if (ranges != NULL)
7335 comp_unit_die->attrs[i++] = *ranges;
7336 if (comp_dir != NULL)
7337 comp_unit_die->attrs[i++] = *comp_dir;
7338 comp_unit_die->num_attrs += num_extra_attrs;
7339
b4f54984 7340 if (dwarf_die_debug)
bf6af496
DE
7341 {
7342 fprintf_unfiltered (gdb_stdlog,
7343 "Read die from %s@0x%x of %s:\n",
a32a8923 7344 get_section_name (section),
bf6af496
DE
7345 (unsigned) (begin_info_ptr - section->buffer),
7346 bfd_get_filename (abfd));
b4f54984 7347 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
7348 }
7349
a2ce51a0
DE
7350 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7351 TUs by skipping the stub and going directly to the entry in the DWO file.
7352 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7353 to get it via circuitous means. Blech. */
7354 if (comp_dir != NULL)
7355 result_reader->comp_dir = DW_STRING (comp_dir);
7356
b0c7bfa9
DE
7357 /* Skip dummy compilation units. */
7358 if (info_ptr >= begin_info_ptr + dwo_unit->length
7359 || peek_abbrev_code (abfd, info_ptr) == 0)
7360 return 0;
7361
7362 *result_info_ptr = info_ptr;
7363 return 1;
7364}
7365
a084a2a6
AT
7366/* Return the signature of the compile unit, if found. In DWARF 4 and before,
7367 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7368 signature is part of the header. */
7369static gdb::optional<ULONGEST>
7370lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7371{
7372 if (cu->header.version >= 5)
7373 return cu->header.signature;
7374 struct attribute *attr;
7375 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7376 if (attr == nullptr)
7377 return gdb::optional<ULONGEST> ();
7378 return DW_UNSND (attr);
7379}
7380
b0c7bfa9
DE
7381/* Subroutine of init_cutu_and_read_dies to simplify it.
7382 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 7383 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
7384
7385static struct dwo_unit *
7386lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7387 struct die_info *comp_unit_die)
7388{
7389 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9
DE
7390 struct dwo_unit *dwo_unit;
7391 const char *comp_dir, *dwo_name;
7392
a2ce51a0
DE
7393 gdb_assert (cu != NULL);
7394
b0c7bfa9 7395 /* Yeah, we look dwo_name up again, but it simplifies the code. */
a084a2a6 7396 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7d45c7c3 7397 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
7398
7399 if (this_cu->is_debug_types)
7400 {
7401 struct signatured_type *sig_type;
7402
7403 /* Since this_cu is the first member of struct signatured_type,
7404 we can go from a pointer to one to a pointer to the other. */
7405 sig_type = (struct signatured_type *) this_cu;
b0c7bfa9
DE
7406 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7407 }
7408 else
7409 {
a084a2a6
AT
7410 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7411 if (!signature.has_value ())
b0c7bfa9
DE
7412 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7413 " [in module %s]"),
e3b94546 7414 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
b0c7bfa9 7415 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
a084a2a6 7416 *signature);
b0c7bfa9
DE
7417 }
7418
b0c7bfa9
DE
7419 return dwo_unit;
7420}
7421
a2ce51a0 7422/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6 7423 See it for a description of the parameters.
fcd3b13d 7424 Read a TU directly from a DWO file, bypassing the stub. */
a2ce51a0
DE
7425
7426static void
6aa5f3a6
DE
7427init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7428 int use_existing_cu, int keep,
a2ce51a0
DE
7429 die_reader_func_ftype *die_reader_func,
7430 void *data)
7431{
fcd3b13d 7432 std::unique_ptr<dwarf2_cu> new_cu;
a2ce51a0 7433 struct signatured_type *sig_type;
a2ce51a0
DE
7434 struct die_reader_specs reader;
7435 const gdb_byte *info_ptr;
7436 struct die_info *comp_unit_die;
7437 int has_children;
ed2dc618 7438 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
a2ce51a0
DE
7439
7440 /* Verify we can do the following downcast, and that we have the
7441 data we need. */
7442 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7443 sig_type = (struct signatured_type *) this_cu;
7444 gdb_assert (sig_type->dwo_unit != NULL);
7445
6aa5f3a6
DE
7446 if (use_existing_cu && this_cu->cu != NULL)
7447 {
7448 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6aa5f3a6
DE
7449 /* There's no need to do the rereading_dwo_cu handling that
7450 init_cutu_and_read_dies does since we don't read the stub. */
7451 }
7452 else
7453 {
7454 /* If !use_existing_cu, this_cu->cu must be NULL. */
7455 gdb_assert (this_cu->cu == NULL);
fcd3b13d 7456 new_cu.reset (new dwarf2_cu (this_cu));
6aa5f3a6
DE
7457 }
7458
7459 /* A future optimization, if needed, would be to use an existing
7460 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7461 could share abbrev tables. */
a2ce51a0 7462
685af9cd
TT
7463 /* The abbreviation table used by READER, this must live at least as long as
7464 READER. */
7465 abbrev_table_up dwo_abbrev_table;
7466
a2ce51a0 7467 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
a2ce51a0
DE
7468 NULL /* stub_comp_unit_die */,
7469 sig_type->dwo_unit->dwo_file->comp_dir,
7470 &reader, &info_ptr,
685af9cd
TT
7471 &comp_unit_die, &has_children,
7472 &dwo_abbrev_table) == 0)
a2ce51a0
DE
7473 {
7474 /* Dummy die. */
a2ce51a0
DE
7475 return;
7476 }
7477
7478 /* All the "real" work is done here. */
7479 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7480
6aa5f3a6 7481 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
7482 but the alternative is making the latter more complex.
7483 This function is only for the special case of using DWO files directly:
7484 no point in overly complicating the general case just to handle this. */
fcd3b13d 7485 if (new_cu != NULL && keep)
a2ce51a0 7486 {
fcd3b13d
SM
7487 /* Link this CU into read_in_chain. */
7488 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7489 dwarf2_per_objfile->read_in_chain = this_cu;
7490 /* The chain owns it now. */
7491 new_cu.release ();
a2ce51a0 7492 }
a2ce51a0
DE
7493}
7494
fd820528 7495/* Initialize a CU (or TU) and read its DIEs.
3019eac3 7496 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 7497
f4dc4d17
DE
7498 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7499 Otherwise the table specified in the comp unit header is read in and used.
7500 This is an optimization for when we already have the abbrev table.
7501
dee91e82
DE
7502 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7503 Otherwise, a new CU is allocated with xmalloc.
7504
7505 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7506 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7507
7508 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 7509 linker) then DIE_READER_FUNC will not get called. */
aaa75496 7510
70221824 7511static void
fd820528 7512init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 7513 struct abbrev_table *abbrev_table,
fd820528 7514 int use_existing_cu, int keep,
58f0c718 7515 bool skip_partial,
fd820528
DE
7516 die_reader_func_ftype *die_reader_func,
7517 void *data)
c906108c 7518{
ed2dc618 7519 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7520 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7521 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7522 bfd *abfd = get_section_bfd_owner (section);
dee91e82 7523 struct dwarf2_cu *cu;
d521ce57 7524 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7525 struct die_reader_specs reader;
d85a05f0 7526 struct die_info *comp_unit_die;
dee91e82 7527 int has_children;
dee91e82 7528 struct signatured_type *sig_type = NULL;
4bdcc0c1 7529 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
7530 /* Non-zero if CU currently points to a DWO file and we need to
7531 reread it. When this happens we need to reread the skeleton die
a2ce51a0 7532 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 7533 int rereading_dwo_cu = 0;
c906108c 7534
b4f54984 7535 if (dwarf_die_debug)
9d8780f0 7536 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7537 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7538 sect_offset_str (this_cu->sect_off));
09406207 7539
dee91e82
DE
7540 if (use_existing_cu)
7541 gdb_assert (keep);
23745b47 7542
a2ce51a0
DE
7543 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7544 file (instead of going through the stub), short-circuit all of this. */
7545 if (this_cu->reading_dwo_directly)
7546 {
7547 /* Narrow down the scope of possibilities to have to understand. */
7548 gdb_assert (this_cu->is_debug_types);
7549 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
7550 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7551 die_reader_func, data);
a2ce51a0
DE
7552 return;
7553 }
7554
dee91e82
DE
7555 /* This is cheap if the section is already read in. */
7556 dwarf2_read_section (objfile, section);
7557
9c541725 7558 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
7559
7560 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82 7561
fcd3b13d 7562 std::unique_ptr<dwarf2_cu> new_cu;
dee91e82
DE
7563 if (use_existing_cu && this_cu->cu != NULL)
7564 {
7565 cu = this_cu->cu;
42e7ad6c
DE
7566 /* If this CU is from a DWO file we need to start over, we need to
7567 refetch the attributes from the skeleton CU.
7568 This could be optimized by retrieving those attributes from when we
7569 were here the first time: the previous comp_unit_die was stored in
7570 comp_unit_obstack. But there's no data yet that we need this
7571 optimization. */
7572 if (cu->dwo_unit != NULL)
7573 rereading_dwo_cu = 1;
dee91e82
DE
7574 }
7575 else
7576 {
7577 /* If !use_existing_cu, this_cu->cu must be NULL. */
7578 gdb_assert (this_cu->cu == NULL);
fcd3b13d
SM
7579 new_cu.reset (new dwarf2_cu (this_cu));
7580 cu = new_cu.get ();
42e7ad6c 7581 }
dee91e82 7582
b0c7bfa9 7583 /* Get the header. */
9c541725 7584 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
7585 {
7586 /* We already have the header, there's no need to read it in again. */
9c541725 7587 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
7588 }
7589 else
7590 {
3019eac3 7591 if (this_cu->is_debug_types)
dee91e82 7592 {
ed2dc618
SM
7593 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7594 &cu->header, section,
4bdcc0c1 7595 abbrev_section, info_ptr,
43988095 7596 rcuh_kind::TYPE);
dee91e82 7597
42e7ad6c
DE
7598 /* Since per_cu is the first member of struct signatured_type,
7599 we can go from a pointer to one to a pointer to the other. */
7600 sig_type = (struct signatured_type *) this_cu;
43988095 7601 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
7602 gdb_assert (sig_type->type_offset_in_tu
7603 == cu->header.type_cu_offset_in_tu);
7604 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 7605
42e7ad6c
DE
7606 /* LENGTH has not been set yet for type units if we're
7607 using .gdb_index. */
1ce1cefd 7608 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
7609
7610 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
7611 sig_type->type_offset_in_section =
7612 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
7613
7614 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7615 }
7616 else
7617 {
ed2dc618
SM
7618 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7619 &cu->header, section,
4bdcc0c1 7620 abbrev_section,
43988095
JK
7621 info_ptr,
7622 rcuh_kind::COMPILE);
dee91e82 7623
9c541725 7624 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 7625 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 7626 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7627 }
7628 }
10b3939b 7629
6caca83c 7630 /* Skip dummy compilation units. */
dee91e82 7631 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c 7632 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7633 return;
6caca83c 7634
433df2d4
DE
7635 /* If we don't have them yet, read the abbrevs for this compilation unit.
7636 And if we need to read them now, make sure they're freed when we're
685af9cd
TT
7637 done (own the table through ABBREV_TABLE_HOLDER). */
7638 abbrev_table_up abbrev_table_holder;
f4dc4d17 7639 if (abbrev_table != NULL)
685af9cd
TT
7640 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7641 else
f4dc4d17 7642 {
685af9cd
TT
7643 abbrev_table_holder
7644 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7645 cu->header.abbrev_sect_off);
7646 abbrev_table = abbrev_table_holder.get ();
42e7ad6c 7647 }
af703f96 7648
dee91e82 7649 /* Read the top level CU/TU die. */
685af9cd 7650 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
dee91e82 7651 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 7652
58f0c718
TT
7653 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7654 return;
7655
b0c7bfa9 7656 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
685af9cd
TT
7657 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7658 table from the DWO file and pass the ownership over to us. It will be
7659 referenced from READER, so we must make sure to free it after we're done
7660 with READER.
7661
b0c7bfa9
DE
7662 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7663 DWO CU, that this test will fail (the attribute will not be present). */
a084a2a6 7664 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
685af9cd 7665 abbrev_table_up dwo_abbrev_table;
a084a2a6 7666 if (dwo_name != nullptr)
3019eac3 7667 {
3019eac3 7668 struct dwo_unit *dwo_unit;
b0c7bfa9 7669 struct die_info *dwo_comp_unit_die;
3019eac3
DE
7670
7671 if (has_children)
6a506a2d 7672 {
b98664d3 7673 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
9d8780f0
SM
7674 " has children (offset %s) [in module %s]"),
7675 sect_offset_str (this_cu->sect_off),
7676 bfd_get_filename (abfd));
6a506a2d 7677 }
b0c7bfa9 7678 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 7679 if (dwo_unit != NULL)
3019eac3 7680 {
6a506a2d 7681 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
a2ce51a0 7682 comp_unit_die, NULL,
6a506a2d 7683 &reader, &info_ptr,
685af9cd
TT
7684 &dwo_comp_unit_die, &has_children,
7685 &dwo_abbrev_table) == 0)
6a506a2d
DE
7686 {
7687 /* Dummy die. */
6a506a2d
DE
7688 return;
7689 }
7690 comp_unit_die = dwo_comp_unit_die;
7691 }
7692 else
7693 {
7694 /* Yikes, we couldn't find the rest of the DIE, we only have
7695 the stub. A complaint has already been logged. There's
7696 not much more we can do except pass on the stub DIE to
7697 die_reader_func. We don't want to throw an error on bad
7698 debug info. */
3019eac3
DE
7699 }
7700 }
7701
b0c7bfa9 7702 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
7703 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7704
b0c7bfa9 7705 /* Done, clean up. */
fcd3b13d 7706 if (new_cu != NULL && keep)
348e048f 7707 {
fcd3b13d
SM
7708 /* Link this CU into read_in_chain. */
7709 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7710 dwarf2_per_objfile->read_in_chain = this_cu;
7711 /* The chain owns it now. */
7712 new_cu.release ();
348e048f 7713 }
dee91e82
DE
7714}
7715
33e80786
DE
7716/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7717 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7718 to have already done the lookup to find the DWO file).
dee91e82
DE
7719
7720 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 7721 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
7722
7723 We fill in THIS_CU->length.
7724
7725 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7726 linker) then DIE_READER_FUNC will not get called.
7727
7728 THIS_CU->cu is always freed when done.
3019eac3
DE
7729 This is done in order to not leave THIS_CU->cu in a state where we have
7730 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
7731
7732static void
7733init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 7734 struct dwo_file *dwo_file,
dee91e82
DE
7735 die_reader_func_ftype *die_reader_func,
7736 void *data)
7737{
ed2dc618 7738 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7739 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7740 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7741 bfd *abfd = get_section_bfd_owner (section);
33e80786 7742 struct dwarf2_section_info *abbrev_section;
d521ce57 7743 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7744 struct die_reader_specs reader;
dee91e82
DE
7745 struct die_info *comp_unit_die;
7746 int has_children;
7747
b4f54984 7748 if (dwarf_die_debug)
9d8780f0 7749 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7750 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7751 sect_offset_str (this_cu->sect_off));
09406207 7752
dee91e82
DE
7753 gdb_assert (this_cu->cu == NULL);
7754
33e80786
DE
7755 abbrev_section = (dwo_file != NULL
7756 ? &dwo_file->sections.abbrev
7757 : get_abbrev_section_for_cu (this_cu));
7758
dee91e82
DE
7759 /* This is cheap if the section is already read in. */
7760 dwarf2_read_section (objfile, section);
7761
fcd3b13d 7762 struct dwarf2_cu cu (this_cu);
dee91e82 7763
9c541725 7764 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
ed2dc618
SM
7765 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7766 &cu.header, section,
4bdcc0c1 7767 abbrev_section, info_ptr,
43988095
JK
7768 (this_cu->is_debug_types
7769 ? rcuh_kind::TYPE
7770 : rcuh_kind::COMPILE));
dee91e82 7771
1ce1cefd 7772 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
7773
7774 /* Skip dummy compilation units. */
7775 if (info_ptr >= begin_info_ptr + this_cu->length
7776 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7777 return;
72bf9492 7778
685af9cd
TT
7779 abbrev_table_up abbrev_table
7780 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7781 cu.header.abbrev_sect_off);
dee91e82 7782
685af9cd 7783 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
dee91e82
DE
7784 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7785
7786 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
dee91e82
DE
7787}
7788
3019eac3
DE
7789/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7790 does not lookup the specified DWO file.
7791 This cannot be used to read DWO files.
dee91e82
DE
7792
7793 THIS_CU->cu is always freed when done.
3019eac3
DE
7794 This is done in order to not leave THIS_CU->cu in a state where we have
7795 to care whether it refers to the "main" CU or the DWO CU.
7796 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
7797
7798static void
7799init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7800 die_reader_func_ftype *die_reader_func,
7801 void *data)
7802{
33e80786 7803 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 7804}
0018ea6f
DE
7805\f
7806/* Type Unit Groups.
dee91e82 7807
0018ea6f
DE
7808 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7809 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7810 so that all types coming from the same compilation (.o file) are grouped
7811 together. A future step could be to put the types in the same symtab as
7812 the CU the types ultimately came from. */
ff013f42 7813
f4dc4d17
DE
7814static hashval_t
7815hash_type_unit_group (const void *item)
7816{
9a3c8263
SM
7817 const struct type_unit_group *tu_group
7818 = (const struct type_unit_group *) item;
f4dc4d17 7819
094b34ac 7820 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 7821}
348e048f
DE
7822
7823static int
f4dc4d17 7824eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 7825{
9a3c8263
SM
7826 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7827 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 7828
094b34ac 7829 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 7830}
348e048f 7831
f4dc4d17
DE
7832/* Allocate a hash table for type unit groups. */
7833
7834static htab_t
ed2dc618 7835allocate_type_unit_groups_table (struct objfile *objfile)
f4dc4d17
DE
7836{
7837 return htab_create_alloc_ex (3,
7838 hash_type_unit_group,
7839 eq_type_unit_group,
7840 NULL,
ed2dc618 7841 &objfile->objfile_obstack,
f4dc4d17
DE
7842 hashtab_obstack_allocate,
7843 dummy_obstack_deallocate);
7844}
dee91e82 7845
f4dc4d17
DE
7846/* Type units that don't have DW_AT_stmt_list are grouped into their own
7847 partial symtabs. We combine several TUs per psymtab to not let the size
7848 of any one psymtab grow too big. */
7849#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7850#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 7851
094b34ac 7852/* Helper routine for get_type_unit_group.
f4dc4d17
DE
7853 Create the type_unit_group object used to hold one or more TUs. */
7854
7855static struct type_unit_group *
094b34ac 7856create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17 7857{
518817b3
SM
7858 struct dwarf2_per_objfile *dwarf2_per_objfile
7859 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17 7860 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 7861 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 7862 struct type_unit_group *tu_group;
f4dc4d17
DE
7863
7864 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7865 struct type_unit_group);
094b34ac 7866 per_cu = &tu_group->per_cu;
518817b3 7867 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
f4dc4d17 7868
094b34ac
DE
7869 if (dwarf2_per_objfile->using_index)
7870 {
7871 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7872 struct dwarf2_per_cu_quick_data);
094b34ac
DE
7873 }
7874 else
7875 {
9c541725 7876 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac 7877 struct partial_symtab *pst;
528e1572 7878 std::string name;
094b34ac
DE
7879
7880 /* Give the symtab a useful name for debug purposes. */
7881 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
528e1572
SM
7882 name = string_printf ("<type_units_%d>",
7883 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
094b34ac 7884 else
528e1572 7885 name = string_printf ("<type_units_at_0x%x>", line_offset);
094b34ac 7886
528e1572 7887 pst = create_partial_symtab (per_cu, name.c_str ());
094b34ac 7888 pst->anonymous = 1;
094b34ac 7889 }
f4dc4d17 7890
094b34ac 7891 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 7892 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
7893
7894 return tu_group;
7895}
7896
094b34ac
DE
7897/* Look up the type_unit_group for type unit CU, and create it if necessary.
7898 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
7899
7900static struct type_unit_group *
ff39bb5e 7901get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17 7902{
518817b3
SM
7903 struct dwarf2_per_objfile *dwarf2_per_objfile
7904 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
7905 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7906 struct type_unit_group *tu_group;
7907 void **slot;
7908 unsigned int line_offset;
7909 struct type_unit_group type_unit_group_for_lookup;
7910
7911 if (dwarf2_per_objfile->type_unit_groups == NULL)
7912 {
7913 dwarf2_per_objfile->type_unit_groups =
ed2dc618 7914 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
f4dc4d17
DE
7915 }
7916
7917 /* Do we need to create a new group, or can we use an existing one? */
7918
7919 if (stmt_list)
7920 {
7921 line_offset = DW_UNSND (stmt_list);
7922 ++tu_stats->nr_symtab_sharers;
7923 }
7924 else
7925 {
7926 /* Ugh, no stmt_list. Rare, but we have to handle it.
7927 We can do various things here like create one group per TU or
7928 spread them over multiple groups to split up the expansion work.
7929 To avoid worst case scenarios (too many groups or too large groups)
7930 we, umm, group them in bunches. */
7931 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7932 | (tu_stats->nr_stmt_less_type_units
7933 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7934 ++tu_stats->nr_stmt_less_type_units;
7935 }
7936
094b34ac 7937 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 7938 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
7939 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7940 &type_unit_group_for_lookup, INSERT);
7941 if (*slot != NULL)
7942 {
9a3c8263 7943 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
7944 gdb_assert (tu_group != NULL);
7945 }
7946 else
7947 {
9c541725 7948 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 7949 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
7950 *slot = tu_group;
7951 ++tu_stats->nr_symtabs;
7952 }
7953
7954 return tu_group;
7955}
0018ea6f
DE
7956\f
7957/* Partial symbol tables. */
7958
7959/* Create a psymtab named NAME and assign it to PER_CU.
7960
7961 The caller must fill in the following details:
7962 dirname, textlow, texthigh. */
7963
7964static struct partial_symtab *
7965create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7966{
e3b94546 7967 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
0018ea6f
DE
7968 struct partial_symtab *pst;
7969
939652a5 7970 pst = start_psymtab_common (objfile, name, 0);
0018ea6f
DE
7971
7972 pst->psymtabs_addrmap_supported = 1;
7973
7974 /* This is the glue that links PST into GDB's symbol API. */
7975 pst->read_symtab_private = per_cu;
7976 pst->read_symtab = dwarf2_read_symtab;
7977 per_cu->v.psymtab = pst;
7978
7979 return pst;
7980}
7981
b93601f3
TT
7982/* The DATA object passed to process_psymtab_comp_unit_reader has this
7983 type. */
7984
7985struct process_psymtab_comp_unit_data
7986{
7987 /* True if we are reading a DW_TAG_partial_unit. */
7988
7989 int want_partial_unit;
7990
7991 /* The "pretend" language that is used if the CU doesn't declare a
7992 language. */
7993
7994 enum language pretend_language;
7995};
7996
0018ea6f
DE
7997/* die_reader_func for process_psymtab_comp_unit. */
7998
7999static void
8000process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8001 const gdb_byte *info_ptr,
0018ea6f
DE
8002 struct die_info *comp_unit_die,
8003 int has_children,
8004 void *data)
8005{
8006 struct dwarf2_cu *cu = reader->cu;
518817b3 8007 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 8008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 8009 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
8010 CORE_ADDR baseaddr;
8011 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8012 struct partial_symtab *pst;
3a2b436a 8013 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 8014 const char *filename;
9a3c8263
SM
8015 struct process_psymtab_comp_unit_data *info
8016 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 8017
b93601f3 8018 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
8019 return;
8020
8021 gdb_assert (! per_cu->is_debug_types);
8022
b93601f3 8023 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f 8024
0018ea6f 8025 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
8026 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8027 if (filename == NULL)
0018ea6f 8028 filename = "";
0018ea6f
DE
8029
8030 pst = create_partial_symtab (per_cu, filename);
8031
8032 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 8033 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
8034
8035 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8036
8037 dwarf2_find_base_address (comp_unit_die, cu);
8038
8039 /* Possibly set the default values of LOWPC and HIGHPC from
8040 `DW_AT_ranges'. */
3a2b436a
JK
8041 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8042 &best_highpc, cu, pst);
8043 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
79748972
TT
8044 {
8045 CORE_ADDR low
8046 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8047 - baseaddr);
8048 CORE_ADDR high
8049 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8050 - baseaddr - 1);
8051 /* Store the contiguous range if it is not empty; it can be
8052 empty for CUs with no code. */
d320c2b5
TT
8053 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8054 low, high, pst);
79748972 8055 }
0018ea6f
DE
8056
8057 /* Check if comp unit has_children.
8058 If so, read the rest of the partial symbols from this comp unit.
8059 If not, there's no more debug_info for this comp unit. */
8060 if (has_children)
8061 {
8062 struct partial_die_info *first_die;
8063 CORE_ADDR lowpc, highpc;
8064
8065 lowpc = ((CORE_ADDR) -1);
8066 highpc = ((CORE_ADDR) 0);
8067
8068 first_die = load_partial_dies (reader, info_ptr, 1);
8069
8070 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 8071 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
8072
8073 /* If we didn't find a lowpc, set it to highpc to avoid
8074 complaints from `maint check'. */
8075 if (lowpc == ((CORE_ADDR) -1))
8076 lowpc = highpc;
8077
8078 /* If the compilation unit didn't have an explicit address range,
8079 then use the information extracted from its child dies. */
e385593e 8080 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
8081 {
8082 best_lowpc = lowpc;
8083 best_highpc = highpc;
8084 }
8085 }
4ae976d1 8086 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8087 best_lowpc + baseaddr)
8088 - baseaddr);
4ae976d1 8089 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8090 best_highpc + baseaddr)
8091 - baseaddr);
0018ea6f 8092
8763cede 8093 end_psymtab_common (objfile, pst);
0018ea6f
DE
8094
8095 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8096 {
8097 int i;
8098 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8099 struct dwarf2_per_cu_data *iter;
8100
8101 /* Fill in 'dependencies' here; we fill in 'users' in a
8102 post-pass. */
8103 pst->number_of_dependencies = len;
a9342b62
TT
8104 pst->dependencies
8105 = objfile->partial_symtabs->allocate_dependencies (len);
0018ea6f
DE
8106 for (i = 0;
8107 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8108 i, iter);
8109 ++i)
8110 pst->dependencies[i] = iter->v.psymtab;
8111
8112 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8113 }
8114
8115 /* Get the list of files included in the current compilation unit,
8116 and build a psymtab for each of them. */
8117 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8118
b4f54984 8119 if (dwarf_read_debug)
b926417a
TT
8120 fprintf_unfiltered (gdb_stdlog,
8121 "Psymtab for %s unit @%s: %s - %s"
8122 ", %d global, %d static syms\n",
8123 per_cu->is_debug_types ? "type" : "comp",
8124 sect_offset_str (per_cu->sect_off),
8125 paddress (gdbarch, pst->text_low (objfile)),
8126 paddress (gdbarch, pst->text_high (objfile)),
8127 pst->n_global_syms, pst->n_static_syms);
0018ea6f
DE
8128}
8129
8130/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8131 Process compilation unit THIS_CU for a psymtab. */
8132
8133static void
8134process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
8135 int want_partial_unit,
8136 enum language pretend_language)
0018ea6f
DE
8137{
8138 /* If this compilation unit was already read in, free the
8139 cached copy in order to read it in again. This is
8140 necessary because we skipped some symbols when we first
8141 read in the compilation unit (see load_partial_dies).
8142 This problem could be avoided, but the benefit is unclear. */
8143 if (this_cu->cu != NULL)
8144 free_one_cached_comp_unit (this_cu);
8145
f1902523 8146 if (this_cu->is_debug_types)
58f0c718
TT
8147 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8148 build_type_psymtabs_reader, NULL);
f1902523
JK
8149 else
8150 {
8151 process_psymtab_comp_unit_data info;
8152 info.want_partial_unit = want_partial_unit;
8153 info.pretend_language = pretend_language;
58f0c718 8154 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
f1902523
JK
8155 process_psymtab_comp_unit_reader, &info);
8156 }
0018ea6f
DE
8157
8158 /* Age out any secondary CUs. */
ed2dc618 8159 age_cached_comp_units (this_cu->dwarf2_per_objfile);
0018ea6f 8160}
f4dc4d17
DE
8161
8162/* Reader function for build_type_psymtabs. */
8163
8164static void
8165build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 8166 const gdb_byte *info_ptr,
f4dc4d17
DE
8167 struct die_info *type_unit_die,
8168 int has_children,
8169 void *data)
8170{
ed2dc618 8171 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 8172 = reader->cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
8173 struct objfile *objfile = dwarf2_per_objfile->objfile;
8174 struct dwarf2_cu *cu = reader->cu;
8175 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 8176 struct signatured_type *sig_type;
f4dc4d17
DE
8177 struct type_unit_group *tu_group;
8178 struct attribute *attr;
8179 struct partial_die_info *first_die;
8180 CORE_ADDR lowpc, highpc;
8181 struct partial_symtab *pst;
8182
8183 gdb_assert (data == NULL);
0186c6a7
DE
8184 gdb_assert (per_cu->is_debug_types);
8185 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8186
8187 if (! has_children)
8188 return;
8189
8190 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 8191 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 8192
df07e2c7
AB
8193 if (tu_group->tus == nullptr)
8194 tu_group->tus = new std::vector <signatured_type *>;
8195 tu_group->tus->push_back (sig_type);
f4dc4d17
DE
8196
8197 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
f4dc4d17
DE
8198 pst = create_partial_symtab (per_cu, "");
8199 pst->anonymous = 1;
8200
8201 first_die = load_partial_dies (reader, info_ptr, 1);
8202
8203 lowpc = (CORE_ADDR) -1;
8204 highpc = (CORE_ADDR) 0;
8205 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8206
8763cede 8207 end_psymtab_common (objfile, pst);
f4dc4d17
DE
8208}
8209
73051182
DE
8210/* Struct used to sort TUs by their abbreviation table offset. */
8211
8212struct tu_abbrev_offset
8213{
b2bdb8cf
SM
8214 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8215 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8216 {}
8217
8218 signatured_type *sig_type;
73051182
DE
8219 sect_offset abbrev_offset;
8220};
8221
484cf504 8222/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
73051182 8223
484cf504
TT
8224static bool
8225sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8226 const struct tu_abbrev_offset &b)
73051182 8227{
484cf504 8228 return a.abbrev_offset < b.abbrev_offset;
73051182
DE
8229}
8230
8231/* Efficiently read all the type units.
8232 This does the bulk of the work for build_type_psymtabs.
8233
8234 The efficiency is because we sort TUs by the abbrev table they use and
8235 only read each abbrev table once. In one program there are 200K TUs
8236 sharing 8K abbrev tables.
8237
8238 The main purpose of this function is to support building the
8239 dwarf2_per_objfile->type_unit_groups table.
8240 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8241 can collapse the search space by grouping them by stmt_list.
8242 The savings can be significant, in the same program from above the 200K TUs
8243 share 8K stmt_list tables.
8244
8245 FUNC is expected to call get_type_unit_group, which will create the
8246 struct type_unit_group if necessary and add it to
8247 dwarf2_per_objfile->type_unit_groups. */
8248
8249static void
ed2dc618 8250build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
73051182 8251{
73051182 8252 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
685af9cd 8253 abbrev_table_up abbrev_table;
73051182 8254 sect_offset abbrev_offset;
73051182
DE
8255
8256 /* It's up to the caller to not call us multiple times. */
8257 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8258
b2bdb8cf 8259 if (dwarf2_per_objfile->all_type_units.empty ())
73051182
DE
8260 return;
8261
8262 /* TUs typically share abbrev tables, and there can be way more TUs than
8263 abbrev tables. Sort by abbrev table to reduce the number of times we
8264 read each abbrev table in.
8265 Alternatives are to punt or to maintain a cache of abbrev tables.
8266 This is simpler and efficient enough for now.
8267
8268 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8269 symtab to use). Typically TUs with the same abbrev offset have the same
8270 stmt_list value too so in practice this should work well.
8271
8272 The basic algorithm here is:
8273
8274 sort TUs by abbrev table
8275 for each TU with same abbrev table:
8276 read abbrev table if first user
8277 read TU top level DIE
8278 [IWBN if DWO skeletons had DW_AT_stmt_list]
8279 call FUNC */
8280
b4f54984 8281 if (dwarf_read_debug)
73051182
DE
8282 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8283
8284 /* Sort in a separate table to maintain the order of all_type_units
8285 for .gdb_index: TU indices directly index all_type_units. */
b2bdb8cf
SM
8286 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8287 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8288
8289 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8290 sorted_by_abbrev.emplace_back
8291 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8292 sig_type->per_cu.section,
8293 sig_type->per_cu.sect_off));
73051182 8294
484cf504
TT
8295 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8296 sort_tu_by_abbrev_offset);
73051182 8297
9c541725 8298 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182 8299
b2bdb8cf 8300 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
73051182 8301 {
73051182
DE
8302 /* Switch to the next abbrev table if necessary. */
8303 if (abbrev_table == NULL
b2bdb8cf 8304 || tu.abbrev_offset != abbrev_offset)
73051182 8305 {
b2bdb8cf 8306 abbrev_offset = tu.abbrev_offset;
73051182 8307 abbrev_table =
ed2dc618
SM
8308 abbrev_table_read_table (dwarf2_per_objfile,
8309 &dwarf2_per_objfile->abbrev,
73051182
DE
8310 abbrev_offset);
8311 ++tu_stats->nr_uniq_abbrev_tables;
8312 }
8313
b2bdb8cf 8314 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
58f0c718 8315 0, 0, false, build_type_psymtabs_reader, NULL);
73051182 8316 }
6aa5f3a6 8317}
73051182 8318
6aa5f3a6
DE
8319/* Print collected type unit statistics. */
8320
8321static void
ed2dc618 8322print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8323{
8324 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8325
8326 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
b2bdb8cf
SM
8327 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8328 dwarf2_per_objfile->all_type_units.size ());
6aa5f3a6
DE
8329 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8330 tu_stats->nr_uniq_abbrev_tables);
8331 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8332 tu_stats->nr_symtabs);
8333 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8334 tu_stats->nr_symtab_sharers);
8335 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8336 tu_stats->nr_stmt_less_type_units);
8337 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8338 tu_stats->nr_all_type_units_reallocs);
73051182
DE
8339}
8340
f4dc4d17
DE
8341/* Traversal function for build_type_psymtabs. */
8342
8343static int
8344build_type_psymtab_dependencies (void **slot, void *info)
8345{
ed2dc618
SM
8346 struct dwarf2_per_objfile *dwarf2_per_objfile
8347 = (struct dwarf2_per_objfile *) info;
f4dc4d17
DE
8348 struct objfile *objfile = dwarf2_per_objfile->objfile;
8349 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 8350 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 8351 struct partial_symtab *pst = per_cu->v.psymtab;
df07e2c7 8352 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
f4dc4d17
DE
8353 int i;
8354
8355 gdb_assert (len > 0);
0186c6a7 8356 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
8357
8358 pst->number_of_dependencies = len;
a9342b62 8359 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
df07e2c7 8360 for (i = 0; i < len; ++i)
f4dc4d17 8361 {
df07e2c7 8362 struct signatured_type *iter = tu_group->tus->at (i);
0186c6a7
DE
8363 gdb_assert (iter->per_cu.is_debug_types);
8364 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 8365 iter->type_unit_group = tu_group;
f4dc4d17
DE
8366 }
8367
df07e2c7
AB
8368 delete tu_group->tus;
8369 tu_group->tus = nullptr;
348e048f
DE
8370
8371 return 1;
8372}
8373
8374/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8375 Build partial symbol tables for the .debug_types comp-units. */
8376
8377static void
ed2dc618 8378build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
348e048f 8379{
ed2dc618 8380 if (! create_all_type_units (dwarf2_per_objfile))
348e048f
DE
8381 return;
8382
ed2dc618 8383 build_type_psymtabs_1 (dwarf2_per_objfile);
6aa5f3a6 8384}
f4dc4d17 8385
6aa5f3a6
DE
8386/* Traversal function for process_skeletonless_type_unit.
8387 Read a TU in a DWO file and build partial symbols for it. */
8388
8389static int
8390process_skeletonless_type_unit (void **slot, void *info)
8391{
8392 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
ed2dc618
SM
8393 struct dwarf2_per_objfile *dwarf2_per_objfile
8394 = (struct dwarf2_per_objfile *) info;
6aa5f3a6
DE
8395 struct signatured_type find_entry, *entry;
8396
8397 /* If this TU doesn't exist in the global table, add it and read it in. */
8398
8399 if (dwarf2_per_objfile->signatured_types == NULL)
8400 {
8401 dwarf2_per_objfile->signatured_types
ed2dc618 8402 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
6aa5f3a6
DE
8403 }
8404
8405 find_entry.signature = dwo_unit->signature;
8406 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8407 INSERT);
8408 /* If we've already seen this type there's nothing to do. What's happening
8409 is we're doing our own version of comdat-folding here. */
8410 if (*slot != NULL)
8411 return 1;
8412
8413 /* This does the job that create_all_type_units would have done for
8414 this TU. */
ed2dc618
SM
8415 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8416 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
6aa5f3a6
DE
8417 *slot = entry;
8418
8419 /* This does the job that build_type_psymtabs_1 would have done. */
58f0c718 8420 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
6aa5f3a6
DE
8421 build_type_psymtabs_reader, NULL);
8422
8423 return 1;
8424}
8425
8426/* Traversal function for process_skeletonless_type_units. */
8427
8428static int
8429process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8430{
8431 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8432
8433 if (dwo_file->tus != NULL)
8434 {
8435 htab_traverse_noresize (dwo_file->tus,
8436 process_skeletonless_type_unit, info);
8437 }
8438
8439 return 1;
8440}
8441
8442/* Scan all TUs of DWO files, verifying we've processed them.
8443 This is needed in case a TU was emitted without its skeleton.
8444 Note: This can't be done until we know what all the DWO files are. */
8445
8446static void
ed2dc618 8447process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8448{
8449 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
ed2dc618 8450 if (get_dwp_file (dwarf2_per_objfile) == NULL
6aa5f3a6
DE
8451 && dwarf2_per_objfile->dwo_files != NULL)
8452 {
51ac9db5 8453 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
6aa5f3a6 8454 process_dwo_file_for_skeletonless_type_units,
ed2dc618 8455 dwarf2_per_objfile);
6aa5f3a6 8456 }
348e048f
DE
8457}
8458
ed2dc618 8459/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
95554aad
TT
8460
8461static void
ed2dc618 8462set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 8463{
b76e467d 8464 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
95554aad 8465 {
95554aad 8466 struct partial_symtab *pst = per_cu->v.psymtab;
95554aad 8467
36586728
TT
8468 if (pst == NULL)
8469 continue;
8470
b76e467d 8471 for (int j = 0; j < pst->number_of_dependencies; ++j)
95554aad
TT
8472 {
8473 /* Set the 'user' field only if it is not already set. */
8474 if (pst->dependencies[j]->user == NULL)
8475 pst->dependencies[j]->user = pst;
8476 }
8477 }
8478}
8479
93311388
DE
8480/* Build the partial symbol table by doing a quick pass through the
8481 .debug_info and .debug_abbrev sections. */
72bf9492 8482
93311388 8483static void
ed2dc618 8484dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
93311388 8485{
ed2dc618 8486 struct objfile *objfile = dwarf2_per_objfile->objfile;
93311388 8487
b4f54984 8488 if (dwarf_read_debug)
45cfd468
DE
8489 {
8490 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 8491 objfile_name (objfile));
45cfd468
DE
8492 }
8493
98bfdba5
PA
8494 dwarf2_per_objfile->reading_partial_symbols = 1;
8495
be391dca 8496 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 8497
93311388
DE
8498 /* Any cached compilation units will be linked by the per-objfile
8499 read_in_chain. Make sure to free them when we're done. */
11ed8cad 8500 free_cached_comp_units freer (dwarf2_per_objfile);
72bf9492 8501
ed2dc618 8502 build_type_psymtabs (dwarf2_per_objfile);
348e048f 8503
ed2dc618 8504 create_all_comp_units (dwarf2_per_objfile);
c906108c 8505
60606b2c
TT
8506 /* Create a temporary address map on a temporary obstack. We later
8507 copy this to the final obstack. */
8268c778 8508 auto_obstack temp_obstack;
791afaa2
TT
8509
8510 scoped_restore save_psymtabs_addrmap
d320c2b5 8511 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
791afaa2 8512 addrmap_create_mutable (&temp_obstack));
72bf9492 8513
b76e467d
SM
8514 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8515 process_psymtab_comp_unit (per_cu, 0, language_minimal);
ff013f42 8516
6aa5f3a6 8517 /* This has to wait until we read the CUs, we need the list of DWOs. */
ed2dc618 8518 process_skeletonless_type_units (dwarf2_per_objfile);
6aa5f3a6
DE
8519
8520 /* Now that all TUs have been processed we can fill in the dependencies. */
8521 if (dwarf2_per_objfile->type_unit_groups != NULL)
8522 {
8523 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
ed2dc618 8524 build_type_psymtab_dependencies, dwarf2_per_objfile);
6aa5f3a6
DE
8525 }
8526
b4f54984 8527 if (dwarf_read_debug)
ed2dc618 8528 print_tu_stats (dwarf2_per_objfile);
6aa5f3a6 8529
ed2dc618 8530 set_partial_user (dwarf2_per_objfile);
95554aad 8531
d320c2b5
TT
8532 objfile->partial_symtabs->psymtabs_addrmap
8533 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
5923a04c 8534 objfile->partial_symtabs->obstack ());
791afaa2
TT
8535 /* At this point we want to keep the address map. */
8536 save_psymtabs_addrmap.release ();
ff013f42 8537
b4f54984 8538 if (dwarf_read_debug)
45cfd468 8539 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 8540 objfile_name (objfile));
ae038cb0
DJ
8541}
8542
3019eac3 8543/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
8544
8545static void
dee91e82 8546load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8547 const gdb_byte *info_ptr,
dee91e82
DE
8548 struct die_info *comp_unit_die,
8549 int has_children,
8550 void *data)
ae038cb0 8551{
dee91e82 8552 struct dwarf2_cu *cu = reader->cu;
ae038cb0 8553
95554aad 8554 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 8555
ae038cb0
DJ
8556 /* Check if comp unit has_children.
8557 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 8558 If not, there's no more debug_info for this comp unit. */
d85a05f0 8559 if (has_children)
dee91e82
DE
8560 load_partial_dies (reader, info_ptr, 0);
8561}
98bfdba5 8562
dee91e82
DE
8563/* Load the partial DIEs for a secondary CU into memory.
8564 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 8565
dee91e82
DE
8566static void
8567load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8568{
58f0c718 8569 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
f4dc4d17 8570 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
8571}
8572
ae038cb0 8573static void
ed2dc618 8574read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
36586728 8575 struct dwarf2_section_info *section,
f1902523 8576 struct dwarf2_section_info *abbrev_section,
b76e467d 8577 unsigned int is_dwz)
ae038cb0 8578{
d521ce57 8579 const gdb_byte *info_ptr;
ed2dc618 8580 struct objfile *objfile = dwarf2_per_objfile->objfile;
be391dca 8581
b4f54984 8582 if (dwarf_read_debug)
bf6af496 8583 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
8584 get_section_name (section),
8585 get_section_file_name (section));
bf6af496 8586
36586728 8587 dwarf2_read_section (objfile, section);
ae038cb0 8588
36586728 8589 info_ptr = section->buffer;
6e70227d 8590
36586728 8591 while (info_ptr < section->buffer + section->size)
ae038cb0 8592 {
ae038cb0 8593 struct dwarf2_per_cu_data *this_cu;
ae038cb0 8594
9c541725 8595 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 8596
f1902523 8597 comp_unit_head cu_header;
ed2dc618
SM
8598 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8599 abbrev_section, info_ptr,
8600 rcuh_kind::COMPILE);
ae038cb0
DJ
8601
8602 /* Save the compilation unit for later lookup. */
f1902523
JK
8603 if (cu_header.unit_type != DW_UT_type)
8604 {
8605 this_cu = XOBNEW (&objfile->objfile_obstack,
8606 struct dwarf2_per_cu_data);
8607 memset (this_cu, 0, sizeof (*this_cu));
8608 }
8609 else
8610 {
8611 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8612 struct signatured_type);
8613 memset (sig_type, 0, sizeof (*sig_type));
8614 sig_type->signature = cu_header.signature;
8615 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8616 this_cu = &sig_type->per_cu;
8617 }
8618 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 8619 this_cu->sect_off = sect_off;
f1902523 8620 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 8621 this_cu->is_dwz = is_dwz;
e3b94546 8622 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8a0459fd 8623 this_cu->section = section;
ae038cb0 8624
b76e467d 8625 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
ae038cb0
DJ
8626
8627 info_ptr = info_ptr + this_cu->length;
8628 }
36586728
TT
8629}
8630
8631/* Create a list of all compilation units in OBJFILE.
8632 This is only done for -readnow and building partial symtabs. */
8633
8634static void
ed2dc618 8635create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 8636{
b76e467d 8637 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
ed2dc618 8638 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
b76e467d 8639 &dwarf2_per_objfile->abbrev, 0);
36586728 8640
b76e467d 8641 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 8642 if (dwz != NULL)
ed2dc618 8643 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
b76e467d 8644 1);
c906108c
SS
8645}
8646
5734ee8b 8647/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 8648 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 8649 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
8650 DW_AT_ranges). See the comments of add_partial_subprogram on how
8651 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 8652
72bf9492
DJ
8653static void
8654scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
8655 CORE_ADDR *highpc, int set_addrmap,
8656 struct dwarf2_cu *cu)
c906108c 8657{
72bf9492 8658 struct partial_die_info *pdi;
c906108c 8659
91c24f0a
DC
8660 /* Now, march along the PDI's, descending into ones which have
8661 interesting children but skipping the children of the other ones,
8662 until we reach the end of the compilation unit. */
c906108c 8663
72bf9492 8664 pdi = first_die;
91c24f0a 8665
72bf9492
DJ
8666 while (pdi != NULL)
8667 {
52356b79 8668 pdi->fixup (cu);
c906108c 8669
f55ee35c 8670 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
8671 children, so we need to look at them. Ditto for anonymous
8672 enums. */
933c6fe4 8673
72bf9492 8674 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad 8675 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
b1dc1806
XR
8676 || pdi->tag == DW_TAG_imported_unit
8677 || pdi->tag == DW_TAG_inlined_subroutine)
c906108c 8678 {
72bf9492 8679 switch (pdi->tag)
c906108c
SS
8680 {
8681 case DW_TAG_subprogram:
b1dc1806 8682 case DW_TAG_inlined_subroutine:
cdc07690 8683 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 8684 break;
72929c62 8685 case DW_TAG_constant:
c906108c
SS
8686 case DW_TAG_variable:
8687 case DW_TAG_typedef:
91c24f0a 8688 case DW_TAG_union_type:
72bf9492 8689 if (!pdi->is_declaration)
63d06c5c 8690 {
72bf9492 8691 add_partial_symbol (pdi, cu);
63d06c5c
DC
8692 }
8693 break;
c906108c 8694 case DW_TAG_class_type:
680b30c7 8695 case DW_TAG_interface_type:
c906108c 8696 case DW_TAG_structure_type:
72bf9492 8697 if (!pdi->is_declaration)
c906108c 8698 {
72bf9492 8699 add_partial_symbol (pdi, cu);
c906108c 8700 }
b7fee5a3
KS
8701 if ((cu->language == language_rust
8702 || cu->language == language_cplus) && pdi->has_children)
e98c9e7c
TT
8703 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8704 set_addrmap, cu);
c906108c 8705 break;
91c24f0a 8706 case DW_TAG_enumeration_type:
72bf9492
DJ
8707 if (!pdi->is_declaration)
8708 add_partial_enumeration (pdi, cu);
c906108c
SS
8709 break;
8710 case DW_TAG_base_type:
a02abb62 8711 case DW_TAG_subrange_type:
c906108c 8712 /* File scope base type definitions are added to the partial
c5aa993b 8713 symbol table. */
72bf9492 8714 add_partial_symbol (pdi, cu);
c906108c 8715 break;
d9fa45fe 8716 case DW_TAG_namespace:
cdc07690 8717 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 8718 break;
5d7cb8df 8719 case DW_TAG_module:
cdc07690 8720 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 8721 break;
95554aad
TT
8722 case DW_TAG_imported_unit:
8723 {
8724 struct dwarf2_per_cu_data *per_cu;
8725
f4dc4d17
DE
8726 /* For now we don't handle imported units in type units. */
8727 if (cu->per_cu->is_debug_types)
8728 {
8729 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8730 " supported in type units [in module %s]"),
518817b3 8731 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
8732 }
8733
e3b94546
SM
8734 per_cu = dwarf2_find_containing_comp_unit
8735 (pdi->d.sect_off, pdi->is_dwz,
518817b3 8736 cu->per_cu->dwarf2_per_objfile);
95554aad
TT
8737
8738 /* Go read the partial unit, if needed. */
8739 if (per_cu->v.psymtab == NULL)
b93601f3 8740 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 8741
f4dc4d17 8742 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 8743 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
8744 }
8745 break;
74921315
KS
8746 case DW_TAG_imported_declaration:
8747 add_partial_symbol (pdi, cu);
8748 break;
c906108c
SS
8749 default:
8750 break;
8751 }
8752 }
8753
72bf9492
DJ
8754 /* If the die has a sibling, skip to the sibling. */
8755
8756 pdi = pdi->die_sibling;
8757 }
8758}
8759
8760/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 8761
72bf9492 8762 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 8763 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
8764 Enumerators are an exception; they use the scope of their parent
8765 enumeration type, i.e. the name of the enumeration type is not
8766 prepended to the enumerator.
91c24f0a 8767
72bf9492
DJ
8768 There are two complexities. One is DW_AT_specification; in this
8769 case "parent" means the parent of the target of the specification,
8770 instead of the direct parent of the DIE. The other is compilers
8771 which do not emit DW_TAG_namespace; in this case we try to guess
8772 the fully qualified name of structure types from their members'
8773 linkage names. This must be done using the DIE's children rather
8774 than the children of any DW_AT_specification target. We only need
8775 to do this for structures at the top level, i.e. if the target of
8776 any DW_AT_specification (if any; otherwise the DIE itself) does not
8777 have a parent. */
8778
8779/* Compute the scope prefix associated with PDI's parent, in
8780 compilation unit CU. The result will be allocated on CU's
8781 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8782 field. NULL is returned if no prefix is necessary. */
15d034d0 8783static const char *
72bf9492
DJ
8784partial_die_parent_scope (struct partial_die_info *pdi,
8785 struct dwarf2_cu *cu)
8786{
15d034d0 8787 const char *grandparent_scope;
72bf9492 8788 struct partial_die_info *parent, *real_pdi;
91c24f0a 8789
72bf9492
DJ
8790 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8791 then this means the parent of the specification DIE. */
8792
8793 real_pdi = pdi;
72bf9492 8794 while (real_pdi->has_specification)
fb816e8b 8795 {
122cf0f2
AB
8796 auto res = find_partial_die (real_pdi->spec_offset,
8797 real_pdi->spec_is_dwz, cu);
fb816e8b
TV
8798 real_pdi = res.pdi;
8799 cu = res.cu;
8800 }
72bf9492
DJ
8801
8802 parent = real_pdi->die_parent;
8803 if (parent == NULL)
8804 return NULL;
8805
8806 if (parent->scope_set)
8807 return parent->scope;
8808
52356b79 8809 parent->fixup (cu);
72bf9492 8810
10b3939b 8811 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 8812
acebe513
UW
8813 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8814 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8815 Work around this problem here. */
8816 if (cu->language == language_cplus
6e70227d 8817 && parent->tag == DW_TAG_namespace
acebe513
UW
8818 && strcmp (parent->name, "::") == 0
8819 && grandparent_scope == NULL)
8820 {
8821 parent->scope = NULL;
8822 parent->scope_set = 1;
8823 return NULL;
8824 }
8825
9c6c53f7
SA
8826 if (pdi->tag == DW_TAG_enumerator)
8827 /* Enumerators should not get the name of the enumeration as a prefix. */
8828 parent->scope = grandparent_scope;
8829 else if (parent->tag == DW_TAG_namespace
f55ee35c 8830 || parent->tag == DW_TAG_module
72bf9492
DJ
8831 || parent->tag == DW_TAG_structure_type
8832 || parent->tag == DW_TAG_class_type
680b30c7 8833 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
8834 || parent->tag == DW_TAG_union_type
8835 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
8836 {
8837 if (grandparent_scope == NULL)
8838 parent->scope = parent->name;
8839 else
3e43a32a
MS
8840 parent->scope = typename_concat (&cu->comp_unit_obstack,
8841 grandparent_scope,
f55ee35c 8842 parent->name, 0, cu);
72bf9492 8843 }
72bf9492
DJ
8844 else
8845 {
8846 /* FIXME drow/2004-04-01: What should we be doing with
8847 function-local names? For partial symbols, we should probably be
8848 ignoring them. */
fa9c3fa0
TT
8849 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8850 dwarf_tag_name (parent->tag),
8851 sect_offset_str (pdi->sect_off));
72bf9492 8852 parent->scope = grandparent_scope;
c906108c
SS
8853 }
8854
72bf9492
DJ
8855 parent->scope_set = 1;
8856 return parent->scope;
8857}
8858
8859/* Return the fully scoped name associated with PDI, from compilation unit
8860 CU. The result will be allocated with malloc. */
4568ecf9 8861
72bf9492
DJ
8862static char *
8863partial_die_full_name (struct partial_die_info *pdi,
8864 struct dwarf2_cu *cu)
8865{
15d034d0 8866 const char *parent_scope;
72bf9492 8867
98bfdba5
PA
8868 /* If this is a template instantiation, we can not work out the
8869 template arguments from partial DIEs. So, unfortunately, we have
8870 to go through the full DIEs. At least any work we do building
8871 types here will be reused if full symbols are loaded later. */
8872 if (pdi->has_template_arguments)
8873 {
52356b79 8874 pdi->fixup (cu);
98bfdba5
PA
8875
8876 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8877 {
8878 struct die_info *die;
8879 struct attribute attr;
8880 struct dwarf2_cu *ref_cu = cu;
8881
b64f50a1 8882 /* DW_FORM_ref_addr is using section offset. */
b4069958 8883 attr.name = (enum dwarf_attribute) 0;
98bfdba5 8884 attr.form = DW_FORM_ref_addr;
9c541725 8885 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
8886 die = follow_die_ref (NULL, &attr, &ref_cu);
8887
8888 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8889 }
8890 }
8891
72bf9492
DJ
8892 parent_scope = partial_die_parent_scope (pdi, cu);
8893 if (parent_scope == NULL)
8894 return NULL;
8895 else
f55ee35c 8896 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
8897}
8898
8899static void
72bf9492 8900add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 8901{
518817b3
SM
8902 struct dwarf2_per_objfile *dwarf2_per_objfile
8903 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 8904 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 8905 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 8906 CORE_ADDR addr = 0;
15d034d0 8907 const char *actual_name = NULL;
e142c38c 8908 CORE_ADDR baseaddr;
15d034d0 8909 char *built_actual_name;
e142c38c
DJ
8910
8911 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8912
15d034d0
TT
8913 built_actual_name = partial_die_full_name (pdi, cu);
8914 if (built_actual_name != NULL)
8915 actual_name = built_actual_name;
63d06c5c 8916
72bf9492
DJ
8917 if (actual_name == NULL)
8918 actual_name = pdi->name;
8919
c906108c
SS
8920 switch (pdi->tag)
8921 {
b1dc1806 8922 case DW_TAG_inlined_subroutine:
c906108c 8923 case DW_TAG_subprogram:
79748972
TT
8924 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8925 - baseaddr);
2cfa0c8d 8926 if (pdi->is_external || cu->language == language_ada)
c906108c 8927 {
2cfa0c8d
JB
8928 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8929 of the global scope. But in Ada, we want to be able to access
8930 nested procedures globally. So all Ada subprograms are stored
8931 in the global scope. */
f47fb265 8932 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8933 built_actual_name != NULL,
f47fb265 8934 VAR_DOMAIN, LOC_BLOCK,
79748972 8935 SECT_OFF_TEXT (objfile),
75aedd27 8936 psymbol_placement::GLOBAL,
79748972
TT
8937 addr,
8938 cu->language, objfile);
c906108c
SS
8939 }
8940 else
8941 {
f47fb265 8942 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8943 built_actual_name != NULL,
f47fb265 8944 VAR_DOMAIN, LOC_BLOCK,
79748972 8945 SECT_OFF_TEXT (objfile),
75aedd27 8946 psymbol_placement::STATIC,
1762568f 8947 addr, cu->language, objfile);
c906108c 8948 }
0c1b455e
TT
8949
8950 if (pdi->main_subprogram && actual_name != NULL)
8951 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 8952 break;
72929c62 8953 case DW_TAG_constant:
75aedd27
TT
8954 add_psymbol_to_list (actual_name, strlen (actual_name),
8955 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8956 -1, (pdi->is_external
8957 ? psymbol_placement::GLOBAL
8958 : psymbol_placement::STATIC),
8959 0, cu->language, objfile);
72929c62 8960 break;
c906108c 8961 case DW_TAG_variable:
95554aad
TT
8962 if (pdi->d.locdesc)
8963 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 8964
95554aad 8965 if (pdi->d.locdesc
caac4577
JG
8966 && addr == 0
8967 && !dwarf2_per_objfile->has_section_at_zero)
8968 {
8969 /* A global or static variable may also have been stripped
8970 out by the linker if unused, in which case its address
8971 will be nullified; do not add such variables into partial
8972 symbol table then. */
8973 }
8974 else if (pdi->is_external)
c906108c
SS
8975 {
8976 /* Global Variable.
8977 Don't enter into the minimal symbol tables as there is
8978 a minimal symbol table entry from the ELF symbols already.
8979 Enter into partial symbol table if it has a location
8980 descriptor or a type.
8981 If the location descriptor is missing, new_symbol will create
8982 a LOC_UNRESOLVED symbol, the address of the variable will then
8983 be determined from the minimal symbol table whenever the variable
8984 is referenced.
8985 The address for the partial symbol table entry is not
8986 used by GDB, but it comes in handy for debugging partial symbol
8987 table building. */
8988
95554aad 8989 if (pdi->d.locdesc || pdi->has_type)
f47fb265 8990 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8991 built_actual_name != NULL,
f47fb265 8992 VAR_DOMAIN, LOC_STATIC,
79748972 8993 SECT_OFF_TEXT (objfile),
75aedd27 8994 psymbol_placement::GLOBAL,
79748972 8995 addr, cu->language, objfile);
c906108c
SS
8996 }
8997 else
8998 {
ff908ebf
AW
8999 int has_loc = pdi->d.locdesc != NULL;
9000
9001 /* Static Variable. Skip symbols whose value we cannot know (those
9002 without location descriptors or constant values). */
9003 if (!has_loc && !pdi->has_const_value)
decbce07 9004 {
15d034d0 9005 xfree (built_actual_name);
decbce07
MS
9006 return;
9007 }
ff908ebf 9008
f47fb265 9009 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9010 built_actual_name != NULL,
f47fb265 9011 VAR_DOMAIN, LOC_STATIC,
79748972 9012 SECT_OFF_TEXT (objfile),
75aedd27 9013 psymbol_placement::STATIC,
79748972 9014 has_loc ? addr : 0,
f47fb265 9015 cu->language, objfile);
c906108c
SS
9016 }
9017 break;
9018 case DW_TAG_typedef:
9019 case DW_TAG_base_type:
a02abb62 9020 case DW_TAG_subrange_type:
38d518c9 9021 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9022 built_actual_name != NULL,
79748972 9023 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 9024 psymbol_placement::STATIC,
1762568f 9025 0, cu->language, objfile);
c906108c 9026 break;
74921315 9027 case DW_TAG_imported_declaration:
72bf9492
DJ
9028 case DW_TAG_namespace:
9029 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9030 built_actual_name != NULL,
79748972 9031 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 9032 psymbol_placement::GLOBAL,
1762568f 9033 0, cu->language, objfile);
72bf9492 9034 break;
530e8392 9035 case DW_TAG_module:
a5fd13a9
BH
9036 /* With Fortran 77 there might be a "BLOCK DATA" module
9037 available without any name. If so, we skip the module as it
9038 doesn't bring any value. */
9039 if (actual_name != nullptr)
9040 add_psymbol_to_list (actual_name, strlen (actual_name),
9041 built_actual_name != NULL,
9042 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9043 psymbol_placement::GLOBAL,
9044 0, cu->language, objfile);
530e8392 9045 break;
c906108c 9046 case DW_TAG_class_type:
680b30c7 9047 case DW_TAG_interface_type:
c906108c
SS
9048 case DW_TAG_structure_type:
9049 case DW_TAG_union_type:
9050 case DW_TAG_enumeration_type:
fa4028e9
JB
9051 /* Skip external references. The DWARF standard says in the section
9052 about "Structure, Union, and Class Type Entries": "An incomplete
9053 structure, union or class type is represented by a structure,
9054 union or class entry that does not have a byte size attribute
9055 and that has a DW_AT_declaration attribute." */
9056 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 9057 {
15d034d0 9058 xfree (built_actual_name);
decbce07
MS
9059 return;
9060 }
fa4028e9 9061
63d06c5c
DC
9062 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9063 static vs. global. */
38d518c9 9064 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9065 built_actual_name != NULL,
79748972 9066 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9c37b5ae 9067 cu->language == language_cplus
75aedd27
TT
9068 ? psymbol_placement::GLOBAL
9069 : psymbol_placement::STATIC,
1762568f 9070 0, cu->language, objfile);
c906108c 9071
c906108c
SS
9072 break;
9073 case DW_TAG_enumerator:
38d518c9 9074 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9075 built_actual_name != NULL,
79748972 9076 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 9077 cu->language == language_cplus
75aedd27
TT
9078 ? psymbol_placement::GLOBAL
9079 : psymbol_placement::STATIC,
1762568f 9080 0, cu->language, objfile);
c906108c
SS
9081 break;
9082 default:
9083 break;
9084 }
5c4e30ca 9085
15d034d0 9086 xfree (built_actual_name);
c906108c
SS
9087}
9088
5c4e30ca
DC
9089/* Read a partial die corresponding to a namespace; also, add a symbol
9090 corresponding to that namespace to the symbol table. NAMESPACE is
9091 the name of the enclosing namespace. */
91c24f0a 9092
72bf9492
DJ
9093static void
9094add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 9095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9096 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 9097{
72bf9492 9098 /* Add a symbol for the namespace. */
e7c27a73 9099
72bf9492 9100 add_partial_symbol (pdi, cu);
5c4e30ca
DC
9101
9102 /* Now scan partial symbols in that namespace. */
9103
91c24f0a 9104 if (pdi->has_children)
cdc07690 9105 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
9106}
9107
5d7cb8df
JK
9108/* Read a partial die corresponding to a Fortran module. */
9109
9110static void
9111add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 9112 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 9113{
530e8392
KB
9114 /* Add a symbol for the namespace. */
9115
9116 add_partial_symbol (pdi, cu);
9117
f55ee35c 9118 /* Now scan partial symbols in that module. */
5d7cb8df
JK
9119
9120 if (pdi->has_children)
cdc07690 9121 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
9122}
9123
b1dc1806
XR
9124/* Read a partial die corresponding to a subprogram or an inlined
9125 subprogram and create a partial symbol for that subprogram.
9126 When the CU language allows it, this routine also defines a partial
9127 symbol for each nested subprogram that this subprogram contains.
9128 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9129 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
6e70227d 9130
cdc07690
YQ
9131 PDI may also be a lexical block, in which case we simply search
9132 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
9133 Again, this is only performed when the CU language allows this
9134 type of definitions. */
9135
9136static void
9137add_partial_subprogram (struct partial_die_info *pdi,
9138 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9139 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58 9140{
b1dc1806 9141 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
bc30ff58
JB
9142 {
9143 if (pdi->has_pc_info)
9144 {
9145 if (pdi->lowpc < *lowpc)
9146 *lowpc = pdi->lowpc;
9147 if (pdi->highpc > *highpc)
9148 *highpc = pdi->highpc;
cdc07690 9149 if (set_addrmap)
5734ee8b 9150 {
518817b3 9151 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a
MR
9152 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9153 CORE_ADDR baseaddr;
b926417a
TT
9154 CORE_ADDR this_highpc;
9155 CORE_ADDR this_lowpc;
5734ee8b
DJ
9156
9157 baseaddr = ANOFFSET (objfile->section_offsets,
9158 SECT_OFF_TEXT (objfile));
b926417a
TT
9159 this_lowpc
9160 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9161 pdi->lowpc + baseaddr)
9162 - baseaddr);
9163 this_highpc
9164 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9165 pdi->highpc + baseaddr)
9166 - baseaddr);
d320c2b5 9167 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
b926417a 9168 this_lowpc, this_highpc - 1,
9291a0cd 9169 cu->per_cu->v.psymtab);
5734ee8b 9170 }
481860b3
GB
9171 }
9172
9173 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9174 {
bc30ff58 9175 if (!pdi->is_declaration)
e8d05480
JB
9176 /* Ignore subprogram DIEs that do not have a name, they are
9177 illegal. Do not emit a complaint at this point, we will
9178 do so when we convert this psymtab into a symtab. */
9179 if (pdi->name)
9180 add_partial_symbol (pdi, cu);
bc30ff58
JB
9181 }
9182 }
6e70227d 9183
bc30ff58
JB
9184 if (! pdi->has_children)
9185 return;
9186
9187 if (cu->language == language_ada)
9188 {
9189 pdi = pdi->die_child;
9190 while (pdi != NULL)
9191 {
52356b79 9192 pdi->fixup (cu);
bc30ff58 9193 if (pdi->tag == DW_TAG_subprogram
b1dc1806 9194 || pdi->tag == DW_TAG_inlined_subroutine
bc30ff58 9195 || pdi->tag == DW_TAG_lexical_block)
cdc07690 9196 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
9197 pdi = pdi->die_sibling;
9198 }
9199 }
9200}
9201
91c24f0a
DC
9202/* Read a partial die corresponding to an enumeration type. */
9203
72bf9492
DJ
9204static void
9205add_partial_enumeration (struct partial_die_info *enum_pdi,
9206 struct dwarf2_cu *cu)
91c24f0a 9207{
72bf9492 9208 struct partial_die_info *pdi;
91c24f0a
DC
9209
9210 if (enum_pdi->name != NULL)
72bf9492
DJ
9211 add_partial_symbol (enum_pdi, cu);
9212
9213 pdi = enum_pdi->die_child;
9214 while (pdi)
91c24f0a 9215 {
72bf9492 9216 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
b98664d3 9217 complaint (_("malformed enumerator DIE ignored"));
91c24f0a 9218 else
72bf9492
DJ
9219 add_partial_symbol (pdi, cu);
9220 pdi = pdi->die_sibling;
91c24f0a 9221 }
91c24f0a
DC
9222}
9223
6caca83c
CC
9224/* Return the initial uleb128 in the die at INFO_PTR. */
9225
9226static unsigned int
d521ce57 9227peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
9228{
9229 unsigned int bytes_read;
9230
9231 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9232}
9233
685af9cd
TT
9234/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9235 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9236
4bb7a0a7
DJ
9237 Return the corresponding abbrev, or NULL if the number is zero (indicating
9238 an empty DIE). In either case *BYTES_READ will be set to the length of
9239 the initial number. */
9240
9241static struct abbrev_info *
685af9cd
TT
9242peek_die_abbrev (const die_reader_specs &reader,
9243 const gdb_byte *info_ptr, unsigned int *bytes_read)
4bb7a0a7 9244{
685af9cd 9245 dwarf2_cu *cu = reader.cu;
518817b3 9246 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
685af9cd
TT
9247 unsigned int abbrev_number
9248 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4bb7a0a7
DJ
9249
9250 if (abbrev_number == 0)
9251 return NULL;
9252
685af9cd 9253 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
4bb7a0a7
DJ
9254 if (!abbrev)
9255 {
422b9917 9256 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9d8780f0 9257 " at offset %s [in module %s]"),
422b9917 9258 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9d8780f0 9259 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
9260 }
9261
9262 return abbrev;
9263}
9264
93311388
DE
9265/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
9267 DIE. Any children of the skipped DIEs will also be skipped. */
9268
d521ce57
TT
9269static const gdb_byte *
9270skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 9271{
4bb7a0a7
DJ
9272 while (1)
9273 {
685af9cd
TT
9274 unsigned int bytes_read;
9275 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9276
4bb7a0a7
DJ
9277 if (abbrev == NULL)
9278 return info_ptr + bytes_read;
9279 else
dee91e82 9280 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
9281 }
9282}
9283
93311388
DE
9284/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9285 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
9286 abbrev corresponding to that skipped uleb128 should be passed in
9287 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9288 children. */
9289
d521ce57
TT
9290static const gdb_byte *
9291skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 9292 struct abbrev_info *abbrev)
4bb7a0a7
DJ
9293{
9294 unsigned int bytes_read;
9295 struct attribute attr;
dee91e82
DE
9296 bfd *abfd = reader->abfd;
9297 struct dwarf2_cu *cu = reader->cu;
d521ce57 9298 const gdb_byte *buffer = reader->buffer;
f664829e 9299 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
9300 unsigned int form, i;
9301
9302 for (i = 0; i < abbrev->num_attrs; i++)
9303 {
9304 /* The only abbrev we care about is DW_AT_sibling. */
9305 if (abbrev->attrs[i].name == DW_AT_sibling)
9306 {
dee91e82 9307 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 9308 if (attr.form == DW_FORM_ref_addr)
b98664d3 9309 complaint (_("ignoring absolute DW_AT_sibling"));
4bb7a0a7 9310 else
b9502d3f 9311 {
9c541725
PA
9312 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9313 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
9314
9315 if (sibling_ptr < info_ptr)
b98664d3 9316 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
9317 else if (sibling_ptr > reader->buffer_end)
9318 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
9319 else
9320 return sibling_ptr;
9321 }
4bb7a0a7
DJ
9322 }
9323
9324 /* If it isn't DW_AT_sibling, skip this attribute. */
9325 form = abbrev->attrs[i].form;
9326 skip_attribute:
9327 switch (form)
9328 {
4bb7a0a7 9329 case DW_FORM_ref_addr:
ae411497
TT
9330 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9331 and later it is offset sized. */
9332 if (cu->header.version == 2)
9333 info_ptr += cu->header.addr_size;
9334 else
9335 info_ptr += cu->header.offset_size;
9336 break;
36586728
TT
9337 case DW_FORM_GNU_ref_alt:
9338 info_ptr += cu->header.offset_size;
9339 break;
ae411497 9340 case DW_FORM_addr:
4bb7a0a7
DJ
9341 info_ptr += cu->header.addr_size;
9342 break;
9343 case DW_FORM_data1:
9344 case DW_FORM_ref1:
9345 case DW_FORM_flag:
8fe0f950 9346 case DW_FORM_strx1:
4bb7a0a7
DJ
9347 info_ptr += 1;
9348 break;
2dc7f7b3 9349 case DW_FORM_flag_present:
43988095 9350 case DW_FORM_implicit_const:
2dc7f7b3 9351 break;
4bb7a0a7
DJ
9352 case DW_FORM_data2:
9353 case DW_FORM_ref2:
8fe0f950 9354 case DW_FORM_strx2:
4bb7a0a7
DJ
9355 info_ptr += 2;
9356 break;
8fe0f950
AT
9357 case DW_FORM_strx3:
9358 info_ptr += 3;
9359 break;
4bb7a0a7
DJ
9360 case DW_FORM_data4:
9361 case DW_FORM_ref4:
8fe0f950 9362 case DW_FORM_strx4:
4bb7a0a7
DJ
9363 info_ptr += 4;
9364 break;
9365 case DW_FORM_data8:
9366 case DW_FORM_ref8:
55f1336d 9367 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
9368 info_ptr += 8;
9369 break;
0224619f
JK
9370 case DW_FORM_data16:
9371 info_ptr += 16;
9372 break;
4bb7a0a7 9373 case DW_FORM_string:
9b1c24c8 9374 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
9375 info_ptr += bytes_read;
9376 break;
2dc7f7b3 9377 case DW_FORM_sec_offset:
4bb7a0a7 9378 case DW_FORM_strp:
36586728 9379 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
9380 info_ptr += cu->header.offset_size;
9381 break;
2dc7f7b3 9382 case DW_FORM_exprloc:
4bb7a0a7
DJ
9383 case DW_FORM_block:
9384 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9385 info_ptr += bytes_read;
9386 break;
9387 case DW_FORM_block1:
9388 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9389 break;
9390 case DW_FORM_block2:
9391 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9392 break;
9393 case DW_FORM_block4:
9394 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9395 break;
336d760d 9396 case DW_FORM_addrx:
cf532bd1 9397 case DW_FORM_strx:
4bb7a0a7
DJ
9398 case DW_FORM_sdata:
9399 case DW_FORM_udata:
9400 case DW_FORM_ref_udata:
3019eac3
DE
9401 case DW_FORM_GNU_addr_index:
9402 case DW_FORM_GNU_str_index:
d521ce57 9403 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
9404 break;
9405 case DW_FORM_indirect:
9406 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9407 info_ptr += bytes_read;
9408 /* We need to continue parsing from here, so just go back to
9409 the top. */
9410 goto skip_attribute;
9411
9412 default:
3e43a32a
MS
9413 error (_("Dwarf Error: Cannot handle %s "
9414 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
9415 dwarf_form_name (form),
9416 bfd_get_filename (abfd));
9417 }
9418 }
9419
9420 if (abbrev->has_children)
dee91e82 9421 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
9422 else
9423 return info_ptr;
9424}
9425
93311388 9426/* Locate ORIG_PDI's sibling.
dee91e82 9427 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 9428
d521ce57 9429static const gdb_byte *
dee91e82
DE
9430locate_pdi_sibling (const struct die_reader_specs *reader,
9431 struct partial_die_info *orig_pdi,
d521ce57 9432 const gdb_byte *info_ptr)
91c24f0a
DC
9433{
9434 /* Do we know the sibling already? */
72bf9492 9435
91c24f0a
DC
9436 if (orig_pdi->sibling)
9437 return orig_pdi->sibling;
9438
9439 /* Are there any children to deal with? */
9440
9441 if (!orig_pdi->has_children)
9442 return info_ptr;
9443
4bb7a0a7 9444 /* Skip the children the long way. */
91c24f0a 9445
dee91e82 9446 return skip_children (reader, info_ptr);
91c24f0a
DC
9447}
9448
257e7a09 9449/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 9450 not NULL. */
c906108c
SS
9451
9452static void
257e7a09
YQ
9453dwarf2_read_symtab (struct partial_symtab *self,
9454 struct objfile *objfile)
c906108c 9455{
ed2dc618
SM
9456 struct dwarf2_per_objfile *dwarf2_per_objfile
9457 = get_dwarf2_per_objfile (objfile);
9458
257e7a09 9459 if (self->readin)
c906108c 9460 {
442e4d9c 9461 warning (_("bug: psymtab for %s is already read in."),
257e7a09 9462 self->filename);
442e4d9c
YQ
9463 }
9464 else
9465 {
9466 if (info_verbose)
c906108c 9467 {
442e4d9c 9468 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 9469 self->filename);
442e4d9c 9470 gdb_flush (gdb_stdout);
c906108c 9471 }
c906108c 9472
442e4d9c
YQ
9473 /* If this psymtab is constructed from a debug-only objfile, the
9474 has_section_at_zero flag will not necessarily be correct. We
9475 can get the correct value for this flag by looking at the data
9476 associated with the (presumably stripped) associated objfile. */
9477 if (objfile->separate_debug_objfile_backlink)
9478 {
9479 struct dwarf2_per_objfile *dpo_backlink
ed2dc618 9480 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9a619af0 9481
442e4d9c
YQ
9482 dwarf2_per_objfile->has_section_at_zero
9483 = dpo_backlink->has_section_at_zero;
9484 }
b2ab525c 9485
442e4d9c 9486 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 9487
257e7a09 9488 psymtab_to_symtab_1 (self);
c906108c 9489
442e4d9c
YQ
9490 /* Finish up the debug error message. */
9491 if (info_verbose)
9492 printf_filtered (_("done.\n"));
c906108c 9493 }
95554aad 9494
ed2dc618 9495 process_cu_includes (dwarf2_per_objfile);
c906108c 9496}
9cdd5dbd
DE
9497\f
9498/* Reading in full CUs. */
c906108c 9499
10b3939b
DJ
9500/* Add PER_CU to the queue. */
9501
9502static void
95554aad
TT
9503queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9504 enum language pretend_language)
10b3939b
DJ
9505{
9506 struct dwarf2_queue_item *item;
9507
9508 per_cu->queued = 1;
8d749320 9509 item = XNEW (struct dwarf2_queue_item);
10b3939b 9510 item->per_cu = per_cu;
95554aad 9511 item->pretend_language = pretend_language;
10b3939b
DJ
9512 item->next = NULL;
9513
9514 if (dwarf2_queue == NULL)
9515 dwarf2_queue = item;
9516 else
9517 dwarf2_queue_tail->next = item;
9518
9519 dwarf2_queue_tail = item;
9520}
9521
89e63ee4
DE
9522/* If PER_CU is not yet queued, add it to the queue.
9523 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9524 dependency.
0907af0c 9525 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
9526 meaning either PER_CU is already queued or it is already loaded.
9527
9528 N.B. There is an invariant here that if a CU is queued then it is loaded.
9529 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
9530
9531static int
89e63ee4 9532maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
9533 struct dwarf2_per_cu_data *per_cu,
9534 enum language pretend_language)
9535{
9536 /* We may arrive here during partial symbol reading, if we need full
9537 DIEs to process an unusual case (e.g. template arguments). Do
9538 not queue PER_CU, just tell our caller to load its DIEs. */
ed2dc618 9539 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
0907af0c
DE
9540 {
9541 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9542 return 1;
9543 return 0;
9544 }
9545
9546 /* Mark the dependence relation so that we don't flush PER_CU
9547 too early. */
89e63ee4
DE
9548 if (dependent_cu != NULL)
9549 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
9550
9551 /* If it's already on the queue, we have nothing to do. */
9552 if (per_cu->queued)
9553 return 0;
9554
9555 /* If the compilation unit is already loaded, just mark it as
9556 used. */
9557 if (per_cu->cu != NULL)
9558 {
9559 per_cu->cu->last_used = 0;
9560 return 0;
9561 }
9562
9563 /* Add it to the queue. */
9564 queue_comp_unit (per_cu, pretend_language);
9565
9566 return 1;
9567}
9568
10b3939b
DJ
9569/* Process the queue. */
9570
9571static void
ed2dc618 9572process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10b3939b
DJ
9573{
9574 struct dwarf2_queue_item *item, *next_item;
9575
b4f54984 9576 if (dwarf_read_debug)
45cfd468
DE
9577 {
9578 fprintf_unfiltered (gdb_stdlog,
9579 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 9580 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
9581 }
9582
03dd20cc
DJ
9583 /* The queue starts out with one item, but following a DIE reference
9584 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
9585 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9586 {
cc12ce38
DE
9587 if ((dwarf2_per_objfile->using_index
9588 ? !item->per_cu->v.quick->compunit_symtab
9589 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9590 /* Skip dummy CUs. */
9591 && item->per_cu->cu != NULL)
f4dc4d17
DE
9592 {
9593 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 9594 unsigned int debug_print_threshold;
247f5c4f 9595 char buf[100];
f4dc4d17 9596
247f5c4f 9597 if (per_cu->is_debug_types)
f4dc4d17 9598 {
247f5c4f
DE
9599 struct signatured_type *sig_type =
9600 (struct signatured_type *) per_cu;
9601
9d8780f0 9602 sprintf (buf, "TU %s at offset %s",
73be47f5 9603 hex_string (sig_type->signature),
9d8780f0 9604 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9605 /* There can be 100s of TUs.
9606 Only print them in verbose mode. */
9607 debug_print_threshold = 2;
f4dc4d17 9608 }
247f5c4f 9609 else
73be47f5 9610 {
9d8780f0
SM
9611 sprintf (buf, "CU at offset %s",
9612 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9613 debug_print_threshold = 1;
9614 }
247f5c4f 9615
b4f54984 9616 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9617 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
9618
9619 if (per_cu->is_debug_types)
9620 process_full_type_unit (per_cu, item->pretend_language);
9621 else
9622 process_full_comp_unit (per_cu, item->pretend_language);
9623
b4f54984 9624 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9625 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 9626 }
10b3939b
DJ
9627
9628 item->per_cu->queued = 0;
9629 next_item = item->next;
9630 xfree (item);
9631 }
9632
9633 dwarf2_queue_tail = NULL;
45cfd468 9634
b4f54984 9635 if (dwarf_read_debug)
45cfd468
DE
9636 {
9637 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 9638 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 9639 }
10b3939b
DJ
9640}
9641
10b3939b
DJ
9642/* Read in full symbols for PST, and anything it depends on. */
9643
c906108c 9644static void
fba45db2 9645psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 9646{
10b3939b 9647 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
9648 int i;
9649
95554aad
TT
9650 if (pst->readin)
9651 return;
9652
aaa75496 9653 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
9654 if (!pst->dependencies[i]->readin
9655 && pst->dependencies[i]->user == NULL)
aaa75496
JB
9656 {
9657 /* Inform about additional files that need to be read in. */
9658 if (info_verbose)
9659 {
a3f17187 9660 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
9661 fputs_filtered (" ", gdb_stdout);
9662 wrap_here ("");
9663 fputs_filtered ("and ", gdb_stdout);
9664 wrap_here ("");
9665 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 9666 wrap_here (""); /* Flush output. */
aaa75496
JB
9667 gdb_flush (gdb_stdout);
9668 }
9669 psymtab_to_symtab_1 (pst->dependencies[i]);
9670 }
9671
9a3c8263 9672 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
9673
9674 if (per_cu == NULL)
aaa75496
JB
9675 {
9676 /* It's an include file, no symbols to read for it.
9677 Everything is in the parent symtab. */
9678 pst->readin = 1;
9679 return;
9680 }
c906108c 9681
58f0c718 9682 dw2_do_instantiate_symtab (per_cu, false);
10b3939b
DJ
9683}
9684
dee91e82
DE
9685/* Trivial hash function for die_info: the hash value of a DIE
9686 is its offset in .debug_info for this objfile. */
10b3939b 9687
dee91e82
DE
9688static hashval_t
9689die_hash (const void *item)
10b3939b 9690{
9a3c8263 9691 const struct die_info *die = (const struct die_info *) item;
6502dd73 9692
9c541725 9693 return to_underlying (die->sect_off);
dee91e82 9694}
63d06c5c 9695
dee91e82
DE
9696/* Trivial comparison function for die_info structures: two DIEs
9697 are equal if they have the same offset. */
98bfdba5 9698
dee91e82
DE
9699static int
9700die_eq (const void *item_lhs, const void *item_rhs)
9701{
9a3c8263
SM
9702 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9703 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 9704
9c541725 9705 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 9706}
c906108c 9707
dee91e82
DE
9708/* die_reader_func for load_full_comp_unit.
9709 This is identical to read_signatured_type_reader,
9710 but is kept separate for now. */
c906108c 9711
dee91e82
DE
9712static void
9713load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 9714 const gdb_byte *info_ptr,
dee91e82
DE
9715 struct die_info *comp_unit_die,
9716 int has_children,
9717 void *data)
9718{
9719 struct dwarf2_cu *cu = reader->cu;
9a3c8263 9720 enum language *language_ptr = (enum language *) data;
6caca83c 9721
dee91e82
DE
9722 gdb_assert (cu->die_hash == NULL);
9723 cu->die_hash =
9724 htab_create_alloc_ex (cu->header.length / 12,
9725 die_hash,
9726 die_eq,
9727 NULL,
9728 &cu->comp_unit_obstack,
9729 hashtab_obstack_allocate,
9730 dummy_obstack_deallocate);
e142c38c 9731
dee91e82
DE
9732 if (has_children)
9733 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9734 &info_ptr, comp_unit_die);
9735 cu->dies = comp_unit_die;
9736 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
9737
9738 /* We try not to read any attributes in this function, because not
9cdd5dbd 9739 all CUs needed for references have been loaded yet, and symbol
10b3939b 9740 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
9741 or we won't be able to build types correctly.
9742 Similarly, if we do not read the producer, we can not apply
9743 producer-specific interpretation. */
95554aad 9744 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 9745}
10b3939b 9746
dee91e82 9747/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 9748
dee91e82 9749static void
95554aad 9750load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
58f0c718 9751 bool skip_partial,
95554aad 9752 enum language pretend_language)
dee91e82 9753{
3019eac3 9754 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 9755
58f0c718 9756 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
f4dc4d17 9757 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
9758}
9759
3da10d80
KS
9760/* Add a DIE to the delayed physname list. */
9761
9762static void
9763add_to_method_list (struct type *type, int fnfield_index, int index,
9764 const char *name, struct die_info *die,
9765 struct dwarf2_cu *cu)
9766{
9767 struct delayed_method_info mi;
9768 mi.type = type;
9769 mi.fnfield_index = fnfield_index;
9770 mi.index = index;
9771 mi.name = name;
9772 mi.die = die;
c89b44cd 9773 cu->method_list.push_back (mi);
3da10d80
KS
9774}
9775
3693fdb3
PA
9776/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9777 "const" / "volatile". If so, decrements LEN by the length of the
9778 modifier and return true. Otherwise return false. */
9779
9780template<size_t N>
9781static bool
9782check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9783{
9784 size_t mod_len = sizeof (mod) - 1;
9785 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9786 {
9787 len -= mod_len;
9788 return true;
9789 }
9790 return false;
9791}
9792
3da10d80
KS
9793/* Compute the physnames of any methods on the CU's method list.
9794
9795 The computation of method physnames is delayed in order to avoid the
9796 (bad) condition that one of the method's formal parameters is of an as yet
9797 incomplete type. */
9798
9799static void
9800compute_delayed_physnames (struct dwarf2_cu *cu)
9801{
3693fdb3 9802 /* Only C++ delays computing physnames. */
c89b44cd 9803 if (cu->method_list.empty ())
3693fdb3
PA
9804 return;
9805 gdb_assert (cu->language == language_cplus);
9806
52941706 9807 for (const delayed_method_info &mi : cu->method_list)
3da10d80 9808 {
1d06ead6 9809 const char *physname;
3da10d80 9810 struct fn_fieldlist *fn_flp
c89b44cd
TT
9811 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9812 physname = dwarf2_physname (mi.name, mi.die, cu);
9813 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
005e54bb 9814 = physname ? physname : "";
3693fdb3
PA
9815
9816 /* Since there's no tag to indicate whether a method is a
9817 const/volatile overload, extract that information out of the
9818 demangled name. */
9819 if (physname != NULL)
9820 {
9821 size_t len = strlen (physname);
9822
9823 while (1)
9824 {
9825 if (physname[len] == ')') /* shortcut */
9826 break;
9827 else if (check_modifier (physname, len, " const"))
c89b44cd 9828 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
3693fdb3 9829 else if (check_modifier (physname, len, " volatile"))
c89b44cd 9830 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
3693fdb3
PA
9831 else
9832 break;
9833 }
9834 }
3da10d80 9835 }
c89b44cd
TT
9836
9837 /* The list is no longer needed. */
9838 cu->method_list.clear ();
3da10d80
KS
9839}
9840
a766d390
DE
9841/* Go objects should be embedded in a DW_TAG_module DIE,
9842 and it's not clear if/how imported objects will appear.
9843 To keep Go support simple until that's worked out,
9844 go back through what we've read and create something usable.
9845 We could do this while processing each DIE, and feels kinda cleaner,
9846 but that way is more invasive.
9847 This is to, for example, allow the user to type "p var" or "b main"
9848 without having to specify the package name, and allow lookups
9849 of module.object to work in contexts that use the expression
9850 parser. */
9851
9852static void
9853fixup_go_packaging (struct dwarf2_cu *cu)
9854{
9855 char *package_name = NULL;
9856 struct pending *list;
9857 int i;
9858
c24bdb02 9859 for (list = *cu->get_builder ()->get_global_symbols ();
804d2729
TT
9860 list != NULL;
9861 list = list->next)
a766d390
DE
9862 {
9863 for (i = 0; i < list->nsyms; ++i)
9864 {
9865 struct symbol *sym = list->symbol[i];
9866
9867 if (SYMBOL_LANGUAGE (sym) == language_go
9868 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9869 {
9870 char *this_package_name = go_symbol_package_name (sym);
9871
9872 if (this_package_name == NULL)
9873 continue;
9874 if (package_name == NULL)
9875 package_name = this_package_name;
9876 else
9877 {
518817b3
SM
9878 struct objfile *objfile
9879 = cu->per_cu->dwarf2_per_objfile->objfile;
a766d390 9880 if (strcmp (package_name, this_package_name) != 0)
b98664d3 9881 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
9882 (symbol_symtab (sym) != NULL
9883 ? symtab_to_filename_for_display
9884 (symbol_symtab (sym))
e3b94546 9885 : objfile_name (objfile)),
a766d390
DE
9886 this_package_name, package_name);
9887 xfree (this_package_name);
9888 }
9889 }
9890 }
9891 }
9892
9893 if (package_name != NULL)
9894 {
518817b3 9895 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
34a68019 9896 const char *saved_package_name
021887d8 9897 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
19f392bc
UW
9898 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9899 saved_package_name);
a766d390
DE
9900 struct symbol *sym;
9901
e623cf5d 9902 sym = allocate_symbol (objfile);
f85f34ed 9903 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
9904 SYMBOL_SET_NAMES (sym, saved_package_name,
9905 strlen (saved_package_name), 0, objfile);
a766d390
DE
9906 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9907 e.g., "main" finds the "main" module and not C's main(). */
9908 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 9909 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
9910 SYMBOL_TYPE (sym) = type;
9911
c24bdb02 9912 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
a766d390
DE
9913
9914 xfree (package_name);
9915 }
9916}
9917
c9317f21
TT
9918/* Allocate a fully-qualified name consisting of the two parts on the
9919 obstack. */
9920
9921static const char *
9922rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9923{
9924 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9925}
9926
9927/* A helper that allocates a struct discriminant_info to attach to a
9928 union type. */
9929
9930static struct discriminant_info *
9931alloc_discriminant_info (struct type *type, int discriminant_index,
9932 int default_index)
9933{
9934 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
c7b15a66
TT
9935 gdb_assert (discriminant_index == -1
9936 || (discriminant_index >= 0
9937 && discriminant_index < TYPE_NFIELDS (type)));
c9317f21 9938 gdb_assert (default_index == -1
c7b15a66 9939 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
c9317f21
TT
9940
9941 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9942
9943 struct discriminant_info *disc
9944 = ((struct discriminant_info *)
9945 TYPE_ZALLOC (type,
9946 offsetof (struct discriminant_info, discriminants)
9947 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9948 disc->default_index = default_index;
9949 disc->discriminant_index = discriminant_index;
9950
9951 struct dynamic_prop prop;
9952 prop.kind = PROP_UNDEFINED;
9953 prop.data.baton = disc;
9954
9955 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9956
9957 return disc;
9958}
9959
9960/* Some versions of rustc emitted enums in an unusual way.
9961
9962 Ordinary enums were emitted as unions. The first element of each
9963 structure in the union was named "RUST$ENUM$DISR". This element
9964 held the discriminant.
9965
9966 These versions of Rust also implemented the "non-zero"
9967 optimization. When the enum had two values, and one is empty and
9968 the other holds a pointer that cannot be zero, the pointer is used
9969 as the discriminant, with a zero value meaning the empty variant.
9970 Here, the union's first member is of the form
9971 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9972 where the fieldnos are the indices of the fields that should be
9973 traversed in order to find the field (which may be several fields deep)
9974 and the variantname is the name of the variant of the case when the
9975 field is zero.
9976
9977 This function recognizes whether TYPE is of one of these forms,
9978 and, if so, smashes it to be a variant type. */
9979
9980static void
9981quirk_rust_enum (struct type *type, struct objfile *objfile)
9982{
9983 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9984
9985 /* We don't need to deal with empty enums. */
9986 if (TYPE_NFIELDS (type) == 0)
9987 return;
9988
9989#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9990 if (TYPE_NFIELDS (type) == 1
9991 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9992 {
9993 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9994
9995 /* Decode the field name to find the offset of the
9996 discriminant. */
9997 ULONGEST bit_offset = 0;
9998 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9999 while (name[0] >= '0' && name[0] <= '9')
10000 {
10001 char *tail;
10002 unsigned long index = strtoul (name, &tail, 10);
10003 name = tail;
10004 if (*name != '$'
10005 || index >= TYPE_NFIELDS (field_type)
10006 || (TYPE_FIELD_LOC_KIND (field_type, index)
10007 != FIELD_LOC_KIND_BITPOS))
10008 {
b98664d3 10009 complaint (_("Could not parse Rust enum encoding string \"%s\""
c9317f21
TT
10010 "[in module %s]"),
10011 TYPE_FIELD_NAME (type, 0),
10012 objfile_name (objfile));
10013 return;
10014 }
10015 ++name;
10016
10017 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10018 field_type = TYPE_FIELD_TYPE (field_type, index);
10019 }
10020
10021 /* Make a union to hold the variants. */
10022 struct type *union_type = alloc_type (objfile);
10023 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10024 TYPE_NFIELDS (union_type) = 3;
10025 TYPE_FIELDS (union_type)
10026 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10027 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10028 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10029
10030 /* Put the discriminant must at index 0. */
10031 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10032 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10033 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10034 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10035
10036 /* The order of fields doesn't really matter, so put the real
10037 field at index 1 and the data-less field at index 2. */
10038 struct discriminant_info *disc
10039 = alloc_discriminant_info (union_type, 0, 1);
10040 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10041 TYPE_FIELD_NAME (union_type, 1)
10042 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10043 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10044 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10045 TYPE_FIELD_NAME (union_type, 1));
10046
10047 const char *dataless_name
10048 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10049 name);
10050 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10051 dataless_name);
10052 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10053 /* NAME points into the original discriminant name, which
10054 already has the correct lifetime. */
10055 TYPE_FIELD_NAME (union_type, 2) = name;
10056 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10057 disc->discriminants[2] = 0;
10058
10059 /* Smash this type to be a structure type. We have to do this
10060 because the type has already been recorded. */
10061 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10062 TYPE_NFIELDS (type) = 1;
10063 TYPE_FIELDS (type)
10064 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10065
10066 /* Install the variant part. */
10067 TYPE_FIELD_TYPE (type, 0) = union_type;
10068 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 }
10071 else if (TYPE_NFIELDS (type) == 1)
10072 {
10073 /* We assume that a union with a single field is a univariant
10074 enum. */
10075 /* Smash this type to be a structure type. We have to do this
10076 because the type has already been recorded. */
10077 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10078
10079 /* Make a union to hold the variants. */
10080 struct type *union_type = alloc_type (objfile);
10081 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10082 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10083 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10084 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10085 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10086
10087 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10088 const char *variant_name
10089 = rust_last_path_segment (TYPE_NAME (field_type));
10090 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10091 TYPE_NAME (field_type)
10092 = rust_fully_qualify (&objfile->objfile_obstack,
c7b15a66 10093 TYPE_NAME (type), variant_name);
c9317f21
TT
10094
10095 /* Install the union in the outer struct type. */
10096 TYPE_NFIELDS (type) = 1;
10097 TYPE_FIELDS (type)
10098 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10099 TYPE_FIELD_TYPE (type, 0) = union_type;
10100 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10101 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10102
10103 alloc_discriminant_info (union_type, -1, 0);
10104 }
10105 else
10106 {
10107 struct type *disr_type = nullptr;
10108 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10109 {
10110 disr_type = TYPE_FIELD_TYPE (type, i);
10111
a037790e
TT
10112 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10113 {
10114 /* All fields of a true enum will be structs. */
10115 return;
10116 }
10117 else if (TYPE_NFIELDS (disr_type) == 0)
c9317f21
TT
10118 {
10119 /* Could be data-less variant, so keep going. */
a037790e 10120 disr_type = nullptr;
c9317f21
TT
10121 }
10122 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10123 "RUST$ENUM$DISR") != 0)
10124 {
10125 /* Not a Rust enum. */
10126 return;
10127 }
10128 else
10129 {
10130 /* Found one. */
10131 break;
10132 }
10133 }
10134
10135 /* If we got here without a discriminant, then it's probably
10136 just a union. */
10137 if (disr_type == nullptr)
10138 return;
10139
10140 /* Smash this type to be a structure type. We have to do this
10141 because the type has already been recorded. */
10142 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10143
10144 /* Make a union to hold the variants. */
10145 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10146 struct type *union_type = alloc_type (objfile);
10147 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10148 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10149 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10150 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10151 TYPE_FIELDS (union_type)
10152 = (struct field *) TYPE_ZALLOC (union_type,
10153 (TYPE_NFIELDS (union_type)
10154 * sizeof (struct field)));
10155
10156 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10157 TYPE_NFIELDS (type) * sizeof (struct field));
10158
10159 /* Install the discriminant at index 0 in the union. */
10160 TYPE_FIELD (union_type, 0) = *disr_field;
10161 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10162 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10163
10164 /* Install the union in the outer struct type. */
10165 TYPE_FIELD_TYPE (type, 0) = union_type;
10166 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10167 TYPE_NFIELDS (type) = 1;
10168
10169 /* Set the size and offset of the union type. */
10170 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10171
10172 /* We need a way to find the correct discriminant given a
10173 variant name. For convenience we build a map here. */
10174 struct type *enum_type = FIELD_TYPE (*disr_field);
10175 std::unordered_map<std::string, ULONGEST> discriminant_map;
10176 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10177 {
10178 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10179 {
10180 const char *name
10181 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10182 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10183 }
10184 }
10185
10186 int n_fields = TYPE_NFIELDS (union_type);
10187 struct discriminant_info *disc
10188 = alloc_discriminant_info (union_type, 0, -1);
10189 /* Skip the discriminant here. */
10190 for (int i = 1; i < n_fields; ++i)
10191 {
10192 /* Find the final word in the name of this variant's type.
10193 That name can be used to look up the correct
10194 discriminant. */
10195 const char *variant_name
10196 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10197 i)));
10198
10199 auto iter = discriminant_map.find (variant_name);
10200 if (iter != discriminant_map.end ())
10201 disc->discriminants[i] = iter->second;
10202
bedda9ac 10203 /* Remove the discriminant field, if it exists. */
c9317f21 10204 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
bedda9ac
TT
10205 if (TYPE_NFIELDS (sub_type) > 0)
10206 {
10207 --TYPE_NFIELDS (sub_type);
10208 ++TYPE_FIELDS (sub_type);
10209 }
c9317f21
TT
10210 TYPE_FIELD_NAME (union_type, i) = variant_name;
10211 TYPE_NAME (sub_type)
10212 = rust_fully_qualify (&objfile->objfile_obstack,
10213 TYPE_NAME (type), variant_name);
10214 }
10215 }
10216}
10217
10218/* Rewrite some Rust unions to be structures with variants parts. */
10219
10220static void
10221rust_union_quirks (struct dwarf2_cu *cu)
10222{
10223 gdb_assert (cu->language == language_rust);
52941706
SM
10224 for (type *type_ : cu->rust_unions)
10225 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
2d79090e
TT
10226 /* We don't need this any more. */
10227 cu->rust_unions.clear ();
c9317f21
TT
10228}
10229
95554aad
TT
10230/* Return the symtab for PER_CU. This works properly regardless of
10231 whether we're using the index or psymtabs. */
10232
43f3e411
DE
10233static struct compunit_symtab *
10234get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad 10235{
ed2dc618 10236 return (per_cu->dwarf2_per_objfile->using_index
43f3e411
DE
10237 ? per_cu->v.quick->compunit_symtab
10238 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
10239}
10240
10241/* A helper function for computing the list of all symbol tables
10242 included by PER_CU. */
10243
10244static void
4c39bc03 10245recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
ec94af83 10246 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 10247 struct dwarf2_per_cu_data *per_cu,
43f3e411 10248 struct compunit_symtab *immediate_parent)
95554aad
TT
10249{
10250 void **slot;
10251 int ix;
43f3e411 10252 struct compunit_symtab *cust;
95554aad
TT
10253 struct dwarf2_per_cu_data *iter;
10254
10255 slot = htab_find_slot (all_children, per_cu, INSERT);
10256 if (*slot != NULL)
10257 {
10258 /* This inclusion and its children have been processed. */
10259 return;
10260 }
10261
10262 *slot = per_cu;
10263 /* Only add a CU if it has a symbol table. */
43f3e411
DE
10264 cust = get_compunit_symtab (per_cu);
10265 if (cust != NULL)
ec94af83
DE
10266 {
10267 /* If this is a type unit only add its symbol table if we haven't
10268 seen it yet (type unit per_cu's can share symtabs). */
10269 if (per_cu->is_debug_types)
10270 {
43f3e411 10271 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
10272 if (*slot == NULL)
10273 {
43f3e411 10274 *slot = cust;
4c39bc03 10275 result->push_back (cust);
43f3e411
DE
10276 if (cust->user == NULL)
10277 cust->user = immediate_parent;
ec94af83
DE
10278 }
10279 }
10280 else
f9125b6c 10281 {
4c39bc03 10282 result->push_back (cust);
43f3e411
DE
10283 if (cust->user == NULL)
10284 cust->user = immediate_parent;
f9125b6c 10285 }
ec94af83 10286 }
95554aad
TT
10287
10288 for (ix = 0;
796a7ff8 10289 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 10290 ++ix)
ec94af83
DE
10291 {
10292 recursively_compute_inclusions (result, all_children,
43f3e411 10293 all_type_symtabs, iter, cust);
ec94af83 10294 }
95554aad
TT
10295}
10296
43f3e411 10297/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
10298 PER_CU. */
10299
10300static void
43f3e411 10301compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 10302{
f4dc4d17
DE
10303 gdb_assert (! per_cu->is_debug_types);
10304
796a7ff8 10305 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
10306 {
10307 int ix, len;
ec94af83 10308 struct dwarf2_per_cu_data *per_cu_iter;
4c39bc03 10309 std::vector<compunit_symtab *> result_symtabs;
ec94af83 10310 htab_t all_children, all_type_symtabs;
43f3e411 10311 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
10312
10313 /* If we don't have a symtab, we can just skip this case. */
43f3e411 10314 if (cust == NULL)
95554aad
TT
10315 return;
10316
10317 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10318 NULL, xcalloc, xfree);
ec94af83
DE
10319 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10320 NULL, xcalloc, xfree);
95554aad
TT
10321
10322 for (ix = 0;
796a7ff8 10323 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 10324 ix, per_cu_iter);
95554aad 10325 ++ix)
ec94af83
DE
10326 {
10327 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 10328 all_type_symtabs, per_cu_iter,
43f3e411 10329 cust);
ec94af83 10330 }
95554aad 10331
ec94af83 10332 /* Now we have a transitive closure of all the included symtabs. */
4c39bc03 10333 len = result_symtabs.size ();
43f3e411 10334 cust->includes
ed2dc618 10335 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
8d749320 10336 struct compunit_symtab *, len + 1);
4c39bc03
TT
10337 memcpy (cust->includes, result_symtabs.data (),
10338 len * sizeof (compunit_symtab *));
43f3e411 10339 cust->includes[len] = NULL;
95554aad 10340
95554aad 10341 htab_delete (all_children);
ec94af83 10342 htab_delete (all_type_symtabs);
95554aad
TT
10343 }
10344}
10345
10346/* Compute the 'includes' field for the symtabs of all the CUs we just
10347 read. */
10348
10349static void
ed2dc618 10350process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 10351{
71b73764 10352 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
f4dc4d17
DE
10353 {
10354 if (! iter->is_debug_types)
43f3e411 10355 compute_compunit_symtab_includes (iter);
f4dc4d17 10356 }
95554aad 10357
c5d0225d 10358 dwarf2_per_objfile->just_read_cus.clear ();
95554aad
TT
10359}
10360
9cdd5dbd 10361/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
10362 already been loaded into memory. */
10363
10364static void
95554aad
TT
10365process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10366 enum language pretend_language)
10b3939b 10367{
10b3939b 10368 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10369 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10370 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 10371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 10372 CORE_ADDR lowpc, highpc;
43f3e411 10373 struct compunit_symtab *cust;
10b3939b 10374 CORE_ADDR baseaddr;
4359dff1 10375 struct block *static_block;
3e29f34a 10376 CORE_ADDR addr;
10b3939b
DJ
10377
10378 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10379
c89b44cd
TT
10380 /* Clear the list here in case something was left over. */
10381 cu->method_list.clear ();
10b3939b 10382
95554aad
TT
10383 cu->language = pretend_language;
10384 cu->language_defn = language_def (cu->language);
10385
c906108c 10386 /* Do line number decoding in read_file_scope () */
10b3939b 10387 process_die (cu->dies, cu);
c906108c 10388
a766d390
DE
10389 /* For now fudge the Go package. */
10390 if (cu->language == language_go)
10391 fixup_go_packaging (cu);
10392
5f48f8f3 10393 /* Now that we have processed all the DIEs in the CU, all the types
3da10d80
KS
10394 should be complete, and it should now be safe to compute all of the
10395 physnames. */
10396 compute_delayed_physnames (cu);
3da10d80 10397
c9317f21
TT
10398 if (cu->language == language_rust)
10399 rust_union_quirks (cu);
10400
fae299cd
DC
10401 /* Some compilers don't define a DW_AT_high_pc attribute for the
10402 compilation unit. If the DW_AT_high_pc is missing, synthesize
10403 it, by scanning the DIE's below the compilation unit. */
10b3939b 10404 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 10405
3e29f34a 10406 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c24bdb02 10407 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
10408
10409 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10410 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10411 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10412 addrmap to help ensure it has an accurate map of pc values belonging to
10413 this comp unit. */
10414 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10415
c24bdb02 10416 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
804d2729
TT
10417 SECT_OFF_TEXT (objfile),
10418 0);
c906108c 10419
43f3e411 10420 if (cust != NULL)
c906108c 10421 {
df15bd07 10422 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 10423
8be455d7
JK
10424 /* Set symtab language to language from DW_AT_language. If the
10425 compilation is from a C file generated by language preprocessors, do
10426 not set the language if it was already deduced by start_subfile. */
43f3e411 10427 if (!(cu->language == language_c
40e3ad0e 10428 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 10429 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
10430
10431 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10432 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
10433 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10434 there were bugs in prologue debug info, fixed later in GCC-4.5
10435 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
10436
10437 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10438 needed, it would be wrong due to missing DW_AT_producer there.
10439
10440 Still one can confuse GDB by using non-standard GCC compilation
10441 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
5f48f8f3 10442 */
ab260dad 10443 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 10444 cust->locations_valid = 1;
e0d00bc7
JK
10445
10446 if (gcc_4_minor >= 5)
43f3e411 10447 cust->epilogue_unwind_valid = 1;
96408a79 10448
43f3e411 10449 cust->call_site_htab = cu->call_site_htab;
c906108c 10450 }
9291a0cd
TT
10451
10452 if (dwarf2_per_objfile->using_index)
43f3e411 10453 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
10454 else
10455 {
10456 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10457 pst->compunit_symtab = cust;
9291a0cd
TT
10458 pst->readin = 1;
10459 }
c906108c 10460
95554aad 10461 /* Push it for inclusion processing later. */
c5d0225d 10462 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
804d2729
TT
10463
10464 /* Not needed any more. */
c24bdb02 10465 cu->reset_builder ();
f4dc4d17 10466}
45cfd468 10467
f4dc4d17
DE
10468/* Generate full symbol information for type unit PER_CU, whose DIEs have
10469 already been loaded into memory. */
10470
10471static void
10472process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10473 enum language pretend_language)
10474{
10475 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10476 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10477 struct objfile *objfile = dwarf2_per_objfile->objfile;
43f3e411 10478 struct compunit_symtab *cust;
0186c6a7
DE
10479 struct signatured_type *sig_type;
10480
10481 gdb_assert (per_cu->is_debug_types);
10482 sig_type = (struct signatured_type *) per_cu;
f4dc4d17 10483
c89b44cd
TT
10484 /* Clear the list here in case something was left over. */
10485 cu->method_list.clear ();
f4dc4d17 10486
f4dc4d17
DE
10487 cu->language = pretend_language;
10488 cu->language_defn = language_def (cu->language);
10489
10490 /* The symbol tables are set up in read_type_unit_scope. */
10491 process_die (cu->dies, cu);
10492
10493 /* For now fudge the Go package. */
10494 if (cu->language == language_go)
10495 fixup_go_packaging (cu);
10496
5f48f8f3 10497 /* Now that we have processed all the DIEs in the CU, all the types
f4dc4d17
DE
10498 should be complete, and it should now be safe to compute all of the
10499 physnames. */
10500 compute_delayed_physnames (cu);
f4dc4d17 10501
c9317f21
TT
10502 if (cu->language == language_rust)
10503 rust_union_quirks (cu);
10504
f4dc4d17
DE
10505 /* TUs share symbol tables.
10506 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
10507 of it with end_expandable_symtab. Otherwise, complete the addition of
10508 this TU's symbols to the existing symtab. */
43f3e411 10509 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 10510 {
c24bdb02
KS
10511 buildsym_compunit *builder = cu->get_builder ();
10512 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
43f3e411 10513 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 10514
43f3e411 10515 if (cust != NULL)
f4dc4d17
DE
10516 {
10517 /* Set symtab language to language from DW_AT_language. If the
10518 compilation is from a C file generated by language preprocessors,
10519 do not set the language if it was already deduced by
10520 start_subfile. */
43f3e411
DE
10521 if (!(cu->language == language_c
10522 && COMPUNIT_FILETABS (cust)->language != language_c))
10523 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
10524 }
10525 }
10526 else
10527 {
c24bdb02 10528 cu->get_builder ()->augment_type_symtab ();
43f3e411 10529 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
10530 }
10531
10532 if (dwarf2_per_objfile->using_index)
43f3e411 10533 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
10534 else
10535 {
10536 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10537 pst->compunit_symtab = cust;
f4dc4d17 10538 pst->readin = 1;
45cfd468 10539 }
804d2729
TT
10540
10541 /* Not needed any more. */
c24bdb02 10542 cu->reset_builder ();
c906108c
SS
10543}
10544
95554aad
TT
10545/* Process an imported unit DIE. */
10546
10547static void
10548process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10549{
10550 struct attribute *attr;
10551
f4dc4d17
DE
10552 /* For now we don't handle imported units in type units. */
10553 if (cu->per_cu->is_debug_types)
10554 {
10555 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10556 " supported in type units [in module %s]"),
518817b3 10557 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
10558 }
10559
95554aad
TT
10560 attr = dwarf2_attr (die, DW_AT_import, cu);
10561 if (attr != NULL)
10562 {
9c541725
PA
10563 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10564 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10565 dwarf2_per_cu_data *per_cu
e3b94546 10566 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
518817b3 10567 cu->per_cu->dwarf2_per_objfile);
95554aad 10568
69d751e3 10569 /* If necessary, add it to the queue and load its DIEs. */
95554aad 10570 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 10571 load_full_comp_unit (per_cu, false, cu->language);
95554aad 10572
796a7ff8 10573 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
10574 per_cu);
10575 }
10576}
10577
4c8aa72d
PA
10578/* RAII object that represents a process_die scope: i.e.,
10579 starts/finishes processing a DIE. */
10580class process_die_scope
adde2bff 10581{
4c8aa72d
PA
10582public:
10583 process_die_scope (die_info *die, dwarf2_cu *cu)
10584 : m_die (die), m_cu (cu)
10585 {
10586 /* We should only be processing DIEs not already in process. */
10587 gdb_assert (!m_die->in_process);
10588 m_die->in_process = true;
10589 }
8c3cb9fa 10590
4c8aa72d
PA
10591 ~process_die_scope ()
10592 {
10593 m_die->in_process = false;
10594
10595 /* If we're done processing the DIE for the CU that owns the line
10596 header, we don't need the line header anymore. */
10597 if (m_cu->line_header_die_owner == m_die)
10598 {
10599 delete m_cu->line_header;
10600 m_cu->line_header = NULL;
10601 m_cu->line_header_die_owner = NULL;
10602 }
10603 }
10604
10605private:
10606 die_info *m_die;
10607 dwarf2_cu *m_cu;
10608};
adde2bff 10609
c906108c
SS
10610/* Process a die and its children. */
10611
10612static void
e7c27a73 10613process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10614{
4c8aa72d 10615 process_die_scope scope (die, cu);
adde2bff 10616
c906108c
SS
10617 switch (die->tag)
10618 {
10619 case DW_TAG_padding:
10620 break;
10621 case DW_TAG_compile_unit:
95554aad 10622 case DW_TAG_partial_unit:
e7c27a73 10623 read_file_scope (die, cu);
c906108c 10624 break;
348e048f
DE
10625 case DW_TAG_type_unit:
10626 read_type_unit_scope (die, cu);
10627 break;
c906108c 10628 case DW_TAG_subprogram:
c906108c 10629 case DW_TAG_inlined_subroutine:
edb3359d 10630 read_func_scope (die, cu);
c906108c
SS
10631 break;
10632 case DW_TAG_lexical_block:
14898363
L
10633 case DW_TAG_try_block:
10634 case DW_TAG_catch_block:
e7c27a73 10635 read_lexical_block_scope (die, cu);
c906108c 10636 break;
216f72a1 10637 case DW_TAG_call_site:
96408a79
SA
10638 case DW_TAG_GNU_call_site:
10639 read_call_site_scope (die, cu);
10640 break;
c906108c 10641 case DW_TAG_class_type:
680b30c7 10642 case DW_TAG_interface_type:
c906108c
SS
10643 case DW_TAG_structure_type:
10644 case DW_TAG_union_type:
134d01f1 10645 process_structure_scope (die, cu);
c906108c
SS
10646 break;
10647 case DW_TAG_enumeration_type:
134d01f1 10648 process_enumeration_scope (die, cu);
c906108c 10649 break;
134d01f1 10650
f792889a
DJ
10651 /* These dies have a type, but processing them does not create
10652 a symbol or recurse to process the children. Therefore we can
10653 read them on-demand through read_type_die. */
c906108c 10654 case DW_TAG_subroutine_type:
72019c9c 10655 case DW_TAG_set_type:
c906108c 10656 case DW_TAG_array_type:
c906108c 10657 case DW_TAG_pointer_type:
c906108c 10658 case DW_TAG_ptr_to_member_type:
c906108c 10659 case DW_TAG_reference_type:
4297a3f0 10660 case DW_TAG_rvalue_reference_type:
c906108c 10661 case DW_TAG_string_type:
c906108c 10662 break;
134d01f1 10663
c906108c 10664 case DW_TAG_base_type:
a02abb62 10665 case DW_TAG_subrange_type:
cb249c71 10666 case DW_TAG_typedef:
134d01f1
DJ
10667 /* Add a typedef symbol for the type definition, if it has a
10668 DW_AT_name. */
f792889a 10669 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 10670 break;
c906108c 10671 case DW_TAG_common_block:
e7c27a73 10672 read_common_block (die, cu);
c906108c
SS
10673 break;
10674 case DW_TAG_common_inclusion:
10675 break;
d9fa45fe 10676 case DW_TAG_namespace:
9068261f 10677 cu->processing_has_namespace_info = true;
e7c27a73 10678 read_namespace (die, cu);
d9fa45fe 10679 break;
5d7cb8df 10680 case DW_TAG_module:
9068261f 10681 cu->processing_has_namespace_info = true;
5d7cb8df
JK
10682 read_module (die, cu);
10683 break;
d9fa45fe 10684 case DW_TAG_imported_declaration:
9068261f 10685 cu->processing_has_namespace_info = true;
74921315
KS
10686 if (read_namespace_alias (die, cu))
10687 break;
86a73007
TT
10688 /* The declaration is not a global namespace alias. */
10689 /* Fall through. */
d9fa45fe 10690 case DW_TAG_imported_module:
9068261f 10691 cu->processing_has_namespace_info = true;
27aa8d6a
SW
10692 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10693 || cu->language != language_fortran))
b98664d3 10694 complaint (_("Tag '%s' has unexpected children"),
27aa8d6a
SW
10695 dwarf_tag_name (die->tag));
10696 read_import_statement (die, cu);
d9fa45fe 10697 break;
95554aad
TT
10698
10699 case DW_TAG_imported_unit:
10700 process_imported_unit_die (die, cu);
10701 break;
10702
71a3c369
TT
10703 case DW_TAG_variable:
10704 read_variable (die, cu);
10705 break;
10706
c906108c 10707 default:
e7c27a73 10708 new_symbol (die, NULL, cu);
c906108c
SS
10709 break;
10710 }
10711}
ca69b9e6
DE
10712\f
10713/* DWARF name computation. */
c906108c 10714
94af9270
KS
10715/* A helper function for dwarf2_compute_name which determines whether DIE
10716 needs to have the name of the scope prepended to the name listed in the
10717 die. */
10718
10719static int
10720die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10721{
1c809c68
TT
10722 struct attribute *attr;
10723
94af9270
KS
10724 switch (die->tag)
10725 {
10726 case DW_TAG_namespace:
10727 case DW_TAG_typedef:
10728 case DW_TAG_class_type:
10729 case DW_TAG_interface_type:
10730 case DW_TAG_structure_type:
10731 case DW_TAG_union_type:
10732 case DW_TAG_enumeration_type:
10733 case DW_TAG_enumerator:
10734 case DW_TAG_subprogram:
08a76f8a 10735 case DW_TAG_inlined_subroutine:
94af9270 10736 case DW_TAG_member:
74921315 10737 case DW_TAG_imported_declaration:
94af9270
KS
10738 return 1;
10739
10740 case DW_TAG_variable:
c2b0a229 10741 case DW_TAG_constant:
94af9270
KS
10742 /* We only need to prefix "globally" visible variables. These include
10743 any variable marked with DW_AT_external or any variable that
10744 lives in a namespace. [Variables in anonymous namespaces
10745 require prefixing, but they are not DW_AT_external.] */
10746
10747 if (dwarf2_attr (die, DW_AT_specification, cu))
10748 {
10749 struct dwarf2_cu *spec_cu = cu;
9a619af0 10750
94af9270
KS
10751 return die_needs_namespace (die_specification (die, &spec_cu),
10752 spec_cu);
10753 }
10754
1c809c68 10755 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
10756 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10757 && die->parent->tag != DW_TAG_module)
1c809c68
TT
10758 return 0;
10759 /* A variable in a lexical block of some kind does not need a
10760 namespace, even though in C++ such variables may be external
10761 and have a mangled name. */
10762 if (die->parent->tag == DW_TAG_lexical_block
10763 || die->parent->tag == DW_TAG_try_block
1054b214
TT
10764 || die->parent->tag == DW_TAG_catch_block
10765 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
10766 return 0;
10767 return 1;
94af9270
KS
10768
10769 default:
10770 return 0;
10771 }
10772}
10773
73b9be8b
KS
10774/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10775 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10776 defined for the given DIE. */
10777
10778static struct attribute *
10779dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10780{
10781 struct attribute *attr;
10782
10783 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10784 if (attr == NULL)
10785 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10786
10787 return attr;
10788}
10789
10790/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10791 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10792 defined for the given DIE. */
10793
10794static const char *
10795dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10796{
10797 const char *linkage_name;
10798
10799 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10800 if (linkage_name == NULL)
10801 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10802
10803 return linkage_name;
10804}
10805
94af9270 10806/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 10807 compute the physname for the object, which include a method's:
9c37b5ae 10808 - formal parameters (C++),
a766d390 10809 - receiver type (Go),
a766d390
DE
10810
10811 The term "physname" is a bit confusing.
10812 For C++, for example, it is the demangled name.
10813 For Go, for example, it's the mangled name.
94af9270 10814
af6b7be1
JB
10815 For Ada, return the DIE's linkage name rather than the fully qualified
10816 name. PHYSNAME is ignored..
10817
94af9270
KS
10818 The result is allocated on the objfile_obstack and canonicalized. */
10819
10820static const char *
15d034d0
TT
10821dwarf2_compute_name (const char *name,
10822 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
10823 int physname)
10824{
518817b3 10825 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
bb5ed363 10826
94af9270
KS
10827 if (name == NULL)
10828 name = dwarf2_name (die, cu);
10829
2ee7123e
DE
10830 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10831 but otherwise compute it by typename_concat inside GDB.
10832 FIXME: Actually this is not really true, or at least not always true.
10833 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
5e2db402 10834 Fortran names because there is no mangling standard. So new_symbol
2ee7123e
DE
10835 will set the demangled name to the result of dwarf2_full_name, and it is
10836 the demangled name that GDB uses if it exists. */
f55ee35c
JK
10837 if (cu->language == language_ada
10838 || (cu->language == language_fortran && physname))
10839 {
10840 /* For Ada unit, we prefer the linkage name over the name, as
10841 the former contains the exported name, which the user expects
10842 to be able to reference. Ideally, we want the user to be able
10843 to reference this entity using either natural or linkage name,
10844 but we haven't started looking at this enhancement yet. */
73b9be8b 10845 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 10846
2ee7123e
DE
10847 if (linkage_name != NULL)
10848 return linkage_name;
f55ee35c
JK
10849 }
10850
94af9270
KS
10851 /* These are the only languages we know how to qualify names in. */
10852 if (name != NULL
9c37b5ae 10853 && (cu->language == language_cplus
c44af4eb
TT
10854 || cu->language == language_fortran || cu->language == language_d
10855 || cu->language == language_rust))
94af9270
KS
10856 {
10857 if (die_needs_namespace (die, cu))
10858 {
0d5cff50 10859 const char *prefix;
34a68019 10860 const char *canonical_name = NULL;
94af9270 10861
d7e74731
PA
10862 string_file buf;
10863
94af9270 10864 prefix = determine_prefix (die, cu);
94af9270
KS
10865 if (*prefix != '\0')
10866 {
f55ee35c
JK
10867 char *prefixed_name = typename_concat (NULL, prefix, name,
10868 physname, cu);
9a619af0 10869
d7e74731 10870 buf.puts (prefixed_name);
94af9270
KS
10871 xfree (prefixed_name);
10872 }
10873 else
d7e74731 10874 buf.puts (name);
94af9270 10875
98bfdba5
PA
10876 /* Template parameters may be specified in the DIE's DW_AT_name, or
10877 as children with DW_TAG_template_type_param or
10878 DW_TAG_value_type_param. If the latter, add them to the name
10879 here. If the name already has template parameters, then
10880 skip this step; some versions of GCC emit both, and
10881 it is more efficient to use the pre-computed name.
10882
10883 Something to keep in mind about this process: it is very
10884 unlikely, or in some cases downright impossible, to produce
10885 something that will match the mangled name of a function.
10886 If the definition of the function has the same debug info,
10887 we should be able to match up with it anyway. But fallbacks
10888 using the minimal symbol, for instance to find a method
10889 implemented in a stripped copy of libstdc++, will not work.
10890 If we do not have debug info for the definition, we will have to
10891 match them up some other way.
10892
10893 When we do name matching there is a related problem with function
10894 templates; two instantiated function templates are allowed to
10895 differ only by their return types, which we do not add here. */
10896
10897 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10898 {
10899 struct attribute *attr;
10900 struct die_info *child;
10901 int first = 1;
10902
10903 die->building_fullname = 1;
10904
10905 for (child = die->child; child != NULL; child = child->sibling)
10906 {
10907 struct type *type;
12df843f 10908 LONGEST value;
d521ce57 10909 const gdb_byte *bytes;
98bfdba5
PA
10910 struct dwarf2_locexpr_baton *baton;
10911 struct value *v;
10912
10913 if (child->tag != DW_TAG_template_type_param
10914 && child->tag != DW_TAG_template_value_param)
10915 continue;
10916
10917 if (first)
10918 {
d7e74731 10919 buf.puts ("<");
98bfdba5
PA
10920 first = 0;
10921 }
10922 else
d7e74731 10923 buf.puts (", ");
98bfdba5
PA
10924
10925 attr = dwarf2_attr (child, DW_AT_type, cu);
10926 if (attr == NULL)
10927 {
b98664d3 10928 complaint (_("template parameter missing DW_AT_type"));
d7e74731 10929 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
10930 continue;
10931 }
10932 type = die_type (child, cu);
10933
10934 if (child->tag == DW_TAG_template_type_param)
10935 {
c1ec8cea
TT
10936 c_print_type (type, "", &buf, -1, 0, cu->language,
10937 &type_print_raw_options);
98bfdba5
PA
10938 continue;
10939 }
10940
10941 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10942 if (attr == NULL)
10943 {
b98664d3 10944 complaint (_("template parameter missing "
3e43a32a 10945 "DW_AT_const_value"));
d7e74731 10946 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
10947 continue;
10948 }
10949
10950 dwarf2_const_value_attr (attr, type, name,
10951 &cu->comp_unit_obstack, cu,
10952 &value, &bytes, &baton);
10953
10954 if (TYPE_NOSIGN (type))
10955 /* GDB prints characters as NUMBER 'CHAR'. If that's
10956 changed, this can use value_print instead. */
d7e74731 10957 c_printchar (value, type, &buf);
98bfdba5
PA
10958 else
10959 {
10960 struct value_print_options opts;
10961
10962 if (baton != NULL)
10963 v = dwarf2_evaluate_loc_desc (type, NULL,
10964 baton->data,
10965 baton->size,
10966 baton->per_cu);
10967 else if (bytes != NULL)
10968 {
10969 v = allocate_value (type);
10970 memcpy (value_contents_writeable (v), bytes,
10971 TYPE_LENGTH (type));
10972 }
10973 else
10974 v = value_from_longest (type, value);
10975
3e43a32a
MS
10976 /* Specify decimal so that we do not depend on
10977 the radix. */
98bfdba5
PA
10978 get_formatted_print_options (&opts, 'd');
10979 opts.raw = 1;
d7e74731 10980 value_print (v, &buf, &opts);
98bfdba5 10981 release_value (v);
98bfdba5
PA
10982 }
10983 }
10984
10985 die->building_fullname = 0;
10986
10987 if (!first)
10988 {
10989 /* Close the argument list, with a space if necessary
10990 (nested templates). */
d7e74731
PA
10991 if (!buf.empty () && buf.string ().back () == '>')
10992 buf.puts (" >");
98bfdba5 10993 else
d7e74731 10994 buf.puts (">");
98bfdba5
PA
10995 }
10996 }
10997
9c37b5ae 10998 /* For C++ methods, append formal parameter type
94af9270 10999 information, if PHYSNAME. */
6e70227d 11000
94af9270 11001 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 11002 && cu->language == language_cplus)
94af9270
KS
11003 {
11004 struct type *type = read_type_die (die, cu);
11005
d7e74731 11006 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 11007 &type_print_raw_options);
94af9270 11008
9c37b5ae 11009 if (cu->language == language_cplus)
94af9270 11010 {
60430eff
DJ
11011 /* Assume that an artificial first parameter is
11012 "this", but do not crash if it is not. RealView
11013 marks unnamed (and thus unused) parameters as
11014 artificial; there is no way to differentiate
11015 the two cases. */
94af9270
KS
11016 if (TYPE_NFIELDS (type) > 0
11017 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 11018 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
11019 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11020 0))))
d7e74731 11021 buf.puts (" const");
94af9270
KS
11022 }
11023 }
11024
d7e74731 11025 const std::string &intermediate_name = buf.string ();
94af9270
KS
11026
11027 if (cu->language == language_cplus)
34a68019 11028 canonical_name
322a8516 11029 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
11030 &objfile->per_bfd->storage_obstack);
11031
11032 /* If we only computed INTERMEDIATE_NAME, or if
11033 INTERMEDIATE_NAME is already canonical, then we need to
11034 copy it to the appropriate obstack. */
322a8516 11035 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
efba19b0
TT
11036 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11037 intermediate_name);
34a68019
TT
11038 else
11039 name = canonical_name;
94af9270
KS
11040 }
11041 }
11042
11043 return name;
11044}
11045
0114d602
DJ
11046/* Return the fully qualified name of DIE, based on its DW_AT_name.
11047 If scope qualifiers are appropriate they will be added. The result
34a68019 11048 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
11049 not have a name. NAME may either be from a previous call to
11050 dwarf2_name or NULL.
11051
9c37b5ae 11052 The output string will be canonicalized (if C++). */
0114d602
DJ
11053
11054static const char *
15d034d0 11055dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 11056{
94af9270
KS
11057 return dwarf2_compute_name (name, die, cu, 0);
11058}
0114d602 11059
94af9270
KS
11060/* Construct a physname for the given DIE in CU. NAME may either be
11061 from a previous call to dwarf2_name or NULL. The result will be
11062 allocated on the objfile_objstack or NULL if the DIE does not have a
11063 name.
0114d602 11064
9c37b5ae 11065 The output string will be canonicalized (if C++). */
0114d602 11066
94af9270 11067static const char *
15d034d0 11068dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 11069{
518817b3 11070 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
900e11f9 11071 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
11072 int need_copy = 1;
11073
11074 /* In this case dwarf2_compute_name is just a shortcut not building anything
11075 on its own. */
11076 if (!die_needs_namespace (die, cu))
11077 return dwarf2_compute_name (name, die, cu, 1);
11078
73b9be8b 11079 mangled = dw2_linkage_name (die, cu);
900e11f9 11080
e98c9e7c
TT
11081 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11082 See https://github.com/rust-lang/rust/issues/32925. */
11083 if (cu->language == language_rust && mangled != NULL
11084 && strchr (mangled, '{') != NULL)
11085 mangled = NULL;
11086
900e11f9
JK
11087 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11088 has computed. */
791afaa2 11089 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 11090 if (mangled != NULL)
900e11f9 11091 {
900e11f9 11092
59cc4834
JB
11093 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11094 {
11095 /* Do nothing (do not demangle the symbol name). */
11096 }
11097 else if (cu->language == language_go)
a766d390 11098 {
5e2db402
TT
11099 /* This is a lie, but we already lie to the caller new_symbol.
11100 new_symbol assumes we return the mangled name.
a766d390 11101 This just undoes that lie until things are cleaned up. */
a766d390
DE
11102 }
11103 else
11104 {
0eb876f5
JB
11105 /* Use DMGL_RET_DROP for C++ template functions to suppress
11106 their return type. It is easier for GDB users to search
11107 for such functions as `name(params)' than `long name(params)'.
11108 In such case the minimal symbol names do not match the full
11109 symbol names but for template functions there is never a need
11110 to look up their definition from their declaration so
11111 the only disadvantage remains the minimal symbol variant
11112 `long name(params)' does not have the proper inferior type. */
791afaa2
TT
11113 demangled.reset (gdb_demangle (mangled,
11114 (DMGL_PARAMS | DMGL_ANSI
11115 | DMGL_RET_DROP)));
a766d390 11116 }
900e11f9 11117 if (demangled)
791afaa2 11118 canon = demangled.get ();
900e11f9
JK
11119 else
11120 {
11121 canon = mangled;
11122 need_copy = 0;
11123 }
11124 }
11125
11126 if (canon == NULL || check_physname)
11127 {
11128 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11129
11130 if (canon != NULL && strcmp (physname, canon) != 0)
11131 {
11132 /* It may not mean a bug in GDB. The compiler could also
11133 compute DW_AT_linkage_name incorrectly. But in such case
11134 GDB would need to be bug-to-bug compatible. */
11135
b98664d3 11136 complaint (_("Computed physname <%s> does not match demangled <%s> "
9d8780f0
SM
11137 "(from linkage <%s>) - DIE at %s [in module %s]"),
11138 physname, canon, mangled, sect_offset_str (die->sect_off),
4262abfb 11139 objfile_name (objfile));
900e11f9
JK
11140
11141 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11142 is available here - over computed PHYSNAME. It is safer
11143 against both buggy GDB and buggy compilers. */
11144
11145 retval = canon;
11146 }
11147 else
11148 {
11149 retval = physname;
11150 need_copy = 0;
11151 }
11152 }
11153 else
11154 retval = canon;
11155
11156 if (need_copy)
021887d8 11157 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
900e11f9 11158
900e11f9 11159 return retval;
0114d602
DJ
11160}
11161
74921315
KS
11162/* Inspect DIE in CU for a namespace alias. If one exists, record
11163 a new symbol for it.
11164
11165 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11166
11167static int
11168read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11169{
11170 struct attribute *attr;
11171
11172 /* If the die does not have a name, this is not a namespace
11173 alias. */
11174 attr = dwarf2_attr (die, DW_AT_name, cu);
11175 if (attr != NULL)
11176 {
11177 int num;
11178 struct die_info *d = die;
11179 struct dwarf2_cu *imported_cu = cu;
11180
11181 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11182 keep inspecting DIEs until we hit the underlying import. */
11183#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11184 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11185 {
11186 attr = dwarf2_attr (d, DW_AT_import, cu);
11187 if (attr == NULL)
11188 break;
11189
11190 d = follow_die_ref (d, attr, &imported_cu);
11191 if (d->tag != DW_TAG_imported_declaration)
11192 break;
11193 }
11194
11195 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11196 {
b98664d3 11197 complaint (_("DIE at %s has too many recursively imported "
9d8780f0 11198 "declarations"), sect_offset_str (d->sect_off));
74921315
KS
11199 return 0;
11200 }
11201
11202 if (attr != NULL)
11203 {
11204 struct type *type;
9c541725 11205 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 11206
9c541725 11207 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
11208 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11209 {
11210 /* This declaration is a global namespace alias. Add
11211 a symbol for it whose type is the aliased namespace. */
11212 new_symbol (die, type, cu);
11213 return 1;
11214 }
11215 }
11216 }
11217
11218 return 0;
11219}
11220
22cee43f 11221/* Return the using directives repository (global or local?) to use in the
804d2729 11222 current context for CU.
22cee43f
PMR
11223
11224 For Ada, imported declarations can materialize renamings, which *may* be
11225 global. However it is impossible (for now?) in DWARF to distinguish
11226 "external" imported declarations and "static" ones. As all imported
11227 declarations seem to be static in all other languages, make them all CU-wide
11228 global only in Ada. */
11229
11230static struct using_direct **
804d2729 11231using_directives (struct dwarf2_cu *cu)
22cee43f 11232{
c24bdb02
KS
11233 if (cu->language == language_ada
11234 && cu->get_builder ()->outermost_context_p ())
11235 return cu->get_builder ()->get_global_using_directives ();
22cee43f 11236 else
c24bdb02 11237 return cu->get_builder ()->get_local_using_directives ();
22cee43f
PMR
11238}
11239
27aa8d6a
SW
11240/* Read the import statement specified by the given die and record it. */
11241
11242static void
11243read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11244{
518817b3 11245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
27aa8d6a 11246 struct attribute *import_attr;
32019081 11247 struct die_info *imported_die, *child_die;
de4affc9 11248 struct dwarf2_cu *imported_cu;
27aa8d6a 11249 const char *imported_name;
794684b6 11250 const char *imported_name_prefix;
13387711
SW
11251 const char *canonical_name;
11252 const char *import_alias;
11253 const char *imported_declaration = NULL;
794684b6 11254 const char *import_prefix;
eb1e02fd 11255 std::vector<const char *> excludes;
13387711 11256
27aa8d6a
SW
11257 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11258 if (import_attr == NULL)
11259 {
b98664d3 11260 complaint (_("Tag '%s' has no DW_AT_import"),
27aa8d6a
SW
11261 dwarf_tag_name (die->tag));
11262 return;
11263 }
11264
de4affc9
CC
11265 imported_cu = cu;
11266 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11267 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
11268 if (imported_name == NULL)
11269 {
11270 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11271
11272 The import in the following code:
11273 namespace A
11274 {
11275 typedef int B;
11276 }
11277
11278 int main ()
11279 {
11280 using A::B;
11281 B b;
11282 return b;
11283 }
11284
11285 ...
11286 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11287 <52> DW_AT_decl_file : 1
11288 <53> DW_AT_decl_line : 6
11289 <54> DW_AT_import : <0x75>
11290 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11291 <59> DW_AT_name : B
11292 <5b> DW_AT_decl_file : 1
11293 <5c> DW_AT_decl_line : 2
11294 <5d> DW_AT_type : <0x6e>
11295 ...
11296 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11297 <76> DW_AT_byte_size : 4
11298 <77> DW_AT_encoding : 5 (signed)
11299
11300 imports the wrong die ( 0x75 instead of 0x58 ).
11301 This case will be ignored until the gcc bug is fixed. */
11302 return;
11303 }
11304
82856980
SW
11305 /* Figure out the local name after import. */
11306 import_alias = dwarf2_name (die, cu);
27aa8d6a 11307
794684b6
SW
11308 /* Figure out where the statement is being imported to. */
11309 import_prefix = determine_prefix (die, cu);
11310
11311 /* Figure out what the scope of the imported die is and prepend it
11312 to the name of the imported die. */
de4affc9 11313 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 11314
f55ee35c
JK
11315 if (imported_die->tag != DW_TAG_namespace
11316 && imported_die->tag != DW_TAG_module)
794684b6 11317 {
13387711
SW
11318 imported_declaration = imported_name;
11319 canonical_name = imported_name_prefix;
794684b6 11320 }
13387711 11321 else if (strlen (imported_name_prefix) > 0)
12aaed36 11322 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
11323 imported_name_prefix,
11324 (cu->language == language_d ? "." : "::"),
11325 imported_name, (char *) NULL);
13387711
SW
11326 else
11327 canonical_name = imported_name;
794684b6 11328
32019081
JK
11329 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11330 for (child_die = die->child; child_die && child_die->tag;
11331 child_die = sibling_die (child_die))
11332 {
11333 /* DWARF-4: A Fortran use statement with a “rename list” may be
11334 represented by an imported module entry with an import attribute
11335 referring to the module and owned entries corresponding to those
11336 entities that are renamed as part of being imported. */
11337
11338 if (child_die->tag != DW_TAG_imported_declaration)
11339 {
b98664d3 11340 complaint (_("child DW_TAG_imported_declaration expected "
9d8780f0
SM
11341 "- DIE at %s [in module %s]"),
11342 sect_offset_str (child_die->sect_off),
11343 objfile_name (objfile));
32019081
JK
11344 continue;
11345 }
11346
11347 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11348 if (import_attr == NULL)
11349 {
b98664d3 11350 complaint (_("Tag '%s' has no DW_AT_import"),
32019081
JK
11351 dwarf_tag_name (child_die->tag));
11352 continue;
11353 }
11354
11355 imported_cu = cu;
11356 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11357 &imported_cu);
11358 imported_name = dwarf2_name (imported_die, imported_cu);
11359 if (imported_name == NULL)
11360 {
b98664d3 11361 complaint (_("child DW_TAG_imported_declaration has unknown "
9d8780f0
SM
11362 "imported name - DIE at %s [in module %s]"),
11363 sect_offset_str (child_die->sect_off),
11364 objfile_name (objfile));
32019081
JK
11365 continue;
11366 }
11367
eb1e02fd 11368 excludes.push_back (imported_name);
32019081
JK
11369
11370 process_die (child_die, cu);
11371 }
11372
804d2729 11373 add_using_directive (using_directives (cu),
22cee43f
PMR
11374 import_prefix,
11375 canonical_name,
11376 import_alias,
11377 imported_declaration,
11378 excludes,
11379 0,
11380 &objfile->objfile_obstack);
27aa8d6a
SW
11381}
11382
5230b05a
WT
11383/* ICC<14 does not output the required DW_AT_declaration on incomplete
11384 types, but gives them a size of zero. Starting with version 14,
11385 ICC is compatible with GCC. */
11386
9068261f 11387static bool
5230b05a
WT
11388producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11389{
11390 if (!cu->checked_producer)
11391 check_producer (cu);
11392
11393 return cu->producer_is_icc_lt_14;
11394}
11395
eb77c9df
AB
11396/* ICC generates a DW_AT_type for C void functions. This was observed on
11397 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11398 which says that void functions should not have a DW_AT_type. */
11399
11400static bool
11401producer_is_icc (struct dwarf2_cu *cu)
11402{
11403 if (!cu->checked_producer)
11404 check_producer (cu);
11405
11406 return cu->producer_is_icc;
11407}
11408
1b80a9fa
JK
11409/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11410 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11411 this, it was first present in GCC release 4.3.0. */
11412
9068261f 11413static bool
1b80a9fa
JK
11414producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11415{
11416 if (!cu->checked_producer)
11417 check_producer (cu);
11418
11419 return cu->producer_is_gcc_lt_4_3;
11420}
11421
d721ba37
PA
11422static file_and_directory
11423find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 11424{
d721ba37
PA
11425 file_and_directory res;
11426
9291a0cd
TT
11427 /* Find the filename. Do not use dwarf2_name here, since the filename
11428 is not a source language identifier. */
d721ba37
PA
11429 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11430 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 11431
d721ba37
PA
11432 if (res.comp_dir == NULL
11433 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11434 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 11435 {
d721ba37
PA
11436 res.comp_dir_storage = ldirname (res.name);
11437 if (!res.comp_dir_storage.empty ())
11438 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 11439 }
d721ba37 11440 if (res.comp_dir != NULL)
9291a0cd
TT
11441 {
11442 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11443 directory, get rid of it. */
d721ba37 11444 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 11445
d721ba37
PA
11446 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11447 res.comp_dir = cp + 1;
9291a0cd
TT
11448 }
11449
d721ba37
PA
11450 if (res.name == NULL)
11451 res.name = "<unknown>";
11452
11453 return res;
9291a0cd
TT
11454}
11455
f4dc4d17
DE
11456/* Handle DW_AT_stmt_list for a compilation unit.
11457 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
11458 COMP_DIR is the compilation directory. LOWPC is passed to
11459 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
11460
11461static void
11462handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 11463 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 11464{
518817b3
SM
11465 struct dwarf2_per_objfile *dwarf2_per_objfile
11466 = cu->per_cu->dwarf2_per_objfile;
527f3840 11467 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 11468 struct attribute *attr;
527f3840
JK
11469 struct line_header line_header_local;
11470 hashval_t line_header_local_hash;
527f3840
JK
11471 void **slot;
11472 int decode_mapping;
2ab95328 11473
f4dc4d17
DE
11474 gdb_assert (! cu->per_cu->is_debug_types);
11475
2ab95328 11476 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
11477 if (attr == NULL)
11478 return;
11479
9c541725 11480 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
11481
11482 /* The line header hash table is only created if needed (it exists to
11483 prevent redundant reading of the line table for partial_units).
11484 If we're given a partial_unit, we'll need it. If we're given a
11485 compile_unit, then use the line header hash table if it's already
11486 created, but don't create one just yet. */
11487
11488 if (dwarf2_per_objfile->line_header_hash == NULL
11489 && die->tag == DW_TAG_partial_unit)
2ab95328 11490 {
527f3840
JK
11491 dwarf2_per_objfile->line_header_hash
11492 = htab_create_alloc_ex (127, line_header_hash_voidp,
11493 line_header_eq_voidp,
11494 free_line_header_voidp,
11495 &objfile->objfile_obstack,
11496 hashtab_obstack_allocate,
11497 dummy_obstack_deallocate);
11498 }
2ab95328 11499
9c541725 11500 line_header_local.sect_off = line_offset;
527f3840
JK
11501 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11502 line_header_local_hash = line_header_hash (&line_header_local);
11503 if (dwarf2_per_objfile->line_header_hash != NULL)
11504 {
11505 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11506 &line_header_local,
11507 line_header_local_hash, NO_INSERT);
11508
11509 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11510 is not present in *SLOT (since if there is something in *SLOT then
11511 it will be for a partial_unit). */
11512 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 11513 {
527f3840 11514 gdb_assert (*slot != NULL);
9a3c8263 11515 cu->line_header = (struct line_header *) *slot;
527f3840 11516 return;
dee91e82 11517 }
2ab95328 11518 }
527f3840
JK
11519
11520 /* dwarf_decode_line_header does not yet provide sufficient information.
11521 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
11522 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11523 if (lh == NULL)
527f3840 11524 return;
4c8aa72d
PA
11525
11526 cu->line_header = lh.release ();
11527 cu->line_header_die_owner = die;
527f3840
JK
11528
11529 if (dwarf2_per_objfile->line_header_hash == NULL)
11530 slot = NULL;
11531 else
11532 {
11533 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11534 &line_header_local,
11535 line_header_local_hash, INSERT);
11536 gdb_assert (slot != NULL);
11537 }
11538 if (slot != NULL && *slot == NULL)
11539 {
11540 /* This newly decoded line number information unit will be owned
11541 by line_header_hash hash table. */
11542 *slot = cu->line_header;
4c8aa72d 11543 cu->line_header_die_owner = NULL;
527f3840
JK
11544 }
11545 else
11546 {
11547 /* We cannot free any current entry in (*slot) as that struct line_header
11548 may be already used by multiple CUs. Create only temporary decoded
11549 line_header for this CU - it may happen at most once for each line
11550 number information unit. And if we're not using line_header_hash
11551 then this is what we want as well. */
11552 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
11553 }
11554 decode_mapping = (die->tag != DW_TAG_partial_unit);
11555 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11556 decode_mapping);
fff8551c 11557
2ab95328
TT
11558}
11559
95554aad 11560/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 11561
c906108c 11562static void
e7c27a73 11563read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11564{
518817b3
SM
11565 struct dwarf2_per_objfile *dwarf2_per_objfile
11566 = cu->per_cu->dwarf2_per_objfile;
dee91e82 11567 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 11568 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 11569 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
11570 CORE_ADDR highpc = ((CORE_ADDR) 0);
11571 struct attribute *attr;
c906108c 11572 struct die_info *child_die;
e142c38c 11573 CORE_ADDR baseaddr;
6e70227d 11574
380618d6 11575 prepare_one_comp_unit (cu, die, cu->language);
e142c38c 11576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11577
fae299cd 11578 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
11579
11580 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11581 from finish_block. */
2acceee2 11582 if (lowpc == ((CORE_ADDR) -1))
c906108c 11583 lowpc = highpc;
3e29f34a 11584 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 11585
d721ba37 11586 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 11587
f4b8a18d
KW
11588 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11589 standardised yet. As a workaround for the language detection we fall
11590 back to the DW_AT_producer string. */
11591 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11592 cu->language = language_opencl;
11593
3019eac3
DE
11594 /* Similar hack for Go. */
11595 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11596 set_cu_language (DW_LANG_Go, cu);
11597
c24bdb02 11598 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
11599
11600 /* Decode line number information if present. We do this before
11601 processing child DIEs, so that the line header table is available
11602 for DW_AT_decl_file. */
d721ba37 11603 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
11604
11605 /* Process all dies in compilation unit. */
11606 if (die->child != NULL)
11607 {
11608 child_die = die->child;
11609 while (child_die && child_die->tag)
11610 {
11611 process_die (child_die, cu);
11612 child_die = sibling_die (child_die);
11613 }
11614 }
11615
11616 /* Decode macro information, if present. Dwarf 2 macro information
11617 refers to information in the line number info statement program
11618 header, so we can only read it if we've read the header
11619 successfully. */
0af92d60
JK
11620 attr = dwarf2_attr (die, DW_AT_macros, cu);
11621 if (attr == NULL)
11622 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
11623 if (attr && cu->line_header)
11624 {
11625 if (dwarf2_attr (die, DW_AT_macro_info, cu))
b98664d3 11626 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 11627
43f3e411 11628 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
11629 }
11630 else
11631 {
11632 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11633 if (attr && cu->line_header)
11634 {
11635 unsigned int macro_offset = DW_UNSND (attr);
11636
43f3e411 11637 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
11638 }
11639 }
3019eac3
DE
11640}
11641
c24bdb02
KS
11642void
11643dwarf2_cu::setup_type_unit_groups (struct die_info *die)
3019eac3 11644{
f4dc4d17
DE
11645 struct type_unit_group *tu_group;
11646 int first_time;
3019eac3 11647 struct attribute *attr;
9c541725 11648 unsigned int i;
0186c6a7 11649 struct signatured_type *sig_type;
3019eac3 11650
f4dc4d17 11651 gdb_assert (per_cu->is_debug_types);
0186c6a7 11652 sig_type = (struct signatured_type *) per_cu;
3019eac3 11653
c24bdb02 11654 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
3019eac3 11655
f4dc4d17 11656 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 11657 per_cu->type_unit_group may not have been set up yet. */
0186c6a7 11658 if (sig_type->type_unit_group == NULL)
c24bdb02 11659 sig_type->type_unit_group = get_type_unit_group (this, attr);
0186c6a7 11660 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
11661
11662 /* If we've already processed this stmt_list there's no real need to
11663 do it again, we could fake it and just recreate the part we need
11664 (file name,index -> symtab mapping). If data shows this optimization
11665 is useful we can do it then. */
43f3e411 11666 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
11667
11668 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11669 debug info. */
fff8551c 11670 line_header_up lh;
f4dc4d17 11671 if (attr != NULL)
3019eac3 11672 {
9c541725 11673 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
c24bdb02 11674 lh = dwarf_decode_line_header (line_offset, this);
f4dc4d17
DE
11675 }
11676 if (lh == NULL)
11677 {
11678 if (first_time)
c24bdb02 11679 start_symtab ("", NULL, 0);
f4dc4d17
DE
11680 else
11681 {
11682 gdb_assert (tu_group->symtabs == NULL);
c24bdb02 11683 gdb_assert (m_builder == nullptr);
804d2729 11684 struct compunit_symtab *cust = tu_group->compunit_symtab;
c24bdb02
KS
11685 m_builder.reset (new struct buildsym_compunit
11686 (COMPUNIT_OBJFILE (cust), "",
11687 COMPUNIT_DIRNAME (cust),
11688 compunit_language (cust),
11689 0, cust));
f4dc4d17 11690 }
f4dc4d17 11691 return;
3019eac3
DE
11692 }
11693
c24bdb02
KS
11694 line_header = lh.release ();
11695 line_header_die_owner = die;
3019eac3 11696
f4dc4d17
DE
11697 if (first_time)
11698 {
c24bdb02 11699 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
3019eac3 11700
1fd60fc0
DE
11701 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11702 still initializing it, and our caller (a few levels up)
11703 process_full_type_unit still needs to know if this is the first
11704 time. */
11705
c24bdb02 11706 tu_group->num_symtabs = line_header->file_names.size ();
4c8aa72d 11707 tu_group->symtabs = XNEWVEC (struct symtab *,
c24bdb02 11708 line_header->file_names.size ());
3019eac3 11709
c24bdb02 11710 for (i = 0; i < line_header->file_names.size (); ++i)
f4dc4d17 11711 {
c24bdb02 11712 file_entry &fe = line_header->file_names[i];
3019eac3 11713
c24bdb02
KS
11714 dwarf2_start_subfile (this, fe.name,
11715 fe.include_dir (line_header));
11716 buildsym_compunit *b = get_builder ();
11717 if (b->get_current_subfile ()->symtab == NULL)
f4dc4d17 11718 {
4c8aa72d
PA
11719 /* NOTE: start_subfile will recognize when it's been
11720 passed a file it has already seen. So we can't
11721 assume there's a simple mapping from
11722 cu->line_header->file_names to subfiles, plus
11723 cu->line_header->file_names may contain dups. */
c24bdb02
KS
11724 b->get_current_subfile ()->symtab
11725 = allocate_symtab (cust, b->get_current_subfile ()->name);
f4dc4d17
DE
11726 }
11727
c24bdb02 11728 fe.symtab = b->get_current_subfile ()->symtab;
8c43009f 11729 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
11730 }
11731 }
11732 else
3019eac3 11733 {
c24bdb02 11734 gdb_assert (m_builder == nullptr);
804d2729 11735 struct compunit_symtab *cust = tu_group->compunit_symtab;
c24bdb02
KS
11736 m_builder.reset (new struct buildsym_compunit
11737 (COMPUNIT_OBJFILE (cust), "",
11738 COMPUNIT_DIRNAME (cust),
11739 compunit_language (cust),
11740 0, cust));
f4dc4d17 11741
c24bdb02 11742 for (i = 0; i < line_header->file_names.size (); ++i)
f4dc4d17 11743 {
c24bdb02 11744 file_entry &fe = line_header->file_names[i];
f4dc4d17 11745
4c8aa72d 11746 fe.symtab = tu_group->symtabs[i];
f4dc4d17 11747 }
3019eac3
DE
11748 }
11749
f4dc4d17
DE
11750 /* The main symtab is allocated last. Type units don't have DW_AT_name
11751 so they don't have a "real" (so to speak) symtab anyway.
11752 There is later code that will assign the main symtab to all symbols
11753 that don't have one. We need to handle the case of a symbol with a
11754 missing symtab (DW_AT_decl_file) anyway. */
11755}
3019eac3 11756
f4dc4d17
DE
11757/* Process DW_TAG_type_unit.
11758 For TUs we want to skip the first top level sibling if it's not the
11759 actual type being defined by this TU. In this case the first top
11760 level sibling is there to provide context only. */
3019eac3 11761
f4dc4d17
DE
11762static void
11763read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11764{
11765 struct die_info *child_die;
3019eac3 11766
f4dc4d17
DE
11767 prepare_one_comp_unit (cu, die, language_minimal);
11768
11769 /* Initialize (or reinitialize) the machinery for building symtabs.
11770 We do this before processing child DIEs, so that the line header table
11771 is available for DW_AT_decl_file. */
c24bdb02 11772 cu->setup_type_unit_groups (die);
f4dc4d17
DE
11773
11774 if (die->child != NULL)
11775 {
11776 child_die = die->child;
11777 while (child_die && child_die->tag)
11778 {
11779 process_die (child_die, cu);
11780 child_die = sibling_die (child_die);
11781 }
11782 }
3019eac3
DE
11783}
11784\f
80626a55
DE
11785/* DWO/DWP files.
11786
11787 http://gcc.gnu.org/wiki/DebugFission
11788 http://gcc.gnu.org/wiki/DebugFissionDWP
11789
11790 To simplify handling of both DWO files ("object" files with the DWARF info)
11791 and DWP files (a file with the DWOs packaged up into one file), we treat
11792 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
11793
11794static hashval_t
11795hash_dwo_file (const void *item)
11796{
9a3c8263 11797 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 11798 hashval_t hash;
3019eac3 11799
a2ce51a0
DE
11800 hash = htab_hash_string (dwo_file->dwo_name);
11801 if (dwo_file->comp_dir != NULL)
11802 hash += htab_hash_string (dwo_file->comp_dir);
11803 return hash;
3019eac3
DE
11804}
11805
11806static int
11807eq_dwo_file (const void *item_lhs, const void *item_rhs)
11808{
9a3c8263
SM
11809 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11810 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 11811
a2ce51a0
DE
11812 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11813 return 0;
11814 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11815 return lhs->comp_dir == rhs->comp_dir;
11816 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
11817}
11818
11819/* Allocate a hash table for DWO files. */
11820
51ac9db5 11821static htab_up
ed2dc618 11822allocate_dwo_file_hash_table (struct objfile *objfile)
3019eac3 11823{
51ac9db5
SM
11824 auto delete_dwo_file = [] (void *item)
11825 {
11826 struct dwo_file *dwo_file = (struct dwo_file *) item;
11827
11828 delete dwo_file;
11829 };
11830
11831 return htab_up (htab_create_alloc_ex (41,
11832 hash_dwo_file,
11833 eq_dwo_file,
11834 delete_dwo_file,
11835 &objfile->objfile_obstack,
11836 hashtab_obstack_allocate,
11837 dummy_obstack_deallocate));
3019eac3
DE
11838}
11839
80626a55
DE
11840/* Lookup DWO file DWO_NAME. */
11841
11842static void **
ed2dc618
SM
11843lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11844 const char *dwo_name,
11845 const char *comp_dir)
80626a55
DE
11846{
11847 struct dwo_file find_entry;
11848 void **slot;
11849
11850 if (dwarf2_per_objfile->dwo_files == NULL)
ed2dc618
SM
11851 dwarf2_per_objfile->dwo_files
11852 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
80626a55 11853
0ac5b59e
DE
11854 find_entry.dwo_name = dwo_name;
11855 find_entry.comp_dir = comp_dir;
51ac9db5
SM
11856 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11857 INSERT);
80626a55
DE
11858
11859 return slot;
11860}
11861
3019eac3
DE
11862static hashval_t
11863hash_dwo_unit (const void *item)
11864{
9a3c8263 11865 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
11866
11867 /* This drops the top 32 bits of the id, but is ok for a hash. */
11868 return dwo_unit->signature;
11869}
11870
11871static int
11872eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11873{
9a3c8263
SM
11874 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11875 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
11876
11877 /* The signature is assumed to be unique within the DWO file.
11878 So while object file CU dwo_id's always have the value zero,
11879 that's OK, assuming each object file DWO file has only one CU,
11880 and that's the rule for now. */
11881 return lhs->signature == rhs->signature;
11882}
11883
11884/* Allocate a hash table for DWO CUs,TUs.
11885 There is one of these tables for each of CUs,TUs for each DWO file. */
11886
11887static htab_t
11888allocate_dwo_unit_table (struct objfile *objfile)
11889{
11890 /* Start out with a pretty small number.
11891 Generally DWO files contain only one CU and maybe some TUs. */
11892 return htab_create_alloc_ex (3,
11893 hash_dwo_unit,
11894 eq_dwo_unit,
11895 NULL,
11896 &objfile->objfile_obstack,
11897 hashtab_obstack_allocate,
11898 dummy_obstack_deallocate);
11899}
11900
80626a55 11901/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 11902
19c3d4c9 11903struct create_dwo_cu_data
3019eac3
DE
11904{
11905 struct dwo_file *dwo_file;
19c3d4c9 11906 struct dwo_unit dwo_unit;
3019eac3
DE
11907};
11908
19c3d4c9 11909/* die_reader_func for create_dwo_cu. */
3019eac3
DE
11910
11911static void
19c3d4c9
DE
11912create_dwo_cu_reader (const struct die_reader_specs *reader,
11913 const gdb_byte *info_ptr,
11914 struct die_info *comp_unit_die,
11915 int has_children,
11916 void *datap)
3019eac3
DE
11917{
11918 struct dwarf2_cu *cu = reader->cu;
9c541725 11919 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 11920 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 11921 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 11922 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 11923 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 11924
a084a2a6
AT
11925 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11926 if (!signature.has_value ())
3019eac3 11927 {
b98664d3 11928 complaint (_("Dwarf Error: debug entry at offset %s is missing"
19c3d4c9 11929 " its dwo_id [in module %s]"),
9d8780f0 11930 sect_offset_str (sect_off), dwo_file->dwo_name);
3019eac3
DE
11931 return;
11932 }
11933
3019eac3 11934 dwo_unit->dwo_file = dwo_file;
a084a2a6 11935 dwo_unit->signature = *signature;
8a0459fd 11936 dwo_unit->section = section;
9c541725 11937 dwo_unit->sect_off = sect_off;
3019eac3
DE
11938 dwo_unit->length = cu->per_cu->length;
11939
b4f54984 11940 if (dwarf_read_debug)
9d8780f0
SM
11941 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11942 sect_offset_str (sect_off),
9c541725 11943 hex_string (dwo_unit->signature));
3019eac3
DE
11944}
11945
33c5cd75 11946/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 11947 Note: This function processes DWO files only, not DWP files. */
3019eac3 11948
33c5cd75 11949static void
ed2dc618
SM
11950create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11951 struct dwo_file &dwo_file, dwarf2_section_info &section,
33c5cd75 11952 htab_t &cus_htab)
3019eac3
DE
11953{
11954 struct objfile *objfile = dwarf2_per_objfile->objfile;
d521ce57 11955 const gdb_byte *info_ptr, *end_ptr;
3019eac3 11956
33c5cd75
DB
11957 dwarf2_read_section (objfile, &section);
11958 info_ptr = section.buffer;
3019eac3
DE
11959
11960 if (info_ptr == NULL)
33c5cd75 11961 return;
3019eac3 11962
b4f54984 11963 if (dwarf_read_debug)
19c3d4c9
DE
11964 {
11965 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
11966 get_section_name (&section),
11967 get_section_file_name (&section));
19c3d4c9 11968 }
3019eac3 11969
33c5cd75 11970 end_ptr = info_ptr + section.size;
3019eac3
DE
11971 while (info_ptr < end_ptr)
11972 {
11973 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
11974 struct create_dwo_cu_data create_dwo_cu_data;
11975 struct dwo_unit *dwo_unit;
11976 void **slot;
11977 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 11978
19c3d4c9
DE
11979 memset (&create_dwo_cu_data.dwo_unit, 0,
11980 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3 11981 memset (&per_cu, 0, sizeof (per_cu));
e3b94546 11982 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3019eac3 11983 per_cu.is_debug_types = 0;
33c5cd75
DB
11984 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11985 per_cu.section = &section;
c5ed0576 11986 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
11987
11988 init_cutu_and_read_dies_no_follow (
11989 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11990 info_ptr += per_cu.length;
11991
11992 // If the unit could not be parsed, skip it.
11993 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11994 continue;
3019eac3 11995
33c5cd75
DB
11996 if (cus_htab == NULL)
11997 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 11998
33c5cd75
DB
11999 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12000 *dwo_unit = create_dwo_cu_data.dwo_unit;
12001 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12002 gdb_assert (slot != NULL);
12003 if (*slot != NULL)
19c3d4c9 12004 {
33c5cd75
DB
12005 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12006 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 12007
b98664d3 12008 complaint (_("debug cu entry at offset %s is duplicate to"
9d8780f0
SM
12009 " the entry at offset %s, signature %s"),
12010 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
33c5cd75 12011 hex_string (dwo_unit->signature));
19c3d4c9 12012 }
33c5cd75 12013 *slot = (void *)dwo_unit;
3019eac3 12014 }
3019eac3
DE
12015}
12016
80626a55
DE
12017/* DWP file .debug_{cu,tu}_index section format:
12018 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12019
d2415c6c
DE
12020 DWP Version 1:
12021
80626a55
DE
12022 Both index sections have the same format, and serve to map a 64-bit
12023 signature to a set of section numbers. Each section begins with a header,
12024 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12025 indexes, and a pool of 32-bit section numbers. The index sections will be
12026 aligned at 8-byte boundaries in the file.
12027
d2415c6c
DE
12028 The index section header consists of:
12029
12030 V, 32 bit version number
12031 -, 32 bits unused
12032 N, 32 bit number of compilation units or type units in the index
12033 M, 32 bit number of slots in the hash table
80626a55 12034
d2415c6c 12035 Numbers are recorded using the byte order of the application binary.
80626a55 12036
d2415c6c
DE
12037 The hash table begins at offset 16 in the section, and consists of an array
12038 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12039 order of the application binary). Unused slots in the hash table are 0.
12040 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 12041
d2415c6c
DE
12042 The parallel table begins immediately after the hash table
12043 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12044 array of 32-bit indexes (using the byte order of the application binary),
12045 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12046 table contains a 32-bit index into the pool of section numbers. For unused
12047 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 12048
73869dc2
DE
12049 The pool of section numbers begins immediately following the hash table
12050 (at offset 16 + 12 * M from the beginning of the section). The pool of
12051 section numbers consists of an array of 32-bit words (using the byte order
12052 of the application binary). Each item in the array is indexed starting
12053 from 0. The hash table entry provides the index of the first section
12054 number in the set. Additional section numbers in the set follow, and the
12055 set is terminated by a 0 entry (section number 0 is not used in ELF).
12056
12057 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12058 section must be the first entry in the set, and the .debug_abbrev.dwo must
12059 be the second entry. Other members of the set may follow in any order.
12060
12061 ---
12062
12063 DWP Version 2:
12064
12065 DWP Version 2 combines all the .debug_info, etc. sections into one,
12066 and the entries in the index tables are now offsets into these sections.
12067 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12068 section.
12069
12070 Index Section Contents:
12071 Header
12072 Hash Table of Signatures dwp_hash_table.hash_table
12073 Parallel Table of Indices dwp_hash_table.unit_table
12074 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12075 Table of Section Sizes dwp_hash_table.v2.sizes
12076
12077 The index section header consists of:
12078
12079 V, 32 bit version number
12080 L, 32 bit number of columns in the table of section offsets
12081 N, 32 bit number of compilation units or type units in the index
12082 M, 32 bit number of slots in the hash table
12083
12084 Numbers are recorded using the byte order of the application binary.
12085
12086 The hash table has the same format as version 1.
12087 The parallel table of indices has the same format as version 1,
12088 except that the entries are origin-1 indices into the table of sections
12089 offsets and the table of section sizes.
12090
12091 The table of offsets begins immediately following the parallel table
12092 (at offset 16 + 12 * M from the beginning of the section). The table is
12093 a two-dimensional array of 32-bit words (using the byte order of the
12094 application binary), with L columns and N+1 rows, in row-major order.
12095 Each row in the array is indexed starting from 0. The first row provides
12096 a key to the remaining rows: each column in this row provides an identifier
12097 for a debug section, and the offsets in the same column of subsequent rows
12098 refer to that section. The section identifiers are:
12099
12100 DW_SECT_INFO 1 .debug_info.dwo
12101 DW_SECT_TYPES 2 .debug_types.dwo
12102 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12103 DW_SECT_LINE 4 .debug_line.dwo
12104 DW_SECT_LOC 5 .debug_loc.dwo
12105 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12106 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12107 DW_SECT_MACRO 8 .debug_macro.dwo
12108
12109 The offsets provided by the CU and TU index sections are the base offsets
12110 for the contributions made by each CU or TU to the corresponding section
12111 in the package file. Each CU and TU header contains an abbrev_offset
12112 field, used to find the abbreviations table for that CU or TU within the
12113 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12114 be interpreted as relative to the base offset given in the index section.
12115 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12116 should be interpreted as relative to the base offset for .debug_line.dwo,
12117 and offsets into other debug sections obtained from DWARF attributes should
12118 also be interpreted as relative to the corresponding base offset.
12119
12120 The table of sizes begins immediately following the table of offsets.
12121 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12122 with L columns and N rows, in row-major order. Each row in the array is
12123 indexed starting from 1 (row 0 is shared by the two tables).
12124
12125 ---
12126
12127 Hash table lookup is handled the same in version 1 and 2:
12128
12129 We assume that N and M will not exceed 2^32 - 1.
12130 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12131
d2415c6c
DE
12132 Given a 64-bit compilation unit signature or a type signature S, an entry
12133 in the hash table is located as follows:
80626a55 12134
d2415c6c
DE
12135 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12136 the low-order k bits all set to 1.
80626a55 12137
d2415c6c 12138 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 12139
d2415c6c
DE
12140 3) If the hash table entry at index H matches the signature, use that
12141 entry. If the hash table entry at index H is unused (all zeroes),
12142 terminate the search: the signature is not present in the table.
80626a55 12143
d2415c6c 12144 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 12145
d2415c6c 12146 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 12147 to stop at an unused slot or find the match. */
80626a55
DE
12148
12149/* Create a hash table to map DWO IDs to their CU/TU entry in
12150 .debug_{info,types}.dwo in DWP_FILE.
12151 Returns NULL if there isn't one.
12152 Note: This function processes DWP files only, not DWO files. */
12153
12154static struct dwp_hash_table *
ed2dc618
SM
12155create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12156 struct dwp_file *dwp_file, int is_debug_types)
80626a55
DE
12157{
12158 struct objfile *objfile = dwarf2_per_objfile->objfile;
400174b1 12159 bfd *dbfd = dwp_file->dbfd.get ();
948f8e3d 12160 const gdb_byte *index_ptr, *index_end;
80626a55 12161 struct dwarf2_section_info *index;
73869dc2 12162 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
12163 struct dwp_hash_table *htab;
12164
12165 if (is_debug_types)
12166 index = &dwp_file->sections.tu_index;
12167 else
12168 index = &dwp_file->sections.cu_index;
12169
12170 if (dwarf2_section_empty_p (index))
12171 return NULL;
12172 dwarf2_read_section (objfile, index);
12173
12174 index_ptr = index->buffer;
12175 index_end = index_ptr + index->size;
12176
12177 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
12178 index_ptr += 4;
12179 if (version == 2)
12180 nr_columns = read_4_bytes (dbfd, index_ptr);
12181 else
12182 nr_columns = 0;
12183 index_ptr += 4;
80626a55
DE
12184 nr_units = read_4_bytes (dbfd, index_ptr);
12185 index_ptr += 4;
12186 nr_slots = read_4_bytes (dbfd, index_ptr);
12187 index_ptr += 4;
12188
73869dc2 12189 if (version != 1 && version != 2)
80626a55 12190 {
21aa081e 12191 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 12192 " [in module %s]"),
21aa081e 12193 pulongest (version), dwp_file->name);
80626a55
DE
12194 }
12195 if (nr_slots != (nr_slots & -nr_slots))
12196 {
21aa081e 12197 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 12198 " is not power of 2 [in module %s]"),
21aa081e 12199 pulongest (nr_slots), dwp_file->name);
80626a55
DE
12200 }
12201
12202 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
12203 htab->version = version;
12204 htab->nr_columns = nr_columns;
80626a55
DE
12205 htab->nr_units = nr_units;
12206 htab->nr_slots = nr_slots;
12207 htab->hash_table = index_ptr;
12208 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
12209
12210 /* Exit early if the table is empty. */
12211 if (nr_slots == 0 || nr_units == 0
12212 || (version == 2 && nr_columns == 0))
12213 {
12214 /* All must be zero. */
12215 if (nr_slots != 0 || nr_units != 0
12216 || (version == 2 && nr_columns != 0))
12217 {
b98664d3 12218 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
73869dc2
DE
12219 " all zero [in modules %s]"),
12220 dwp_file->name);
12221 }
12222 return htab;
12223 }
12224
12225 if (version == 1)
12226 {
12227 htab->section_pool.v1.indices =
12228 htab->unit_table + sizeof (uint32_t) * nr_slots;
12229 /* It's harder to decide whether the section is too small in v1.
12230 V1 is deprecated anyway so we punt. */
12231 }
12232 else
12233 {
12234 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12235 int *ids = htab->section_pool.v2.section_ids;
04fd5eed 12236 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
73869dc2
DE
12237 /* Reverse map for error checking. */
12238 int ids_seen[DW_SECT_MAX + 1];
12239 int i;
12240
12241 if (nr_columns < 2)
12242 {
12243 error (_("Dwarf Error: bad DWP hash table, too few columns"
12244 " in section table [in module %s]"),
12245 dwp_file->name);
12246 }
12247 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, too many columns"
12250 " in section table [in module %s]"),
12251 dwp_file->name);
12252 }
04fd5eed
GB
12253 memset (ids, 255, sizeof_ids);
12254 memset (ids_seen, 255, sizeof (ids_seen));
73869dc2
DE
12255 for (i = 0; i < nr_columns; ++i)
12256 {
12257 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12258
12259 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12260 {
12261 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12262 " in section table [in module %s]"),
12263 id, dwp_file->name);
12264 }
12265 if (ids_seen[id] != -1)
12266 {
12267 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12268 " id %d in section table [in module %s]"),
12269 id, dwp_file->name);
12270 }
12271 ids_seen[id] = i;
12272 ids[i] = id;
12273 }
12274 /* Must have exactly one info or types section. */
12275 if (((ids_seen[DW_SECT_INFO] != -1)
12276 + (ids_seen[DW_SECT_TYPES] != -1))
12277 != 1)
12278 {
12279 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12280 " DWO info/types section [in module %s]"),
12281 dwp_file->name);
12282 }
12283 /* Must have an abbrev section. */
12284 if (ids_seen[DW_SECT_ABBREV] == -1)
12285 {
12286 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12287 " section [in module %s]"),
12288 dwp_file->name);
12289 }
12290 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12291 htab->section_pool.v2.sizes =
12292 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12293 * nr_units * nr_columns);
12294 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12295 * nr_units * nr_columns))
12296 > index_end)
12297 {
12298 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12299 " [in module %s]"),
12300 dwp_file->name);
12301 }
12302 }
80626a55
DE
12303
12304 return htab;
12305}
12306
12307/* Update SECTIONS with the data from SECTP.
12308
12309 This function is like the other "locate" section routines that are
12310 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 12311 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
12312
12313 The result is non-zero for success, or zero if an error was found. */
12314
12315static int
73869dc2
DE
12316locate_v1_virtual_dwo_sections (asection *sectp,
12317 struct virtual_v1_dwo_sections *sections)
80626a55
DE
12318{
12319 const struct dwop_section_names *names = &dwop_section_names;
12320
12321 if (section_is_p (sectp->name, &names->abbrev_dwo))
12322 {
12323 /* There can be only one. */
049412e3 12324 if (sections->abbrev.s.section != NULL)
80626a55 12325 return 0;
049412e3 12326 sections->abbrev.s.section = sectp;
fd361982 12327 sections->abbrev.size = bfd_section_size (sectp);
80626a55
DE
12328 }
12329 else if (section_is_p (sectp->name, &names->info_dwo)
12330 || section_is_p (sectp->name, &names->types_dwo))
12331 {
12332 /* There can be only one. */
049412e3 12333 if (sections->info_or_types.s.section != NULL)
80626a55 12334 return 0;
049412e3 12335 sections->info_or_types.s.section = sectp;
fd361982 12336 sections->info_or_types.size = bfd_section_size (sectp);
80626a55
DE
12337 }
12338 else if (section_is_p (sectp->name, &names->line_dwo))
12339 {
12340 /* There can be only one. */
049412e3 12341 if (sections->line.s.section != NULL)
80626a55 12342 return 0;
049412e3 12343 sections->line.s.section = sectp;
fd361982 12344 sections->line.size = bfd_section_size (sectp);
80626a55
DE
12345 }
12346 else if (section_is_p (sectp->name, &names->loc_dwo))
12347 {
12348 /* There can be only one. */
049412e3 12349 if (sections->loc.s.section != NULL)
80626a55 12350 return 0;
049412e3 12351 sections->loc.s.section = sectp;
fd361982 12352 sections->loc.size = bfd_section_size (sectp);
80626a55
DE
12353 }
12354 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12355 {
12356 /* There can be only one. */
049412e3 12357 if (sections->macinfo.s.section != NULL)
80626a55 12358 return 0;
049412e3 12359 sections->macinfo.s.section = sectp;
fd361982 12360 sections->macinfo.size = bfd_section_size (sectp);
80626a55
DE
12361 }
12362 else if (section_is_p (sectp->name, &names->macro_dwo))
12363 {
12364 /* There can be only one. */
049412e3 12365 if (sections->macro.s.section != NULL)
80626a55 12366 return 0;
049412e3 12367 sections->macro.s.section = sectp;
fd361982 12368 sections->macro.size = bfd_section_size (sectp);
80626a55
DE
12369 }
12370 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12371 {
12372 /* There can be only one. */
049412e3 12373 if (sections->str_offsets.s.section != NULL)
80626a55 12374 return 0;
049412e3 12375 sections->str_offsets.s.section = sectp;
fd361982 12376 sections->str_offsets.size = bfd_section_size (sectp);
80626a55
DE
12377 }
12378 else
12379 {
12380 /* No other kind of section is valid. */
12381 return 0;
12382 }
12383
12384 return 1;
12385}
12386
73869dc2
DE
12387/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12388 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12389 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12390 This is for DWP version 1 files. */
80626a55
DE
12391
12392static struct dwo_unit *
ed2dc618
SM
12393create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12394 struct dwp_file *dwp_file,
73869dc2
DE
12395 uint32_t unit_index,
12396 const char *comp_dir,
12397 ULONGEST signature, int is_debug_types)
80626a55
DE
12398{
12399 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
12400 const struct dwp_hash_table *dwp_htab =
12401 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12402 bfd *dbfd = dwp_file->dbfd.get ();
80626a55
DE
12403 const char *kind = is_debug_types ? "TU" : "CU";
12404 struct dwo_file *dwo_file;
12405 struct dwo_unit *dwo_unit;
73869dc2 12406 struct virtual_v1_dwo_sections sections;
80626a55 12407 void **dwo_file_slot;
80626a55
DE
12408 int i;
12409
73869dc2
DE
12410 gdb_assert (dwp_file->version == 1);
12411
b4f54984 12412 if (dwarf_read_debug)
80626a55 12413 {
73869dc2 12414 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 12415 kind,
73869dc2 12416 pulongest (unit_index), hex_string (signature),
80626a55
DE
12417 dwp_file->name);
12418 }
12419
19ac8c2e 12420 /* Fetch the sections of this DWO unit.
80626a55
DE
12421 Put a limit on the number of sections we look for so that bad data
12422 doesn't cause us to loop forever. */
12423
73869dc2 12424#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
12425 (1 /* .debug_info or .debug_types */ \
12426 + 1 /* .debug_abbrev */ \
12427 + 1 /* .debug_line */ \
12428 + 1 /* .debug_loc */ \
12429 + 1 /* .debug_str_offsets */ \
19ac8c2e 12430 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
12431 + 1 /* trailing zero */)
12432
12433 memset (&sections, 0, sizeof (sections));
80626a55 12434
73869dc2 12435 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
12436 {
12437 asection *sectp;
12438 uint32_t section_nr =
12439 read_4_bytes (dbfd,
73869dc2
DE
12440 dwp_htab->section_pool.v1.indices
12441 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
12442
12443 if (section_nr == 0)
12444 break;
12445 if (section_nr >= dwp_file->num_sections)
12446 {
12447 error (_("Dwarf Error: bad DWP hash table, section number too large"
12448 " [in module %s]"),
12449 dwp_file->name);
12450 }
12451
12452 sectp = dwp_file->elf_sections[section_nr];
73869dc2 12453 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
12454 {
12455 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12456 " [in module %s]"),
12457 dwp_file->name);
12458 }
12459 }
12460
12461 if (i < 2
a32a8923
DE
12462 || dwarf2_section_empty_p (&sections.info_or_types)
12463 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
12464 {
12465 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12466 " [in module %s]"),
12467 dwp_file->name);
12468 }
73869dc2 12469 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
12470 {
12471 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12472 " [in module %s]"),
12473 dwp_file->name);
12474 }
12475
12476 /* It's easier for the rest of the code if we fake a struct dwo_file and
12477 have dwo_unit "live" in that. At least for now.
12478
12479 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 12480 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
12481 file, we can combine them back into a virtual DWO file to save space
12482 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
12483 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12484
791afaa2
TT
12485 std::string virtual_dwo_name =
12486 string_printf ("virtual-dwo/%d-%d-%d-%d",
12487 get_section_id (&sections.abbrev),
12488 get_section_id (&sections.line),
12489 get_section_id (&sections.loc),
12490 get_section_id (&sections.str_offsets));
80626a55 12491 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12492 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12493 virtual_dwo_name.c_str (),
12494 comp_dir);
80626a55
DE
12495 /* Create one if necessary. */
12496 if (*dwo_file_slot == NULL)
12497 {
b4f54984 12498 if (dwarf_read_debug)
80626a55
DE
12499 {
12500 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12501 virtual_dwo_name.c_str ());
80626a55 12502 }
51ac9db5 12503 dwo_file = new struct dwo_file;
efba19b0
TT
12504 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12505 virtual_dwo_name);
0ac5b59e 12506 dwo_file->comp_dir = comp_dir;
80626a55
DE
12507 dwo_file->sections.abbrev = sections.abbrev;
12508 dwo_file->sections.line = sections.line;
12509 dwo_file->sections.loc = sections.loc;
12510 dwo_file->sections.macinfo = sections.macinfo;
12511 dwo_file->sections.macro = sections.macro;
12512 dwo_file->sections.str_offsets = sections.str_offsets;
12513 /* The "str" section is global to the entire DWP file. */
12514 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 12515 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
12516 there's no need to record it in dwo_file.
12517 Also, we can't simply record type sections in dwo_file because
12518 we record a pointer into the vector in dwo_unit. As we collect more
12519 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
12520 for it, invalidating all copies of pointers into the previous
12521 contents. */
80626a55
DE
12522 *dwo_file_slot = dwo_file;
12523 }
12524 else
12525 {
b4f54984 12526 if (dwarf_read_debug)
80626a55
DE
12527 {
12528 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12529 virtual_dwo_name.c_str ());
80626a55 12530 }
9a3c8263 12531 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 12532 }
80626a55
DE
12533
12534 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12535 dwo_unit->dwo_file = dwo_file;
12536 dwo_unit->signature = signature;
8d749320
SM
12537 dwo_unit->section =
12538 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 12539 *dwo_unit->section = sections.info_or_types;
57d63ce2 12540 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
12541
12542 return dwo_unit;
12543}
12544
73869dc2
DE
12545/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12546 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12547 piece within that section used by a TU/CU, return a virtual section
12548 of just that piece. */
12549
12550static struct dwarf2_section_info
ed2dc618
SM
12551create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12552 struct dwarf2_section_info *section,
73869dc2
DE
12553 bfd_size_type offset, bfd_size_type size)
12554{
12555 struct dwarf2_section_info result;
12556 asection *sectp;
12557
12558 gdb_assert (section != NULL);
12559 gdb_assert (!section->is_virtual);
12560
12561 memset (&result, 0, sizeof (result));
12562 result.s.containing_section = section;
dc4ccb6f 12563 result.is_virtual = true;
73869dc2
DE
12564
12565 if (size == 0)
12566 return result;
12567
12568 sectp = get_section_bfd_section (section);
12569
12570 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12571 bounds of the real section. This is a pretty-rare event, so just
12572 flag an error (easier) instead of a warning and trying to cope. */
12573 if (sectp == NULL
fd361982 12574 || offset + size > bfd_section_size (sectp))
73869dc2 12575 {
73869dc2
DE
12576 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12577 " in section %s [in module %s]"),
fd361982 12578 sectp ? bfd_section_name (sectp) : "<unknown>",
73869dc2
DE
12579 objfile_name (dwarf2_per_objfile->objfile));
12580 }
12581
12582 result.virtual_offset = offset;
12583 result.size = size;
12584 return result;
12585}
12586
12587/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12588 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12589 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12590 This is for DWP version 2 files. */
12591
12592static struct dwo_unit *
ed2dc618
SM
12593create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12594 struct dwp_file *dwp_file,
73869dc2
DE
12595 uint32_t unit_index,
12596 const char *comp_dir,
12597 ULONGEST signature, int is_debug_types)
12598{
12599 struct objfile *objfile = dwarf2_per_objfile->objfile;
12600 const struct dwp_hash_table *dwp_htab =
12601 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12602 bfd *dbfd = dwp_file->dbfd.get ();
73869dc2
DE
12603 const char *kind = is_debug_types ? "TU" : "CU";
12604 struct dwo_file *dwo_file;
12605 struct dwo_unit *dwo_unit;
12606 struct virtual_v2_dwo_sections sections;
12607 void **dwo_file_slot;
73869dc2
DE
12608 int i;
12609
12610 gdb_assert (dwp_file->version == 2);
12611
b4f54984 12612 if (dwarf_read_debug)
73869dc2
DE
12613 {
12614 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12615 kind,
12616 pulongest (unit_index), hex_string (signature),
12617 dwp_file->name);
12618 }
12619
12620 /* Fetch the section offsets of this DWO unit. */
12621
12622 memset (&sections, 0, sizeof (sections));
73869dc2
DE
12623
12624 for (i = 0; i < dwp_htab->nr_columns; ++i)
12625 {
12626 uint32_t offset = read_4_bytes (dbfd,
12627 dwp_htab->section_pool.v2.offsets
12628 + (((unit_index - 1) * dwp_htab->nr_columns
12629 + i)
12630 * sizeof (uint32_t)));
12631 uint32_t size = read_4_bytes (dbfd,
12632 dwp_htab->section_pool.v2.sizes
12633 + (((unit_index - 1) * dwp_htab->nr_columns
12634 + i)
12635 * sizeof (uint32_t)));
12636
12637 switch (dwp_htab->section_pool.v2.section_ids[i])
12638 {
12639 case DW_SECT_INFO:
12640 case DW_SECT_TYPES:
12641 sections.info_or_types_offset = offset;
12642 sections.info_or_types_size = size;
12643 break;
12644 case DW_SECT_ABBREV:
12645 sections.abbrev_offset = offset;
12646 sections.abbrev_size = size;
12647 break;
12648 case DW_SECT_LINE:
12649 sections.line_offset = offset;
12650 sections.line_size = size;
12651 break;
12652 case DW_SECT_LOC:
12653 sections.loc_offset = offset;
12654 sections.loc_size = size;
12655 break;
12656 case DW_SECT_STR_OFFSETS:
12657 sections.str_offsets_offset = offset;
12658 sections.str_offsets_size = size;
12659 break;
12660 case DW_SECT_MACINFO:
12661 sections.macinfo_offset = offset;
12662 sections.macinfo_size = size;
12663 break;
12664 case DW_SECT_MACRO:
12665 sections.macro_offset = offset;
12666 sections.macro_size = size;
12667 break;
12668 }
12669 }
12670
12671 /* It's easier for the rest of the code if we fake a struct dwo_file and
12672 have dwo_unit "live" in that. At least for now.
12673
12674 The DWP file can be made up of a random collection of CUs and TUs.
12675 However, for each CU + set of TUs that came from the same original DWO
12676 file, we can combine them back into a virtual DWO file to save space
12677 (fewer struct dwo_file objects to allocate). Remember that for really
12678 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12679
791afaa2
TT
12680 std::string virtual_dwo_name =
12681 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12682 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12683 (long) (sections.line_size ? sections.line_offset : 0),
12684 (long) (sections.loc_size ? sections.loc_offset : 0),
12685 (long) (sections.str_offsets_size
12686 ? sections.str_offsets_offset : 0));
73869dc2 12687 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12688 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12689 virtual_dwo_name.c_str (),
12690 comp_dir);
73869dc2
DE
12691 /* Create one if necessary. */
12692 if (*dwo_file_slot == NULL)
12693 {
b4f54984 12694 if (dwarf_read_debug)
73869dc2
DE
12695 {
12696 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12697 virtual_dwo_name.c_str ());
73869dc2 12698 }
51ac9db5 12699 dwo_file = new struct dwo_file;
efba19b0
TT
12700 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12701 virtual_dwo_name);
73869dc2
DE
12702 dwo_file->comp_dir = comp_dir;
12703 dwo_file->sections.abbrev =
ed2dc618 12704 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
73869dc2
DE
12705 sections.abbrev_offset, sections.abbrev_size);
12706 dwo_file->sections.line =
ed2dc618 12707 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
73869dc2
DE
12708 sections.line_offset, sections.line_size);
12709 dwo_file->sections.loc =
ed2dc618 12710 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
73869dc2
DE
12711 sections.loc_offset, sections.loc_size);
12712 dwo_file->sections.macinfo =
ed2dc618 12713 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
73869dc2
DE
12714 sections.macinfo_offset, sections.macinfo_size);
12715 dwo_file->sections.macro =
ed2dc618 12716 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
73869dc2
DE
12717 sections.macro_offset, sections.macro_size);
12718 dwo_file->sections.str_offsets =
ed2dc618
SM
12719 create_dwp_v2_section (dwarf2_per_objfile,
12720 &dwp_file->sections.str_offsets,
73869dc2
DE
12721 sections.str_offsets_offset,
12722 sections.str_offsets_size);
12723 /* The "str" section is global to the entire DWP file. */
12724 dwo_file->sections.str = dwp_file->sections.str;
12725 /* The info or types section is assigned below to dwo_unit,
12726 there's no need to record it in dwo_file.
12727 Also, we can't simply record type sections in dwo_file because
12728 we record a pointer into the vector in dwo_unit. As we collect more
12729 types we'll grow the vector and eventually have to reallocate space
12730 for it, invalidating all copies of pointers into the previous
12731 contents. */
12732 *dwo_file_slot = dwo_file;
12733 }
12734 else
12735 {
b4f54984 12736 if (dwarf_read_debug)
73869dc2
DE
12737 {
12738 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12739 virtual_dwo_name.c_str ());
73869dc2 12740 }
9a3c8263 12741 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 12742 }
73869dc2
DE
12743
12744 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12745 dwo_unit->dwo_file = dwo_file;
12746 dwo_unit->signature = signature;
8d749320
SM
12747 dwo_unit->section =
12748 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
ed2dc618
SM
12749 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12750 is_debug_types
73869dc2
DE
12751 ? &dwp_file->sections.types
12752 : &dwp_file->sections.info,
12753 sections.info_or_types_offset,
12754 sections.info_or_types_size);
12755 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12756
12757 return dwo_unit;
12758}
12759
57d63ce2
DE
12760/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12761 Returns NULL if the signature isn't found. */
80626a55
DE
12762
12763static struct dwo_unit *
ed2dc618
SM
12764lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12765 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 12766 ULONGEST signature, int is_debug_types)
80626a55 12767{
57d63ce2
DE
12768 const struct dwp_hash_table *dwp_htab =
12769 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12770 bfd *dbfd = dwp_file->dbfd.get ();
57d63ce2 12771 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
12772 uint32_t hash = signature & mask;
12773 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12774 unsigned int i;
12775 void **slot;
870f88f7 12776 struct dwo_unit find_dwo_cu;
80626a55
DE
12777
12778 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12779 find_dwo_cu.signature = signature;
19ac8c2e
DE
12780 slot = htab_find_slot (is_debug_types
12781 ? dwp_file->loaded_tus
12782 : dwp_file->loaded_cus,
12783 &find_dwo_cu, INSERT);
80626a55
DE
12784
12785 if (*slot != NULL)
9a3c8263 12786 return (struct dwo_unit *) *slot;
80626a55
DE
12787
12788 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 12789 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
12790 {
12791 ULONGEST signature_in_table;
12792
12793 signature_in_table =
57d63ce2 12794 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
12795 if (signature_in_table == signature)
12796 {
57d63ce2
DE
12797 uint32_t unit_index =
12798 read_4_bytes (dbfd,
12799 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 12800
73869dc2
DE
12801 if (dwp_file->version == 1)
12802 {
ed2dc618
SM
12803 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12804 dwp_file, unit_index,
73869dc2
DE
12805 comp_dir, signature,
12806 is_debug_types);
12807 }
12808 else
12809 {
ed2dc618
SM
12810 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12811 dwp_file, unit_index,
73869dc2
DE
12812 comp_dir, signature,
12813 is_debug_types);
12814 }
9a3c8263 12815 return (struct dwo_unit *) *slot;
80626a55
DE
12816 }
12817 if (signature_in_table == 0)
12818 return NULL;
12819 hash = (hash + hash2) & mask;
12820 }
12821
12822 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12823 " [in module %s]"),
12824 dwp_file->name);
12825}
12826
ab5088bf 12827/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
12828 Open the file specified by FILE_NAME and hand it off to BFD for
12829 preliminary analysis. Return a newly initialized bfd *, which
12830 includes a canonicalized copy of FILE_NAME.
80626a55 12831 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
12832 SEARCH_CWD is true if the current directory is to be searched.
12833 It will be searched before debug-file-directory.
13aaf454
DE
12834 If successful, the file is added to the bfd include table of the
12835 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 12836 If unable to find/open the file, return NULL.
3019eac3
DE
12837 NOTE: This function is derived from symfile_bfd_open. */
12838
192b62ce 12839static gdb_bfd_ref_ptr
ed2dc618
SM
12840try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12841 const char *file_name, int is_dwp, int search_cwd)
3019eac3 12842{
24b9144d 12843 int desc;
9c02c129
DE
12844 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12845 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12846 to debug_file_directory. */
e0cc99a6 12847 const char *search_path;
9c02c129
DE
12848 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12849
e0cc99a6 12850 gdb::unique_xmalloc_ptr<char> search_path_holder;
6ac97d4c
DE
12851 if (search_cwd)
12852 {
12853 if (*debug_file_directory != '\0')
e0cc99a6
TT
12854 {
12855 search_path_holder.reset (concat (".", dirname_separator_string,
12856 debug_file_directory,
12857 (char *) NULL));
12858 search_path = search_path_holder.get ();
12859 }
6ac97d4c 12860 else
e0cc99a6 12861 search_path = ".";
6ac97d4c 12862 }
9c02c129 12863 else
e0cc99a6 12864 search_path = debug_file_directory;
3019eac3 12865
24b9144d 12866 openp_flags flags = OPF_RETURN_REALPATH;
80626a55
DE
12867 if (is_dwp)
12868 flags |= OPF_SEARCH_IN_PATH;
e0cc99a6
TT
12869
12870 gdb::unique_xmalloc_ptr<char> absolute_name;
9c02c129 12871 desc = openp (search_path, flags, file_name,
3019eac3
DE
12872 O_RDONLY | O_BINARY, &absolute_name);
12873 if (desc < 0)
12874 return NULL;
12875
e0cc99a6
TT
12876 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12877 gnutarget, desc));
9c02c129
DE
12878 if (sym_bfd == NULL)
12879 return NULL;
192b62ce 12880 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 12881
192b62ce
TT
12882 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12883 return NULL;
3019eac3 12884
13aaf454
DE
12885 /* Success. Record the bfd as having been included by the objfile's bfd.
12886 This is important because things like demangled_names_hash lives in the
12887 objfile's per_bfd space and may have references to things like symbol
12888 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 12889 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 12890
3019eac3
DE
12891 return sym_bfd;
12892}
12893
ab5088bf 12894/* Try to open DWO file FILE_NAME.
3019eac3
DE
12895 COMP_DIR is the DW_AT_comp_dir attribute.
12896 The result is the bfd handle of the file.
12897 If there is a problem finding or opening the file, return NULL.
12898 Upon success, the canonicalized path of the file is stored in the bfd,
12899 same as symfile_bfd_open. */
12900
192b62ce 12901static gdb_bfd_ref_ptr
ed2dc618
SM
12902open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12903 const char *file_name, const char *comp_dir)
3019eac3 12904{
80626a55 12905 if (IS_ABSOLUTE_PATH (file_name))
ed2dc618
SM
12906 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12907 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
12908
12909 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12910
12911 if (comp_dir != NULL)
12912 {
b36cec19
PA
12913 char *path_to_try = concat (comp_dir, SLASH_STRING,
12914 file_name, (char *) NULL);
3019eac3
DE
12915
12916 /* NOTE: If comp_dir is a relative path, this will also try the
12917 search path, which seems useful. */
ed2dc618
SM
12918 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12919 path_to_try,
12920 0 /*is_dwp*/,
192b62ce 12921 1 /*search_cwd*/));
3019eac3
DE
12922 xfree (path_to_try);
12923 if (abfd != NULL)
12924 return abfd;
12925 }
12926
12927 /* That didn't work, try debug-file-directory, which, despite its name,
12928 is a list of paths. */
12929
12930 if (*debug_file_directory == '\0')
12931 return NULL;
12932
ed2dc618
SM
12933 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12934 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
12935}
12936
80626a55
DE
12937/* This function is mapped across the sections and remembers the offset and
12938 size of each of the DWO debugging sections we are interested in. */
12939
12940static void
12941dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12942{
9a3c8263 12943 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
12944 const struct dwop_section_names *names = &dwop_section_names;
12945
12946 if (section_is_p (sectp->name, &names->abbrev_dwo))
12947 {
049412e3 12948 dwo_sections->abbrev.s.section = sectp;
fd361982 12949 dwo_sections->abbrev.size = bfd_section_size (sectp);
80626a55
DE
12950 }
12951 else if (section_is_p (sectp->name, &names->info_dwo))
12952 {
049412e3 12953 dwo_sections->info.s.section = sectp;
fd361982 12954 dwo_sections->info.size = bfd_section_size (sectp);
80626a55
DE
12955 }
12956 else if (section_is_p (sectp->name, &names->line_dwo))
12957 {
049412e3 12958 dwo_sections->line.s.section = sectp;
fd361982 12959 dwo_sections->line.size = bfd_section_size (sectp);
80626a55
DE
12960 }
12961 else if (section_is_p (sectp->name, &names->loc_dwo))
12962 {
049412e3 12963 dwo_sections->loc.s.section = sectp;
fd361982 12964 dwo_sections->loc.size = bfd_section_size (sectp);
80626a55
DE
12965 }
12966 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12967 {
049412e3 12968 dwo_sections->macinfo.s.section = sectp;
fd361982 12969 dwo_sections->macinfo.size = bfd_section_size (sectp);
80626a55
DE
12970 }
12971 else if (section_is_p (sectp->name, &names->macro_dwo))
12972 {
049412e3 12973 dwo_sections->macro.s.section = sectp;
fd361982 12974 dwo_sections->macro.size = bfd_section_size (sectp);
80626a55
DE
12975 }
12976 else if (section_is_p (sectp->name, &names->str_dwo))
12977 {
049412e3 12978 dwo_sections->str.s.section = sectp;
fd361982 12979 dwo_sections->str.size = bfd_section_size (sectp);
80626a55
DE
12980 }
12981 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12982 {
049412e3 12983 dwo_sections->str_offsets.s.section = sectp;
fd361982 12984 dwo_sections->str_offsets.size = bfd_section_size (sectp);
80626a55
DE
12985 }
12986 else if (section_is_p (sectp->name, &names->types_dwo))
12987 {
12988 struct dwarf2_section_info type_section;
12989
12990 memset (&type_section, 0, sizeof (type_section));
049412e3 12991 type_section.s.section = sectp;
fd361982 12992 type_section.size = bfd_section_size (sectp);
fd5866f6 12993 dwo_sections->types.push_back (type_section);
80626a55
DE
12994 }
12995}
12996
ab5088bf 12997/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 12998 by PER_CU. This is for the non-DWP case.
80626a55 12999 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
13000
13001static struct dwo_file *
0ac5b59e
DE
13002open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13003 const char *dwo_name, const char *comp_dir)
3019eac3 13004{
ed2dc618 13005 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3 13006
fb1eb2f9 13007 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
80626a55
DE
13008 if (dbfd == NULL)
13009 {
b4f54984 13010 if (dwarf_read_debug)
80626a55
DE
13011 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13012 return NULL;
13013 }
263db9a1 13014
51ac9db5 13015 dwo_file_up dwo_file (new struct dwo_file);
0ac5b59e
DE
13016 dwo_file->dwo_name = dwo_name;
13017 dwo_file->comp_dir = comp_dir;
fb1eb2f9 13018 dwo_file->dbfd = std::move (dbfd);
3019eac3 13019
fb1eb2f9 13020 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
192b62ce 13021 &dwo_file->sections);
3019eac3 13022
ed2dc618
SM
13023 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13024 dwo_file->cus);
3019eac3 13025
263db9a1 13026 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
ed2dc618 13027 dwo_file->sections.types, dwo_file->tus);
3019eac3 13028
b4f54984 13029 if (dwarf_read_debug)
80626a55
DE
13030 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13031
263db9a1 13032 return dwo_file.release ();
3019eac3
DE
13033}
13034
80626a55 13035/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
13036 size of each of the DWP debugging sections common to version 1 and 2 that
13037 we are interested in. */
3019eac3 13038
80626a55 13039static void
73869dc2
DE
13040dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13041 void *dwp_file_ptr)
3019eac3 13042{
9a3c8263 13043 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
13044 const struct dwop_section_names *names = &dwop_section_names;
13045 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 13046
80626a55 13047 /* Record the ELF section number for later lookup: this is what the
73869dc2 13048 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
13049 gdb_assert (elf_section_nr < dwp_file->num_sections);
13050 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 13051
80626a55
DE
13052 /* Look for specific sections that we need. */
13053 if (section_is_p (sectp->name, &names->str_dwo))
13054 {
049412e3 13055 dwp_file->sections.str.s.section = sectp;
fd361982 13056 dwp_file->sections.str.size = bfd_section_size (sectp);
80626a55
DE
13057 }
13058 else if (section_is_p (sectp->name, &names->cu_index))
13059 {
049412e3 13060 dwp_file->sections.cu_index.s.section = sectp;
fd361982 13061 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
80626a55
DE
13062 }
13063 else if (section_is_p (sectp->name, &names->tu_index))
13064 {
049412e3 13065 dwp_file->sections.tu_index.s.section = sectp;
fd361982 13066 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
80626a55
DE
13067 }
13068}
3019eac3 13069
73869dc2
DE
13070/* This function is mapped across the sections and remembers the offset and
13071 size of each of the DWP version 2 debugging sections that we are interested
13072 in. This is split into a separate function because we don't know if we
13073 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13074
13075static void
13076dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13077{
9a3c8263 13078 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
13079 const struct dwop_section_names *names = &dwop_section_names;
13080 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13081
13082 /* Record the ELF section number for later lookup: this is what the
13083 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13084 gdb_assert (elf_section_nr < dwp_file->num_sections);
13085 dwp_file->elf_sections[elf_section_nr] = sectp;
13086
13087 /* Look for specific sections that we need. */
13088 if (section_is_p (sectp->name, &names->abbrev_dwo))
13089 {
049412e3 13090 dwp_file->sections.abbrev.s.section = sectp;
fd361982 13091 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
73869dc2
DE
13092 }
13093 else if (section_is_p (sectp->name, &names->info_dwo))
13094 {
049412e3 13095 dwp_file->sections.info.s.section = sectp;
fd361982 13096 dwp_file->sections.info.size = bfd_section_size (sectp);
73869dc2
DE
13097 }
13098 else if (section_is_p (sectp->name, &names->line_dwo))
13099 {
049412e3 13100 dwp_file->sections.line.s.section = sectp;
fd361982 13101 dwp_file->sections.line.size = bfd_section_size (sectp);
73869dc2
DE
13102 }
13103 else if (section_is_p (sectp->name, &names->loc_dwo))
13104 {
049412e3 13105 dwp_file->sections.loc.s.section = sectp;
fd361982 13106 dwp_file->sections.loc.size = bfd_section_size (sectp);
73869dc2
DE
13107 }
13108 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13109 {
049412e3 13110 dwp_file->sections.macinfo.s.section = sectp;
fd361982 13111 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
73869dc2
DE
13112 }
13113 else if (section_is_p (sectp->name, &names->macro_dwo))
13114 {
049412e3 13115 dwp_file->sections.macro.s.section = sectp;
fd361982 13116 dwp_file->sections.macro.size = bfd_section_size (sectp);
73869dc2
DE
13117 }
13118 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13119 {
049412e3 13120 dwp_file->sections.str_offsets.s.section = sectp;
fd361982 13121 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
73869dc2
DE
13122 }
13123 else if (section_is_p (sectp->name, &names->types_dwo))
13124 {
049412e3 13125 dwp_file->sections.types.s.section = sectp;
fd361982 13126 dwp_file->sections.types.size = bfd_section_size (sectp);
73869dc2
DE
13127 }
13128}
13129
80626a55 13130/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 13131
80626a55
DE
13132static hashval_t
13133hash_dwp_loaded_cutus (const void *item)
13134{
9a3c8263 13135 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 13136
80626a55
DE
13137 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13138 return dwo_unit->signature;
3019eac3
DE
13139}
13140
80626a55 13141/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 13142
80626a55
DE
13143static int
13144eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 13145{
9a3c8263
SM
13146 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13147 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 13148
80626a55
DE
13149 return dua->signature == dub->signature;
13150}
3019eac3 13151
80626a55 13152/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 13153
80626a55
DE
13154static htab_t
13155allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13156{
13157 return htab_create_alloc_ex (3,
13158 hash_dwp_loaded_cutus,
13159 eq_dwp_loaded_cutus,
13160 NULL,
13161 &objfile->objfile_obstack,
13162 hashtab_obstack_allocate,
13163 dummy_obstack_deallocate);
13164}
3019eac3 13165
ab5088bf
DE
13166/* Try to open DWP file FILE_NAME.
13167 The result is the bfd handle of the file.
13168 If there is a problem finding or opening the file, return NULL.
13169 Upon success, the canonicalized path of the file is stored in the bfd,
13170 same as symfile_bfd_open. */
13171
192b62ce 13172static gdb_bfd_ref_ptr
ed2dc618
SM
13173open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13174 const char *file_name)
ab5088bf 13175{
ed2dc618
SM
13176 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13177 1 /*is_dwp*/,
192b62ce 13178 1 /*search_cwd*/));
6ac97d4c
DE
13179 if (abfd != NULL)
13180 return abfd;
13181
13182 /* Work around upstream bug 15652.
13183 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13184 [Whether that's a "bug" is debatable, but it is getting in our way.]
13185 We have no real idea where the dwp file is, because gdb's realpath-ing
13186 of the executable's path may have discarded the needed info.
13187 [IWBN if the dwp file name was recorded in the executable, akin to
13188 .gnu_debuglink, but that doesn't exist yet.]
13189 Strip the directory from FILE_NAME and search again. */
13190 if (*debug_file_directory != '\0')
13191 {
13192 /* Don't implicitly search the current directory here.
13193 If the user wants to search "." to handle this case,
13194 it must be added to debug-file-directory. */
ed2dc618
SM
13195 return try_open_dwop_file (dwarf2_per_objfile,
13196 lbasename (file_name), 1 /*is_dwp*/,
6ac97d4c
DE
13197 0 /*search_cwd*/);
13198 }
13199
13200 return NULL;
ab5088bf
DE
13201}
13202
80626a55
DE
13203/* Initialize the use of the DWP file for the current objfile.
13204 By convention the name of the DWP file is ${objfile}.dwp.
13205 The result is NULL if it can't be found. */
a766d390 13206
400174b1 13207static std::unique_ptr<struct dwp_file>
ed2dc618 13208open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
80626a55
DE
13209{
13210 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 13211
82bf32bc
JK
13212 /* Try to find first .dwp for the binary file before any symbolic links
13213 resolving. */
6c447423
DE
13214
13215 /* If the objfile is a debug file, find the name of the real binary
13216 file and get the name of dwp file from there. */
d721ba37 13217 std::string dwp_name;
6c447423
DE
13218 if (objfile->separate_debug_objfile_backlink != NULL)
13219 {
13220 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13221 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 13222
d721ba37 13223 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
13224 }
13225 else
d721ba37
PA
13226 dwp_name = objfile->original_name;
13227
13228 dwp_name += ".dwp";
80626a55 13229
ed2dc618 13230 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
82bf32bc
JK
13231 if (dbfd == NULL
13232 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13233 {
13234 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
13235 dwp_name = objfile_name (objfile);
13236 dwp_name += ".dwp";
ed2dc618 13237 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
82bf32bc
JK
13238 }
13239
80626a55
DE
13240 if (dbfd == NULL)
13241 {
b4f54984 13242 if (dwarf_read_debug)
d721ba37 13243 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
400174b1 13244 return std::unique_ptr<dwp_file> ();
3019eac3 13245 }
400174b1
TT
13246
13247 const char *name = bfd_get_filename (dbfd.get ());
13248 std::unique_ptr<struct dwp_file> dwp_file
13249 (new struct dwp_file (name, std::move (dbfd)));
c906108c 13250
0a0f4c01 13251 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
80626a55
DE
13252 dwp_file->elf_sections =
13253 OBSTACK_CALLOC (&objfile->objfile_obstack,
13254 dwp_file->num_sections, asection *);
13255
400174b1
TT
13256 bfd_map_over_sections (dwp_file->dbfd.get (),
13257 dwarf2_locate_common_dwp_sections,
13258 dwp_file.get ());
80626a55 13259
400174b1
TT
13260 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13261 0);
80626a55 13262
400174b1
TT
13263 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13264 1);
80626a55 13265
73869dc2 13266 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
13267 if (dwp_file->cus && dwp_file->tus
13268 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
13269 {
13270 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 13271 pretty bizarre. We use pulongest here because that's the established
4d65956b 13272 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
13273 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13274 " TU version %s [in DWP file %s]"),
13275 pulongest (dwp_file->cus->version),
d721ba37 13276 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 13277 }
08302ed2
DE
13278
13279 if (dwp_file->cus)
13280 dwp_file->version = dwp_file->cus->version;
13281 else if (dwp_file->tus)
13282 dwp_file->version = dwp_file->tus->version;
13283 else
13284 dwp_file->version = 2;
73869dc2
DE
13285
13286 if (dwp_file->version == 2)
400174b1
TT
13287 bfd_map_over_sections (dwp_file->dbfd.get (),
13288 dwarf2_locate_v2_dwp_sections,
13289 dwp_file.get ());
73869dc2 13290
19ac8c2e
DE
13291 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13292 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 13293
b4f54984 13294 if (dwarf_read_debug)
80626a55
DE
13295 {
13296 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13297 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
13298 " %s CUs, %s TUs\n",
13299 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13300 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
13301 }
13302
13303 return dwp_file;
3019eac3 13304}
c906108c 13305
ab5088bf
DE
13306/* Wrapper around open_and_init_dwp_file, only open it once. */
13307
13308static struct dwp_file *
ed2dc618 13309get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
ab5088bf
DE
13310{
13311 if (! dwarf2_per_objfile->dwp_checked)
13312 {
ed2dc618
SM
13313 dwarf2_per_objfile->dwp_file
13314 = open_and_init_dwp_file (dwarf2_per_objfile);
ab5088bf
DE
13315 dwarf2_per_objfile->dwp_checked = 1;
13316 }
400174b1 13317 return dwarf2_per_objfile->dwp_file.get ();
ab5088bf
DE
13318}
13319
80626a55
DE
13320/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13321 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13322 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 13323 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
13324 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13325
13326 This is called, for example, when wanting to read a variable with a
13327 complex location. Therefore we don't want to do file i/o for every call.
13328 Therefore we don't want to look for a DWO file on every call.
13329 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13330 then we check if we've already seen DWO_NAME, and only THEN do we check
13331 for a DWO file.
13332
1c658ad5 13333 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 13334 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 13335
3019eac3 13336static struct dwo_unit *
80626a55
DE
13337lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13338 const char *dwo_name, const char *comp_dir,
13339 ULONGEST signature, int is_debug_types)
3019eac3 13340{
ed2dc618 13341 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
3019eac3 13342 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
13343 const char *kind = is_debug_types ? "TU" : "CU";
13344 void **dwo_file_slot;
3019eac3 13345 struct dwo_file *dwo_file;
80626a55 13346 struct dwp_file *dwp_file;
cb1df416 13347
6a506a2d
DE
13348 /* First see if there's a DWP file.
13349 If we have a DWP file but didn't find the DWO inside it, don't
13350 look for the original DWO file. It makes gdb behave differently
13351 depending on whether one is debugging in the build tree. */
cf2c3c16 13352
ed2dc618 13353 dwp_file = get_dwp_file (dwarf2_per_objfile);
80626a55 13354 if (dwp_file != NULL)
cf2c3c16 13355 {
80626a55
DE
13356 const struct dwp_hash_table *dwp_htab =
13357 is_debug_types ? dwp_file->tus : dwp_file->cus;
13358
13359 if (dwp_htab != NULL)
13360 {
13361 struct dwo_unit *dwo_cutu =
ed2dc618 13362 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
57d63ce2 13363 signature, is_debug_types);
80626a55
DE
13364
13365 if (dwo_cutu != NULL)
13366 {
b4f54984 13367 if (dwarf_read_debug)
80626a55
DE
13368 {
13369 fprintf_unfiltered (gdb_stdlog,
13370 "Virtual DWO %s %s found: @%s\n",
13371 kind, hex_string (signature),
13372 host_address_to_string (dwo_cutu));
13373 }
13374 return dwo_cutu;
13375 }
13376 }
13377 }
6a506a2d 13378 else
80626a55 13379 {
6a506a2d 13380 /* No DWP file, look for the DWO file. */
80626a55 13381
ed2dc618
SM
13382 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13383 dwo_name, comp_dir);
6a506a2d 13384 if (*dwo_file_slot == NULL)
80626a55 13385 {
6a506a2d
DE
13386 /* Read in the file and build a table of the CUs/TUs it contains. */
13387 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 13388 }
6a506a2d 13389 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 13390 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 13391
6a506a2d 13392 if (dwo_file != NULL)
19c3d4c9 13393 {
6a506a2d
DE
13394 struct dwo_unit *dwo_cutu = NULL;
13395
13396 if (is_debug_types && dwo_file->tus)
13397 {
13398 struct dwo_unit find_dwo_cutu;
13399
13400 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13401 find_dwo_cutu.signature = signature;
9a3c8263
SM
13402 dwo_cutu
13403 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 13404 }
33c5cd75 13405 else if (!is_debug_types && dwo_file->cus)
80626a55 13406 {
33c5cd75
DB
13407 struct dwo_unit find_dwo_cutu;
13408
13409 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13410 find_dwo_cutu.signature = signature;
13411 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13412 &find_dwo_cutu);
6a506a2d
DE
13413 }
13414
13415 if (dwo_cutu != NULL)
13416 {
b4f54984 13417 if (dwarf_read_debug)
6a506a2d
DE
13418 {
13419 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13420 kind, dwo_name, hex_string (signature),
13421 host_address_to_string (dwo_cutu));
13422 }
13423 return dwo_cutu;
80626a55
DE
13424 }
13425 }
2e276125 13426 }
9cdd5dbd 13427
80626a55
DE
13428 /* We didn't find it. This could mean a dwo_id mismatch, or
13429 someone deleted the DWO/DWP file, or the search path isn't set up
13430 correctly to find the file. */
13431
b4f54984 13432 if (dwarf_read_debug)
80626a55
DE
13433 {
13434 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13435 kind, dwo_name, hex_string (signature));
13436 }
3019eac3 13437
6656a72d
DE
13438 /* This is a warning and not a complaint because it can be caused by
13439 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
13440 {
13441 /* Print the name of the DWP file if we looked there, helps the user
13442 better diagnose the problem. */
791afaa2 13443 std::string dwp_text;
43942612
DE
13444
13445 if (dwp_file != NULL)
791afaa2
TT
13446 dwp_text = string_printf (" [in DWP file %s]",
13447 lbasename (dwp_file->name));
43942612 13448
9d8780f0 13449 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
43942612
DE
13450 " [in module %s]"),
13451 kind, dwo_name, hex_string (signature),
791afaa2 13452 dwp_text.c_str (),
43942612 13453 this_unit->is_debug_types ? "TU" : "CU",
9d8780f0 13454 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
43942612 13455 }
3019eac3 13456 return NULL;
5fb290d7
DJ
13457}
13458
80626a55
DE
13459/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13460 See lookup_dwo_cutu_unit for details. */
13461
13462static struct dwo_unit *
13463lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13464 const char *dwo_name, const char *comp_dir,
13465 ULONGEST signature)
13466{
13467 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13468}
13469
13470/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13471 See lookup_dwo_cutu_unit for details. */
13472
13473static struct dwo_unit *
13474lookup_dwo_type_unit (struct signatured_type *this_tu,
13475 const char *dwo_name, const char *comp_dir)
13476{
13477 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13478}
13479
89e63ee4
DE
13480/* Traversal function for queue_and_load_all_dwo_tus. */
13481
13482static int
13483queue_and_load_dwo_tu (void **slot, void *info)
13484{
13485 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13486 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13487 ULONGEST signature = dwo_unit->signature;
13488 struct signatured_type *sig_type =
13489 lookup_dwo_signatured_type (per_cu->cu, signature);
13490
13491 if (sig_type != NULL)
13492 {
13493 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13494
13495 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13496 a real dependency of PER_CU on SIG_TYPE. That is detected later
13497 while processing PER_CU. */
13498 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13499 load_full_type_unit (sig_cu);
13500 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13501 }
13502
13503 return 1;
13504}
13505
13506/* Queue all TUs contained in the DWO of PER_CU to be read in.
13507 The DWO may have the only definition of the type, though it may not be
13508 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13509 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13510
13511static void
13512queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13513{
13514 struct dwo_unit *dwo_unit;
13515 struct dwo_file *dwo_file;
13516
13517 gdb_assert (!per_cu->is_debug_types);
ed2dc618 13518 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
89e63ee4
DE
13519 gdb_assert (per_cu->cu != NULL);
13520
13521 dwo_unit = per_cu->cu->dwo_unit;
13522 gdb_assert (dwo_unit != NULL);
13523
13524 dwo_file = dwo_unit->dwo_file;
13525 if (dwo_file->tus != NULL)
13526 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13527}
13528
3019eac3 13529/* Read in various DIEs. */
348e048f 13530
d389af10 13531/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
13532 Inherit only the children of the DW_AT_abstract_origin DIE not being
13533 already referenced by DW_AT_abstract_origin from the children of the
13534 current DIE. */
d389af10
JK
13535
13536static void
13537inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13538{
13539 struct die_info *child_die;
791afaa2 13540 sect_offset *offsetp;
d389af10
JK
13541 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13542 struct die_info *origin_die;
13543 /* Iterator of the ORIGIN_DIE children. */
13544 struct die_info *origin_child_die;
d389af10 13545 struct attribute *attr;
cd02d79d
PA
13546 struct dwarf2_cu *origin_cu;
13547 struct pending **origin_previous_list_in_scope;
d389af10
JK
13548
13549 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13550 if (!attr)
13551 return;
13552
cd02d79d
PA
13553 /* Note that following die references may follow to a die in a
13554 different cu. */
13555
13556 origin_cu = cu;
13557 origin_die = follow_die_ref (die, attr, &origin_cu);
13558
13559 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13560 symbols in. */
13561 origin_previous_list_in_scope = origin_cu->list_in_scope;
13562 origin_cu->list_in_scope = cu->list_in_scope;
13563
edb3359d
DJ
13564 if (die->tag != origin_die->tag
13565 && !(die->tag == DW_TAG_inlined_subroutine
13566 && origin_die->tag == DW_TAG_subprogram))
b98664d3 13567 complaint (_("DIE %s and its abstract origin %s have different tags"),
9d8780f0
SM
13568 sect_offset_str (die->sect_off),
13569 sect_offset_str (origin_die->sect_off));
d389af10 13570
791afaa2 13571 std::vector<sect_offset> offsets;
d389af10 13572
3ea89b92
PMR
13573 for (child_die = die->child;
13574 child_die && child_die->tag;
13575 child_die = sibling_die (child_die))
13576 {
13577 struct die_info *child_origin_die;
13578 struct dwarf2_cu *child_origin_cu;
13579
13580 /* We are trying to process concrete instance entries:
216f72a1 13581 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
13582 it's not relevant to our analysis here. i.e. detecting DIEs that are
13583 present in the abstract instance but not referenced in the concrete
13584 one. */
216f72a1
JK
13585 if (child_die->tag == DW_TAG_call_site
13586 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
13587 continue;
13588
c38f313d
DJ
13589 /* For each CHILD_DIE, find the corresponding child of
13590 ORIGIN_DIE. If there is more than one layer of
13591 DW_AT_abstract_origin, follow them all; there shouldn't be,
13592 but GCC versions at least through 4.4 generate this (GCC PR
13593 40573). */
3ea89b92
PMR
13594 child_origin_die = child_die;
13595 child_origin_cu = cu;
c38f313d
DJ
13596 while (1)
13597 {
cd02d79d
PA
13598 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13599 child_origin_cu);
c38f313d
DJ
13600 if (attr == NULL)
13601 break;
cd02d79d
PA
13602 child_origin_die = follow_die_ref (child_origin_die, attr,
13603 &child_origin_cu);
c38f313d
DJ
13604 }
13605
d389af10
JK
13606 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13607 counterpart may exist. */
c38f313d 13608 if (child_origin_die != child_die)
d389af10 13609 {
edb3359d
DJ
13610 if (child_die->tag != child_origin_die->tag
13611 && !(child_die->tag == DW_TAG_inlined_subroutine
13612 && child_origin_die->tag == DW_TAG_subprogram))
b98664d3 13613 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13614 "different tags"),
9d8780f0
SM
13615 sect_offset_str (child_die->sect_off),
13616 sect_offset_str (child_origin_die->sect_off));
c38f313d 13617 if (child_origin_die->parent != origin_die)
b98664d3 13618 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13619 "different parents"),
9d8780f0
SM
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
c38f313d 13622 else
791afaa2 13623 offsets.push_back (child_origin_die->sect_off);
d389af10 13624 }
d389af10 13625 }
791afaa2
TT
13626 std::sort (offsets.begin (), offsets.end ());
13627 sect_offset *offsets_end = offsets.data () + offsets.size ();
13628 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 13629 if (offsetp[-1] == *offsetp)
b98664d3 13630 complaint (_("Multiple children of DIE %s refer "
9d8780f0
SM
13631 "to DIE %s as their abstract origin"),
13632 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
d389af10 13633
791afaa2 13634 offsetp = offsets.data ();
d389af10
JK
13635 origin_child_die = origin_die->child;
13636 while (origin_child_die && origin_child_die->tag)
13637 {
13638 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 13639 while (offsetp < offsets_end
9c541725 13640 && *offsetp < origin_child_die->sect_off)
d389af10 13641 offsetp++;
b64f50a1 13642 if (offsetp >= offsets_end
9c541725 13643 || *offsetp > origin_child_die->sect_off)
d389af10 13644 {
adde2bff
DE
13645 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13646 Check whether we're already processing ORIGIN_CHILD_DIE.
13647 This can happen with mutually referenced abstract_origins.
13648 PR 16581. */
13649 if (!origin_child_die->in_process)
13650 process_die (origin_child_die, origin_cu);
d389af10
JK
13651 }
13652 origin_child_die = sibling_die (origin_child_die);
13653 }
cd02d79d 13654 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
13655}
13656
c906108c 13657static void
e7c27a73 13658read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13659{
518817b3 13660 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13661 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 13662 struct context_stack *newobj;
c906108c
SS
13663 CORE_ADDR lowpc;
13664 CORE_ADDR highpc;
13665 struct die_info *child_die;
edb3359d 13666 struct attribute *attr, *call_line, *call_file;
15d034d0 13667 const char *name;
e142c38c 13668 CORE_ADDR baseaddr;
801e3a5b 13669 struct block *block;
edb3359d 13670 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
2f4732b0 13671 std::vector<struct symbol *> template_args;
34eaf542 13672 struct template_symbol *templ_func = NULL;
edb3359d
DJ
13673
13674 if (inlined_func)
13675 {
13676 /* If we do not have call site information, we can't show the
13677 caller of this inlined function. That's too confusing, so
13678 only use the scope for local variables. */
13679 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13680 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13681 if (call_line == NULL || call_file == NULL)
13682 {
13683 read_lexical_block_scope (die, cu);
13684 return;
13685 }
13686 }
c906108c 13687
e142c38c
DJ
13688 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13689
94af9270 13690 name = dwarf2_name (die, cu);
c906108c 13691
e8d05480
JB
13692 /* Ignore functions with missing or empty names. These are actually
13693 illegal according to the DWARF standard. */
13694 if (name == NULL)
13695 {
b98664d3 13696 complaint (_("missing name for subprogram DIE at %s"),
9d8780f0 13697 sect_offset_str (die->sect_off));
e8d05480
JB
13698 return;
13699 }
13700
13701 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 13702 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 13703 <= PC_BOUNDS_INVALID)
e8d05480 13704 {
ae4d0c03
PM
13705 attr = dwarf2_attr (die, DW_AT_external, cu);
13706 if (!attr || !DW_UNSND (attr))
b98664d3 13707 complaint (_("cannot get low and high bounds "
9d8780f0
SM
13708 "for subprogram DIE at %s"),
13709 sect_offset_str (die->sect_off));
e8d05480
JB
13710 return;
13711 }
c906108c 13712
3e29f34a
MR
13713 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13714 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13715
34eaf542
TT
13716 /* If we have any template arguments, then we must allocate a
13717 different sort of symbol. */
13718 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13719 {
13720 if (child_die->tag == DW_TAG_template_type_param
13721 || child_die->tag == DW_TAG_template_value_param)
13722 {
e623cf5d 13723 templ_func = allocate_template_symbol (objfile);
cf724bc9 13724 templ_func->subclass = SYMBOL_TEMPLATE;
34eaf542
TT
13725 break;
13726 }
13727 }
13728
c24bdb02 13729 newobj = cu->get_builder ()->push_context (0, lowpc);
5e2db402
TT
13730 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13731 (struct symbol *) templ_func);
4c2df51b 13732
81873cc8
TV
13733 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13734 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13735 cu->language);
13736
4cecd739
DJ
13737 /* If there is a location expression for DW_AT_frame_base, record
13738 it. */
e142c38c 13739 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 13740 if (attr)
fe978cb0 13741 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 13742
63e43d3a
PMR
13743 /* If there is a location for the static link, record it. */
13744 newobj->static_link = NULL;
13745 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13746 if (attr)
13747 {
224c3ddb
SM
13748 newobj->static_link
13749 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
9a49df9d
AB
13750 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13751 dwarf2_per_cu_addr_type (cu->per_cu));
63e43d3a
PMR
13752 }
13753
c24bdb02 13754 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
c906108c 13755
639d11d3 13756 if (die->child != NULL)
c906108c 13757 {
639d11d3 13758 child_die = die->child;
c906108c
SS
13759 while (child_die && child_die->tag)
13760 {
34eaf542
TT
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13765
f1078f66 13766 if (arg != NULL)
2f4732b0 13767 template_args.push_back (arg);
34eaf542
TT
13768 }
13769 else
13770 process_die (child_die, cu);
c906108c
SS
13771 child_die = sibling_die (child_die);
13772 }
13773 }
13774
d389af10
JK
13775 inherit_abstract_dies (die, cu);
13776
4a811a97
UW
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13782 {
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13785
13786 while (spec_die)
13787 {
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13790 {
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13794 }
13795
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13799 }
13800 }
13801
c24bdb02 13802 struct context_stack cstk = cu->get_builder ()->pop_context ();
c906108c 13803 /* Make a block for the local symbols within. */
c24bdb02 13804 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
804d2729 13805 cstk.static_link, lowpc, highpc);
801e3a5b 13806
df8a16a1 13807 /* For C++, set the block's scope. */
45280282
IB
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
c44af4eb
TT
13810 || cu->language == language_d
13811 || cu->language == language_rust)
4d4ec4e5 13812 && cu->processing_has_namespace_info)
195a3f6c
TT
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
df8a16a1 13815
801e3a5b
JB
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 13818
a60f3166 13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
3e29f34a 13820
34eaf542 13821 /* Attach template arguments to function. */
2f4732b0 13822 if (!template_args.empty ())
34eaf542
TT
13823 {
13824 gdb_assert (templ_func != NULL);
13825
2f4732b0 13826 templ_func->n_template_arguments = template_args.size ();
34eaf542 13827 templ_func->template_arguments
8d749320
SM
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
34eaf542 13830 memcpy (templ_func->template_arguments,
2f4732b0 13831 template_args.data (),
34eaf542 13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
3e1d3d8c
TT
13833
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13837 true. */
8634679f 13838 for (symbol *sym : template_args)
3e1d3d8c 13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
34eaf542
TT
13840 }
13841
208d8187
JB
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
c24bdb02
KS
13846 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13847 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
208d8187 13848
921e78cf
JB
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
c24bdb02
KS
13851 if (cu->get_builder ()->outermost_context_p ())
13852 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
c906108c
SS
13853}
13854
13855/* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13857
13858static void
e7c27a73 13859read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13860{
518817b3 13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
e142c38c
DJ
13865 CORE_ADDR baseaddr;
13866
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
13868
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
6e70227d 13872 be nasty. Might be easier to properly extend generic blocks to
af34e669 13873 describe ranges. */
e385593e
JK
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13875 {
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13884 return;
13885 case PC_BOUNDS_INVALID:
13886 return;
13887 }
3e29f34a
MR
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13890
c24bdb02 13891 cu->get_builder ()->push_context (0, lowpc);
639d11d3 13892 if (die->child != NULL)
c906108c 13893 {
639d11d3 13894 child_die = die->child;
c906108c
SS
13895 while (child_die && child_die->tag)
13896 {
e7c27a73 13897 process_die (child_die, cu);
c906108c
SS
13898 child_die = sibling_die (child_die);
13899 }
13900 }
3ea89b92 13901 inherit_abstract_dies (die, cu);
c24bdb02 13902 struct context_stack cstk = cu->get_builder ()->pop_context ();
c906108c 13903
c24bdb02
KS
13904 if (*cu->get_builder ()->get_local_symbols () != NULL
13905 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
c906108c 13906 {
801e3a5b 13907 struct block *block
c24bdb02 13908 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
804d2729 13909 cstk.start_addr, highpc);
801e3a5b
JB
13910
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13915
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13920 to do. */
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 13922 }
c24bdb02
KS
13923 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13924 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
c906108c
SS
13925}
13926
216f72a1 13927/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
13928
13929static void
13930read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13931{
518817b3 13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
96408a79
SA
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13937 void **slot;
13938 int nparams;
13939 struct die_info *child_die;
13940
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13942
216f72a1
JK
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13944 if (attr == NULL)
13945 {
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13949 }
96408a79
SA
13950 if (!attr)
13951 {
b98664d3 13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
9d8780f0
SM
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
13955 return;
13956 }
31aa7e4e 13957 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
13959
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13966 if (*slot != NULL)
13967 {
b98664d3 13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
9d8780f0
SM
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
4262abfb 13971 objfile_name (objfile));
96408a79
SA
13972 return;
13973 }
13974
13975 /* Count parameters at the caller. */
13976
13977 nparams = 0;
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
216f72a1
JK
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79 13983 {
b98664d3 13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
9d8780f0
SM
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
4262abfb 13987 objfile_name (objfile));
96408a79
SA
13988 continue;
13989 }
13990
13991 nparams++;
13992 }
13993
224c3ddb
SM
13994 call_site
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
13999 *slot = call_site;
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14002
216f72a1
JK
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
14005 {
14006 struct die_info *func_die;
14007
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14013
216f72a1
JK
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
96408a79 14016 if (func_die
216f72a1 14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14021 {
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14030 }
14031 else
14032 {
14033 struct type *func_type = NULL;
14034
14035 if (func_die)
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14038 {
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14040
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14044 }
14045 else
b98664d3 14046 complaint (_("Cannot find function owning DW_TAG_call_site "
9d8780f0
SM
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14049 }
14050 }
14051
216f72a1
JK
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 14057 if (attr == NULL)
216f72a1
JK
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14061 }
96408a79
SA
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14066 {
14067 struct dwarf2_locexpr_baton *dlbaton;
14068
8d749320 14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14073
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14075 }
7771576e 14076 else if (attr_form_is_ref (attr))
96408a79 14077 {
96408a79
SA
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14080
ac9ec31b 14081 target_die = follow_die_ref (die, attr, &target_cu);
518817b3 14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
96408a79
SA
14083 if (die_is_declaration (target_die, target_cu))
14084 {
7d45c7c3 14085 const char *target_physname;
9112db09
JK
14086
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 14088 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 14089 if (target_physname == NULL)
9112db09 14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79 14091 if (target_physname == NULL)
b98664d3 14092 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14095 else
7d455152 14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
14097 }
14098 else
14099 {
14100 CORE_ADDR lowpc;
14101
14102 /* DW_AT_entry_pc should be preferred. */
3a2b436a 14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 14104 <= PC_BOUNDS_INVALID)
b98664d3 14105 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14108 else
3e29f34a
MR
14109 {
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14112 }
96408a79
SA
14113 }
14114 }
14115 else
b98664d3 14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
9d8780f0
SM
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14119
14120 call_site->per_cu = cu->per_cu;
14121
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14125 {
96408a79 14126 struct call_site_parameter *parameter;
1788b2d3 14127 struct attribute *loc, *origin;
96408a79 14128
216f72a1
JK
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
14131 {
14132 /* Already printed the complaint above. */
14133 continue;
14134 }
14135
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14138
1788b2d3
JK
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 14141 register is contained in DW_AT_call_value. */
96408a79 14142
24c5c679 14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14146 {
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14150 }
7771576e 14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 14152 {
1788b2d3 14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
14154
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
14158 {
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
b98664d3 14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
9d8780f0
SM
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
9c541725 14165 objfile_name (objfile));
d76b7dbc
JK
14166 continue;
14167 }
9c541725
PA
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
14170 }
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79 14172 {
b98664d3 14173 complaint (_("No DW_FORM_block* DW_AT_location for "
9d8780f0
SM
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
96408a79
SA
14176 continue;
14177 }
24c5c679 14178 else
96408a79 14179 {
24c5c679
JK
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 &parameter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14188 else
14189 {
b98664d3 14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
24c5c679 14191 "for DW_FORM_block* DW_AT_location is supported for "
9d8780f0 14192 "DW_TAG_call_site child DIE %s "
24c5c679 14193 "[in module %s]"),
9d8780f0 14194 sect_offset_str (child_die->sect_off),
9c541725 14195 objfile_name (objfile));
24c5c679
JK
14196 continue;
14197 }
96408a79
SA
14198 }
14199
216f72a1
JK
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14201 if (attr == NULL)
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
14203 if (!attr_form_is_block (attr))
14204 {
b98664d3 14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
9d8780f0
SM
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
9c541725 14208 objfile_name (objfile));
96408a79
SA
14209 continue;
14210 }
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14213
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14218
216f72a1
JK
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
14222 if (attr)
14223 {
14224 if (!attr_form_is_block (attr))
b98664d3 14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
9d8780f0
SM
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
9c541725 14228 objfile_name (objfile));
96408a79
SA
14229 else
14230 {
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14233 }
14234 }
14235 }
14236}
14237
71a3c369
TT
14238/* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14241
14242static struct type *
14243rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14244{
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14246 if (attr == NULL)
14247 return NULL;
14248
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14252
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14256 return NULL;
14257
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14259 return NULL;
14260 return die_containing_type (type_die, type_cu);
14261}
14262
14263/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14264
14265static void
14266read_variable (struct die_info *die, struct dwarf2_cu *cu)
14267{
14268 struct rust_vtable_symbol *storage = NULL;
14269
14270 if (cu->language == language_rust)
14271 {
14272 struct type *containing_type = rust_containing_type (die, cu);
14273
14274 if (containing_type != NULL)
14275 {
518817b3 14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
71a3c369
TT
14277
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
cf724bc9 14282 storage->subclass = SYMBOL_RUST_VTABLE;
71a3c369
TT
14283 }
14284 }
14285
e4a62c65
TV
14286 struct symbol *res = new_symbol (die, NULL, cu, storage);
14287 struct attribute *abstract_origin
14288 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14289 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14290 if (res == NULL && loc && abstract_origin)
14291 {
14292 /* We have a variable without a name, but with a location and an abstract
14293 origin. This may be a concrete instance of an abstract variable
14294 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14295 later. */
14296 struct dwarf2_cu *origin_cu = cu;
14297 struct die_info *origin_die
14298 = follow_die_ref (die, abstract_origin, &origin_cu);
14299 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
3360b6e7 14300 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
e4a62c65 14301 }
71a3c369
TT
14302}
14303
43988095
JK
14304/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14305 reading .debug_rnglists.
14306 Callback's type should be:
14307 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14308 Return true if the attributes are present and valid, otherwise,
14309 return false. */
14310
14311template <typename Callback>
14312static bool
14313dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14314 Callback &&callback)
14315{
ed2dc618 14316 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14317 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14318 struct objfile *objfile = dwarf2_per_objfile->objfile;
43988095 14319 bfd *obfd = objfile->obfd;
43988095
JK
14320 /* Base address selection entry. */
14321 CORE_ADDR base;
14322 int found_base;
43988095 14323 const gdb_byte *buffer;
43988095
JK
14324 CORE_ADDR baseaddr;
14325 bool overflow = false;
14326
14327 found_base = cu->base_known;
14328 base = cu->base_address;
14329
14330 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14331 if (offset >= dwarf2_per_objfile->rnglists.size)
14332 {
b98664d3 14333 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43988095
JK
14334 offset);
14335 return false;
14336 }
14337 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14338
14339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14340
14341 while (1)
14342 {
7814882a
JK
14343 /* Initialize it due to a false compiler warning. */
14344 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
14345 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14346 + dwarf2_per_objfile->rnglists.size);
14347 unsigned int bytes_read;
14348
14349 if (buffer == buf_end)
14350 {
14351 overflow = true;
14352 break;
14353 }
14354 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14355 switch (rlet)
14356 {
14357 case DW_RLE_end_of_list:
14358 break;
14359 case DW_RLE_base_address:
14360 if (buffer + cu->header.addr_size > buf_end)
14361 {
14362 overflow = true;
14363 break;
14364 }
14365 base = read_address (obfd, buffer, cu, &bytes_read);
14366 found_base = 1;
14367 buffer += bytes_read;
14368 break;
14369 case DW_RLE_start_length:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14376 buffer += bytes_read;
14377 range_end = (range_beginning
14378 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14379 buffer += bytes_read;
14380 if (buffer > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 break;
14386 case DW_RLE_offset_pair:
14387 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14395 buffer += bytes_read;
14396 if (buffer > buf_end)
14397 {
14398 overflow = true;
14399 break;
14400 }
14401 break;
14402 case DW_RLE_start_end:
14403 if (buffer + 2 * cu->header.addr_size > buf_end)
14404 {
14405 overflow = true;
14406 break;
14407 }
14408 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14409 buffer += bytes_read;
14410 range_end = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14412 break;
14413 default:
b98664d3 14414 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14415 return false;
14416 }
14417 if (rlet == DW_RLE_end_of_list || overflow)
14418 break;
14419 if (rlet == DW_RLE_base_address)
14420 continue;
14421
14422 if (!found_base)
14423 {
14424 /* We have no valid base address for the ranges
14425 data. */
b98664d3 14426 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14427 return false;
14428 }
14429
14430 if (range_beginning > range_end)
14431 {
14432 /* Inverted range entries are invalid. */
b98664d3 14433 complaint (_("Invalid .debug_rnglists data (inverted range)"));
43988095
JK
14434 return false;
14435 }
14436
14437 /* Empty range entries have no effect. */
14438 if (range_beginning == range_end)
14439 continue;
14440
14441 range_beginning += base;
14442 range_end += base;
14443
14444 /* A not-uncommon case of bad debug info.
14445 Don't pollute the addrmap with bad data. */
14446 if (range_beginning + baseaddr == 0
14447 && !dwarf2_per_objfile->has_section_at_zero)
14448 {
b98664d3 14449 complaint (_(".debug_rnglists entry has start address of zero"
43988095
JK
14450 " [in module %s]"), objfile_name (objfile));
14451 continue;
14452 }
14453
14454 callback (range_beginning, range_end);
14455 }
14456
14457 if (overflow)
14458 {
b98664d3 14459 complaint (_("Offset %d is not terminated "
43988095
JK
14460 "for DW_AT_ranges attribute"),
14461 offset);
14462 return false;
14463 }
14464
14465 return true;
14466}
14467
14468/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14469 Callback's type should be:
14470 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 14471 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 14472
43988095 14473template <typename Callback>
43039443 14474static int
5f46c5a5 14475dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 14476 Callback &&callback)
43039443 14477{
ed2dc618 14478 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14479 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14480 struct objfile *objfile = dwarf2_per_objfile->objfile;
43039443
JK
14481 struct comp_unit_head *cu_header = &cu->header;
14482 bfd *obfd = objfile->obfd;
14483 unsigned int addr_size = cu_header->addr_size;
14484 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14485 /* Base address selection entry. */
14486 CORE_ADDR base;
14487 int found_base;
14488 unsigned int dummy;
d521ce57 14489 const gdb_byte *buffer;
ff013f42 14490 CORE_ADDR baseaddr;
43039443 14491
43988095
JK
14492 if (cu_header->version >= 5)
14493 return dwarf2_rnglists_process (offset, cu, callback);
14494
d00adf39
DE
14495 found_base = cu->base_known;
14496 base = cu->base_address;
43039443 14497
be391dca 14498 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 14499 if (offset >= dwarf2_per_objfile->ranges.size)
43039443 14500 {
b98664d3 14501 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43039443
JK
14502 offset);
14503 return 0;
14504 }
dce234bc 14505 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 14506
e7030f15 14507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 14508
43039443
JK
14509 while (1)
14510 {
14511 CORE_ADDR range_beginning, range_end;
14512
14513 range_beginning = read_address (obfd, buffer, cu, &dummy);
14514 buffer += addr_size;
14515 range_end = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 offset += 2 * addr_size;
14518
14519 /* An end of list marker is a pair of zero addresses. */
14520 if (range_beginning == 0 && range_end == 0)
14521 /* Found the end of list entry. */
14522 break;
14523
14524 /* Each base address selection entry is a pair of 2 values.
14525 The first is the largest possible address, the second is
14526 the base address. Check for a base address here. */
14527 if ((range_beginning & mask) == mask)
14528 {
28d2bfb9
AB
14529 /* If we found the largest possible address, then we already
14530 have the base address in range_end. */
14531 base = range_end;
43039443
JK
14532 found_base = 1;
14533 continue;
14534 }
14535
14536 if (!found_base)
14537 {
14538 /* We have no valid base address for the ranges
14539 data. */
b98664d3 14540 complaint (_("Invalid .debug_ranges data (no base address)"));
43039443
JK
14541 return 0;
14542 }
14543
9277c30c
UW
14544 if (range_beginning > range_end)
14545 {
14546 /* Inverted range entries are invalid. */
b98664d3 14547 complaint (_("Invalid .debug_ranges data (inverted range)"));
9277c30c
UW
14548 return 0;
14549 }
14550
14551 /* Empty range entries have no effect. */
14552 if (range_beginning == range_end)
14553 continue;
14554
43039443
JK
14555 range_beginning += base;
14556 range_end += base;
14557
01093045
DE
14558 /* A not-uncommon case of bad debug info.
14559 Don't pollute the addrmap with bad data. */
14560 if (range_beginning + baseaddr == 0
14561 && !dwarf2_per_objfile->has_section_at_zero)
14562 {
b98664d3 14563 complaint (_(".debug_ranges entry has start address of zero"
4262abfb 14564 " [in module %s]"), objfile_name (objfile));
01093045
DE
14565 continue;
14566 }
14567
5f46c5a5
JK
14568 callback (range_beginning, range_end);
14569 }
14570
14571 return 1;
14572}
14573
14574/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14575 Return 1 if the attributes are present and valid, otherwise, return 0.
14576 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14577
14578static int
14579dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14580 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14581 struct partial_symtab *ranges_pst)
14582{
518817b3 14583 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5f46c5a5
JK
14584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14585 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14586 SECT_OFF_TEXT (objfile));
14587 int low_set = 0;
14588 CORE_ADDR low = 0;
14589 CORE_ADDR high = 0;
14590 int retval;
14591
14592 retval = dwarf2_ranges_process (offset, cu,
14593 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14594 {
9277c30c 14595 if (ranges_pst != NULL)
3e29f34a
MR
14596 {
14597 CORE_ADDR lowpc;
14598 CORE_ADDR highpc;
14599
79748972
TT
14600 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14601 range_beginning + baseaddr)
14602 - baseaddr);
14603 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14604 range_end + baseaddr)
14605 - baseaddr);
d320c2b5
TT
14606 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14607 lowpc, highpc - 1, ranges_pst);
3e29f34a 14608 }
ff013f42 14609
43039443
JK
14610 /* FIXME: This is recording everything as a low-high
14611 segment of consecutive addresses. We should have a
14612 data structure for discontiguous block ranges
14613 instead. */
14614 if (! low_set)
14615 {
14616 low = range_beginning;
14617 high = range_end;
14618 low_set = 1;
14619 }
14620 else
14621 {
14622 if (range_beginning < low)
14623 low = range_beginning;
14624 if (range_end > high)
14625 high = range_end;
14626 }
5f46c5a5
JK
14627 });
14628 if (!retval)
14629 return 0;
43039443
JK
14630
14631 if (! low_set)
14632 /* If the first entry is an end-of-list marker, the range
14633 describes an empty scope, i.e. no instructions. */
14634 return 0;
14635
14636 if (low_return)
14637 *low_return = low;
14638 if (high_return)
14639 *high_return = high;
14640 return 1;
14641}
14642
3a2b436a
JK
14643/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14644 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 14645 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 14646
3a2b436a 14647static enum pc_bounds_kind
af34e669 14648dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
14649 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14650 struct partial_symtab *pst)
c906108c 14651{
518817b3
SM
14652 struct dwarf2_per_objfile *dwarf2_per_objfile
14653 = cu->per_cu->dwarf2_per_objfile;
c906108c 14654 struct attribute *attr;
91da1414 14655 struct attribute *attr_high;
af34e669
DJ
14656 CORE_ADDR low = 0;
14657 CORE_ADDR high = 0;
e385593e 14658 enum pc_bounds_kind ret;
c906108c 14659
91da1414
MW
14660 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14661 if (attr_high)
af34e669 14662 {
e142c38c 14663 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 14664 if (attr)
91da1414 14665 {
31aa7e4e
JB
14666 low = attr_value_as_address (attr);
14667 high = attr_value_as_address (attr_high);
14668 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14669 high += low;
91da1414 14670 }
af34e669
DJ
14671 else
14672 /* Found high w/o low attribute. */
e385593e 14673 return PC_BOUNDS_INVALID;
af34e669
DJ
14674
14675 /* Found consecutive range of addresses. */
3a2b436a 14676 ret = PC_BOUNDS_HIGH_LOW;
af34e669 14677 }
c906108c 14678 else
af34e669 14679 {
e142c38c 14680 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
14681 if (attr != NULL)
14682 {
ab435259
DE
14683 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14684 We take advantage of the fact that DW_AT_ranges does not appear
14685 in DW_TAG_compile_unit of DWO files. */
14686 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14687 unsigned int ranges_offset = (DW_UNSND (attr)
14688 + (need_ranges_base
14689 ? cu->ranges_base
14690 : 0));
2e3cf129 14691
af34e669 14692 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 14693 .debug_ranges section. */
2e3cf129 14694 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 14695 return PC_BOUNDS_INVALID;
43039443 14696 /* Found discontinuous range of addresses. */
3a2b436a 14697 ret = PC_BOUNDS_RANGES;
af34e669 14698 }
e385593e
JK
14699 else
14700 return PC_BOUNDS_NOT_PRESENT;
af34e669 14701 }
c906108c 14702
48fbe735 14703 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
9373cf26 14704 if (high <= low)
e385593e 14705 return PC_BOUNDS_INVALID;
c906108c
SS
14706
14707 /* When using the GNU linker, .gnu.linkonce. sections are used to
14708 eliminate duplicate copies of functions and vtables and such.
14709 The linker will arbitrarily choose one and discard the others.
14710 The AT_*_pc values for such functions refer to local labels in
14711 these sections. If the section from that file was discarded, the
14712 labels are not in the output, so the relocs get a value of 0.
14713 If this is a discarded function, mark the pc bounds as invalid,
14714 so that GDB will ignore it. */
72dca2f5 14715 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 14716 return PC_BOUNDS_INVALID;
c906108c
SS
14717
14718 *lowpc = low;
96408a79
SA
14719 if (highpc)
14720 *highpc = high;
af34e669 14721 return ret;
c906108c
SS
14722}
14723
b084d499
JB
14724/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14725 its low and high PC addresses. Do nothing if these addresses could not
14726 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14727 and HIGHPC to the high address if greater than HIGHPC. */
14728
14729static void
14730dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14732 struct dwarf2_cu *cu)
14733{
14734 CORE_ADDR low, high;
14735 struct die_info *child = die->child;
14736
e385593e 14737 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 14738 {
325fac50
PA
14739 *lowpc = std::min (*lowpc, low);
14740 *highpc = std::max (*highpc, high);
b084d499
JB
14741 }
14742
14743 /* If the language does not allow nested subprograms (either inside
14744 subprograms or lexical blocks), we're done. */
14745 if (cu->language != language_ada)
14746 return;
6e70227d 14747
b084d499
JB
14748 /* Check all the children of the given DIE. If it contains nested
14749 subprograms, then check their pc bounds. Likewise, we need to
14750 check lexical blocks as well, as they may also contain subprogram
14751 definitions. */
14752 while (child && child->tag)
14753 {
14754 if (child->tag == DW_TAG_subprogram
14755 || child->tag == DW_TAG_lexical_block)
14756 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14757 child = sibling_die (child);
14758 }
14759}
14760
fae299cd
DC
14761/* Get the low and high pc's represented by the scope DIE, and store
14762 them in *LOWPC and *HIGHPC. If the correct values can't be
14763 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14764
14765static void
14766get_scope_pc_bounds (struct die_info *die,
14767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14768 struct dwarf2_cu *cu)
14769{
14770 CORE_ADDR best_low = (CORE_ADDR) -1;
14771 CORE_ADDR best_high = (CORE_ADDR) 0;
14772 CORE_ADDR current_low, current_high;
14773
3a2b436a 14774 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 14775 >= PC_BOUNDS_RANGES)
fae299cd
DC
14776 {
14777 best_low = current_low;
14778 best_high = current_high;
14779 }
14780 else
14781 {
14782 struct die_info *child = die->child;
14783
14784 while (child && child->tag)
14785 {
14786 switch (child->tag) {
14787 case DW_TAG_subprogram:
b084d499 14788 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
14789 break;
14790 case DW_TAG_namespace:
f55ee35c 14791 case DW_TAG_module:
fae299cd
DC
14792 /* FIXME: carlton/2004-01-16: Should we do this for
14793 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14794 that current GCC's always emit the DIEs corresponding
14795 to definitions of methods of classes as children of a
14796 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14797 the DIEs giving the declarations, which could be
14798 anywhere). But I don't see any reason why the
14799 standards says that they have to be there. */
14800 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14801
14802 if (current_low != ((CORE_ADDR) -1))
14803 {
325fac50
PA
14804 best_low = std::min (best_low, current_low);
14805 best_high = std::max (best_high, current_high);
fae299cd
DC
14806 }
14807 break;
14808 default:
0963b4bd 14809 /* Ignore. */
fae299cd
DC
14810 break;
14811 }
14812
14813 child = sibling_die (child);
14814 }
14815 }
14816
14817 *lowpc = best_low;
14818 *highpc = best_high;
14819}
14820
801e3a5b
JB
14821/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14822 in DIE. */
380bca97 14823
801e3a5b
JB
14824static void
14825dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14826 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14827{
518817b3 14828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 14829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 14830 struct attribute *attr;
91da1414 14831 struct attribute *attr_high;
801e3a5b 14832
91da1414
MW
14833 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14834 if (attr_high)
801e3a5b 14835 {
801e3a5b
JB
14836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14837 if (attr)
14838 {
31aa7e4e
JB
14839 CORE_ADDR low = attr_value_as_address (attr);
14840 CORE_ADDR high = attr_value_as_address (attr_high);
14841
14842 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14843 high += low;
9a619af0 14844
3e29f34a
MR
14845 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14846 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
c24bdb02 14847 cu->get_builder ()->record_block_range (block, low, high - 1);
801e3a5b
JB
14848 }
14849 }
14850
14851 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14852 if (attr)
14853 {
ab435259
DE
14854 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14855 We take advantage of the fact that DW_AT_ranges does not appear
14856 in DW_TAG_compile_unit of DWO files. */
14857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
14858
14859 /* The value of the DW_AT_ranges attribute is the offset of the
14860 address range list in the .debug_ranges section. */
ab435259
DE
14861 unsigned long offset = (DW_UNSND (attr)
14862 + (need_ranges_base ? cu->ranges_base : 0));
801e3a5b 14863
2d5f09ec 14864 std::vector<blockrange> blockvec;
5f46c5a5
JK
14865 dwarf2_ranges_process (offset, cu,
14866 [&] (CORE_ADDR start, CORE_ADDR end)
14867 {
58fdfd2c
JK
14868 start += baseaddr;
14869 end += baseaddr;
5f46c5a5
JK
14870 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14871 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
c24bdb02 14872 cu->get_builder ()->record_block_range (block, start, end - 1);
2d5f09ec 14873 blockvec.emplace_back (start, end);
5f46c5a5 14874 });
2d5f09ec
KB
14875
14876 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
801e3a5b
JB
14877 }
14878}
14879
685b1105
JK
14880/* Check whether the producer field indicates either of GCC < 4.6, or the
14881 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 14882
685b1105
JK
14883static void
14884check_producer (struct dwarf2_cu *cu)
60d5a603 14885{
38360086 14886 int major, minor;
60d5a603
JK
14887
14888 if (cu->producer == NULL)
14889 {
14890 /* For unknown compilers expect their behavior is DWARF version
14891 compliant.
14892
14893 GCC started to support .debug_types sections by -gdwarf-4 since
14894 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14895 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14896 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14897 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 14898 }
b1ffba5a 14899 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 14900 {
38360086
MW
14901 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14902 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 14903 }
5230b05a 14904 else if (producer_is_icc (cu->producer, &major, &minor))
eb77c9df
AB
14905 {
14906 cu->producer_is_icc = true;
14907 cu->producer_is_icc_lt_14 = major < 14;
14908 }
c258c396
JD
14909 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14910 cu->producer_is_codewarrior = true;
685b1105
JK
14911 else
14912 {
14913 /* For other non-GCC compilers, expect their behavior is DWARF version
14914 compliant. */
60d5a603
JK
14915 }
14916
9068261f 14917 cu->checked_producer = true;
685b1105 14918}
ba919b58 14919
685b1105
JK
14920/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14921 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14922 during 4.6.0 experimental. */
14923
9068261f 14924static bool
685b1105
JK
14925producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14926{
14927 if (!cu->checked_producer)
14928 check_producer (cu);
14929
14930 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
14931}
14932
c258c396
JD
14933
14934/* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14935 with incorrect is_stmt attributes. */
14936
14937static bool
14938producer_is_codewarrior (struct dwarf2_cu *cu)
14939{
14940 if (!cu->checked_producer)
14941 check_producer (cu);
14942
14943 return cu->producer_is_codewarrior;
14944}
14945
60d5a603
JK
14946/* Return the default accessibility type if it is not overriden by
14947 DW_AT_accessibility. */
14948
14949static enum dwarf_access_attribute
14950dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14951{
14952 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14953 {
14954 /* The default DWARF 2 accessibility for members is public, the default
14955 accessibility for inheritance is private. */
14956
14957 if (die->tag != DW_TAG_inheritance)
14958 return DW_ACCESS_public;
14959 else
14960 return DW_ACCESS_private;
14961 }
14962 else
14963 {
14964 /* DWARF 3+ defines the default accessibility a different way. The same
14965 rules apply now for DW_TAG_inheritance as for the members and it only
14966 depends on the container kind. */
14967
14968 if (die->parent->tag == DW_TAG_class_type)
14969 return DW_ACCESS_private;
14970 else
14971 return DW_ACCESS_public;
14972 }
14973}
14974
74ac6d43
TT
14975/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14976 offset. If the attribute was not found return 0, otherwise return
14977 1. If it was found but could not properly be handled, set *OFFSET
14978 to 0. */
14979
14980static int
14981handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14982 LONGEST *offset)
14983{
14984 struct attribute *attr;
14985
14986 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14987 if (attr != NULL)
14988 {
14989 *offset = 0;
14990
14991 /* Note that we do not check for a section offset first here.
14992 This is because DW_AT_data_member_location is new in DWARF 4,
14993 so if we see it, we can assume that a constant form is really
14994 a constant and not a section offset. */
14995 if (attr_form_is_constant (attr))
14996 *offset = dwarf2_get_attr_constant_value (attr, 0);
14997 else if (attr_form_is_section_offset (attr))
14998 dwarf2_complex_location_expr_complaint ();
14999 else if (attr_form_is_block (attr))
15000 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15001 else
15002 dwarf2_complex_location_expr_complaint ();
15003
15004 return 1;
15005 }
15006
15007 return 0;
15008}
15009
c906108c
SS
15010/* Add an aggregate field to the field list. */
15011
15012static void
107d2387 15013dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 15014 struct dwarf2_cu *cu)
6e70227d 15015{
518817b3 15016 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5e2b427d 15017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
15018 struct nextfield *new_field;
15019 struct attribute *attr;
15020 struct field *fp;
15d034d0 15021 const char *fieldname = "";
c906108c 15022
7d0ccb61
DJ
15023 if (die->tag == DW_TAG_inheritance)
15024 {
be2daae6
TT
15025 fip->baseclasses.emplace_back ();
15026 new_field = &fip->baseclasses.back ();
7d0ccb61
DJ
15027 }
15028 else
15029 {
be2daae6
TT
15030 fip->fields.emplace_back ();
15031 new_field = &fip->fields.back ();
7d0ccb61 15032 }
be2daae6 15033
c906108c
SS
15034 fip->nfields++;
15035
e142c38c 15036 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
15037 if (attr)
15038 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
15039 else
15040 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
15041 if (new_field->accessibility != DW_ACCESS_public)
15042 fip->non_public_fields = 1;
60d5a603 15043
e142c38c 15044 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
15045 if (attr)
15046 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
15047 else
15048 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
15049
15050 fp = &new_field->field;
a9a9bd0f 15051
e142c38c 15052 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 15053 {
74ac6d43
TT
15054 LONGEST offset;
15055
a9a9bd0f 15056 /* Data member other than a C++ static data member. */
6e70227d 15057
c906108c 15058 /* Get type of field. */
e7c27a73 15059 fp->type = die_type (die, cu);
c906108c 15060
d6a843b5 15061 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 15062
c906108c 15063 /* Get bit size of field (zero if none). */
e142c38c 15064 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
15065 if (attr)
15066 {
15067 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15068 }
15069 else
15070 {
15071 FIELD_BITSIZE (*fp) = 0;
15072 }
15073
15074 /* Get bit offset of field. */
74ac6d43
TT
15075 if (handle_data_member_location (die, cu, &offset))
15076 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 15077 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
15078 if (attr)
15079 {
5e2b427d 15080 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
15081 {
15082 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
15083 additional bit offset from the MSB of the containing
15084 anonymous object to the MSB of the field. We don't
15085 have to do anything special since we don't need to
15086 know the size of the anonymous object. */
f41f5e61 15087 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
15088 }
15089 else
15090 {
15091 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
15092 MSB of the anonymous object, subtract off the number of
15093 bits from the MSB of the field to the MSB of the
15094 object, and then subtract off the number of bits of
15095 the field itself. The result is the bit offset of
15096 the LSB of the field. */
c906108c
SS
15097 int anonymous_size;
15098 int bit_offset = DW_UNSND (attr);
15099
e142c38c 15100 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15101 if (attr)
15102 {
15103 /* The size of the anonymous object containing
15104 the bit field is explicit, so use the
15105 indicated size (in bytes). */
15106 anonymous_size = DW_UNSND (attr);
15107 }
15108 else
15109 {
15110 /* The size of the anonymous object containing
15111 the bit field must be inferred from the type
15112 attribute of the data member containing the
15113 bit field. */
15114 anonymous_size = TYPE_LENGTH (fp->type);
15115 }
f41f5e61
PA
15116 SET_FIELD_BITPOS (*fp,
15117 (FIELD_BITPOS (*fp)
15118 + anonymous_size * bits_per_byte
15119 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
15120 }
15121 }
da5b30da
AA
15122 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15123 if (attr != NULL)
15124 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15125 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
15126
15127 /* Get name of field. */
39cbfefa
DJ
15128 fieldname = dwarf2_name (die, cu);
15129 if (fieldname == NULL)
15130 fieldname = "";
d8151005
DJ
15131
15132 /* The name is already allocated along with this objfile, so we don't
15133 need to duplicate it for the type. */
15134 fp->name = fieldname;
c906108c
SS
15135
15136 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 15137 pointer or virtual base class pointer) to private. */
e142c38c 15138 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 15139 {
d48cc9dd 15140 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
15141 new_field->accessibility = DW_ACCESS_private;
15142 fip->non_public_fields = 1;
15143 }
15144 }
a9a9bd0f 15145 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 15146 {
a9a9bd0f
DC
15147 /* C++ static member. */
15148
15149 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15150 is a declaration, but all versions of G++ as of this writing
15151 (so through at least 3.2.1) incorrectly generate
15152 DW_TAG_variable tags. */
6e70227d 15153
ff355380 15154 const char *physname;
c906108c 15155
a9a9bd0f 15156 /* Get name of field. */
39cbfefa
DJ
15157 fieldname = dwarf2_name (die, cu);
15158 if (fieldname == NULL)
c906108c
SS
15159 return;
15160
254e6b9e 15161 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
15162 if (attr
15163 /* Only create a symbol if this is an external value.
15164 new_symbol checks this and puts the value in the global symbol
15165 table, which we want. If it is not external, new_symbol
15166 will try to put the value in cu->list_in_scope which is wrong. */
15167 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
15168 {
15169 /* A static const member, not much different than an enum as far as
15170 we're concerned, except that we can support more types. */
15171 new_symbol (die, NULL, cu);
15172 }
15173
2df3850c 15174 /* Get physical name. */
ff355380 15175 physname = dwarf2_physname (fieldname, die, cu);
c906108c 15176
d8151005
DJ
15177 /* The name is already allocated along with this objfile, so we don't
15178 need to duplicate it for the type. */
15179 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 15180 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 15181 FIELD_NAME (*fp) = fieldname;
c906108c
SS
15182 }
15183 else if (die->tag == DW_TAG_inheritance)
15184 {
74ac6d43 15185 LONGEST offset;
d4b96c9a 15186
74ac6d43
TT
15187 /* C++ base class field. */
15188 if (handle_data_member_location (die, cu, &offset))
15189 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 15190 FIELD_BITSIZE (*fp) = 0;
e7c27a73 15191 FIELD_TYPE (*fp) = die_type (die, cu);
a737d952 15192 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
c906108c 15193 }
2ddeaf8a
TT
15194 else if (die->tag == DW_TAG_variant_part)
15195 {
15196 /* process_structure_scope will treat this DIE as a union. */
15197 process_structure_scope (die, cu);
15198
15199 /* The variant part is relative to the start of the enclosing
15200 structure. */
15201 SET_FIELD_BITPOS (*fp, 0);
15202 fp->type = get_die_type (die, cu);
15203 fp->artificial = 1;
15204 fp->name = "<<variant>>";
c8c81635
TT
15205
15206 /* Normally a DW_TAG_variant_part won't have a size, but our
15207 representation requires one, so set it to the maximum of the
15208 child sizes. */
15209 if (TYPE_LENGTH (fp->type) == 0)
15210 {
15211 unsigned max = 0;
15212 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15213 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15214 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15215 TYPE_LENGTH (fp->type) = max;
15216 }
2ddeaf8a
TT
15217 }
15218 else
15219 gdb_assert_not_reached ("missing case in dwarf2_add_field");
c906108c
SS
15220}
15221
883fd55a
KS
15222/* Can the type given by DIE define another type? */
15223
15224static bool
15225type_can_define_types (const struct die_info *die)
15226{
15227 switch (die->tag)
15228 {
15229 case DW_TAG_typedef:
15230 case DW_TAG_class_type:
15231 case DW_TAG_structure_type:
15232 case DW_TAG_union_type:
15233 case DW_TAG_enumeration_type:
15234 return true;
15235
15236 default:
15237 return false;
15238 }
15239}
15240
15241/* Add a type definition defined in the scope of the FIP's class. */
98751a41
JK
15242
15243static void
883fd55a
KS
15244dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15245 struct dwarf2_cu *cu)
6e70227d 15246{
be2daae6
TT
15247 struct decl_field fp;
15248 memset (&fp, 0, sizeof (fp));
98751a41 15249
883fd55a 15250 gdb_assert (type_can_define_types (die));
98751a41 15251
883fd55a 15252 /* Get name of field. NULL is okay here, meaning an anonymous type. */
be2daae6
TT
15253 fp.name = dwarf2_name (die, cu);
15254 fp.type = read_type_die (die, cu);
98751a41 15255
c191a687
KS
15256 /* Save accessibility. */
15257 enum dwarf_access_attribute accessibility;
15258 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15259 if (attr != NULL)
15260 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15261 else
15262 accessibility = dwarf2_default_access_attribute (die, cu);
15263 switch (accessibility)
15264 {
15265 case DW_ACCESS_public:
15266 /* The assumed value if neither private nor protected. */
15267 break;
15268 case DW_ACCESS_private:
be2daae6 15269 fp.is_private = 1;
c191a687
KS
15270 break;
15271 case DW_ACCESS_protected:
be2daae6 15272 fp.is_protected = 1;
c191a687
KS
15273 break;
15274 default:
b98664d3 15275 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
c191a687
KS
15276 }
15277
883fd55a 15278 if (die->tag == DW_TAG_typedef)
be2daae6 15279 fip->typedef_field_list.push_back (fp);
883fd55a 15280 else
be2daae6 15281 fip->nested_types_list.push_back (fp);
98751a41
JK
15282}
15283
c906108c
SS
15284/* Create the vector of fields, and attach it to the type. */
15285
15286static void
fba45db2 15287dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15288 struct dwarf2_cu *cu)
c906108c
SS
15289{
15290 int nfields = fip->nfields;
15291
15292 /* Record the field count, allocate space for the array of fields,
15293 and create blank accessibility bitfields if necessary. */
15294 TYPE_NFIELDS (type) = nfields;
15295 TYPE_FIELDS (type) = (struct field *)
be2daae6 15296 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
c906108c 15297
b4ba55a1 15298 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
15299 {
15300 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15301
15302 TYPE_FIELD_PRIVATE_BITS (type) =
15303 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15304 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15305
15306 TYPE_FIELD_PROTECTED_BITS (type) =
15307 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15308 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15309
774b6a14
TT
15310 TYPE_FIELD_IGNORE_BITS (type) =
15311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15312 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
15313 }
15314
15315 /* If the type has baseclasses, allocate and clear a bit vector for
15316 TYPE_FIELD_VIRTUAL_BITS. */
be2daae6 15317 if (!fip->baseclasses.empty () && cu->language != language_ada)
c906108c 15318 {
be2daae6 15319 int num_bytes = B_BYTES (fip->baseclasses.size ());
fe1b8b76 15320 unsigned char *pointer;
c906108c
SS
15321
15322 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 15323 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 15324 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
be2daae6
TT
15325 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15326 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
c906108c
SS
15327 }
15328
2ddeaf8a
TT
15329 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15330 {
15331 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15332
be2daae6 15333 for (int index = 0; index < nfields; ++index)
2ddeaf8a 15334 {
be2daae6
TT
15335 struct nextfield &field = fip->fields[index];
15336
15337 if (field.variant.is_discriminant)
2ddeaf8a 15338 di->discriminant_index = index;
be2daae6 15339 else if (field.variant.default_branch)
2ddeaf8a
TT
15340 di->default_index = index;
15341 else
be2daae6 15342 di->discriminants[index] = field.variant.discriminant_value;
2ddeaf8a
TT
15343 }
15344 }
15345
be2daae6
TT
15346 /* Copy the saved-up fields into the field vector. */
15347 for (int i = 0; i < nfields; ++i)
c906108c 15348 {
be2daae6
TT
15349 struct nextfield &field
15350 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15351 : fip->fields[i - fip->baseclasses.size ()]);
7d0ccb61 15352
be2daae6
TT
15353 TYPE_FIELD (type, i) = field.field;
15354 switch (field.accessibility)
c906108c 15355 {
c5aa993b 15356 case DW_ACCESS_private:
b4ba55a1 15357 if (cu->language != language_ada)
be2daae6 15358 SET_TYPE_FIELD_PRIVATE (type, i);
c5aa993b 15359 break;
c906108c 15360
c5aa993b 15361 case DW_ACCESS_protected:
b4ba55a1 15362 if (cu->language != language_ada)
be2daae6 15363 SET_TYPE_FIELD_PROTECTED (type, i);
c5aa993b 15364 break;
c906108c 15365
c5aa993b
JM
15366 case DW_ACCESS_public:
15367 break;
c906108c 15368
c5aa993b
JM
15369 default:
15370 /* Unknown accessibility. Complain and treat it as public. */
15371 {
b98664d3 15372 complaint (_("unsupported accessibility %d"),
be2daae6 15373 field.accessibility);
c5aa993b
JM
15374 }
15375 break;
c906108c 15376 }
be2daae6 15377 if (i < fip->baseclasses.size ())
c906108c 15378 {
be2daae6 15379 switch (field.virtuality)
c906108c 15380 {
c5aa993b
JM
15381 case DW_VIRTUALITY_virtual:
15382 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 15383 if (cu->language == language_ada)
a73c6dcd 15384 error (_("unexpected virtuality in component of Ada type"));
be2daae6 15385 SET_TYPE_FIELD_VIRTUAL (type, i);
c5aa993b 15386 break;
c906108c
SS
15387 }
15388 }
c906108c
SS
15389 }
15390}
15391
7d27a96d
TT
15392/* Return true if this member function is a constructor, false
15393 otherwise. */
15394
15395static int
15396dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15397{
15398 const char *fieldname;
fe978cb0 15399 const char *type_name;
7d27a96d
TT
15400 int len;
15401
15402 if (die->parent == NULL)
15403 return 0;
15404
15405 if (die->parent->tag != DW_TAG_structure_type
15406 && die->parent->tag != DW_TAG_union_type
15407 && die->parent->tag != DW_TAG_class_type)
15408 return 0;
15409
15410 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
15411 type_name = dwarf2_name (die->parent, cu);
15412 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
15413 return 0;
15414
15415 len = strlen (fieldname);
fe978cb0
PA
15416 return (strncmp (fieldname, type_name, len) == 0
15417 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
15418}
15419
c906108c
SS
15420/* Add a member function to the proper fieldlist. */
15421
15422static void
107d2387 15423dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 15424 struct type *type, struct dwarf2_cu *cu)
c906108c 15425{
518817b3 15426 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 15427 struct attribute *attr;
c906108c 15428 int i;
be2daae6 15429 struct fnfieldlist *flp = nullptr;
c906108c 15430 struct fn_field *fnp;
15d034d0 15431 const char *fieldname;
f792889a 15432 struct type *this_type;
60d5a603 15433 enum dwarf_access_attribute accessibility;
c906108c 15434
b4ba55a1 15435 if (cu->language == language_ada)
a73c6dcd 15436 error (_("unexpected member function in Ada type"));
b4ba55a1 15437
2df3850c 15438 /* Get name of member function. */
39cbfefa
DJ
15439 fieldname = dwarf2_name (die, cu);
15440 if (fieldname == NULL)
2df3850c 15441 return;
c906108c 15442
c906108c 15443 /* Look up member function name in fieldlist. */
be2daae6 15444 for (i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15445 {
27bfe10e 15446 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
be2daae6
TT
15447 {
15448 flp = &fip->fnfieldlists[i];
15449 break;
15450 }
c906108c
SS
15451 }
15452
be2daae6
TT
15453 /* Create a new fnfieldlist if necessary. */
15454 if (flp == nullptr)
c906108c 15455 {
be2daae6
TT
15456 fip->fnfieldlists.emplace_back ();
15457 flp = &fip->fnfieldlists.back ();
c906108c 15458 flp->name = fieldname;
be2daae6 15459 i = fip->fnfieldlists.size () - 1;
c906108c
SS
15460 }
15461
be2daae6
TT
15462 /* Create a new member function field and add it to the vector of
15463 fnfieldlists. */
15464 flp->fnfields.emplace_back ();
15465 fnp = &flp->fnfields.back ();
3da10d80
KS
15466
15467 /* Delay processing of the physname until later. */
9c37b5ae 15468 if (cu->language == language_cplus)
be2daae6
TT
15469 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15470 die, cu);
3da10d80
KS
15471 else
15472 {
1d06ead6 15473 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
15474 fnp->physname = physname ? physname : "";
15475 }
15476
c906108c 15477 fnp->type = alloc_type (objfile);
f792889a
DJ
15478 this_type = read_type_die (die, cu);
15479 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 15480 {
f792889a 15481 int nparams = TYPE_NFIELDS (this_type);
c906108c 15482
f792889a 15483 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
15484 of the method itself (TYPE_CODE_METHOD). */
15485 smash_to_method_type (fnp->type, type,
f792889a
DJ
15486 TYPE_TARGET_TYPE (this_type),
15487 TYPE_FIELDS (this_type),
15488 TYPE_NFIELDS (this_type),
15489 TYPE_VARARGS (this_type));
c906108c
SS
15490
15491 /* Handle static member functions.
c5aa993b 15492 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
15493 member functions. G++ helps GDB by marking the first
15494 parameter for non-static member functions (which is the this
15495 pointer) as artificial. We obtain this information from
15496 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 15497 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
15498 fnp->voffset = VOFFSET_STATIC;
15499 }
15500 else
b98664d3 15501 complaint (_("member function type missing for '%s'"),
3da10d80 15502 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
15503
15504 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 15505 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 15506 fnp->fcontext = die_containing_type (die, cu);
c906108c 15507
3e43a32a
MS
15508 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15509 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
15510
15511 /* Get accessibility. */
e142c38c 15512 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 15513 if (attr)
aead7601 15514 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
15515 else
15516 accessibility = dwarf2_default_access_attribute (die, cu);
15517 switch (accessibility)
c906108c 15518 {
60d5a603
JK
15519 case DW_ACCESS_private:
15520 fnp->is_private = 1;
15521 break;
15522 case DW_ACCESS_protected:
15523 fnp->is_protected = 1;
15524 break;
c906108c
SS
15525 }
15526
b02dede2 15527 /* Check for artificial methods. */
e142c38c 15528 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
15529 if (attr && DW_UNSND (attr) != 0)
15530 fnp->is_artificial = 1;
15531
7d27a96d
TT
15532 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15533
0d564a31 15534 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
15535 function. For older versions of GCC, this is an offset in the
15536 appropriate virtual table, as specified by DW_AT_containing_type.
15537 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
15538 to the object address. */
15539
e142c38c 15540 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 15541 if (attr)
8e19ed76 15542 {
aec5aa8b 15543 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 15544 {
aec5aa8b
TT
15545 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15546 {
15547 /* Old-style GCC. */
15548 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15549 }
15550 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15551 || (DW_BLOCK (attr)->size > 1
15552 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15553 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15554 {
aec5aa8b
TT
15555 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15556 if ((fnp->voffset % cu->header.addr_size) != 0)
15557 dwarf2_complex_location_expr_complaint ();
15558 else
15559 fnp->voffset /= cu->header.addr_size;
15560 fnp->voffset += 2;
15561 }
15562 else
15563 dwarf2_complex_location_expr_complaint ();
15564
15565 if (!fnp->fcontext)
7e993ebf
KS
15566 {
15567 /* If there is no `this' field and no DW_AT_containing_type,
15568 we cannot actually find a base class context for the
15569 vtable! */
15570 if (TYPE_NFIELDS (this_type) == 0
15571 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15572 {
b98664d3 15573 complaint (_("cannot determine context for virtual member "
9d8780f0
SM
15574 "function \"%s\" (offset %s)"),
15575 fieldname, sect_offset_str (die->sect_off));
7e993ebf
KS
15576 }
15577 else
15578 {
15579 fnp->fcontext
15580 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15581 }
15582 }
aec5aa8b 15583 }
3690dd37 15584 else if (attr_form_is_section_offset (attr))
8e19ed76 15585 {
4d3c2250 15586 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15587 }
15588 else
15589 {
4d3c2250
KB
15590 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15591 fieldname);
8e19ed76 15592 }
0d564a31 15593 }
d48cc9dd
DJ
15594 else
15595 {
15596 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15597 if (attr && DW_UNSND (attr))
15598 {
15599 /* GCC does this, as of 2008-08-25; PR debug/37237. */
b98664d3 15600 complaint (_("Member function \"%s\" (offset %s) is virtual "
3e43a32a 15601 "but the vtable offset is not specified"),
9d8780f0 15602 fieldname, sect_offset_str (die->sect_off));
9655fd1a 15603 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
15604 TYPE_CPLUS_DYNAMIC (type) = 1;
15605 }
15606 }
c906108c
SS
15607}
15608
15609/* Create the vector of member function fields, and attach it to the type. */
15610
15611static void
fba45db2 15612dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15613 struct dwarf2_cu *cu)
c906108c 15614{
b4ba55a1 15615 if (cu->language == language_ada)
a73c6dcd 15616 error (_("unexpected member functions in Ada type"));
b4ba55a1 15617
c906108c
SS
15618 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15619 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
be2daae6
TT
15620 TYPE_ALLOC (type,
15621 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
c906108c 15622
be2daae6 15623 for (int i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15624 {
be2daae6 15625 struct fnfieldlist &nf = fip->fnfieldlists[i];
c906108c 15626 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
c906108c 15627
be2daae6
TT
15628 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15629 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
c906108c 15630 fn_flp->fn_fields = (struct fn_field *)
be2daae6
TT
15631 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15632
15633 for (int k = 0; k < nf.fnfields.size (); ++k)
15634 fn_flp->fn_fields[k] = nf.fnfields[k];
c906108c
SS
15635 }
15636
be2daae6 15637 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
c906108c
SS
15638}
15639
1168df01
JB
15640/* Returns non-zero if NAME is the name of a vtable member in CU's
15641 language, zero otherwise. */
15642static int
15643is_vtable_name (const char *name, struct dwarf2_cu *cu)
15644{
15645 static const char vptr[] = "_vptr";
15646
9c37b5ae
TT
15647 /* Look for the C++ form of the vtable. */
15648 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
15649 return 1;
15650
15651 return 0;
15652}
15653
c0dd20ea 15654/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
15655 functions, with the ABI-specified layout. If TYPE describes
15656 such a structure, smash it into a member function type.
61049d3b
DJ
15657
15658 GCC shouldn't do this; it should just output pointer to member DIEs.
15659 This is GCC PR debug/28767. */
c0dd20ea 15660
0b92b5bb
TT
15661static void
15662quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 15663{
09e2d7c7 15664 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
15665
15666 /* Check for a structure with no name and two children. */
0b92b5bb
TT
15667 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15668 return;
c0dd20ea
DJ
15669
15670 /* Check for __pfn and __delta members. */
0b92b5bb
TT
15671 if (TYPE_FIELD_NAME (type, 0) == NULL
15672 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15673 || TYPE_FIELD_NAME (type, 1) == NULL
15674 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15675 return;
c0dd20ea
DJ
15676
15677 /* Find the type of the method. */
0b92b5bb 15678 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
15679 if (pfn_type == NULL
15680 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15681 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 15682 return;
c0dd20ea
DJ
15683
15684 /* Look for the "this" argument. */
15685 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15686 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 15687 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 15688 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 15689 return;
c0dd20ea 15690
09e2d7c7 15691 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 15692 new_type = alloc_type (objfile);
09e2d7c7 15693 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
15694 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15695 TYPE_VARARGS (pfn_type));
0b92b5bb 15696 smash_to_methodptr_type (type, new_type);
c0dd20ea 15697}
1168df01 15698
2b4424c3
TT
15699/* If the DIE has a DW_AT_alignment attribute, return its value, doing
15700 appropriate error checking and issuing complaints if there is a
15701 problem. */
15702
15703static ULONGEST
15704get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15705{
15706 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15707
15708 if (attr == nullptr)
15709 return 0;
15710
15711 if (!attr_form_is_constant (attr))
15712 {
b98664d3 15713 complaint (_("DW_AT_alignment must have constant form"
2b4424c3
TT
15714 " - DIE at %s [in module %s]"),
15715 sect_offset_str (die->sect_off),
15716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15717 return 0;
15718 }
15719
15720 ULONGEST align;
15721 if (attr->form == DW_FORM_sdata)
15722 {
15723 LONGEST val = DW_SND (attr);
15724 if (val < 0)
15725 {
b98664d3 15726 complaint (_("DW_AT_alignment value must not be negative"
2b4424c3
TT
15727 " - DIE at %s [in module %s]"),
15728 sect_offset_str (die->sect_off),
15729 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15730 return 0;
15731 }
15732 align = val;
15733 }
15734 else
15735 align = DW_UNSND (attr);
15736
15737 if (align == 0)
15738 {
b98664d3 15739 complaint (_("DW_AT_alignment value must not be zero"
2b4424c3
TT
15740 " - DIE at %s [in module %s]"),
15741 sect_offset_str (die->sect_off),
15742 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15743 return 0;
15744 }
15745 if ((align & (align - 1)) != 0)
15746 {
b98664d3 15747 complaint (_("DW_AT_alignment value must be a power of 2"
2b4424c3
TT
15748 " - DIE at %s [in module %s]"),
15749 sect_offset_str (die->sect_off),
15750 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15751 return 0;
15752 }
15753
15754 return align;
15755}
15756
15757/* If the DIE has a DW_AT_alignment attribute, use its value to set
15758 the alignment for TYPE. */
15759
15760static void
15761maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15762 struct type *type)
15763{
15764 if (!set_type_align (type, get_alignment (cu, die)))
b98664d3 15765 complaint (_("DW_AT_alignment value too large"
2b4424c3
TT
15766 " - DIE at %s [in module %s]"),
15767 sect_offset_str (die->sect_off),
15768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15769}
685b1105 15770
c906108c 15771/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
15772 (definition) to create a type for the structure or union. Fill in
15773 the type's name and general properties; the members will not be
83655187
DE
15774 processed until process_structure_scope. A symbol table entry for
15775 the type will also not be done until process_structure_scope (assuming
15776 the type has a name).
c906108c 15777
c767944b
DJ
15778 NOTE: we need to call these functions regardless of whether or not the
15779 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 15780 structure or union. This gets the type entered into our set of
83655187 15781 user defined types. */
c906108c 15782
f792889a 15783static struct type *
134d01f1 15784read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15785{
518817b3 15786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
15787 struct type *type;
15788 struct attribute *attr;
15d034d0 15789 const char *name;
c906108c 15790
348e048f
DE
15791 /* If the definition of this type lives in .debug_types, read that type.
15792 Don't follow DW_AT_specification though, that will take us back up
15793 the chain and we want to go down. */
45e58e77 15794 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
15795 if (attr)
15796 {
ac9ec31b 15797 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 15798
ac9ec31b 15799 /* The type's CU may not be the same as CU.
02142a6c 15800 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
15801 return set_die_type (die, type, cu);
15802 }
15803
c0dd20ea 15804 type = alloc_type (objfile);
c906108c 15805 INIT_CPLUS_SPECIFIC (type);
93311388 15806
39cbfefa
DJ
15807 name = dwarf2_name (die, cu);
15808 if (name != NULL)
c906108c 15809 {
987504bb 15810 if (cu->language == language_cplus
c44af4eb
TT
15811 || cu->language == language_d
15812 || cu->language == language_rust)
63d06c5c 15813 {
15d034d0 15814 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
15815
15816 /* dwarf2_full_name might have already finished building the DIE's
15817 type. If so, there is no need to continue. */
15818 if (get_die_type (die, cu) != NULL)
15819 return get_die_type (die, cu);
15820
e86ca25f 15821 TYPE_NAME (type) = full_name;
63d06c5c
DC
15822 }
15823 else
15824 {
d8151005
DJ
15825 /* The name is already allocated along with this objfile, so
15826 we don't need to duplicate it for the type. */
e86ca25f 15827 TYPE_NAME (type) = name;
63d06c5c 15828 }
c906108c
SS
15829 }
15830
15831 if (die->tag == DW_TAG_structure_type)
15832 {
15833 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15834 }
15835 else if (die->tag == DW_TAG_union_type)
15836 {
15837 TYPE_CODE (type) = TYPE_CODE_UNION;
15838 }
2ddeaf8a
TT
15839 else if (die->tag == DW_TAG_variant_part)
15840 {
15841 TYPE_CODE (type) = TYPE_CODE_UNION;
15842 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15843 }
c906108c
SS
15844 else
15845 {
4753d33b 15846 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
15847 }
15848
0cc2414c
TT
15849 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15850 TYPE_DECLARED_CLASS (type) = 1;
15851
e142c38c 15852 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15853 if (attr)
15854 {
155bfbd3
JB
15855 if (attr_form_is_constant (attr))
15856 TYPE_LENGTH (type) = DW_UNSND (attr);
15857 else
15858 {
15859 /* For the moment, dynamic type sizes are not supported
15860 by GDB's struct type. The actual size is determined
15861 on-demand when resolving the type of a given object,
15862 so set the type's length to zero for now. Otherwise,
15863 we record an expression as the length, and that expression
15864 could lead to a very large value, which could eventually
15865 lead to us trying to allocate that much memory when creating
15866 a value of that type. */
15867 TYPE_LENGTH (type) = 0;
15868 }
c906108c
SS
15869 }
15870 else
15871 {
15872 TYPE_LENGTH (type) = 0;
15873 }
15874
2b4424c3
TT
15875 maybe_set_alignment (cu, die, type);
15876
5230b05a 15877 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 15878 {
5230b05a
WT
15879 /* ICC<14 does not output the required DW_AT_declaration on
15880 incomplete types, but gives them a size of zero. */
422b1cb0 15881 TYPE_STUB (type) = 1;
685b1105
JK
15882 }
15883 else
15884 TYPE_STUB_SUPPORTED (type) = 1;
15885
dc718098 15886 if (die_is_declaration (die, cu))
876cecd0 15887 TYPE_STUB (type) = 1;
a6c727b2
DJ
15888 else if (attr == NULL && die->child == NULL
15889 && producer_is_realview (cu->producer))
15890 /* RealView does not output the required DW_AT_declaration
15891 on incomplete types. */
15892 TYPE_STUB (type) = 1;
dc718098 15893
c906108c
SS
15894 /* We need to add the type field to the die immediately so we don't
15895 infinitely recurse when dealing with pointers to the structure
0963b4bd 15896 type within the structure itself. */
1c379e20 15897 set_die_type (die, type, cu);
c906108c 15898
7e314c57
JK
15899 /* set_die_type should be already done. */
15900 set_descriptive_type (type, die, cu);
15901
c767944b
DJ
15902 return type;
15903}
15904
2ddeaf8a
TT
15905/* A helper for process_structure_scope that handles a single member
15906 DIE. */
15907
15908static void
15909handle_struct_member_die (struct die_info *child_die, struct type *type,
15910 struct field_info *fi,
15911 std::vector<struct symbol *> *template_args,
15912 struct dwarf2_cu *cu)
15913{
15914 if (child_die->tag == DW_TAG_member
15915 || child_die->tag == DW_TAG_variable
15916 || child_die->tag == DW_TAG_variant_part)
15917 {
15918 /* NOTE: carlton/2002-11-05: A C++ static data member
15919 should be a DW_TAG_member that is a declaration, but
15920 all versions of G++ as of this writing (so through at
15921 least 3.2.1) incorrectly generate DW_TAG_variable
15922 tags for them instead. */
15923 dwarf2_add_field (fi, child_die, cu);
15924 }
15925 else if (child_die->tag == DW_TAG_subprogram)
15926 {
15927 /* Rust doesn't have member functions in the C++ sense.
15928 However, it does emit ordinary functions as children
15929 of a struct DIE. */
15930 if (cu->language == language_rust)
15931 read_func_scope (child_die, cu);
15932 else
15933 {
15934 /* C++ member function. */
15935 dwarf2_add_member_fn (fi, child_die, type, cu);
15936 }
15937 }
15938 else if (child_die->tag == DW_TAG_inheritance)
15939 {
15940 /* C++ base class field. */
15941 dwarf2_add_field (fi, child_die, cu);
15942 }
15943 else if (type_can_define_types (child_die))
15944 dwarf2_add_type_defn (fi, child_die, cu);
15945 else if (child_die->tag == DW_TAG_template_type_param
15946 || child_die->tag == DW_TAG_template_value_param)
15947 {
15948 struct symbol *arg = new_symbol (child_die, NULL, cu);
15949
15950 if (arg != NULL)
15951 template_args->push_back (arg);
15952 }
15953 else if (child_die->tag == DW_TAG_variant)
15954 {
15955 /* In a variant we want to get the discriminant and also add a
15956 field for our sole member child. */
15957 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15958
bde09ab7 15959 for (die_info *variant_child = child_die->child;
2ddeaf8a
TT
15960 variant_child != NULL;
15961 variant_child = sibling_die (variant_child))
15962 {
15963 if (variant_child->tag == DW_TAG_member)
15964 {
15965 handle_struct_member_die (variant_child, type, fi,
15966 template_args, cu);
15967 /* Only handle the one. */
15968 break;
15969 }
15970 }
15971
15972 /* We don't handle this but we might as well report it if we see
15973 it. */
15974 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
b98664d3 15975 complaint (_("DW_AT_discr_list is not supported yet"
2ddeaf8a
TT
15976 " - DIE at %s [in module %s]"),
15977 sect_offset_str (child_die->sect_off),
15978 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15979
15980 /* The first field was just added, so we can stash the
15981 discriminant there. */
be2daae6 15982 gdb_assert (!fi->fields.empty ());
2ddeaf8a 15983 if (discr == NULL)
be2daae6 15984 fi->fields.back ().variant.default_branch = true;
2ddeaf8a 15985 else
be2daae6 15986 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
2ddeaf8a
TT
15987 }
15988}
15989
c767944b
DJ
15990/* Finish creating a structure or union type, including filling in
15991 its members and creating a symbol for it. */
15992
15993static void
15994process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15995{
518817b3 15996 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
ca040673 15997 struct die_info *child_die;
c767944b
DJ
15998 struct type *type;
15999
16000 type = get_die_type (die, cu);
16001 if (type == NULL)
16002 type = read_structure_type (die, cu);
16003
2ddeaf8a
TT
16004 /* When reading a DW_TAG_variant_part, we need to notice when we
16005 read the discriminant member, so we can record it later in the
16006 discriminant_info. */
16007 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16008 sect_offset discr_offset;
3e1d3d8c 16009 bool has_template_parameters = false;
2ddeaf8a
TT
16010
16011 if (is_variant_part)
16012 {
16013 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16014 if (discr == NULL)
16015 {
16016 /* Maybe it's a univariant form, an extension we support.
16017 In this case arrange not to check the offset. */
16018 is_variant_part = false;
16019 }
16020 else if (attr_form_is_ref (discr))
16021 {
16022 struct dwarf2_cu *target_cu = cu;
16023 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16024
16025 discr_offset = target_die->sect_off;
16026 }
16027 else
16028 {
b98664d3 16029 complaint (_("DW_AT_discr does not have DIE reference form"
2ddeaf8a
TT
16030 " - DIE at %s [in module %s]"),
16031 sect_offset_str (die->sect_off),
16032 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16033 is_variant_part = false;
16034 }
16035 }
16036
e142c38c 16037 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
16038 {
16039 struct field_info fi;
2f4732b0 16040 std::vector<struct symbol *> template_args;
c906108c 16041
639d11d3 16042 child_die = die->child;
c906108c
SS
16043
16044 while (child_die && child_die->tag)
16045 {
2ddeaf8a 16046 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
34eaf542 16047
2ddeaf8a 16048 if (is_variant_part && discr_offset == child_die->sect_off)
be2daae6 16049 fi.fields.back ().variant.is_discriminant = true;
34eaf542 16050
c906108c
SS
16051 child_die = sibling_die (child_die);
16052 }
16053
34eaf542 16054 /* Attach template arguments to type. */
2f4732b0 16055 if (!template_args.empty ())
34eaf542 16056 {
3e1d3d8c 16057 has_template_parameters = true;
34eaf542 16058 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2f4732b0 16059 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
34eaf542 16060 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
16061 = XOBNEWVEC (&objfile->objfile_obstack,
16062 struct symbol *,
16063 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542 16064 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
2f4732b0 16065 template_args.data (),
34eaf542
TT
16066 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16067 * sizeof (struct symbol *)));
34eaf542
TT
16068 }
16069
c906108c
SS
16070 /* Attach fields and member functions to the type. */
16071 if (fi.nfields)
e7c27a73 16072 dwarf2_attach_fields_to_type (&fi, type, cu);
be2daae6 16073 if (!fi.fnfieldlists.empty ())
c906108c 16074 {
e7c27a73 16075 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 16076
c5aa993b 16077 /* Get the type which refers to the base class (possibly this
c906108c 16078 class itself) which contains the vtable pointer for the current
0d564a31
DJ
16079 class from the DW_AT_containing_type attribute. This use of
16080 DW_AT_containing_type is a GNU extension. */
c906108c 16081
e142c38c 16082 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 16083 {
e7c27a73 16084 struct type *t = die_containing_type (die, cu);
c906108c 16085
ae6ae975 16086 set_type_vptr_basetype (type, t);
c906108c
SS
16087 if (type == t)
16088 {
c906108c
SS
16089 int i;
16090
16091 /* Our own class provides vtbl ptr. */
16092 for (i = TYPE_NFIELDS (t) - 1;
16093 i >= TYPE_N_BASECLASSES (t);
16094 --i)
16095 {
0d5cff50 16096 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 16097
1168df01 16098 if (is_vtable_name (fieldname, cu))
c906108c 16099 {
ae6ae975 16100 set_type_vptr_fieldno (type, i);
c906108c
SS
16101 break;
16102 }
16103 }
16104
16105 /* Complain if virtual function table field not found. */
16106 if (i < TYPE_N_BASECLASSES (t))
b98664d3 16107 complaint (_("virtual function table pointer "
3e43a32a 16108 "not found when defining class '%s'"),
e86ca25f 16109 TYPE_NAME (type) ? TYPE_NAME (type) : "");
c906108c
SS
16110 }
16111 else
16112 {
ae6ae975 16113 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
16114 }
16115 }
f6235d4c 16116 else if (cu->producer
61012eef 16117 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
16118 {
16119 /* The IBM XLC compiler does not provide direct indication
16120 of the containing type, but the vtable pointer is
16121 always named __vfp. */
16122
16123 int i;
16124
16125 for (i = TYPE_NFIELDS (type) - 1;
16126 i >= TYPE_N_BASECLASSES (type);
16127 --i)
16128 {
16129 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16130 {
ae6ae975
DE
16131 set_type_vptr_fieldno (type, i);
16132 set_type_vptr_basetype (type, type);
f6235d4c
EZ
16133 break;
16134 }
16135 }
16136 }
c906108c 16137 }
98751a41
JK
16138
16139 /* Copy fi.typedef_field_list linked list elements content into the
16140 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
be2daae6 16141 if (!fi.typedef_field_list.empty ())
98751a41 16142 {
be2daae6 16143 int count = fi.typedef_field_list.size ();
98751a41 16144
a0d7a4ff 16145 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 16146 TYPE_TYPEDEF_FIELD_ARRAY (type)
883fd55a 16147 = ((struct decl_field *)
be2daae6
TT
16148 TYPE_ALLOC (type,
16149 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16150 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
6e70227d 16151
be2daae6
TT
16152 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16153 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
98751a41 16154 }
c767944b 16155
883fd55a
KS
16156 /* Copy fi.nested_types_list linked list elements content into the
16157 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
be2daae6 16158 if (!fi.nested_types_list.empty () && cu->language != language_ada)
883fd55a 16159 {
be2daae6 16160 int count = fi.nested_types_list.size ();
883fd55a
KS
16161
16162 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16163 TYPE_NESTED_TYPES_ARRAY (type)
16164 = ((struct decl_field *)
be2daae6
TT
16165 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16166 TYPE_NESTED_TYPES_COUNT (type) = count;
883fd55a 16167
be2daae6
TT
16168 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16169 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
883fd55a 16170 }
c906108c 16171 }
63d06c5c 16172
bb5ed363 16173 quirk_gcc_member_function_pointer (type, objfile);
c9317f21
TT
16174 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16175 cu->rust_unions.push_back (type);
0b92b5bb 16176
90aeadfc
DC
16177 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16178 snapshots) has been known to create a die giving a declaration
16179 for a class that has, as a child, a die giving a definition for a
16180 nested class. So we have to process our children even if the
16181 current die is a declaration. Normally, of course, a declaration
16182 won't have any children at all. */
134d01f1 16183
ca040673
DE
16184 child_die = die->child;
16185
90aeadfc
DC
16186 while (child_die != NULL && child_die->tag)
16187 {
16188 if (child_die->tag == DW_TAG_member
16189 || child_die->tag == DW_TAG_variable
34eaf542
TT
16190 || child_die->tag == DW_TAG_inheritance
16191 || child_die->tag == DW_TAG_template_value_param
16192 || child_die->tag == DW_TAG_template_type_param)
134d01f1 16193 {
90aeadfc 16194 /* Do nothing. */
134d01f1 16195 }
90aeadfc
DC
16196 else
16197 process_die (child_die, cu);
134d01f1 16198
90aeadfc 16199 child_die = sibling_die (child_die);
134d01f1
DJ
16200 }
16201
fa4028e9
JB
16202 /* Do not consider external references. According to the DWARF standard,
16203 these DIEs are identified by the fact that they have no byte_size
16204 attribute, and a declaration attribute. */
16205 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16206 || !die_is_declaration (die, cu))
3e1d3d8c
TT
16207 {
16208 struct symbol *sym = new_symbol (die, type, cu);
16209
16210 if (has_template_parameters)
16211 {
a776957c
TT
16212 struct symtab *symtab;
16213 if (sym != nullptr)
16214 symtab = symbol_symtab (sym);
16215 else if (cu->line_header != nullptr)
16216 {
16217 /* Any related symtab will do. */
16218 symtab
16219 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16220 }
16221 else
16222 {
16223 symtab = nullptr;
16224 complaint (_("could not find suitable "
16225 "symtab for template parameter"
16226 " - DIE at %s [in module %s]"),
16227 sect_offset_str (die->sect_off),
16228 objfile_name (objfile));
16229 }
16230
16231 if (symtab != nullptr)
16232 {
16233 /* Make sure that the symtab is set on the new symbols.
16234 Even though they don't appear in this symtab directly,
16235 other parts of gdb assume that symbols do, and this is
16236 reasonably true. */
16237 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16238 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16239 }
3e1d3d8c
TT
16240 }
16241 }
134d01f1
DJ
16242}
16243
55426c9d
JB
16244/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16245 update TYPE using some information only available in DIE's children. */
16246
16247static void
16248update_enumeration_type_from_children (struct die_info *die,
16249 struct type *type,
16250 struct dwarf2_cu *cu)
16251{
60f7655a 16252 struct die_info *child_die;
55426c9d
JB
16253 int unsigned_enum = 1;
16254 int flag_enum = 1;
16255 ULONGEST mask = 0;
55426c9d 16256
8268c778 16257 auto_obstack obstack;
55426c9d 16258
60f7655a
DE
16259 for (child_die = die->child;
16260 child_die != NULL && child_die->tag;
16261 child_die = sibling_die (child_die))
55426c9d
JB
16262 {
16263 struct attribute *attr;
16264 LONGEST value;
16265 const gdb_byte *bytes;
16266 struct dwarf2_locexpr_baton *baton;
16267 const char *name;
60f7655a 16268
55426c9d
JB
16269 if (child_die->tag != DW_TAG_enumerator)
16270 continue;
16271
16272 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16273 if (attr == NULL)
16274 continue;
16275
16276 name = dwarf2_name (child_die, cu);
16277 if (name == NULL)
16278 name = "<anonymous enumerator>";
16279
16280 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16281 &value, &bytes, &baton);
16282 if (value < 0)
16283 {
16284 unsigned_enum = 0;
16285 flag_enum = 0;
16286 }
16287 else if ((mask & value) != 0)
16288 flag_enum = 0;
16289 else
16290 mask |= value;
16291
16292 /* If we already know that the enum type is neither unsigned, nor
16293 a flag type, no need to look at the rest of the enumerates. */
16294 if (!unsigned_enum && !flag_enum)
16295 break;
55426c9d
JB
16296 }
16297
16298 if (unsigned_enum)
16299 TYPE_UNSIGNED (type) = 1;
16300 if (flag_enum)
16301 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
16302}
16303
134d01f1
DJ
16304/* Given a DW_AT_enumeration_type die, set its type. We do not
16305 complete the type's fields yet, or create any symbols. */
c906108c 16306
f792889a 16307static struct type *
134d01f1 16308read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16309{
518817b3 16310 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16311 struct type *type;
c906108c 16312 struct attribute *attr;
0114d602 16313 const char *name;
134d01f1 16314
348e048f
DE
16315 /* If the definition of this type lives in .debug_types, read that type.
16316 Don't follow DW_AT_specification though, that will take us back up
16317 the chain and we want to go down. */
45e58e77 16318 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
16319 if (attr)
16320 {
ac9ec31b 16321 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 16322
ac9ec31b 16323 /* The type's CU may not be the same as CU.
02142a6c 16324 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
16325 return set_die_type (die, type, cu);
16326 }
16327
c906108c
SS
16328 type = alloc_type (objfile);
16329
16330 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 16331 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 16332 if (name != NULL)
e86ca25f 16333 TYPE_NAME (type) = name;
c906108c 16334
0626fc76
TT
16335 attr = dwarf2_attr (die, DW_AT_type, cu);
16336 if (attr != NULL)
16337 {
16338 struct type *underlying_type = die_type (die, cu);
16339
16340 TYPE_TARGET_TYPE (type) = underlying_type;
16341 }
16342
e142c38c 16343 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
16344 if (attr)
16345 {
16346 TYPE_LENGTH (type) = DW_UNSND (attr);
16347 }
16348 else
16349 {
16350 TYPE_LENGTH (type) = 0;
16351 }
16352
2b4424c3
TT
16353 maybe_set_alignment (cu, die, type);
16354
137033e9
JB
16355 /* The enumeration DIE can be incomplete. In Ada, any type can be
16356 declared as private in the package spec, and then defined only
16357 inside the package body. Such types are known as Taft Amendment
16358 Types. When another package uses such a type, an incomplete DIE
16359 may be generated by the compiler. */
02eb380e 16360 if (die_is_declaration (die, cu))
876cecd0 16361 TYPE_STUB (type) = 1;
02eb380e 16362
0626fc76
TT
16363 /* Finish the creation of this type by using the enum's children.
16364 We must call this even when the underlying type has been provided
16365 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
16366 update_enumeration_type_from_children (die, type, cu);
16367
0626fc76
TT
16368 /* If this type has an underlying type that is not a stub, then we
16369 may use its attributes. We always use the "unsigned" attribute
16370 in this situation, because ordinarily we guess whether the type
16371 is unsigned -- but the guess can be wrong and the underlying type
16372 can tell us the reality. However, we defer to a local size
16373 attribute if one exists, because this lets the compiler override
16374 the underlying type if needed. */
16375 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16376 {
16377 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16378 if (TYPE_LENGTH (type) == 0)
16379 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
2b4424c3
TT
16380 if (TYPE_RAW_ALIGN (type) == 0
16381 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16382 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
0626fc76
TT
16383 }
16384
3d567982
TT
16385 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16386
f792889a 16387 return set_die_type (die, type, cu);
134d01f1
DJ
16388}
16389
16390/* Given a pointer to a die which begins an enumeration, process all
16391 the dies that define the members of the enumeration, and create the
16392 symbol for the enumeration type.
16393
16394 NOTE: We reverse the order of the element list. */
16395
16396static void
16397process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16398{
f792889a 16399 struct type *this_type;
134d01f1 16400
f792889a
DJ
16401 this_type = get_die_type (die, cu);
16402 if (this_type == NULL)
16403 this_type = read_enumeration_type (die, cu);
9dc481d3 16404
639d11d3 16405 if (die->child != NULL)
c906108c 16406 {
9dc481d3
DE
16407 struct die_info *child_die;
16408 struct symbol *sym;
16409 struct field *fields = NULL;
16410 int num_fields = 0;
15d034d0 16411 const char *name;
9dc481d3 16412
639d11d3 16413 child_die = die->child;
c906108c
SS
16414 while (child_die && child_die->tag)
16415 {
16416 if (child_die->tag != DW_TAG_enumerator)
16417 {
e7c27a73 16418 process_die (child_die, cu);
c906108c
SS
16419 }
16420 else
16421 {
39cbfefa
DJ
16422 name = dwarf2_name (child_die, cu);
16423 if (name)
c906108c 16424 {
f792889a 16425 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
16426
16427 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16428 {
16429 fields = (struct field *)
16430 xrealloc (fields,
16431 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 16432 * sizeof (struct field));
c906108c
SS
16433 }
16434
3567439c 16435 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 16436 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 16437 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
16438 FIELD_BITSIZE (fields[num_fields]) = 0;
16439
16440 num_fields++;
16441 }
16442 }
16443
16444 child_die = sibling_die (child_die);
16445 }
16446
16447 if (num_fields)
16448 {
f792889a
DJ
16449 TYPE_NFIELDS (this_type) = num_fields;
16450 TYPE_FIELDS (this_type) = (struct field *)
16451 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16452 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 16453 sizeof (struct field) * num_fields);
b8c9b27d 16454 xfree (fields);
c906108c 16455 }
c906108c 16456 }
134d01f1 16457
6c83ed52
TT
16458 /* If we are reading an enum from a .debug_types unit, and the enum
16459 is a declaration, and the enum is not the signatured type in the
16460 unit, then we do not want to add a symbol for it. Adding a
16461 symbol would in some cases obscure the true definition of the
16462 enum, giving users an incomplete type when the definition is
16463 actually available. Note that we do not want to do this for all
16464 enums which are just declarations, because C++0x allows forward
16465 enum declarations. */
3019eac3 16466 if (cu->per_cu->is_debug_types
6c83ed52
TT
16467 && die_is_declaration (die, cu))
16468 {
52dc124a 16469 struct signatured_type *sig_type;
6c83ed52 16470
c0f78cd4 16471 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
16472 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16473 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
16474 return;
16475 }
16476
f792889a 16477 new_symbol (die, this_type, cu);
c906108c
SS
16478}
16479
16480/* Extract all information from a DW_TAG_array_type DIE and put it in
16481 the DIE's type field. For now, this only handles one dimensional
16482 arrays. */
16483
f792889a 16484static struct type *
e7c27a73 16485read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16486{
518817b3 16487 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16488 struct die_info *child_die;
7e314c57 16489 struct type *type;
c906108c 16490 struct type *element_type, *range_type, *index_type;
c906108c 16491 struct attribute *attr;
15d034d0 16492 const char *name;
a405673c 16493 struct dynamic_prop *byte_stride_prop = NULL;
dc53a7ad 16494 unsigned int bit_stride = 0;
c906108c 16495
e7c27a73 16496 element_type = die_type (die, cu);
c906108c 16497
7e314c57
JK
16498 /* The die_type call above may have already set the type for this DIE. */
16499 type = get_die_type (die, cu);
16500 if (type)
16501 return type;
16502
dc53a7ad
JB
16503 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16504 if (attr != NULL)
a405673c
JB
16505 {
16506 int stride_ok;
9a49df9d
AB
16507 struct type *prop_type
16508 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
a405673c
JB
16509
16510 byte_stride_prop
16511 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
9a49df9d
AB
16512 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16513 prop_type);
a405673c
JB
16514 if (!stride_ok)
16515 {
b98664d3 16516 complaint (_("unable to read array DW_AT_byte_stride "
9d8780f0
SM
16517 " - DIE at %s [in module %s]"),
16518 sect_offset_str (die->sect_off),
518817b3 16519 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a405673c
JB
16520 /* Ignore this attribute. We will likely not be able to print
16521 arrays of this type correctly, but there is little we can do
16522 to help if we cannot read the attribute's value. */
16523 byte_stride_prop = NULL;
16524 }
16525 }
dc53a7ad
JB
16526
16527 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16528 if (attr != NULL)
16529 bit_stride = DW_UNSND (attr);
16530
c906108c
SS
16531 /* Irix 6.2 native cc creates array types without children for
16532 arrays with unspecified length. */
639d11d3 16533 if (die->child == NULL)
c906108c 16534 {
46bf5051 16535 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 16536 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad 16537 type = create_array_type_with_stride (NULL, element_type, range_type,
a405673c 16538 byte_stride_prop, bit_stride);
f792889a 16539 return set_die_type (die, type, cu);
c906108c
SS
16540 }
16541
791afaa2 16542 std::vector<struct type *> range_types;
639d11d3 16543 child_die = die->child;
c906108c
SS
16544 while (child_die && child_die->tag)
16545 {
16546 if (child_die->tag == DW_TAG_subrange_type)
16547 {
f792889a 16548 struct type *child_type = read_type_die (child_die, cu);
9a619af0 16549
f792889a 16550 if (child_type != NULL)
a02abb62 16551 {
0963b4bd
MS
16552 /* The range type was succesfully read. Save it for the
16553 array type creation. */
791afaa2 16554 range_types.push_back (child_type);
a02abb62 16555 }
c906108c
SS
16556 }
16557 child_die = sibling_die (child_die);
16558 }
16559
16560 /* Dwarf2 dimensions are output from left to right, create the
16561 necessary array types in backwards order. */
7ca2d3a3 16562
c906108c 16563 type = element_type;
7ca2d3a3
DL
16564
16565 if (read_array_order (die, cu) == DW_ORD_col_major)
16566 {
16567 int i = 0;
9a619af0 16568
791afaa2 16569 while (i < range_types.size ())
dc53a7ad 16570 type = create_array_type_with_stride (NULL, type, range_types[i++],
a405673c 16571 byte_stride_prop, bit_stride);
7ca2d3a3
DL
16572 }
16573 else
16574 {
791afaa2 16575 size_t ndim = range_types.size ();
7ca2d3a3 16576 while (ndim-- > 0)
dc53a7ad 16577 type = create_array_type_with_stride (NULL, type, range_types[ndim],
a405673c 16578 byte_stride_prop, bit_stride);
7ca2d3a3 16579 }
c906108c 16580
f5f8a009
EZ
16581 /* Understand Dwarf2 support for vector types (like they occur on
16582 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16583 array type. This is not part of the Dwarf2/3 standard yet, but a
16584 custom vendor extension. The main difference between a regular
16585 array and the vector variant is that vectors are passed by value
16586 to functions. */
e142c38c 16587 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 16588 if (attr)
ea37ba09 16589 make_vector_type (type);
f5f8a009 16590
dbc98a8b
KW
16591 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16592 implementation may choose to implement triple vectors using this
16593 attribute. */
16594 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16595 if (attr)
16596 {
16597 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16598 TYPE_LENGTH (type) = DW_UNSND (attr);
16599 else
b98664d3 16600 complaint (_("DW_AT_byte_size for array type smaller "
3e43a32a 16601 "than the total size of elements"));
dbc98a8b
KW
16602 }
16603
39cbfefa
DJ
16604 name = dwarf2_name (die, cu);
16605 if (name)
16606 TYPE_NAME (type) = name;
6e70227d 16607
2b4424c3
TT
16608 maybe_set_alignment (cu, die, type);
16609
0963b4bd 16610 /* Install the type in the die. */
7e314c57
JK
16611 set_die_type (die, type, cu);
16612
16613 /* set_die_type should be already done. */
b4ba55a1
JB
16614 set_descriptive_type (type, die, cu);
16615
7e314c57 16616 return type;
c906108c
SS
16617}
16618
7ca2d3a3 16619static enum dwarf_array_dim_ordering
6e70227d 16620read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
16621{
16622 struct attribute *attr;
16623
16624 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16625
aead7601
SM
16626 if (attr)
16627 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 16628
0963b4bd
MS
16629 /* GNU F77 is a special case, as at 08/2004 array type info is the
16630 opposite order to the dwarf2 specification, but data is still
16631 laid out as per normal fortran.
7ca2d3a3 16632
0963b4bd
MS
16633 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16634 version checking. */
7ca2d3a3 16635
905e0470
PM
16636 if (cu->language == language_fortran
16637 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
16638 {
16639 return DW_ORD_row_major;
16640 }
16641
6e70227d 16642 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
16643 {
16644 case array_column_major:
16645 return DW_ORD_col_major;
16646 case array_row_major:
16647 default:
16648 return DW_ORD_row_major;
16649 };
16650}
16651
72019c9c 16652/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 16653 the DIE's type field. */
72019c9c 16654
f792889a 16655static struct type *
72019c9c
GM
16656read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16657{
7e314c57
JK
16658 struct type *domain_type, *set_type;
16659 struct attribute *attr;
f792889a 16660
7e314c57
JK
16661 domain_type = die_type (die, cu);
16662
16663 /* The die_type call above may have already set the type for this DIE. */
16664 set_type = get_die_type (die, cu);
16665 if (set_type)
16666 return set_type;
16667
16668 set_type = create_set_type (NULL, domain_type);
16669
16670 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
16671 if (attr)
16672 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 16673
2b4424c3
TT
16674 maybe_set_alignment (cu, die, set_type);
16675
f792889a 16676 return set_die_type (die, set_type, cu);
72019c9c 16677}
7ca2d3a3 16678
0971de02
TT
16679/* A helper for read_common_block that creates a locexpr baton.
16680 SYM is the symbol which we are marking as computed.
16681 COMMON_DIE is the DIE for the common block.
16682 COMMON_LOC is the location expression attribute for the common
16683 block itself.
16684 MEMBER_LOC is the location expression attribute for the particular
16685 member of the common block that we are processing.
16686 CU is the CU from which the above come. */
16687
16688static void
16689mark_common_block_symbol_computed (struct symbol *sym,
16690 struct die_info *common_die,
16691 struct attribute *common_loc,
16692 struct attribute *member_loc,
16693 struct dwarf2_cu *cu)
16694{
518817b3
SM
16695 struct dwarf2_per_objfile *dwarf2_per_objfile
16696 = cu->per_cu->dwarf2_per_objfile;
0971de02
TT
16697 struct objfile *objfile = dwarf2_per_objfile->objfile;
16698 struct dwarf2_locexpr_baton *baton;
16699 gdb_byte *ptr;
16700 unsigned int cu_off;
16701 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16702 LONGEST offset = 0;
16703
16704 gdb_assert (common_loc && member_loc);
16705 gdb_assert (attr_form_is_block (common_loc));
16706 gdb_assert (attr_form_is_block (member_loc)
16707 || attr_form_is_constant (member_loc));
16708
8d749320 16709 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
16710 baton->per_cu = cu->per_cu;
16711 gdb_assert (baton->per_cu);
16712
16713 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16714
16715 if (attr_form_is_constant (member_loc))
16716 {
16717 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16718 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16719 }
16720 else
16721 baton->size += DW_BLOCK (member_loc)->size;
16722
224c3ddb 16723 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
16724 baton->data = ptr;
16725
16726 *ptr++ = DW_OP_call4;
9c541725 16727 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
16728 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16729 ptr += 4;
16730
16731 if (attr_form_is_constant (member_loc))
16732 {
16733 *ptr++ = DW_OP_addr;
16734 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16735 ptr += cu->header.addr_size;
16736 }
16737 else
16738 {
16739 /* We have to copy the data here, because DW_OP_call4 will only
16740 use a DW_AT_location attribute. */
16741 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16742 ptr += DW_BLOCK (member_loc)->size;
16743 }
16744
16745 *ptr++ = DW_OP_plus;
16746 gdb_assert (ptr - baton->data == baton->size);
16747
0971de02 16748 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16749 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
16750}
16751
4357ac6c
TT
16752/* Create appropriate locally-scoped variables for all the
16753 DW_TAG_common_block entries. Also create a struct common_block
16754 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16755 is used to sepate the common blocks name namespace from regular
16756 variable names. */
c906108c
SS
16757
16758static void
e7c27a73 16759read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16760{
0971de02
TT
16761 struct attribute *attr;
16762
16763 attr = dwarf2_attr (die, DW_AT_location, cu);
16764 if (attr)
16765 {
16766 /* Support the .debug_loc offsets. */
16767 if (attr_form_is_block (attr))
16768 {
16769 /* Ok. */
16770 }
16771 else if (attr_form_is_section_offset (attr))
16772 {
16773 dwarf2_complex_location_expr_complaint ();
16774 attr = NULL;
16775 }
16776 else
16777 {
16778 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16779 "common block member");
16780 attr = NULL;
16781 }
16782 }
16783
639d11d3 16784 if (die->child != NULL)
c906108c 16785 {
518817b3 16786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
4357ac6c
TT
16787 struct die_info *child_die;
16788 size_t n_entries = 0, size;
16789 struct common_block *common_block;
16790 struct symbol *sym;
74ac6d43 16791
4357ac6c
TT
16792 for (child_die = die->child;
16793 child_die && child_die->tag;
16794 child_die = sibling_die (child_die))
16795 ++n_entries;
16796
16797 size = (sizeof (struct common_block)
16798 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
16799 common_block
16800 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16801 size);
4357ac6c
TT
16802 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16803 common_block->n_entries = 0;
16804
16805 for (child_die = die->child;
16806 child_die && child_die->tag;
16807 child_die = sibling_die (child_die))
16808 {
16809 /* Create the symbol in the DW_TAG_common_block block in the current
16810 symbol scope. */
e7c27a73 16811 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
16812 if (sym != NULL)
16813 {
16814 struct attribute *member_loc;
16815
16816 common_block->contents[common_block->n_entries++] = sym;
16817
16818 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16819 cu);
16820 if (member_loc)
16821 {
16822 /* GDB has handled this for a long time, but it is
16823 not specified by DWARF. It seems to have been
16824 emitted by gfortran at least as recently as:
16825 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
b98664d3 16826 complaint (_("Variable in common block has "
0971de02 16827 "DW_AT_data_member_location "
9d8780f0
SM
16828 "- DIE at %s [in module %s]"),
16829 sect_offset_str (child_die->sect_off),
518817b3 16830 objfile_name (objfile));
0971de02
TT
16831
16832 if (attr_form_is_section_offset (member_loc))
16833 dwarf2_complex_location_expr_complaint ();
16834 else if (attr_form_is_constant (member_loc)
16835 || attr_form_is_block (member_loc))
16836 {
16837 if (attr)
16838 mark_common_block_symbol_computed (sym, die, attr,
16839 member_loc, cu);
16840 }
16841 else
16842 dwarf2_complex_location_expr_complaint ();
16843 }
16844 }
c906108c 16845 }
4357ac6c
TT
16846
16847 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16848 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
16849 }
16850}
16851
0114d602 16852/* Create a type for a C++ namespace. */
d9fa45fe 16853
0114d602
DJ
16854static struct type *
16855read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 16856{
518817b3 16857 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16858 const char *previous_prefix, *name;
9219021c 16859 int is_anonymous;
0114d602
DJ
16860 struct type *type;
16861
16862 /* For extensions, reuse the type of the original namespace. */
16863 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16864 {
16865 struct die_info *ext_die;
16866 struct dwarf2_cu *ext_cu = cu;
9a619af0 16867
0114d602
DJ
16868 ext_die = dwarf2_extension (die, &ext_cu);
16869 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
16870
16871 /* EXT_CU may not be the same as CU.
02142a6c 16872 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
16873 return set_die_type (die, type, cu);
16874 }
9219021c 16875
e142c38c 16876 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
16877
16878 /* Now build the name of the current namespace. */
16879
0114d602
DJ
16880 previous_prefix = determine_prefix (die, cu);
16881 if (previous_prefix[0] != '\0')
16882 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 16883 previous_prefix, name, 0, cu);
0114d602
DJ
16884
16885 /* Create the type. */
19f392bc 16886 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602 16887
60531b24 16888 return set_die_type (die, type, cu);
0114d602
DJ
16889}
16890
22cee43f 16891/* Read a namespace scope. */
0114d602
DJ
16892
16893static void
16894read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16895{
518817b3 16896 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16897 int is_anonymous;
9219021c 16898
5c4e30ca
DC
16899 /* Add a symbol associated to this if we haven't seen the namespace
16900 before. Also, add a using directive if it's an anonymous
16901 namespace. */
9219021c 16902
f2f0e013 16903 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
16904 {
16905 struct type *type;
16906
0114d602 16907 type = read_type_die (die, cu);
e7c27a73 16908 new_symbol (die, type, cu);
5c4e30ca 16909
e8e80198 16910 namespace_name (die, &is_anonymous, cu);
5c4e30ca 16911 if (is_anonymous)
0114d602
DJ
16912 {
16913 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 16914
eb1e02fd 16915 std::vector<const char *> excludes;
804d2729 16916 add_using_directive (using_directives (cu),
22cee43f 16917 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 16918 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 16919 }
5c4e30ca 16920 }
9219021c 16921
639d11d3 16922 if (die->child != NULL)
d9fa45fe 16923 {
639d11d3 16924 struct die_info *child_die = die->child;
6e70227d 16925
d9fa45fe
DC
16926 while (child_die && child_die->tag)
16927 {
e7c27a73 16928 process_die (child_die, cu);
d9fa45fe
DC
16929 child_die = sibling_die (child_die);
16930 }
16931 }
38d518c9
EZ
16932}
16933
f55ee35c
JK
16934/* Read a Fortran module as type. This DIE can be only a declaration used for
16935 imported module. Still we need that type as local Fortran "use ... only"
16936 declaration imports depend on the created type in determine_prefix. */
16937
16938static struct type *
16939read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16940{
518817b3 16941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15d034d0 16942 const char *module_name;
f55ee35c
JK
16943 struct type *type;
16944
16945 module_name = dwarf2_name (die, cu);
19f392bc 16946 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c 16947
f55ee35c
JK
16948 return set_die_type (die, type, cu);
16949}
16950
5d7cb8df
JK
16951/* Read a Fortran module. */
16952
16953static void
16954read_module (struct die_info *die, struct dwarf2_cu *cu)
16955{
16956 struct die_info *child_die = die->child;
530e8392
KB
16957 struct type *type;
16958
16959 type = read_type_die (die, cu);
16960 new_symbol (die, type, cu);
5d7cb8df 16961
5d7cb8df
JK
16962 while (child_die && child_die->tag)
16963 {
16964 process_die (child_die, cu);
16965 child_die = sibling_die (child_die);
16966 }
16967}
16968
38d518c9
EZ
16969/* Return the name of the namespace represented by DIE. Set
16970 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16971 namespace. */
16972
16973static const char *
e142c38c 16974namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
16975{
16976 struct die_info *current_die;
16977 const char *name = NULL;
16978
16979 /* Loop through the extensions until we find a name. */
16980
16981 for (current_die = die;
16982 current_die != NULL;
f2f0e013 16983 current_die = dwarf2_extension (die, &cu))
38d518c9 16984 {
96553a0c
DE
16985 /* We don't use dwarf2_name here so that we can detect the absence
16986 of a name -> anonymous namespace. */
7d45c7c3 16987 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 16988
38d518c9
EZ
16989 if (name != NULL)
16990 break;
16991 }
16992
16993 /* Is it an anonymous namespace? */
16994
16995 *is_anonymous = (name == NULL);
16996 if (*is_anonymous)
2b1dbab0 16997 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
16998
16999 return name;
d9fa45fe
DC
17000}
17001
c906108c
SS
17002/* Extract all information from a DW_TAG_pointer_type DIE and add to
17003 the user defined type vector. */
17004
f792889a 17005static struct type *
e7c27a73 17006read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17007{
518817b3
SM
17008 struct gdbarch *gdbarch
17009 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
e7c27a73 17010 struct comp_unit_head *cu_header = &cu->header;
c906108c 17011 struct type *type;
8b2dbe47
KB
17012 struct attribute *attr_byte_size;
17013 struct attribute *attr_address_class;
17014 int byte_size, addr_class;
7e314c57
JK
17015 struct type *target_type;
17016
17017 target_type = die_type (die, cu);
c906108c 17018
7e314c57
JK
17019 /* The die_type call above may have already set the type for this DIE. */
17020 type = get_die_type (die, cu);
17021 if (type)
17022 return type;
17023
17024 type = lookup_pointer_type (target_type);
8b2dbe47 17025
e142c38c 17026 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
17027 if (attr_byte_size)
17028 byte_size = DW_UNSND (attr_byte_size);
c906108c 17029 else
8b2dbe47
KB
17030 byte_size = cu_header->addr_size;
17031
e142c38c 17032 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
17033 if (attr_address_class)
17034 addr_class = DW_UNSND (attr_address_class);
17035 else
17036 addr_class = DW_ADDR_none;
17037
2b4424c3
TT
17038 ULONGEST alignment = get_alignment (cu, die);
17039
17040 /* If the pointer size, alignment, or address class is different
17041 than the default, create a type variant marked as such and set
17042 the length accordingly. */
17043 if (TYPE_LENGTH (type) != byte_size
17044 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17045 && alignment != TYPE_RAW_ALIGN (type))
17046 || addr_class != DW_ADDR_none)
c906108c 17047 {
5e2b427d 17048 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
17049 {
17050 int type_flags;
17051
849957d9 17052 type_flags = gdbarch_address_class_type_flags
5e2b427d 17053 (gdbarch, byte_size, addr_class);
876cecd0
TT
17054 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17055 == 0);
8b2dbe47
KB
17056 type = make_type_with_address_space (type, type_flags);
17057 }
17058 else if (TYPE_LENGTH (type) != byte_size)
17059 {
b98664d3 17060 complaint (_("invalid pointer size %d"), byte_size);
8b2dbe47 17061 }
2b4424c3
TT
17062 else if (TYPE_RAW_ALIGN (type) != alignment)
17063 {
b98664d3 17064 complaint (_("Invalid DW_AT_alignment"
2b4424c3
TT
17065 " - DIE at %s [in module %s]"),
17066 sect_offset_str (die->sect_off),
17067 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17068 }
6e70227d 17069 else
9a619af0
MS
17070 {
17071 /* Should we also complain about unhandled address classes? */
17072 }
c906108c 17073 }
8b2dbe47
KB
17074
17075 TYPE_LENGTH (type) = byte_size;
2b4424c3 17076 set_type_align (type, alignment);
f792889a 17077 return set_die_type (die, type, cu);
c906108c
SS
17078}
17079
17080/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17081 the user defined type vector. */
17082
f792889a 17083static struct type *
e7c27a73 17084read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
17085{
17086 struct type *type;
17087 struct type *to_type;
17088 struct type *domain;
17089
e7c27a73
DJ
17090 to_type = die_type (die, cu);
17091 domain = die_containing_type (die, cu);
0d5de010 17092
7e314c57
JK
17093 /* The calls above may have already set the type for this DIE. */
17094 type = get_die_type (die, cu);
17095 if (type)
17096 return type;
17097
0d5de010
DJ
17098 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17099 type = lookup_methodptr_type (to_type);
7078baeb
TT
17100 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17101 {
518817b3
SM
17102 struct type *new_type
17103 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
7078baeb
TT
17104
17105 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17106 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17107 TYPE_VARARGS (to_type));
17108 type = lookup_methodptr_type (new_type);
17109 }
0d5de010
DJ
17110 else
17111 type = lookup_memberptr_type (to_type, domain);
c906108c 17112
f792889a 17113 return set_die_type (die, type, cu);
c906108c
SS
17114}
17115
4297a3f0 17116/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
17117 the user defined type vector. */
17118
f792889a 17119static struct type *
4297a3f0
AV
17120read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17121 enum type_code refcode)
c906108c 17122{
e7c27a73 17123 struct comp_unit_head *cu_header = &cu->header;
7e314c57 17124 struct type *type, *target_type;
c906108c
SS
17125 struct attribute *attr;
17126
4297a3f0
AV
17127 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17128
7e314c57
JK
17129 target_type = die_type (die, cu);
17130
17131 /* The die_type call above may have already set the type for this DIE. */
17132 type = get_die_type (die, cu);
17133 if (type)
17134 return type;
17135
4297a3f0 17136 type = lookup_reference_type (target_type, refcode);
e142c38c 17137 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17138 if (attr)
17139 {
17140 TYPE_LENGTH (type) = DW_UNSND (attr);
17141 }
17142 else
17143 {
107d2387 17144 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 17145 }
2b4424c3 17146 maybe_set_alignment (cu, die, type);
f792889a 17147 return set_die_type (die, type, cu);
c906108c
SS
17148}
17149
cf363f18
MW
17150/* Add the given cv-qualifiers to the element type of the array. GCC
17151 outputs DWARF type qualifiers that apply to an array, not the
17152 element type. But GDB relies on the array element type to carry
17153 the cv-qualifiers. This mimics section 6.7.3 of the C99
17154 specification. */
17155
17156static struct type *
17157add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17158 struct type *base_type, int cnst, int voltl)
17159{
17160 struct type *el_type, *inner_array;
17161
17162 base_type = copy_type (base_type);
17163 inner_array = base_type;
17164
17165 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17166 {
17167 TYPE_TARGET_TYPE (inner_array) =
17168 copy_type (TYPE_TARGET_TYPE (inner_array));
17169 inner_array = TYPE_TARGET_TYPE (inner_array);
17170 }
17171
17172 el_type = TYPE_TARGET_TYPE (inner_array);
17173 cnst |= TYPE_CONST (el_type);
17174 voltl |= TYPE_VOLATILE (el_type);
17175 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17176
17177 return set_die_type (die, base_type, cu);
17178}
17179
f792889a 17180static struct type *
e7c27a73 17181read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17182{
f792889a 17183 struct type *base_type, *cv_type;
c906108c 17184
e7c27a73 17185 base_type = die_type (die, cu);
7e314c57
JK
17186
17187 /* The die_type call above may have already set the type for this DIE. */
17188 cv_type = get_die_type (die, cu);
17189 if (cv_type)
17190 return cv_type;
17191
2f608a3a
KW
17192 /* In case the const qualifier is applied to an array type, the element type
17193 is so qualified, not the array type (section 6.7.3 of C99). */
17194 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 17195 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 17196
f792889a
DJ
17197 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17198 return set_die_type (die, cv_type, cu);
c906108c
SS
17199}
17200
f792889a 17201static struct type *
e7c27a73 17202read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17203{
f792889a 17204 struct type *base_type, *cv_type;
c906108c 17205
e7c27a73 17206 base_type = die_type (die, cu);
7e314c57
JK
17207
17208 /* The die_type call above may have already set the type for this DIE. */
17209 cv_type = get_die_type (die, cu);
17210 if (cv_type)
17211 return cv_type;
17212
cf363f18
MW
17213 /* In case the volatile qualifier is applied to an array type, the
17214 element type is so qualified, not the array type (section 6.7.3
17215 of C99). */
17216 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17217 return add_array_cv_type (die, cu, base_type, 0, 1);
17218
f792889a
DJ
17219 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17220 return set_die_type (die, cv_type, cu);
c906108c
SS
17221}
17222
06d66ee9
TT
17223/* Handle DW_TAG_restrict_type. */
17224
17225static struct type *
17226read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17227{
17228 struct type *base_type, *cv_type;
17229
17230 base_type = die_type (die, cu);
17231
17232 /* The die_type call above may have already set the type for this DIE. */
17233 cv_type = get_die_type (die, cu);
17234 if (cv_type)
17235 return cv_type;
17236
17237 cv_type = make_restrict_type (base_type);
17238 return set_die_type (die, cv_type, cu);
17239}
17240
a2c2acaf
MW
17241/* Handle DW_TAG_atomic_type. */
17242
17243static struct type *
17244read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17245{
17246 struct type *base_type, *cv_type;
17247
17248 base_type = die_type (die, cu);
17249
17250 /* The die_type call above may have already set the type for this DIE. */
17251 cv_type = get_die_type (die, cu);
17252 if (cv_type)
17253 return cv_type;
17254
17255 cv_type = make_atomic_type (base_type);
17256 return set_die_type (die, cv_type, cu);
17257}
17258
c906108c
SS
17259/* Extract all information from a DW_TAG_string_type DIE and add to
17260 the user defined type vector. It isn't really a user defined type,
17261 but it behaves like one, with other DIE's using an AT_user_def_type
17262 attribute to reference it. */
17263
f792889a 17264static struct type *
e7c27a73 17265read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17266{
518817b3 17267 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3b7538c0 17268 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
17269 struct type *type, *range_type, *index_type, *char_type;
17270 struct attribute *attr;
17271 unsigned int length;
17272
e142c38c 17273 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
17274 if (attr)
17275 {
17276 length = DW_UNSND (attr);
17277 }
17278 else
17279 {
0963b4bd 17280 /* Check for the DW_AT_byte_size attribute. */
e142c38c 17281 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
17282 if (attr)
17283 {
17284 length = DW_UNSND (attr);
17285 }
17286 else
17287 {
17288 length = 1;
17289 }
c906108c 17290 }
6ccb9162 17291
46bf5051 17292 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 17293 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
17294 char_type = language_string_char_type (cu->language_defn, gdbarch);
17295 type = create_string_type (NULL, char_type, range_type);
6ccb9162 17296
f792889a 17297 return set_die_type (die, type, cu);
c906108c
SS
17298}
17299
4d804846
JB
17300/* Assuming that DIE corresponds to a function, returns nonzero
17301 if the function is prototyped. */
17302
17303static int
17304prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17305{
17306 struct attribute *attr;
17307
17308 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17309 if (attr && (DW_UNSND (attr) != 0))
17310 return 1;
17311
17312 /* The DWARF standard implies that the DW_AT_prototyped attribute
17313 is only meaninful for C, but the concept also extends to other
17314 languages that allow unprototyped functions (Eg: Objective C).
17315 For all other languages, assume that functions are always
17316 prototyped. */
17317 if (cu->language != language_c
17318 && cu->language != language_objc
17319 && cu->language != language_opencl)
17320 return 1;
17321
17322 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17323 prototyped and unprototyped functions; default to prototyped,
17324 since that is more common in modern code (and RealView warns
17325 about unprototyped functions). */
17326 if (producer_is_realview (cu->producer))
17327 return 1;
17328
17329 return 0;
17330}
17331
c906108c
SS
17332/* Handle DIES due to C code like:
17333
17334 struct foo
c5aa993b
JM
17335 {
17336 int (*funcp)(int a, long l);
17337 int b;
17338 };
c906108c 17339
0963b4bd 17340 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 17341
f792889a 17342static struct type *
e7c27a73 17343read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17344{
518817b3 17345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0963b4bd
MS
17346 struct type *type; /* Type that this function returns. */
17347 struct type *ftype; /* Function that returns above type. */
c906108c
SS
17348 struct attribute *attr;
17349
e7c27a73 17350 type = die_type (die, cu);
7e314c57
JK
17351
17352 /* The die_type call above may have already set the type for this DIE. */
17353 ftype = get_die_type (die, cu);
17354 if (ftype)
17355 return ftype;
17356
0c8b41f1 17357 ftype = lookup_function_type (type);
c906108c 17358
4d804846 17359 if (prototyped_function_p (die, cu))
a6c727b2 17360 TYPE_PROTOTYPED (ftype) = 1;
c906108c 17361
c055b101
CV
17362 /* Store the calling convention in the type if it's available in
17363 the subroutine die. Otherwise set the calling convention to
17364 the default value DW_CC_normal. */
17365 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
17366 if (attr)
17367 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17368 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17369 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17370 else
17371 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 17372
743649fd
MW
17373 /* Record whether the function returns normally to its caller or not
17374 if the DWARF producer set that information. */
17375 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17376 if (attr && (DW_UNSND (attr) != 0))
17377 TYPE_NO_RETURN (ftype) = 1;
17378
76c10ea2
GM
17379 /* We need to add the subroutine type to the die immediately so
17380 we don't infinitely recurse when dealing with parameters
0963b4bd 17381 declared as the same subroutine type. */
76c10ea2 17382 set_die_type (die, ftype, cu);
6e70227d 17383
639d11d3 17384 if (die->child != NULL)
c906108c 17385 {
bb5ed363 17386 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 17387 struct die_info *child_die;
8072405b 17388 int nparams, iparams;
c906108c
SS
17389
17390 /* Count the number of parameters.
17391 FIXME: GDB currently ignores vararg functions, but knows about
17392 vararg member functions. */
8072405b 17393 nparams = 0;
639d11d3 17394 child_die = die->child;
c906108c
SS
17395 while (child_die && child_die->tag)
17396 {
17397 if (child_die->tag == DW_TAG_formal_parameter)
17398 nparams++;
17399 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 17400 TYPE_VARARGS (ftype) = 1;
c906108c
SS
17401 child_die = sibling_die (child_die);
17402 }
17403
17404 /* Allocate storage for parameters and fill them in. */
17405 TYPE_NFIELDS (ftype) = nparams;
17406 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 17407 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 17408
8072405b
JK
17409 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17410 even if we error out during the parameters reading below. */
17411 for (iparams = 0; iparams < nparams; iparams++)
17412 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17413
17414 iparams = 0;
639d11d3 17415 child_die = die->child;
c906108c
SS
17416 while (child_die && child_die->tag)
17417 {
17418 if (child_die->tag == DW_TAG_formal_parameter)
17419 {
3ce3b1ba
PA
17420 struct type *arg_type;
17421
17422 /* DWARF version 2 has no clean way to discern C++
17423 static and non-static member functions. G++ helps
17424 GDB by marking the first parameter for non-static
17425 member functions (which is the this pointer) as
17426 artificial. We pass this information to
17427 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17428
17429 DWARF version 3 added DW_AT_object_pointer, which GCC
17430 4.5 does not yet generate. */
e142c38c 17431 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
17432 if (attr)
17433 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17434 else
9c37b5ae 17435 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
17436 arg_type = die_type (child_die, cu);
17437
17438 /* RealView does not mark THIS as const, which the testsuite
17439 expects. GCC marks THIS as const in method definitions,
17440 but not in the class specifications (GCC PR 43053). */
17441 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17442 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17443 {
17444 int is_this = 0;
17445 struct dwarf2_cu *arg_cu = cu;
17446 const char *name = dwarf2_name (child_die, cu);
17447
17448 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17449 if (attr)
17450 {
17451 /* If the compiler emits this, use it. */
17452 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17453 is_this = 1;
17454 }
17455 else if (name && strcmp (name, "this") == 0)
17456 /* Function definitions will have the argument names. */
17457 is_this = 1;
17458 else if (name == NULL && iparams == 0)
17459 /* Declarations may not have the names, so like
17460 elsewhere in GDB, assume an artificial first
17461 argument is "this". */
17462 is_this = 1;
17463
17464 if (is_this)
17465 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17466 arg_type, 0);
17467 }
17468
17469 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
17470 iparams++;
17471 }
17472 child_die = sibling_die (child_die);
17473 }
17474 }
17475
76c10ea2 17476 return ftype;
c906108c
SS
17477}
17478
f792889a 17479static struct type *
e7c27a73 17480read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17481{
518817b3 17482 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17483 const char *name = NULL;
3c8e0968 17484 struct type *this_type, *target_type;
c906108c 17485
94af9270 17486 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
17487 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17488 TYPE_TARGET_STUB (this_type) = 1;
f792889a 17489 set_die_type (die, this_type, cu);
3c8e0968
DE
17490 target_type = die_type (die, cu);
17491 if (target_type != this_type)
17492 TYPE_TARGET_TYPE (this_type) = target_type;
17493 else
17494 {
17495 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17496 spec and cause infinite loops in GDB. */
b98664d3 17497 complaint (_("Self-referential DW_TAG_typedef "
9d8780f0
SM
17498 "- DIE at %s [in module %s]"),
17499 sect_offset_str (die->sect_off), objfile_name (objfile));
3c8e0968
DE
17500 TYPE_TARGET_TYPE (this_type) = NULL;
17501 }
f792889a 17502 return this_type;
c906108c
SS
17503}
17504
9b790ce7
UW
17505/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17506 (which may be different from NAME) to the architecture back-end to allow
17507 it to guess the correct format if necessary. */
17508
17509static struct type *
17510dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17511 const char *name_hint)
17512{
17513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17514 const struct floatformat **format;
17515 struct type *type;
17516
17517 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17518 if (format)
17519 type = init_float_type (objfile, bits, name, format);
17520 else
77b7c781 17521 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
17522
17523 return type;
17524}
17525
eb77c9df
AB
17526/* Allocate an integer type of size BITS and name NAME. */
17527
17528static struct type *
17529dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17530 int bits, int unsigned_p, const char *name)
17531{
17532 struct type *type;
17533
17534 /* Versions of Intel's C Compiler generate an integer type called "void"
17535 instead of using DW_TAG_unspecified_type. This has been seen on
17536 at least versions 14, 17, and 18. */
35ee2dc2
AB
17537 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17538 && strcmp (name, "void") == 0)
eb77c9df
AB
17539 type = objfile_type (objfile)->builtin_void;
17540 else
17541 type = init_integer_type (objfile, bits, unsigned_p, name);
17542
17543 return type;
17544}
17545
8bdc1658
AB
17546/* Initialise and return a floating point type of size BITS suitable for
17547 use as a component of a complex number. The NAME_HINT is passed through
17548 when initialising the floating point type and is the name of the complex
17549 type.
17550
17551 As DWARF doesn't currently provide an explicit name for the components
17552 of a complex number, but it can be helpful to have these components
17553 named, we try to select a suitable name based on the size of the
17554 component. */
17555static struct type *
17556dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17557 struct objfile *objfile,
17558 int bits, const char *name_hint)
17559{
17560 gdbarch *gdbarch = get_objfile_arch (objfile);
17561 struct type *tt = nullptr;
17562
35add35e
AB
17563 /* Try to find a suitable floating point builtin type of size BITS.
17564 We're going to use the name of this type as the name for the complex
17565 target type that we are about to create. */
1db455a7 17566 switch (cu->language)
8bdc1658 17567 {
1db455a7
AB
17568 case language_fortran:
17569 switch (bits)
17570 {
17571 case 32:
17572 tt = builtin_f_type (gdbarch)->builtin_real;
17573 break;
17574 case 64:
17575 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17576 break;
17577 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17578 case 128:
17579 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17580 break;
17581 }
8bdc1658 17582 break;
1db455a7
AB
17583 default:
17584 switch (bits)
17585 {
17586 case 32:
17587 tt = builtin_type (gdbarch)->builtin_float;
17588 break;
17589 case 64:
17590 tt = builtin_type (gdbarch)->builtin_double;
17591 break;
17592 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17593 case 128:
17594 tt = builtin_type (gdbarch)->builtin_long_double;
17595 break;
17596 }
8bdc1658
AB
17597 break;
17598 }
17599
35add35e
AB
17600 /* If the type we found doesn't match the size we were looking for, then
17601 pretend we didn't find a type at all, the complex target type we
17602 create will then be nameless. */
a12e5744 17603 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
35add35e
AB
17604 tt = nullptr;
17605
8bdc1658
AB
17606 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17607 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17608}
17609
c906108c
SS
17610/* Find a representation of a given base type and install
17611 it in the TYPE field of the die. */
17612
f792889a 17613static struct type *
e7c27a73 17614read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17615{
518817b3 17616 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
17617 struct type *type;
17618 struct attribute *attr;
19f392bc 17619 int encoding = 0, bits = 0;
15d034d0 17620 const char *name;
c906108c 17621
e142c38c 17622 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
17623 if (attr)
17624 {
17625 encoding = DW_UNSND (attr);
17626 }
e142c38c 17627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17628 if (attr)
17629 {
19f392bc 17630 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 17631 }
39cbfefa 17632 name = dwarf2_name (die, cu);
6ccb9162 17633 if (!name)
c906108c 17634 {
b98664d3 17635 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
c906108c 17636 }
6ccb9162
UW
17637
17638 switch (encoding)
c906108c 17639 {
6ccb9162
UW
17640 case DW_ATE_address:
17641 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 17642 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 17643 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
17644 break;
17645 case DW_ATE_boolean:
19f392bc 17646 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
17647 break;
17648 case DW_ATE_complex_float:
8bdc1658 17649 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
19f392bc 17650 type = init_complex_type (objfile, name, type);
6ccb9162
UW
17651 break;
17652 case DW_ATE_decimal_float:
19f392bc 17653 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
17654 break;
17655 case DW_ATE_float:
9b790ce7 17656 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
17657 break;
17658 case DW_ATE_signed:
eb77c9df 17659 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17660 break;
17661 case DW_ATE_unsigned:
3b2b8fea
TT
17662 if (cu->language == language_fortran
17663 && name
61012eef 17664 && startswith (name, "character("))
19f392bc
UW
17665 type = init_character_type (objfile, bits, 1, name);
17666 else
eb77c9df 17667 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162
UW
17668 break;
17669 case DW_ATE_signed_char:
6e70227d 17670 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
17671 || cu->language == language_pascal
17672 || cu->language == language_fortran)
19f392bc
UW
17673 type = init_character_type (objfile, bits, 0, name);
17674 else
eb77c9df 17675 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17676 break;
17677 case DW_ATE_unsigned_char:
868a0084 17678 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 17679 || cu->language == language_pascal
c44af4eb
TT
17680 || cu->language == language_fortran
17681 || cu->language == language_rust)
19f392bc
UW
17682 type = init_character_type (objfile, bits, 1, name);
17683 else
eb77c9df 17684 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162 17685 break;
75079b2b 17686 case DW_ATE_UTF:
53e710ac
PA
17687 {
17688 gdbarch *arch = get_objfile_arch (objfile);
17689
17690 if (bits == 16)
17691 type = builtin_type (arch)->builtin_char16;
17692 else if (bits == 32)
17693 type = builtin_type (arch)->builtin_char32;
17694 else
17695 {
b98664d3 17696 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
53e710ac 17697 bits);
eb77c9df 17698 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
53e710ac
PA
17699 }
17700 return set_die_type (die, type, cu);
17701 }
75079b2b
TT
17702 break;
17703
6ccb9162 17704 default:
b98664d3 17705 complaint (_("unsupported DW_AT_encoding: '%s'"),
6ccb9162 17706 dwarf_type_encoding_name (encoding));
77b7c781 17707 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 17708 break;
c906108c 17709 }
6ccb9162 17710
0114d602 17711 if (name && strcmp (name, "char") == 0)
876cecd0 17712 TYPE_NOSIGN (type) = 1;
0114d602 17713
2b4424c3
TT
17714 maybe_set_alignment (cu, die, type);
17715
f792889a 17716 return set_die_type (die, type, cu);
c906108c
SS
17717}
17718
80180f79
SA
17719/* Parse dwarf attribute if it's a block, reference or constant and put the
17720 resulting value of the attribute into struct bound_prop.
17721 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17722
17723static int
17724attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
9a49df9d
AB
17725 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17726 struct type *default_type)
80180f79
SA
17727{
17728 struct dwarf2_property_baton *baton;
518817b3
SM
17729 struct obstack *obstack
17730 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
80180f79 17731
9a49df9d
AB
17732 gdb_assert (default_type != NULL);
17733
80180f79
SA
17734 if (attr == NULL || prop == NULL)
17735 return 0;
17736
17737 if (attr_form_is_block (attr))
17738 {
8d749320 17739 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 17740 baton->property_type = default_type;
80180f79
SA
17741 baton->locexpr.per_cu = cu->per_cu;
17742 baton->locexpr.size = DW_BLOCK (attr)->size;
17743 baton->locexpr.data = DW_BLOCK (attr)->data;
9a49df9d 17744 baton->locexpr.is_reference = false;
80180f79
SA
17745 prop->data.baton = baton;
17746 prop->kind = PROP_LOCEXPR;
17747 gdb_assert (prop->data.baton != NULL);
17748 }
17749 else if (attr_form_is_ref (attr))
17750 {
17751 struct dwarf2_cu *target_cu = cu;
17752 struct die_info *target_die;
17753 struct attribute *target_attr;
17754
17755 target_die = follow_die_ref (die, attr, &target_cu);
17756 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
17757 if (target_attr == NULL)
17758 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17759 target_cu);
80180f79
SA
17760 if (target_attr == NULL)
17761 return 0;
17762
df25ebbd 17763 switch (target_attr->name)
80180f79 17764 {
df25ebbd
JB
17765 case DW_AT_location:
17766 if (attr_form_is_section_offset (target_attr))
17767 {
8d749320 17768 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 17769 baton->property_type = die_type (target_die, target_cu);
df25ebbd
JB
17770 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17771 prop->data.baton = baton;
17772 prop->kind = PROP_LOCLIST;
17773 gdb_assert (prop->data.baton != NULL);
17774 }
17775 else if (attr_form_is_block (target_attr))
17776 {
8d749320 17777 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 17778 baton->property_type = die_type (target_die, target_cu);
df25ebbd
JB
17779 baton->locexpr.per_cu = cu->per_cu;
17780 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17781 baton->locexpr.data = DW_BLOCK (target_attr)->data;
9a49df9d 17782 baton->locexpr.is_reference = true;
df25ebbd
JB
17783 prop->data.baton = baton;
17784 prop->kind = PROP_LOCEXPR;
17785 gdb_assert (prop->data.baton != NULL);
17786 }
17787 else
17788 {
17789 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17790 "dynamic property");
17791 return 0;
17792 }
17793 break;
17794 case DW_AT_data_member_location:
17795 {
17796 LONGEST offset;
17797
17798 if (!handle_data_member_location (target_die, target_cu,
17799 &offset))
17800 return 0;
17801
8d749320 17802 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 17803 baton->property_type = read_type_die (target_die->parent,
6ad395a7 17804 target_cu);
df25ebbd
JB
17805 baton->offset_info.offset = offset;
17806 baton->offset_info.type = die_type (target_die, target_cu);
17807 prop->data.baton = baton;
17808 prop->kind = PROP_ADDR_OFFSET;
17809 break;
17810 }
80180f79
SA
17811 }
17812 }
17813 else if (attr_form_is_constant (attr))
17814 {
17815 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17816 prop->kind = PROP_CONST;
17817 }
17818 else
17819 {
17820 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17821 dwarf2_name (die, cu));
17822 return 0;
17823 }
17824
17825 return 1;
17826}
17827
9a49df9d
AB
17828/* Find an integer type the same size as the address size given in the
17829 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17830 is unsigned or not. */
17831
17832static struct type *
17833dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17834 bool unsigned_p)
17835{
17836 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17837 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17838 struct type *int_type;
17839
17840 /* Helper macro to examine the various builtin types. */
17841#define TRY_TYPE(F) \
17842 int_type = (unsigned_p \
17843 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17844 : objfile_type (objfile)->builtin_ ## F); \
17845 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17846 return int_type
17847
17848 TRY_TYPE (char);
17849 TRY_TYPE (short);
17850 TRY_TYPE (int);
17851 TRY_TYPE (long);
17852 TRY_TYPE (long_long);
17853
17854#undef TRY_TYPE
17855
17856 gdb_assert_not_reached ("unable to find suitable integer type");
17857}
17858
b86352cf
AB
17859/* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17860 present (which is valid) then compute the default type based on the
17861 compilation units address size. */
17862
17863static struct type *
17864read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17865{
17866 struct type *index_type = die_type (die, cu);
17867
17868 /* Dwarf-2 specifications explicitly allows to create subrange types
17869 without specifying a base type.
17870 In that case, the base type must be set to the type of
17871 the lower bound, upper bound or count, in that order, if any of these
17872 three attributes references an object that has a type.
17873 If no base type is found, the Dwarf-2 specifications say that
17874 a signed integer type of size equal to the size of an address should
17875 be used.
17876 For the following C code: `extern char gdb_int [];'
17877 GCC produces an empty range DIE.
17878 FIXME: muller/2010-05-28: Possible references to object for low bound,
17879 high bound or count are not yet handled by this code. */
17880 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
9a49df9d 17881 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
b86352cf
AB
17882
17883 return index_type;
17884}
17885
a02abb62
JB
17886/* Read the given DW_AT_subrange DIE. */
17887
f792889a 17888static struct type *
a02abb62
JB
17889read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17890{
4c9ad8c2 17891 struct type *base_type, *orig_base_type;
a02abb62
JB
17892 struct type *range_type;
17893 struct attribute *attr;
729efb13 17894 struct dynamic_prop low, high;
4fae6e18 17895 int low_default_is_valid;
c451ebe5 17896 int high_bound_is_count = 0;
15d034d0 17897 const char *name;
d359392f 17898 ULONGEST negative_mask;
e77813c8 17899
b86352cf
AB
17900 orig_base_type = read_subrange_index_type (die, cu);
17901
4c9ad8c2
TT
17902 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17903 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17904 creating the range type, but we use the result of check_typedef
17905 when examining properties of the type. */
17906 base_type = check_typedef (orig_base_type);
a02abb62 17907
7e314c57
JK
17908 /* The die_type call above may have already set the type for this DIE. */
17909 range_type = get_die_type (die, cu);
17910 if (range_type)
17911 return range_type;
17912
729efb13
SA
17913 low.kind = PROP_CONST;
17914 high.kind = PROP_CONST;
17915 high.data.const_val = 0;
17916
4fae6e18
JK
17917 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17918 omitting DW_AT_lower_bound. */
17919 switch (cu->language)
6e70227d 17920 {
4fae6e18
JK
17921 case language_c:
17922 case language_cplus:
729efb13 17923 low.data.const_val = 0;
4fae6e18
JK
17924 low_default_is_valid = 1;
17925 break;
17926 case language_fortran:
729efb13 17927 low.data.const_val = 1;
4fae6e18
JK
17928 low_default_is_valid = 1;
17929 break;
17930 case language_d:
4fae6e18 17931 case language_objc:
c44af4eb 17932 case language_rust:
729efb13 17933 low.data.const_val = 0;
4fae6e18
JK
17934 low_default_is_valid = (cu->header.version >= 4);
17935 break;
17936 case language_ada:
17937 case language_m2:
17938 case language_pascal:
729efb13 17939 low.data.const_val = 1;
4fae6e18
JK
17940 low_default_is_valid = (cu->header.version >= 4);
17941 break;
17942 default:
729efb13 17943 low.data.const_val = 0;
4fae6e18
JK
17944 low_default_is_valid = 0;
17945 break;
a02abb62
JB
17946 }
17947
e142c38c 17948 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 17949 if (attr)
9a49df9d 17950 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
4fae6e18 17951 else if (!low_default_is_valid)
b98664d3 17952 complaint (_("Missing DW_AT_lower_bound "
9d8780f0
SM
17953 "- DIE at %s [in module %s]"),
17954 sect_offset_str (die->sect_off),
518817b3 17955 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a02abb62 17956
506f5c41
TV
17957 struct attribute *attr_ub, *attr_count;
17958 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
9a49df9d 17959 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
e77813c8 17960 {
506f5c41 17961 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
9a49df9d 17962 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
6b662e19 17963 {
c451ebe5
SA
17964 /* If bounds are constant do the final calculation here. */
17965 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17966 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17967 else
17968 high_bound_is_count = 1;
c2ff108b 17969 }
506f5c41
TV
17970 else
17971 {
17972 if (attr_ub != NULL)
17973 complaint (_("Unresolved DW_AT_upper_bound "
17974 "- DIE at %s [in module %s]"),
17975 sect_offset_str (die->sect_off),
17976 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17977 if (attr_count != NULL)
17978 complaint (_("Unresolved DW_AT_count "
17979 "- DIE at %s [in module %s]"),
17980 sect_offset_str (die->sect_off),
17981 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17982 }
e77813c8 17983 }
a02abb62 17984
4e962e74
TT
17985 LONGEST bias = 0;
17986 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17987 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
17988 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17989
dbb9c2b1
JB
17990 /* Normally, the DWARF producers are expected to use a signed
17991 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17992 But this is unfortunately not always the case, as witnessed
17993 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17994 is used instead. To work around that ambiguity, we treat
17995 the bounds as signed, and thus sign-extend their values, when
17996 the base type is signed. */
6e70227d 17997 negative_mask =
d359392f 17998 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
17999 if (low.kind == PROP_CONST
18000 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18001 low.data.const_val |= negative_mask;
18002 if (high.kind == PROP_CONST
18003 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18004 high.data.const_val |= negative_mask;
43bbcdc2 18005
4e962e74 18006 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
a02abb62 18007
c451ebe5
SA
18008 if (high_bound_is_count)
18009 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18010
c2ff108b
JK
18011 /* Ada expects an empty array on no boundary attributes. */
18012 if (attr == NULL && cu->language != language_ada)
729efb13 18013 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 18014
39cbfefa
DJ
18015 name = dwarf2_name (die, cu);
18016 if (name)
18017 TYPE_NAME (range_type) = name;
6e70227d 18018
e142c38c 18019 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
18020 if (attr)
18021 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18022
2b4424c3
TT
18023 maybe_set_alignment (cu, die, range_type);
18024
7e314c57
JK
18025 set_die_type (die, range_type, cu);
18026
18027 /* set_die_type should be already done. */
b4ba55a1
JB
18028 set_descriptive_type (range_type, die, cu);
18029
7e314c57 18030 return range_type;
a02abb62 18031}
6e70227d 18032
f792889a 18033static struct type *
81a17f79
JB
18034read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18035{
18036 struct type *type;
81a17f79 18037
518817b3
SM
18038 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18039 NULL);
0114d602 18040 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 18041
74a2f8ff
JB
18042 /* In Ada, an unspecified type is typically used when the description
18043 of the type is defered to a different unit. When encountering
18044 such a type, we treat it as a stub, and try to resolve it later on,
18045 when needed. */
18046 if (cu->language == language_ada)
18047 TYPE_STUB (type) = 1;
18048
f792889a 18049 return set_die_type (die, type, cu);
81a17f79 18050}
a02abb62 18051
639d11d3
DC
18052/* Read a single die and all its descendents. Set the die's sibling
18053 field to NULL; set other fields in the die correctly, and set all
18054 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18055 location of the info_ptr after reading all of those dies. PARENT
18056 is the parent of the die in question. */
18057
18058static struct die_info *
dee91e82 18059read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
18060 const gdb_byte *info_ptr,
18061 const gdb_byte **new_info_ptr,
dee91e82 18062 struct die_info *parent)
639d11d3
DC
18063{
18064 struct die_info *die;
d521ce57 18065 const gdb_byte *cur_ptr;
639d11d3
DC
18066 int has_children;
18067
bf6af496 18068 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
18069 if (die == NULL)
18070 {
18071 *new_info_ptr = cur_ptr;
18072 return NULL;
18073 }
93311388 18074 store_in_ref_table (die, reader->cu);
639d11d3
DC
18075
18076 if (has_children)
bf6af496 18077 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
18078 else
18079 {
18080 die->child = NULL;
18081 *new_info_ptr = cur_ptr;
18082 }
18083
18084 die->sibling = NULL;
18085 die->parent = parent;
18086 return die;
18087}
18088
18089/* Read a die, all of its descendents, and all of its siblings; set
18090 all of the fields of all of the dies correctly. Arguments are as
18091 in read_die_and_children. */
18092
18093static struct die_info *
bf6af496 18094read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
18095 const gdb_byte *info_ptr,
18096 const gdb_byte **new_info_ptr,
bf6af496 18097 struct die_info *parent)
639d11d3
DC
18098{
18099 struct die_info *first_die, *last_sibling;
d521ce57 18100 const gdb_byte *cur_ptr;
639d11d3 18101
c906108c 18102 cur_ptr = info_ptr;
639d11d3
DC
18103 first_die = last_sibling = NULL;
18104
18105 while (1)
c906108c 18106 {
639d11d3 18107 struct die_info *die
dee91e82 18108 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 18109
1d325ec1 18110 if (die == NULL)
c906108c 18111 {
639d11d3
DC
18112 *new_info_ptr = cur_ptr;
18113 return first_die;
c906108c 18114 }
1d325ec1
DJ
18115
18116 if (!first_die)
18117 first_die = die;
c906108c 18118 else
1d325ec1
DJ
18119 last_sibling->sibling = die;
18120
18121 last_sibling = die;
c906108c 18122 }
c906108c
SS
18123}
18124
bf6af496
DE
18125/* Read a die, all of its descendents, and all of its siblings; set
18126 all of the fields of all of the dies correctly. Arguments are as
18127 in read_die_and_children.
18128 This the main entry point for reading a DIE and all its children. */
18129
18130static struct die_info *
18131read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
18132 const gdb_byte *info_ptr,
18133 const gdb_byte **new_info_ptr,
bf6af496
DE
18134 struct die_info *parent)
18135{
18136 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18137 new_info_ptr, parent);
18138
b4f54984 18139 if (dwarf_die_debug)
bf6af496
DE
18140 {
18141 fprintf_unfiltered (gdb_stdlog,
18142 "Read die from %s@0x%x of %s:\n",
a32a8923 18143 get_section_name (reader->die_section),
bf6af496
DE
18144 (unsigned) (info_ptr - reader->die_section->buffer),
18145 bfd_get_filename (reader->abfd));
b4f54984 18146 dump_die (die, dwarf_die_debug);
bf6af496
DE
18147 }
18148
18149 return die;
18150}
18151
3019eac3
DE
18152/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18153 attributes.
18154 The caller is responsible for filling in the extra attributes
18155 and updating (*DIEP)->num_attrs.
18156 Set DIEP to point to a newly allocated die with its information,
18157 except for its child, sibling, and parent fields.
18158 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 18159
d521ce57 18160static const gdb_byte *
3019eac3 18161read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 18162 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 18163 int *has_children, int num_extra_attrs)
93311388 18164{
b64f50a1 18165 unsigned int abbrev_number, bytes_read, i;
93311388
DE
18166 struct abbrev_info *abbrev;
18167 struct die_info *die;
18168 struct dwarf2_cu *cu = reader->cu;
18169 bfd *abfd = reader->abfd;
18170
9c541725 18171 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
18172 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18173 info_ptr += bytes_read;
18174 if (!abbrev_number)
18175 {
18176 *diep = NULL;
18177 *has_children = 0;
18178 return info_ptr;
18179 }
18180
685af9cd 18181 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
93311388 18182 if (!abbrev)
348e048f
DE
18183 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18184 abbrev_number,
18185 bfd_get_filename (abfd));
18186
3019eac3 18187 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 18188 die->sect_off = sect_off;
93311388
DE
18189 die->tag = abbrev->tag;
18190 die->abbrev = abbrev_number;
18191
3019eac3
DE
18192 /* Make the result usable.
18193 The caller needs to update num_attrs after adding the extra
18194 attributes. */
93311388
DE
18195 die->num_attrs = abbrev->num_attrs;
18196
18197 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
18198 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18199 info_ptr);
93311388
DE
18200
18201 *diep = die;
18202 *has_children = abbrev->has_children;
18203 return info_ptr;
18204}
18205
3019eac3
DE
18206/* Read a die and all its attributes.
18207 Set DIEP to point to a newly allocated die with its information,
18208 except for its child, sibling, and parent fields.
18209 Set HAS_CHILDREN to tell whether the die has children or not. */
18210
d521ce57 18211static const gdb_byte *
3019eac3 18212read_full_die (const struct die_reader_specs *reader,
d521ce57 18213 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
18214 int *has_children)
18215{
d521ce57 18216 const gdb_byte *result;
bf6af496
DE
18217
18218 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18219
b4f54984 18220 if (dwarf_die_debug)
bf6af496
DE
18221 {
18222 fprintf_unfiltered (gdb_stdlog,
18223 "Read die from %s@0x%x of %s:\n",
a32a8923 18224 get_section_name (reader->die_section),
bf6af496
DE
18225 (unsigned) (info_ptr - reader->die_section->buffer),
18226 bfd_get_filename (reader->abfd));
b4f54984 18227 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
18228 }
18229
18230 return result;
3019eac3 18231}
433df2d4
DE
18232\f
18233/* Abbreviation tables.
3019eac3 18234
433df2d4 18235 In DWARF version 2, the description of the debugging information is
c906108c
SS
18236 stored in a separate .debug_abbrev section. Before we read any
18237 dies from a section we read in all abbreviations and install them
433df2d4
DE
18238 in a hash table. */
18239
18240/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18241
685af9cd
TT
18242struct abbrev_info *
18243abbrev_table::alloc_abbrev ()
433df2d4
DE
18244{
18245 struct abbrev_info *abbrev;
18246
685af9cd 18247 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
433df2d4 18248 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 18249
433df2d4
DE
18250 return abbrev;
18251}
18252
18253/* Add an abbreviation to the table. */
c906108c 18254
685af9cd
TT
18255void
18256abbrev_table::add_abbrev (unsigned int abbrev_number,
18257 struct abbrev_info *abbrev)
433df2d4
DE
18258{
18259 unsigned int hash_number;
18260
18261 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768
YQ
18262 abbrev->next = m_abbrevs[hash_number];
18263 m_abbrevs[hash_number] = abbrev;
433df2d4 18264}
dee91e82 18265
433df2d4
DE
18266/* Look up an abbrev in the table.
18267 Returns NULL if the abbrev is not found. */
18268
685af9cd
TT
18269struct abbrev_info *
18270abbrev_table::lookup_abbrev (unsigned int abbrev_number)
c906108c 18271{
433df2d4
DE
18272 unsigned int hash_number;
18273 struct abbrev_info *abbrev;
18274
18275 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768 18276 abbrev = m_abbrevs[hash_number];
433df2d4
DE
18277
18278 while (abbrev)
18279 {
18280 if (abbrev->number == abbrev_number)
18281 return abbrev;
18282 abbrev = abbrev->next;
18283 }
18284 return NULL;
18285}
18286
18287/* Read in an abbrev table. */
18288
685af9cd 18289static abbrev_table_up
ed2dc618
SM
18290abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18291 struct dwarf2_section_info *section,
9c541725 18292 sect_offset sect_off)
433df2d4
DE
18293{
18294 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 18295 bfd *abfd = get_section_bfd_owner (section);
d521ce57 18296 const gdb_byte *abbrev_ptr;
c906108c
SS
18297 struct abbrev_info *cur_abbrev;
18298 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 18299 unsigned int abbrev_form;
f3dd6933
DJ
18300 struct attr_abbrev *cur_attrs;
18301 unsigned int allocated_attrs;
c906108c 18302
685af9cd 18303 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
c906108c 18304
433df2d4 18305 dwarf2_read_section (objfile, section);
9c541725 18306 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
18307 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18308 abbrev_ptr += bytes_read;
18309
f3dd6933 18310 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 18311 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 18312
0963b4bd 18313 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
18314 while (abbrev_number)
18315 {
685af9cd 18316 cur_abbrev = abbrev_table->alloc_abbrev ();
c906108c
SS
18317
18318 /* read in abbrev header */
18319 cur_abbrev->number = abbrev_number;
aead7601
SM
18320 cur_abbrev->tag
18321 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
18322 abbrev_ptr += bytes_read;
18323 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18324 abbrev_ptr += 1;
18325
18326 /* now read in declarations */
22d2f3ab 18327 for (;;)
c906108c 18328 {
43988095
JK
18329 LONGEST implicit_const;
18330
22d2f3ab
JK
18331 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18332 abbrev_ptr += bytes_read;
18333 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18334 abbrev_ptr += bytes_read;
43988095
JK
18335 if (abbrev_form == DW_FORM_implicit_const)
18336 {
18337 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18338 &bytes_read);
18339 abbrev_ptr += bytes_read;
18340 }
18341 else
18342 {
18343 /* Initialize it due to a false compiler warning. */
18344 implicit_const = -1;
18345 }
22d2f3ab
JK
18346
18347 if (abbrev_name == 0)
18348 break;
18349
f3dd6933 18350 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 18351 {
f3dd6933
DJ
18352 allocated_attrs += ATTR_ALLOC_CHUNK;
18353 cur_attrs
224c3ddb 18354 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 18355 }
ae038cb0 18356
aead7601
SM
18357 cur_attrs[cur_abbrev->num_attrs].name
18358 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 18359 cur_attrs[cur_abbrev->num_attrs].form
aead7601 18360 = (enum dwarf_form) abbrev_form;
43988095 18361 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 18362 ++cur_abbrev->num_attrs;
c906108c
SS
18363 }
18364
8d749320
SM
18365 cur_abbrev->attrs =
18366 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18367 cur_abbrev->num_attrs);
f3dd6933
DJ
18368 memcpy (cur_abbrev->attrs, cur_attrs,
18369 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18370
685af9cd 18371 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
c906108c
SS
18372
18373 /* Get next abbreviation.
18374 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
18375 always properly terminated with an abbrev number of 0.
18376 Exit loop if we encounter an abbreviation which we have
18377 already read (which means we are about to read the abbreviations
18378 for the next compile unit) or if the end of the abbreviation
18379 table is reached. */
433df2d4 18380 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
18381 break;
18382 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18383 abbrev_ptr += bytes_read;
685af9cd 18384 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
c906108c
SS
18385 break;
18386 }
f3dd6933
DJ
18387
18388 xfree (cur_attrs);
433df2d4 18389 return abbrev_table;
c906108c
SS
18390}
18391
72bf9492
DJ
18392/* Returns nonzero if TAG represents a type that we might generate a partial
18393 symbol for. */
18394
18395static int
18396is_type_tag_for_partial (int tag)
18397{
18398 switch (tag)
18399 {
18400#if 0
18401 /* Some types that would be reasonable to generate partial symbols for,
18402 that we don't at present. */
18403 case DW_TAG_array_type:
18404 case DW_TAG_file_type:
18405 case DW_TAG_ptr_to_member_type:
18406 case DW_TAG_set_type:
18407 case DW_TAG_string_type:
18408 case DW_TAG_subroutine_type:
18409#endif
18410 case DW_TAG_base_type:
18411 case DW_TAG_class_type:
680b30c7 18412 case DW_TAG_interface_type:
72bf9492
DJ
18413 case DW_TAG_enumeration_type:
18414 case DW_TAG_structure_type:
18415 case DW_TAG_subrange_type:
18416 case DW_TAG_typedef:
18417 case DW_TAG_union_type:
18418 return 1;
18419 default:
18420 return 0;
18421 }
18422}
18423
18424/* Load all DIEs that are interesting for partial symbols into memory. */
18425
18426static struct partial_die_info *
dee91e82 18427load_partial_dies (const struct die_reader_specs *reader,
d521ce57 18428 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 18429{
dee91e82 18430 struct dwarf2_cu *cu = reader->cu;
518817b3 18431 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
72bf9492 18432 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
72bf9492 18433 unsigned int bytes_read;
5afb4e99 18434 unsigned int load_all = 0;
72bf9492
DJ
18435 int nesting_level = 1;
18436
18437 parent_die = NULL;
18438 last_die = NULL;
18439
7adf1e79
DE
18440 gdb_assert (cu->per_cu != NULL);
18441 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
18442 load_all = 1;
18443
72bf9492
DJ
18444 cu->partial_dies
18445 = htab_create_alloc_ex (cu->header.length / 12,
18446 partial_die_hash,
18447 partial_die_eq,
18448 NULL,
18449 &cu->comp_unit_obstack,
18450 hashtab_obstack_allocate,
18451 dummy_obstack_deallocate);
18452
72bf9492
DJ
18453 while (1)
18454 {
685af9cd 18455 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
72bf9492
DJ
18456
18457 /* A NULL abbrev means the end of a series of children. */
18458 if (abbrev == NULL)
18459 {
18460 if (--nesting_level == 0)
cd9983dd
YQ
18461 return first_die;
18462
72bf9492
DJ
18463 info_ptr += bytes_read;
18464 last_die = parent_die;
18465 parent_die = parent_die->die_parent;
18466 continue;
18467 }
18468
98bfdba5
PA
18469 /* Check for template arguments. We never save these; if
18470 they're seen, we just mark the parent, and go on our way. */
18471 if (parent_die != NULL
18472 && cu->language == language_cplus
18473 && (abbrev->tag == DW_TAG_template_type_param
18474 || abbrev->tag == DW_TAG_template_value_param))
18475 {
18476 parent_die->has_template_arguments = 1;
18477
18478 if (!load_all)
18479 {
18480 /* We don't need a partial DIE for the template argument. */
dee91e82 18481 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18482 continue;
18483 }
18484 }
18485
0d99eb77 18486 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
18487 Skip their other children. */
18488 if (!load_all
18489 && cu->language == language_cplus
18490 && parent_die != NULL
18491 && parent_die->tag == DW_TAG_subprogram)
18492 {
dee91e82 18493 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18494 continue;
18495 }
18496
5afb4e99
DJ
18497 /* Check whether this DIE is interesting enough to save. Normally
18498 we would not be interested in members here, but there may be
18499 later variables referencing them via DW_AT_specification (for
18500 static members). */
18501 if (!load_all
18502 && !is_type_tag_for_partial (abbrev->tag)
72929c62 18503 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
18504 && abbrev->tag != DW_TAG_enumerator
18505 && abbrev->tag != DW_TAG_subprogram
b1dc1806 18506 && abbrev->tag != DW_TAG_inlined_subroutine
bc30ff58 18507 && abbrev->tag != DW_TAG_lexical_block
72bf9492 18508 && abbrev->tag != DW_TAG_variable
5afb4e99 18509 && abbrev->tag != DW_TAG_namespace
f55ee35c 18510 && abbrev->tag != DW_TAG_module
95554aad 18511 && abbrev->tag != DW_TAG_member
74921315
KS
18512 && abbrev->tag != DW_TAG_imported_unit
18513 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
18514 {
18515 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18516 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
18517 continue;
18518 }
18519
6f06d47b
YQ
18520 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18521 abbrev);
cd9983dd 18522
48fbe735 18523 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
72bf9492
DJ
18524
18525 /* This two-pass algorithm for processing partial symbols has a
18526 high cost in cache pressure. Thus, handle some simple cases
18527 here which cover the majority of C partial symbols. DIEs
18528 which neither have specification tags in them, nor could have
18529 specification tags elsewhere pointing at them, can simply be
18530 processed and discarded.
18531
18532 This segment is also optional; scan_partial_symbols and
18533 add_partial_symbol will handle these DIEs if we chain
18534 them in normally. When compilers which do not emit large
18535 quantities of duplicate debug information are more common,
18536 this code can probably be removed. */
18537
18538 /* Any complete simple types at the top level (pretty much all
18539 of them, for a language without namespaces), can be processed
18540 directly. */
18541 if (parent_die == NULL
cd9983dd
YQ
18542 && pdi.has_specification == 0
18543 && pdi.is_declaration == 0
18544 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18545 || pdi.tag == DW_TAG_base_type
18546 || pdi.tag == DW_TAG_subrange_type))
72bf9492 18547 {
cd9983dd 18548 if (building_psymtab && pdi.name != NULL)
67547d89 18549 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
79748972 18550 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 18551 psymbol_placement::STATIC,
1762568f 18552 0, cu->language, objfile);
cd9983dd 18553 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18554 continue;
18555 }
18556
d8228535
JK
18557 /* The exception for DW_TAG_typedef with has_children above is
18558 a workaround of GCC PR debug/47510. In the case of this complaint
a737d952 18559 type_name_or_error will error on such types later.
d8228535
JK
18560
18561 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18562 it could not find the child DIEs referenced later, this is checked
18563 above. In correct DWARF DW_TAG_typedef should have no children. */
18564
cd9983dd 18565 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
b98664d3 18566 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9d8780f0 18567 "- DIE at %s [in module %s]"),
cd9983dd 18568 sect_offset_str (pdi.sect_off), objfile_name (objfile));
d8228535 18569
72bf9492
DJ
18570 /* If we're at the second level, and we're an enumerator, and
18571 our parent has no specification (meaning possibly lives in a
18572 namespace elsewhere), then we can add the partial symbol now
18573 instead of queueing it. */
cd9983dd 18574 if (pdi.tag == DW_TAG_enumerator
72bf9492
DJ
18575 && parent_die != NULL
18576 && parent_die->die_parent == NULL
18577 && parent_die->tag == DW_TAG_enumeration_type
18578 && parent_die->has_specification == 0)
18579 {
cd9983dd 18580 if (pdi.name == NULL)
b98664d3 18581 complaint (_("malformed enumerator DIE ignored"));
72bf9492 18582 else if (building_psymtab)
67547d89 18583 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
79748972 18584 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 18585 cu->language == language_cplus
75aedd27
TT
18586 ? psymbol_placement::GLOBAL
18587 : psymbol_placement::STATIC,
1762568f 18588 0, cu->language, objfile);
72bf9492 18589
cd9983dd 18590 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18591 continue;
18592 }
18593
cd9983dd 18594 struct partial_die_info *part_die
6f06d47b 18595 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
cd9983dd 18596
72bf9492
DJ
18597 /* We'll save this DIE so link it in. */
18598 part_die->die_parent = parent_die;
18599 part_die->die_sibling = NULL;
18600 part_die->die_child = NULL;
18601
18602 if (last_die && last_die == parent_die)
18603 last_die->die_child = part_die;
18604 else if (last_die)
18605 last_die->die_sibling = part_die;
18606
18607 last_die = part_die;
18608
18609 if (first_die == NULL)
18610 first_die = part_die;
18611
18612 /* Maybe add the DIE to the hash table. Not all DIEs that we
18613 find interesting need to be in the hash table, because we
18614 also have the parent/sibling/child chains; only those that we
18615 might refer to by offset later during partial symbol reading.
18616
18617 For now this means things that might have be the target of a
18618 DW_AT_specification, DW_AT_abstract_origin, or
18619 DW_AT_extension. DW_AT_extension will refer only to
18620 namespaces; DW_AT_abstract_origin refers to functions (and
18621 many things under the function DIE, but we do not recurse
18622 into function DIEs during partial symbol reading) and
18623 possibly variables as well; DW_AT_specification refers to
18624 declarations. Declarations ought to have the DW_AT_declaration
18625 flag. It happens that GCC forgets to put it in sometimes, but
18626 only for functions, not for types.
18627
18628 Adding more things than necessary to the hash table is harmless
18629 except for the performance cost. Adding too few will result in
5afb4e99
DJ
18630 wasted time in find_partial_die, when we reread the compilation
18631 unit with load_all_dies set. */
72bf9492 18632
5afb4e99 18633 if (load_all
72929c62 18634 || abbrev->tag == DW_TAG_constant
5afb4e99 18635 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
18636 || abbrev->tag == DW_TAG_variable
18637 || abbrev->tag == DW_TAG_namespace
18638 || part_die->is_declaration)
18639 {
18640 void **slot;
18641
18642 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
18643 to_underlying (part_die->sect_off),
18644 INSERT);
72bf9492
DJ
18645 *slot = part_die;
18646 }
18647
72bf9492 18648 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 18649 we have no reason to follow the children of structures; for other
98bfdba5
PA
18650 languages we have to, so that we can get at method physnames
18651 to infer fully qualified class names, for DW_AT_specification,
18652 and for C++ template arguments. For C++, we also look one level
18653 inside functions to find template arguments (if the name of the
18654 function does not already contain the template arguments).
bc30ff58
JB
18655
18656 For Ada, we need to scan the children of subprograms and lexical
18657 blocks as well because Ada allows the definition of nested
18658 entities that could be interesting for the debugger, such as
18659 nested subprograms for instance. */
72bf9492 18660 if (last_die->has_children
5afb4e99
DJ
18661 && (load_all
18662 || last_die->tag == DW_TAG_namespace
f55ee35c 18663 || last_die->tag == DW_TAG_module
72bf9492 18664 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
18665 || (cu->language == language_cplus
18666 && last_die->tag == DW_TAG_subprogram
18667 && (last_die->name == NULL
18668 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
18669 || (cu->language != language_c
18670 && (last_die->tag == DW_TAG_class_type
680b30c7 18671 || last_die->tag == DW_TAG_interface_type
72bf9492 18672 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
18673 || last_die->tag == DW_TAG_union_type))
18674 || (cu->language == language_ada
18675 && (last_die->tag == DW_TAG_subprogram
18676 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
18677 {
18678 nesting_level++;
18679 parent_die = last_die;
18680 continue;
18681 }
18682
18683 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18684 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
18685
18686 /* Back to the top, do it again. */
18687 }
18688}
18689
6f06d47b
YQ
18690partial_die_info::partial_die_info (sect_offset sect_off_,
18691 struct abbrev_info *abbrev)
18692 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18693{
18694}
18695
35cc7ed7
YQ
18696/* Read a minimal amount of information into the minimal die structure.
18697 INFO_PTR should point just after the initial uleb128 of a DIE. */
c906108c 18698
48fbe735
YQ
18699const gdb_byte *
18700partial_die_info::read (const struct die_reader_specs *reader,
18701 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
c906108c 18702{
dee91e82 18703 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18704 struct dwarf2_per_objfile *dwarf2_per_objfile
18705 = cu->per_cu->dwarf2_per_objfile;
fa238c03 18706 unsigned int i;
c5aa993b 18707 int has_low_pc_attr = 0;
c906108c 18708 int has_high_pc_attr = 0;
91da1414 18709 int high_pc_relative = 0;
c906108c 18710
fd0a254f 18711 for (i = 0; i < abbrev.num_attrs; ++i)
c906108c 18712 {
48fbe735
YQ
18713 struct attribute attr;
18714
fd0a254f 18715 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
c906108c
SS
18716
18717 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 18718 partial symbol table. */
c906108c
SS
18719 switch (attr.name)
18720 {
18721 case DW_AT_name:
48fbe735 18722 switch (tag)
71c25dea
TT
18723 {
18724 case DW_TAG_compile_unit:
95554aad 18725 case DW_TAG_partial_unit:
348e048f 18726 case DW_TAG_type_unit:
71c25dea
TT
18727 /* Compilation units have a DW_AT_name that is a filename, not
18728 a source language identifier. */
18729 case DW_TAG_enumeration_type:
18730 case DW_TAG_enumerator:
18731 /* These tags always have simple identifiers already; no need
18732 to canonicalize them. */
48fbe735 18733 name = DW_STRING (&attr);
71c25dea
TT
18734 break;
18735 default:
48fbe735
YQ
18736 {
18737 struct objfile *objfile = dwarf2_per_objfile->objfile;
18738
18739 name
18740 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18741 &objfile->per_bfd->storage_obstack);
18742 }
71c25dea
TT
18743 break;
18744 }
c906108c 18745 break;
31ef98ae 18746 case DW_AT_linkage_name:
c906108c 18747 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
18748 /* Note that both forms of linkage name might appear. We
18749 assume they will be the same, and we only store the last
18750 one we see. */
48fbe735 18751 linkage_name = DW_STRING (&attr);
c906108c
SS
18752 break;
18753 case DW_AT_low_pc:
18754 has_low_pc_attr = 1;
48fbe735 18755 lowpc = attr_value_as_address (&attr);
c906108c
SS
18756 break;
18757 case DW_AT_high_pc:
18758 has_high_pc_attr = 1;
48fbe735 18759 highpc = attr_value_as_address (&attr);
31aa7e4e
JB
18760 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18761 high_pc_relative = 1;
c906108c
SS
18762 break;
18763 case DW_AT_location:
0963b4bd 18764 /* Support the .debug_loc offsets. */
8e19ed76
PS
18765 if (attr_form_is_block (&attr))
18766 {
48fbe735 18767 d.locdesc = DW_BLOCK (&attr);
8e19ed76 18768 }
3690dd37 18769 else if (attr_form_is_section_offset (&attr))
8e19ed76 18770 {
4d3c2250 18771 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
18772 }
18773 else
18774 {
4d3c2250
KB
18775 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18776 "partial symbol information");
8e19ed76 18777 }
c906108c 18778 break;
c906108c 18779 case DW_AT_external:
48fbe735 18780 is_external = DW_UNSND (&attr);
c906108c
SS
18781 break;
18782 case DW_AT_declaration:
48fbe735 18783 is_declaration = DW_UNSND (&attr);
c906108c
SS
18784 break;
18785 case DW_AT_type:
48fbe735 18786 has_type = 1;
c906108c
SS
18787 break;
18788 case DW_AT_abstract_origin:
18789 case DW_AT_specification:
72bf9492 18790 case DW_AT_extension:
48fbe735
YQ
18791 has_specification = 1;
18792 spec_offset = dwarf2_get_ref_die_offset (&attr);
18793 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728 18794 || cu->per_cu->is_dwz);
c906108c
SS
18795 break;
18796 case DW_AT_sibling:
18797 /* Ignore absolute siblings, they might point outside of
18798 the current compile unit. */
18799 if (attr.form == DW_FORM_ref_addr)
b98664d3 18800 complaint (_("ignoring absolute DW_AT_sibling"));
c906108c 18801 else
b9502d3f 18802 {
48fbe735 18803 const gdb_byte *buffer = reader->buffer;
9c541725
PA
18804 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18805 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
18806
18807 if (sibling_ptr < info_ptr)
b98664d3 18808 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
18809 else if (sibling_ptr > reader->buffer_end)
18810 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f 18811 else
48fbe735 18812 sibling = sibling_ptr;
b9502d3f 18813 }
c906108c 18814 break;
fa4028e9 18815 case DW_AT_byte_size:
48fbe735 18816 has_byte_size = 1;
fa4028e9 18817 break;
ff908ebf 18818 case DW_AT_const_value:
48fbe735 18819 has_const_value = 1;
ff908ebf 18820 break;
68511cec
CES
18821 case DW_AT_calling_convention:
18822 /* DWARF doesn't provide a way to identify a program's source-level
18823 entry point. DW_AT_calling_convention attributes are only meant
18824 to describe functions' calling conventions.
18825
18826 However, because it's a necessary piece of information in
0c1b455e
TT
18827 Fortran, and before DWARF 4 DW_CC_program was the only
18828 piece of debugging information whose definition refers to
18829 a 'main program' at all, several compilers marked Fortran
18830 main programs with DW_CC_program --- even when those
18831 functions use the standard calling conventions.
18832
18833 Although DWARF now specifies a way to provide this
18834 information, we support this practice for backward
18835 compatibility. */
68511cec 18836 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e 18837 && cu->language == language_fortran)
48fbe735 18838 main_subprogram = 1;
68511cec 18839 break;
481860b3
GB
18840 case DW_AT_inline:
18841 if (DW_UNSND (&attr) == DW_INL_inlined
18842 || DW_UNSND (&attr) == DW_INL_declared_inlined)
48fbe735 18843 may_be_inlined = 1;
481860b3 18844 break;
95554aad
TT
18845
18846 case DW_AT_import:
48fbe735 18847 if (tag == DW_TAG_imported_unit)
36586728 18848 {
48fbe735
YQ
18849 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18850 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728
TT
18851 || cu->per_cu->is_dwz);
18852 }
95554aad
TT
18853 break;
18854
0c1b455e 18855 case DW_AT_main_subprogram:
48fbe735 18856 main_subprogram = DW_UNSND (&attr);
0c1b455e
TT
18857 break;
18858
05caa1d2
TT
18859 case DW_AT_ranges:
18860 {
18861 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18862 but that requires a full DIE, so instead we just
18863 reimplement it. */
18864 int need_ranges_base = tag != DW_TAG_compile_unit;
18865 unsigned int ranges_offset = (DW_UNSND (&attr)
18866 + (need_ranges_base
18867 ? cu->ranges_base
18868 : 0));
18869
18870 /* Value of the DW_AT_ranges attribute is the offset in the
18871 .debug_ranges section. */
18872 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18873 nullptr))
18874 has_pc_info = 1;
18875 }
18876 break;
18877
c906108c
SS
18878 default:
18879 break;
18880 }
18881 }
18882
10d06d82
TT
18883 /* For Ada, if both the name and the linkage name appear, we prefer
18884 the latter. This lets "catch exception" work better, regardless
18885 of the order in which the name and linkage name were emitted.
18886 Really, though, this is just a workaround for the fact that gdb
18887 doesn't store both the name and the linkage name. */
18888 if (cu->language == language_ada && linkage_name != nullptr)
18889 name = linkage_name;
18890
91da1414 18891 if (high_pc_relative)
48fbe735 18892 highpc += lowpc;
91da1414 18893
9373cf26
JK
18894 if (has_low_pc_attr && has_high_pc_attr)
18895 {
18896 /* When using the GNU linker, .gnu.linkonce. sections are used to
18897 eliminate duplicate copies of functions and vtables and such.
18898 The linker will arbitrarily choose one and discard the others.
18899 The AT_*_pc values for such functions refer to local labels in
18900 these sections. If the section from that file was discarded, the
18901 labels are not in the output, so the relocs get a value of 0.
18902 If this is a discarded function, mark the pc bounds as invalid,
18903 so that GDB will ignore it. */
48fbe735 18904 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9373cf26 18905 {
48fbe735 18906 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18908
b98664d3 18909 complaint (_("DW_AT_low_pc %s is zero "
9d8780f0 18910 "for DIE at %s [in module %s]"),
48fbe735
YQ
18911 paddress (gdbarch, lowpc),
18912 sect_offset_str (sect_off),
9d8780f0 18913 objfile_name (objfile));
9373cf26
JK
18914 }
18915 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
48fbe735 18916 else if (lowpc >= highpc)
9373cf26 18917 {
48fbe735 18918 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18919 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18920
b98664d3 18921 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9d8780f0 18922 "for DIE at %s [in module %s]"),
48fbe735
YQ
18923 paddress (gdbarch, lowpc),
18924 paddress (gdbarch, highpc),
18925 sect_offset_str (sect_off),
9c541725 18926 objfile_name (objfile));
9373cf26
JK
18927 }
18928 else
48fbe735 18929 has_pc_info = 1;
9373cf26 18930 }
85cbf3d3 18931
c906108c
SS
18932 return info_ptr;
18933}
18934
72bf9492
DJ
18935/* Find a cached partial DIE at OFFSET in CU. */
18936
d590ff25
YQ
18937struct partial_die_info *
18938dwarf2_cu::find_partial_die (sect_offset sect_off)
72bf9492
DJ
18939{
18940 struct partial_die_info *lookup_die = NULL;
6f06d47b 18941 struct partial_die_info part_die (sect_off);
72bf9492 18942
9a3c8263 18943 lookup_die = ((struct partial_die_info *)
d590ff25 18944 htab_find_with_hash (partial_dies, &part_die,
9c541725 18945 to_underlying (sect_off)));
72bf9492 18946
72bf9492
DJ
18947 return lookup_die;
18948}
18949
348e048f
DE
18950/* Find a partial DIE at OFFSET, which may or may not be in CU,
18951 except in the case of .debug_types DIEs which do not reference
18952 outside their CU (they do however referencing other types via
55f1336d 18953 DW_FORM_ref_sig8). */
72bf9492 18954
122cf0f2 18955static const struct cu_partial_die_info
9c541725 18956find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 18957{
518817b3
SM
18958 struct dwarf2_per_objfile *dwarf2_per_objfile
18959 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 18960 struct objfile *objfile = dwarf2_per_objfile->objfile;
5afb4e99
DJ
18961 struct dwarf2_per_cu_data *per_cu = NULL;
18962 struct partial_die_info *pd = NULL;
72bf9492 18963
36586728 18964 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 18965 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 18966 {
d590ff25 18967 pd = cu->find_partial_die (sect_off);
5afb4e99 18968 if (pd != NULL)
fb816e8b 18969 return { cu, pd };
0d99eb77
DE
18970 /* We missed recording what we needed.
18971 Load all dies and try again. */
18972 per_cu = cu->per_cu;
5afb4e99 18973 }
0d99eb77
DE
18974 else
18975 {
18976 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 18977 if (cu->per_cu->is_debug_types)
0d99eb77 18978 {
9d8780f0
SM
18979 error (_("Dwarf Error: Type Unit at offset %s contains"
18980 " external reference to offset %s [in module %s].\n"),
18981 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
0d99eb77
DE
18982 bfd_get_filename (objfile->obfd));
18983 }
9c541725 18984 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 18985 dwarf2_per_objfile);
72bf9492 18986
0d99eb77
DE
18987 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18988 load_partial_comp_unit (per_cu);
ae038cb0 18989
0d99eb77 18990 per_cu->cu->last_used = 0;
d590ff25 18991 pd = per_cu->cu->find_partial_die (sect_off);
0d99eb77 18992 }
5afb4e99 18993
dee91e82
DE
18994 /* If we didn't find it, and not all dies have been loaded,
18995 load them all and try again. */
18996
5afb4e99
DJ
18997 if (pd == NULL && per_cu->load_all_dies == 0)
18998 {
5afb4e99 18999 per_cu->load_all_dies = 1;
fd820528
DE
19000
19001 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19002 THIS_CU->cu may already be in use. So we can't just free it and
19003 replace its DIEs with the ones we read in. Instead, we leave those
19004 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19005 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19006 set. */
dee91e82 19007 load_partial_comp_unit (per_cu);
5afb4e99 19008
d590ff25 19009 pd = per_cu->cu->find_partial_die (sect_off);
5afb4e99
DJ
19010 }
19011
19012 if (pd == NULL)
19013 internal_error (__FILE__, __LINE__,
9d8780f0 19014 _("could not find partial DIE %s "
3e43a32a 19015 "in cache [from module %s]\n"),
9d8780f0 19016 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
fb816e8b 19017 return { per_cu->cu, pd };
72bf9492
DJ
19018}
19019
abc72ce4
DE
19020/* See if we can figure out if the class lives in a namespace. We do
19021 this by looking for a member function; its demangled name will
19022 contain namespace info, if there is any. */
19023
19024static void
19025guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19026 struct dwarf2_cu *cu)
19027{
19028 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19029 what template types look like, because the demangler
19030 frequently doesn't give the same name as the debug info. We
19031 could fix this by only using the demangled name to get the
19032 prefix (but see comment in read_structure_type). */
19033
19034 struct partial_die_info *real_pdi;
19035 struct partial_die_info *child_pdi;
19036
19037 /* If this DIE (this DIE's specification, if any) has a parent, then
19038 we should not do this. We'll prepend the parent's fully qualified
19039 name when we create the partial symbol. */
19040
19041 real_pdi = struct_pdi;
19042 while (real_pdi->has_specification)
fb816e8b 19043 {
122cf0f2
AB
19044 auto res = find_partial_die (real_pdi->spec_offset,
19045 real_pdi->spec_is_dwz, cu);
fb816e8b
TV
19046 real_pdi = res.pdi;
19047 cu = res.cu;
19048 }
abc72ce4
DE
19049
19050 if (real_pdi->die_parent != NULL)
19051 return;
19052
19053 for (child_pdi = struct_pdi->die_child;
19054 child_pdi != NULL;
19055 child_pdi = child_pdi->die_sibling)
19056 {
19057 if (child_pdi->tag == DW_TAG_subprogram
19058 && child_pdi->linkage_name != NULL)
19059 {
19060 char *actual_class_name
19061 = language_class_name_from_physname (cu->language_defn,
19062 child_pdi->linkage_name);
19063 if (actual_class_name != NULL)
19064 {
518817b3 19065 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4 19066 struct_pdi->name
021887d8
TT
19067 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19068 actual_class_name);
abc72ce4
DE
19069 xfree (actual_class_name);
19070 }
19071 break;
19072 }
19073 }
19074}
19075
52356b79
YQ
19076void
19077partial_die_info::fixup (struct dwarf2_cu *cu)
72bf9492 19078{
abc72ce4
DE
19079 /* Once we've fixed up a die, there's no point in doing so again.
19080 This also avoids a memory leak if we were to call
19081 guess_partial_die_structure_name multiple times. */
52356b79 19082 if (fixup_called)
abc72ce4
DE
19083 return;
19084
72bf9492
DJ
19085 /* If we found a reference attribute and the DIE has no name, try
19086 to find a name in the referred to DIE. */
19087
52356b79 19088 if (name == NULL && has_specification)
72bf9492
DJ
19089 {
19090 struct partial_die_info *spec_die;
72bf9492 19091
122cf0f2 19092 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
fb816e8b
TV
19093 spec_die = res.pdi;
19094 cu = res.cu;
72bf9492 19095
52356b79 19096 spec_die->fixup (cu);
72bf9492
DJ
19097
19098 if (spec_die->name)
19099 {
52356b79 19100 name = spec_die->name;
72bf9492
DJ
19101
19102 /* Copy DW_AT_external attribute if it is set. */
19103 if (spec_die->is_external)
52356b79 19104 is_external = spec_die->is_external;
72bf9492
DJ
19105 }
19106 }
19107
19108 /* Set default names for some unnamed DIEs. */
72bf9492 19109
52356b79
YQ
19110 if (name == NULL && tag == DW_TAG_namespace)
19111 name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 19112
abc72ce4
DE
19113 /* If there is no parent die to provide a namespace, and there are
19114 children, see if we can determine the namespace from their linkage
122d1940 19115 name. */
abc72ce4 19116 if (cu->language == language_cplus
fd5866f6 19117 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
52356b79
YQ
19118 && die_parent == NULL
19119 && has_children
19120 && (tag == DW_TAG_class_type
19121 || tag == DW_TAG_structure_type
19122 || tag == DW_TAG_union_type))
19123 guess_partial_die_structure_name (this, cu);
abc72ce4 19124
53832f31
TT
19125 /* GCC might emit a nameless struct or union that has a linkage
19126 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
52356b79
YQ
19127 if (name == NULL
19128 && (tag == DW_TAG_class_type
19129 || tag == DW_TAG_interface_type
19130 || tag == DW_TAG_structure_type
19131 || tag == DW_TAG_union_type)
19132 && linkage_name != NULL)
53832f31
TT
19133 {
19134 char *demangled;
19135
52356b79 19136 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
53832f31
TT
19137 if (demangled)
19138 {
96408a79
SA
19139 const char *base;
19140
19141 /* Strip any leading namespaces/classes, keep only the base name.
19142 DW_AT_name for named DIEs does not contain the prefixes. */
19143 base = strrchr (demangled, ':');
19144 if (base && base > demangled && base[-1] == ':')
19145 base++;
19146 else
19147 base = demangled;
19148
518817b3 19149 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
021887d8 19150 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
53832f31
TT
19151 xfree (demangled);
19152 }
19153 }
19154
52356b79 19155 fixup_called = 1;
72bf9492
DJ
19156}
19157
a8329558 19158/* Read an attribute value described by an attribute form. */
c906108c 19159
d521ce57 19160static const gdb_byte *
dee91e82
DE
19161read_attribute_value (const struct die_reader_specs *reader,
19162 struct attribute *attr, unsigned form,
43988095 19163 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 19164{
dee91e82 19165 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19166 struct dwarf2_per_objfile *dwarf2_per_objfile
19167 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 19168 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 19169 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 19170 bfd *abfd = reader->abfd;
e7c27a73 19171 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19172 unsigned int bytes_read;
19173 struct dwarf_block *blk;
19174
aead7601 19175 attr->form = (enum dwarf_form) form;
a8329558 19176 switch (form)
c906108c 19177 {
c906108c 19178 case DW_FORM_ref_addr:
ae411497 19179 if (cu->header.version == 2)
4568ecf9 19180 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 19181 else
4568ecf9
DE
19182 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19183 &cu->header, &bytes_read);
ae411497
TT
19184 info_ptr += bytes_read;
19185 break;
36586728
TT
19186 case DW_FORM_GNU_ref_alt:
19187 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19188 info_ptr += bytes_read;
19189 break;
ae411497 19190 case DW_FORM_addr:
e7c27a73 19191 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 19192 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 19193 info_ptr += bytes_read;
c906108c
SS
19194 break;
19195 case DW_FORM_block2:
7b5a2f43 19196 blk = dwarf_alloc_block (cu);
c906108c
SS
19197 blk->size = read_2_bytes (abfd, info_ptr);
19198 info_ptr += 2;
19199 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19200 info_ptr += blk->size;
19201 DW_BLOCK (attr) = blk;
19202 break;
19203 case DW_FORM_block4:
7b5a2f43 19204 blk = dwarf_alloc_block (cu);
c906108c
SS
19205 blk->size = read_4_bytes (abfd, info_ptr);
19206 info_ptr += 4;
19207 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19208 info_ptr += blk->size;
19209 DW_BLOCK (attr) = blk;
19210 break;
19211 case DW_FORM_data2:
19212 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19213 info_ptr += 2;
19214 break;
19215 case DW_FORM_data4:
19216 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19217 info_ptr += 4;
19218 break;
19219 case DW_FORM_data8:
19220 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19221 info_ptr += 8;
19222 break;
0224619f
JK
19223 case DW_FORM_data16:
19224 blk = dwarf_alloc_block (cu);
19225 blk->size = 16;
19226 blk->data = read_n_bytes (abfd, info_ptr, 16);
19227 info_ptr += 16;
19228 DW_BLOCK (attr) = blk;
19229 break;
2dc7f7b3
TT
19230 case DW_FORM_sec_offset:
19231 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19232 info_ptr += bytes_read;
19233 break;
c906108c 19234 case DW_FORM_string:
9b1c24c8 19235 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 19236 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
19237 info_ptr += bytes_read;
19238 break;
4bdf3d34 19239 case DW_FORM_strp:
36586728
TT
19240 if (!cu->per_cu->is_dwz)
19241 {
ed2dc618
SM
19242 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19243 abfd, info_ptr, cu_header,
36586728
TT
19244 &bytes_read);
19245 DW_STRING_IS_CANONICAL (attr) = 0;
19246 info_ptr += bytes_read;
19247 break;
19248 }
19249 /* FALLTHROUGH */
43988095
JK
19250 case DW_FORM_line_strp:
19251 if (!cu->per_cu->is_dwz)
19252 {
ed2dc618
SM
19253 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19254 abfd, info_ptr,
43988095
JK
19255 cu_header, &bytes_read);
19256 DW_STRING_IS_CANONICAL (attr) = 0;
19257 info_ptr += bytes_read;
19258 break;
19259 }
19260 /* FALLTHROUGH */
36586728
TT
19261 case DW_FORM_GNU_strp_alt:
19262 {
ed2dc618 19263 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
19264 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19265 &bytes_read);
19266
ed2dc618
SM
19267 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19268 dwz, str_offset);
36586728
TT
19269 DW_STRING_IS_CANONICAL (attr) = 0;
19270 info_ptr += bytes_read;
19271 }
4bdf3d34 19272 break;
2dc7f7b3 19273 case DW_FORM_exprloc:
c906108c 19274 case DW_FORM_block:
7b5a2f43 19275 blk = dwarf_alloc_block (cu);
c906108c
SS
19276 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19277 info_ptr += bytes_read;
19278 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19279 info_ptr += blk->size;
19280 DW_BLOCK (attr) = blk;
19281 break;
19282 case DW_FORM_block1:
7b5a2f43 19283 blk = dwarf_alloc_block (cu);
c906108c
SS
19284 blk->size = read_1_byte (abfd, info_ptr);
19285 info_ptr += 1;
19286 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19287 info_ptr += blk->size;
19288 DW_BLOCK (attr) = blk;
19289 break;
19290 case DW_FORM_data1:
19291 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19292 info_ptr += 1;
19293 break;
19294 case DW_FORM_flag:
19295 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19296 info_ptr += 1;
19297 break;
2dc7f7b3
TT
19298 case DW_FORM_flag_present:
19299 DW_UNSND (attr) = 1;
19300 break;
c906108c
SS
19301 case DW_FORM_sdata:
19302 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19303 info_ptr += bytes_read;
19304 break;
19305 case DW_FORM_udata:
19306 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19307 info_ptr += bytes_read;
19308 break;
19309 case DW_FORM_ref1:
9c541725 19310 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19311 + read_1_byte (abfd, info_ptr));
c906108c
SS
19312 info_ptr += 1;
19313 break;
19314 case DW_FORM_ref2:
9c541725 19315 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19316 + read_2_bytes (abfd, info_ptr));
c906108c
SS
19317 info_ptr += 2;
19318 break;
19319 case DW_FORM_ref4:
9c541725 19320 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19321 + read_4_bytes (abfd, info_ptr));
c906108c
SS
19322 info_ptr += 4;
19323 break;
613e1657 19324 case DW_FORM_ref8:
9c541725 19325 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19326 + read_8_bytes (abfd, info_ptr));
613e1657
KB
19327 info_ptr += 8;
19328 break;
55f1336d 19329 case DW_FORM_ref_sig8:
ac9ec31b 19330 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
19331 info_ptr += 8;
19332 break;
c906108c 19333 case DW_FORM_ref_udata:
9c541725 19334 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19335 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
19336 info_ptr += bytes_read;
19337 break;
c906108c 19338 case DW_FORM_indirect:
a8329558
KW
19339 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19340 info_ptr += bytes_read;
43988095
JK
19341 if (form == DW_FORM_implicit_const)
19342 {
19343 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19344 info_ptr += bytes_read;
19345 }
19346 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19347 info_ptr);
19348 break;
19349 case DW_FORM_implicit_const:
19350 DW_SND (attr) = implicit_const;
a8329558 19351 break;
336d760d 19352 case DW_FORM_addrx:
3019eac3
DE
19353 case DW_FORM_GNU_addr_index:
19354 if (reader->dwo_file == NULL)
19355 {
19356 /* For now flag a hard error.
19357 Later we can turn this into a complaint. */
19358 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19359 dwarf_form_name (form),
19360 bfd_get_filename (abfd));
19361 }
19362 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19363 info_ptr += bytes_read;
19364 break;
cf532bd1 19365 case DW_FORM_strx:
15f18d14
AT
19366 case DW_FORM_strx1:
19367 case DW_FORM_strx2:
19368 case DW_FORM_strx3:
19369 case DW_FORM_strx4:
3019eac3
DE
19370 case DW_FORM_GNU_str_index:
19371 if (reader->dwo_file == NULL)
19372 {
19373 /* For now flag a hard error.
19374 Later we can turn this into a complaint if warranted. */
19375 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19376 dwarf_form_name (form),
19377 bfd_get_filename (abfd));
19378 }
19379 {
15f18d14
AT
19380 ULONGEST str_index;
19381 if (form == DW_FORM_strx1)
19382 {
19383 str_index = read_1_byte (abfd, info_ptr);
19384 info_ptr += 1;
19385 }
19386 else if (form == DW_FORM_strx2)
19387 {
19388 str_index = read_2_bytes (abfd, info_ptr);
19389 info_ptr += 2;
19390 }
19391 else if (form == DW_FORM_strx3)
19392 {
19393 str_index = read_3_bytes (abfd, info_ptr);
19394 info_ptr += 3;
19395 }
19396 else if (form == DW_FORM_strx4)
19397 {
19398 str_index = read_4_bytes (abfd, info_ptr);
19399 info_ptr += 4;
19400 }
19401 else
19402 {
19403 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19404 info_ptr += bytes_read;
19405 }
342587c4 19406 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3 19407 DW_STRING_IS_CANONICAL (attr) = 0;
3019eac3
DE
19408 }
19409 break;
c906108c 19410 default:
8a3fe4f8 19411 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
19412 dwarf_form_name (form),
19413 bfd_get_filename (abfd));
c906108c 19414 }
28e94949 19415
36586728 19416 /* Super hack. */
7771576e 19417 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
19418 attr->form = DW_FORM_GNU_ref_alt;
19419
28e94949
JB
19420 /* We have seen instances where the compiler tried to emit a byte
19421 size attribute of -1 which ended up being encoded as an unsigned
19422 0xffffffff. Although 0xffffffff is technically a valid size value,
19423 an object of this size seems pretty unlikely so we can relatively
19424 safely treat these cases as if the size attribute was invalid and
19425 treat them as zero by default. */
19426 if (attr->name == DW_AT_byte_size
19427 && form == DW_FORM_data4
19428 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
19429 {
19430 complaint
b98664d3 19431 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
43bbcdc2 19432 hex_string (DW_UNSND (attr)));
01c66ae6
JB
19433 DW_UNSND (attr) = 0;
19434 }
28e94949 19435
c906108c
SS
19436 return info_ptr;
19437}
19438
a8329558
KW
19439/* Read an attribute described by an abbreviated attribute. */
19440
d521ce57 19441static const gdb_byte *
dee91e82
DE
19442read_attribute (const struct die_reader_specs *reader,
19443 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 19444 const gdb_byte *info_ptr)
a8329558
KW
19445{
19446 attr->name = abbrev->name;
43988095
JK
19447 return read_attribute_value (reader, attr, abbrev->form,
19448 abbrev->implicit_const, info_ptr);
a8329558
KW
19449}
19450
0963b4bd 19451/* Read dwarf information from a buffer. */
c906108c
SS
19452
19453static unsigned int
a1855c1d 19454read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19455{
fe1b8b76 19456 return bfd_get_8 (abfd, buf);
c906108c
SS
19457}
19458
19459static int
a1855c1d 19460read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19461{
fe1b8b76 19462 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
19463}
19464
19465static unsigned int
a1855c1d 19466read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19467{
fe1b8b76 19468 return bfd_get_16 (abfd, buf);
c906108c
SS
19469}
19470
21ae7a4d 19471static int
a1855c1d 19472read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19473{
19474 return bfd_get_signed_16 (abfd, buf);
19475}
19476
15f18d14
AT
19477static unsigned int
19478read_3_bytes (bfd *abfd, const gdb_byte *buf)
19479{
19480 unsigned int result = 0;
19481 for (int i = 0; i < 3; ++i)
19482 {
19483 unsigned char byte = bfd_get_8 (abfd, buf);
19484 buf++;
19485 result |= ((unsigned int) byte << (i * 8));
19486 }
19487 return result;
19488}
19489
c906108c 19490static unsigned int
a1855c1d 19491read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19492{
fe1b8b76 19493 return bfd_get_32 (abfd, buf);
c906108c
SS
19494}
19495
21ae7a4d 19496static int
a1855c1d 19497read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19498{
19499 return bfd_get_signed_32 (abfd, buf);
19500}
19501
93311388 19502static ULONGEST
a1855c1d 19503read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19504{
fe1b8b76 19505 return bfd_get_64 (abfd, buf);
c906108c
SS
19506}
19507
19508static CORE_ADDR
d521ce57 19509read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 19510 unsigned int *bytes_read)
c906108c 19511{
e7c27a73 19512 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19513 CORE_ADDR retval = 0;
19514
107d2387 19515 if (cu_header->signed_addr_p)
c906108c 19516 {
107d2387
AC
19517 switch (cu_header->addr_size)
19518 {
19519 case 2:
fe1b8b76 19520 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
19521 break;
19522 case 4:
fe1b8b76 19523 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
19524 break;
19525 case 8:
fe1b8b76 19526 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
19527 break;
19528 default:
8e65ff28 19529 internal_error (__FILE__, __LINE__,
e2e0b3e5 19530 _("read_address: bad switch, signed [in module %s]"),
659b0389 19531 bfd_get_filename (abfd));
107d2387
AC
19532 }
19533 }
19534 else
19535 {
19536 switch (cu_header->addr_size)
19537 {
19538 case 2:
fe1b8b76 19539 retval = bfd_get_16 (abfd, buf);
107d2387
AC
19540 break;
19541 case 4:
fe1b8b76 19542 retval = bfd_get_32 (abfd, buf);
107d2387
AC
19543 break;
19544 case 8:
fe1b8b76 19545 retval = bfd_get_64 (abfd, buf);
107d2387
AC
19546 break;
19547 default:
8e65ff28 19548 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
19549 _("read_address: bad switch, "
19550 "unsigned [in module %s]"),
659b0389 19551 bfd_get_filename (abfd));
107d2387 19552 }
c906108c 19553 }
64367e0a 19554
107d2387
AC
19555 *bytes_read = cu_header->addr_size;
19556 return retval;
c906108c
SS
19557}
19558
f7ef9339 19559/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
19560 specification allows the initial length to take up either 4 bytes
19561 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19562 bytes describe the length and all offsets will be 8 bytes in length
19563 instead of 4.
19564
f7ef9339
KB
19565 An older, non-standard 64-bit format is also handled by this
19566 function. The older format in question stores the initial length
19567 as an 8-byte quantity without an escape value. Lengths greater
19568 than 2^32 aren't very common which means that the initial 4 bytes
19569 is almost always zero. Since a length value of zero doesn't make
19570 sense for the 32-bit format, this initial zero can be considered to
19571 be an escape value which indicates the presence of the older 64-bit
19572 format. As written, the code can't detect (old format) lengths
917c78fc
MK
19573 greater than 4GB. If it becomes necessary to handle lengths
19574 somewhat larger than 4GB, we could allow other small values (such
19575 as the non-sensical values of 1, 2, and 3) to also be used as
19576 escape values indicating the presence of the old format.
f7ef9339 19577
917c78fc
MK
19578 The value returned via bytes_read should be used to increment the
19579 relevant pointer after calling read_initial_length().
c764a876 19580
613e1657
KB
19581 [ Note: read_initial_length() and read_offset() are based on the
19582 document entitled "DWARF Debugging Information Format", revision
f7ef9339 19583 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
19584 from:
19585
f7ef9339 19586 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 19587
613e1657
KB
19588 This document is only a draft and is subject to change. (So beware.)
19589
f7ef9339 19590 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
19591 determined empirically by examining 64-bit ELF files produced by
19592 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
19593
19594 - Kevin, July 16, 2002
613e1657
KB
19595 ] */
19596
19597static LONGEST
d521ce57 19598read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 19599{
fe1b8b76 19600 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 19601
dd373385 19602 if (length == 0xffffffff)
613e1657 19603 {
fe1b8b76 19604 length = bfd_get_64 (abfd, buf + 4);
613e1657 19605 *bytes_read = 12;
613e1657 19606 }
dd373385 19607 else if (length == 0)
f7ef9339 19608 {
dd373385 19609 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 19610 length = bfd_get_64 (abfd, buf);
f7ef9339 19611 *bytes_read = 8;
f7ef9339 19612 }
613e1657
KB
19613 else
19614 {
19615 *bytes_read = 4;
613e1657
KB
19616 }
19617
c764a876
DE
19618 return length;
19619}
dd373385 19620
c764a876
DE
19621/* Cover function for read_initial_length.
19622 Returns the length of the object at BUF, and stores the size of the
19623 initial length in *BYTES_READ and stores the size that offsets will be in
19624 *OFFSET_SIZE.
19625 If the initial length size is not equivalent to that specified in
19626 CU_HEADER then issue a complaint.
19627 This is useful when reading non-comp-unit headers. */
dd373385 19628
c764a876 19629static LONGEST
d521ce57 19630read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
19631 const struct comp_unit_head *cu_header,
19632 unsigned int *bytes_read,
19633 unsigned int *offset_size)
19634{
19635 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19636
19637 gdb_assert (cu_header->initial_length_size == 4
19638 || cu_header->initial_length_size == 8
19639 || cu_header->initial_length_size == 12);
19640
19641 if (cu_header->initial_length_size != *bytes_read)
b98664d3 19642 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 19643
c764a876 19644 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 19645 return length;
613e1657
KB
19646}
19647
19648/* Read an offset from the data stream. The size of the offset is
917c78fc 19649 given by cu_header->offset_size. */
613e1657
KB
19650
19651static LONGEST
d521ce57
TT
19652read_offset (bfd *abfd, const gdb_byte *buf,
19653 const struct comp_unit_head *cu_header,
891d2f0b 19654 unsigned int *bytes_read)
c764a876
DE
19655{
19656 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 19657
c764a876
DE
19658 *bytes_read = cu_header->offset_size;
19659 return offset;
19660}
19661
19662/* Read an offset from the data stream. */
19663
19664static LONGEST
d521ce57 19665read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
19666{
19667 LONGEST retval = 0;
19668
c764a876 19669 switch (offset_size)
613e1657
KB
19670 {
19671 case 4:
fe1b8b76 19672 retval = bfd_get_32 (abfd, buf);
613e1657
KB
19673 break;
19674 case 8:
fe1b8b76 19675 retval = bfd_get_64 (abfd, buf);
613e1657
KB
19676 break;
19677 default:
8e65ff28 19678 internal_error (__FILE__, __LINE__,
c764a876 19679 _("read_offset_1: bad switch [in module %s]"),
659b0389 19680 bfd_get_filename (abfd));
613e1657
KB
19681 }
19682
917c78fc 19683 return retval;
613e1657
KB
19684}
19685
d521ce57
TT
19686static const gdb_byte *
19687read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
19688{
19689 /* If the size of a host char is 8 bits, we can return a pointer
19690 to the buffer, otherwise we have to copy the data to a buffer
19691 allocated on the temporary obstack. */
4bdf3d34 19692 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 19693 return buf;
c906108c
SS
19694}
19695
d521ce57
TT
19696static const char *
19697read_direct_string (bfd *abfd, const gdb_byte *buf,
19698 unsigned int *bytes_read_ptr)
c906108c
SS
19699{
19700 /* If the size of a host char is 8 bits, we can return a pointer
19701 to the string, otherwise we have to copy the string to a buffer
19702 allocated on the temporary obstack. */
4bdf3d34 19703 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
19704 if (*buf == '\0')
19705 {
19706 *bytes_read_ptr = 1;
19707 return NULL;
19708 }
d521ce57
TT
19709 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19710 return (const char *) buf;
4bdf3d34
JJ
19711}
19712
43988095
JK
19713/* Return pointer to string at section SECT offset STR_OFFSET with error
19714 reporting strings FORM_NAME and SECT_NAME. */
19715
d521ce57 19716static const char *
ed2dc618
SM
19717read_indirect_string_at_offset_from (struct objfile *objfile,
19718 bfd *abfd, LONGEST str_offset,
43988095
JK
19719 struct dwarf2_section_info *sect,
19720 const char *form_name,
19721 const char *sect_name)
19722{
ed2dc618 19723 dwarf2_read_section (objfile, sect);
43988095
JK
19724 if (sect->buffer == NULL)
19725 error (_("%s used without %s section [in module %s]"),
19726 form_name, sect_name, bfd_get_filename (abfd));
19727 if (str_offset >= sect->size)
19728 error (_("%s pointing outside of %s section [in module %s]"),
19729 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 19730 gdb_assert (HOST_CHAR_BIT == 8);
43988095 19731 if (sect->buffer[str_offset] == '\0')
4bdf3d34 19732 return NULL;
43988095
JK
19733 return (const char *) (sect->buffer + str_offset);
19734}
19735
19736/* Return pointer to string at .debug_str offset STR_OFFSET. */
19737
19738static const char *
ed2dc618
SM
19739read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19740 bfd *abfd, LONGEST str_offset)
43988095 19741{
ed2dc618
SM
19742 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19743 abfd, str_offset,
43988095
JK
19744 &dwarf2_per_objfile->str,
19745 "DW_FORM_strp", ".debug_str");
19746}
19747
19748/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19749
19750static const char *
ed2dc618
SM
19751read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19752 bfd *abfd, LONGEST str_offset)
43988095 19753{
ed2dc618
SM
19754 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19755 abfd, str_offset,
43988095
JK
19756 &dwarf2_per_objfile->line_str,
19757 "DW_FORM_line_strp",
19758 ".debug_line_str");
c906108c
SS
19759}
19760
36586728
TT
19761/* Read a string at offset STR_OFFSET in the .debug_str section from
19762 the .dwz file DWZ. Throw an error if the offset is too large. If
19763 the string consists of a single NUL byte, return NULL; otherwise
19764 return a pointer to the string. */
19765
d521ce57 19766static const char *
ed2dc618
SM
19767read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19768 LONGEST str_offset)
36586728 19769{
ed2dc618 19770 dwarf2_read_section (objfile, &dwz->str);
36586728
TT
19771
19772 if (dwz->str.buffer == NULL)
19773 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19774 "section [in module %s]"),
00f93c44 19775 bfd_get_filename (dwz->dwz_bfd.get ()));
36586728
TT
19776 if (str_offset >= dwz->str.size)
19777 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19778 ".debug_str section [in module %s]"),
00f93c44 19779 bfd_get_filename (dwz->dwz_bfd.get ()));
36586728
TT
19780 gdb_assert (HOST_CHAR_BIT == 8);
19781 if (dwz->str.buffer[str_offset] == '\0')
19782 return NULL;
d521ce57 19783 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
19784}
19785
43988095
JK
19786/* Return pointer to string at .debug_str offset as read from BUF.
19787 BUF is assumed to be in a compilation unit described by CU_HEADER.
19788 Return *BYTES_READ_PTR count of bytes read from BUF. */
19789
d521ce57 19790static const char *
ed2dc618
SM
19791read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19792 const gdb_byte *buf,
cf2c3c16
TT
19793 const struct comp_unit_head *cu_header,
19794 unsigned int *bytes_read_ptr)
19795{
19796 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19797
ed2dc618 19798 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
cf2c3c16
TT
19799}
19800
43988095
JK
19801/* Return pointer to string at .debug_line_str offset as read from BUF.
19802 BUF is assumed to be in a compilation unit described by CU_HEADER.
19803 Return *BYTES_READ_PTR count of bytes read from BUF. */
19804
19805static const char *
ed2dc618
SM
19806read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19807 bfd *abfd, const gdb_byte *buf,
43988095
JK
19808 const struct comp_unit_head *cu_header,
19809 unsigned int *bytes_read_ptr)
19810{
19811 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19812
ed2dc618
SM
19813 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19814 str_offset);
43988095
JK
19815}
19816
19817ULONGEST
d521ce57 19818read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 19819 unsigned int *bytes_read_ptr)
c906108c 19820{
12df843f 19821 ULONGEST result;
ce5d95e1 19822 unsigned int num_read;
870f88f7 19823 int shift;
c906108c
SS
19824 unsigned char byte;
19825
19826 result = 0;
19827 shift = 0;
19828 num_read = 0;
c906108c
SS
19829 while (1)
19830 {
fe1b8b76 19831 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19832 buf++;
19833 num_read++;
12df843f 19834 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19835 if ((byte & 128) == 0)
19836 {
19837 break;
19838 }
19839 shift += 7;
19840 }
19841 *bytes_read_ptr = num_read;
19842 return result;
19843}
19844
12df843f 19845static LONGEST
d521ce57
TT
19846read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19847 unsigned int *bytes_read_ptr)
c906108c 19848{
4dd1b460 19849 ULONGEST result;
870f88f7 19850 int shift, num_read;
c906108c
SS
19851 unsigned char byte;
19852
19853 result = 0;
19854 shift = 0;
c906108c 19855 num_read = 0;
c906108c
SS
19856 while (1)
19857 {
fe1b8b76 19858 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19859 buf++;
19860 num_read++;
4dd1b460 19861 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19862 shift += 7;
19863 if ((byte & 128) == 0)
19864 {
19865 break;
19866 }
19867 }
77e0b926 19868 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
4dd1b460 19869 result |= -(((ULONGEST) 1) << shift);
c906108c
SS
19870 *bytes_read_ptr = num_read;
19871 return result;
19872}
19873
3019eac3
DE
19874/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19875 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19876 ADDR_SIZE is the size of addresses from the CU header. */
19877
19878static CORE_ADDR
ed2dc618
SM
19879read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19880 unsigned int addr_index, ULONGEST addr_base, int addr_size)
3019eac3
DE
19881{
19882 struct objfile *objfile = dwarf2_per_objfile->objfile;
19883 bfd *abfd = objfile->obfd;
19884 const gdb_byte *info_ptr;
19885
19886 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19887 if (dwarf2_per_objfile->addr.buffer == NULL)
19888 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 19889 objfile_name (objfile));
3019eac3
DE
19890 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19891 error (_("DW_FORM_addr_index pointing outside of "
19892 ".debug_addr section [in module %s]"),
4262abfb 19893 objfile_name (objfile));
3019eac3
DE
19894 info_ptr = (dwarf2_per_objfile->addr.buffer
19895 + addr_base + addr_index * addr_size);
19896 if (addr_size == 4)
19897 return bfd_get_32 (abfd, info_ptr);
19898 else
19899 return bfd_get_64 (abfd, info_ptr);
19900}
19901
19902/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19903
19904static CORE_ADDR
19905read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19906{
518817b3
SM
19907 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19908 cu->addr_base, cu->header.addr_size);
3019eac3
DE
19909}
19910
19911/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19912
19913static CORE_ADDR
d521ce57 19914read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
19915 unsigned int *bytes_read)
19916{
518817b3 19917 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
3019eac3
DE
19918 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19919
19920 return read_addr_index (cu, addr_index);
19921}
19922
19923/* Data structure to pass results from dwarf2_read_addr_index_reader
19924 back to dwarf2_read_addr_index. */
19925
19926struct dwarf2_read_addr_index_data
19927{
19928 ULONGEST addr_base;
19929 int addr_size;
19930};
19931
19932/* die_reader_func for dwarf2_read_addr_index. */
19933
19934static void
19935dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 19936 const gdb_byte *info_ptr,
3019eac3
DE
19937 struct die_info *comp_unit_die,
19938 int has_children,
19939 void *data)
19940{
19941 struct dwarf2_cu *cu = reader->cu;
19942 struct dwarf2_read_addr_index_data *aidata =
19943 (struct dwarf2_read_addr_index_data *) data;
19944
19945 aidata->addr_base = cu->addr_base;
19946 aidata->addr_size = cu->header.addr_size;
19947}
19948
19949/* Given an index in .debug_addr, fetch the value.
19950 NOTE: This can be called during dwarf expression evaluation,
19951 long after the debug information has been read, and thus per_cu->cu
19952 may no longer exist. */
19953
19954CORE_ADDR
19955dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19956 unsigned int addr_index)
19957{
ed2dc618 19958 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3
DE
19959 struct dwarf2_cu *cu = per_cu->cu;
19960 ULONGEST addr_base;
19961 int addr_size;
19962
3019eac3
DE
19963 /* We need addr_base and addr_size.
19964 If we don't have PER_CU->cu, we have to get it.
19965 Nasty, but the alternative is storing the needed info in PER_CU,
19966 which at this point doesn't seem justified: it's not clear how frequently
19967 it would get used and it would increase the size of every PER_CU.
19968 Entry points like dwarf2_per_cu_addr_size do a similar thing
19969 so we're not in uncharted territory here.
19970 Alas we need to be a bit more complicated as addr_base is contained
19971 in the DIE.
19972
19973 We don't need to read the entire CU(/TU).
19974 We just need the header and top level die.
a1b64ce1 19975
3019eac3 19976 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 19977 For now we skip this optimization. */
3019eac3
DE
19978
19979 if (cu != NULL)
19980 {
19981 addr_base = cu->addr_base;
19982 addr_size = cu->header.addr_size;
19983 }
19984 else
19985 {
19986 struct dwarf2_read_addr_index_data aidata;
19987
a1b64ce1
DE
19988 /* Note: We can't use init_cutu_and_read_dies_simple here,
19989 we need addr_base. */
58f0c718 19990 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
a1b64ce1 19991 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
19992 addr_base = aidata.addr_base;
19993 addr_size = aidata.addr_size;
19994 }
19995
ed2dc618
SM
19996 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19997 addr_size);
3019eac3
DE
19998}
19999
cf532bd1 20000/* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
57d63ce2 20001 This is only used by the Fission support. */
3019eac3 20002
d521ce57 20003static const char *
342587c4 20004read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3 20005{
ed2dc618 20006 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
20007 struct dwarf2_per_objfile *dwarf2_per_objfile
20008 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20009 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 20010 const char *objf_name = objfile_name (objfile);
3019eac3 20011 bfd *abfd = objfile->obfd;
73869dc2
DE
20012 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20013 struct dwarf2_section_info *str_offsets_section =
20014 &reader->dwo_file->sections.str_offsets;
d521ce57 20015 const gdb_byte *info_ptr;
3019eac3 20016 ULONGEST str_offset;
cf532bd1 20017 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
3019eac3 20018
73869dc2
DE
20019 dwarf2_read_section (objfile, str_section);
20020 dwarf2_read_section (objfile, str_offsets_section);
20021 if (str_section->buffer == NULL)
57d63ce2 20022 error (_("%s used without .debug_str.dwo section"
9d8780f0
SM
20023 " in CU at offset %s [in module %s]"),
20024 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20025 if (str_offsets_section->buffer == NULL)
57d63ce2 20026 error (_("%s used without .debug_str_offsets.dwo section"
9d8780f0
SM
20027 " in CU at offset %s [in module %s]"),
20028 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20029 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 20030 error (_("%s pointing outside of .debug_str_offsets.dwo"
9d8780f0
SM
20031 " section in CU at offset %s [in module %s]"),
20032 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20033 info_ptr = (str_offsets_section->buffer
3019eac3
DE
20034 + str_index * cu->header.offset_size);
20035 if (cu->header.offset_size == 4)
20036 str_offset = bfd_get_32 (abfd, info_ptr);
20037 else
20038 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 20039 if (str_offset >= str_section->size)
57d63ce2 20040 error (_("Offset from %s pointing outside of"
9d8780f0
SM
20041 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20042 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20043 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
20044}
20045
3019eac3
DE
20046/* Return the length of an LEB128 number in BUF. */
20047
20048static int
20049leb128_size (const gdb_byte *buf)
20050{
20051 const gdb_byte *begin = buf;
20052 gdb_byte byte;
20053
20054 while (1)
20055 {
20056 byte = *buf++;
20057 if ((byte & 128) == 0)
20058 return buf - begin;
20059 }
20060}
20061
c906108c 20062static void
e142c38c 20063set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
20064{
20065 switch (lang)
20066 {
20067 case DW_LANG_C89:
76bee0cc 20068 case DW_LANG_C99:
0cfd832f 20069 case DW_LANG_C11:
c906108c 20070 case DW_LANG_C:
d1be3247 20071 case DW_LANG_UPC:
e142c38c 20072 cu->language = language_c;
c906108c 20073 break;
9c37b5ae 20074 case DW_LANG_Java:
c906108c 20075 case DW_LANG_C_plus_plus:
0cfd832f
MW
20076 case DW_LANG_C_plus_plus_11:
20077 case DW_LANG_C_plus_plus_14:
e142c38c 20078 cu->language = language_cplus;
c906108c 20079 break;
6aecb9c2
JB
20080 case DW_LANG_D:
20081 cu->language = language_d;
20082 break;
c906108c
SS
20083 case DW_LANG_Fortran77:
20084 case DW_LANG_Fortran90:
b21b22e0 20085 case DW_LANG_Fortran95:
f7de9aab
MW
20086 case DW_LANG_Fortran03:
20087 case DW_LANG_Fortran08:
e142c38c 20088 cu->language = language_fortran;
c906108c 20089 break;
a766d390
DE
20090 case DW_LANG_Go:
20091 cu->language = language_go;
20092 break;
c906108c 20093 case DW_LANG_Mips_Assembler:
e142c38c 20094 cu->language = language_asm;
c906108c
SS
20095 break;
20096 case DW_LANG_Ada83:
8aaf0b47 20097 case DW_LANG_Ada95:
bc5f45f8
JB
20098 cu->language = language_ada;
20099 break;
72019c9c
GM
20100 case DW_LANG_Modula2:
20101 cu->language = language_m2;
20102 break;
fe8e67fd
PM
20103 case DW_LANG_Pascal83:
20104 cu->language = language_pascal;
20105 break;
22566fbd
DJ
20106 case DW_LANG_ObjC:
20107 cu->language = language_objc;
20108 break;
c44af4eb
TT
20109 case DW_LANG_Rust:
20110 case DW_LANG_Rust_old:
20111 cu->language = language_rust;
20112 break;
c906108c
SS
20113 case DW_LANG_Cobol74:
20114 case DW_LANG_Cobol85:
c906108c 20115 default:
e142c38c 20116 cu->language = language_minimal;
c906108c
SS
20117 break;
20118 }
e142c38c 20119 cu->language_defn = language_def (cu->language);
c906108c
SS
20120}
20121
20122/* Return the named attribute or NULL if not there. */
20123
20124static struct attribute *
e142c38c 20125dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 20126{
a48e046c 20127 for (;;)
c906108c 20128 {
a48e046c
TT
20129 unsigned int i;
20130 struct attribute *spec = NULL;
20131
20132 for (i = 0; i < die->num_attrs; ++i)
20133 {
20134 if (die->attrs[i].name == name)
20135 return &die->attrs[i];
20136 if (die->attrs[i].name == DW_AT_specification
20137 || die->attrs[i].name == DW_AT_abstract_origin)
20138 spec = &die->attrs[i];
20139 }
20140
20141 if (!spec)
20142 break;
c906108c 20143
f2f0e013 20144 die = follow_die_ref (die, spec, &cu);
f2f0e013 20145 }
c5aa993b 20146
c906108c
SS
20147 return NULL;
20148}
20149
348e048f
DE
20150/* Return the named attribute or NULL if not there,
20151 but do not follow DW_AT_specification, etc.
20152 This is for use in contexts where we're reading .debug_types dies.
20153 Following DW_AT_specification, DW_AT_abstract_origin will take us
20154 back up the chain, and we want to go down. */
20155
20156static struct attribute *
45e58e77 20157dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
20158{
20159 unsigned int i;
20160
20161 for (i = 0; i < die->num_attrs; ++i)
20162 if (die->attrs[i].name == name)
20163 return &die->attrs[i];
20164
20165 return NULL;
20166}
20167
7d45c7c3
KB
20168/* Return the string associated with a string-typed attribute, or NULL if it
20169 is either not found or is of an incorrect type. */
20170
20171static const char *
20172dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20173{
20174 struct attribute *attr;
20175 const char *str = NULL;
20176
20177 attr = dwarf2_attr (die, name, cu);
20178
20179 if (attr != NULL)
20180 {
43988095 20181 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438 20182 || attr->form == DW_FORM_string
cf532bd1 20183 || attr->form == DW_FORM_strx
8fe0f950
AT
20184 || attr->form == DW_FORM_strx1
20185 || attr->form == DW_FORM_strx2
20186 || attr->form == DW_FORM_strx3
20187 || attr->form == DW_FORM_strx4
b3340438 20188 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 20189 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
20190 str = DW_STRING (attr);
20191 else
b98664d3 20192 complaint (_("string type expected for attribute %s for "
9d8780f0
SM
20193 "DIE at %s in module %s"),
20194 dwarf_attr_name (name), sect_offset_str (die->sect_off),
518817b3 20195 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7d45c7c3
KB
20196 }
20197
20198 return str;
20199}
20200
a084a2a6
AT
20201/* Return the dwo name or NULL if not present. If present, it is in either
20202 DW_AT_GNU_dwo_name or DW_AT_dwo_name atrribute. */
20203static const char *
20204dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20205{
20206 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20207 if (dwo_name == nullptr)
20208 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20209 return dwo_name;
20210}
20211
05cf31d1
JB
20212/* Return non-zero iff the attribute NAME is defined for the given DIE,
20213 and holds a non-zero value. This function should only be used for
2dc7f7b3 20214 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
20215
20216static int
20217dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20218{
20219 struct attribute *attr = dwarf2_attr (die, name, cu);
20220
20221 return (attr && DW_UNSND (attr));
20222}
20223
3ca72b44 20224static int
e142c38c 20225die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 20226{
05cf31d1
JB
20227 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20228 which value is non-zero. However, we have to be careful with
20229 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20230 (via dwarf2_flag_true_p) follows this attribute. So we may
20231 end up accidently finding a declaration attribute that belongs
20232 to a different DIE referenced by the specification attribute,
20233 even though the given DIE does not have a declaration attribute. */
20234 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20235 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
20236}
20237
63d06c5c 20238/* Return the die giving the specification for DIE, if there is
f2f0e013 20239 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
20240 containing the return value on output. If there is no
20241 specification, but there is an abstract origin, that is
20242 returned. */
63d06c5c
DC
20243
20244static struct die_info *
f2f0e013 20245die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 20246{
f2f0e013
DJ
20247 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20248 *spec_cu);
63d06c5c 20249
edb3359d
DJ
20250 if (spec_attr == NULL)
20251 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20252
63d06c5c
DC
20253 if (spec_attr == NULL)
20254 return NULL;
20255 else
f2f0e013 20256 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 20257}
c906108c 20258
527f3840
JK
20259/* Stub for free_line_header to match void * callback types. */
20260
20261static void
20262free_line_header_voidp (void *arg)
20263{
9a3c8263 20264 struct line_header *lh = (struct line_header *) arg;
527f3840 20265
fff8551c 20266 delete lh;
527f3840
JK
20267}
20268
fff8551c
PA
20269void
20270line_header::add_include_dir (const char *include_dir)
c906108c 20271{
27e0867f 20272 if (dwarf_line_debug >= 2)
fff8551c
PA
20273 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20274 include_dirs.size () + 1, include_dir);
27e0867f 20275
fff8551c 20276 include_dirs.push_back (include_dir);
debd256d 20277}
6e70227d 20278
fff8551c
PA
20279void
20280line_header::add_file_name (const char *name,
ecfb656c 20281 dir_index d_index,
fff8551c
PA
20282 unsigned int mod_time,
20283 unsigned int length)
debd256d 20284{
27e0867f
DE
20285 if (dwarf_line_debug >= 2)
20286 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 20287 (unsigned) file_names.size () + 1, name);
27e0867f 20288
ecfb656c 20289 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 20290}
6e70227d 20291
83769d0b 20292/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
20293
20294static struct dwarf2_section_info *
20295get_debug_line_section (struct dwarf2_cu *cu)
20296{
20297 struct dwarf2_section_info *section;
518817b3
SM
20298 struct dwarf2_per_objfile *dwarf2_per_objfile
20299 = cu->per_cu->dwarf2_per_objfile;
36586728
TT
20300
20301 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20302 DWO file. */
20303 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20304 section = &cu->dwo_unit->dwo_file->sections.line;
20305 else if (cu->per_cu->is_dwz)
20306 {
ed2dc618 20307 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
20308
20309 section = &dwz->line;
20310 }
20311 else
20312 section = &dwarf2_per_objfile->line;
20313
20314 return section;
20315}
20316
43988095
JK
20317/* Read directory or file name entry format, starting with byte of
20318 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20319 entries count and the entries themselves in the described entry
20320 format. */
20321
20322static void
ed2dc618
SM
20323read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20324 bfd *abfd, const gdb_byte **bufp,
43988095
JK
20325 struct line_header *lh,
20326 const struct comp_unit_head *cu_header,
20327 void (*callback) (struct line_header *lh,
20328 const char *name,
ecfb656c 20329 dir_index d_index,
43988095
JK
20330 unsigned int mod_time,
20331 unsigned int length))
20332{
20333 gdb_byte format_count, formati;
20334 ULONGEST data_count, datai;
20335 const gdb_byte *buf = *bufp;
20336 const gdb_byte *format_header_data;
43988095
JK
20337 unsigned int bytes_read;
20338
20339 format_count = read_1_byte (abfd, buf);
20340 buf += 1;
20341 format_header_data = buf;
20342 for (formati = 0; formati < format_count; formati++)
20343 {
20344 read_unsigned_leb128 (abfd, buf, &bytes_read);
20345 buf += bytes_read;
20346 read_unsigned_leb128 (abfd, buf, &bytes_read);
20347 buf += bytes_read;
20348 }
20349
20350 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20351 buf += bytes_read;
20352 for (datai = 0; datai < data_count; datai++)
20353 {
20354 const gdb_byte *format = format_header_data;
20355 struct file_entry fe;
20356
43988095
JK
20357 for (formati = 0; formati < format_count; formati++)
20358 {
ecfb656c 20359 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20360 format += bytes_read;
43988095 20361
ecfb656c 20362 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20363 format += bytes_read;
ecfb656c
PA
20364
20365 gdb::optional<const char *> string;
20366 gdb::optional<unsigned int> uint;
20367
43988095
JK
20368 switch (form)
20369 {
20370 case DW_FORM_string:
ecfb656c 20371 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
20372 buf += bytes_read;
20373 break;
20374
20375 case DW_FORM_line_strp:
ed2dc618
SM
20376 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20377 abfd, buf,
ecfb656c
PA
20378 cu_header,
20379 &bytes_read));
43988095
JK
20380 buf += bytes_read;
20381 break;
20382
20383 case DW_FORM_data1:
ecfb656c 20384 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
20385 buf += 1;
20386 break;
20387
20388 case DW_FORM_data2:
ecfb656c 20389 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
20390 buf += 2;
20391 break;
20392
20393 case DW_FORM_data4:
ecfb656c 20394 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
20395 buf += 4;
20396 break;
20397
20398 case DW_FORM_data8:
ecfb656c 20399 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
20400 buf += 8;
20401 break;
20402
20403 case DW_FORM_udata:
ecfb656c 20404 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
20405 buf += bytes_read;
20406 break;
20407
20408 case DW_FORM_block:
20409 /* It is valid only for DW_LNCT_timestamp which is ignored by
20410 current GDB. */
20411 break;
20412 }
ecfb656c
PA
20413
20414 switch (content_type)
20415 {
20416 case DW_LNCT_path:
20417 if (string.has_value ())
20418 fe.name = *string;
20419 break;
20420 case DW_LNCT_directory_index:
20421 if (uint.has_value ())
20422 fe.d_index = (dir_index) *uint;
20423 break;
20424 case DW_LNCT_timestamp:
20425 if (uint.has_value ())
20426 fe.mod_time = *uint;
20427 break;
20428 case DW_LNCT_size:
20429 if (uint.has_value ())
20430 fe.length = *uint;
20431 break;
20432 case DW_LNCT_MD5:
20433 break;
20434 default:
b98664d3 20435 complaint (_("Unknown format content type %s"),
ecfb656c
PA
20436 pulongest (content_type));
20437 }
43988095
JK
20438 }
20439
ecfb656c 20440 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
20441 }
20442
20443 *bufp = buf;
20444}
20445
debd256d 20446/* Read the statement program header starting at OFFSET in
3019eac3 20447 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 20448 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
20449 Returns NULL if there is a problem reading the header, e.g., if it
20450 has a version we don't understand.
debd256d
JB
20451
20452 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
20453 the returned object point into the dwarf line section buffer,
20454 and must not be freed. */
ae2de4f8 20455
fff8551c 20456static line_header_up
9c541725 20457dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 20458{
d521ce57 20459 const gdb_byte *line_ptr;
c764a876 20460 unsigned int bytes_read, offset_size;
debd256d 20461 int i;
d521ce57 20462 const char *cur_dir, *cur_file;
3019eac3
DE
20463 struct dwarf2_section_info *section;
20464 bfd *abfd;
518817b3
SM
20465 struct dwarf2_per_objfile *dwarf2_per_objfile
20466 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20467
36586728 20468 section = get_debug_line_section (cu);
3019eac3
DE
20469 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20470 if (section->buffer == NULL)
debd256d 20471 {
3019eac3 20472 if (cu->dwo_unit && cu->per_cu->is_debug_types)
b98664d3 20473 complaint (_("missing .debug_line.dwo section"));
3019eac3 20474 else
b98664d3 20475 complaint (_("missing .debug_line section"));
debd256d
JB
20476 return 0;
20477 }
20478
fceca515
DE
20479 /* We can't do this until we know the section is non-empty.
20480 Only then do we know we have such a section. */
a32a8923 20481 abfd = get_section_bfd_owner (section);
fceca515 20482
a738430d
MK
20483 /* Make sure that at least there's room for the total_length field.
20484 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 20485 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 20486 {
4d3c2250 20487 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20488 return 0;
20489 }
20490
fff8551c 20491 line_header_up lh (new line_header ());
debd256d 20492
9c541725 20493 lh->sect_off = sect_off;
527f3840
JK
20494 lh->offset_in_dwz = cu->per_cu->is_dwz;
20495
9c541725 20496 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 20497
a738430d 20498 /* Read in the header. */
6e70227d 20499 lh->total_length =
c764a876
DE
20500 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20501 &bytes_read, &offset_size);
debd256d 20502 line_ptr += bytes_read;
3019eac3 20503 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 20504 {
4d3c2250 20505 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20506 return 0;
20507 }
20508 lh->statement_program_end = line_ptr + lh->total_length;
20509 lh->version = read_2_bytes (abfd, line_ptr);
20510 line_ptr += 2;
43988095 20511 if (lh->version > 5)
cd366ee8
DE
20512 {
20513 /* This is a version we don't understand. The format could have
20514 changed in ways we don't handle properly so just punt. */
b98664d3 20515 complaint (_("unsupported version in .debug_line section"));
cd366ee8
DE
20516 return NULL;
20517 }
43988095
JK
20518 if (lh->version >= 5)
20519 {
20520 gdb_byte segment_selector_size;
20521
20522 /* Skip address size. */
20523 read_1_byte (abfd, line_ptr);
20524 line_ptr += 1;
20525
20526 segment_selector_size = read_1_byte (abfd, line_ptr);
20527 line_ptr += 1;
20528 if (segment_selector_size != 0)
20529 {
b98664d3 20530 complaint (_("unsupported segment selector size %u "
43988095
JK
20531 "in .debug_line section"),
20532 segment_selector_size);
20533 return NULL;
20534 }
20535 }
c764a876
DE
20536 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20537 line_ptr += offset_size;
debd256d
JB
20538 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20539 line_ptr += 1;
2dc7f7b3
TT
20540 if (lh->version >= 4)
20541 {
20542 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20543 line_ptr += 1;
20544 }
20545 else
20546 lh->maximum_ops_per_instruction = 1;
20547
20548 if (lh->maximum_ops_per_instruction == 0)
20549 {
20550 lh->maximum_ops_per_instruction = 1;
b98664d3 20551 complaint (_("invalid maximum_ops_per_instruction "
3e43a32a 20552 "in `.debug_line' section"));
2dc7f7b3
TT
20553 }
20554
debd256d
JB
20555 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20556 line_ptr += 1;
20557 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20558 line_ptr += 1;
20559 lh->line_range = read_1_byte (abfd, line_ptr);
20560 line_ptr += 1;
20561 lh->opcode_base = read_1_byte (abfd, line_ptr);
20562 line_ptr += 1;
fff8551c 20563 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
20564
20565 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20566 for (i = 1; i < lh->opcode_base; ++i)
20567 {
20568 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20569 line_ptr += 1;
20570 }
20571
43988095 20572 if (lh->version >= 5)
debd256d 20573 {
43988095 20574 /* Read directory table. */
ed2dc618
SM
20575 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20576 &cu->header,
b926417a 20577 [] (struct line_header *header, const char *name,
ecfb656c 20578 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20579 unsigned int length)
20580 {
b926417a 20581 header->add_include_dir (name);
fff8551c 20582 });
debd256d 20583
43988095 20584 /* Read file name table. */
ed2dc618
SM
20585 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20586 &cu->header,
b926417a 20587 [] (struct line_header *header, const char *name,
ecfb656c 20588 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20589 unsigned int length)
20590 {
b926417a 20591 header->add_file_name (name, d_index, mod_time, length);
fff8551c 20592 });
43988095
JK
20593 }
20594 else
debd256d 20595 {
43988095
JK
20596 /* Read directory table. */
20597 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20598 {
20599 line_ptr += bytes_read;
fff8551c 20600 lh->add_include_dir (cur_dir);
43988095 20601 }
debd256d
JB
20602 line_ptr += bytes_read;
20603
43988095
JK
20604 /* Read file name table. */
20605 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20606 {
ecfb656c
PA
20607 unsigned int mod_time, length;
20608 dir_index d_index;
43988095
JK
20609
20610 line_ptr += bytes_read;
ecfb656c 20611 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
20612 line_ptr += bytes_read;
20613 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20614 line_ptr += bytes_read;
20615 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20616 line_ptr += bytes_read;
20617
ecfb656c 20618 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
20619 }
20620 line_ptr += bytes_read;
debd256d 20621 }
6e70227d 20622 lh->statement_program_start = line_ptr;
debd256d 20623
3019eac3 20624 if (line_ptr > (section->buffer + section->size))
b98664d3 20625 complaint (_("line number info header doesn't "
3e43a32a 20626 "fit in `.debug_line' section"));
debd256d 20627
debd256d
JB
20628 return lh;
20629}
c906108c 20630
c6da4cef
DE
20631/* Subroutine of dwarf_decode_lines to simplify it.
20632 Return the file name of the psymtab for included file FILE_INDEX
20633 in line header LH of PST.
20634 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
c89b44cd
TT
20635 If space for the result is malloc'd, *NAME_HOLDER will be set.
20636 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
c6da4cef 20637
d521ce57 20638static const char *
c6da4cef
DE
20639psymtab_include_file_name (const struct line_header *lh, int file_index,
20640 const struct partial_symtab *pst,
c89b44cd
TT
20641 const char *comp_dir,
20642 gdb::unique_xmalloc_ptr<char> *name_holder)
c6da4cef 20643{
8c43009f 20644 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
20645 const char *include_name = fe.name;
20646 const char *include_name_to_compare = include_name;
72b9f47f 20647 const char *pst_filename;
c6da4cef
DE
20648 int file_is_pst;
20649
8c43009f 20650 const char *dir_name = fe.include_dir (lh);
c6da4cef 20651
c89b44cd 20652 gdb::unique_xmalloc_ptr<char> hold_compare;
c6da4cef
DE
20653 if (!IS_ABSOLUTE_PATH (include_name)
20654 && (dir_name != NULL || comp_dir != NULL))
20655 {
20656 /* Avoid creating a duplicate psymtab for PST.
20657 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20658 Before we do the comparison, however, we need to account
20659 for DIR_NAME and COMP_DIR.
20660 First prepend dir_name (if non-NULL). If we still don't
20661 have an absolute path prepend comp_dir (if non-NULL).
20662 However, the directory we record in the include-file's
20663 psymtab does not contain COMP_DIR (to match the
20664 corresponding symtab(s)).
20665
20666 Example:
20667
20668 bash$ cd /tmp
20669 bash$ gcc -g ./hello.c
20670 include_name = "hello.c"
20671 dir_name = "."
20672 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
20673 DW_AT_name = "./hello.c"
20674
20675 */
c6da4cef
DE
20676
20677 if (dir_name != NULL)
20678 {
c89b44cd
TT
20679 name_holder->reset (concat (dir_name, SLASH_STRING,
20680 include_name, (char *) NULL));
20681 include_name = name_holder->get ();
c6da4cef 20682 include_name_to_compare = include_name;
c6da4cef
DE
20683 }
20684 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20685 {
c89b44cd
TT
20686 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20687 include_name, (char *) NULL));
20688 include_name_to_compare = hold_compare.get ();
c6da4cef
DE
20689 }
20690 }
20691
20692 pst_filename = pst->filename;
c89b44cd 20693 gdb::unique_xmalloc_ptr<char> copied_name;
c6da4cef
DE
20694 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20695 {
c89b44cd
TT
20696 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20697 pst_filename, (char *) NULL));
20698 pst_filename = copied_name.get ();
c6da4cef
DE
20699 }
20700
1e3fad37 20701 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 20702
c6da4cef
DE
20703 if (file_is_pst)
20704 return NULL;
20705 return include_name;
20706}
20707
d9b3de22
DE
20708/* State machine to track the state of the line number program. */
20709
6f77053d 20710class lnp_state_machine
d9b3de22 20711{
6f77053d
PA
20712public:
20713 /* Initialize a machine state for the start of a line number
20714 program. */
804d2729
TT
20715 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20716 bool record_lines_p);
6f77053d 20717
8c43009f
PA
20718 file_entry *current_file ()
20719 {
20720 /* lh->file_names is 0-based, but the file name numbers in the
20721 statement program are 1-based. */
6f77053d
PA
20722 return m_line_header->file_name_at (m_file);
20723 }
20724
20725 /* Record the line in the state machine. END_SEQUENCE is true if
20726 we're processing the end of a sequence. */
20727 void record_line (bool end_sequence);
20728
7ab6656f
OJ
20729 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20730 nop-out rest of the lines in this sequence. */
6f77053d
PA
20731 void check_line_address (struct dwarf2_cu *cu,
20732 const gdb_byte *line_ptr,
7ab6656f 20733 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
6f77053d
PA
20734
20735 void handle_set_discriminator (unsigned int discriminator)
20736 {
20737 m_discriminator = discriminator;
20738 m_line_has_non_zero_discriminator |= discriminator != 0;
20739 }
20740
20741 /* Handle DW_LNE_set_address. */
20742 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20743 {
20744 m_op_index = 0;
20745 address += baseaddr;
20746 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20747 }
20748
20749 /* Handle DW_LNS_advance_pc. */
20750 void handle_advance_pc (CORE_ADDR adjust);
20751
20752 /* Handle a special opcode. */
20753 void handle_special_opcode (unsigned char op_code);
20754
20755 /* Handle DW_LNS_advance_line. */
20756 void handle_advance_line (int line_delta)
20757 {
20758 advance_line (line_delta);
20759 }
20760
20761 /* Handle DW_LNS_set_file. */
20762 void handle_set_file (file_name_index file);
20763
20764 /* Handle DW_LNS_negate_stmt. */
20765 void handle_negate_stmt ()
20766 {
20767 m_is_stmt = !m_is_stmt;
20768 }
20769
20770 /* Handle DW_LNS_const_add_pc. */
20771 void handle_const_add_pc ();
20772
20773 /* Handle DW_LNS_fixed_advance_pc. */
20774 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20775 {
20776 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20777 m_op_index = 0;
20778 }
20779
20780 /* Handle DW_LNS_copy. */
20781 void handle_copy ()
20782 {
20783 record_line (false);
20784 m_discriminator = 0;
20785 }
20786
20787 /* Handle DW_LNE_end_sequence. */
20788 void handle_end_sequence ()
20789 {
804d2729 20790 m_currently_recording_lines = true;
6f77053d
PA
20791 }
20792
20793private:
20794 /* Advance the line by LINE_DELTA. */
20795 void advance_line (int line_delta)
20796 {
20797 m_line += line_delta;
20798
20799 if (line_delta != 0)
20800 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
20801 }
20802
804d2729
TT
20803 struct dwarf2_cu *m_cu;
20804
6f77053d
PA
20805 gdbarch *m_gdbarch;
20806
20807 /* True if we're recording lines.
20808 Otherwise we're building partial symtabs and are just interested in
20809 finding include files mentioned by the line number program. */
20810 bool m_record_lines_p;
20811
8c43009f 20812 /* The line number header. */
6f77053d 20813 line_header *m_line_header;
8c43009f 20814
6f77053d
PA
20815 /* These are part of the standard DWARF line number state machine,
20816 and initialized according to the DWARF spec. */
d9b3de22 20817
6f77053d 20818 unsigned char m_op_index = 0;
8c43009f 20819 /* The line table index (1-based) of the current file. */
6f77053d
PA
20820 file_name_index m_file = (file_name_index) 1;
20821 unsigned int m_line = 1;
20822
20823 /* These are initialized in the constructor. */
20824
20825 CORE_ADDR m_address;
20826 bool m_is_stmt;
20827 unsigned int m_discriminator;
d9b3de22
DE
20828
20829 /* Additional bits of state we need to track. */
20830
20831 /* The last file that we called dwarf2_start_subfile for.
20832 This is only used for TLLs. */
6f77053d 20833 unsigned int m_last_file = 0;
d9b3de22 20834 /* The last file a line number was recorded for. */
6f77053d 20835 struct subfile *m_last_subfile = NULL;
d9b3de22 20836
804d2729
TT
20837 /* When true, record the lines we decode. */
20838 bool m_currently_recording_lines = false;
d9b3de22
DE
20839
20840 /* The last line number that was recorded, used to coalesce
20841 consecutive entries for the same line. This can happen, for
20842 example, when discriminators are present. PR 17276. */
6f77053d
PA
20843 unsigned int m_last_line = 0;
20844 bool m_line_has_non_zero_discriminator = false;
8c43009f 20845};
d9b3de22 20846
6f77053d
PA
20847void
20848lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20849{
20850 CORE_ADDR addr_adj = (((m_op_index + adjust)
20851 / m_line_header->maximum_ops_per_instruction)
20852 * m_line_header->minimum_instruction_length);
20853 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20854 m_op_index = ((m_op_index + adjust)
20855 % m_line_header->maximum_ops_per_instruction);
20856}
d9b3de22 20857
6f77053d
PA
20858void
20859lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 20860{
6f77053d
PA
20861 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20862 CORE_ADDR addr_adj = (((m_op_index
20863 + (adj_opcode / m_line_header->line_range))
20864 / m_line_header->maximum_ops_per_instruction)
20865 * m_line_header->minimum_instruction_length);
20866 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20867 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20868 % m_line_header->maximum_ops_per_instruction);
d9b3de22 20869
6f77053d
PA
20870 int line_delta = (m_line_header->line_base
20871 + (adj_opcode % m_line_header->line_range));
20872 advance_line (line_delta);
20873 record_line (false);
20874 m_discriminator = 0;
20875}
d9b3de22 20876
6f77053d
PA
20877void
20878lnp_state_machine::handle_set_file (file_name_index file)
20879{
20880 m_file = file;
20881
20882 const file_entry *fe = current_file ();
20883 if (fe == NULL)
20884 dwarf2_debug_line_missing_file_complaint ();
20885 else if (m_record_lines_p)
20886 {
20887 const char *dir = fe->include_dir (m_line_header);
20888
c24bdb02 20889 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
6f77053d 20890 m_line_has_non_zero_discriminator = m_discriminator != 0;
804d2729 20891 dwarf2_start_subfile (m_cu, fe->name, dir);
6f77053d
PA
20892 }
20893}
20894
20895void
20896lnp_state_machine::handle_const_add_pc ()
20897{
20898 CORE_ADDR adjust
20899 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20900
20901 CORE_ADDR addr_adj
20902 = (((m_op_index + adjust)
20903 / m_line_header->maximum_ops_per_instruction)
20904 * m_line_header->minimum_instruction_length);
20905
20906 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20907 m_op_index = ((m_op_index + adjust)
20908 % m_line_header->maximum_ops_per_instruction);
20909}
d9b3de22 20910
a05a36a5
DE
20911/* Return non-zero if we should add LINE to the line number table.
20912 LINE is the line to add, LAST_LINE is the last line that was added,
20913 LAST_SUBFILE is the subfile for LAST_LINE.
20914 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20915 had a non-zero discriminator.
20916
20917 We have to be careful in the presence of discriminators.
20918 E.g., for this line:
20919
20920 for (i = 0; i < 100000; i++);
20921
20922 clang can emit four line number entries for that one line,
20923 each with a different discriminator.
20924 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20925
20926 However, we want gdb to coalesce all four entries into one.
20927 Otherwise the user could stepi into the middle of the line and
20928 gdb would get confused about whether the pc really was in the
20929 middle of the line.
20930
20931 Things are further complicated by the fact that two consecutive
20932 line number entries for the same line is a heuristic used by gcc
20933 to denote the end of the prologue. So we can't just discard duplicate
20934 entries, we have to be selective about it. The heuristic we use is
20935 that we only collapse consecutive entries for the same line if at least
20936 one of those entries has a non-zero discriminator. PR 17276.
20937
20938 Note: Addresses in the line number state machine can never go backwards
20939 within one sequence, thus this coalescing is ok. */
20940
20941static int
804d2729
TT
20942dwarf_record_line_p (struct dwarf2_cu *cu,
20943 unsigned int line, unsigned int last_line,
a05a36a5
DE
20944 int line_has_non_zero_discriminator,
20945 struct subfile *last_subfile)
20946{
c24bdb02 20947 if (cu->get_builder ()->get_current_subfile () != last_subfile)
a05a36a5
DE
20948 return 1;
20949 if (line != last_line)
20950 return 1;
20951 /* Same line for the same file that we've seen already.
20952 As a last check, for pr 17276, only record the line if the line
20953 has never had a non-zero discriminator. */
20954 if (!line_has_non_zero_discriminator)
20955 return 1;
20956 return 0;
20957}
20958
804d2729
TT
20959/* Use the CU's builder to record line number LINE beginning at
20960 address ADDRESS in the line table of subfile SUBFILE. */
252a6764
DE
20961
20962static void
d9b3de22
DE
20963dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20964 unsigned int line, CORE_ADDR address,
804d2729 20965 struct dwarf2_cu *cu)
252a6764
DE
20966{
20967 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20968
27e0867f
DE
20969 if (dwarf_line_debug)
20970 {
20971 fprintf_unfiltered (gdb_stdlog,
20972 "Recording line %u, file %s, address %s\n",
20973 line, lbasename (subfile->name),
20974 paddress (gdbarch, address));
20975 }
20976
804d2729 20977 if (cu != nullptr)
c24bdb02 20978 cu->get_builder ()->record_line (subfile, line, addr);
252a6764
DE
20979}
20980
20981/* Subroutine of dwarf_decode_lines_1 to simplify it.
20982 Mark the end of a set of line number records.
d9b3de22 20983 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
20984 If SUBFILE is NULL the request is ignored. */
20985
20986static void
20987dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
804d2729 20988 CORE_ADDR address, struct dwarf2_cu *cu)
252a6764 20989{
27e0867f
DE
20990 if (subfile == NULL)
20991 return;
20992
20993 if (dwarf_line_debug)
20994 {
20995 fprintf_unfiltered (gdb_stdlog,
20996 "Finishing current line, file %s, address %s\n",
20997 lbasename (subfile->name),
20998 paddress (gdbarch, address));
20999 }
21000
804d2729 21001 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
d9b3de22
DE
21002}
21003
6f77053d
PA
21004void
21005lnp_state_machine::record_line (bool end_sequence)
d9b3de22 21006{
d9b3de22
DE
21007 if (dwarf_line_debug)
21008 {
21009 fprintf_unfiltered (gdb_stdlog,
21010 "Processing actual line %u: file %u,"
21011 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
21012 m_line, to_underlying (m_file),
21013 paddress (m_gdbarch, m_address),
21014 m_is_stmt, m_discriminator);
d9b3de22
DE
21015 }
21016
6f77053d 21017 file_entry *fe = current_file ();
8c43009f
PA
21018
21019 if (fe == NULL)
d9b3de22
DE
21020 dwarf2_debug_line_missing_file_complaint ();
21021 /* For now we ignore lines not starting on an instruction boundary.
21022 But not when processing end_sequence for compatibility with the
21023 previous version of the code. */
6f77053d 21024 else if (m_op_index == 0 || end_sequence)
d9b3de22 21025 {
8c43009f 21026 fe->included_p = 1;
c258c396 21027 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
d9b3de22 21028 {
c24bdb02 21029 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
804d2729 21030 || end_sequence)
d9b3de22 21031 {
804d2729
TT
21032 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21033 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22
DE
21034 }
21035
21036 if (!end_sequence)
21037 {
804d2729 21038 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
6f77053d
PA
21039 m_line_has_non_zero_discriminator,
21040 m_last_subfile))
d9b3de22 21041 {
c24bdb02 21042 buildsym_compunit *builder = m_cu->get_builder ();
804d2729 21043 dwarf_record_line_1 (m_gdbarch,
c24bdb02 21044 builder->get_current_subfile (),
6f77053d 21045 m_line, m_address,
804d2729 21046 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22 21047 }
c24bdb02 21048 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
6f77053d 21049 m_last_line = m_line;
d9b3de22
DE
21050 }
21051 }
21052 }
21053}
21054
804d2729
TT
21055lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21056 line_header *lh, bool record_lines_p)
d9b3de22 21057{
804d2729 21058 m_cu = cu;
6f77053d
PA
21059 m_gdbarch = arch;
21060 m_record_lines_p = record_lines_p;
21061 m_line_header = lh;
d9b3de22 21062
804d2729 21063 m_currently_recording_lines = true;
d9b3de22 21064
d9b3de22
DE
21065 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21066 was a line entry for it so that the backend has a chance to adjust it
21067 and also record it in case it needs it. This is currently used by MIPS
21068 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
21069 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21070 m_is_stmt = lh->default_is_stmt;
21071 m_discriminator = 0;
252a6764
DE
21072}
21073
6f77053d
PA
21074void
21075lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21076 const gdb_byte *line_ptr,
7ab6656f 21077 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
924c2928 21078{
7ab6656f
OJ
21079 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21080 the pc range of the CU. However, we restrict the test to only ADDRESS
21081 values of zero to preserve GDB's previous behaviour which is to handle
21082 the specific case of a function being GC'd by the linker. */
924c2928 21083
7ab6656f 21084 if (address == 0 && address < unrelocated_lowpc)
924c2928
DE
21085 {
21086 /* This line table is for a function which has been
21087 GCd by the linker. Ignore it. PR gdb/12528 */
21088
518817b3 21089 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
924c2928
DE
21090 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21091
b98664d3 21092 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
924c2928 21093 line_offset, objfile_name (objfile));
804d2729
TT
21094 m_currently_recording_lines = false;
21095 /* Note: m_currently_recording_lines is left as false until we see
21096 DW_LNE_end_sequence. */
924c2928
DE
21097 }
21098}
21099
f3f5162e 21100/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
21101 Process the line number information in LH.
21102 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21103 program in order to set included_p for every referenced header. */
debd256d 21104
c906108c 21105static void
43f3e411
DE
21106dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21107 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 21108{
d521ce57
TT
21109 const gdb_byte *line_ptr, *extended_end;
21110 const gdb_byte *line_end;
a8c50c1f 21111 unsigned int bytes_read, extended_len;
699ca60a 21112 unsigned char op_code, extended_op;
e142c38c 21113 CORE_ADDR baseaddr;
518817b3 21114 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 21115 bfd *abfd = objfile->obfd;
fbf65064 21116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
21117 /* True if we're recording line info (as opposed to building partial
21118 symtabs and just interested in finding include files mentioned by
21119 the line number program). */
21120 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
21121
21122 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21123
debd256d
JB
21124 line_ptr = lh->statement_program_start;
21125 line_end = lh->statement_program_end;
c906108c
SS
21126
21127 /* Read the statement sequences until there's nothing left. */
21128 while (line_ptr < line_end)
21129 {
6f77053d
PA
21130 /* The DWARF line number program state machine. Reset the state
21131 machine at the start of each sequence. */
804d2729 21132 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
6f77053d 21133 bool end_sequence = false;
d9b3de22 21134
8c43009f 21135 if (record_lines_p)
c906108c 21136 {
8c43009f
PA
21137 /* Start a subfile for the current file of the state
21138 machine. */
21139 const file_entry *fe = state_machine.current_file ();
21140
21141 if (fe != NULL)
804d2729 21142 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
c906108c
SS
21143 }
21144
a738430d 21145 /* Decode the table. */
d9b3de22 21146 while (line_ptr < line_end && !end_sequence)
c906108c
SS
21147 {
21148 op_code = read_1_byte (abfd, line_ptr);
21149 line_ptr += 1;
9aa1fe7e 21150
debd256d 21151 if (op_code >= lh->opcode_base)
6e70227d 21152 {
8e07a239 21153 /* Special opcode. */
6f77053d 21154 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
21155 }
21156 else switch (op_code)
c906108c
SS
21157 {
21158 case DW_LNS_extended_op:
3e43a32a
MS
21159 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21160 &bytes_read);
473b7be6 21161 line_ptr += bytes_read;
a8c50c1f 21162 extended_end = line_ptr + extended_len;
c906108c
SS
21163 extended_op = read_1_byte (abfd, line_ptr);
21164 line_ptr += 1;
21165 switch (extended_op)
21166 {
21167 case DW_LNE_end_sequence:
6f77053d
PA
21168 state_machine.handle_end_sequence ();
21169 end_sequence = true;
c906108c
SS
21170 break;
21171 case DW_LNE_set_address:
d9b3de22
DE
21172 {
21173 CORE_ADDR address
21174 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 21175 line_ptr += bytes_read;
6f77053d
PA
21176
21177 state_machine.check_line_address (cu, line_ptr,
7ab6656f 21178 lowpc - baseaddr, address);
6f77053d 21179 state_machine.handle_set_address (baseaddr, address);
d9b3de22 21180 }
c906108c
SS
21181 break;
21182 case DW_LNE_define_file:
debd256d 21183 {
d521ce57 21184 const char *cur_file;
ecfb656c
PA
21185 unsigned int mod_time, length;
21186 dir_index dindex;
6e70227d 21187
3e43a32a
MS
21188 cur_file = read_direct_string (abfd, line_ptr,
21189 &bytes_read);
debd256d 21190 line_ptr += bytes_read;
ecfb656c 21191 dindex = (dir_index)
debd256d
JB
21192 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21193 line_ptr += bytes_read;
21194 mod_time =
21195 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21196 line_ptr += bytes_read;
21197 length =
21198 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21199 line_ptr += bytes_read;
ecfb656c 21200 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 21201 }
c906108c 21202 break;
d0c6ba3d 21203 case DW_LNE_set_discriminator:
6f77053d
PA
21204 {
21205 /* The discriminator is not interesting to the
21206 debugger; just ignore it. We still need to
21207 check its value though:
21208 if there are consecutive entries for the same
21209 (non-prologue) line we want to coalesce them.
21210 PR 17276. */
21211 unsigned int discr
21212 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21213 line_ptr += bytes_read;
21214
21215 state_machine.handle_set_discriminator (discr);
21216 }
d0c6ba3d 21217 break;
c906108c 21218 default:
b98664d3 21219 complaint (_("mangled .debug_line section"));
debd256d 21220 return;
c906108c 21221 }
a8c50c1f
DJ
21222 /* Make sure that we parsed the extended op correctly. If e.g.
21223 we expected a different address size than the producer used,
21224 we may have read the wrong number of bytes. */
21225 if (line_ptr != extended_end)
21226 {
b98664d3 21227 complaint (_("mangled .debug_line section"));
a8c50c1f
DJ
21228 return;
21229 }
c906108c
SS
21230 break;
21231 case DW_LNS_copy:
6f77053d 21232 state_machine.handle_copy ();
c906108c
SS
21233 break;
21234 case DW_LNS_advance_pc:
2dc7f7b3
TT
21235 {
21236 CORE_ADDR adjust
21237 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 21238 line_ptr += bytes_read;
6f77053d
PA
21239
21240 state_machine.handle_advance_pc (adjust);
2dc7f7b3 21241 }
c906108c
SS
21242 break;
21243 case DW_LNS_advance_line:
a05a36a5
DE
21244 {
21245 int line_delta
21246 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 21247 line_ptr += bytes_read;
6f77053d
PA
21248
21249 state_machine.handle_advance_line (line_delta);
a05a36a5 21250 }
c906108c
SS
21251 break;
21252 case DW_LNS_set_file:
d9b3de22 21253 {
6f77053d 21254 file_name_index file
ecfb656c
PA
21255 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21256 &bytes_read);
d9b3de22 21257 line_ptr += bytes_read;
8c43009f 21258
6f77053d 21259 state_machine.handle_set_file (file);
d9b3de22 21260 }
c906108c
SS
21261 break;
21262 case DW_LNS_set_column:
0ad93d4f 21263 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
21264 line_ptr += bytes_read;
21265 break;
21266 case DW_LNS_negate_stmt:
6f77053d 21267 state_machine.handle_negate_stmt ();
c906108c
SS
21268 break;
21269 case DW_LNS_set_basic_block:
c906108c 21270 break;
c2c6d25f
JM
21271 /* Add to the address register of the state machine the
21272 address increment value corresponding to special opcode
a738430d
MK
21273 255. I.e., this value is scaled by the minimum
21274 instruction length since special opcode 255 would have
b021a221 21275 scaled the increment. */
c906108c 21276 case DW_LNS_const_add_pc:
6f77053d 21277 state_machine.handle_const_add_pc ();
c906108c
SS
21278 break;
21279 case DW_LNS_fixed_advance_pc:
3e29f34a 21280 {
6f77053d 21281 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 21282 line_ptr += 2;
6f77053d
PA
21283
21284 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 21285 }
c906108c 21286 break;
9aa1fe7e 21287 default:
a738430d
MK
21288 {
21289 /* Unknown standard opcode, ignore it. */
9aa1fe7e 21290 int i;
a738430d 21291
debd256d 21292 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
21293 {
21294 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21295 line_ptr += bytes_read;
21296 }
21297 }
c906108c
SS
21298 }
21299 }
d9b3de22
DE
21300
21301 if (!end_sequence)
21302 dwarf2_debug_line_missing_end_sequence_complaint ();
21303
21304 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21305 in which case we still finish recording the last line). */
6f77053d 21306 state_machine.record_line (true);
c906108c 21307 }
f3f5162e
DE
21308}
21309
21310/* Decode the Line Number Program (LNP) for the given line_header
21311 structure and CU. The actual information extracted and the type
21312 of structures created from the LNP depends on the value of PST.
21313
21314 1. If PST is NULL, then this procedure uses the data from the program
21315 to create all necessary symbol tables, and their linetables.
21316
21317 2. If PST is not NULL, this procedure reads the program to determine
21318 the list of files included by the unit represented by PST, and
21319 builds all the associated partial symbol tables.
21320
21321 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21322 It is used for relative paths in the line table.
21323 NOTE: When processing partial symtabs (pst != NULL),
21324 comp_dir == pst->dirname.
21325
21326 NOTE: It is important that psymtabs have the same file name (via strcmp)
21327 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21328 symtab we don't use it in the name of the psymtabs we create.
21329 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
21330 A good testcase for this is mb-inline.exp.
21331
527f3840
JK
21332 LOWPC is the lowest address in CU (or 0 if not known).
21333
21334 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21335 for its PC<->lines mapping information. Otherwise only the filename
21336 table is read in. */
f3f5162e
DE
21337
21338static void
21339dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 21340 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 21341 CORE_ADDR lowpc, int decode_mapping)
f3f5162e 21342{
518817b3 21343 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 21344 const int decode_for_pst_p = (pst != NULL);
f3f5162e 21345
527f3840
JK
21346 if (decode_mapping)
21347 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
21348
21349 if (decode_for_pst_p)
21350 {
21351 int file_index;
21352
21353 /* Now that we're done scanning the Line Header Program, we can
21354 create the psymtab of each included file. */
fff8551c 21355 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
21356 if (lh->file_names[file_index].included_p == 1)
21357 {
c89b44cd 21358 gdb::unique_xmalloc_ptr<char> name_holder;
d521ce57 21359 const char *include_name =
c89b44cd
TT
21360 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21361 &name_holder);
c6da4cef 21362 if (include_name != NULL)
aaa75496
JB
21363 dwarf2_create_include_psymtab (include_name, pst, objfile);
21364 }
21365 }
cb1df416
DJ
21366 else
21367 {
21368 /* Make sure a symtab is created for every file, even files
21369 which contain only variables (i.e. no code with associated
21370 line numbers). */
c24bdb02
KS
21371 buildsym_compunit *builder = cu->get_builder ();
21372 struct compunit_symtab *cust = builder->get_compunit_symtab ();
cb1df416 21373 int i;
cb1df416 21374
fff8551c 21375 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 21376 {
8c43009f 21377 file_entry &fe = lh->file_names[i];
9a619af0 21378
804d2729 21379 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
cb1df416 21380
c24bdb02 21381 if (builder->get_current_subfile ()->symtab == NULL)
43f3e411 21382 {
c24bdb02 21383 builder->get_current_subfile ()->symtab
804d2729 21384 = allocate_symtab (cust,
c24bdb02 21385 builder->get_current_subfile ()->name);
43f3e411 21386 }
c24bdb02 21387 fe.symtab = builder->get_current_subfile ()->symtab;
cb1df416
DJ
21388 }
21389 }
c906108c
SS
21390}
21391
21392/* Start a subfile for DWARF. FILENAME is the name of the file and
21393 DIRNAME the name of the source directory which contains FILENAME
4d663531 21394 or NULL if not known.
c906108c
SS
21395 This routine tries to keep line numbers from identical absolute and
21396 relative file names in a common subfile.
21397
21398 Using the `list' example from the GDB testsuite, which resides in
21399 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21400 of /srcdir/list0.c yields the following debugging information for list0.c:
21401
c5aa993b 21402 DW_AT_name: /srcdir/list0.c
4d663531 21403 DW_AT_comp_dir: /compdir
357e46e7 21404 files.files[0].name: list0.h
c5aa993b 21405 files.files[0].dir: /srcdir
357e46e7 21406 files.files[1].name: list0.c
c5aa993b 21407 files.files[1].dir: /srcdir
c906108c
SS
21408
21409 The line number information for list0.c has to end up in a single
4f1520fb
FR
21410 subfile, so that `break /srcdir/list0.c:1' works as expected.
21411 start_subfile will ensure that this happens provided that we pass the
21412 concatenation of files.files[1].dir and files.files[1].name as the
21413 subfile's name. */
c906108c
SS
21414
21415static void
804d2729
TT
21416dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21417 const char *dirname)
c906108c 21418{
d521ce57 21419 char *copy = NULL;
4f1520fb 21420
4d663531 21421 /* In order not to lose the line information directory,
4f1520fb
FR
21422 we concatenate it to the filename when it makes sense.
21423 Note that the Dwarf3 standard says (speaking of filenames in line
21424 information): ``The directory index is ignored for file names
21425 that represent full path names''. Thus ignoring dirname in the
21426 `else' branch below isn't an issue. */
c906108c 21427
d5166ae1 21428 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
21429 {
21430 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21431 filename = copy;
21432 }
c906108c 21433
c24bdb02 21434 cu->get_builder ()->start_subfile (filename);
4f1520fb 21435
d521ce57
TT
21436 if (copy != NULL)
21437 xfree (copy);
c906108c
SS
21438}
21439
804d2729
TT
21440/* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21441 buildsym_compunit constructor. */
f4dc4d17 21442
c24bdb02
KS
21443struct compunit_symtab *
21444dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21445 CORE_ADDR low_pc)
f4dc4d17 21446{
c24bdb02 21447 gdb_assert (m_builder == nullptr);
43f3e411 21448
c24bdb02
KS
21449 m_builder.reset (new struct buildsym_compunit
21450 (per_cu->dwarf2_per_objfile->objfile,
21451 name, comp_dir, language, low_pc));
93b8bea4 21452
c24bdb02 21453 list_in_scope = get_builder ()->get_file_symbols ();
804d2729 21454
c24bdb02
KS
21455 get_builder ()->record_debugformat ("DWARF 2");
21456 get_builder ()->record_producer (producer);
f4dc4d17 21457
c24bdb02 21458 processing_has_namespace_info = false;
43f3e411 21459
c24bdb02 21460 return get_builder ()->get_compunit_symtab ();
f4dc4d17
DE
21461}
21462
4c2df51b
DJ
21463static void
21464var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 21465 struct dwarf2_cu *cu)
4c2df51b 21466{
518817b3 21467 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e7c27a73
DJ
21468 struct comp_unit_head *cu_header = &cu->header;
21469
4c2df51b
DJ
21470 /* NOTE drow/2003-01-30: There used to be a comment and some special
21471 code here to turn a symbol with DW_AT_external and a
21472 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21473 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21474 with some versions of binutils) where shared libraries could have
21475 relocations against symbols in their debug information - the
21476 minimal symbol would have the right address, but the debug info
21477 would not. It's no longer necessary, because we will explicitly
21478 apply relocations when we read in the debug information now. */
21479
21480 /* A DW_AT_location attribute with no contents indicates that a
21481 variable has been optimized away. */
21482 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21483 {
f1e6e072 21484 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
21485 return;
21486 }
21487
21488 /* Handle one degenerate form of location expression specially, to
21489 preserve GDB's previous behavior when section offsets are
336d760d
AT
21490 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21491 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
21492
21493 if (attr_form_is_block (attr)
3019eac3
DE
21494 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21495 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
336d760d
AT
21496 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21497 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
3019eac3
DE
21498 && (DW_BLOCK (attr)->size
21499 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 21500 {
891d2f0b 21501 unsigned int dummy;
4c2df51b 21502
3019eac3 21503 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
38583298
TT
21504 SET_SYMBOL_VALUE_ADDRESS (sym,
21505 read_address (objfile->obfd,
21506 DW_BLOCK (attr)->data + 1,
21507 cu, &dummy));
3019eac3 21508 else
38583298
TT
21509 SET_SYMBOL_VALUE_ADDRESS
21510 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21511 &dummy));
f1e6e072 21512 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b 21513 fixup_symbol_section (sym, objfile);
38583298
TT
21514 SET_SYMBOL_VALUE_ADDRESS (sym,
21515 SYMBOL_VALUE_ADDRESS (sym)
21516 + ANOFFSET (objfile->section_offsets,
21517 SYMBOL_SECTION (sym)));
4c2df51b
DJ
21518 return;
21519 }
21520
21521 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21522 expression evaluator, and use LOC_COMPUTED only when necessary
21523 (i.e. when the value of a register or memory location is
21524 referenced, or a thread-local block, etc.). Then again, it might
21525 not be worthwhile. I'm assuming that it isn't unless performance
21526 or memory numbers show me otherwise. */
21527
f1e6e072 21528 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 21529
f1e6e072 21530 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
9068261f 21531 cu->has_loclist = true;
4c2df51b
DJ
21532}
21533
c906108c
SS
21534/* Given a pointer to a DWARF information entry, figure out if we need
21535 to make a symbol table entry for it, and if so, create a new entry
21536 and return a pointer to it.
21537 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
21538 used the passed type.
21539 If SPACE is not NULL, use it to hold the new symbol. If it is
21540 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
21541
21542static struct symbol *
5e2db402
TT
21543new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21544 struct symbol *space)
c906108c 21545{
518817b3
SM
21546 struct dwarf2_per_objfile *dwarf2_per_objfile
21547 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 21549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 21550 struct symbol *sym = NULL;
15d034d0 21551 const char *name;
c906108c
SS
21552 struct attribute *attr = NULL;
21553 struct attribute *attr2 = NULL;
e142c38c 21554 CORE_ADDR baseaddr;
e37fd15a
SW
21555 struct pending **list_to_add = NULL;
21556
edb3359d 21557 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
21558
21559 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21560
94af9270 21561 name = dwarf2_name (die, cu);
c906108c
SS
21562 if (name)
21563 {
94af9270 21564 const char *linkagename;
34eaf542 21565 int suppress_add = 0;
94af9270 21566
34eaf542
TT
21567 if (space)
21568 sym = space;
21569 else
e623cf5d 21570 sym = allocate_symbol (objfile);
c906108c 21571 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
21572
21573 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 21574 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
21575 linkagename = dwarf2_physname (name, die, cu);
21576 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 21577
f55ee35c
JK
21578 /* Fortran does not have mangling standard and the mangling does differ
21579 between gfortran, iFort etc. */
21580 if (cu->language == language_fortran
b250c185 21581 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 21582 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 21583 dwarf2_full_name (name, die, cu),
29df156d 21584 NULL);
f55ee35c 21585
c906108c 21586 /* Default assumptions.
c5aa993b 21587 Use the passed type or decode it from the die. */
176620f1 21588 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 21589 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
21590 if (type != NULL)
21591 SYMBOL_TYPE (sym) = type;
21592 else
e7c27a73 21593 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
21594 attr = dwarf2_attr (die,
21595 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21596 cu);
c906108c
SS
21597 if (attr)
21598 {
21599 SYMBOL_LINE (sym) = DW_UNSND (attr);
21600 }
cb1df416 21601
edb3359d
DJ
21602 attr = dwarf2_attr (die,
21603 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21604 cu);
cb1df416
DJ
21605 if (attr)
21606 {
ecfb656c 21607 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 21608 struct file_entry *fe;
9a619af0 21609
ecfb656c
PA
21610 if (cu->line_header != NULL)
21611 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
21612 else
21613 fe = NULL;
21614
21615 if (fe == NULL)
b98664d3 21616 complaint (_("file index out of range"));
8c43009f
PA
21617 else
21618 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
21619 }
21620
c906108c
SS
21621 switch (die->tag)
21622 {
21623 case DW_TAG_label:
e142c38c 21624 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 21625 if (attr)
3e29f34a
MR
21626 {
21627 CORE_ADDR addr;
21628
21629 addr = attr_value_as_address (attr);
21630 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
38583298 21631 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
3e29f34a 21632 }
0f5238ed
TT
21633 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21634 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 21635 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
d3cb6808 21636 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
21637 break;
21638 case DW_TAG_subprogram:
21639 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21640 finish_block. */
f1e6e072 21641 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 21642 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
21643 if ((attr2 && (DW_UNSND (attr2) != 0))
21644 || cu->language == language_ada)
c906108c 21645 {
2cfa0c8d
JB
21646 /* Subprograms marked external are stored as a global symbol.
21647 Ada subprograms, whether marked external or not, are always
21648 stored as a global symbol, because we want to be able to
21649 access them globally. For instance, we want to be able
21650 to break on a nested subprogram without having to
21651 specify the context. */
c24bdb02 21652 list_to_add = cu->get_builder ()->get_global_symbols ();
c906108c
SS
21653 }
21654 else
21655 {
e37fd15a 21656 list_to_add = cu->list_in_scope;
c906108c
SS
21657 }
21658 break;
edb3359d
DJ
21659 case DW_TAG_inlined_subroutine:
21660 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21661 finish_block. */
f1e6e072 21662 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 21663 SYMBOL_INLINED (sym) = 1;
481860b3 21664 list_to_add = cu->list_in_scope;
edb3359d 21665 break;
34eaf542
TT
21666 case DW_TAG_template_value_param:
21667 suppress_add = 1;
21668 /* Fall through. */
72929c62 21669 case DW_TAG_constant:
c906108c 21670 case DW_TAG_variable:
254e6b9e 21671 case DW_TAG_member:
0963b4bd
MS
21672 /* Compilation with minimal debug info may result in
21673 variables with missing type entries. Change the
21674 misleading `void' type to something sensible. */
c906108c 21675 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 21676 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 21677
e142c38c 21678 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
21679 /* In the case of DW_TAG_member, we should only be called for
21680 static const members. */
21681 if (die->tag == DW_TAG_member)
21682 {
3863f96c
DE
21683 /* dwarf2_add_field uses die_is_declaration,
21684 so we do the same. */
254e6b9e
DE
21685 gdb_assert (die_is_declaration (die, cu));
21686 gdb_assert (attr);
21687 }
c906108c
SS
21688 if (attr)
21689 {
e7c27a73 21690 dwarf2_const_value (attr, sym, cu);
e142c38c 21691 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 21692 if (!suppress_add)
34eaf542
TT
21693 {
21694 if (attr2 && (DW_UNSND (attr2) != 0))
c24bdb02 21695 list_to_add = cu->get_builder ()->get_global_symbols ();
34eaf542 21696 else
e37fd15a 21697 list_to_add = cu->list_in_scope;
34eaf542 21698 }
c906108c
SS
21699 break;
21700 }
e142c38c 21701 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
21702 if (attr)
21703 {
e7c27a73 21704 var_decode_location (attr, sym, cu);
e142c38c 21705 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
21706
21707 /* Fortran explicitly imports any global symbols to the local
21708 scope by DW_TAG_common_block. */
21709 if (cu->language == language_fortran && die->parent
21710 && die->parent->tag == DW_TAG_common_block)
21711 attr2 = NULL;
21712
caac4577
JG
21713 if (SYMBOL_CLASS (sym) == LOC_STATIC
21714 && SYMBOL_VALUE_ADDRESS (sym) == 0
21715 && !dwarf2_per_objfile->has_section_at_zero)
21716 {
21717 /* When a static variable is eliminated by the linker,
21718 the corresponding debug information is not stripped
21719 out, but the variable address is set to null;
21720 do not add such variables into symbol table. */
21721 }
21722 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 21723 {
4b610737
TT
21724 if (SYMBOL_CLASS (sym) == LOC_STATIC
21725 && (objfile->flags & OBJF_MAINLINE) == 0
21726 && dwarf2_per_objfile->can_copy)
21727 {
21728 /* A global static variable might be subject to
21729 copy relocation. We first check for a local
21730 minsym, though, because maybe the symbol was
21731 marked hidden, in which case this would not
21732 apply. */
21733 bound_minimal_symbol found
21734 = (lookup_minimal_symbol_linkage
21735 (SYMBOL_LINKAGE_NAME (sym), objfile));
21736 if (found.minsym != nullptr)
21737 sym->maybe_copied = 1;
21738 }
f55ee35c 21739
1c809c68
TT
21740 /* A variable with DW_AT_external is never static,
21741 but it may be block-scoped. */
804d2729 21742 list_to_add
c24bdb02
KS
21743 = ((cu->list_in_scope
21744 == cu->get_builder ()->get_file_symbols ())
21745 ? cu->get_builder ()->get_global_symbols ()
804d2729 21746 : cu->list_in_scope);
1c809c68 21747 }
c906108c 21748 else
e37fd15a 21749 list_to_add = cu->list_in_scope;
c906108c
SS
21750 }
21751 else
21752 {
21753 /* We do not know the address of this symbol.
c5aa993b
JM
21754 If it is an external symbol and we have type information
21755 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21756 The address of the variable will then be determined from
21757 the minimal symbol table whenever the variable is
21758 referenced. */
e142c38c 21759 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
21760
21761 /* Fortran explicitly imports any global symbols to the local
21762 scope by DW_TAG_common_block. */
21763 if (cu->language == language_fortran && die->parent
21764 && die->parent->tag == DW_TAG_common_block)
21765 {
21766 /* SYMBOL_CLASS doesn't matter here because
21767 read_common_block is going to reset it. */
21768 if (!suppress_add)
21769 list_to_add = cu->list_in_scope;
21770 }
21771 else if (attr2 && (DW_UNSND (attr2) != 0)
21772 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 21773 {
0fe7935b
DJ
21774 /* A variable with DW_AT_external is never static, but it
21775 may be block-scoped. */
804d2729 21776 list_to_add
c24bdb02
KS
21777 = ((cu->list_in_scope
21778 == cu->get_builder ()->get_file_symbols ())
21779 ? cu->get_builder ()->get_global_symbols ()
804d2729 21780 : cu->list_in_scope);
0fe7935b 21781
f1e6e072 21782 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 21783 }
442ddf59
JK
21784 else if (!die_is_declaration (die, cu))
21785 {
21786 /* Use the default LOC_OPTIMIZED_OUT class. */
21787 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
21788 if (!suppress_add)
21789 list_to_add = cu->list_in_scope;
442ddf59 21790 }
c906108c
SS
21791 }
21792 break;
21793 case DW_TAG_formal_parameter:
a60f3166
TT
21794 {
21795 /* If we are inside a function, mark this as an argument. If
21796 not, we might be looking at an argument to an inlined function
21797 when we do not have enough information to show inlined frames;
21798 pretend it's a local variable in that case so that the user can
21799 still see it. */
804d2729 21800 struct context_stack *curr
c24bdb02 21801 = cu->get_builder ()->get_current_context_stack ();
a60f3166
TT
21802 if (curr != nullptr && curr->name != nullptr)
21803 SYMBOL_IS_ARGUMENT (sym) = 1;
21804 attr = dwarf2_attr (die, DW_AT_location, cu);
21805 if (attr)
21806 {
21807 var_decode_location (attr, sym, cu);
21808 }
21809 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21810 if (attr)
21811 {
21812 dwarf2_const_value (attr, sym, cu);
21813 }
f346a30d 21814
a60f3166
TT
21815 list_to_add = cu->list_in_scope;
21816 }
c906108c
SS
21817 break;
21818 case DW_TAG_unspecified_parameters:
21819 /* From varargs functions; gdb doesn't seem to have any
21820 interest in this information, so just ignore it for now.
21821 (FIXME?) */
21822 break;
34eaf542
TT
21823 case DW_TAG_template_type_param:
21824 suppress_add = 1;
21825 /* Fall through. */
c906108c 21826 case DW_TAG_class_type:
680b30c7 21827 case DW_TAG_interface_type:
c906108c
SS
21828 case DW_TAG_structure_type:
21829 case DW_TAG_union_type:
72019c9c 21830 case DW_TAG_set_type:
c906108c 21831 case DW_TAG_enumeration_type:
f1e6e072 21832 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21833 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 21834
63d06c5c 21835 {
9c37b5ae 21836 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
21837 really ever be static objects: otherwise, if you try
21838 to, say, break of a class's method and you're in a file
21839 which doesn't mention that class, it won't work unless
21840 the check for all static symbols in lookup_symbol_aux
21841 saves you. See the OtherFileClass tests in
21842 gdb.c++/namespace.exp. */
21843
e37fd15a 21844 if (!suppress_add)
34eaf542 21845 {
c24bdb02 21846 buildsym_compunit *builder = cu->get_builder ();
804d2729 21847 list_to_add
c24bdb02 21848 = (cu->list_in_scope == builder->get_file_symbols ()
804d2729 21849 && cu->language == language_cplus
c24bdb02 21850 ? builder->get_global_symbols ()
804d2729 21851 : cu->list_in_scope);
63d06c5c 21852
64382290 21853 /* The semantics of C++ state that "struct foo {
9c37b5ae 21854 ... }" also defines a typedef for "foo". */
64382290 21855 if (cu->language == language_cplus
45280282 21856 || cu->language == language_ada
c44af4eb
TT
21857 || cu->language == language_d
21858 || cu->language == language_rust)
64382290
TT
21859 {
21860 /* The symbol's name is already allocated along
21861 with this objfile, so we don't need to
21862 duplicate it for the type. */
21863 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21864 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21865 }
63d06c5c
DC
21866 }
21867 }
c906108c
SS
21868 break;
21869 case DW_TAG_typedef:
f1e6e072 21870 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 21871 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21872 list_to_add = cu->list_in_scope;
63d06c5c 21873 break;
c906108c 21874 case DW_TAG_base_type:
a02abb62 21875 case DW_TAG_subrange_type:
f1e6e072 21876 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21877 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21878 list_to_add = cu->list_in_scope;
c906108c
SS
21879 break;
21880 case DW_TAG_enumerator:
e142c38c 21881 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
21882 if (attr)
21883 {
e7c27a73 21884 dwarf2_const_value (attr, sym, cu);
c906108c 21885 }
63d06c5c
DC
21886 {
21887 /* NOTE: carlton/2003-11-10: See comment above in the
21888 DW_TAG_class_type, etc. block. */
21889
804d2729 21890 list_to_add
c24bdb02 21891 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
804d2729 21892 && cu->language == language_cplus
c24bdb02 21893 ? cu->get_builder ()->get_global_symbols ()
804d2729 21894 : cu->list_in_scope);
63d06c5c 21895 }
c906108c 21896 break;
74921315 21897 case DW_TAG_imported_declaration:
5c4e30ca 21898 case DW_TAG_namespace:
f1e6e072 21899 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c24bdb02 21900 list_to_add = cu->get_builder ()->get_global_symbols ();
5c4e30ca 21901 break;
530e8392
KB
21902 case DW_TAG_module:
21903 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21904 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
c24bdb02 21905 list_to_add = cu->get_builder ()->get_global_symbols ();
530e8392 21906 break;
4357ac6c 21907 case DW_TAG_common_block:
f1e6e072 21908 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c 21909 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
d3cb6808 21910 add_symbol_to_list (sym, cu->list_in_scope);
4357ac6c 21911 break;
c906108c
SS
21912 default:
21913 /* Not a tag we recognize. Hopefully we aren't processing
21914 trash data, but since we must specifically ignore things
21915 we don't recognize, there is nothing else we should do at
0963b4bd 21916 this point. */
b98664d3 21917 complaint (_("unsupported tag: '%s'"),
4d3c2250 21918 dwarf_tag_name (die->tag));
c906108c
SS
21919 break;
21920 }
df8a16a1 21921
e37fd15a
SW
21922 if (suppress_add)
21923 {
21924 sym->hash_next = objfile->template_symbols;
21925 objfile->template_symbols = sym;
21926 list_to_add = NULL;
21927 }
21928
21929 if (list_to_add != NULL)
d3cb6808 21930 add_symbol_to_list (sym, list_to_add);
e37fd15a 21931
df8a16a1
DJ
21932 /* For the benefit of old versions of GCC, check for anonymous
21933 namespaces based on the demangled name. */
4d4ec4e5 21934 if (!cu->processing_has_namespace_info
94af9270 21935 && cu->language == language_cplus)
c24bdb02 21936 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
c906108c
SS
21937 }
21938 return (sym);
21939}
21940
98bfdba5
PA
21941/* Given an attr with a DW_FORM_dataN value in host byte order,
21942 zero-extend it as appropriate for the symbol's type. The DWARF
21943 standard (v4) is not entirely clear about the meaning of using
21944 DW_FORM_dataN for a constant with a signed type, where the type is
21945 wider than the data. The conclusion of a discussion on the DWARF
21946 list was that this is unspecified. We choose to always zero-extend
21947 because that is the interpretation long in use by GCC. */
c906108c 21948
98bfdba5 21949static gdb_byte *
ff39bb5e 21950dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 21951 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 21952{
518817b3 21953 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e17a4113
UW
21954 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21955 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
21956 LONGEST l = DW_UNSND (attr);
21957
21958 if (bits < sizeof (*value) * 8)
21959 {
21960 l &= ((LONGEST) 1 << bits) - 1;
21961 *value = l;
21962 }
21963 else if (bits == sizeof (*value) * 8)
21964 *value = l;
21965 else
21966 {
224c3ddb 21967 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
21968 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21969 return bytes;
21970 }
21971
21972 return NULL;
21973}
21974
21975/* Read a constant value from an attribute. Either set *VALUE, or if
21976 the value does not fit in *VALUE, set *BYTES - either already
21977 allocated on the objfile obstack, or newly allocated on OBSTACK,
21978 or, set *BATON, if we translated the constant to a location
21979 expression. */
21980
21981static void
ff39bb5e 21982dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
21983 const char *name, struct obstack *obstack,
21984 struct dwarf2_cu *cu,
d521ce57 21985 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
21986 struct dwarf2_locexpr_baton **baton)
21987{
518817b3 21988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
98bfdba5 21989 struct comp_unit_head *cu_header = &cu->header;
c906108c 21990 struct dwarf_block *blk;
98bfdba5
PA
21991 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21992 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21993
21994 *value = 0;
21995 *bytes = NULL;
21996 *baton = NULL;
c906108c
SS
21997
21998 switch (attr->form)
21999 {
22000 case DW_FORM_addr:
336d760d 22001 case DW_FORM_addrx:
3019eac3 22002 case DW_FORM_GNU_addr_index:
ac56253d 22003 {
ac56253d
TT
22004 gdb_byte *data;
22005
98bfdba5
PA
22006 if (TYPE_LENGTH (type) != cu_header->addr_size)
22007 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 22008 cu_header->addr_size,
98bfdba5 22009 TYPE_LENGTH (type));
ac56253d
TT
22010 /* Symbols of this form are reasonably rare, so we just
22011 piggyback on the existing location code rather than writing
22012 a new implementation of symbol_computed_ops. */
8d749320 22013 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
22014 (*baton)->per_cu = cu->per_cu;
22015 gdb_assert ((*baton)->per_cu);
ac56253d 22016
98bfdba5 22017 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 22018 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 22019 (*baton)->data = data;
ac56253d
TT
22020
22021 data[0] = DW_OP_addr;
22022 store_unsigned_integer (&data[1], cu_header->addr_size,
22023 byte_order, DW_ADDR (attr));
22024 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 22025 }
c906108c 22026 break;
4ac36638 22027 case DW_FORM_string:
93b5768b 22028 case DW_FORM_strp:
cf532bd1 22029 case DW_FORM_strx:
3019eac3 22030 case DW_FORM_GNU_str_index:
36586728 22031 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
22032 /* DW_STRING is already allocated on the objfile obstack, point
22033 directly to it. */
d521ce57 22034 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 22035 break;
c906108c
SS
22036 case DW_FORM_block1:
22037 case DW_FORM_block2:
22038 case DW_FORM_block4:
22039 case DW_FORM_block:
2dc7f7b3 22040 case DW_FORM_exprloc:
0224619f 22041 case DW_FORM_data16:
c906108c 22042 blk = DW_BLOCK (attr);
98bfdba5
PA
22043 if (TYPE_LENGTH (type) != blk->size)
22044 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22045 TYPE_LENGTH (type));
22046 *bytes = blk->data;
c906108c 22047 break;
2df3850c
JM
22048
22049 /* The DW_AT_const_value attributes are supposed to carry the
22050 symbol's value "represented as it would be on the target
22051 architecture." By the time we get here, it's already been
22052 converted to host endianness, so we just need to sign- or
22053 zero-extend it as appropriate. */
22054 case DW_FORM_data1:
3aef2284 22055 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 22056 break;
c906108c 22057 case DW_FORM_data2:
3aef2284 22058 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 22059 break;
c906108c 22060 case DW_FORM_data4:
3aef2284 22061 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 22062 break;
c906108c 22063 case DW_FORM_data8:
3aef2284 22064 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
22065 break;
22066
c906108c 22067 case DW_FORM_sdata:
663c44ac 22068 case DW_FORM_implicit_const:
98bfdba5 22069 *value = DW_SND (attr);
2df3850c
JM
22070 break;
22071
c906108c 22072 case DW_FORM_udata:
98bfdba5 22073 *value = DW_UNSND (attr);
c906108c 22074 break;
2df3850c 22075
c906108c 22076 default:
b98664d3 22077 complaint (_("unsupported const value attribute form: '%s'"),
4d3c2250 22078 dwarf_form_name (attr->form));
98bfdba5 22079 *value = 0;
c906108c
SS
22080 break;
22081 }
22082}
22083
2df3850c 22084
98bfdba5
PA
22085/* Copy constant value from an attribute to a symbol. */
22086
2df3850c 22087static void
ff39bb5e 22088dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 22089 struct dwarf2_cu *cu)
2df3850c 22090{
518817b3 22091 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12df843f 22092 LONGEST value;
d521ce57 22093 const gdb_byte *bytes;
98bfdba5 22094 struct dwarf2_locexpr_baton *baton;
2df3850c 22095
98bfdba5
PA
22096 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22097 SYMBOL_PRINT_NAME (sym),
22098 &objfile->objfile_obstack, cu,
22099 &value, &bytes, &baton);
2df3850c 22100
98bfdba5
PA
22101 if (baton != NULL)
22102 {
98bfdba5 22103 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 22104 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
22105 }
22106 else if (bytes != NULL)
22107 {
22108 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 22109 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
22110 }
22111 else
22112 {
22113 SYMBOL_VALUE (sym) = value;
f1e6e072 22114 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 22115 }
2df3850c
JM
22116}
22117
c906108c
SS
22118/* Return the type of the die in question using its DW_AT_type attribute. */
22119
22120static struct type *
e7c27a73 22121die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22122{
c906108c 22123 struct attribute *type_attr;
c906108c 22124
e142c38c 22125 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
22126 if (!type_attr)
22127 {
518817b3 22128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 22129 /* A missing DW_AT_type represents a void type. */
518817b3 22130 return objfile_type (objfile)->builtin_void;
c906108c 22131 }
348e048f 22132
673bfd45 22133 return lookup_die_type (die, type_attr, cu);
c906108c
SS
22134}
22135
b4ba55a1
JB
22136/* True iff CU's producer generates GNAT Ada auxiliary information
22137 that allows to find parallel types through that information instead
22138 of having to do expensive parallel lookups by type name. */
22139
22140static int
22141need_gnat_info (struct dwarf2_cu *cu)
22142{
de4cb04a
JB
22143 /* Assume that the Ada compiler was GNAT, which always produces
22144 the auxiliary information. */
22145 return (cu->language == language_ada);
b4ba55a1
JB
22146}
22147
b4ba55a1
JB
22148/* Return the auxiliary type of the die in question using its
22149 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22150 attribute is not present. */
22151
22152static struct type *
22153die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22154{
b4ba55a1 22155 struct attribute *type_attr;
b4ba55a1
JB
22156
22157 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22158 if (!type_attr)
22159 return NULL;
22160
673bfd45 22161 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
22162}
22163
22164/* If DIE has a descriptive_type attribute, then set the TYPE's
22165 descriptive type accordingly. */
22166
22167static void
22168set_descriptive_type (struct type *type, struct die_info *die,
22169 struct dwarf2_cu *cu)
22170{
22171 struct type *descriptive_type = die_descriptive_type (die, cu);
22172
22173 if (descriptive_type)
22174 {
22175 ALLOCATE_GNAT_AUX_TYPE (type);
22176 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22177 }
22178}
22179
c906108c
SS
22180/* Return the containing type of the die in question using its
22181 DW_AT_containing_type attribute. */
22182
22183static struct type *
e7c27a73 22184die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22185{
c906108c 22186 struct attribute *type_attr;
518817b3 22187 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 22188
e142c38c 22189 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
22190 if (!type_attr)
22191 error (_("Dwarf Error: Problem turning containing type into gdb type "
518817b3 22192 "[in module %s]"), objfile_name (objfile));
33ac96f0 22193
673bfd45 22194 return lookup_die_type (die, type_attr, cu);
c906108c
SS
22195}
22196
ac9ec31b
DE
22197/* Return an error marker type to use for the ill formed type in DIE/CU. */
22198
22199static struct type *
22200build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22201{
518817b3
SM
22202 struct dwarf2_per_objfile *dwarf2_per_objfile
22203 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b 22204 struct objfile *objfile = dwarf2_per_objfile->objfile;
528e1572 22205 char *saved;
ac9ec31b 22206
528e1572
SM
22207 std::string message
22208 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22209 objfile_name (objfile),
22210 sect_offset_str (cu->header.sect_off),
22211 sect_offset_str (die->sect_off));
efba19b0 22212 saved = obstack_strdup (&objfile->objfile_obstack, message);
ac9ec31b 22213
19f392bc 22214 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
22215}
22216
673bfd45 22217/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
22218 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22219 DW_AT_containing_type.
673bfd45
DE
22220 If there is no type substitute an error marker. */
22221
c906108c 22222static struct type *
ff39bb5e 22223lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 22224 struct dwarf2_cu *cu)
c906108c 22225{
518817b3
SM
22226 struct dwarf2_per_objfile *dwarf2_per_objfile
22227 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 22228 struct objfile *objfile = dwarf2_per_objfile->objfile;
f792889a
DJ
22229 struct type *this_type;
22230
ac9ec31b
DE
22231 gdb_assert (attr->name == DW_AT_type
22232 || attr->name == DW_AT_GNAT_descriptive_type
22233 || attr->name == DW_AT_containing_type);
22234
673bfd45
DE
22235 /* First see if we have it cached. */
22236
36586728
TT
22237 if (attr->form == DW_FORM_GNU_ref_alt)
22238 {
22239 struct dwarf2_per_cu_data *per_cu;
9c541725 22240 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 22241
ed2dc618
SM
22242 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22243 dwarf2_per_objfile);
9c541725 22244 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 22245 }
7771576e 22246 else if (attr_form_is_ref (attr))
673bfd45 22247 {
9c541725 22248 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 22249
9c541725 22250 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 22251 }
55f1336d 22252 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 22253 {
ac9ec31b 22254 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 22255
ac9ec31b 22256 return get_signatured_type (die, signature, cu);
673bfd45
DE
22257 }
22258 else
22259 {
b98664d3 22260 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
9d8780f0
SM
22261 " at %s [in module %s]"),
22262 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
4262abfb 22263 objfile_name (objfile));
ac9ec31b 22264 return build_error_marker_type (cu, die);
673bfd45
DE
22265 }
22266
22267 /* If not cached we need to read it in. */
22268
22269 if (this_type == NULL)
22270 {
ac9ec31b 22271 struct die_info *type_die = NULL;
673bfd45
DE
22272 struct dwarf2_cu *type_cu = cu;
22273
7771576e 22274 if (attr_form_is_ref (attr))
ac9ec31b
DE
22275 type_die = follow_die_ref (die, attr, &type_cu);
22276 if (type_die == NULL)
22277 return build_error_marker_type (cu, die);
22278 /* If we find the type now, it's probably because the type came
3019eac3
DE
22279 from an inter-CU reference and the type's CU got expanded before
22280 ours. */
ac9ec31b 22281 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
22282 }
22283
22284 /* If we still don't have a type use an error marker. */
22285
22286 if (this_type == NULL)
ac9ec31b 22287 return build_error_marker_type (cu, die);
673bfd45 22288
f792889a 22289 return this_type;
c906108c
SS
22290}
22291
673bfd45
DE
22292/* Return the type in DIE, CU.
22293 Returns NULL for invalid types.
22294
02142a6c 22295 This first does a lookup in die_type_hash,
673bfd45
DE
22296 and only reads the die in if necessary.
22297
22298 NOTE: This can be called when reading in partial or full symbols. */
22299
f792889a 22300static struct type *
e7c27a73 22301read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22302{
f792889a
DJ
22303 struct type *this_type;
22304
22305 this_type = get_die_type (die, cu);
22306 if (this_type)
22307 return this_type;
22308
673bfd45
DE
22309 return read_type_die_1 (die, cu);
22310}
22311
22312/* Read the type in DIE, CU.
22313 Returns NULL for invalid types. */
22314
22315static struct type *
22316read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22317{
22318 struct type *this_type = NULL;
22319
c906108c
SS
22320 switch (die->tag)
22321 {
22322 case DW_TAG_class_type:
680b30c7 22323 case DW_TAG_interface_type:
c906108c
SS
22324 case DW_TAG_structure_type:
22325 case DW_TAG_union_type:
f792889a 22326 this_type = read_structure_type (die, cu);
c906108c
SS
22327 break;
22328 case DW_TAG_enumeration_type:
f792889a 22329 this_type = read_enumeration_type (die, cu);
c906108c
SS
22330 break;
22331 case DW_TAG_subprogram:
22332 case DW_TAG_subroutine_type:
edb3359d 22333 case DW_TAG_inlined_subroutine:
f792889a 22334 this_type = read_subroutine_type (die, cu);
c906108c
SS
22335 break;
22336 case DW_TAG_array_type:
f792889a 22337 this_type = read_array_type (die, cu);
c906108c 22338 break;
72019c9c 22339 case DW_TAG_set_type:
f792889a 22340 this_type = read_set_type (die, cu);
72019c9c 22341 break;
c906108c 22342 case DW_TAG_pointer_type:
f792889a 22343 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
22344 break;
22345 case DW_TAG_ptr_to_member_type:
f792889a 22346 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
22347 break;
22348 case DW_TAG_reference_type:
4297a3f0
AV
22349 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22350 break;
22351 case DW_TAG_rvalue_reference_type:
22352 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
22353 break;
22354 case DW_TAG_const_type:
f792889a 22355 this_type = read_tag_const_type (die, cu);
c906108c
SS
22356 break;
22357 case DW_TAG_volatile_type:
f792889a 22358 this_type = read_tag_volatile_type (die, cu);
c906108c 22359 break;
06d66ee9
TT
22360 case DW_TAG_restrict_type:
22361 this_type = read_tag_restrict_type (die, cu);
22362 break;
c906108c 22363 case DW_TAG_string_type:
f792889a 22364 this_type = read_tag_string_type (die, cu);
c906108c
SS
22365 break;
22366 case DW_TAG_typedef:
f792889a 22367 this_type = read_typedef (die, cu);
c906108c 22368 break;
a02abb62 22369 case DW_TAG_subrange_type:
f792889a 22370 this_type = read_subrange_type (die, cu);
a02abb62 22371 break;
c906108c 22372 case DW_TAG_base_type:
f792889a 22373 this_type = read_base_type (die, cu);
c906108c 22374 break;
81a17f79 22375 case DW_TAG_unspecified_type:
f792889a 22376 this_type = read_unspecified_type (die, cu);
81a17f79 22377 break;
0114d602
DJ
22378 case DW_TAG_namespace:
22379 this_type = read_namespace_type (die, cu);
22380 break;
f55ee35c
JK
22381 case DW_TAG_module:
22382 this_type = read_module_type (die, cu);
22383 break;
a2c2acaf
MW
22384 case DW_TAG_atomic_type:
22385 this_type = read_tag_atomic_type (die, cu);
22386 break;
c906108c 22387 default:
b98664d3 22388 complaint (_("unexpected tag in read_type_die: '%s'"),
4d3c2250 22389 dwarf_tag_name (die->tag));
c906108c
SS
22390 break;
22391 }
63d06c5c 22392
f792889a 22393 return this_type;
63d06c5c
DC
22394}
22395
abc72ce4
DE
22396/* See if we can figure out if the class lives in a namespace. We do
22397 this by looking for a member function; its demangled name will
22398 contain namespace info, if there is any.
22399 Return the computed name or NULL.
22400 Space for the result is allocated on the objfile's obstack.
22401 This is the full-die version of guess_partial_die_structure_name.
22402 In this case we know DIE has no useful parent. */
22403
22404static char *
22405guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22406{
22407 struct die_info *spec_die;
22408 struct dwarf2_cu *spec_cu;
22409 struct die_info *child;
518817b3 22410 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4
DE
22411
22412 spec_cu = cu;
22413 spec_die = die_specification (die, &spec_cu);
22414 if (spec_die != NULL)
22415 {
22416 die = spec_die;
22417 cu = spec_cu;
22418 }
22419
22420 for (child = die->child;
22421 child != NULL;
22422 child = child->sibling)
22423 {
22424 if (child->tag == DW_TAG_subprogram)
22425 {
73b9be8b 22426 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 22427
7d45c7c3 22428 if (linkage_name != NULL)
abc72ce4
DE
22429 {
22430 char *actual_name
22431 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 22432 linkage_name);
abc72ce4
DE
22433 char *name = NULL;
22434
22435 if (actual_name != NULL)
22436 {
15d034d0 22437 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
22438
22439 if (die_name != NULL
22440 && strcmp (die_name, actual_name) != 0)
22441 {
22442 /* Strip off the class name from the full name.
22443 We want the prefix. */
22444 int die_name_len = strlen (die_name);
22445 int actual_name_len = strlen (actual_name);
22446
22447 /* Test for '::' as a sanity check. */
22448 if (actual_name_len > die_name_len + 2
3e43a32a
MS
22449 && actual_name[actual_name_len
22450 - die_name_len - 1] == ':')
0cf9feb9 22451 name = obstack_strndup (
e3b94546 22452 &objfile->per_bfd->storage_obstack,
224c3ddb 22453 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
22454 }
22455 }
22456 xfree (actual_name);
22457 return name;
22458 }
22459 }
22460 }
22461
22462 return NULL;
22463}
22464
96408a79
SA
22465/* GCC might emit a nameless typedef that has a linkage name. Determine the
22466 prefix part in such case. See
22467 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22468
a121b7c1 22469static const char *
96408a79
SA
22470anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22471{
22472 struct attribute *attr;
e6a959d6 22473 const char *base;
96408a79
SA
22474
22475 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22476 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22477 return NULL;
22478
7d45c7c3 22479 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
22480 return NULL;
22481
73b9be8b 22482 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
22483 if (attr == NULL || DW_STRING (attr) == NULL)
22484 return NULL;
22485
22486 /* dwarf2_name had to be already called. */
22487 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22488
22489 /* Strip the base name, keep any leading namespaces/classes. */
22490 base = strrchr (DW_STRING (attr), ':');
22491 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22492 return "";
22493
518817b3 22494 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0cf9feb9
TT
22495 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22496 DW_STRING (attr),
22497 &base[-1] - DW_STRING (attr));
96408a79
SA
22498}
22499
fdde2d81 22500/* Return the name of the namespace/class that DIE is defined within,
0114d602 22501 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 22502
0114d602
DJ
22503 For example, if we're within the method foo() in the following
22504 code:
22505
22506 namespace N {
22507 class C {
22508 void foo () {
22509 }
22510 };
22511 }
22512
22513 then determine_prefix on foo's die will return "N::C". */
fdde2d81 22514
0d5cff50 22515static const char *
e142c38c 22516determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 22517{
518817b3
SM
22518 struct dwarf2_per_objfile *dwarf2_per_objfile
22519 = cu->per_cu->dwarf2_per_objfile;
0114d602
DJ
22520 struct die_info *parent, *spec_die;
22521 struct dwarf2_cu *spec_cu;
22522 struct type *parent_type;
a121b7c1 22523 const char *retval;
63d06c5c 22524
9c37b5ae 22525 if (cu->language != language_cplus
c44af4eb
TT
22526 && cu->language != language_fortran && cu->language != language_d
22527 && cu->language != language_rust)
0114d602
DJ
22528 return "";
22529
96408a79
SA
22530 retval = anonymous_struct_prefix (die, cu);
22531 if (retval)
22532 return retval;
22533
0114d602
DJ
22534 /* We have to be careful in the presence of DW_AT_specification.
22535 For example, with GCC 3.4, given the code
22536
22537 namespace N {
22538 void foo() {
22539 // Definition of N::foo.
22540 }
22541 }
22542
22543 then we'll have a tree of DIEs like this:
22544
22545 1: DW_TAG_compile_unit
22546 2: DW_TAG_namespace // N
22547 3: DW_TAG_subprogram // declaration of N::foo
22548 4: DW_TAG_subprogram // definition of N::foo
22549 DW_AT_specification // refers to die #3
22550
22551 Thus, when processing die #4, we have to pretend that we're in
22552 the context of its DW_AT_specification, namely the contex of die
22553 #3. */
22554 spec_cu = cu;
22555 spec_die = die_specification (die, &spec_cu);
22556 if (spec_die == NULL)
22557 parent = die->parent;
22558 else
63d06c5c 22559 {
0114d602
DJ
22560 parent = spec_die->parent;
22561 cu = spec_cu;
63d06c5c 22562 }
0114d602
DJ
22563
22564 if (parent == NULL)
22565 return "";
98bfdba5
PA
22566 else if (parent->building_fullname)
22567 {
22568 const char *name;
22569 const char *parent_name;
22570
22571 /* It has been seen on RealView 2.2 built binaries,
22572 DW_TAG_template_type_param types actually _defined_ as
22573 children of the parent class:
22574
22575 enum E {};
22576 template class <class Enum> Class{};
22577 Class<enum E> class_e;
22578
22579 1: DW_TAG_class_type (Class)
22580 2: DW_TAG_enumeration_type (E)
22581 3: DW_TAG_enumerator (enum1:0)
22582 3: DW_TAG_enumerator (enum2:1)
22583 ...
22584 2: DW_TAG_template_type_param
22585 DW_AT_type DW_FORM_ref_udata (E)
22586
22587 Besides being broken debug info, it can put GDB into an
22588 infinite loop. Consider:
22589
22590 When we're building the full name for Class<E>, we'll start
22591 at Class, and go look over its template type parameters,
22592 finding E. We'll then try to build the full name of E, and
22593 reach here. We're now trying to build the full name of E,
22594 and look over the parent DIE for containing scope. In the
22595 broken case, if we followed the parent DIE of E, we'd again
22596 find Class, and once again go look at its template type
22597 arguments, etc., etc. Simply don't consider such parent die
22598 as source-level parent of this die (it can't be, the language
22599 doesn't allow it), and break the loop here. */
22600 name = dwarf2_name (die, cu);
22601 parent_name = dwarf2_name (parent, cu);
b98664d3 22602 complaint (_("template param type '%s' defined within parent '%s'"),
98bfdba5
PA
22603 name ? name : "<unknown>",
22604 parent_name ? parent_name : "<unknown>");
22605 return "";
22606 }
63d06c5c 22607 else
0114d602
DJ
22608 switch (parent->tag)
22609 {
63d06c5c 22610 case DW_TAG_namespace:
0114d602 22611 parent_type = read_type_die (parent, cu);
acebe513
UW
22612 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22613 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22614 Work around this problem here. */
22615 if (cu->language == language_cplus
e86ca25f 22616 && strcmp (TYPE_NAME (parent_type), "::") == 0)
acebe513 22617 return "";
0114d602 22618 /* We give a name to even anonymous namespaces. */
e86ca25f 22619 return TYPE_NAME (parent_type);
63d06c5c 22620 case DW_TAG_class_type:
680b30c7 22621 case DW_TAG_interface_type:
63d06c5c 22622 case DW_TAG_structure_type:
0114d602 22623 case DW_TAG_union_type:
f55ee35c 22624 case DW_TAG_module:
0114d602 22625 parent_type = read_type_die (parent, cu);
e86ca25f
TT
22626 if (TYPE_NAME (parent_type) != NULL)
22627 return TYPE_NAME (parent_type);
0114d602
DJ
22628 else
22629 /* An anonymous structure is only allowed non-static data
22630 members; no typedefs, no member functions, et cetera.
22631 So it does not need a prefix. */
22632 return "";
abc72ce4 22633 case DW_TAG_compile_unit:
95554aad 22634 case DW_TAG_partial_unit:
abc72ce4
DE
22635 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22636 if (cu->language == language_cplus
fd5866f6 22637 && !dwarf2_per_objfile->types.empty ()
abc72ce4
DE
22638 && die->child != NULL
22639 && (die->tag == DW_TAG_class_type
22640 || die->tag == DW_TAG_structure_type
22641 || die->tag == DW_TAG_union_type))
22642 {
22643 char *name = guess_full_die_structure_name (die, cu);
22644 if (name != NULL)
22645 return name;
22646 }
22647 return "";
3d567982
TT
22648 case DW_TAG_enumeration_type:
22649 parent_type = read_type_die (parent, cu);
22650 if (TYPE_DECLARED_CLASS (parent_type))
22651 {
e86ca25f
TT
22652 if (TYPE_NAME (parent_type) != NULL)
22653 return TYPE_NAME (parent_type);
3d567982
TT
22654 return "";
22655 }
22656 /* Fall through. */
63d06c5c 22657 default:
8176b9b8 22658 return determine_prefix (parent, cu);
63d06c5c 22659 }
63d06c5c
DC
22660}
22661
3e43a32a
MS
22662/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22663 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22664 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22665 an obconcat, otherwise allocate storage for the result. The CU argument is
22666 used to determine the language and hence, the appropriate separator. */
987504bb 22667
f55ee35c 22668#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
22669
22670static char *
f55ee35c
JK
22671typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22672 int physname, struct dwarf2_cu *cu)
63d06c5c 22673{
f55ee35c 22674 const char *lead = "";
5c315b68 22675 const char *sep;
63d06c5c 22676
3e43a32a
MS
22677 if (suffix == NULL || suffix[0] == '\0'
22678 || prefix == NULL || prefix[0] == '\0')
987504bb 22679 sep = "";
45280282
IB
22680 else if (cu->language == language_d)
22681 {
22682 /* For D, the 'main' function could be defined in any module, but it
22683 should never be prefixed. */
22684 if (strcmp (suffix, "D main") == 0)
22685 {
22686 prefix = "";
22687 sep = "";
22688 }
22689 else
22690 sep = ".";
22691 }
f55ee35c
JK
22692 else if (cu->language == language_fortran && physname)
22693 {
22694 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22695 DW_AT_MIPS_linkage_name is preferred and used instead. */
22696
22697 lead = "__";
22698 sep = "_MOD_";
22699 }
987504bb
JJ
22700 else
22701 sep = "::";
63d06c5c 22702
6dd47d34
DE
22703 if (prefix == NULL)
22704 prefix = "";
22705 if (suffix == NULL)
22706 suffix = "";
22707
987504bb
JJ
22708 if (obs == NULL)
22709 {
3e43a32a 22710 char *retval
224c3ddb
SM
22711 = ((char *)
22712 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 22713
f55ee35c
JK
22714 strcpy (retval, lead);
22715 strcat (retval, prefix);
6dd47d34
DE
22716 strcat (retval, sep);
22717 strcat (retval, suffix);
63d06c5c
DC
22718 return retval;
22719 }
987504bb
JJ
22720 else
22721 {
22722 /* We have an obstack. */
f55ee35c 22723 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 22724 }
63d06c5c
DC
22725}
22726
c906108c
SS
22727/* Return sibling of die, NULL if no sibling. */
22728
f9aca02d 22729static struct die_info *
fba45db2 22730sibling_die (struct die_info *die)
c906108c 22731{
639d11d3 22732 return die->sibling;
c906108c
SS
22733}
22734
71c25dea
TT
22735/* Get name of a die, return NULL if not found. */
22736
15d034d0
TT
22737static const char *
22738dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
22739 struct obstack *obstack)
22740{
22741 if (name && cu->language == language_cplus)
22742 {
2f408ecb 22743 std::string canon_name = cp_canonicalize_string (name);
71c25dea 22744
2f408ecb 22745 if (!canon_name.empty ())
71c25dea 22746 {
2f408ecb 22747 if (canon_name != name)
efba19b0 22748 name = obstack_strdup (obstack, canon_name);
71c25dea
TT
22749 }
22750 }
22751
22752 return name;
c906108c
SS
22753}
22754
96553a0c
DE
22755/* Get name of a die, return NULL if not found.
22756 Anonymous namespaces are converted to their magic string. */
9219021c 22757
15d034d0 22758static const char *
e142c38c 22759dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
22760{
22761 struct attribute *attr;
518817b3 22762 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9219021c 22763
e142c38c 22764 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 22765 if ((!attr || !DW_STRING (attr))
96553a0c 22766 && die->tag != DW_TAG_namespace
53832f31
TT
22767 && die->tag != DW_TAG_class_type
22768 && die->tag != DW_TAG_interface_type
22769 && die->tag != DW_TAG_structure_type
22770 && die->tag != DW_TAG_union_type)
71c25dea
TT
22771 return NULL;
22772
22773 switch (die->tag)
22774 {
22775 case DW_TAG_compile_unit:
95554aad 22776 case DW_TAG_partial_unit:
71c25dea
TT
22777 /* Compilation units have a DW_AT_name that is a filename, not
22778 a source language identifier. */
22779 case DW_TAG_enumeration_type:
22780 case DW_TAG_enumerator:
22781 /* These tags always have simple identifiers already; no need
22782 to canonicalize them. */
22783 return DW_STRING (attr);
907af001 22784
96553a0c
DE
22785 case DW_TAG_namespace:
22786 if (attr != NULL && DW_STRING (attr) != NULL)
22787 return DW_STRING (attr);
22788 return CP_ANONYMOUS_NAMESPACE_STR;
22789
907af001
UW
22790 case DW_TAG_class_type:
22791 case DW_TAG_interface_type:
22792 case DW_TAG_structure_type:
22793 case DW_TAG_union_type:
22794 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22795 structures or unions. These were of the form "._%d" in GCC 4.1,
22796 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22797 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 22798 if (attr && DW_STRING (attr)
61012eef
GB
22799 && (startswith (DW_STRING (attr), "._")
22800 || startswith (DW_STRING (attr), "<anonymous")))
907af001 22801 return NULL;
53832f31
TT
22802
22803 /* GCC might emit a nameless typedef that has a linkage name. See
22804 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22805 if (!attr || DW_STRING (attr) == NULL)
22806 {
df5c6c50 22807 char *demangled = NULL;
53832f31 22808
73b9be8b 22809 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
22810 if (attr == NULL || DW_STRING (attr) == NULL)
22811 return NULL;
22812
df5c6c50
JK
22813 /* Avoid demangling DW_STRING (attr) the second time on a second
22814 call for the same DIE. */
22815 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 22816 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
22817
22818 if (demangled)
22819 {
e6a959d6 22820 const char *base;
96408a79 22821
53832f31 22822 /* FIXME: we already did this for the partial symbol... */
34a68019 22823 DW_STRING (attr)
021887d8
TT
22824 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22825 demangled);
53832f31
TT
22826 DW_STRING_IS_CANONICAL (attr) = 1;
22827 xfree (demangled);
96408a79
SA
22828
22829 /* Strip any leading namespaces/classes, keep only the base name.
22830 DW_AT_name for named DIEs does not contain the prefixes. */
22831 base = strrchr (DW_STRING (attr), ':');
22832 if (base && base > DW_STRING (attr) && base[-1] == ':')
22833 return &base[1];
22834 else
22835 return DW_STRING (attr);
53832f31
TT
22836 }
22837 }
907af001
UW
22838 break;
22839
71c25dea 22840 default:
907af001
UW
22841 break;
22842 }
22843
22844 if (!DW_STRING_IS_CANONICAL (attr))
22845 {
22846 DW_STRING (attr)
22847 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
e3b94546 22848 &objfile->per_bfd->storage_obstack);
907af001 22849 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 22850 }
907af001 22851 return DW_STRING (attr);
9219021c
DC
22852}
22853
22854/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
22855 is none. *EXT_CU is the CU containing DIE on input, and the CU
22856 containing the return value on output. */
9219021c
DC
22857
22858static struct die_info *
f2f0e013 22859dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
22860{
22861 struct attribute *attr;
9219021c 22862
f2f0e013 22863 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
22864 if (attr == NULL)
22865 return NULL;
22866
f2f0e013 22867 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
22868}
22869
fa9c3fa0
TT
22870/* A convenience function that returns an "unknown" DWARF name,
22871 including the value of V. STR is the name of the entity being
22872 printed, e.g., "TAG". */
22873
22874static const char *
22875dwarf_unknown (const char *str, unsigned v)
22876{
22877 char *cell = get_print_cell ();
22878 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22879 return cell;
22880}
22881
c906108c
SS
22882/* Convert a DIE tag into its string name. */
22883
f39c6ffd 22884static const char *
aa1ee363 22885dwarf_tag_name (unsigned tag)
c906108c 22886{
f39c6ffd
TT
22887 const char *name = get_DW_TAG_name (tag);
22888
22889 if (name == NULL)
fa9c3fa0 22890 return dwarf_unknown ("TAG", tag);
f39c6ffd
TT
22891
22892 return name;
c906108c
SS
22893}
22894
22895/* Convert a DWARF attribute code into its string name. */
22896
f39c6ffd 22897static const char *
aa1ee363 22898dwarf_attr_name (unsigned attr)
c906108c 22899{
f39c6ffd
TT
22900 const char *name;
22901
c764a876 22902#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
22903 if (attr == DW_AT_MIPS_fde)
22904 return "DW_AT_MIPS_fde";
22905#else
22906 if (attr == DW_AT_HP_block_index)
22907 return "DW_AT_HP_block_index";
c764a876 22908#endif
f39c6ffd
TT
22909
22910 name = get_DW_AT_name (attr);
22911
22912 if (name == NULL)
fa9c3fa0 22913 return dwarf_unknown ("AT", attr);
f39c6ffd
TT
22914
22915 return name;
c906108c
SS
22916}
22917
a084a2a6
AT
22918/* Convert a unit type to corresponding DW_UT name. */
22919
22920static const char *
22921dwarf_unit_type_name (int unit_type) {
22922 switch (unit_type)
22923 {
22924 case 0x01:
22925 return "DW_UT_compile (0x01)";
22926 case 0x02:
22927 return "DW_UT_type (0x02)";
22928 case 0x03:
22929 return "DW_UT_partial (0x03)";
22930 case 0x04:
22931 return "DW_UT_skeleton (0x04)";
22932 case 0x05:
22933 return "DW_UT_split_compile (0x05)";
22934 case 0x06:
22935 return "DW_UT_split_type (0x06)";
22936 case 0x80:
22937 return "DW_UT_lo_user (0x80)";
22938 case 0xff:
22939 return "DW_UT_hi_user (0xff)";
22940 default:
22941 return nullptr;
22942 }
22943}
22944
c906108c
SS
22945/* Convert a DWARF value form code into its string name. */
22946
f39c6ffd 22947static const char *
aa1ee363 22948dwarf_form_name (unsigned form)
c906108c 22949{
f39c6ffd
TT
22950 const char *name = get_DW_FORM_name (form);
22951
22952 if (name == NULL)
fa9c3fa0 22953 return dwarf_unknown ("FORM", form);
f39c6ffd
TT
22954
22955 return name;
c906108c
SS
22956}
22957
a121b7c1 22958static const char *
fba45db2 22959dwarf_bool_name (unsigned mybool)
c906108c
SS
22960{
22961 if (mybool)
22962 return "TRUE";
22963 else
22964 return "FALSE";
22965}
22966
22967/* Convert a DWARF type code into its string name. */
22968
f39c6ffd 22969static const char *
aa1ee363 22970dwarf_type_encoding_name (unsigned enc)
c906108c 22971{
f39c6ffd 22972 const char *name = get_DW_ATE_name (enc);
c906108c 22973
f39c6ffd 22974 if (name == NULL)
fa9c3fa0 22975 return dwarf_unknown ("ATE", enc);
c906108c 22976
f39c6ffd 22977 return name;
c906108c 22978}
c906108c 22979
f9aca02d 22980static void
d97bc12b 22981dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
22982{
22983 unsigned int i;
22984
d97bc12b 22985 print_spaces (indent, f);
9d8780f0 22986 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
9c541725 22987 dwarf_tag_name (die->tag), die->abbrev,
9d8780f0 22988 sect_offset_str (die->sect_off));
d97bc12b
DE
22989
22990 if (die->parent != NULL)
22991 {
22992 print_spaces (indent, f);
9d8780f0
SM
22993 fprintf_unfiltered (f, " parent at offset: %s\n",
22994 sect_offset_str (die->parent->sect_off));
d97bc12b
DE
22995 }
22996
22997 print_spaces (indent, f);
22998 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 22999 dwarf_bool_name (die->child != NULL));
c906108c 23000
d97bc12b
DE
23001 print_spaces (indent, f);
23002 fprintf_unfiltered (f, " attributes:\n");
23003
c906108c
SS
23004 for (i = 0; i < die->num_attrs; ++i)
23005 {
d97bc12b
DE
23006 print_spaces (indent, f);
23007 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
23008 dwarf_attr_name (die->attrs[i].name),
23009 dwarf_form_name (die->attrs[i].form));
d97bc12b 23010
c906108c
SS
23011 switch (die->attrs[i].form)
23012 {
c906108c 23013 case DW_FORM_addr:
336d760d 23014 case DW_FORM_addrx:
3019eac3 23015 case DW_FORM_GNU_addr_index:
d97bc12b 23016 fprintf_unfiltered (f, "address: ");
5af949e3 23017 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
23018 break;
23019 case DW_FORM_block2:
23020 case DW_FORM_block4:
23021 case DW_FORM_block:
23022 case DW_FORM_block1:
56eb65bd
SP
23023 fprintf_unfiltered (f, "block: size %s",
23024 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 23025 break;
2dc7f7b3 23026 case DW_FORM_exprloc:
56eb65bd
SP
23027 fprintf_unfiltered (f, "expression: size %s",
23028 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 23029 break;
0224619f
JK
23030 case DW_FORM_data16:
23031 fprintf_unfiltered (f, "constant of 16 bytes");
23032 break;
4568ecf9
DE
23033 case DW_FORM_ref_addr:
23034 fprintf_unfiltered (f, "ref address: ");
23035 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23036 break;
36586728
TT
23037 case DW_FORM_GNU_ref_alt:
23038 fprintf_unfiltered (f, "alt ref address: ");
23039 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23040 break;
10b3939b
DJ
23041 case DW_FORM_ref1:
23042 case DW_FORM_ref2:
23043 case DW_FORM_ref4:
4568ecf9
DE
23044 case DW_FORM_ref8:
23045 case DW_FORM_ref_udata:
d97bc12b 23046 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 23047 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 23048 break;
c906108c
SS
23049 case DW_FORM_data1:
23050 case DW_FORM_data2:
23051 case DW_FORM_data4:
ce5d95e1 23052 case DW_FORM_data8:
c906108c
SS
23053 case DW_FORM_udata:
23054 case DW_FORM_sdata:
43bbcdc2
PH
23055 fprintf_unfiltered (f, "constant: %s",
23056 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 23057 break;
2dc7f7b3
TT
23058 case DW_FORM_sec_offset:
23059 fprintf_unfiltered (f, "section offset: %s",
23060 pulongest (DW_UNSND (&die->attrs[i])));
23061 break;
55f1336d 23062 case DW_FORM_ref_sig8:
ac9ec31b
DE
23063 fprintf_unfiltered (f, "signature: %s",
23064 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 23065 break;
c906108c 23066 case DW_FORM_string:
4bdf3d34 23067 case DW_FORM_strp:
43988095 23068 case DW_FORM_line_strp:
cf532bd1 23069 case DW_FORM_strx:
3019eac3 23070 case DW_FORM_GNU_str_index:
36586728 23071 case DW_FORM_GNU_strp_alt:
8285870a 23072 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 23073 DW_STRING (&die->attrs[i])
8285870a
JK
23074 ? DW_STRING (&die->attrs[i]) : "",
23075 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
23076 break;
23077 case DW_FORM_flag:
23078 if (DW_UNSND (&die->attrs[i]))
d97bc12b 23079 fprintf_unfiltered (f, "flag: TRUE");
c906108c 23080 else
d97bc12b 23081 fprintf_unfiltered (f, "flag: FALSE");
c906108c 23082 break;
2dc7f7b3
TT
23083 case DW_FORM_flag_present:
23084 fprintf_unfiltered (f, "flag: TRUE");
23085 break;
a8329558 23086 case DW_FORM_indirect:
0963b4bd
MS
23087 /* The reader will have reduced the indirect form to
23088 the "base form" so this form should not occur. */
5f48f8f3 23089 fprintf_unfiltered (f,
3e43a32a 23090 "unexpected attribute form: DW_FORM_indirect");
a8329558 23091 break;
663c44ac
JK
23092 case DW_FORM_implicit_const:
23093 fprintf_unfiltered (f, "constant: %s",
23094 plongest (DW_SND (&die->attrs[i])));
23095 break;
c906108c 23096 default:
d97bc12b 23097 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 23098 die->attrs[i].form);
d97bc12b 23099 break;
c906108c 23100 }
d97bc12b 23101 fprintf_unfiltered (f, "\n");
c906108c
SS
23102 }
23103}
23104
f9aca02d 23105static void
d97bc12b 23106dump_die_for_error (struct die_info *die)
c906108c 23107{
d97bc12b
DE
23108 dump_die_shallow (gdb_stderr, 0, die);
23109}
23110
23111static void
23112dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23113{
23114 int indent = level * 4;
23115
23116 gdb_assert (die != NULL);
23117
23118 if (level >= max_level)
23119 return;
23120
23121 dump_die_shallow (f, indent, die);
23122
23123 if (die->child != NULL)
c906108c 23124 {
d97bc12b
DE
23125 print_spaces (indent, f);
23126 fprintf_unfiltered (f, " Children:");
23127 if (level + 1 < max_level)
23128 {
23129 fprintf_unfiltered (f, "\n");
23130 dump_die_1 (f, level + 1, max_level, die->child);
23131 }
23132 else
23133 {
3e43a32a
MS
23134 fprintf_unfiltered (f,
23135 " [not printed, max nesting level reached]\n");
d97bc12b
DE
23136 }
23137 }
23138
23139 if (die->sibling != NULL && level > 0)
23140 {
23141 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
23142 }
23143}
23144
d97bc12b
DE
23145/* This is called from the pdie macro in gdbinit.in.
23146 It's not static so gcc will keep a copy callable from gdb. */
23147
23148void
23149dump_die (struct die_info *die, int max_level)
23150{
23151 dump_die_1 (gdb_stdlog, 0, max_level, die);
23152}
23153
f9aca02d 23154static void
51545339 23155store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 23156{
51545339 23157 void **slot;
c906108c 23158
9c541725
PA
23159 slot = htab_find_slot_with_hash (cu->die_hash, die,
23160 to_underlying (die->sect_off),
b64f50a1 23161 INSERT);
51545339
DJ
23162
23163 *slot = die;
c906108c
SS
23164}
23165
b64f50a1
JK
23166/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23167 required kind. */
23168
23169static sect_offset
ff39bb5e 23170dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 23171{
7771576e 23172 if (attr_form_is_ref (attr))
9c541725 23173 return (sect_offset) DW_UNSND (attr);
93311388 23174
b98664d3 23175 complaint (_("unsupported die ref attribute form: '%s'"),
93311388 23176 dwarf_form_name (attr->form));
9c541725 23177 return {};
c906108c
SS
23178}
23179
43bbcdc2
PH
23180/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23181 * the value held by the attribute is not constant. */
a02abb62 23182
43bbcdc2 23183static LONGEST
ff39bb5e 23184dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 23185{
663c44ac 23186 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
23187 return DW_SND (attr);
23188 else if (attr->form == DW_FORM_udata
23189 || attr->form == DW_FORM_data1
23190 || attr->form == DW_FORM_data2
23191 || attr->form == DW_FORM_data4
23192 || attr->form == DW_FORM_data8)
23193 return DW_UNSND (attr);
23194 else
23195 {
0224619f 23196 /* For DW_FORM_data16 see attr_form_is_constant. */
b98664d3 23197 complaint (_("Attribute value is not a constant (%s)"),
a02abb62
JB
23198 dwarf_form_name (attr->form));
23199 return default_value;
23200 }
23201}
23202
348e048f
DE
23203/* Follow reference or signature attribute ATTR of SRC_DIE.
23204 On entry *REF_CU is the CU of SRC_DIE.
23205 On exit *REF_CU is the CU of the result. */
23206
23207static struct die_info *
ff39bb5e 23208follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
23209 struct dwarf2_cu **ref_cu)
23210{
23211 struct die_info *die;
23212
7771576e 23213 if (attr_form_is_ref (attr))
348e048f 23214 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 23215 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
23216 die = follow_die_sig (src_die, attr, ref_cu);
23217 else
23218 {
23219 dump_die_for_error (src_die);
23220 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
518817b3 23221 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
348e048f
DE
23222 }
23223
23224 return die;
03dd20cc
DJ
23225}
23226
5c631832 23227/* Follow reference OFFSET.
673bfd45
DE
23228 On entry *REF_CU is the CU of the source die referencing OFFSET.
23229 On exit *REF_CU is the CU of the result.
23230 Returns NULL if OFFSET is invalid. */
f504f079 23231
f9aca02d 23232static struct die_info *
9c541725 23233follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 23234 struct dwarf2_cu **ref_cu)
c906108c 23235{
10b3939b 23236 struct die_info temp_die;
f2f0e013 23237 struct dwarf2_cu *target_cu, *cu = *ref_cu;
518817b3
SM
23238 struct dwarf2_per_objfile *dwarf2_per_objfile
23239 = cu->per_cu->dwarf2_per_objfile;
10b3939b 23240
348e048f
DE
23241 gdb_assert (cu->per_cu != NULL);
23242
98bfdba5
PA
23243 target_cu = cu;
23244
3019eac3 23245 if (cu->per_cu->is_debug_types)
348e048f
DE
23246 {
23247 /* .debug_types CUs cannot reference anything outside their CU.
23248 If they need to, they have to reference a signatured type via
55f1336d 23249 DW_FORM_ref_sig8. */
9c541725 23250 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 23251 return NULL;
348e048f 23252 }
36586728 23253 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 23254 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
23255 {
23256 struct dwarf2_per_cu_data *per_cu;
9a619af0 23257
9c541725 23258 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 23259 dwarf2_per_objfile);
03dd20cc
DJ
23260
23261 /* If necessary, add it to the queue and load its DIEs. */
95554aad 23262 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 23263 load_full_comp_unit (per_cu, false, cu->language);
03dd20cc 23264
10b3939b
DJ
23265 target_cu = per_cu->cu;
23266 }
98bfdba5
PA
23267 else if (cu->dies == NULL)
23268 {
23269 /* We're loading full DIEs during partial symbol reading. */
23270 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
58f0c718 23271 load_full_comp_unit (cu->per_cu, false, language_minimal);
98bfdba5 23272 }
c906108c 23273
f2f0e013 23274 *ref_cu = target_cu;
9c541725 23275 temp_die.sect_off = sect_off;
c24bdb02
KS
23276
23277 if (target_cu != cu)
23278 target_cu->ancestor = cu;
23279
9a3c8263 23280 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
23281 &temp_die,
23282 to_underlying (sect_off));
5c631832 23283}
10b3939b 23284
5c631832
JK
23285/* Follow reference attribute ATTR of SRC_DIE.
23286 On entry *REF_CU is the CU of SRC_DIE.
23287 On exit *REF_CU is the CU of the result. */
23288
23289static struct die_info *
ff39bb5e 23290follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
23291 struct dwarf2_cu **ref_cu)
23292{
9c541725 23293 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
23294 struct dwarf2_cu *cu = *ref_cu;
23295 struct die_info *die;
23296
9c541725 23297 die = follow_die_offset (sect_off,
36586728
TT
23298 (attr->form == DW_FORM_GNU_ref_alt
23299 || cu->per_cu->is_dwz),
23300 ref_cu);
5c631832 23301 if (!die)
9d8780f0
SM
23302 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23303 "at %s [in module %s]"),
23304 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
518817b3 23305 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
348e048f 23306
5c631832
JK
23307 return die;
23308}
23309
9c541725 23310/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b 23311 Returned value is intended for DW_OP_call*. Returned
e3b94546
SM
23312 dwarf2_locexpr_baton->data has lifetime of
23313 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
5c631832
JK
23314
23315struct dwarf2_locexpr_baton
9c541725 23316dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
23317 struct dwarf2_per_cu_data *per_cu,
23318 CORE_ADDR (*get_frame_pc) (void *baton),
e4a62c65 23319 void *baton, bool resolve_abstract_p)
5c631832 23320{
918dd910 23321 struct dwarf2_cu *cu;
5c631832
JK
23322 struct die_info *die;
23323 struct attribute *attr;
23324 struct dwarf2_locexpr_baton retval;
12359b5e
SM
23325 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23326 struct objfile *objfile = dwarf2_per_objfile->objfile;
8cf6f0b1 23327
918dd910 23328 if (per_cu->cu == NULL)
58f0c718 23329 load_cu (per_cu, false);
918dd910 23330 cu = per_cu->cu;
cc12ce38
DE
23331 if (cu == NULL)
23332 {
23333 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23334 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23335 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23336 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23337 }
918dd910 23338
9c541725 23339 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832 23340 if (!die)
9d8780f0
SM
23341 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23342 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23343
23344 attr = dwarf2_attr (die, DW_AT_location, cu);
e4a62c65 23345 if (!attr && resolve_abstract_p
3360b6e7 23346 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
e4a62c65
TV
23347 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23348 {
23349 CORE_ADDR pc = (*get_frame_pc) (baton);
eba4caf2
TV
23350 CORE_ADDR baseaddr
23351 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23352 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e4a62c65 23353
3360b6e7
TV
23354 for (const auto &cand_off
23355 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
e4a62c65 23356 {
3360b6e7
TV
23357 struct dwarf2_cu *cand_cu = cu;
23358 struct die_info *cand
23359 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23360 if (!cand
23361 || !cand->parent
e4a62c65
TV
23362 || cand->parent->tag != DW_TAG_subprogram)
23363 continue;
23364
23365 CORE_ADDR pc_low, pc_high;
23366 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
eba4caf2
TV
23367 if (pc_low == ((CORE_ADDR) -1))
23368 continue;
23369 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23370 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23371 if (!(pc_low <= pc && pc < pc_high))
e4a62c65
TV
23372 continue;
23373
23374 die = cand;
23375 attr = dwarf2_attr (die, DW_AT_location, cu);
23376 break;
23377 }
23378 }
23379
5c631832
JK
23380 if (!attr)
23381 {
e103e986
JK
23382 /* DWARF: "If there is no such attribute, then there is no effect.".
23383 DATA is ignored if SIZE is 0. */
5c631832 23384
e103e986 23385 retval.data = NULL;
5c631832
JK
23386 retval.size = 0;
23387 }
8cf6f0b1
TT
23388 else if (attr_form_is_section_offset (attr))
23389 {
23390 struct dwarf2_loclist_baton loclist_baton;
23391 CORE_ADDR pc = (*get_frame_pc) (baton);
23392 size_t size;
23393
23394 fill_in_loclist_baton (cu, &loclist_baton, attr);
23395
23396 retval.data = dwarf2_find_location_expression (&loclist_baton,
23397 &size, pc);
23398 retval.size = size;
23399 }
5c631832
JK
23400 else
23401 {
23402 if (!attr_form_is_block (attr))
9d8780f0 23403 error (_("Dwarf Error: DIE at %s referenced in module %s "
5c631832 23404 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9d8780f0 23405 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23406
23407 retval.data = DW_BLOCK (attr)->data;
23408 retval.size = DW_BLOCK (attr)->size;
23409 }
23410 retval.per_cu = cu->per_cu;
918dd910 23411
ed2dc618 23412 age_cached_comp_units (dwarf2_per_objfile);
918dd910 23413
5c631832 23414 return retval;
348e048f
DE
23415}
23416
8b9737bf
TT
23417/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23418 offset. */
23419
23420struct dwarf2_locexpr_baton
23421dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23422 struct dwarf2_per_cu_data *per_cu,
23423 CORE_ADDR (*get_frame_pc) (void *baton),
23424 void *baton)
23425{
9c541725 23426 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 23427
9c541725 23428 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
23429}
23430
b6807d98
TT
23431/* Write a constant of a given type as target-ordered bytes into
23432 OBSTACK. */
23433
23434static const gdb_byte *
23435write_constant_as_bytes (struct obstack *obstack,
23436 enum bfd_endian byte_order,
23437 struct type *type,
23438 ULONGEST value,
23439 LONGEST *len)
23440{
23441 gdb_byte *result;
23442
23443 *len = TYPE_LENGTH (type);
224c3ddb 23444 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23445 store_unsigned_integer (result, *len, byte_order, value);
23446
23447 return result;
23448}
23449
23450/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23451 pointer to the constant bytes and set LEN to the length of the
23452 data. If memory is needed, allocate it on OBSTACK. If the DIE
23453 does not have a DW_AT_const_value, return NULL. */
23454
23455const gdb_byte *
9c541725 23456dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
23457 struct dwarf2_per_cu_data *per_cu,
23458 struct obstack *obstack,
23459 LONGEST *len)
23460{
23461 struct dwarf2_cu *cu;
23462 struct die_info *die;
23463 struct attribute *attr;
23464 const gdb_byte *result = NULL;
23465 struct type *type;
23466 LONGEST value;
23467 enum bfd_endian byte_order;
e3b94546 23468 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
b6807d98 23469
b6807d98 23470 if (per_cu->cu == NULL)
58f0c718 23471 load_cu (per_cu, false);
b6807d98 23472 cu = per_cu->cu;
cc12ce38
DE
23473 if (cu == NULL)
23474 {
23475 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23476 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23477 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23478 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23479 }
b6807d98 23480
9c541725 23481 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98 23482 if (!die)
9d8780f0
SM
23483 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23484 sect_offset_str (sect_off), objfile_name (objfile));
b6807d98
TT
23485
23486 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23487 if (attr == NULL)
23488 return NULL;
23489
e3b94546 23490 byte_order = (bfd_big_endian (objfile->obfd)
b6807d98
TT
23491 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23492
23493 switch (attr->form)
23494 {
23495 case DW_FORM_addr:
336d760d 23496 case DW_FORM_addrx:
b6807d98
TT
23497 case DW_FORM_GNU_addr_index:
23498 {
23499 gdb_byte *tem;
23500
23501 *len = cu->header.addr_size;
224c3ddb 23502 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23503 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23504 result = tem;
23505 }
23506 break;
23507 case DW_FORM_string:
23508 case DW_FORM_strp:
cf532bd1 23509 case DW_FORM_strx:
b6807d98
TT
23510 case DW_FORM_GNU_str_index:
23511 case DW_FORM_GNU_strp_alt:
23512 /* DW_STRING is already allocated on the objfile obstack, point
23513 directly to it. */
23514 result = (const gdb_byte *) DW_STRING (attr);
23515 *len = strlen (DW_STRING (attr));
23516 break;
23517 case DW_FORM_block1:
23518 case DW_FORM_block2:
23519 case DW_FORM_block4:
23520 case DW_FORM_block:
23521 case DW_FORM_exprloc:
0224619f 23522 case DW_FORM_data16:
b6807d98
TT
23523 result = DW_BLOCK (attr)->data;
23524 *len = DW_BLOCK (attr)->size;
23525 break;
23526
23527 /* The DW_AT_const_value attributes are supposed to carry the
23528 symbol's value "represented as it would be on the target
23529 architecture." By the time we get here, it's already been
23530 converted to host endianness, so we just need to sign- or
23531 zero-extend it as appropriate. */
23532 case DW_FORM_data1:
23533 type = die_type (die, cu);
23534 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23535 if (result == NULL)
23536 result = write_constant_as_bytes (obstack, byte_order,
23537 type, value, len);
23538 break;
23539 case DW_FORM_data2:
23540 type = die_type (die, cu);
23541 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23542 if (result == NULL)
23543 result = write_constant_as_bytes (obstack, byte_order,
23544 type, value, len);
23545 break;
23546 case DW_FORM_data4:
23547 type = die_type (die, cu);
23548 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23549 if (result == NULL)
23550 result = write_constant_as_bytes (obstack, byte_order,
23551 type, value, len);
23552 break;
23553 case DW_FORM_data8:
23554 type = die_type (die, cu);
23555 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23556 if (result == NULL)
23557 result = write_constant_as_bytes (obstack, byte_order,
23558 type, value, len);
23559 break;
23560
23561 case DW_FORM_sdata:
663c44ac 23562 case DW_FORM_implicit_const:
b6807d98
TT
23563 type = die_type (die, cu);
23564 result = write_constant_as_bytes (obstack, byte_order,
23565 type, DW_SND (attr), len);
23566 break;
23567
23568 case DW_FORM_udata:
23569 type = die_type (die, cu);
23570 result = write_constant_as_bytes (obstack, byte_order,
23571 type, DW_UNSND (attr), len);
23572 break;
23573
23574 default:
b98664d3 23575 complaint (_("unsupported const value attribute form: '%s'"),
b6807d98
TT
23576 dwarf_form_name (attr->form));
23577 break;
23578 }
23579
23580 return result;
23581}
23582
7942e96e
AA
23583/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23584 valid type for this die is found. */
23585
23586struct type *
9c541725 23587dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
23588 struct dwarf2_per_cu_data *per_cu)
23589{
23590 struct dwarf2_cu *cu;
23591 struct die_info *die;
23592
7942e96e 23593 if (per_cu->cu == NULL)
58f0c718 23594 load_cu (per_cu, false);
7942e96e
AA
23595 cu = per_cu->cu;
23596 if (!cu)
23597 return NULL;
23598
9c541725 23599 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
23600 if (!die)
23601 return NULL;
23602
23603 return die_type (die, cu);
23604}
23605
8a9b8146
TT
23606/* Return the type of the DIE at DIE_OFFSET in the CU named by
23607 PER_CU. */
23608
23609struct type *
b64f50a1 23610dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
23611 struct dwarf2_per_cu_data *per_cu)
23612{
9c541725 23613 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 23614 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
23615}
23616
ac9ec31b 23617/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 23618 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
23619 On exit *REF_CU is the CU of the result.
23620 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
23621
23622static struct die_info *
ac9ec31b
DE
23623follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23624 struct dwarf2_cu **ref_cu)
348e048f 23625{
348e048f 23626 struct die_info temp_die;
c24bdb02 23627 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
348e048f
DE
23628 struct die_info *die;
23629
ac9ec31b
DE
23630 /* While it might be nice to assert sig_type->type == NULL here,
23631 we can get here for DW_AT_imported_declaration where we need
23632 the DIE not the type. */
348e048f
DE
23633
23634 /* If necessary, add it to the queue and load its DIEs. */
23635
95554aad 23636 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 23637 read_signatured_type (sig_type);
348e048f 23638
348e048f 23639 sig_cu = sig_type->per_cu.cu;
69d751e3 23640 gdb_assert (sig_cu != NULL);
9c541725
PA
23641 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23642 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 23643 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 23644 to_underlying (temp_die.sect_off));
348e048f
DE
23645 if (die)
23646 {
ed2dc618 23647 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 23648 = (*ref_cu)->per_cu->dwarf2_per_objfile;
ed2dc618 23649
796a7ff8
DE
23650 /* For .gdb_index version 7 keep track of included TUs.
23651 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23652 if (dwarf2_per_objfile->index_table != NULL
23653 && dwarf2_per_objfile->index_table->version <= 7)
23654 {
23655 VEC_safe_push (dwarf2_per_cu_ptr,
23656 (*ref_cu)->per_cu->imported_symtabs,
23657 sig_cu->per_cu);
23658 }
23659
348e048f 23660 *ref_cu = sig_cu;
c24bdb02
KS
23661 if (sig_cu != cu)
23662 sig_cu->ancestor = cu;
23663
348e048f
DE
23664 return die;
23665 }
23666
ac9ec31b
DE
23667 return NULL;
23668}
23669
23670/* Follow signatured type referenced by ATTR in SRC_DIE.
23671 On entry *REF_CU is the CU of SRC_DIE.
23672 On exit *REF_CU is the CU of the result.
23673 The result is the DIE of the type.
23674 If the referenced type cannot be found an error is thrown. */
23675
23676static struct die_info *
ff39bb5e 23677follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
23678 struct dwarf2_cu **ref_cu)
23679{
23680 ULONGEST signature = DW_SIGNATURE (attr);
23681 struct signatured_type *sig_type;
23682 struct die_info *die;
23683
23684 gdb_assert (attr->form == DW_FORM_ref_sig8);
23685
a2ce51a0 23686 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
23687 /* sig_type will be NULL if the signatured type is missing from
23688 the debug info. */
23689 if (sig_type == NULL)
23690 {
23691 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23692 " from DIE at %s [in module %s]"),
23693 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23694 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23695 }
23696
23697 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23698 if (die == NULL)
23699 {
23700 dump_die_for_error (src_die);
23701 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23702 " from DIE at %s [in module %s]"),
23703 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23704 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23705 }
23706
23707 return die;
23708}
23709
23710/* Get the type specified by SIGNATURE referenced in DIE/CU,
23711 reading in and processing the type unit if necessary. */
23712
23713static struct type *
23714get_signatured_type (struct die_info *die, ULONGEST signature,
23715 struct dwarf2_cu *cu)
23716{
518817b3
SM
23717 struct dwarf2_per_objfile *dwarf2_per_objfile
23718 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b
DE
23719 struct signatured_type *sig_type;
23720 struct dwarf2_cu *type_cu;
23721 struct die_info *type_die;
23722 struct type *type;
23723
a2ce51a0 23724 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
23725 /* sig_type will be NULL if the signatured type is missing from
23726 the debug info. */
23727 if (sig_type == NULL)
23728 {
b98664d3 23729 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23730 " from DIE at %s [in module %s]"),
23731 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23732 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23733 return build_error_marker_type (cu, die);
23734 }
23735
23736 /* If we already know the type we're done. */
23737 if (sig_type->type != NULL)
23738 return sig_type->type;
23739
23740 type_cu = cu;
23741 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23742 if (type_die != NULL)
23743 {
23744 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23745 is created. This is important, for example, because for c++ classes
23746 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23747 type = read_type_die (type_die, type_cu);
23748 if (type == NULL)
23749 {
b98664d3 23750 complaint (_("Dwarf Error: Cannot build signatured type %s"
9d8780f0
SM
23751 " referenced from DIE at %s [in module %s]"),
23752 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23753 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23754 type = build_error_marker_type (cu, die);
23755 }
23756 }
23757 else
23758 {
b98664d3 23759 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23760 " from DIE at %s [in module %s]"),
23761 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23762 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23763 type = build_error_marker_type (cu, die);
23764 }
23765 sig_type->type = type;
23766
23767 return type;
23768}
23769
23770/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23771 reading in and processing the type unit if necessary. */
23772
23773static struct type *
ff39bb5e 23774get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 23775 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
23776{
23777 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 23778 if (attr_form_is_ref (attr))
ac9ec31b
DE
23779 {
23780 struct dwarf2_cu *type_cu = cu;
23781 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23782
23783 return read_type_die (type_die, type_cu);
23784 }
23785 else if (attr->form == DW_FORM_ref_sig8)
23786 {
23787 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23788 }
23789 else
23790 {
518817b3
SM
23791 struct dwarf2_per_objfile *dwarf2_per_objfile
23792 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 23793
b98664d3 23794 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
9d8780f0
SM
23795 " at %s [in module %s]"),
23796 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
4262abfb 23797 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23798 return build_error_marker_type (cu, die);
23799 }
348e048f
DE
23800}
23801
e5fe5e75 23802/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
23803
23804static void
e5fe5e75 23805load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 23806{
52dc124a 23807 struct signatured_type *sig_type;
348e048f 23808
f4dc4d17
DE
23809 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23810 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23811
6721b2ec
DE
23812 /* We have the per_cu, but we need the signatured_type.
23813 Fortunately this is an easy translation. */
23814 gdb_assert (per_cu->is_debug_types);
23815 sig_type = (struct signatured_type *) per_cu;
348e048f 23816
6721b2ec 23817 gdb_assert (per_cu->cu == NULL);
348e048f 23818
52dc124a 23819 read_signatured_type (sig_type);
348e048f 23820
6721b2ec 23821 gdb_assert (per_cu->cu != NULL);
348e048f
DE
23822}
23823
dee91e82
DE
23824/* die_reader_func for read_signatured_type.
23825 This is identical to load_full_comp_unit_reader,
23826 but is kept separate for now. */
348e048f
DE
23827
23828static void
dee91e82 23829read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 23830 const gdb_byte *info_ptr,
dee91e82
DE
23831 struct die_info *comp_unit_die,
23832 int has_children,
23833 void *data)
348e048f 23834{
dee91e82 23835 struct dwarf2_cu *cu = reader->cu;
348e048f 23836
dee91e82
DE
23837 gdb_assert (cu->die_hash == NULL);
23838 cu->die_hash =
23839 htab_create_alloc_ex (cu->header.length / 12,
23840 die_hash,
23841 die_eq,
23842 NULL,
23843 &cu->comp_unit_obstack,
23844 hashtab_obstack_allocate,
23845 dummy_obstack_deallocate);
348e048f 23846
dee91e82
DE
23847 if (has_children)
23848 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23849 &info_ptr, comp_unit_die);
23850 cu->dies = comp_unit_die;
23851 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
23852
23853 /* We try not to read any attributes in this function, because not
9cdd5dbd 23854 all CUs needed for references have been loaded yet, and symbol
348e048f 23855 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
23856 or we won't be able to build types correctly.
23857 Similarly, if we do not read the producer, we can not apply
23858 producer-specific interpretation. */
95554aad 23859 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 23860}
348e048f 23861
3019eac3
DE
23862/* Read in a signatured type and build its CU and DIEs.
23863 If the type is a stub for the real type in a DWO file,
23864 read in the real type from the DWO file as well. */
dee91e82
DE
23865
23866static void
23867read_signatured_type (struct signatured_type *sig_type)
23868{
23869 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 23870
3019eac3 23871 gdb_assert (per_cu->is_debug_types);
dee91e82 23872 gdb_assert (per_cu->cu == NULL);
348e048f 23873
58f0c718 23874 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
f4dc4d17 23875 read_signatured_type_reader, NULL);
7ee85ab1 23876 sig_type->per_cu.tu_read = 1;
c906108c
SS
23877}
23878
c906108c
SS
23879/* Decode simple location descriptions.
23880 Given a pointer to a dwarf block that defines a location, compute
23881 the location and return the value.
23882
4cecd739
DJ
23883 NOTE drow/2003-11-18: This function is called in two situations
23884 now: for the address of static or global variables (partial symbols
23885 only) and for offsets into structures which are expected to be
23886 (more or less) constant. The partial symbol case should go away,
23887 and only the constant case should remain. That will let this
23888 function complain more accurately. A few special modes are allowed
23889 without complaint for global variables (for instance, global
23890 register values and thread-local values).
c906108c
SS
23891
23892 A location description containing no operations indicates that the
4cecd739 23893 object is optimized out. The return value is 0 for that case.
6b992462
DJ
23894 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23895 callers will only want a very basic result and this can become a
21ae7a4d
JK
23896 complaint.
23897
23898 Note that stack[0] is unused except as a default error return. */
c906108c
SS
23899
23900static CORE_ADDR
e7c27a73 23901decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 23902{
518817b3 23903 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
56eb65bd
SP
23904 size_t i;
23905 size_t size = blk->size;
d521ce57 23906 const gdb_byte *data = blk->data;
21ae7a4d
JK
23907 CORE_ADDR stack[64];
23908 int stacki;
23909 unsigned int bytes_read, unsnd;
23910 gdb_byte op;
c906108c 23911
21ae7a4d
JK
23912 i = 0;
23913 stacki = 0;
23914 stack[stacki] = 0;
23915 stack[++stacki] = 0;
23916
23917 while (i < size)
23918 {
23919 op = data[i++];
23920 switch (op)
23921 {
23922 case DW_OP_lit0:
23923 case DW_OP_lit1:
23924 case DW_OP_lit2:
23925 case DW_OP_lit3:
23926 case DW_OP_lit4:
23927 case DW_OP_lit5:
23928 case DW_OP_lit6:
23929 case DW_OP_lit7:
23930 case DW_OP_lit8:
23931 case DW_OP_lit9:
23932 case DW_OP_lit10:
23933 case DW_OP_lit11:
23934 case DW_OP_lit12:
23935 case DW_OP_lit13:
23936 case DW_OP_lit14:
23937 case DW_OP_lit15:
23938 case DW_OP_lit16:
23939 case DW_OP_lit17:
23940 case DW_OP_lit18:
23941 case DW_OP_lit19:
23942 case DW_OP_lit20:
23943 case DW_OP_lit21:
23944 case DW_OP_lit22:
23945 case DW_OP_lit23:
23946 case DW_OP_lit24:
23947 case DW_OP_lit25:
23948 case DW_OP_lit26:
23949 case DW_OP_lit27:
23950 case DW_OP_lit28:
23951 case DW_OP_lit29:
23952 case DW_OP_lit30:
23953 case DW_OP_lit31:
23954 stack[++stacki] = op - DW_OP_lit0;
23955 break;
f1bea926 23956
21ae7a4d
JK
23957 case DW_OP_reg0:
23958 case DW_OP_reg1:
23959 case DW_OP_reg2:
23960 case DW_OP_reg3:
23961 case DW_OP_reg4:
23962 case DW_OP_reg5:
23963 case DW_OP_reg6:
23964 case DW_OP_reg7:
23965 case DW_OP_reg8:
23966 case DW_OP_reg9:
23967 case DW_OP_reg10:
23968 case DW_OP_reg11:
23969 case DW_OP_reg12:
23970 case DW_OP_reg13:
23971 case DW_OP_reg14:
23972 case DW_OP_reg15:
23973 case DW_OP_reg16:
23974 case DW_OP_reg17:
23975 case DW_OP_reg18:
23976 case DW_OP_reg19:
23977 case DW_OP_reg20:
23978 case DW_OP_reg21:
23979 case DW_OP_reg22:
23980 case DW_OP_reg23:
23981 case DW_OP_reg24:
23982 case DW_OP_reg25:
23983 case DW_OP_reg26:
23984 case DW_OP_reg27:
23985 case DW_OP_reg28:
23986 case DW_OP_reg29:
23987 case DW_OP_reg30:
23988 case DW_OP_reg31:
23989 stack[++stacki] = op - DW_OP_reg0;
23990 if (i < size)
23991 dwarf2_complex_location_expr_complaint ();
23992 break;
c906108c 23993
21ae7a4d
JK
23994 case DW_OP_regx:
23995 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23996 i += bytes_read;
23997 stack[++stacki] = unsnd;
23998 if (i < size)
23999 dwarf2_complex_location_expr_complaint ();
24000 break;
c906108c 24001
21ae7a4d
JK
24002 case DW_OP_addr:
24003 stack[++stacki] = read_address (objfile->obfd, &data[i],
24004 cu, &bytes_read);
24005 i += bytes_read;
24006 break;
d53d4ac5 24007
21ae7a4d
JK
24008 case DW_OP_const1u:
24009 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24010 i += 1;
24011 break;
24012
24013 case DW_OP_const1s:
24014 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24015 i += 1;
24016 break;
24017
24018 case DW_OP_const2u:
24019 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24020 i += 2;
24021 break;
24022
24023 case DW_OP_const2s:
24024 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24025 i += 2;
24026 break;
d53d4ac5 24027
21ae7a4d
JK
24028 case DW_OP_const4u:
24029 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24030 i += 4;
24031 break;
24032
24033 case DW_OP_const4s:
24034 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24035 i += 4;
24036 break;
24037
585861ea
JK
24038 case DW_OP_const8u:
24039 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24040 i += 8;
24041 break;
24042
21ae7a4d
JK
24043 case DW_OP_constu:
24044 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24045 &bytes_read);
24046 i += bytes_read;
24047 break;
24048
24049 case DW_OP_consts:
24050 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24051 i += bytes_read;
24052 break;
24053
24054 case DW_OP_dup:
24055 stack[stacki + 1] = stack[stacki];
24056 stacki++;
24057 break;
24058
24059 case DW_OP_plus:
24060 stack[stacki - 1] += stack[stacki];
24061 stacki--;
24062 break;
24063
24064 case DW_OP_plus_uconst:
24065 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24066 &bytes_read);
24067 i += bytes_read;
24068 break;
24069
24070 case DW_OP_minus:
24071 stack[stacki - 1] -= stack[stacki];
24072 stacki--;
24073 break;
24074
24075 case DW_OP_deref:
24076 /* If we're not the last op, then we definitely can't encode
24077 this using GDB's address_class enum. This is valid for partial
24078 global symbols, although the variable's address will be bogus
24079 in the psymtab. */
24080 if (i < size)
24081 dwarf2_complex_location_expr_complaint ();
24082 break;
24083
24084 case DW_OP_GNU_push_tls_address:
4aa4e28b 24085 case DW_OP_form_tls_address:
21ae7a4d
JK
24086 /* The top of the stack has the offset from the beginning
24087 of the thread control block at which the variable is located. */
24088 /* Nothing should follow this operator, so the top of stack would
24089 be returned. */
24090 /* This is valid for partial global symbols, but the variable's
585861ea
JK
24091 address will be bogus in the psymtab. Make it always at least
24092 non-zero to not look as a variable garbage collected by linker
24093 which have DW_OP_addr 0. */
21ae7a4d
JK
24094 if (i < size)
24095 dwarf2_complex_location_expr_complaint ();
585861ea 24096 stack[stacki]++;
21ae7a4d
JK
24097 break;
24098
24099 case DW_OP_GNU_uninit:
24100 break;
24101
336d760d 24102 case DW_OP_addrx:
3019eac3 24103 case DW_OP_GNU_addr_index:
49f6c839 24104 case DW_OP_GNU_const_index:
3019eac3
DE
24105 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24106 &bytes_read);
24107 i += bytes_read;
24108 break;
24109
21ae7a4d
JK
24110 default:
24111 {
f39c6ffd 24112 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
24113
24114 if (name)
b98664d3 24115 complaint (_("unsupported stack op: '%s'"),
21ae7a4d
JK
24116 name);
24117 else
b98664d3 24118 complaint (_("unsupported stack op: '%02x'"),
21ae7a4d
JK
24119 op);
24120 }
24121
24122 return (stack[stacki]);
d53d4ac5 24123 }
3c6e0cb3 24124
21ae7a4d
JK
24125 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24126 outside of the allocated space. Also enforce minimum>0. */
24127 if (stacki >= ARRAY_SIZE (stack) - 1)
24128 {
b98664d3 24129 complaint (_("location description stack overflow"));
21ae7a4d
JK
24130 return 0;
24131 }
24132
24133 if (stacki <= 0)
24134 {
b98664d3 24135 complaint (_("location description stack underflow"));
21ae7a4d
JK
24136 return 0;
24137 }
24138 }
24139 return (stack[stacki]);
c906108c
SS
24140}
24141
24142/* memory allocation interface */
24143
c906108c 24144static struct dwarf_block *
7b5a2f43 24145dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 24146{
8d749320 24147 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
24148}
24149
c906108c 24150static struct die_info *
b60c80d6 24151dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
24152{
24153 struct die_info *die;
b60c80d6
DJ
24154 size_t size = sizeof (struct die_info);
24155
24156 if (num_attrs > 1)
24157 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 24158
b60c80d6 24159 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
24160 memset (die, 0, sizeof (struct die_info));
24161 return (die);
24162}
2e276125
JB
24163
24164\f
24165/* Macro support. */
24166
233d95b5
JK
24167/* Return file name relative to the compilation directory of file number I in
24168 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 24169 responsible for freeing it. */
233d95b5 24170
2e276125 24171static char *
233d95b5 24172file_file_name (int file, struct line_header *lh)
2e276125 24173{
6a83a1e6
EZ
24174 /* Is the file number a valid index into the line header's file name
24175 table? Remember that file numbers start with one, not zero. */
fff8551c 24176 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 24177 {
8c43009f 24178 const file_entry &fe = lh->file_names[file - 1];
6e70227d 24179
8c43009f
PA
24180 if (!IS_ABSOLUTE_PATH (fe.name))
24181 {
24182 const char *dir = fe.include_dir (lh);
24183 if (dir != NULL)
24184 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24185 }
24186 return xstrdup (fe.name);
6a83a1e6 24187 }
2e276125
JB
24188 else
24189 {
6a83a1e6
EZ
24190 /* The compiler produced a bogus file number. We can at least
24191 record the macro definitions made in the file, even if we
24192 won't be able to find the file by name. */
24193 char fake_name[80];
9a619af0 24194
8c042590
PM
24195 xsnprintf (fake_name, sizeof (fake_name),
24196 "<bad macro file number %d>", file);
2e276125 24197
b98664d3 24198 complaint (_("bad file number in macro information (%d)"),
6a83a1e6 24199 file);
2e276125 24200
6a83a1e6 24201 return xstrdup (fake_name);
2e276125
JB
24202 }
24203}
24204
233d95b5
JK
24205/* Return the full name of file number I in *LH's file name table.
24206 Use COMP_DIR as the name of the current directory of the
24207 compilation. The result is allocated using xmalloc; the caller is
24208 responsible for freeing it. */
24209static char *
24210file_full_name (int file, struct line_header *lh, const char *comp_dir)
24211{
24212 /* Is the file number a valid index into the line header's file name
24213 table? Remember that file numbers start with one, not zero. */
fff8551c 24214 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
24215 {
24216 char *relative = file_file_name (file, lh);
24217
24218 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24219 return relative;
b36cec19
PA
24220 return reconcat (relative, comp_dir, SLASH_STRING,
24221 relative, (char *) NULL);
233d95b5
JK
24222 }
24223 else
24224 return file_file_name (file, lh);
24225}
24226
2e276125
JB
24227
24228static struct macro_source_file *
804d2729
TT
24229macro_start_file (struct dwarf2_cu *cu,
24230 int file, int line,
2e276125 24231 struct macro_source_file *current_file,
43f3e411 24232 struct line_header *lh)
2e276125 24233{
233d95b5
JK
24234 /* File name relative to the compilation directory of this source file. */
24235 char *file_name = file_file_name (file, lh);
2e276125 24236
2e276125 24237 if (! current_file)
abc9d0dc 24238 {
fc474241
DE
24239 /* Note: We don't create a macro table for this compilation unit
24240 at all until we actually get a filename. */
c24bdb02 24241 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
fc474241 24242
abc9d0dc
TT
24243 /* If we have no current file, then this must be the start_file
24244 directive for the compilation unit's main source file. */
fc474241
DE
24245 current_file = macro_set_main (macro_table, file_name);
24246 macro_define_special (macro_table);
abc9d0dc 24247 }
2e276125 24248 else
233d95b5 24249 current_file = macro_include (current_file, line, file_name);
2e276125 24250
233d95b5 24251 xfree (file_name);
6e70227d 24252
2e276125
JB
24253 return current_file;
24254}
24255
2e276125
JB
24256static const char *
24257consume_improper_spaces (const char *p, const char *body)
24258{
24259 if (*p == ' ')
24260 {
b98664d3 24261 complaint (_("macro definition contains spaces "
3e43a32a 24262 "in formal argument list:\n`%s'"),
4d3c2250 24263 body);
2e276125
JB
24264
24265 while (*p == ' ')
24266 p++;
24267 }
24268
24269 return p;
24270}
24271
24272
24273static void
24274parse_macro_definition (struct macro_source_file *file, int line,
24275 const char *body)
24276{
24277 const char *p;
24278
24279 /* The body string takes one of two forms. For object-like macro
24280 definitions, it should be:
24281
24282 <macro name> " " <definition>
24283
24284 For function-like macro definitions, it should be:
24285
24286 <macro name> "() " <definition>
24287 or
24288 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24289
24290 Spaces may appear only where explicitly indicated, and in the
24291 <definition>.
24292
24293 The Dwarf 2 spec says that an object-like macro's name is always
24294 followed by a space, but versions of GCC around March 2002 omit
6e70227d 24295 the space when the macro's definition is the empty string.
2e276125
JB
24296
24297 The Dwarf 2 spec says that there should be no spaces between the
24298 formal arguments in a function-like macro's formal argument list,
24299 but versions of GCC around March 2002 include spaces after the
24300 commas. */
24301
24302
24303 /* Find the extent of the macro name. The macro name is terminated
24304 by either a space or null character (for an object-like macro) or
24305 an opening paren (for a function-like macro). */
24306 for (p = body; *p; p++)
24307 if (*p == ' ' || *p == '(')
24308 break;
24309
24310 if (*p == ' ' || *p == '\0')
24311 {
24312 /* It's an object-like macro. */
24313 int name_len = p - body;
3f8a7804 24314 char *name = savestring (body, name_len);
2e276125
JB
24315 const char *replacement;
24316
24317 if (*p == ' ')
24318 replacement = body + name_len + 1;
24319 else
24320 {
4d3c2250 24321 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24322 replacement = body + name_len;
24323 }
6e70227d 24324
2e276125
JB
24325 macro_define_object (file, line, name, replacement);
24326
24327 xfree (name);
24328 }
24329 else if (*p == '(')
24330 {
24331 /* It's a function-like macro. */
3f8a7804 24332 char *name = savestring (body, p - body);
2e276125
JB
24333 int argc = 0;
24334 int argv_size = 1;
8d749320 24335 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
24336
24337 p++;
24338
24339 p = consume_improper_spaces (p, body);
24340
24341 /* Parse the formal argument list. */
24342 while (*p && *p != ')')
24343 {
24344 /* Find the extent of the current argument name. */
24345 const char *arg_start = p;
24346
24347 while (*p && *p != ',' && *p != ')' && *p != ' ')
24348 p++;
24349
24350 if (! *p || p == arg_start)
4d3c2250 24351 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24352 else
24353 {
24354 /* Make sure argv has room for the new argument. */
24355 if (argc >= argv_size)
24356 {
24357 argv_size *= 2;
224c3ddb 24358 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
24359 }
24360
3f8a7804 24361 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
24362 }
24363
24364 p = consume_improper_spaces (p, body);
24365
24366 /* Consume the comma, if present. */
24367 if (*p == ',')
24368 {
24369 p++;
24370
24371 p = consume_improper_spaces (p, body);
24372 }
24373 }
24374
24375 if (*p == ')')
24376 {
24377 p++;
24378
24379 if (*p == ' ')
24380 /* Perfectly formed definition, no complaints. */
24381 macro_define_function (file, line, name,
6e70227d 24382 argc, (const char **) argv,
2e276125
JB
24383 p + 1);
24384 else if (*p == '\0')
24385 {
24386 /* Complain, but do define it. */
4d3c2250 24387 dwarf2_macro_malformed_definition_complaint (body);
2e276125 24388 macro_define_function (file, line, name,
6e70227d 24389 argc, (const char **) argv,
2e276125
JB
24390 p);
24391 }
24392 else
24393 /* Just complain. */
4d3c2250 24394 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24395 }
24396 else
24397 /* Just complain. */
4d3c2250 24398 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24399
24400 xfree (name);
24401 {
24402 int i;
24403
24404 for (i = 0; i < argc; i++)
24405 xfree (argv[i]);
24406 }
24407 xfree (argv);
24408 }
24409 else
4d3c2250 24410 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24411}
24412
cf2c3c16
TT
24413/* Skip some bytes from BYTES according to the form given in FORM.
24414 Returns the new pointer. */
2e276125 24415
d521ce57
TT
24416static const gdb_byte *
24417skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
24418 enum dwarf_form form,
24419 unsigned int offset_size,
24420 struct dwarf2_section_info *section)
2e276125 24421{
cf2c3c16 24422 unsigned int bytes_read;
2e276125 24423
cf2c3c16 24424 switch (form)
2e276125 24425 {
cf2c3c16
TT
24426 case DW_FORM_data1:
24427 case DW_FORM_flag:
24428 ++bytes;
24429 break;
24430
24431 case DW_FORM_data2:
24432 bytes += 2;
24433 break;
24434
24435 case DW_FORM_data4:
24436 bytes += 4;
24437 break;
24438
24439 case DW_FORM_data8:
24440 bytes += 8;
24441 break;
24442
0224619f
JK
24443 case DW_FORM_data16:
24444 bytes += 16;
24445 break;
24446
cf2c3c16
TT
24447 case DW_FORM_string:
24448 read_direct_string (abfd, bytes, &bytes_read);
24449 bytes += bytes_read;
24450 break;
24451
24452 case DW_FORM_sec_offset:
24453 case DW_FORM_strp:
36586728 24454 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
24455 bytes += offset_size;
24456 break;
24457
24458 case DW_FORM_block:
24459 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24460 bytes += bytes_read;
24461 break;
24462
24463 case DW_FORM_block1:
24464 bytes += 1 + read_1_byte (abfd, bytes);
24465 break;
24466 case DW_FORM_block2:
24467 bytes += 2 + read_2_bytes (abfd, bytes);
24468 break;
24469 case DW_FORM_block4:
24470 bytes += 4 + read_4_bytes (abfd, bytes);
24471 break;
24472
336d760d 24473 case DW_FORM_addrx:
cf2c3c16 24474 case DW_FORM_sdata:
cf532bd1 24475 case DW_FORM_strx:
cf2c3c16 24476 case DW_FORM_udata:
3019eac3
DE
24477 case DW_FORM_GNU_addr_index:
24478 case DW_FORM_GNU_str_index:
d521ce57 24479 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
24480 if (bytes == NULL)
24481 {
24482 dwarf2_section_buffer_overflow_complaint (section);
24483 return NULL;
24484 }
cf2c3c16
TT
24485 break;
24486
663c44ac
JK
24487 case DW_FORM_implicit_const:
24488 break;
24489
cf2c3c16
TT
24490 default:
24491 {
b98664d3 24492 complaint (_("invalid form 0x%x in `%s'"),
a32a8923 24493 form, get_section_name (section));
cf2c3c16
TT
24494 return NULL;
24495 }
2e276125
JB
24496 }
24497
cf2c3c16
TT
24498 return bytes;
24499}
757a13d0 24500
cf2c3c16
TT
24501/* A helper for dwarf_decode_macros that handles skipping an unknown
24502 opcode. Returns an updated pointer to the macro data buffer; or,
24503 on error, issues a complaint and returns NULL. */
757a13d0 24504
d521ce57 24505static const gdb_byte *
cf2c3c16 24506skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
24507 const gdb_byte **opcode_definitions,
24508 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
24509 bfd *abfd,
24510 unsigned int offset_size,
24511 struct dwarf2_section_info *section)
24512{
24513 unsigned int bytes_read, i;
24514 unsigned long arg;
d521ce57 24515 const gdb_byte *defn;
2e276125 24516
cf2c3c16 24517 if (opcode_definitions[opcode] == NULL)
2e276125 24518 {
b98664d3 24519 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
cf2c3c16
TT
24520 opcode);
24521 return NULL;
24522 }
2e276125 24523
cf2c3c16
TT
24524 defn = opcode_definitions[opcode];
24525 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24526 defn += bytes_read;
2e276125 24527
cf2c3c16
TT
24528 for (i = 0; i < arg; ++i)
24529 {
aead7601
SM
24530 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24531 (enum dwarf_form) defn[i], offset_size,
f664829e 24532 section);
cf2c3c16
TT
24533 if (mac_ptr == NULL)
24534 {
24535 /* skip_form_bytes already issued the complaint. */
24536 return NULL;
24537 }
24538 }
757a13d0 24539
cf2c3c16
TT
24540 return mac_ptr;
24541}
757a13d0 24542
cf2c3c16
TT
24543/* A helper function which parses the header of a macro section.
24544 If the macro section is the extended (for now called "GNU") type,
24545 then this updates *OFFSET_SIZE. Returns a pointer to just after
24546 the header, or issues a complaint and returns NULL on error. */
757a13d0 24547
d521ce57
TT
24548static const gdb_byte *
24549dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 24550 bfd *abfd,
d521ce57 24551 const gdb_byte *mac_ptr,
cf2c3c16
TT
24552 unsigned int *offset_size,
24553 int section_is_gnu)
24554{
24555 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 24556
cf2c3c16
TT
24557 if (section_is_gnu)
24558 {
24559 unsigned int version, flags;
757a13d0 24560
cf2c3c16 24561 version = read_2_bytes (abfd, mac_ptr);
0af92d60 24562 if (version != 4 && version != 5)
cf2c3c16 24563 {
b98664d3 24564 complaint (_("unrecognized version `%d' in .debug_macro section"),
cf2c3c16
TT
24565 version);
24566 return NULL;
24567 }
24568 mac_ptr += 2;
757a13d0 24569
cf2c3c16
TT
24570 flags = read_1_byte (abfd, mac_ptr);
24571 ++mac_ptr;
24572 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 24573
cf2c3c16
TT
24574 if ((flags & 2) != 0)
24575 /* We don't need the line table offset. */
24576 mac_ptr += *offset_size;
757a13d0 24577
cf2c3c16
TT
24578 /* Vendor opcode descriptions. */
24579 if ((flags & 4) != 0)
24580 {
24581 unsigned int i, count;
757a13d0 24582
cf2c3c16
TT
24583 count = read_1_byte (abfd, mac_ptr);
24584 ++mac_ptr;
24585 for (i = 0; i < count; ++i)
24586 {
24587 unsigned int opcode, bytes_read;
24588 unsigned long arg;
24589
24590 opcode = read_1_byte (abfd, mac_ptr);
24591 ++mac_ptr;
24592 opcode_definitions[opcode] = mac_ptr;
24593 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24594 mac_ptr += bytes_read;
24595 mac_ptr += arg;
24596 }
757a13d0 24597 }
cf2c3c16 24598 }
757a13d0 24599
cf2c3c16
TT
24600 return mac_ptr;
24601}
757a13d0 24602
cf2c3c16 24603/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 24604 including DW_MACRO_import. */
cf2c3c16
TT
24605
24606static void
804d2729 24607dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
ed2dc618 24608 bfd *abfd,
d521ce57 24609 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 24610 struct macro_source_file *current_file,
43f3e411 24611 struct line_header *lh,
cf2c3c16 24612 struct dwarf2_section_info *section,
36586728 24613 int section_is_gnu, int section_is_dwz,
cf2c3c16 24614 unsigned int offset_size,
8fc3fc34 24615 htab_t include_hash)
cf2c3c16 24616{
804d2729
TT
24617 struct dwarf2_per_objfile *dwarf2_per_objfile
24618 = cu->per_cu->dwarf2_per_objfile;
4d663531 24619 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
24620 enum dwarf_macro_record_type macinfo_type;
24621 int at_commandline;
d521ce57 24622 const gdb_byte *opcode_definitions[256];
757a13d0 24623
cf2c3c16
TT
24624 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24625 &offset_size, section_is_gnu);
24626 if (mac_ptr == NULL)
24627 {
24628 /* We already issued a complaint. */
24629 return;
24630 }
757a13d0
JK
24631
24632 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24633 GDB is still reading the definitions from command line. First
24634 DW_MACINFO_start_file will need to be ignored as it was already executed
24635 to create CURRENT_FILE for the main source holding also the command line
24636 definitions. On first met DW_MACINFO_start_file this flag is reset to
24637 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24638
24639 at_commandline = 1;
24640
24641 do
24642 {
24643 /* Do we at least have room for a macinfo type byte? */
24644 if (mac_ptr >= mac_end)
24645 {
f664829e 24646 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
24647 break;
24648 }
24649
aead7601 24650 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
24651 mac_ptr++;
24652
cf2c3c16
TT
24653 /* Note that we rely on the fact that the corresponding GNU and
24654 DWARF constants are the same. */
132448f8
SM
24655 DIAGNOSTIC_PUSH
24656 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
757a13d0
JK
24657 switch (macinfo_type)
24658 {
24659 /* A zero macinfo type indicates the end of the macro
24660 information. */
24661 case 0:
24662 break;
2e276125 24663
0af92d60
JK
24664 case DW_MACRO_define:
24665 case DW_MACRO_undef:
24666 case DW_MACRO_define_strp:
24667 case DW_MACRO_undef_strp:
24668 case DW_MACRO_define_sup:
24669 case DW_MACRO_undef_sup:
2e276125 24670 {
891d2f0b 24671 unsigned int bytes_read;
2e276125 24672 int line;
d521ce57 24673 const char *body;
cf2c3c16 24674 int is_define;
2e276125 24675
cf2c3c16
TT
24676 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24677 mac_ptr += bytes_read;
24678
0af92d60
JK
24679 if (macinfo_type == DW_MACRO_define
24680 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
24681 {
24682 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24683 mac_ptr += bytes_read;
24684 }
24685 else
24686 {
24687 LONGEST str_offset;
24688
24689 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24690 mac_ptr += offset_size;
2e276125 24691
0af92d60
JK
24692 if (macinfo_type == DW_MACRO_define_sup
24693 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 24694 || section_is_dwz)
36586728 24695 {
ed2dc618
SM
24696 struct dwz_file *dwz
24697 = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728 24698
ed2dc618
SM
24699 body = read_indirect_string_from_dwz (objfile,
24700 dwz, str_offset);
36586728
TT
24701 }
24702 else
ed2dc618
SM
24703 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24704 abfd, str_offset);
cf2c3c16
TT
24705 }
24706
0af92d60
JK
24707 is_define = (macinfo_type == DW_MACRO_define
24708 || macinfo_type == DW_MACRO_define_strp
24709 || macinfo_type == DW_MACRO_define_sup);
2e276125 24710 if (! current_file)
757a13d0
JK
24711 {
24712 /* DWARF violation as no main source is present. */
b98664d3 24713 complaint (_("debug info with no main source gives macro %s "
757a13d0 24714 "on line %d: %s"),
cf2c3c16
TT
24715 is_define ? _("definition") : _("undefinition"),
24716 line, body);
757a13d0
JK
24717 break;
24718 }
3e43a32a
MS
24719 if ((line == 0 && !at_commandline)
24720 || (line != 0 && at_commandline))
b98664d3 24721 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
757a13d0 24722 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 24723 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
24724 line == 0 ? _("zero") : _("non-zero"), line, body);
24725
955b06fa 24726 if (body == NULL)
7bede828 24727 {
955b06fa
SDJ
24728 /* Fedora's rpm-build's "debugedit" binary
24729 corrupted .debug_macro sections.
24730
24731 For more info, see
24732 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24733 complaint (_("debug info gives %s invalid macro %s "
24734 "without body (corrupted?) at line %d "
24735 "on file %s"),
24736 at_commandline ? _("command-line") : _("in-file"),
24737 is_define ? _("definition") : _("undefinition"),
24738 line, current_file->filename);
7bede828 24739 }
955b06fa
SDJ
24740 else if (is_define)
24741 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
24742 else
24743 {
0af92d60
JK
24744 gdb_assert (macinfo_type == DW_MACRO_undef
24745 || macinfo_type == DW_MACRO_undef_strp
24746 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
24747 macro_undef (current_file, line, body);
24748 }
2e276125
JB
24749 }
24750 break;
24751
0af92d60 24752 case DW_MACRO_start_file:
2e276125 24753 {
891d2f0b 24754 unsigned int bytes_read;
2e276125
JB
24755 int line, file;
24756
24757 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24758 mac_ptr += bytes_read;
24759 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24760 mac_ptr += bytes_read;
24761
3e43a32a
MS
24762 if ((line == 0 && !at_commandline)
24763 || (line != 0 && at_commandline))
b98664d3 24764 complaint (_("debug info gives source %d included "
757a13d0
JK
24765 "from %s at %s line %d"),
24766 file, at_commandline ? _("command-line") : _("file"),
24767 line == 0 ? _("zero") : _("non-zero"), line);
24768
24769 if (at_commandline)
24770 {
0af92d60 24771 /* This DW_MACRO_start_file was executed in the
cf2c3c16 24772 pass one. */
757a13d0
JK
24773 at_commandline = 0;
24774 }
24775 else
804d2729
TT
24776 current_file = macro_start_file (cu, file, line, current_file,
24777 lh);
2e276125
JB
24778 }
24779 break;
24780
0af92d60 24781 case DW_MACRO_end_file:
2e276125 24782 if (! current_file)
b98664d3 24783 complaint (_("macro debug info has an unmatched "
3e43a32a 24784 "`close_file' directive"));
2e276125
JB
24785 else
24786 {
24787 current_file = current_file->included_by;
24788 if (! current_file)
24789 {
cf2c3c16 24790 enum dwarf_macro_record_type next_type;
2e276125
JB
24791
24792 /* GCC circa March 2002 doesn't produce the zero
24793 type byte marking the end of the compilation
24794 unit. Complain if it's not there, but exit no
24795 matter what. */
24796
24797 /* Do we at least have room for a macinfo type byte? */
24798 if (mac_ptr >= mac_end)
24799 {
f664829e 24800 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
24801 return;
24802 }
24803
24804 /* We don't increment mac_ptr here, so this is just
24805 a look-ahead. */
aead7601
SM
24806 next_type
24807 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24808 mac_ptr);
2e276125 24809 if (next_type != 0)
b98664d3 24810 complaint (_("no terminating 0-type entry for "
3e43a32a 24811 "macros in `.debug_macinfo' section"));
2e276125
JB
24812
24813 return;
24814 }
24815 }
24816 break;
24817
0af92d60
JK
24818 case DW_MACRO_import:
24819 case DW_MACRO_import_sup:
cf2c3c16
TT
24820 {
24821 LONGEST offset;
8fc3fc34 24822 void **slot;
a036ba48
TT
24823 bfd *include_bfd = abfd;
24824 struct dwarf2_section_info *include_section = section;
d521ce57 24825 const gdb_byte *include_mac_end = mac_end;
a036ba48 24826 int is_dwz = section_is_dwz;
d521ce57 24827 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
24828
24829 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24830 mac_ptr += offset_size;
24831
0af92d60 24832 if (macinfo_type == DW_MACRO_import_sup)
a036ba48 24833 {
ed2dc618 24834 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
a036ba48 24835
4d663531 24836 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 24837
a036ba48 24838 include_section = &dwz->macro;
a32a8923 24839 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
24840 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24841 is_dwz = 1;
24842 }
24843
24844 new_mac_ptr = include_section->buffer + offset;
24845 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24846
8fc3fc34
TT
24847 if (*slot != NULL)
24848 {
24849 /* This has actually happened; see
24850 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
b98664d3 24851 complaint (_("recursive DW_MACRO_import in "
8fc3fc34
TT
24852 ".debug_macro section"));
24853 }
24854 else
24855 {
d521ce57 24856 *slot = (void *) new_mac_ptr;
36586728 24857
804d2729 24858 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
43f3e411 24859 include_mac_end, current_file, lh,
36586728 24860 section, section_is_gnu, is_dwz,
4d663531 24861 offset_size, include_hash);
8fc3fc34 24862
d521ce57 24863 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 24864 }
cf2c3c16
TT
24865 }
24866 break;
24867
2e276125 24868 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
24869 if (!section_is_gnu)
24870 {
24871 unsigned int bytes_read;
2e276125 24872
ac298888
TT
24873 /* This reads the constant, but since we don't recognize
24874 any vendor extensions, we ignore it. */
24875 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
24876 mac_ptr += bytes_read;
24877 read_direct_string (abfd, mac_ptr, &bytes_read);
24878 mac_ptr += bytes_read;
2e276125 24879
cf2c3c16
TT
24880 /* We don't recognize any vendor extensions. */
24881 break;
24882 }
24883 /* FALLTHROUGH */
24884
24885 default:
24886 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24887 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24888 section);
24889 if (mac_ptr == NULL)
24890 return;
24891 break;
2e276125 24892 }
132448f8 24893 DIAGNOSTIC_POP
757a13d0 24894 } while (macinfo_type != 0);
2e276125 24895}
8e19ed76 24896
cf2c3c16 24897static void
09262596 24898dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 24899 int section_is_gnu)
cf2c3c16 24900{
518817b3
SM
24901 struct dwarf2_per_objfile *dwarf2_per_objfile
24902 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24903 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
24904 struct line_header *lh = cu->line_header;
24905 bfd *abfd;
d521ce57 24906 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
24907 struct macro_source_file *current_file = 0;
24908 enum dwarf_macro_record_type macinfo_type;
24909 unsigned int offset_size = cu->header.offset_size;
d521ce57 24910 const gdb_byte *opcode_definitions[256];
8fc3fc34 24911 void **slot;
09262596
DE
24912 struct dwarf2_section_info *section;
24913 const char *section_name;
24914
24915 if (cu->dwo_unit != NULL)
24916 {
24917 if (section_is_gnu)
24918 {
24919 section = &cu->dwo_unit->dwo_file->sections.macro;
24920 section_name = ".debug_macro.dwo";
24921 }
24922 else
24923 {
24924 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24925 section_name = ".debug_macinfo.dwo";
24926 }
24927 }
24928 else
24929 {
24930 if (section_is_gnu)
24931 {
24932 section = &dwarf2_per_objfile->macro;
24933 section_name = ".debug_macro";
24934 }
24935 else
24936 {
24937 section = &dwarf2_per_objfile->macinfo;
24938 section_name = ".debug_macinfo";
24939 }
24940 }
cf2c3c16 24941
bb5ed363 24942 dwarf2_read_section (objfile, section);
cf2c3c16
TT
24943 if (section->buffer == NULL)
24944 {
b98664d3 24945 complaint (_("missing %s section"), section_name);
cf2c3c16
TT
24946 return;
24947 }
a32a8923 24948 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
24949
24950 /* First pass: Find the name of the base filename.
24951 This filename is needed in order to process all macros whose definition
24952 (or undefinition) comes from the command line. These macros are defined
24953 before the first DW_MACINFO_start_file entry, and yet still need to be
24954 associated to the base file.
24955
24956 To determine the base file name, we scan the macro definitions until we
24957 reach the first DW_MACINFO_start_file entry. We then initialize
24958 CURRENT_FILE accordingly so that any macro definition found before the
24959 first DW_MACINFO_start_file can still be associated to the base file. */
24960
24961 mac_ptr = section->buffer + offset;
24962 mac_end = section->buffer + section->size;
24963
24964 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24965 &offset_size, section_is_gnu);
24966 if (mac_ptr == NULL)
24967 {
24968 /* We already issued a complaint. */
24969 return;
24970 }
24971
24972 do
24973 {
24974 /* Do we at least have room for a macinfo type byte? */
24975 if (mac_ptr >= mac_end)
24976 {
24977 /* Complaint is printed during the second pass as GDB will probably
24978 stop the first pass earlier upon finding
24979 DW_MACINFO_start_file. */
24980 break;
24981 }
24982
aead7601 24983 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
24984 mac_ptr++;
24985
24986 /* Note that we rely on the fact that the corresponding GNU and
24987 DWARF constants are the same. */
132448f8
SM
24988 DIAGNOSTIC_PUSH
24989 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
cf2c3c16
TT
24990 switch (macinfo_type)
24991 {
24992 /* A zero macinfo type indicates the end of the macro
24993 information. */
24994 case 0:
24995 break;
24996
0af92d60
JK
24997 case DW_MACRO_define:
24998 case DW_MACRO_undef:
cf2c3c16
TT
24999 /* Only skip the data by MAC_PTR. */
25000 {
25001 unsigned int bytes_read;
25002
25003 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25004 mac_ptr += bytes_read;
25005 read_direct_string (abfd, mac_ptr, &bytes_read);
25006 mac_ptr += bytes_read;
25007 }
25008 break;
25009
0af92d60 25010 case DW_MACRO_start_file:
cf2c3c16
TT
25011 {
25012 unsigned int bytes_read;
25013 int line, file;
25014
25015 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25016 mac_ptr += bytes_read;
25017 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25018 mac_ptr += bytes_read;
25019
804d2729 25020 current_file = macro_start_file (cu, file, line, current_file, lh);
cf2c3c16
TT
25021 }
25022 break;
25023
0af92d60 25024 case DW_MACRO_end_file:
cf2c3c16
TT
25025 /* No data to skip by MAC_PTR. */
25026 break;
25027
0af92d60
JK
25028 case DW_MACRO_define_strp:
25029 case DW_MACRO_undef_strp:
25030 case DW_MACRO_define_sup:
25031 case DW_MACRO_undef_sup:
cf2c3c16
TT
25032 {
25033 unsigned int bytes_read;
25034
25035 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25036 mac_ptr += bytes_read;
25037 mac_ptr += offset_size;
25038 }
25039 break;
25040
0af92d60
JK
25041 case DW_MACRO_import:
25042 case DW_MACRO_import_sup:
cf2c3c16 25043 /* Note that, according to the spec, a transparent include
0af92d60 25044 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
25045 skip this opcode. */
25046 mac_ptr += offset_size;
25047 break;
25048
25049 case DW_MACINFO_vendor_ext:
25050 /* Only skip the data by MAC_PTR. */
25051 if (!section_is_gnu)
25052 {
25053 unsigned int bytes_read;
25054
25055 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25056 mac_ptr += bytes_read;
25057 read_direct_string (abfd, mac_ptr, &bytes_read);
25058 mac_ptr += bytes_read;
25059 }
25060 /* FALLTHROUGH */
25061
25062 default:
25063 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 25064 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
25065 section);
25066 if (mac_ptr == NULL)
25067 return;
25068 break;
25069 }
132448f8 25070 DIAGNOSTIC_POP
cf2c3c16
TT
25071 } while (macinfo_type != 0 && current_file == NULL);
25072
25073 /* Second pass: Process all entries.
25074
25075 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25076 command-line macro definitions/undefinitions. This flag is unset when we
25077 reach the first DW_MACINFO_start_file entry. */
25078
fc4007c9
TT
25079 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25080 htab_eq_pointer,
25081 NULL, xcalloc, xfree));
8fc3fc34 25082 mac_ptr = section->buffer + offset;
fc4007c9 25083 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 25084 *slot = (void *) mac_ptr;
804d2729 25085 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
43f3e411 25086 current_file, lh, section,
fc4007c9
TT
25087 section_is_gnu, 0, offset_size,
25088 include_hash.get ());
cf2c3c16
TT
25089}
25090
8e19ed76 25091/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 25092 if so return true else false. */
380bca97 25093
8e19ed76 25094static int
6e5a29e1 25095attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
25096{
25097 return (attr == NULL ? 0 :
25098 attr->form == DW_FORM_block1
25099 || attr->form == DW_FORM_block2
25100 || attr->form == DW_FORM_block4
2dc7f7b3
TT
25101 || attr->form == DW_FORM_block
25102 || attr->form == DW_FORM_exprloc);
8e19ed76 25103}
4c2df51b 25104
c6a0999f
JB
25105/* Return non-zero if ATTR's value is a section offset --- classes
25106 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25107 You may use DW_UNSND (attr) to retrieve such offsets.
25108
25109 Section 7.5.4, "Attribute Encodings", explains that no attribute
25110 may have a value that belongs to more than one of these classes; it
25111 would be ambiguous if we did, because we use the same forms for all
25112 of them. */
380bca97 25113
3690dd37 25114static int
6e5a29e1 25115attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
25116{
25117 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
25118 || attr->form == DW_FORM_data8
25119 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
25120}
25121
3690dd37
JB
25122/* Return non-zero if ATTR's value falls in the 'constant' class, or
25123 zero otherwise. When this function returns true, you can apply
25124 dwarf2_get_attr_constant_value to it.
25125
25126 However, note that for some attributes you must check
25127 attr_form_is_section_offset before using this test. DW_FORM_data4
25128 and DW_FORM_data8 are members of both the constant class, and of
25129 the classes that contain offsets into other debug sections
25130 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25131 that, if an attribute's can be either a constant or one of the
25132 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
25133 taken as section offsets, not constants.
25134
25135 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25136 cannot handle that. */
380bca97 25137
3690dd37 25138static int
6e5a29e1 25139attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
25140{
25141 switch (attr->form)
25142 {
25143 case DW_FORM_sdata:
25144 case DW_FORM_udata:
25145 case DW_FORM_data1:
25146 case DW_FORM_data2:
25147 case DW_FORM_data4:
25148 case DW_FORM_data8:
663c44ac 25149 case DW_FORM_implicit_const:
3690dd37
JB
25150 return 1;
25151 default:
25152 return 0;
25153 }
25154}
25155
7771576e
SA
25156
25157/* DW_ADDR is always stored already as sect_offset; despite for the forms
25158 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25159
25160static int
6e5a29e1 25161attr_form_is_ref (const struct attribute *attr)
7771576e
SA
25162{
25163 switch (attr->form)
25164 {
25165 case DW_FORM_ref_addr:
25166 case DW_FORM_ref1:
25167 case DW_FORM_ref2:
25168 case DW_FORM_ref4:
25169 case DW_FORM_ref8:
25170 case DW_FORM_ref_udata:
25171 case DW_FORM_GNU_ref_alt:
25172 return 1;
25173 default:
25174 return 0;
25175 }
25176}
25177
3019eac3
DE
25178/* Return the .debug_loc section to use for CU.
25179 For DWO files use .debug_loc.dwo. */
25180
25181static struct dwarf2_section_info *
25182cu_debug_loc_section (struct dwarf2_cu *cu)
25183{
518817b3
SM
25184 struct dwarf2_per_objfile *dwarf2_per_objfile
25185 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 25186
3019eac3 25187 if (cu->dwo_unit)
43988095
JK
25188 {
25189 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
5f48f8f3 25190
43988095
JK
25191 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25192 }
25193 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25194 : &dwarf2_per_objfile->loc);
3019eac3
DE
25195}
25196
8cf6f0b1
TT
25197/* A helper function that fills in a dwarf2_loclist_baton. */
25198
25199static void
25200fill_in_loclist_baton (struct dwarf2_cu *cu,
25201 struct dwarf2_loclist_baton *baton,
ff39bb5e 25202 const struct attribute *attr)
8cf6f0b1 25203{
518817b3
SM
25204 struct dwarf2_per_objfile *dwarf2_per_objfile
25205 = cu->per_cu->dwarf2_per_objfile;
3019eac3
DE
25206 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25207
25208 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
25209
25210 baton->per_cu = cu->per_cu;
25211 gdb_assert (baton->per_cu);
25212 /* We don't know how long the location list is, but make sure we
25213 don't run off the edge of the section. */
3019eac3
DE
25214 baton->size = section->size - DW_UNSND (attr);
25215 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 25216 baton->base_address = cu->base_address;
f664829e 25217 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
25218}
25219
4c2df51b 25220static void
ff39bb5e 25221dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 25222 struct dwarf2_cu *cu, int is_block)
4c2df51b 25223{
518817b3
SM
25224 struct dwarf2_per_objfile *dwarf2_per_objfile
25225 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 25226 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 25227 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 25228
3690dd37 25229 if (attr_form_is_section_offset (attr)
3019eac3 25230 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
25231 the section. If so, fall through to the complaint in the
25232 other branch. */
3019eac3 25233 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 25234 {
0d53c4c4 25235 struct dwarf2_loclist_baton *baton;
4c2df51b 25236
8d749320 25237 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 25238
8cf6f0b1 25239 fill_in_loclist_baton (cu, baton, attr);
be391dca 25240
d00adf39 25241 if (cu->base_known == 0)
b98664d3 25242 complaint (_("Location list used without "
3e43a32a 25243 "specifying the CU base address."));
4c2df51b 25244
f1e6e072
TT
25245 SYMBOL_ACLASS_INDEX (sym) = (is_block
25246 ? dwarf2_loclist_block_index
25247 : dwarf2_loclist_index);
0d53c4c4
DJ
25248 SYMBOL_LOCATION_BATON (sym) = baton;
25249 }
25250 else
25251 {
25252 struct dwarf2_locexpr_baton *baton;
25253
8d749320 25254 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
25255 baton->per_cu = cu->per_cu;
25256 gdb_assert (baton->per_cu);
0d53c4c4
DJ
25257
25258 if (attr_form_is_block (attr))
25259 {
25260 /* Note that we're just copying the block's data pointer
25261 here, not the actual data. We're still pointing into the
6502dd73
DJ
25262 info_buffer for SYM's objfile; right now we never release
25263 that buffer, but when we do clean up properly this may
25264 need to change. */
0d53c4c4
DJ
25265 baton->size = DW_BLOCK (attr)->size;
25266 baton->data = DW_BLOCK (attr)->data;
25267 }
25268 else
25269 {
25270 dwarf2_invalid_attrib_class_complaint ("location description",
25271 SYMBOL_NATURAL_NAME (sym));
25272 baton->size = 0;
0d53c4c4 25273 }
6e70227d 25274
f1e6e072
TT
25275 SYMBOL_ACLASS_INDEX (sym) = (is_block
25276 ? dwarf2_locexpr_block_index
25277 : dwarf2_locexpr_index);
0d53c4c4
DJ
25278 SYMBOL_LOCATION_BATON (sym) = baton;
25279 }
4c2df51b 25280}
6502dd73 25281
9aa1f1e3
TT
25282/* Return the OBJFILE associated with the compilation unit CU. If CU
25283 came from a separate debuginfo file, then the master objfile is
25284 returned. */
ae0d2f24
UW
25285
25286struct objfile *
25287dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25288{
e3b94546 25289 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
ae0d2f24
UW
25290
25291 /* Return the master objfile, so that we can report and look up the
25292 correct file containing this variable. */
25293 if (objfile->separate_debug_objfile_backlink)
25294 objfile = objfile->separate_debug_objfile_backlink;
25295
25296 return objfile;
25297}
25298
96408a79
SA
25299/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25300 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25301 CU_HEADERP first. */
25302
25303static const struct comp_unit_head *
25304per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25305 struct dwarf2_per_cu_data *per_cu)
25306{
d521ce57 25307 const gdb_byte *info_ptr;
96408a79
SA
25308
25309 if (per_cu->cu)
25310 return &per_cu->cu->header;
25311
9c541725 25312 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
25313
25314 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
25315 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25316 rcuh_kind::COMPILE);
96408a79
SA
25317
25318 return cu_headerp;
25319}
25320
ae0d2f24
UW
25321/* Return the address size given in the compilation unit header for CU. */
25322
98714339 25323int
ae0d2f24
UW
25324dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25325{
96408a79
SA
25326 struct comp_unit_head cu_header_local;
25327 const struct comp_unit_head *cu_headerp;
c471e790 25328
96408a79
SA
25329 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25330
25331 return cu_headerp->addr_size;
ae0d2f24
UW
25332}
25333
9eae7c52
TT
25334/* Return the offset size given in the compilation unit header for CU. */
25335
25336int
25337dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25338{
96408a79
SA
25339 struct comp_unit_head cu_header_local;
25340 const struct comp_unit_head *cu_headerp;
9c6c53f7 25341
96408a79
SA
25342 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25343
25344 return cu_headerp->offset_size;
25345}
25346
25347/* See its dwarf2loc.h declaration. */
25348
25349int
25350dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25351{
25352 struct comp_unit_head cu_header_local;
25353 const struct comp_unit_head *cu_headerp;
25354
25355 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25356
25357 if (cu_headerp->version == 2)
25358 return cu_headerp->addr_size;
25359 else
25360 return cu_headerp->offset_size;
181cebd4
JK
25361}
25362
9aa1f1e3
TT
25363/* Return the text offset of the CU. The returned offset comes from
25364 this CU's objfile. If this objfile came from a separate debuginfo
25365 file, then the offset may be different from the corresponding
25366 offset in the parent objfile. */
25367
25368CORE_ADDR
25369dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25370{
e3b94546 25371 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
9aa1f1e3
TT
25372
25373 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25374}
25375
9a49df9d
AB
25376/* Return a type that is a generic pointer type, the size of which matches
25377 the address size given in the compilation unit header for PER_CU. */
25378static struct type *
25379dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25380{
25381 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25382 struct type *void_type = objfile_type (objfile)->builtin_void;
25383 struct type *addr_type = lookup_pointer_type (void_type);
25384 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25385
25386 if (TYPE_LENGTH (addr_type) == addr_size)
25387 return addr_type;
25388
25389 addr_type
25390 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25391 return addr_type;
25392}
25393
43988095
JK
25394/* Return DWARF version number of PER_CU. */
25395
25396short
25397dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25398{
25399 return per_cu->dwarf_version;
25400}
25401
348e048f
DE
25402/* Locate the .debug_info compilation unit from CU's objfile which contains
25403 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
25404
25405static struct dwarf2_per_cu_data *
9c541725 25406dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 25407 unsigned int offset_in_dwz,
ed2dc618 25408 struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25409{
25410 struct dwarf2_per_cu_data *this_cu;
25411 int low, high;
25412
ae038cb0 25413 low = 0;
b76e467d 25414 high = dwarf2_per_objfile->all_comp_units.size () - 1;
ae038cb0
DJ
25415 while (high > low)
25416 {
36586728 25417 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 25418 int mid = low + (high - low) / 2;
9a619af0 25419
36586728 25420 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
36586728 25421 if (mid_cu->is_dwz > offset_in_dwz
81fbbaf9 25422 || (mid_cu->is_dwz == offset_in_dwz
45b8ae0c 25423 && mid_cu->sect_off + mid_cu->length >= sect_off))
ae038cb0
DJ
25424 high = mid;
25425 else
25426 low = mid + 1;
25427 }
25428 gdb_assert (low == high);
36586728 25429 this_cu = dwarf2_per_objfile->all_comp_units[low];
45b8ae0c 25430 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
ae038cb0 25431 {
36586728 25432 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 25433 error (_("Dwarf Error: could not find partial DIE containing "
9d8780f0
SM
25434 "offset %s [in module %s]"),
25435 sect_offset_str (sect_off),
ed2dc618 25436 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
10b3939b 25437
9c541725
PA
25438 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25439 <= sect_off);
ae038cb0
DJ
25440 return dwarf2_per_objfile->all_comp_units[low-1];
25441 }
25442 else
25443 {
b76e467d 25444 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
9c541725 25445 && sect_off >= this_cu->sect_off + this_cu->length)
9d8780f0 25446 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
9c541725 25447 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
25448 return this_cu;
25449 }
25450}
25451
23745b47 25452/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 25453
fcd3b13d
SM
25454dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25455 : per_cu (per_cu_),
9068261f
AB
25456 mark (false),
25457 has_loclist (false),
25458 checked_producer (false),
25459 producer_is_gxx_lt_4_6 (false),
25460 producer_is_gcc_lt_4_3 (false),
eb77c9df 25461 producer_is_icc (false),
9068261f 25462 producer_is_icc_lt_14 (false),
c258c396 25463 producer_is_codewarrior (false),
9068261f 25464 processing_has_namespace_info (false)
93311388 25465{
fcd3b13d
SM
25466 per_cu->cu = this;
25467}
25468
25469/* Destroy a dwarf2_cu. */
25470
25471dwarf2_cu::~dwarf2_cu ()
25472{
25473 per_cu->cu = NULL;
9816fde3
JK
25474}
25475
25476/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25477
25478static void
95554aad
TT
25479prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25480 enum language pretend_language)
9816fde3
JK
25481{
25482 struct attribute *attr;
25483
25484 /* Set the language we're debugging. */
25485 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25486 if (attr)
25487 set_cu_language (DW_UNSND (attr), cu);
25488 else
9cded63f 25489 {
95554aad 25490 cu->language = pretend_language;
9cded63f
TT
25491 cu->language_defn = language_def (cu->language);
25492 }
dee91e82 25493
7d45c7c3 25494 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
25495}
25496
ae038cb0
DJ
25497/* Increase the age counter on each cached compilation unit, and free
25498 any that are too old. */
25499
25500static void
ed2dc618 25501age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25502{
25503 struct dwarf2_per_cu_data *per_cu, **last_chain;
25504
25505 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25506 per_cu = dwarf2_per_objfile->read_in_chain;
25507 while (per_cu != NULL)
25508 {
25509 per_cu->cu->last_used ++;
b4f54984 25510 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
25511 dwarf2_mark (per_cu->cu);
25512 per_cu = per_cu->cu->read_in_chain;
25513 }
25514
25515 per_cu = dwarf2_per_objfile->read_in_chain;
25516 last_chain = &dwarf2_per_objfile->read_in_chain;
25517 while (per_cu != NULL)
25518 {
25519 struct dwarf2_per_cu_data *next_cu;
25520
25521 next_cu = per_cu->cu->read_in_chain;
25522
25523 if (!per_cu->cu->mark)
25524 {
fcd3b13d 25525 delete per_cu->cu;
ae038cb0
DJ
25526 *last_chain = next_cu;
25527 }
25528 else
25529 last_chain = &per_cu->cu->read_in_chain;
25530
25531 per_cu = next_cu;
25532 }
25533}
25534
25535/* Remove a single compilation unit from the cache. */
25536
25537static void
dee91e82 25538free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
25539{
25540 struct dwarf2_per_cu_data *per_cu, **last_chain;
ed2dc618
SM
25541 struct dwarf2_per_objfile *dwarf2_per_objfile
25542 = target_per_cu->dwarf2_per_objfile;
ae038cb0
DJ
25543
25544 per_cu = dwarf2_per_objfile->read_in_chain;
25545 last_chain = &dwarf2_per_objfile->read_in_chain;
25546 while (per_cu != NULL)
25547 {
25548 struct dwarf2_per_cu_data *next_cu;
25549
25550 next_cu = per_cu->cu->read_in_chain;
25551
dee91e82 25552 if (per_cu == target_per_cu)
ae038cb0 25553 {
fcd3b13d 25554 delete per_cu->cu;
dee91e82 25555 per_cu->cu = NULL;
ae038cb0
DJ
25556 *last_chain = next_cu;
25557 break;
25558 }
25559 else
25560 last_chain = &per_cu->cu->read_in_chain;
25561
25562 per_cu = next_cu;
25563 }
25564}
25565
dee91e82
DE
25566/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25567 We store these in a hash table separate from the DIEs, and preserve them
25568 when the DIEs are flushed out of cache.
25569
25570 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 25571 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
25572 or the type may come from a DWO file. Furthermore, while it's more logical
25573 to use per_cu->section+offset, with Fission the section with the data is in
25574 the DWO file but we don't know that section at the point we need it.
25575 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25576 because we can enter the lookup routine, get_die_type_at_offset, from
25577 outside this file, and thus won't necessarily have PER_CU->cu.
25578 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 25579
dee91e82 25580struct dwarf2_per_cu_offset_and_type
1c379e20 25581{
dee91e82 25582 const struct dwarf2_per_cu_data *per_cu;
9c541725 25583 sect_offset sect_off;
1c379e20
DJ
25584 struct type *type;
25585};
25586
dee91e82 25587/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25588
25589static hashval_t
dee91e82 25590per_cu_offset_and_type_hash (const void *item)
1c379e20 25591{
9a3c8263
SM
25592 const struct dwarf2_per_cu_offset_and_type *ofs
25593 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 25594
9c541725 25595 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
25596}
25597
dee91e82 25598/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25599
25600static int
dee91e82 25601per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 25602{
9a3c8263
SM
25603 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25604 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25605 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25606 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 25607
dee91e82 25608 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 25609 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
25610}
25611
25612/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
25613 table if necessary. For convenience, return TYPE.
25614
25615 The DIEs reading must have careful ordering to:
25616 * Not cause infite loops trying to read in DIEs as a prerequisite for
25617 reading current DIE.
25618 * Not trying to dereference contents of still incompletely read in types
25619 while reading in other DIEs.
25620 * Enable referencing still incompletely read in types just by a pointer to
25621 the type without accessing its fields.
25622
25623 Therefore caller should follow these rules:
25624 * Try to fetch any prerequisite types we may need to build this DIE type
25625 before building the type and calling set_die_type.
e71ec853 25626 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
25627 possible before fetching more types to complete the current type.
25628 * Make the type as complete as possible before fetching more types. */
1c379e20 25629
f792889a 25630static struct type *
1c379e20
DJ
25631set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25632{
518817b3
SM
25633 struct dwarf2_per_objfile *dwarf2_per_objfile
25634 = cu->per_cu->dwarf2_per_objfile;
dee91e82 25635 struct dwarf2_per_cu_offset_and_type **slot, ofs;
ed2dc618 25636 struct objfile *objfile = dwarf2_per_objfile->objfile;
3cdcd0ce
JB
25637 struct attribute *attr;
25638 struct dynamic_prop prop;
1c379e20 25639
b4ba55a1
JB
25640 /* For Ada types, make sure that the gnat-specific data is always
25641 initialized (if not already set). There are a few types where
25642 we should not be doing so, because the type-specific area is
25643 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25644 where the type-specific area is used to store the floatformat).
25645 But this is not a problem, because the gnat-specific information
25646 is actually not needed for these types. */
25647 if (need_gnat_info (cu)
25648 && TYPE_CODE (type) != TYPE_CODE_FUNC
25649 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
25650 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25651 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25652 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
25653 && !HAVE_GNAT_AUX_INFO (type))
25654 INIT_GNAT_SPECIFIC (type);
25655
3f2f83dd
KB
25656 /* Read DW_AT_allocated and set in type. */
25657 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25658 if (attr_form_is_block (attr))
25659 {
9a49df9d
AB
25660 struct type *prop_type
25661 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25662 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
50a82047 25663 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
3f2f83dd
KB
25664 }
25665 else if (attr != NULL)
25666 {
b98664d3 25667 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
9c541725 25668 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25669 sect_offset_str (die->sect_off));
3f2f83dd
KB
25670 }
25671
25672 /* Read DW_AT_associated and set in type. */
25673 attr = dwarf2_attr (die, DW_AT_associated, cu);
25674 if (attr_form_is_block (attr))
25675 {
9a49df9d
AB
25676 struct type *prop_type
25677 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25678 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
50a82047 25679 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
3f2f83dd
KB
25680 }
25681 else if (attr != NULL)
25682 {
b98664d3 25683 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
9c541725 25684 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25685 sect_offset_str (die->sect_off));
3f2f83dd
KB
25686 }
25687
3cdcd0ce
JB
25688 /* Read DW_AT_data_location and set in type. */
25689 attr = dwarf2_attr (die, DW_AT_data_location, cu);
9a49df9d
AB
25690 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25691 dwarf2_per_cu_addr_type (cu->per_cu)))
50a82047 25692 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
3cdcd0ce 25693
dee91e82 25694 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25695 {
dee91e82
DE
25696 dwarf2_per_objfile->die_type_hash =
25697 htab_create_alloc_ex (127,
25698 per_cu_offset_and_type_hash,
25699 per_cu_offset_and_type_eq,
25700 NULL,
25701 &objfile->objfile_obstack,
25702 hashtab_obstack_allocate,
25703 dummy_obstack_deallocate);
f792889a 25704 }
1c379e20 25705
dee91e82 25706 ofs.per_cu = cu->per_cu;
9c541725 25707 ofs.sect_off = die->sect_off;
1c379e20 25708 ofs.type = type;
dee91e82
DE
25709 slot = (struct dwarf2_per_cu_offset_and_type **)
25710 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57 25711 if (*slot)
b98664d3 25712 complaint (_("A problem internal to GDB: DIE %s has type already set"),
9d8780f0 25713 sect_offset_str (die->sect_off));
8d749320
SM
25714 *slot = XOBNEW (&objfile->objfile_obstack,
25715 struct dwarf2_per_cu_offset_and_type);
1c379e20 25716 **slot = ofs;
f792889a 25717 return type;
1c379e20
DJ
25718}
25719
9c541725 25720/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 25721 or return NULL if the die does not have a saved type. */
1c379e20
DJ
25722
25723static struct type *
9c541725 25724get_die_type_at_offset (sect_offset sect_off,
673bfd45 25725 struct dwarf2_per_cu_data *per_cu)
1c379e20 25726{
dee91e82 25727 struct dwarf2_per_cu_offset_and_type *slot, ofs;
ed2dc618 25728 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
f792889a 25729
dee91e82 25730 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25731 return NULL;
1c379e20 25732
dee91e82 25733 ofs.per_cu = per_cu;
9c541725 25734 ofs.sect_off = sect_off;
9a3c8263
SM
25735 slot = ((struct dwarf2_per_cu_offset_and_type *)
25736 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
25737 if (slot)
25738 return slot->type;
25739 else
25740 return NULL;
25741}
25742
02142a6c 25743/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
25744 or return NULL if DIE does not have a saved type. */
25745
25746static struct type *
25747get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25748{
9c541725 25749 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
25750}
25751
10b3939b
DJ
25752/* Add a dependence relationship from CU to REF_PER_CU. */
25753
25754static void
25755dwarf2_add_dependence (struct dwarf2_cu *cu,
25756 struct dwarf2_per_cu_data *ref_per_cu)
25757{
25758 void **slot;
25759
25760 if (cu->dependencies == NULL)
25761 cu->dependencies
25762 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25763 NULL, &cu->comp_unit_obstack,
25764 hashtab_obstack_allocate,
25765 dummy_obstack_deallocate);
25766
25767 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25768 if (*slot == NULL)
25769 *slot = ref_per_cu;
25770}
1c379e20 25771
f504f079
DE
25772/* Subroutine of dwarf2_mark to pass to htab_traverse.
25773 Set the mark field in every compilation unit in the
ae038cb0
DJ
25774 cache that we must keep because we are keeping CU. */
25775
10b3939b
DJ
25776static int
25777dwarf2_mark_helper (void **slot, void *data)
25778{
25779 struct dwarf2_per_cu_data *per_cu;
25780
25781 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
25782
25783 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25784 reading of the chain. As such dependencies remain valid it is not much
25785 useful to track and undo them during QUIT cleanups. */
25786 if (per_cu->cu == NULL)
25787 return 1;
25788
10b3939b
DJ
25789 if (per_cu->cu->mark)
25790 return 1;
9068261f 25791 per_cu->cu->mark = true;
10b3939b
DJ
25792
25793 if (per_cu->cu->dependencies != NULL)
25794 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25795
25796 return 1;
25797}
25798
f504f079
DE
25799/* Set the mark field in CU and in every other compilation unit in the
25800 cache that we must keep because we are keeping CU. */
25801
ae038cb0
DJ
25802static void
25803dwarf2_mark (struct dwarf2_cu *cu)
25804{
25805 if (cu->mark)
25806 return;
9068261f 25807 cu->mark = true;
10b3939b
DJ
25808 if (cu->dependencies != NULL)
25809 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
25810}
25811
25812static void
25813dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25814{
25815 while (per_cu)
25816 {
9068261f 25817 per_cu->cu->mark = false;
ae038cb0
DJ
25818 per_cu = per_cu->cu->read_in_chain;
25819 }
72bf9492
DJ
25820}
25821
72bf9492
DJ
25822/* Trivial hash function for partial_die_info: the hash value of a DIE
25823 is its offset in .debug_info for this objfile. */
25824
25825static hashval_t
25826partial_die_hash (const void *item)
25827{
9a3c8263
SM
25828 const struct partial_die_info *part_die
25829 = (const struct partial_die_info *) item;
9a619af0 25830
9c541725 25831 return to_underlying (part_die->sect_off);
72bf9492
DJ
25832}
25833
25834/* Trivial comparison function for partial_die_info structures: two DIEs
25835 are equal if they have the same offset. */
25836
25837static int
25838partial_die_eq (const void *item_lhs, const void *item_rhs)
25839{
9a3c8263
SM
25840 const struct partial_die_info *part_die_lhs
25841 = (const struct partial_die_info *) item_lhs;
25842 const struct partial_die_info *part_die_rhs
25843 = (const struct partial_die_info *) item_rhs;
9a619af0 25844
9c541725 25845 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
25846}
25847
3c3bb058
AB
25848struct cmd_list_element *set_dwarf_cmdlist;
25849struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
25850
25851static void
981a3fb3 25852set_dwarf_cmd (const char *args, int from_tty)
ae038cb0 25853{
b4f54984 25854 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 25855 gdb_stdout);
ae038cb0
DJ
25856}
25857
25858static void
981a3fb3 25859show_dwarf_cmd (const char *args, int from_tty)
6e70227d 25860{
b4f54984 25861 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
25862}
25863
491144b5 25864bool dwarf_always_disassemble;
437afbb8 25865
437afbb8 25866static void
cd4fb1b2
SM
25867show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25868 struct cmd_list_element *c, const char *value)
9291a0cd 25869{
cd4fb1b2
SM
25870 fprintf_filtered (file,
25871 _("Whether to always disassemble "
25872 "DWARF expressions is %s.\n"),
25873 value);
9291a0cd
TT
25874}
25875
9291a0cd 25876static void
cd4fb1b2
SM
25877show_check_physname (struct ui_file *file, int from_tty,
25878 struct cmd_list_element *c, const char *value)
9291a0cd 25879{
cd4fb1b2
SM
25880 fprintf_filtered (file,
25881 _("Whether to check \"physname\" is %s.\n"),
25882 value);
9291a0cd
TT
25883}
25884
cd4fb1b2
SM
25885void
25886_initialize_dwarf2_read (void)
9291a0cd 25887{
cd4fb1b2
SM
25888 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25889Set DWARF specific variables.\n\
590042fc 25890Configure DWARF variables such as the cache size."),
cd4fb1b2
SM
25891 &set_dwarf_cmdlist, "maintenance set dwarf ",
25892 0/*allow-unknown*/, &maintenance_set_cmdlist);
156942c7 25893
cd4fb1b2 25894 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
590042fc
PW
25895Show DWARF specific variables.\n\
25896Show DWARF variables such as the cache size."),
cd4fb1b2
SM
25897 &show_dwarf_cmdlist, "maintenance show dwarf ",
25898 0/*allow-unknown*/, &maintenance_show_cmdlist);
156942c7 25899
cd4fb1b2
SM
25900 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25901 &dwarf_max_cache_age, _("\
25902Set the upper bound on the age of cached DWARF compilation units."), _("\
25903Show the upper bound on the age of cached DWARF compilation units."), _("\
25904A higher limit means that cached compilation units will be stored\n\
25905in memory longer, and more total memory will be used. Zero disables\n\
25906caching, which can slow down startup."),
25907 NULL,
25908 show_dwarf_max_cache_age,
25909 &set_dwarf_cmdlist,
25910 &show_dwarf_cmdlist);
156942c7 25911
cd4fb1b2
SM
25912 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25913 &dwarf_always_disassemble, _("\
25914Set whether `info address' always disassembles DWARF expressions."), _("\
25915Show whether `info address' always disassembles DWARF expressions."), _("\
25916When enabled, DWARF expressions are always printed in an assembly-like\n\
25917syntax. When disabled, expressions will be printed in a more\n\
25918conversational style, when possible."),
25919 NULL,
25920 show_dwarf_always_disassemble,
25921 &set_dwarf_cmdlist,
25922 &show_dwarf_cmdlist);
9291a0cd 25923
cd4fb1b2
SM
25924 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25925Set debugging of the DWARF reader."), _("\
25926Show debugging of the DWARF reader."), _("\
25927When enabled (non-zero), debugging messages are printed during DWARF\n\
25928reading and symtab expansion. A value of 1 (one) provides basic\n\
25929information. A value greater than 1 provides more verbose information."),
25930 NULL,
25931 NULL,
25932 &setdebuglist, &showdebuglist);
9291a0cd 25933
cd4fb1b2
SM
25934 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25935Set debugging of the DWARF DIE reader."), _("\
25936Show debugging of the DWARF DIE reader."), _("\
25937When enabled (non-zero), DIEs are dumped after they are read in.\n\
25938The value is the maximum depth to print."),
25939 NULL,
25940 NULL,
25941 &setdebuglist, &showdebuglist);
9291a0cd 25942
cd4fb1b2
SM
25943 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25944Set debugging of the dwarf line reader."), _("\
25945Show debugging of the dwarf line reader."), _("\
25946When enabled (non-zero), line number entries are dumped as they are read in.\n\
25947A value of 1 (one) provides basic information.\n\
25948A value greater than 1 provides more verbose information."),
25949 NULL,
25950 NULL,
25951 &setdebuglist, &showdebuglist);
437afbb8 25952
cd4fb1b2
SM
25953 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25954Set cross-checking of \"physname\" code against demangler."), _("\
25955Show cross-checking of \"physname\" code against demangler."), _("\
25956When enabled, GDB's internal \"physname\" code is checked against\n\
25957the demangler."),
25958 NULL, show_check_physname,
25959 &setdebuglist, &showdebuglist);
900e11f9 25960
e615022a
DE
25961 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25962 no_class, &use_deprecated_index_sections, _("\
25963Set whether to use deprecated gdb_index sections."), _("\
25964Show whether to use deprecated gdb_index sections."), _("\
25965When enabled, deprecated .gdb_index sections are used anyway.\n\
25966Normally they are ignored either because of a missing feature or\n\
25967performance issue.\n\
25968Warning: This option must be enabled before gdb reads the file."),
25969 NULL,
25970 NULL,
25971 &setlist, &showlist);
25972
f1e6e072
TT
25973 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25974 &dwarf2_locexpr_funcs);
25975 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25976 &dwarf2_loclist_funcs);
25977
25978 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25979 &dwarf2_block_frame_base_locexpr_funcs);
25980 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25981 &dwarf2_block_frame_base_loclist_funcs);
c62446b1
PA
25982
25983#if GDB_SELF_TEST
25984 selftests::register_test ("dw2_expand_symtabs_matching",
25985 selftests::dw2_expand_symtabs_matching::run_test);
25986#endif
6502dd73 25987}
This page took 6.602072 seconds and 4 git commands to generate.