dwarf2read: Restrict ICC workaround to ICC<14
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
14bc53a8 73#include "common/function-view.h"
ecfb656c
PA
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
d5722aa2 76#include "common/byte-vector.h"
bbf2f4df 77#include "filename-seen-cache.h"
b32b108a 78#include "producer.h"
c906108c 79#include <fcntl.h>
c906108c 80#include <sys/types.h>
325fac50 81#include <algorithm>
bc8f2430
JK
82#include <unordered_set>
83#include <unordered_map>
d8151005 84
34eaf542
TT
85typedef struct symbol *symbolp;
86DEF_VEC_P (symbolp);
87
73be47f5
DE
88/* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
b4f54984
DE
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91static unsigned int dwarf_read_debug = 0;
45cfd468 92
d97bc12b 93/* When non-zero, dump DIEs after they are read in. */
b4f54984 94static unsigned int dwarf_die_debug = 0;
d97bc12b 95
27e0867f
DE
96/* When non-zero, dump line number entries as they are read in. */
97static unsigned int dwarf_line_debug = 0;
98
900e11f9
JK
99/* When non-zero, cross-check physname against demangler. */
100static int check_physname = 0;
101
481860b3 102/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 103static int use_deprecated_index_sections = 0;
481860b3 104
6502dd73
DJ
105static const struct objfile_data *dwarf2_objfile_data_key;
106
f1e6e072
TT
107/* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109static int dwarf2_locexpr_index;
110static int dwarf2_loclist_index;
111static int dwarf2_locexpr_block_index;
112static int dwarf2_loclist_block_index;
113
73869dc2
DE
114/* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
dce234bc
PP
130struct dwarf2_section_info
131{
73869dc2
DE
132 union
133 {
e5aa3347 134 /* If this is a real section, the bfd section. */
049412e3 135 asection *section;
73869dc2 136 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 137 section. */
73869dc2
DE
138 struct dwarf2_section_info *containing_section;
139 } s;
19ac8c2e 140 /* Pointer to section data, only valid if readin. */
d521ce57 141 const gdb_byte *buffer;
73869dc2 142 /* The size of the section, real or virtual. */
dce234bc 143 bfd_size_type size;
73869dc2
DE
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
be391dca 147 /* True if we have tried to read this section. */
73869dc2
DE
148 char readin;
149 /* True if this is a virtual section, False otherwise.
049412e3 150 This specifies which of s.section and s.containing_section to use. */
73869dc2 151 char is_virtual;
dce234bc
PP
152};
153
8b70b953
TT
154typedef struct dwarf2_section_info dwarf2_section_info_def;
155DEF_VEC_O (dwarf2_section_info_def);
156
9291a0cd
TT
157/* All offsets in the index are of this type. It must be
158 architecture-independent. */
159typedef uint32_t offset_type;
160
161DEF_VEC_I (offset_type);
162
156942c7
DE
163/* Ensure only legit values are used. */
164#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure only legit values are used. */
171#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178/* Ensure we don't use more than the alloted nuber of bits for the CU. */
179#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
9291a0cd
TT
185/* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187struct mapped_index
188{
559a7a62
JK
189 /* Index data format version. */
190 int version;
191
9291a0cd
TT
192 /* The total length of the buffer. */
193 off_t total_size;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
b11b1f88 197
9291a0cd
TT
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
b11b1f88 200
3876f04e
DE
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
b11b1f88 203
9291a0cd 204 /* Size in slots, each slot is 2 offset_types. */
3876f04e 205 offset_type symbol_table_slots;
b11b1f88 206
9291a0cd
TT
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209};
210
95554aad
TT
211typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212DEF_VEC_P (dwarf2_per_cu_ptr);
213
52059ffd
TT
214struct tu_stats
215{
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221};
222
9cdd5dbd
DE
223/* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
6502dd73
DJ
226struct dwarf2_per_objfile
227{
330cdd98
PA
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
ae038cb0 233
330cdd98
PA
234 ~dwarf2_per_objfile ();
235
d6541620 236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
330cdd98
PA
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
8b70b953 265
be391dca 266 /* Back link. */
330cdd98 267 struct objfile *objfile = NULL;
be391dca 268
d467dd73 269 /* Table of all the compilation units. This is used to locate
10b3939b 270 the target compilation unit of a particular reference. */
330cdd98 271 struct dwarf2_per_cu_data **all_comp_units = NULL;
ae038cb0
DJ
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
330cdd98 274 int n_comp_units = 0;
ae038cb0 275
1fd400ff 276 /* The number of .debug_types-related CUs. */
330cdd98 277 int n_type_units = 0;
1fd400ff 278
6aa5f3a6
DE
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
330cdd98 281 int n_allocated_type_units = 0;
6aa5f3a6 282
a2ce51a0
DE
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
330cdd98 285 struct signatured_type **all_type_units = NULL;
1fd400ff 286
f4dc4d17
DE
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
330cdd98 289 htab_t type_unit_groups {};
72dca2f5 290
348e048f
DE
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
330cdd98 293 htab_t signatured_types {};
348e048f 294
f4dc4d17
DE
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
330cdd98 297 struct tu_stats tu_stats {};
f4dc4d17
DE
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
330cdd98 301 dwarf2_per_cu_data *read_in_chain = NULL;
f4dc4d17 302
3019eac3
DE
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
330cdd98 305 htab_t dwo_files {};
3019eac3 306
330cdd98
PA
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
80626a55
DE
309
310 /* The DWP file if there is one, or NULL. */
330cdd98 311 struct dwp_file *dwp_file = NULL;
80626a55 312
36586728
TT
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
330cdd98 315 struct dwz_file *dwz_file = NULL;
36586728 316
330cdd98 317 /* A flag indicating whether this objfile has a section loaded at a
72dca2f5 318 VMA of 0. */
330cdd98 319 bool has_section_at_zero = false;
9291a0cd 320
ae2de4f8
DE
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
330cdd98 323 bool using_index = false;
9291a0cd 324
ae2de4f8 325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
330cdd98 326 mapped_index *index_table = NULL;
98bfdba5 327
7b9f3c50 328 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
330cdd98 335 htab_t quick_file_names_table {};
7b9f3c50 336
98bfdba5
PA
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
330cdd98 339 bool reading_partial_symbols = false;
673bfd45 340
dee91e82 341 /* Table mapping type DIEs to their struct type *.
673bfd45 342 This is NULL if not allocated yet.
02142a6c 343 The mapping is done via (CU/TU + DIE offset) -> type. */
330cdd98 344 htab_t die_type_hash {};
95554aad
TT
345
346 /* The CUs we recently read. */
330cdd98 347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
527f3840
JK
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
330cdd98 350 htab_t line_header_hash {};
bbf2f4df
PA
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
6502dd73
DJ
355};
356
357static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 358
251d32d9 359/* Default names of the debugging sections. */
c906108c 360
233a11ab
CS
361/* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
9cdd5dbd
DE
364static const struct dwarf2_debug_sections dwarf2_elf_names =
365{
251d32d9
TG
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
43988095 370 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 371 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 372 { ".debug_macro", ".zdebug_macro" },
251d32d9 373 { ".debug_str", ".zdebug_str" },
43988095 374 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 375 { ".debug_ranges", ".zdebug_ranges" },
43988095 376 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 377 { ".debug_types", ".zdebug_types" },
3019eac3 378 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
24d3216f
TT
381 { ".gdb_index", ".zgdb_index" },
382 23
251d32d9 383};
c906108c 384
80626a55 385/* List of DWO/DWP sections. */
3019eac3 386
80626a55 387static const struct dwop_section_names
3019eac3
DE
388{
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
43988095 393 struct dwarf2_section_names loclists_dwo;
09262596
DE
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
3019eac3
DE
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
80626a55
DE
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
3019eac3 401}
80626a55 402dwop_section_names =
3019eac3
DE
403{
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
416};
417
c906108c
SS
418/* local data types */
419
107d2387
AC
420/* The data in a compilation unit header, after target2host
421 translation, looks like this. */
c906108c 422struct comp_unit_head
a738430d 423{
c764a876 424 unsigned int length;
a738430d 425 short version;
a738430d
MK
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
9c541725 428 sect_offset abbrev_sect_off;
57349743 429
a738430d
MK
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
57349743 432
a738430d
MK
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
57349743 435
43988095
JK
436 enum dwarf_unit_type unit_type;
437
a738430d
MK
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
9c541725 440 sect_offset sect_off;
57349743 441
d00adf39
DE
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
9c541725 444 cu_offset first_die_cu_offset;
43988095
JK
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 451 cu_offset type_cu_offset_in_tu;
a738430d 452};
c906108c 453
3da10d80
KS
454/* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456struct delayed_method_info
457{
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472};
473
474typedef struct delayed_method_info delayed_method_info;
475DEF_VEC_O (delayed_method_info);
476
e7c27a73
DJ
477/* Internal state when decoding a particular compilation unit. */
478struct dwarf2_cu
479{
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
d00adf39 483 /* The header of the compilation unit. */
e7c27a73 484 struct comp_unit_head header;
e142c38c 485
d00adf39
DE
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
e142c38c
DJ
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
b0f35d58
DL
496 const char *producer;
497
e142c38c
DJ
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
433df2d4
DE
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
72bf9492 513
b64f50a1
JK
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
ae038cb0
DJ
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
69d751e3 528 /* Backlink to our per_cu entry. */
ae038cb0
DJ
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
b64f50a1
JK
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
51545339 536 htab_t die_hash;
10b3939b
DJ
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
cb1df416
DJ
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
4c8aa72d
PA
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
cb1df416 554
3da10d80
KS
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
96408a79
SA
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
034e5797
DE
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
3019eac3
DE
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
1dbab08b 575 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
576 ULONGEST addr_base;
577
2e3cf129
DE
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
1dbab08b 580 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 581 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
588 ULONGEST ranges_base;
589
ae038cb0
DJ
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
8be455d7
JK
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 597 unsigned int has_loclist : 1;
ba919b58 598
1b80a9fa
JK
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
ba919b58
TT
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 605 unsigned int producer_is_gcc_lt_4_3 : 1;
5230b05a 606 unsigned int producer_is_icc_lt_14 : 1;
4d4ec4e5
TT
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
613};
614
10b3939b
DJ
615/* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
28dee7f5 617 read_symtab_private field of the psymtab. */
10b3939b 618
ae038cb0
DJ
619struct dwarf2_per_cu_data
620{
36586728 621 /* The start offset and length of this compilation unit.
45452591 622 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
9c541725 626 sect_offset sect_off;
36586728 627 unsigned int length;
ae038cb0 628
43988095
JK
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
ae038cb0
DJ
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
c764a876 634 unsigned int queued : 1;
ae038cb0 635
0d99eb77
DE
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
0186c6a7
DE
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
3019eac3
DE
645 unsigned int is_debug_types : 1;
646
36586728
TT
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
a2ce51a0
DE
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
7ee85ab1
DE
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
3019eac3
DE
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
8a0459fd 669 struct dwarf2_section_info *section;
348e048f 670
17ea53c3 671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
ae038cb0 674 struct dwarf2_cu *cu;
1c379e20 675
9cdd5dbd
DE
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
679 struct objfile *objfile;
680
fffbe6a8
YQ
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
95554aad 686 or NULL for unread partial units. */
9291a0cd
TT
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
95554aad 692
796a7ff8
DE
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
712};
713
348e048f
DE
714/* Entry in the signatured_types hash table. */
715
716struct signatured_type
717{
42e7ad6c 718 /* The "per_cu" object of this type.
ac9ec31b 719 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
3019eac3 724 /* The type's signature. */
348e048f
DE
725 ULONGEST signature;
726
3019eac3 727 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
0186c6a7
DE
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
ac9ec31b
DE
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
a2ce51a0
DE
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
348e048f
DE
751};
752
0186c6a7
DE
753typedef struct signatured_type *sig_type_ptr;
754DEF_VEC_P (sig_type_ptr);
755
094b34ac
DE
756/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759struct stmt_list_hash
760{
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 765 sect_offset line_sect_off;
094b34ac
DE
766};
767
f4dc4d17
DE
768/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771struct type_unit_group
772{
0186c6a7 773 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
8a0459fd 778#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
779 struct dwarf2_per_cu_data per_cu;
780
0186c6a7
DE
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
f4dc4d17 785
43f3e411 786 /* The compunit symtab.
094b34ac 787 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
f4dc4d17 790
094b34ac
DE
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
f4dc4d17
DE
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807};
808
73869dc2 809/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
810
811struct dwo_sections
812{
813 struct dwarf2_section_info abbrev;
3019eac3
DE
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
43988095 816 struct dwarf2_section_info loclists;
09262596
DE
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
3019eac3
DE
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
80626a55
DE
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
3019eac3
DE
823 VEC (dwarf2_section_info_def) *types;
824};
825
c88ee1f0 826/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
827
828struct dwo_unit
829{
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 839 struct dwarf2_section_info *section;
3019eac3 840
9c541725
PA
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
3019eac3
DE
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847};
848
73869dc2
DE
849/* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853enum dwp_v2_section_ids
854{
855 DW_SECT_MIN = 1
856};
857
80626a55 858/* Data for one DWO file.
57d63ce2
DE
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
3019eac3
DE
868
869struct dwo_file
870{
0ac5b59e 871 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
0ac5b59e
DE
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
3019eac3 879
80626a55
DE
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
3019eac3 883
73869dc2
DE
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
3019eac3
DE
887 struct dwo_sections sections;
888
33c5cd75
DB
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
3019eac3
DE
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898};
899
80626a55
DE
900/* These sections are what may appear in a DWP file. */
901
902struct dwp_sections
903{
73869dc2 904 /* These are used by both DWP version 1 and 2. */
80626a55
DE
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
73869dc2
DE
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
80626a55
DE
925};
926
73869dc2
DE
927/* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 929
73869dc2 930struct virtual_v1_dwo_sections
80626a55
DE
931{
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 939 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
940 struct dwarf2_section_info info_or_types;
941};
942
73869dc2
DE
943/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948struct virtual_v2_dwo_sections
949{
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972};
973
80626a55
DE
974/* Contents of DWP hash tables. */
975
976struct dwp_hash_table
977{
73869dc2 978 uint32_t version, nr_columns;
80626a55 979 uint32_t nr_units, nr_slots;
73869dc2
DE
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991#define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
80626a55
DE
1003};
1004
1005/* Data for one DWP file. */
1006
1007struct dwp_file
1008{
1009 /* Name of the file. */
1010 const char *name;
1011
73869dc2
DE
1012 /* File format version. */
1013 int version;
1014
93417882 1015 /* The bfd. */
80626a55
DE
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
57d63ce2 1021 /* Table of CUs in the file. */
80626a55
DE
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
19ac8c2e
DE
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
80626a55 1030
73869dc2
DE
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
80626a55
DE
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035};
1036
36586728
TT
1037/* This represents a '.dwz' file. */
1038
1039struct dwz_file
1040{
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
2ec9a5e0 1047 struct dwarf2_section_info gdb_index;
36586728
TT
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051};
1052
0963b4bd
MS
1053/* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
dee91e82 1056 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1057
1058struct die_reader_specs
1059{
a32a8923 1060 /* The bfd of die_section. */
93311388
DE
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
80626a55 1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1067 struct dwo_file *dwo_file;
1068
dee91e82 1069 /* The section the die comes from.
3019eac3 1070 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
d521ce57 1074 const gdb_byte *buffer;
f664829e
DE
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
a2ce51a0
DE
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
93311388
DE
1081};
1082
fd820528 1083/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1084typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1085 const gdb_byte *info_ptr,
dee91e82
DE
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
ecfb656c
PA
1090/* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093enum class dir_index : unsigned int {};
1094
1095/* Likewise, a 1-based file name index. */
1096enum class file_name_index : unsigned int {};
1097
52059ffd
TT
1098struct file_entry
1099{
fff8551c
PA
1100 file_entry () = default;
1101
ecfb656c 1102 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
ecfb656c 1105 d_index (d_index_),
fff8551c
PA
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
ecfb656c
PA
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
8c43009f
PA
1112 const char *include_dir (const line_header *lh) const;
1113
fff8551c
PA
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
8c43009f 1118 /* The directory index (1-based). */
ecfb656c 1119 dir_index d_index {};
fff8551c
PA
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
83769d0b 1128 /* The associated symbol table, if any. */
fff8551c 1129 struct symtab *symtab {};
52059ffd
TT
1130};
1131
debd256d
JB
1132/* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135struct line_header
1136{
fff8551c
PA
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
ecfb656c 1145 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
1146 unsigned int mod_time, unsigned int length);
1147
ecfb656c 1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 1149 is out of bounds. */
ecfb656c 1150 const char *include_dir_at (dir_index index) const
8c43009f 1151 {
ecfb656c
PA
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
8c43009f 1157 return NULL;
ecfb656c 1158 return include_dirs[vec_index];
8c43009f
PA
1159 }
1160
ecfb656c 1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 1162 is out of bounds. */
ecfb656c 1163 file_entry *file_name_at (file_name_index index)
8c43009f 1164 {
ecfb656c
PA
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
fff8551c 1170 return NULL;
ecfb656c 1171 return &file_names[vec_index];
fff8551c
PA
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
8c43009f
PA
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
527f3840 1182 /* Offset of line number information in .debug_line section. */
9c541725 1183 sect_offset sect_off {};
527f3840
JK
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
debd256d
JB
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1203
fff8551c
PA
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
debd256d 1207
fff8551c
PA
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
debd256d
JB
1210
1211 /* The start and end of the statement program following this
6502dd73 1212 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1214};
c906108c 1215
fff8551c
PA
1216typedef std::unique_ptr<line_header> line_header_up;
1217
8c43009f
PA
1218const char *
1219file_entry::include_dir (const line_header *lh) const
1220{
ecfb656c 1221 return lh->include_dir_at (d_index);
8c43009f
PA
1222}
1223
c906108c 1224/* When we construct a partial symbol table entry we only
0963b4bd 1225 need this much information. */
c906108c
SS
1226struct partial_die_info
1227 {
72bf9492 1228 /* Offset of this DIE. */
9c541725 1229 sect_offset sect_off;
72bf9492
DJ
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
72bf9492
DJ
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
481860b3 1241 unsigned int may_be_inlined : 1;
72bf9492 1242
0c1b455e
TT
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
72bf9492
DJ
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
fa4028e9
JB
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
ff908ebf
AW
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
98bfdba5
PA
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
abc72ce4
DE
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
36586728
TT
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
72bf9492 1268 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1269 sometimes a default name for unnamed DIEs. */
15d034d0 1270 const char *name;
72bf9492 1271
abc72ce4
DE
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
72bf9492
DJ
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
15d034d0 1278 const char *scope;
72bf9492 1279
95554aad
TT
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1287 sect_offset sect_off;
95554aad 1288 } d;
72bf9492
DJ
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
72bf9492 1293
93311388 1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1295 DW_AT_sibling, if any. */
abc72ce4
DE
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1298 const gdb_byte *sibling;
72bf9492
DJ
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
b64f50a1 1303 sect_offset spec_offset;
72bf9492
DJ
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1308 };
1309
0963b4bd 1310/* This data structure holds the information of an abbrev. */
c906108c
SS
1311struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321struct attr_abbrev
1322 {
9d25dd43
DE
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
c906108c
SS
1328 };
1329
433df2d4
DE
1330/* Size of abbrev_table.abbrev_hash_table. */
1331#define ABBREV_HASH_SIZE 121
1332
1333/* Top level data structure to contain an abbreviation table. */
1334
1335struct abbrev_table
1336{
f4dc4d17
DE
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
9c541725 1339 sect_offset sect_off;
433df2d4
DE
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349};
1350
0963b4bd 1351/* Attributes have a name and a value. */
b60c80d6
DJ
1352struct attribute
1353 {
9d25dd43 1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
b60c80d6
DJ
1362 union
1363 {
15d034d0 1364 const char *str;
b60c80d6 1365 struct dwarf_block *blk;
43bbcdc2
PH
1366 ULONGEST unsnd;
1367 LONGEST snd;
b60c80d6 1368 CORE_ADDR addr;
ac9ec31b 1369 ULONGEST signature;
b60c80d6
DJ
1370 }
1371 u;
1372 };
1373
0963b4bd 1374/* This data structure holds a complete die structure. */
c906108c
SS
1375struct die_info
1376 {
76815b17
DE
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
98bfdba5
PA
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
76815b17 1386
adde2bff
DE
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
76815b17
DE
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
93311388 1393 /* Offset in .debug_info or .debug_types section. */
9c541725 1394 sect_offset sect_off;
78ba4af6
JB
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
4950bc1c 1399 together via their SIBLING fields. */
639d11d3
DC
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
c906108c 1403
b60c80d6
DJ
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
c906108c
SS
1408 };
1409
0963b4bd 1410/* Get at parts of an attribute structure. */
c906108c
SS
1411
1412#define DW_STRING(attr) ((attr)->u.str)
8285870a 1413#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1414#define DW_UNSND(attr) ((attr)->u.unsnd)
1415#define DW_BLOCK(attr) ((attr)->u.blk)
1416#define DW_SND(attr) ((attr)->u.snd)
1417#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1418#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1419
0963b4bd 1420/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1421struct dwarf_block
1422 {
56eb65bd 1423 size_t size;
1d6edc3c
JK
1424
1425 /* Valid only if SIZE is not zero. */
d521ce57 1426 const gdb_byte *data;
c906108c
SS
1427 };
1428
c906108c
SS
1429#ifndef ATTR_ALLOC_CHUNK
1430#define ATTR_ALLOC_CHUNK 4
1431#endif
1432
c906108c
SS
1433/* Allocate fields for structs, unions and enums in this size. */
1434#ifndef DW_FIELD_ALLOC_CHUNK
1435#define DW_FIELD_ALLOC_CHUNK 4
1436#endif
1437
c906108c
SS
1438/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441static int bits_per_byte = 8;
1442
52059ffd
TT
1443struct nextfield
1444{
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449};
1450
1451struct nextfnfield
1452{
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455};
1456
1457struct fnfieldlist
1458{
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462};
1463
1464struct typedef_field_list
1465{
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468};
1469
c906108c
SS
1470/* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473struct field_info
c5aa993b 1474 {
0963b4bd 1475 /* List of data member and baseclasses fields. */
52059ffd 1476 struct nextfield *fields, *baseclasses;
c906108c 1477
7d0ccb61 1478 /* Number of fields (including baseclasses). */
c5aa993b 1479 int nfields;
c906108c 1480
c5aa993b
JM
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
c906108c 1483
c5aa993b
JM
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
c906108c 1486
c5aa993b
JM
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
52059ffd 1490 struct fnfieldlist *fnfieldlists;
c906108c 1491
c5aa993b
JM
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
98751a41
JK
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1497 struct typedef_field_list *typedef_field_list;
98751a41 1498 unsigned typedef_field_list_count;
c5aa993b 1499 };
c906108c 1500
10b3939b
DJ
1501/* One item on the queue of compilation units to read in full symbols
1502 for. */
1503struct dwarf2_queue_item
1504{
1505 struct dwarf2_per_cu_data *per_cu;
95554aad 1506 enum language pretend_language;
10b3939b
DJ
1507 struct dwarf2_queue_item *next;
1508};
1509
1510/* The current queue. */
1511static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
ae038cb0
DJ
1513/* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1518static int dwarf_max_cache_age = 5;
920d2a44 1519static void
b4f54984
DE
1520show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
920d2a44 1522{
3e43a32a 1523 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1524 "DWARF compilation units is %s.\n"),
920d2a44
AC
1525 value);
1526}
4390d890 1527\f
c906108c
SS
1528/* local function prototypes */
1529
a32a8923
DE
1530static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
918dd910
JK
1534static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
0018ea6f
DE
1537static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
f1902523
JK
1540static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
c67a9c90 1545static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1546
72bf9492
DJ
1547static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1549 int, struct dwarf2_cu *);
c906108c 1550
72bf9492
DJ
1551static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
63d06c5c 1553
72bf9492
DJ
1554static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1556 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1557
5d7cb8df 1558static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1559 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1560 struct dwarf2_cu *cu);
1561
72bf9492
DJ
1562static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
91c24f0a 1564
bc30ff58
JB
1565static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1567 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1568
257e7a09
YQ
1569static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
c906108c 1571
a14ed312 1572static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1573
433df2d4
DE
1574static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580static void abbrev_table_free (struct abbrev_table *);
1581
f4dc4d17
DE
1582static void abbrev_table_free_cleanup (void *);
1583
dee91e82
DE
1584static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
c906108c 1586
f3dd6933 1587static void dwarf2_free_abbrev_table (void *);
c906108c 1588
d521ce57 1589static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1590
dee91e82 1591static struct partial_die_info *load_partial_dies
d521ce57 1592 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1593
d521ce57
TT
1594static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
c906108c 1599
36586728 1600static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1601 struct dwarf2_cu *);
72bf9492
DJ
1602
1603static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
d521ce57
TT
1606static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
a8329558 1609
a1855c1d 1610static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1611
a1855c1d 1612static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1613
a1855c1d 1614static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1615
a1855c1d 1616static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1617
a1855c1d 1618static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1619
d521ce57 1620static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1621 unsigned int *);
c906108c 1622
d521ce57 1623static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1624
1625static LONGEST read_checked_initial_length_and_offset
d521ce57 1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1627 unsigned int *, unsigned int *);
613e1657 1628
d521ce57
TT
1629static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
c764a876
DE
1631 unsigned int *);
1632
d521ce57 1633static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1634
f4dc4d17
DE
1635static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
d521ce57 1638static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1639
d521ce57 1640static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1641
d521ce57
TT
1642static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
4bdf3d34 1645
43988095
JK
1646static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
36586728 1649
43988095 1650static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1651
d521ce57 1652static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1653
d521ce57
TT
1654static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
3019eac3
DE
1656 unsigned int *);
1657
d521ce57 1658static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1659 ULONGEST str_index);
3019eac3 1660
e142c38c 1661static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1662
e142c38c
DJ
1663static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
c906108c 1665
348e048f 1666static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1667 unsigned int);
348e048f 1668
7d45c7c3
KB
1669static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
05cf31d1
JB
1672static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
e142c38c 1675static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1676
e142c38c 1677static struct die_info *die_specification (struct die_info *die,
f2f0e013 1678 struct dwarf2_cu **);
63d06c5c 1679
9c541725 1680static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1681 struct dwarf2_cu *cu);
debd256d 1682
f3f5162e 1683static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1684 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1685 CORE_ADDR, int decode_mapping);
c906108c 1686
4d663531 1687static void dwarf2_start_subfile (const char *, const char *);
c906108c 1688
43f3e411
DE
1689static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
f4dc4d17 1692
a14ed312 1693static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1694 struct dwarf2_cu *);
c906108c 1695
34eaf542
TT
1696static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
ff39bb5e 1699static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1700 struct dwarf2_cu *);
c906108c 1701
ff39bb5e 1702static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
12df843f 1706 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1707 const gdb_byte **bytes,
98bfdba5 1708 struct dwarf2_locexpr_baton **baton);
2df3850c 1709
e7c27a73 1710static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1711
b4ba55a1
JB
1712static int need_gnat_info (struct dwarf2_cu *);
1713
3e43a32a
MS
1714static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
b4ba55a1
JB
1716
1717static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
e7c27a73
DJ
1720static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
c906108c 1722
ff39bb5e 1723static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1724 struct dwarf2_cu *);
c906108c 1725
f792889a 1726static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1727
673bfd45
DE
1728static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
0d5cff50 1730static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1731
6e70227d 1732static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
63d06c5c 1735
e7c27a73 1736static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1737
348e048f
DE
1738static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
e7c27a73 1740static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1741
e7c27a73 1742static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1743
96408a79
SA
1744static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
ff013f42
JK
1746static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
3a2b436a 1749/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1750 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1751enum pc_bounds_kind
1752{
e385593e 1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1754 PC_BOUNDS_NOT_PRESENT,
1755
e385593e
JK
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
3a2b436a
JK
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765};
1766
1767static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
c906108c 1771
fae299cd
DC
1772static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
801e3a5b
JB
1776static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
a14ed312 1779static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1780 struct dwarf2_cu *);
c906108c 1781
a14ed312 1782static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1783 struct type *, struct dwarf2_cu *);
c906108c 1784
a14ed312 1785static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1786 struct die_info *, struct type *,
e7c27a73 1787 struct dwarf2_cu *);
c906108c 1788
a14ed312 1789static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1790 struct type *,
1791 struct dwarf2_cu *);
c906108c 1792
134d01f1 1793static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1794
e7c27a73 1795static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1796
e7c27a73 1797static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1798
5d7cb8df
JK
1799static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
22cee43f
PMR
1801static struct using_direct **using_directives (enum language);
1802
27aa8d6a
SW
1803static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
74921315
KS
1805static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
f55ee35c
JK
1807static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
38d518c9 1810static const char *namespace_name (struct die_info *die,
e142c38c 1811 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1812
134d01f1 1813static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1814
e7c27a73 1815static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1816
6e70227d 1817static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1818 struct dwarf2_cu *);
1819
bf6af496 1820static struct die_info *read_die_and_siblings_1
d521ce57 1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1822 struct die_info *);
639d11d3 1823
dee91e82 1824static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
639d11d3
DC
1827 struct die_info *parent);
1828
d521ce57
TT
1829static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
3019eac3 1832
d521ce57
TT
1833static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
93311388 1836
e7c27a73 1837static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1838
15d034d0
TT
1839static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
71c25dea 1841
15d034d0 1842static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1843
15d034d0 1844static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
ca69b9e6
DE
1848static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
e142c38c 1851static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1852 struct dwarf2_cu **);
9219021c 1853
f39c6ffd 1854static const char *dwarf_tag_name (unsigned int);
c906108c 1855
f39c6ffd 1856static const char *dwarf_attr_name (unsigned int);
c906108c 1857
f39c6ffd 1858static const char *dwarf_form_name (unsigned int);
c906108c 1859
a121b7c1 1860static const char *dwarf_bool_name (unsigned int);
c906108c 1861
f39c6ffd 1862static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1863
f9aca02d 1864static struct die_info *sibling_die (struct die_info *);
c906108c 1865
d97bc12b
DE
1866static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868static void dump_die_for_error (struct die_info *);
1869
1870static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
c906108c 1872
d97bc12b 1873/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1874
51545339 1875static void store_in_ref_table (struct die_info *,
10b3939b 1876 struct dwarf2_cu *);
c906108c 1877
ff39bb5e 1878static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1879
ff39bb5e 1880static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1881
348e048f 1882static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1883 const struct attribute *,
348e048f
DE
1884 struct dwarf2_cu **);
1885
10b3939b 1886static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1887 const struct attribute *,
f2f0e013 1888 struct dwarf2_cu **);
c906108c 1889
348e048f 1890static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1891 const struct attribute *,
348e048f
DE
1892 struct dwarf2_cu **);
1893
ac9ec31b
DE
1894static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1898 const struct attribute *,
ac9ec31b
DE
1899 struct dwarf2_cu *);
1900
e5fe5e75 1901static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1902
52dc124a 1903static void read_signatured_type (struct signatured_type *);
348e048f 1904
63e43d3a
PMR
1905static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
c906108c
SS
1909/* memory allocation interface */
1910
7b5a2f43 1911static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1912
b60c80d6 1913static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1914
43f3e411 1915static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1916
6e5a29e1 1917static int attr_form_is_block (const struct attribute *);
8e19ed76 1918
6e5a29e1 1919static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1920
6e5a29e1 1921static int attr_form_is_constant (const struct attribute *);
3690dd37 1922
6e5a29e1 1923static int attr_form_is_ref (const struct attribute *);
7771576e 1924
8cf6f0b1
TT
1925static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
ff39bb5e 1927 const struct attribute *attr);
8cf6f0b1 1928
ff39bb5e 1929static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1930 struct symbol *sym,
f1e6e072
TT
1931 struct dwarf2_cu *cu,
1932 int is_block);
4c2df51b 1933
d521ce57
TT
1934static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
4bb7a0a7 1937
72bf9492
DJ
1938static void free_stack_comp_unit (void *);
1939
72bf9492
DJ
1940static hashval_t partial_die_hash (const void *item);
1941
1942static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
ae038cb0 1944static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
9c541725 1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1946
9816fde3 1947static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1948 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1949
1950static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
93311388 1953
68dc6402 1954static void free_heap_comp_unit (void *);
ae038cb0
DJ
1955
1956static void free_cached_comp_units (void *);
1957
1958static void age_cached_comp_units (void);
1959
dee91e82 1960static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1961
f792889a
DJ
1962static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1c379e20 1964
ae038cb0
DJ
1965static void create_all_comp_units (struct objfile *);
1966
0e50663e 1967static int create_all_type_units (struct objfile *);
1fd400ff 1968
95554aad
TT
1969static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
10b3939b 1971
95554aad
TT
1972static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
10b3939b 1974
f4dc4d17
DE
1975static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
10b3939b
DJ
1978static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
ae038cb0
DJ
1981static void dwarf2_mark (struct dwarf2_cu *);
1982
1983static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
b64f50a1 1985static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1986 struct dwarf2_per_cu_data *);
673bfd45 1987
f792889a 1988static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1989
9291a0cd
TT
1990static void dwarf2_release_queue (void *dummy);
1991
95554aad
TT
1992static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
a0f42c21 1995static void process_queue (void);
9291a0cd 1996
d721ba37
PA
1997/* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000struct file_and_directory
2001{
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014};
2015
2016static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
9291a0cd
TT
2018
2019static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
43988095
JK
2022/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023enum class rcuh_kind { COMPILE, TYPE };
2024
d521ce57 2025static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
d521ce57 2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 2029 rcuh_kind section_kind);
36586728 2030
fd820528 2031static void init_cutu_and_read_dies
f4dc4d17
DE
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
3019eac3
DE
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
dee91e82
DE
2036static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 2039
673bfd45 2040static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 2041
3019eac3
DE
2042static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
57d63ce2
DE
2044static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
2047
2048static struct dwp_file *get_dwp_file (void);
2049
3019eac3 2050static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2052
2053static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2054 (struct signatured_type *, const char *, const char *);
3019eac3 2055
89e63ee4
DE
2056static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
3019eac3
DE
2058static void free_dwo_file_cleanup (void *);
2059
95554aad
TT
2060static void process_cu_includes (void);
2061
1b80a9fa 2062static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2063
2064static void free_line_header_voidp (void *arg);
4390d890
DE
2065\f
2066/* Various complaints about symbol reading that don't abort the process. */
2067
2068static void
2069dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070{
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073}
2074
2075static void
2076dwarf2_debug_line_missing_file_complaint (void)
2077{
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080}
2081
2082static void
2083dwarf2_debug_line_missing_end_sequence_complaint (void)
2084{
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088}
2089
2090static void
2091dwarf2_complex_location_expr_complaint (void)
2092{
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094}
2095
2096static void
2097dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099{
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103}
2104
2105static void
2106dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107{
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
a32a8923
DE
2111 get_section_name (section),
2112 get_section_file_name (section));
4390d890 2113}
1b80a9fa 2114
4390d890
DE
2115static void
2116dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117{
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122}
2123
2124static void
2125dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126{
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130}
527f3840
JK
2131
2132/* Hash function for line_header_hash. */
2133
2134static hashval_t
2135line_header_hash (const struct line_header *ofs)
2136{
9c541725 2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2138}
2139
2140/* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142static hashval_t
2143line_header_hash_voidp (const void *item)
2144{
9a3c8263 2145 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2146
2147 return line_header_hash (ofs);
2148}
2149
2150/* Equality function for line_header_hash. */
2151
2152static int
2153line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154{
9a3c8263
SM
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2157
9c541725 2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160}
2161
4390d890 2162\f
9291a0cd
TT
2163#if WORDS_BIGENDIAN
2164
2165/* Convert VALUE between big- and little-endian. */
2166static offset_type
2167byte_swap (offset_type value)
2168{
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176}
2177
2178#define MAYBE_SWAP(V) byte_swap (V)
2179
2180#else
bc8f2430 2181#define MAYBE_SWAP(V) static_cast<offset_type> (V)
9291a0cd
TT
2182#endif /* WORDS_BIGENDIAN */
2183
31aa7e4e
JB
2184/* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187static CORE_ADDR
2188attr_value_as_address (struct attribute *attr)
2189{
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212}
2213
9291a0cd
TT
2214/* The suffix for an index file. */
2215#define INDEX_SUFFIX ".gdb-index"
2216
330cdd98
PA
2217/* See declaration. */
2218
2219dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222{
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230}
2231
2232dwarf2_per_objfile::~dwarf2_per_objfile ()
2233{
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244}
2245
2246/* See declaration. */
2247
2248void
2249dwarf2_per_objfile::free_cached_comp_units ()
2250{
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261}
2262
c906108c 2263/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
c906108c
SS
2267
2268int
251d32d9
TG
2269dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
c906108c 2271{
9a3c8263
SM
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
8d749320 2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2279
330cdd98
PA
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
be391dca 2282 }
73869dc2 2283 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2284 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2285 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2287}
2288
2289/* Return the containing section of virtual section SECTION. */
2290
2291static struct dwarf2_section_info *
2292get_containing_section (const struct dwarf2_section_info *section)
2293{
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
c906108c
SS
2296}
2297
a32a8923
DE
2298/* Return the bfd owner of SECTION. */
2299
2300static struct bfd *
2301get_section_bfd_owner (const struct dwarf2_section_info *section)
2302{
73869dc2
DE
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
049412e3 2308 return section->s.section->owner;
a32a8923
DE
2309}
2310
2311/* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314static asection *
2315get_section_bfd_section (const struct dwarf2_section_info *section)
2316{
73869dc2
DE
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
049412e3 2322 return section->s.section;
a32a8923
DE
2323}
2324
2325/* Return the name of SECTION. */
2326
2327static const char *
2328get_section_name (const struct dwarf2_section_info *section)
2329{
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334}
2335
2336/* Return the name of the file SECTION is in. */
2337
2338static const char *
2339get_section_file_name (const struct dwarf2_section_info *section)
2340{
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344}
2345
2346/* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349static int
2350get_section_id (const struct dwarf2_section_info *section)
2351{
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357}
2358
2359/* Return the flags of SECTION.
73869dc2 2360 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2361
2362static int
2363get_section_flags (const struct dwarf2_section_info *section)
2364{
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369}
2370
251d32d9
TG
2371/* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
233a11ab
CS
2373
2374static int
251d32d9
TG
2375section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
233a11ab 2377{
251d32d9
TG
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
233a11ab
CS
2385}
2386
330cdd98 2387/* See declaration. */
c906108c 2388
330cdd98
PA
2389void
2390dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
c906108c 2392{
dc7650b8 2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2394
dc7650b8
JK
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
330cdd98 2398 else if (section_is_p (sectp->name, &names.info))
c906108c 2399 {
330cdd98
PA
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
c906108c 2402 }
330cdd98 2403 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2404 {
330cdd98
PA
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2407 }
330cdd98 2408 else if (section_is_p (sectp->name, &names.line))
c906108c 2409 {
330cdd98
PA
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
c906108c 2412 }
330cdd98 2413 else if (section_is_p (sectp->name, &names.loc))
c906108c 2414 {
330cdd98
PA
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
c906108c 2417 }
330cdd98 2418 else if (section_is_p (sectp->name, &names.loclists))
43988095 2419 {
330cdd98
PA
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
43988095 2422 }
330cdd98 2423 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2424 {
330cdd98
PA
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2427 }
330cdd98 2428 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2429 {
330cdd98
PA
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2432 }
330cdd98 2433 else if (section_is_p (sectp->name, &names.str))
c906108c 2434 {
330cdd98
PA
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
c906108c 2437 }
330cdd98 2438 else if (section_is_p (sectp->name, &names.line_str))
43988095 2439 {
330cdd98
PA
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
43988095 2442 }
330cdd98 2443 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2444 {
330cdd98
PA
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2447 }
330cdd98 2448 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2449 {
330cdd98
PA
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2452 }
330cdd98 2453 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2454 {
330cdd98
PA
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2457 }
330cdd98 2458 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2459 {
330cdd98
PA
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2462 }
330cdd98 2463 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2464 {
330cdd98
PA
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2467 }
330cdd98 2468 else if (section_is_p (sectp->name, &names.types))
348e048f 2469 {
8b70b953
TT
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
049412e3 2473 type_section.s.section = sectp;
8b70b953
TT
2474 type_section.size = bfd_get_section_size (sectp);
2475
330cdd98 2476 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2477 &type_section);
348e048f 2478 }
330cdd98 2479 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2480 {
330cdd98
PA
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2483 }
dce234bc 2484
b4e1fd61 2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2486 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2487 this->has_section_at_zero = true;
c906108c
SS
2488}
2489
fceca515
DE
2490/* A helper function that decides whether a section is empty,
2491 or not present. */
9e0ac564
TT
2492
2493static int
19ac8c2e 2494dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2495{
73869dc2
DE
2496 if (section->is_virtual)
2497 return section->size == 0;
049412e3 2498 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2499}
2500
3019eac3
DE
2501/* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
dce234bc 2505 If the section is compressed, uncompress it before returning. */
c906108c 2506
dce234bc
PP
2507static void
2508dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2509{
a32a8923 2510 asection *sectp;
3019eac3 2511 bfd *abfd;
dce234bc 2512 gdb_byte *buf, *retbuf;
c906108c 2513
be391dca
TT
2514 if (info->readin)
2515 return;
dce234bc 2516 info->buffer = NULL;
be391dca 2517 info->readin = 1;
188dd5d6 2518
9e0ac564 2519 if (dwarf2_section_empty_p (info))
dce234bc 2520 return;
c906108c 2521
a32a8923 2522 sectp = get_section_bfd_section (info);
3019eac3 2523
73869dc2
DE
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
4bf44c1c
TT
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2552 {
d521ce57 2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2554 return;
dce234bc 2555 }
dce234bc 2556
224c3ddb 2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2558 info->buffer = buf;
dce234bc
PP
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
ac8035ab 2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
a32a8923
DE
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
dce234bc
PP
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
dce234bc
PP
2581}
2582
9e0ac564
TT
2583/* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590static bfd_size_type
2591dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593{
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597}
2598
dce234bc 2599/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2600 SECTION_NAME. */
af34e669 2601
dce234bc 2602void
3017a003
TG
2603dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
d521ce57 2605 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2606 bfd_size_type *sizep)
2607{
2608 struct dwarf2_per_objfile *data
9a3c8263
SM
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
dce234bc 2611 struct dwarf2_section_info *info;
a3b2a86b
TT
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
3017a003
TG
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
dce234bc 2633
9e0ac564 2634 dwarf2_read_section (objfile, info);
dce234bc 2635
a32a8923 2636 *sectp = get_section_bfd_section (info);
dce234bc
PP
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639}
2640
36586728
TT
2641/* A helper function to find the sections for a .dwz file. */
2642
2643static void
2644locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645{
9a3c8263 2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
049412e3 2652 dwz_file->abbrev.s.section = sectp;
36586728
TT
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
049412e3 2657 dwz_file->info.s.section = sectp;
36586728
TT
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
049412e3 2662 dwz_file->str.s.section = sectp;
36586728
TT
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
049412e3 2667 dwz_file->line.s.section = sectp;
36586728
TT
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
049412e3 2672 dwz_file->macro.s.section = sectp;
36586728
TT
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2ec9a5e0
TT
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
049412e3 2677 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
36586728
TT
2680}
2681
4db1a1dc
TT
2682/* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
36586728
TT
2685
2686static struct dwz_file *
2687dwarf2_get_dwz_file (void)
2688{
4db1a1dc 2689 char *data;
36586728
TT
2690 struct cleanup *cleanup;
2691 const char *filename;
2692 struct dwz_file *result;
acd13123 2693 bfd_size_type buildid_len_arg;
dc294be5
TT
2694 size_t buildid_len;
2695 bfd_byte *buildid;
36586728
TT
2696
2697 if (dwarf2_per_objfile->dwz_file != NULL)
2698 return dwarf2_per_objfile->dwz_file;
2699
4db1a1dc
TT
2700 bfd_set_error (bfd_error_no_error);
2701 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2702 &buildid_len_arg, &buildid);
4db1a1dc
TT
2703 if (data == NULL)
2704 {
2705 if (bfd_get_error () == bfd_error_no_error)
2706 return NULL;
2707 error (_("could not read '.gnu_debugaltlink' section: %s"),
2708 bfd_errmsg (bfd_get_error ()));
2709 }
36586728 2710 cleanup = make_cleanup (xfree, data);
dc294be5 2711 make_cleanup (xfree, buildid);
36586728 2712
acd13123
TT
2713 buildid_len = (size_t) buildid_len_arg;
2714
f9d83a0b 2715 filename = (const char *) data;
d721ba37
PA
2716
2717 std::string abs_storage;
36586728
TT
2718 if (!IS_ABSOLUTE_PATH (filename))
2719 {
14278e1f
TT
2720 gdb::unique_xmalloc_ptr<char> abs
2721 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2722
14278e1f 2723 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2724 filename = abs_storage.c_str ();
36586728
TT
2725 }
2726
dc294be5
TT
2727 /* First try the file name given in the section. If that doesn't
2728 work, try to use the build-id instead. */
192b62ce 2729 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2730 if (dwz_bfd != NULL)
36586728 2731 {
192b62ce
TT
2732 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2733 dwz_bfd.release ();
36586728
TT
2734 }
2735
dc294be5
TT
2736 if (dwz_bfd == NULL)
2737 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2738
2739 if (dwz_bfd == NULL)
2740 error (_("could not find '.gnu_debugaltlink' file for %s"),
2741 objfile_name (dwarf2_per_objfile->objfile));
2742
36586728
TT
2743 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2744 struct dwz_file);
192b62ce 2745 result->dwz_bfd = dwz_bfd.release ();
36586728 2746
192b62ce 2747 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2748
2749 do_cleanups (cleanup);
2750
192b62ce 2751 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2752 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2753 return result;
2754}
9291a0cd 2755\f
7b9f3c50
DE
2756/* DWARF quick_symbols_functions support. */
2757
2758/* TUs can share .debug_line entries, and there can be a lot more TUs than
2759 unique line tables, so we maintain a separate table of all .debug_line
2760 derived entries to support the sharing.
2761 All the quick functions need is the list of file names. We discard the
2762 line_header when we're done and don't need to record it here. */
2763struct quick_file_names
2764{
094b34ac
DE
2765 /* The data used to construct the hash key. */
2766 struct stmt_list_hash hash;
7b9f3c50
DE
2767
2768 /* The number of entries in file_names, real_names. */
2769 unsigned int num_file_names;
2770
2771 /* The file names from the line table, after being run through
2772 file_full_name. */
2773 const char **file_names;
2774
2775 /* The file names from the line table after being run through
2776 gdb_realpath. These are computed lazily. */
2777 const char **real_names;
2778};
2779
2780/* When using the index (and thus not using psymtabs), each CU has an
2781 object of this type. This is used to hold information needed by
2782 the various "quick" methods. */
2783struct dwarf2_per_cu_quick_data
2784{
2785 /* The file table. This can be NULL if there was no file table
2786 or it's currently not read in.
2787 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2788 struct quick_file_names *file_names;
2789
2790 /* The corresponding symbol table. This is NULL if symbols for this
2791 CU have not yet been read. */
43f3e411 2792 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2793
2794 /* A temporary mark bit used when iterating over all CUs in
2795 expand_symtabs_matching. */
2796 unsigned int mark : 1;
2797
2798 /* True if we've tried to read the file table and found there isn't one.
2799 There will be no point in trying to read it again next time. */
2800 unsigned int no_file_data : 1;
2801};
2802
094b34ac
DE
2803/* Utility hash function for a stmt_list_hash. */
2804
2805static hashval_t
2806hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2807{
2808 hashval_t v = 0;
2809
2810 if (stmt_list_hash->dwo_unit != NULL)
2811 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2812 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2813 return v;
2814}
2815
2816/* Utility equality function for a stmt_list_hash. */
2817
2818static int
2819eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2820 const struct stmt_list_hash *rhs)
2821{
2822 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2823 return 0;
2824 if (lhs->dwo_unit != NULL
2825 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2826 return 0;
2827
9c541725 2828 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2829}
2830
7b9f3c50
DE
2831/* Hash function for a quick_file_names. */
2832
2833static hashval_t
2834hash_file_name_entry (const void *e)
2835{
9a3c8263
SM
2836 const struct quick_file_names *file_data
2837 = (const struct quick_file_names *) e;
7b9f3c50 2838
094b34ac 2839 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2840}
2841
2842/* Equality function for a quick_file_names. */
2843
2844static int
2845eq_file_name_entry (const void *a, const void *b)
2846{
9a3c8263
SM
2847 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2848 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2849
094b34ac 2850 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2851}
2852
2853/* Delete function for a quick_file_names. */
2854
2855static void
2856delete_file_name_entry (void *e)
2857{
9a3c8263 2858 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2859 int i;
2860
2861 for (i = 0; i < file_data->num_file_names; ++i)
2862 {
2863 xfree ((void*) file_data->file_names[i]);
2864 if (file_data->real_names)
2865 xfree ((void*) file_data->real_names[i]);
2866 }
2867
2868 /* The space for the struct itself lives on objfile_obstack,
2869 so we don't free it here. */
2870}
2871
2872/* Create a quick_file_names hash table. */
2873
2874static htab_t
2875create_quick_file_names_table (unsigned int nr_initial_entries)
2876{
2877 return htab_create_alloc (nr_initial_entries,
2878 hash_file_name_entry, eq_file_name_entry,
2879 delete_file_name_entry, xcalloc, xfree);
2880}
9291a0cd 2881
918dd910
JK
2882/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2883 have to be created afterwards. You should call age_cached_comp_units after
2884 processing PER_CU->CU. dw2_setup must have been already called. */
2885
2886static void
2887load_cu (struct dwarf2_per_cu_data *per_cu)
2888{
3019eac3 2889 if (per_cu->is_debug_types)
e5fe5e75 2890 load_full_type_unit (per_cu);
918dd910 2891 else
95554aad 2892 load_full_comp_unit (per_cu, language_minimal);
918dd910 2893
cc12ce38
DE
2894 if (per_cu->cu == NULL)
2895 return; /* Dummy CU. */
2dc860c0
DE
2896
2897 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2898}
2899
a0f42c21 2900/* Read in the symbols for PER_CU. */
2fdf6df6 2901
9291a0cd 2902static void
a0f42c21 2903dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2904{
2905 struct cleanup *back_to;
2906
f4dc4d17
DE
2907 /* Skip type_unit_groups, reading the type units they contain
2908 is handled elsewhere. */
2909 if (IS_TYPE_UNIT_GROUP (per_cu))
2910 return;
2911
9291a0cd
TT
2912 back_to = make_cleanup (dwarf2_release_queue, NULL);
2913
95554aad 2914 if (dwarf2_per_objfile->using_index
43f3e411 2915 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2916 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2917 {
2918 queue_comp_unit (per_cu, language_minimal);
2919 load_cu (per_cu);
89e63ee4
DE
2920
2921 /* If we just loaded a CU from a DWO, and we're working with an index
2922 that may badly handle TUs, load all the TUs in that DWO as well.
2923 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2924 if (!per_cu->is_debug_types
cc12ce38 2925 && per_cu->cu != NULL
89e63ee4
DE
2926 && per_cu->cu->dwo_unit != NULL
2927 && dwarf2_per_objfile->index_table != NULL
2928 && dwarf2_per_objfile->index_table->version <= 7
2929 /* DWP files aren't supported yet. */
2930 && get_dwp_file () == NULL)
2931 queue_and_load_all_dwo_tus (per_cu);
95554aad 2932 }
9291a0cd 2933
a0f42c21 2934 process_queue ();
9291a0cd
TT
2935
2936 /* Age the cache, releasing compilation units that have not
2937 been used recently. */
2938 age_cached_comp_units ();
2939
2940 do_cleanups (back_to);
2941}
2942
2943/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2944 the objfile from which this CU came. Returns the resulting symbol
2945 table. */
2fdf6df6 2946
43f3e411 2947static struct compunit_symtab *
a0f42c21 2948dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2949{
95554aad 2950 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2951 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2952 {
2953 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
c83dd867 2954 scoped_restore decrementer = increment_reading_symtab ();
a0f42c21 2955 dw2_do_instantiate_symtab (per_cu);
95554aad 2956 process_cu_includes ();
9291a0cd
TT
2957 do_cleanups (back_to);
2958 }
f194fefb 2959
43f3e411 2960 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2961}
2962
8832e7e3 2963/* Return the CU/TU given its index.
f4dc4d17
DE
2964
2965 This is intended for loops like:
2966
2967 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2968 + dwarf2_per_objfile->n_type_units); ++i)
2969 {
8832e7e3 2970 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2971
2972 ...;
2973 }
2974*/
2fdf6df6 2975
1fd400ff 2976static struct dwarf2_per_cu_data *
8832e7e3 2977dw2_get_cutu (int index)
1fd400ff
TT
2978{
2979 if (index >= dwarf2_per_objfile->n_comp_units)
2980 {
f4dc4d17 2981 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2982 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2983 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2984 }
2985
2986 return dwarf2_per_objfile->all_comp_units[index];
2987}
2988
8832e7e3
DE
2989/* Return the CU given its index.
2990 This differs from dw2_get_cutu in that it's for when you know INDEX
2991 refers to a CU. */
f4dc4d17
DE
2992
2993static struct dwarf2_per_cu_data *
8832e7e3 2994dw2_get_cu (int index)
f4dc4d17 2995{
8832e7e3 2996 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2997
1fd400ff
TT
2998 return dwarf2_per_objfile->all_comp_units[index];
2999}
3000
2ec9a5e0
TT
3001/* A helper for create_cus_from_index that handles a given list of
3002 CUs. */
2fdf6df6 3003
74a0d9f6 3004static void
2ec9a5e0
TT
3005create_cus_from_index_list (struct objfile *objfile,
3006 const gdb_byte *cu_list, offset_type n_elements,
3007 struct dwarf2_section_info *section,
3008 int is_dwz,
3009 int base_offset)
9291a0cd
TT
3010{
3011 offset_type i;
9291a0cd 3012
2ec9a5e0 3013 for (i = 0; i < n_elements; i += 2)
9291a0cd 3014 {
74a0d9f6 3015 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3016
3017 sect_offset sect_off
3018 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3019 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3020 cu_list += 2 * 8;
3021
9c541725
PA
3022 dwarf2_per_cu_data *the_cu
3023 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_data);
3025 the_cu->sect_off = sect_off;
9291a0cd
TT
3026 the_cu->length = length;
3027 the_cu->objfile = objfile;
8a0459fd 3028 the_cu->section = section;
9291a0cd
TT
3029 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3030 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
3031 the_cu->is_dwz = is_dwz;
3032 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 3033 }
9291a0cd
TT
3034}
3035
2ec9a5e0 3036/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3037 the CU objects for this objfile. */
2ec9a5e0 3038
74a0d9f6 3039static void
2ec9a5e0
TT
3040create_cus_from_index (struct objfile *objfile,
3041 const gdb_byte *cu_list, offset_type cu_list_elements,
3042 const gdb_byte *dwz_list, offset_type dwz_elements)
3043{
3044 struct dwz_file *dwz;
3045
3046 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
3047 dwarf2_per_objfile->all_comp_units =
3048 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3049 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 3050
74a0d9f6
JK
3051 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3052 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
3053
3054 if (dwz_elements == 0)
74a0d9f6 3055 return;
2ec9a5e0
TT
3056
3057 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
3058 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3059 cu_list_elements / 2);
2ec9a5e0
TT
3060}
3061
1fd400ff 3062/* Create the signatured type hash table from the index. */
673bfd45 3063
74a0d9f6 3064static void
673bfd45 3065create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 3066 struct dwarf2_section_info *section,
673bfd45
DE
3067 const gdb_byte *bytes,
3068 offset_type elements)
1fd400ff
TT
3069{
3070 offset_type i;
673bfd45 3071 htab_t sig_types_hash;
1fd400ff 3072
6aa5f3a6
DE
3073 dwarf2_per_objfile->n_type_units
3074 = dwarf2_per_objfile->n_allocated_type_units
3075 = elements / 3;
8d749320
SM
3076 dwarf2_per_objfile->all_type_units =
3077 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 3078
673bfd45 3079 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
3080
3081 for (i = 0; i < elements; i += 3)
3082 {
52dc124a 3083 struct signatured_type *sig_type;
9c541725 3084 ULONGEST signature;
1fd400ff 3085 void **slot;
9c541725 3086 cu_offset type_offset_in_tu;
1fd400ff 3087
74a0d9f6 3088 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3089 sect_offset sect_off
3090 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3091 type_offset_in_tu
3092 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3093 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3094 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3095 bytes += 3 * 8;
3096
52dc124a 3097 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3098 struct signatured_type);
52dc124a 3099 sig_type->signature = signature;
9c541725 3100 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3101 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3102 sig_type->per_cu.section = section;
9c541725 3103 sig_type->per_cu.sect_off = sect_off;
52dc124a
DE
3104 sig_type->per_cu.objfile = objfile;
3105 sig_type->per_cu.v.quick
1fd400ff
TT
3106 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct dwarf2_per_cu_quick_data);
3108
52dc124a
DE
3109 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3110 *slot = sig_type;
1fd400ff 3111
b4dd5633 3112 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
3113 }
3114
673bfd45 3115 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3116}
3117
9291a0cd
TT
3118/* Read the address map data from the mapped index, and use it to
3119 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3120
9291a0cd
TT
3121static void
3122create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3123{
3e29f34a 3124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3125 const gdb_byte *iter, *end;
9291a0cd 3126 struct addrmap *mutable_map;
9291a0cd
TT
3127 CORE_ADDR baseaddr;
3128
8268c778
PA
3129 auto_obstack temp_obstack;
3130
9291a0cd
TT
3131 mutable_map = addrmap_create_mutable (&temp_obstack);
3132
3133 iter = index->address_table;
3134 end = iter + index->address_table_size;
3135
3136 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3137
3138 while (iter < end)
3139 {
3140 ULONGEST hi, lo, cu_index;
3141 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3142 iter += 8;
3143 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3144 iter += 8;
3145 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3146 iter += 4;
f652bce2 3147
24a55014 3148 if (lo > hi)
f652bce2 3149 {
24a55014
DE
3150 complaint (&symfile_complaints,
3151 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3152 hex_string (lo), hex_string (hi));
24a55014 3153 continue;
f652bce2 3154 }
24a55014
DE
3155
3156 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
3157 {
3158 complaint (&symfile_complaints,
3159 _(".gdb_index address table has invalid CU number %u"),
3160 (unsigned) cu_index);
24a55014 3161 continue;
f652bce2 3162 }
24a55014 3163
3e29f34a
MR
3164 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3165 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3166 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3167 }
3168
3169 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3170 &objfile->objfile_obstack);
9291a0cd
TT
3171}
3172
59d7bcaf
JK
3173/* The hash function for strings in the mapped index. This is the same as
3174 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3175 implementation. This is necessary because the hash function is tied to the
3176 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3177 SYMBOL_HASH_NEXT.
3178
3179 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3180
9291a0cd 3181static hashval_t
559a7a62 3182mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3183{
3184 const unsigned char *str = (const unsigned char *) p;
3185 hashval_t r = 0;
3186 unsigned char c;
3187
3188 while ((c = *str++) != 0)
559a7a62
JK
3189 {
3190 if (index_version >= 5)
3191 c = tolower (c);
3192 r = r * 67 + c - 113;
3193 }
9291a0cd
TT
3194
3195 return r;
3196}
3197
3198/* Find a slot in the mapped index INDEX for the object named NAME.
3199 If NAME is found, set *VEC_OUT to point to the CU vector in the
3200 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 3201
9291a0cd
TT
3202static int
3203find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3204 offset_type **vec_out)
3205{
0cf03b49
JK
3206 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3207 offset_type hash;
9291a0cd 3208 offset_type slot, step;
559a7a62 3209 int (*cmp) (const char *, const char *);
9291a0cd 3210
0cf03b49 3211 if (current_language->la_language == language_cplus
45280282
IB
3212 || current_language->la_language == language_fortran
3213 || current_language->la_language == language_d)
0cf03b49
JK
3214 {
3215 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3216 not contain any. */
a8719064 3217
72998fb3 3218 if (strchr (name, '(') != NULL)
0cf03b49 3219 {
72998fb3 3220 char *without_params = cp_remove_params (name);
0cf03b49 3221
72998fb3
DE
3222 if (without_params != NULL)
3223 {
3224 make_cleanup (xfree, without_params);
3225 name = without_params;
3226 }
0cf03b49
JK
3227 }
3228 }
3229
559a7a62 3230 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3231 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3232 simulate our NAME being searched is also lowercased. */
3233 hash = mapped_index_string_hash ((index->version == 4
3234 && case_sensitivity == case_sensitive_off
3235 ? 5 : index->version),
3236 name);
3237
3876f04e
DE
3238 slot = hash & (index->symbol_table_slots - 1);
3239 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3240 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3241
3242 for (;;)
3243 {
3244 /* Convert a slot number to an offset into the table. */
3245 offset_type i = 2 * slot;
3246 const char *str;
3876f04e 3247 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3248 {
3249 do_cleanups (back_to);
3250 return 0;
3251 }
9291a0cd 3252
3876f04e 3253 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3254 if (!cmp (name, str))
9291a0cd
TT
3255 {
3256 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3257 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3258 do_cleanups (back_to);
9291a0cd
TT
3259 return 1;
3260 }
3261
3876f04e 3262 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3263 }
3264}
3265
2ec9a5e0
TT
3266/* A helper function that reads the .gdb_index from SECTION and fills
3267 in MAP. FILENAME is the name of the file containing the section;
3268 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3269 ok to use deprecated sections.
3270
3271 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3272 out parameters that are filled in with information about the CU and
3273 TU lists in the section.
3274
3275 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3276
9291a0cd 3277static int
2ec9a5e0
TT
3278read_index_from_section (struct objfile *objfile,
3279 const char *filename,
3280 int deprecated_ok,
3281 struct dwarf2_section_info *section,
3282 struct mapped_index *map,
3283 const gdb_byte **cu_list,
3284 offset_type *cu_list_elements,
3285 const gdb_byte **types_list,
3286 offset_type *types_list_elements)
9291a0cd 3287{
948f8e3d 3288 const gdb_byte *addr;
2ec9a5e0 3289 offset_type version;
b3b272e1 3290 offset_type *metadata;
1fd400ff 3291 int i;
9291a0cd 3292
2ec9a5e0 3293 if (dwarf2_section_empty_p (section))
9291a0cd 3294 return 0;
82430852
JK
3295
3296 /* Older elfutils strip versions could keep the section in the main
3297 executable while splitting it for the separate debug info file. */
a32a8923 3298 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3299 return 0;
3300
2ec9a5e0 3301 dwarf2_read_section (objfile, section);
9291a0cd 3302
2ec9a5e0 3303 addr = section->buffer;
9291a0cd 3304 /* Version check. */
1fd400ff 3305 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3306 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3307 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3308 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3309 indices. */
831adc1f 3310 if (version < 4)
481860b3
GB
3311 {
3312 static int warning_printed = 0;
3313 if (!warning_printed)
3314 {
3315 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3316 filename);
481860b3
GB
3317 warning_printed = 1;
3318 }
3319 return 0;
3320 }
3321 /* Index version 4 uses a different hash function than index version
3322 5 and later.
3323
3324 Versions earlier than 6 did not emit psymbols for inlined
3325 functions. Using these files will cause GDB not to be able to
3326 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3327 indices unless the user has done
3328 "set use-deprecated-index-sections on". */
2ec9a5e0 3329 if (version < 6 && !deprecated_ok)
481860b3
GB
3330 {
3331 static int warning_printed = 0;
3332 if (!warning_printed)
3333 {
e615022a
DE
3334 warning (_("\
3335Skipping deprecated .gdb_index section in %s.\n\
3336Do \"set use-deprecated-index-sections on\" before the file is read\n\
3337to use the section anyway."),
2ec9a5e0 3338 filename);
481860b3
GB
3339 warning_printed = 1;
3340 }
3341 return 0;
3342 }
796a7ff8 3343 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3344 of the TU (for symbols coming from TUs),
3345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3346 Plus gold-generated indices can have duplicate entries for global symbols,
3347 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3348 These are just performance bugs, and we can't distinguish gdb-generated
3349 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3350
481860b3 3351 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3352 longer backward compatible. */
796a7ff8 3353 if (version > 8)
594e8718 3354 return 0;
9291a0cd 3355
559a7a62 3356 map->version = version;
2ec9a5e0 3357 map->total_size = section->size;
9291a0cd
TT
3358
3359 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3360
3361 i = 0;
2ec9a5e0
TT
3362 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3363 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3364 / 8);
1fd400ff
TT
3365 ++i;
3366
2ec9a5e0
TT
3367 *types_list = addr + MAYBE_SWAP (metadata[i]);
3368 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]))
3370 / 8);
987d643c 3371 ++i;
1fd400ff
TT
3372
3373 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3374 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3375 - MAYBE_SWAP (metadata[i]));
3376 ++i;
3377
3876f04e
DE
3378 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3379 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3380 - MAYBE_SWAP (metadata[i]))
3381 / (2 * sizeof (offset_type)));
1fd400ff 3382 ++i;
9291a0cd 3383
f9d83a0b 3384 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3385
2ec9a5e0
TT
3386 return 1;
3387}
3388
3389
3390/* Read the index file. If everything went ok, initialize the "quick"
3391 elements of all the CUs and return 1. Otherwise, return 0. */
3392
3393static int
3394dwarf2_read_index (struct objfile *objfile)
3395{
3396 struct mapped_index local_map, *map;
3397 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3398 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3399 struct dwz_file *dwz;
2ec9a5e0 3400
4262abfb 3401 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3402 use_deprecated_index_sections,
3403 &dwarf2_per_objfile->gdb_index, &local_map,
3404 &cu_list, &cu_list_elements,
3405 &types_list, &types_list_elements))
3406 return 0;
3407
0fefef59 3408 /* Don't use the index if it's empty. */
2ec9a5e0 3409 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3410 return 0;
3411
2ec9a5e0
TT
3412 /* If there is a .dwz file, read it so we can get its CU list as
3413 well. */
4db1a1dc
TT
3414 dwz = dwarf2_get_dwz_file ();
3415 if (dwz != NULL)
2ec9a5e0 3416 {
2ec9a5e0
TT
3417 struct mapped_index dwz_map;
3418 const gdb_byte *dwz_types_ignore;
3419 offset_type dwz_types_elements_ignore;
3420
3421 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3422 1,
3423 &dwz->gdb_index, &dwz_map,
3424 &dwz_list, &dwz_list_elements,
3425 &dwz_types_ignore,
3426 &dwz_types_elements_ignore))
3427 {
3428 warning (_("could not read '.gdb_index' section from %s; skipping"),
3429 bfd_get_filename (dwz->dwz_bfd));
3430 return 0;
3431 }
3432 }
3433
74a0d9f6
JK
3434 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3435 dwz_list_elements);
1fd400ff 3436
8b70b953
TT
3437 if (types_list_elements)
3438 {
3439 struct dwarf2_section_info *section;
3440
3441 /* We can only handle a single .debug_types when we have an
3442 index. */
3443 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3444 return 0;
3445
3446 section = VEC_index (dwarf2_section_info_def,
3447 dwarf2_per_objfile->types, 0);
3448
74a0d9f6
JK
3449 create_signatured_type_table_from_index (objfile, section, types_list,
3450 types_list_elements);
8b70b953 3451 }
9291a0cd 3452
2ec9a5e0
TT
3453 create_addrmap_from_index (objfile, &local_map);
3454
8d749320 3455 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3456 *map = local_map;
9291a0cd
TT
3457
3458 dwarf2_per_objfile->index_table = map;
3459 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3460 dwarf2_per_objfile->quick_file_names_table =
3461 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3462
3463 return 1;
3464}
3465
3466/* A helper for the "quick" functions which sets the global
3467 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3468
9291a0cd
TT
3469static void
3470dw2_setup (struct objfile *objfile)
3471{
9a3c8263
SM
3472 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3473 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3474 gdb_assert (dwarf2_per_objfile);
3475}
3476
dee91e82 3477/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3478
dee91e82
DE
3479static void
3480dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3481 const gdb_byte *info_ptr,
dee91e82
DE
3482 struct die_info *comp_unit_die,
3483 int has_children,
3484 void *data)
9291a0cd 3485{
dee91e82
DE
3486 struct dwarf2_cu *cu = reader->cu;
3487 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3488 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3489 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3490 struct attribute *attr;
dee91e82 3491 int i;
7b9f3c50
DE
3492 void **slot;
3493 struct quick_file_names *qfn;
9291a0cd 3494
0186c6a7
DE
3495 gdb_assert (! this_cu->is_debug_types);
3496
07261596
TT
3497 /* Our callers never want to match partial units -- instead they
3498 will match the enclosing full CU. */
3499 if (comp_unit_die->tag == DW_TAG_partial_unit)
3500 {
3501 this_cu->v.quick->no_file_data = 1;
3502 return;
3503 }
3504
0186c6a7 3505 lh_cu = this_cu;
7b9f3c50 3506 slot = NULL;
dee91e82 3507
fff8551c 3508 line_header_up lh;
9c541725 3509 sect_offset line_offset {};
fff8551c 3510
dee91e82 3511 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3512 if (attr)
3513 {
7b9f3c50
DE
3514 struct quick_file_names find_entry;
3515
9c541725 3516 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3517
3518 /* We may have already read in this line header (TU line header sharing).
3519 If we have we're done. */
094b34ac 3520 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3521 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3522 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3523 &find_entry, INSERT);
3524 if (*slot != NULL)
3525 {
9a3c8263 3526 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3527 return;
7b9f3c50
DE
3528 }
3529
3019eac3 3530 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3531 }
3532 if (lh == NULL)
3533 {
094b34ac 3534 lh_cu->v.quick->no_file_data = 1;
dee91e82 3535 return;
9291a0cd
TT
3536 }
3537
8d749320 3538 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3539 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3540 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3541 gdb_assert (slot != NULL);
3542 *slot = qfn;
9291a0cd 3543
d721ba37 3544 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3545
fff8551c 3546 qfn->num_file_names = lh->file_names.size ();
8d749320 3547 qfn->file_names =
fff8551c
PA
3548 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3549 for (i = 0; i < lh->file_names.size (); ++i)
3550 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3551 qfn->real_names = NULL;
9291a0cd 3552
094b34ac 3553 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3554}
3555
3556/* A helper for the "quick" functions which attempts to read the line
3557 table for THIS_CU. */
3558
3559static struct quick_file_names *
e4a48d9d 3560dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3561{
0186c6a7
DE
3562 /* This should never be called for TUs. */
3563 gdb_assert (! this_cu->is_debug_types);
3564 /* Nor type unit groups. */
3565 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3566
dee91e82
DE
3567 if (this_cu->v.quick->file_names != NULL)
3568 return this_cu->v.quick->file_names;
3569 /* If we know there is no line data, no point in looking again. */
3570 if (this_cu->v.quick->no_file_data)
3571 return NULL;
3572
0186c6a7 3573 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3574
3575 if (this_cu->v.quick->no_file_data)
3576 return NULL;
3577 return this_cu->v.quick->file_names;
9291a0cd
TT
3578}
3579
3580/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3581 real path for a given file name from the line table. */
2fdf6df6 3582
9291a0cd 3583static const char *
7b9f3c50
DE
3584dw2_get_real_path (struct objfile *objfile,
3585 struct quick_file_names *qfn, int index)
9291a0cd 3586{
7b9f3c50
DE
3587 if (qfn->real_names == NULL)
3588 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3589 qfn->num_file_names, const char *);
9291a0cd 3590
7b9f3c50 3591 if (qfn->real_names[index] == NULL)
14278e1f 3592 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3593
7b9f3c50 3594 return qfn->real_names[index];
9291a0cd
TT
3595}
3596
3597static struct symtab *
3598dw2_find_last_source_symtab (struct objfile *objfile)
3599{
43f3e411 3600 struct compunit_symtab *cust;
9291a0cd 3601 int index;
ae2de4f8 3602
9291a0cd
TT
3603 dw2_setup (objfile);
3604 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3605 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3606 if (cust == NULL)
3607 return NULL;
3608 return compunit_primary_filetab (cust);
9291a0cd
TT
3609}
3610
7b9f3c50
DE
3611/* Traversal function for dw2_forget_cached_source_info. */
3612
3613static int
3614dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3615{
7b9f3c50 3616 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3617
7b9f3c50 3618 if (file_data->real_names)
9291a0cd 3619 {
7b9f3c50 3620 int i;
9291a0cd 3621
7b9f3c50 3622 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3623 {
7b9f3c50
DE
3624 xfree ((void*) file_data->real_names[i]);
3625 file_data->real_names[i] = NULL;
9291a0cd
TT
3626 }
3627 }
7b9f3c50
DE
3628
3629 return 1;
3630}
3631
3632static void
3633dw2_forget_cached_source_info (struct objfile *objfile)
3634{
3635 dw2_setup (objfile);
3636
3637 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3638 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3639}
3640
f8eba3c6
TT
3641/* Helper function for dw2_map_symtabs_matching_filename that expands
3642 the symtabs and calls the iterator. */
3643
3644static int
3645dw2_map_expand_apply (struct objfile *objfile,
3646 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3647 const char *name, const char *real_path,
14bc53a8 3648 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3649{
43f3e411 3650 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3651
3652 /* Don't visit already-expanded CUs. */
43f3e411 3653 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3654 return 0;
3655
3656 /* This may expand more than one symtab, and we want to iterate over
3657 all of them. */
a0f42c21 3658 dw2_instantiate_symtab (per_cu);
f8eba3c6 3659
14bc53a8
PA
3660 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3661 last_made, callback);
f8eba3c6
TT
3662}
3663
3664/* Implementation of the map_symtabs_matching_filename method. */
3665
14bc53a8
PA
3666static bool
3667dw2_map_symtabs_matching_filename
3668 (struct objfile *objfile, const char *name, const char *real_path,
3669 gdb::function_view<bool (symtab *)> callback)
9291a0cd
TT
3670{
3671 int i;
c011a4f4 3672 const char *name_basename = lbasename (name);
9291a0cd
TT
3673
3674 dw2_setup (objfile);
ae2de4f8 3675
848e3e78
DE
3676 /* The rule is CUs specify all the files, including those used by
3677 any TU, so there's no need to scan TUs here. */
f4dc4d17 3678
848e3e78 3679 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3680 {
3681 int j;
8832e7e3 3682 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3683 struct quick_file_names *file_data;
9291a0cd 3684
3d7bb9d9 3685 /* We only need to look at symtabs not already expanded. */
43f3e411 3686 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3687 continue;
3688
e4a48d9d 3689 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3690 if (file_data == NULL)
9291a0cd
TT
3691 continue;
3692
7b9f3c50 3693 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3694 {
7b9f3c50 3695 const char *this_name = file_data->file_names[j];
da235a7c 3696 const char *this_real_name;
9291a0cd 3697
af529f8f 3698 if (compare_filenames_for_search (this_name, name))
9291a0cd 3699 {
f5b95b50 3700 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3701 callback))
3702 return true;
288e77a7 3703 continue;
4aac40c8 3704 }
9291a0cd 3705
c011a4f4
DE
3706 /* Before we invoke realpath, which can get expensive when many
3707 files are involved, do a quick comparison of the basenames. */
3708 if (! basenames_may_differ
3709 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3710 continue;
3711
da235a7c
JK
3712 this_real_name = dw2_get_real_path (objfile, file_data, j);
3713 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3714 {
da235a7c 3715 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3716 callback))
3717 return true;
288e77a7 3718 continue;
da235a7c 3719 }
9291a0cd 3720
da235a7c
JK
3721 if (real_path != NULL)
3722 {
af529f8f
JK
3723 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3724 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3725 if (this_real_name != NULL
af529f8f 3726 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3727 {
f5b95b50 3728 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3729 callback))
3730 return true;
288e77a7 3731 continue;
9291a0cd
TT
3732 }
3733 }
3734 }
3735 }
3736
14bc53a8 3737 return false;
9291a0cd
TT
3738}
3739
da51c347
DE
3740/* Struct used to manage iterating over all CUs looking for a symbol. */
3741
3742struct dw2_symtab_iterator
9291a0cd 3743{
da51c347
DE
3744 /* The internalized form of .gdb_index. */
3745 struct mapped_index *index;
3746 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3747 int want_specific_block;
3748 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3749 Unused if !WANT_SPECIFIC_BLOCK. */
3750 int block_index;
3751 /* The kind of symbol we're looking for. */
3752 domain_enum domain;
3753 /* The list of CUs from the index entry of the symbol,
3754 or NULL if not found. */
3755 offset_type *vec;
3756 /* The next element in VEC to look at. */
3757 int next;
3758 /* The number of elements in VEC, or zero if there is no match. */
3759 int length;
8943b874
DE
3760 /* Have we seen a global version of the symbol?
3761 If so we can ignore all further global instances.
3762 This is to work around gold/15646, inefficient gold-generated
3763 indices. */
3764 int global_seen;
da51c347 3765};
9291a0cd 3766
da51c347
DE
3767/* Initialize the index symtab iterator ITER.
3768 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3769 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3770
9291a0cd 3771static void
da51c347
DE
3772dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3773 struct mapped_index *index,
3774 int want_specific_block,
3775 int block_index,
3776 domain_enum domain,
3777 const char *name)
3778{
3779 iter->index = index;
3780 iter->want_specific_block = want_specific_block;
3781 iter->block_index = block_index;
3782 iter->domain = domain;
3783 iter->next = 0;
8943b874 3784 iter->global_seen = 0;
da51c347
DE
3785
3786 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3787 iter->length = MAYBE_SWAP (*iter->vec);
3788 else
3789 {
3790 iter->vec = NULL;
3791 iter->length = 0;
3792 }
3793}
3794
3795/* Return the next matching CU or NULL if there are no more. */
3796
3797static struct dwarf2_per_cu_data *
3798dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3799{
3800 for ( ; iter->next < iter->length; ++iter->next)
3801 {
3802 offset_type cu_index_and_attrs =
3803 MAYBE_SWAP (iter->vec[iter->next + 1]);
3804 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3805 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3806 int want_static = iter->block_index != GLOBAL_BLOCK;
3807 /* This value is only valid for index versions >= 7. */
3808 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3809 gdb_index_symbol_kind symbol_kind =
3810 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3811 /* Only check the symbol attributes if they're present.
3812 Indices prior to version 7 don't record them,
3813 and indices >= 7 may elide them for certain symbols
3814 (gold does this). */
3815 int attrs_valid =
3816 (iter->index->version >= 7
3817 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3818
3190f0c6
DE
3819 /* Don't crash on bad data. */
3820 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3821 + dwarf2_per_objfile->n_type_units))
3822 {
3823 complaint (&symfile_complaints,
3824 _(".gdb_index entry has bad CU index"
4262abfb
JK
3825 " [in module %s]"),
3826 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3827 continue;
3828 }
3829
8832e7e3 3830 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3831
da51c347 3832 /* Skip if already read in. */
43f3e411 3833 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3834 continue;
3835
8943b874
DE
3836 /* Check static vs global. */
3837 if (attrs_valid)
3838 {
3839 if (iter->want_specific_block
3840 && want_static != is_static)
3841 continue;
3842 /* Work around gold/15646. */
3843 if (!is_static && iter->global_seen)
3844 continue;
3845 if (!is_static)
3846 iter->global_seen = 1;
3847 }
da51c347
DE
3848
3849 /* Only check the symbol's kind if it has one. */
3850 if (attrs_valid)
3851 {
3852 switch (iter->domain)
3853 {
3854 case VAR_DOMAIN:
3855 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3856 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3857 /* Some types are also in VAR_DOMAIN. */
3858 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3859 continue;
3860 break;
3861 case STRUCT_DOMAIN:
3862 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3863 continue;
3864 break;
3865 case LABEL_DOMAIN:
3866 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3867 continue;
3868 break;
3869 default:
3870 break;
3871 }
3872 }
3873
3874 ++iter->next;
3875 return per_cu;
3876 }
3877
3878 return NULL;
3879}
3880
43f3e411 3881static struct compunit_symtab *
da51c347
DE
3882dw2_lookup_symbol (struct objfile *objfile, int block_index,
3883 const char *name, domain_enum domain)
9291a0cd 3884{
43f3e411 3885 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3886 struct mapped_index *index;
3887
9291a0cd
TT
3888 dw2_setup (objfile);
3889
156942c7
DE
3890 index = dwarf2_per_objfile->index_table;
3891
da51c347 3892 /* index is NULL if OBJF_READNOW. */
156942c7 3893 if (index)
9291a0cd 3894 {
da51c347
DE
3895 struct dw2_symtab_iterator iter;
3896 struct dwarf2_per_cu_data *per_cu;
3897
3898 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3899
da51c347 3900 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3901 {
b2e2f908 3902 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3903 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3904 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3905 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3906
b2e2f908
DE
3907 sym = block_find_symbol (block, name, domain,
3908 block_find_non_opaque_type_preferred,
3909 &with_opaque);
3910
da51c347
DE
3911 /* Some caution must be observed with overloaded functions
3912 and methods, since the index will not contain any overload
3913 information (but NAME might contain it). */
da51c347 3914
b2e2f908 3915 if (sym != NULL
a778f165 3916 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
b2e2f908
DE
3917 return stab;
3918 if (with_opaque != NULL
a778f165 3919 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
b2e2f908 3920 stab_best = stab;
da51c347
DE
3921
3922 /* Keep looking through other CUs. */
9291a0cd
TT
3923 }
3924 }
9291a0cd 3925
da51c347 3926 return stab_best;
9291a0cd
TT
3927}
3928
3929static void
3930dw2_print_stats (struct objfile *objfile)
3931{
e4a48d9d 3932 int i, total, count;
9291a0cd
TT
3933
3934 dw2_setup (objfile);
e4a48d9d 3935 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3936 count = 0;
e4a48d9d 3937 for (i = 0; i < total; ++i)
9291a0cd 3938 {
8832e7e3 3939 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3940
43f3e411 3941 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3942 ++count;
3943 }
e4a48d9d 3944 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3945 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3946}
3947
779bd270
DE
3948/* This dumps minimal information about the index.
3949 It is called via "mt print objfiles".
3950 One use is to verify .gdb_index has been loaded by the
3951 gdb.dwarf2/gdb-index.exp testcase. */
3952
9291a0cd
TT
3953static void
3954dw2_dump (struct objfile *objfile)
3955{
779bd270
DE
3956 dw2_setup (objfile);
3957 gdb_assert (dwarf2_per_objfile->using_index);
3958 printf_filtered (".gdb_index:");
3959 if (dwarf2_per_objfile->index_table != NULL)
3960 {
3961 printf_filtered (" version %d\n",
3962 dwarf2_per_objfile->index_table->version);
3963 }
3964 else
3965 printf_filtered (" faked for \"readnow\"\n");
3966 printf_filtered ("\n");
9291a0cd
TT
3967}
3968
3969static void
3189cb12
DE
3970dw2_relocate (struct objfile *objfile,
3971 const struct section_offsets *new_offsets,
3972 const struct section_offsets *delta)
9291a0cd
TT
3973{
3974 /* There's nothing to relocate here. */
3975}
3976
3977static void
3978dw2_expand_symtabs_for_function (struct objfile *objfile,
3979 const char *func_name)
3980{
da51c347
DE
3981 struct mapped_index *index;
3982
3983 dw2_setup (objfile);
3984
3985 index = dwarf2_per_objfile->index_table;
3986
3987 /* index is NULL if OBJF_READNOW. */
3988 if (index)
3989 {
3990 struct dw2_symtab_iterator iter;
3991 struct dwarf2_per_cu_data *per_cu;
3992
3993 /* Note: It doesn't matter what we pass for block_index here. */
3994 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3995 func_name);
3996
3997 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3998 dw2_instantiate_symtab (per_cu);
3999 }
9291a0cd
TT
4000}
4001
4002static void
4003dw2_expand_all_symtabs (struct objfile *objfile)
4004{
4005 int i;
4006
4007 dw2_setup (objfile);
1fd400ff
TT
4008
4009 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4010 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4011 {
8832e7e3 4012 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4013
a0f42c21 4014 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4015 }
4016}
4017
4018static void
652a8996
JK
4019dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4020 const char *fullname)
9291a0cd
TT
4021{
4022 int i;
4023
4024 dw2_setup (objfile);
d4637a04
DE
4025
4026 /* We don't need to consider type units here.
4027 This is only called for examining code, e.g. expand_line_sal.
4028 There can be an order of magnitude (or more) more type units
4029 than comp units, and we avoid them if we can. */
4030
4031 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4032 {
4033 int j;
8832e7e3 4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 4035 struct quick_file_names *file_data;
9291a0cd 4036
3d7bb9d9 4037 /* We only need to look at symtabs not already expanded. */
43f3e411 4038 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4039 continue;
4040
e4a48d9d 4041 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4042 if (file_data == NULL)
9291a0cd
TT
4043 continue;
4044
7b9f3c50 4045 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4046 {
652a8996
JK
4047 const char *this_fullname = file_data->file_names[j];
4048
4049 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4050 {
a0f42c21 4051 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4052 break;
4053 }
4054 }
4055 }
4056}
4057
9291a0cd 4058static void
ade7ed9e 4059dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4060 const char * name, domain_enum domain,
ade7ed9e 4061 int global,
40658b94
PH
4062 int (*callback) (struct block *,
4063 struct symbol *, void *),
2edb89d3
JK
4064 void *data, symbol_compare_ftype *match,
4065 symbol_compare_ftype *ordered_compare)
9291a0cd 4066{
40658b94 4067 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4068 current language is Ada for a non-Ada objfile using GNU index. As Ada
4069 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4070}
4071
4072static void
f8eba3c6
TT
4073dw2_expand_symtabs_matching
4074 (struct objfile *objfile,
14bc53a8
PA
4075 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4076 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4077 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4078 enum search_domain kind)
9291a0cd
TT
4079{
4080 int i;
4081 offset_type iter;
4b5246aa 4082 struct mapped_index *index;
9291a0cd
TT
4083
4084 dw2_setup (objfile);
ae2de4f8
DE
4085
4086 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
4087 if (!dwarf2_per_objfile->index_table)
4088 return;
4b5246aa 4089 index = dwarf2_per_objfile->index_table;
9291a0cd 4090
7b08b9eb 4091 if (file_matcher != NULL)
24c79950 4092 {
fc4007c9
TT
4093 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4094 htab_eq_pointer,
4095 NULL, xcalloc, xfree));
4096 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4097 htab_eq_pointer,
4098 NULL, xcalloc, xfree));
24c79950 4099
848e3e78
DE
4100 /* The rule is CUs specify all the files, including those used by
4101 any TU, so there's no need to scan TUs here. */
4102
4103 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4104 {
4105 int j;
8832e7e3 4106 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
4107 struct quick_file_names *file_data;
4108 void **slot;
7b08b9eb 4109
61d96d7e
DE
4110 QUIT;
4111
24c79950 4112 per_cu->v.quick->mark = 0;
3d7bb9d9 4113
24c79950 4114 /* We only need to look at symtabs not already expanded. */
43f3e411 4115 if (per_cu->v.quick->compunit_symtab)
24c79950 4116 continue;
7b08b9eb 4117
e4a48d9d 4118 file_data = dw2_get_file_names (per_cu);
24c79950
TT
4119 if (file_data == NULL)
4120 continue;
7b08b9eb 4121
fc4007c9 4122 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 4123 continue;
fc4007c9 4124 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
4125 {
4126 per_cu->v.quick->mark = 1;
4127 continue;
4128 }
4129
4130 for (j = 0; j < file_data->num_file_names; ++j)
4131 {
da235a7c
JK
4132 const char *this_real_name;
4133
14bc53a8 4134 if (file_matcher (file_data->file_names[j], false))
24c79950
TT
4135 {
4136 per_cu->v.quick->mark = 1;
4137 break;
4138 }
da235a7c
JK
4139
4140 /* Before we invoke realpath, which can get expensive when many
4141 files are involved, do a quick comparison of the basenames. */
4142 if (!basenames_may_differ
4143 && !file_matcher (lbasename (file_data->file_names[j]),
14bc53a8 4144 true))
da235a7c
JK
4145 continue;
4146
4147 this_real_name = dw2_get_real_path (objfile, file_data, j);
14bc53a8 4148 if (file_matcher (this_real_name, false))
da235a7c
JK
4149 {
4150 per_cu->v.quick->mark = 1;
4151 break;
4152 }
24c79950
TT
4153 }
4154
4155 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4156 ? visited_found.get ()
4157 : visited_not_found.get (),
24c79950
TT
4158 file_data, INSERT);
4159 *slot = file_data;
4160 }
24c79950 4161 }
9291a0cd 4162
3876f04e 4163 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4164 {
4165 offset_type idx = 2 * iter;
4166 const char *name;
4167 offset_type *vec, vec_len, vec_idx;
8943b874 4168 int global_seen = 0;
9291a0cd 4169
61d96d7e
DE
4170 QUIT;
4171
3876f04e 4172 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4173 continue;
4174
3876f04e 4175 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4176
14bc53a8 4177 if (!symbol_matcher (name))
9291a0cd
TT
4178 continue;
4179
4180 /* The name was matched, now expand corresponding CUs that were
4181 marked. */
4b5246aa 4182 vec = (offset_type *) (index->constant_pool
3876f04e 4183 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4184 vec_len = MAYBE_SWAP (vec[0]);
4185 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4186 {
e254ef6a 4187 struct dwarf2_per_cu_data *per_cu;
156942c7 4188 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4189 /* This value is only valid for index versions >= 7. */
4190 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4191 gdb_index_symbol_kind symbol_kind =
4192 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4193 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4194 /* Only check the symbol attributes if they're present.
4195 Indices prior to version 7 don't record them,
4196 and indices >= 7 may elide them for certain symbols
4197 (gold does this). */
4198 int attrs_valid =
4199 (index->version >= 7
4200 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4201
8943b874
DE
4202 /* Work around gold/15646. */
4203 if (attrs_valid)
4204 {
4205 if (!is_static && global_seen)
4206 continue;
4207 if (!is_static)
4208 global_seen = 1;
4209 }
4210
3190f0c6
DE
4211 /* Only check the symbol's kind if it has one. */
4212 if (attrs_valid)
156942c7
DE
4213 {
4214 switch (kind)
4215 {
4216 case VARIABLES_DOMAIN:
4217 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4218 continue;
4219 break;
4220 case FUNCTIONS_DOMAIN:
4221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4222 continue;
4223 break;
4224 case TYPES_DOMAIN:
4225 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4226 continue;
4227 break;
4228 default:
4229 break;
4230 }
4231 }
4232
3190f0c6
DE
4233 /* Don't crash on bad data. */
4234 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4235 + dwarf2_per_objfile->n_type_units))
4236 {
4237 complaint (&symfile_complaints,
4238 _(".gdb_index entry has bad CU index"
4262abfb 4239 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4240 continue;
4241 }
4242
8832e7e3 4243 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4244 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4245 {
4246 int symtab_was_null =
4247 (per_cu->v.quick->compunit_symtab == NULL);
4248
4249 dw2_instantiate_symtab (per_cu);
4250
4251 if (expansion_notify != NULL
4252 && symtab_was_null
4253 && per_cu->v.quick->compunit_symtab != NULL)
4254 {
14bc53a8 4255 expansion_notify (per_cu->v.quick->compunit_symtab);
276d885b
GB
4256 }
4257 }
9291a0cd
TT
4258 }
4259 }
4260}
4261
43f3e411 4262/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4263 symtab. */
4264
43f3e411
DE
4265static struct compunit_symtab *
4266recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4267 CORE_ADDR pc)
9703b513
TT
4268{
4269 int i;
4270
43f3e411
DE
4271 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4272 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4273 return cust;
9703b513 4274
43f3e411 4275 if (cust->includes == NULL)
a3ec0bb1
DE
4276 return NULL;
4277
43f3e411 4278 for (i = 0; cust->includes[i]; ++i)
9703b513 4279 {
43f3e411 4280 struct compunit_symtab *s = cust->includes[i];
9703b513 4281
43f3e411 4282 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4283 if (s != NULL)
4284 return s;
4285 }
4286
4287 return NULL;
4288}
4289
43f3e411
DE
4290static struct compunit_symtab *
4291dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4292 struct bound_minimal_symbol msymbol,
4293 CORE_ADDR pc,
4294 struct obj_section *section,
4295 int warn_if_readin)
9291a0cd
TT
4296{
4297 struct dwarf2_per_cu_data *data;
43f3e411 4298 struct compunit_symtab *result;
9291a0cd
TT
4299
4300 dw2_setup (objfile);
4301
4302 if (!objfile->psymtabs_addrmap)
4303 return NULL;
4304
9a3c8263
SM
4305 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4306 pc);
9291a0cd
TT
4307 if (!data)
4308 return NULL;
4309
43f3e411 4310 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4311 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4312 paddress (get_objfile_arch (objfile), pc));
4313
43f3e411
DE
4314 result
4315 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4316 pc);
9703b513
TT
4317 gdb_assert (result != NULL);
4318 return result;
9291a0cd
TT
4319}
4320
9291a0cd 4321static void
44b13c5a 4322dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4323 void *data, int need_fullname)
9291a0cd 4324{
9291a0cd 4325 dw2_setup (objfile);
ae2de4f8 4326
bbf2f4df 4327 if (!dwarf2_per_objfile->filenames_cache)
24c79950 4328 {
bbf2f4df 4329 dwarf2_per_objfile->filenames_cache.emplace ();
24c79950 4330
bbf2f4df
PA
4331 htab_up visited (htab_create_alloc (10,
4332 htab_hash_pointer, htab_eq_pointer,
4333 NULL, xcalloc, xfree));
24c79950 4334
bbf2f4df
PA
4335 /* The rule is CUs specify all the files, including those used
4336 by any TU, so there's no need to scan TUs here. We can
4337 ignore file names coming from already-expanded CUs. */
24c79950 4338
bbf2f4df
PA
4339 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4340 {
4341 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4342
bbf2f4df
PA
4343 if (per_cu->v.quick->compunit_symtab)
4344 {
4345 void **slot = htab_find_slot (visited.get (),
4346 per_cu->v.quick->file_names,
4347 INSERT);
9291a0cd 4348
bbf2f4df
PA
4349 *slot = per_cu->v.quick->file_names;
4350 }
24c79950 4351 }
24c79950 4352
bbf2f4df 4353 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 4354 {
bbf2f4df
PA
4355 int j;
4356 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4357 struct quick_file_names *file_data;
4358 void **slot;
4359
4360 /* We only need to look at symtabs not already expanded. */
4361 if (per_cu->v.quick->compunit_symtab)
4362 continue;
74e2f255 4363
bbf2f4df
PA
4364 file_data = dw2_get_file_names (per_cu);
4365 if (file_data == NULL)
4366 continue;
4367
4368 slot = htab_find_slot (visited.get (), file_data, INSERT);
4369 if (*slot)
4370 {
4371 /* Already visited. */
4372 continue;
4373 }
4374 *slot = file_data;
4375
4376 for (int j = 0; j < file_data->num_file_names; ++j)
4377 {
4378 const char *filename = file_data->file_names[j];
4379 dwarf2_per_objfile->filenames_cache->seen (filename);
4380 }
9291a0cd
TT
4381 }
4382 }
bbf2f4df
PA
4383
4384 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4385 {
14278e1f 4386 gdb::unique_xmalloc_ptr<char> this_real_name;
bbf2f4df
PA
4387
4388 if (need_fullname)
4389 this_real_name = gdb_realpath (filename);
14278e1f 4390 (*fun) (filename, this_real_name.get (), data);
bbf2f4df 4391 });
9291a0cd
TT
4392}
4393
4394static int
4395dw2_has_symbols (struct objfile *objfile)
4396{
4397 return 1;
4398}
4399
4400const struct quick_symbol_functions dwarf2_gdb_index_functions =
4401{
4402 dw2_has_symbols,
4403 dw2_find_last_source_symtab,
4404 dw2_forget_cached_source_info,
f8eba3c6 4405 dw2_map_symtabs_matching_filename,
9291a0cd 4406 dw2_lookup_symbol,
9291a0cd
TT
4407 dw2_print_stats,
4408 dw2_dump,
4409 dw2_relocate,
4410 dw2_expand_symtabs_for_function,
4411 dw2_expand_all_symtabs,
652a8996 4412 dw2_expand_symtabs_with_fullname,
40658b94 4413 dw2_map_matching_symbols,
9291a0cd 4414 dw2_expand_symtabs_matching,
43f3e411 4415 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4416 dw2_map_symbol_filenames
4417};
4418
4419/* Initialize for reading DWARF for this objfile. Return 0 if this
4420 file will use psymtabs, or 1 if using the GNU index. */
4421
4422int
4423dwarf2_initialize_objfile (struct objfile *objfile)
4424{
4425 /* If we're about to read full symbols, don't bother with the
4426 indices. In this case we also don't care if some other debug
4427 format is making psymtabs, because they are all about to be
4428 expanded anyway. */
4429 if ((objfile->flags & OBJF_READNOW))
4430 {
4431 int i;
4432
4433 dwarf2_per_objfile->using_index = 1;
4434 create_all_comp_units (objfile);
0e50663e 4435 create_all_type_units (objfile);
7b9f3c50
DE
4436 dwarf2_per_objfile->quick_file_names_table =
4437 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4438
1fd400ff 4439 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4440 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4441 {
8832e7e3 4442 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4443
e254ef6a
DE
4444 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4445 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4446 }
4447
4448 /* Return 1 so that gdb sees the "quick" functions. However,
4449 these functions will be no-ops because we will have expanded
4450 all symtabs. */
4451 return 1;
4452 }
4453
4454 if (dwarf2_read_index (objfile))
4455 return 1;
4456
9291a0cd
TT
4457 return 0;
4458}
4459
4460\f
4461
dce234bc
PP
4462/* Build a partial symbol table. */
4463
4464void
f29dff0a 4465dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4466{
c9bf0622 4467
f29dff0a 4468 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4469 {
4470 init_psymbol_list (objfile, 1024);
4471 }
4472
492d29ea 4473 TRY
c9bf0622
TT
4474 {
4475 /* This isn't really ideal: all the data we allocate on the
4476 objfile's obstack is still uselessly kept around. However,
4477 freeing it seems unsafe. */
906768f9 4478 psymtab_discarder psymtabs (objfile);
c9bf0622 4479 dwarf2_build_psymtabs_hard (objfile);
906768f9 4480 psymtabs.keep ();
c9bf0622 4481 }
492d29ea
PA
4482 CATCH (except, RETURN_MASK_ERROR)
4483 {
4484 exception_print (gdb_stderr, except);
4485 }
4486 END_CATCH
c906108c 4487}
c906108c 4488
1ce1cefd
DE
4489/* Return the total length of the CU described by HEADER. */
4490
4491static unsigned int
4492get_cu_length (const struct comp_unit_head *header)
4493{
4494 return header->initial_length_size + header->length;
4495}
4496
9c541725 4497/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 4498
9c541725
PA
4499static inline bool
4500offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 4501{
9c541725
PA
4502 sect_offset bottom = cu_header->sect_off;
4503 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 4504
9c541725 4505 return sect_off >= bottom && sect_off < top;
45452591
DE
4506}
4507
3b80fe9b
DE
4508/* Find the base address of the compilation unit for range lists and
4509 location lists. It will normally be specified by DW_AT_low_pc.
4510 In DWARF-3 draft 4, the base address could be overridden by
4511 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4512 compilation units with discontinuous ranges. */
4513
4514static void
4515dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4516{
4517 struct attribute *attr;
4518
4519 cu->base_known = 0;
4520 cu->base_address = 0;
4521
4522 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4523 if (attr)
4524 {
31aa7e4e 4525 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4526 cu->base_known = 1;
4527 }
4528 else
4529 {
4530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4531 if (attr)
4532 {
31aa7e4e 4533 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4534 cu->base_known = 1;
4535 }
4536 }
4537}
4538
93311388 4539/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4540 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4541 NOTE: This leaves members offset, first_die_offset to be filled in
4542 by the caller. */
107d2387 4543
d521ce57 4544static const gdb_byte *
107d2387 4545read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4546 const gdb_byte *info_ptr,
4547 struct dwarf2_section_info *section,
4548 rcuh_kind section_kind)
107d2387
AC
4549{
4550 int signed_addr;
891d2f0b 4551 unsigned int bytes_read;
43988095
JK
4552 const char *filename = get_section_file_name (section);
4553 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4554
4555 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4556 cu_header->initial_length_size = bytes_read;
4557 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4558 info_ptr += bytes_read;
107d2387
AC
4559 cu_header->version = read_2_bytes (abfd, info_ptr);
4560 info_ptr += 2;
43988095
JK
4561 if (cu_header->version < 5)
4562 switch (section_kind)
4563 {
4564 case rcuh_kind::COMPILE:
4565 cu_header->unit_type = DW_UT_compile;
4566 break;
4567 case rcuh_kind::TYPE:
4568 cu_header->unit_type = DW_UT_type;
4569 break;
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("read_comp_unit_head: invalid section_kind"));
4573 }
4574 else
4575 {
4576 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4577 (read_1_byte (abfd, info_ptr));
4578 info_ptr += 1;
4579 switch (cu_header->unit_type)
4580 {
4581 case DW_UT_compile:
4582 if (section_kind != rcuh_kind::COMPILE)
4583 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4584 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4585 filename);
4586 break;
4587 case DW_UT_type:
4588 section_kind = rcuh_kind::TYPE;
4589 break;
4590 default:
4591 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4592 "(is %d, should be %d or %d) [in module %s]"),
4593 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4594 }
4595
4596 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4597 info_ptr += 1;
4598 }
9c541725
PA
4599 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4600 cu_header,
4601 &bytes_read);
613e1657 4602 info_ptr += bytes_read;
43988095
JK
4603 if (cu_header->version < 5)
4604 {
4605 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4606 info_ptr += 1;
4607 }
107d2387
AC
4608 signed_addr = bfd_get_sign_extend_vma (abfd);
4609 if (signed_addr < 0)
8e65ff28 4610 internal_error (__FILE__, __LINE__,
e2e0b3e5 4611 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4612 cu_header->signed_addr_p = signed_addr;
c764a876 4613
43988095
JK
4614 if (section_kind == rcuh_kind::TYPE)
4615 {
4616 LONGEST type_offset;
4617
4618 cu_header->signature = read_8_bytes (abfd, info_ptr);
4619 info_ptr += 8;
4620
4621 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4622 info_ptr += bytes_read;
9c541725
PA
4623 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4624 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
4625 error (_("Dwarf Error: Too big type_offset in compilation unit "
4626 "header (is %s) [in module %s]"), plongest (type_offset),
4627 filename);
4628 }
4629
107d2387
AC
4630 return info_ptr;
4631}
4632
36586728
TT
4633/* Helper function that returns the proper abbrev section for
4634 THIS_CU. */
4635
4636static struct dwarf2_section_info *
4637get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4638{
4639 struct dwarf2_section_info *abbrev;
4640
4641 if (this_cu->is_dwz)
4642 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4643 else
4644 abbrev = &dwarf2_per_objfile->abbrev;
4645
4646 return abbrev;
4647}
4648
9ff913ba
DE
4649/* Subroutine of read_and_check_comp_unit_head and
4650 read_and_check_type_unit_head to simplify them.
4651 Perform various error checking on the header. */
4652
4653static void
4654error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4655 struct dwarf2_section_info *section,
4656 struct dwarf2_section_info *abbrev_section)
9ff913ba 4657{
a32a8923 4658 const char *filename = get_section_file_name (section);
9ff913ba 4659
43988095 4660 if (header->version < 2 || header->version > 5)
9ff913ba 4661 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4662 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4663 filename);
4664
9c541725 4665 if (to_underlying (header->abbrev_sect_off)
36586728 4666 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9c541725
PA
4667 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4668 "(offset 0x%x + 6) [in module %s]"),
4669 to_underlying (header->abbrev_sect_off),
4670 to_underlying (header->sect_off),
9ff913ba
DE
4671 filename);
4672
9c541725 4673 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 4674 avoid potential 32-bit overflow. */
9c541725 4675 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 4676 > section->size)
9c541725
PA
4677 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4678 "(offset 0x%x + 0) [in module %s]"),
4679 header->length, to_underlying (header->sect_off),
9ff913ba
DE
4680 filename);
4681}
4682
4683/* Read in a CU/TU header and perform some basic error checking.
4684 The contents of the header are stored in HEADER.
4685 The result is a pointer to the start of the first DIE. */
adabb602 4686
d521ce57 4687static const gdb_byte *
9ff913ba
DE
4688read_and_check_comp_unit_head (struct comp_unit_head *header,
4689 struct dwarf2_section_info *section,
4bdcc0c1 4690 struct dwarf2_section_info *abbrev_section,
d521ce57 4691 const gdb_byte *info_ptr,
43988095 4692 rcuh_kind section_kind)
72bf9492 4693{
d521ce57 4694 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4695 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4696
9c541725 4697 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 4698
43988095 4699 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4700
9c541725 4701 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 4702
4bdcc0c1 4703 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4704
4705 return info_ptr;
348e048f
DE
4706}
4707
f4dc4d17
DE
4708/* Fetch the abbreviation table offset from a comp or type unit header. */
4709
4710static sect_offset
4711read_abbrev_offset (struct dwarf2_section_info *section,
9c541725 4712 sect_offset sect_off)
f4dc4d17 4713{
a32a8923 4714 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4715 const gdb_byte *info_ptr;
ac298888 4716 unsigned int initial_length_size, offset_size;
43988095 4717 uint16_t version;
f4dc4d17
DE
4718
4719 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 4720 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 4721 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4722 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4723 info_ptr += initial_length_size;
4724
4725 version = read_2_bytes (abfd, info_ptr);
4726 info_ptr += 2;
4727 if (version >= 5)
4728 {
4729 /* Skip unit type and address size. */
4730 info_ptr += 2;
4731 }
4732
9c541725 4733 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
4734}
4735
aaa75496
JB
4736/* Allocate a new partial symtab for file named NAME and mark this new
4737 partial symtab as being an include of PST. */
4738
4739static void
d521ce57 4740dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4741 struct objfile *objfile)
4742{
4743 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4744
fbd9ab74
JK
4745 if (!IS_ABSOLUTE_PATH (subpst->filename))
4746 {
4747 /* It shares objfile->objfile_obstack. */
4748 subpst->dirname = pst->dirname;
4749 }
4750
aaa75496
JB
4751 subpst->textlow = 0;
4752 subpst->texthigh = 0;
4753
8d749320
SM
4754 subpst->dependencies
4755 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4756 subpst->dependencies[0] = pst;
4757 subpst->number_of_dependencies = 1;
4758
4759 subpst->globals_offset = 0;
4760 subpst->n_global_syms = 0;
4761 subpst->statics_offset = 0;
4762 subpst->n_static_syms = 0;
43f3e411 4763 subpst->compunit_symtab = NULL;
aaa75496
JB
4764 subpst->read_symtab = pst->read_symtab;
4765 subpst->readin = 0;
4766
4767 /* No private part is necessary for include psymtabs. This property
4768 can be used to differentiate between such include psymtabs and
10b3939b 4769 the regular ones. */
58a9656e 4770 subpst->read_symtab_private = NULL;
aaa75496
JB
4771}
4772
4773/* Read the Line Number Program data and extract the list of files
4774 included by the source file represented by PST. Build an include
d85a05f0 4775 partial symtab for each of these included files. */
aaa75496
JB
4776
4777static void
4778dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4779 struct die_info *die,
4780 struct partial_symtab *pst)
aaa75496 4781{
fff8551c 4782 line_header_up lh;
d85a05f0 4783 struct attribute *attr;
aaa75496 4784
d85a05f0
DJ
4785 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4786 if (attr)
9c541725 4787 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
4788 if (lh == NULL)
4789 return; /* No linetable, so no includes. */
4790
c6da4cef 4791 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 4792 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4793}
4794
348e048f 4795static hashval_t
52dc124a 4796hash_signatured_type (const void *item)
348e048f 4797{
9a3c8263
SM
4798 const struct signatured_type *sig_type
4799 = (const struct signatured_type *) item;
9a619af0 4800
348e048f 4801 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4802 return sig_type->signature;
348e048f
DE
4803}
4804
4805static int
52dc124a 4806eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4807{
9a3c8263
SM
4808 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4809 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4810
348e048f
DE
4811 return lhs->signature == rhs->signature;
4812}
4813
1fd400ff
TT
4814/* Allocate a hash table for signatured types. */
4815
4816static htab_t
673bfd45 4817allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4818{
4819 return htab_create_alloc_ex (41,
52dc124a
DE
4820 hash_signatured_type,
4821 eq_signatured_type,
1fd400ff
TT
4822 NULL,
4823 &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826}
4827
d467dd73 4828/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4829
4830static int
d467dd73 4831add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4832{
9a3c8263
SM
4833 struct signatured_type *sigt = (struct signatured_type *) *slot;
4834 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4835
b4dd5633 4836 **datap = sigt;
1fd400ff
TT
4837 ++*datap;
4838
4839 return 1;
4840}
4841
78d4d2c5 4842/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4843 and fill them into TYPES_HTAB. It will process only type units,
4844 therefore DW_UT_type. */
c88ee1f0 4845
78d4d2c5
JK
4846static void
4847create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4848 dwarf2_section_info *section, htab_t &types_htab,
4849 rcuh_kind section_kind)
348e048f 4850{
3019eac3 4851 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4852 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4853 bfd *abfd;
4854 const gdb_byte *info_ptr, *end_ptr;
348e048f 4855
4bdcc0c1
DE
4856 abbrev_section = (dwo_file != NULL
4857 ? &dwo_file->sections.abbrev
4858 : &dwarf2_per_objfile->abbrev);
4859
b4f54984 4860 if (dwarf_read_debug)
43988095
JK
4861 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4862 get_section_name (section),
a32a8923 4863 get_section_file_name (abbrev_section));
09406207 4864
78d4d2c5
JK
4865 dwarf2_read_section (objfile, section);
4866 info_ptr = section->buffer;
348e048f 4867
78d4d2c5
JK
4868 if (info_ptr == NULL)
4869 return;
348e048f 4870
78d4d2c5
JK
4871 /* We can't set abfd until now because the section may be empty or
4872 not present, in which case the bfd is unknown. */
4873 abfd = get_section_bfd_owner (section);
348e048f 4874
78d4d2c5
JK
4875 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4876 because we don't need to read any dies: the signature is in the
4877 header. */
3019eac3 4878
78d4d2c5
JK
4879 end_ptr = info_ptr + section->size;
4880 while (info_ptr < end_ptr)
4881 {
78d4d2c5
JK
4882 struct signatured_type *sig_type;
4883 struct dwo_unit *dwo_tu;
4884 void **slot;
4885 const gdb_byte *ptr = info_ptr;
4886 struct comp_unit_head header;
4887 unsigned int length;
8b70b953 4888
9c541725 4889 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 4890
a49dd8dd
JK
4891 /* Initialize it due to a false compiler warning. */
4892 header.signature = -1;
9c541725 4893 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 4894
78d4d2c5
JK
4895 /* We need to read the type's signature in order to build the hash
4896 table, but we don't need anything else just yet. */
348e048f 4897
43988095
JK
4898 ptr = read_and_check_comp_unit_head (&header, section,
4899 abbrev_section, ptr, section_kind);
348e048f 4900
78d4d2c5 4901 length = get_cu_length (&header);
6caca83c 4902
78d4d2c5
JK
4903 /* Skip dummy type units. */
4904 if (ptr >= info_ptr + length
43988095
JK
4905 || peek_abbrev_code (abfd, ptr) == 0
4906 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4907 {
4908 info_ptr += length;
4909 continue;
4910 }
dee91e82 4911
78d4d2c5
JK
4912 if (types_htab == NULL)
4913 {
4914 if (dwo_file)
4915 types_htab = allocate_dwo_unit_table (objfile);
4916 else
4917 types_htab = allocate_signatured_type_table (objfile);
4918 }
8b70b953 4919
78d4d2c5
JK
4920 if (dwo_file)
4921 {
4922 sig_type = NULL;
4923 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwo_unit);
4925 dwo_tu->dwo_file = dwo_file;
43988095 4926 dwo_tu->signature = header.signature;
9c541725 4927 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 4928 dwo_tu->section = section;
9c541725 4929 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
4930 dwo_tu->length = length;
4931 }
4932 else
4933 {
4934 /* N.B.: type_offset is not usable if this type uses a DWO file.
4935 The real type_offset is in the DWO file. */
4936 dwo_tu = NULL;
4937 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4938 struct signatured_type);
43988095 4939 sig_type->signature = header.signature;
9c541725 4940 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5
JK
4941 sig_type->per_cu.objfile = objfile;
4942 sig_type->per_cu.is_debug_types = 1;
4943 sig_type->per_cu.section = section;
9c541725 4944 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
4945 sig_type->per_cu.length = length;
4946 }
4947
4948 slot = htab_find_slot (types_htab,
4949 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4950 INSERT);
4951 gdb_assert (slot != NULL);
4952 if (*slot != NULL)
4953 {
9c541725 4954 sect_offset dup_sect_off;
0349ea22 4955
3019eac3
DE
4956 if (dwo_file)
4957 {
78d4d2c5
JK
4958 const struct dwo_unit *dup_tu
4959 = (const struct dwo_unit *) *slot;
4960
9c541725 4961 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
4962 }
4963 else
4964 {
78d4d2c5
JK
4965 const struct signatured_type *dup_tu
4966 = (const struct signatured_type *) *slot;
4967
9c541725 4968 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 4969 }
8b70b953 4970
78d4d2c5
JK
4971 complaint (&symfile_complaints,
4972 _("debug type entry at offset 0x%x is duplicate to"
4973 " the entry at offset 0x%x, signature %s"),
9c541725 4974 to_underlying (sect_off), to_underlying (dup_sect_off),
43988095 4975 hex_string (header.signature));
78d4d2c5
JK
4976 }
4977 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4978
78d4d2c5
JK
4979 if (dwarf_read_debug > 1)
4980 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
9c541725 4981 to_underlying (sect_off),
43988095 4982 hex_string (header.signature));
3019eac3 4983
78d4d2c5
JK
4984 info_ptr += length;
4985 }
4986}
3019eac3 4987
78d4d2c5
JK
4988/* Create the hash table of all entries in the .debug_types
4989 (or .debug_types.dwo) section(s).
4990 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4991 otherwise it is NULL.
b3c8eb43 4992
78d4d2c5 4993 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4994
78d4d2c5 4995 Note: This function processes DWO files only, not DWP files. */
348e048f 4996
78d4d2c5
JK
4997static void
4998create_debug_types_hash_table (struct dwo_file *dwo_file,
4999 VEC (dwarf2_section_info_def) *types,
5000 htab_t &types_htab)
5001{
5002 int ix;
5003 struct dwarf2_section_info *section;
5004
5005 if (VEC_empty (dwarf2_section_info_def, types))
5006 return;
348e048f 5007
78d4d2c5
JK
5008 for (ix = 0;
5009 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5010 ++ix)
43988095
JK
5011 create_debug_type_hash_table (dwo_file, section, types_htab,
5012 rcuh_kind::TYPE);
3019eac3
DE
5013}
5014
5015/* Create the hash table of all entries in the .debug_types section,
5016 and initialize all_type_units.
5017 The result is zero if there is an error (e.g. missing .debug_types section),
5018 otherwise non-zero. */
5019
5020static int
5021create_all_type_units (struct objfile *objfile)
5022{
78d4d2c5 5023 htab_t types_htab = NULL;
b4dd5633 5024 struct signatured_type **iter;
3019eac3 5025
43988095
JK
5026 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5027 rcuh_kind::COMPILE);
78d4d2c5 5028 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
5029 if (types_htab == NULL)
5030 {
5031 dwarf2_per_objfile->signatured_types = NULL;
5032 return 0;
5033 }
5034
348e048f
DE
5035 dwarf2_per_objfile->signatured_types = types_htab;
5036
6aa5f3a6
DE
5037 dwarf2_per_objfile->n_type_units
5038 = dwarf2_per_objfile->n_allocated_type_units
5039 = htab_elements (types_htab);
8d749320
SM
5040 dwarf2_per_objfile->all_type_units =
5041 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
5042 iter = &dwarf2_per_objfile->all_type_units[0];
5043 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5044 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5045 == dwarf2_per_objfile->n_type_units);
1fd400ff 5046
348e048f
DE
5047 return 1;
5048}
5049
6aa5f3a6
DE
5050/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5051 If SLOT is non-NULL, it is the entry to use in the hash table.
5052 Otherwise we find one. */
5053
5054static struct signatured_type *
5055add_type_unit (ULONGEST sig, void **slot)
5056{
5057 struct objfile *objfile = dwarf2_per_objfile->objfile;
5058 int n_type_units = dwarf2_per_objfile->n_type_units;
5059 struct signatured_type *sig_type;
5060
5061 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5062 ++n_type_units;
5063 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5064 {
5065 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5066 dwarf2_per_objfile->n_allocated_type_units = 1;
5067 dwarf2_per_objfile->n_allocated_type_units *= 2;
5068 dwarf2_per_objfile->all_type_units
224c3ddb
SM
5069 = XRESIZEVEC (struct signatured_type *,
5070 dwarf2_per_objfile->all_type_units,
5071 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
5072 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5073 }
5074 dwarf2_per_objfile->n_type_units = n_type_units;
5075
5076 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5077 struct signatured_type);
5078 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5079 sig_type->signature = sig;
5080 sig_type->per_cu.is_debug_types = 1;
5081 if (dwarf2_per_objfile->using_index)
5082 {
5083 sig_type->per_cu.v.quick =
5084 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5085 struct dwarf2_per_cu_quick_data);
5086 }
5087
5088 if (slot == NULL)
5089 {
5090 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5091 sig_type, INSERT);
5092 }
5093 gdb_assert (*slot == NULL);
5094 *slot = sig_type;
5095 /* The rest of sig_type must be filled in by the caller. */
5096 return sig_type;
5097}
5098
a2ce51a0
DE
5099/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5100 Fill in SIG_ENTRY with DWO_ENTRY. */
5101
5102static void
5103fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5104 struct signatured_type *sig_entry,
5105 struct dwo_unit *dwo_entry)
5106{
7ee85ab1 5107 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
5108 gdb_assert (! sig_entry->per_cu.queued);
5109 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
5110 if (dwarf2_per_objfile->using_index)
5111 {
5112 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 5113 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
5114 }
5115 else
5116 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 5117 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 5118 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 5119 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
5120 gdb_assert (sig_entry->dwo_unit == NULL);
5121
5122 sig_entry->per_cu.section = dwo_entry->section;
9c541725 5123 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
5124 sig_entry->per_cu.length = dwo_entry->length;
5125 sig_entry->per_cu.reading_dwo_directly = 1;
5126 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
5127 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5128 sig_entry->dwo_unit = dwo_entry;
5129}
5130
5131/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
5132 If we haven't read the TU yet, create the signatured_type data structure
5133 for a TU to be read in directly from a DWO file, bypassing the stub.
5134 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5135 using .gdb_index, then when reading a CU we want to stay in the DWO file
5136 containing that CU. Otherwise we could end up reading several other DWO
5137 files (due to comdat folding) to process the transitive closure of all the
5138 mentioned TUs, and that can be slow. The current DWO file will have every
5139 type signature that it needs.
a2ce51a0
DE
5140 We only do this for .gdb_index because in the psymtab case we already have
5141 to read all the DWOs to build the type unit groups. */
5142
5143static struct signatured_type *
5144lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5145{
5146 struct objfile *objfile = dwarf2_per_objfile->objfile;
5147 struct dwo_file *dwo_file;
5148 struct dwo_unit find_dwo_entry, *dwo_entry;
5149 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5150 void **slot;
a2ce51a0
DE
5151
5152 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5153
6aa5f3a6
DE
5154 /* If TU skeletons have been removed then we may not have read in any
5155 TUs yet. */
5156 if (dwarf2_per_objfile->signatured_types == NULL)
5157 {
5158 dwarf2_per_objfile->signatured_types
5159 = allocate_signatured_type_table (objfile);
5160 }
a2ce51a0
DE
5161
5162 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5163 Use the global signatured_types array to do our own comdat-folding
5164 of types. If this is the first time we're reading this TU, and
5165 the TU has an entry in .gdb_index, replace the recorded data from
5166 .gdb_index with this TU. */
a2ce51a0 5167
a2ce51a0 5168 find_sig_entry.signature = sig;
6aa5f3a6
DE
5169 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5170 &find_sig_entry, INSERT);
9a3c8263 5171 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5172
5173 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5174 read. Don't reassign the global entry to point to this DWO if that's
5175 the case. Also note that if the TU is already being read, it may not
5176 have come from a DWO, the program may be a mix of Fission-compiled
5177 code and non-Fission-compiled code. */
5178
5179 /* Have we already tried to read this TU?
5180 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5181 needn't exist in the global table yet). */
5182 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5183 return sig_entry;
5184
6aa5f3a6
DE
5185 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5186 dwo_unit of the TU itself. */
5187 dwo_file = cu->dwo_unit->dwo_file;
5188
a2ce51a0
DE
5189 /* Ok, this is the first time we're reading this TU. */
5190 if (dwo_file->tus == NULL)
5191 return NULL;
5192 find_dwo_entry.signature = sig;
9a3c8263 5193 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5194 if (dwo_entry == NULL)
5195 return NULL;
5196
6aa5f3a6
DE
5197 /* If the global table doesn't have an entry for this TU, add one. */
5198 if (sig_entry == NULL)
5199 sig_entry = add_type_unit (sig, slot);
5200
a2ce51a0 5201 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5202 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5203 return sig_entry;
5204}
5205
a2ce51a0
DE
5206/* Subroutine of lookup_signatured_type.
5207 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5208 then try the DWP file. If the TU stub (skeleton) has been removed then
5209 it won't be in .gdb_index. */
a2ce51a0
DE
5210
5211static struct signatured_type *
5212lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5213{
5214 struct objfile *objfile = dwarf2_per_objfile->objfile;
5215 struct dwp_file *dwp_file = get_dwp_file ();
5216 struct dwo_unit *dwo_entry;
5217 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5218 void **slot;
a2ce51a0
DE
5219
5220 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5221 gdb_assert (dwp_file != NULL);
5222
6aa5f3a6
DE
5223 /* If TU skeletons have been removed then we may not have read in any
5224 TUs yet. */
5225 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5226 {
6aa5f3a6
DE
5227 dwarf2_per_objfile->signatured_types
5228 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5229 }
5230
6aa5f3a6
DE
5231 find_sig_entry.signature = sig;
5232 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5233 &find_sig_entry, INSERT);
9a3c8263 5234 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5235
5236 /* Have we already tried to read this TU?
5237 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5238 needn't exist in the global table yet). */
5239 if (sig_entry != NULL)
5240 return sig_entry;
5241
a2ce51a0
DE
5242 if (dwp_file->tus == NULL)
5243 return NULL;
57d63ce2
DE
5244 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5245 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5246 if (dwo_entry == NULL)
5247 return NULL;
5248
6aa5f3a6 5249 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5250 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5251
a2ce51a0
DE
5252 return sig_entry;
5253}
5254
380bca97 5255/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5256 Returns NULL if signature SIG is not present in the table.
5257 It is up to the caller to complain about this. */
348e048f
DE
5258
5259static struct signatured_type *
a2ce51a0 5260lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5261{
a2ce51a0
DE
5262 if (cu->dwo_unit
5263 && dwarf2_per_objfile->using_index)
5264 {
5265 /* We're in a DWO/DWP file, and we're using .gdb_index.
5266 These cases require special processing. */
5267 if (get_dwp_file () == NULL)
5268 return lookup_dwo_signatured_type (cu, sig);
5269 else
5270 return lookup_dwp_signatured_type (cu, sig);
5271 }
5272 else
5273 {
5274 struct signatured_type find_entry, *entry;
348e048f 5275
a2ce51a0
DE
5276 if (dwarf2_per_objfile->signatured_types == NULL)
5277 return NULL;
5278 find_entry.signature = sig;
9a3c8263
SM
5279 entry = ((struct signatured_type *)
5280 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5281 return entry;
5282 }
348e048f 5283}
42e7ad6c
DE
5284\f
5285/* Low level DIE reading support. */
348e048f 5286
d85a05f0
DJ
5287/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5288
5289static void
5290init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5291 struct dwarf2_cu *cu,
3019eac3
DE
5292 struct dwarf2_section_info *section,
5293 struct dwo_file *dwo_file)
d85a05f0 5294{
fceca515 5295 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5296 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5297 reader->cu = cu;
3019eac3 5298 reader->dwo_file = dwo_file;
dee91e82
DE
5299 reader->die_section = section;
5300 reader->buffer = section->buffer;
f664829e 5301 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5302 reader->comp_dir = NULL;
d85a05f0
DJ
5303}
5304
b0c7bfa9
DE
5305/* Subroutine of init_cutu_and_read_dies to simplify it.
5306 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5307 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5308 already.
5309
5310 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5311 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5312 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5313 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5314 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5315 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5316 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5317 are filled in with the info of the DIE from the DWO file.
5318 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5319 provided an abbrev table to use.
5320 The result is non-zero if a valid (non-dummy) DIE was found. */
5321
5322static int
5323read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5324 struct dwo_unit *dwo_unit,
5325 int abbrev_table_provided,
5326 struct die_info *stub_comp_unit_die,
a2ce51a0 5327 const char *stub_comp_dir,
b0c7bfa9 5328 struct die_reader_specs *result_reader,
d521ce57 5329 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5330 struct die_info **result_comp_unit_die,
5331 int *result_has_children)
5332{
5333 struct objfile *objfile = dwarf2_per_objfile->objfile;
5334 struct dwarf2_cu *cu = this_cu->cu;
5335 struct dwarf2_section_info *section;
5336 bfd *abfd;
d521ce57 5337 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5338 ULONGEST signature; /* Or dwo_id. */
5339 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5340 int i,num_extra_attrs;
5341 struct dwarf2_section_info *dwo_abbrev_section;
5342 struct attribute *attr;
5343 struct die_info *comp_unit_die;
5344
b0aeadb3
DE
5345 /* At most one of these may be provided. */
5346 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5347
b0c7bfa9
DE
5348 /* These attributes aren't processed until later:
5349 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5350 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5351 referenced later. However, these attributes are found in the stub
5352 which we won't have later. In order to not impose this complication
5353 on the rest of the code, we read them here and copy them to the
5354 DWO CU/TU die. */
b0c7bfa9
DE
5355
5356 stmt_list = NULL;
5357 low_pc = NULL;
5358 high_pc = NULL;
5359 ranges = NULL;
5360 comp_dir = NULL;
5361
5362 if (stub_comp_unit_die != NULL)
5363 {
5364 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5365 DWO file. */
5366 if (! this_cu->is_debug_types)
5367 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5368 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5369 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5370 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5371 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5372
5373 /* There should be a DW_AT_addr_base attribute here (if needed).
5374 We need the value before we can process DW_FORM_GNU_addr_index. */
5375 cu->addr_base = 0;
5376 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5377 if (attr)
5378 cu->addr_base = DW_UNSND (attr);
5379
5380 /* There should be a DW_AT_ranges_base attribute here (if needed).
5381 We need the value before we can process DW_AT_ranges. */
5382 cu->ranges_base = 0;
5383 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5384 if (attr)
5385 cu->ranges_base = DW_UNSND (attr);
5386 }
a2ce51a0
DE
5387 else if (stub_comp_dir != NULL)
5388 {
5389 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5390 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5391 comp_dir->name = DW_AT_comp_dir;
5392 comp_dir->form = DW_FORM_string;
5393 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5394 DW_STRING (comp_dir) = stub_comp_dir;
5395 }
b0c7bfa9
DE
5396
5397 /* Set up for reading the DWO CU/TU. */
5398 cu->dwo_unit = dwo_unit;
5399 section = dwo_unit->section;
5400 dwarf2_read_section (objfile, section);
a32a8923 5401 abfd = get_section_bfd_owner (section);
9c541725
PA
5402 begin_info_ptr = info_ptr = (section->buffer
5403 + to_underlying (dwo_unit->sect_off));
b0c7bfa9
DE
5404 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5405 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5406
5407 if (this_cu->is_debug_types)
5408 {
b0c7bfa9
DE
5409 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5410
43988095 5411 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5412 dwo_abbrev_section,
43988095 5413 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5414 /* This is not an assert because it can be caused by bad debug info. */
43988095 5415 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5416 {
5417 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5418 " TU at offset 0x%x [in module %s]"),
5419 hex_string (sig_type->signature),
43988095 5420 hex_string (cu->header.signature),
9c541725 5421 to_underlying (dwo_unit->sect_off),
a2ce51a0
DE
5422 bfd_get_filename (abfd));
5423 }
9c541725 5424 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5425 /* For DWOs coming from DWP files, we don't know the CU length
5426 nor the type's offset in the TU until now. */
5427 dwo_unit->length = get_cu_length (&cu->header);
9c541725 5428 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
5429
5430 /* Establish the type offset that can be used to lookup the type.
5431 For DWO files, we don't know it until now. */
9c541725
PA
5432 sig_type->type_offset_in_section
5433 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
5434 }
5435 else
5436 {
5437 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5438 dwo_abbrev_section,
43988095 5439 info_ptr, rcuh_kind::COMPILE);
9c541725 5440 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5441 /* For DWOs coming from DWP files, we don't know the CU length
5442 until now. */
5443 dwo_unit->length = get_cu_length (&cu->header);
5444 }
5445
02142a6c
DE
5446 /* Replace the CU's original abbrev table with the DWO's.
5447 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5448 if (abbrev_table_provided)
5449 {
5450 /* Don't free the provided abbrev table, the caller of
5451 init_cutu_and_read_dies owns it. */
5452 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5453 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5454 make_cleanup (dwarf2_free_abbrev_table, cu);
5455 }
5456 else
5457 {
5458 dwarf2_free_abbrev_table (cu);
5459 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5460 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5461 }
5462
5463 /* Read in the die, but leave space to copy over the attributes
5464 from the stub. This has the benefit of simplifying the rest of
5465 the code - all the work to maintain the illusion of a single
5466 DW_TAG_{compile,type}_unit DIE is done here. */
5467 num_extra_attrs = ((stmt_list != NULL)
5468 + (low_pc != NULL)
5469 + (high_pc != NULL)
5470 + (ranges != NULL)
5471 + (comp_dir != NULL));
5472 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5473 result_has_children, num_extra_attrs);
5474
5475 /* Copy over the attributes from the stub to the DIE we just read in. */
5476 comp_unit_die = *result_comp_unit_die;
5477 i = comp_unit_die->num_attrs;
5478 if (stmt_list != NULL)
5479 comp_unit_die->attrs[i++] = *stmt_list;
5480 if (low_pc != NULL)
5481 comp_unit_die->attrs[i++] = *low_pc;
5482 if (high_pc != NULL)
5483 comp_unit_die->attrs[i++] = *high_pc;
5484 if (ranges != NULL)
5485 comp_unit_die->attrs[i++] = *ranges;
5486 if (comp_dir != NULL)
5487 comp_unit_die->attrs[i++] = *comp_dir;
5488 comp_unit_die->num_attrs += num_extra_attrs;
5489
b4f54984 5490 if (dwarf_die_debug)
bf6af496
DE
5491 {
5492 fprintf_unfiltered (gdb_stdlog,
5493 "Read die from %s@0x%x of %s:\n",
a32a8923 5494 get_section_name (section),
bf6af496
DE
5495 (unsigned) (begin_info_ptr - section->buffer),
5496 bfd_get_filename (abfd));
b4f54984 5497 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5498 }
5499
a2ce51a0
DE
5500 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5501 TUs by skipping the stub and going directly to the entry in the DWO file.
5502 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5503 to get it via circuitous means. Blech. */
5504 if (comp_dir != NULL)
5505 result_reader->comp_dir = DW_STRING (comp_dir);
5506
b0c7bfa9
DE
5507 /* Skip dummy compilation units. */
5508 if (info_ptr >= begin_info_ptr + dwo_unit->length
5509 || peek_abbrev_code (abfd, info_ptr) == 0)
5510 return 0;
5511
5512 *result_info_ptr = info_ptr;
5513 return 1;
5514}
5515
5516/* Subroutine of init_cutu_and_read_dies to simplify it.
5517 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5518 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5519
5520static struct dwo_unit *
5521lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5522 struct die_info *comp_unit_die)
5523{
5524 struct dwarf2_cu *cu = this_cu->cu;
5525 struct attribute *attr;
5526 ULONGEST signature;
5527 struct dwo_unit *dwo_unit;
5528 const char *comp_dir, *dwo_name;
5529
a2ce51a0
DE
5530 gdb_assert (cu != NULL);
5531
b0c7bfa9 5532 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5533 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5534 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5535
5536 if (this_cu->is_debug_types)
5537 {
5538 struct signatured_type *sig_type;
5539
5540 /* Since this_cu is the first member of struct signatured_type,
5541 we can go from a pointer to one to a pointer to the other. */
5542 sig_type = (struct signatured_type *) this_cu;
5543 signature = sig_type->signature;
5544 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5545 }
5546 else
5547 {
5548 struct attribute *attr;
5549
5550 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5551 if (! attr)
5552 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5553 " [in module %s]"),
4262abfb 5554 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5555 signature = DW_UNSND (attr);
5556 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5557 signature);
5558 }
5559
b0c7bfa9
DE
5560 return dwo_unit;
5561}
5562
a2ce51a0 5563/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5564 See it for a description of the parameters.
5565 Read a TU directly from a DWO file, bypassing the stub.
5566
5567 Note: This function could be a little bit simpler if we shared cleanups
5568 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5569 to do, so we keep this function self-contained. Or we could move this
5570 into our caller, but it's complex enough already. */
a2ce51a0
DE
5571
5572static void
6aa5f3a6
DE
5573init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5574 int use_existing_cu, int keep,
a2ce51a0
DE
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577{
5578 struct dwarf2_cu *cu;
5579 struct signatured_type *sig_type;
6aa5f3a6 5580 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5581 struct die_reader_specs reader;
5582 const gdb_byte *info_ptr;
5583 struct die_info *comp_unit_die;
5584 int has_children;
5585
5586 /* Verify we can do the following downcast, and that we have the
5587 data we need. */
5588 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5589 sig_type = (struct signatured_type *) this_cu;
5590 gdb_assert (sig_type->dwo_unit != NULL);
5591
5592 cleanups = make_cleanup (null_cleanup, NULL);
5593
6aa5f3a6
DE
5594 if (use_existing_cu && this_cu->cu != NULL)
5595 {
5596 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5597 cu = this_cu->cu;
5598 /* There's no need to do the rereading_dwo_cu handling that
5599 init_cutu_and_read_dies does since we don't read the stub. */
5600 }
5601 else
5602 {
5603 /* If !use_existing_cu, this_cu->cu must be NULL. */
5604 gdb_assert (this_cu->cu == NULL);
8d749320 5605 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5606 init_one_comp_unit (cu, this_cu);
5607 /* If an error occurs while loading, release our storage. */
5608 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5609 }
5610
5611 /* A future optimization, if needed, would be to use an existing
5612 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5613 could share abbrev tables. */
a2ce51a0
DE
5614
5615 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5616 0 /* abbrev_table_provided */,
5617 NULL /* stub_comp_unit_die */,
5618 sig_type->dwo_unit->dwo_file->comp_dir,
5619 &reader, &info_ptr,
5620 &comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626
5627 /* All the "real" work is done here. */
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
6aa5f3a6 5630 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5631 but the alternative is making the latter more complex.
5632 This function is only for the special case of using DWO files directly:
5633 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5634 if (free_cu_cleanup != NULL)
a2ce51a0 5635 {
6aa5f3a6
DE
5636 if (keep)
5637 {
5638 /* We've successfully allocated this compilation unit. Let our
5639 caller clean it up when finished with it. */
5640 discard_cleanups (free_cu_cleanup);
a2ce51a0 5641
6aa5f3a6
DE
5642 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5643 So we have to manually free the abbrev table. */
5644 dwarf2_free_abbrev_table (cu);
a2ce51a0 5645
6aa5f3a6
DE
5646 /* Link this CU into read_in_chain. */
5647 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5648 dwarf2_per_objfile->read_in_chain = this_cu;
5649 }
5650 else
5651 do_cleanups (free_cu_cleanup);
a2ce51a0 5652 }
a2ce51a0
DE
5653
5654 do_cleanups (cleanups);
5655}
5656
fd820528 5657/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5658 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5659
f4dc4d17
DE
5660 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5661 Otherwise the table specified in the comp unit header is read in and used.
5662 This is an optimization for when we already have the abbrev table.
5663
dee91e82
DE
5664 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5665 Otherwise, a new CU is allocated with xmalloc.
5666
5667 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5668 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5669
5670 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5671 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5672
70221824 5673static void
fd820528 5674init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5675 struct abbrev_table *abbrev_table,
fd820528
DE
5676 int use_existing_cu, int keep,
5677 die_reader_func_ftype *die_reader_func,
5678 void *data)
c906108c 5679{
dee91e82 5680 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5681 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5682 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5683 struct dwarf2_cu *cu;
d521ce57 5684 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5685 struct die_reader_specs reader;
d85a05f0 5686 struct die_info *comp_unit_die;
dee91e82 5687 int has_children;
d85a05f0 5688 struct attribute *attr;
365156ad 5689 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5690 struct signatured_type *sig_type = NULL;
4bdcc0c1 5691 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5692 /* Non-zero if CU currently points to a DWO file and we need to
5693 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5694 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5695 int rereading_dwo_cu = 0;
c906108c 5696
b4f54984 5697 if (dwarf_die_debug)
09406207
DE
5698 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5699 this_cu->is_debug_types ? "type" : "comp",
9c541725 5700 to_underlying (this_cu->sect_off));
09406207 5701
dee91e82
DE
5702 if (use_existing_cu)
5703 gdb_assert (keep);
23745b47 5704
a2ce51a0
DE
5705 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5706 file (instead of going through the stub), short-circuit all of this. */
5707 if (this_cu->reading_dwo_directly)
5708 {
5709 /* Narrow down the scope of possibilities to have to understand. */
5710 gdb_assert (this_cu->is_debug_types);
5711 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5712 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5713 die_reader_func, data);
a2ce51a0
DE
5714 return;
5715 }
5716
dee91e82
DE
5717 cleanups = make_cleanup (null_cleanup, NULL);
5718
5719 /* This is cheap if the section is already read in. */
5720 dwarf2_read_section (objfile, section);
5721
9c541725 5722 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
5723
5724 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5725
5726 if (use_existing_cu && this_cu->cu != NULL)
5727 {
5728 cu = this_cu->cu;
42e7ad6c
DE
5729 /* If this CU is from a DWO file we need to start over, we need to
5730 refetch the attributes from the skeleton CU.
5731 This could be optimized by retrieving those attributes from when we
5732 were here the first time: the previous comp_unit_die was stored in
5733 comp_unit_obstack. But there's no data yet that we need this
5734 optimization. */
5735 if (cu->dwo_unit != NULL)
5736 rereading_dwo_cu = 1;
dee91e82
DE
5737 }
5738 else
5739 {
5740 /* If !use_existing_cu, this_cu->cu must be NULL. */
5741 gdb_assert (this_cu->cu == NULL);
8d749320 5742 cu = XNEW (struct dwarf2_cu);
dee91e82 5743 init_one_comp_unit (cu, this_cu);
dee91e82 5744 /* If an error occurs while loading, release our storage. */
365156ad 5745 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5746 }
dee91e82 5747
b0c7bfa9 5748 /* Get the header. */
9c541725 5749 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
5750 {
5751 /* We already have the header, there's no need to read it in again. */
9c541725 5752 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
5753 }
5754 else
5755 {
3019eac3 5756 if (this_cu->is_debug_types)
dee91e82 5757 {
43988095 5758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5759 abbrev_section, info_ptr,
43988095 5760 rcuh_kind::TYPE);
dee91e82 5761
42e7ad6c
DE
5762 /* Since per_cu is the first member of struct signatured_type,
5763 we can go from a pointer to one to a pointer to the other. */
5764 sig_type = (struct signatured_type *) this_cu;
43988095 5765 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
5766 gdb_assert (sig_type->type_offset_in_tu
5767 == cu->header.type_cu_offset_in_tu);
5768 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 5769
42e7ad6c
DE
5770 /* LENGTH has not been set yet for type units if we're
5771 using .gdb_index. */
1ce1cefd 5772 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5773
5774 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
5775 sig_type->type_offset_in_section =
5776 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
5777
5778 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5779 }
5780 else
5781 {
4bdcc0c1
DE
5782 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5783 abbrev_section,
43988095
JK
5784 info_ptr,
5785 rcuh_kind::COMPILE);
dee91e82 5786
9c541725 5787 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 5788 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5789 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5790 }
5791 }
10b3939b 5792
6caca83c 5793 /* Skip dummy compilation units. */
dee91e82 5794 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5795 || peek_abbrev_code (abfd, info_ptr) == 0)
5796 {
dee91e82 5797 do_cleanups (cleanups);
21b2bd31 5798 return;
6caca83c
CC
5799 }
5800
433df2d4
DE
5801 /* If we don't have them yet, read the abbrevs for this compilation unit.
5802 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5803 done. Note that it's important that if the CU had an abbrev table
5804 on entry we don't free it when we're done: Somewhere up the call stack
5805 it may be in use. */
f4dc4d17
DE
5806 if (abbrev_table != NULL)
5807 {
5808 gdb_assert (cu->abbrev_table == NULL);
9c541725 5809 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
f4dc4d17
DE
5810 cu->abbrev_table = abbrev_table;
5811 }
5812 else if (cu->abbrev_table == NULL)
dee91e82 5813 {
4bdcc0c1 5814 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5815 make_cleanup (dwarf2_free_abbrev_table, cu);
5816 }
42e7ad6c
DE
5817 else if (rereading_dwo_cu)
5818 {
5819 dwarf2_free_abbrev_table (cu);
5820 dwarf2_read_abbrevs (cu, abbrev_section);
5821 }
af703f96 5822
dee91e82 5823 /* Read the top level CU/TU die. */
3019eac3 5824 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5825 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5826
b0c7bfa9
DE
5827 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5828 from the DWO file.
5829 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5830 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5831 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5832 if (attr)
5833 {
3019eac3 5834 struct dwo_unit *dwo_unit;
b0c7bfa9 5835 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5836
5837 if (has_children)
6a506a2d
DE
5838 {
5839 complaint (&symfile_complaints,
5840 _("compilation unit with DW_AT_GNU_dwo_name"
5841 " has children (offset 0x%x) [in module %s]"),
9c541725 5842 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6a506a2d 5843 }
b0c7bfa9 5844 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5845 if (dwo_unit != NULL)
3019eac3 5846 {
6a506a2d
DE
5847 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5848 abbrev_table != NULL,
a2ce51a0 5849 comp_unit_die, NULL,
6a506a2d
DE
5850 &reader, &info_ptr,
5851 &dwo_comp_unit_die, &has_children) == 0)
5852 {
5853 /* Dummy die. */
5854 do_cleanups (cleanups);
5855 return;
5856 }
5857 comp_unit_die = dwo_comp_unit_die;
5858 }
5859 else
5860 {
5861 /* Yikes, we couldn't find the rest of the DIE, we only have
5862 the stub. A complaint has already been logged. There's
5863 not much more we can do except pass on the stub DIE to
5864 die_reader_func. We don't want to throw an error on bad
5865 debug info. */
3019eac3
DE
5866 }
5867 }
5868
b0c7bfa9 5869 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5870 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5871
b0c7bfa9 5872 /* Done, clean up. */
365156ad 5873 if (free_cu_cleanup != NULL)
348e048f 5874 {
365156ad
TT
5875 if (keep)
5876 {
5877 /* We've successfully allocated this compilation unit. Let our
5878 caller clean it up when finished with it. */
5879 discard_cleanups (free_cu_cleanup);
dee91e82 5880
365156ad
TT
5881 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5882 So we have to manually free the abbrev table. */
5883 dwarf2_free_abbrev_table (cu);
dee91e82 5884
365156ad
TT
5885 /* Link this CU into read_in_chain. */
5886 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5887 dwarf2_per_objfile->read_in_chain = this_cu;
5888 }
5889 else
5890 do_cleanups (free_cu_cleanup);
348e048f 5891 }
365156ad
TT
5892
5893 do_cleanups (cleanups);
dee91e82
DE
5894}
5895
33e80786
DE
5896/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5897 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5898 to have already done the lookup to find the DWO file).
dee91e82
DE
5899
5900 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5901 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5902
5903 We fill in THIS_CU->length.
5904
5905 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5906 linker) then DIE_READER_FUNC will not get called.
5907
5908 THIS_CU->cu is always freed when done.
3019eac3
DE
5909 This is done in order to not leave THIS_CU->cu in a state where we have
5910 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5911
5912static void
5913init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5914 struct dwo_file *dwo_file,
dee91e82
DE
5915 die_reader_func_ftype *die_reader_func,
5916 void *data)
5917{
5918 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5919 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5920 bfd *abfd = get_section_bfd_owner (section);
33e80786 5921 struct dwarf2_section_info *abbrev_section;
dee91e82 5922 struct dwarf2_cu cu;
d521ce57 5923 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5924 struct die_reader_specs reader;
5925 struct cleanup *cleanups;
5926 struct die_info *comp_unit_die;
5927 int has_children;
5928
b4f54984 5929 if (dwarf_die_debug)
09406207
DE
5930 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5931 this_cu->is_debug_types ? "type" : "comp",
9c541725 5932 to_underlying (this_cu->sect_off));
09406207 5933
dee91e82
DE
5934 gdb_assert (this_cu->cu == NULL);
5935
33e80786
DE
5936 abbrev_section = (dwo_file != NULL
5937 ? &dwo_file->sections.abbrev
5938 : get_abbrev_section_for_cu (this_cu));
5939
dee91e82
DE
5940 /* This is cheap if the section is already read in. */
5941 dwarf2_read_section (objfile, section);
5942
5943 init_one_comp_unit (&cu, this_cu);
5944
5945 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5946
9c541725 5947 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
4bdcc0c1
DE
5948 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5949 abbrev_section, info_ptr,
43988095
JK
5950 (this_cu->is_debug_types
5951 ? rcuh_kind::TYPE
5952 : rcuh_kind::COMPILE));
dee91e82 5953
1ce1cefd 5954 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5955
5956 /* Skip dummy compilation units. */
5957 if (info_ptr >= begin_info_ptr + this_cu->length
5958 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5959 {
dee91e82 5960 do_cleanups (cleanups);
21b2bd31 5961 return;
93311388 5962 }
72bf9492 5963
dee91e82
DE
5964 dwarf2_read_abbrevs (&cu, abbrev_section);
5965 make_cleanup (dwarf2_free_abbrev_table, &cu);
5966
3019eac3 5967 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5968 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5969
5970 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5971
5972 do_cleanups (cleanups);
5973}
5974
3019eac3
DE
5975/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5976 does not lookup the specified DWO file.
5977 This cannot be used to read DWO files.
dee91e82
DE
5978
5979 THIS_CU->cu is always freed when done.
3019eac3
DE
5980 This is done in order to not leave THIS_CU->cu in a state where we have
5981 to care whether it refers to the "main" CU or the DWO CU.
5982 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5983
5984static void
5985init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5986 die_reader_func_ftype *die_reader_func,
5987 void *data)
5988{
33e80786 5989 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5990}
0018ea6f
DE
5991\f
5992/* Type Unit Groups.
dee91e82 5993
0018ea6f
DE
5994 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5995 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5996 so that all types coming from the same compilation (.o file) are grouped
5997 together. A future step could be to put the types in the same symtab as
5998 the CU the types ultimately came from. */
ff013f42 5999
f4dc4d17
DE
6000static hashval_t
6001hash_type_unit_group (const void *item)
6002{
9a3c8263
SM
6003 const struct type_unit_group *tu_group
6004 = (const struct type_unit_group *) item;
f4dc4d17 6005
094b34ac 6006 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 6007}
348e048f
DE
6008
6009static int
f4dc4d17 6010eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 6011{
9a3c8263
SM
6012 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6013 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 6014
094b34ac 6015 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 6016}
348e048f 6017
f4dc4d17
DE
6018/* Allocate a hash table for type unit groups. */
6019
6020static htab_t
6021allocate_type_unit_groups_table (void)
6022{
6023 return htab_create_alloc_ex (3,
6024 hash_type_unit_group,
6025 eq_type_unit_group,
6026 NULL,
6027 &dwarf2_per_objfile->objfile->objfile_obstack,
6028 hashtab_obstack_allocate,
6029 dummy_obstack_deallocate);
6030}
dee91e82 6031
f4dc4d17
DE
6032/* Type units that don't have DW_AT_stmt_list are grouped into their own
6033 partial symtabs. We combine several TUs per psymtab to not let the size
6034 of any one psymtab grow too big. */
6035#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6036#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 6037
094b34ac 6038/* Helper routine for get_type_unit_group.
f4dc4d17
DE
6039 Create the type_unit_group object used to hold one or more TUs. */
6040
6041static struct type_unit_group *
094b34ac 6042create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
6043{
6044 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 6045 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 6046 struct type_unit_group *tu_group;
f4dc4d17
DE
6047
6048 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6049 struct type_unit_group);
094b34ac 6050 per_cu = &tu_group->per_cu;
f4dc4d17 6051 per_cu->objfile = objfile;
f4dc4d17 6052
094b34ac
DE
6053 if (dwarf2_per_objfile->using_index)
6054 {
6055 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6056 struct dwarf2_per_cu_quick_data);
094b34ac
DE
6057 }
6058 else
6059 {
9c541725 6060 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
6061 struct partial_symtab *pst;
6062 char *name;
6063
6064 /* Give the symtab a useful name for debug purposes. */
6065 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6066 name = xstrprintf ("<type_units_%d>",
6067 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6068 else
6069 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6070
6071 pst = create_partial_symtab (per_cu, name);
6072 pst->anonymous = 1;
f4dc4d17 6073
094b34ac
DE
6074 xfree (name);
6075 }
f4dc4d17 6076
094b34ac 6077 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 6078 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
6079
6080 return tu_group;
6081}
6082
094b34ac
DE
6083/* Look up the type_unit_group for type unit CU, and create it if necessary.
6084 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
6085
6086static struct type_unit_group *
ff39bb5e 6087get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
6088{
6089 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6090 struct type_unit_group *tu_group;
6091 void **slot;
6092 unsigned int line_offset;
6093 struct type_unit_group type_unit_group_for_lookup;
6094
6095 if (dwarf2_per_objfile->type_unit_groups == NULL)
6096 {
6097 dwarf2_per_objfile->type_unit_groups =
6098 allocate_type_unit_groups_table ();
6099 }
6100
6101 /* Do we need to create a new group, or can we use an existing one? */
6102
6103 if (stmt_list)
6104 {
6105 line_offset = DW_UNSND (stmt_list);
6106 ++tu_stats->nr_symtab_sharers;
6107 }
6108 else
6109 {
6110 /* Ugh, no stmt_list. Rare, but we have to handle it.
6111 We can do various things here like create one group per TU or
6112 spread them over multiple groups to split up the expansion work.
6113 To avoid worst case scenarios (too many groups or too large groups)
6114 we, umm, group them in bunches. */
6115 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6116 | (tu_stats->nr_stmt_less_type_units
6117 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6118 ++tu_stats->nr_stmt_less_type_units;
6119 }
6120
094b34ac 6121 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 6122 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
6123 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6124 &type_unit_group_for_lookup, INSERT);
6125 if (*slot != NULL)
6126 {
9a3c8263 6127 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
6128 gdb_assert (tu_group != NULL);
6129 }
6130 else
6131 {
9c541725 6132 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 6133 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
6134 *slot = tu_group;
6135 ++tu_stats->nr_symtabs;
6136 }
6137
6138 return tu_group;
6139}
0018ea6f
DE
6140\f
6141/* Partial symbol tables. */
6142
6143/* Create a psymtab named NAME and assign it to PER_CU.
6144
6145 The caller must fill in the following details:
6146 dirname, textlow, texthigh. */
6147
6148static struct partial_symtab *
6149create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6150{
6151 struct objfile *objfile = per_cu->objfile;
6152 struct partial_symtab *pst;
6153
18a94d75 6154 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
6155 objfile->global_psymbols.next,
6156 objfile->static_psymbols.next);
6157
6158 pst->psymtabs_addrmap_supported = 1;
6159
6160 /* This is the glue that links PST into GDB's symbol API. */
6161 pst->read_symtab_private = per_cu;
6162 pst->read_symtab = dwarf2_read_symtab;
6163 per_cu->v.psymtab = pst;
6164
6165 return pst;
6166}
6167
b93601f3
TT
6168/* The DATA object passed to process_psymtab_comp_unit_reader has this
6169 type. */
6170
6171struct process_psymtab_comp_unit_data
6172{
6173 /* True if we are reading a DW_TAG_partial_unit. */
6174
6175 int want_partial_unit;
6176
6177 /* The "pretend" language that is used if the CU doesn't declare a
6178 language. */
6179
6180 enum language pretend_language;
6181};
6182
0018ea6f
DE
6183/* die_reader_func for process_psymtab_comp_unit. */
6184
6185static void
6186process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6187 const gdb_byte *info_ptr,
0018ea6f
DE
6188 struct die_info *comp_unit_die,
6189 int has_children,
6190 void *data)
6191{
6192 struct dwarf2_cu *cu = reader->cu;
6193 struct objfile *objfile = cu->objfile;
3e29f34a 6194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6196 CORE_ADDR baseaddr;
6197 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6198 struct partial_symtab *pst;
3a2b436a 6199 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6200 const char *filename;
9a3c8263
SM
6201 struct process_psymtab_comp_unit_data *info
6202 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6203
b93601f3 6204 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6205 return;
6206
6207 gdb_assert (! per_cu->is_debug_types);
6208
b93601f3 6209 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6210
6211 cu->list_in_scope = &file_symbols;
6212
6213 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6214 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6215 if (filename == NULL)
0018ea6f 6216 filename = "";
0018ea6f
DE
6217
6218 pst = create_partial_symtab (per_cu, filename);
6219
6220 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6221 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6222
6223 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6224
6225 dwarf2_find_base_address (comp_unit_die, cu);
6226
6227 /* Possibly set the default values of LOWPC and HIGHPC from
6228 `DW_AT_ranges'. */
3a2b436a
JK
6229 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6230 &best_highpc, cu, pst);
6231 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6232 /* Store the contiguous range if it is not empty; it can be empty for
6233 CUs with no code. */
6234 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6235 gdbarch_adjust_dwarf2_addr (gdbarch,
6236 best_lowpc + baseaddr),
6237 gdbarch_adjust_dwarf2_addr (gdbarch,
6238 best_highpc + baseaddr) - 1,
6239 pst);
0018ea6f
DE
6240
6241 /* Check if comp unit has_children.
6242 If so, read the rest of the partial symbols from this comp unit.
6243 If not, there's no more debug_info for this comp unit. */
6244 if (has_children)
6245 {
6246 struct partial_die_info *first_die;
6247 CORE_ADDR lowpc, highpc;
6248
6249 lowpc = ((CORE_ADDR) -1);
6250 highpc = ((CORE_ADDR) 0);
6251
6252 first_die = load_partial_dies (reader, info_ptr, 1);
6253
6254 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6255 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6256
6257 /* If we didn't find a lowpc, set it to highpc to avoid
6258 complaints from `maint check'. */
6259 if (lowpc == ((CORE_ADDR) -1))
6260 lowpc = highpc;
6261
6262 /* If the compilation unit didn't have an explicit address range,
6263 then use the information extracted from its child dies. */
e385593e 6264 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6265 {
6266 best_lowpc = lowpc;
6267 best_highpc = highpc;
6268 }
6269 }
3e29f34a
MR
6270 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6271 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6272
8763cede 6273 end_psymtab_common (objfile, pst);
0018ea6f
DE
6274
6275 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6276 {
6277 int i;
6278 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6279 struct dwarf2_per_cu_data *iter;
6280
6281 /* Fill in 'dependencies' here; we fill in 'users' in a
6282 post-pass. */
6283 pst->number_of_dependencies = len;
8d749320
SM
6284 pst->dependencies =
6285 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6286 for (i = 0;
6287 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6288 i, iter);
6289 ++i)
6290 pst->dependencies[i] = iter->v.psymtab;
6291
6292 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6293 }
6294
6295 /* Get the list of files included in the current compilation unit,
6296 and build a psymtab for each of them. */
6297 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6298
b4f54984 6299 if (dwarf_read_debug)
0018ea6f
DE
6300 {
6301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6302
6303 fprintf_unfiltered (gdb_stdlog,
6304 "Psymtab for %s unit @0x%x: %s - %s"
6305 ", %d global, %d static syms\n",
6306 per_cu->is_debug_types ? "type" : "comp",
9c541725 6307 to_underlying (per_cu->sect_off),
0018ea6f
DE
6308 paddress (gdbarch, pst->textlow),
6309 paddress (gdbarch, pst->texthigh),
6310 pst->n_global_syms, pst->n_static_syms);
6311 }
6312}
6313
6314/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6315 Process compilation unit THIS_CU for a psymtab. */
6316
6317static void
6318process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6319 int want_partial_unit,
6320 enum language pretend_language)
0018ea6f
DE
6321{
6322 /* If this compilation unit was already read in, free the
6323 cached copy in order to read it in again. This is
6324 necessary because we skipped some symbols when we first
6325 read in the compilation unit (see load_partial_dies).
6326 This problem could be avoided, but the benefit is unclear. */
6327 if (this_cu->cu != NULL)
6328 free_one_cached_comp_unit (this_cu);
6329
f1902523
JK
6330 if (this_cu->is_debug_types)
6331 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6332 NULL);
6333 else
6334 {
6335 process_psymtab_comp_unit_data info;
6336 info.want_partial_unit = want_partial_unit;
6337 info.pretend_language = pretend_language;
6338 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6339 process_psymtab_comp_unit_reader, &info);
6340 }
0018ea6f
DE
6341
6342 /* Age out any secondary CUs. */
6343 age_cached_comp_units ();
6344}
f4dc4d17
DE
6345
6346/* Reader function for build_type_psymtabs. */
6347
6348static void
6349build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6350 const gdb_byte *info_ptr,
f4dc4d17
DE
6351 struct die_info *type_unit_die,
6352 int has_children,
6353 void *data)
6354{
6355 struct objfile *objfile = dwarf2_per_objfile->objfile;
6356 struct dwarf2_cu *cu = reader->cu;
6357 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6358 struct signatured_type *sig_type;
f4dc4d17
DE
6359 struct type_unit_group *tu_group;
6360 struct attribute *attr;
6361 struct partial_die_info *first_die;
6362 CORE_ADDR lowpc, highpc;
6363 struct partial_symtab *pst;
6364
6365 gdb_assert (data == NULL);
0186c6a7
DE
6366 gdb_assert (per_cu->is_debug_types);
6367 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6368
6369 if (! has_children)
6370 return;
6371
6372 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6373 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6374
0186c6a7 6375 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6376
6377 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6378 cu->list_in_scope = &file_symbols;
6379 pst = create_partial_symtab (per_cu, "");
6380 pst->anonymous = 1;
6381
6382 first_die = load_partial_dies (reader, info_ptr, 1);
6383
6384 lowpc = (CORE_ADDR) -1;
6385 highpc = (CORE_ADDR) 0;
6386 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6387
8763cede 6388 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6389}
6390
73051182
DE
6391/* Struct used to sort TUs by their abbreviation table offset. */
6392
6393struct tu_abbrev_offset
6394{
6395 struct signatured_type *sig_type;
6396 sect_offset abbrev_offset;
6397};
6398
6399/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6400
6401static int
6402sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6403{
9a3c8263
SM
6404 const struct tu_abbrev_offset * const *a
6405 = (const struct tu_abbrev_offset * const*) ap;
6406 const struct tu_abbrev_offset * const *b
6407 = (const struct tu_abbrev_offset * const*) bp;
9c541725
PA
6408 sect_offset aoff = (*a)->abbrev_offset;
6409 sect_offset boff = (*b)->abbrev_offset;
73051182
DE
6410
6411 return (aoff > boff) - (aoff < boff);
6412}
6413
6414/* Efficiently read all the type units.
6415 This does the bulk of the work for build_type_psymtabs.
6416
6417 The efficiency is because we sort TUs by the abbrev table they use and
6418 only read each abbrev table once. In one program there are 200K TUs
6419 sharing 8K abbrev tables.
6420
6421 The main purpose of this function is to support building the
6422 dwarf2_per_objfile->type_unit_groups table.
6423 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6424 can collapse the search space by grouping them by stmt_list.
6425 The savings can be significant, in the same program from above the 200K TUs
6426 share 8K stmt_list tables.
6427
6428 FUNC is expected to call get_type_unit_group, which will create the
6429 struct type_unit_group if necessary and add it to
6430 dwarf2_per_objfile->type_unit_groups. */
6431
6432static void
6433build_type_psymtabs_1 (void)
6434{
73051182
DE
6435 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6436 struct cleanup *cleanups;
6437 struct abbrev_table *abbrev_table;
6438 sect_offset abbrev_offset;
6439 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6440 int i;
6441
6442 /* It's up to the caller to not call us multiple times. */
6443 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6444
6445 if (dwarf2_per_objfile->n_type_units == 0)
6446 return;
6447
6448 /* TUs typically share abbrev tables, and there can be way more TUs than
6449 abbrev tables. Sort by abbrev table to reduce the number of times we
6450 read each abbrev table in.
6451 Alternatives are to punt or to maintain a cache of abbrev tables.
6452 This is simpler and efficient enough for now.
6453
6454 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6455 symtab to use). Typically TUs with the same abbrev offset have the same
6456 stmt_list value too so in practice this should work well.
6457
6458 The basic algorithm here is:
6459
6460 sort TUs by abbrev table
6461 for each TU with same abbrev table:
6462 read abbrev table if first user
6463 read TU top level DIE
6464 [IWBN if DWO skeletons had DW_AT_stmt_list]
6465 call FUNC */
6466
b4f54984 6467 if (dwarf_read_debug)
73051182
DE
6468 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6469
6470 /* Sort in a separate table to maintain the order of all_type_units
6471 for .gdb_index: TU indices directly index all_type_units. */
6472 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6473 dwarf2_per_objfile->n_type_units);
6474 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6475 {
6476 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6477
6478 sorted_by_abbrev[i].sig_type = sig_type;
6479 sorted_by_abbrev[i].abbrev_offset =
6480 read_abbrev_offset (sig_type->per_cu.section,
9c541725 6481 sig_type->per_cu.sect_off);
73051182
DE
6482 }
6483 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6484 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6485 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6486
9c541725 6487 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182
DE
6488 abbrev_table = NULL;
6489 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6490
6491 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6492 {
6493 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6494
6495 /* Switch to the next abbrev table if necessary. */
6496 if (abbrev_table == NULL
9c541725 6497 || tu->abbrev_offset != abbrev_offset)
73051182
DE
6498 {
6499 if (abbrev_table != NULL)
6500 {
6501 abbrev_table_free (abbrev_table);
6502 /* Reset to NULL in case abbrev_table_read_table throws
6503 an error: abbrev_table_free_cleanup will get called. */
6504 abbrev_table = NULL;
6505 }
6506 abbrev_offset = tu->abbrev_offset;
6507 abbrev_table =
6508 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6509 abbrev_offset);
6510 ++tu_stats->nr_uniq_abbrev_tables;
6511 }
6512
6513 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6514 build_type_psymtabs_reader, NULL);
6515 }
6516
73051182 6517 do_cleanups (cleanups);
6aa5f3a6 6518}
73051182 6519
6aa5f3a6
DE
6520/* Print collected type unit statistics. */
6521
6522static void
6523print_tu_stats (void)
6524{
6525 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6526
6527 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6528 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6529 dwarf2_per_objfile->n_type_units);
6530 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6531 tu_stats->nr_uniq_abbrev_tables);
6532 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6533 tu_stats->nr_symtabs);
6534 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6535 tu_stats->nr_symtab_sharers);
6536 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6537 tu_stats->nr_stmt_less_type_units);
6538 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6539 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6540}
6541
f4dc4d17
DE
6542/* Traversal function for build_type_psymtabs. */
6543
6544static int
6545build_type_psymtab_dependencies (void **slot, void *info)
6546{
6547 struct objfile *objfile = dwarf2_per_objfile->objfile;
6548 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6549 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6550 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6551 int len = VEC_length (sig_type_ptr, tu_group->tus);
6552 struct signatured_type *iter;
f4dc4d17
DE
6553 int i;
6554
6555 gdb_assert (len > 0);
0186c6a7 6556 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6557
6558 pst->number_of_dependencies = len;
8d749320
SM
6559 pst->dependencies =
6560 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6561 for (i = 0;
0186c6a7 6562 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6563 ++i)
6564 {
0186c6a7
DE
6565 gdb_assert (iter->per_cu.is_debug_types);
6566 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6567 iter->type_unit_group = tu_group;
f4dc4d17
DE
6568 }
6569
0186c6a7 6570 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6571
6572 return 1;
6573}
6574
6575/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6576 Build partial symbol tables for the .debug_types comp-units. */
6577
6578static void
6579build_type_psymtabs (struct objfile *objfile)
6580{
0e50663e 6581 if (! create_all_type_units (objfile))
348e048f
DE
6582 return;
6583
73051182 6584 build_type_psymtabs_1 ();
6aa5f3a6 6585}
f4dc4d17 6586
6aa5f3a6
DE
6587/* Traversal function for process_skeletonless_type_unit.
6588 Read a TU in a DWO file and build partial symbols for it. */
6589
6590static int
6591process_skeletonless_type_unit (void **slot, void *info)
6592{
6593 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6594 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6595 struct signatured_type find_entry, *entry;
6596
6597 /* If this TU doesn't exist in the global table, add it and read it in. */
6598
6599 if (dwarf2_per_objfile->signatured_types == NULL)
6600 {
6601 dwarf2_per_objfile->signatured_types
6602 = allocate_signatured_type_table (objfile);
6603 }
6604
6605 find_entry.signature = dwo_unit->signature;
6606 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6607 INSERT);
6608 /* If we've already seen this type there's nothing to do. What's happening
6609 is we're doing our own version of comdat-folding here. */
6610 if (*slot != NULL)
6611 return 1;
6612
6613 /* This does the job that create_all_type_units would have done for
6614 this TU. */
6615 entry = add_type_unit (dwo_unit->signature, slot);
6616 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6617 *slot = entry;
6618
6619 /* This does the job that build_type_psymtabs_1 would have done. */
6620 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6621 build_type_psymtabs_reader, NULL);
6622
6623 return 1;
6624}
6625
6626/* Traversal function for process_skeletonless_type_units. */
6627
6628static int
6629process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6630{
6631 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6632
6633 if (dwo_file->tus != NULL)
6634 {
6635 htab_traverse_noresize (dwo_file->tus,
6636 process_skeletonless_type_unit, info);
6637 }
6638
6639 return 1;
6640}
6641
6642/* Scan all TUs of DWO files, verifying we've processed them.
6643 This is needed in case a TU was emitted without its skeleton.
6644 Note: This can't be done until we know what all the DWO files are. */
6645
6646static void
6647process_skeletonless_type_units (struct objfile *objfile)
6648{
6649 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6650 if (get_dwp_file () == NULL
6651 && dwarf2_per_objfile->dwo_files != NULL)
6652 {
6653 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6654 process_dwo_file_for_skeletonless_type_units,
6655 objfile);
6656 }
348e048f
DE
6657}
6658
60606b2c
TT
6659/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6660
6661static void
6662psymtabs_addrmap_cleanup (void *o)
6663{
9a3c8263 6664 struct objfile *objfile = (struct objfile *) o;
ec61707d 6665
60606b2c
TT
6666 objfile->psymtabs_addrmap = NULL;
6667}
6668
95554aad
TT
6669/* Compute the 'user' field for each psymtab in OBJFILE. */
6670
6671static void
6672set_partial_user (struct objfile *objfile)
6673{
6674 int i;
6675
6676 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6677 {
8832e7e3 6678 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6679 struct partial_symtab *pst = per_cu->v.psymtab;
6680 int j;
6681
36586728
TT
6682 if (pst == NULL)
6683 continue;
6684
95554aad
TT
6685 for (j = 0; j < pst->number_of_dependencies; ++j)
6686 {
6687 /* Set the 'user' field only if it is not already set. */
6688 if (pst->dependencies[j]->user == NULL)
6689 pst->dependencies[j]->user = pst;
6690 }
6691 }
6692}
6693
93311388
DE
6694/* Build the partial symbol table by doing a quick pass through the
6695 .debug_info and .debug_abbrev sections. */
72bf9492 6696
93311388 6697static void
c67a9c90 6698dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6699{
60606b2c 6700 struct cleanup *back_to, *addrmap_cleanup;
21b2bd31 6701 int i;
93311388 6702
b4f54984 6703 if (dwarf_read_debug)
45cfd468
DE
6704 {
6705 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6706 objfile_name (objfile));
45cfd468
DE
6707 }
6708
98bfdba5
PA
6709 dwarf2_per_objfile->reading_partial_symbols = 1;
6710
be391dca 6711 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6712
93311388
DE
6713 /* Any cached compilation units will be linked by the per-objfile
6714 read_in_chain. Make sure to free them when we're done. */
6715 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6716
348e048f
DE
6717 build_type_psymtabs (objfile);
6718
93311388 6719 create_all_comp_units (objfile);
c906108c 6720
60606b2c
TT
6721 /* Create a temporary address map on a temporary obstack. We later
6722 copy this to the final obstack. */
8268c778 6723 auto_obstack temp_obstack;
60606b2c
TT
6724 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6725 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6726
21b2bd31 6727 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6728 {
8832e7e3 6729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6730
b93601f3 6731 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6732 }
ff013f42 6733
6aa5f3a6
DE
6734 /* This has to wait until we read the CUs, we need the list of DWOs. */
6735 process_skeletonless_type_units (objfile);
6736
6737 /* Now that all TUs have been processed we can fill in the dependencies. */
6738 if (dwarf2_per_objfile->type_unit_groups != NULL)
6739 {
6740 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6741 build_type_psymtab_dependencies, NULL);
6742 }
6743
b4f54984 6744 if (dwarf_read_debug)
6aa5f3a6
DE
6745 print_tu_stats ();
6746
95554aad
TT
6747 set_partial_user (objfile);
6748
ff013f42
JK
6749 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6750 &objfile->objfile_obstack);
60606b2c 6751 discard_cleanups (addrmap_cleanup);
ff013f42 6752
ae038cb0 6753 do_cleanups (back_to);
45cfd468 6754
b4f54984 6755 if (dwarf_read_debug)
45cfd468 6756 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6757 objfile_name (objfile));
ae038cb0
DJ
6758}
6759
3019eac3 6760/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6761
6762static void
dee91e82 6763load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6764 const gdb_byte *info_ptr,
dee91e82
DE
6765 struct die_info *comp_unit_die,
6766 int has_children,
6767 void *data)
ae038cb0 6768{
dee91e82 6769 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6770
95554aad 6771 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6772
ae038cb0
DJ
6773 /* Check if comp unit has_children.
6774 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6775 If not, there's no more debug_info for this comp unit. */
d85a05f0 6776 if (has_children)
dee91e82
DE
6777 load_partial_dies (reader, info_ptr, 0);
6778}
98bfdba5 6779
dee91e82
DE
6780/* Load the partial DIEs for a secondary CU into memory.
6781 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6782
dee91e82
DE
6783static void
6784load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6785{
f4dc4d17
DE
6786 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6787 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6788}
6789
ae038cb0 6790static void
36586728
TT
6791read_comp_units_from_section (struct objfile *objfile,
6792 struct dwarf2_section_info *section,
f1902523 6793 struct dwarf2_section_info *abbrev_section,
36586728
TT
6794 unsigned int is_dwz,
6795 int *n_allocated,
6796 int *n_comp_units,
6797 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6798{
d521ce57 6799 const gdb_byte *info_ptr;
a32a8923 6800 bfd *abfd = get_section_bfd_owner (section);
be391dca 6801
b4f54984 6802 if (dwarf_read_debug)
bf6af496 6803 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6804 get_section_name (section),
6805 get_section_file_name (section));
bf6af496 6806
36586728 6807 dwarf2_read_section (objfile, section);
ae038cb0 6808
36586728 6809 info_ptr = section->buffer;
6e70227d 6810
36586728 6811 while (info_ptr < section->buffer + section->size)
ae038cb0 6812 {
ae038cb0 6813 struct dwarf2_per_cu_data *this_cu;
ae038cb0 6814
9c541725 6815 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 6816
f1902523
JK
6817 comp_unit_head cu_header;
6818 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6819 info_ptr, rcuh_kind::COMPILE);
ae038cb0
DJ
6820
6821 /* Save the compilation unit for later lookup. */
f1902523
JK
6822 if (cu_header.unit_type != DW_UT_type)
6823 {
6824 this_cu = XOBNEW (&objfile->objfile_obstack,
6825 struct dwarf2_per_cu_data);
6826 memset (this_cu, 0, sizeof (*this_cu));
6827 }
6828 else
6829 {
6830 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6831 struct signatured_type);
6832 memset (sig_type, 0, sizeof (*sig_type));
6833 sig_type->signature = cu_header.signature;
6834 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6835 this_cu = &sig_type->per_cu;
6836 }
6837 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 6838 this_cu->sect_off = sect_off;
f1902523 6839 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 6840 this_cu->is_dwz = is_dwz;
9291a0cd 6841 this_cu->objfile = objfile;
8a0459fd 6842 this_cu->section = section;
ae038cb0 6843
36586728 6844 if (*n_comp_units == *n_allocated)
ae038cb0 6845 {
36586728 6846 *n_allocated *= 2;
224c3ddb
SM
6847 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6848 *all_comp_units, *n_allocated);
ae038cb0 6849 }
36586728
TT
6850 (*all_comp_units)[*n_comp_units] = this_cu;
6851 ++*n_comp_units;
ae038cb0
DJ
6852
6853 info_ptr = info_ptr + this_cu->length;
6854 }
36586728
TT
6855}
6856
6857/* Create a list of all compilation units in OBJFILE.
6858 This is only done for -readnow and building partial symtabs. */
6859
6860static void
6861create_all_comp_units (struct objfile *objfile)
6862{
6863 int n_allocated;
6864 int n_comp_units;
6865 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6866 struct dwz_file *dwz;
36586728
TT
6867
6868 n_comp_units = 0;
6869 n_allocated = 10;
8d749320 6870 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728 6871
f1902523
JK
6872 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6873 &dwarf2_per_objfile->abbrev, 0,
36586728
TT
6874 &n_allocated, &n_comp_units, &all_comp_units);
6875
4db1a1dc
TT
6876 dwz = dwarf2_get_dwz_file ();
6877 if (dwz != NULL)
f1902523 6878 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
4db1a1dc
TT
6879 &n_allocated, &n_comp_units,
6880 &all_comp_units);
ae038cb0 6881
8d749320
SM
6882 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6883 struct dwarf2_per_cu_data *,
6884 n_comp_units);
ae038cb0
DJ
6885 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6886 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6887 xfree (all_comp_units);
6888 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6889}
6890
5734ee8b 6891/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6892 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6893 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6894 DW_AT_ranges). See the comments of add_partial_subprogram on how
6895 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6896
72bf9492
DJ
6897static void
6898scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6899 CORE_ADDR *highpc, int set_addrmap,
6900 struct dwarf2_cu *cu)
c906108c 6901{
72bf9492 6902 struct partial_die_info *pdi;
c906108c 6903
91c24f0a
DC
6904 /* Now, march along the PDI's, descending into ones which have
6905 interesting children but skipping the children of the other ones,
6906 until we reach the end of the compilation unit. */
c906108c 6907
72bf9492 6908 pdi = first_die;
91c24f0a 6909
72bf9492
DJ
6910 while (pdi != NULL)
6911 {
6912 fixup_partial_die (pdi, cu);
c906108c 6913
f55ee35c 6914 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6915 children, so we need to look at them. Ditto for anonymous
6916 enums. */
933c6fe4 6917
72bf9492 6918 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6919 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6920 || pdi->tag == DW_TAG_imported_unit)
c906108c 6921 {
72bf9492 6922 switch (pdi->tag)
c906108c
SS
6923 {
6924 case DW_TAG_subprogram:
cdc07690 6925 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6926 break;
72929c62 6927 case DW_TAG_constant:
c906108c
SS
6928 case DW_TAG_variable:
6929 case DW_TAG_typedef:
91c24f0a 6930 case DW_TAG_union_type:
72bf9492 6931 if (!pdi->is_declaration)
63d06c5c 6932 {
72bf9492 6933 add_partial_symbol (pdi, cu);
63d06c5c
DC
6934 }
6935 break;
c906108c 6936 case DW_TAG_class_type:
680b30c7 6937 case DW_TAG_interface_type:
c906108c 6938 case DW_TAG_structure_type:
72bf9492 6939 if (!pdi->is_declaration)
c906108c 6940 {
72bf9492 6941 add_partial_symbol (pdi, cu);
c906108c 6942 }
e98c9e7c
TT
6943 if (cu->language == language_rust && pdi->has_children)
6944 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6945 set_addrmap, cu);
c906108c 6946 break;
91c24f0a 6947 case DW_TAG_enumeration_type:
72bf9492
DJ
6948 if (!pdi->is_declaration)
6949 add_partial_enumeration (pdi, cu);
c906108c
SS
6950 break;
6951 case DW_TAG_base_type:
a02abb62 6952 case DW_TAG_subrange_type:
c906108c 6953 /* File scope base type definitions are added to the partial
c5aa993b 6954 symbol table. */
72bf9492 6955 add_partial_symbol (pdi, cu);
c906108c 6956 break;
d9fa45fe 6957 case DW_TAG_namespace:
cdc07690 6958 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6959 break;
5d7cb8df 6960 case DW_TAG_module:
cdc07690 6961 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6962 break;
95554aad
TT
6963 case DW_TAG_imported_unit:
6964 {
6965 struct dwarf2_per_cu_data *per_cu;
6966
f4dc4d17
DE
6967 /* For now we don't handle imported units in type units. */
6968 if (cu->per_cu->is_debug_types)
6969 {
6970 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6971 " supported in type units [in module %s]"),
4262abfb 6972 objfile_name (cu->objfile));
f4dc4d17
DE
6973 }
6974
9c541725 6975 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
36586728 6976 pdi->is_dwz,
95554aad
TT
6977 cu->objfile);
6978
6979 /* Go read the partial unit, if needed. */
6980 if (per_cu->v.psymtab == NULL)
b93601f3 6981 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6982
f4dc4d17 6983 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6984 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6985 }
6986 break;
74921315
KS
6987 case DW_TAG_imported_declaration:
6988 add_partial_symbol (pdi, cu);
6989 break;
c906108c
SS
6990 default:
6991 break;
6992 }
6993 }
6994
72bf9492
DJ
6995 /* If the die has a sibling, skip to the sibling. */
6996
6997 pdi = pdi->die_sibling;
6998 }
6999}
7000
7001/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 7002
72bf9492 7003 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 7004 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
7005 Enumerators are an exception; they use the scope of their parent
7006 enumeration type, i.e. the name of the enumeration type is not
7007 prepended to the enumerator.
91c24f0a 7008
72bf9492
DJ
7009 There are two complexities. One is DW_AT_specification; in this
7010 case "parent" means the parent of the target of the specification,
7011 instead of the direct parent of the DIE. The other is compilers
7012 which do not emit DW_TAG_namespace; in this case we try to guess
7013 the fully qualified name of structure types from their members'
7014 linkage names. This must be done using the DIE's children rather
7015 than the children of any DW_AT_specification target. We only need
7016 to do this for structures at the top level, i.e. if the target of
7017 any DW_AT_specification (if any; otherwise the DIE itself) does not
7018 have a parent. */
7019
7020/* Compute the scope prefix associated with PDI's parent, in
7021 compilation unit CU. The result will be allocated on CU's
7022 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7023 field. NULL is returned if no prefix is necessary. */
15d034d0 7024static const char *
72bf9492
DJ
7025partial_die_parent_scope (struct partial_die_info *pdi,
7026 struct dwarf2_cu *cu)
7027{
15d034d0 7028 const char *grandparent_scope;
72bf9492 7029 struct partial_die_info *parent, *real_pdi;
91c24f0a 7030
72bf9492
DJ
7031 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7032 then this means the parent of the specification DIE. */
7033
7034 real_pdi = pdi;
72bf9492 7035 while (real_pdi->has_specification)
36586728
TT
7036 real_pdi = find_partial_die (real_pdi->spec_offset,
7037 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
7038
7039 parent = real_pdi->die_parent;
7040 if (parent == NULL)
7041 return NULL;
7042
7043 if (parent->scope_set)
7044 return parent->scope;
7045
7046 fixup_partial_die (parent, cu);
7047
10b3939b 7048 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 7049
acebe513
UW
7050 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7051 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7052 Work around this problem here. */
7053 if (cu->language == language_cplus
6e70227d 7054 && parent->tag == DW_TAG_namespace
acebe513
UW
7055 && strcmp (parent->name, "::") == 0
7056 && grandparent_scope == NULL)
7057 {
7058 parent->scope = NULL;
7059 parent->scope_set = 1;
7060 return NULL;
7061 }
7062
9c6c53f7
SA
7063 if (pdi->tag == DW_TAG_enumerator)
7064 /* Enumerators should not get the name of the enumeration as a prefix. */
7065 parent->scope = grandparent_scope;
7066 else if (parent->tag == DW_TAG_namespace
f55ee35c 7067 || parent->tag == DW_TAG_module
72bf9492
DJ
7068 || parent->tag == DW_TAG_structure_type
7069 || parent->tag == DW_TAG_class_type
680b30c7 7070 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
7071 || parent->tag == DW_TAG_union_type
7072 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
7073 {
7074 if (grandparent_scope == NULL)
7075 parent->scope = parent->name;
7076 else
3e43a32a
MS
7077 parent->scope = typename_concat (&cu->comp_unit_obstack,
7078 grandparent_scope,
f55ee35c 7079 parent->name, 0, cu);
72bf9492 7080 }
72bf9492
DJ
7081 else
7082 {
7083 /* FIXME drow/2004-04-01: What should we be doing with
7084 function-local names? For partial symbols, we should probably be
7085 ignoring them. */
7086 complaint (&symfile_complaints,
e2e0b3e5 7087 _("unhandled containing DIE tag %d for DIE at %d"),
9c541725 7088 parent->tag, to_underlying (pdi->sect_off));
72bf9492 7089 parent->scope = grandparent_scope;
c906108c
SS
7090 }
7091
72bf9492
DJ
7092 parent->scope_set = 1;
7093 return parent->scope;
7094}
7095
7096/* Return the fully scoped name associated with PDI, from compilation unit
7097 CU. The result will be allocated with malloc. */
4568ecf9 7098
72bf9492
DJ
7099static char *
7100partial_die_full_name (struct partial_die_info *pdi,
7101 struct dwarf2_cu *cu)
7102{
15d034d0 7103 const char *parent_scope;
72bf9492 7104
98bfdba5
PA
7105 /* If this is a template instantiation, we can not work out the
7106 template arguments from partial DIEs. So, unfortunately, we have
7107 to go through the full DIEs. At least any work we do building
7108 types here will be reused if full symbols are loaded later. */
7109 if (pdi->has_template_arguments)
7110 {
7111 fixup_partial_die (pdi, cu);
7112
7113 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7114 {
7115 struct die_info *die;
7116 struct attribute attr;
7117 struct dwarf2_cu *ref_cu = cu;
7118
b64f50a1 7119 /* DW_FORM_ref_addr is using section offset. */
b4069958 7120 attr.name = (enum dwarf_attribute) 0;
98bfdba5 7121 attr.form = DW_FORM_ref_addr;
9c541725 7122 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
7123 die = follow_die_ref (NULL, &attr, &ref_cu);
7124
7125 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7126 }
7127 }
7128
72bf9492
DJ
7129 parent_scope = partial_die_parent_scope (pdi, cu);
7130 if (parent_scope == NULL)
7131 return NULL;
7132 else
f55ee35c 7133 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
7134}
7135
7136static void
72bf9492 7137add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 7138{
e7c27a73 7139 struct objfile *objfile = cu->objfile;
3e29f34a 7140 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 7141 CORE_ADDR addr = 0;
15d034d0 7142 const char *actual_name = NULL;
e142c38c 7143 CORE_ADDR baseaddr;
15d034d0 7144 char *built_actual_name;
e142c38c
DJ
7145
7146 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7147
15d034d0
TT
7148 built_actual_name = partial_die_full_name (pdi, cu);
7149 if (built_actual_name != NULL)
7150 actual_name = built_actual_name;
63d06c5c 7151
72bf9492
DJ
7152 if (actual_name == NULL)
7153 actual_name = pdi->name;
7154
c906108c
SS
7155 switch (pdi->tag)
7156 {
7157 case DW_TAG_subprogram:
3e29f34a 7158 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 7159 if (pdi->is_external || cu->language == language_ada)
c906108c 7160 {
2cfa0c8d
JB
7161 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7162 of the global scope. But in Ada, we want to be able to access
7163 nested procedures globally. So all Ada subprograms are stored
7164 in the global scope. */
f47fb265 7165 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7166 built_actual_name != NULL,
f47fb265
MS
7167 VAR_DOMAIN, LOC_BLOCK,
7168 &objfile->global_psymbols,
1762568f 7169 addr, cu->language, objfile);
c906108c
SS
7170 }
7171 else
7172 {
f47fb265 7173 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7174 built_actual_name != NULL,
f47fb265
MS
7175 VAR_DOMAIN, LOC_BLOCK,
7176 &objfile->static_psymbols,
1762568f 7177 addr, cu->language, objfile);
c906108c 7178 }
0c1b455e
TT
7179
7180 if (pdi->main_subprogram && actual_name != NULL)
7181 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7182 break;
72929c62
JB
7183 case DW_TAG_constant:
7184 {
7185 struct psymbol_allocation_list *list;
7186
7187 if (pdi->is_external)
7188 list = &objfile->global_psymbols;
7189 else
7190 list = &objfile->static_psymbols;
f47fb265 7191 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7192 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7193 list, 0, cu->language, objfile);
72929c62
JB
7194 }
7195 break;
c906108c 7196 case DW_TAG_variable:
95554aad
TT
7197 if (pdi->d.locdesc)
7198 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7199
95554aad 7200 if (pdi->d.locdesc
caac4577
JG
7201 && addr == 0
7202 && !dwarf2_per_objfile->has_section_at_zero)
7203 {
7204 /* A global or static variable may also have been stripped
7205 out by the linker if unused, in which case its address
7206 will be nullified; do not add such variables into partial
7207 symbol table then. */
7208 }
7209 else if (pdi->is_external)
c906108c
SS
7210 {
7211 /* Global Variable.
7212 Don't enter into the minimal symbol tables as there is
7213 a minimal symbol table entry from the ELF symbols already.
7214 Enter into partial symbol table if it has a location
7215 descriptor or a type.
7216 If the location descriptor is missing, new_symbol will create
7217 a LOC_UNRESOLVED symbol, the address of the variable will then
7218 be determined from the minimal symbol table whenever the variable
7219 is referenced.
7220 The address for the partial symbol table entry is not
7221 used by GDB, but it comes in handy for debugging partial symbol
7222 table building. */
7223
95554aad 7224 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7225 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7226 built_actual_name != NULL,
f47fb265
MS
7227 VAR_DOMAIN, LOC_STATIC,
7228 &objfile->global_psymbols,
1762568f 7229 addr + baseaddr,
f47fb265 7230 cu->language, objfile);
c906108c
SS
7231 }
7232 else
7233 {
ff908ebf
AW
7234 int has_loc = pdi->d.locdesc != NULL;
7235
7236 /* Static Variable. Skip symbols whose value we cannot know (those
7237 without location descriptors or constant values). */
7238 if (!has_loc && !pdi->has_const_value)
decbce07 7239 {
15d034d0 7240 xfree (built_actual_name);
decbce07
MS
7241 return;
7242 }
ff908ebf 7243
f47fb265 7244 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7245 built_actual_name != NULL,
f47fb265
MS
7246 VAR_DOMAIN, LOC_STATIC,
7247 &objfile->static_psymbols,
ff908ebf 7248 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7249 cu->language, objfile);
c906108c
SS
7250 }
7251 break;
7252 case DW_TAG_typedef:
7253 case DW_TAG_base_type:
a02abb62 7254 case DW_TAG_subrange_type:
38d518c9 7255 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7256 built_actual_name != NULL,
176620f1 7257 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7258 &objfile->static_psymbols,
1762568f 7259 0, cu->language, objfile);
c906108c 7260 break;
74921315 7261 case DW_TAG_imported_declaration:
72bf9492
DJ
7262 case DW_TAG_namespace:
7263 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7264 built_actual_name != NULL,
72bf9492
DJ
7265 VAR_DOMAIN, LOC_TYPEDEF,
7266 &objfile->global_psymbols,
1762568f 7267 0, cu->language, objfile);
72bf9492 7268 break;
530e8392
KB
7269 case DW_TAG_module:
7270 add_psymbol_to_list (actual_name, strlen (actual_name),
7271 built_actual_name != NULL,
7272 MODULE_DOMAIN, LOC_TYPEDEF,
7273 &objfile->global_psymbols,
1762568f 7274 0, cu->language, objfile);
530e8392 7275 break;
c906108c 7276 case DW_TAG_class_type:
680b30c7 7277 case DW_TAG_interface_type:
c906108c
SS
7278 case DW_TAG_structure_type:
7279 case DW_TAG_union_type:
7280 case DW_TAG_enumeration_type:
fa4028e9
JB
7281 /* Skip external references. The DWARF standard says in the section
7282 about "Structure, Union, and Class Type Entries": "An incomplete
7283 structure, union or class type is represented by a structure,
7284 union or class entry that does not have a byte size attribute
7285 and that has a DW_AT_declaration attribute." */
7286 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7287 {
15d034d0 7288 xfree (built_actual_name);
decbce07
MS
7289 return;
7290 }
fa4028e9 7291
63d06c5c
DC
7292 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7293 static vs. global. */
38d518c9 7294 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7295 built_actual_name != NULL,
176620f1 7296 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7297 cu->language == language_cplus
63d06c5c
DC
7298 ? &objfile->global_psymbols
7299 : &objfile->static_psymbols,
1762568f 7300 0, cu->language, objfile);
c906108c 7301
c906108c
SS
7302 break;
7303 case DW_TAG_enumerator:
38d518c9 7304 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7305 built_actual_name != NULL,
176620f1 7306 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7307 cu->language == language_cplus
f6fe98ef
DJ
7308 ? &objfile->global_psymbols
7309 : &objfile->static_psymbols,
1762568f 7310 0, cu->language, objfile);
c906108c
SS
7311 break;
7312 default:
7313 break;
7314 }
5c4e30ca 7315
15d034d0 7316 xfree (built_actual_name);
c906108c
SS
7317}
7318
5c4e30ca
DC
7319/* Read a partial die corresponding to a namespace; also, add a symbol
7320 corresponding to that namespace to the symbol table. NAMESPACE is
7321 the name of the enclosing namespace. */
91c24f0a 7322
72bf9492
DJ
7323static void
7324add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7325 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7326 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7327{
72bf9492 7328 /* Add a symbol for the namespace. */
e7c27a73 7329
72bf9492 7330 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7331
7332 /* Now scan partial symbols in that namespace. */
7333
91c24f0a 7334 if (pdi->has_children)
cdc07690 7335 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7336}
7337
5d7cb8df
JK
7338/* Read a partial die corresponding to a Fortran module. */
7339
7340static void
7341add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7342 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7343{
530e8392
KB
7344 /* Add a symbol for the namespace. */
7345
7346 add_partial_symbol (pdi, cu);
7347
f55ee35c 7348 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7349
7350 if (pdi->has_children)
cdc07690 7351 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7352}
7353
bc30ff58
JB
7354/* Read a partial die corresponding to a subprogram and create a partial
7355 symbol for that subprogram. When the CU language allows it, this
7356 routine also defines a partial symbol for each nested subprogram
cdc07690 7357 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7358 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7359 and highest PC values found in PDI.
6e70227d 7360
cdc07690
YQ
7361 PDI may also be a lexical block, in which case we simply search
7362 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7363 Again, this is only performed when the CU language allows this
7364 type of definitions. */
7365
7366static void
7367add_partial_subprogram (struct partial_die_info *pdi,
7368 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7369 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7370{
7371 if (pdi->tag == DW_TAG_subprogram)
7372 {
7373 if (pdi->has_pc_info)
7374 {
7375 if (pdi->lowpc < *lowpc)
7376 *lowpc = pdi->lowpc;
7377 if (pdi->highpc > *highpc)
7378 *highpc = pdi->highpc;
cdc07690 7379 if (set_addrmap)
5734ee8b 7380 {
5734ee8b 7381 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7382 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7383 CORE_ADDR baseaddr;
7384 CORE_ADDR highpc;
7385 CORE_ADDR lowpc;
5734ee8b
DJ
7386
7387 baseaddr = ANOFFSET (objfile->section_offsets,
7388 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7389 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7390 pdi->lowpc + baseaddr);
7391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7392 pdi->highpc + baseaddr);
7393 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7394 cu->per_cu->v.psymtab);
5734ee8b 7395 }
481860b3
GB
7396 }
7397
7398 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7399 {
bc30ff58 7400 if (!pdi->is_declaration)
e8d05480
JB
7401 /* Ignore subprogram DIEs that do not have a name, they are
7402 illegal. Do not emit a complaint at this point, we will
7403 do so when we convert this psymtab into a symtab. */
7404 if (pdi->name)
7405 add_partial_symbol (pdi, cu);
bc30ff58
JB
7406 }
7407 }
6e70227d 7408
bc30ff58
JB
7409 if (! pdi->has_children)
7410 return;
7411
7412 if (cu->language == language_ada)
7413 {
7414 pdi = pdi->die_child;
7415 while (pdi != NULL)
7416 {
7417 fixup_partial_die (pdi, cu);
7418 if (pdi->tag == DW_TAG_subprogram
7419 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7420 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7421 pdi = pdi->die_sibling;
7422 }
7423 }
7424}
7425
91c24f0a
DC
7426/* Read a partial die corresponding to an enumeration type. */
7427
72bf9492
DJ
7428static void
7429add_partial_enumeration (struct partial_die_info *enum_pdi,
7430 struct dwarf2_cu *cu)
91c24f0a 7431{
72bf9492 7432 struct partial_die_info *pdi;
91c24f0a
DC
7433
7434 if (enum_pdi->name != NULL)
72bf9492
DJ
7435 add_partial_symbol (enum_pdi, cu);
7436
7437 pdi = enum_pdi->die_child;
7438 while (pdi)
91c24f0a 7439 {
72bf9492 7440 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7441 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7442 else
72bf9492
DJ
7443 add_partial_symbol (pdi, cu);
7444 pdi = pdi->die_sibling;
91c24f0a 7445 }
91c24f0a
DC
7446}
7447
6caca83c
CC
7448/* Return the initial uleb128 in the die at INFO_PTR. */
7449
7450static unsigned int
d521ce57 7451peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7452{
7453 unsigned int bytes_read;
7454
7455 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7456}
7457
4bb7a0a7
DJ
7458/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7459 Return the corresponding abbrev, or NULL if the number is zero (indicating
7460 an empty DIE). In either case *BYTES_READ will be set to the length of
7461 the initial number. */
7462
7463static struct abbrev_info *
d521ce57 7464peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7465 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7466{
7467 bfd *abfd = cu->objfile->obfd;
7468 unsigned int abbrev_number;
7469 struct abbrev_info *abbrev;
7470
7471 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7472
7473 if (abbrev_number == 0)
7474 return NULL;
7475
433df2d4 7476 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7477 if (!abbrev)
7478 {
422b9917
DE
7479 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7480 " at offset 0x%x [in module %s]"),
7481 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9c541725 7482 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
7483 }
7484
7485 return abbrev;
7486}
7487
93311388
DE
7488/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7489 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7490 DIE. Any children of the skipped DIEs will also be skipped. */
7491
d521ce57
TT
7492static const gdb_byte *
7493skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7494{
dee91e82 7495 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7496 struct abbrev_info *abbrev;
7497 unsigned int bytes_read;
7498
7499 while (1)
7500 {
7501 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7502 if (abbrev == NULL)
7503 return info_ptr + bytes_read;
7504 else
dee91e82 7505 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7506 }
7507}
7508
93311388
DE
7509/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7510 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7511 abbrev corresponding to that skipped uleb128 should be passed in
7512 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7513 children. */
7514
d521ce57
TT
7515static const gdb_byte *
7516skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7517 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7518{
7519 unsigned int bytes_read;
7520 struct attribute attr;
dee91e82
DE
7521 bfd *abfd = reader->abfd;
7522 struct dwarf2_cu *cu = reader->cu;
d521ce57 7523 const gdb_byte *buffer = reader->buffer;
f664829e 7524 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7525 unsigned int form, i;
7526
7527 for (i = 0; i < abbrev->num_attrs; i++)
7528 {
7529 /* The only abbrev we care about is DW_AT_sibling. */
7530 if (abbrev->attrs[i].name == DW_AT_sibling)
7531 {
dee91e82 7532 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7533 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7534 complaint (&symfile_complaints,
7535 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7536 else
b9502d3f 7537 {
9c541725
PA
7538 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7539 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
7540
7541 if (sibling_ptr < info_ptr)
7542 complaint (&symfile_complaints,
7543 _("DW_AT_sibling points backwards"));
22869d73
KS
7544 else if (sibling_ptr > reader->buffer_end)
7545 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7546 else
7547 return sibling_ptr;
7548 }
4bb7a0a7
DJ
7549 }
7550
7551 /* If it isn't DW_AT_sibling, skip this attribute. */
7552 form = abbrev->attrs[i].form;
7553 skip_attribute:
7554 switch (form)
7555 {
4bb7a0a7 7556 case DW_FORM_ref_addr:
ae411497
TT
7557 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7558 and later it is offset sized. */
7559 if (cu->header.version == 2)
7560 info_ptr += cu->header.addr_size;
7561 else
7562 info_ptr += cu->header.offset_size;
7563 break;
36586728
TT
7564 case DW_FORM_GNU_ref_alt:
7565 info_ptr += cu->header.offset_size;
7566 break;
ae411497 7567 case DW_FORM_addr:
4bb7a0a7
DJ
7568 info_ptr += cu->header.addr_size;
7569 break;
7570 case DW_FORM_data1:
7571 case DW_FORM_ref1:
7572 case DW_FORM_flag:
7573 info_ptr += 1;
7574 break;
2dc7f7b3 7575 case DW_FORM_flag_present:
43988095 7576 case DW_FORM_implicit_const:
2dc7f7b3 7577 break;
4bb7a0a7
DJ
7578 case DW_FORM_data2:
7579 case DW_FORM_ref2:
7580 info_ptr += 2;
7581 break;
7582 case DW_FORM_data4:
7583 case DW_FORM_ref4:
7584 info_ptr += 4;
7585 break;
7586 case DW_FORM_data8:
7587 case DW_FORM_ref8:
55f1336d 7588 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7589 info_ptr += 8;
7590 break;
0224619f
JK
7591 case DW_FORM_data16:
7592 info_ptr += 16;
7593 break;
4bb7a0a7 7594 case DW_FORM_string:
9b1c24c8 7595 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7596 info_ptr += bytes_read;
7597 break;
2dc7f7b3 7598 case DW_FORM_sec_offset:
4bb7a0a7 7599 case DW_FORM_strp:
36586728 7600 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7601 info_ptr += cu->header.offset_size;
7602 break;
2dc7f7b3 7603 case DW_FORM_exprloc:
4bb7a0a7
DJ
7604 case DW_FORM_block:
7605 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7606 info_ptr += bytes_read;
7607 break;
7608 case DW_FORM_block1:
7609 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7610 break;
7611 case DW_FORM_block2:
7612 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7613 break;
7614 case DW_FORM_block4:
7615 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7616 break;
7617 case DW_FORM_sdata:
7618 case DW_FORM_udata:
7619 case DW_FORM_ref_udata:
3019eac3
DE
7620 case DW_FORM_GNU_addr_index:
7621 case DW_FORM_GNU_str_index:
d521ce57 7622 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7623 break;
7624 case DW_FORM_indirect:
7625 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7626 info_ptr += bytes_read;
7627 /* We need to continue parsing from here, so just go back to
7628 the top. */
7629 goto skip_attribute;
7630
7631 default:
3e43a32a
MS
7632 error (_("Dwarf Error: Cannot handle %s "
7633 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7634 dwarf_form_name (form),
7635 bfd_get_filename (abfd));
7636 }
7637 }
7638
7639 if (abbrev->has_children)
dee91e82 7640 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7641 else
7642 return info_ptr;
7643}
7644
93311388 7645/* Locate ORIG_PDI's sibling.
dee91e82 7646 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7647
d521ce57 7648static const gdb_byte *
dee91e82
DE
7649locate_pdi_sibling (const struct die_reader_specs *reader,
7650 struct partial_die_info *orig_pdi,
d521ce57 7651 const gdb_byte *info_ptr)
91c24f0a
DC
7652{
7653 /* Do we know the sibling already? */
72bf9492 7654
91c24f0a
DC
7655 if (orig_pdi->sibling)
7656 return orig_pdi->sibling;
7657
7658 /* Are there any children to deal with? */
7659
7660 if (!orig_pdi->has_children)
7661 return info_ptr;
7662
4bb7a0a7 7663 /* Skip the children the long way. */
91c24f0a 7664
dee91e82 7665 return skip_children (reader, info_ptr);
91c24f0a
DC
7666}
7667
257e7a09 7668/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7669 not NULL. */
c906108c
SS
7670
7671static void
257e7a09
YQ
7672dwarf2_read_symtab (struct partial_symtab *self,
7673 struct objfile *objfile)
c906108c 7674{
257e7a09 7675 if (self->readin)
c906108c 7676 {
442e4d9c 7677 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7678 self->filename);
442e4d9c
YQ
7679 }
7680 else
7681 {
7682 if (info_verbose)
c906108c 7683 {
442e4d9c 7684 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7685 self->filename);
442e4d9c 7686 gdb_flush (gdb_stdout);
c906108c 7687 }
c906108c 7688
442e4d9c 7689 /* Restore our global data. */
9a3c8263
SM
7690 dwarf2_per_objfile
7691 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7692 dwarf2_objfile_data_key);
10b3939b 7693
442e4d9c
YQ
7694 /* If this psymtab is constructed from a debug-only objfile, the
7695 has_section_at_zero flag will not necessarily be correct. We
7696 can get the correct value for this flag by looking at the data
7697 associated with the (presumably stripped) associated objfile. */
7698 if (objfile->separate_debug_objfile_backlink)
7699 {
7700 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7701 = ((struct dwarf2_per_objfile *)
7702 objfile_data (objfile->separate_debug_objfile_backlink,
7703 dwarf2_objfile_data_key));
9a619af0 7704
442e4d9c
YQ
7705 dwarf2_per_objfile->has_section_at_zero
7706 = dpo_backlink->has_section_at_zero;
7707 }
b2ab525c 7708
442e4d9c 7709 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7710
257e7a09 7711 psymtab_to_symtab_1 (self);
c906108c 7712
442e4d9c
YQ
7713 /* Finish up the debug error message. */
7714 if (info_verbose)
7715 printf_filtered (_("done.\n"));
c906108c 7716 }
95554aad
TT
7717
7718 process_cu_includes ();
c906108c 7719}
9cdd5dbd
DE
7720\f
7721/* Reading in full CUs. */
c906108c 7722
10b3939b
DJ
7723/* Add PER_CU to the queue. */
7724
7725static void
95554aad
TT
7726queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7727 enum language pretend_language)
10b3939b
DJ
7728{
7729 struct dwarf2_queue_item *item;
7730
7731 per_cu->queued = 1;
8d749320 7732 item = XNEW (struct dwarf2_queue_item);
10b3939b 7733 item->per_cu = per_cu;
95554aad 7734 item->pretend_language = pretend_language;
10b3939b
DJ
7735 item->next = NULL;
7736
7737 if (dwarf2_queue == NULL)
7738 dwarf2_queue = item;
7739 else
7740 dwarf2_queue_tail->next = item;
7741
7742 dwarf2_queue_tail = item;
7743}
7744
89e63ee4
DE
7745/* If PER_CU is not yet queued, add it to the queue.
7746 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7747 dependency.
0907af0c 7748 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7749 meaning either PER_CU is already queued or it is already loaded.
7750
7751 N.B. There is an invariant here that if a CU is queued then it is loaded.
7752 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7753
7754static int
89e63ee4 7755maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7756 struct dwarf2_per_cu_data *per_cu,
7757 enum language pretend_language)
7758{
7759 /* We may arrive here during partial symbol reading, if we need full
7760 DIEs to process an unusual case (e.g. template arguments). Do
7761 not queue PER_CU, just tell our caller to load its DIEs. */
7762 if (dwarf2_per_objfile->reading_partial_symbols)
7763 {
7764 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7765 return 1;
7766 return 0;
7767 }
7768
7769 /* Mark the dependence relation so that we don't flush PER_CU
7770 too early. */
89e63ee4
DE
7771 if (dependent_cu != NULL)
7772 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7773
7774 /* If it's already on the queue, we have nothing to do. */
7775 if (per_cu->queued)
7776 return 0;
7777
7778 /* If the compilation unit is already loaded, just mark it as
7779 used. */
7780 if (per_cu->cu != NULL)
7781 {
7782 per_cu->cu->last_used = 0;
7783 return 0;
7784 }
7785
7786 /* Add it to the queue. */
7787 queue_comp_unit (per_cu, pretend_language);
7788
7789 return 1;
7790}
7791
10b3939b
DJ
7792/* Process the queue. */
7793
7794static void
a0f42c21 7795process_queue (void)
10b3939b
DJ
7796{
7797 struct dwarf2_queue_item *item, *next_item;
7798
b4f54984 7799 if (dwarf_read_debug)
45cfd468
DE
7800 {
7801 fprintf_unfiltered (gdb_stdlog,
7802 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7803 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7804 }
7805
03dd20cc
DJ
7806 /* The queue starts out with one item, but following a DIE reference
7807 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7808 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7809 {
cc12ce38
DE
7810 if ((dwarf2_per_objfile->using_index
7811 ? !item->per_cu->v.quick->compunit_symtab
7812 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7813 /* Skip dummy CUs. */
7814 && item->per_cu->cu != NULL)
f4dc4d17
DE
7815 {
7816 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7817 unsigned int debug_print_threshold;
247f5c4f 7818 char buf[100];
f4dc4d17 7819
247f5c4f 7820 if (per_cu->is_debug_types)
f4dc4d17 7821 {
247f5c4f
DE
7822 struct signatured_type *sig_type =
7823 (struct signatured_type *) per_cu;
7824
7825 sprintf (buf, "TU %s at offset 0x%x",
73be47f5 7826 hex_string (sig_type->signature),
9c541725 7827 to_underlying (per_cu->sect_off));
73be47f5
DE
7828 /* There can be 100s of TUs.
7829 Only print them in verbose mode. */
7830 debug_print_threshold = 2;
f4dc4d17 7831 }
247f5c4f 7832 else
73be47f5 7833 {
9c541725
PA
7834 sprintf (buf, "CU at offset 0x%x",
7835 to_underlying (per_cu->sect_off));
73be47f5
DE
7836 debug_print_threshold = 1;
7837 }
247f5c4f 7838
b4f54984 7839 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7840 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7841
7842 if (per_cu->is_debug_types)
7843 process_full_type_unit (per_cu, item->pretend_language);
7844 else
7845 process_full_comp_unit (per_cu, item->pretend_language);
7846
b4f54984 7847 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7848 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7849 }
10b3939b
DJ
7850
7851 item->per_cu->queued = 0;
7852 next_item = item->next;
7853 xfree (item);
7854 }
7855
7856 dwarf2_queue_tail = NULL;
45cfd468 7857
b4f54984 7858 if (dwarf_read_debug)
45cfd468
DE
7859 {
7860 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7861 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7862 }
10b3939b
DJ
7863}
7864
7865/* Free all allocated queue entries. This function only releases anything if
7866 an error was thrown; if the queue was processed then it would have been
7867 freed as we went along. */
7868
7869static void
7870dwarf2_release_queue (void *dummy)
7871{
7872 struct dwarf2_queue_item *item, *last;
7873
7874 item = dwarf2_queue;
7875 while (item)
7876 {
7877 /* Anything still marked queued is likely to be in an
7878 inconsistent state, so discard it. */
7879 if (item->per_cu->queued)
7880 {
7881 if (item->per_cu->cu != NULL)
dee91e82 7882 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7883 item->per_cu->queued = 0;
7884 }
7885
7886 last = item;
7887 item = item->next;
7888 xfree (last);
7889 }
7890
7891 dwarf2_queue = dwarf2_queue_tail = NULL;
7892}
7893
7894/* Read in full symbols for PST, and anything it depends on. */
7895
c906108c 7896static void
fba45db2 7897psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7898{
10b3939b 7899 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7900 int i;
7901
95554aad
TT
7902 if (pst->readin)
7903 return;
7904
aaa75496 7905 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7906 if (!pst->dependencies[i]->readin
7907 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7908 {
7909 /* Inform about additional files that need to be read in. */
7910 if (info_verbose)
7911 {
a3f17187 7912 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7913 fputs_filtered (" ", gdb_stdout);
7914 wrap_here ("");
7915 fputs_filtered ("and ", gdb_stdout);
7916 wrap_here ("");
7917 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7918 wrap_here (""); /* Flush output. */
aaa75496
JB
7919 gdb_flush (gdb_stdout);
7920 }
7921 psymtab_to_symtab_1 (pst->dependencies[i]);
7922 }
7923
9a3c8263 7924 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7925
7926 if (per_cu == NULL)
aaa75496
JB
7927 {
7928 /* It's an include file, no symbols to read for it.
7929 Everything is in the parent symtab. */
7930 pst->readin = 1;
7931 return;
7932 }
c906108c 7933
a0f42c21 7934 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7935}
7936
dee91e82
DE
7937/* Trivial hash function for die_info: the hash value of a DIE
7938 is its offset in .debug_info for this objfile. */
10b3939b 7939
dee91e82
DE
7940static hashval_t
7941die_hash (const void *item)
10b3939b 7942{
9a3c8263 7943 const struct die_info *die = (const struct die_info *) item;
6502dd73 7944
9c541725 7945 return to_underlying (die->sect_off);
dee91e82 7946}
63d06c5c 7947
dee91e82
DE
7948/* Trivial comparison function for die_info structures: two DIEs
7949 are equal if they have the same offset. */
98bfdba5 7950
dee91e82
DE
7951static int
7952die_eq (const void *item_lhs, const void *item_rhs)
7953{
9a3c8263
SM
7954 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7955 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7956
9c541725 7957 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 7958}
c906108c 7959
dee91e82
DE
7960/* die_reader_func for load_full_comp_unit.
7961 This is identical to read_signatured_type_reader,
7962 but is kept separate for now. */
c906108c 7963
dee91e82
DE
7964static void
7965load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7966 const gdb_byte *info_ptr,
dee91e82
DE
7967 struct die_info *comp_unit_die,
7968 int has_children,
7969 void *data)
7970{
7971 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7972 enum language *language_ptr = (enum language *) data;
6caca83c 7973
dee91e82
DE
7974 gdb_assert (cu->die_hash == NULL);
7975 cu->die_hash =
7976 htab_create_alloc_ex (cu->header.length / 12,
7977 die_hash,
7978 die_eq,
7979 NULL,
7980 &cu->comp_unit_obstack,
7981 hashtab_obstack_allocate,
7982 dummy_obstack_deallocate);
e142c38c 7983
dee91e82
DE
7984 if (has_children)
7985 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7986 &info_ptr, comp_unit_die);
7987 cu->dies = comp_unit_die;
7988 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7989
7990 /* We try not to read any attributes in this function, because not
9cdd5dbd 7991 all CUs needed for references have been loaded yet, and symbol
10b3939b 7992 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7993 or we won't be able to build types correctly.
7994 Similarly, if we do not read the producer, we can not apply
7995 producer-specific interpretation. */
95554aad 7996 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7997}
10b3939b 7998
dee91e82 7999/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 8000
dee91e82 8001static void
95554aad
TT
8002load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8003 enum language pretend_language)
dee91e82 8004{
3019eac3 8005 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 8006
f4dc4d17
DE
8007 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8008 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
8009}
8010
3da10d80
KS
8011/* Add a DIE to the delayed physname list. */
8012
8013static void
8014add_to_method_list (struct type *type, int fnfield_index, int index,
8015 const char *name, struct die_info *die,
8016 struct dwarf2_cu *cu)
8017{
8018 struct delayed_method_info mi;
8019 mi.type = type;
8020 mi.fnfield_index = fnfield_index;
8021 mi.index = index;
8022 mi.name = name;
8023 mi.die = die;
8024 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8025}
8026
8027/* A cleanup for freeing the delayed method list. */
8028
8029static void
8030free_delayed_list (void *ptr)
8031{
8032 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8033 if (cu->method_list != NULL)
8034 {
8035 VEC_free (delayed_method_info, cu->method_list);
8036 cu->method_list = NULL;
8037 }
8038}
8039
3693fdb3
PA
8040/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8041 "const" / "volatile". If so, decrements LEN by the length of the
8042 modifier and return true. Otherwise return false. */
8043
8044template<size_t N>
8045static bool
8046check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8047{
8048 size_t mod_len = sizeof (mod) - 1;
8049 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8050 {
8051 len -= mod_len;
8052 return true;
8053 }
8054 return false;
8055}
8056
3da10d80
KS
8057/* Compute the physnames of any methods on the CU's method list.
8058
8059 The computation of method physnames is delayed in order to avoid the
8060 (bad) condition that one of the method's formal parameters is of an as yet
8061 incomplete type. */
8062
8063static void
8064compute_delayed_physnames (struct dwarf2_cu *cu)
8065{
8066 int i;
8067 struct delayed_method_info *mi;
3693fdb3
PA
8068
8069 /* Only C++ delays computing physnames. */
8070 if (VEC_empty (delayed_method_info, cu->method_list))
8071 return;
8072 gdb_assert (cu->language == language_cplus);
8073
3da10d80
KS
8074 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8075 {
1d06ead6 8076 const char *physname;
3da10d80
KS
8077 struct fn_fieldlist *fn_flp
8078 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 8079 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
8080 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8081 = physname ? physname : "";
3693fdb3
PA
8082
8083 /* Since there's no tag to indicate whether a method is a
8084 const/volatile overload, extract that information out of the
8085 demangled name. */
8086 if (physname != NULL)
8087 {
8088 size_t len = strlen (physname);
8089
8090 while (1)
8091 {
8092 if (physname[len] == ')') /* shortcut */
8093 break;
8094 else if (check_modifier (physname, len, " const"))
8095 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8096 else if (check_modifier (physname, len, " volatile"))
8097 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8098 else
8099 break;
8100 }
8101 }
3da10d80
KS
8102 }
8103}
8104
a766d390
DE
8105/* Go objects should be embedded in a DW_TAG_module DIE,
8106 and it's not clear if/how imported objects will appear.
8107 To keep Go support simple until that's worked out,
8108 go back through what we've read and create something usable.
8109 We could do this while processing each DIE, and feels kinda cleaner,
8110 but that way is more invasive.
8111 This is to, for example, allow the user to type "p var" or "b main"
8112 without having to specify the package name, and allow lookups
8113 of module.object to work in contexts that use the expression
8114 parser. */
8115
8116static void
8117fixup_go_packaging (struct dwarf2_cu *cu)
8118{
8119 char *package_name = NULL;
8120 struct pending *list;
8121 int i;
8122
8123 for (list = global_symbols; list != NULL; list = list->next)
8124 {
8125 for (i = 0; i < list->nsyms; ++i)
8126 {
8127 struct symbol *sym = list->symbol[i];
8128
8129 if (SYMBOL_LANGUAGE (sym) == language_go
8130 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8131 {
8132 char *this_package_name = go_symbol_package_name (sym);
8133
8134 if (this_package_name == NULL)
8135 continue;
8136 if (package_name == NULL)
8137 package_name = this_package_name;
8138 else
8139 {
8140 if (strcmp (package_name, this_package_name) != 0)
8141 complaint (&symfile_complaints,
8142 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
8143 (symbol_symtab (sym) != NULL
8144 ? symtab_to_filename_for_display
8145 (symbol_symtab (sym))
4262abfb 8146 : objfile_name (cu->objfile)),
a766d390
DE
8147 this_package_name, package_name);
8148 xfree (this_package_name);
8149 }
8150 }
8151 }
8152 }
8153
8154 if (package_name != NULL)
8155 {
8156 struct objfile *objfile = cu->objfile;
34a68019 8157 const char *saved_package_name
224c3ddb
SM
8158 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8159 package_name,
8160 strlen (package_name));
19f392bc
UW
8161 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8162 saved_package_name);
a766d390
DE
8163 struct symbol *sym;
8164
8165 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8166
e623cf5d 8167 sym = allocate_symbol (objfile);
f85f34ed 8168 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
8169 SYMBOL_SET_NAMES (sym, saved_package_name,
8170 strlen (saved_package_name), 0, objfile);
a766d390
DE
8171 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8172 e.g., "main" finds the "main" module and not C's main(). */
8173 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 8174 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
8175 SYMBOL_TYPE (sym) = type;
8176
8177 add_symbol_to_list (sym, &global_symbols);
8178
8179 xfree (package_name);
8180 }
8181}
8182
95554aad
TT
8183/* Return the symtab for PER_CU. This works properly regardless of
8184 whether we're using the index or psymtabs. */
8185
43f3e411
DE
8186static struct compunit_symtab *
8187get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
8188{
8189 return (dwarf2_per_objfile->using_index
43f3e411
DE
8190 ? per_cu->v.quick->compunit_symtab
8191 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
8192}
8193
8194/* A helper function for computing the list of all symbol tables
8195 included by PER_CU. */
8196
8197static void
43f3e411 8198recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 8199 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 8200 struct dwarf2_per_cu_data *per_cu,
43f3e411 8201 struct compunit_symtab *immediate_parent)
95554aad
TT
8202{
8203 void **slot;
8204 int ix;
43f3e411 8205 struct compunit_symtab *cust;
95554aad
TT
8206 struct dwarf2_per_cu_data *iter;
8207
8208 slot = htab_find_slot (all_children, per_cu, INSERT);
8209 if (*slot != NULL)
8210 {
8211 /* This inclusion and its children have been processed. */
8212 return;
8213 }
8214
8215 *slot = per_cu;
8216 /* Only add a CU if it has a symbol table. */
43f3e411
DE
8217 cust = get_compunit_symtab (per_cu);
8218 if (cust != NULL)
ec94af83
DE
8219 {
8220 /* If this is a type unit only add its symbol table if we haven't
8221 seen it yet (type unit per_cu's can share symtabs). */
8222 if (per_cu->is_debug_types)
8223 {
43f3e411 8224 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8225 if (*slot == NULL)
8226 {
43f3e411
DE
8227 *slot = cust;
8228 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8229 if (cust->user == NULL)
8230 cust->user = immediate_parent;
ec94af83
DE
8231 }
8232 }
8233 else
f9125b6c 8234 {
43f3e411
DE
8235 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8236 if (cust->user == NULL)
8237 cust->user = immediate_parent;
f9125b6c 8238 }
ec94af83 8239 }
95554aad
TT
8240
8241 for (ix = 0;
796a7ff8 8242 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8243 ++ix)
ec94af83
DE
8244 {
8245 recursively_compute_inclusions (result, all_children,
43f3e411 8246 all_type_symtabs, iter, cust);
ec94af83 8247 }
95554aad
TT
8248}
8249
43f3e411 8250/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8251 PER_CU. */
8252
8253static void
43f3e411 8254compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8255{
f4dc4d17
DE
8256 gdb_assert (! per_cu->is_debug_types);
8257
796a7ff8 8258 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8259 {
8260 int ix, len;
ec94af83 8261 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8262 struct compunit_symtab *compunit_symtab_iter;
8263 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8264 htab_t all_children, all_type_symtabs;
43f3e411 8265 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8266
8267 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8268 if (cust == NULL)
95554aad
TT
8269 return;
8270
8271 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8272 NULL, xcalloc, xfree);
ec94af83
DE
8273 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8274 NULL, xcalloc, xfree);
95554aad
TT
8275
8276 for (ix = 0;
796a7ff8 8277 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8278 ix, per_cu_iter);
95554aad 8279 ++ix)
ec94af83
DE
8280 {
8281 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8282 all_type_symtabs, per_cu_iter,
43f3e411 8283 cust);
ec94af83 8284 }
95554aad 8285
ec94af83 8286 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8287 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8288 cust->includes
8d749320
SM
8289 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8290 struct compunit_symtab *, len + 1);
95554aad 8291 for (ix = 0;
43f3e411
DE
8292 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8293 compunit_symtab_iter);
95554aad 8294 ++ix)
43f3e411
DE
8295 cust->includes[ix] = compunit_symtab_iter;
8296 cust->includes[len] = NULL;
95554aad 8297
43f3e411 8298 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8299 htab_delete (all_children);
ec94af83 8300 htab_delete (all_type_symtabs);
95554aad
TT
8301 }
8302}
8303
8304/* Compute the 'includes' field for the symtabs of all the CUs we just
8305 read. */
8306
8307static void
8308process_cu_includes (void)
8309{
8310 int ix;
8311 struct dwarf2_per_cu_data *iter;
8312
8313 for (ix = 0;
8314 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8315 ix, iter);
8316 ++ix)
f4dc4d17
DE
8317 {
8318 if (! iter->is_debug_types)
43f3e411 8319 compute_compunit_symtab_includes (iter);
f4dc4d17 8320 }
95554aad
TT
8321
8322 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8323}
8324
9cdd5dbd 8325/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8326 already been loaded into memory. */
8327
8328static void
95554aad
TT
8329process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8330 enum language pretend_language)
10b3939b 8331{
10b3939b 8332 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8333 struct objfile *objfile = per_cu->objfile;
3e29f34a 8334 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8335 CORE_ADDR lowpc, highpc;
43f3e411 8336 struct compunit_symtab *cust;
3da10d80 8337 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8338 CORE_ADDR baseaddr;
4359dff1 8339 struct block *static_block;
3e29f34a 8340 CORE_ADDR addr;
10b3939b
DJ
8341
8342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8343
10b3939b
DJ
8344 buildsym_init ();
8345 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8346 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8347
8348 cu->list_in_scope = &file_symbols;
c906108c 8349
95554aad
TT
8350 cu->language = pretend_language;
8351 cu->language_defn = language_def (cu->language);
8352
c906108c 8353 /* Do line number decoding in read_file_scope () */
10b3939b 8354 process_die (cu->dies, cu);
c906108c 8355
a766d390
DE
8356 /* For now fudge the Go package. */
8357 if (cu->language == language_go)
8358 fixup_go_packaging (cu);
8359
3da10d80
KS
8360 /* Now that we have processed all the DIEs in the CU, all the types
8361 should be complete, and it should now be safe to compute all of the
8362 physnames. */
8363 compute_delayed_physnames (cu);
8364 do_cleanups (delayed_list_cleanup);
8365
fae299cd
DC
8366 /* Some compilers don't define a DW_AT_high_pc attribute for the
8367 compilation unit. If the DW_AT_high_pc is missing, synthesize
8368 it, by scanning the DIE's below the compilation unit. */
10b3939b 8369 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8370
3e29f34a
MR
8371 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8372 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8373
8374 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8375 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8376 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8377 addrmap to help ensure it has an accurate map of pc values belonging to
8378 this comp unit. */
8379 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8380
43f3e411
DE
8381 cust = end_symtab_from_static_block (static_block,
8382 SECT_OFF_TEXT (objfile), 0);
c906108c 8383
43f3e411 8384 if (cust != NULL)
c906108c 8385 {
df15bd07 8386 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8387
8be455d7
JK
8388 /* Set symtab language to language from DW_AT_language. If the
8389 compilation is from a C file generated by language preprocessors, do
8390 not set the language if it was already deduced by start_subfile. */
43f3e411 8391 if (!(cu->language == language_c
40e3ad0e 8392 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8393 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8394
8395 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8396 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8397 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8398 there were bugs in prologue debug info, fixed later in GCC-4.5
8399 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8400
8401 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8402 needed, it would be wrong due to missing DW_AT_producer there.
8403
8404 Still one can confuse GDB by using non-standard GCC compilation
8405 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8406 */
ab260dad 8407 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8408 cust->locations_valid = 1;
e0d00bc7
JK
8409
8410 if (gcc_4_minor >= 5)
43f3e411 8411 cust->epilogue_unwind_valid = 1;
96408a79 8412
43f3e411 8413 cust->call_site_htab = cu->call_site_htab;
c906108c 8414 }
9291a0cd
TT
8415
8416 if (dwarf2_per_objfile->using_index)
43f3e411 8417 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8418 else
8419 {
8420 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8421 pst->compunit_symtab = cust;
9291a0cd
TT
8422 pst->readin = 1;
8423 }
c906108c 8424
95554aad
TT
8425 /* Push it for inclusion processing later. */
8426 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8427
c906108c 8428 do_cleanups (back_to);
f4dc4d17 8429}
45cfd468 8430
f4dc4d17
DE
8431/* Generate full symbol information for type unit PER_CU, whose DIEs have
8432 already been loaded into memory. */
8433
8434static void
8435process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8436 enum language pretend_language)
8437{
8438 struct dwarf2_cu *cu = per_cu->cu;
8439 struct objfile *objfile = per_cu->objfile;
43f3e411 8440 struct compunit_symtab *cust;
f4dc4d17 8441 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8442 struct signatured_type *sig_type;
8443
8444 gdb_assert (per_cu->is_debug_types);
8445 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8446
8447 buildsym_init ();
8448 back_to = make_cleanup (really_free_pendings, NULL);
8449 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8450
8451 cu->list_in_scope = &file_symbols;
8452
8453 cu->language = pretend_language;
8454 cu->language_defn = language_def (cu->language);
8455
8456 /* The symbol tables are set up in read_type_unit_scope. */
8457 process_die (cu->dies, cu);
8458
8459 /* For now fudge the Go package. */
8460 if (cu->language == language_go)
8461 fixup_go_packaging (cu);
8462
8463 /* Now that we have processed all the DIEs in the CU, all the types
8464 should be complete, and it should now be safe to compute all of the
8465 physnames. */
8466 compute_delayed_physnames (cu);
8467 do_cleanups (delayed_list_cleanup);
8468
8469 /* TUs share symbol tables.
8470 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8471 of it with end_expandable_symtab. Otherwise, complete the addition of
8472 this TU's symbols to the existing symtab. */
43f3e411 8473 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8474 {
43f3e411
DE
8475 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8476 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8477
43f3e411 8478 if (cust != NULL)
f4dc4d17
DE
8479 {
8480 /* Set symtab language to language from DW_AT_language. If the
8481 compilation is from a C file generated by language preprocessors,
8482 do not set the language if it was already deduced by
8483 start_subfile. */
43f3e411
DE
8484 if (!(cu->language == language_c
8485 && COMPUNIT_FILETABS (cust)->language != language_c))
8486 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8487 }
8488 }
8489 else
8490 {
0ab9ce85 8491 augment_type_symtab ();
43f3e411 8492 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8493 }
8494
8495 if (dwarf2_per_objfile->using_index)
43f3e411 8496 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8497 else
8498 {
8499 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8500 pst->compunit_symtab = cust;
f4dc4d17 8501 pst->readin = 1;
45cfd468 8502 }
f4dc4d17
DE
8503
8504 do_cleanups (back_to);
c906108c
SS
8505}
8506
95554aad
TT
8507/* Process an imported unit DIE. */
8508
8509static void
8510process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8511{
8512 struct attribute *attr;
8513
f4dc4d17
DE
8514 /* For now we don't handle imported units in type units. */
8515 if (cu->per_cu->is_debug_types)
8516 {
8517 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8518 " supported in type units [in module %s]"),
4262abfb 8519 objfile_name (cu->objfile));
f4dc4d17
DE
8520 }
8521
95554aad
TT
8522 attr = dwarf2_attr (die, DW_AT_import, cu);
8523 if (attr != NULL)
8524 {
9c541725
PA
8525 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8526 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8527 dwarf2_per_cu_data *per_cu
8528 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
95554aad 8529
69d751e3 8530 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8531 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8532 load_full_comp_unit (per_cu, cu->language);
8533
796a7ff8 8534 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8535 per_cu);
8536 }
8537}
8538
4c8aa72d
PA
8539/* RAII object that represents a process_die scope: i.e.,
8540 starts/finishes processing a DIE. */
8541class process_die_scope
adde2bff 8542{
4c8aa72d
PA
8543public:
8544 process_die_scope (die_info *die, dwarf2_cu *cu)
8545 : m_die (die), m_cu (cu)
8546 {
8547 /* We should only be processing DIEs not already in process. */
8548 gdb_assert (!m_die->in_process);
8549 m_die->in_process = true;
8550 }
8c3cb9fa 8551
4c8aa72d
PA
8552 ~process_die_scope ()
8553 {
8554 m_die->in_process = false;
8555
8556 /* If we're done processing the DIE for the CU that owns the line
8557 header, we don't need the line header anymore. */
8558 if (m_cu->line_header_die_owner == m_die)
8559 {
8560 delete m_cu->line_header;
8561 m_cu->line_header = NULL;
8562 m_cu->line_header_die_owner = NULL;
8563 }
8564 }
8565
8566private:
8567 die_info *m_die;
8568 dwarf2_cu *m_cu;
8569};
adde2bff 8570
c906108c
SS
8571/* Process a die and its children. */
8572
8573static void
e7c27a73 8574process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8575{
4c8aa72d 8576 process_die_scope scope (die, cu);
adde2bff 8577
c906108c
SS
8578 switch (die->tag)
8579 {
8580 case DW_TAG_padding:
8581 break;
8582 case DW_TAG_compile_unit:
95554aad 8583 case DW_TAG_partial_unit:
e7c27a73 8584 read_file_scope (die, cu);
c906108c 8585 break;
348e048f
DE
8586 case DW_TAG_type_unit:
8587 read_type_unit_scope (die, cu);
8588 break;
c906108c 8589 case DW_TAG_subprogram:
c906108c 8590 case DW_TAG_inlined_subroutine:
edb3359d 8591 read_func_scope (die, cu);
c906108c
SS
8592 break;
8593 case DW_TAG_lexical_block:
14898363
L
8594 case DW_TAG_try_block:
8595 case DW_TAG_catch_block:
e7c27a73 8596 read_lexical_block_scope (die, cu);
c906108c 8597 break;
216f72a1 8598 case DW_TAG_call_site:
96408a79
SA
8599 case DW_TAG_GNU_call_site:
8600 read_call_site_scope (die, cu);
8601 break;
c906108c 8602 case DW_TAG_class_type:
680b30c7 8603 case DW_TAG_interface_type:
c906108c
SS
8604 case DW_TAG_structure_type:
8605 case DW_TAG_union_type:
134d01f1 8606 process_structure_scope (die, cu);
c906108c
SS
8607 break;
8608 case DW_TAG_enumeration_type:
134d01f1 8609 process_enumeration_scope (die, cu);
c906108c 8610 break;
134d01f1 8611
f792889a
DJ
8612 /* These dies have a type, but processing them does not create
8613 a symbol or recurse to process the children. Therefore we can
8614 read them on-demand through read_type_die. */
c906108c 8615 case DW_TAG_subroutine_type:
72019c9c 8616 case DW_TAG_set_type:
c906108c 8617 case DW_TAG_array_type:
c906108c 8618 case DW_TAG_pointer_type:
c906108c 8619 case DW_TAG_ptr_to_member_type:
c906108c 8620 case DW_TAG_reference_type:
4297a3f0 8621 case DW_TAG_rvalue_reference_type:
c906108c 8622 case DW_TAG_string_type:
c906108c 8623 break;
134d01f1 8624
c906108c 8625 case DW_TAG_base_type:
a02abb62 8626 case DW_TAG_subrange_type:
cb249c71 8627 case DW_TAG_typedef:
134d01f1
DJ
8628 /* Add a typedef symbol for the type definition, if it has a
8629 DW_AT_name. */
f792889a 8630 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8631 break;
c906108c 8632 case DW_TAG_common_block:
e7c27a73 8633 read_common_block (die, cu);
c906108c
SS
8634 break;
8635 case DW_TAG_common_inclusion:
8636 break;
d9fa45fe 8637 case DW_TAG_namespace:
4d4ec4e5 8638 cu->processing_has_namespace_info = 1;
e7c27a73 8639 read_namespace (die, cu);
d9fa45fe 8640 break;
5d7cb8df 8641 case DW_TAG_module:
4d4ec4e5 8642 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8643 read_module (die, cu);
8644 break;
d9fa45fe 8645 case DW_TAG_imported_declaration:
74921315
KS
8646 cu->processing_has_namespace_info = 1;
8647 if (read_namespace_alias (die, cu))
8648 break;
8649 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8650 case DW_TAG_imported_module:
4d4ec4e5 8651 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8652 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8653 || cu->language != language_fortran))
8654 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8655 dwarf_tag_name (die->tag));
8656 read_import_statement (die, cu);
d9fa45fe 8657 break;
95554aad
TT
8658
8659 case DW_TAG_imported_unit:
8660 process_imported_unit_die (die, cu);
8661 break;
8662
c906108c 8663 default:
e7c27a73 8664 new_symbol (die, NULL, cu);
c906108c
SS
8665 break;
8666 }
8667}
ca69b9e6
DE
8668\f
8669/* DWARF name computation. */
c906108c 8670
94af9270
KS
8671/* A helper function for dwarf2_compute_name which determines whether DIE
8672 needs to have the name of the scope prepended to the name listed in the
8673 die. */
8674
8675static int
8676die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8677{
1c809c68
TT
8678 struct attribute *attr;
8679
94af9270
KS
8680 switch (die->tag)
8681 {
8682 case DW_TAG_namespace:
8683 case DW_TAG_typedef:
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 case DW_TAG_union_type:
8688 case DW_TAG_enumeration_type:
8689 case DW_TAG_enumerator:
8690 case DW_TAG_subprogram:
08a76f8a 8691 case DW_TAG_inlined_subroutine:
94af9270 8692 case DW_TAG_member:
74921315 8693 case DW_TAG_imported_declaration:
94af9270
KS
8694 return 1;
8695
8696 case DW_TAG_variable:
c2b0a229 8697 case DW_TAG_constant:
94af9270
KS
8698 /* We only need to prefix "globally" visible variables. These include
8699 any variable marked with DW_AT_external or any variable that
8700 lives in a namespace. [Variables in anonymous namespaces
8701 require prefixing, but they are not DW_AT_external.] */
8702
8703 if (dwarf2_attr (die, DW_AT_specification, cu))
8704 {
8705 struct dwarf2_cu *spec_cu = cu;
9a619af0 8706
94af9270
KS
8707 return die_needs_namespace (die_specification (die, &spec_cu),
8708 spec_cu);
8709 }
8710
1c809c68 8711 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8712 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8713 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8714 return 0;
8715 /* A variable in a lexical block of some kind does not need a
8716 namespace, even though in C++ such variables may be external
8717 and have a mangled name. */
8718 if (die->parent->tag == DW_TAG_lexical_block
8719 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8720 || die->parent->tag == DW_TAG_catch_block
8721 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8722 return 0;
8723 return 1;
94af9270
KS
8724
8725 default:
8726 return 0;
8727 }
8728}
8729
73b9be8b
KS
8730/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8731 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8732 defined for the given DIE. */
8733
8734static struct attribute *
8735dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8736{
8737 struct attribute *attr;
8738
8739 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8740 if (attr == NULL)
8741 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8742
8743 return attr;
8744}
8745
8746/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8747 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8748 defined for the given DIE. */
8749
8750static const char *
8751dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8752{
8753 const char *linkage_name;
8754
8755 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8756 if (linkage_name == NULL)
8757 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8758
8759 return linkage_name;
8760}
8761
94af9270 8762/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8763 compute the physname for the object, which include a method's:
9c37b5ae 8764 - formal parameters (C++),
a766d390 8765 - receiver type (Go),
a766d390
DE
8766
8767 The term "physname" is a bit confusing.
8768 For C++, for example, it is the demangled name.
8769 For Go, for example, it's the mangled name.
94af9270 8770
af6b7be1
JB
8771 For Ada, return the DIE's linkage name rather than the fully qualified
8772 name. PHYSNAME is ignored..
8773
94af9270
KS
8774 The result is allocated on the objfile_obstack and canonicalized. */
8775
8776static const char *
15d034d0
TT
8777dwarf2_compute_name (const char *name,
8778 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8779 int physname)
8780{
bb5ed363
DE
8781 struct objfile *objfile = cu->objfile;
8782
94af9270
KS
8783 if (name == NULL)
8784 name = dwarf2_name (die, cu);
8785
2ee7123e
DE
8786 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8787 but otherwise compute it by typename_concat inside GDB.
8788 FIXME: Actually this is not really true, or at least not always true.
8789 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8790 Fortran names because there is no mangling standard. So new_symbol_full
8791 will set the demangled name to the result of dwarf2_full_name, and it is
8792 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8793 if (cu->language == language_ada
8794 || (cu->language == language_fortran && physname))
8795 {
8796 /* For Ada unit, we prefer the linkage name over the name, as
8797 the former contains the exported name, which the user expects
8798 to be able to reference. Ideally, we want the user to be able
8799 to reference this entity using either natural or linkage name,
8800 but we haven't started looking at this enhancement yet. */
73b9be8b 8801 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 8802
2ee7123e
DE
8803 if (linkage_name != NULL)
8804 return linkage_name;
f55ee35c
JK
8805 }
8806
94af9270
KS
8807 /* These are the only languages we know how to qualify names in. */
8808 if (name != NULL
9c37b5ae 8809 && (cu->language == language_cplus
c44af4eb
TT
8810 || cu->language == language_fortran || cu->language == language_d
8811 || cu->language == language_rust))
94af9270
KS
8812 {
8813 if (die_needs_namespace (die, cu))
8814 {
8815 long length;
0d5cff50 8816 const char *prefix;
34a68019 8817 const char *canonical_name = NULL;
94af9270 8818
d7e74731
PA
8819 string_file buf;
8820
94af9270 8821 prefix = determine_prefix (die, cu);
94af9270
KS
8822 if (*prefix != '\0')
8823 {
f55ee35c
JK
8824 char *prefixed_name = typename_concat (NULL, prefix, name,
8825 physname, cu);
9a619af0 8826
d7e74731 8827 buf.puts (prefixed_name);
94af9270
KS
8828 xfree (prefixed_name);
8829 }
8830 else
d7e74731 8831 buf.puts (name);
94af9270 8832
98bfdba5
PA
8833 /* Template parameters may be specified in the DIE's DW_AT_name, or
8834 as children with DW_TAG_template_type_param or
8835 DW_TAG_value_type_param. If the latter, add them to the name
8836 here. If the name already has template parameters, then
8837 skip this step; some versions of GCC emit both, and
8838 it is more efficient to use the pre-computed name.
8839
8840 Something to keep in mind about this process: it is very
8841 unlikely, or in some cases downright impossible, to produce
8842 something that will match the mangled name of a function.
8843 If the definition of the function has the same debug info,
8844 we should be able to match up with it anyway. But fallbacks
8845 using the minimal symbol, for instance to find a method
8846 implemented in a stripped copy of libstdc++, will not work.
8847 If we do not have debug info for the definition, we will have to
8848 match them up some other way.
8849
8850 When we do name matching there is a related problem with function
8851 templates; two instantiated function templates are allowed to
8852 differ only by their return types, which we do not add here. */
8853
8854 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8855 {
8856 struct attribute *attr;
8857 struct die_info *child;
8858 int first = 1;
8859
8860 die->building_fullname = 1;
8861
8862 for (child = die->child; child != NULL; child = child->sibling)
8863 {
8864 struct type *type;
12df843f 8865 LONGEST value;
d521ce57 8866 const gdb_byte *bytes;
98bfdba5
PA
8867 struct dwarf2_locexpr_baton *baton;
8868 struct value *v;
8869
8870 if (child->tag != DW_TAG_template_type_param
8871 && child->tag != DW_TAG_template_value_param)
8872 continue;
8873
8874 if (first)
8875 {
d7e74731 8876 buf.puts ("<");
98bfdba5
PA
8877 first = 0;
8878 }
8879 else
d7e74731 8880 buf.puts (", ");
98bfdba5
PA
8881
8882 attr = dwarf2_attr (child, DW_AT_type, cu);
8883 if (attr == NULL)
8884 {
8885 complaint (&symfile_complaints,
8886 _("template parameter missing DW_AT_type"));
d7e74731 8887 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8888 continue;
8889 }
8890 type = die_type (child, cu);
8891
8892 if (child->tag == DW_TAG_template_type_param)
8893 {
d7e74731 8894 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8895 continue;
8896 }
8897
8898 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8899 if (attr == NULL)
8900 {
8901 complaint (&symfile_complaints,
3e43a32a
MS
8902 _("template parameter missing "
8903 "DW_AT_const_value"));
d7e74731 8904 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8905 continue;
8906 }
8907
8908 dwarf2_const_value_attr (attr, type, name,
8909 &cu->comp_unit_obstack, cu,
8910 &value, &bytes, &baton);
8911
8912 if (TYPE_NOSIGN (type))
8913 /* GDB prints characters as NUMBER 'CHAR'. If that's
8914 changed, this can use value_print instead. */
d7e74731 8915 c_printchar (value, type, &buf);
98bfdba5
PA
8916 else
8917 {
8918 struct value_print_options opts;
8919
8920 if (baton != NULL)
8921 v = dwarf2_evaluate_loc_desc (type, NULL,
8922 baton->data,
8923 baton->size,
8924 baton->per_cu);
8925 else if (bytes != NULL)
8926 {
8927 v = allocate_value (type);
8928 memcpy (value_contents_writeable (v), bytes,
8929 TYPE_LENGTH (type));
8930 }
8931 else
8932 v = value_from_longest (type, value);
8933
3e43a32a
MS
8934 /* Specify decimal so that we do not depend on
8935 the radix. */
98bfdba5
PA
8936 get_formatted_print_options (&opts, 'd');
8937 opts.raw = 1;
d7e74731 8938 value_print (v, &buf, &opts);
98bfdba5
PA
8939 release_value (v);
8940 value_free (v);
8941 }
8942 }
8943
8944 die->building_fullname = 0;
8945
8946 if (!first)
8947 {
8948 /* Close the argument list, with a space if necessary
8949 (nested templates). */
d7e74731
PA
8950 if (!buf.empty () && buf.string ().back () == '>')
8951 buf.puts (" >");
98bfdba5 8952 else
d7e74731 8953 buf.puts (">");
98bfdba5
PA
8954 }
8955 }
8956
9c37b5ae 8957 /* For C++ methods, append formal parameter type
94af9270 8958 information, if PHYSNAME. */
6e70227d 8959
94af9270 8960 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8961 && cu->language == language_cplus)
94af9270
KS
8962 {
8963 struct type *type = read_type_die (die, cu);
8964
d7e74731 8965 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8966 &type_print_raw_options);
94af9270 8967
9c37b5ae 8968 if (cu->language == language_cplus)
94af9270 8969 {
60430eff
DJ
8970 /* Assume that an artificial first parameter is
8971 "this", but do not crash if it is not. RealView
8972 marks unnamed (and thus unused) parameters as
8973 artificial; there is no way to differentiate
8974 the two cases. */
94af9270
KS
8975 if (TYPE_NFIELDS (type) > 0
8976 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8977 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8978 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8979 0))))
d7e74731 8980 buf.puts (" const");
94af9270
KS
8981 }
8982 }
8983
d7e74731 8984 const std::string &intermediate_name = buf.string ();
94af9270
KS
8985
8986 if (cu->language == language_cplus)
34a68019 8987 canonical_name
322a8516 8988 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8989 &objfile->per_bfd->storage_obstack);
8990
8991 /* If we only computed INTERMEDIATE_NAME, or if
8992 INTERMEDIATE_NAME is already canonical, then we need to
8993 copy it to the appropriate obstack. */
322a8516 8994 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8995 name = ((const char *)
8996 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8997 intermediate_name.c_str (),
8998 intermediate_name.length ()));
34a68019
TT
8999 else
9000 name = canonical_name;
94af9270
KS
9001 }
9002 }
9003
9004 return name;
9005}
9006
0114d602
DJ
9007/* Return the fully qualified name of DIE, based on its DW_AT_name.
9008 If scope qualifiers are appropriate they will be added. The result
34a68019 9009 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
9010 not have a name. NAME may either be from a previous call to
9011 dwarf2_name or NULL.
9012
9c37b5ae 9013 The output string will be canonicalized (if C++). */
0114d602
DJ
9014
9015static const char *
15d034d0 9016dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 9017{
94af9270
KS
9018 return dwarf2_compute_name (name, die, cu, 0);
9019}
0114d602 9020
94af9270
KS
9021/* Construct a physname for the given DIE in CU. NAME may either be
9022 from a previous call to dwarf2_name or NULL. The result will be
9023 allocated on the objfile_objstack or NULL if the DIE does not have a
9024 name.
0114d602 9025
9c37b5ae 9026 The output string will be canonicalized (if C++). */
0114d602 9027
94af9270 9028static const char *
15d034d0 9029dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 9030{
bb5ed363 9031 struct objfile *objfile = cu->objfile;
900e11f9
JK
9032 const char *retval, *mangled = NULL, *canon = NULL;
9033 struct cleanup *back_to;
9034 int need_copy = 1;
9035
9036 /* In this case dwarf2_compute_name is just a shortcut not building anything
9037 on its own. */
9038 if (!die_needs_namespace (die, cu))
9039 return dwarf2_compute_name (name, die, cu, 1);
9040
9041 back_to = make_cleanup (null_cleanup, NULL);
9042
73b9be8b 9043 mangled = dw2_linkage_name (die, cu);
900e11f9 9044
e98c9e7c
TT
9045 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9046 See https://github.com/rust-lang/rust/issues/32925. */
9047 if (cu->language == language_rust && mangled != NULL
9048 && strchr (mangled, '{') != NULL)
9049 mangled = NULL;
9050
900e11f9
JK
9051 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9052 has computed. */
7d45c7c3 9053 if (mangled != NULL)
900e11f9
JK
9054 {
9055 char *demangled;
9056
900e11f9
JK
9057 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9058 type. It is easier for GDB users to search for such functions as
9059 `name(params)' than `long name(params)'. In such case the minimal
9060 symbol names do not match the full symbol names but for template
9061 functions there is never a need to look up their definition from their
9062 declaration so the only disadvantage remains the minimal symbol
9063 variant `long name(params)' does not have the proper inferior type.
9064 */
9065
a766d390
DE
9066 if (cu->language == language_go)
9067 {
9068 /* This is a lie, but we already lie to the caller new_symbol_full.
9069 new_symbol_full assumes we return the mangled name.
9070 This just undoes that lie until things are cleaned up. */
9071 demangled = NULL;
9072 }
9073 else
9074 {
8de20a37 9075 demangled = gdb_demangle (mangled,
9c37b5ae 9076 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 9077 }
900e11f9
JK
9078 if (demangled)
9079 {
9080 make_cleanup (xfree, demangled);
9081 canon = demangled;
9082 }
9083 else
9084 {
9085 canon = mangled;
9086 need_copy = 0;
9087 }
9088 }
9089
9090 if (canon == NULL || check_physname)
9091 {
9092 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9093
9094 if (canon != NULL && strcmp (physname, canon) != 0)
9095 {
9096 /* It may not mean a bug in GDB. The compiler could also
9097 compute DW_AT_linkage_name incorrectly. But in such case
9098 GDB would need to be bug-to-bug compatible. */
9099
9100 complaint (&symfile_complaints,
9101 _("Computed physname <%s> does not match demangled <%s> "
9102 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9c541725 9103 physname, canon, mangled, to_underlying (die->sect_off),
4262abfb 9104 objfile_name (objfile));
900e11f9
JK
9105
9106 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9107 is available here - over computed PHYSNAME. It is safer
9108 against both buggy GDB and buggy compilers. */
9109
9110 retval = canon;
9111 }
9112 else
9113 {
9114 retval = physname;
9115 need_copy = 0;
9116 }
9117 }
9118 else
9119 retval = canon;
9120
9121 if (need_copy)
224c3ddb
SM
9122 retval = ((const char *)
9123 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9124 retval, strlen (retval)));
900e11f9
JK
9125
9126 do_cleanups (back_to);
9127 return retval;
0114d602
DJ
9128}
9129
74921315
KS
9130/* Inspect DIE in CU for a namespace alias. If one exists, record
9131 a new symbol for it.
9132
9133 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9134
9135static int
9136read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9137{
9138 struct attribute *attr;
9139
9140 /* If the die does not have a name, this is not a namespace
9141 alias. */
9142 attr = dwarf2_attr (die, DW_AT_name, cu);
9143 if (attr != NULL)
9144 {
9145 int num;
9146 struct die_info *d = die;
9147 struct dwarf2_cu *imported_cu = cu;
9148
9149 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9150 keep inspecting DIEs until we hit the underlying import. */
9151#define MAX_NESTED_IMPORTED_DECLARATIONS 100
9152 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9153 {
9154 attr = dwarf2_attr (d, DW_AT_import, cu);
9155 if (attr == NULL)
9156 break;
9157
9158 d = follow_die_ref (d, attr, &imported_cu);
9159 if (d->tag != DW_TAG_imported_declaration)
9160 break;
9161 }
9162
9163 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9164 {
9165 complaint (&symfile_complaints,
9166 _("DIE at 0x%x has too many recursively imported "
9c541725 9167 "declarations"), to_underlying (d->sect_off));
74921315
KS
9168 return 0;
9169 }
9170
9171 if (attr != NULL)
9172 {
9173 struct type *type;
9c541725 9174 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 9175
9c541725 9176 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
9177 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9178 {
9179 /* This declaration is a global namespace alias. Add
9180 a symbol for it whose type is the aliased namespace. */
9181 new_symbol (die, type, cu);
9182 return 1;
9183 }
9184 }
9185 }
9186
9187 return 0;
9188}
9189
22cee43f
PMR
9190/* Return the using directives repository (global or local?) to use in the
9191 current context for LANGUAGE.
9192
9193 For Ada, imported declarations can materialize renamings, which *may* be
9194 global. However it is impossible (for now?) in DWARF to distinguish
9195 "external" imported declarations and "static" ones. As all imported
9196 declarations seem to be static in all other languages, make them all CU-wide
9197 global only in Ada. */
9198
9199static struct using_direct **
9200using_directives (enum language language)
9201{
9202 if (language == language_ada && context_stack_depth == 0)
9203 return &global_using_directives;
9204 else
9205 return &local_using_directives;
9206}
9207
27aa8d6a
SW
9208/* Read the import statement specified by the given die and record it. */
9209
9210static void
9211read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9212{
bb5ed363 9213 struct objfile *objfile = cu->objfile;
27aa8d6a 9214 struct attribute *import_attr;
32019081 9215 struct die_info *imported_die, *child_die;
de4affc9 9216 struct dwarf2_cu *imported_cu;
27aa8d6a 9217 const char *imported_name;
794684b6 9218 const char *imported_name_prefix;
13387711
SW
9219 const char *canonical_name;
9220 const char *import_alias;
9221 const char *imported_declaration = NULL;
794684b6 9222 const char *import_prefix;
eb1e02fd 9223 std::vector<const char *> excludes;
13387711 9224
27aa8d6a
SW
9225 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9226 if (import_attr == NULL)
9227 {
9228 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9229 dwarf_tag_name (die->tag));
9230 return;
9231 }
9232
de4affc9
CC
9233 imported_cu = cu;
9234 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9235 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
9236 if (imported_name == NULL)
9237 {
9238 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9239
9240 The import in the following code:
9241 namespace A
9242 {
9243 typedef int B;
9244 }
9245
9246 int main ()
9247 {
9248 using A::B;
9249 B b;
9250 return b;
9251 }
9252
9253 ...
9254 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9255 <52> DW_AT_decl_file : 1
9256 <53> DW_AT_decl_line : 6
9257 <54> DW_AT_import : <0x75>
9258 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9259 <59> DW_AT_name : B
9260 <5b> DW_AT_decl_file : 1
9261 <5c> DW_AT_decl_line : 2
9262 <5d> DW_AT_type : <0x6e>
9263 ...
9264 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9265 <76> DW_AT_byte_size : 4
9266 <77> DW_AT_encoding : 5 (signed)
9267
9268 imports the wrong die ( 0x75 instead of 0x58 ).
9269 This case will be ignored until the gcc bug is fixed. */
9270 return;
9271 }
9272
82856980
SW
9273 /* Figure out the local name after import. */
9274 import_alias = dwarf2_name (die, cu);
27aa8d6a 9275
794684b6
SW
9276 /* Figure out where the statement is being imported to. */
9277 import_prefix = determine_prefix (die, cu);
9278
9279 /* Figure out what the scope of the imported die is and prepend it
9280 to the name of the imported die. */
de4affc9 9281 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9282
f55ee35c
JK
9283 if (imported_die->tag != DW_TAG_namespace
9284 && imported_die->tag != DW_TAG_module)
794684b6 9285 {
13387711
SW
9286 imported_declaration = imported_name;
9287 canonical_name = imported_name_prefix;
794684b6 9288 }
13387711 9289 else if (strlen (imported_name_prefix) > 0)
12aaed36 9290 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9291 imported_name_prefix,
9292 (cu->language == language_d ? "." : "::"),
9293 imported_name, (char *) NULL);
13387711
SW
9294 else
9295 canonical_name = imported_name;
794684b6 9296
32019081
JK
9297 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9298 for (child_die = die->child; child_die && child_die->tag;
9299 child_die = sibling_die (child_die))
9300 {
9301 /* DWARF-4: A Fortran use statement with a “rename list” may be
9302 represented by an imported module entry with an import attribute
9303 referring to the module and owned entries corresponding to those
9304 entities that are renamed as part of being imported. */
9305
9306 if (child_die->tag != DW_TAG_imported_declaration)
9307 {
9308 complaint (&symfile_complaints,
9309 _("child DW_TAG_imported_declaration expected "
9310 "- DIE at 0x%x [in module %s]"),
9c541725 9311 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9312 continue;
9313 }
9314
9315 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9316 if (import_attr == NULL)
9317 {
9318 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9319 dwarf_tag_name (child_die->tag));
9320 continue;
9321 }
9322
9323 imported_cu = cu;
9324 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9325 &imported_cu);
9326 imported_name = dwarf2_name (imported_die, imported_cu);
9327 if (imported_name == NULL)
9328 {
9329 complaint (&symfile_complaints,
9330 _("child DW_TAG_imported_declaration has unknown "
9331 "imported name - DIE at 0x%x [in module %s]"),
9c541725 9332 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9333 continue;
9334 }
9335
eb1e02fd 9336 excludes.push_back (imported_name);
32019081
JK
9337
9338 process_die (child_die, cu);
9339 }
9340
22cee43f
PMR
9341 add_using_directive (using_directives (cu->language),
9342 import_prefix,
9343 canonical_name,
9344 import_alias,
9345 imported_declaration,
9346 excludes,
9347 0,
9348 &objfile->objfile_obstack);
27aa8d6a
SW
9349}
9350
5230b05a
WT
9351/* ICC<14 does not output the required DW_AT_declaration on incomplete
9352 types, but gives them a size of zero. Starting with version 14,
9353 ICC is compatible with GCC. */
9354
9355static int
9356producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9357{
9358 if (!cu->checked_producer)
9359 check_producer (cu);
9360
9361 return cu->producer_is_icc_lt_14;
9362}
9363
1b80a9fa
JK
9364/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9365 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9366 this, it was first present in GCC release 4.3.0. */
9367
9368static int
9369producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9370{
9371 if (!cu->checked_producer)
9372 check_producer (cu);
9373
9374 return cu->producer_is_gcc_lt_4_3;
9375}
9376
d721ba37
PA
9377static file_and_directory
9378find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 9379{
d721ba37
PA
9380 file_and_directory res;
9381
9291a0cd
TT
9382 /* Find the filename. Do not use dwarf2_name here, since the filename
9383 is not a source language identifier. */
d721ba37
PA
9384 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9385 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9386
d721ba37
PA
9387 if (res.comp_dir == NULL
9388 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9389 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 9390 {
d721ba37
PA
9391 res.comp_dir_storage = ldirname (res.name);
9392 if (!res.comp_dir_storage.empty ())
9393 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 9394 }
d721ba37 9395 if (res.comp_dir != NULL)
9291a0cd
TT
9396 {
9397 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9398 directory, get rid of it. */
d721ba37 9399 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 9400
d721ba37
PA
9401 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9402 res.comp_dir = cp + 1;
9291a0cd
TT
9403 }
9404
d721ba37
PA
9405 if (res.name == NULL)
9406 res.name = "<unknown>";
9407
9408 return res;
9291a0cd
TT
9409}
9410
f4dc4d17
DE
9411/* Handle DW_AT_stmt_list for a compilation unit.
9412 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9413 COMP_DIR is the compilation directory. LOWPC is passed to
9414 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9415
9416static void
9417handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9418 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9419{
527f3840 9420 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9421 struct attribute *attr;
527f3840
JK
9422 struct line_header line_header_local;
9423 hashval_t line_header_local_hash;
9424 unsigned u;
9425 void **slot;
9426 int decode_mapping;
2ab95328 9427
f4dc4d17
DE
9428 gdb_assert (! cu->per_cu->is_debug_types);
9429
2ab95328 9430 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9431 if (attr == NULL)
9432 return;
9433
9c541725 9434 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
9435
9436 /* The line header hash table is only created if needed (it exists to
9437 prevent redundant reading of the line table for partial_units).
9438 If we're given a partial_unit, we'll need it. If we're given a
9439 compile_unit, then use the line header hash table if it's already
9440 created, but don't create one just yet. */
9441
9442 if (dwarf2_per_objfile->line_header_hash == NULL
9443 && die->tag == DW_TAG_partial_unit)
2ab95328 9444 {
527f3840
JK
9445 dwarf2_per_objfile->line_header_hash
9446 = htab_create_alloc_ex (127, line_header_hash_voidp,
9447 line_header_eq_voidp,
9448 free_line_header_voidp,
9449 &objfile->objfile_obstack,
9450 hashtab_obstack_allocate,
9451 dummy_obstack_deallocate);
9452 }
2ab95328 9453
9c541725 9454 line_header_local.sect_off = line_offset;
527f3840
JK
9455 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9456 line_header_local_hash = line_header_hash (&line_header_local);
9457 if (dwarf2_per_objfile->line_header_hash != NULL)
9458 {
9459 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9460 &line_header_local,
9461 line_header_local_hash, NO_INSERT);
9462
9463 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9464 is not present in *SLOT (since if there is something in *SLOT then
9465 it will be for a partial_unit). */
9466 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9467 {
527f3840 9468 gdb_assert (*slot != NULL);
9a3c8263 9469 cu->line_header = (struct line_header *) *slot;
527f3840 9470 return;
dee91e82 9471 }
2ab95328 9472 }
527f3840
JK
9473
9474 /* dwarf_decode_line_header does not yet provide sufficient information.
9475 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
9476 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9477 if (lh == NULL)
527f3840 9478 return;
4c8aa72d
PA
9479
9480 cu->line_header = lh.release ();
9481 cu->line_header_die_owner = die;
527f3840
JK
9482
9483 if (dwarf2_per_objfile->line_header_hash == NULL)
9484 slot = NULL;
9485 else
9486 {
9487 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9488 &line_header_local,
9489 line_header_local_hash, INSERT);
9490 gdb_assert (slot != NULL);
9491 }
9492 if (slot != NULL && *slot == NULL)
9493 {
9494 /* This newly decoded line number information unit will be owned
9495 by line_header_hash hash table. */
9496 *slot = cu->line_header;
4c8aa72d 9497 cu->line_header_die_owner = NULL;
527f3840
JK
9498 }
9499 else
9500 {
9501 /* We cannot free any current entry in (*slot) as that struct line_header
9502 may be already used by multiple CUs. Create only temporary decoded
9503 line_header for this CU - it may happen at most once for each line
9504 number information unit. And if we're not using line_header_hash
9505 then this is what we want as well. */
9506 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
9507 }
9508 decode_mapping = (die->tag != DW_TAG_partial_unit);
9509 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9510 decode_mapping);
fff8551c 9511
2ab95328
TT
9512}
9513
95554aad 9514/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9515
c906108c 9516static void
e7c27a73 9517read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9518{
dee91e82 9519 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9520 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 9521 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9522 CORE_ADDR highpc = ((CORE_ADDR) 0);
9523 struct attribute *attr;
c906108c 9524 struct die_info *child_die;
e142c38c 9525 CORE_ADDR baseaddr;
6e70227d 9526
e142c38c 9527 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9528
fae299cd 9529 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9530
9531 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9532 from finish_block. */
2acceee2 9533 if (lowpc == ((CORE_ADDR) -1))
c906108c 9534 lowpc = highpc;
3e29f34a 9535 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9536
d721ba37 9537 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 9538
95554aad 9539 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9540
f4b8a18d
KW
9541 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9542 standardised yet. As a workaround for the language detection we fall
9543 back to the DW_AT_producer string. */
9544 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9545 cu->language = language_opencl;
9546
3019eac3
DE
9547 /* Similar hack for Go. */
9548 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9549 set_cu_language (DW_LANG_Go, cu);
9550
d721ba37 9551 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
9552
9553 /* Decode line number information if present. We do this before
9554 processing child DIEs, so that the line header table is available
9555 for DW_AT_decl_file. */
d721ba37 9556 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
9557
9558 /* Process all dies in compilation unit. */
9559 if (die->child != NULL)
9560 {
9561 child_die = die->child;
9562 while (child_die && child_die->tag)
9563 {
9564 process_die (child_die, cu);
9565 child_die = sibling_die (child_die);
9566 }
9567 }
9568
9569 /* Decode macro information, if present. Dwarf 2 macro information
9570 refers to information in the line number info statement program
9571 header, so we can only read it if we've read the header
9572 successfully. */
0af92d60
JK
9573 attr = dwarf2_attr (die, DW_AT_macros, cu);
9574 if (attr == NULL)
9575 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9576 if (attr && cu->line_header)
9577 {
9578 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9579 complaint (&symfile_complaints,
0af92d60 9580 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9581
43f3e411 9582 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9583 }
9584 else
9585 {
9586 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9587 if (attr && cu->line_header)
9588 {
9589 unsigned int macro_offset = DW_UNSND (attr);
9590
43f3e411 9591 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9592 }
9593 }
3019eac3
DE
9594}
9595
f4dc4d17
DE
9596/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9597 Create the set of symtabs used by this TU, or if this TU is sharing
9598 symtabs with another TU and the symtabs have already been created
9599 then restore those symtabs in the line header.
9600 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9601
9602static void
f4dc4d17 9603setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9604{
f4dc4d17
DE
9605 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9606 struct type_unit_group *tu_group;
9607 int first_time;
3019eac3 9608 struct attribute *attr;
9c541725 9609 unsigned int i;
0186c6a7 9610 struct signatured_type *sig_type;
3019eac3 9611
f4dc4d17 9612 gdb_assert (per_cu->is_debug_types);
0186c6a7 9613 sig_type = (struct signatured_type *) per_cu;
3019eac3 9614
f4dc4d17 9615 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9616
f4dc4d17 9617 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9618 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9619 if (sig_type->type_unit_group == NULL)
9620 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9621 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9622
9623 /* If we've already processed this stmt_list there's no real need to
9624 do it again, we could fake it and just recreate the part we need
9625 (file name,index -> symtab mapping). If data shows this optimization
9626 is useful we can do it then. */
43f3e411 9627 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9628
9629 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9630 debug info. */
fff8551c 9631 line_header_up lh;
f4dc4d17 9632 if (attr != NULL)
3019eac3 9633 {
9c541725 9634 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
9635 lh = dwarf_decode_line_header (line_offset, cu);
9636 }
9637 if (lh == NULL)
9638 {
9639 if (first_time)
9640 dwarf2_start_symtab (cu, "", NULL, 0);
9641 else
9642 {
9643 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9644 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9645 }
f4dc4d17 9646 return;
3019eac3
DE
9647 }
9648
4c8aa72d
PA
9649 cu->line_header = lh.release ();
9650 cu->line_header_die_owner = die;
3019eac3 9651
f4dc4d17
DE
9652 if (first_time)
9653 {
43f3e411 9654 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9655
1fd60fc0
DE
9656 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9657 still initializing it, and our caller (a few levels up)
9658 process_full_type_unit still needs to know if this is the first
9659 time. */
9660
4c8aa72d
PA
9661 tu_group->num_symtabs = cu->line_header->file_names.size ();
9662 tu_group->symtabs = XNEWVEC (struct symtab *,
9663 cu->line_header->file_names.size ());
3019eac3 9664
4c8aa72d 9665 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9666 {
4c8aa72d 9667 file_entry &fe = cu->line_header->file_names[i];
3019eac3 9668
4c8aa72d 9669 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
3019eac3 9670
f4dc4d17
DE
9671 if (current_subfile->symtab == NULL)
9672 {
4c8aa72d
PA
9673 /* NOTE: start_subfile will recognize when it's been
9674 passed a file it has already seen. So we can't
9675 assume there's a simple mapping from
9676 cu->line_header->file_names to subfiles, plus
9677 cu->line_header->file_names may contain dups. */
43f3e411
DE
9678 current_subfile->symtab
9679 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9680 }
9681
8c43009f
PA
9682 fe.symtab = current_subfile->symtab;
9683 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
9684 }
9685 }
9686 else
3019eac3 9687 {
0ab9ce85 9688 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9689
4c8aa72d 9690 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9691 {
4c8aa72d 9692 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 9693
4c8aa72d 9694 fe.symtab = tu_group->symtabs[i];
f4dc4d17 9695 }
3019eac3
DE
9696 }
9697
f4dc4d17
DE
9698 /* The main symtab is allocated last. Type units don't have DW_AT_name
9699 so they don't have a "real" (so to speak) symtab anyway.
9700 There is later code that will assign the main symtab to all symbols
9701 that don't have one. We need to handle the case of a symbol with a
9702 missing symtab (DW_AT_decl_file) anyway. */
9703}
3019eac3 9704
f4dc4d17
DE
9705/* Process DW_TAG_type_unit.
9706 For TUs we want to skip the first top level sibling if it's not the
9707 actual type being defined by this TU. In this case the first top
9708 level sibling is there to provide context only. */
3019eac3 9709
f4dc4d17
DE
9710static void
9711read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9712{
9713 struct die_info *child_die;
3019eac3 9714
f4dc4d17
DE
9715 prepare_one_comp_unit (cu, die, language_minimal);
9716
9717 /* Initialize (or reinitialize) the machinery for building symtabs.
9718 We do this before processing child DIEs, so that the line header table
9719 is available for DW_AT_decl_file. */
9720 setup_type_unit_groups (die, cu);
9721
9722 if (die->child != NULL)
9723 {
9724 child_die = die->child;
9725 while (child_die && child_die->tag)
9726 {
9727 process_die (child_die, cu);
9728 child_die = sibling_die (child_die);
9729 }
9730 }
3019eac3
DE
9731}
9732\f
80626a55
DE
9733/* DWO/DWP files.
9734
9735 http://gcc.gnu.org/wiki/DebugFission
9736 http://gcc.gnu.org/wiki/DebugFissionDWP
9737
9738 To simplify handling of both DWO files ("object" files with the DWARF info)
9739 and DWP files (a file with the DWOs packaged up into one file), we treat
9740 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9741
9742static hashval_t
9743hash_dwo_file (const void *item)
9744{
9a3c8263 9745 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9746 hashval_t hash;
3019eac3 9747
a2ce51a0
DE
9748 hash = htab_hash_string (dwo_file->dwo_name);
9749 if (dwo_file->comp_dir != NULL)
9750 hash += htab_hash_string (dwo_file->comp_dir);
9751 return hash;
3019eac3
DE
9752}
9753
9754static int
9755eq_dwo_file (const void *item_lhs, const void *item_rhs)
9756{
9a3c8263
SM
9757 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9758 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9759
a2ce51a0
DE
9760 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9761 return 0;
9762 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9763 return lhs->comp_dir == rhs->comp_dir;
9764 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9765}
9766
9767/* Allocate a hash table for DWO files. */
9768
9769static htab_t
9770allocate_dwo_file_hash_table (void)
9771{
9772 struct objfile *objfile = dwarf2_per_objfile->objfile;
9773
9774 return htab_create_alloc_ex (41,
9775 hash_dwo_file,
9776 eq_dwo_file,
9777 NULL,
9778 &objfile->objfile_obstack,
9779 hashtab_obstack_allocate,
9780 dummy_obstack_deallocate);
9781}
9782
80626a55
DE
9783/* Lookup DWO file DWO_NAME. */
9784
9785static void **
0ac5b59e 9786lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9787{
9788 struct dwo_file find_entry;
9789 void **slot;
9790
9791 if (dwarf2_per_objfile->dwo_files == NULL)
9792 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9793
9794 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9795 find_entry.dwo_name = dwo_name;
9796 find_entry.comp_dir = comp_dir;
80626a55
DE
9797 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9798
9799 return slot;
9800}
9801
3019eac3
DE
9802static hashval_t
9803hash_dwo_unit (const void *item)
9804{
9a3c8263 9805 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9806
9807 /* This drops the top 32 bits of the id, but is ok for a hash. */
9808 return dwo_unit->signature;
9809}
9810
9811static int
9812eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9813{
9a3c8263
SM
9814 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9815 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9816
9817 /* The signature is assumed to be unique within the DWO file.
9818 So while object file CU dwo_id's always have the value zero,
9819 that's OK, assuming each object file DWO file has only one CU,
9820 and that's the rule for now. */
9821 return lhs->signature == rhs->signature;
9822}
9823
9824/* Allocate a hash table for DWO CUs,TUs.
9825 There is one of these tables for each of CUs,TUs for each DWO file. */
9826
9827static htab_t
9828allocate_dwo_unit_table (struct objfile *objfile)
9829{
9830 /* Start out with a pretty small number.
9831 Generally DWO files contain only one CU and maybe some TUs. */
9832 return htab_create_alloc_ex (3,
9833 hash_dwo_unit,
9834 eq_dwo_unit,
9835 NULL,
9836 &objfile->objfile_obstack,
9837 hashtab_obstack_allocate,
9838 dummy_obstack_deallocate);
9839}
9840
80626a55 9841/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9842
19c3d4c9 9843struct create_dwo_cu_data
3019eac3
DE
9844{
9845 struct dwo_file *dwo_file;
19c3d4c9 9846 struct dwo_unit dwo_unit;
3019eac3
DE
9847};
9848
19c3d4c9 9849/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9850
9851static void
19c3d4c9
DE
9852create_dwo_cu_reader (const struct die_reader_specs *reader,
9853 const gdb_byte *info_ptr,
9854 struct die_info *comp_unit_die,
9855 int has_children,
9856 void *datap)
3019eac3
DE
9857{
9858 struct dwarf2_cu *cu = reader->cu;
9c541725 9859 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 9860 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9861 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9862 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9863 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9864 struct attribute *attr;
3019eac3
DE
9865
9866 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9867 if (attr == NULL)
9868 {
19c3d4c9
DE
9869 complaint (&symfile_complaints,
9870 _("Dwarf Error: debug entry at offset 0x%x is missing"
9871 " its dwo_id [in module %s]"),
9c541725 9872 to_underlying (sect_off), dwo_file->dwo_name);
3019eac3
DE
9873 return;
9874 }
9875
3019eac3
DE
9876 dwo_unit->dwo_file = dwo_file;
9877 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9878 dwo_unit->section = section;
9c541725 9879 dwo_unit->sect_off = sect_off;
3019eac3
DE
9880 dwo_unit->length = cu->per_cu->length;
9881
b4f54984 9882 if (dwarf_read_debug)
4031ecc5 9883 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9c541725
PA
9884 to_underlying (sect_off),
9885 hex_string (dwo_unit->signature));
3019eac3
DE
9886}
9887
33c5cd75 9888/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 9889 Note: This function processes DWO files only, not DWP files. */
3019eac3 9890
33c5cd75
DB
9891static void
9892create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9893 htab_t &cus_htab)
3019eac3
DE
9894{
9895 struct objfile *objfile = dwarf2_per_objfile->objfile;
33c5cd75 9896 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
d521ce57 9897 const gdb_byte *info_ptr, *end_ptr;
3019eac3 9898
33c5cd75
DB
9899 dwarf2_read_section (objfile, &section);
9900 info_ptr = section.buffer;
3019eac3
DE
9901
9902 if (info_ptr == NULL)
33c5cd75 9903 return;
3019eac3 9904
b4f54984 9905 if (dwarf_read_debug)
19c3d4c9
DE
9906 {
9907 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
9908 get_section_name (&section),
9909 get_section_file_name (&section));
19c3d4c9 9910 }
3019eac3 9911
33c5cd75 9912 end_ptr = info_ptr + section.size;
3019eac3
DE
9913 while (info_ptr < end_ptr)
9914 {
9915 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
9916 struct create_dwo_cu_data create_dwo_cu_data;
9917 struct dwo_unit *dwo_unit;
9918 void **slot;
9919 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 9920
19c3d4c9
DE
9921 memset (&create_dwo_cu_data.dwo_unit, 0,
9922 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9923 memset (&per_cu, 0, sizeof (per_cu));
9924 per_cu.objfile = objfile;
9925 per_cu.is_debug_types = 0;
33c5cd75
DB
9926 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9927 per_cu.section = &section;
c5ed0576 9928 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
9929
9930 init_cutu_and_read_dies_no_follow (
9931 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9932 info_ptr += per_cu.length;
9933
9934 // If the unit could not be parsed, skip it.
9935 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9936 continue;
3019eac3 9937
33c5cd75
DB
9938 if (cus_htab == NULL)
9939 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 9940
33c5cd75
DB
9941 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9942 *dwo_unit = create_dwo_cu_data.dwo_unit;
9943 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9944 gdb_assert (slot != NULL);
9945 if (*slot != NULL)
19c3d4c9 9946 {
33c5cd75
DB
9947 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9948 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 9949
33c5cd75
DB
9950 complaint (&symfile_complaints,
9951 _("debug cu entry at offset 0x%x is duplicate to"
9952 " the entry at offset 0x%x, signature %s"),
9953 to_underlying (sect_off), to_underlying (dup_sect_off),
9954 hex_string (dwo_unit->signature));
19c3d4c9 9955 }
33c5cd75 9956 *slot = (void *)dwo_unit;
3019eac3 9957 }
3019eac3
DE
9958}
9959
80626a55
DE
9960/* DWP file .debug_{cu,tu}_index section format:
9961 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9962
d2415c6c
DE
9963 DWP Version 1:
9964
80626a55
DE
9965 Both index sections have the same format, and serve to map a 64-bit
9966 signature to a set of section numbers. Each section begins with a header,
9967 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9968 indexes, and a pool of 32-bit section numbers. The index sections will be
9969 aligned at 8-byte boundaries in the file.
9970
d2415c6c
DE
9971 The index section header consists of:
9972
9973 V, 32 bit version number
9974 -, 32 bits unused
9975 N, 32 bit number of compilation units or type units in the index
9976 M, 32 bit number of slots in the hash table
80626a55 9977
d2415c6c 9978 Numbers are recorded using the byte order of the application binary.
80626a55 9979
d2415c6c
DE
9980 The hash table begins at offset 16 in the section, and consists of an array
9981 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9982 order of the application binary). Unused slots in the hash table are 0.
9983 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9984
d2415c6c
DE
9985 The parallel table begins immediately after the hash table
9986 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9987 array of 32-bit indexes (using the byte order of the application binary),
9988 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9989 table contains a 32-bit index into the pool of section numbers. For unused
9990 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9991
73869dc2
DE
9992 The pool of section numbers begins immediately following the hash table
9993 (at offset 16 + 12 * M from the beginning of the section). The pool of
9994 section numbers consists of an array of 32-bit words (using the byte order
9995 of the application binary). Each item in the array is indexed starting
9996 from 0. The hash table entry provides the index of the first section
9997 number in the set. Additional section numbers in the set follow, and the
9998 set is terminated by a 0 entry (section number 0 is not used in ELF).
9999
10000 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10001 section must be the first entry in the set, and the .debug_abbrev.dwo must
10002 be the second entry. Other members of the set may follow in any order.
10003
10004 ---
10005
10006 DWP Version 2:
10007
10008 DWP Version 2 combines all the .debug_info, etc. sections into one,
10009 and the entries in the index tables are now offsets into these sections.
10010 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10011 section.
10012
10013 Index Section Contents:
10014 Header
10015 Hash Table of Signatures dwp_hash_table.hash_table
10016 Parallel Table of Indices dwp_hash_table.unit_table
10017 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10018 Table of Section Sizes dwp_hash_table.v2.sizes
10019
10020 The index section header consists of:
10021
10022 V, 32 bit version number
10023 L, 32 bit number of columns in the table of section offsets
10024 N, 32 bit number of compilation units or type units in the index
10025 M, 32 bit number of slots in the hash table
10026
10027 Numbers are recorded using the byte order of the application binary.
10028
10029 The hash table has the same format as version 1.
10030 The parallel table of indices has the same format as version 1,
10031 except that the entries are origin-1 indices into the table of sections
10032 offsets and the table of section sizes.
10033
10034 The table of offsets begins immediately following the parallel table
10035 (at offset 16 + 12 * M from the beginning of the section). The table is
10036 a two-dimensional array of 32-bit words (using the byte order of the
10037 application binary), with L columns and N+1 rows, in row-major order.
10038 Each row in the array is indexed starting from 0. The first row provides
10039 a key to the remaining rows: each column in this row provides an identifier
10040 for a debug section, and the offsets in the same column of subsequent rows
10041 refer to that section. The section identifiers are:
10042
10043 DW_SECT_INFO 1 .debug_info.dwo
10044 DW_SECT_TYPES 2 .debug_types.dwo
10045 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10046 DW_SECT_LINE 4 .debug_line.dwo
10047 DW_SECT_LOC 5 .debug_loc.dwo
10048 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10049 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10050 DW_SECT_MACRO 8 .debug_macro.dwo
10051
10052 The offsets provided by the CU and TU index sections are the base offsets
10053 for the contributions made by each CU or TU to the corresponding section
10054 in the package file. Each CU and TU header contains an abbrev_offset
10055 field, used to find the abbreviations table for that CU or TU within the
10056 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10057 be interpreted as relative to the base offset given in the index section.
10058 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10059 should be interpreted as relative to the base offset for .debug_line.dwo,
10060 and offsets into other debug sections obtained from DWARF attributes should
10061 also be interpreted as relative to the corresponding base offset.
10062
10063 The table of sizes begins immediately following the table of offsets.
10064 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10065 with L columns and N rows, in row-major order. Each row in the array is
10066 indexed starting from 1 (row 0 is shared by the two tables).
10067
10068 ---
10069
10070 Hash table lookup is handled the same in version 1 and 2:
10071
10072 We assume that N and M will not exceed 2^32 - 1.
10073 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10074
d2415c6c
DE
10075 Given a 64-bit compilation unit signature or a type signature S, an entry
10076 in the hash table is located as follows:
80626a55 10077
d2415c6c
DE
10078 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10079 the low-order k bits all set to 1.
80626a55 10080
d2415c6c 10081 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 10082
d2415c6c
DE
10083 3) If the hash table entry at index H matches the signature, use that
10084 entry. If the hash table entry at index H is unused (all zeroes),
10085 terminate the search: the signature is not present in the table.
80626a55 10086
d2415c6c 10087 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 10088
d2415c6c 10089 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 10090 to stop at an unused slot or find the match. */
80626a55
DE
10091
10092/* Create a hash table to map DWO IDs to their CU/TU entry in
10093 .debug_{info,types}.dwo in DWP_FILE.
10094 Returns NULL if there isn't one.
10095 Note: This function processes DWP files only, not DWO files. */
10096
10097static struct dwp_hash_table *
10098create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10099{
10100 struct objfile *objfile = dwarf2_per_objfile->objfile;
10101 bfd *dbfd = dwp_file->dbfd;
948f8e3d 10102 const gdb_byte *index_ptr, *index_end;
80626a55 10103 struct dwarf2_section_info *index;
73869dc2 10104 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
10105 struct dwp_hash_table *htab;
10106
10107 if (is_debug_types)
10108 index = &dwp_file->sections.tu_index;
10109 else
10110 index = &dwp_file->sections.cu_index;
10111
10112 if (dwarf2_section_empty_p (index))
10113 return NULL;
10114 dwarf2_read_section (objfile, index);
10115
10116 index_ptr = index->buffer;
10117 index_end = index_ptr + index->size;
10118
10119 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
10120 index_ptr += 4;
10121 if (version == 2)
10122 nr_columns = read_4_bytes (dbfd, index_ptr);
10123 else
10124 nr_columns = 0;
10125 index_ptr += 4;
80626a55
DE
10126 nr_units = read_4_bytes (dbfd, index_ptr);
10127 index_ptr += 4;
10128 nr_slots = read_4_bytes (dbfd, index_ptr);
10129 index_ptr += 4;
10130
73869dc2 10131 if (version != 1 && version != 2)
80626a55 10132 {
21aa081e 10133 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 10134 " [in module %s]"),
21aa081e 10135 pulongest (version), dwp_file->name);
80626a55
DE
10136 }
10137 if (nr_slots != (nr_slots & -nr_slots))
10138 {
21aa081e 10139 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 10140 " is not power of 2 [in module %s]"),
21aa081e 10141 pulongest (nr_slots), dwp_file->name);
80626a55
DE
10142 }
10143
10144 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
10145 htab->version = version;
10146 htab->nr_columns = nr_columns;
80626a55
DE
10147 htab->nr_units = nr_units;
10148 htab->nr_slots = nr_slots;
10149 htab->hash_table = index_ptr;
10150 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
10151
10152 /* Exit early if the table is empty. */
10153 if (nr_slots == 0 || nr_units == 0
10154 || (version == 2 && nr_columns == 0))
10155 {
10156 /* All must be zero. */
10157 if (nr_slots != 0 || nr_units != 0
10158 || (version == 2 && nr_columns != 0))
10159 {
10160 complaint (&symfile_complaints,
10161 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10162 " all zero [in modules %s]"),
10163 dwp_file->name);
10164 }
10165 return htab;
10166 }
10167
10168 if (version == 1)
10169 {
10170 htab->section_pool.v1.indices =
10171 htab->unit_table + sizeof (uint32_t) * nr_slots;
10172 /* It's harder to decide whether the section is too small in v1.
10173 V1 is deprecated anyway so we punt. */
10174 }
10175 else
10176 {
10177 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10178 int *ids = htab->section_pool.v2.section_ids;
10179 /* Reverse map for error checking. */
10180 int ids_seen[DW_SECT_MAX + 1];
10181 int i;
10182
10183 if (nr_columns < 2)
10184 {
10185 error (_("Dwarf Error: bad DWP hash table, too few columns"
10186 " in section table [in module %s]"),
10187 dwp_file->name);
10188 }
10189 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10190 {
10191 error (_("Dwarf Error: bad DWP hash table, too many columns"
10192 " in section table [in module %s]"),
10193 dwp_file->name);
10194 }
10195 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10196 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10197 for (i = 0; i < nr_columns; ++i)
10198 {
10199 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10200
10201 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10202 {
10203 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10204 " in section table [in module %s]"),
10205 id, dwp_file->name);
10206 }
10207 if (ids_seen[id] != -1)
10208 {
10209 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10210 " id %d in section table [in module %s]"),
10211 id, dwp_file->name);
10212 }
10213 ids_seen[id] = i;
10214 ids[i] = id;
10215 }
10216 /* Must have exactly one info or types section. */
10217 if (((ids_seen[DW_SECT_INFO] != -1)
10218 + (ids_seen[DW_SECT_TYPES] != -1))
10219 != 1)
10220 {
10221 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10222 " DWO info/types section [in module %s]"),
10223 dwp_file->name);
10224 }
10225 /* Must have an abbrev section. */
10226 if (ids_seen[DW_SECT_ABBREV] == -1)
10227 {
10228 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10229 " section [in module %s]"),
10230 dwp_file->name);
10231 }
10232 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10233 htab->section_pool.v2.sizes =
10234 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10235 * nr_units * nr_columns);
10236 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10237 * nr_units * nr_columns))
10238 > index_end)
10239 {
10240 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10241 " [in module %s]"),
10242 dwp_file->name);
10243 }
10244 }
80626a55
DE
10245
10246 return htab;
10247}
10248
10249/* Update SECTIONS with the data from SECTP.
10250
10251 This function is like the other "locate" section routines that are
10252 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 10253 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
10254
10255 The result is non-zero for success, or zero if an error was found. */
10256
10257static int
73869dc2
DE
10258locate_v1_virtual_dwo_sections (asection *sectp,
10259 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10260{
10261 const struct dwop_section_names *names = &dwop_section_names;
10262
10263 if (section_is_p (sectp->name, &names->abbrev_dwo))
10264 {
10265 /* There can be only one. */
049412e3 10266 if (sections->abbrev.s.section != NULL)
80626a55 10267 return 0;
049412e3 10268 sections->abbrev.s.section = sectp;
80626a55
DE
10269 sections->abbrev.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->info_dwo)
10272 || section_is_p (sectp->name, &names->types_dwo))
10273 {
10274 /* There can be only one. */
049412e3 10275 if (sections->info_or_types.s.section != NULL)
80626a55 10276 return 0;
049412e3 10277 sections->info_or_types.s.section = sectp;
80626a55
DE
10278 sections->info_or_types.size = bfd_get_section_size (sectp);
10279 }
10280 else if (section_is_p (sectp->name, &names->line_dwo))
10281 {
10282 /* There can be only one. */
049412e3 10283 if (sections->line.s.section != NULL)
80626a55 10284 return 0;
049412e3 10285 sections->line.s.section = sectp;
80626a55
DE
10286 sections->line.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->loc_dwo))
10289 {
10290 /* There can be only one. */
049412e3 10291 if (sections->loc.s.section != NULL)
80626a55 10292 return 0;
049412e3 10293 sections->loc.s.section = sectp;
80626a55
DE
10294 sections->loc.size = bfd_get_section_size (sectp);
10295 }
10296 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10297 {
10298 /* There can be only one. */
049412e3 10299 if (sections->macinfo.s.section != NULL)
80626a55 10300 return 0;
049412e3 10301 sections->macinfo.s.section = sectp;
80626a55
DE
10302 sections->macinfo.size = bfd_get_section_size (sectp);
10303 }
10304 else if (section_is_p (sectp->name, &names->macro_dwo))
10305 {
10306 /* There can be only one. */
049412e3 10307 if (sections->macro.s.section != NULL)
80626a55 10308 return 0;
049412e3 10309 sections->macro.s.section = sectp;
80626a55
DE
10310 sections->macro.size = bfd_get_section_size (sectp);
10311 }
10312 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10313 {
10314 /* There can be only one. */
049412e3 10315 if (sections->str_offsets.s.section != NULL)
80626a55 10316 return 0;
049412e3 10317 sections->str_offsets.s.section = sectp;
80626a55
DE
10318 sections->str_offsets.size = bfd_get_section_size (sectp);
10319 }
10320 else
10321 {
10322 /* No other kind of section is valid. */
10323 return 0;
10324 }
10325
10326 return 1;
10327}
10328
73869dc2
DE
10329/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10330 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10331 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10332 This is for DWP version 1 files. */
80626a55
DE
10333
10334static struct dwo_unit *
73869dc2
DE
10335create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10336 uint32_t unit_index,
10337 const char *comp_dir,
10338 ULONGEST signature, int is_debug_types)
80626a55
DE
10339{
10340 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10341 const struct dwp_hash_table *dwp_htab =
10342 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10343 bfd *dbfd = dwp_file->dbfd;
10344 const char *kind = is_debug_types ? "TU" : "CU";
10345 struct dwo_file *dwo_file;
10346 struct dwo_unit *dwo_unit;
73869dc2 10347 struct virtual_v1_dwo_sections sections;
80626a55
DE
10348 void **dwo_file_slot;
10349 char *virtual_dwo_name;
80626a55
DE
10350 struct cleanup *cleanups;
10351 int i;
10352
73869dc2
DE
10353 gdb_assert (dwp_file->version == 1);
10354
b4f54984 10355 if (dwarf_read_debug)
80626a55 10356 {
73869dc2 10357 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10358 kind,
73869dc2 10359 pulongest (unit_index), hex_string (signature),
80626a55
DE
10360 dwp_file->name);
10361 }
10362
19ac8c2e 10363 /* Fetch the sections of this DWO unit.
80626a55
DE
10364 Put a limit on the number of sections we look for so that bad data
10365 doesn't cause us to loop forever. */
10366
73869dc2 10367#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10368 (1 /* .debug_info or .debug_types */ \
10369 + 1 /* .debug_abbrev */ \
10370 + 1 /* .debug_line */ \
10371 + 1 /* .debug_loc */ \
10372 + 1 /* .debug_str_offsets */ \
19ac8c2e 10373 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10374 + 1 /* trailing zero */)
10375
10376 memset (&sections, 0, sizeof (sections));
10377 cleanups = make_cleanup (null_cleanup, 0);
10378
73869dc2 10379 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10380 {
10381 asection *sectp;
10382 uint32_t section_nr =
10383 read_4_bytes (dbfd,
73869dc2
DE
10384 dwp_htab->section_pool.v1.indices
10385 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10386
10387 if (section_nr == 0)
10388 break;
10389 if (section_nr >= dwp_file->num_sections)
10390 {
10391 error (_("Dwarf Error: bad DWP hash table, section number too large"
10392 " [in module %s]"),
10393 dwp_file->name);
10394 }
10395
10396 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10397 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10398 {
10399 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10400 " [in module %s]"),
10401 dwp_file->name);
10402 }
10403 }
10404
10405 if (i < 2
a32a8923
DE
10406 || dwarf2_section_empty_p (&sections.info_or_types)
10407 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10408 {
10409 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10410 " [in module %s]"),
10411 dwp_file->name);
10412 }
73869dc2 10413 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10414 {
10415 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10416 " [in module %s]"),
10417 dwp_file->name);
10418 }
10419
10420 /* It's easier for the rest of the code if we fake a struct dwo_file and
10421 have dwo_unit "live" in that. At least for now.
10422
10423 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10424 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10425 file, we can combine them back into a virtual DWO file to save space
10426 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10427 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10428
2792b94d
PM
10429 virtual_dwo_name =
10430 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10431 get_section_id (&sections.abbrev),
10432 get_section_id (&sections.line),
10433 get_section_id (&sections.loc),
10434 get_section_id (&sections.str_offsets));
80626a55
DE
10435 make_cleanup (xfree, virtual_dwo_name);
10436 /* Can we use an existing virtual DWO file? */
0ac5b59e 10437 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10438 /* Create one if necessary. */
10439 if (*dwo_file_slot == NULL)
10440 {
b4f54984 10441 if (dwarf_read_debug)
80626a55
DE
10442 {
10443 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10444 virtual_dwo_name);
10445 }
10446 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10447 dwo_file->dwo_name
10448 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10449 virtual_dwo_name,
10450 strlen (virtual_dwo_name));
0ac5b59e 10451 dwo_file->comp_dir = comp_dir;
80626a55
DE
10452 dwo_file->sections.abbrev = sections.abbrev;
10453 dwo_file->sections.line = sections.line;
10454 dwo_file->sections.loc = sections.loc;
10455 dwo_file->sections.macinfo = sections.macinfo;
10456 dwo_file->sections.macro = sections.macro;
10457 dwo_file->sections.str_offsets = sections.str_offsets;
10458 /* The "str" section is global to the entire DWP file. */
10459 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10460 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10461 there's no need to record it in dwo_file.
10462 Also, we can't simply record type sections in dwo_file because
10463 we record a pointer into the vector in dwo_unit. As we collect more
10464 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10465 for it, invalidating all copies of pointers into the previous
10466 contents. */
80626a55
DE
10467 *dwo_file_slot = dwo_file;
10468 }
10469 else
10470 {
b4f54984 10471 if (dwarf_read_debug)
80626a55
DE
10472 {
10473 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10474 virtual_dwo_name);
10475 }
9a3c8263 10476 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10477 }
10478 do_cleanups (cleanups);
10479
10480 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10481 dwo_unit->dwo_file = dwo_file;
10482 dwo_unit->signature = signature;
8d749320
SM
10483 dwo_unit->section =
10484 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10485 *dwo_unit->section = sections.info_or_types;
57d63ce2 10486 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10487
10488 return dwo_unit;
10489}
10490
73869dc2
DE
10491/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10492 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10493 piece within that section used by a TU/CU, return a virtual section
10494 of just that piece. */
10495
10496static struct dwarf2_section_info
10497create_dwp_v2_section (struct dwarf2_section_info *section,
10498 bfd_size_type offset, bfd_size_type size)
10499{
10500 struct dwarf2_section_info result;
10501 asection *sectp;
10502
10503 gdb_assert (section != NULL);
10504 gdb_assert (!section->is_virtual);
10505
10506 memset (&result, 0, sizeof (result));
10507 result.s.containing_section = section;
10508 result.is_virtual = 1;
10509
10510 if (size == 0)
10511 return result;
10512
10513 sectp = get_section_bfd_section (section);
10514
10515 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10516 bounds of the real section. This is a pretty-rare event, so just
10517 flag an error (easier) instead of a warning and trying to cope. */
10518 if (sectp == NULL
10519 || offset + size > bfd_get_section_size (sectp))
10520 {
10521 bfd *abfd = sectp->owner;
10522
10523 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10524 " in section %s [in module %s]"),
10525 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10526 objfile_name (dwarf2_per_objfile->objfile));
10527 }
10528
10529 result.virtual_offset = offset;
10530 result.size = size;
10531 return result;
10532}
10533
10534/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10535 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10536 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10537 This is for DWP version 2 files. */
10538
10539static struct dwo_unit *
10540create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10541 uint32_t unit_index,
10542 const char *comp_dir,
10543 ULONGEST signature, int is_debug_types)
10544{
10545 struct objfile *objfile = dwarf2_per_objfile->objfile;
10546 const struct dwp_hash_table *dwp_htab =
10547 is_debug_types ? dwp_file->tus : dwp_file->cus;
10548 bfd *dbfd = dwp_file->dbfd;
10549 const char *kind = is_debug_types ? "TU" : "CU";
10550 struct dwo_file *dwo_file;
10551 struct dwo_unit *dwo_unit;
10552 struct virtual_v2_dwo_sections sections;
10553 void **dwo_file_slot;
10554 char *virtual_dwo_name;
73869dc2
DE
10555 struct cleanup *cleanups;
10556 int i;
10557
10558 gdb_assert (dwp_file->version == 2);
10559
b4f54984 10560 if (dwarf_read_debug)
73869dc2
DE
10561 {
10562 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10563 kind,
10564 pulongest (unit_index), hex_string (signature),
10565 dwp_file->name);
10566 }
10567
10568 /* Fetch the section offsets of this DWO unit. */
10569
10570 memset (&sections, 0, sizeof (sections));
10571 cleanups = make_cleanup (null_cleanup, 0);
10572
10573 for (i = 0; i < dwp_htab->nr_columns; ++i)
10574 {
10575 uint32_t offset = read_4_bytes (dbfd,
10576 dwp_htab->section_pool.v2.offsets
10577 + (((unit_index - 1) * dwp_htab->nr_columns
10578 + i)
10579 * sizeof (uint32_t)));
10580 uint32_t size = read_4_bytes (dbfd,
10581 dwp_htab->section_pool.v2.sizes
10582 + (((unit_index - 1) * dwp_htab->nr_columns
10583 + i)
10584 * sizeof (uint32_t)));
10585
10586 switch (dwp_htab->section_pool.v2.section_ids[i])
10587 {
10588 case DW_SECT_INFO:
10589 case DW_SECT_TYPES:
10590 sections.info_or_types_offset = offset;
10591 sections.info_or_types_size = size;
10592 break;
10593 case DW_SECT_ABBREV:
10594 sections.abbrev_offset = offset;
10595 sections.abbrev_size = size;
10596 break;
10597 case DW_SECT_LINE:
10598 sections.line_offset = offset;
10599 sections.line_size = size;
10600 break;
10601 case DW_SECT_LOC:
10602 sections.loc_offset = offset;
10603 sections.loc_size = size;
10604 break;
10605 case DW_SECT_STR_OFFSETS:
10606 sections.str_offsets_offset = offset;
10607 sections.str_offsets_size = size;
10608 break;
10609 case DW_SECT_MACINFO:
10610 sections.macinfo_offset = offset;
10611 sections.macinfo_size = size;
10612 break;
10613 case DW_SECT_MACRO:
10614 sections.macro_offset = offset;
10615 sections.macro_size = size;
10616 break;
10617 }
10618 }
10619
10620 /* It's easier for the rest of the code if we fake a struct dwo_file and
10621 have dwo_unit "live" in that. At least for now.
10622
10623 The DWP file can be made up of a random collection of CUs and TUs.
10624 However, for each CU + set of TUs that came from the same original DWO
10625 file, we can combine them back into a virtual DWO file to save space
10626 (fewer struct dwo_file objects to allocate). Remember that for really
10627 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10628
10629 virtual_dwo_name =
10630 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10631 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10632 (long) (sections.line_size ? sections.line_offset : 0),
10633 (long) (sections.loc_size ? sections.loc_offset : 0),
10634 (long) (sections.str_offsets_size
10635 ? sections.str_offsets_offset : 0));
10636 make_cleanup (xfree, virtual_dwo_name);
10637 /* Can we use an existing virtual DWO file? */
10638 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10639 /* Create one if necessary. */
10640 if (*dwo_file_slot == NULL)
10641 {
b4f54984 10642 if (dwarf_read_debug)
73869dc2
DE
10643 {
10644 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10645 virtual_dwo_name);
10646 }
10647 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10648 dwo_file->dwo_name
10649 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10650 virtual_dwo_name,
10651 strlen (virtual_dwo_name));
73869dc2
DE
10652 dwo_file->comp_dir = comp_dir;
10653 dwo_file->sections.abbrev =
10654 create_dwp_v2_section (&dwp_file->sections.abbrev,
10655 sections.abbrev_offset, sections.abbrev_size);
10656 dwo_file->sections.line =
10657 create_dwp_v2_section (&dwp_file->sections.line,
10658 sections.line_offset, sections.line_size);
10659 dwo_file->sections.loc =
10660 create_dwp_v2_section (&dwp_file->sections.loc,
10661 sections.loc_offset, sections.loc_size);
10662 dwo_file->sections.macinfo =
10663 create_dwp_v2_section (&dwp_file->sections.macinfo,
10664 sections.macinfo_offset, sections.macinfo_size);
10665 dwo_file->sections.macro =
10666 create_dwp_v2_section (&dwp_file->sections.macro,
10667 sections.macro_offset, sections.macro_size);
10668 dwo_file->sections.str_offsets =
10669 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10670 sections.str_offsets_offset,
10671 sections.str_offsets_size);
10672 /* The "str" section is global to the entire DWP file. */
10673 dwo_file->sections.str = dwp_file->sections.str;
10674 /* The info or types section is assigned below to dwo_unit,
10675 there's no need to record it in dwo_file.
10676 Also, we can't simply record type sections in dwo_file because
10677 we record a pointer into the vector in dwo_unit. As we collect more
10678 types we'll grow the vector and eventually have to reallocate space
10679 for it, invalidating all copies of pointers into the previous
10680 contents. */
10681 *dwo_file_slot = dwo_file;
10682 }
10683 else
10684 {
b4f54984 10685 if (dwarf_read_debug)
73869dc2
DE
10686 {
10687 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10688 virtual_dwo_name);
10689 }
9a3c8263 10690 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10691 }
10692 do_cleanups (cleanups);
10693
10694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10695 dwo_unit->dwo_file = dwo_file;
10696 dwo_unit->signature = signature;
8d749320
SM
10697 dwo_unit->section =
10698 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10699 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10700 ? &dwp_file->sections.types
10701 : &dwp_file->sections.info,
10702 sections.info_or_types_offset,
10703 sections.info_or_types_size);
10704 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10705
10706 return dwo_unit;
10707}
10708
57d63ce2
DE
10709/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10710 Returns NULL if the signature isn't found. */
80626a55
DE
10711
10712static struct dwo_unit *
57d63ce2
DE
10713lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10714 ULONGEST signature, int is_debug_types)
80626a55 10715{
57d63ce2
DE
10716 const struct dwp_hash_table *dwp_htab =
10717 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10718 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10719 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10720 uint32_t hash = signature & mask;
10721 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10722 unsigned int i;
10723 void **slot;
870f88f7 10724 struct dwo_unit find_dwo_cu;
80626a55
DE
10725
10726 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10727 find_dwo_cu.signature = signature;
19ac8c2e
DE
10728 slot = htab_find_slot (is_debug_types
10729 ? dwp_file->loaded_tus
10730 : dwp_file->loaded_cus,
10731 &find_dwo_cu, INSERT);
80626a55
DE
10732
10733 if (*slot != NULL)
9a3c8263 10734 return (struct dwo_unit *) *slot;
80626a55
DE
10735
10736 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10737 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10738 {
10739 ULONGEST signature_in_table;
10740
10741 signature_in_table =
57d63ce2 10742 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10743 if (signature_in_table == signature)
10744 {
57d63ce2
DE
10745 uint32_t unit_index =
10746 read_4_bytes (dbfd,
10747 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10748
73869dc2
DE
10749 if (dwp_file->version == 1)
10750 {
10751 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10752 comp_dir, signature,
10753 is_debug_types);
10754 }
10755 else
10756 {
10757 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10758 comp_dir, signature,
10759 is_debug_types);
10760 }
9a3c8263 10761 return (struct dwo_unit *) *slot;
80626a55
DE
10762 }
10763 if (signature_in_table == 0)
10764 return NULL;
10765 hash = (hash + hash2) & mask;
10766 }
10767
10768 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10769 " [in module %s]"),
10770 dwp_file->name);
10771}
10772
ab5088bf 10773/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10774 Open the file specified by FILE_NAME and hand it off to BFD for
10775 preliminary analysis. Return a newly initialized bfd *, which
10776 includes a canonicalized copy of FILE_NAME.
80626a55 10777 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10778 SEARCH_CWD is true if the current directory is to be searched.
10779 It will be searched before debug-file-directory.
13aaf454
DE
10780 If successful, the file is added to the bfd include table of the
10781 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10782 If unable to find/open the file, return NULL.
3019eac3
DE
10783 NOTE: This function is derived from symfile_bfd_open. */
10784
192b62ce 10785static gdb_bfd_ref_ptr
6ac97d4c 10786try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10787{
80626a55 10788 int desc, flags;
3019eac3 10789 char *absolute_name;
9c02c129
DE
10790 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10791 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10792 to debug_file_directory. */
10793 char *search_path;
10794 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10795
6ac97d4c
DE
10796 if (search_cwd)
10797 {
10798 if (*debug_file_directory != '\0')
10799 search_path = concat (".", dirname_separator_string,
b36cec19 10800 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10801 else
10802 search_path = xstrdup (".");
10803 }
9c02c129 10804 else
6ac97d4c 10805 search_path = xstrdup (debug_file_directory);
3019eac3 10806
492c0ab7 10807 flags = OPF_RETURN_REALPATH;
80626a55
DE
10808 if (is_dwp)
10809 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10810 desc = openp (search_path, flags, file_name,
3019eac3 10811 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10812 xfree (search_path);
3019eac3
DE
10813 if (desc < 0)
10814 return NULL;
10815
192b62ce 10816 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10817 xfree (absolute_name);
9c02c129
DE
10818 if (sym_bfd == NULL)
10819 return NULL;
192b62ce 10820 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10821
192b62ce
TT
10822 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10823 return NULL;
3019eac3 10824
13aaf454
DE
10825 /* Success. Record the bfd as having been included by the objfile's bfd.
10826 This is important because things like demangled_names_hash lives in the
10827 objfile's per_bfd space and may have references to things like symbol
10828 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10829 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10830
3019eac3
DE
10831 return sym_bfd;
10832}
10833
ab5088bf 10834/* Try to open DWO file FILE_NAME.
3019eac3
DE
10835 COMP_DIR is the DW_AT_comp_dir attribute.
10836 The result is the bfd handle of the file.
10837 If there is a problem finding or opening the file, return NULL.
10838 Upon success, the canonicalized path of the file is stored in the bfd,
10839 same as symfile_bfd_open. */
10840
192b62ce 10841static gdb_bfd_ref_ptr
ab5088bf 10842open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10843{
80626a55 10844 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10845 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10846
10847 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10848
10849 if (comp_dir != NULL)
10850 {
b36cec19
PA
10851 char *path_to_try = concat (comp_dir, SLASH_STRING,
10852 file_name, (char *) NULL);
3019eac3
DE
10853
10854 /* NOTE: If comp_dir is a relative path, this will also try the
10855 search path, which seems useful. */
192b62ce
TT
10856 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10857 1 /*search_cwd*/));
3019eac3
DE
10858 xfree (path_to_try);
10859 if (abfd != NULL)
10860 return abfd;
10861 }
10862
10863 /* That didn't work, try debug-file-directory, which, despite its name,
10864 is a list of paths. */
10865
10866 if (*debug_file_directory == '\0')
10867 return NULL;
10868
6ac97d4c 10869 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10870}
10871
80626a55
DE
10872/* This function is mapped across the sections and remembers the offset and
10873 size of each of the DWO debugging sections we are interested in. */
10874
10875static void
10876dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10877{
9a3c8263 10878 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10879 const struct dwop_section_names *names = &dwop_section_names;
10880
10881 if (section_is_p (sectp->name, &names->abbrev_dwo))
10882 {
049412e3 10883 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10884 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10885 }
10886 else if (section_is_p (sectp->name, &names->info_dwo))
10887 {
049412e3 10888 dwo_sections->info.s.section = sectp;
80626a55
DE
10889 dwo_sections->info.size = bfd_get_section_size (sectp);
10890 }
10891 else if (section_is_p (sectp->name, &names->line_dwo))
10892 {
049412e3 10893 dwo_sections->line.s.section = sectp;
80626a55
DE
10894 dwo_sections->line.size = bfd_get_section_size (sectp);
10895 }
10896 else if (section_is_p (sectp->name, &names->loc_dwo))
10897 {
049412e3 10898 dwo_sections->loc.s.section = sectp;
80626a55
DE
10899 dwo_sections->loc.size = bfd_get_section_size (sectp);
10900 }
10901 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10902 {
049412e3 10903 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10904 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10905 }
10906 else if (section_is_p (sectp->name, &names->macro_dwo))
10907 {
049412e3 10908 dwo_sections->macro.s.section = sectp;
80626a55
DE
10909 dwo_sections->macro.size = bfd_get_section_size (sectp);
10910 }
10911 else if (section_is_p (sectp->name, &names->str_dwo))
10912 {
049412e3 10913 dwo_sections->str.s.section = sectp;
80626a55
DE
10914 dwo_sections->str.size = bfd_get_section_size (sectp);
10915 }
10916 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10917 {
049412e3 10918 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10919 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10920 }
10921 else if (section_is_p (sectp->name, &names->types_dwo))
10922 {
10923 struct dwarf2_section_info type_section;
10924
10925 memset (&type_section, 0, sizeof (type_section));
049412e3 10926 type_section.s.section = sectp;
80626a55
DE
10927 type_section.size = bfd_get_section_size (sectp);
10928 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10929 &type_section);
10930 }
10931}
10932
ab5088bf 10933/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10934 by PER_CU. This is for the non-DWP case.
80626a55 10935 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10936
10937static struct dwo_file *
0ac5b59e
DE
10938open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10939 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10940{
10941 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10942 struct dwo_file *dwo_file;
3019eac3
DE
10943 struct cleanup *cleanups;
10944
192b62ce 10945 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10946 if (dbfd == NULL)
10947 {
b4f54984 10948 if (dwarf_read_debug)
80626a55
DE
10949 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10950 return NULL;
10951 }
10952 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10953 dwo_file->dwo_name = dwo_name;
10954 dwo_file->comp_dir = comp_dir;
192b62ce 10955 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10956
10957 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10958
192b62ce
TT
10959 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10960 &dwo_file->sections);
3019eac3 10961
33c5cd75 10962 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
3019eac3 10963
78d4d2c5
JK
10964 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10965 dwo_file->tus);
3019eac3
DE
10966
10967 discard_cleanups (cleanups);
10968
b4f54984 10969 if (dwarf_read_debug)
80626a55
DE
10970 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10971
3019eac3
DE
10972 return dwo_file;
10973}
10974
80626a55 10975/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10976 size of each of the DWP debugging sections common to version 1 and 2 that
10977 we are interested in. */
3019eac3 10978
80626a55 10979static void
73869dc2
DE
10980dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10981 void *dwp_file_ptr)
3019eac3 10982{
9a3c8263 10983 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10984 const struct dwop_section_names *names = &dwop_section_names;
10985 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10986
80626a55 10987 /* Record the ELF section number for later lookup: this is what the
73869dc2 10988 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10989 gdb_assert (elf_section_nr < dwp_file->num_sections);
10990 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10991
80626a55
DE
10992 /* Look for specific sections that we need. */
10993 if (section_is_p (sectp->name, &names->str_dwo))
10994 {
049412e3 10995 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10996 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10997 }
10998 else if (section_is_p (sectp->name, &names->cu_index))
10999 {
049412e3 11000 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
11001 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11002 }
11003 else if (section_is_p (sectp->name, &names->tu_index))
11004 {
049412e3 11005 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
11006 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11007 }
11008}
3019eac3 11009
73869dc2
DE
11010/* This function is mapped across the sections and remembers the offset and
11011 size of each of the DWP version 2 debugging sections that we are interested
11012 in. This is split into a separate function because we don't know if we
11013 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11014
11015static void
11016dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11017{
9a3c8263 11018 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
11019 const struct dwop_section_names *names = &dwop_section_names;
11020 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11021
11022 /* Record the ELF section number for later lookup: this is what the
11023 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11024 gdb_assert (elf_section_nr < dwp_file->num_sections);
11025 dwp_file->elf_sections[elf_section_nr] = sectp;
11026
11027 /* Look for specific sections that we need. */
11028 if (section_is_p (sectp->name, &names->abbrev_dwo))
11029 {
049412e3 11030 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
11031 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11032 }
11033 else if (section_is_p (sectp->name, &names->info_dwo))
11034 {
049412e3 11035 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
11036 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11037 }
11038 else if (section_is_p (sectp->name, &names->line_dwo))
11039 {
049412e3 11040 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
11041 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11042 }
11043 else if (section_is_p (sectp->name, &names->loc_dwo))
11044 {
049412e3 11045 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
11046 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11047 }
11048 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11049 {
049412e3 11050 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
11051 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11052 }
11053 else if (section_is_p (sectp->name, &names->macro_dwo))
11054 {
049412e3 11055 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
11056 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11057 }
11058 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11059 {
049412e3 11060 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
11061 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11062 }
11063 else if (section_is_p (sectp->name, &names->types_dwo))
11064 {
049412e3 11065 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
11066 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11067 }
11068}
11069
80626a55 11070/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 11071
80626a55
DE
11072static hashval_t
11073hash_dwp_loaded_cutus (const void *item)
11074{
9a3c8263 11075 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 11076
80626a55
DE
11077 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11078 return dwo_unit->signature;
3019eac3
DE
11079}
11080
80626a55 11081/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 11082
80626a55
DE
11083static int
11084eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 11085{
9a3c8263
SM
11086 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11087 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 11088
80626a55
DE
11089 return dua->signature == dub->signature;
11090}
3019eac3 11091
80626a55 11092/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 11093
80626a55
DE
11094static htab_t
11095allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11096{
11097 return htab_create_alloc_ex (3,
11098 hash_dwp_loaded_cutus,
11099 eq_dwp_loaded_cutus,
11100 NULL,
11101 &objfile->objfile_obstack,
11102 hashtab_obstack_allocate,
11103 dummy_obstack_deallocate);
11104}
3019eac3 11105
ab5088bf
DE
11106/* Try to open DWP file FILE_NAME.
11107 The result is the bfd handle of the file.
11108 If there is a problem finding or opening the file, return NULL.
11109 Upon success, the canonicalized path of the file is stored in the bfd,
11110 same as symfile_bfd_open. */
11111
192b62ce 11112static gdb_bfd_ref_ptr
ab5088bf
DE
11113open_dwp_file (const char *file_name)
11114{
192b62ce
TT
11115 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11116 1 /*search_cwd*/));
6ac97d4c
DE
11117 if (abfd != NULL)
11118 return abfd;
11119
11120 /* Work around upstream bug 15652.
11121 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11122 [Whether that's a "bug" is debatable, but it is getting in our way.]
11123 We have no real idea where the dwp file is, because gdb's realpath-ing
11124 of the executable's path may have discarded the needed info.
11125 [IWBN if the dwp file name was recorded in the executable, akin to
11126 .gnu_debuglink, but that doesn't exist yet.]
11127 Strip the directory from FILE_NAME and search again. */
11128 if (*debug_file_directory != '\0')
11129 {
11130 /* Don't implicitly search the current directory here.
11131 If the user wants to search "." to handle this case,
11132 it must be added to debug-file-directory. */
11133 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11134 0 /*search_cwd*/);
11135 }
11136
11137 return NULL;
ab5088bf
DE
11138}
11139
80626a55
DE
11140/* Initialize the use of the DWP file for the current objfile.
11141 By convention the name of the DWP file is ${objfile}.dwp.
11142 The result is NULL if it can't be found. */
a766d390 11143
80626a55 11144static struct dwp_file *
ab5088bf 11145open_and_init_dwp_file (void)
80626a55
DE
11146{
11147 struct objfile *objfile = dwarf2_per_objfile->objfile;
11148 struct dwp_file *dwp_file;
80626a55 11149
82bf32bc
JK
11150 /* Try to find first .dwp for the binary file before any symbolic links
11151 resolving. */
6c447423
DE
11152
11153 /* If the objfile is a debug file, find the name of the real binary
11154 file and get the name of dwp file from there. */
d721ba37 11155 std::string dwp_name;
6c447423
DE
11156 if (objfile->separate_debug_objfile_backlink != NULL)
11157 {
11158 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11159 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 11160
d721ba37 11161 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
11162 }
11163 else
d721ba37
PA
11164 dwp_name = objfile->original_name;
11165
11166 dwp_name += ".dwp";
80626a55 11167
d721ba37 11168 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
82bf32bc
JK
11169 if (dbfd == NULL
11170 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11171 {
11172 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
11173 dwp_name = objfile_name (objfile);
11174 dwp_name += ".dwp";
11175 dbfd = open_dwp_file (dwp_name.c_str ());
82bf32bc
JK
11176 }
11177
80626a55
DE
11178 if (dbfd == NULL)
11179 {
b4f54984 11180 if (dwarf_read_debug)
d721ba37 11181 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
80626a55 11182 return NULL;
3019eac3 11183 }
80626a55 11184 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
11185 dwp_file->name = bfd_get_filename (dbfd.get ());
11186 dwp_file->dbfd = dbfd.release ();
c906108c 11187
80626a55 11188 /* +1: section 0 is unused */
192b62ce 11189 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
11190 dwp_file->elf_sections =
11191 OBSTACK_CALLOC (&objfile->objfile_obstack,
11192 dwp_file->num_sections, asection *);
11193
192b62ce
TT
11194 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11195 dwp_file);
80626a55
DE
11196
11197 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11198
11199 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11200
73869dc2
DE
11201 /* The DWP file version is stored in the hash table. Oh well. */
11202 if (dwp_file->cus->version != dwp_file->tus->version)
11203 {
11204 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 11205 pretty bizarre. We use pulongest here because that's the established
4d65956b 11206 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
11207 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11208 " TU version %s [in DWP file %s]"),
11209 pulongest (dwp_file->cus->version),
d721ba37 11210 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2
DE
11211 }
11212 dwp_file->version = dwp_file->cus->version;
11213
11214 if (dwp_file->version == 2)
192b62ce
TT
11215 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11216 dwp_file);
73869dc2 11217
19ac8c2e
DE
11218 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11219 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 11220
b4f54984 11221 if (dwarf_read_debug)
80626a55
DE
11222 {
11223 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11224 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
11225 " %s CUs, %s TUs\n",
11226 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11227 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
11228 }
11229
11230 return dwp_file;
3019eac3 11231}
c906108c 11232
ab5088bf
DE
11233/* Wrapper around open_and_init_dwp_file, only open it once. */
11234
11235static struct dwp_file *
11236get_dwp_file (void)
11237{
11238 if (! dwarf2_per_objfile->dwp_checked)
11239 {
11240 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11241 dwarf2_per_objfile->dwp_checked = 1;
11242 }
11243 return dwarf2_per_objfile->dwp_file;
11244}
11245
80626a55
DE
11246/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11247 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11248 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 11249 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
11250 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11251
11252 This is called, for example, when wanting to read a variable with a
11253 complex location. Therefore we don't want to do file i/o for every call.
11254 Therefore we don't want to look for a DWO file on every call.
11255 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11256 then we check if we've already seen DWO_NAME, and only THEN do we check
11257 for a DWO file.
11258
1c658ad5 11259 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11260 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11261
3019eac3 11262static struct dwo_unit *
80626a55
DE
11263lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11264 const char *dwo_name, const char *comp_dir,
11265 ULONGEST signature, int is_debug_types)
3019eac3
DE
11266{
11267 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11268 const char *kind = is_debug_types ? "TU" : "CU";
11269 void **dwo_file_slot;
3019eac3 11270 struct dwo_file *dwo_file;
80626a55 11271 struct dwp_file *dwp_file;
cb1df416 11272
6a506a2d
DE
11273 /* First see if there's a DWP file.
11274 If we have a DWP file but didn't find the DWO inside it, don't
11275 look for the original DWO file. It makes gdb behave differently
11276 depending on whether one is debugging in the build tree. */
cf2c3c16 11277
ab5088bf 11278 dwp_file = get_dwp_file ();
80626a55 11279 if (dwp_file != NULL)
cf2c3c16 11280 {
80626a55
DE
11281 const struct dwp_hash_table *dwp_htab =
11282 is_debug_types ? dwp_file->tus : dwp_file->cus;
11283
11284 if (dwp_htab != NULL)
11285 {
11286 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11287 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11288 signature, is_debug_types);
80626a55
DE
11289
11290 if (dwo_cutu != NULL)
11291 {
b4f54984 11292 if (dwarf_read_debug)
80626a55
DE
11293 {
11294 fprintf_unfiltered (gdb_stdlog,
11295 "Virtual DWO %s %s found: @%s\n",
11296 kind, hex_string (signature),
11297 host_address_to_string (dwo_cutu));
11298 }
11299 return dwo_cutu;
11300 }
11301 }
11302 }
6a506a2d 11303 else
80626a55 11304 {
6a506a2d 11305 /* No DWP file, look for the DWO file. */
80626a55 11306
6a506a2d
DE
11307 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11308 if (*dwo_file_slot == NULL)
80626a55 11309 {
6a506a2d
DE
11310 /* Read in the file and build a table of the CUs/TUs it contains. */
11311 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11312 }
6a506a2d 11313 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11314 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11315
6a506a2d 11316 if (dwo_file != NULL)
19c3d4c9 11317 {
6a506a2d
DE
11318 struct dwo_unit *dwo_cutu = NULL;
11319
11320 if (is_debug_types && dwo_file->tus)
11321 {
11322 struct dwo_unit find_dwo_cutu;
11323
11324 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11325 find_dwo_cutu.signature = signature;
9a3c8263
SM
11326 dwo_cutu
11327 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 11328 }
33c5cd75 11329 else if (!is_debug_types && dwo_file->cus)
80626a55 11330 {
33c5cd75
DB
11331 struct dwo_unit find_dwo_cutu;
11332
11333 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11334 find_dwo_cutu.signature = signature;
11335 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11336 &find_dwo_cutu);
6a506a2d
DE
11337 }
11338
11339 if (dwo_cutu != NULL)
11340 {
b4f54984 11341 if (dwarf_read_debug)
6a506a2d
DE
11342 {
11343 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11344 kind, dwo_name, hex_string (signature),
11345 host_address_to_string (dwo_cutu));
11346 }
11347 return dwo_cutu;
80626a55
DE
11348 }
11349 }
2e276125 11350 }
9cdd5dbd 11351
80626a55
DE
11352 /* We didn't find it. This could mean a dwo_id mismatch, or
11353 someone deleted the DWO/DWP file, or the search path isn't set up
11354 correctly to find the file. */
11355
b4f54984 11356 if (dwarf_read_debug)
80626a55
DE
11357 {
11358 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11359 kind, dwo_name, hex_string (signature));
11360 }
3019eac3 11361
6656a72d
DE
11362 /* This is a warning and not a complaint because it can be caused by
11363 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11364 {
11365 /* Print the name of the DWP file if we looked there, helps the user
11366 better diagnose the problem. */
11367 char *dwp_text = NULL;
11368 struct cleanup *cleanups;
11369
11370 if (dwp_file != NULL)
11371 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11372 cleanups = make_cleanup (xfree, dwp_text);
11373
11374 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11375 " [in module %s]"),
11376 kind, dwo_name, hex_string (signature),
11377 dwp_text != NULL ? dwp_text : "",
11378 this_unit->is_debug_types ? "TU" : "CU",
9c541725 11379 to_underlying (this_unit->sect_off), objfile_name (objfile));
43942612
DE
11380
11381 do_cleanups (cleanups);
11382 }
3019eac3 11383 return NULL;
5fb290d7
DJ
11384}
11385
80626a55
DE
11386/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11387 See lookup_dwo_cutu_unit for details. */
11388
11389static struct dwo_unit *
11390lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11391 const char *dwo_name, const char *comp_dir,
11392 ULONGEST signature)
11393{
11394 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11395}
11396
11397/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11398 See lookup_dwo_cutu_unit for details. */
11399
11400static struct dwo_unit *
11401lookup_dwo_type_unit (struct signatured_type *this_tu,
11402 const char *dwo_name, const char *comp_dir)
11403{
11404 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11405}
11406
89e63ee4
DE
11407/* Traversal function for queue_and_load_all_dwo_tus. */
11408
11409static int
11410queue_and_load_dwo_tu (void **slot, void *info)
11411{
11412 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11413 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11414 ULONGEST signature = dwo_unit->signature;
11415 struct signatured_type *sig_type =
11416 lookup_dwo_signatured_type (per_cu->cu, signature);
11417
11418 if (sig_type != NULL)
11419 {
11420 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11421
11422 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11423 a real dependency of PER_CU on SIG_TYPE. That is detected later
11424 while processing PER_CU. */
11425 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11426 load_full_type_unit (sig_cu);
11427 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11428 }
11429
11430 return 1;
11431}
11432
11433/* Queue all TUs contained in the DWO of PER_CU to be read in.
11434 The DWO may have the only definition of the type, though it may not be
11435 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11436 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11437
11438static void
11439queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11440{
11441 struct dwo_unit *dwo_unit;
11442 struct dwo_file *dwo_file;
11443
11444 gdb_assert (!per_cu->is_debug_types);
11445 gdb_assert (get_dwp_file () == NULL);
11446 gdb_assert (per_cu->cu != NULL);
11447
11448 dwo_unit = per_cu->cu->dwo_unit;
11449 gdb_assert (dwo_unit != NULL);
11450
11451 dwo_file = dwo_unit->dwo_file;
11452 if (dwo_file->tus != NULL)
11453 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11454}
11455
3019eac3
DE
11456/* Free all resources associated with DWO_FILE.
11457 Close the DWO file and munmap the sections.
11458 All memory should be on the objfile obstack. */
348e048f
DE
11459
11460static void
3019eac3 11461free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11462{
348e048f 11463
5c6fa7ab 11464 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11465 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11466
3019eac3
DE
11467 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11468}
348e048f 11469
3019eac3 11470/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11471
3019eac3
DE
11472static void
11473free_dwo_file_cleanup (void *arg)
11474{
11475 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11476 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11477
3019eac3
DE
11478 free_dwo_file (dwo_file, objfile);
11479}
348e048f 11480
3019eac3 11481/* Traversal function for free_dwo_files. */
2ab95328 11482
3019eac3
DE
11483static int
11484free_dwo_file_from_slot (void **slot, void *info)
11485{
11486 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11487 struct objfile *objfile = (struct objfile *) info;
348e048f 11488
3019eac3 11489 free_dwo_file (dwo_file, objfile);
348e048f 11490
3019eac3
DE
11491 return 1;
11492}
348e048f 11493
3019eac3 11494/* Free all resources associated with DWO_FILES. */
348e048f 11495
3019eac3
DE
11496static void
11497free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11498{
11499 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11500}
3019eac3
DE
11501\f
11502/* Read in various DIEs. */
348e048f 11503
d389af10
JK
11504/* qsort helper for inherit_abstract_dies. */
11505
11506static int
11507unsigned_int_compar (const void *ap, const void *bp)
11508{
11509 unsigned int a = *(unsigned int *) ap;
11510 unsigned int b = *(unsigned int *) bp;
11511
11512 return (a > b) - (b > a);
11513}
11514
11515/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11516 Inherit only the children of the DW_AT_abstract_origin DIE not being
11517 already referenced by DW_AT_abstract_origin from the children of the
11518 current DIE. */
d389af10
JK
11519
11520static void
11521inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11522{
11523 struct die_info *child_die;
11524 unsigned die_children_count;
11525 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11526 sect_offset *offsets;
11527 sect_offset *offsets_end, *offsetp;
d389af10
JK
11528 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11529 struct die_info *origin_die;
11530 /* Iterator of the ORIGIN_DIE children. */
11531 struct die_info *origin_child_die;
11532 struct cleanup *cleanups;
11533 struct attribute *attr;
cd02d79d
PA
11534 struct dwarf2_cu *origin_cu;
11535 struct pending **origin_previous_list_in_scope;
d389af10
JK
11536
11537 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11538 if (!attr)
11539 return;
11540
cd02d79d
PA
11541 /* Note that following die references may follow to a die in a
11542 different cu. */
11543
11544 origin_cu = cu;
11545 origin_die = follow_die_ref (die, attr, &origin_cu);
11546
11547 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11548 symbols in. */
11549 origin_previous_list_in_scope = origin_cu->list_in_scope;
11550 origin_cu->list_in_scope = cu->list_in_scope;
11551
edb3359d
DJ
11552 if (die->tag != origin_die->tag
11553 && !(die->tag == DW_TAG_inlined_subroutine
11554 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11555 complaint (&symfile_complaints,
11556 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9c541725
PA
11557 to_underlying (die->sect_off),
11558 to_underlying (origin_die->sect_off));
d389af10
JK
11559
11560 child_die = die->child;
11561 die_children_count = 0;
11562 while (child_die && child_die->tag)
11563 {
11564 child_die = sibling_die (child_die);
11565 die_children_count++;
11566 }
8d749320 11567 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11568 cleanups = make_cleanup (xfree, offsets);
11569
11570 offsets_end = offsets;
3ea89b92
PMR
11571 for (child_die = die->child;
11572 child_die && child_die->tag;
11573 child_die = sibling_die (child_die))
11574 {
11575 struct die_info *child_origin_die;
11576 struct dwarf2_cu *child_origin_cu;
11577
11578 /* We are trying to process concrete instance entries:
216f72a1 11579 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11580 it's not relevant to our analysis here. i.e. detecting DIEs that are
11581 present in the abstract instance but not referenced in the concrete
11582 one. */
216f72a1
JK
11583 if (child_die->tag == DW_TAG_call_site
11584 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11585 continue;
11586
c38f313d
DJ
11587 /* For each CHILD_DIE, find the corresponding child of
11588 ORIGIN_DIE. If there is more than one layer of
11589 DW_AT_abstract_origin, follow them all; there shouldn't be,
11590 but GCC versions at least through 4.4 generate this (GCC PR
11591 40573). */
3ea89b92
PMR
11592 child_origin_die = child_die;
11593 child_origin_cu = cu;
c38f313d
DJ
11594 while (1)
11595 {
cd02d79d
PA
11596 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11597 child_origin_cu);
c38f313d
DJ
11598 if (attr == NULL)
11599 break;
cd02d79d
PA
11600 child_origin_die = follow_die_ref (child_origin_die, attr,
11601 &child_origin_cu);
c38f313d
DJ
11602 }
11603
d389af10
JK
11604 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11605 counterpart may exist. */
c38f313d 11606 if (child_origin_die != child_die)
d389af10 11607 {
edb3359d
DJ
11608 if (child_die->tag != child_origin_die->tag
11609 && !(child_die->tag == DW_TAG_inlined_subroutine
11610 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11611 complaint (&symfile_complaints,
11612 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11613 "different tags"),
11614 to_underlying (child_die->sect_off),
11615 to_underlying (child_origin_die->sect_off));
c38f313d
DJ
11616 if (child_origin_die->parent != origin_die)
11617 complaint (&symfile_complaints,
11618 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11619 "different parents"),
11620 to_underlying (child_die->sect_off),
11621 to_underlying (child_origin_die->sect_off));
c38f313d 11622 else
9c541725 11623 *offsets_end++ = child_origin_die->sect_off;
d389af10 11624 }
d389af10
JK
11625 }
11626 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11627 unsigned_int_compar);
11628 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9c541725 11629 if (offsetp[-1] == *offsetp)
3e43a32a
MS
11630 complaint (&symfile_complaints,
11631 _("Multiple children of DIE 0x%x refer "
11632 "to DIE 0x%x as their abstract origin"),
9c541725 11633 to_underlying (die->sect_off), to_underlying (*offsetp));
d389af10
JK
11634
11635 offsetp = offsets;
11636 origin_child_die = origin_die->child;
11637 while (origin_child_die && origin_child_die->tag)
11638 {
11639 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 11640 while (offsetp < offsets_end
9c541725 11641 && *offsetp < origin_child_die->sect_off)
d389af10 11642 offsetp++;
b64f50a1 11643 if (offsetp >= offsets_end
9c541725 11644 || *offsetp > origin_child_die->sect_off)
d389af10 11645 {
adde2bff
DE
11646 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11647 Check whether we're already processing ORIGIN_CHILD_DIE.
11648 This can happen with mutually referenced abstract_origins.
11649 PR 16581. */
11650 if (!origin_child_die->in_process)
11651 process_die (origin_child_die, origin_cu);
d389af10
JK
11652 }
11653 origin_child_die = sibling_die (origin_child_die);
11654 }
cd02d79d 11655 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11656
11657 do_cleanups (cleanups);
11658}
11659
c906108c 11660static void
e7c27a73 11661read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11662{
e7c27a73 11663 struct objfile *objfile = cu->objfile;
3e29f34a 11664 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11665 struct context_stack *newobj;
c906108c
SS
11666 CORE_ADDR lowpc;
11667 CORE_ADDR highpc;
11668 struct die_info *child_die;
edb3359d 11669 struct attribute *attr, *call_line, *call_file;
15d034d0 11670 const char *name;
e142c38c 11671 CORE_ADDR baseaddr;
801e3a5b 11672 struct block *block;
edb3359d 11673 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11674 VEC (symbolp) *template_args = NULL;
11675 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11676
11677 if (inlined_func)
11678 {
11679 /* If we do not have call site information, we can't show the
11680 caller of this inlined function. That's too confusing, so
11681 only use the scope for local variables. */
11682 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11683 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11684 if (call_line == NULL || call_file == NULL)
11685 {
11686 read_lexical_block_scope (die, cu);
11687 return;
11688 }
11689 }
c906108c 11690
e142c38c
DJ
11691 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11692
94af9270 11693 name = dwarf2_name (die, cu);
c906108c 11694
e8d05480
JB
11695 /* Ignore functions with missing or empty names. These are actually
11696 illegal according to the DWARF standard. */
11697 if (name == NULL)
11698 {
11699 complaint (&symfile_complaints,
b64f50a1 11700 _("missing name for subprogram DIE at %d"),
9c541725 11701 to_underlying (die->sect_off));
e8d05480
JB
11702 return;
11703 }
11704
11705 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11706 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11707 <= PC_BOUNDS_INVALID)
e8d05480 11708 {
ae4d0c03
PM
11709 attr = dwarf2_attr (die, DW_AT_external, cu);
11710 if (!attr || !DW_UNSND (attr))
11711 complaint (&symfile_complaints,
3e43a32a
MS
11712 _("cannot get low and high bounds "
11713 "for subprogram DIE at %d"),
9c541725 11714 to_underlying (die->sect_off));
e8d05480
JB
11715 return;
11716 }
c906108c 11717
3e29f34a
MR
11718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11720
34eaf542
TT
11721 /* If we have any template arguments, then we must allocate a
11722 different sort of symbol. */
11723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11724 {
11725 if (child_die->tag == DW_TAG_template_type_param
11726 || child_die->tag == DW_TAG_template_value_param)
11727 {
e623cf5d 11728 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11729 templ_func->base.is_cplus_template_function = 1;
11730 break;
11731 }
11732 }
11733
fe978cb0
PA
11734 newobj = push_context (0, lowpc);
11735 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11736 (struct symbol *) templ_func);
4c2df51b 11737
4cecd739
DJ
11738 /* If there is a location expression for DW_AT_frame_base, record
11739 it. */
e142c38c 11740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11741 if (attr)
fe978cb0 11742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11743
63e43d3a
PMR
11744 /* If there is a location for the static link, record it. */
11745 newobj->static_link = NULL;
11746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11747 if (attr)
11748 {
224c3ddb
SM
11749 newobj->static_link
11750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11752 }
11753
e142c38c 11754 cu->list_in_scope = &local_symbols;
c906108c 11755
639d11d3 11756 if (die->child != NULL)
c906108c 11757 {
639d11d3 11758 child_die = die->child;
c906108c
SS
11759 while (child_die && child_die->tag)
11760 {
34eaf542
TT
11761 if (child_die->tag == DW_TAG_template_type_param
11762 || child_die->tag == DW_TAG_template_value_param)
11763 {
11764 struct symbol *arg = new_symbol (child_die, NULL, cu);
11765
f1078f66
DJ
11766 if (arg != NULL)
11767 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11768 }
11769 else
11770 process_die (child_die, cu);
c906108c
SS
11771 child_die = sibling_die (child_die);
11772 }
11773 }
11774
d389af10
JK
11775 inherit_abstract_dies (die, cu);
11776
4a811a97
UW
11777 /* If we have a DW_AT_specification, we might need to import using
11778 directives from the context of the specification DIE. See the
11779 comment in determine_prefix. */
11780 if (cu->language == language_cplus
11781 && dwarf2_attr (die, DW_AT_specification, cu))
11782 {
11783 struct dwarf2_cu *spec_cu = cu;
11784 struct die_info *spec_die = die_specification (die, &spec_cu);
11785
11786 while (spec_die)
11787 {
11788 child_die = spec_die->child;
11789 while (child_die && child_die->tag)
11790 {
11791 if (child_die->tag == DW_TAG_imported_module)
11792 process_die (child_die, spec_cu);
11793 child_die = sibling_die (child_die);
11794 }
11795
11796 /* In some cases, GCC generates specification DIEs that
11797 themselves contain DW_AT_specification attributes. */
11798 spec_die = die_specification (spec_die, &spec_cu);
11799 }
11800 }
11801
fe978cb0 11802 newobj = pop_context ();
c906108c 11803 /* Make a block for the local symbols within. */
fe978cb0 11804 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11805 newobj->static_link, lowpc, highpc);
801e3a5b 11806
df8a16a1 11807 /* For C++, set the block's scope. */
45280282
IB
11808 if ((cu->language == language_cplus
11809 || cu->language == language_fortran
c44af4eb
TT
11810 || cu->language == language_d
11811 || cu->language == language_rust)
4d4ec4e5 11812 && cu->processing_has_namespace_info)
195a3f6c
TT
11813 block_set_scope (block, determine_prefix (die, cu),
11814 &objfile->objfile_obstack);
df8a16a1 11815
801e3a5b
JB
11816 /* If we have address ranges, record them. */
11817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11818
fe978cb0 11819 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11820
34eaf542
TT
11821 /* Attach template arguments to function. */
11822 if (! VEC_empty (symbolp, template_args))
11823 {
11824 gdb_assert (templ_func != NULL);
11825
11826 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11827 templ_func->template_arguments
8d749320
SM
11828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11829 templ_func->n_template_arguments);
34eaf542
TT
11830 memcpy (templ_func->template_arguments,
11831 VEC_address (symbolp, template_args),
11832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11833 VEC_free (symbolp, template_args);
11834 }
11835
208d8187
JB
11836 /* In C++, we can have functions nested inside functions (e.g., when
11837 a function declares a class that has methods). This means that
11838 when we finish processing a function scope, we may need to go
11839 back to building a containing block's symbol lists. */
fe978cb0 11840 local_symbols = newobj->locals;
22cee43f 11841 local_using_directives = newobj->local_using_directives;
208d8187 11842
921e78cf
JB
11843 /* If we've finished processing a top-level function, subsequent
11844 symbols go in the file symbol list. */
11845 if (outermost_context_p ())
e142c38c 11846 cu->list_in_scope = &file_symbols;
c906108c
SS
11847}
11848
11849/* Process all the DIES contained within a lexical block scope. Start
11850 a new scope, process the dies, and then close the scope. */
11851
11852static void
e7c27a73 11853read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11854{
e7c27a73 11855 struct objfile *objfile = cu->objfile;
3e29f34a 11856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11857 struct context_stack *newobj;
c906108c
SS
11858 CORE_ADDR lowpc, highpc;
11859 struct die_info *child_die;
e142c38c
DJ
11860 CORE_ADDR baseaddr;
11861
11862 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11863
11864 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11865 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11866 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11867 be nasty. Might be easier to properly extend generic blocks to
af34e669 11868 describe ranges. */
e385593e
JK
11869 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11870 {
11871 case PC_BOUNDS_NOT_PRESENT:
11872 /* DW_TAG_lexical_block has no attributes, process its children as if
11873 there was no wrapping by that DW_TAG_lexical_block.
11874 GCC does no longer produces such DWARF since GCC r224161. */
11875 for (child_die = die->child;
11876 child_die != NULL && child_die->tag;
11877 child_die = sibling_die (child_die))
11878 process_die (child_die, cu);
11879 return;
11880 case PC_BOUNDS_INVALID:
11881 return;
11882 }
3e29f34a
MR
11883 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11884 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11885
11886 push_context (0, lowpc);
639d11d3 11887 if (die->child != NULL)
c906108c 11888 {
639d11d3 11889 child_die = die->child;
c906108c
SS
11890 while (child_die && child_die->tag)
11891 {
e7c27a73 11892 process_die (child_die, cu);
c906108c
SS
11893 child_die = sibling_die (child_die);
11894 }
11895 }
3ea89b92 11896 inherit_abstract_dies (die, cu);
fe978cb0 11897 newobj = pop_context ();
c906108c 11898
22cee43f 11899 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11900 {
801e3a5b 11901 struct block *block
63e43d3a 11902 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11903 newobj->start_addr, highpc);
801e3a5b
JB
11904
11905 /* Note that recording ranges after traversing children, as we
11906 do here, means that recording a parent's ranges entails
11907 walking across all its children's ranges as they appear in
11908 the address map, which is quadratic behavior.
11909
11910 It would be nicer to record the parent's ranges before
11911 traversing its children, simply overriding whatever you find
11912 there. But since we don't even decide whether to create a
11913 block until after we've traversed its children, that's hard
11914 to do. */
11915 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11916 }
fe978cb0 11917 local_symbols = newobj->locals;
22cee43f 11918 local_using_directives = newobj->local_using_directives;
c906108c
SS
11919}
11920
216f72a1 11921/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11922
11923static void
11924read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11925{
11926 struct objfile *objfile = cu->objfile;
11927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11928 CORE_ADDR pc, baseaddr;
11929 struct attribute *attr;
11930 struct call_site *call_site, call_site_local;
11931 void **slot;
11932 int nparams;
11933 struct die_info *child_die;
11934
11935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11936
216f72a1
JK
11937 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11938 if (attr == NULL)
11939 {
11940 /* This was a pre-DWARF-5 GNU extension alias
11941 for DW_AT_call_return_pc. */
11942 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11943 }
96408a79
SA
11944 if (!attr)
11945 {
11946 complaint (&symfile_complaints,
216f72a1 11947 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11948 "DIE 0x%x [in module %s]"),
9c541725 11949 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11950 return;
11951 }
31aa7e4e 11952 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11953 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11954
11955 if (cu->call_site_htab == NULL)
11956 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11957 NULL, &objfile->objfile_obstack,
11958 hashtab_obstack_allocate, NULL);
11959 call_site_local.pc = pc;
11960 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11961 if (*slot != NULL)
11962 {
11963 complaint (&symfile_complaints,
216f72a1 11964 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11965 "DIE 0x%x [in module %s]"),
9c541725 11966 paddress (gdbarch, pc), to_underlying (die->sect_off),
4262abfb 11967 objfile_name (objfile));
96408a79
SA
11968 return;
11969 }
11970
11971 /* Count parameters at the caller. */
11972
11973 nparams = 0;
11974 for (child_die = die->child; child_die && child_die->tag;
11975 child_die = sibling_die (child_die))
11976 {
216f72a1
JK
11977 if (child_die->tag != DW_TAG_call_site_parameter
11978 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11979 {
11980 complaint (&symfile_complaints,
216f72a1
JK
11981 _("Tag %d is not DW_TAG_call_site_parameter in "
11982 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 11983 child_die->tag, to_underlying (child_die->sect_off),
4262abfb 11984 objfile_name (objfile));
96408a79
SA
11985 continue;
11986 }
11987
11988 nparams++;
11989 }
11990
224c3ddb
SM
11991 call_site
11992 = ((struct call_site *)
11993 obstack_alloc (&objfile->objfile_obstack,
11994 sizeof (*call_site)
11995 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11996 *slot = call_site;
11997 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11998 call_site->pc = pc;
11999
216f72a1
JK
12000 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12001 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
12002 {
12003 struct die_info *func_die;
12004
12005 /* Skip also over DW_TAG_inlined_subroutine. */
12006 for (func_die = die->parent;
12007 func_die && func_die->tag != DW_TAG_subprogram
12008 && func_die->tag != DW_TAG_subroutine_type;
12009 func_die = func_die->parent);
12010
216f72a1
JK
12011 /* DW_AT_call_all_calls is a superset
12012 of DW_AT_call_all_tail_calls. */
96408a79 12013 if (func_die
216f72a1 12014 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 12015 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 12016 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
12017 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12018 {
12019 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12020 not complete. But keep CALL_SITE for look ups via call_site_htab,
12021 both the initial caller containing the real return address PC and
12022 the final callee containing the current PC of a chain of tail
12023 calls do not need to have the tail call list complete. But any
12024 function candidate for a virtual tail call frame searched via
12025 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12026 determined unambiguously. */
12027 }
12028 else
12029 {
12030 struct type *func_type = NULL;
12031
12032 if (func_die)
12033 func_type = get_die_type (func_die, cu);
12034 if (func_type != NULL)
12035 {
12036 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12037
12038 /* Enlist this call site to the function. */
12039 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12040 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12041 }
12042 else
12043 complaint (&symfile_complaints,
216f72a1 12044 _("Cannot find function owning DW_TAG_call_site "
96408a79 12045 "DIE 0x%x [in module %s]"),
9c541725 12046 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12047 }
12048 }
12049
216f72a1
JK
12050 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12051 if (attr == NULL)
12052 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12053 if (attr == NULL)
12054 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 12055 if (attr == NULL)
216f72a1
JK
12056 {
12057 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12058 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12059 }
96408a79
SA
12060 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12061 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12062 /* Keep NULL DWARF_BLOCK. */;
12063 else if (attr_form_is_block (attr))
12064 {
12065 struct dwarf2_locexpr_baton *dlbaton;
12066
8d749320 12067 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
12068 dlbaton->data = DW_BLOCK (attr)->data;
12069 dlbaton->size = DW_BLOCK (attr)->size;
12070 dlbaton->per_cu = cu->per_cu;
12071
12072 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12073 }
7771576e 12074 else if (attr_form_is_ref (attr))
96408a79 12075 {
96408a79
SA
12076 struct dwarf2_cu *target_cu = cu;
12077 struct die_info *target_die;
12078
ac9ec31b 12079 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
12080 gdb_assert (target_cu->objfile == objfile);
12081 if (die_is_declaration (target_die, target_cu))
12082 {
7d45c7c3 12083 const char *target_physname;
9112db09
JK
12084
12085 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 12086 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 12087 if (target_physname == NULL)
9112db09 12088 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
12089 if (target_physname == NULL)
12090 complaint (&symfile_complaints,
216f72a1 12091 _("DW_AT_call_target target DIE has invalid "
96408a79 12092 "physname, for referencing DIE 0x%x [in module %s]"),
9c541725 12093 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12094 else
7d455152 12095 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
12096 }
12097 else
12098 {
12099 CORE_ADDR lowpc;
12100
12101 /* DW_AT_entry_pc should be preferred. */
3a2b436a 12102 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 12103 <= PC_BOUNDS_INVALID)
96408a79 12104 complaint (&symfile_complaints,
216f72a1 12105 _("DW_AT_call_target target DIE has invalid "
96408a79 12106 "low pc, for referencing DIE 0x%x [in module %s]"),
9c541725 12107 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12108 else
3e29f34a
MR
12109 {
12110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12112 }
96408a79
SA
12113 }
12114 }
12115 else
12116 complaint (&symfile_complaints,
216f72a1 12117 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 12118 "block nor reference, for DIE 0x%x [in module %s]"),
9c541725 12119 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12120
12121 call_site->per_cu = cu->per_cu;
12122
12123 for (child_die = die->child;
12124 child_die && child_die->tag;
12125 child_die = sibling_die (child_die))
12126 {
96408a79 12127 struct call_site_parameter *parameter;
1788b2d3 12128 struct attribute *loc, *origin;
96408a79 12129
216f72a1
JK
12130 if (child_die->tag != DW_TAG_call_site_parameter
12131 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
12132 {
12133 /* Already printed the complaint above. */
12134 continue;
12135 }
12136
12137 gdb_assert (call_site->parameter_count < nparams);
12138 parameter = &call_site->parameter[call_site->parameter_count];
12139
1788b2d3
JK
12140 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12141 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 12142 register is contained in DW_AT_call_value. */
96408a79 12143
24c5c679 12144 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
12145 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12146 if (origin == NULL)
12147 {
12148 /* This was a pre-DWARF-5 GNU extension alias
12149 for DW_AT_call_parameter. */
12150 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12151 }
7771576e 12152 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 12153 {
1788b2d3 12154 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
12155
12156 sect_offset sect_off
12157 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12158 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
12159 {
12160 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12161 binding can be done only inside one CU. Such referenced DIE
12162 therefore cannot be even moved to DW_TAG_partial_unit. */
12163 complaint (&symfile_complaints,
216f72a1
JK
12164 _("DW_AT_call_parameter offset is not in CU for "
12165 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12166 to_underlying (child_die->sect_off),
12167 objfile_name (objfile));
d76b7dbc
JK
12168 continue;
12169 }
9c541725
PA
12170 parameter->u.param_cu_off
12171 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
12172 }
12173 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
12174 {
12175 complaint (&symfile_complaints,
12176 _("No DW_FORM_block* DW_AT_location for "
216f72a1 12177 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 12178 to_underlying (child_die->sect_off), objfile_name (objfile));
96408a79
SA
12179 continue;
12180 }
24c5c679 12181 else
96408a79 12182 {
24c5c679
JK
12183 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12184 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12185 if (parameter->u.dwarf_reg != -1)
12186 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12187 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12188 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12189 &parameter->u.fb_offset))
12190 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12191 else
12192 {
12193 complaint (&symfile_complaints,
12194 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12195 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 12196 "DW_TAG_call_site child DIE 0x%x "
24c5c679 12197 "[in module %s]"),
9c541725
PA
12198 to_underlying (child_die->sect_off),
12199 objfile_name (objfile));
24c5c679
JK
12200 continue;
12201 }
96408a79
SA
12202 }
12203
216f72a1
JK
12204 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12205 if (attr == NULL)
12206 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
12207 if (!attr_form_is_block (attr))
12208 {
12209 complaint (&symfile_complaints,
216f72a1
JK
12210 _("No DW_FORM_block* DW_AT_call_value for "
12211 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12212 to_underlying (child_die->sect_off),
12213 objfile_name (objfile));
96408a79
SA
12214 continue;
12215 }
12216 parameter->value = DW_BLOCK (attr)->data;
12217 parameter->value_size = DW_BLOCK (attr)->size;
12218
12219 /* Parameters are not pre-cleared by memset above. */
12220 parameter->data_value = NULL;
12221 parameter->data_value_size = 0;
12222 call_site->parameter_count++;
12223
216f72a1
JK
12224 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12225 if (attr == NULL)
12226 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
12227 if (attr)
12228 {
12229 if (!attr_form_is_block (attr))
12230 complaint (&symfile_complaints,
216f72a1
JK
12231 _("No DW_FORM_block* DW_AT_call_data_value for "
12232 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12233 to_underlying (child_die->sect_off),
12234 objfile_name (objfile));
96408a79
SA
12235 else
12236 {
12237 parameter->data_value = DW_BLOCK (attr)->data;
12238 parameter->data_value_size = DW_BLOCK (attr)->size;
12239 }
12240 }
12241 }
12242}
12243
43988095
JK
12244/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12245 reading .debug_rnglists.
12246 Callback's type should be:
12247 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12248 Return true if the attributes are present and valid, otherwise,
12249 return false. */
12250
12251template <typename Callback>
12252static bool
12253dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12254 Callback &&callback)
12255{
12256 struct objfile *objfile = cu->objfile;
12257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12258 struct comp_unit_head *cu_header = &cu->header;
12259 bfd *obfd = objfile->obfd;
12260 unsigned int addr_size = cu_header->addr_size;
12261 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12262 /* Base address selection entry. */
12263 CORE_ADDR base;
12264 int found_base;
12265 unsigned int dummy;
12266 const gdb_byte *buffer;
12267 CORE_ADDR low = 0;
12268 CORE_ADDR high = 0;
12269 CORE_ADDR baseaddr;
12270 bool overflow = false;
12271
12272 found_base = cu->base_known;
12273 base = cu->base_address;
12274
12275 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12276 if (offset >= dwarf2_per_objfile->rnglists.size)
12277 {
12278 complaint (&symfile_complaints,
12279 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12280 offset);
12281 return false;
12282 }
12283 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12284
12285 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12286
12287 while (1)
12288 {
7814882a
JK
12289 /* Initialize it due to a false compiler warning. */
12290 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12291 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12292 + dwarf2_per_objfile->rnglists.size);
12293 unsigned int bytes_read;
12294
12295 if (buffer == buf_end)
12296 {
12297 overflow = true;
12298 break;
12299 }
12300 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12301 switch (rlet)
12302 {
12303 case DW_RLE_end_of_list:
12304 break;
12305 case DW_RLE_base_address:
12306 if (buffer + cu->header.addr_size > buf_end)
12307 {
12308 overflow = true;
12309 break;
12310 }
12311 base = read_address (obfd, buffer, cu, &bytes_read);
12312 found_base = 1;
12313 buffer += bytes_read;
12314 break;
12315 case DW_RLE_start_length:
12316 if (buffer + cu->header.addr_size > buf_end)
12317 {
12318 overflow = true;
12319 break;
12320 }
12321 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12322 buffer += bytes_read;
12323 range_end = (range_beginning
12324 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12325 buffer += bytes_read;
12326 if (buffer > buf_end)
12327 {
12328 overflow = true;
12329 break;
12330 }
12331 break;
12332 case DW_RLE_offset_pair:
12333 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12334 buffer += bytes_read;
12335 if (buffer > buf_end)
12336 {
12337 overflow = true;
12338 break;
12339 }
12340 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12341 buffer += bytes_read;
12342 if (buffer > buf_end)
12343 {
12344 overflow = true;
12345 break;
12346 }
12347 break;
12348 case DW_RLE_start_end:
12349 if (buffer + 2 * cu->header.addr_size > buf_end)
12350 {
12351 overflow = true;
12352 break;
12353 }
12354 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12355 buffer += bytes_read;
12356 range_end = read_address (obfd, buffer, cu, &bytes_read);
12357 buffer += bytes_read;
12358 break;
12359 default:
12360 complaint (&symfile_complaints,
12361 _("Invalid .debug_rnglists data (no base address)"));
12362 return false;
12363 }
12364 if (rlet == DW_RLE_end_of_list || overflow)
12365 break;
12366 if (rlet == DW_RLE_base_address)
12367 continue;
12368
12369 if (!found_base)
12370 {
12371 /* We have no valid base address for the ranges
12372 data. */
12373 complaint (&symfile_complaints,
12374 _("Invalid .debug_rnglists data (no base address)"));
12375 return false;
12376 }
12377
12378 if (range_beginning > range_end)
12379 {
12380 /* Inverted range entries are invalid. */
12381 complaint (&symfile_complaints,
12382 _("Invalid .debug_rnglists data (inverted range)"));
12383 return false;
12384 }
12385
12386 /* Empty range entries have no effect. */
12387 if (range_beginning == range_end)
12388 continue;
12389
12390 range_beginning += base;
12391 range_end += base;
12392
12393 /* A not-uncommon case of bad debug info.
12394 Don't pollute the addrmap with bad data. */
12395 if (range_beginning + baseaddr == 0
12396 && !dwarf2_per_objfile->has_section_at_zero)
12397 {
12398 complaint (&symfile_complaints,
12399 _(".debug_rnglists entry has start address of zero"
12400 " [in module %s]"), objfile_name (objfile));
12401 continue;
12402 }
12403
12404 callback (range_beginning, range_end);
12405 }
12406
12407 if (overflow)
12408 {
12409 complaint (&symfile_complaints,
12410 _("Offset %d is not terminated "
12411 "for DW_AT_ranges attribute"),
12412 offset);
12413 return false;
12414 }
12415
12416 return true;
12417}
12418
12419/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12420 Callback's type should be:
12421 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12422 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12423
43988095 12424template <typename Callback>
43039443 12425static int
5f46c5a5 12426dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12427 Callback &&callback)
43039443
JK
12428{
12429 struct objfile *objfile = cu->objfile;
3e29f34a 12430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12431 struct comp_unit_head *cu_header = &cu->header;
12432 bfd *obfd = objfile->obfd;
12433 unsigned int addr_size = cu_header->addr_size;
12434 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12435 /* Base address selection entry. */
12436 CORE_ADDR base;
12437 int found_base;
12438 unsigned int dummy;
d521ce57 12439 const gdb_byte *buffer;
ff013f42 12440 CORE_ADDR baseaddr;
43039443 12441
43988095
JK
12442 if (cu_header->version >= 5)
12443 return dwarf2_rnglists_process (offset, cu, callback);
12444
d00adf39
DE
12445 found_base = cu->base_known;
12446 base = cu->base_address;
43039443 12447
be391dca 12448 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12449 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12450 {
12451 complaint (&symfile_complaints,
12452 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12453 offset);
12454 return 0;
12455 }
dce234bc 12456 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12457
e7030f15 12458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12459
43039443
JK
12460 while (1)
12461 {
12462 CORE_ADDR range_beginning, range_end;
12463
12464 range_beginning = read_address (obfd, buffer, cu, &dummy);
12465 buffer += addr_size;
12466 range_end = read_address (obfd, buffer, cu, &dummy);
12467 buffer += addr_size;
12468 offset += 2 * addr_size;
12469
12470 /* An end of list marker is a pair of zero addresses. */
12471 if (range_beginning == 0 && range_end == 0)
12472 /* Found the end of list entry. */
12473 break;
12474
12475 /* Each base address selection entry is a pair of 2 values.
12476 The first is the largest possible address, the second is
12477 the base address. Check for a base address here. */
12478 if ((range_beginning & mask) == mask)
12479 {
28d2bfb9
AB
12480 /* If we found the largest possible address, then we already
12481 have the base address in range_end. */
12482 base = range_end;
43039443
JK
12483 found_base = 1;
12484 continue;
12485 }
12486
12487 if (!found_base)
12488 {
12489 /* We have no valid base address for the ranges
12490 data. */
12491 complaint (&symfile_complaints,
12492 _("Invalid .debug_ranges data (no base address)"));
12493 return 0;
12494 }
12495
9277c30c
UW
12496 if (range_beginning > range_end)
12497 {
12498 /* Inverted range entries are invalid. */
12499 complaint (&symfile_complaints,
12500 _("Invalid .debug_ranges data (inverted range)"));
12501 return 0;
12502 }
12503
12504 /* Empty range entries have no effect. */
12505 if (range_beginning == range_end)
12506 continue;
12507
43039443
JK
12508 range_beginning += base;
12509 range_end += base;
12510
01093045
DE
12511 /* A not-uncommon case of bad debug info.
12512 Don't pollute the addrmap with bad data. */
12513 if (range_beginning + baseaddr == 0
12514 && !dwarf2_per_objfile->has_section_at_zero)
12515 {
12516 complaint (&symfile_complaints,
12517 _(".debug_ranges entry has start address of zero"
4262abfb 12518 " [in module %s]"), objfile_name (objfile));
01093045
DE
12519 continue;
12520 }
12521
5f46c5a5
JK
12522 callback (range_beginning, range_end);
12523 }
12524
12525 return 1;
12526}
12527
12528/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12529 Return 1 if the attributes are present and valid, otherwise, return 0.
12530 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12531
12532static int
12533dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12534 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12535 struct partial_symtab *ranges_pst)
12536{
12537 struct objfile *objfile = cu->objfile;
12538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12539 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12540 SECT_OFF_TEXT (objfile));
12541 int low_set = 0;
12542 CORE_ADDR low = 0;
12543 CORE_ADDR high = 0;
12544 int retval;
12545
12546 retval = dwarf2_ranges_process (offset, cu,
12547 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12548 {
9277c30c 12549 if (ranges_pst != NULL)
3e29f34a
MR
12550 {
12551 CORE_ADDR lowpc;
12552 CORE_ADDR highpc;
12553
12554 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12555 range_beginning + baseaddr);
12556 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12557 range_end + baseaddr);
12558 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12559 ranges_pst);
12560 }
ff013f42 12561
43039443
JK
12562 /* FIXME: This is recording everything as a low-high
12563 segment of consecutive addresses. We should have a
12564 data structure for discontiguous block ranges
12565 instead. */
12566 if (! low_set)
12567 {
12568 low = range_beginning;
12569 high = range_end;
12570 low_set = 1;
12571 }
12572 else
12573 {
12574 if (range_beginning < low)
12575 low = range_beginning;
12576 if (range_end > high)
12577 high = range_end;
12578 }
5f46c5a5
JK
12579 });
12580 if (!retval)
12581 return 0;
43039443
JK
12582
12583 if (! low_set)
12584 /* If the first entry is an end-of-list marker, the range
12585 describes an empty scope, i.e. no instructions. */
12586 return 0;
12587
12588 if (low_return)
12589 *low_return = low;
12590 if (high_return)
12591 *high_return = high;
12592 return 1;
12593}
12594
3a2b436a
JK
12595/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12596 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12597 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12598
3a2b436a 12599static enum pc_bounds_kind
af34e669 12600dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12601 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12602 struct partial_symtab *pst)
c906108c
SS
12603{
12604 struct attribute *attr;
91da1414 12605 struct attribute *attr_high;
af34e669
DJ
12606 CORE_ADDR low = 0;
12607 CORE_ADDR high = 0;
e385593e 12608 enum pc_bounds_kind ret;
c906108c 12609
91da1414
MW
12610 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12611 if (attr_high)
af34e669 12612 {
e142c38c 12613 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12614 if (attr)
91da1414 12615 {
31aa7e4e
JB
12616 low = attr_value_as_address (attr);
12617 high = attr_value_as_address (attr_high);
12618 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12619 high += low;
91da1414 12620 }
af34e669
DJ
12621 else
12622 /* Found high w/o low attribute. */
e385593e 12623 return PC_BOUNDS_INVALID;
af34e669
DJ
12624
12625 /* Found consecutive range of addresses. */
3a2b436a 12626 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12627 }
c906108c 12628 else
af34e669 12629 {
e142c38c 12630 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12631 if (attr != NULL)
12632 {
ab435259
DE
12633 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12634 We take advantage of the fact that DW_AT_ranges does not appear
12635 in DW_TAG_compile_unit of DWO files. */
12636 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12637 unsigned int ranges_offset = (DW_UNSND (attr)
12638 + (need_ranges_base
12639 ? cu->ranges_base
12640 : 0));
2e3cf129 12641
af34e669 12642 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12643 .debug_ranges section. */
2e3cf129 12644 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12645 return PC_BOUNDS_INVALID;
43039443 12646 /* Found discontinuous range of addresses. */
3a2b436a 12647 ret = PC_BOUNDS_RANGES;
af34e669 12648 }
e385593e
JK
12649 else
12650 return PC_BOUNDS_NOT_PRESENT;
af34e669 12651 }
c906108c 12652
9373cf26
JK
12653 /* read_partial_die has also the strict LOW < HIGH requirement. */
12654 if (high <= low)
e385593e 12655 return PC_BOUNDS_INVALID;
c906108c
SS
12656
12657 /* When using the GNU linker, .gnu.linkonce. sections are used to
12658 eliminate duplicate copies of functions and vtables and such.
12659 The linker will arbitrarily choose one and discard the others.
12660 The AT_*_pc values for such functions refer to local labels in
12661 these sections. If the section from that file was discarded, the
12662 labels are not in the output, so the relocs get a value of 0.
12663 If this is a discarded function, mark the pc bounds as invalid,
12664 so that GDB will ignore it. */
72dca2f5 12665 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12666 return PC_BOUNDS_INVALID;
c906108c
SS
12667
12668 *lowpc = low;
96408a79
SA
12669 if (highpc)
12670 *highpc = high;
af34e669 12671 return ret;
c906108c
SS
12672}
12673
b084d499
JB
12674/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12675 its low and high PC addresses. Do nothing if these addresses could not
12676 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12677 and HIGHPC to the high address if greater than HIGHPC. */
12678
12679static void
12680dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12681 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12682 struct dwarf2_cu *cu)
12683{
12684 CORE_ADDR low, high;
12685 struct die_info *child = die->child;
12686
e385593e 12687 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12688 {
325fac50
PA
12689 *lowpc = std::min (*lowpc, low);
12690 *highpc = std::max (*highpc, high);
b084d499
JB
12691 }
12692
12693 /* If the language does not allow nested subprograms (either inside
12694 subprograms or lexical blocks), we're done. */
12695 if (cu->language != language_ada)
12696 return;
6e70227d 12697
b084d499
JB
12698 /* Check all the children of the given DIE. If it contains nested
12699 subprograms, then check their pc bounds. Likewise, we need to
12700 check lexical blocks as well, as they may also contain subprogram
12701 definitions. */
12702 while (child && child->tag)
12703 {
12704 if (child->tag == DW_TAG_subprogram
12705 || child->tag == DW_TAG_lexical_block)
12706 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12707 child = sibling_die (child);
12708 }
12709}
12710
fae299cd
DC
12711/* Get the low and high pc's represented by the scope DIE, and store
12712 them in *LOWPC and *HIGHPC. If the correct values can't be
12713 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12714
12715static void
12716get_scope_pc_bounds (struct die_info *die,
12717 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12718 struct dwarf2_cu *cu)
12719{
12720 CORE_ADDR best_low = (CORE_ADDR) -1;
12721 CORE_ADDR best_high = (CORE_ADDR) 0;
12722 CORE_ADDR current_low, current_high;
12723
3a2b436a 12724 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12725 >= PC_BOUNDS_RANGES)
fae299cd
DC
12726 {
12727 best_low = current_low;
12728 best_high = current_high;
12729 }
12730 else
12731 {
12732 struct die_info *child = die->child;
12733
12734 while (child && child->tag)
12735 {
12736 switch (child->tag) {
12737 case DW_TAG_subprogram:
b084d499 12738 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12739 break;
12740 case DW_TAG_namespace:
f55ee35c 12741 case DW_TAG_module:
fae299cd
DC
12742 /* FIXME: carlton/2004-01-16: Should we do this for
12743 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12744 that current GCC's always emit the DIEs corresponding
12745 to definitions of methods of classes as children of a
12746 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12747 the DIEs giving the declarations, which could be
12748 anywhere). But I don't see any reason why the
12749 standards says that they have to be there. */
12750 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12751
12752 if (current_low != ((CORE_ADDR) -1))
12753 {
325fac50
PA
12754 best_low = std::min (best_low, current_low);
12755 best_high = std::max (best_high, current_high);
fae299cd
DC
12756 }
12757 break;
12758 default:
0963b4bd 12759 /* Ignore. */
fae299cd
DC
12760 break;
12761 }
12762
12763 child = sibling_die (child);
12764 }
12765 }
12766
12767 *lowpc = best_low;
12768 *highpc = best_high;
12769}
12770
801e3a5b
JB
12771/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12772 in DIE. */
380bca97 12773
801e3a5b
JB
12774static void
12775dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12776 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12777{
bb5ed363 12778 struct objfile *objfile = cu->objfile;
3e29f34a 12779 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12780 struct attribute *attr;
91da1414 12781 struct attribute *attr_high;
801e3a5b 12782
91da1414
MW
12783 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12784 if (attr_high)
801e3a5b 12785 {
801e3a5b
JB
12786 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12787 if (attr)
12788 {
31aa7e4e
JB
12789 CORE_ADDR low = attr_value_as_address (attr);
12790 CORE_ADDR high = attr_value_as_address (attr_high);
12791
12792 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12793 high += low;
9a619af0 12794
3e29f34a
MR
12795 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12796 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12797 record_block_range (block, low, high - 1);
801e3a5b
JB
12798 }
12799 }
12800
12801 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12802 if (attr)
12803 {
bb5ed363 12804 bfd *obfd = objfile->obfd;
ab435259
DE
12805 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12806 We take advantage of the fact that DW_AT_ranges does not appear
12807 in DW_TAG_compile_unit of DWO files. */
12808 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12809
12810 /* The value of the DW_AT_ranges attribute is the offset of the
12811 address range list in the .debug_ranges section. */
ab435259
DE
12812 unsigned long offset = (DW_UNSND (attr)
12813 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12814 const gdb_byte *buffer;
801e3a5b
JB
12815
12816 /* For some target architectures, but not others, the
12817 read_address function sign-extends the addresses it returns.
12818 To recognize base address selection entries, we need a
12819 mask. */
12820 unsigned int addr_size = cu->header.addr_size;
12821 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12822
12823 /* The base address, to which the next pair is relative. Note
12824 that this 'base' is a DWARF concept: most entries in a range
12825 list are relative, to reduce the number of relocs against the
12826 debugging information. This is separate from this function's
12827 'baseaddr' argument, which GDB uses to relocate debugging
12828 information from a shared library based on the address at
12829 which the library was loaded. */
d00adf39
DE
12830 CORE_ADDR base = cu->base_address;
12831 int base_known = cu->base_known;
801e3a5b 12832
5f46c5a5
JK
12833 dwarf2_ranges_process (offset, cu,
12834 [&] (CORE_ADDR start, CORE_ADDR end)
12835 {
58fdfd2c
JK
12836 start += baseaddr;
12837 end += baseaddr;
5f46c5a5
JK
12838 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12839 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12840 record_block_range (block, start, end - 1);
12841 });
801e3a5b
JB
12842 }
12843}
12844
685b1105
JK
12845/* Check whether the producer field indicates either of GCC < 4.6, or the
12846 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12847
685b1105
JK
12848static void
12849check_producer (struct dwarf2_cu *cu)
60d5a603 12850{
38360086 12851 int major, minor;
60d5a603
JK
12852
12853 if (cu->producer == NULL)
12854 {
12855 /* For unknown compilers expect their behavior is DWARF version
12856 compliant.
12857
12858 GCC started to support .debug_types sections by -gdwarf-4 since
12859 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12860 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12861 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12862 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12863 }
b1ffba5a 12864 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12865 {
38360086
MW
12866 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12867 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12868 }
5230b05a
WT
12869 else if (producer_is_icc (cu->producer, &major, &minor))
12870 cu->producer_is_icc_lt_14 = major < 14;
685b1105
JK
12871 else
12872 {
12873 /* For other non-GCC compilers, expect their behavior is DWARF version
12874 compliant. */
60d5a603
JK
12875 }
12876
ba919b58 12877 cu->checked_producer = 1;
685b1105 12878}
ba919b58 12879
685b1105
JK
12880/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12881 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12882 during 4.6.0 experimental. */
12883
12884static int
12885producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12886{
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12889
12890 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12891}
12892
12893/* Return the default accessibility type if it is not overriden by
12894 DW_AT_accessibility. */
12895
12896static enum dwarf_access_attribute
12897dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12898{
12899 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12900 {
12901 /* The default DWARF 2 accessibility for members is public, the default
12902 accessibility for inheritance is private. */
12903
12904 if (die->tag != DW_TAG_inheritance)
12905 return DW_ACCESS_public;
12906 else
12907 return DW_ACCESS_private;
12908 }
12909 else
12910 {
12911 /* DWARF 3+ defines the default accessibility a different way. The same
12912 rules apply now for DW_TAG_inheritance as for the members and it only
12913 depends on the container kind. */
12914
12915 if (die->parent->tag == DW_TAG_class_type)
12916 return DW_ACCESS_private;
12917 else
12918 return DW_ACCESS_public;
12919 }
12920}
12921
74ac6d43
TT
12922/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12923 offset. If the attribute was not found return 0, otherwise return
12924 1. If it was found but could not properly be handled, set *OFFSET
12925 to 0. */
12926
12927static int
12928handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12929 LONGEST *offset)
12930{
12931 struct attribute *attr;
12932
12933 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12934 if (attr != NULL)
12935 {
12936 *offset = 0;
12937
12938 /* Note that we do not check for a section offset first here.
12939 This is because DW_AT_data_member_location is new in DWARF 4,
12940 so if we see it, we can assume that a constant form is really
12941 a constant and not a section offset. */
12942 if (attr_form_is_constant (attr))
12943 *offset = dwarf2_get_attr_constant_value (attr, 0);
12944 else if (attr_form_is_section_offset (attr))
12945 dwarf2_complex_location_expr_complaint ();
12946 else if (attr_form_is_block (attr))
12947 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12948 else
12949 dwarf2_complex_location_expr_complaint ();
12950
12951 return 1;
12952 }
12953
12954 return 0;
12955}
12956
c906108c
SS
12957/* Add an aggregate field to the field list. */
12958
12959static void
107d2387 12960dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12961 struct dwarf2_cu *cu)
6e70227d 12962{
e7c27a73 12963 struct objfile *objfile = cu->objfile;
5e2b427d 12964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12965 struct nextfield *new_field;
12966 struct attribute *attr;
12967 struct field *fp;
15d034d0 12968 const char *fieldname = "";
c906108c
SS
12969
12970 /* Allocate a new field list entry and link it in. */
8d749320 12971 new_field = XNEW (struct nextfield);
b8c9b27d 12972 make_cleanup (xfree, new_field);
c906108c 12973 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12974
12975 if (die->tag == DW_TAG_inheritance)
12976 {
12977 new_field->next = fip->baseclasses;
12978 fip->baseclasses = new_field;
12979 }
12980 else
12981 {
12982 new_field->next = fip->fields;
12983 fip->fields = new_field;
12984 }
c906108c
SS
12985 fip->nfields++;
12986
e142c38c 12987 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12988 if (attr)
12989 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12990 else
12991 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12992 if (new_field->accessibility != DW_ACCESS_public)
12993 fip->non_public_fields = 1;
60d5a603 12994
e142c38c 12995 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12996 if (attr)
12997 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12998 else
12999 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
13000
13001 fp = &new_field->field;
a9a9bd0f 13002
e142c38c 13003 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 13004 {
74ac6d43
TT
13005 LONGEST offset;
13006
a9a9bd0f 13007 /* Data member other than a C++ static data member. */
6e70227d 13008
c906108c 13009 /* Get type of field. */
e7c27a73 13010 fp->type = die_type (die, cu);
c906108c 13011
d6a843b5 13012 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 13013
c906108c 13014 /* Get bit size of field (zero if none). */
e142c38c 13015 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
13016 if (attr)
13017 {
13018 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13019 }
13020 else
13021 {
13022 FIELD_BITSIZE (*fp) = 0;
13023 }
13024
13025 /* Get bit offset of field. */
74ac6d43
TT
13026 if (handle_data_member_location (die, cu, &offset))
13027 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 13028 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
13029 if (attr)
13030 {
5e2b427d 13031 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
13032 {
13033 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
13034 additional bit offset from the MSB of the containing
13035 anonymous object to the MSB of the field. We don't
13036 have to do anything special since we don't need to
13037 know the size of the anonymous object. */
f41f5e61 13038 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
13039 }
13040 else
13041 {
13042 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
13043 MSB of the anonymous object, subtract off the number of
13044 bits from the MSB of the field to the MSB of the
13045 object, and then subtract off the number of bits of
13046 the field itself. The result is the bit offset of
13047 the LSB of the field. */
c906108c
SS
13048 int anonymous_size;
13049 int bit_offset = DW_UNSND (attr);
13050
e142c38c 13051 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13052 if (attr)
13053 {
13054 /* The size of the anonymous object containing
13055 the bit field is explicit, so use the
13056 indicated size (in bytes). */
13057 anonymous_size = DW_UNSND (attr);
13058 }
13059 else
13060 {
13061 /* The size of the anonymous object containing
13062 the bit field must be inferred from the type
13063 attribute of the data member containing the
13064 bit field. */
13065 anonymous_size = TYPE_LENGTH (fp->type);
13066 }
f41f5e61
PA
13067 SET_FIELD_BITPOS (*fp,
13068 (FIELD_BITPOS (*fp)
13069 + anonymous_size * bits_per_byte
13070 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
13071 }
13072 }
da5b30da
AA
13073 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13074 if (attr != NULL)
13075 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13076 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
13077
13078 /* Get name of field. */
39cbfefa
DJ
13079 fieldname = dwarf2_name (die, cu);
13080 if (fieldname == NULL)
13081 fieldname = "";
d8151005
DJ
13082
13083 /* The name is already allocated along with this objfile, so we don't
13084 need to duplicate it for the type. */
13085 fp->name = fieldname;
c906108c
SS
13086
13087 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 13088 pointer or virtual base class pointer) to private. */
e142c38c 13089 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 13090 {
d48cc9dd 13091 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
13092 new_field->accessibility = DW_ACCESS_private;
13093 fip->non_public_fields = 1;
13094 }
13095 }
a9a9bd0f 13096 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 13097 {
a9a9bd0f
DC
13098 /* C++ static member. */
13099
13100 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13101 is a declaration, but all versions of G++ as of this writing
13102 (so through at least 3.2.1) incorrectly generate
13103 DW_TAG_variable tags. */
6e70227d 13104
ff355380 13105 const char *physname;
c906108c 13106
a9a9bd0f 13107 /* Get name of field. */
39cbfefa
DJ
13108 fieldname = dwarf2_name (die, cu);
13109 if (fieldname == NULL)
c906108c
SS
13110 return;
13111
254e6b9e 13112 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
13113 if (attr
13114 /* Only create a symbol if this is an external value.
13115 new_symbol checks this and puts the value in the global symbol
13116 table, which we want. If it is not external, new_symbol
13117 will try to put the value in cu->list_in_scope which is wrong. */
13118 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
13119 {
13120 /* A static const member, not much different than an enum as far as
13121 we're concerned, except that we can support more types. */
13122 new_symbol (die, NULL, cu);
13123 }
13124
2df3850c 13125 /* Get physical name. */
ff355380 13126 physname = dwarf2_physname (fieldname, die, cu);
c906108c 13127
d8151005
DJ
13128 /* The name is already allocated along with this objfile, so we don't
13129 need to duplicate it for the type. */
13130 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 13131 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 13132 FIELD_NAME (*fp) = fieldname;
c906108c
SS
13133 }
13134 else if (die->tag == DW_TAG_inheritance)
13135 {
74ac6d43 13136 LONGEST offset;
d4b96c9a 13137
74ac6d43
TT
13138 /* C++ base class field. */
13139 if (handle_data_member_location (die, cu, &offset))
13140 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 13141 FIELD_BITSIZE (*fp) = 0;
e7c27a73 13142 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
13143 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13144 fip->nbaseclasses++;
13145 }
13146}
13147
98751a41
JK
13148/* Add a typedef defined in the scope of the FIP's class. */
13149
13150static void
13151dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13152 struct dwarf2_cu *cu)
6e70227d 13153{
98751a41 13154 struct typedef_field_list *new_field;
98751a41 13155 struct typedef_field *fp;
98751a41
JK
13156
13157 /* Allocate a new field list entry and link it in. */
8d749320 13158 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
13159 make_cleanup (xfree, new_field);
13160
13161 gdb_assert (die->tag == DW_TAG_typedef);
13162
13163 fp = &new_field->field;
13164
13165 /* Get name of field. */
13166 fp->name = dwarf2_name (die, cu);
13167 if (fp->name == NULL)
13168 return;
13169
13170 fp->type = read_type_die (die, cu);
13171
13172 new_field->next = fip->typedef_field_list;
13173 fip->typedef_field_list = new_field;
13174 fip->typedef_field_list_count++;
13175}
13176
c906108c
SS
13177/* Create the vector of fields, and attach it to the type. */
13178
13179static void
fba45db2 13180dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13181 struct dwarf2_cu *cu)
c906108c
SS
13182{
13183 int nfields = fip->nfields;
13184
13185 /* Record the field count, allocate space for the array of fields,
13186 and create blank accessibility bitfields if necessary. */
13187 TYPE_NFIELDS (type) = nfields;
13188 TYPE_FIELDS (type) = (struct field *)
13189 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13190 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13191
b4ba55a1 13192 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
13193 {
13194 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13195
13196 TYPE_FIELD_PRIVATE_BITS (type) =
13197 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13198 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13199
13200 TYPE_FIELD_PROTECTED_BITS (type) =
13201 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13202 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13203
774b6a14
TT
13204 TYPE_FIELD_IGNORE_BITS (type) =
13205 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13206 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
13207 }
13208
13209 /* If the type has baseclasses, allocate and clear a bit vector for
13210 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 13211 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
13212 {
13213 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 13214 unsigned char *pointer;
c906108c
SS
13215
13216 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 13217 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 13218 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
13219 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13220 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13221 }
13222
3e43a32a
MS
13223 /* Copy the saved-up fields into the field vector. Start from the head of
13224 the list, adding to the tail of the field array, so that they end up in
13225 the same order in the array in which they were added to the list. */
c906108c
SS
13226 while (nfields-- > 0)
13227 {
7d0ccb61
DJ
13228 struct nextfield *fieldp;
13229
13230 if (fip->fields)
13231 {
13232 fieldp = fip->fields;
13233 fip->fields = fieldp->next;
13234 }
13235 else
13236 {
13237 fieldp = fip->baseclasses;
13238 fip->baseclasses = fieldp->next;
13239 }
13240
13241 TYPE_FIELD (type, nfields) = fieldp->field;
13242 switch (fieldp->accessibility)
c906108c 13243 {
c5aa993b 13244 case DW_ACCESS_private:
b4ba55a1
JB
13245 if (cu->language != language_ada)
13246 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 13247 break;
c906108c 13248
c5aa993b 13249 case DW_ACCESS_protected:
b4ba55a1
JB
13250 if (cu->language != language_ada)
13251 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 13252 break;
c906108c 13253
c5aa993b
JM
13254 case DW_ACCESS_public:
13255 break;
c906108c 13256
c5aa993b
JM
13257 default:
13258 /* Unknown accessibility. Complain and treat it as public. */
13259 {
e2e0b3e5 13260 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13261 fieldp->accessibility);
c5aa993b
JM
13262 }
13263 break;
c906108c
SS
13264 }
13265 if (nfields < fip->nbaseclasses)
13266 {
7d0ccb61 13267 switch (fieldp->virtuality)
c906108c 13268 {
c5aa993b
JM
13269 case DW_VIRTUALITY_virtual:
13270 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13271 if (cu->language == language_ada)
a73c6dcd 13272 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13273 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13274 break;
c906108c
SS
13275 }
13276 }
c906108c
SS
13277 }
13278}
13279
7d27a96d
TT
13280/* Return true if this member function is a constructor, false
13281 otherwise. */
13282
13283static int
13284dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13285{
13286 const char *fieldname;
fe978cb0 13287 const char *type_name;
7d27a96d
TT
13288 int len;
13289
13290 if (die->parent == NULL)
13291 return 0;
13292
13293 if (die->parent->tag != DW_TAG_structure_type
13294 && die->parent->tag != DW_TAG_union_type
13295 && die->parent->tag != DW_TAG_class_type)
13296 return 0;
13297
13298 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13299 type_name = dwarf2_name (die->parent, cu);
13300 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13301 return 0;
13302
13303 len = strlen (fieldname);
fe978cb0
PA
13304 return (strncmp (fieldname, type_name, len) == 0
13305 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13306}
13307
c906108c
SS
13308/* Add a member function to the proper fieldlist. */
13309
13310static void
107d2387 13311dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13312 struct type *type, struct dwarf2_cu *cu)
c906108c 13313{
e7c27a73 13314 struct objfile *objfile = cu->objfile;
c906108c
SS
13315 struct attribute *attr;
13316 struct fnfieldlist *flp;
13317 int i;
13318 struct fn_field *fnp;
15d034d0 13319 const char *fieldname;
c906108c 13320 struct nextfnfield *new_fnfield;
f792889a 13321 struct type *this_type;
60d5a603 13322 enum dwarf_access_attribute accessibility;
c906108c 13323
b4ba55a1 13324 if (cu->language == language_ada)
a73c6dcd 13325 error (_("unexpected member function in Ada type"));
b4ba55a1 13326
2df3850c 13327 /* Get name of member function. */
39cbfefa
DJ
13328 fieldname = dwarf2_name (die, cu);
13329 if (fieldname == NULL)
2df3850c 13330 return;
c906108c 13331
c906108c
SS
13332 /* Look up member function name in fieldlist. */
13333 for (i = 0; i < fip->nfnfields; i++)
13334 {
27bfe10e 13335 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13336 break;
13337 }
13338
13339 /* Create new list element if necessary. */
13340 if (i < fip->nfnfields)
13341 flp = &fip->fnfieldlists[i];
13342 else
13343 {
13344 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13345 {
13346 fip->fnfieldlists = (struct fnfieldlist *)
13347 xrealloc (fip->fnfieldlists,
13348 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13349 * sizeof (struct fnfieldlist));
c906108c 13350 if (fip->nfnfields == 0)
c13c43fd 13351 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13352 }
13353 flp = &fip->fnfieldlists[fip->nfnfields];
13354 flp->name = fieldname;
13355 flp->length = 0;
13356 flp->head = NULL;
3da10d80 13357 i = fip->nfnfields++;
c906108c
SS
13358 }
13359
13360 /* Create a new member function field and chain it to the field list
0963b4bd 13361 entry. */
8d749320 13362 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13363 make_cleanup (xfree, new_fnfield);
c906108c
SS
13364 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13365 new_fnfield->next = flp->head;
13366 flp->head = new_fnfield;
13367 flp->length++;
13368
13369 /* Fill in the member function field info. */
13370 fnp = &new_fnfield->fnfield;
3da10d80
KS
13371
13372 /* Delay processing of the physname until later. */
9c37b5ae 13373 if (cu->language == language_cplus)
3da10d80
KS
13374 {
13375 add_to_method_list (type, i, flp->length - 1, fieldname,
13376 die, cu);
13377 }
13378 else
13379 {
1d06ead6 13380 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13381 fnp->physname = physname ? physname : "";
13382 }
13383
c906108c 13384 fnp->type = alloc_type (objfile);
f792889a
DJ
13385 this_type = read_type_die (die, cu);
13386 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13387 {
f792889a 13388 int nparams = TYPE_NFIELDS (this_type);
c906108c 13389
f792889a 13390 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13391 of the method itself (TYPE_CODE_METHOD). */
13392 smash_to_method_type (fnp->type, type,
f792889a
DJ
13393 TYPE_TARGET_TYPE (this_type),
13394 TYPE_FIELDS (this_type),
13395 TYPE_NFIELDS (this_type),
13396 TYPE_VARARGS (this_type));
c906108c
SS
13397
13398 /* Handle static member functions.
c5aa993b 13399 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13400 member functions. G++ helps GDB by marking the first
13401 parameter for non-static member functions (which is the this
13402 pointer) as artificial. We obtain this information from
13403 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13404 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13405 fnp->voffset = VOFFSET_STATIC;
13406 }
13407 else
e2e0b3e5 13408 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13409 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13410
13411 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13412 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13413 fnp->fcontext = die_containing_type (die, cu);
c906108c 13414
3e43a32a
MS
13415 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13416 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13417
13418 /* Get accessibility. */
e142c38c 13419 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13420 if (attr)
aead7601 13421 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13422 else
13423 accessibility = dwarf2_default_access_attribute (die, cu);
13424 switch (accessibility)
c906108c 13425 {
60d5a603
JK
13426 case DW_ACCESS_private:
13427 fnp->is_private = 1;
13428 break;
13429 case DW_ACCESS_protected:
13430 fnp->is_protected = 1;
13431 break;
c906108c
SS
13432 }
13433
b02dede2 13434 /* Check for artificial methods. */
e142c38c 13435 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13436 if (attr && DW_UNSND (attr) != 0)
13437 fnp->is_artificial = 1;
13438
7d27a96d
TT
13439 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13440
0d564a31 13441 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13442 function. For older versions of GCC, this is an offset in the
13443 appropriate virtual table, as specified by DW_AT_containing_type.
13444 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13445 to the object address. */
13446
e142c38c 13447 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13448 if (attr)
8e19ed76 13449 {
aec5aa8b 13450 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13451 {
aec5aa8b
TT
13452 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13453 {
13454 /* Old-style GCC. */
13455 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13456 }
13457 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13458 || (DW_BLOCK (attr)->size > 1
13459 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13460 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13461 {
aec5aa8b
TT
13462 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13463 if ((fnp->voffset % cu->header.addr_size) != 0)
13464 dwarf2_complex_location_expr_complaint ();
13465 else
13466 fnp->voffset /= cu->header.addr_size;
13467 fnp->voffset += 2;
13468 }
13469 else
13470 dwarf2_complex_location_expr_complaint ();
13471
13472 if (!fnp->fcontext)
7e993ebf
KS
13473 {
13474 /* If there is no `this' field and no DW_AT_containing_type,
13475 we cannot actually find a base class context for the
13476 vtable! */
13477 if (TYPE_NFIELDS (this_type) == 0
13478 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13479 {
13480 complaint (&symfile_complaints,
13481 _("cannot determine context for virtual member "
13482 "function \"%s\" (offset %d)"),
9c541725 13483 fieldname, to_underlying (die->sect_off));
7e993ebf
KS
13484 }
13485 else
13486 {
13487 fnp->fcontext
13488 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13489 }
13490 }
aec5aa8b 13491 }
3690dd37 13492 else if (attr_form_is_section_offset (attr))
8e19ed76 13493 {
4d3c2250 13494 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13495 }
13496 else
13497 {
4d3c2250
KB
13498 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13499 fieldname);
8e19ed76 13500 }
0d564a31 13501 }
d48cc9dd
DJ
13502 else
13503 {
13504 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13505 if (attr && DW_UNSND (attr))
13506 {
13507 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13508 complaint (&symfile_complaints,
3e43a32a
MS
13509 _("Member function \"%s\" (offset %d) is virtual "
13510 "but the vtable offset is not specified"),
9c541725 13511 fieldname, to_underlying (die->sect_off));
9655fd1a 13512 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13513 TYPE_CPLUS_DYNAMIC (type) = 1;
13514 }
13515 }
c906108c
SS
13516}
13517
13518/* Create the vector of member function fields, and attach it to the type. */
13519
13520static void
fba45db2 13521dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13522 struct dwarf2_cu *cu)
c906108c
SS
13523{
13524 struct fnfieldlist *flp;
c906108c
SS
13525 int i;
13526
b4ba55a1 13527 if (cu->language == language_ada)
a73c6dcd 13528 error (_("unexpected member functions in Ada type"));
b4ba55a1 13529
c906108c
SS
13530 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13531 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13532 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13533
13534 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13535 {
13536 struct nextfnfield *nfp = flp->head;
13537 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13538 int k;
13539
13540 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13541 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13542 fn_flp->fn_fields = (struct fn_field *)
13543 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13544 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13545 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13546 }
13547
13548 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13549}
13550
1168df01
JB
13551/* Returns non-zero if NAME is the name of a vtable member in CU's
13552 language, zero otherwise. */
13553static int
13554is_vtable_name (const char *name, struct dwarf2_cu *cu)
13555{
13556 static const char vptr[] = "_vptr";
987504bb 13557 static const char vtable[] = "vtable";
1168df01 13558
9c37b5ae
TT
13559 /* Look for the C++ form of the vtable. */
13560 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13561 return 1;
13562
13563 return 0;
13564}
13565
c0dd20ea 13566/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13567 functions, with the ABI-specified layout. If TYPE describes
13568 such a structure, smash it into a member function type.
61049d3b
DJ
13569
13570 GCC shouldn't do this; it should just output pointer to member DIEs.
13571 This is GCC PR debug/28767. */
c0dd20ea 13572
0b92b5bb
TT
13573static void
13574quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13575{
09e2d7c7 13576 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13577
13578 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13579 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13580 return;
c0dd20ea
DJ
13581
13582 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13583 if (TYPE_FIELD_NAME (type, 0) == NULL
13584 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13585 || TYPE_FIELD_NAME (type, 1) == NULL
13586 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13587 return;
c0dd20ea
DJ
13588
13589 /* Find the type of the method. */
0b92b5bb 13590 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13591 if (pfn_type == NULL
13592 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13593 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13594 return;
c0dd20ea
DJ
13595
13596 /* Look for the "this" argument. */
13597 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13598 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13599 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13600 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13601 return;
c0dd20ea 13602
09e2d7c7 13603 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13604 new_type = alloc_type (objfile);
09e2d7c7 13605 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13606 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13607 TYPE_VARARGS (pfn_type));
0b92b5bb 13608 smash_to_methodptr_type (type, new_type);
c0dd20ea 13609}
1168df01 13610
685b1105 13611
c906108c 13612/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13613 (definition) to create a type for the structure or union. Fill in
13614 the type's name and general properties; the members will not be
83655187
DE
13615 processed until process_structure_scope. A symbol table entry for
13616 the type will also not be done until process_structure_scope (assuming
13617 the type has a name).
c906108c 13618
c767944b
DJ
13619 NOTE: we need to call these functions regardless of whether or not the
13620 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13621 structure or union. This gets the type entered into our set of
83655187 13622 user defined types. */
c906108c 13623
f792889a 13624static struct type *
134d01f1 13625read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13626{
e7c27a73 13627 struct objfile *objfile = cu->objfile;
c906108c
SS
13628 struct type *type;
13629 struct attribute *attr;
15d034d0 13630 const char *name;
c906108c 13631
348e048f
DE
13632 /* If the definition of this type lives in .debug_types, read that type.
13633 Don't follow DW_AT_specification though, that will take us back up
13634 the chain and we want to go down. */
45e58e77 13635 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13636 if (attr)
13637 {
ac9ec31b 13638 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13639
ac9ec31b 13640 /* The type's CU may not be the same as CU.
02142a6c 13641 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13642 return set_die_type (die, type, cu);
13643 }
13644
c0dd20ea 13645 type = alloc_type (objfile);
c906108c 13646 INIT_CPLUS_SPECIFIC (type);
93311388 13647
39cbfefa
DJ
13648 name = dwarf2_name (die, cu);
13649 if (name != NULL)
c906108c 13650 {
987504bb 13651 if (cu->language == language_cplus
c44af4eb
TT
13652 || cu->language == language_d
13653 || cu->language == language_rust)
63d06c5c 13654 {
15d034d0 13655 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13656
13657 /* dwarf2_full_name might have already finished building the DIE's
13658 type. If so, there is no need to continue. */
13659 if (get_die_type (die, cu) != NULL)
13660 return get_die_type (die, cu);
13661
13662 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13663 if (die->tag == DW_TAG_structure_type
13664 || die->tag == DW_TAG_class_type)
13665 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13666 }
13667 else
13668 {
d8151005
DJ
13669 /* The name is already allocated along with this objfile, so
13670 we don't need to duplicate it for the type. */
7d455152 13671 TYPE_TAG_NAME (type) = name;
94af9270
KS
13672 if (die->tag == DW_TAG_class_type)
13673 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13674 }
c906108c
SS
13675 }
13676
13677 if (die->tag == DW_TAG_structure_type)
13678 {
13679 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13680 }
13681 else if (die->tag == DW_TAG_union_type)
13682 {
13683 TYPE_CODE (type) = TYPE_CODE_UNION;
13684 }
13685 else
13686 {
4753d33b 13687 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13688 }
13689
0cc2414c
TT
13690 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13691 TYPE_DECLARED_CLASS (type) = 1;
13692
e142c38c 13693 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13694 if (attr)
13695 {
155bfbd3
JB
13696 if (attr_form_is_constant (attr))
13697 TYPE_LENGTH (type) = DW_UNSND (attr);
13698 else
13699 {
13700 /* For the moment, dynamic type sizes are not supported
13701 by GDB's struct type. The actual size is determined
13702 on-demand when resolving the type of a given object,
13703 so set the type's length to zero for now. Otherwise,
13704 we record an expression as the length, and that expression
13705 could lead to a very large value, which could eventually
13706 lead to us trying to allocate that much memory when creating
13707 a value of that type. */
13708 TYPE_LENGTH (type) = 0;
13709 }
c906108c
SS
13710 }
13711 else
13712 {
13713 TYPE_LENGTH (type) = 0;
13714 }
13715
5230b05a 13716 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 13717 {
5230b05a
WT
13718 /* ICC<14 does not output the required DW_AT_declaration on
13719 incomplete types, but gives them a size of zero. */
422b1cb0 13720 TYPE_STUB (type) = 1;
685b1105
JK
13721 }
13722 else
13723 TYPE_STUB_SUPPORTED (type) = 1;
13724
dc718098 13725 if (die_is_declaration (die, cu))
876cecd0 13726 TYPE_STUB (type) = 1;
a6c727b2
DJ
13727 else if (attr == NULL && die->child == NULL
13728 && producer_is_realview (cu->producer))
13729 /* RealView does not output the required DW_AT_declaration
13730 on incomplete types. */
13731 TYPE_STUB (type) = 1;
dc718098 13732
c906108c
SS
13733 /* We need to add the type field to the die immediately so we don't
13734 infinitely recurse when dealing with pointers to the structure
0963b4bd 13735 type within the structure itself. */
1c379e20 13736 set_die_type (die, type, cu);
c906108c 13737
7e314c57
JK
13738 /* set_die_type should be already done. */
13739 set_descriptive_type (type, die, cu);
13740
c767944b
DJ
13741 return type;
13742}
13743
13744/* Finish creating a structure or union type, including filling in
13745 its members and creating a symbol for it. */
13746
13747static void
13748process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13749{
13750 struct objfile *objfile = cu->objfile;
ca040673 13751 struct die_info *child_die;
c767944b
DJ
13752 struct type *type;
13753
13754 type = get_die_type (die, cu);
13755 if (type == NULL)
13756 type = read_structure_type (die, cu);
13757
e142c38c 13758 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13759 {
13760 struct field_info fi;
34eaf542 13761 VEC (symbolp) *template_args = NULL;
c767944b 13762 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13763
13764 memset (&fi, 0, sizeof (struct field_info));
13765
639d11d3 13766 child_die = die->child;
c906108c
SS
13767
13768 while (child_die && child_die->tag)
13769 {
a9a9bd0f
DC
13770 if (child_die->tag == DW_TAG_member
13771 || child_die->tag == DW_TAG_variable)
c906108c 13772 {
a9a9bd0f
DC
13773 /* NOTE: carlton/2002-11-05: A C++ static data member
13774 should be a DW_TAG_member that is a declaration, but
13775 all versions of G++ as of this writing (so through at
13776 least 3.2.1) incorrectly generate DW_TAG_variable
13777 tags for them instead. */
e7c27a73 13778 dwarf2_add_field (&fi, child_die, cu);
c906108c 13779 }
8713b1b1 13780 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13781 {
e98c9e7c
TT
13782 /* Rust doesn't have member functions in the C++ sense.
13783 However, it does emit ordinary functions as children
13784 of a struct DIE. */
13785 if (cu->language == language_rust)
13786 read_func_scope (child_die, cu);
13787 else
13788 {
13789 /* C++ member function. */
13790 dwarf2_add_member_fn (&fi, child_die, type, cu);
13791 }
c906108c
SS
13792 }
13793 else if (child_die->tag == DW_TAG_inheritance)
13794 {
13795 /* C++ base class field. */
e7c27a73 13796 dwarf2_add_field (&fi, child_die, cu);
c906108c 13797 }
98751a41
JK
13798 else if (child_die->tag == DW_TAG_typedef)
13799 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13800 else if (child_die->tag == DW_TAG_template_type_param
13801 || child_die->tag == DW_TAG_template_value_param)
13802 {
13803 struct symbol *arg = new_symbol (child_die, NULL, cu);
13804
f1078f66
DJ
13805 if (arg != NULL)
13806 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13807 }
13808
c906108c
SS
13809 child_die = sibling_die (child_die);
13810 }
13811
34eaf542
TT
13812 /* Attach template arguments to type. */
13813 if (! VEC_empty (symbolp, template_args))
13814 {
13815 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13816 TYPE_N_TEMPLATE_ARGUMENTS (type)
13817 = VEC_length (symbolp, template_args);
13818 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13819 = XOBNEWVEC (&objfile->objfile_obstack,
13820 struct symbol *,
13821 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13822 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13823 VEC_address (symbolp, template_args),
13824 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13825 * sizeof (struct symbol *)));
13826 VEC_free (symbolp, template_args);
13827 }
13828
c906108c
SS
13829 /* Attach fields and member functions to the type. */
13830 if (fi.nfields)
e7c27a73 13831 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13832 if (fi.nfnfields)
13833 {
e7c27a73 13834 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13835
c5aa993b 13836 /* Get the type which refers to the base class (possibly this
c906108c 13837 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13838 class from the DW_AT_containing_type attribute. This use of
13839 DW_AT_containing_type is a GNU extension. */
c906108c 13840
e142c38c 13841 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13842 {
e7c27a73 13843 struct type *t = die_containing_type (die, cu);
c906108c 13844
ae6ae975 13845 set_type_vptr_basetype (type, t);
c906108c
SS
13846 if (type == t)
13847 {
c906108c
SS
13848 int i;
13849
13850 /* Our own class provides vtbl ptr. */
13851 for (i = TYPE_NFIELDS (t) - 1;
13852 i >= TYPE_N_BASECLASSES (t);
13853 --i)
13854 {
0d5cff50 13855 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13856
1168df01 13857 if (is_vtable_name (fieldname, cu))
c906108c 13858 {
ae6ae975 13859 set_type_vptr_fieldno (type, i);
c906108c
SS
13860 break;
13861 }
13862 }
13863
13864 /* Complain if virtual function table field not found. */
13865 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13866 complaint (&symfile_complaints,
3e43a32a
MS
13867 _("virtual function table pointer "
13868 "not found when defining class '%s'"),
4d3c2250
KB
13869 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13870 "");
c906108c
SS
13871 }
13872 else
13873 {
ae6ae975 13874 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13875 }
13876 }
f6235d4c 13877 else if (cu->producer
61012eef 13878 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13879 {
13880 /* The IBM XLC compiler does not provide direct indication
13881 of the containing type, but the vtable pointer is
13882 always named __vfp. */
13883
13884 int i;
13885
13886 for (i = TYPE_NFIELDS (type) - 1;
13887 i >= TYPE_N_BASECLASSES (type);
13888 --i)
13889 {
13890 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13891 {
ae6ae975
DE
13892 set_type_vptr_fieldno (type, i);
13893 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13894 break;
13895 }
13896 }
13897 }
c906108c 13898 }
98751a41
JK
13899
13900 /* Copy fi.typedef_field_list linked list elements content into the
13901 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13902 if (fi.typedef_field_list)
13903 {
13904 int i = fi.typedef_field_list_count;
13905
a0d7a4ff 13906 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13907 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13908 = ((struct typedef_field *)
13909 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13910 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13911
13912 /* Reverse the list order to keep the debug info elements order. */
13913 while (--i >= 0)
13914 {
13915 struct typedef_field *dest, *src;
6e70227d 13916
98751a41
JK
13917 dest = &TYPE_TYPEDEF_FIELD (type, i);
13918 src = &fi.typedef_field_list->field;
13919 fi.typedef_field_list = fi.typedef_field_list->next;
13920 *dest = *src;
13921 }
13922 }
c767944b
DJ
13923
13924 do_cleanups (back_to);
c906108c 13925 }
63d06c5c 13926
bb5ed363 13927 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13928
90aeadfc
DC
13929 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13930 snapshots) has been known to create a die giving a declaration
13931 for a class that has, as a child, a die giving a definition for a
13932 nested class. So we have to process our children even if the
13933 current die is a declaration. Normally, of course, a declaration
13934 won't have any children at all. */
134d01f1 13935
ca040673
DE
13936 child_die = die->child;
13937
90aeadfc
DC
13938 while (child_die != NULL && child_die->tag)
13939 {
13940 if (child_die->tag == DW_TAG_member
13941 || child_die->tag == DW_TAG_variable
34eaf542
TT
13942 || child_die->tag == DW_TAG_inheritance
13943 || child_die->tag == DW_TAG_template_value_param
13944 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13945 {
90aeadfc 13946 /* Do nothing. */
134d01f1 13947 }
90aeadfc
DC
13948 else
13949 process_die (child_die, cu);
134d01f1 13950
90aeadfc 13951 child_die = sibling_die (child_die);
134d01f1
DJ
13952 }
13953
fa4028e9
JB
13954 /* Do not consider external references. According to the DWARF standard,
13955 these DIEs are identified by the fact that they have no byte_size
13956 attribute, and a declaration attribute. */
13957 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13958 || !die_is_declaration (die, cu))
c767944b 13959 new_symbol (die, type, cu);
134d01f1
DJ
13960}
13961
55426c9d
JB
13962/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13963 update TYPE using some information only available in DIE's children. */
13964
13965static void
13966update_enumeration_type_from_children (struct die_info *die,
13967 struct type *type,
13968 struct dwarf2_cu *cu)
13969{
60f7655a 13970 struct die_info *child_die;
55426c9d
JB
13971 int unsigned_enum = 1;
13972 int flag_enum = 1;
13973 ULONGEST mask = 0;
55426c9d 13974
8268c778 13975 auto_obstack obstack;
55426c9d 13976
60f7655a
DE
13977 for (child_die = die->child;
13978 child_die != NULL && child_die->tag;
13979 child_die = sibling_die (child_die))
55426c9d
JB
13980 {
13981 struct attribute *attr;
13982 LONGEST value;
13983 const gdb_byte *bytes;
13984 struct dwarf2_locexpr_baton *baton;
13985 const char *name;
60f7655a 13986
55426c9d
JB
13987 if (child_die->tag != DW_TAG_enumerator)
13988 continue;
13989
13990 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13991 if (attr == NULL)
13992 continue;
13993
13994 name = dwarf2_name (child_die, cu);
13995 if (name == NULL)
13996 name = "<anonymous enumerator>";
13997
13998 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13999 &value, &bytes, &baton);
14000 if (value < 0)
14001 {
14002 unsigned_enum = 0;
14003 flag_enum = 0;
14004 }
14005 else if ((mask & value) != 0)
14006 flag_enum = 0;
14007 else
14008 mask |= value;
14009
14010 /* If we already know that the enum type is neither unsigned, nor
14011 a flag type, no need to look at the rest of the enumerates. */
14012 if (!unsigned_enum && !flag_enum)
14013 break;
55426c9d
JB
14014 }
14015
14016 if (unsigned_enum)
14017 TYPE_UNSIGNED (type) = 1;
14018 if (flag_enum)
14019 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
14020}
14021
134d01f1
DJ
14022/* Given a DW_AT_enumeration_type die, set its type. We do not
14023 complete the type's fields yet, or create any symbols. */
c906108c 14024
f792889a 14025static struct type *
134d01f1 14026read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14027{
e7c27a73 14028 struct objfile *objfile = cu->objfile;
c906108c 14029 struct type *type;
c906108c 14030 struct attribute *attr;
0114d602 14031 const char *name;
134d01f1 14032
348e048f
DE
14033 /* If the definition of this type lives in .debug_types, read that type.
14034 Don't follow DW_AT_specification though, that will take us back up
14035 the chain and we want to go down. */
45e58e77 14036 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
14037 if (attr)
14038 {
ac9ec31b 14039 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 14040
ac9ec31b 14041 /* The type's CU may not be the same as CU.
02142a6c 14042 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
14043 return set_die_type (die, type, cu);
14044 }
14045
c906108c
SS
14046 type = alloc_type (objfile);
14047
14048 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 14049 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 14050 if (name != NULL)
7d455152 14051 TYPE_TAG_NAME (type) = name;
c906108c 14052
0626fc76
TT
14053 attr = dwarf2_attr (die, DW_AT_type, cu);
14054 if (attr != NULL)
14055 {
14056 struct type *underlying_type = die_type (die, cu);
14057
14058 TYPE_TARGET_TYPE (type) = underlying_type;
14059 }
14060
e142c38c 14061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14062 if (attr)
14063 {
14064 TYPE_LENGTH (type) = DW_UNSND (attr);
14065 }
14066 else
14067 {
14068 TYPE_LENGTH (type) = 0;
14069 }
14070
137033e9
JB
14071 /* The enumeration DIE can be incomplete. In Ada, any type can be
14072 declared as private in the package spec, and then defined only
14073 inside the package body. Such types are known as Taft Amendment
14074 Types. When another package uses such a type, an incomplete DIE
14075 may be generated by the compiler. */
02eb380e 14076 if (die_is_declaration (die, cu))
876cecd0 14077 TYPE_STUB (type) = 1;
02eb380e 14078
0626fc76
TT
14079 /* Finish the creation of this type by using the enum's children.
14080 We must call this even when the underlying type has been provided
14081 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
14082 update_enumeration_type_from_children (die, type, cu);
14083
0626fc76
TT
14084 /* If this type has an underlying type that is not a stub, then we
14085 may use its attributes. We always use the "unsigned" attribute
14086 in this situation, because ordinarily we guess whether the type
14087 is unsigned -- but the guess can be wrong and the underlying type
14088 can tell us the reality. However, we defer to a local size
14089 attribute if one exists, because this lets the compiler override
14090 the underlying type if needed. */
14091 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14092 {
14093 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14094 if (TYPE_LENGTH (type) == 0)
14095 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14096 }
14097
3d567982
TT
14098 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14099
f792889a 14100 return set_die_type (die, type, cu);
134d01f1
DJ
14101}
14102
14103/* Given a pointer to a die which begins an enumeration, process all
14104 the dies that define the members of the enumeration, and create the
14105 symbol for the enumeration type.
14106
14107 NOTE: We reverse the order of the element list. */
14108
14109static void
14110process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14111{
f792889a 14112 struct type *this_type;
134d01f1 14113
f792889a
DJ
14114 this_type = get_die_type (die, cu);
14115 if (this_type == NULL)
14116 this_type = read_enumeration_type (die, cu);
9dc481d3 14117
639d11d3 14118 if (die->child != NULL)
c906108c 14119 {
9dc481d3
DE
14120 struct die_info *child_die;
14121 struct symbol *sym;
14122 struct field *fields = NULL;
14123 int num_fields = 0;
15d034d0 14124 const char *name;
9dc481d3 14125
639d11d3 14126 child_die = die->child;
c906108c
SS
14127 while (child_die && child_die->tag)
14128 {
14129 if (child_die->tag != DW_TAG_enumerator)
14130 {
e7c27a73 14131 process_die (child_die, cu);
c906108c
SS
14132 }
14133 else
14134 {
39cbfefa
DJ
14135 name = dwarf2_name (child_die, cu);
14136 if (name)
c906108c 14137 {
f792889a 14138 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
14139
14140 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14141 {
14142 fields = (struct field *)
14143 xrealloc (fields,
14144 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 14145 * sizeof (struct field));
c906108c
SS
14146 }
14147
3567439c 14148 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 14149 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 14150 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
14151 FIELD_BITSIZE (fields[num_fields]) = 0;
14152
14153 num_fields++;
14154 }
14155 }
14156
14157 child_die = sibling_die (child_die);
14158 }
14159
14160 if (num_fields)
14161 {
f792889a
DJ
14162 TYPE_NFIELDS (this_type) = num_fields;
14163 TYPE_FIELDS (this_type) = (struct field *)
14164 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14165 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 14166 sizeof (struct field) * num_fields);
b8c9b27d 14167 xfree (fields);
c906108c 14168 }
c906108c 14169 }
134d01f1 14170
6c83ed52
TT
14171 /* If we are reading an enum from a .debug_types unit, and the enum
14172 is a declaration, and the enum is not the signatured type in the
14173 unit, then we do not want to add a symbol for it. Adding a
14174 symbol would in some cases obscure the true definition of the
14175 enum, giving users an incomplete type when the definition is
14176 actually available. Note that we do not want to do this for all
14177 enums which are just declarations, because C++0x allows forward
14178 enum declarations. */
3019eac3 14179 if (cu->per_cu->is_debug_types
6c83ed52
TT
14180 && die_is_declaration (die, cu))
14181 {
52dc124a 14182 struct signatured_type *sig_type;
6c83ed52 14183
c0f78cd4 14184 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
14185 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14186 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
14187 return;
14188 }
14189
f792889a 14190 new_symbol (die, this_type, cu);
c906108c
SS
14191}
14192
14193/* Extract all information from a DW_TAG_array_type DIE and put it in
14194 the DIE's type field. For now, this only handles one dimensional
14195 arrays. */
14196
f792889a 14197static struct type *
e7c27a73 14198read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14199{
e7c27a73 14200 struct objfile *objfile = cu->objfile;
c906108c 14201 struct die_info *child_die;
7e314c57 14202 struct type *type;
c906108c
SS
14203 struct type *element_type, *range_type, *index_type;
14204 struct type **range_types = NULL;
14205 struct attribute *attr;
14206 int ndim = 0;
14207 struct cleanup *back_to;
15d034d0 14208 const char *name;
dc53a7ad 14209 unsigned int bit_stride = 0;
c906108c 14210
e7c27a73 14211 element_type = die_type (die, cu);
c906108c 14212
7e314c57
JK
14213 /* The die_type call above may have already set the type for this DIE. */
14214 type = get_die_type (die, cu);
14215 if (type)
14216 return type;
14217
dc53a7ad
JB
14218 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14219 if (attr != NULL)
14220 bit_stride = DW_UNSND (attr) * 8;
14221
14222 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14223 if (attr != NULL)
14224 bit_stride = DW_UNSND (attr);
14225
c906108c
SS
14226 /* Irix 6.2 native cc creates array types without children for
14227 arrays with unspecified length. */
639d11d3 14228 if (die->child == NULL)
c906108c 14229 {
46bf5051 14230 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14231 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
14232 type = create_array_type_with_stride (NULL, element_type, range_type,
14233 bit_stride);
f792889a 14234 return set_die_type (die, type, cu);
c906108c
SS
14235 }
14236
14237 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 14238 child_die = die->child;
c906108c
SS
14239 while (child_die && child_die->tag)
14240 {
14241 if (child_die->tag == DW_TAG_subrange_type)
14242 {
f792889a 14243 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14244
f792889a 14245 if (child_type != NULL)
a02abb62 14246 {
0963b4bd
MS
14247 /* The range type was succesfully read. Save it for the
14248 array type creation. */
a02abb62
JB
14249 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14250 {
14251 range_types = (struct type **)
14252 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14253 * sizeof (struct type *));
14254 if (ndim == 0)
14255 make_cleanup (free_current_contents, &range_types);
14256 }
f792889a 14257 range_types[ndim++] = child_type;
a02abb62 14258 }
c906108c
SS
14259 }
14260 child_die = sibling_die (child_die);
14261 }
14262
14263 /* Dwarf2 dimensions are output from left to right, create the
14264 necessary array types in backwards order. */
7ca2d3a3 14265
c906108c 14266 type = element_type;
7ca2d3a3
DL
14267
14268 if (read_array_order (die, cu) == DW_ORD_col_major)
14269 {
14270 int i = 0;
9a619af0 14271
7ca2d3a3 14272 while (i < ndim)
dc53a7ad
JB
14273 type = create_array_type_with_stride (NULL, type, range_types[i++],
14274 bit_stride);
7ca2d3a3
DL
14275 }
14276 else
14277 {
14278 while (ndim-- > 0)
dc53a7ad
JB
14279 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14280 bit_stride);
7ca2d3a3 14281 }
c906108c 14282
f5f8a009
EZ
14283 /* Understand Dwarf2 support for vector types (like they occur on
14284 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14285 array type. This is not part of the Dwarf2/3 standard yet, but a
14286 custom vendor extension. The main difference between a regular
14287 array and the vector variant is that vectors are passed by value
14288 to functions. */
e142c38c 14289 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14290 if (attr)
ea37ba09 14291 make_vector_type (type);
f5f8a009 14292
dbc98a8b
KW
14293 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14294 implementation may choose to implement triple vectors using this
14295 attribute. */
14296 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14297 if (attr)
14298 {
14299 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14300 TYPE_LENGTH (type) = DW_UNSND (attr);
14301 else
3e43a32a
MS
14302 complaint (&symfile_complaints,
14303 _("DW_AT_byte_size for array type smaller "
14304 "than the total size of elements"));
dbc98a8b
KW
14305 }
14306
39cbfefa
DJ
14307 name = dwarf2_name (die, cu);
14308 if (name)
14309 TYPE_NAME (type) = name;
6e70227d 14310
0963b4bd 14311 /* Install the type in the die. */
7e314c57
JK
14312 set_die_type (die, type, cu);
14313
14314 /* set_die_type should be already done. */
b4ba55a1
JB
14315 set_descriptive_type (type, die, cu);
14316
c906108c
SS
14317 do_cleanups (back_to);
14318
7e314c57 14319 return type;
c906108c
SS
14320}
14321
7ca2d3a3 14322static enum dwarf_array_dim_ordering
6e70227d 14323read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14324{
14325 struct attribute *attr;
14326
14327 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14328
aead7601
SM
14329 if (attr)
14330 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14331
0963b4bd
MS
14332 /* GNU F77 is a special case, as at 08/2004 array type info is the
14333 opposite order to the dwarf2 specification, but data is still
14334 laid out as per normal fortran.
7ca2d3a3 14335
0963b4bd
MS
14336 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14337 version checking. */
7ca2d3a3 14338
905e0470
PM
14339 if (cu->language == language_fortran
14340 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14341 {
14342 return DW_ORD_row_major;
14343 }
14344
6e70227d 14345 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14346 {
14347 case array_column_major:
14348 return DW_ORD_col_major;
14349 case array_row_major:
14350 default:
14351 return DW_ORD_row_major;
14352 };
14353}
14354
72019c9c 14355/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14356 the DIE's type field. */
72019c9c 14357
f792889a 14358static struct type *
72019c9c
GM
14359read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14360{
7e314c57
JK
14361 struct type *domain_type, *set_type;
14362 struct attribute *attr;
f792889a 14363
7e314c57
JK
14364 domain_type = die_type (die, cu);
14365
14366 /* The die_type call above may have already set the type for this DIE. */
14367 set_type = get_die_type (die, cu);
14368 if (set_type)
14369 return set_type;
14370
14371 set_type = create_set_type (NULL, domain_type);
14372
14373 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14374 if (attr)
14375 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14376
f792889a 14377 return set_die_type (die, set_type, cu);
72019c9c 14378}
7ca2d3a3 14379
0971de02
TT
14380/* A helper for read_common_block that creates a locexpr baton.
14381 SYM is the symbol which we are marking as computed.
14382 COMMON_DIE is the DIE for the common block.
14383 COMMON_LOC is the location expression attribute for the common
14384 block itself.
14385 MEMBER_LOC is the location expression attribute for the particular
14386 member of the common block that we are processing.
14387 CU is the CU from which the above come. */
14388
14389static void
14390mark_common_block_symbol_computed (struct symbol *sym,
14391 struct die_info *common_die,
14392 struct attribute *common_loc,
14393 struct attribute *member_loc,
14394 struct dwarf2_cu *cu)
14395{
14396 struct objfile *objfile = dwarf2_per_objfile->objfile;
14397 struct dwarf2_locexpr_baton *baton;
14398 gdb_byte *ptr;
14399 unsigned int cu_off;
14400 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14401 LONGEST offset = 0;
14402
14403 gdb_assert (common_loc && member_loc);
14404 gdb_assert (attr_form_is_block (common_loc));
14405 gdb_assert (attr_form_is_block (member_loc)
14406 || attr_form_is_constant (member_loc));
14407
8d749320 14408 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14409 baton->per_cu = cu->per_cu;
14410 gdb_assert (baton->per_cu);
14411
14412 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14413
14414 if (attr_form_is_constant (member_loc))
14415 {
14416 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14417 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14418 }
14419 else
14420 baton->size += DW_BLOCK (member_loc)->size;
14421
224c3ddb 14422 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14423 baton->data = ptr;
14424
14425 *ptr++ = DW_OP_call4;
9c541725 14426 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
14427 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14428 ptr += 4;
14429
14430 if (attr_form_is_constant (member_loc))
14431 {
14432 *ptr++ = DW_OP_addr;
14433 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14434 ptr += cu->header.addr_size;
14435 }
14436 else
14437 {
14438 /* We have to copy the data here, because DW_OP_call4 will only
14439 use a DW_AT_location attribute. */
14440 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14441 ptr += DW_BLOCK (member_loc)->size;
14442 }
14443
14444 *ptr++ = DW_OP_plus;
14445 gdb_assert (ptr - baton->data == baton->size);
14446
0971de02 14447 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14448 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14449}
14450
4357ac6c
TT
14451/* Create appropriate locally-scoped variables for all the
14452 DW_TAG_common_block entries. Also create a struct common_block
14453 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14454 is used to sepate the common blocks name namespace from regular
14455 variable names. */
c906108c
SS
14456
14457static void
e7c27a73 14458read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14459{
0971de02
TT
14460 struct attribute *attr;
14461
14462 attr = dwarf2_attr (die, DW_AT_location, cu);
14463 if (attr)
14464 {
14465 /* Support the .debug_loc offsets. */
14466 if (attr_form_is_block (attr))
14467 {
14468 /* Ok. */
14469 }
14470 else if (attr_form_is_section_offset (attr))
14471 {
14472 dwarf2_complex_location_expr_complaint ();
14473 attr = NULL;
14474 }
14475 else
14476 {
14477 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14478 "common block member");
14479 attr = NULL;
14480 }
14481 }
14482
639d11d3 14483 if (die->child != NULL)
c906108c 14484 {
4357ac6c
TT
14485 struct objfile *objfile = cu->objfile;
14486 struct die_info *child_die;
14487 size_t n_entries = 0, size;
14488 struct common_block *common_block;
14489 struct symbol *sym;
74ac6d43 14490
4357ac6c
TT
14491 for (child_die = die->child;
14492 child_die && child_die->tag;
14493 child_die = sibling_die (child_die))
14494 ++n_entries;
14495
14496 size = (sizeof (struct common_block)
14497 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14498 common_block
14499 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14500 size);
4357ac6c
TT
14501 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14502 common_block->n_entries = 0;
14503
14504 for (child_die = die->child;
14505 child_die && child_die->tag;
14506 child_die = sibling_die (child_die))
14507 {
14508 /* Create the symbol in the DW_TAG_common_block block in the current
14509 symbol scope. */
e7c27a73 14510 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14511 if (sym != NULL)
14512 {
14513 struct attribute *member_loc;
14514
14515 common_block->contents[common_block->n_entries++] = sym;
14516
14517 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14518 cu);
14519 if (member_loc)
14520 {
14521 /* GDB has handled this for a long time, but it is
14522 not specified by DWARF. It seems to have been
14523 emitted by gfortran at least as recently as:
14524 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14525 complaint (&symfile_complaints,
14526 _("Variable in common block has "
14527 "DW_AT_data_member_location "
14528 "- DIE at 0x%x [in module %s]"),
9c541725 14529 to_underlying (child_die->sect_off),
4262abfb 14530 objfile_name (cu->objfile));
0971de02
TT
14531
14532 if (attr_form_is_section_offset (member_loc))
14533 dwarf2_complex_location_expr_complaint ();
14534 else if (attr_form_is_constant (member_loc)
14535 || attr_form_is_block (member_loc))
14536 {
14537 if (attr)
14538 mark_common_block_symbol_computed (sym, die, attr,
14539 member_loc, cu);
14540 }
14541 else
14542 dwarf2_complex_location_expr_complaint ();
14543 }
14544 }
c906108c 14545 }
4357ac6c
TT
14546
14547 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14548 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14549 }
14550}
14551
0114d602 14552/* Create a type for a C++ namespace. */
d9fa45fe 14553
0114d602
DJ
14554static struct type *
14555read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14556{
e7c27a73 14557 struct objfile *objfile = cu->objfile;
0114d602 14558 const char *previous_prefix, *name;
9219021c 14559 int is_anonymous;
0114d602
DJ
14560 struct type *type;
14561
14562 /* For extensions, reuse the type of the original namespace. */
14563 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14564 {
14565 struct die_info *ext_die;
14566 struct dwarf2_cu *ext_cu = cu;
9a619af0 14567
0114d602
DJ
14568 ext_die = dwarf2_extension (die, &ext_cu);
14569 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14570
14571 /* EXT_CU may not be the same as CU.
02142a6c 14572 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14573 return set_die_type (die, type, cu);
14574 }
9219021c 14575
e142c38c 14576 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14577
14578 /* Now build the name of the current namespace. */
14579
0114d602
DJ
14580 previous_prefix = determine_prefix (die, cu);
14581 if (previous_prefix[0] != '\0')
14582 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14583 previous_prefix, name, 0, cu);
0114d602
DJ
14584
14585 /* Create the type. */
19f392bc 14586 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14587 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14588
60531b24 14589 return set_die_type (die, type, cu);
0114d602
DJ
14590}
14591
22cee43f 14592/* Read a namespace scope. */
0114d602
DJ
14593
14594static void
14595read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14596{
14597 struct objfile *objfile = cu->objfile;
0114d602 14598 int is_anonymous;
9219021c 14599
5c4e30ca
DC
14600 /* Add a symbol associated to this if we haven't seen the namespace
14601 before. Also, add a using directive if it's an anonymous
14602 namespace. */
9219021c 14603
f2f0e013 14604 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14605 {
14606 struct type *type;
14607
0114d602 14608 type = read_type_die (die, cu);
e7c27a73 14609 new_symbol (die, type, cu);
5c4e30ca 14610
e8e80198 14611 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14612 if (is_anonymous)
0114d602
DJ
14613 {
14614 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14615
eb1e02fd 14616 std::vector<const char *> excludes;
22cee43f
PMR
14617 add_using_directive (using_directives (cu->language),
14618 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 14619 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 14620 }
5c4e30ca 14621 }
9219021c 14622
639d11d3 14623 if (die->child != NULL)
d9fa45fe 14624 {
639d11d3 14625 struct die_info *child_die = die->child;
6e70227d 14626
d9fa45fe
DC
14627 while (child_die && child_die->tag)
14628 {
e7c27a73 14629 process_die (child_die, cu);
d9fa45fe
DC
14630 child_die = sibling_die (child_die);
14631 }
14632 }
38d518c9
EZ
14633}
14634
f55ee35c
JK
14635/* Read a Fortran module as type. This DIE can be only a declaration used for
14636 imported module. Still we need that type as local Fortran "use ... only"
14637 declaration imports depend on the created type in determine_prefix. */
14638
14639static struct type *
14640read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14641{
14642 struct objfile *objfile = cu->objfile;
15d034d0 14643 const char *module_name;
f55ee35c
JK
14644 struct type *type;
14645
14646 module_name = dwarf2_name (die, cu);
14647 if (!module_name)
3e43a32a
MS
14648 complaint (&symfile_complaints,
14649 _("DW_TAG_module has no name, offset 0x%x"),
9c541725 14650 to_underlying (die->sect_off));
19f392bc 14651 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14652
14653 /* determine_prefix uses TYPE_TAG_NAME. */
14654 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14655
14656 return set_die_type (die, type, cu);
14657}
14658
5d7cb8df
JK
14659/* Read a Fortran module. */
14660
14661static void
14662read_module (struct die_info *die, struct dwarf2_cu *cu)
14663{
14664 struct die_info *child_die = die->child;
530e8392
KB
14665 struct type *type;
14666
14667 type = read_type_die (die, cu);
14668 new_symbol (die, type, cu);
5d7cb8df 14669
5d7cb8df
JK
14670 while (child_die && child_die->tag)
14671 {
14672 process_die (child_die, cu);
14673 child_die = sibling_die (child_die);
14674 }
14675}
14676
38d518c9
EZ
14677/* Return the name of the namespace represented by DIE. Set
14678 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14679 namespace. */
14680
14681static const char *
e142c38c 14682namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14683{
14684 struct die_info *current_die;
14685 const char *name = NULL;
14686
14687 /* Loop through the extensions until we find a name. */
14688
14689 for (current_die = die;
14690 current_die != NULL;
f2f0e013 14691 current_die = dwarf2_extension (die, &cu))
38d518c9 14692 {
96553a0c
DE
14693 /* We don't use dwarf2_name here so that we can detect the absence
14694 of a name -> anonymous namespace. */
7d45c7c3 14695 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14696
38d518c9
EZ
14697 if (name != NULL)
14698 break;
14699 }
14700
14701 /* Is it an anonymous namespace? */
14702
14703 *is_anonymous = (name == NULL);
14704 if (*is_anonymous)
2b1dbab0 14705 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14706
14707 return name;
d9fa45fe
DC
14708}
14709
c906108c
SS
14710/* Extract all information from a DW_TAG_pointer_type DIE and add to
14711 the user defined type vector. */
14712
f792889a 14713static struct type *
e7c27a73 14714read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14715{
5e2b427d 14716 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14717 struct comp_unit_head *cu_header = &cu->header;
c906108c 14718 struct type *type;
8b2dbe47
KB
14719 struct attribute *attr_byte_size;
14720 struct attribute *attr_address_class;
14721 int byte_size, addr_class;
7e314c57
JK
14722 struct type *target_type;
14723
14724 target_type = die_type (die, cu);
c906108c 14725
7e314c57
JK
14726 /* The die_type call above may have already set the type for this DIE. */
14727 type = get_die_type (die, cu);
14728 if (type)
14729 return type;
14730
14731 type = lookup_pointer_type (target_type);
8b2dbe47 14732
e142c38c 14733 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14734 if (attr_byte_size)
14735 byte_size = DW_UNSND (attr_byte_size);
c906108c 14736 else
8b2dbe47
KB
14737 byte_size = cu_header->addr_size;
14738
e142c38c 14739 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14740 if (attr_address_class)
14741 addr_class = DW_UNSND (attr_address_class);
14742 else
14743 addr_class = DW_ADDR_none;
14744
14745 /* If the pointer size or address class is different than the
14746 default, create a type variant marked as such and set the
14747 length accordingly. */
14748 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14749 {
5e2b427d 14750 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14751 {
14752 int type_flags;
14753
849957d9 14754 type_flags = gdbarch_address_class_type_flags
5e2b427d 14755 (gdbarch, byte_size, addr_class);
876cecd0
TT
14756 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14757 == 0);
8b2dbe47
KB
14758 type = make_type_with_address_space (type, type_flags);
14759 }
14760 else if (TYPE_LENGTH (type) != byte_size)
14761 {
3e43a32a
MS
14762 complaint (&symfile_complaints,
14763 _("invalid pointer size %d"), byte_size);
8b2dbe47 14764 }
6e70227d 14765 else
9a619af0
MS
14766 {
14767 /* Should we also complain about unhandled address classes? */
14768 }
c906108c 14769 }
8b2dbe47
KB
14770
14771 TYPE_LENGTH (type) = byte_size;
f792889a 14772 return set_die_type (die, type, cu);
c906108c
SS
14773}
14774
14775/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14776 the user defined type vector. */
14777
f792889a 14778static struct type *
e7c27a73 14779read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14780{
14781 struct type *type;
14782 struct type *to_type;
14783 struct type *domain;
14784
e7c27a73
DJ
14785 to_type = die_type (die, cu);
14786 domain = die_containing_type (die, cu);
0d5de010 14787
7e314c57
JK
14788 /* The calls above may have already set the type for this DIE. */
14789 type = get_die_type (die, cu);
14790 if (type)
14791 return type;
14792
0d5de010
DJ
14793 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14794 type = lookup_methodptr_type (to_type);
7078baeb
TT
14795 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14796 {
14797 struct type *new_type = alloc_type (cu->objfile);
14798
14799 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14800 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14801 TYPE_VARARGS (to_type));
14802 type = lookup_methodptr_type (new_type);
14803 }
0d5de010
DJ
14804 else
14805 type = lookup_memberptr_type (to_type, domain);
c906108c 14806
f792889a 14807 return set_die_type (die, type, cu);
c906108c
SS
14808}
14809
4297a3f0 14810/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
14811 the user defined type vector. */
14812
f792889a 14813static struct type *
4297a3f0
AV
14814read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14815 enum type_code refcode)
c906108c 14816{
e7c27a73 14817 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14818 struct type *type, *target_type;
c906108c
SS
14819 struct attribute *attr;
14820
4297a3f0
AV
14821 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14822
7e314c57
JK
14823 target_type = die_type (die, cu);
14824
14825 /* The die_type call above may have already set the type for this DIE. */
14826 type = get_die_type (die, cu);
14827 if (type)
14828 return type;
14829
4297a3f0 14830 type = lookup_reference_type (target_type, refcode);
e142c38c 14831 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14832 if (attr)
14833 {
14834 TYPE_LENGTH (type) = DW_UNSND (attr);
14835 }
14836 else
14837 {
107d2387 14838 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14839 }
f792889a 14840 return set_die_type (die, type, cu);
c906108c
SS
14841}
14842
cf363f18
MW
14843/* Add the given cv-qualifiers to the element type of the array. GCC
14844 outputs DWARF type qualifiers that apply to an array, not the
14845 element type. But GDB relies on the array element type to carry
14846 the cv-qualifiers. This mimics section 6.7.3 of the C99
14847 specification. */
14848
14849static struct type *
14850add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14851 struct type *base_type, int cnst, int voltl)
14852{
14853 struct type *el_type, *inner_array;
14854
14855 base_type = copy_type (base_type);
14856 inner_array = base_type;
14857
14858 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14859 {
14860 TYPE_TARGET_TYPE (inner_array) =
14861 copy_type (TYPE_TARGET_TYPE (inner_array));
14862 inner_array = TYPE_TARGET_TYPE (inner_array);
14863 }
14864
14865 el_type = TYPE_TARGET_TYPE (inner_array);
14866 cnst |= TYPE_CONST (el_type);
14867 voltl |= TYPE_VOLATILE (el_type);
14868 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14869
14870 return set_die_type (die, base_type, cu);
14871}
14872
f792889a 14873static struct type *
e7c27a73 14874read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14875{
f792889a 14876 struct type *base_type, *cv_type;
c906108c 14877
e7c27a73 14878 base_type = die_type (die, cu);
7e314c57
JK
14879
14880 /* The die_type call above may have already set the type for this DIE. */
14881 cv_type = get_die_type (die, cu);
14882 if (cv_type)
14883 return cv_type;
14884
2f608a3a
KW
14885 /* In case the const qualifier is applied to an array type, the element type
14886 is so qualified, not the array type (section 6.7.3 of C99). */
14887 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14888 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14889
f792889a
DJ
14890 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14891 return set_die_type (die, cv_type, cu);
c906108c
SS
14892}
14893
f792889a 14894static struct type *
e7c27a73 14895read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14896{
f792889a 14897 struct type *base_type, *cv_type;
c906108c 14898
e7c27a73 14899 base_type = die_type (die, cu);
7e314c57
JK
14900
14901 /* The die_type call above may have already set the type for this DIE. */
14902 cv_type = get_die_type (die, cu);
14903 if (cv_type)
14904 return cv_type;
14905
cf363f18
MW
14906 /* In case the volatile qualifier is applied to an array type, the
14907 element type is so qualified, not the array type (section 6.7.3
14908 of C99). */
14909 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14910 return add_array_cv_type (die, cu, base_type, 0, 1);
14911
f792889a
DJ
14912 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14913 return set_die_type (die, cv_type, cu);
c906108c
SS
14914}
14915
06d66ee9
TT
14916/* Handle DW_TAG_restrict_type. */
14917
14918static struct type *
14919read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14920{
14921 struct type *base_type, *cv_type;
14922
14923 base_type = die_type (die, cu);
14924
14925 /* The die_type call above may have already set the type for this DIE. */
14926 cv_type = get_die_type (die, cu);
14927 if (cv_type)
14928 return cv_type;
14929
14930 cv_type = make_restrict_type (base_type);
14931 return set_die_type (die, cv_type, cu);
14932}
14933
a2c2acaf
MW
14934/* Handle DW_TAG_atomic_type. */
14935
14936static struct type *
14937read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14938{
14939 struct type *base_type, *cv_type;
14940
14941 base_type = die_type (die, cu);
14942
14943 /* The die_type call above may have already set the type for this DIE. */
14944 cv_type = get_die_type (die, cu);
14945 if (cv_type)
14946 return cv_type;
14947
14948 cv_type = make_atomic_type (base_type);
14949 return set_die_type (die, cv_type, cu);
14950}
14951
c906108c
SS
14952/* Extract all information from a DW_TAG_string_type DIE and add to
14953 the user defined type vector. It isn't really a user defined type,
14954 but it behaves like one, with other DIE's using an AT_user_def_type
14955 attribute to reference it. */
14956
f792889a 14957static struct type *
e7c27a73 14958read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14959{
e7c27a73 14960 struct objfile *objfile = cu->objfile;
3b7538c0 14961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14962 struct type *type, *range_type, *index_type, *char_type;
14963 struct attribute *attr;
14964 unsigned int length;
14965
e142c38c 14966 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14967 if (attr)
14968 {
14969 length = DW_UNSND (attr);
14970 }
14971 else
14972 {
0963b4bd 14973 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14974 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14975 if (attr)
14976 {
14977 length = DW_UNSND (attr);
14978 }
14979 else
14980 {
14981 length = 1;
14982 }
c906108c 14983 }
6ccb9162 14984
46bf5051 14985 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14986 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14987 char_type = language_string_char_type (cu->language_defn, gdbarch);
14988 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14989
f792889a 14990 return set_die_type (die, type, cu);
c906108c
SS
14991}
14992
4d804846
JB
14993/* Assuming that DIE corresponds to a function, returns nonzero
14994 if the function is prototyped. */
14995
14996static int
14997prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14998{
14999 struct attribute *attr;
15000
15001 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15002 if (attr && (DW_UNSND (attr) != 0))
15003 return 1;
15004
15005 /* The DWARF standard implies that the DW_AT_prototyped attribute
15006 is only meaninful for C, but the concept also extends to other
15007 languages that allow unprototyped functions (Eg: Objective C).
15008 For all other languages, assume that functions are always
15009 prototyped. */
15010 if (cu->language != language_c
15011 && cu->language != language_objc
15012 && cu->language != language_opencl)
15013 return 1;
15014
15015 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15016 prototyped and unprototyped functions; default to prototyped,
15017 since that is more common in modern code (and RealView warns
15018 about unprototyped functions). */
15019 if (producer_is_realview (cu->producer))
15020 return 1;
15021
15022 return 0;
15023}
15024
c906108c
SS
15025/* Handle DIES due to C code like:
15026
15027 struct foo
c5aa993b
JM
15028 {
15029 int (*funcp)(int a, long l);
15030 int b;
15031 };
c906108c 15032
0963b4bd 15033 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 15034
f792889a 15035static struct type *
e7c27a73 15036read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15037{
bb5ed363 15038 struct objfile *objfile = cu->objfile;
0963b4bd
MS
15039 struct type *type; /* Type that this function returns. */
15040 struct type *ftype; /* Function that returns above type. */
c906108c
SS
15041 struct attribute *attr;
15042
e7c27a73 15043 type = die_type (die, cu);
7e314c57
JK
15044
15045 /* The die_type call above may have already set the type for this DIE. */
15046 ftype = get_die_type (die, cu);
15047 if (ftype)
15048 return ftype;
15049
0c8b41f1 15050 ftype = lookup_function_type (type);
c906108c 15051
4d804846 15052 if (prototyped_function_p (die, cu))
a6c727b2 15053 TYPE_PROTOTYPED (ftype) = 1;
c906108c 15054
c055b101
CV
15055 /* Store the calling convention in the type if it's available in
15056 the subroutine die. Otherwise set the calling convention to
15057 the default value DW_CC_normal. */
15058 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
15059 if (attr)
15060 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15061 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15062 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15063 else
15064 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 15065
743649fd
MW
15066 /* Record whether the function returns normally to its caller or not
15067 if the DWARF producer set that information. */
15068 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15069 if (attr && (DW_UNSND (attr) != 0))
15070 TYPE_NO_RETURN (ftype) = 1;
15071
76c10ea2
GM
15072 /* We need to add the subroutine type to the die immediately so
15073 we don't infinitely recurse when dealing with parameters
0963b4bd 15074 declared as the same subroutine type. */
76c10ea2 15075 set_die_type (die, ftype, cu);
6e70227d 15076
639d11d3 15077 if (die->child != NULL)
c906108c 15078 {
bb5ed363 15079 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 15080 struct die_info *child_die;
8072405b 15081 int nparams, iparams;
c906108c
SS
15082
15083 /* Count the number of parameters.
15084 FIXME: GDB currently ignores vararg functions, but knows about
15085 vararg member functions. */
8072405b 15086 nparams = 0;
639d11d3 15087 child_die = die->child;
c906108c
SS
15088 while (child_die && child_die->tag)
15089 {
15090 if (child_die->tag == DW_TAG_formal_parameter)
15091 nparams++;
15092 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 15093 TYPE_VARARGS (ftype) = 1;
c906108c
SS
15094 child_die = sibling_die (child_die);
15095 }
15096
15097 /* Allocate storage for parameters and fill them in. */
15098 TYPE_NFIELDS (ftype) = nparams;
15099 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 15100 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 15101
8072405b
JK
15102 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15103 even if we error out during the parameters reading below. */
15104 for (iparams = 0; iparams < nparams; iparams++)
15105 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15106
15107 iparams = 0;
639d11d3 15108 child_die = die->child;
c906108c
SS
15109 while (child_die && child_die->tag)
15110 {
15111 if (child_die->tag == DW_TAG_formal_parameter)
15112 {
3ce3b1ba
PA
15113 struct type *arg_type;
15114
15115 /* DWARF version 2 has no clean way to discern C++
15116 static and non-static member functions. G++ helps
15117 GDB by marking the first parameter for non-static
15118 member functions (which is the this pointer) as
15119 artificial. We pass this information to
15120 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15121
15122 DWARF version 3 added DW_AT_object_pointer, which GCC
15123 4.5 does not yet generate. */
e142c38c 15124 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
15125 if (attr)
15126 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15127 else
9c37b5ae 15128 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
15129 arg_type = die_type (child_die, cu);
15130
15131 /* RealView does not mark THIS as const, which the testsuite
15132 expects. GCC marks THIS as const in method definitions,
15133 but not in the class specifications (GCC PR 43053). */
15134 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15135 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15136 {
15137 int is_this = 0;
15138 struct dwarf2_cu *arg_cu = cu;
15139 const char *name = dwarf2_name (child_die, cu);
15140
15141 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15142 if (attr)
15143 {
15144 /* If the compiler emits this, use it. */
15145 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15146 is_this = 1;
15147 }
15148 else if (name && strcmp (name, "this") == 0)
15149 /* Function definitions will have the argument names. */
15150 is_this = 1;
15151 else if (name == NULL && iparams == 0)
15152 /* Declarations may not have the names, so like
15153 elsewhere in GDB, assume an artificial first
15154 argument is "this". */
15155 is_this = 1;
15156
15157 if (is_this)
15158 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15159 arg_type, 0);
15160 }
15161
15162 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
15163 iparams++;
15164 }
15165 child_die = sibling_die (child_die);
15166 }
15167 }
15168
76c10ea2 15169 return ftype;
c906108c
SS
15170}
15171
f792889a 15172static struct type *
e7c27a73 15173read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15174{
e7c27a73 15175 struct objfile *objfile = cu->objfile;
0114d602 15176 const char *name = NULL;
3c8e0968 15177 struct type *this_type, *target_type;
c906108c 15178
94af9270 15179 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
15180 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15181 TYPE_TARGET_STUB (this_type) = 1;
f792889a 15182 set_die_type (die, this_type, cu);
3c8e0968
DE
15183 target_type = die_type (die, cu);
15184 if (target_type != this_type)
15185 TYPE_TARGET_TYPE (this_type) = target_type;
15186 else
15187 {
15188 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15189 spec and cause infinite loops in GDB. */
15190 complaint (&symfile_complaints,
15191 _("Self-referential DW_TAG_typedef "
15192 "- DIE at 0x%x [in module %s]"),
9c541725 15193 to_underlying (die->sect_off), objfile_name (objfile));
3c8e0968
DE
15194 TYPE_TARGET_TYPE (this_type) = NULL;
15195 }
f792889a 15196 return this_type;
c906108c
SS
15197}
15198
9b790ce7
UW
15199/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15200 (which may be different from NAME) to the architecture back-end to allow
15201 it to guess the correct format if necessary. */
15202
15203static struct type *
15204dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15205 const char *name_hint)
15206{
15207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15208 const struct floatformat **format;
15209 struct type *type;
15210
15211 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15212 if (format)
15213 type = init_float_type (objfile, bits, name, format);
15214 else
15215 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15216
15217 return type;
15218}
15219
c906108c
SS
15220/* Find a representation of a given base type and install
15221 it in the TYPE field of the die. */
15222
f792889a 15223static struct type *
e7c27a73 15224read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15225{
e7c27a73 15226 struct objfile *objfile = cu->objfile;
c906108c
SS
15227 struct type *type;
15228 struct attribute *attr;
19f392bc 15229 int encoding = 0, bits = 0;
15d034d0 15230 const char *name;
c906108c 15231
e142c38c 15232 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
15233 if (attr)
15234 {
15235 encoding = DW_UNSND (attr);
15236 }
e142c38c 15237 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15238 if (attr)
15239 {
19f392bc 15240 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 15241 }
39cbfefa 15242 name = dwarf2_name (die, cu);
6ccb9162 15243 if (!name)
c906108c 15244 {
6ccb9162
UW
15245 complaint (&symfile_complaints,
15246 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15247 }
6ccb9162
UW
15248
15249 switch (encoding)
c906108c 15250 {
6ccb9162
UW
15251 case DW_ATE_address:
15252 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
15253 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15254 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15255 break;
15256 case DW_ATE_boolean:
19f392bc 15257 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15258 break;
15259 case DW_ATE_complex_float:
9b790ce7 15260 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15261 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15262 break;
15263 case DW_ATE_decimal_float:
19f392bc 15264 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15265 break;
15266 case DW_ATE_float:
9b790ce7 15267 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15268 break;
15269 case DW_ATE_signed:
19f392bc 15270 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15271 break;
15272 case DW_ATE_unsigned:
3b2b8fea
TT
15273 if (cu->language == language_fortran
15274 && name
61012eef 15275 && startswith (name, "character("))
19f392bc
UW
15276 type = init_character_type (objfile, bits, 1, name);
15277 else
15278 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15279 break;
15280 case DW_ATE_signed_char:
6e70227d 15281 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15282 || cu->language == language_pascal
15283 || cu->language == language_fortran)
19f392bc
UW
15284 type = init_character_type (objfile, bits, 0, name);
15285 else
15286 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15287 break;
15288 case DW_ATE_unsigned_char:
868a0084 15289 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15290 || cu->language == language_pascal
c44af4eb
TT
15291 || cu->language == language_fortran
15292 || cu->language == language_rust)
19f392bc
UW
15293 type = init_character_type (objfile, bits, 1, name);
15294 else
15295 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15296 break;
75079b2b 15297 case DW_ATE_UTF:
53e710ac
PA
15298 {
15299 gdbarch *arch = get_objfile_arch (objfile);
15300
15301 if (bits == 16)
15302 type = builtin_type (arch)->builtin_char16;
15303 else if (bits == 32)
15304 type = builtin_type (arch)->builtin_char32;
15305 else
15306 {
15307 complaint (&symfile_complaints,
15308 _("unsupported DW_ATE_UTF bit size: '%d'"),
15309 bits);
15310 type = init_integer_type (objfile, bits, 1, name);
15311 }
15312 return set_die_type (die, type, cu);
15313 }
75079b2b
TT
15314 break;
15315
6ccb9162
UW
15316 default:
15317 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15318 dwarf_type_encoding_name (encoding));
19f392bc
UW
15319 type = init_type (objfile, TYPE_CODE_ERROR,
15320 bits / TARGET_CHAR_BIT, name);
6ccb9162 15321 break;
c906108c 15322 }
6ccb9162 15323
0114d602 15324 if (name && strcmp (name, "char") == 0)
876cecd0 15325 TYPE_NOSIGN (type) = 1;
0114d602 15326
f792889a 15327 return set_die_type (die, type, cu);
c906108c
SS
15328}
15329
80180f79
SA
15330/* Parse dwarf attribute if it's a block, reference or constant and put the
15331 resulting value of the attribute into struct bound_prop.
15332 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15333
15334static int
15335attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15336 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15337{
15338 struct dwarf2_property_baton *baton;
15339 struct obstack *obstack = &cu->objfile->objfile_obstack;
15340
15341 if (attr == NULL || prop == NULL)
15342 return 0;
15343
15344 if (attr_form_is_block (attr))
15345 {
8d749320 15346 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15347 baton->referenced_type = NULL;
15348 baton->locexpr.per_cu = cu->per_cu;
15349 baton->locexpr.size = DW_BLOCK (attr)->size;
15350 baton->locexpr.data = DW_BLOCK (attr)->data;
15351 prop->data.baton = baton;
15352 prop->kind = PROP_LOCEXPR;
15353 gdb_assert (prop->data.baton != NULL);
15354 }
15355 else if (attr_form_is_ref (attr))
15356 {
15357 struct dwarf2_cu *target_cu = cu;
15358 struct die_info *target_die;
15359 struct attribute *target_attr;
15360
15361 target_die = follow_die_ref (die, attr, &target_cu);
15362 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15363 if (target_attr == NULL)
15364 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15365 target_cu);
80180f79
SA
15366 if (target_attr == NULL)
15367 return 0;
15368
df25ebbd 15369 switch (target_attr->name)
80180f79 15370 {
df25ebbd
JB
15371 case DW_AT_location:
15372 if (attr_form_is_section_offset (target_attr))
15373 {
8d749320 15374 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15375 baton->referenced_type = die_type (target_die, target_cu);
15376 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15377 prop->data.baton = baton;
15378 prop->kind = PROP_LOCLIST;
15379 gdb_assert (prop->data.baton != NULL);
15380 }
15381 else if (attr_form_is_block (target_attr))
15382 {
8d749320 15383 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15384 baton->referenced_type = die_type (target_die, target_cu);
15385 baton->locexpr.per_cu = cu->per_cu;
15386 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15387 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15388 prop->data.baton = baton;
15389 prop->kind = PROP_LOCEXPR;
15390 gdb_assert (prop->data.baton != NULL);
15391 }
15392 else
15393 {
15394 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15395 "dynamic property");
15396 return 0;
15397 }
15398 break;
15399 case DW_AT_data_member_location:
15400 {
15401 LONGEST offset;
15402
15403 if (!handle_data_member_location (target_die, target_cu,
15404 &offset))
15405 return 0;
15406
8d749320 15407 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15408 baton->referenced_type = read_type_die (target_die->parent,
15409 target_cu);
df25ebbd
JB
15410 baton->offset_info.offset = offset;
15411 baton->offset_info.type = die_type (target_die, target_cu);
15412 prop->data.baton = baton;
15413 prop->kind = PROP_ADDR_OFFSET;
15414 break;
15415 }
80180f79
SA
15416 }
15417 }
15418 else if (attr_form_is_constant (attr))
15419 {
15420 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15421 prop->kind = PROP_CONST;
15422 }
15423 else
15424 {
15425 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15426 dwarf2_name (die, cu));
15427 return 0;
15428 }
15429
15430 return 1;
15431}
15432
a02abb62
JB
15433/* Read the given DW_AT_subrange DIE. */
15434
f792889a 15435static struct type *
a02abb62
JB
15436read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15437{
4c9ad8c2 15438 struct type *base_type, *orig_base_type;
a02abb62
JB
15439 struct type *range_type;
15440 struct attribute *attr;
729efb13 15441 struct dynamic_prop low, high;
4fae6e18 15442 int low_default_is_valid;
c451ebe5 15443 int high_bound_is_count = 0;
15d034d0 15444 const char *name;
43bbcdc2 15445 LONGEST negative_mask;
e77813c8 15446
4c9ad8c2
TT
15447 orig_base_type = die_type (die, cu);
15448 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15449 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15450 creating the range type, but we use the result of check_typedef
15451 when examining properties of the type. */
15452 base_type = check_typedef (orig_base_type);
a02abb62 15453
7e314c57
JK
15454 /* The die_type call above may have already set the type for this DIE. */
15455 range_type = get_die_type (die, cu);
15456 if (range_type)
15457 return range_type;
15458
729efb13
SA
15459 low.kind = PROP_CONST;
15460 high.kind = PROP_CONST;
15461 high.data.const_val = 0;
15462
4fae6e18
JK
15463 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15464 omitting DW_AT_lower_bound. */
15465 switch (cu->language)
6e70227d 15466 {
4fae6e18
JK
15467 case language_c:
15468 case language_cplus:
729efb13 15469 low.data.const_val = 0;
4fae6e18
JK
15470 low_default_is_valid = 1;
15471 break;
15472 case language_fortran:
729efb13 15473 low.data.const_val = 1;
4fae6e18
JK
15474 low_default_is_valid = 1;
15475 break;
15476 case language_d:
4fae6e18 15477 case language_objc:
c44af4eb 15478 case language_rust:
729efb13 15479 low.data.const_val = 0;
4fae6e18
JK
15480 low_default_is_valid = (cu->header.version >= 4);
15481 break;
15482 case language_ada:
15483 case language_m2:
15484 case language_pascal:
729efb13 15485 low.data.const_val = 1;
4fae6e18
JK
15486 low_default_is_valid = (cu->header.version >= 4);
15487 break;
15488 default:
729efb13 15489 low.data.const_val = 0;
4fae6e18
JK
15490 low_default_is_valid = 0;
15491 break;
a02abb62
JB
15492 }
15493
e142c38c 15494 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15495 if (attr)
11c1ba78 15496 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15497 else if (!low_default_is_valid)
15498 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15499 "- DIE at 0x%x [in module %s]"),
9c541725 15500 to_underlying (die->sect_off), objfile_name (cu->objfile));
a02abb62 15501
e142c38c 15502 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15503 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15504 {
15505 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15506 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15507 {
c451ebe5
SA
15508 /* If bounds are constant do the final calculation here. */
15509 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15510 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15511 else
15512 high_bound_is_count = 1;
c2ff108b 15513 }
e77813c8
PM
15514 }
15515
15516 /* Dwarf-2 specifications explicitly allows to create subrange types
15517 without specifying a base type.
15518 In that case, the base type must be set to the type of
15519 the lower bound, upper bound or count, in that order, if any of these
15520 three attributes references an object that has a type.
15521 If no base type is found, the Dwarf-2 specifications say that
15522 a signed integer type of size equal to the size of an address should
15523 be used.
15524 For the following C code: `extern char gdb_int [];'
15525 GCC produces an empty range DIE.
15526 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15527 high bound or count are not yet handled by this code. */
e77813c8
PM
15528 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15529 {
15530 struct objfile *objfile = cu->objfile;
15531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15532 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15533 struct type *int_type = objfile_type (objfile)->builtin_int;
15534
15535 /* Test "int", "long int", and "long long int" objfile types,
15536 and select the first one having a size above or equal to the
15537 architecture address size. */
15538 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15539 base_type = int_type;
15540 else
15541 {
15542 int_type = objfile_type (objfile)->builtin_long;
15543 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15544 base_type = int_type;
15545 else
15546 {
15547 int_type = objfile_type (objfile)->builtin_long_long;
15548 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15549 base_type = int_type;
15550 }
15551 }
15552 }
a02abb62 15553
dbb9c2b1
JB
15554 /* Normally, the DWARF producers are expected to use a signed
15555 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15556 But this is unfortunately not always the case, as witnessed
15557 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15558 is used instead. To work around that ambiguity, we treat
15559 the bounds as signed, and thus sign-extend their values, when
15560 the base type is signed. */
6e70227d 15561 negative_mask =
66c6502d 15562 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15563 if (low.kind == PROP_CONST
15564 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15565 low.data.const_val |= negative_mask;
15566 if (high.kind == PROP_CONST
15567 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15568 high.data.const_val |= negative_mask;
43bbcdc2 15569
729efb13 15570 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15571
c451ebe5
SA
15572 if (high_bound_is_count)
15573 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15574
c2ff108b
JK
15575 /* Ada expects an empty array on no boundary attributes. */
15576 if (attr == NULL && cu->language != language_ada)
729efb13 15577 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15578
39cbfefa
DJ
15579 name = dwarf2_name (die, cu);
15580 if (name)
15581 TYPE_NAME (range_type) = name;
6e70227d 15582
e142c38c 15583 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15584 if (attr)
15585 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15586
7e314c57
JK
15587 set_die_type (die, range_type, cu);
15588
15589 /* set_die_type should be already done. */
b4ba55a1
JB
15590 set_descriptive_type (range_type, die, cu);
15591
7e314c57 15592 return range_type;
a02abb62 15593}
6e70227d 15594
f792889a 15595static struct type *
81a17f79
JB
15596read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15597{
15598 struct type *type;
81a17f79 15599
81a17f79
JB
15600 /* For now, we only support the C meaning of an unspecified type: void. */
15601
19f392bc 15602 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15603 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15604
f792889a 15605 return set_die_type (die, type, cu);
81a17f79 15606}
a02abb62 15607
639d11d3
DC
15608/* Read a single die and all its descendents. Set the die's sibling
15609 field to NULL; set other fields in the die correctly, and set all
15610 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15611 location of the info_ptr after reading all of those dies. PARENT
15612 is the parent of the die in question. */
15613
15614static struct die_info *
dee91e82 15615read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15616 const gdb_byte *info_ptr,
15617 const gdb_byte **new_info_ptr,
dee91e82 15618 struct die_info *parent)
639d11d3
DC
15619{
15620 struct die_info *die;
d521ce57 15621 const gdb_byte *cur_ptr;
639d11d3
DC
15622 int has_children;
15623
bf6af496 15624 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15625 if (die == NULL)
15626 {
15627 *new_info_ptr = cur_ptr;
15628 return NULL;
15629 }
93311388 15630 store_in_ref_table (die, reader->cu);
639d11d3
DC
15631
15632 if (has_children)
bf6af496 15633 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15634 else
15635 {
15636 die->child = NULL;
15637 *new_info_ptr = cur_ptr;
15638 }
15639
15640 die->sibling = NULL;
15641 die->parent = parent;
15642 return die;
15643}
15644
15645/* Read a die, all of its descendents, and all of its siblings; set
15646 all of the fields of all of the dies correctly. Arguments are as
15647 in read_die_and_children. */
15648
15649static struct die_info *
bf6af496 15650read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15651 const gdb_byte *info_ptr,
15652 const gdb_byte **new_info_ptr,
bf6af496 15653 struct die_info *parent)
639d11d3
DC
15654{
15655 struct die_info *first_die, *last_sibling;
d521ce57 15656 const gdb_byte *cur_ptr;
639d11d3 15657
c906108c 15658 cur_ptr = info_ptr;
639d11d3
DC
15659 first_die = last_sibling = NULL;
15660
15661 while (1)
c906108c 15662 {
639d11d3 15663 struct die_info *die
dee91e82 15664 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15665
1d325ec1 15666 if (die == NULL)
c906108c 15667 {
639d11d3
DC
15668 *new_info_ptr = cur_ptr;
15669 return first_die;
c906108c 15670 }
1d325ec1
DJ
15671
15672 if (!first_die)
15673 first_die = die;
c906108c 15674 else
1d325ec1
DJ
15675 last_sibling->sibling = die;
15676
15677 last_sibling = die;
c906108c 15678 }
c906108c
SS
15679}
15680
bf6af496
DE
15681/* Read a die, all of its descendents, and all of its siblings; set
15682 all of the fields of all of the dies correctly. Arguments are as
15683 in read_die_and_children.
15684 This the main entry point for reading a DIE and all its children. */
15685
15686static struct die_info *
15687read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15688 const gdb_byte *info_ptr,
15689 const gdb_byte **new_info_ptr,
bf6af496
DE
15690 struct die_info *parent)
15691{
15692 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15693 new_info_ptr, parent);
15694
b4f54984 15695 if (dwarf_die_debug)
bf6af496
DE
15696 {
15697 fprintf_unfiltered (gdb_stdlog,
15698 "Read die from %s@0x%x of %s:\n",
a32a8923 15699 get_section_name (reader->die_section),
bf6af496
DE
15700 (unsigned) (info_ptr - reader->die_section->buffer),
15701 bfd_get_filename (reader->abfd));
b4f54984 15702 dump_die (die, dwarf_die_debug);
bf6af496
DE
15703 }
15704
15705 return die;
15706}
15707
3019eac3
DE
15708/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15709 attributes.
15710 The caller is responsible for filling in the extra attributes
15711 and updating (*DIEP)->num_attrs.
15712 Set DIEP to point to a newly allocated die with its information,
15713 except for its child, sibling, and parent fields.
15714 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15715
d521ce57 15716static const gdb_byte *
3019eac3 15717read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15718 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15719 int *has_children, int num_extra_attrs)
93311388 15720{
b64f50a1 15721 unsigned int abbrev_number, bytes_read, i;
93311388
DE
15722 struct abbrev_info *abbrev;
15723 struct die_info *die;
15724 struct dwarf2_cu *cu = reader->cu;
15725 bfd *abfd = reader->abfd;
15726
9c541725 15727 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
15728 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15729 info_ptr += bytes_read;
15730 if (!abbrev_number)
15731 {
15732 *diep = NULL;
15733 *has_children = 0;
15734 return info_ptr;
15735 }
15736
433df2d4 15737 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15738 if (!abbrev)
348e048f
DE
15739 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15740 abbrev_number,
15741 bfd_get_filename (abfd));
15742
3019eac3 15743 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 15744 die->sect_off = sect_off;
93311388
DE
15745 die->tag = abbrev->tag;
15746 die->abbrev = abbrev_number;
15747
3019eac3
DE
15748 /* Make the result usable.
15749 The caller needs to update num_attrs after adding the extra
15750 attributes. */
93311388
DE
15751 die->num_attrs = abbrev->num_attrs;
15752
15753 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15754 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15755 info_ptr);
93311388
DE
15756
15757 *diep = die;
15758 *has_children = abbrev->has_children;
15759 return info_ptr;
15760}
15761
3019eac3
DE
15762/* Read a die and all its attributes.
15763 Set DIEP to point to a newly allocated die with its information,
15764 except for its child, sibling, and parent fields.
15765 Set HAS_CHILDREN to tell whether the die has children or not. */
15766
d521ce57 15767static const gdb_byte *
3019eac3 15768read_full_die (const struct die_reader_specs *reader,
d521ce57 15769 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15770 int *has_children)
15771{
d521ce57 15772 const gdb_byte *result;
bf6af496
DE
15773
15774 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15775
b4f54984 15776 if (dwarf_die_debug)
bf6af496
DE
15777 {
15778 fprintf_unfiltered (gdb_stdlog,
15779 "Read die from %s@0x%x of %s:\n",
a32a8923 15780 get_section_name (reader->die_section),
bf6af496
DE
15781 (unsigned) (info_ptr - reader->die_section->buffer),
15782 bfd_get_filename (reader->abfd));
b4f54984 15783 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15784 }
15785
15786 return result;
3019eac3 15787}
433df2d4
DE
15788\f
15789/* Abbreviation tables.
3019eac3 15790
433df2d4 15791 In DWARF version 2, the description of the debugging information is
c906108c
SS
15792 stored in a separate .debug_abbrev section. Before we read any
15793 dies from a section we read in all abbreviations and install them
433df2d4
DE
15794 in a hash table. */
15795
15796/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15797
15798static struct abbrev_info *
15799abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15800{
15801 struct abbrev_info *abbrev;
15802
8d749320 15803 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15804 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15805
433df2d4
DE
15806 return abbrev;
15807}
15808
15809/* Add an abbreviation to the table. */
c906108c
SS
15810
15811static void
433df2d4
DE
15812abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15813 unsigned int abbrev_number,
15814 struct abbrev_info *abbrev)
15815{
15816 unsigned int hash_number;
15817
15818 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15819 abbrev->next = abbrev_table->abbrevs[hash_number];
15820 abbrev_table->abbrevs[hash_number] = abbrev;
15821}
dee91e82 15822
433df2d4
DE
15823/* Look up an abbrev in the table.
15824 Returns NULL if the abbrev is not found. */
15825
15826static struct abbrev_info *
15827abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15828 unsigned int abbrev_number)
c906108c 15829{
433df2d4
DE
15830 unsigned int hash_number;
15831 struct abbrev_info *abbrev;
15832
15833 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15834 abbrev = abbrev_table->abbrevs[hash_number];
15835
15836 while (abbrev)
15837 {
15838 if (abbrev->number == abbrev_number)
15839 return abbrev;
15840 abbrev = abbrev->next;
15841 }
15842 return NULL;
15843}
15844
15845/* Read in an abbrev table. */
15846
15847static struct abbrev_table *
15848abbrev_table_read_table (struct dwarf2_section_info *section,
9c541725 15849 sect_offset sect_off)
433df2d4
DE
15850{
15851 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15852 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15853 struct abbrev_table *abbrev_table;
d521ce57 15854 const gdb_byte *abbrev_ptr;
c906108c
SS
15855 struct abbrev_info *cur_abbrev;
15856 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15857 unsigned int abbrev_form;
f3dd6933
DJ
15858 struct attr_abbrev *cur_attrs;
15859 unsigned int allocated_attrs;
c906108c 15860
70ba0933 15861 abbrev_table = XNEW (struct abbrev_table);
9c541725 15862 abbrev_table->sect_off = sect_off;
433df2d4 15863 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15864 abbrev_table->abbrevs =
15865 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15866 ABBREV_HASH_SIZE);
433df2d4
DE
15867 memset (abbrev_table->abbrevs, 0,
15868 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15869
433df2d4 15870 dwarf2_read_section (objfile, section);
9c541725 15871 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
15872 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15873 abbrev_ptr += bytes_read;
15874
f3dd6933 15875 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15876 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15877
0963b4bd 15878 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15879 while (abbrev_number)
15880 {
433df2d4 15881 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15882
15883 /* read in abbrev header */
15884 cur_abbrev->number = abbrev_number;
aead7601
SM
15885 cur_abbrev->tag
15886 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15887 abbrev_ptr += bytes_read;
15888 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15889 abbrev_ptr += 1;
15890
15891 /* now read in declarations */
22d2f3ab 15892 for (;;)
c906108c 15893 {
43988095
JK
15894 LONGEST implicit_const;
15895
22d2f3ab
JK
15896 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15897 abbrev_ptr += bytes_read;
15898 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15899 abbrev_ptr += bytes_read;
43988095
JK
15900 if (abbrev_form == DW_FORM_implicit_const)
15901 {
15902 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15903 &bytes_read);
15904 abbrev_ptr += bytes_read;
15905 }
15906 else
15907 {
15908 /* Initialize it due to a false compiler warning. */
15909 implicit_const = -1;
15910 }
22d2f3ab
JK
15911
15912 if (abbrev_name == 0)
15913 break;
15914
f3dd6933 15915 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15916 {
f3dd6933
DJ
15917 allocated_attrs += ATTR_ALLOC_CHUNK;
15918 cur_attrs
224c3ddb 15919 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15920 }
ae038cb0 15921
aead7601
SM
15922 cur_attrs[cur_abbrev->num_attrs].name
15923 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15924 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15925 = (enum dwarf_form) abbrev_form;
43988095 15926 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15927 ++cur_abbrev->num_attrs;
c906108c
SS
15928 }
15929
8d749320
SM
15930 cur_abbrev->attrs =
15931 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15932 cur_abbrev->num_attrs);
f3dd6933
DJ
15933 memcpy (cur_abbrev->attrs, cur_attrs,
15934 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15935
433df2d4 15936 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15937
15938 /* Get next abbreviation.
15939 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15940 always properly terminated with an abbrev number of 0.
15941 Exit loop if we encounter an abbreviation which we have
15942 already read (which means we are about to read the abbreviations
15943 for the next compile unit) or if the end of the abbreviation
15944 table is reached. */
433df2d4 15945 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15946 break;
15947 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15948 abbrev_ptr += bytes_read;
433df2d4 15949 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15950 break;
15951 }
f3dd6933
DJ
15952
15953 xfree (cur_attrs);
433df2d4 15954 return abbrev_table;
c906108c
SS
15955}
15956
433df2d4 15957/* Free the resources held by ABBREV_TABLE. */
c906108c 15958
c906108c 15959static void
433df2d4 15960abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15961{
433df2d4
DE
15962 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15963 xfree (abbrev_table);
c906108c
SS
15964}
15965
f4dc4d17
DE
15966/* Same as abbrev_table_free but as a cleanup.
15967 We pass in a pointer to the pointer to the table so that we can
15968 set the pointer to NULL when we're done. It also simplifies
73051182 15969 build_type_psymtabs_1. */
f4dc4d17
DE
15970
15971static void
15972abbrev_table_free_cleanup (void *table_ptr)
15973{
9a3c8263 15974 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15975
15976 if (*abbrev_table_ptr != NULL)
15977 abbrev_table_free (*abbrev_table_ptr);
15978 *abbrev_table_ptr = NULL;
15979}
15980
433df2d4
DE
15981/* Read the abbrev table for CU from ABBREV_SECTION. */
15982
15983static void
15984dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15985 struct dwarf2_section_info *abbrev_section)
c906108c 15986{
433df2d4 15987 cu->abbrev_table =
9c541725 15988 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
433df2d4 15989}
c906108c 15990
433df2d4 15991/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15992
433df2d4
DE
15993static void
15994dwarf2_free_abbrev_table (void *ptr_to_cu)
15995{
9a3c8263 15996 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15997
a2ce51a0
DE
15998 if (cu->abbrev_table != NULL)
15999 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
16000 /* Set this to NULL so that we SEGV if we try to read it later,
16001 and also because free_comp_unit verifies this is NULL. */
16002 cu->abbrev_table = NULL;
16003}
16004\f
72bf9492
DJ
16005/* Returns nonzero if TAG represents a type that we might generate a partial
16006 symbol for. */
16007
16008static int
16009is_type_tag_for_partial (int tag)
16010{
16011 switch (tag)
16012 {
16013#if 0
16014 /* Some types that would be reasonable to generate partial symbols for,
16015 that we don't at present. */
16016 case DW_TAG_array_type:
16017 case DW_TAG_file_type:
16018 case DW_TAG_ptr_to_member_type:
16019 case DW_TAG_set_type:
16020 case DW_TAG_string_type:
16021 case DW_TAG_subroutine_type:
16022#endif
16023 case DW_TAG_base_type:
16024 case DW_TAG_class_type:
680b30c7 16025 case DW_TAG_interface_type:
72bf9492
DJ
16026 case DW_TAG_enumeration_type:
16027 case DW_TAG_structure_type:
16028 case DW_TAG_subrange_type:
16029 case DW_TAG_typedef:
16030 case DW_TAG_union_type:
16031 return 1;
16032 default:
16033 return 0;
16034 }
16035}
16036
16037/* Load all DIEs that are interesting for partial symbols into memory. */
16038
16039static struct partial_die_info *
dee91e82 16040load_partial_dies (const struct die_reader_specs *reader,
d521ce57 16041 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 16042{
dee91e82 16043 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16044 struct objfile *objfile = cu->objfile;
72bf9492
DJ
16045 struct partial_die_info *part_die;
16046 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16047 struct abbrev_info *abbrev;
16048 unsigned int bytes_read;
5afb4e99 16049 unsigned int load_all = 0;
72bf9492
DJ
16050 int nesting_level = 1;
16051
16052 parent_die = NULL;
16053 last_die = NULL;
16054
7adf1e79
DE
16055 gdb_assert (cu->per_cu != NULL);
16056 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
16057 load_all = 1;
16058
72bf9492
DJ
16059 cu->partial_dies
16060 = htab_create_alloc_ex (cu->header.length / 12,
16061 partial_die_hash,
16062 partial_die_eq,
16063 NULL,
16064 &cu->comp_unit_obstack,
16065 hashtab_obstack_allocate,
16066 dummy_obstack_deallocate);
16067
8d749320 16068 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16069
16070 while (1)
16071 {
16072 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16073
16074 /* A NULL abbrev means the end of a series of children. */
16075 if (abbrev == NULL)
16076 {
16077 if (--nesting_level == 0)
16078 {
16079 /* PART_DIE was probably the last thing allocated on the
16080 comp_unit_obstack, so we could call obstack_free
16081 here. We don't do that because the waste is small,
16082 and will be cleaned up when we're done with this
16083 compilation unit. This way, we're also more robust
16084 against other users of the comp_unit_obstack. */
16085 return first_die;
16086 }
16087 info_ptr += bytes_read;
16088 last_die = parent_die;
16089 parent_die = parent_die->die_parent;
16090 continue;
16091 }
16092
98bfdba5
PA
16093 /* Check for template arguments. We never save these; if
16094 they're seen, we just mark the parent, and go on our way. */
16095 if (parent_die != NULL
16096 && cu->language == language_cplus
16097 && (abbrev->tag == DW_TAG_template_type_param
16098 || abbrev->tag == DW_TAG_template_value_param))
16099 {
16100 parent_die->has_template_arguments = 1;
16101
16102 if (!load_all)
16103 {
16104 /* We don't need a partial DIE for the template argument. */
dee91e82 16105 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16106 continue;
16107 }
16108 }
16109
0d99eb77 16110 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
16111 Skip their other children. */
16112 if (!load_all
16113 && cu->language == language_cplus
16114 && parent_die != NULL
16115 && parent_die->tag == DW_TAG_subprogram)
16116 {
dee91e82 16117 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16118 continue;
16119 }
16120
5afb4e99
DJ
16121 /* Check whether this DIE is interesting enough to save. Normally
16122 we would not be interested in members here, but there may be
16123 later variables referencing them via DW_AT_specification (for
16124 static members). */
16125 if (!load_all
16126 && !is_type_tag_for_partial (abbrev->tag)
72929c62 16127 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
16128 && abbrev->tag != DW_TAG_enumerator
16129 && abbrev->tag != DW_TAG_subprogram
bc30ff58 16130 && abbrev->tag != DW_TAG_lexical_block
72bf9492 16131 && abbrev->tag != DW_TAG_variable
5afb4e99 16132 && abbrev->tag != DW_TAG_namespace
f55ee35c 16133 && abbrev->tag != DW_TAG_module
95554aad 16134 && abbrev->tag != DW_TAG_member
74921315
KS
16135 && abbrev->tag != DW_TAG_imported_unit
16136 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
16137 {
16138 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16139 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
16140 continue;
16141 }
16142
dee91e82
DE
16143 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16144 info_ptr);
72bf9492
DJ
16145
16146 /* This two-pass algorithm for processing partial symbols has a
16147 high cost in cache pressure. Thus, handle some simple cases
16148 here which cover the majority of C partial symbols. DIEs
16149 which neither have specification tags in them, nor could have
16150 specification tags elsewhere pointing at them, can simply be
16151 processed and discarded.
16152
16153 This segment is also optional; scan_partial_symbols and
16154 add_partial_symbol will handle these DIEs if we chain
16155 them in normally. When compilers which do not emit large
16156 quantities of duplicate debug information are more common,
16157 this code can probably be removed. */
16158
16159 /* Any complete simple types at the top level (pretty much all
16160 of them, for a language without namespaces), can be processed
16161 directly. */
16162 if (parent_die == NULL
16163 && part_die->has_specification == 0
16164 && part_die->is_declaration == 0
d8228535 16165 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
16166 || part_die->tag == DW_TAG_base_type
16167 || part_die->tag == DW_TAG_subrange_type))
16168 {
16169 if (building_psymtab && part_die->name != NULL)
04a679b8 16170 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16171 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 16172 &objfile->static_psymbols,
1762568f 16173 0, cu->language, objfile);
dee91e82 16174 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16175 continue;
16176 }
16177
d8228535
JK
16178 /* The exception for DW_TAG_typedef with has_children above is
16179 a workaround of GCC PR debug/47510. In the case of this complaint
16180 type_name_no_tag_or_error will error on such types later.
16181
16182 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16183 it could not find the child DIEs referenced later, this is checked
16184 above. In correct DWARF DW_TAG_typedef should have no children. */
16185
16186 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16187 complaint (&symfile_complaints,
16188 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16189 "- DIE at 0x%x [in module %s]"),
9c541725 16190 to_underlying (part_die->sect_off), objfile_name (objfile));
d8228535 16191
72bf9492
DJ
16192 /* If we're at the second level, and we're an enumerator, and
16193 our parent has no specification (meaning possibly lives in a
16194 namespace elsewhere), then we can add the partial symbol now
16195 instead of queueing it. */
16196 if (part_die->tag == DW_TAG_enumerator
16197 && parent_die != NULL
16198 && parent_die->die_parent == NULL
16199 && parent_die->tag == DW_TAG_enumeration_type
16200 && parent_die->has_specification == 0)
16201 {
16202 if (part_die->name == NULL)
3e43a32a
MS
16203 complaint (&symfile_complaints,
16204 _("malformed enumerator DIE ignored"));
72bf9492 16205 else if (building_psymtab)
04a679b8 16206 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16207 VAR_DOMAIN, LOC_CONST,
9c37b5ae 16208 cu->language == language_cplus
bb5ed363
DE
16209 ? &objfile->global_psymbols
16210 : &objfile->static_psymbols,
1762568f 16211 0, cu->language, objfile);
72bf9492 16212
dee91e82 16213 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16214 continue;
16215 }
16216
16217 /* We'll save this DIE so link it in. */
16218 part_die->die_parent = parent_die;
16219 part_die->die_sibling = NULL;
16220 part_die->die_child = NULL;
16221
16222 if (last_die && last_die == parent_die)
16223 last_die->die_child = part_die;
16224 else if (last_die)
16225 last_die->die_sibling = part_die;
16226
16227 last_die = part_die;
16228
16229 if (first_die == NULL)
16230 first_die = part_die;
16231
16232 /* Maybe add the DIE to the hash table. Not all DIEs that we
16233 find interesting need to be in the hash table, because we
16234 also have the parent/sibling/child chains; only those that we
16235 might refer to by offset later during partial symbol reading.
16236
16237 For now this means things that might have be the target of a
16238 DW_AT_specification, DW_AT_abstract_origin, or
16239 DW_AT_extension. DW_AT_extension will refer only to
16240 namespaces; DW_AT_abstract_origin refers to functions (and
16241 many things under the function DIE, but we do not recurse
16242 into function DIEs during partial symbol reading) and
16243 possibly variables as well; DW_AT_specification refers to
16244 declarations. Declarations ought to have the DW_AT_declaration
16245 flag. It happens that GCC forgets to put it in sometimes, but
16246 only for functions, not for types.
16247
16248 Adding more things than necessary to the hash table is harmless
16249 except for the performance cost. Adding too few will result in
5afb4e99
DJ
16250 wasted time in find_partial_die, when we reread the compilation
16251 unit with load_all_dies set. */
72bf9492 16252
5afb4e99 16253 if (load_all
72929c62 16254 || abbrev->tag == DW_TAG_constant
5afb4e99 16255 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
16256 || abbrev->tag == DW_TAG_variable
16257 || abbrev->tag == DW_TAG_namespace
16258 || part_die->is_declaration)
16259 {
16260 void **slot;
16261
16262 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
16263 to_underlying (part_die->sect_off),
16264 INSERT);
72bf9492
DJ
16265 *slot = part_die;
16266 }
16267
8d749320 16268 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16269
16270 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16271 we have no reason to follow the children of structures; for other
98bfdba5
PA
16272 languages we have to, so that we can get at method physnames
16273 to infer fully qualified class names, for DW_AT_specification,
16274 and for C++ template arguments. For C++, we also look one level
16275 inside functions to find template arguments (if the name of the
16276 function does not already contain the template arguments).
bc30ff58
JB
16277
16278 For Ada, we need to scan the children of subprograms and lexical
16279 blocks as well because Ada allows the definition of nested
16280 entities that could be interesting for the debugger, such as
16281 nested subprograms for instance. */
72bf9492 16282 if (last_die->has_children
5afb4e99
DJ
16283 && (load_all
16284 || last_die->tag == DW_TAG_namespace
f55ee35c 16285 || last_die->tag == DW_TAG_module
72bf9492 16286 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16287 || (cu->language == language_cplus
16288 && last_die->tag == DW_TAG_subprogram
16289 && (last_die->name == NULL
16290 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16291 || (cu->language != language_c
16292 && (last_die->tag == DW_TAG_class_type
680b30c7 16293 || last_die->tag == DW_TAG_interface_type
72bf9492 16294 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16295 || last_die->tag == DW_TAG_union_type))
16296 || (cu->language == language_ada
16297 && (last_die->tag == DW_TAG_subprogram
16298 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16299 {
16300 nesting_level++;
16301 parent_die = last_die;
16302 continue;
16303 }
16304
16305 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16306 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16307
16308 /* Back to the top, do it again. */
16309 }
16310}
16311
c906108c
SS
16312/* Read a minimal amount of information into the minimal die structure. */
16313
d521ce57 16314static const gdb_byte *
dee91e82
DE
16315read_partial_die (const struct die_reader_specs *reader,
16316 struct partial_die_info *part_die,
16317 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16318 const gdb_byte *info_ptr)
c906108c 16319{
dee91e82 16320 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16321 struct objfile *objfile = cu->objfile;
d521ce57 16322 const gdb_byte *buffer = reader->buffer;
fa238c03 16323 unsigned int i;
c906108c 16324 struct attribute attr;
c5aa993b 16325 int has_low_pc_attr = 0;
c906108c 16326 int has_high_pc_attr = 0;
91da1414 16327 int high_pc_relative = 0;
c906108c 16328
72bf9492 16329 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16330
9c541725 16331 part_die->sect_off = (sect_offset) (info_ptr - buffer);
72bf9492
DJ
16332
16333 info_ptr += abbrev_len;
16334
16335 if (abbrev == NULL)
16336 return info_ptr;
16337
c906108c
SS
16338 part_die->tag = abbrev->tag;
16339 part_die->has_children = abbrev->has_children;
c906108c
SS
16340
16341 for (i = 0; i < abbrev->num_attrs; ++i)
16342 {
dee91e82 16343 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16344
16345 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16346 partial symbol table. */
c906108c
SS
16347 switch (attr.name)
16348 {
16349 case DW_AT_name:
71c25dea
TT
16350 switch (part_die->tag)
16351 {
16352 case DW_TAG_compile_unit:
95554aad 16353 case DW_TAG_partial_unit:
348e048f 16354 case DW_TAG_type_unit:
71c25dea
TT
16355 /* Compilation units have a DW_AT_name that is a filename, not
16356 a source language identifier. */
16357 case DW_TAG_enumeration_type:
16358 case DW_TAG_enumerator:
16359 /* These tags always have simple identifiers already; no need
16360 to canonicalize them. */
16361 part_die->name = DW_STRING (&attr);
16362 break;
16363 default:
16364 part_die->name
16365 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16366 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16367 break;
16368 }
c906108c 16369 break;
31ef98ae 16370 case DW_AT_linkage_name:
c906108c 16371 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16372 /* Note that both forms of linkage name might appear. We
16373 assume they will be the same, and we only store the last
16374 one we see. */
94af9270
KS
16375 if (cu->language == language_ada)
16376 part_die->name = DW_STRING (&attr);
abc72ce4 16377 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16378 break;
16379 case DW_AT_low_pc:
16380 has_low_pc_attr = 1;
31aa7e4e 16381 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16382 break;
16383 case DW_AT_high_pc:
16384 has_high_pc_attr = 1;
31aa7e4e
JB
16385 part_die->highpc = attr_value_as_address (&attr);
16386 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16387 high_pc_relative = 1;
c906108c
SS
16388 break;
16389 case DW_AT_location:
0963b4bd 16390 /* Support the .debug_loc offsets. */
8e19ed76
PS
16391 if (attr_form_is_block (&attr))
16392 {
95554aad 16393 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16394 }
3690dd37 16395 else if (attr_form_is_section_offset (&attr))
8e19ed76 16396 {
4d3c2250 16397 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16398 }
16399 else
16400 {
4d3c2250
KB
16401 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16402 "partial symbol information");
8e19ed76 16403 }
c906108c 16404 break;
c906108c
SS
16405 case DW_AT_external:
16406 part_die->is_external = DW_UNSND (&attr);
16407 break;
16408 case DW_AT_declaration:
16409 part_die->is_declaration = DW_UNSND (&attr);
16410 break;
16411 case DW_AT_type:
16412 part_die->has_type = 1;
16413 break;
16414 case DW_AT_abstract_origin:
16415 case DW_AT_specification:
72bf9492
DJ
16416 case DW_AT_extension:
16417 part_die->has_specification = 1;
c764a876 16418 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16419 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16420 || cu->per_cu->is_dwz);
c906108c
SS
16421 break;
16422 case DW_AT_sibling:
16423 /* Ignore absolute siblings, they might point outside of
16424 the current compile unit. */
16425 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16426 complaint (&symfile_complaints,
16427 _("ignoring absolute DW_AT_sibling"));
c906108c 16428 else
b9502d3f 16429 {
9c541725
PA
16430 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16431 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
16432
16433 if (sibling_ptr < info_ptr)
16434 complaint (&symfile_complaints,
16435 _("DW_AT_sibling points backwards"));
22869d73
KS
16436 else if (sibling_ptr > reader->buffer_end)
16437 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16438 else
16439 part_die->sibling = sibling_ptr;
16440 }
c906108c 16441 break;
fa4028e9
JB
16442 case DW_AT_byte_size:
16443 part_die->has_byte_size = 1;
16444 break;
ff908ebf
AW
16445 case DW_AT_const_value:
16446 part_die->has_const_value = 1;
16447 break;
68511cec
CES
16448 case DW_AT_calling_convention:
16449 /* DWARF doesn't provide a way to identify a program's source-level
16450 entry point. DW_AT_calling_convention attributes are only meant
16451 to describe functions' calling conventions.
16452
16453 However, because it's a necessary piece of information in
0c1b455e
TT
16454 Fortran, and before DWARF 4 DW_CC_program was the only
16455 piece of debugging information whose definition refers to
16456 a 'main program' at all, several compilers marked Fortran
16457 main programs with DW_CC_program --- even when those
16458 functions use the standard calling conventions.
16459
16460 Although DWARF now specifies a way to provide this
16461 information, we support this practice for backward
16462 compatibility. */
68511cec 16463 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16464 && cu->language == language_fortran)
16465 part_die->main_subprogram = 1;
68511cec 16466 break;
481860b3
GB
16467 case DW_AT_inline:
16468 if (DW_UNSND (&attr) == DW_INL_inlined
16469 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16470 part_die->may_be_inlined = 1;
16471 break;
95554aad
TT
16472
16473 case DW_AT_import:
16474 if (part_die->tag == DW_TAG_imported_unit)
36586728 16475 {
9c541725 16476 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16477 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16478 || cu->per_cu->is_dwz);
16479 }
95554aad
TT
16480 break;
16481
0c1b455e
TT
16482 case DW_AT_main_subprogram:
16483 part_die->main_subprogram = DW_UNSND (&attr);
16484 break;
16485
c906108c
SS
16486 default:
16487 break;
16488 }
16489 }
16490
91da1414
MW
16491 if (high_pc_relative)
16492 part_die->highpc += part_die->lowpc;
16493
9373cf26
JK
16494 if (has_low_pc_attr && has_high_pc_attr)
16495 {
16496 /* When using the GNU linker, .gnu.linkonce. sections are used to
16497 eliminate duplicate copies of functions and vtables and such.
16498 The linker will arbitrarily choose one and discard the others.
16499 The AT_*_pc values for such functions refer to local labels in
16500 these sections. If the section from that file was discarded, the
16501 labels are not in the output, so the relocs get a value of 0.
16502 If this is a discarded function, mark the pc bounds as invalid,
16503 so that GDB will ignore it. */
16504 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16505 {
bb5ed363 16506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16507
16508 complaint (&symfile_complaints,
16509 _("DW_AT_low_pc %s is zero "
16510 "for DIE at 0x%x [in module %s]"),
16511 paddress (gdbarch, part_die->lowpc),
9c541725 16512 to_underlying (part_die->sect_off), objfile_name (objfile));
9373cf26
JK
16513 }
16514 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16515 else if (part_die->lowpc >= part_die->highpc)
16516 {
bb5ed363 16517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16518
16519 complaint (&symfile_complaints,
16520 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16521 "for DIE at 0x%x [in module %s]"),
16522 paddress (gdbarch, part_die->lowpc),
16523 paddress (gdbarch, part_die->highpc),
9c541725
PA
16524 to_underlying (part_die->sect_off),
16525 objfile_name (objfile));
9373cf26
JK
16526 }
16527 else
16528 part_die->has_pc_info = 1;
16529 }
85cbf3d3 16530
c906108c
SS
16531 return info_ptr;
16532}
16533
72bf9492
DJ
16534/* Find a cached partial DIE at OFFSET in CU. */
16535
16536static struct partial_die_info *
9c541725 16537find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
72bf9492
DJ
16538{
16539 struct partial_die_info *lookup_die = NULL;
16540 struct partial_die_info part_die;
16541
9c541725 16542 part_die.sect_off = sect_off;
9a3c8263
SM
16543 lookup_die = ((struct partial_die_info *)
16544 htab_find_with_hash (cu->partial_dies, &part_die,
9c541725 16545 to_underlying (sect_off)));
72bf9492 16546
72bf9492
DJ
16547 return lookup_die;
16548}
16549
348e048f
DE
16550/* Find a partial DIE at OFFSET, which may or may not be in CU,
16551 except in the case of .debug_types DIEs which do not reference
16552 outside their CU (they do however referencing other types via
55f1336d 16553 DW_FORM_ref_sig8). */
72bf9492
DJ
16554
16555static struct partial_die_info *
9c541725 16556find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16557{
bb5ed363 16558 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16559 struct dwarf2_per_cu_data *per_cu = NULL;
16560 struct partial_die_info *pd = NULL;
72bf9492 16561
36586728 16562 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 16563 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 16564 {
9c541725 16565 pd = find_partial_die_in_comp_unit (sect_off, cu);
5afb4e99
DJ
16566 if (pd != NULL)
16567 return pd;
0d99eb77
DE
16568 /* We missed recording what we needed.
16569 Load all dies and try again. */
16570 per_cu = cu->per_cu;
5afb4e99 16571 }
0d99eb77
DE
16572 else
16573 {
16574 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16575 if (cu->per_cu->is_debug_types)
0d99eb77 16576 {
9c541725
PA
16577 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16578 " external reference to offset 0x%x [in module %s].\n"),
16579 to_underlying (cu->header.sect_off), to_underlying (sect_off),
0d99eb77
DE
16580 bfd_get_filename (objfile->obfd));
16581 }
9c541725 16582 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 16583 objfile);
72bf9492 16584
0d99eb77
DE
16585 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16586 load_partial_comp_unit (per_cu);
ae038cb0 16587
0d99eb77 16588 per_cu->cu->last_used = 0;
9c541725 16589 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
0d99eb77 16590 }
5afb4e99 16591
dee91e82
DE
16592 /* If we didn't find it, and not all dies have been loaded,
16593 load them all and try again. */
16594
5afb4e99
DJ
16595 if (pd == NULL && per_cu->load_all_dies == 0)
16596 {
5afb4e99 16597 per_cu->load_all_dies = 1;
fd820528
DE
16598
16599 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16600 THIS_CU->cu may already be in use. So we can't just free it and
16601 replace its DIEs with the ones we read in. Instead, we leave those
16602 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16603 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16604 set. */
dee91e82 16605 load_partial_comp_unit (per_cu);
5afb4e99 16606
9c541725 16607 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
5afb4e99
DJ
16608 }
16609
16610 if (pd == NULL)
16611 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16612 _("could not find partial DIE 0x%x "
16613 "in cache [from module %s]\n"),
9c541725 16614 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 16615 return pd;
72bf9492
DJ
16616}
16617
abc72ce4
DE
16618/* See if we can figure out if the class lives in a namespace. We do
16619 this by looking for a member function; its demangled name will
16620 contain namespace info, if there is any. */
16621
16622static void
16623guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16624 struct dwarf2_cu *cu)
16625{
16626 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16627 what template types look like, because the demangler
16628 frequently doesn't give the same name as the debug info. We
16629 could fix this by only using the demangled name to get the
16630 prefix (but see comment in read_structure_type). */
16631
16632 struct partial_die_info *real_pdi;
16633 struct partial_die_info *child_pdi;
16634
16635 /* If this DIE (this DIE's specification, if any) has a parent, then
16636 we should not do this. We'll prepend the parent's fully qualified
16637 name when we create the partial symbol. */
16638
16639 real_pdi = struct_pdi;
16640 while (real_pdi->has_specification)
36586728
TT
16641 real_pdi = find_partial_die (real_pdi->spec_offset,
16642 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16643
16644 if (real_pdi->die_parent != NULL)
16645 return;
16646
16647 for (child_pdi = struct_pdi->die_child;
16648 child_pdi != NULL;
16649 child_pdi = child_pdi->die_sibling)
16650 {
16651 if (child_pdi->tag == DW_TAG_subprogram
16652 && child_pdi->linkage_name != NULL)
16653 {
16654 char *actual_class_name
16655 = language_class_name_from_physname (cu->language_defn,
16656 child_pdi->linkage_name);
16657 if (actual_class_name != NULL)
16658 {
16659 struct_pdi->name
224c3ddb
SM
16660 = ((const char *)
16661 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16662 actual_class_name,
16663 strlen (actual_class_name)));
abc72ce4
DE
16664 xfree (actual_class_name);
16665 }
16666 break;
16667 }
16668 }
16669}
16670
72bf9492
DJ
16671/* Adjust PART_DIE before generating a symbol for it. This function
16672 may set the is_external flag or change the DIE's name. */
16673
16674static void
16675fixup_partial_die (struct partial_die_info *part_die,
16676 struct dwarf2_cu *cu)
16677{
abc72ce4
DE
16678 /* Once we've fixed up a die, there's no point in doing so again.
16679 This also avoids a memory leak if we were to call
16680 guess_partial_die_structure_name multiple times. */
16681 if (part_die->fixup_called)
16682 return;
16683
72bf9492
DJ
16684 /* If we found a reference attribute and the DIE has no name, try
16685 to find a name in the referred to DIE. */
16686
16687 if (part_die->name == NULL && part_die->has_specification)
16688 {
16689 struct partial_die_info *spec_die;
72bf9492 16690
36586728
TT
16691 spec_die = find_partial_die (part_die->spec_offset,
16692 part_die->spec_is_dwz, cu);
72bf9492 16693
10b3939b 16694 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16695
16696 if (spec_die->name)
16697 {
16698 part_die->name = spec_die->name;
16699
16700 /* Copy DW_AT_external attribute if it is set. */
16701 if (spec_die->is_external)
16702 part_die->is_external = spec_die->is_external;
16703 }
16704 }
16705
16706 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16707
16708 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16709 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16710
abc72ce4
DE
16711 /* If there is no parent die to provide a namespace, and there are
16712 children, see if we can determine the namespace from their linkage
122d1940 16713 name. */
abc72ce4 16714 if (cu->language == language_cplus
8b70b953 16715 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16716 && part_die->die_parent == NULL
16717 && part_die->has_children
16718 && (part_die->tag == DW_TAG_class_type
16719 || part_die->tag == DW_TAG_structure_type
16720 || part_die->tag == DW_TAG_union_type))
16721 guess_partial_die_structure_name (part_die, cu);
16722
53832f31
TT
16723 /* GCC might emit a nameless struct or union that has a linkage
16724 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16725 if (part_die->name == NULL
96408a79
SA
16726 && (part_die->tag == DW_TAG_class_type
16727 || part_die->tag == DW_TAG_interface_type
16728 || part_die->tag == DW_TAG_structure_type
16729 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16730 && part_die->linkage_name != NULL)
16731 {
16732 char *demangled;
16733
8de20a37 16734 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16735 if (demangled)
16736 {
96408a79
SA
16737 const char *base;
16738
16739 /* Strip any leading namespaces/classes, keep only the base name.
16740 DW_AT_name for named DIEs does not contain the prefixes. */
16741 base = strrchr (demangled, ':');
16742 if (base && base > demangled && base[-1] == ':')
16743 base++;
16744 else
16745 base = demangled;
16746
34a68019 16747 part_die->name
224c3ddb
SM
16748 = ((const char *)
16749 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16750 base, strlen (base)));
53832f31
TT
16751 xfree (demangled);
16752 }
16753 }
16754
abc72ce4 16755 part_die->fixup_called = 1;
72bf9492
DJ
16756}
16757
a8329558 16758/* Read an attribute value described by an attribute form. */
c906108c 16759
d521ce57 16760static const gdb_byte *
dee91e82
DE
16761read_attribute_value (const struct die_reader_specs *reader,
16762 struct attribute *attr, unsigned form,
43988095 16763 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16764{
dee91e82 16765 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16766 struct objfile *objfile = cu->objfile;
16767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16768 bfd *abfd = reader->abfd;
e7c27a73 16769 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16770 unsigned int bytes_read;
16771 struct dwarf_block *blk;
16772
aead7601 16773 attr->form = (enum dwarf_form) form;
a8329558 16774 switch (form)
c906108c 16775 {
c906108c 16776 case DW_FORM_ref_addr:
ae411497 16777 if (cu->header.version == 2)
4568ecf9 16778 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16779 else
4568ecf9
DE
16780 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16781 &cu->header, &bytes_read);
ae411497
TT
16782 info_ptr += bytes_read;
16783 break;
36586728
TT
16784 case DW_FORM_GNU_ref_alt:
16785 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16786 info_ptr += bytes_read;
16787 break;
ae411497 16788 case DW_FORM_addr:
e7c27a73 16789 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16790 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16791 info_ptr += bytes_read;
c906108c
SS
16792 break;
16793 case DW_FORM_block2:
7b5a2f43 16794 blk = dwarf_alloc_block (cu);
c906108c
SS
16795 blk->size = read_2_bytes (abfd, info_ptr);
16796 info_ptr += 2;
16797 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16798 info_ptr += blk->size;
16799 DW_BLOCK (attr) = blk;
16800 break;
16801 case DW_FORM_block4:
7b5a2f43 16802 blk = dwarf_alloc_block (cu);
c906108c
SS
16803 blk->size = read_4_bytes (abfd, info_ptr);
16804 info_ptr += 4;
16805 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16806 info_ptr += blk->size;
16807 DW_BLOCK (attr) = blk;
16808 break;
16809 case DW_FORM_data2:
16810 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16811 info_ptr += 2;
16812 break;
16813 case DW_FORM_data4:
16814 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16815 info_ptr += 4;
16816 break;
16817 case DW_FORM_data8:
16818 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16819 info_ptr += 8;
16820 break;
0224619f
JK
16821 case DW_FORM_data16:
16822 blk = dwarf_alloc_block (cu);
16823 blk->size = 16;
16824 blk->data = read_n_bytes (abfd, info_ptr, 16);
16825 info_ptr += 16;
16826 DW_BLOCK (attr) = blk;
16827 break;
2dc7f7b3
TT
16828 case DW_FORM_sec_offset:
16829 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16830 info_ptr += bytes_read;
16831 break;
c906108c 16832 case DW_FORM_string:
9b1c24c8 16833 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16834 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16835 info_ptr += bytes_read;
16836 break;
4bdf3d34 16837 case DW_FORM_strp:
36586728
TT
16838 if (!cu->per_cu->is_dwz)
16839 {
16840 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16841 &bytes_read);
16842 DW_STRING_IS_CANONICAL (attr) = 0;
16843 info_ptr += bytes_read;
16844 break;
16845 }
16846 /* FALLTHROUGH */
43988095
JK
16847 case DW_FORM_line_strp:
16848 if (!cu->per_cu->is_dwz)
16849 {
16850 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16851 cu_header, &bytes_read);
16852 DW_STRING_IS_CANONICAL (attr) = 0;
16853 info_ptr += bytes_read;
16854 break;
16855 }
16856 /* FALLTHROUGH */
36586728
TT
16857 case DW_FORM_GNU_strp_alt:
16858 {
16859 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16860 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16861 &bytes_read);
16862
16863 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16864 DW_STRING_IS_CANONICAL (attr) = 0;
16865 info_ptr += bytes_read;
16866 }
4bdf3d34 16867 break;
2dc7f7b3 16868 case DW_FORM_exprloc:
c906108c 16869 case DW_FORM_block:
7b5a2f43 16870 blk = dwarf_alloc_block (cu);
c906108c
SS
16871 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16872 info_ptr += bytes_read;
16873 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16874 info_ptr += blk->size;
16875 DW_BLOCK (attr) = blk;
16876 break;
16877 case DW_FORM_block1:
7b5a2f43 16878 blk = dwarf_alloc_block (cu);
c906108c
SS
16879 blk->size = read_1_byte (abfd, info_ptr);
16880 info_ptr += 1;
16881 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16882 info_ptr += blk->size;
16883 DW_BLOCK (attr) = blk;
16884 break;
16885 case DW_FORM_data1:
16886 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16887 info_ptr += 1;
16888 break;
16889 case DW_FORM_flag:
16890 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16891 info_ptr += 1;
16892 break;
2dc7f7b3
TT
16893 case DW_FORM_flag_present:
16894 DW_UNSND (attr) = 1;
16895 break;
c906108c
SS
16896 case DW_FORM_sdata:
16897 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16898 info_ptr += bytes_read;
16899 break;
16900 case DW_FORM_udata:
16901 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16902 info_ptr += bytes_read;
16903 break;
16904 case DW_FORM_ref1:
9c541725 16905 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16906 + read_1_byte (abfd, info_ptr));
c906108c
SS
16907 info_ptr += 1;
16908 break;
16909 case DW_FORM_ref2:
9c541725 16910 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16911 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16912 info_ptr += 2;
16913 break;
16914 case DW_FORM_ref4:
9c541725 16915 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16916 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16917 info_ptr += 4;
16918 break;
613e1657 16919 case DW_FORM_ref8:
9c541725 16920 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16921 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16922 info_ptr += 8;
16923 break;
55f1336d 16924 case DW_FORM_ref_sig8:
ac9ec31b 16925 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16926 info_ptr += 8;
16927 break;
c906108c 16928 case DW_FORM_ref_udata:
9c541725 16929 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16930 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16931 info_ptr += bytes_read;
16932 break;
c906108c 16933 case DW_FORM_indirect:
a8329558
KW
16934 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16935 info_ptr += bytes_read;
43988095
JK
16936 if (form == DW_FORM_implicit_const)
16937 {
16938 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16939 info_ptr += bytes_read;
16940 }
16941 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16942 info_ptr);
16943 break;
16944 case DW_FORM_implicit_const:
16945 DW_SND (attr) = implicit_const;
a8329558 16946 break;
3019eac3
DE
16947 case DW_FORM_GNU_addr_index:
16948 if (reader->dwo_file == NULL)
16949 {
16950 /* For now flag a hard error.
16951 Later we can turn this into a complaint. */
16952 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16953 dwarf_form_name (form),
16954 bfd_get_filename (abfd));
16955 }
16956 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16957 info_ptr += bytes_read;
16958 break;
16959 case DW_FORM_GNU_str_index:
16960 if (reader->dwo_file == NULL)
16961 {
16962 /* For now flag a hard error.
16963 Later we can turn this into a complaint if warranted. */
16964 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16965 dwarf_form_name (form),
16966 bfd_get_filename (abfd));
16967 }
16968 {
16969 ULONGEST str_index =
16970 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16971
342587c4 16972 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16973 DW_STRING_IS_CANONICAL (attr) = 0;
16974 info_ptr += bytes_read;
16975 }
16976 break;
c906108c 16977 default:
8a3fe4f8 16978 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16979 dwarf_form_name (form),
16980 bfd_get_filename (abfd));
c906108c 16981 }
28e94949 16982
36586728 16983 /* Super hack. */
7771576e 16984 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16985 attr->form = DW_FORM_GNU_ref_alt;
16986
28e94949
JB
16987 /* We have seen instances where the compiler tried to emit a byte
16988 size attribute of -1 which ended up being encoded as an unsigned
16989 0xffffffff. Although 0xffffffff is technically a valid size value,
16990 an object of this size seems pretty unlikely so we can relatively
16991 safely treat these cases as if the size attribute was invalid and
16992 treat them as zero by default. */
16993 if (attr->name == DW_AT_byte_size
16994 && form == DW_FORM_data4
16995 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16996 {
16997 complaint
16998 (&symfile_complaints,
43bbcdc2
PH
16999 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17000 hex_string (DW_UNSND (attr)));
01c66ae6
JB
17001 DW_UNSND (attr) = 0;
17002 }
28e94949 17003
c906108c
SS
17004 return info_ptr;
17005}
17006
a8329558
KW
17007/* Read an attribute described by an abbreviated attribute. */
17008
d521ce57 17009static const gdb_byte *
dee91e82
DE
17010read_attribute (const struct die_reader_specs *reader,
17011 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 17012 const gdb_byte *info_ptr)
a8329558
KW
17013{
17014 attr->name = abbrev->name;
43988095
JK
17015 return read_attribute_value (reader, attr, abbrev->form,
17016 abbrev->implicit_const, info_ptr);
a8329558
KW
17017}
17018
0963b4bd 17019/* Read dwarf information from a buffer. */
c906108c
SS
17020
17021static unsigned int
a1855c1d 17022read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 17023{
fe1b8b76 17024 return bfd_get_8 (abfd, buf);
c906108c
SS
17025}
17026
17027static int
a1855c1d 17028read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 17029{
fe1b8b76 17030 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
17031}
17032
17033static unsigned int
a1855c1d 17034read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17035{
fe1b8b76 17036 return bfd_get_16 (abfd, buf);
c906108c
SS
17037}
17038
21ae7a4d 17039static int
a1855c1d 17040read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
17041{
17042 return bfd_get_signed_16 (abfd, buf);
17043}
17044
c906108c 17045static unsigned int
a1855c1d 17046read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17047{
fe1b8b76 17048 return bfd_get_32 (abfd, buf);
c906108c
SS
17049}
17050
21ae7a4d 17051static int
a1855c1d 17052read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
17053{
17054 return bfd_get_signed_32 (abfd, buf);
17055}
17056
93311388 17057static ULONGEST
a1855c1d 17058read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17059{
fe1b8b76 17060 return bfd_get_64 (abfd, buf);
c906108c
SS
17061}
17062
17063static CORE_ADDR
d521ce57 17064read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 17065 unsigned int *bytes_read)
c906108c 17066{
e7c27a73 17067 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
17068 CORE_ADDR retval = 0;
17069
107d2387 17070 if (cu_header->signed_addr_p)
c906108c 17071 {
107d2387
AC
17072 switch (cu_header->addr_size)
17073 {
17074 case 2:
fe1b8b76 17075 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
17076 break;
17077 case 4:
fe1b8b76 17078 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
17079 break;
17080 case 8:
fe1b8b76 17081 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
17082 break;
17083 default:
8e65ff28 17084 internal_error (__FILE__, __LINE__,
e2e0b3e5 17085 _("read_address: bad switch, signed [in module %s]"),
659b0389 17086 bfd_get_filename (abfd));
107d2387
AC
17087 }
17088 }
17089 else
17090 {
17091 switch (cu_header->addr_size)
17092 {
17093 case 2:
fe1b8b76 17094 retval = bfd_get_16 (abfd, buf);
107d2387
AC
17095 break;
17096 case 4:
fe1b8b76 17097 retval = bfd_get_32 (abfd, buf);
107d2387
AC
17098 break;
17099 case 8:
fe1b8b76 17100 retval = bfd_get_64 (abfd, buf);
107d2387
AC
17101 break;
17102 default:
8e65ff28 17103 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
17104 _("read_address: bad switch, "
17105 "unsigned [in module %s]"),
659b0389 17106 bfd_get_filename (abfd));
107d2387 17107 }
c906108c 17108 }
64367e0a 17109
107d2387
AC
17110 *bytes_read = cu_header->addr_size;
17111 return retval;
c906108c
SS
17112}
17113
f7ef9339 17114/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
17115 specification allows the initial length to take up either 4 bytes
17116 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17117 bytes describe the length and all offsets will be 8 bytes in length
17118 instead of 4.
17119
f7ef9339
KB
17120 An older, non-standard 64-bit format is also handled by this
17121 function. The older format in question stores the initial length
17122 as an 8-byte quantity without an escape value. Lengths greater
17123 than 2^32 aren't very common which means that the initial 4 bytes
17124 is almost always zero. Since a length value of zero doesn't make
17125 sense for the 32-bit format, this initial zero can be considered to
17126 be an escape value which indicates the presence of the older 64-bit
17127 format. As written, the code can't detect (old format) lengths
917c78fc
MK
17128 greater than 4GB. If it becomes necessary to handle lengths
17129 somewhat larger than 4GB, we could allow other small values (such
17130 as the non-sensical values of 1, 2, and 3) to also be used as
17131 escape values indicating the presence of the old format.
f7ef9339 17132
917c78fc
MK
17133 The value returned via bytes_read should be used to increment the
17134 relevant pointer after calling read_initial_length().
c764a876 17135
613e1657
KB
17136 [ Note: read_initial_length() and read_offset() are based on the
17137 document entitled "DWARF Debugging Information Format", revision
f7ef9339 17138 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
17139 from:
17140
f7ef9339 17141 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 17142
613e1657
KB
17143 This document is only a draft and is subject to change. (So beware.)
17144
f7ef9339 17145 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
17146 determined empirically by examining 64-bit ELF files produced by
17147 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
17148
17149 - Kevin, July 16, 2002
613e1657
KB
17150 ] */
17151
17152static LONGEST
d521ce57 17153read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 17154{
fe1b8b76 17155 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 17156
dd373385 17157 if (length == 0xffffffff)
613e1657 17158 {
fe1b8b76 17159 length = bfd_get_64 (abfd, buf + 4);
613e1657 17160 *bytes_read = 12;
613e1657 17161 }
dd373385 17162 else if (length == 0)
f7ef9339 17163 {
dd373385 17164 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 17165 length = bfd_get_64 (abfd, buf);
f7ef9339 17166 *bytes_read = 8;
f7ef9339 17167 }
613e1657
KB
17168 else
17169 {
17170 *bytes_read = 4;
613e1657
KB
17171 }
17172
c764a876
DE
17173 return length;
17174}
dd373385 17175
c764a876
DE
17176/* Cover function for read_initial_length.
17177 Returns the length of the object at BUF, and stores the size of the
17178 initial length in *BYTES_READ and stores the size that offsets will be in
17179 *OFFSET_SIZE.
17180 If the initial length size is not equivalent to that specified in
17181 CU_HEADER then issue a complaint.
17182 This is useful when reading non-comp-unit headers. */
dd373385 17183
c764a876 17184static LONGEST
d521ce57 17185read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
17186 const struct comp_unit_head *cu_header,
17187 unsigned int *bytes_read,
17188 unsigned int *offset_size)
17189{
17190 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17191
17192 gdb_assert (cu_header->initial_length_size == 4
17193 || cu_header->initial_length_size == 8
17194 || cu_header->initial_length_size == 12);
17195
17196 if (cu_header->initial_length_size != *bytes_read)
17197 complaint (&symfile_complaints,
17198 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 17199
c764a876 17200 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 17201 return length;
613e1657
KB
17202}
17203
17204/* Read an offset from the data stream. The size of the offset is
917c78fc 17205 given by cu_header->offset_size. */
613e1657
KB
17206
17207static LONGEST
d521ce57
TT
17208read_offset (bfd *abfd, const gdb_byte *buf,
17209 const struct comp_unit_head *cu_header,
891d2f0b 17210 unsigned int *bytes_read)
c764a876
DE
17211{
17212 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 17213
c764a876
DE
17214 *bytes_read = cu_header->offset_size;
17215 return offset;
17216}
17217
17218/* Read an offset from the data stream. */
17219
17220static LONGEST
d521ce57 17221read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
17222{
17223 LONGEST retval = 0;
17224
c764a876 17225 switch (offset_size)
613e1657
KB
17226 {
17227 case 4:
fe1b8b76 17228 retval = bfd_get_32 (abfd, buf);
613e1657
KB
17229 break;
17230 case 8:
fe1b8b76 17231 retval = bfd_get_64 (abfd, buf);
613e1657
KB
17232 break;
17233 default:
8e65ff28 17234 internal_error (__FILE__, __LINE__,
c764a876 17235 _("read_offset_1: bad switch [in module %s]"),
659b0389 17236 bfd_get_filename (abfd));
613e1657
KB
17237 }
17238
917c78fc 17239 return retval;
613e1657
KB
17240}
17241
d521ce57
TT
17242static const gdb_byte *
17243read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
17244{
17245 /* If the size of a host char is 8 bits, we can return a pointer
17246 to the buffer, otherwise we have to copy the data to a buffer
17247 allocated on the temporary obstack. */
4bdf3d34 17248 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 17249 return buf;
c906108c
SS
17250}
17251
d521ce57
TT
17252static const char *
17253read_direct_string (bfd *abfd, const gdb_byte *buf,
17254 unsigned int *bytes_read_ptr)
c906108c
SS
17255{
17256 /* If the size of a host char is 8 bits, we can return a pointer
17257 to the string, otherwise we have to copy the string to a buffer
17258 allocated on the temporary obstack. */
4bdf3d34 17259 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17260 if (*buf == '\0')
17261 {
17262 *bytes_read_ptr = 1;
17263 return NULL;
17264 }
d521ce57
TT
17265 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17266 return (const char *) buf;
4bdf3d34
JJ
17267}
17268
43988095
JK
17269/* Return pointer to string at section SECT offset STR_OFFSET with error
17270 reporting strings FORM_NAME and SECT_NAME. */
17271
d521ce57 17272static const char *
43988095
JK
17273read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17274 struct dwarf2_section_info *sect,
17275 const char *form_name,
17276 const char *sect_name)
17277{
17278 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17279 if (sect->buffer == NULL)
17280 error (_("%s used without %s section [in module %s]"),
17281 form_name, sect_name, bfd_get_filename (abfd));
17282 if (str_offset >= sect->size)
17283 error (_("%s pointing outside of %s section [in module %s]"),
17284 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17285 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17286 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17287 return NULL;
43988095
JK
17288 return (const char *) (sect->buffer + str_offset);
17289}
17290
17291/* Return pointer to string at .debug_str offset STR_OFFSET. */
17292
17293static const char *
17294read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17295{
17296 return read_indirect_string_at_offset_from (abfd, str_offset,
17297 &dwarf2_per_objfile->str,
17298 "DW_FORM_strp", ".debug_str");
17299}
17300
17301/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17302
17303static const char *
17304read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17305{
17306 return read_indirect_string_at_offset_from (abfd, str_offset,
17307 &dwarf2_per_objfile->line_str,
17308 "DW_FORM_line_strp",
17309 ".debug_line_str");
c906108c
SS
17310}
17311
36586728
TT
17312/* Read a string at offset STR_OFFSET in the .debug_str section from
17313 the .dwz file DWZ. Throw an error if the offset is too large. If
17314 the string consists of a single NUL byte, return NULL; otherwise
17315 return a pointer to the string. */
17316
d521ce57 17317static const char *
36586728
TT
17318read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17319{
17320 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17321
17322 if (dwz->str.buffer == NULL)
17323 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17324 "section [in module %s]"),
17325 bfd_get_filename (dwz->dwz_bfd));
17326 if (str_offset >= dwz->str.size)
17327 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17328 ".debug_str section [in module %s]"),
17329 bfd_get_filename (dwz->dwz_bfd));
17330 gdb_assert (HOST_CHAR_BIT == 8);
17331 if (dwz->str.buffer[str_offset] == '\0')
17332 return NULL;
d521ce57 17333 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17334}
17335
43988095
JK
17336/* Return pointer to string at .debug_str offset as read from BUF.
17337 BUF is assumed to be in a compilation unit described by CU_HEADER.
17338 Return *BYTES_READ_PTR count of bytes read from BUF. */
17339
d521ce57
TT
17340static const char *
17341read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17342 const struct comp_unit_head *cu_header,
17343 unsigned int *bytes_read_ptr)
17344{
17345 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17346
17347 return read_indirect_string_at_offset (abfd, str_offset);
17348}
17349
43988095
JK
17350/* Return pointer to string at .debug_line_str offset as read from BUF.
17351 BUF is assumed to be in a compilation unit described by CU_HEADER.
17352 Return *BYTES_READ_PTR count of bytes read from BUF. */
17353
17354static const char *
17355read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17356 const struct comp_unit_head *cu_header,
17357 unsigned int *bytes_read_ptr)
17358{
17359 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17360
17361 return read_indirect_line_string_at_offset (abfd, str_offset);
17362}
17363
17364ULONGEST
d521ce57 17365read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17366 unsigned int *bytes_read_ptr)
c906108c 17367{
12df843f 17368 ULONGEST result;
ce5d95e1 17369 unsigned int num_read;
870f88f7 17370 int shift;
c906108c
SS
17371 unsigned char byte;
17372
17373 result = 0;
17374 shift = 0;
17375 num_read = 0;
c906108c
SS
17376 while (1)
17377 {
fe1b8b76 17378 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17379 buf++;
17380 num_read++;
12df843f 17381 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17382 if ((byte & 128) == 0)
17383 {
17384 break;
17385 }
17386 shift += 7;
17387 }
17388 *bytes_read_ptr = num_read;
17389 return result;
17390}
17391
12df843f 17392static LONGEST
d521ce57
TT
17393read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17394 unsigned int *bytes_read_ptr)
c906108c 17395{
12df843f 17396 LONGEST result;
870f88f7 17397 int shift, num_read;
c906108c
SS
17398 unsigned char byte;
17399
17400 result = 0;
17401 shift = 0;
c906108c 17402 num_read = 0;
c906108c
SS
17403 while (1)
17404 {
fe1b8b76 17405 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17406 buf++;
17407 num_read++;
12df843f 17408 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17409 shift += 7;
17410 if ((byte & 128) == 0)
17411 {
17412 break;
17413 }
17414 }
77e0b926 17415 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17416 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17417 *bytes_read_ptr = num_read;
17418 return result;
17419}
17420
3019eac3
DE
17421/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17422 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17423 ADDR_SIZE is the size of addresses from the CU header. */
17424
17425static CORE_ADDR
17426read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17427{
17428 struct objfile *objfile = dwarf2_per_objfile->objfile;
17429 bfd *abfd = objfile->obfd;
17430 const gdb_byte *info_ptr;
17431
17432 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17433 if (dwarf2_per_objfile->addr.buffer == NULL)
17434 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17435 objfile_name (objfile));
3019eac3
DE
17436 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17437 error (_("DW_FORM_addr_index pointing outside of "
17438 ".debug_addr section [in module %s]"),
4262abfb 17439 objfile_name (objfile));
3019eac3
DE
17440 info_ptr = (dwarf2_per_objfile->addr.buffer
17441 + addr_base + addr_index * addr_size);
17442 if (addr_size == 4)
17443 return bfd_get_32 (abfd, info_ptr);
17444 else
17445 return bfd_get_64 (abfd, info_ptr);
17446}
17447
17448/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17449
17450static CORE_ADDR
17451read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17452{
17453 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17454}
17455
17456/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17457
17458static CORE_ADDR
d521ce57 17459read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17460 unsigned int *bytes_read)
17461{
17462 bfd *abfd = cu->objfile->obfd;
17463 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17464
17465 return read_addr_index (cu, addr_index);
17466}
17467
17468/* Data structure to pass results from dwarf2_read_addr_index_reader
17469 back to dwarf2_read_addr_index. */
17470
17471struct dwarf2_read_addr_index_data
17472{
17473 ULONGEST addr_base;
17474 int addr_size;
17475};
17476
17477/* die_reader_func for dwarf2_read_addr_index. */
17478
17479static void
17480dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17481 const gdb_byte *info_ptr,
3019eac3
DE
17482 struct die_info *comp_unit_die,
17483 int has_children,
17484 void *data)
17485{
17486 struct dwarf2_cu *cu = reader->cu;
17487 struct dwarf2_read_addr_index_data *aidata =
17488 (struct dwarf2_read_addr_index_data *) data;
17489
17490 aidata->addr_base = cu->addr_base;
17491 aidata->addr_size = cu->header.addr_size;
17492}
17493
17494/* Given an index in .debug_addr, fetch the value.
17495 NOTE: This can be called during dwarf expression evaluation,
17496 long after the debug information has been read, and thus per_cu->cu
17497 may no longer exist. */
17498
17499CORE_ADDR
17500dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17501 unsigned int addr_index)
17502{
17503 struct objfile *objfile = per_cu->objfile;
17504 struct dwarf2_cu *cu = per_cu->cu;
17505 ULONGEST addr_base;
17506 int addr_size;
17507
17508 /* This is intended to be called from outside this file. */
17509 dw2_setup (objfile);
17510
17511 /* We need addr_base and addr_size.
17512 If we don't have PER_CU->cu, we have to get it.
17513 Nasty, but the alternative is storing the needed info in PER_CU,
17514 which at this point doesn't seem justified: it's not clear how frequently
17515 it would get used and it would increase the size of every PER_CU.
17516 Entry points like dwarf2_per_cu_addr_size do a similar thing
17517 so we're not in uncharted territory here.
17518 Alas we need to be a bit more complicated as addr_base is contained
17519 in the DIE.
17520
17521 We don't need to read the entire CU(/TU).
17522 We just need the header and top level die.
a1b64ce1 17523
3019eac3 17524 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17525 For now we skip this optimization. */
3019eac3
DE
17526
17527 if (cu != NULL)
17528 {
17529 addr_base = cu->addr_base;
17530 addr_size = cu->header.addr_size;
17531 }
17532 else
17533 {
17534 struct dwarf2_read_addr_index_data aidata;
17535
a1b64ce1
DE
17536 /* Note: We can't use init_cutu_and_read_dies_simple here,
17537 we need addr_base. */
17538 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17539 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17540 addr_base = aidata.addr_base;
17541 addr_size = aidata.addr_size;
17542 }
17543
17544 return read_addr_index_1 (addr_index, addr_base, addr_size);
17545}
17546
57d63ce2
DE
17547/* Given a DW_FORM_GNU_str_index, fetch the string.
17548 This is only used by the Fission support. */
3019eac3 17549
d521ce57 17550static const char *
342587c4 17551read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17552{
17553 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17554 const char *objf_name = objfile_name (objfile);
3019eac3 17555 bfd *abfd = objfile->obfd;
342587c4 17556 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17557 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17558 struct dwarf2_section_info *str_offsets_section =
17559 &reader->dwo_file->sections.str_offsets;
d521ce57 17560 const gdb_byte *info_ptr;
3019eac3 17561 ULONGEST str_offset;
57d63ce2 17562 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17563
73869dc2
DE
17564 dwarf2_read_section (objfile, str_section);
17565 dwarf2_read_section (objfile, str_offsets_section);
17566 if (str_section->buffer == NULL)
57d63ce2 17567 error (_("%s used without .debug_str.dwo section"
9c541725
PA
17568 " in CU at offset 0x%x [in module %s]"),
17569 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17570 if (str_offsets_section->buffer == NULL)
57d63ce2 17571 error (_("%s used without .debug_str_offsets.dwo section"
9c541725
PA
17572 " in CU at offset 0x%x [in module %s]"),
17573 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17574 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17575 error (_("%s pointing outside of .debug_str_offsets.dwo"
9c541725
PA
17576 " section in CU at offset 0x%x [in module %s]"),
17577 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17578 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17579 + str_index * cu->header.offset_size);
17580 if (cu->header.offset_size == 4)
17581 str_offset = bfd_get_32 (abfd, info_ptr);
17582 else
17583 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17584 if (str_offset >= str_section->size)
57d63ce2 17585 error (_("Offset from %s pointing outside of"
9c541725
PA
17586 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17587 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17588 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17589}
17590
3019eac3
DE
17591/* Return the length of an LEB128 number in BUF. */
17592
17593static int
17594leb128_size (const gdb_byte *buf)
17595{
17596 const gdb_byte *begin = buf;
17597 gdb_byte byte;
17598
17599 while (1)
17600 {
17601 byte = *buf++;
17602 if ((byte & 128) == 0)
17603 return buf - begin;
17604 }
17605}
17606
c906108c 17607static void
e142c38c 17608set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17609{
17610 switch (lang)
17611 {
17612 case DW_LANG_C89:
76bee0cc 17613 case DW_LANG_C99:
0cfd832f 17614 case DW_LANG_C11:
c906108c 17615 case DW_LANG_C:
d1be3247 17616 case DW_LANG_UPC:
e142c38c 17617 cu->language = language_c;
c906108c 17618 break;
9c37b5ae 17619 case DW_LANG_Java:
c906108c 17620 case DW_LANG_C_plus_plus:
0cfd832f
MW
17621 case DW_LANG_C_plus_plus_11:
17622 case DW_LANG_C_plus_plus_14:
e142c38c 17623 cu->language = language_cplus;
c906108c 17624 break;
6aecb9c2
JB
17625 case DW_LANG_D:
17626 cu->language = language_d;
17627 break;
c906108c
SS
17628 case DW_LANG_Fortran77:
17629 case DW_LANG_Fortran90:
b21b22e0 17630 case DW_LANG_Fortran95:
f7de9aab
MW
17631 case DW_LANG_Fortran03:
17632 case DW_LANG_Fortran08:
e142c38c 17633 cu->language = language_fortran;
c906108c 17634 break;
a766d390
DE
17635 case DW_LANG_Go:
17636 cu->language = language_go;
17637 break;
c906108c 17638 case DW_LANG_Mips_Assembler:
e142c38c 17639 cu->language = language_asm;
c906108c
SS
17640 break;
17641 case DW_LANG_Ada83:
8aaf0b47 17642 case DW_LANG_Ada95:
bc5f45f8
JB
17643 cu->language = language_ada;
17644 break;
72019c9c
GM
17645 case DW_LANG_Modula2:
17646 cu->language = language_m2;
17647 break;
fe8e67fd
PM
17648 case DW_LANG_Pascal83:
17649 cu->language = language_pascal;
17650 break;
22566fbd
DJ
17651 case DW_LANG_ObjC:
17652 cu->language = language_objc;
17653 break;
c44af4eb
TT
17654 case DW_LANG_Rust:
17655 case DW_LANG_Rust_old:
17656 cu->language = language_rust;
17657 break;
c906108c
SS
17658 case DW_LANG_Cobol74:
17659 case DW_LANG_Cobol85:
c906108c 17660 default:
e142c38c 17661 cu->language = language_minimal;
c906108c
SS
17662 break;
17663 }
e142c38c 17664 cu->language_defn = language_def (cu->language);
c906108c
SS
17665}
17666
17667/* Return the named attribute or NULL if not there. */
17668
17669static struct attribute *
e142c38c 17670dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17671{
a48e046c 17672 for (;;)
c906108c 17673 {
a48e046c
TT
17674 unsigned int i;
17675 struct attribute *spec = NULL;
17676
17677 for (i = 0; i < die->num_attrs; ++i)
17678 {
17679 if (die->attrs[i].name == name)
17680 return &die->attrs[i];
17681 if (die->attrs[i].name == DW_AT_specification
17682 || die->attrs[i].name == DW_AT_abstract_origin)
17683 spec = &die->attrs[i];
17684 }
17685
17686 if (!spec)
17687 break;
c906108c 17688
f2f0e013 17689 die = follow_die_ref (die, spec, &cu);
f2f0e013 17690 }
c5aa993b 17691
c906108c
SS
17692 return NULL;
17693}
17694
348e048f
DE
17695/* Return the named attribute or NULL if not there,
17696 but do not follow DW_AT_specification, etc.
17697 This is for use in contexts where we're reading .debug_types dies.
17698 Following DW_AT_specification, DW_AT_abstract_origin will take us
17699 back up the chain, and we want to go down. */
17700
17701static struct attribute *
45e58e77 17702dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17703{
17704 unsigned int i;
17705
17706 for (i = 0; i < die->num_attrs; ++i)
17707 if (die->attrs[i].name == name)
17708 return &die->attrs[i];
17709
17710 return NULL;
17711}
17712
7d45c7c3
KB
17713/* Return the string associated with a string-typed attribute, or NULL if it
17714 is either not found or is of an incorrect type. */
17715
17716static const char *
17717dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17718{
17719 struct attribute *attr;
17720 const char *str = NULL;
17721
17722 attr = dwarf2_attr (die, name, cu);
17723
17724 if (attr != NULL)
17725 {
43988095 17726 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
17727 || attr->form == DW_FORM_string
17728 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 17729 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17730 str = DW_STRING (attr);
17731 else
17732 complaint (&symfile_complaints,
17733 _("string type expected for attribute %s for "
17734 "DIE at 0x%x in module %s"),
9c541725 17735 dwarf_attr_name (name), to_underlying (die->sect_off),
7d45c7c3
KB
17736 objfile_name (cu->objfile));
17737 }
17738
17739 return str;
17740}
17741
05cf31d1
JB
17742/* Return non-zero iff the attribute NAME is defined for the given DIE,
17743 and holds a non-zero value. This function should only be used for
2dc7f7b3 17744 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17745
17746static int
17747dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17748{
17749 struct attribute *attr = dwarf2_attr (die, name, cu);
17750
17751 return (attr && DW_UNSND (attr));
17752}
17753
3ca72b44 17754static int
e142c38c 17755die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17756{
05cf31d1
JB
17757 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17758 which value is non-zero. However, we have to be careful with
17759 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17760 (via dwarf2_flag_true_p) follows this attribute. So we may
17761 end up accidently finding a declaration attribute that belongs
17762 to a different DIE referenced by the specification attribute,
17763 even though the given DIE does not have a declaration attribute. */
17764 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17765 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17766}
17767
63d06c5c 17768/* Return the die giving the specification for DIE, if there is
f2f0e013 17769 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17770 containing the return value on output. If there is no
17771 specification, but there is an abstract origin, that is
17772 returned. */
63d06c5c
DC
17773
17774static struct die_info *
f2f0e013 17775die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17776{
f2f0e013
DJ
17777 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17778 *spec_cu);
63d06c5c 17779
edb3359d
DJ
17780 if (spec_attr == NULL)
17781 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17782
63d06c5c
DC
17783 if (spec_attr == NULL)
17784 return NULL;
17785 else
f2f0e013 17786 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17787}
c906108c 17788
527f3840
JK
17789/* Stub for free_line_header to match void * callback types. */
17790
17791static void
17792free_line_header_voidp (void *arg)
17793{
9a3c8263 17794 struct line_header *lh = (struct line_header *) arg;
527f3840 17795
fff8551c 17796 delete lh;
527f3840
JK
17797}
17798
fff8551c
PA
17799void
17800line_header::add_include_dir (const char *include_dir)
c906108c 17801{
27e0867f 17802 if (dwarf_line_debug >= 2)
fff8551c
PA
17803 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17804 include_dirs.size () + 1, include_dir);
27e0867f 17805
fff8551c 17806 include_dirs.push_back (include_dir);
debd256d 17807}
6e70227d 17808
fff8551c
PA
17809void
17810line_header::add_file_name (const char *name,
ecfb656c 17811 dir_index d_index,
fff8551c
PA
17812 unsigned int mod_time,
17813 unsigned int length)
debd256d 17814{
27e0867f
DE
17815 if (dwarf_line_debug >= 2)
17816 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 17817 (unsigned) file_names.size () + 1, name);
27e0867f 17818
ecfb656c 17819 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 17820}
6e70227d 17821
83769d0b 17822/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17823
17824static struct dwarf2_section_info *
17825get_debug_line_section (struct dwarf2_cu *cu)
17826{
17827 struct dwarf2_section_info *section;
17828
17829 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17830 DWO file. */
17831 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17832 section = &cu->dwo_unit->dwo_file->sections.line;
17833 else if (cu->per_cu->is_dwz)
17834 {
17835 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17836
17837 section = &dwz->line;
17838 }
17839 else
17840 section = &dwarf2_per_objfile->line;
17841
17842 return section;
17843}
17844
43988095
JK
17845/* Read directory or file name entry format, starting with byte of
17846 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17847 entries count and the entries themselves in the described entry
17848 format. */
17849
17850static void
17851read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17852 struct line_header *lh,
17853 const struct comp_unit_head *cu_header,
17854 void (*callback) (struct line_header *lh,
17855 const char *name,
ecfb656c 17856 dir_index d_index,
43988095
JK
17857 unsigned int mod_time,
17858 unsigned int length))
17859{
17860 gdb_byte format_count, formati;
17861 ULONGEST data_count, datai;
17862 const gdb_byte *buf = *bufp;
17863 const gdb_byte *format_header_data;
17864 int i;
17865 unsigned int bytes_read;
17866
17867 format_count = read_1_byte (abfd, buf);
17868 buf += 1;
17869 format_header_data = buf;
17870 for (formati = 0; formati < format_count; formati++)
17871 {
17872 read_unsigned_leb128 (abfd, buf, &bytes_read);
17873 buf += bytes_read;
17874 read_unsigned_leb128 (abfd, buf, &bytes_read);
17875 buf += bytes_read;
17876 }
17877
17878 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17879 buf += bytes_read;
17880 for (datai = 0; datai < data_count; datai++)
17881 {
17882 const gdb_byte *format = format_header_data;
17883 struct file_entry fe;
17884
43988095
JK
17885 for (formati = 0; formati < format_count; formati++)
17886 {
ecfb656c 17887 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17888 format += bytes_read;
43988095 17889
ecfb656c 17890 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17891 format += bytes_read;
ecfb656c
PA
17892
17893 gdb::optional<const char *> string;
17894 gdb::optional<unsigned int> uint;
17895
43988095
JK
17896 switch (form)
17897 {
17898 case DW_FORM_string:
ecfb656c 17899 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
17900 buf += bytes_read;
17901 break;
17902
17903 case DW_FORM_line_strp:
ecfb656c
PA
17904 string.emplace (read_indirect_line_string (abfd, buf,
17905 cu_header,
17906 &bytes_read));
43988095
JK
17907 buf += bytes_read;
17908 break;
17909
17910 case DW_FORM_data1:
ecfb656c 17911 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
17912 buf += 1;
17913 break;
17914
17915 case DW_FORM_data2:
ecfb656c 17916 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
17917 buf += 2;
17918 break;
17919
17920 case DW_FORM_data4:
ecfb656c 17921 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
17922 buf += 4;
17923 break;
17924
17925 case DW_FORM_data8:
ecfb656c 17926 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
17927 buf += 8;
17928 break;
17929
17930 case DW_FORM_udata:
ecfb656c 17931 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
17932 buf += bytes_read;
17933 break;
17934
17935 case DW_FORM_block:
17936 /* It is valid only for DW_LNCT_timestamp which is ignored by
17937 current GDB. */
17938 break;
17939 }
ecfb656c
PA
17940
17941 switch (content_type)
17942 {
17943 case DW_LNCT_path:
17944 if (string.has_value ())
17945 fe.name = *string;
17946 break;
17947 case DW_LNCT_directory_index:
17948 if (uint.has_value ())
17949 fe.d_index = (dir_index) *uint;
17950 break;
17951 case DW_LNCT_timestamp:
17952 if (uint.has_value ())
17953 fe.mod_time = *uint;
17954 break;
17955 case DW_LNCT_size:
17956 if (uint.has_value ())
17957 fe.length = *uint;
17958 break;
17959 case DW_LNCT_MD5:
17960 break;
17961 default:
17962 complaint (&symfile_complaints,
17963 _("Unknown format content type %s"),
17964 pulongest (content_type));
17965 }
43988095
JK
17966 }
17967
ecfb656c 17968 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
17969 }
17970
17971 *bufp = buf;
17972}
17973
debd256d 17974/* Read the statement program header starting at OFFSET in
3019eac3 17975 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17976 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17977 Returns NULL if there is a problem reading the header, e.g., if it
17978 has a version we don't understand.
debd256d
JB
17979
17980 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17981 the returned object point into the dwarf line section buffer,
17982 and must not be freed. */
ae2de4f8 17983
fff8551c 17984static line_header_up
9c541725 17985dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 17986{
d521ce57 17987 const gdb_byte *line_ptr;
c764a876 17988 unsigned int bytes_read, offset_size;
debd256d 17989 int i;
d521ce57 17990 const char *cur_dir, *cur_file;
3019eac3
DE
17991 struct dwarf2_section_info *section;
17992 bfd *abfd;
17993
36586728 17994 section = get_debug_line_section (cu);
3019eac3
DE
17995 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17996 if (section->buffer == NULL)
debd256d 17997 {
3019eac3
DE
17998 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17999 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18000 else
18001 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
18002 return 0;
18003 }
18004
fceca515
DE
18005 /* We can't do this until we know the section is non-empty.
18006 Only then do we know we have such a section. */
a32a8923 18007 abfd = get_section_bfd_owner (section);
fceca515 18008
a738430d
MK
18009 /* Make sure that at least there's room for the total_length field.
18010 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 18011 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 18012 {
4d3c2250 18013 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
18014 return 0;
18015 }
18016
fff8551c 18017 line_header_up lh (new line_header ());
debd256d 18018
9c541725 18019 lh->sect_off = sect_off;
527f3840
JK
18020 lh->offset_in_dwz = cu->per_cu->is_dwz;
18021
9c541725 18022 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 18023
a738430d 18024 /* Read in the header. */
6e70227d 18025 lh->total_length =
c764a876
DE
18026 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18027 &bytes_read, &offset_size);
debd256d 18028 line_ptr += bytes_read;
3019eac3 18029 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 18030 {
4d3c2250 18031 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
18032 return 0;
18033 }
18034 lh->statement_program_end = line_ptr + lh->total_length;
18035 lh->version = read_2_bytes (abfd, line_ptr);
18036 line_ptr += 2;
43988095 18037 if (lh->version > 5)
cd366ee8
DE
18038 {
18039 /* This is a version we don't understand. The format could have
18040 changed in ways we don't handle properly so just punt. */
18041 complaint (&symfile_complaints,
18042 _("unsupported version in .debug_line section"));
18043 return NULL;
18044 }
43988095
JK
18045 if (lh->version >= 5)
18046 {
18047 gdb_byte segment_selector_size;
18048
18049 /* Skip address size. */
18050 read_1_byte (abfd, line_ptr);
18051 line_ptr += 1;
18052
18053 segment_selector_size = read_1_byte (abfd, line_ptr);
18054 line_ptr += 1;
18055 if (segment_selector_size != 0)
18056 {
18057 complaint (&symfile_complaints,
18058 _("unsupported segment selector size %u "
18059 "in .debug_line section"),
18060 segment_selector_size);
18061 return NULL;
18062 }
18063 }
c764a876
DE
18064 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18065 line_ptr += offset_size;
debd256d
JB
18066 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18067 line_ptr += 1;
2dc7f7b3
TT
18068 if (lh->version >= 4)
18069 {
18070 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18071 line_ptr += 1;
18072 }
18073 else
18074 lh->maximum_ops_per_instruction = 1;
18075
18076 if (lh->maximum_ops_per_instruction == 0)
18077 {
18078 lh->maximum_ops_per_instruction = 1;
18079 complaint (&symfile_complaints,
3e43a32a
MS
18080 _("invalid maximum_ops_per_instruction "
18081 "in `.debug_line' section"));
2dc7f7b3
TT
18082 }
18083
debd256d
JB
18084 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18085 line_ptr += 1;
18086 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18087 line_ptr += 1;
18088 lh->line_range = read_1_byte (abfd, line_ptr);
18089 line_ptr += 1;
18090 lh->opcode_base = read_1_byte (abfd, line_ptr);
18091 line_ptr += 1;
fff8551c 18092 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
18093
18094 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18095 for (i = 1; i < lh->opcode_base; ++i)
18096 {
18097 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18098 line_ptr += 1;
18099 }
18100
43988095 18101 if (lh->version >= 5)
debd256d 18102 {
43988095 18103 /* Read directory table. */
fff8551c
PA
18104 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18105 [] (struct line_header *lh, const char *name,
ecfb656c 18106 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18107 unsigned int length)
18108 {
18109 lh->add_include_dir (name);
18110 });
debd256d 18111
43988095 18112 /* Read file name table. */
fff8551c
PA
18113 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18114 [] (struct line_header *lh, const char *name,
ecfb656c 18115 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18116 unsigned int length)
18117 {
ecfb656c 18118 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 18119 });
43988095
JK
18120 }
18121 else
debd256d 18122 {
43988095
JK
18123 /* Read directory table. */
18124 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18125 {
18126 line_ptr += bytes_read;
fff8551c 18127 lh->add_include_dir (cur_dir);
43988095 18128 }
debd256d
JB
18129 line_ptr += bytes_read;
18130
43988095
JK
18131 /* Read file name table. */
18132 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18133 {
ecfb656c
PA
18134 unsigned int mod_time, length;
18135 dir_index d_index;
43988095
JK
18136
18137 line_ptr += bytes_read;
ecfb656c 18138 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
18139 line_ptr += bytes_read;
18140 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18141 line_ptr += bytes_read;
18142 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18143 line_ptr += bytes_read;
18144
ecfb656c 18145 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
18146 }
18147 line_ptr += bytes_read;
debd256d 18148 }
6e70227d 18149 lh->statement_program_start = line_ptr;
debd256d 18150
3019eac3 18151 if (line_ptr > (section->buffer + section->size))
4d3c2250 18152 complaint (&symfile_complaints,
3e43a32a
MS
18153 _("line number info header doesn't "
18154 "fit in `.debug_line' section"));
debd256d 18155
debd256d
JB
18156 return lh;
18157}
c906108c 18158
c6da4cef
DE
18159/* Subroutine of dwarf_decode_lines to simplify it.
18160 Return the file name of the psymtab for included file FILE_INDEX
18161 in line header LH of PST.
18162 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18163 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
18164 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18165
18166 The function creates dangling cleanup registration. */
c6da4cef 18167
d521ce57 18168static const char *
c6da4cef
DE
18169psymtab_include_file_name (const struct line_header *lh, int file_index,
18170 const struct partial_symtab *pst,
18171 const char *comp_dir)
18172{
8c43009f 18173 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
18174 const char *include_name = fe.name;
18175 const char *include_name_to_compare = include_name;
72b9f47f
TT
18176 const char *pst_filename;
18177 char *copied_name = NULL;
c6da4cef
DE
18178 int file_is_pst;
18179
8c43009f 18180 const char *dir_name = fe.include_dir (lh);
c6da4cef
DE
18181
18182 if (!IS_ABSOLUTE_PATH (include_name)
18183 && (dir_name != NULL || comp_dir != NULL))
18184 {
18185 /* Avoid creating a duplicate psymtab for PST.
18186 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18187 Before we do the comparison, however, we need to account
18188 for DIR_NAME and COMP_DIR.
18189 First prepend dir_name (if non-NULL). If we still don't
18190 have an absolute path prepend comp_dir (if non-NULL).
18191 However, the directory we record in the include-file's
18192 psymtab does not contain COMP_DIR (to match the
18193 corresponding symtab(s)).
18194
18195 Example:
18196
18197 bash$ cd /tmp
18198 bash$ gcc -g ./hello.c
18199 include_name = "hello.c"
18200 dir_name = "."
18201 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18202 DW_AT_name = "./hello.c"
18203
18204 */
c6da4cef
DE
18205
18206 if (dir_name != NULL)
18207 {
d521ce57
TT
18208 char *tem = concat (dir_name, SLASH_STRING,
18209 include_name, (char *)NULL);
18210
18211 make_cleanup (xfree, tem);
18212 include_name = tem;
c6da4cef 18213 include_name_to_compare = include_name;
c6da4cef
DE
18214 }
18215 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18216 {
d521ce57
TT
18217 char *tem = concat (comp_dir, SLASH_STRING,
18218 include_name, (char *)NULL);
18219
18220 make_cleanup (xfree, tem);
18221 include_name_to_compare = tem;
c6da4cef
DE
18222 }
18223 }
18224
18225 pst_filename = pst->filename;
18226 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18227 {
72b9f47f
TT
18228 copied_name = concat (pst->dirname, SLASH_STRING,
18229 pst_filename, (char *)NULL);
18230 pst_filename = copied_name;
c6da4cef
DE
18231 }
18232
1e3fad37 18233 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18234
72b9f47f
TT
18235 if (copied_name != NULL)
18236 xfree (copied_name);
c6da4cef
DE
18237
18238 if (file_is_pst)
18239 return NULL;
18240 return include_name;
18241}
18242
d9b3de22
DE
18243/* State machine to track the state of the line number program. */
18244
6f77053d 18245class lnp_state_machine
d9b3de22 18246{
6f77053d
PA
18247public:
18248 /* Initialize a machine state for the start of a line number
18249 program. */
18250 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18251
8c43009f
PA
18252 file_entry *current_file ()
18253 {
18254 /* lh->file_names is 0-based, but the file name numbers in the
18255 statement program are 1-based. */
6f77053d
PA
18256 return m_line_header->file_name_at (m_file);
18257 }
18258
18259 /* Record the line in the state machine. END_SEQUENCE is true if
18260 we're processing the end of a sequence. */
18261 void record_line (bool end_sequence);
18262
18263 /* Check address and if invalid nop-out the rest of the lines in this
18264 sequence. */
18265 void check_line_address (struct dwarf2_cu *cu,
18266 const gdb_byte *line_ptr,
18267 CORE_ADDR lowpc, CORE_ADDR address);
18268
18269 void handle_set_discriminator (unsigned int discriminator)
18270 {
18271 m_discriminator = discriminator;
18272 m_line_has_non_zero_discriminator |= discriminator != 0;
18273 }
18274
18275 /* Handle DW_LNE_set_address. */
18276 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18277 {
18278 m_op_index = 0;
18279 address += baseaddr;
18280 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18281 }
18282
18283 /* Handle DW_LNS_advance_pc. */
18284 void handle_advance_pc (CORE_ADDR adjust);
18285
18286 /* Handle a special opcode. */
18287 void handle_special_opcode (unsigned char op_code);
18288
18289 /* Handle DW_LNS_advance_line. */
18290 void handle_advance_line (int line_delta)
18291 {
18292 advance_line (line_delta);
18293 }
18294
18295 /* Handle DW_LNS_set_file. */
18296 void handle_set_file (file_name_index file);
18297
18298 /* Handle DW_LNS_negate_stmt. */
18299 void handle_negate_stmt ()
18300 {
18301 m_is_stmt = !m_is_stmt;
18302 }
18303
18304 /* Handle DW_LNS_const_add_pc. */
18305 void handle_const_add_pc ();
18306
18307 /* Handle DW_LNS_fixed_advance_pc. */
18308 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18309 {
18310 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18311 m_op_index = 0;
18312 }
18313
18314 /* Handle DW_LNS_copy. */
18315 void handle_copy ()
18316 {
18317 record_line (false);
18318 m_discriminator = 0;
18319 }
18320
18321 /* Handle DW_LNE_end_sequence. */
18322 void handle_end_sequence ()
18323 {
18324 m_record_line_callback = ::record_line;
18325 }
18326
18327private:
18328 /* Advance the line by LINE_DELTA. */
18329 void advance_line (int line_delta)
18330 {
18331 m_line += line_delta;
18332
18333 if (line_delta != 0)
18334 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
18335 }
18336
6f77053d
PA
18337 gdbarch *m_gdbarch;
18338
18339 /* True if we're recording lines.
18340 Otherwise we're building partial symtabs and are just interested in
18341 finding include files mentioned by the line number program. */
18342 bool m_record_lines_p;
18343
8c43009f 18344 /* The line number header. */
6f77053d 18345 line_header *m_line_header;
8c43009f 18346
6f77053d
PA
18347 /* These are part of the standard DWARF line number state machine,
18348 and initialized according to the DWARF spec. */
d9b3de22 18349
6f77053d 18350 unsigned char m_op_index = 0;
8c43009f 18351 /* The line table index (1-based) of the current file. */
6f77053d
PA
18352 file_name_index m_file = (file_name_index) 1;
18353 unsigned int m_line = 1;
18354
18355 /* These are initialized in the constructor. */
18356
18357 CORE_ADDR m_address;
18358 bool m_is_stmt;
18359 unsigned int m_discriminator;
d9b3de22
DE
18360
18361 /* Additional bits of state we need to track. */
18362
18363 /* The last file that we called dwarf2_start_subfile for.
18364 This is only used for TLLs. */
6f77053d 18365 unsigned int m_last_file = 0;
d9b3de22 18366 /* The last file a line number was recorded for. */
6f77053d 18367 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
18368
18369 /* The function to call to record a line. */
6f77053d 18370 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
18371
18372 /* The last line number that was recorded, used to coalesce
18373 consecutive entries for the same line. This can happen, for
18374 example, when discriminators are present. PR 17276. */
6f77053d
PA
18375 unsigned int m_last_line = 0;
18376 bool m_line_has_non_zero_discriminator = false;
8c43009f 18377};
d9b3de22 18378
6f77053d
PA
18379void
18380lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18381{
18382 CORE_ADDR addr_adj = (((m_op_index + adjust)
18383 / m_line_header->maximum_ops_per_instruction)
18384 * m_line_header->minimum_instruction_length);
18385 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18386 m_op_index = ((m_op_index + adjust)
18387 % m_line_header->maximum_ops_per_instruction);
18388}
d9b3de22 18389
6f77053d
PA
18390void
18391lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 18392{
6f77053d
PA
18393 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18394 CORE_ADDR addr_adj = (((m_op_index
18395 + (adj_opcode / m_line_header->line_range))
18396 / m_line_header->maximum_ops_per_instruction)
18397 * m_line_header->minimum_instruction_length);
18398 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18399 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18400 % m_line_header->maximum_ops_per_instruction);
d9b3de22 18401
6f77053d
PA
18402 int line_delta = (m_line_header->line_base
18403 + (adj_opcode % m_line_header->line_range));
18404 advance_line (line_delta);
18405 record_line (false);
18406 m_discriminator = 0;
18407}
d9b3de22 18408
6f77053d
PA
18409void
18410lnp_state_machine::handle_set_file (file_name_index file)
18411{
18412 m_file = file;
18413
18414 const file_entry *fe = current_file ();
18415 if (fe == NULL)
18416 dwarf2_debug_line_missing_file_complaint ();
18417 else if (m_record_lines_p)
18418 {
18419 const char *dir = fe->include_dir (m_line_header);
18420
18421 m_last_subfile = current_subfile;
18422 m_line_has_non_zero_discriminator = m_discriminator != 0;
18423 dwarf2_start_subfile (fe->name, dir);
18424 }
18425}
18426
18427void
18428lnp_state_machine::handle_const_add_pc ()
18429{
18430 CORE_ADDR adjust
18431 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18432
18433 CORE_ADDR addr_adj
18434 = (((m_op_index + adjust)
18435 / m_line_header->maximum_ops_per_instruction)
18436 * m_line_header->minimum_instruction_length);
18437
18438 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18439 m_op_index = ((m_op_index + adjust)
18440 % m_line_header->maximum_ops_per_instruction);
18441}
d9b3de22 18442
c91513d8
PP
18443/* Ignore this record_line request. */
18444
18445static void
18446noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18447{
18448 return;
18449}
18450
a05a36a5
DE
18451/* Return non-zero if we should add LINE to the line number table.
18452 LINE is the line to add, LAST_LINE is the last line that was added,
18453 LAST_SUBFILE is the subfile for LAST_LINE.
18454 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18455 had a non-zero discriminator.
18456
18457 We have to be careful in the presence of discriminators.
18458 E.g., for this line:
18459
18460 for (i = 0; i < 100000; i++);
18461
18462 clang can emit four line number entries for that one line,
18463 each with a different discriminator.
18464 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18465
18466 However, we want gdb to coalesce all four entries into one.
18467 Otherwise the user could stepi into the middle of the line and
18468 gdb would get confused about whether the pc really was in the
18469 middle of the line.
18470
18471 Things are further complicated by the fact that two consecutive
18472 line number entries for the same line is a heuristic used by gcc
18473 to denote the end of the prologue. So we can't just discard duplicate
18474 entries, we have to be selective about it. The heuristic we use is
18475 that we only collapse consecutive entries for the same line if at least
18476 one of those entries has a non-zero discriminator. PR 17276.
18477
18478 Note: Addresses in the line number state machine can never go backwards
18479 within one sequence, thus this coalescing is ok. */
18480
18481static int
18482dwarf_record_line_p (unsigned int line, unsigned int last_line,
18483 int line_has_non_zero_discriminator,
18484 struct subfile *last_subfile)
18485{
18486 if (current_subfile != last_subfile)
18487 return 1;
18488 if (line != last_line)
18489 return 1;
18490 /* Same line for the same file that we've seen already.
18491 As a last check, for pr 17276, only record the line if the line
18492 has never had a non-zero discriminator. */
18493 if (!line_has_non_zero_discriminator)
18494 return 1;
18495 return 0;
18496}
18497
252a6764
DE
18498/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18499 in the line table of subfile SUBFILE. */
18500
18501static void
d9b3de22
DE
18502dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18503 unsigned int line, CORE_ADDR address,
18504 record_line_ftype p_record_line)
252a6764
DE
18505{
18506 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18507
27e0867f
DE
18508 if (dwarf_line_debug)
18509 {
18510 fprintf_unfiltered (gdb_stdlog,
18511 "Recording line %u, file %s, address %s\n",
18512 line, lbasename (subfile->name),
18513 paddress (gdbarch, address));
18514 }
18515
d5962de5 18516 (*p_record_line) (subfile, line, addr);
252a6764
DE
18517}
18518
18519/* Subroutine of dwarf_decode_lines_1 to simplify it.
18520 Mark the end of a set of line number records.
d9b3de22 18521 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18522 If SUBFILE is NULL the request is ignored. */
18523
18524static void
18525dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18526 CORE_ADDR address, record_line_ftype p_record_line)
18527{
27e0867f
DE
18528 if (subfile == NULL)
18529 return;
18530
18531 if (dwarf_line_debug)
18532 {
18533 fprintf_unfiltered (gdb_stdlog,
18534 "Finishing current line, file %s, address %s\n",
18535 lbasename (subfile->name),
18536 paddress (gdbarch, address));
18537 }
18538
d9b3de22
DE
18539 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18540}
18541
6f77053d
PA
18542void
18543lnp_state_machine::record_line (bool end_sequence)
d9b3de22 18544{
d9b3de22
DE
18545 if (dwarf_line_debug)
18546 {
18547 fprintf_unfiltered (gdb_stdlog,
18548 "Processing actual line %u: file %u,"
18549 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
18550 m_line, to_underlying (m_file),
18551 paddress (m_gdbarch, m_address),
18552 m_is_stmt, m_discriminator);
d9b3de22
DE
18553 }
18554
6f77053d 18555 file_entry *fe = current_file ();
8c43009f
PA
18556
18557 if (fe == NULL)
d9b3de22
DE
18558 dwarf2_debug_line_missing_file_complaint ();
18559 /* For now we ignore lines not starting on an instruction boundary.
18560 But not when processing end_sequence for compatibility with the
18561 previous version of the code. */
6f77053d 18562 else if (m_op_index == 0 || end_sequence)
d9b3de22 18563 {
8c43009f 18564 fe->included_p = 1;
6f77053d 18565 if (m_record_lines_p && m_is_stmt)
d9b3de22 18566 {
6f77053d 18567 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 18568 {
6f77053d
PA
18569 dwarf_finish_line (m_gdbarch, m_last_subfile,
18570 m_address, m_record_line_callback);
d9b3de22
DE
18571 }
18572
18573 if (!end_sequence)
18574 {
6f77053d
PA
18575 if (dwarf_record_line_p (m_line, m_last_line,
18576 m_line_has_non_zero_discriminator,
18577 m_last_subfile))
d9b3de22 18578 {
6f77053d
PA
18579 dwarf_record_line_1 (m_gdbarch, current_subfile,
18580 m_line, m_address,
18581 m_record_line_callback);
d9b3de22 18582 }
6f77053d
PA
18583 m_last_subfile = current_subfile;
18584 m_last_line = m_line;
d9b3de22
DE
18585 }
18586 }
18587 }
18588}
18589
6f77053d
PA
18590lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18591 bool record_lines_p)
d9b3de22 18592{
6f77053d
PA
18593 m_gdbarch = arch;
18594 m_record_lines_p = record_lines_p;
18595 m_line_header = lh;
d9b3de22 18596
6f77053d 18597 m_record_line_callback = ::record_line;
d9b3de22 18598
d9b3de22
DE
18599 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18600 was a line entry for it so that the backend has a chance to adjust it
18601 and also record it in case it needs it. This is currently used by MIPS
18602 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
18603 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18604 m_is_stmt = lh->default_is_stmt;
18605 m_discriminator = 0;
252a6764
DE
18606}
18607
6f77053d
PA
18608void
18609lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18610 const gdb_byte *line_ptr,
18611 CORE_ADDR lowpc, CORE_ADDR address)
924c2928
DE
18612{
18613 /* If address < lowpc then it's not a usable value, it's outside the
18614 pc range of the CU. However, we restrict the test to only address
18615 values of zero to preserve GDB's previous behaviour which is to
18616 handle the specific case of a function being GC'd by the linker. */
18617
18618 if (address == 0 && address < lowpc)
18619 {
18620 /* This line table is for a function which has been
18621 GCd by the linker. Ignore it. PR gdb/12528 */
18622
18623 struct objfile *objfile = cu->objfile;
18624 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18625
18626 complaint (&symfile_complaints,
18627 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18628 line_offset, objfile_name (objfile));
6f77053d
PA
18629 m_record_line_callback = noop_record_line;
18630 /* Note: record_line_callback is left as noop_record_line until
18631 we see DW_LNE_end_sequence. */
924c2928
DE
18632 }
18633}
18634
f3f5162e 18635/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18636 Process the line number information in LH.
18637 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18638 program in order to set included_p for every referenced header. */
debd256d 18639
c906108c 18640static void
43f3e411
DE
18641dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18642 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18643{
d521ce57
TT
18644 const gdb_byte *line_ptr, *extended_end;
18645 const gdb_byte *line_end;
a8c50c1f 18646 unsigned int bytes_read, extended_len;
699ca60a 18647 unsigned char op_code, extended_op;
e142c38c
DJ
18648 CORE_ADDR baseaddr;
18649 struct objfile *objfile = cu->objfile;
f3f5162e 18650 bfd *abfd = objfile->obfd;
fbf65064 18651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
18652 /* True if we're recording line info (as opposed to building partial
18653 symtabs and just interested in finding include files mentioned by
18654 the line number program). */
18655 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
18656
18657 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18658
debd256d
JB
18659 line_ptr = lh->statement_program_start;
18660 line_end = lh->statement_program_end;
c906108c
SS
18661
18662 /* Read the statement sequences until there's nothing left. */
18663 while (line_ptr < line_end)
18664 {
6f77053d
PA
18665 /* The DWARF line number program state machine. Reset the state
18666 machine at the start of each sequence. */
18667 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18668 bool end_sequence = false;
d9b3de22 18669
8c43009f 18670 if (record_lines_p)
c906108c 18671 {
8c43009f
PA
18672 /* Start a subfile for the current file of the state
18673 machine. */
18674 const file_entry *fe = state_machine.current_file ();
18675
18676 if (fe != NULL)
18677 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
18678 }
18679
a738430d 18680 /* Decode the table. */
d9b3de22 18681 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18682 {
18683 op_code = read_1_byte (abfd, line_ptr);
18684 line_ptr += 1;
9aa1fe7e 18685
debd256d 18686 if (op_code >= lh->opcode_base)
6e70227d 18687 {
8e07a239 18688 /* Special opcode. */
6f77053d 18689 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
18690 }
18691 else switch (op_code)
c906108c
SS
18692 {
18693 case DW_LNS_extended_op:
3e43a32a
MS
18694 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18695 &bytes_read);
473b7be6 18696 line_ptr += bytes_read;
a8c50c1f 18697 extended_end = line_ptr + extended_len;
c906108c
SS
18698 extended_op = read_1_byte (abfd, line_ptr);
18699 line_ptr += 1;
18700 switch (extended_op)
18701 {
18702 case DW_LNE_end_sequence:
6f77053d
PA
18703 state_machine.handle_end_sequence ();
18704 end_sequence = true;
c906108c
SS
18705 break;
18706 case DW_LNE_set_address:
d9b3de22
DE
18707 {
18708 CORE_ADDR address
18709 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 18710 line_ptr += bytes_read;
6f77053d
PA
18711
18712 state_machine.check_line_address (cu, line_ptr,
18713 lowpc, address);
18714 state_machine.handle_set_address (baseaddr, address);
d9b3de22 18715 }
c906108c
SS
18716 break;
18717 case DW_LNE_define_file:
debd256d 18718 {
d521ce57 18719 const char *cur_file;
ecfb656c
PA
18720 unsigned int mod_time, length;
18721 dir_index dindex;
6e70227d 18722
3e43a32a
MS
18723 cur_file = read_direct_string (abfd, line_ptr,
18724 &bytes_read);
debd256d 18725 line_ptr += bytes_read;
ecfb656c 18726 dindex = (dir_index)
debd256d
JB
18727 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18728 line_ptr += bytes_read;
18729 mod_time =
18730 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18731 line_ptr += bytes_read;
18732 length =
18733 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18734 line_ptr += bytes_read;
ecfb656c 18735 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 18736 }
c906108c 18737 break;
d0c6ba3d 18738 case DW_LNE_set_discriminator:
6f77053d
PA
18739 {
18740 /* The discriminator is not interesting to the
18741 debugger; just ignore it. We still need to
18742 check its value though:
18743 if there are consecutive entries for the same
18744 (non-prologue) line we want to coalesce them.
18745 PR 17276. */
18746 unsigned int discr
18747 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18748 line_ptr += bytes_read;
18749
18750 state_machine.handle_set_discriminator (discr);
18751 }
d0c6ba3d 18752 break;
c906108c 18753 default:
4d3c2250 18754 complaint (&symfile_complaints,
e2e0b3e5 18755 _("mangled .debug_line section"));
debd256d 18756 return;
c906108c 18757 }
a8c50c1f
DJ
18758 /* Make sure that we parsed the extended op correctly. If e.g.
18759 we expected a different address size than the producer used,
18760 we may have read the wrong number of bytes. */
18761 if (line_ptr != extended_end)
18762 {
18763 complaint (&symfile_complaints,
18764 _("mangled .debug_line section"));
18765 return;
18766 }
c906108c
SS
18767 break;
18768 case DW_LNS_copy:
6f77053d 18769 state_machine.handle_copy ();
c906108c
SS
18770 break;
18771 case DW_LNS_advance_pc:
2dc7f7b3
TT
18772 {
18773 CORE_ADDR adjust
18774 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 18775 line_ptr += bytes_read;
6f77053d
PA
18776
18777 state_machine.handle_advance_pc (adjust);
2dc7f7b3 18778 }
c906108c
SS
18779 break;
18780 case DW_LNS_advance_line:
a05a36a5
DE
18781 {
18782 int line_delta
18783 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 18784 line_ptr += bytes_read;
6f77053d
PA
18785
18786 state_machine.handle_advance_line (line_delta);
a05a36a5 18787 }
c906108c
SS
18788 break;
18789 case DW_LNS_set_file:
d9b3de22 18790 {
6f77053d 18791 file_name_index file
ecfb656c
PA
18792 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18793 &bytes_read);
d9b3de22 18794 line_ptr += bytes_read;
8c43009f 18795
6f77053d 18796 state_machine.handle_set_file (file);
d9b3de22 18797 }
c906108c
SS
18798 break;
18799 case DW_LNS_set_column:
0ad93d4f 18800 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18801 line_ptr += bytes_read;
18802 break;
18803 case DW_LNS_negate_stmt:
6f77053d 18804 state_machine.handle_negate_stmt ();
c906108c
SS
18805 break;
18806 case DW_LNS_set_basic_block:
c906108c 18807 break;
c2c6d25f
JM
18808 /* Add to the address register of the state machine the
18809 address increment value corresponding to special opcode
a738430d
MK
18810 255. I.e., this value is scaled by the minimum
18811 instruction length since special opcode 255 would have
b021a221 18812 scaled the increment. */
c906108c 18813 case DW_LNS_const_add_pc:
6f77053d 18814 state_machine.handle_const_add_pc ();
c906108c
SS
18815 break;
18816 case DW_LNS_fixed_advance_pc:
3e29f34a 18817 {
6f77053d 18818 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 18819 line_ptr += 2;
6f77053d
PA
18820
18821 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 18822 }
c906108c 18823 break;
9aa1fe7e 18824 default:
a738430d
MK
18825 {
18826 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18827 int i;
a738430d 18828
debd256d 18829 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18830 {
18831 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18832 line_ptr += bytes_read;
18833 }
18834 }
c906108c
SS
18835 }
18836 }
d9b3de22
DE
18837
18838 if (!end_sequence)
18839 dwarf2_debug_line_missing_end_sequence_complaint ();
18840
18841 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18842 in which case we still finish recording the last line). */
6f77053d 18843 state_machine.record_line (true);
c906108c 18844 }
f3f5162e
DE
18845}
18846
18847/* Decode the Line Number Program (LNP) for the given line_header
18848 structure and CU. The actual information extracted and the type
18849 of structures created from the LNP depends on the value of PST.
18850
18851 1. If PST is NULL, then this procedure uses the data from the program
18852 to create all necessary symbol tables, and their linetables.
18853
18854 2. If PST is not NULL, this procedure reads the program to determine
18855 the list of files included by the unit represented by PST, and
18856 builds all the associated partial symbol tables.
18857
18858 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18859 It is used for relative paths in the line table.
18860 NOTE: When processing partial symtabs (pst != NULL),
18861 comp_dir == pst->dirname.
18862
18863 NOTE: It is important that psymtabs have the same file name (via strcmp)
18864 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18865 symtab we don't use it in the name of the psymtabs we create.
18866 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18867 A good testcase for this is mb-inline.exp.
18868
527f3840
JK
18869 LOWPC is the lowest address in CU (or 0 if not known).
18870
18871 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18872 for its PC<->lines mapping information. Otherwise only the filename
18873 table is read in. */
f3f5162e
DE
18874
18875static void
18876dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18877 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18878 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18879{
18880 struct objfile *objfile = cu->objfile;
18881 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18882
527f3840
JK
18883 if (decode_mapping)
18884 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18885
18886 if (decode_for_pst_p)
18887 {
18888 int file_index;
18889
18890 /* Now that we're done scanning the Line Header Program, we can
18891 create the psymtab of each included file. */
fff8551c 18892 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
18893 if (lh->file_names[file_index].included_p == 1)
18894 {
d521ce57 18895 const char *include_name =
c6da4cef
DE
18896 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18897 if (include_name != NULL)
aaa75496
JB
18898 dwarf2_create_include_psymtab (include_name, pst, objfile);
18899 }
18900 }
cb1df416
DJ
18901 else
18902 {
18903 /* Make sure a symtab is created for every file, even files
18904 which contain only variables (i.e. no code with associated
18905 line numbers). */
43f3e411 18906 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18907 int i;
cb1df416 18908
fff8551c 18909 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 18910 {
8c43009f 18911 file_entry &fe = lh->file_names[i];
9a619af0 18912
8c43009f 18913 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 18914
cb1df416 18915 if (current_subfile->symtab == NULL)
43f3e411
DE
18916 {
18917 current_subfile->symtab
18918 = allocate_symtab (cust, current_subfile->name);
18919 }
8c43009f 18920 fe.symtab = current_subfile->symtab;
cb1df416
DJ
18921 }
18922 }
c906108c
SS
18923}
18924
18925/* Start a subfile for DWARF. FILENAME is the name of the file and
18926 DIRNAME the name of the source directory which contains FILENAME
4d663531 18927 or NULL if not known.
c906108c
SS
18928 This routine tries to keep line numbers from identical absolute and
18929 relative file names in a common subfile.
18930
18931 Using the `list' example from the GDB testsuite, which resides in
18932 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18933 of /srcdir/list0.c yields the following debugging information for list0.c:
18934
c5aa993b 18935 DW_AT_name: /srcdir/list0.c
4d663531 18936 DW_AT_comp_dir: /compdir
357e46e7 18937 files.files[0].name: list0.h
c5aa993b 18938 files.files[0].dir: /srcdir
357e46e7 18939 files.files[1].name: list0.c
c5aa993b 18940 files.files[1].dir: /srcdir
c906108c
SS
18941
18942 The line number information for list0.c has to end up in a single
4f1520fb
FR
18943 subfile, so that `break /srcdir/list0.c:1' works as expected.
18944 start_subfile will ensure that this happens provided that we pass the
18945 concatenation of files.files[1].dir and files.files[1].name as the
18946 subfile's name. */
c906108c
SS
18947
18948static void
4d663531 18949dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18950{
d521ce57 18951 char *copy = NULL;
4f1520fb 18952
4d663531 18953 /* In order not to lose the line information directory,
4f1520fb
FR
18954 we concatenate it to the filename when it makes sense.
18955 Note that the Dwarf3 standard says (speaking of filenames in line
18956 information): ``The directory index is ignored for file names
18957 that represent full path names''. Thus ignoring dirname in the
18958 `else' branch below isn't an issue. */
c906108c 18959
d5166ae1 18960 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18961 {
18962 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18963 filename = copy;
18964 }
c906108c 18965
4d663531 18966 start_subfile (filename);
4f1520fb 18967
d521ce57
TT
18968 if (copy != NULL)
18969 xfree (copy);
c906108c
SS
18970}
18971
f4dc4d17
DE
18972/* Start a symtab for DWARF.
18973 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18974
43f3e411 18975static struct compunit_symtab *
f4dc4d17 18976dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18977 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18978{
43f3e411
DE
18979 struct compunit_symtab *cust
18980 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18981
f4dc4d17
DE
18982 record_debugformat ("DWARF 2");
18983 record_producer (cu->producer);
18984
18985 /* We assume that we're processing GCC output. */
18986 processing_gcc_compilation = 2;
18987
4d4ec4e5 18988 cu->processing_has_namespace_info = 0;
43f3e411
DE
18989
18990 return cust;
f4dc4d17
DE
18991}
18992
4c2df51b
DJ
18993static void
18994var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18995 struct dwarf2_cu *cu)
4c2df51b 18996{
e7c27a73
DJ
18997 struct objfile *objfile = cu->objfile;
18998 struct comp_unit_head *cu_header = &cu->header;
18999
4c2df51b
DJ
19000 /* NOTE drow/2003-01-30: There used to be a comment and some special
19001 code here to turn a symbol with DW_AT_external and a
19002 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19003 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19004 with some versions of binutils) where shared libraries could have
19005 relocations against symbols in their debug information - the
19006 minimal symbol would have the right address, but the debug info
19007 would not. It's no longer necessary, because we will explicitly
19008 apply relocations when we read in the debug information now. */
19009
19010 /* A DW_AT_location attribute with no contents indicates that a
19011 variable has been optimized away. */
19012 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19013 {
f1e6e072 19014 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
19015 return;
19016 }
19017
19018 /* Handle one degenerate form of location expression specially, to
19019 preserve GDB's previous behavior when section offsets are
3019eac3
DE
19020 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19021 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
19022
19023 if (attr_form_is_block (attr)
3019eac3
DE
19024 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19025 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19026 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19027 && (DW_BLOCK (attr)->size
19028 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 19029 {
891d2f0b 19030 unsigned int dummy;
4c2df51b 19031
3019eac3
DE
19032 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19033 SYMBOL_VALUE_ADDRESS (sym) =
19034 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19035 else
19036 SYMBOL_VALUE_ADDRESS (sym) =
19037 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 19038 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
19039 fixup_symbol_section (sym, objfile);
19040 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19041 SYMBOL_SECTION (sym));
4c2df51b
DJ
19042 return;
19043 }
19044
19045 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19046 expression evaluator, and use LOC_COMPUTED only when necessary
19047 (i.e. when the value of a register or memory location is
19048 referenced, or a thread-local block, etc.). Then again, it might
19049 not be worthwhile. I'm assuming that it isn't unless performance
19050 or memory numbers show me otherwise. */
19051
f1e6e072 19052 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 19053
f1e6e072 19054 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 19055 cu->has_loclist = 1;
4c2df51b
DJ
19056}
19057
c906108c
SS
19058/* Given a pointer to a DWARF information entry, figure out if we need
19059 to make a symbol table entry for it, and if so, create a new entry
19060 and return a pointer to it.
19061 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
19062 used the passed type.
19063 If SPACE is not NULL, use it to hold the new symbol. If it is
19064 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
19065
19066static struct symbol *
34eaf542
TT
19067new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19068 struct symbol *space)
c906108c 19069{
e7c27a73 19070 struct objfile *objfile = cu->objfile;
3e29f34a 19071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 19072 struct symbol *sym = NULL;
15d034d0 19073 const char *name;
c906108c
SS
19074 struct attribute *attr = NULL;
19075 struct attribute *attr2 = NULL;
e142c38c 19076 CORE_ADDR baseaddr;
e37fd15a
SW
19077 struct pending **list_to_add = NULL;
19078
edb3359d 19079 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
19080
19081 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 19082
94af9270 19083 name = dwarf2_name (die, cu);
c906108c
SS
19084 if (name)
19085 {
94af9270 19086 const char *linkagename;
34eaf542 19087 int suppress_add = 0;
94af9270 19088
34eaf542
TT
19089 if (space)
19090 sym = space;
19091 else
e623cf5d 19092 sym = allocate_symbol (objfile);
c906108c 19093 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
19094
19095 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 19096 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
19097 linkagename = dwarf2_physname (name, die, cu);
19098 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 19099
f55ee35c
JK
19100 /* Fortran does not have mangling standard and the mangling does differ
19101 between gfortran, iFort etc. */
19102 if (cu->language == language_fortran
b250c185 19103 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 19104 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 19105 dwarf2_full_name (name, die, cu),
29df156d 19106 NULL);
f55ee35c 19107
c906108c 19108 /* Default assumptions.
c5aa993b 19109 Use the passed type or decode it from the die. */
176620f1 19110 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 19111 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
19112 if (type != NULL)
19113 SYMBOL_TYPE (sym) = type;
19114 else
e7c27a73 19115 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
19116 attr = dwarf2_attr (die,
19117 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19118 cu);
c906108c
SS
19119 if (attr)
19120 {
19121 SYMBOL_LINE (sym) = DW_UNSND (attr);
19122 }
cb1df416 19123
edb3359d
DJ
19124 attr = dwarf2_attr (die,
19125 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19126 cu);
cb1df416
DJ
19127 if (attr)
19128 {
ecfb656c 19129 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 19130 struct file_entry *fe;
9a619af0 19131
ecfb656c
PA
19132 if (cu->line_header != NULL)
19133 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
19134 else
19135 fe = NULL;
19136
19137 if (fe == NULL)
cb1df416
DJ
19138 complaint (&symfile_complaints,
19139 _("file index out of range"));
8c43009f
PA
19140 else
19141 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
19142 }
19143
c906108c
SS
19144 switch (die->tag)
19145 {
19146 case DW_TAG_label:
e142c38c 19147 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 19148 if (attr)
3e29f34a
MR
19149 {
19150 CORE_ADDR addr;
19151
19152 addr = attr_value_as_address (attr);
19153 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19154 SYMBOL_VALUE_ADDRESS (sym) = addr;
19155 }
0f5238ed
TT
19156 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19157 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 19158 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 19159 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
19160 break;
19161 case DW_TAG_subprogram:
19162 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19163 finish_block. */
f1e6e072 19164 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 19165 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
19166 if ((attr2 && (DW_UNSND (attr2) != 0))
19167 || cu->language == language_ada)
c906108c 19168 {
2cfa0c8d
JB
19169 /* Subprograms marked external are stored as a global symbol.
19170 Ada subprograms, whether marked external or not, are always
19171 stored as a global symbol, because we want to be able to
19172 access them globally. For instance, we want to be able
19173 to break on a nested subprogram without having to
19174 specify the context. */
e37fd15a 19175 list_to_add = &global_symbols;
c906108c
SS
19176 }
19177 else
19178 {
e37fd15a 19179 list_to_add = cu->list_in_scope;
c906108c
SS
19180 }
19181 break;
edb3359d
DJ
19182 case DW_TAG_inlined_subroutine:
19183 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19184 finish_block. */
f1e6e072 19185 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 19186 SYMBOL_INLINED (sym) = 1;
481860b3 19187 list_to_add = cu->list_in_scope;
edb3359d 19188 break;
34eaf542
TT
19189 case DW_TAG_template_value_param:
19190 suppress_add = 1;
19191 /* Fall through. */
72929c62 19192 case DW_TAG_constant:
c906108c 19193 case DW_TAG_variable:
254e6b9e 19194 case DW_TAG_member:
0963b4bd
MS
19195 /* Compilation with minimal debug info may result in
19196 variables with missing type entries. Change the
19197 misleading `void' type to something sensible. */
c906108c 19198 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 19199 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 19200
e142c38c 19201 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
19202 /* In the case of DW_TAG_member, we should only be called for
19203 static const members. */
19204 if (die->tag == DW_TAG_member)
19205 {
3863f96c
DE
19206 /* dwarf2_add_field uses die_is_declaration,
19207 so we do the same. */
254e6b9e
DE
19208 gdb_assert (die_is_declaration (die, cu));
19209 gdb_assert (attr);
19210 }
c906108c
SS
19211 if (attr)
19212 {
e7c27a73 19213 dwarf2_const_value (attr, sym, cu);
e142c38c 19214 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 19215 if (!suppress_add)
34eaf542
TT
19216 {
19217 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 19218 list_to_add = &global_symbols;
34eaf542 19219 else
e37fd15a 19220 list_to_add = cu->list_in_scope;
34eaf542 19221 }
c906108c
SS
19222 break;
19223 }
e142c38c 19224 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19225 if (attr)
19226 {
e7c27a73 19227 var_decode_location (attr, sym, cu);
e142c38c 19228 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
19229
19230 /* Fortran explicitly imports any global symbols to the local
19231 scope by DW_TAG_common_block. */
19232 if (cu->language == language_fortran && die->parent
19233 && die->parent->tag == DW_TAG_common_block)
19234 attr2 = NULL;
19235
caac4577
JG
19236 if (SYMBOL_CLASS (sym) == LOC_STATIC
19237 && SYMBOL_VALUE_ADDRESS (sym) == 0
19238 && !dwarf2_per_objfile->has_section_at_zero)
19239 {
19240 /* When a static variable is eliminated by the linker,
19241 the corresponding debug information is not stripped
19242 out, but the variable address is set to null;
19243 do not add such variables into symbol table. */
19244 }
19245 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19246 {
f55ee35c
JK
19247 /* Workaround gfortran PR debug/40040 - it uses
19248 DW_AT_location for variables in -fPIC libraries which may
19249 get overriden by other libraries/executable and get
19250 a different address. Resolve it by the minimal symbol
19251 which may come from inferior's executable using copy
19252 relocation. Make this workaround only for gfortran as for
19253 other compilers GDB cannot guess the minimal symbol
19254 Fortran mangling kind. */
19255 if (cu->language == language_fortran && die->parent
19256 && die->parent->tag == DW_TAG_module
19257 && cu->producer
28586665 19258 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19259 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19260
1c809c68
TT
19261 /* A variable with DW_AT_external is never static,
19262 but it may be block-scoped. */
19263 list_to_add = (cu->list_in_scope == &file_symbols
19264 ? &global_symbols : cu->list_in_scope);
1c809c68 19265 }
c906108c 19266 else
e37fd15a 19267 list_to_add = cu->list_in_scope;
c906108c
SS
19268 }
19269 else
19270 {
19271 /* We do not know the address of this symbol.
c5aa993b
JM
19272 If it is an external symbol and we have type information
19273 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19274 The address of the variable will then be determined from
19275 the minimal symbol table whenever the variable is
19276 referenced. */
e142c38c 19277 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19278
19279 /* Fortran explicitly imports any global symbols to the local
19280 scope by DW_TAG_common_block. */
19281 if (cu->language == language_fortran && die->parent
19282 && die->parent->tag == DW_TAG_common_block)
19283 {
19284 /* SYMBOL_CLASS doesn't matter here because
19285 read_common_block is going to reset it. */
19286 if (!suppress_add)
19287 list_to_add = cu->list_in_scope;
19288 }
19289 else if (attr2 && (DW_UNSND (attr2) != 0)
19290 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19291 {
0fe7935b
DJ
19292 /* A variable with DW_AT_external is never static, but it
19293 may be block-scoped. */
19294 list_to_add = (cu->list_in_scope == &file_symbols
19295 ? &global_symbols : cu->list_in_scope);
19296
f1e6e072 19297 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19298 }
442ddf59
JK
19299 else if (!die_is_declaration (die, cu))
19300 {
19301 /* Use the default LOC_OPTIMIZED_OUT class. */
19302 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19303 if (!suppress_add)
19304 list_to_add = cu->list_in_scope;
442ddf59 19305 }
c906108c
SS
19306 }
19307 break;
19308 case DW_TAG_formal_parameter:
edb3359d
DJ
19309 /* If we are inside a function, mark this as an argument. If
19310 not, we might be looking at an argument to an inlined function
19311 when we do not have enough information to show inlined frames;
19312 pretend it's a local variable in that case so that the user can
19313 still see it. */
19314 if (context_stack_depth > 0
19315 && context_stack[context_stack_depth - 1].name != NULL)
19316 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19317 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19318 if (attr)
19319 {
e7c27a73 19320 var_decode_location (attr, sym, cu);
c906108c 19321 }
e142c38c 19322 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19323 if (attr)
19324 {
e7c27a73 19325 dwarf2_const_value (attr, sym, cu);
c906108c 19326 }
f346a30d 19327
e37fd15a 19328 list_to_add = cu->list_in_scope;
c906108c
SS
19329 break;
19330 case DW_TAG_unspecified_parameters:
19331 /* From varargs functions; gdb doesn't seem to have any
19332 interest in this information, so just ignore it for now.
19333 (FIXME?) */
19334 break;
34eaf542
TT
19335 case DW_TAG_template_type_param:
19336 suppress_add = 1;
19337 /* Fall through. */
c906108c 19338 case DW_TAG_class_type:
680b30c7 19339 case DW_TAG_interface_type:
c906108c
SS
19340 case DW_TAG_structure_type:
19341 case DW_TAG_union_type:
72019c9c 19342 case DW_TAG_set_type:
c906108c 19343 case DW_TAG_enumeration_type:
f1e6e072 19344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19345 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19346
63d06c5c 19347 {
9c37b5ae 19348 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19349 really ever be static objects: otherwise, if you try
19350 to, say, break of a class's method and you're in a file
19351 which doesn't mention that class, it won't work unless
19352 the check for all static symbols in lookup_symbol_aux
19353 saves you. See the OtherFileClass tests in
19354 gdb.c++/namespace.exp. */
19355
e37fd15a 19356 if (!suppress_add)
34eaf542 19357 {
34eaf542 19358 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19359 && cu->language == language_cplus
34eaf542 19360 ? &global_symbols : cu->list_in_scope);
63d06c5c 19361
64382290 19362 /* The semantics of C++ state that "struct foo {
9c37b5ae 19363 ... }" also defines a typedef for "foo". */
64382290 19364 if (cu->language == language_cplus
45280282 19365 || cu->language == language_ada
c44af4eb
TT
19366 || cu->language == language_d
19367 || cu->language == language_rust)
64382290
TT
19368 {
19369 /* The symbol's name is already allocated along
19370 with this objfile, so we don't need to
19371 duplicate it for the type. */
19372 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19373 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19374 }
63d06c5c
DC
19375 }
19376 }
c906108c
SS
19377 break;
19378 case DW_TAG_typedef:
f1e6e072 19379 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19380 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19381 list_to_add = cu->list_in_scope;
63d06c5c 19382 break;
c906108c 19383 case DW_TAG_base_type:
a02abb62 19384 case DW_TAG_subrange_type:
f1e6e072 19385 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19387 list_to_add = cu->list_in_scope;
c906108c
SS
19388 break;
19389 case DW_TAG_enumerator:
e142c38c 19390 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19391 if (attr)
19392 {
e7c27a73 19393 dwarf2_const_value (attr, sym, cu);
c906108c 19394 }
63d06c5c
DC
19395 {
19396 /* NOTE: carlton/2003-11-10: See comment above in the
19397 DW_TAG_class_type, etc. block. */
19398
e142c38c 19399 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19400 && cu->language == language_cplus
e142c38c 19401 ? &global_symbols : cu->list_in_scope);
63d06c5c 19402 }
c906108c 19403 break;
74921315 19404 case DW_TAG_imported_declaration:
5c4e30ca 19405 case DW_TAG_namespace:
f1e6e072 19406 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19407 list_to_add = &global_symbols;
5c4e30ca 19408 break;
530e8392
KB
19409 case DW_TAG_module:
19410 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19411 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19412 list_to_add = &global_symbols;
19413 break;
4357ac6c 19414 case DW_TAG_common_block:
f1e6e072 19415 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19416 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19417 add_symbol_to_list (sym, cu->list_in_scope);
19418 break;
c906108c
SS
19419 default:
19420 /* Not a tag we recognize. Hopefully we aren't processing
19421 trash data, but since we must specifically ignore things
19422 we don't recognize, there is nothing else we should do at
0963b4bd 19423 this point. */
e2e0b3e5 19424 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19425 dwarf_tag_name (die->tag));
c906108c
SS
19426 break;
19427 }
df8a16a1 19428
e37fd15a
SW
19429 if (suppress_add)
19430 {
19431 sym->hash_next = objfile->template_symbols;
19432 objfile->template_symbols = sym;
19433 list_to_add = NULL;
19434 }
19435
19436 if (list_to_add != NULL)
19437 add_symbol_to_list (sym, list_to_add);
19438
df8a16a1
DJ
19439 /* For the benefit of old versions of GCC, check for anonymous
19440 namespaces based on the demangled name. */
4d4ec4e5 19441 if (!cu->processing_has_namespace_info
94af9270 19442 && cu->language == language_cplus)
a10964d1 19443 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19444 }
19445 return (sym);
19446}
19447
34eaf542
TT
19448/* A wrapper for new_symbol_full that always allocates a new symbol. */
19449
19450static struct symbol *
19451new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19452{
19453 return new_symbol_full (die, type, cu, NULL);
19454}
19455
98bfdba5
PA
19456/* Given an attr with a DW_FORM_dataN value in host byte order,
19457 zero-extend it as appropriate for the symbol's type. The DWARF
19458 standard (v4) is not entirely clear about the meaning of using
19459 DW_FORM_dataN for a constant with a signed type, where the type is
19460 wider than the data. The conclusion of a discussion on the DWARF
19461 list was that this is unspecified. We choose to always zero-extend
19462 because that is the interpretation long in use by GCC. */
c906108c 19463
98bfdba5 19464static gdb_byte *
ff39bb5e 19465dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19466 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19467{
e7c27a73 19468 struct objfile *objfile = cu->objfile;
e17a4113
UW
19469 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19470 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19471 LONGEST l = DW_UNSND (attr);
19472
19473 if (bits < sizeof (*value) * 8)
19474 {
19475 l &= ((LONGEST) 1 << bits) - 1;
19476 *value = l;
19477 }
19478 else if (bits == sizeof (*value) * 8)
19479 *value = l;
19480 else
19481 {
224c3ddb 19482 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19483 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19484 return bytes;
19485 }
19486
19487 return NULL;
19488}
19489
19490/* Read a constant value from an attribute. Either set *VALUE, or if
19491 the value does not fit in *VALUE, set *BYTES - either already
19492 allocated on the objfile obstack, or newly allocated on OBSTACK,
19493 or, set *BATON, if we translated the constant to a location
19494 expression. */
19495
19496static void
ff39bb5e 19497dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19498 const char *name, struct obstack *obstack,
19499 struct dwarf2_cu *cu,
d521ce57 19500 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19501 struct dwarf2_locexpr_baton **baton)
19502{
19503 struct objfile *objfile = cu->objfile;
19504 struct comp_unit_head *cu_header = &cu->header;
c906108c 19505 struct dwarf_block *blk;
98bfdba5
PA
19506 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19507 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19508
19509 *value = 0;
19510 *bytes = NULL;
19511 *baton = NULL;
c906108c
SS
19512
19513 switch (attr->form)
19514 {
19515 case DW_FORM_addr:
3019eac3 19516 case DW_FORM_GNU_addr_index:
ac56253d 19517 {
ac56253d
TT
19518 gdb_byte *data;
19519
98bfdba5
PA
19520 if (TYPE_LENGTH (type) != cu_header->addr_size)
19521 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19522 cu_header->addr_size,
98bfdba5 19523 TYPE_LENGTH (type));
ac56253d
TT
19524 /* Symbols of this form are reasonably rare, so we just
19525 piggyback on the existing location code rather than writing
19526 a new implementation of symbol_computed_ops. */
8d749320 19527 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19528 (*baton)->per_cu = cu->per_cu;
19529 gdb_assert ((*baton)->per_cu);
ac56253d 19530
98bfdba5 19531 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19532 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19533 (*baton)->data = data;
ac56253d
TT
19534
19535 data[0] = DW_OP_addr;
19536 store_unsigned_integer (&data[1], cu_header->addr_size,
19537 byte_order, DW_ADDR (attr));
19538 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19539 }
c906108c 19540 break;
4ac36638 19541 case DW_FORM_string:
93b5768b 19542 case DW_FORM_strp:
3019eac3 19543 case DW_FORM_GNU_str_index:
36586728 19544 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19545 /* DW_STRING is already allocated on the objfile obstack, point
19546 directly to it. */
d521ce57 19547 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19548 break;
c906108c
SS
19549 case DW_FORM_block1:
19550 case DW_FORM_block2:
19551 case DW_FORM_block4:
19552 case DW_FORM_block:
2dc7f7b3 19553 case DW_FORM_exprloc:
0224619f 19554 case DW_FORM_data16:
c906108c 19555 blk = DW_BLOCK (attr);
98bfdba5
PA
19556 if (TYPE_LENGTH (type) != blk->size)
19557 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19558 TYPE_LENGTH (type));
19559 *bytes = blk->data;
c906108c 19560 break;
2df3850c
JM
19561
19562 /* The DW_AT_const_value attributes are supposed to carry the
19563 symbol's value "represented as it would be on the target
19564 architecture." By the time we get here, it's already been
19565 converted to host endianness, so we just need to sign- or
19566 zero-extend it as appropriate. */
19567 case DW_FORM_data1:
3aef2284 19568 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19569 break;
c906108c 19570 case DW_FORM_data2:
3aef2284 19571 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19572 break;
c906108c 19573 case DW_FORM_data4:
3aef2284 19574 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19575 break;
c906108c 19576 case DW_FORM_data8:
3aef2284 19577 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19578 break;
19579
c906108c 19580 case DW_FORM_sdata:
663c44ac 19581 case DW_FORM_implicit_const:
98bfdba5 19582 *value = DW_SND (attr);
2df3850c
JM
19583 break;
19584
c906108c 19585 case DW_FORM_udata:
98bfdba5 19586 *value = DW_UNSND (attr);
c906108c 19587 break;
2df3850c 19588
c906108c 19589 default:
4d3c2250 19590 complaint (&symfile_complaints,
e2e0b3e5 19591 _("unsupported const value attribute form: '%s'"),
4d3c2250 19592 dwarf_form_name (attr->form));
98bfdba5 19593 *value = 0;
c906108c
SS
19594 break;
19595 }
19596}
19597
2df3850c 19598
98bfdba5
PA
19599/* Copy constant value from an attribute to a symbol. */
19600
2df3850c 19601static void
ff39bb5e 19602dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19603 struct dwarf2_cu *cu)
2df3850c 19604{
98bfdba5 19605 struct objfile *objfile = cu->objfile;
12df843f 19606 LONGEST value;
d521ce57 19607 const gdb_byte *bytes;
98bfdba5 19608 struct dwarf2_locexpr_baton *baton;
2df3850c 19609
98bfdba5
PA
19610 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19611 SYMBOL_PRINT_NAME (sym),
19612 &objfile->objfile_obstack, cu,
19613 &value, &bytes, &baton);
2df3850c 19614
98bfdba5
PA
19615 if (baton != NULL)
19616 {
98bfdba5 19617 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19618 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19619 }
19620 else if (bytes != NULL)
19621 {
19622 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19623 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19624 }
19625 else
19626 {
19627 SYMBOL_VALUE (sym) = value;
f1e6e072 19628 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19629 }
2df3850c
JM
19630}
19631
c906108c
SS
19632/* Return the type of the die in question using its DW_AT_type attribute. */
19633
19634static struct type *
e7c27a73 19635die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19636{
c906108c 19637 struct attribute *type_attr;
c906108c 19638
e142c38c 19639 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19640 if (!type_attr)
19641 {
19642 /* A missing DW_AT_type represents a void type. */
46bf5051 19643 return objfile_type (cu->objfile)->builtin_void;
c906108c 19644 }
348e048f 19645
673bfd45 19646 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19647}
19648
b4ba55a1
JB
19649/* True iff CU's producer generates GNAT Ada auxiliary information
19650 that allows to find parallel types through that information instead
19651 of having to do expensive parallel lookups by type name. */
19652
19653static int
19654need_gnat_info (struct dwarf2_cu *cu)
19655{
19656 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19657 of GNAT produces this auxiliary information, without any indication
19658 that it is produced. Part of enhancing the FSF version of GNAT
19659 to produce that information will be to put in place an indicator
19660 that we can use in order to determine whether the descriptive type
19661 info is available or not. One suggestion that has been made is
19662 to use a new attribute, attached to the CU die. For now, assume
19663 that the descriptive type info is not available. */
19664 return 0;
19665}
19666
b4ba55a1
JB
19667/* Return the auxiliary type of the die in question using its
19668 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19669 attribute is not present. */
19670
19671static struct type *
19672die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19673{
b4ba55a1 19674 struct attribute *type_attr;
b4ba55a1
JB
19675
19676 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19677 if (!type_attr)
19678 return NULL;
19679
673bfd45 19680 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19681}
19682
19683/* If DIE has a descriptive_type attribute, then set the TYPE's
19684 descriptive type accordingly. */
19685
19686static void
19687set_descriptive_type (struct type *type, struct die_info *die,
19688 struct dwarf2_cu *cu)
19689{
19690 struct type *descriptive_type = die_descriptive_type (die, cu);
19691
19692 if (descriptive_type)
19693 {
19694 ALLOCATE_GNAT_AUX_TYPE (type);
19695 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19696 }
19697}
19698
c906108c
SS
19699/* Return the containing type of the die in question using its
19700 DW_AT_containing_type attribute. */
19701
19702static struct type *
e7c27a73 19703die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19704{
c906108c 19705 struct attribute *type_attr;
c906108c 19706
e142c38c 19707 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19708 if (!type_attr)
19709 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19710 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19711
673bfd45 19712 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19713}
19714
ac9ec31b
DE
19715/* Return an error marker type to use for the ill formed type in DIE/CU. */
19716
19717static struct type *
19718build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19719{
19720 struct objfile *objfile = dwarf2_per_objfile->objfile;
19721 char *message, *saved;
19722
19723 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19724 objfile_name (objfile),
9c541725
PA
19725 to_underlying (cu->header.sect_off),
19726 to_underlying (die->sect_off));
224c3ddb
SM
19727 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19728 message, strlen (message));
ac9ec31b
DE
19729 xfree (message);
19730
19f392bc 19731 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19732}
19733
673bfd45 19734/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19735 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19736 DW_AT_containing_type.
673bfd45
DE
19737 If there is no type substitute an error marker. */
19738
c906108c 19739static struct type *
ff39bb5e 19740lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19741 struct dwarf2_cu *cu)
c906108c 19742{
bb5ed363 19743 struct objfile *objfile = cu->objfile;
f792889a
DJ
19744 struct type *this_type;
19745
ac9ec31b
DE
19746 gdb_assert (attr->name == DW_AT_type
19747 || attr->name == DW_AT_GNAT_descriptive_type
19748 || attr->name == DW_AT_containing_type);
19749
673bfd45
DE
19750 /* First see if we have it cached. */
19751
36586728
TT
19752 if (attr->form == DW_FORM_GNU_ref_alt)
19753 {
19754 struct dwarf2_per_cu_data *per_cu;
9c541725 19755 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 19756
9c541725
PA
19757 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19758 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 19759 }
7771576e 19760 else if (attr_form_is_ref (attr))
673bfd45 19761 {
9c541725 19762 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 19763
9c541725 19764 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 19765 }
55f1336d 19766 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19767 {
ac9ec31b 19768 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19769
ac9ec31b 19770 return get_signatured_type (die, signature, cu);
673bfd45
DE
19771 }
19772 else
19773 {
ac9ec31b
DE
19774 complaint (&symfile_complaints,
19775 _("Dwarf Error: Bad type attribute %s in DIE"
19776 " at 0x%x [in module %s]"),
9c541725 19777 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
4262abfb 19778 objfile_name (objfile));
ac9ec31b 19779 return build_error_marker_type (cu, die);
673bfd45
DE
19780 }
19781
19782 /* If not cached we need to read it in. */
19783
19784 if (this_type == NULL)
19785 {
ac9ec31b 19786 struct die_info *type_die = NULL;
673bfd45
DE
19787 struct dwarf2_cu *type_cu = cu;
19788
7771576e 19789 if (attr_form_is_ref (attr))
ac9ec31b
DE
19790 type_die = follow_die_ref (die, attr, &type_cu);
19791 if (type_die == NULL)
19792 return build_error_marker_type (cu, die);
19793 /* If we find the type now, it's probably because the type came
3019eac3
DE
19794 from an inter-CU reference and the type's CU got expanded before
19795 ours. */
ac9ec31b 19796 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19797 }
19798
19799 /* If we still don't have a type use an error marker. */
19800
19801 if (this_type == NULL)
ac9ec31b 19802 return build_error_marker_type (cu, die);
673bfd45 19803
f792889a 19804 return this_type;
c906108c
SS
19805}
19806
673bfd45
DE
19807/* Return the type in DIE, CU.
19808 Returns NULL for invalid types.
19809
02142a6c 19810 This first does a lookup in die_type_hash,
673bfd45
DE
19811 and only reads the die in if necessary.
19812
19813 NOTE: This can be called when reading in partial or full symbols. */
19814
f792889a 19815static struct type *
e7c27a73 19816read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19817{
f792889a
DJ
19818 struct type *this_type;
19819
19820 this_type = get_die_type (die, cu);
19821 if (this_type)
19822 return this_type;
19823
673bfd45
DE
19824 return read_type_die_1 (die, cu);
19825}
19826
19827/* Read the type in DIE, CU.
19828 Returns NULL for invalid types. */
19829
19830static struct type *
19831read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19832{
19833 struct type *this_type = NULL;
19834
c906108c
SS
19835 switch (die->tag)
19836 {
19837 case DW_TAG_class_type:
680b30c7 19838 case DW_TAG_interface_type:
c906108c
SS
19839 case DW_TAG_structure_type:
19840 case DW_TAG_union_type:
f792889a 19841 this_type = read_structure_type (die, cu);
c906108c
SS
19842 break;
19843 case DW_TAG_enumeration_type:
f792889a 19844 this_type = read_enumeration_type (die, cu);
c906108c
SS
19845 break;
19846 case DW_TAG_subprogram:
19847 case DW_TAG_subroutine_type:
edb3359d 19848 case DW_TAG_inlined_subroutine:
f792889a 19849 this_type = read_subroutine_type (die, cu);
c906108c
SS
19850 break;
19851 case DW_TAG_array_type:
f792889a 19852 this_type = read_array_type (die, cu);
c906108c 19853 break;
72019c9c 19854 case DW_TAG_set_type:
f792889a 19855 this_type = read_set_type (die, cu);
72019c9c 19856 break;
c906108c 19857 case DW_TAG_pointer_type:
f792889a 19858 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19859 break;
19860 case DW_TAG_ptr_to_member_type:
f792889a 19861 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19862 break;
19863 case DW_TAG_reference_type:
4297a3f0
AV
19864 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19865 break;
19866 case DW_TAG_rvalue_reference_type:
19867 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
19868 break;
19869 case DW_TAG_const_type:
f792889a 19870 this_type = read_tag_const_type (die, cu);
c906108c
SS
19871 break;
19872 case DW_TAG_volatile_type:
f792889a 19873 this_type = read_tag_volatile_type (die, cu);
c906108c 19874 break;
06d66ee9
TT
19875 case DW_TAG_restrict_type:
19876 this_type = read_tag_restrict_type (die, cu);
19877 break;
c906108c 19878 case DW_TAG_string_type:
f792889a 19879 this_type = read_tag_string_type (die, cu);
c906108c
SS
19880 break;
19881 case DW_TAG_typedef:
f792889a 19882 this_type = read_typedef (die, cu);
c906108c 19883 break;
a02abb62 19884 case DW_TAG_subrange_type:
f792889a 19885 this_type = read_subrange_type (die, cu);
a02abb62 19886 break;
c906108c 19887 case DW_TAG_base_type:
f792889a 19888 this_type = read_base_type (die, cu);
c906108c 19889 break;
81a17f79 19890 case DW_TAG_unspecified_type:
f792889a 19891 this_type = read_unspecified_type (die, cu);
81a17f79 19892 break;
0114d602
DJ
19893 case DW_TAG_namespace:
19894 this_type = read_namespace_type (die, cu);
19895 break;
f55ee35c
JK
19896 case DW_TAG_module:
19897 this_type = read_module_type (die, cu);
19898 break;
a2c2acaf
MW
19899 case DW_TAG_atomic_type:
19900 this_type = read_tag_atomic_type (die, cu);
19901 break;
c906108c 19902 default:
3e43a32a
MS
19903 complaint (&symfile_complaints,
19904 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19905 dwarf_tag_name (die->tag));
c906108c
SS
19906 break;
19907 }
63d06c5c 19908
f792889a 19909 return this_type;
63d06c5c
DC
19910}
19911
abc72ce4
DE
19912/* See if we can figure out if the class lives in a namespace. We do
19913 this by looking for a member function; its demangled name will
19914 contain namespace info, if there is any.
19915 Return the computed name or NULL.
19916 Space for the result is allocated on the objfile's obstack.
19917 This is the full-die version of guess_partial_die_structure_name.
19918 In this case we know DIE has no useful parent. */
19919
19920static char *
19921guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19922{
19923 struct die_info *spec_die;
19924 struct dwarf2_cu *spec_cu;
19925 struct die_info *child;
19926
19927 spec_cu = cu;
19928 spec_die = die_specification (die, &spec_cu);
19929 if (spec_die != NULL)
19930 {
19931 die = spec_die;
19932 cu = spec_cu;
19933 }
19934
19935 for (child = die->child;
19936 child != NULL;
19937 child = child->sibling)
19938 {
19939 if (child->tag == DW_TAG_subprogram)
19940 {
73b9be8b 19941 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 19942
7d45c7c3 19943 if (linkage_name != NULL)
abc72ce4
DE
19944 {
19945 char *actual_name
19946 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19947 linkage_name);
abc72ce4
DE
19948 char *name = NULL;
19949
19950 if (actual_name != NULL)
19951 {
15d034d0 19952 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19953
19954 if (die_name != NULL
19955 && strcmp (die_name, actual_name) != 0)
19956 {
19957 /* Strip off the class name from the full name.
19958 We want the prefix. */
19959 int die_name_len = strlen (die_name);
19960 int actual_name_len = strlen (actual_name);
19961
19962 /* Test for '::' as a sanity check. */
19963 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19964 && actual_name[actual_name_len
19965 - die_name_len - 1] == ':')
224c3ddb
SM
19966 name = (char *) obstack_copy0 (
19967 &cu->objfile->per_bfd->storage_obstack,
19968 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19969 }
19970 }
19971 xfree (actual_name);
19972 return name;
19973 }
19974 }
19975 }
19976
19977 return NULL;
19978}
19979
96408a79
SA
19980/* GCC might emit a nameless typedef that has a linkage name. Determine the
19981 prefix part in such case. See
19982 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19983
a121b7c1 19984static const char *
96408a79
SA
19985anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19986{
19987 struct attribute *attr;
e6a959d6 19988 const char *base;
96408a79
SA
19989
19990 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19991 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19992 return NULL;
19993
7d45c7c3 19994 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19995 return NULL;
19996
73b9be8b 19997 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
19998 if (attr == NULL || DW_STRING (attr) == NULL)
19999 return NULL;
20000
20001 /* dwarf2_name had to be already called. */
20002 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20003
20004 /* Strip the base name, keep any leading namespaces/classes. */
20005 base = strrchr (DW_STRING (attr), ':');
20006 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20007 return "";
20008
224c3ddb
SM
20009 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20010 DW_STRING (attr),
20011 &base[-1] - DW_STRING (attr));
96408a79
SA
20012}
20013
fdde2d81 20014/* Return the name of the namespace/class that DIE is defined within,
0114d602 20015 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 20016
0114d602
DJ
20017 For example, if we're within the method foo() in the following
20018 code:
20019
20020 namespace N {
20021 class C {
20022 void foo () {
20023 }
20024 };
20025 }
20026
20027 then determine_prefix on foo's die will return "N::C". */
fdde2d81 20028
0d5cff50 20029static const char *
e142c38c 20030determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 20031{
0114d602
DJ
20032 struct die_info *parent, *spec_die;
20033 struct dwarf2_cu *spec_cu;
20034 struct type *parent_type;
a121b7c1 20035 const char *retval;
63d06c5c 20036
9c37b5ae 20037 if (cu->language != language_cplus
c44af4eb
TT
20038 && cu->language != language_fortran && cu->language != language_d
20039 && cu->language != language_rust)
0114d602
DJ
20040 return "";
20041
96408a79
SA
20042 retval = anonymous_struct_prefix (die, cu);
20043 if (retval)
20044 return retval;
20045
0114d602
DJ
20046 /* We have to be careful in the presence of DW_AT_specification.
20047 For example, with GCC 3.4, given the code
20048
20049 namespace N {
20050 void foo() {
20051 // Definition of N::foo.
20052 }
20053 }
20054
20055 then we'll have a tree of DIEs like this:
20056
20057 1: DW_TAG_compile_unit
20058 2: DW_TAG_namespace // N
20059 3: DW_TAG_subprogram // declaration of N::foo
20060 4: DW_TAG_subprogram // definition of N::foo
20061 DW_AT_specification // refers to die #3
20062
20063 Thus, when processing die #4, we have to pretend that we're in
20064 the context of its DW_AT_specification, namely the contex of die
20065 #3. */
20066 spec_cu = cu;
20067 spec_die = die_specification (die, &spec_cu);
20068 if (spec_die == NULL)
20069 parent = die->parent;
20070 else
63d06c5c 20071 {
0114d602
DJ
20072 parent = spec_die->parent;
20073 cu = spec_cu;
63d06c5c 20074 }
0114d602
DJ
20075
20076 if (parent == NULL)
20077 return "";
98bfdba5
PA
20078 else if (parent->building_fullname)
20079 {
20080 const char *name;
20081 const char *parent_name;
20082
20083 /* It has been seen on RealView 2.2 built binaries,
20084 DW_TAG_template_type_param types actually _defined_ as
20085 children of the parent class:
20086
20087 enum E {};
20088 template class <class Enum> Class{};
20089 Class<enum E> class_e;
20090
20091 1: DW_TAG_class_type (Class)
20092 2: DW_TAG_enumeration_type (E)
20093 3: DW_TAG_enumerator (enum1:0)
20094 3: DW_TAG_enumerator (enum2:1)
20095 ...
20096 2: DW_TAG_template_type_param
20097 DW_AT_type DW_FORM_ref_udata (E)
20098
20099 Besides being broken debug info, it can put GDB into an
20100 infinite loop. Consider:
20101
20102 When we're building the full name for Class<E>, we'll start
20103 at Class, and go look over its template type parameters,
20104 finding E. We'll then try to build the full name of E, and
20105 reach here. We're now trying to build the full name of E,
20106 and look over the parent DIE for containing scope. In the
20107 broken case, if we followed the parent DIE of E, we'd again
20108 find Class, and once again go look at its template type
20109 arguments, etc., etc. Simply don't consider such parent die
20110 as source-level parent of this die (it can't be, the language
20111 doesn't allow it), and break the loop here. */
20112 name = dwarf2_name (die, cu);
20113 parent_name = dwarf2_name (parent, cu);
20114 complaint (&symfile_complaints,
20115 _("template param type '%s' defined within parent '%s'"),
20116 name ? name : "<unknown>",
20117 parent_name ? parent_name : "<unknown>");
20118 return "";
20119 }
63d06c5c 20120 else
0114d602
DJ
20121 switch (parent->tag)
20122 {
63d06c5c 20123 case DW_TAG_namespace:
0114d602 20124 parent_type = read_type_die (parent, cu);
acebe513
UW
20125 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20126 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20127 Work around this problem here. */
20128 if (cu->language == language_cplus
20129 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20130 return "";
0114d602
DJ
20131 /* We give a name to even anonymous namespaces. */
20132 return TYPE_TAG_NAME (parent_type);
63d06c5c 20133 case DW_TAG_class_type:
680b30c7 20134 case DW_TAG_interface_type:
63d06c5c 20135 case DW_TAG_structure_type:
0114d602 20136 case DW_TAG_union_type:
f55ee35c 20137 case DW_TAG_module:
0114d602
DJ
20138 parent_type = read_type_die (parent, cu);
20139 if (TYPE_TAG_NAME (parent_type) != NULL)
20140 return TYPE_TAG_NAME (parent_type);
20141 else
20142 /* An anonymous structure is only allowed non-static data
20143 members; no typedefs, no member functions, et cetera.
20144 So it does not need a prefix. */
20145 return "";
abc72ce4 20146 case DW_TAG_compile_unit:
95554aad 20147 case DW_TAG_partial_unit:
abc72ce4
DE
20148 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20149 if (cu->language == language_cplus
8b70b953 20150 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
20151 && die->child != NULL
20152 && (die->tag == DW_TAG_class_type
20153 || die->tag == DW_TAG_structure_type
20154 || die->tag == DW_TAG_union_type))
20155 {
20156 char *name = guess_full_die_structure_name (die, cu);
20157 if (name != NULL)
20158 return name;
20159 }
20160 return "";
3d567982
TT
20161 case DW_TAG_enumeration_type:
20162 parent_type = read_type_die (parent, cu);
20163 if (TYPE_DECLARED_CLASS (parent_type))
20164 {
20165 if (TYPE_TAG_NAME (parent_type) != NULL)
20166 return TYPE_TAG_NAME (parent_type);
20167 return "";
20168 }
20169 /* Fall through. */
63d06c5c 20170 default:
8176b9b8 20171 return determine_prefix (parent, cu);
63d06c5c 20172 }
63d06c5c
DC
20173}
20174
3e43a32a
MS
20175/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20176 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20177 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20178 an obconcat, otherwise allocate storage for the result. The CU argument is
20179 used to determine the language and hence, the appropriate separator. */
987504bb 20180
f55ee35c 20181#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
20182
20183static char *
f55ee35c
JK
20184typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20185 int physname, struct dwarf2_cu *cu)
63d06c5c 20186{
f55ee35c 20187 const char *lead = "";
5c315b68 20188 const char *sep;
63d06c5c 20189
3e43a32a
MS
20190 if (suffix == NULL || suffix[0] == '\0'
20191 || prefix == NULL || prefix[0] == '\0')
987504bb 20192 sep = "";
45280282
IB
20193 else if (cu->language == language_d)
20194 {
20195 /* For D, the 'main' function could be defined in any module, but it
20196 should never be prefixed. */
20197 if (strcmp (suffix, "D main") == 0)
20198 {
20199 prefix = "";
20200 sep = "";
20201 }
20202 else
20203 sep = ".";
20204 }
f55ee35c
JK
20205 else if (cu->language == language_fortran && physname)
20206 {
20207 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20208 DW_AT_MIPS_linkage_name is preferred and used instead. */
20209
20210 lead = "__";
20211 sep = "_MOD_";
20212 }
987504bb
JJ
20213 else
20214 sep = "::";
63d06c5c 20215
6dd47d34
DE
20216 if (prefix == NULL)
20217 prefix = "";
20218 if (suffix == NULL)
20219 suffix = "";
20220
987504bb
JJ
20221 if (obs == NULL)
20222 {
3e43a32a 20223 char *retval
224c3ddb
SM
20224 = ((char *)
20225 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 20226
f55ee35c
JK
20227 strcpy (retval, lead);
20228 strcat (retval, prefix);
6dd47d34
DE
20229 strcat (retval, sep);
20230 strcat (retval, suffix);
63d06c5c
DC
20231 return retval;
20232 }
987504bb
JJ
20233 else
20234 {
20235 /* We have an obstack. */
f55ee35c 20236 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 20237 }
63d06c5c
DC
20238}
20239
c906108c
SS
20240/* Return sibling of die, NULL if no sibling. */
20241
f9aca02d 20242static struct die_info *
fba45db2 20243sibling_die (struct die_info *die)
c906108c 20244{
639d11d3 20245 return die->sibling;
c906108c
SS
20246}
20247
71c25dea
TT
20248/* Get name of a die, return NULL if not found. */
20249
15d034d0
TT
20250static const char *
20251dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20252 struct obstack *obstack)
20253{
20254 if (name && cu->language == language_cplus)
20255 {
2f408ecb 20256 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20257
2f408ecb 20258 if (!canon_name.empty ())
71c25dea 20259 {
2f408ecb
PA
20260 if (canon_name != name)
20261 name = (const char *) obstack_copy0 (obstack,
20262 canon_name.c_str (),
20263 canon_name.length ());
71c25dea
TT
20264 }
20265 }
20266
20267 return name;
c906108c
SS
20268}
20269
96553a0c
DE
20270/* Get name of a die, return NULL if not found.
20271 Anonymous namespaces are converted to their magic string. */
9219021c 20272
15d034d0 20273static const char *
e142c38c 20274dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20275{
20276 struct attribute *attr;
20277
e142c38c 20278 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20279 if ((!attr || !DW_STRING (attr))
96553a0c 20280 && die->tag != DW_TAG_namespace
53832f31
TT
20281 && die->tag != DW_TAG_class_type
20282 && die->tag != DW_TAG_interface_type
20283 && die->tag != DW_TAG_structure_type
20284 && die->tag != DW_TAG_union_type)
71c25dea
TT
20285 return NULL;
20286
20287 switch (die->tag)
20288 {
20289 case DW_TAG_compile_unit:
95554aad 20290 case DW_TAG_partial_unit:
71c25dea
TT
20291 /* Compilation units have a DW_AT_name that is a filename, not
20292 a source language identifier. */
20293 case DW_TAG_enumeration_type:
20294 case DW_TAG_enumerator:
20295 /* These tags always have simple identifiers already; no need
20296 to canonicalize them. */
20297 return DW_STRING (attr);
907af001 20298
96553a0c
DE
20299 case DW_TAG_namespace:
20300 if (attr != NULL && DW_STRING (attr) != NULL)
20301 return DW_STRING (attr);
20302 return CP_ANONYMOUS_NAMESPACE_STR;
20303
907af001
UW
20304 case DW_TAG_class_type:
20305 case DW_TAG_interface_type:
20306 case DW_TAG_structure_type:
20307 case DW_TAG_union_type:
20308 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20309 structures or unions. These were of the form "._%d" in GCC 4.1,
20310 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20311 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20312 if (attr && DW_STRING (attr)
61012eef
GB
20313 && (startswith (DW_STRING (attr), "._")
20314 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20315 return NULL;
53832f31
TT
20316
20317 /* GCC might emit a nameless typedef that has a linkage name. See
20318 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20319 if (!attr || DW_STRING (attr) == NULL)
20320 {
df5c6c50 20321 char *demangled = NULL;
53832f31 20322
73b9be8b 20323 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
20324 if (attr == NULL || DW_STRING (attr) == NULL)
20325 return NULL;
20326
df5c6c50
JK
20327 /* Avoid demangling DW_STRING (attr) the second time on a second
20328 call for the same DIE. */
20329 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20330 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20331
20332 if (demangled)
20333 {
e6a959d6 20334 const char *base;
96408a79 20335
53832f31 20336 /* FIXME: we already did this for the partial symbol... */
34a68019 20337 DW_STRING (attr)
224c3ddb
SM
20338 = ((const char *)
20339 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20340 demangled, strlen (demangled)));
53832f31
TT
20341 DW_STRING_IS_CANONICAL (attr) = 1;
20342 xfree (demangled);
96408a79
SA
20343
20344 /* Strip any leading namespaces/classes, keep only the base name.
20345 DW_AT_name for named DIEs does not contain the prefixes. */
20346 base = strrchr (DW_STRING (attr), ':');
20347 if (base && base > DW_STRING (attr) && base[-1] == ':')
20348 return &base[1];
20349 else
20350 return DW_STRING (attr);
53832f31
TT
20351 }
20352 }
907af001
UW
20353 break;
20354
71c25dea 20355 default:
907af001
UW
20356 break;
20357 }
20358
20359 if (!DW_STRING_IS_CANONICAL (attr))
20360 {
20361 DW_STRING (attr)
20362 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20363 &cu->objfile->per_bfd->storage_obstack);
907af001 20364 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20365 }
907af001 20366 return DW_STRING (attr);
9219021c
DC
20367}
20368
20369/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20370 is none. *EXT_CU is the CU containing DIE on input, and the CU
20371 containing the return value on output. */
9219021c
DC
20372
20373static struct die_info *
f2f0e013 20374dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20375{
20376 struct attribute *attr;
9219021c 20377
f2f0e013 20378 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20379 if (attr == NULL)
20380 return NULL;
20381
f2f0e013 20382 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20383}
20384
c906108c
SS
20385/* Convert a DIE tag into its string name. */
20386
f39c6ffd 20387static const char *
aa1ee363 20388dwarf_tag_name (unsigned tag)
c906108c 20389{
f39c6ffd
TT
20390 const char *name = get_DW_TAG_name (tag);
20391
20392 if (name == NULL)
20393 return "DW_TAG_<unknown>";
20394
20395 return name;
c906108c
SS
20396}
20397
20398/* Convert a DWARF attribute code into its string name. */
20399
f39c6ffd 20400static const char *
aa1ee363 20401dwarf_attr_name (unsigned attr)
c906108c 20402{
f39c6ffd
TT
20403 const char *name;
20404
c764a876 20405#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20406 if (attr == DW_AT_MIPS_fde)
20407 return "DW_AT_MIPS_fde";
20408#else
20409 if (attr == DW_AT_HP_block_index)
20410 return "DW_AT_HP_block_index";
c764a876 20411#endif
f39c6ffd
TT
20412
20413 name = get_DW_AT_name (attr);
20414
20415 if (name == NULL)
20416 return "DW_AT_<unknown>";
20417
20418 return name;
c906108c
SS
20419}
20420
20421/* Convert a DWARF value form code into its string name. */
20422
f39c6ffd 20423static const char *
aa1ee363 20424dwarf_form_name (unsigned form)
c906108c 20425{
f39c6ffd
TT
20426 const char *name = get_DW_FORM_name (form);
20427
20428 if (name == NULL)
20429 return "DW_FORM_<unknown>";
20430
20431 return name;
c906108c
SS
20432}
20433
a121b7c1 20434static const char *
fba45db2 20435dwarf_bool_name (unsigned mybool)
c906108c
SS
20436{
20437 if (mybool)
20438 return "TRUE";
20439 else
20440 return "FALSE";
20441}
20442
20443/* Convert a DWARF type code into its string name. */
20444
f39c6ffd 20445static const char *
aa1ee363 20446dwarf_type_encoding_name (unsigned enc)
c906108c 20447{
f39c6ffd 20448 const char *name = get_DW_ATE_name (enc);
c906108c 20449
f39c6ffd
TT
20450 if (name == NULL)
20451 return "DW_ATE_<unknown>";
c906108c 20452
f39c6ffd 20453 return name;
c906108c 20454}
c906108c 20455
f9aca02d 20456static void
d97bc12b 20457dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20458{
20459 unsigned int i;
20460
d97bc12b
DE
20461 print_spaces (indent, f);
20462 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
9c541725
PA
20463 dwarf_tag_name (die->tag), die->abbrev,
20464 to_underlying (die->sect_off));
d97bc12b
DE
20465
20466 if (die->parent != NULL)
20467 {
20468 print_spaces (indent, f);
20469 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
9c541725 20470 to_underlying (die->parent->sect_off));
d97bc12b
DE
20471 }
20472
20473 print_spaces (indent, f);
20474 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20475 dwarf_bool_name (die->child != NULL));
c906108c 20476
d97bc12b
DE
20477 print_spaces (indent, f);
20478 fprintf_unfiltered (f, " attributes:\n");
20479
c906108c
SS
20480 for (i = 0; i < die->num_attrs; ++i)
20481 {
d97bc12b
DE
20482 print_spaces (indent, f);
20483 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20484 dwarf_attr_name (die->attrs[i].name),
20485 dwarf_form_name (die->attrs[i].form));
d97bc12b 20486
c906108c
SS
20487 switch (die->attrs[i].form)
20488 {
c906108c 20489 case DW_FORM_addr:
3019eac3 20490 case DW_FORM_GNU_addr_index:
d97bc12b 20491 fprintf_unfiltered (f, "address: ");
5af949e3 20492 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20493 break;
20494 case DW_FORM_block2:
20495 case DW_FORM_block4:
20496 case DW_FORM_block:
20497 case DW_FORM_block1:
56eb65bd
SP
20498 fprintf_unfiltered (f, "block: size %s",
20499 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20500 break;
2dc7f7b3 20501 case DW_FORM_exprloc:
56eb65bd
SP
20502 fprintf_unfiltered (f, "expression: size %s",
20503 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20504 break;
0224619f
JK
20505 case DW_FORM_data16:
20506 fprintf_unfiltered (f, "constant of 16 bytes");
20507 break;
4568ecf9
DE
20508 case DW_FORM_ref_addr:
20509 fprintf_unfiltered (f, "ref address: ");
20510 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20511 break;
36586728
TT
20512 case DW_FORM_GNU_ref_alt:
20513 fprintf_unfiltered (f, "alt ref address: ");
20514 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20515 break;
10b3939b
DJ
20516 case DW_FORM_ref1:
20517 case DW_FORM_ref2:
20518 case DW_FORM_ref4:
4568ecf9
DE
20519 case DW_FORM_ref8:
20520 case DW_FORM_ref_udata:
d97bc12b 20521 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20522 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20523 break;
c906108c
SS
20524 case DW_FORM_data1:
20525 case DW_FORM_data2:
20526 case DW_FORM_data4:
ce5d95e1 20527 case DW_FORM_data8:
c906108c
SS
20528 case DW_FORM_udata:
20529 case DW_FORM_sdata:
43bbcdc2
PH
20530 fprintf_unfiltered (f, "constant: %s",
20531 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20532 break;
2dc7f7b3
TT
20533 case DW_FORM_sec_offset:
20534 fprintf_unfiltered (f, "section offset: %s",
20535 pulongest (DW_UNSND (&die->attrs[i])));
20536 break;
55f1336d 20537 case DW_FORM_ref_sig8:
ac9ec31b
DE
20538 fprintf_unfiltered (f, "signature: %s",
20539 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20540 break;
c906108c 20541 case DW_FORM_string:
4bdf3d34 20542 case DW_FORM_strp:
43988095 20543 case DW_FORM_line_strp:
3019eac3 20544 case DW_FORM_GNU_str_index:
36586728 20545 case DW_FORM_GNU_strp_alt:
8285870a 20546 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20547 DW_STRING (&die->attrs[i])
8285870a
JK
20548 ? DW_STRING (&die->attrs[i]) : "",
20549 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20550 break;
20551 case DW_FORM_flag:
20552 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20553 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20554 else
d97bc12b 20555 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20556 break;
2dc7f7b3
TT
20557 case DW_FORM_flag_present:
20558 fprintf_unfiltered (f, "flag: TRUE");
20559 break;
a8329558 20560 case DW_FORM_indirect:
0963b4bd
MS
20561 /* The reader will have reduced the indirect form to
20562 the "base form" so this form should not occur. */
3e43a32a
MS
20563 fprintf_unfiltered (f,
20564 "unexpected attribute form: DW_FORM_indirect");
a8329558 20565 break;
663c44ac
JK
20566 case DW_FORM_implicit_const:
20567 fprintf_unfiltered (f, "constant: %s",
20568 plongest (DW_SND (&die->attrs[i])));
20569 break;
c906108c 20570 default:
d97bc12b 20571 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20572 die->attrs[i].form);
d97bc12b 20573 break;
c906108c 20574 }
d97bc12b 20575 fprintf_unfiltered (f, "\n");
c906108c
SS
20576 }
20577}
20578
f9aca02d 20579static void
d97bc12b 20580dump_die_for_error (struct die_info *die)
c906108c 20581{
d97bc12b
DE
20582 dump_die_shallow (gdb_stderr, 0, die);
20583}
20584
20585static void
20586dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20587{
20588 int indent = level * 4;
20589
20590 gdb_assert (die != NULL);
20591
20592 if (level >= max_level)
20593 return;
20594
20595 dump_die_shallow (f, indent, die);
20596
20597 if (die->child != NULL)
c906108c 20598 {
d97bc12b
DE
20599 print_spaces (indent, f);
20600 fprintf_unfiltered (f, " Children:");
20601 if (level + 1 < max_level)
20602 {
20603 fprintf_unfiltered (f, "\n");
20604 dump_die_1 (f, level + 1, max_level, die->child);
20605 }
20606 else
20607 {
3e43a32a
MS
20608 fprintf_unfiltered (f,
20609 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20610 }
20611 }
20612
20613 if (die->sibling != NULL && level > 0)
20614 {
20615 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20616 }
20617}
20618
d97bc12b
DE
20619/* This is called from the pdie macro in gdbinit.in.
20620 It's not static so gcc will keep a copy callable from gdb. */
20621
20622void
20623dump_die (struct die_info *die, int max_level)
20624{
20625 dump_die_1 (gdb_stdlog, 0, max_level, die);
20626}
20627
f9aca02d 20628static void
51545339 20629store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20630{
51545339 20631 void **slot;
c906108c 20632
9c541725
PA
20633 slot = htab_find_slot_with_hash (cu->die_hash, die,
20634 to_underlying (die->sect_off),
b64f50a1 20635 INSERT);
51545339
DJ
20636
20637 *slot = die;
c906108c
SS
20638}
20639
b64f50a1
JK
20640/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20641 required kind. */
20642
20643static sect_offset
ff39bb5e 20644dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20645{
7771576e 20646 if (attr_form_is_ref (attr))
9c541725 20647 return (sect_offset) DW_UNSND (attr);
93311388
DE
20648
20649 complaint (&symfile_complaints,
20650 _("unsupported die ref attribute form: '%s'"),
20651 dwarf_form_name (attr->form));
9c541725 20652 return {};
c906108c
SS
20653}
20654
43bbcdc2
PH
20655/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20656 * the value held by the attribute is not constant. */
a02abb62 20657
43bbcdc2 20658static LONGEST
ff39bb5e 20659dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 20660{
663c44ac 20661 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
20662 return DW_SND (attr);
20663 else if (attr->form == DW_FORM_udata
20664 || attr->form == DW_FORM_data1
20665 || attr->form == DW_FORM_data2
20666 || attr->form == DW_FORM_data4
20667 || attr->form == DW_FORM_data8)
20668 return DW_UNSND (attr);
20669 else
20670 {
0224619f 20671 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20672 complaint (&symfile_complaints,
20673 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20674 dwarf_form_name (attr->form));
20675 return default_value;
20676 }
20677}
20678
348e048f
DE
20679/* Follow reference or signature attribute ATTR of SRC_DIE.
20680 On entry *REF_CU is the CU of SRC_DIE.
20681 On exit *REF_CU is the CU of the result. */
20682
20683static struct die_info *
ff39bb5e 20684follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20685 struct dwarf2_cu **ref_cu)
20686{
20687 struct die_info *die;
20688
7771576e 20689 if (attr_form_is_ref (attr))
348e048f 20690 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20691 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20692 die = follow_die_sig (src_die, attr, ref_cu);
20693 else
20694 {
20695 dump_die_for_error (src_die);
20696 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20697 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20698 }
20699
20700 return die;
03dd20cc
DJ
20701}
20702
5c631832 20703/* Follow reference OFFSET.
673bfd45
DE
20704 On entry *REF_CU is the CU of the source die referencing OFFSET.
20705 On exit *REF_CU is the CU of the result.
20706 Returns NULL if OFFSET is invalid. */
f504f079 20707
f9aca02d 20708static struct die_info *
9c541725 20709follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 20710 struct dwarf2_cu **ref_cu)
c906108c 20711{
10b3939b 20712 struct die_info temp_die;
f2f0e013 20713 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20714
348e048f
DE
20715 gdb_assert (cu->per_cu != NULL);
20716
98bfdba5
PA
20717 target_cu = cu;
20718
3019eac3 20719 if (cu->per_cu->is_debug_types)
348e048f
DE
20720 {
20721 /* .debug_types CUs cannot reference anything outside their CU.
20722 If they need to, they have to reference a signatured type via
55f1336d 20723 DW_FORM_ref_sig8. */
9c541725 20724 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 20725 return NULL;
348e048f 20726 }
36586728 20727 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 20728 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
20729 {
20730 struct dwarf2_per_cu_data *per_cu;
9a619af0 20731
9c541725 20732 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 20733 cu->objfile);
03dd20cc
DJ
20734
20735 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20736 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20737 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20738
10b3939b
DJ
20739 target_cu = per_cu->cu;
20740 }
98bfdba5
PA
20741 else if (cu->dies == NULL)
20742 {
20743 /* We're loading full DIEs during partial symbol reading. */
20744 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20745 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20746 }
c906108c 20747
f2f0e013 20748 *ref_cu = target_cu;
9c541725 20749 temp_die.sect_off = sect_off;
9a3c8263 20750 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
20751 &temp_die,
20752 to_underlying (sect_off));
5c631832 20753}
10b3939b 20754
5c631832
JK
20755/* Follow reference attribute ATTR of SRC_DIE.
20756 On entry *REF_CU is the CU of SRC_DIE.
20757 On exit *REF_CU is the CU of the result. */
20758
20759static struct die_info *
ff39bb5e 20760follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20761 struct dwarf2_cu **ref_cu)
20762{
9c541725 20763 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20764 struct dwarf2_cu *cu = *ref_cu;
20765 struct die_info *die;
20766
9c541725 20767 die = follow_die_offset (sect_off,
36586728
TT
20768 (attr->form == DW_FORM_GNU_ref_alt
20769 || cu->per_cu->is_dwz),
20770 ref_cu);
5c631832
JK
20771 if (!die)
20772 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20773 "at 0x%x [in module %s]"),
9c541725 20774 to_underlying (sect_off), to_underlying (src_die->sect_off),
4262abfb 20775 objfile_name (cu->objfile));
348e048f 20776
5c631832
JK
20777 return die;
20778}
20779
9c541725 20780/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b
JK
20781 Returned value is intended for DW_OP_call*. Returned
20782 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20783
20784struct dwarf2_locexpr_baton
9c541725 20785dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
20786 struct dwarf2_per_cu_data *per_cu,
20787 CORE_ADDR (*get_frame_pc) (void *baton),
20788 void *baton)
5c631832 20789{
918dd910 20790 struct dwarf2_cu *cu;
5c631832
JK
20791 struct die_info *die;
20792 struct attribute *attr;
20793 struct dwarf2_locexpr_baton retval;
20794
8cf6f0b1
TT
20795 dw2_setup (per_cu->objfile);
20796
918dd910
JK
20797 if (per_cu->cu == NULL)
20798 load_cu (per_cu);
20799 cu = per_cu->cu;
cc12ce38
DE
20800 if (cu == NULL)
20801 {
20802 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20803 Instead just throw an error, not much else we can do. */
20804 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20805 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20806 }
918dd910 20807
9c541725 20808 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832
JK
20809 if (!die)
20810 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20811 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20812
20813 attr = dwarf2_attr (die, DW_AT_location, cu);
20814 if (!attr)
20815 {
e103e986
JK
20816 /* DWARF: "If there is no such attribute, then there is no effect.".
20817 DATA is ignored if SIZE is 0. */
5c631832 20818
e103e986 20819 retval.data = NULL;
5c631832
JK
20820 retval.size = 0;
20821 }
8cf6f0b1
TT
20822 else if (attr_form_is_section_offset (attr))
20823 {
20824 struct dwarf2_loclist_baton loclist_baton;
20825 CORE_ADDR pc = (*get_frame_pc) (baton);
20826 size_t size;
20827
20828 fill_in_loclist_baton (cu, &loclist_baton, attr);
20829
20830 retval.data = dwarf2_find_location_expression (&loclist_baton,
20831 &size, pc);
20832 retval.size = size;
20833 }
5c631832
JK
20834 else
20835 {
20836 if (!attr_form_is_block (attr))
20837 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20838 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9c541725 20839 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20840
20841 retval.data = DW_BLOCK (attr)->data;
20842 retval.size = DW_BLOCK (attr)->size;
20843 }
20844 retval.per_cu = cu->per_cu;
918dd910 20845
918dd910
JK
20846 age_cached_comp_units ();
20847
5c631832 20848 return retval;
348e048f
DE
20849}
20850
8b9737bf
TT
20851/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20852 offset. */
20853
20854struct dwarf2_locexpr_baton
20855dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20856 struct dwarf2_per_cu_data *per_cu,
20857 CORE_ADDR (*get_frame_pc) (void *baton),
20858 void *baton)
20859{
9c541725 20860 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 20861
9c541725 20862 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
20863}
20864
b6807d98
TT
20865/* Write a constant of a given type as target-ordered bytes into
20866 OBSTACK. */
20867
20868static const gdb_byte *
20869write_constant_as_bytes (struct obstack *obstack,
20870 enum bfd_endian byte_order,
20871 struct type *type,
20872 ULONGEST value,
20873 LONGEST *len)
20874{
20875 gdb_byte *result;
20876
20877 *len = TYPE_LENGTH (type);
224c3ddb 20878 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20879 store_unsigned_integer (result, *len, byte_order, value);
20880
20881 return result;
20882}
20883
20884/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20885 pointer to the constant bytes and set LEN to the length of the
20886 data. If memory is needed, allocate it on OBSTACK. If the DIE
20887 does not have a DW_AT_const_value, return NULL. */
20888
20889const gdb_byte *
9c541725 20890dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
20891 struct dwarf2_per_cu_data *per_cu,
20892 struct obstack *obstack,
20893 LONGEST *len)
20894{
20895 struct dwarf2_cu *cu;
20896 struct die_info *die;
20897 struct attribute *attr;
20898 const gdb_byte *result = NULL;
20899 struct type *type;
20900 LONGEST value;
20901 enum bfd_endian byte_order;
20902
20903 dw2_setup (per_cu->objfile);
20904
20905 if (per_cu->cu == NULL)
20906 load_cu (per_cu);
20907 cu = per_cu->cu;
cc12ce38
DE
20908 if (cu == NULL)
20909 {
20910 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20911 Instead just throw an error, not much else we can do. */
20912 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20913 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20914 }
b6807d98 20915
9c541725 20916 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98
TT
20917 if (!die)
20918 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20919 to_underlying (sect_off), objfile_name (per_cu->objfile));
b6807d98
TT
20920
20921
20922 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20923 if (attr == NULL)
20924 return NULL;
20925
20926 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20927 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20928
20929 switch (attr->form)
20930 {
20931 case DW_FORM_addr:
20932 case DW_FORM_GNU_addr_index:
20933 {
20934 gdb_byte *tem;
20935
20936 *len = cu->header.addr_size;
224c3ddb 20937 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20938 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20939 result = tem;
20940 }
20941 break;
20942 case DW_FORM_string:
20943 case DW_FORM_strp:
20944 case DW_FORM_GNU_str_index:
20945 case DW_FORM_GNU_strp_alt:
20946 /* DW_STRING is already allocated on the objfile obstack, point
20947 directly to it. */
20948 result = (const gdb_byte *) DW_STRING (attr);
20949 *len = strlen (DW_STRING (attr));
20950 break;
20951 case DW_FORM_block1:
20952 case DW_FORM_block2:
20953 case DW_FORM_block4:
20954 case DW_FORM_block:
20955 case DW_FORM_exprloc:
0224619f 20956 case DW_FORM_data16:
b6807d98
TT
20957 result = DW_BLOCK (attr)->data;
20958 *len = DW_BLOCK (attr)->size;
20959 break;
20960
20961 /* The DW_AT_const_value attributes are supposed to carry the
20962 symbol's value "represented as it would be on the target
20963 architecture." By the time we get here, it's already been
20964 converted to host endianness, so we just need to sign- or
20965 zero-extend it as appropriate. */
20966 case DW_FORM_data1:
20967 type = die_type (die, cu);
20968 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20969 if (result == NULL)
20970 result = write_constant_as_bytes (obstack, byte_order,
20971 type, value, len);
20972 break;
20973 case DW_FORM_data2:
20974 type = die_type (die, cu);
20975 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20976 if (result == NULL)
20977 result = write_constant_as_bytes (obstack, byte_order,
20978 type, value, len);
20979 break;
20980 case DW_FORM_data4:
20981 type = die_type (die, cu);
20982 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20983 if (result == NULL)
20984 result = write_constant_as_bytes (obstack, byte_order,
20985 type, value, len);
20986 break;
20987 case DW_FORM_data8:
20988 type = die_type (die, cu);
20989 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20990 if (result == NULL)
20991 result = write_constant_as_bytes (obstack, byte_order,
20992 type, value, len);
20993 break;
20994
20995 case DW_FORM_sdata:
663c44ac 20996 case DW_FORM_implicit_const:
b6807d98
TT
20997 type = die_type (die, cu);
20998 result = write_constant_as_bytes (obstack, byte_order,
20999 type, DW_SND (attr), len);
21000 break;
21001
21002 case DW_FORM_udata:
21003 type = die_type (die, cu);
21004 result = write_constant_as_bytes (obstack, byte_order,
21005 type, DW_UNSND (attr), len);
21006 break;
21007
21008 default:
21009 complaint (&symfile_complaints,
21010 _("unsupported const value attribute form: '%s'"),
21011 dwarf_form_name (attr->form));
21012 break;
21013 }
21014
21015 return result;
21016}
21017
7942e96e
AA
21018/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21019 valid type for this die is found. */
21020
21021struct type *
9c541725 21022dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
21023 struct dwarf2_per_cu_data *per_cu)
21024{
21025 struct dwarf2_cu *cu;
21026 struct die_info *die;
21027
21028 dw2_setup (per_cu->objfile);
21029
21030 if (per_cu->cu == NULL)
21031 load_cu (per_cu);
21032 cu = per_cu->cu;
21033 if (!cu)
21034 return NULL;
21035
9c541725 21036 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
21037 if (!die)
21038 return NULL;
21039
21040 return die_type (die, cu);
21041}
21042
8a9b8146
TT
21043/* Return the type of the DIE at DIE_OFFSET in the CU named by
21044 PER_CU. */
21045
21046struct type *
b64f50a1 21047dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
21048 struct dwarf2_per_cu_data *per_cu)
21049{
8a9b8146 21050 dw2_setup (per_cu->objfile);
b64f50a1 21051
9c541725 21052 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 21053 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
21054}
21055
ac9ec31b 21056/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 21057 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
21058 On exit *REF_CU is the CU of the result.
21059 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
21060
21061static struct die_info *
ac9ec31b
DE
21062follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21063 struct dwarf2_cu **ref_cu)
348e048f 21064{
348e048f 21065 struct die_info temp_die;
348e048f
DE
21066 struct dwarf2_cu *sig_cu;
21067 struct die_info *die;
21068
ac9ec31b
DE
21069 /* While it might be nice to assert sig_type->type == NULL here,
21070 we can get here for DW_AT_imported_declaration where we need
21071 the DIE not the type. */
348e048f
DE
21072
21073 /* If necessary, add it to the queue and load its DIEs. */
21074
95554aad 21075 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 21076 read_signatured_type (sig_type);
348e048f 21077
348e048f 21078 sig_cu = sig_type->per_cu.cu;
69d751e3 21079 gdb_assert (sig_cu != NULL);
9c541725
PA
21080 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21081 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 21082 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 21083 to_underlying (temp_die.sect_off));
348e048f
DE
21084 if (die)
21085 {
796a7ff8
DE
21086 /* For .gdb_index version 7 keep track of included TUs.
21087 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21088 if (dwarf2_per_objfile->index_table != NULL
21089 && dwarf2_per_objfile->index_table->version <= 7)
21090 {
21091 VEC_safe_push (dwarf2_per_cu_ptr,
21092 (*ref_cu)->per_cu->imported_symtabs,
21093 sig_cu->per_cu);
21094 }
21095
348e048f
DE
21096 *ref_cu = sig_cu;
21097 return die;
21098 }
21099
ac9ec31b
DE
21100 return NULL;
21101}
21102
21103/* Follow signatured type referenced by ATTR in SRC_DIE.
21104 On entry *REF_CU is the CU of SRC_DIE.
21105 On exit *REF_CU is the CU of the result.
21106 The result is the DIE of the type.
21107 If the referenced type cannot be found an error is thrown. */
21108
21109static struct die_info *
ff39bb5e 21110follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
21111 struct dwarf2_cu **ref_cu)
21112{
21113 ULONGEST signature = DW_SIGNATURE (attr);
21114 struct signatured_type *sig_type;
21115 struct die_info *die;
21116
21117 gdb_assert (attr->form == DW_FORM_ref_sig8);
21118
a2ce51a0 21119 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
21120 /* sig_type will be NULL if the signatured type is missing from
21121 the debug info. */
21122 if (sig_type == NULL)
21123 {
21124 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21125 " from DIE at 0x%x [in module %s]"),
9c541725 21126 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21127 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21128 }
21129
21130 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21131 if (die == NULL)
21132 {
21133 dump_die_for_error (src_die);
21134 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21135 " from DIE at 0x%x [in module %s]"),
9c541725 21136 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21137 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21138 }
21139
21140 return die;
21141}
21142
21143/* Get the type specified by SIGNATURE referenced in DIE/CU,
21144 reading in and processing the type unit if necessary. */
21145
21146static struct type *
21147get_signatured_type (struct die_info *die, ULONGEST signature,
21148 struct dwarf2_cu *cu)
21149{
21150 struct signatured_type *sig_type;
21151 struct dwarf2_cu *type_cu;
21152 struct die_info *type_die;
21153 struct type *type;
21154
a2ce51a0 21155 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
21156 /* sig_type will be NULL if the signatured type is missing from
21157 the debug info. */
21158 if (sig_type == NULL)
21159 {
21160 complaint (&symfile_complaints,
21161 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21162 " from DIE at 0x%x [in module %s]"),
9c541725 21163 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21164 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21165 return build_error_marker_type (cu, die);
21166 }
21167
21168 /* If we already know the type we're done. */
21169 if (sig_type->type != NULL)
21170 return sig_type->type;
21171
21172 type_cu = cu;
21173 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21174 if (type_die != NULL)
21175 {
21176 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21177 is created. This is important, for example, because for c++ classes
21178 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21179 type = read_type_die (type_die, type_cu);
21180 if (type == NULL)
21181 {
21182 complaint (&symfile_complaints,
21183 _("Dwarf Error: Cannot build signatured type %s"
21184 " referenced from DIE at 0x%x [in module %s]"),
9c541725 21185 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21186 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21187 type = build_error_marker_type (cu, die);
21188 }
21189 }
21190 else
21191 {
21192 complaint (&symfile_complaints,
21193 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21194 " from DIE at 0x%x [in module %s]"),
9c541725 21195 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21196 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21197 type = build_error_marker_type (cu, die);
21198 }
21199 sig_type->type = type;
21200
21201 return type;
21202}
21203
21204/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21205 reading in and processing the type unit if necessary. */
21206
21207static struct type *
ff39bb5e 21208get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 21209 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
21210{
21211 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 21212 if (attr_form_is_ref (attr))
ac9ec31b
DE
21213 {
21214 struct dwarf2_cu *type_cu = cu;
21215 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21216
21217 return read_type_die (type_die, type_cu);
21218 }
21219 else if (attr->form == DW_FORM_ref_sig8)
21220 {
21221 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21222 }
21223 else
21224 {
21225 complaint (&symfile_complaints,
21226 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21227 " at 0x%x [in module %s]"),
9c541725 21228 dwarf_form_name (attr->form), to_underlying (die->sect_off),
4262abfb 21229 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21230 return build_error_marker_type (cu, die);
21231 }
348e048f
DE
21232}
21233
e5fe5e75 21234/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
21235
21236static void
e5fe5e75 21237load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 21238{
52dc124a 21239 struct signatured_type *sig_type;
348e048f 21240
f4dc4d17
DE
21241 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21242 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21243
6721b2ec
DE
21244 /* We have the per_cu, but we need the signatured_type.
21245 Fortunately this is an easy translation. */
21246 gdb_assert (per_cu->is_debug_types);
21247 sig_type = (struct signatured_type *) per_cu;
348e048f 21248
6721b2ec 21249 gdb_assert (per_cu->cu == NULL);
348e048f 21250
52dc124a 21251 read_signatured_type (sig_type);
348e048f 21252
6721b2ec 21253 gdb_assert (per_cu->cu != NULL);
348e048f
DE
21254}
21255
dee91e82
DE
21256/* die_reader_func for read_signatured_type.
21257 This is identical to load_full_comp_unit_reader,
21258 but is kept separate for now. */
348e048f
DE
21259
21260static void
dee91e82 21261read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 21262 const gdb_byte *info_ptr,
dee91e82
DE
21263 struct die_info *comp_unit_die,
21264 int has_children,
21265 void *data)
348e048f 21266{
dee91e82 21267 struct dwarf2_cu *cu = reader->cu;
348e048f 21268
dee91e82
DE
21269 gdb_assert (cu->die_hash == NULL);
21270 cu->die_hash =
21271 htab_create_alloc_ex (cu->header.length / 12,
21272 die_hash,
21273 die_eq,
21274 NULL,
21275 &cu->comp_unit_obstack,
21276 hashtab_obstack_allocate,
21277 dummy_obstack_deallocate);
348e048f 21278
dee91e82
DE
21279 if (has_children)
21280 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21281 &info_ptr, comp_unit_die);
21282 cu->dies = comp_unit_die;
21283 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21284
21285 /* We try not to read any attributes in this function, because not
9cdd5dbd 21286 all CUs needed for references have been loaded yet, and symbol
348e048f 21287 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21288 or we won't be able to build types correctly.
21289 Similarly, if we do not read the producer, we can not apply
21290 producer-specific interpretation. */
95554aad 21291 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21292}
348e048f 21293
3019eac3
DE
21294/* Read in a signatured type and build its CU and DIEs.
21295 If the type is a stub for the real type in a DWO file,
21296 read in the real type from the DWO file as well. */
dee91e82
DE
21297
21298static void
21299read_signatured_type (struct signatured_type *sig_type)
21300{
21301 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21302
3019eac3 21303 gdb_assert (per_cu->is_debug_types);
dee91e82 21304 gdb_assert (per_cu->cu == NULL);
348e048f 21305
f4dc4d17
DE
21306 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21307 read_signatured_type_reader, NULL);
7ee85ab1 21308 sig_type->per_cu.tu_read = 1;
c906108c
SS
21309}
21310
c906108c
SS
21311/* Decode simple location descriptions.
21312 Given a pointer to a dwarf block that defines a location, compute
21313 the location and return the value.
21314
4cecd739
DJ
21315 NOTE drow/2003-11-18: This function is called in two situations
21316 now: for the address of static or global variables (partial symbols
21317 only) and for offsets into structures which are expected to be
21318 (more or less) constant. The partial symbol case should go away,
21319 and only the constant case should remain. That will let this
21320 function complain more accurately. A few special modes are allowed
21321 without complaint for global variables (for instance, global
21322 register values and thread-local values).
c906108c
SS
21323
21324 A location description containing no operations indicates that the
4cecd739 21325 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21326 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21327 callers will only want a very basic result and this can become a
21ae7a4d
JK
21328 complaint.
21329
21330 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21331
21332static CORE_ADDR
e7c27a73 21333decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21334{
e7c27a73 21335 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21336 size_t i;
21337 size_t size = blk->size;
d521ce57 21338 const gdb_byte *data = blk->data;
21ae7a4d
JK
21339 CORE_ADDR stack[64];
21340 int stacki;
21341 unsigned int bytes_read, unsnd;
21342 gdb_byte op;
c906108c 21343
21ae7a4d
JK
21344 i = 0;
21345 stacki = 0;
21346 stack[stacki] = 0;
21347 stack[++stacki] = 0;
21348
21349 while (i < size)
21350 {
21351 op = data[i++];
21352 switch (op)
21353 {
21354 case DW_OP_lit0:
21355 case DW_OP_lit1:
21356 case DW_OP_lit2:
21357 case DW_OP_lit3:
21358 case DW_OP_lit4:
21359 case DW_OP_lit5:
21360 case DW_OP_lit6:
21361 case DW_OP_lit7:
21362 case DW_OP_lit8:
21363 case DW_OP_lit9:
21364 case DW_OP_lit10:
21365 case DW_OP_lit11:
21366 case DW_OP_lit12:
21367 case DW_OP_lit13:
21368 case DW_OP_lit14:
21369 case DW_OP_lit15:
21370 case DW_OP_lit16:
21371 case DW_OP_lit17:
21372 case DW_OP_lit18:
21373 case DW_OP_lit19:
21374 case DW_OP_lit20:
21375 case DW_OP_lit21:
21376 case DW_OP_lit22:
21377 case DW_OP_lit23:
21378 case DW_OP_lit24:
21379 case DW_OP_lit25:
21380 case DW_OP_lit26:
21381 case DW_OP_lit27:
21382 case DW_OP_lit28:
21383 case DW_OP_lit29:
21384 case DW_OP_lit30:
21385 case DW_OP_lit31:
21386 stack[++stacki] = op - DW_OP_lit0;
21387 break;
f1bea926 21388
21ae7a4d
JK
21389 case DW_OP_reg0:
21390 case DW_OP_reg1:
21391 case DW_OP_reg2:
21392 case DW_OP_reg3:
21393 case DW_OP_reg4:
21394 case DW_OP_reg5:
21395 case DW_OP_reg6:
21396 case DW_OP_reg7:
21397 case DW_OP_reg8:
21398 case DW_OP_reg9:
21399 case DW_OP_reg10:
21400 case DW_OP_reg11:
21401 case DW_OP_reg12:
21402 case DW_OP_reg13:
21403 case DW_OP_reg14:
21404 case DW_OP_reg15:
21405 case DW_OP_reg16:
21406 case DW_OP_reg17:
21407 case DW_OP_reg18:
21408 case DW_OP_reg19:
21409 case DW_OP_reg20:
21410 case DW_OP_reg21:
21411 case DW_OP_reg22:
21412 case DW_OP_reg23:
21413 case DW_OP_reg24:
21414 case DW_OP_reg25:
21415 case DW_OP_reg26:
21416 case DW_OP_reg27:
21417 case DW_OP_reg28:
21418 case DW_OP_reg29:
21419 case DW_OP_reg30:
21420 case DW_OP_reg31:
21421 stack[++stacki] = op - DW_OP_reg0;
21422 if (i < size)
21423 dwarf2_complex_location_expr_complaint ();
21424 break;
c906108c 21425
21ae7a4d
JK
21426 case DW_OP_regx:
21427 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21428 i += bytes_read;
21429 stack[++stacki] = unsnd;
21430 if (i < size)
21431 dwarf2_complex_location_expr_complaint ();
21432 break;
c906108c 21433
21ae7a4d
JK
21434 case DW_OP_addr:
21435 stack[++stacki] = read_address (objfile->obfd, &data[i],
21436 cu, &bytes_read);
21437 i += bytes_read;
21438 break;
d53d4ac5 21439
21ae7a4d
JK
21440 case DW_OP_const1u:
21441 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21442 i += 1;
21443 break;
21444
21445 case DW_OP_const1s:
21446 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21447 i += 1;
21448 break;
21449
21450 case DW_OP_const2u:
21451 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21452 i += 2;
21453 break;
21454
21455 case DW_OP_const2s:
21456 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21457 i += 2;
21458 break;
d53d4ac5 21459
21ae7a4d
JK
21460 case DW_OP_const4u:
21461 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21462 i += 4;
21463 break;
21464
21465 case DW_OP_const4s:
21466 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21467 i += 4;
21468 break;
21469
585861ea
JK
21470 case DW_OP_const8u:
21471 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21472 i += 8;
21473 break;
21474
21ae7a4d
JK
21475 case DW_OP_constu:
21476 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21477 &bytes_read);
21478 i += bytes_read;
21479 break;
21480
21481 case DW_OP_consts:
21482 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21483 i += bytes_read;
21484 break;
21485
21486 case DW_OP_dup:
21487 stack[stacki + 1] = stack[stacki];
21488 stacki++;
21489 break;
21490
21491 case DW_OP_plus:
21492 stack[stacki - 1] += stack[stacki];
21493 stacki--;
21494 break;
21495
21496 case DW_OP_plus_uconst:
21497 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21498 &bytes_read);
21499 i += bytes_read;
21500 break;
21501
21502 case DW_OP_minus:
21503 stack[stacki - 1] -= stack[stacki];
21504 stacki--;
21505 break;
21506
21507 case DW_OP_deref:
21508 /* If we're not the last op, then we definitely can't encode
21509 this using GDB's address_class enum. This is valid for partial
21510 global symbols, although the variable's address will be bogus
21511 in the psymtab. */
21512 if (i < size)
21513 dwarf2_complex_location_expr_complaint ();
21514 break;
21515
21516 case DW_OP_GNU_push_tls_address:
4aa4e28b 21517 case DW_OP_form_tls_address:
21ae7a4d
JK
21518 /* The top of the stack has the offset from the beginning
21519 of the thread control block at which the variable is located. */
21520 /* Nothing should follow this operator, so the top of stack would
21521 be returned. */
21522 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21523 address will be bogus in the psymtab. Make it always at least
21524 non-zero to not look as a variable garbage collected by linker
21525 which have DW_OP_addr 0. */
21ae7a4d
JK
21526 if (i < size)
21527 dwarf2_complex_location_expr_complaint ();
585861ea 21528 stack[stacki]++;
21ae7a4d
JK
21529 break;
21530
21531 case DW_OP_GNU_uninit:
21532 break;
21533
3019eac3 21534 case DW_OP_GNU_addr_index:
49f6c839 21535 case DW_OP_GNU_const_index:
3019eac3
DE
21536 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21537 &bytes_read);
21538 i += bytes_read;
21539 break;
21540
21ae7a4d
JK
21541 default:
21542 {
f39c6ffd 21543 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21544
21545 if (name)
21546 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21547 name);
21548 else
21549 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21550 op);
21551 }
21552
21553 return (stack[stacki]);
d53d4ac5 21554 }
3c6e0cb3 21555
21ae7a4d
JK
21556 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21557 outside of the allocated space. Also enforce minimum>0. */
21558 if (stacki >= ARRAY_SIZE (stack) - 1)
21559 {
21560 complaint (&symfile_complaints,
21561 _("location description stack overflow"));
21562 return 0;
21563 }
21564
21565 if (stacki <= 0)
21566 {
21567 complaint (&symfile_complaints,
21568 _("location description stack underflow"));
21569 return 0;
21570 }
21571 }
21572 return (stack[stacki]);
c906108c
SS
21573}
21574
21575/* memory allocation interface */
21576
c906108c 21577static struct dwarf_block *
7b5a2f43 21578dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21579{
8d749320 21580 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21581}
21582
c906108c 21583static struct die_info *
b60c80d6 21584dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21585{
21586 struct die_info *die;
b60c80d6
DJ
21587 size_t size = sizeof (struct die_info);
21588
21589 if (num_attrs > 1)
21590 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21591
b60c80d6 21592 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21593 memset (die, 0, sizeof (struct die_info));
21594 return (die);
21595}
2e276125
JB
21596
21597\f
21598/* Macro support. */
21599
233d95b5
JK
21600/* Return file name relative to the compilation directory of file number I in
21601 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21602 responsible for freeing it. */
233d95b5 21603
2e276125 21604static char *
233d95b5 21605file_file_name (int file, struct line_header *lh)
2e276125 21606{
6a83a1e6
EZ
21607 /* Is the file number a valid index into the line header's file name
21608 table? Remember that file numbers start with one, not zero. */
fff8551c 21609 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 21610 {
8c43009f 21611 const file_entry &fe = lh->file_names[file - 1];
6e70227d 21612
8c43009f
PA
21613 if (!IS_ABSOLUTE_PATH (fe.name))
21614 {
21615 const char *dir = fe.include_dir (lh);
21616 if (dir != NULL)
21617 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21618 }
21619 return xstrdup (fe.name);
6a83a1e6 21620 }
2e276125
JB
21621 else
21622 {
6a83a1e6
EZ
21623 /* The compiler produced a bogus file number. We can at least
21624 record the macro definitions made in the file, even if we
21625 won't be able to find the file by name. */
21626 char fake_name[80];
9a619af0 21627
8c042590
PM
21628 xsnprintf (fake_name, sizeof (fake_name),
21629 "<bad macro file number %d>", file);
2e276125 21630
6e70227d 21631 complaint (&symfile_complaints,
6a83a1e6
EZ
21632 _("bad file number in macro information (%d)"),
21633 file);
2e276125 21634
6a83a1e6 21635 return xstrdup (fake_name);
2e276125
JB
21636 }
21637}
21638
233d95b5
JK
21639/* Return the full name of file number I in *LH's file name table.
21640 Use COMP_DIR as the name of the current directory of the
21641 compilation. The result is allocated using xmalloc; the caller is
21642 responsible for freeing it. */
21643static char *
21644file_full_name (int file, struct line_header *lh, const char *comp_dir)
21645{
21646 /* Is the file number a valid index into the line header's file name
21647 table? Remember that file numbers start with one, not zero. */
fff8551c 21648 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
21649 {
21650 char *relative = file_file_name (file, lh);
21651
21652 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21653 return relative;
b36cec19
PA
21654 return reconcat (relative, comp_dir, SLASH_STRING,
21655 relative, (char *) NULL);
233d95b5
JK
21656 }
21657 else
21658 return file_file_name (file, lh);
21659}
21660
2e276125
JB
21661
21662static struct macro_source_file *
21663macro_start_file (int file, int line,
21664 struct macro_source_file *current_file,
43f3e411 21665 struct line_header *lh)
2e276125 21666{
233d95b5
JK
21667 /* File name relative to the compilation directory of this source file. */
21668 char *file_name = file_file_name (file, lh);
2e276125 21669
2e276125 21670 if (! current_file)
abc9d0dc 21671 {
fc474241
DE
21672 /* Note: We don't create a macro table for this compilation unit
21673 at all until we actually get a filename. */
43f3e411 21674 struct macro_table *macro_table = get_macro_table ();
fc474241 21675
abc9d0dc
TT
21676 /* If we have no current file, then this must be the start_file
21677 directive for the compilation unit's main source file. */
fc474241
DE
21678 current_file = macro_set_main (macro_table, file_name);
21679 macro_define_special (macro_table);
abc9d0dc 21680 }
2e276125 21681 else
233d95b5 21682 current_file = macro_include (current_file, line, file_name);
2e276125 21683
233d95b5 21684 xfree (file_name);
6e70227d 21685
2e276125
JB
21686 return current_file;
21687}
21688
2e276125
JB
21689static const char *
21690consume_improper_spaces (const char *p, const char *body)
21691{
21692 if (*p == ' ')
21693 {
4d3c2250 21694 complaint (&symfile_complaints,
3e43a32a
MS
21695 _("macro definition contains spaces "
21696 "in formal argument list:\n`%s'"),
4d3c2250 21697 body);
2e276125
JB
21698
21699 while (*p == ' ')
21700 p++;
21701 }
21702
21703 return p;
21704}
21705
21706
21707static void
21708parse_macro_definition (struct macro_source_file *file, int line,
21709 const char *body)
21710{
21711 const char *p;
21712
21713 /* The body string takes one of two forms. For object-like macro
21714 definitions, it should be:
21715
21716 <macro name> " " <definition>
21717
21718 For function-like macro definitions, it should be:
21719
21720 <macro name> "() " <definition>
21721 or
21722 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21723
21724 Spaces may appear only where explicitly indicated, and in the
21725 <definition>.
21726
21727 The Dwarf 2 spec says that an object-like macro's name is always
21728 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21729 the space when the macro's definition is the empty string.
2e276125
JB
21730
21731 The Dwarf 2 spec says that there should be no spaces between the
21732 formal arguments in a function-like macro's formal argument list,
21733 but versions of GCC around March 2002 include spaces after the
21734 commas. */
21735
21736
21737 /* Find the extent of the macro name. The macro name is terminated
21738 by either a space or null character (for an object-like macro) or
21739 an opening paren (for a function-like macro). */
21740 for (p = body; *p; p++)
21741 if (*p == ' ' || *p == '(')
21742 break;
21743
21744 if (*p == ' ' || *p == '\0')
21745 {
21746 /* It's an object-like macro. */
21747 int name_len = p - body;
3f8a7804 21748 char *name = savestring (body, name_len);
2e276125
JB
21749 const char *replacement;
21750
21751 if (*p == ' ')
21752 replacement = body + name_len + 1;
21753 else
21754 {
4d3c2250 21755 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21756 replacement = body + name_len;
21757 }
6e70227d 21758
2e276125
JB
21759 macro_define_object (file, line, name, replacement);
21760
21761 xfree (name);
21762 }
21763 else if (*p == '(')
21764 {
21765 /* It's a function-like macro. */
3f8a7804 21766 char *name = savestring (body, p - body);
2e276125
JB
21767 int argc = 0;
21768 int argv_size = 1;
8d749320 21769 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21770
21771 p++;
21772
21773 p = consume_improper_spaces (p, body);
21774
21775 /* Parse the formal argument list. */
21776 while (*p && *p != ')')
21777 {
21778 /* Find the extent of the current argument name. */
21779 const char *arg_start = p;
21780
21781 while (*p && *p != ',' && *p != ')' && *p != ' ')
21782 p++;
21783
21784 if (! *p || p == arg_start)
4d3c2250 21785 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21786 else
21787 {
21788 /* Make sure argv has room for the new argument. */
21789 if (argc >= argv_size)
21790 {
21791 argv_size *= 2;
224c3ddb 21792 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21793 }
21794
3f8a7804 21795 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
21796 }
21797
21798 p = consume_improper_spaces (p, body);
21799
21800 /* Consume the comma, if present. */
21801 if (*p == ',')
21802 {
21803 p++;
21804
21805 p = consume_improper_spaces (p, body);
21806 }
21807 }
21808
21809 if (*p == ')')
21810 {
21811 p++;
21812
21813 if (*p == ' ')
21814 /* Perfectly formed definition, no complaints. */
21815 macro_define_function (file, line, name,
6e70227d 21816 argc, (const char **) argv,
2e276125
JB
21817 p + 1);
21818 else if (*p == '\0')
21819 {
21820 /* Complain, but do define it. */
4d3c2250 21821 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21822 macro_define_function (file, line, name,
6e70227d 21823 argc, (const char **) argv,
2e276125
JB
21824 p);
21825 }
21826 else
21827 /* Just complain. */
4d3c2250 21828 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21829 }
21830 else
21831 /* Just complain. */
4d3c2250 21832 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21833
21834 xfree (name);
21835 {
21836 int i;
21837
21838 for (i = 0; i < argc; i++)
21839 xfree (argv[i]);
21840 }
21841 xfree (argv);
21842 }
21843 else
4d3c2250 21844 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21845}
21846
cf2c3c16
TT
21847/* Skip some bytes from BYTES according to the form given in FORM.
21848 Returns the new pointer. */
2e276125 21849
d521ce57
TT
21850static const gdb_byte *
21851skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21852 enum dwarf_form form,
21853 unsigned int offset_size,
21854 struct dwarf2_section_info *section)
2e276125 21855{
cf2c3c16 21856 unsigned int bytes_read;
2e276125 21857
cf2c3c16 21858 switch (form)
2e276125 21859 {
cf2c3c16
TT
21860 case DW_FORM_data1:
21861 case DW_FORM_flag:
21862 ++bytes;
21863 break;
21864
21865 case DW_FORM_data2:
21866 bytes += 2;
21867 break;
21868
21869 case DW_FORM_data4:
21870 bytes += 4;
21871 break;
21872
21873 case DW_FORM_data8:
21874 bytes += 8;
21875 break;
21876
0224619f
JK
21877 case DW_FORM_data16:
21878 bytes += 16;
21879 break;
21880
cf2c3c16
TT
21881 case DW_FORM_string:
21882 read_direct_string (abfd, bytes, &bytes_read);
21883 bytes += bytes_read;
21884 break;
21885
21886 case DW_FORM_sec_offset:
21887 case DW_FORM_strp:
36586728 21888 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21889 bytes += offset_size;
21890 break;
21891
21892 case DW_FORM_block:
21893 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21894 bytes += bytes_read;
21895 break;
21896
21897 case DW_FORM_block1:
21898 bytes += 1 + read_1_byte (abfd, bytes);
21899 break;
21900 case DW_FORM_block2:
21901 bytes += 2 + read_2_bytes (abfd, bytes);
21902 break;
21903 case DW_FORM_block4:
21904 bytes += 4 + read_4_bytes (abfd, bytes);
21905 break;
21906
21907 case DW_FORM_sdata:
21908 case DW_FORM_udata:
3019eac3
DE
21909 case DW_FORM_GNU_addr_index:
21910 case DW_FORM_GNU_str_index:
d521ce57 21911 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21912 if (bytes == NULL)
21913 {
21914 dwarf2_section_buffer_overflow_complaint (section);
21915 return NULL;
21916 }
cf2c3c16
TT
21917 break;
21918
663c44ac
JK
21919 case DW_FORM_implicit_const:
21920 break;
21921
cf2c3c16
TT
21922 default:
21923 {
21924 complain:
21925 complaint (&symfile_complaints,
21926 _("invalid form 0x%x in `%s'"),
a32a8923 21927 form, get_section_name (section));
cf2c3c16
TT
21928 return NULL;
21929 }
2e276125
JB
21930 }
21931
cf2c3c16
TT
21932 return bytes;
21933}
757a13d0 21934
cf2c3c16
TT
21935/* A helper for dwarf_decode_macros that handles skipping an unknown
21936 opcode. Returns an updated pointer to the macro data buffer; or,
21937 on error, issues a complaint and returns NULL. */
757a13d0 21938
d521ce57 21939static const gdb_byte *
cf2c3c16 21940skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21941 const gdb_byte **opcode_definitions,
21942 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21943 bfd *abfd,
21944 unsigned int offset_size,
21945 struct dwarf2_section_info *section)
21946{
21947 unsigned int bytes_read, i;
21948 unsigned long arg;
d521ce57 21949 const gdb_byte *defn;
2e276125 21950
cf2c3c16 21951 if (opcode_definitions[opcode] == NULL)
2e276125 21952 {
cf2c3c16
TT
21953 complaint (&symfile_complaints,
21954 _("unrecognized DW_MACFINO opcode 0x%x"),
21955 opcode);
21956 return NULL;
21957 }
2e276125 21958
cf2c3c16
TT
21959 defn = opcode_definitions[opcode];
21960 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21961 defn += bytes_read;
2e276125 21962
cf2c3c16
TT
21963 for (i = 0; i < arg; ++i)
21964 {
aead7601
SM
21965 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21966 (enum dwarf_form) defn[i], offset_size,
f664829e 21967 section);
cf2c3c16
TT
21968 if (mac_ptr == NULL)
21969 {
21970 /* skip_form_bytes already issued the complaint. */
21971 return NULL;
21972 }
21973 }
757a13d0 21974
cf2c3c16
TT
21975 return mac_ptr;
21976}
757a13d0 21977
cf2c3c16
TT
21978/* A helper function which parses the header of a macro section.
21979 If the macro section is the extended (for now called "GNU") type,
21980 then this updates *OFFSET_SIZE. Returns a pointer to just after
21981 the header, or issues a complaint and returns NULL on error. */
757a13d0 21982
d521ce57
TT
21983static const gdb_byte *
21984dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21985 bfd *abfd,
d521ce57 21986 const gdb_byte *mac_ptr,
cf2c3c16
TT
21987 unsigned int *offset_size,
21988 int section_is_gnu)
21989{
21990 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21991
cf2c3c16
TT
21992 if (section_is_gnu)
21993 {
21994 unsigned int version, flags;
757a13d0 21995
cf2c3c16 21996 version = read_2_bytes (abfd, mac_ptr);
0af92d60 21997 if (version != 4 && version != 5)
cf2c3c16
TT
21998 {
21999 complaint (&symfile_complaints,
22000 _("unrecognized version `%d' in .debug_macro section"),
22001 version);
22002 return NULL;
22003 }
22004 mac_ptr += 2;
757a13d0 22005
cf2c3c16
TT
22006 flags = read_1_byte (abfd, mac_ptr);
22007 ++mac_ptr;
22008 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 22009
cf2c3c16
TT
22010 if ((flags & 2) != 0)
22011 /* We don't need the line table offset. */
22012 mac_ptr += *offset_size;
757a13d0 22013
cf2c3c16
TT
22014 /* Vendor opcode descriptions. */
22015 if ((flags & 4) != 0)
22016 {
22017 unsigned int i, count;
757a13d0 22018
cf2c3c16
TT
22019 count = read_1_byte (abfd, mac_ptr);
22020 ++mac_ptr;
22021 for (i = 0; i < count; ++i)
22022 {
22023 unsigned int opcode, bytes_read;
22024 unsigned long arg;
22025
22026 opcode = read_1_byte (abfd, mac_ptr);
22027 ++mac_ptr;
22028 opcode_definitions[opcode] = mac_ptr;
22029 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22030 mac_ptr += bytes_read;
22031 mac_ptr += arg;
22032 }
757a13d0 22033 }
cf2c3c16 22034 }
757a13d0 22035
cf2c3c16
TT
22036 return mac_ptr;
22037}
757a13d0 22038
cf2c3c16 22039/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 22040 including DW_MACRO_import. */
cf2c3c16
TT
22041
22042static void
d521ce57
TT
22043dwarf_decode_macro_bytes (bfd *abfd,
22044 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 22045 struct macro_source_file *current_file,
43f3e411 22046 struct line_header *lh,
cf2c3c16 22047 struct dwarf2_section_info *section,
36586728 22048 int section_is_gnu, int section_is_dwz,
cf2c3c16 22049 unsigned int offset_size,
8fc3fc34 22050 htab_t include_hash)
cf2c3c16 22051{
4d663531 22052 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
22053 enum dwarf_macro_record_type macinfo_type;
22054 int at_commandline;
d521ce57 22055 const gdb_byte *opcode_definitions[256];
757a13d0 22056
cf2c3c16
TT
22057 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22058 &offset_size, section_is_gnu);
22059 if (mac_ptr == NULL)
22060 {
22061 /* We already issued a complaint. */
22062 return;
22063 }
757a13d0
JK
22064
22065 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22066 GDB is still reading the definitions from command line. First
22067 DW_MACINFO_start_file will need to be ignored as it was already executed
22068 to create CURRENT_FILE for the main source holding also the command line
22069 definitions. On first met DW_MACINFO_start_file this flag is reset to
22070 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22071
22072 at_commandline = 1;
22073
22074 do
22075 {
22076 /* Do we at least have room for a macinfo type byte? */
22077 if (mac_ptr >= mac_end)
22078 {
f664829e 22079 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
22080 break;
22081 }
22082
aead7601 22083 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
22084 mac_ptr++;
22085
cf2c3c16
TT
22086 /* Note that we rely on the fact that the corresponding GNU and
22087 DWARF constants are the same. */
757a13d0
JK
22088 switch (macinfo_type)
22089 {
22090 /* A zero macinfo type indicates the end of the macro
22091 information. */
22092 case 0:
22093 break;
2e276125 22094
0af92d60
JK
22095 case DW_MACRO_define:
22096 case DW_MACRO_undef:
22097 case DW_MACRO_define_strp:
22098 case DW_MACRO_undef_strp:
22099 case DW_MACRO_define_sup:
22100 case DW_MACRO_undef_sup:
2e276125 22101 {
891d2f0b 22102 unsigned int bytes_read;
2e276125 22103 int line;
d521ce57 22104 const char *body;
cf2c3c16 22105 int is_define;
2e276125 22106
cf2c3c16
TT
22107 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22108 mac_ptr += bytes_read;
22109
0af92d60
JK
22110 if (macinfo_type == DW_MACRO_define
22111 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
22112 {
22113 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22114 mac_ptr += bytes_read;
22115 }
22116 else
22117 {
22118 LONGEST str_offset;
22119
22120 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22121 mac_ptr += offset_size;
2e276125 22122
0af92d60
JK
22123 if (macinfo_type == DW_MACRO_define_sup
22124 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 22125 || section_is_dwz)
36586728
TT
22126 {
22127 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22128
22129 body = read_indirect_string_from_dwz (dwz, str_offset);
22130 }
22131 else
22132 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
22133 }
22134
0af92d60
JK
22135 is_define = (macinfo_type == DW_MACRO_define
22136 || macinfo_type == DW_MACRO_define_strp
22137 || macinfo_type == DW_MACRO_define_sup);
2e276125 22138 if (! current_file)
757a13d0
JK
22139 {
22140 /* DWARF violation as no main source is present. */
22141 complaint (&symfile_complaints,
22142 _("debug info with no main source gives macro %s "
22143 "on line %d: %s"),
cf2c3c16
TT
22144 is_define ? _("definition") : _("undefinition"),
22145 line, body);
757a13d0
JK
22146 break;
22147 }
3e43a32a
MS
22148 if ((line == 0 && !at_commandline)
22149 || (line != 0 && at_commandline))
4d3c2250 22150 complaint (&symfile_complaints,
757a13d0
JK
22151 _("debug info gives %s macro %s with %s line %d: %s"),
22152 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 22153 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
22154 line == 0 ? _("zero") : _("non-zero"), line, body);
22155
cf2c3c16 22156 if (is_define)
757a13d0 22157 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
22158 else
22159 {
0af92d60
JK
22160 gdb_assert (macinfo_type == DW_MACRO_undef
22161 || macinfo_type == DW_MACRO_undef_strp
22162 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
22163 macro_undef (current_file, line, body);
22164 }
2e276125
JB
22165 }
22166 break;
22167
0af92d60 22168 case DW_MACRO_start_file:
2e276125 22169 {
891d2f0b 22170 unsigned int bytes_read;
2e276125
JB
22171 int line, file;
22172
22173 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22174 mac_ptr += bytes_read;
22175 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22176 mac_ptr += bytes_read;
22177
3e43a32a
MS
22178 if ((line == 0 && !at_commandline)
22179 || (line != 0 && at_commandline))
757a13d0
JK
22180 complaint (&symfile_complaints,
22181 _("debug info gives source %d included "
22182 "from %s at %s line %d"),
22183 file, at_commandline ? _("command-line") : _("file"),
22184 line == 0 ? _("zero") : _("non-zero"), line);
22185
22186 if (at_commandline)
22187 {
0af92d60 22188 /* This DW_MACRO_start_file was executed in the
cf2c3c16 22189 pass one. */
757a13d0
JK
22190 at_commandline = 0;
22191 }
22192 else
43f3e411 22193 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
22194 }
22195 break;
22196
0af92d60 22197 case DW_MACRO_end_file:
2e276125 22198 if (! current_file)
4d3c2250 22199 complaint (&symfile_complaints,
3e43a32a
MS
22200 _("macro debug info has an unmatched "
22201 "`close_file' directive"));
2e276125
JB
22202 else
22203 {
22204 current_file = current_file->included_by;
22205 if (! current_file)
22206 {
cf2c3c16 22207 enum dwarf_macro_record_type next_type;
2e276125
JB
22208
22209 /* GCC circa March 2002 doesn't produce the zero
22210 type byte marking the end of the compilation
22211 unit. Complain if it's not there, but exit no
22212 matter what. */
22213
22214 /* Do we at least have room for a macinfo type byte? */
22215 if (mac_ptr >= mac_end)
22216 {
f664829e 22217 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
22218 return;
22219 }
22220
22221 /* We don't increment mac_ptr here, so this is just
22222 a look-ahead. */
aead7601
SM
22223 next_type
22224 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22225 mac_ptr);
2e276125 22226 if (next_type != 0)
4d3c2250 22227 complaint (&symfile_complaints,
3e43a32a
MS
22228 _("no terminating 0-type entry for "
22229 "macros in `.debug_macinfo' section"));
2e276125
JB
22230
22231 return;
22232 }
22233 }
22234 break;
22235
0af92d60
JK
22236 case DW_MACRO_import:
22237 case DW_MACRO_import_sup:
cf2c3c16
TT
22238 {
22239 LONGEST offset;
8fc3fc34 22240 void **slot;
a036ba48
TT
22241 bfd *include_bfd = abfd;
22242 struct dwarf2_section_info *include_section = section;
d521ce57 22243 const gdb_byte *include_mac_end = mac_end;
a036ba48 22244 int is_dwz = section_is_dwz;
d521ce57 22245 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
22246
22247 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22248 mac_ptr += offset_size;
22249
0af92d60 22250 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
22251 {
22252 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22253
4d663531 22254 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 22255
a036ba48 22256 include_section = &dwz->macro;
a32a8923 22257 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22258 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22259 is_dwz = 1;
22260 }
22261
22262 new_mac_ptr = include_section->buffer + offset;
22263 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22264
8fc3fc34
TT
22265 if (*slot != NULL)
22266 {
22267 /* This has actually happened; see
22268 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22269 complaint (&symfile_complaints,
0af92d60 22270 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22271 ".debug_macro section"));
22272 }
22273 else
22274 {
d521ce57 22275 *slot = (void *) new_mac_ptr;
36586728 22276
a036ba48 22277 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22278 include_mac_end, current_file, lh,
36586728 22279 section, section_is_gnu, is_dwz,
4d663531 22280 offset_size, include_hash);
8fc3fc34 22281
d521ce57 22282 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22283 }
cf2c3c16
TT
22284 }
22285 break;
22286
2e276125 22287 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22288 if (!section_is_gnu)
22289 {
22290 unsigned int bytes_read;
2e276125 22291
ac298888
TT
22292 /* This reads the constant, but since we don't recognize
22293 any vendor extensions, we ignore it. */
22294 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22295 mac_ptr += bytes_read;
22296 read_direct_string (abfd, mac_ptr, &bytes_read);
22297 mac_ptr += bytes_read;
2e276125 22298
cf2c3c16
TT
22299 /* We don't recognize any vendor extensions. */
22300 break;
22301 }
22302 /* FALLTHROUGH */
22303
22304 default:
22305 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22306 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22307 section);
22308 if (mac_ptr == NULL)
22309 return;
22310 break;
2e276125 22311 }
757a13d0 22312 } while (macinfo_type != 0);
2e276125 22313}
8e19ed76 22314
cf2c3c16 22315static void
09262596 22316dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22317 int section_is_gnu)
cf2c3c16 22318{
bb5ed363 22319 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22320 struct line_header *lh = cu->line_header;
22321 bfd *abfd;
d521ce57 22322 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22323 struct macro_source_file *current_file = 0;
22324 enum dwarf_macro_record_type macinfo_type;
22325 unsigned int offset_size = cu->header.offset_size;
d521ce57 22326 const gdb_byte *opcode_definitions[256];
8fc3fc34 22327 struct cleanup *cleanup;
8fc3fc34 22328 void **slot;
09262596
DE
22329 struct dwarf2_section_info *section;
22330 const char *section_name;
22331
22332 if (cu->dwo_unit != NULL)
22333 {
22334 if (section_is_gnu)
22335 {
22336 section = &cu->dwo_unit->dwo_file->sections.macro;
22337 section_name = ".debug_macro.dwo";
22338 }
22339 else
22340 {
22341 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22342 section_name = ".debug_macinfo.dwo";
22343 }
22344 }
22345 else
22346 {
22347 if (section_is_gnu)
22348 {
22349 section = &dwarf2_per_objfile->macro;
22350 section_name = ".debug_macro";
22351 }
22352 else
22353 {
22354 section = &dwarf2_per_objfile->macinfo;
22355 section_name = ".debug_macinfo";
22356 }
22357 }
cf2c3c16 22358
bb5ed363 22359 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22360 if (section->buffer == NULL)
22361 {
fceca515 22362 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22363 return;
22364 }
a32a8923 22365 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22366
22367 /* First pass: Find the name of the base filename.
22368 This filename is needed in order to process all macros whose definition
22369 (or undefinition) comes from the command line. These macros are defined
22370 before the first DW_MACINFO_start_file entry, and yet still need to be
22371 associated to the base file.
22372
22373 To determine the base file name, we scan the macro definitions until we
22374 reach the first DW_MACINFO_start_file entry. We then initialize
22375 CURRENT_FILE accordingly so that any macro definition found before the
22376 first DW_MACINFO_start_file can still be associated to the base file. */
22377
22378 mac_ptr = section->buffer + offset;
22379 mac_end = section->buffer + section->size;
22380
22381 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22382 &offset_size, section_is_gnu);
22383 if (mac_ptr == NULL)
22384 {
22385 /* We already issued a complaint. */
22386 return;
22387 }
22388
22389 do
22390 {
22391 /* Do we at least have room for a macinfo type byte? */
22392 if (mac_ptr >= mac_end)
22393 {
22394 /* Complaint is printed during the second pass as GDB will probably
22395 stop the first pass earlier upon finding
22396 DW_MACINFO_start_file. */
22397 break;
22398 }
22399
aead7601 22400 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22401 mac_ptr++;
22402
22403 /* Note that we rely on the fact that the corresponding GNU and
22404 DWARF constants are the same. */
22405 switch (macinfo_type)
22406 {
22407 /* A zero macinfo type indicates the end of the macro
22408 information. */
22409 case 0:
22410 break;
22411
0af92d60
JK
22412 case DW_MACRO_define:
22413 case DW_MACRO_undef:
cf2c3c16
TT
22414 /* Only skip the data by MAC_PTR. */
22415 {
22416 unsigned int bytes_read;
22417
22418 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22419 mac_ptr += bytes_read;
22420 read_direct_string (abfd, mac_ptr, &bytes_read);
22421 mac_ptr += bytes_read;
22422 }
22423 break;
22424
0af92d60 22425 case DW_MACRO_start_file:
cf2c3c16
TT
22426 {
22427 unsigned int bytes_read;
22428 int line, file;
22429
22430 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22431 mac_ptr += bytes_read;
22432 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22433 mac_ptr += bytes_read;
22434
43f3e411 22435 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22436 }
22437 break;
22438
0af92d60 22439 case DW_MACRO_end_file:
cf2c3c16
TT
22440 /* No data to skip by MAC_PTR. */
22441 break;
22442
0af92d60
JK
22443 case DW_MACRO_define_strp:
22444 case DW_MACRO_undef_strp:
22445 case DW_MACRO_define_sup:
22446 case DW_MACRO_undef_sup:
cf2c3c16
TT
22447 {
22448 unsigned int bytes_read;
22449
22450 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22451 mac_ptr += bytes_read;
22452 mac_ptr += offset_size;
22453 }
22454 break;
22455
0af92d60
JK
22456 case DW_MACRO_import:
22457 case DW_MACRO_import_sup:
cf2c3c16 22458 /* Note that, according to the spec, a transparent include
0af92d60 22459 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22460 skip this opcode. */
22461 mac_ptr += offset_size;
22462 break;
22463
22464 case DW_MACINFO_vendor_ext:
22465 /* Only skip the data by MAC_PTR. */
22466 if (!section_is_gnu)
22467 {
22468 unsigned int bytes_read;
22469
22470 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22471 mac_ptr += bytes_read;
22472 read_direct_string (abfd, mac_ptr, &bytes_read);
22473 mac_ptr += bytes_read;
22474 }
22475 /* FALLTHROUGH */
22476
22477 default:
22478 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22479 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22480 section);
22481 if (mac_ptr == NULL)
22482 return;
22483 break;
22484 }
22485 } while (macinfo_type != 0 && current_file == NULL);
22486
22487 /* Second pass: Process all entries.
22488
22489 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22490 command-line macro definitions/undefinitions. This flag is unset when we
22491 reach the first DW_MACINFO_start_file entry. */
22492
fc4007c9
TT
22493 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22494 htab_eq_pointer,
22495 NULL, xcalloc, xfree));
8fc3fc34 22496 mac_ptr = section->buffer + offset;
fc4007c9 22497 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22498 *slot = (void *) mac_ptr;
8fc3fc34 22499 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22500 current_file, lh, section,
fc4007c9
TT
22501 section_is_gnu, 0, offset_size,
22502 include_hash.get ());
cf2c3c16
TT
22503}
22504
8e19ed76 22505/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22506 if so return true else false. */
380bca97 22507
8e19ed76 22508static int
6e5a29e1 22509attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22510{
22511 return (attr == NULL ? 0 :
22512 attr->form == DW_FORM_block1
22513 || attr->form == DW_FORM_block2
22514 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22515 || attr->form == DW_FORM_block
22516 || attr->form == DW_FORM_exprloc);
8e19ed76 22517}
4c2df51b 22518
c6a0999f
JB
22519/* Return non-zero if ATTR's value is a section offset --- classes
22520 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22521 You may use DW_UNSND (attr) to retrieve such offsets.
22522
22523 Section 7.5.4, "Attribute Encodings", explains that no attribute
22524 may have a value that belongs to more than one of these classes; it
22525 would be ambiguous if we did, because we use the same forms for all
22526 of them. */
380bca97 22527
3690dd37 22528static int
6e5a29e1 22529attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22530{
22531 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22532 || attr->form == DW_FORM_data8
22533 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22534}
22535
3690dd37
JB
22536/* Return non-zero if ATTR's value falls in the 'constant' class, or
22537 zero otherwise. When this function returns true, you can apply
22538 dwarf2_get_attr_constant_value to it.
22539
22540 However, note that for some attributes you must check
22541 attr_form_is_section_offset before using this test. DW_FORM_data4
22542 and DW_FORM_data8 are members of both the constant class, and of
22543 the classes that contain offsets into other debug sections
22544 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22545 that, if an attribute's can be either a constant or one of the
22546 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22547 taken as section offsets, not constants.
22548
22549 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22550 cannot handle that. */
380bca97 22551
3690dd37 22552static int
6e5a29e1 22553attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22554{
22555 switch (attr->form)
22556 {
22557 case DW_FORM_sdata:
22558 case DW_FORM_udata:
22559 case DW_FORM_data1:
22560 case DW_FORM_data2:
22561 case DW_FORM_data4:
22562 case DW_FORM_data8:
663c44ac 22563 case DW_FORM_implicit_const:
3690dd37
JB
22564 return 1;
22565 default:
22566 return 0;
22567 }
22568}
22569
7771576e
SA
22570
22571/* DW_ADDR is always stored already as sect_offset; despite for the forms
22572 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22573
22574static int
6e5a29e1 22575attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22576{
22577 switch (attr->form)
22578 {
22579 case DW_FORM_ref_addr:
22580 case DW_FORM_ref1:
22581 case DW_FORM_ref2:
22582 case DW_FORM_ref4:
22583 case DW_FORM_ref8:
22584 case DW_FORM_ref_udata:
22585 case DW_FORM_GNU_ref_alt:
22586 return 1;
22587 default:
22588 return 0;
22589 }
22590}
22591
3019eac3
DE
22592/* Return the .debug_loc section to use for CU.
22593 For DWO files use .debug_loc.dwo. */
22594
22595static struct dwarf2_section_info *
22596cu_debug_loc_section (struct dwarf2_cu *cu)
22597{
22598 if (cu->dwo_unit)
43988095
JK
22599 {
22600 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22601
22602 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22603 }
22604 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22605 : &dwarf2_per_objfile->loc);
3019eac3
DE
22606}
22607
8cf6f0b1
TT
22608/* A helper function that fills in a dwarf2_loclist_baton. */
22609
22610static void
22611fill_in_loclist_baton (struct dwarf2_cu *cu,
22612 struct dwarf2_loclist_baton *baton,
ff39bb5e 22613 const struct attribute *attr)
8cf6f0b1 22614{
3019eac3
DE
22615 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22616
22617 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22618
22619 baton->per_cu = cu->per_cu;
22620 gdb_assert (baton->per_cu);
22621 /* We don't know how long the location list is, but make sure we
22622 don't run off the edge of the section. */
3019eac3
DE
22623 baton->size = section->size - DW_UNSND (attr);
22624 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22625 baton->base_address = cu->base_address;
f664829e 22626 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22627}
22628
4c2df51b 22629static void
ff39bb5e 22630dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22631 struct dwarf2_cu *cu, int is_block)
4c2df51b 22632{
bb5ed363 22633 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22634 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22635
3690dd37 22636 if (attr_form_is_section_offset (attr)
3019eac3 22637 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22638 the section. If so, fall through to the complaint in the
22639 other branch. */
3019eac3 22640 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22641 {
0d53c4c4 22642 struct dwarf2_loclist_baton *baton;
4c2df51b 22643
8d749320 22644 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22645
8cf6f0b1 22646 fill_in_loclist_baton (cu, baton, attr);
be391dca 22647
d00adf39 22648 if (cu->base_known == 0)
0d53c4c4 22649 complaint (&symfile_complaints,
3e43a32a
MS
22650 _("Location list used without "
22651 "specifying the CU base address."));
4c2df51b 22652
f1e6e072
TT
22653 SYMBOL_ACLASS_INDEX (sym) = (is_block
22654 ? dwarf2_loclist_block_index
22655 : dwarf2_loclist_index);
0d53c4c4
DJ
22656 SYMBOL_LOCATION_BATON (sym) = baton;
22657 }
22658 else
22659 {
22660 struct dwarf2_locexpr_baton *baton;
22661
8d749320 22662 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22663 baton->per_cu = cu->per_cu;
22664 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22665
22666 if (attr_form_is_block (attr))
22667 {
22668 /* Note that we're just copying the block's data pointer
22669 here, not the actual data. We're still pointing into the
6502dd73
DJ
22670 info_buffer for SYM's objfile; right now we never release
22671 that buffer, but when we do clean up properly this may
22672 need to change. */
0d53c4c4
DJ
22673 baton->size = DW_BLOCK (attr)->size;
22674 baton->data = DW_BLOCK (attr)->data;
22675 }
22676 else
22677 {
22678 dwarf2_invalid_attrib_class_complaint ("location description",
22679 SYMBOL_NATURAL_NAME (sym));
22680 baton->size = 0;
0d53c4c4 22681 }
6e70227d 22682
f1e6e072
TT
22683 SYMBOL_ACLASS_INDEX (sym) = (is_block
22684 ? dwarf2_locexpr_block_index
22685 : dwarf2_locexpr_index);
0d53c4c4
DJ
22686 SYMBOL_LOCATION_BATON (sym) = baton;
22687 }
4c2df51b 22688}
6502dd73 22689
9aa1f1e3
TT
22690/* Return the OBJFILE associated with the compilation unit CU. If CU
22691 came from a separate debuginfo file, then the master objfile is
22692 returned. */
ae0d2f24
UW
22693
22694struct objfile *
22695dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22696{
9291a0cd 22697 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22698
22699 /* Return the master objfile, so that we can report and look up the
22700 correct file containing this variable. */
22701 if (objfile->separate_debug_objfile_backlink)
22702 objfile = objfile->separate_debug_objfile_backlink;
22703
22704 return objfile;
22705}
22706
96408a79
SA
22707/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22708 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22709 CU_HEADERP first. */
22710
22711static const struct comp_unit_head *
22712per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22713 struct dwarf2_per_cu_data *per_cu)
22714{
d521ce57 22715 const gdb_byte *info_ptr;
96408a79
SA
22716
22717 if (per_cu->cu)
22718 return &per_cu->cu->header;
22719
9c541725 22720 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
22721
22722 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22723 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22724 rcuh_kind::COMPILE);
96408a79
SA
22725
22726 return cu_headerp;
22727}
22728
ae0d2f24
UW
22729/* Return the address size given in the compilation unit header for CU. */
22730
98714339 22731int
ae0d2f24
UW
22732dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22733{
96408a79
SA
22734 struct comp_unit_head cu_header_local;
22735 const struct comp_unit_head *cu_headerp;
c471e790 22736
96408a79
SA
22737 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22738
22739 return cu_headerp->addr_size;
ae0d2f24
UW
22740}
22741
9eae7c52
TT
22742/* Return the offset size given in the compilation unit header for CU. */
22743
22744int
22745dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22746{
96408a79
SA
22747 struct comp_unit_head cu_header_local;
22748 const struct comp_unit_head *cu_headerp;
9c6c53f7 22749
96408a79
SA
22750 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22751
22752 return cu_headerp->offset_size;
22753}
22754
22755/* See its dwarf2loc.h declaration. */
22756
22757int
22758dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22759{
22760 struct comp_unit_head cu_header_local;
22761 const struct comp_unit_head *cu_headerp;
22762
22763 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22764
22765 if (cu_headerp->version == 2)
22766 return cu_headerp->addr_size;
22767 else
22768 return cu_headerp->offset_size;
181cebd4
JK
22769}
22770
9aa1f1e3
TT
22771/* Return the text offset of the CU. The returned offset comes from
22772 this CU's objfile. If this objfile came from a separate debuginfo
22773 file, then the offset may be different from the corresponding
22774 offset in the parent objfile. */
22775
22776CORE_ADDR
22777dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22778{
bb3fa9d0 22779 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22780
22781 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22782}
22783
43988095
JK
22784/* Return DWARF version number of PER_CU. */
22785
22786short
22787dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22788{
22789 return per_cu->dwarf_version;
22790}
22791
348e048f
DE
22792/* Locate the .debug_info compilation unit from CU's objfile which contains
22793 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22794
22795static struct dwarf2_per_cu_data *
9c541725 22796dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 22797 unsigned int offset_in_dwz,
ae038cb0
DJ
22798 struct objfile *objfile)
22799{
22800 struct dwarf2_per_cu_data *this_cu;
22801 int low, high;
36586728 22802 const sect_offset *cu_off;
ae038cb0 22803
ae038cb0
DJ
22804 low = 0;
22805 high = dwarf2_per_objfile->n_comp_units - 1;
22806 while (high > low)
22807 {
36586728 22808 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22809 int mid = low + (high - low) / 2;
9a619af0 22810
36586728 22811 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 22812 cu_off = &mid_cu->sect_off;
36586728 22813 if (mid_cu->is_dwz > offset_in_dwz
9c541725 22814 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
22815 high = mid;
22816 else
22817 low = mid + 1;
22818 }
22819 gdb_assert (low == high);
36586728 22820 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
22821 cu_off = &this_cu->sect_off;
22822 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 22823 {
36586728 22824 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 22825 error (_("Dwarf Error: could not find partial DIE containing "
9c541725
PA
22826 "offset 0x%x [in module %s]"),
22827 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
10b3939b 22828
9c541725
PA
22829 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22830 <= sect_off);
ae038cb0
DJ
22831 return dwarf2_per_objfile->all_comp_units[low-1];
22832 }
22833 else
22834 {
22835 this_cu = dwarf2_per_objfile->all_comp_units[low];
22836 if (low == dwarf2_per_objfile->n_comp_units - 1
9c541725
PA
22837 && sect_off >= this_cu->sect_off + this_cu->length)
22838 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22839 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
22840 return this_cu;
22841 }
22842}
22843
23745b47 22844/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22845
9816fde3 22846static void
23745b47 22847init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22848{
9816fde3 22849 memset (cu, 0, sizeof (*cu));
23745b47
DE
22850 per_cu->cu = cu;
22851 cu->per_cu = per_cu;
22852 cu->objfile = per_cu->objfile;
93311388 22853 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22854}
22855
22856/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22857
22858static void
95554aad
TT
22859prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22860 enum language pretend_language)
9816fde3
JK
22861{
22862 struct attribute *attr;
22863
22864 /* Set the language we're debugging. */
22865 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22866 if (attr)
22867 set_cu_language (DW_UNSND (attr), cu);
22868 else
9cded63f 22869 {
95554aad 22870 cu->language = pretend_language;
9cded63f
TT
22871 cu->language_defn = language_def (cu->language);
22872 }
dee91e82 22873
7d45c7c3 22874 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22875}
22876
ae038cb0
DJ
22877/* Release one cached compilation unit, CU. We unlink it from the tree
22878 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22879 the caller is responsible for that.
22880 NOTE: DATA is a void * because this function is also used as a
22881 cleanup routine. */
ae038cb0
DJ
22882
22883static void
68dc6402 22884free_heap_comp_unit (void *data)
ae038cb0 22885{
9a3c8263 22886 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22887
23745b47
DE
22888 gdb_assert (cu->per_cu != NULL);
22889 cu->per_cu->cu = NULL;
ae038cb0
DJ
22890 cu->per_cu = NULL;
22891
22892 obstack_free (&cu->comp_unit_obstack, NULL);
22893
22894 xfree (cu);
22895}
22896
72bf9492 22897/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22898 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22899 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22900
22901static void
22902free_stack_comp_unit (void *data)
22903{
9a3c8263 22904 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22905
23745b47
DE
22906 gdb_assert (cu->per_cu != NULL);
22907 cu->per_cu->cu = NULL;
22908 cu->per_cu = NULL;
22909
72bf9492
DJ
22910 obstack_free (&cu->comp_unit_obstack, NULL);
22911 cu->partial_dies = NULL;
ae038cb0
DJ
22912}
22913
22914/* Free all cached compilation units. */
22915
22916static void
22917free_cached_comp_units (void *data)
22918{
330cdd98 22919 dwarf2_per_objfile->free_cached_comp_units ();
ae038cb0
DJ
22920}
22921
22922/* Increase the age counter on each cached compilation unit, and free
22923 any that are too old. */
22924
22925static void
22926age_cached_comp_units (void)
22927{
22928 struct dwarf2_per_cu_data *per_cu, **last_chain;
22929
22930 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22931 per_cu = dwarf2_per_objfile->read_in_chain;
22932 while (per_cu != NULL)
22933 {
22934 per_cu->cu->last_used ++;
b4f54984 22935 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22936 dwarf2_mark (per_cu->cu);
22937 per_cu = per_cu->cu->read_in_chain;
22938 }
22939
22940 per_cu = dwarf2_per_objfile->read_in_chain;
22941 last_chain = &dwarf2_per_objfile->read_in_chain;
22942 while (per_cu != NULL)
22943 {
22944 struct dwarf2_per_cu_data *next_cu;
22945
22946 next_cu = per_cu->cu->read_in_chain;
22947
22948 if (!per_cu->cu->mark)
22949 {
68dc6402 22950 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22951 *last_chain = next_cu;
22952 }
22953 else
22954 last_chain = &per_cu->cu->read_in_chain;
22955
22956 per_cu = next_cu;
22957 }
22958}
22959
22960/* Remove a single compilation unit from the cache. */
22961
22962static void
dee91e82 22963free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22964{
22965 struct dwarf2_per_cu_data *per_cu, **last_chain;
22966
22967 per_cu = dwarf2_per_objfile->read_in_chain;
22968 last_chain = &dwarf2_per_objfile->read_in_chain;
22969 while (per_cu != NULL)
22970 {
22971 struct dwarf2_per_cu_data *next_cu;
22972
22973 next_cu = per_cu->cu->read_in_chain;
22974
dee91e82 22975 if (per_cu == target_per_cu)
ae038cb0 22976 {
68dc6402 22977 free_heap_comp_unit (per_cu->cu);
dee91e82 22978 per_cu->cu = NULL;
ae038cb0
DJ
22979 *last_chain = next_cu;
22980 break;
22981 }
22982 else
22983 last_chain = &per_cu->cu->read_in_chain;
22984
22985 per_cu = next_cu;
22986 }
22987}
22988
fe3e1990
DJ
22989/* Release all extra memory associated with OBJFILE. */
22990
22991void
22992dwarf2_free_objfile (struct objfile *objfile)
22993{
9a3c8263
SM
22994 dwarf2_per_objfile
22995 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22996 dwarf2_objfile_data_key);
fe3e1990
DJ
22997
22998 if (dwarf2_per_objfile == NULL)
22999 return;
23000
330cdd98 23001 dwarf2_per_objfile->~dwarf2_per_objfile ();
fe3e1990
DJ
23002}
23003
dee91e82
DE
23004/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23005 We store these in a hash table separate from the DIEs, and preserve them
23006 when the DIEs are flushed out of cache.
23007
23008 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 23009 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
23010 or the type may come from a DWO file. Furthermore, while it's more logical
23011 to use per_cu->section+offset, with Fission the section with the data is in
23012 the DWO file but we don't know that section at the point we need it.
23013 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23014 because we can enter the lookup routine, get_die_type_at_offset, from
23015 outside this file, and thus won't necessarily have PER_CU->cu.
23016 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 23017
dee91e82 23018struct dwarf2_per_cu_offset_and_type
1c379e20 23019{
dee91e82 23020 const struct dwarf2_per_cu_data *per_cu;
9c541725 23021 sect_offset sect_off;
1c379e20
DJ
23022 struct type *type;
23023};
23024
dee91e82 23025/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
23026
23027static hashval_t
dee91e82 23028per_cu_offset_and_type_hash (const void *item)
1c379e20 23029{
9a3c8263
SM
23030 const struct dwarf2_per_cu_offset_and_type *ofs
23031 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 23032
9c541725 23033 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
23034}
23035
dee91e82 23036/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
23037
23038static int
dee91e82 23039per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 23040{
9a3c8263
SM
23041 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23042 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23043 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23044 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 23045
dee91e82 23046 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 23047 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
23048}
23049
23050/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
23051 table if necessary. For convenience, return TYPE.
23052
23053 The DIEs reading must have careful ordering to:
23054 * Not cause infite loops trying to read in DIEs as a prerequisite for
23055 reading current DIE.
23056 * Not trying to dereference contents of still incompletely read in types
23057 while reading in other DIEs.
23058 * Enable referencing still incompletely read in types just by a pointer to
23059 the type without accessing its fields.
23060
23061 Therefore caller should follow these rules:
23062 * Try to fetch any prerequisite types we may need to build this DIE type
23063 before building the type and calling set_die_type.
e71ec853 23064 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
23065 possible before fetching more types to complete the current type.
23066 * Make the type as complete as possible before fetching more types. */
1c379e20 23067
f792889a 23068static struct type *
1c379e20
DJ
23069set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23070{
dee91e82 23071 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 23072 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
23073 struct attribute *attr;
23074 struct dynamic_prop prop;
1c379e20 23075
b4ba55a1
JB
23076 /* For Ada types, make sure that the gnat-specific data is always
23077 initialized (if not already set). There are a few types where
23078 we should not be doing so, because the type-specific area is
23079 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23080 where the type-specific area is used to store the floatformat).
23081 But this is not a problem, because the gnat-specific information
23082 is actually not needed for these types. */
23083 if (need_gnat_info (cu)
23084 && TYPE_CODE (type) != TYPE_CODE_FUNC
23085 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
23086 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23087 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23088 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
23089 && !HAVE_GNAT_AUX_INFO (type))
23090 INIT_GNAT_SPECIFIC (type);
23091
3f2f83dd
KB
23092 /* Read DW_AT_allocated and set in type. */
23093 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23094 if (attr_form_is_block (attr))
23095 {
23096 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23097 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23098 }
23099 else if (attr != NULL)
23100 {
23101 complaint (&symfile_complaints,
9c541725
PA
23102 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23103 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23104 to_underlying (die->sect_off));
3f2f83dd
KB
23105 }
23106
23107 /* Read DW_AT_associated and set in type. */
23108 attr = dwarf2_attr (die, DW_AT_associated, cu);
23109 if (attr_form_is_block (attr))
23110 {
23111 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23112 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23113 }
23114 else if (attr != NULL)
23115 {
23116 complaint (&symfile_complaints,
9c541725
PA
23117 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23118 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23119 to_underlying (die->sect_off));
3f2f83dd
KB
23120 }
23121
3cdcd0ce
JB
23122 /* Read DW_AT_data_location and set in type. */
23123 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23124 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 23125 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 23126
dee91e82 23127 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23128 {
dee91e82
DE
23129 dwarf2_per_objfile->die_type_hash =
23130 htab_create_alloc_ex (127,
23131 per_cu_offset_and_type_hash,
23132 per_cu_offset_and_type_eq,
23133 NULL,
23134 &objfile->objfile_obstack,
23135 hashtab_obstack_allocate,
23136 dummy_obstack_deallocate);
f792889a 23137 }
1c379e20 23138
dee91e82 23139 ofs.per_cu = cu->per_cu;
9c541725 23140 ofs.sect_off = die->sect_off;
1c379e20 23141 ofs.type = type;
dee91e82
DE
23142 slot = (struct dwarf2_per_cu_offset_and_type **)
23143 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
23144 if (*slot)
23145 complaint (&symfile_complaints,
23146 _("A problem internal to GDB: DIE 0x%x has type already set"),
9c541725 23147 to_underlying (die->sect_off));
8d749320
SM
23148 *slot = XOBNEW (&objfile->objfile_obstack,
23149 struct dwarf2_per_cu_offset_and_type);
1c379e20 23150 **slot = ofs;
f792889a 23151 return type;
1c379e20
DJ
23152}
23153
9c541725 23154/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 23155 or return NULL if the die does not have a saved type. */
1c379e20
DJ
23156
23157static struct type *
9c541725 23158get_die_type_at_offset (sect_offset sect_off,
673bfd45 23159 struct dwarf2_per_cu_data *per_cu)
1c379e20 23160{
dee91e82 23161 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 23162
dee91e82 23163 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23164 return NULL;
1c379e20 23165
dee91e82 23166 ofs.per_cu = per_cu;
9c541725 23167 ofs.sect_off = sect_off;
9a3c8263
SM
23168 slot = ((struct dwarf2_per_cu_offset_and_type *)
23169 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
23170 if (slot)
23171 return slot->type;
23172 else
23173 return NULL;
23174}
23175
02142a6c 23176/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
23177 or return NULL if DIE does not have a saved type. */
23178
23179static struct type *
23180get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23181{
9c541725 23182 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
23183}
23184
10b3939b
DJ
23185/* Add a dependence relationship from CU to REF_PER_CU. */
23186
23187static void
23188dwarf2_add_dependence (struct dwarf2_cu *cu,
23189 struct dwarf2_per_cu_data *ref_per_cu)
23190{
23191 void **slot;
23192
23193 if (cu->dependencies == NULL)
23194 cu->dependencies
23195 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23196 NULL, &cu->comp_unit_obstack,
23197 hashtab_obstack_allocate,
23198 dummy_obstack_deallocate);
23199
23200 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23201 if (*slot == NULL)
23202 *slot = ref_per_cu;
23203}
1c379e20 23204
f504f079
DE
23205/* Subroutine of dwarf2_mark to pass to htab_traverse.
23206 Set the mark field in every compilation unit in the
ae038cb0
DJ
23207 cache that we must keep because we are keeping CU. */
23208
10b3939b
DJ
23209static int
23210dwarf2_mark_helper (void **slot, void *data)
23211{
23212 struct dwarf2_per_cu_data *per_cu;
23213
23214 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
23215
23216 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23217 reading of the chain. As such dependencies remain valid it is not much
23218 useful to track and undo them during QUIT cleanups. */
23219 if (per_cu->cu == NULL)
23220 return 1;
23221
10b3939b
DJ
23222 if (per_cu->cu->mark)
23223 return 1;
23224 per_cu->cu->mark = 1;
23225
23226 if (per_cu->cu->dependencies != NULL)
23227 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23228
23229 return 1;
23230}
23231
f504f079
DE
23232/* Set the mark field in CU and in every other compilation unit in the
23233 cache that we must keep because we are keeping CU. */
23234
ae038cb0
DJ
23235static void
23236dwarf2_mark (struct dwarf2_cu *cu)
23237{
23238 if (cu->mark)
23239 return;
23240 cu->mark = 1;
10b3939b
DJ
23241 if (cu->dependencies != NULL)
23242 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23243}
23244
23245static void
23246dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23247{
23248 while (per_cu)
23249 {
23250 per_cu->cu->mark = 0;
23251 per_cu = per_cu->cu->read_in_chain;
23252 }
72bf9492
DJ
23253}
23254
72bf9492
DJ
23255/* Trivial hash function for partial_die_info: the hash value of a DIE
23256 is its offset in .debug_info for this objfile. */
23257
23258static hashval_t
23259partial_die_hash (const void *item)
23260{
9a3c8263
SM
23261 const struct partial_die_info *part_die
23262 = (const struct partial_die_info *) item;
9a619af0 23263
9c541725 23264 return to_underlying (part_die->sect_off);
72bf9492
DJ
23265}
23266
23267/* Trivial comparison function for partial_die_info structures: two DIEs
23268 are equal if they have the same offset. */
23269
23270static int
23271partial_die_eq (const void *item_lhs, const void *item_rhs)
23272{
9a3c8263
SM
23273 const struct partial_die_info *part_die_lhs
23274 = (const struct partial_die_info *) item_lhs;
23275 const struct partial_die_info *part_die_rhs
23276 = (const struct partial_die_info *) item_rhs;
9a619af0 23277
9c541725 23278 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
23279}
23280
b4f54984
DE
23281static struct cmd_list_element *set_dwarf_cmdlist;
23282static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23283
23284static void
b4f54984 23285set_dwarf_cmd (char *args, int from_tty)
ae038cb0 23286{
b4f54984 23287 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23288 gdb_stdout);
ae038cb0
DJ
23289}
23290
23291static void
b4f54984 23292show_dwarf_cmd (char *args, int from_tty)
6e70227d 23293{
b4f54984 23294 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23295}
23296
4bf44c1c 23297/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23298
23299static void
c1bd65d0 23300dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23301{
9a3c8263 23302 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23303 int ix;
8b70b953 23304
626f2d1c
TT
23305 /* Make sure we don't accidentally use dwarf2_per_objfile while
23306 cleaning up. */
23307 dwarf2_per_objfile = NULL;
23308
59b0c7c1
JB
23309 for (ix = 0; ix < data->n_comp_units; ++ix)
23310 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23311
59b0c7c1 23312 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23313 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23314 data->all_type_units[ix]->per_cu.imported_symtabs);
23315 xfree (data->all_type_units);
95554aad 23316
8b70b953 23317 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23318
23319 if (data->dwo_files)
23320 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23321 if (data->dwp_file)
23322 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23323
23324 if (data->dwz_file && data->dwz_file->dwz_bfd)
23325 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23326}
23327
23328\f
ae2de4f8 23329/* The "save gdb-index" command. */
9291a0cd 23330
bc8f2430
JK
23331/* In-memory buffer to prepare data to be written later to a file. */
23332class data_buf
9291a0cd 23333{
bc8f2430 23334public:
bc8f2430
JK
23335 /* Copy DATA to the end of the buffer. */
23336 template<typename T>
23337 void append_data (const T &data)
23338 {
23339 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23340 reinterpret_cast<const gdb_byte *> (&data + 1),
c2f134ac 23341 grow (sizeof (data)));
bc8f2430 23342 }
b89be57b 23343
c2f134ac
PA
23344 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23345 terminating zero is appended too. */
bc8f2430
JK
23346 void append_cstr0 (const char *cstr)
23347 {
23348 const size_t size = strlen (cstr) + 1;
c2f134ac
PA
23349 std::copy (cstr, cstr + size, grow (size));
23350 }
23351
23352 /* Accept a host-format integer in VAL and append it to the buffer
23353 as a target-format integer which is LEN bytes long. */
23354 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23355 {
23356 ::store_unsigned_integer (grow (len), len, byte_order, val);
bc8f2430 23357 }
9291a0cd 23358
bc8f2430
JK
23359 /* Return the size of the buffer. */
23360 size_t size () const
23361 {
23362 return m_vec.size ();
23363 }
23364
23365 /* Write the buffer to FILE. */
23366 void file_write (FILE *file) const
23367 {
a81e6d4d
PA
23368 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23369 error (_("couldn't write data to file"));
bc8f2430
JK
23370 }
23371
23372private:
c2f134ac
PA
23373 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23374 the start of the new block. */
23375 gdb_byte *grow (size_t size)
23376 {
23377 m_vec.resize (m_vec.size () + size);
23378 return &*m_vec.end () - size;
23379 }
23380
d5722aa2 23381 gdb::byte_vector m_vec;
bc8f2430 23382};
9291a0cd
TT
23383
23384/* An entry in the symbol table. */
23385struct symtab_index_entry
23386{
23387 /* The name of the symbol. */
23388 const char *name;
23389 /* The offset of the name in the constant pool. */
23390 offset_type index_offset;
23391 /* A sorted vector of the indices of all the CUs that hold an object
23392 of this name. */
bc8f2430 23393 std::vector<offset_type> cu_indices;
9291a0cd
TT
23394};
23395
23396/* The symbol table. This is a power-of-2-sized hash table. */
23397struct mapped_symtab
23398{
bc8f2430
JK
23399 mapped_symtab ()
23400 {
23401 data.resize (1024);
23402 }
b89be57b 23403
bc8f2430 23404 offset_type n_elements = 0;
4b76cda9 23405 std::vector<symtab_index_entry> data;
bc8f2430 23406};
9291a0cd 23407
bc8f2430 23408/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
559a7a62
JK
23409 the slot.
23410
23411 Function is used only during write_hash_table so no index format backward
23412 compatibility is needed. */
b89be57b 23413
4b76cda9 23414static symtab_index_entry &
9291a0cd
TT
23415find_slot (struct mapped_symtab *symtab, const char *name)
23416{
559a7a62 23417 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd 23418
bc8f2430
JK
23419 index = hash & (symtab->data.size () - 1);
23420 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
9291a0cd
TT
23421
23422 for (;;)
23423 {
4b76cda9
PA
23424 if (symtab->data[index].name == NULL
23425 || strcmp (name, symtab->data[index].name) == 0)
bc8f2430
JK
23426 return symtab->data[index];
23427 index = (index + step) & (symtab->data.size () - 1);
9291a0cd
TT
23428 }
23429}
23430
23431/* Expand SYMTAB's hash table. */
b89be57b 23432
9291a0cd
TT
23433static void
23434hash_expand (struct mapped_symtab *symtab)
23435{
bc8f2430 23436 auto old_entries = std::move (symtab->data);
9291a0cd 23437
bc8f2430
JK
23438 symtab->data.clear ();
23439 symtab->data.resize (old_entries.size () * 2);
9291a0cd 23440
bc8f2430 23441 for (auto &it : old_entries)
4b76cda9 23442 if (it.name != NULL)
bc8f2430 23443 {
4b76cda9 23444 auto &ref = find_slot (symtab, it.name);
bc8f2430
JK
23445 ref = std::move (it);
23446 }
9291a0cd
TT
23447}
23448
156942c7
DE
23449/* Add an entry to SYMTAB. NAME is the name of the symbol.
23450 CU_INDEX is the index of the CU in which the symbol appears.
23451 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23452
9291a0cd
TT
23453static void
23454add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23455 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23456 offset_type cu_index)
23457{
156942c7 23458 offset_type cu_index_and_attrs;
9291a0cd
TT
23459
23460 ++symtab->n_elements;
bc8f2430 23461 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
9291a0cd
TT
23462 hash_expand (symtab);
23463
4b76cda9
PA
23464 symtab_index_entry &slot = find_slot (symtab, name);
23465 if (slot.name == NULL)
9291a0cd 23466 {
4b76cda9 23467 slot.name = name;
156942c7 23468 /* index_offset is set later. */
9291a0cd 23469 }
156942c7
DE
23470
23471 cu_index_and_attrs = 0;
23472 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23473 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23474 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23475
23476 /* We don't want to record an index value twice as we want to avoid the
23477 duplication.
23478 We process all global symbols and then all static symbols
23479 (which would allow us to avoid the duplication by only having to check
23480 the last entry pushed), but a symbol could have multiple kinds in one CU.
23481 To keep things simple we don't worry about the duplication here and
23482 sort and uniqufy the list after we've processed all symbols. */
4b76cda9 23483 slot.cu_indices.push_back (cu_index_and_attrs);
156942c7
DE
23484}
23485
23486/* Sort and remove duplicates of all symbols' cu_indices lists. */
23487
23488static void
23489uniquify_cu_indices (struct mapped_symtab *symtab)
23490{
4b76cda9 23491 for (auto &entry : symtab->data)
156942c7 23492 {
4b76cda9 23493 if (entry.name != NULL && !entry.cu_indices.empty ())
156942c7 23494 {
4b76cda9 23495 auto &cu_indices = entry.cu_indices;
6fd931f2
PA
23496 std::sort (cu_indices.begin (), cu_indices.end ());
23497 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23498 cu_indices.erase (from, cu_indices.end ());
156942c7
DE
23499 }
23500 }
9291a0cd
TT
23501}
23502
bc8f2430
JK
23503/* A form of 'const char *' suitable for container keys. Only the
23504 pointer is stored. The strings themselves are compared, not the
23505 pointers. */
23506class c_str_view
9291a0cd 23507{
bc8f2430
JK
23508public:
23509 c_str_view (const char *cstr)
23510 : m_cstr (cstr)
23511 {}
9291a0cd 23512
bc8f2430
JK
23513 bool operator== (const c_str_view &other) const
23514 {
23515 return strcmp (m_cstr, other.m_cstr) == 0;
23516 }
9291a0cd 23517
bc8f2430
JK
23518private:
23519 friend class c_str_view_hasher;
23520 const char *const m_cstr;
23521};
9291a0cd 23522
bc8f2430
JK
23523/* A std::unordered_map::hasher for c_str_view that uses the right
23524 hash function for strings in a mapped index. */
23525class c_str_view_hasher
23526{
23527public:
23528 size_t operator () (const c_str_view &x) const
23529 {
23530 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23531 }
23532};
b89be57b 23533
bc8f2430
JK
23534/* A std::unordered_map::hasher for std::vector<>. */
23535template<typename T>
23536class vector_hasher
9291a0cd 23537{
bc8f2430
JK
23538public:
23539 size_t operator () (const std::vector<T> &key) const
23540 {
23541 return iterative_hash (key.data (),
23542 sizeof (key.front ()) * key.size (), 0);
23543 }
23544};
9291a0cd 23545
bc8f2430
JK
23546/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23547 constant pool entries going into the data buffer CPOOL. */
3876f04e 23548
bc8f2430
JK
23549static void
23550write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23551{
23552 {
23553 /* Elements are sorted vectors of the indices of all the CUs that
23554 hold an object of this name. */
23555 std::unordered_map<std::vector<offset_type>, offset_type,
23556 vector_hasher<offset_type>>
23557 symbol_hash_table;
23558
23559 /* We add all the index vectors to the constant pool first, to
23560 ensure alignment is ok. */
4b76cda9 23561 for (symtab_index_entry &entry : symtab->data)
bc8f2430 23562 {
4b76cda9 23563 if (entry.name == NULL)
bc8f2430 23564 continue;
4b76cda9 23565 gdb_assert (entry.index_offset == 0);
70a1152b
PA
23566
23567 /* Finding before inserting is faster than always trying to
23568 insert, because inserting always allocates a node, does the
23569 lookup, and then destroys the new node if another node
23570 already had the same key. C++17 try_emplace will avoid
23571 this. */
23572 const auto found
4b76cda9 23573 = symbol_hash_table.find (entry.cu_indices);
70a1152b
PA
23574 if (found != symbol_hash_table.end ())
23575 {
4b76cda9 23576 entry.index_offset = found->second;
70a1152b
PA
23577 continue;
23578 }
23579
4b76cda9
PA
23580 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23581 entry.index_offset = cpool.size ();
23582 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23583 for (const auto index : entry.cu_indices)
23584 cpool.append_data (MAYBE_SWAP (index));
bc8f2430
JK
23585 }
23586 }
9291a0cd
TT
23587
23588 /* Now write out the hash table. */
bc8f2430 23589 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
4b76cda9 23590 for (const auto &entry : symtab->data)
9291a0cd
TT
23591 {
23592 offset_type str_off, vec_off;
23593
4b76cda9 23594 if (entry.name != NULL)
9291a0cd 23595 {
4b76cda9 23596 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
bc8f2430 23597 if (insertpair.second)
4b76cda9 23598 cpool.append_cstr0 (entry.name);
bc8f2430 23599 str_off = insertpair.first->second;
4b76cda9 23600 vec_off = entry.index_offset;
9291a0cd
TT
23601 }
23602 else
23603 {
23604 /* While 0 is a valid constant pool index, it is not valid
23605 to have 0 for both offsets. */
23606 str_off = 0;
23607 vec_off = 0;
23608 }
23609
bc8f2430
JK
23610 output.append_data (MAYBE_SWAP (str_off));
23611 output.append_data (MAYBE_SWAP (vec_off));
9291a0cd 23612 }
9291a0cd
TT
23613}
23614
bc8f2430 23615typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
0a5429f6
DE
23616
23617/* Helper struct for building the address table. */
23618struct addrmap_index_data
23619{
bc8f2430
JK
23620 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23621 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23622 {}
23623
0a5429f6 23624 struct objfile *objfile;
bc8f2430
JK
23625 data_buf &addr_vec;
23626 psym_index_map &cu_index_htab;
0a5429f6
DE
23627
23628 /* Non-zero if the previous_* fields are valid.
23629 We can't write an entry until we see the next entry (since it is only then
23630 that we know the end of the entry). */
23631 int previous_valid;
23632 /* Index of the CU in the table of all CUs in the index file. */
23633 unsigned int previous_cu_index;
0963b4bd 23634 /* Start address of the CU. */
0a5429f6
DE
23635 CORE_ADDR previous_cu_start;
23636};
23637
bc8f2430 23638/* Write an address entry to ADDR_VEC. */
b89be57b 23639
9291a0cd 23640static void
bc8f2430 23641add_address_entry (struct objfile *objfile, data_buf &addr_vec,
0a5429f6 23642 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23643{
9291a0cd
TT
23644 CORE_ADDR baseaddr;
23645
23646 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23647
c2f134ac
PA
23648 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23649 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
bc8f2430 23650 addr_vec.append_data (MAYBE_SWAP (cu_index));
0a5429f6
DE
23651}
23652
23653/* Worker function for traversing an addrmap to build the address table. */
23654
23655static int
23656add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23657{
9a3c8263
SM
23658 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23659 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23660
23661 if (data->previous_valid)
bc8f2430 23662 add_address_entry (data->objfile, data->addr_vec,
0a5429f6
DE
23663 data->previous_cu_start, start_addr,
23664 data->previous_cu_index);
23665
23666 data->previous_cu_start = start_addr;
23667 if (pst != NULL)
23668 {
bc8f2430
JK
23669 const auto it = data->cu_index_htab.find (pst);
23670 gdb_assert (it != data->cu_index_htab.cend ());
23671 data->previous_cu_index = it->second;
0a5429f6
DE
23672 data->previous_valid = 1;
23673 }
23674 else
bc8f2430 23675 data->previous_valid = 0;
0a5429f6
DE
23676
23677 return 0;
23678}
23679
bc8f2430 23680/* Write OBJFILE's address map to ADDR_VEC.
0a5429f6
DE
23681 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23682 in the index file. */
23683
23684static void
bc8f2430
JK
23685write_address_map (struct objfile *objfile, data_buf &addr_vec,
23686 psym_index_map &cu_index_htab)
0a5429f6 23687{
bc8f2430 23688 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
0a5429f6
DE
23689
23690 /* When writing the address table, we have to cope with the fact that
23691 the addrmap iterator only provides the start of a region; we have to
23692 wait until the next invocation to get the start of the next region. */
23693
23694 addrmap_index_data.objfile = objfile;
0a5429f6
DE
23695 addrmap_index_data.previous_valid = 0;
23696
23697 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23698 &addrmap_index_data);
23699
23700 /* It's highly unlikely the last entry (end address = 0xff...ff)
23701 is valid, but we should still handle it.
23702 The end address is recorded as the start of the next region, but that
23703 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23704 anyway. */
23705 if (addrmap_index_data.previous_valid)
bc8f2430 23706 add_address_entry (objfile, addr_vec,
0a5429f6
DE
23707 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23708 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23709}
23710
156942c7
DE
23711/* Return the symbol kind of PSYM. */
23712
23713static gdb_index_symbol_kind
23714symbol_kind (struct partial_symbol *psym)
23715{
23716 domain_enum domain = PSYMBOL_DOMAIN (psym);
23717 enum address_class aclass = PSYMBOL_CLASS (psym);
23718
23719 switch (domain)
23720 {
23721 case VAR_DOMAIN:
23722 switch (aclass)
23723 {
23724 case LOC_BLOCK:
23725 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23726 case LOC_TYPEDEF:
23727 return GDB_INDEX_SYMBOL_KIND_TYPE;
23728 case LOC_COMPUTED:
23729 case LOC_CONST_BYTES:
23730 case LOC_OPTIMIZED_OUT:
23731 case LOC_STATIC:
23732 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23733 case LOC_CONST:
23734 /* Note: It's currently impossible to recognize psyms as enum values
23735 short of reading the type info. For now punt. */
23736 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23737 default:
23738 /* There are other LOC_FOO values that one might want to classify
23739 as variables, but dwarf2read.c doesn't currently use them. */
23740 return GDB_INDEX_SYMBOL_KIND_OTHER;
23741 }
23742 case STRUCT_DOMAIN:
23743 return GDB_INDEX_SYMBOL_KIND_TYPE;
23744 default:
23745 return GDB_INDEX_SYMBOL_KIND_OTHER;
23746 }
23747}
23748
9291a0cd 23749/* Add a list of partial symbols to SYMTAB. */
b89be57b 23750
9291a0cd
TT
23751static void
23752write_psymbols (struct mapped_symtab *symtab,
bc8f2430 23753 std::unordered_set<partial_symbol *> &psyms_seen,
9291a0cd
TT
23754 struct partial_symbol **psymp,
23755 int count,
987d643c
TT
23756 offset_type cu_index,
23757 int is_static)
9291a0cd
TT
23758{
23759 for (; count-- > 0; ++psymp)
23760 {
156942c7 23761 struct partial_symbol *psym = *psymp;
987d643c 23762
156942c7 23763 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23764 error (_("Ada is not currently supported by the index"));
987d643c 23765
987d643c 23766 /* Only add a given psymbol once. */
bc8f2430 23767 if (psyms_seen.insert (psym).second)
987d643c 23768 {
156942c7
DE
23769 gdb_index_symbol_kind kind = symbol_kind (psym);
23770
156942c7
DE
23771 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23772 is_static, kind, cu_index);
987d643c 23773 }
9291a0cd
TT
23774 }
23775}
23776
1fd400ff
TT
23777/* A helper struct used when iterating over debug_types. */
23778struct signatured_type_index_data
23779{
bc8f2430
JK
23780 signatured_type_index_data (data_buf &types_list_,
23781 std::unordered_set<partial_symbol *> &psyms_seen_)
23782 : types_list (types_list_), psyms_seen (psyms_seen_)
23783 {}
23784
1fd400ff
TT
23785 struct objfile *objfile;
23786 struct mapped_symtab *symtab;
bc8f2430
JK
23787 data_buf &types_list;
23788 std::unordered_set<partial_symbol *> &psyms_seen;
1fd400ff
TT
23789 int cu_index;
23790};
23791
23792/* A helper function that writes a single signatured_type to an
23793 obstack. */
b89be57b 23794
1fd400ff
TT
23795static int
23796write_one_signatured_type (void **slot, void *d)
23797{
9a3c8263
SM
23798 struct signatured_type_index_data *info
23799 = (struct signatured_type_index_data *) d;
1fd400ff 23800 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23801 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23802
23803 write_psymbols (info->symtab,
987d643c 23804 info->psyms_seen,
3e43a32a
MS
23805 info->objfile->global_psymbols.list
23806 + psymtab->globals_offset,
987d643c
TT
23807 psymtab->n_global_syms, info->cu_index,
23808 0);
1fd400ff 23809 write_psymbols (info->symtab,
987d643c 23810 info->psyms_seen,
3e43a32a
MS
23811 info->objfile->static_psymbols.list
23812 + psymtab->statics_offset,
987d643c
TT
23813 psymtab->n_static_syms, info->cu_index,
23814 1);
1fd400ff 23815
c2f134ac
PA
23816 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23817 to_underlying (entry->per_cu.sect_off));
23818 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23819 to_underlying (entry->type_offset_in_tu));
23820 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
1fd400ff
TT
23821
23822 ++info->cu_index;
23823
23824 return 1;
23825}
23826
e8f8bcb3
PA
23827/* Recurse into all "included" dependencies and count their symbols as
23828 if they appeared in this psymtab. */
23829
23830static void
23831recursively_count_psymbols (struct partial_symtab *psymtab,
23832 size_t &psyms_seen)
23833{
23834 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23835 if (psymtab->dependencies[i]->user != NULL)
23836 recursively_count_psymbols (psymtab->dependencies[i],
23837 psyms_seen);
23838
23839 psyms_seen += psymtab->n_global_syms;
23840 psyms_seen += psymtab->n_static_syms;
23841}
23842
95554aad
TT
23843/* Recurse into all "included" dependencies and write their symbols as
23844 if they appeared in this psymtab. */
23845
23846static void
23847recursively_write_psymbols (struct objfile *objfile,
23848 struct partial_symtab *psymtab,
23849 struct mapped_symtab *symtab,
bc8f2430 23850 std::unordered_set<partial_symbol *> &psyms_seen,
95554aad
TT
23851 offset_type cu_index)
23852{
23853 int i;
23854
23855 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23856 if (psymtab->dependencies[i]->user != NULL)
23857 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23858 symtab, psyms_seen, cu_index);
23859
23860 write_psymbols (symtab,
23861 psyms_seen,
23862 objfile->global_psymbols.list + psymtab->globals_offset,
23863 psymtab->n_global_syms, cu_index,
23864 0);
23865 write_psymbols (symtab,
23866 psyms_seen,
23867 objfile->static_psymbols.list + psymtab->statics_offset,
23868 psymtab->n_static_syms, cu_index,
23869 1);
23870}
23871
9291a0cd 23872/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23873
9291a0cd
TT
23874static void
23875write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23876{
9291a0cd
TT
23877 if (dwarf2_per_objfile->using_index)
23878 error (_("Cannot use an index to create the index"));
23879
8b70b953
TT
23880 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23881 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23882
260b681b
DE
23883 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23884 return;
23885
bc8f2430 23886 struct stat st;
4262abfb
JK
23887 if (stat (objfile_name (objfile), &st) < 0)
23888 perror_with_name (objfile_name (objfile));
9291a0cd 23889
bc8f2430
JK
23890 std::string filename (std::string (dir) + SLASH_STRING
23891 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
9291a0cd 23892
d419f42d 23893 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
9291a0cd 23894 if (!out_file)
bc8f2430 23895 error (_("Can't open `%s' for writing"), filename.c_str ());
9291a0cd 23896
16b7a719
PA
23897 /* Order matters here; we want FILE to be closed before FILENAME is
23898 unlinked, because on MS-Windows one cannot delete a file that is
23899 still open. (Don't call anything here that might throw until
23900 file_closer is created.) */
bc8f2430 23901 gdb::unlinker unlink_file (filename.c_str ());
d419f42d 23902 gdb_file_up close_out_file (out_file);
9291a0cd 23903
bc8f2430
JK
23904 mapped_symtab symtab;
23905 data_buf cu_list;
987d643c 23906
0a5429f6
DE
23907 /* While we're scanning CU's create a table that maps a psymtab pointer
23908 (which is what addrmap records) to its index (which is what is recorded
23909 in the index file). This will later be needed to write the address
23910 table. */
bc8f2430
JK
23911 psym_index_map cu_index_htab;
23912 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23913
23914 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23915 work here. Also, the debug_types entries do not appear in
23916 all_comp_units, but only in their own hash table. */
e8f8bcb3
PA
23917
23918 /* The psyms_seen set is potentially going to be largish (~40k
23919 elements when indexing a -g3 build of GDB itself). Estimate the
23920 number of elements in order to avoid too many rehashes, which
23921 require rebuilding buckets and thus many trips to
23922 malloc/free. */
23923 size_t psyms_count = 0;
23924 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23925 {
23926 struct dwarf2_per_cu_data *per_cu
23927 = dwarf2_per_objfile->all_comp_units[i];
23928 struct partial_symtab *psymtab = per_cu->v.psymtab;
23929
23930 if (psymtab != NULL && psymtab->user == NULL)
23931 recursively_count_psymbols (psymtab, psyms_count);
23932 }
23933 /* Generating an index for gdb itself shows a ratio of
23934 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23935 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
bc8f2430 23936 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 23937 {
3e43a32a
MS
23938 struct dwarf2_per_cu_data *per_cu
23939 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23940 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23941
92fac807
JK
23942 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23943 It may be referenced from a local scope but in such case it does not
23944 need to be present in .gdb_index. */
23945 if (psymtab == NULL)
23946 continue;
23947
95554aad 23948 if (psymtab->user == NULL)
bc8f2430
JK
23949 recursively_write_psymbols (objfile, psymtab, &symtab,
23950 psyms_seen, i);
9291a0cd 23951
bc8f2430
JK
23952 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23953 gdb_assert (insertpair.second);
9291a0cd 23954
c2f134ac
PA
23955 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23956 to_underlying (per_cu->sect_off));
23957 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23958 }
23959
0a5429f6 23960 /* Dump the address map. */
bc8f2430
JK
23961 data_buf addr_vec;
23962 write_address_map (objfile, addr_vec, cu_index_htab);
0a5429f6 23963
1fd400ff 23964 /* Write out the .debug_type entries, if any. */
bc8f2430 23965 data_buf types_cu_list;
1fd400ff
TT
23966 if (dwarf2_per_objfile->signatured_types)
23967 {
bc8f2430
JK
23968 signatured_type_index_data sig_data (types_cu_list,
23969 psyms_seen);
1fd400ff
TT
23970
23971 sig_data.objfile = objfile;
bc8f2430 23972 sig_data.symtab = &symtab;
1fd400ff
TT
23973 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23974 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23975 write_one_signatured_type, &sig_data);
23976 }
23977
156942c7
DE
23978 /* Now that we've processed all symbols we can shrink their cu_indices
23979 lists. */
bc8f2430 23980 uniquify_cu_indices (&symtab);
156942c7 23981
bc8f2430
JK
23982 data_buf symtab_vec, constant_pool;
23983 write_hash_table (&symtab, symtab_vec, constant_pool);
9291a0cd 23984
bc8f2430
JK
23985 data_buf contents;
23986 const offset_type size_of_contents = 6 * sizeof (offset_type);
23987 offset_type total_len = size_of_contents;
9291a0cd
TT
23988
23989 /* The version number. */
bc8f2430 23990 contents.append_data (MAYBE_SWAP (8));
9291a0cd
TT
23991
23992 /* The offset of the CU list from the start of the file. */
bc8f2430
JK
23993 contents.append_data (MAYBE_SWAP (total_len));
23994 total_len += cu_list.size ();
9291a0cd 23995
1fd400ff 23996 /* The offset of the types CU list from the start of the file. */
bc8f2430
JK
23997 contents.append_data (MAYBE_SWAP (total_len));
23998 total_len += types_cu_list.size ();
1fd400ff 23999
9291a0cd 24000 /* The offset of the address table from the start of the file. */
bc8f2430
JK
24001 contents.append_data (MAYBE_SWAP (total_len));
24002 total_len += addr_vec.size ();
9291a0cd
TT
24003
24004 /* The offset of the symbol table from the start of the file. */
bc8f2430
JK
24005 contents.append_data (MAYBE_SWAP (total_len));
24006 total_len += symtab_vec.size ();
9291a0cd
TT
24007
24008 /* The offset of the constant pool from the start of the file. */
bc8f2430
JK
24009 contents.append_data (MAYBE_SWAP (total_len));
24010 total_len += constant_pool.size ();
9291a0cd 24011
bc8f2430 24012 gdb_assert (contents.size () == size_of_contents);
9291a0cd 24013
bc8f2430
JK
24014 contents.file_write (out_file);
24015 cu_list.file_write (out_file);
24016 types_cu_list.file_write (out_file);
24017 addr_vec.file_write (out_file);
24018 symtab_vec.file_write (out_file);
24019 constant_pool.file_write (out_file);
9291a0cd 24020
bef155c3
TT
24021 /* We want to keep the file. */
24022 unlink_file.keep ();
9291a0cd
TT
24023}
24024
90476074
TT
24025/* Implementation of the `save gdb-index' command.
24026
24027 Note that the file format used by this command is documented in the
24028 GDB manual. Any changes here must be documented there. */
11570e71 24029
9291a0cd
TT
24030static void
24031save_gdb_index_command (char *arg, int from_tty)
24032{
24033 struct objfile *objfile;
24034
24035 if (!arg || !*arg)
96d19272 24036 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
24037
24038 ALL_OBJFILES (objfile)
24039 {
24040 struct stat st;
24041
24042 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 24043 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
24044 continue;
24045
9a3c8263
SM
24046 dwarf2_per_objfile
24047 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24048 dwarf2_objfile_data_key);
9291a0cd
TT
24049 if (dwarf2_per_objfile)
24050 {
9291a0cd 24051
492d29ea 24052 TRY
9291a0cd
TT
24053 {
24054 write_psymtabs_to_index (objfile, arg);
24055 }
492d29ea
PA
24056 CATCH (except, RETURN_MASK_ERROR)
24057 {
24058 exception_fprintf (gdb_stderr, except,
24059 _("Error while writing index for `%s': "),
24060 objfile_name (objfile));
24061 }
24062 END_CATCH
9291a0cd
TT
24063 }
24064 }
dce234bc
PP
24065}
24066
9291a0cd
TT
24067\f
24068
b4f54984 24069int dwarf_always_disassemble;
9eae7c52
TT
24070
24071static void
b4f54984
DE
24072show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24073 struct cmd_list_element *c, const char *value)
9eae7c52 24074{
3e43a32a
MS
24075 fprintf_filtered (file,
24076 _("Whether to always disassemble "
24077 "DWARF expressions is %s.\n"),
9eae7c52
TT
24078 value);
24079}
24080
900e11f9
JK
24081static void
24082show_check_physname (struct ui_file *file, int from_tty,
24083 struct cmd_list_element *c, const char *value)
24084{
24085 fprintf_filtered (file,
24086 _("Whether to check \"physname\" is %s.\n"),
24087 value);
24088}
24089
6502dd73
DJ
24090void
24091_initialize_dwarf2_read (void)
24092{
96d19272
JK
24093 struct cmd_list_element *c;
24094
dce234bc 24095 dwarf2_objfile_data_key
c1bd65d0 24096 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24097
b4f54984
DE
24098 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24099Set DWARF specific variables.\n\
24100Configure DWARF variables such as the cache size"),
24101 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24102 0/*allow-unknown*/, &maintenance_set_cmdlist);
24103
b4f54984
DE
24104 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24105Show DWARF specific variables\n\
24106Show DWARF variables such as the cache size"),
24107 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24108 0/*allow-unknown*/, &maintenance_show_cmdlist);
24109
24110 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24111 &dwarf_max_cache_age, _("\
24112Set the upper bound on the age of cached DWARF compilation units."), _("\
24113Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24114A higher limit means that cached compilation units will be stored\n\
24115in memory longer, and more total memory will be used. Zero disables\n\
24116caching, which can slow down startup."),
2c5b56ce 24117 NULL,
b4f54984
DE
24118 show_dwarf_max_cache_age,
24119 &set_dwarf_cmdlist,
24120 &show_dwarf_cmdlist);
d97bc12b 24121
9eae7c52 24122 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24123 &dwarf_always_disassemble, _("\
9eae7c52
TT
24124Set whether `info address' always disassembles DWARF expressions."), _("\
24125Show whether `info address' always disassembles DWARF expressions."), _("\
24126When enabled, DWARF expressions are always printed in an assembly-like\n\
24127syntax. When disabled, expressions will be printed in a more\n\
24128conversational style, when possible."),
24129 NULL,
b4f54984
DE
24130 show_dwarf_always_disassemble,
24131 &set_dwarf_cmdlist,
24132 &show_dwarf_cmdlist);
24133
24134 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24135Set debugging of the DWARF reader."), _("\
24136Show debugging of the DWARF reader."), _("\
24137When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24138reading and symtab expansion. A value of 1 (one) provides basic\n\
24139information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24140 NULL,
24141 NULL,
24142 &setdebuglist, &showdebuglist);
24143
b4f54984
DE
24144 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24145Set debugging of the DWARF DIE reader."), _("\
24146Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24147When enabled (non-zero), DIEs are dumped after they are read in.\n\
24148The value is the maximum depth to print."),
ccce17b0
YQ
24149 NULL,
24150 NULL,
24151 &setdebuglist, &showdebuglist);
9291a0cd 24152
27e0867f
DE
24153 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24154Set debugging of the dwarf line reader."), _("\
24155Show debugging of the dwarf line reader."), _("\
24156When enabled (non-zero), line number entries are dumped as they are read in.\n\
24157A value of 1 (one) provides basic information.\n\
24158A value greater than 1 provides more verbose information."),
24159 NULL,
24160 NULL,
24161 &setdebuglist, &showdebuglist);
24162
900e11f9
JK
24163 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24164Set cross-checking of \"physname\" code against demangler."), _("\
24165Show cross-checking of \"physname\" code against demangler."), _("\
24166When enabled, GDB's internal \"physname\" code is checked against\n\
24167the demangler."),
24168 NULL, show_check_physname,
24169 &setdebuglist, &showdebuglist);
24170
e615022a
DE
24171 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24172 no_class, &use_deprecated_index_sections, _("\
24173Set whether to use deprecated gdb_index sections."), _("\
24174Show whether to use deprecated gdb_index sections."), _("\
24175When enabled, deprecated .gdb_index sections are used anyway.\n\
24176Normally they are ignored either because of a missing feature or\n\
24177performance issue.\n\
24178Warning: This option must be enabled before gdb reads the file."),
24179 NULL,
24180 NULL,
24181 &setlist, &showlist);
24182
96d19272 24183 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24184 _("\
fc1a9d6e 24185Save a gdb-index file.\n\
11570e71 24186Usage: save gdb-index DIRECTORY"),
96d19272
JK
24187 &save_cmdlist);
24188 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24189
24190 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24191 &dwarf2_locexpr_funcs);
24192 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24193 &dwarf2_loclist_funcs);
24194
24195 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24196 &dwarf2_block_frame_base_locexpr_funcs);
24197 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24198 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24199}
This page took 3.979586 seconds and 4 git commands to generate.