* Makefile.am: Add LIBICONV to windres.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca
DJ
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 11 support.
c906108c 12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
c906108c 19
c5aa993b
JM
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
c906108c 24
c5aa993b
JM
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
197e01b6
EZ
27 Foundation, Inc., 51 Franklin Street, Fifth Floor,
28 Boston, MA 02110-1301, USA. */
c906108c
SS
29
30#include "defs.h"
31#include "bfd.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbtypes.h"
c906108c
SS
34#include "objfiles.h"
35#include "elf/dwarf2.h"
36#include "buildsym.h"
37#include "demangle.h"
38#include "expression.h"
d5166ae1 39#include "filenames.h" /* for DOSish file names */
2e276125 40#include "macrotab.h"
c906108c
SS
41#include "language.h"
42#include "complaints.h"
357e46e7 43#include "bcache.h"
4c2df51b
DJ
44#include "dwarf2expr.h"
45#include "dwarf2loc.h"
9219021c 46#include "cp-support.h"
72bf9492 47#include "hashtab.h"
ae038cb0
DJ
48#include "command.h"
49#include "gdbcmd.h"
4c2df51b 50
c906108c
SS
51#include <fcntl.h>
52#include "gdb_string.h"
4bdf3d34 53#include "gdb_assert.h"
c906108c
SS
54#include <sys/types.h>
55
d8151005
DJ
56/* A note on memory usage for this file.
57
58 At the present time, this code reads the debug info sections into
59 the objfile's objfile_obstack. A definite improvement for startup
60 time, on platforms which do not emit relocations for debug
61 sections, would be to use mmap instead. The object's complete
62 debug information is loaded into memory, partly to simplify
63 absolute DIE references.
64
65 Whether using obstacks or mmap, the sections should remain loaded
66 until the objfile is released, and pointers into the section data
67 can be used for any other data associated to the objfile (symbol
68 names, type names, location expressions to name a few). */
69
88496bb5
MS
70#ifndef DWARF2_REG_TO_REGNUM
71#define DWARF2_REG_TO_REGNUM(REG) (REG)
72#endif
73
107d2387 74#if 0
357e46e7 75/* .debug_info header for a compilation unit
c906108c
SS
76 Because of alignment constraints, this structure has padding and cannot
77 be mapped directly onto the beginning of the .debug_info section. */
78typedef struct comp_unit_header
79 {
80 unsigned int length; /* length of the .debug_info
81 contribution */
82 unsigned short version; /* version number -- 2 for DWARF
83 version 2 */
84 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
85 unsigned char addr_size; /* byte size of an address -- 4 */
86 }
87_COMP_UNIT_HEADER;
88#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 89#endif
c906108c
SS
90
91/* .debug_pubnames header
92 Because of alignment constraints, this structure has padding and cannot
93 be mapped directly onto the beginning of the .debug_info section. */
94typedef struct pubnames_header
95 {
96 unsigned int length; /* length of the .debug_pubnames
97 contribution */
98 unsigned char version; /* version number -- 2 for DWARF
99 version 2 */
100 unsigned int info_offset; /* offset into .debug_info section */
101 unsigned int info_size; /* byte size of .debug_info section
102 portion */
103 }
104_PUBNAMES_HEADER;
105#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
106
107/* .debug_pubnames header
108 Because of alignment constraints, this structure has padding and cannot
109 be mapped directly onto the beginning of the .debug_info section. */
110typedef struct aranges_header
111 {
112 unsigned int length; /* byte len of the .debug_aranges
113 contribution */
114 unsigned short version; /* version number -- 2 for DWARF
115 version 2 */
116 unsigned int info_offset; /* offset into .debug_info section */
117 unsigned char addr_size; /* byte size of an address */
118 unsigned char seg_size; /* byte size of segment descriptor */
119 }
120_ARANGES_HEADER;
121#define _ACTUAL_ARANGES_HEADER_SIZE 12
122
123/* .debug_line statement program prologue
124 Because of alignment constraints, this structure has padding and cannot
125 be mapped directly onto the beginning of the .debug_info section. */
126typedef struct statement_prologue
127 {
128 unsigned int total_length; /* byte length of the statement
129 information */
130 unsigned short version; /* version number -- 2 for DWARF
131 version 2 */
132 unsigned int prologue_length; /* # bytes between prologue &
133 stmt program */
134 unsigned char minimum_instruction_length; /* byte size of
135 smallest instr */
136 unsigned char default_is_stmt; /* initial value of is_stmt
137 register */
138 char line_base;
139 unsigned char line_range;
140 unsigned char opcode_base; /* number assigned to first special
141 opcode */
142 unsigned char *standard_opcode_lengths;
143 }
144_STATEMENT_PROLOGUE;
145
6502dd73
DJ
146static const struct objfile_data *dwarf2_objfile_data_key;
147
148struct dwarf2_per_objfile
149{
150 /* Sizes of debugging sections. */
151 unsigned int info_size;
152 unsigned int abbrev_size;
153 unsigned int line_size;
154 unsigned int pubnames_size;
155 unsigned int aranges_size;
156 unsigned int loc_size;
157 unsigned int macinfo_size;
158 unsigned int str_size;
159 unsigned int ranges_size;
160 unsigned int frame_size;
161 unsigned int eh_frame_size;
162
163 /* Loaded data from the sections. */
fe1b8b76
JB
164 gdb_byte *info_buffer;
165 gdb_byte *abbrev_buffer;
166 gdb_byte *line_buffer;
167 gdb_byte *str_buffer;
168 gdb_byte *macinfo_buffer;
169 gdb_byte *ranges_buffer;
170 gdb_byte *loc_buffer;
ae038cb0 171
10b3939b
DJ
172 /* A list of all the compilation units. This is used to locate
173 the target compilation unit of a particular reference. */
ae038cb0
DJ
174 struct dwarf2_per_cu_data **all_comp_units;
175
176 /* The number of compilation units in ALL_COMP_UNITS. */
177 int n_comp_units;
178
179 /* A chain of compilation units that are currently read in, so that
180 they can be freed later. */
181 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
182
183 /* A flag indicating wether this objfile has a section loaded at a
184 VMA of 0. */
185 int has_section_at_zero;
6502dd73
DJ
186};
187
188static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 189
086df311
DJ
190static asection *dwarf_info_section;
191static asection *dwarf_abbrev_section;
192static asection *dwarf_line_section;
193static asection *dwarf_pubnames_section;
194static asection *dwarf_aranges_section;
195static asection *dwarf_loc_section;
196static asection *dwarf_macinfo_section;
197static asection *dwarf_str_section;
198static asection *dwarf_ranges_section;
199asection *dwarf_frame_section;
200asection *dwarf_eh_frame_section;
201
c906108c
SS
202/* names of the debugging sections */
203
204#define INFO_SECTION ".debug_info"
205#define ABBREV_SECTION ".debug_abbrev"
206#define LINE_SECTION ".debug_line"
207#define PUBNAMES_SECTION ".debug_pubnames"
208#define ARANGES_SECTION ".debug_aranges"
209#define LOC_SECTION ".debug_loc"
210#define MACINFO_SECTION ".debug_macinfo"
211#define STR_SECTION ".debug_str"
af34e669 212#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
213#define FRAME_SECTION ".debug_frame"
214#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
215
216/* local data types */
217
57349743
JB
218/* We hold several abbreviation tables in memory at the same time. */
219#ifndef ABBREV_HASH_SIZE
220#define ABBREV_HASH_SIZE 121
221#endif
222
107d2387
AC
223/* The data in a compilation unit header, after target2host
224 translation, looks like this. */
c906108c 225struct comp_unit_head
a738430d
MK
226{
227 unsigned long length;
228 short version;
229 unsigned int abbrev_offset;
230 unsigned char addr_size;
231 unsigned char signed_addr_p;
57349743 232
a738430d
MK
233 /* Size of file offsets; either 4 or 8. */
234 unsigned int offset_size;
57349743 235
a738430d
MK
236 /* Size of the length field; either 4 or 12. */
237 unsigned int initial_length_size;
57349743 238
a738430d
MK
239 /* Offset to the first byte of this compilation unit header in the
240 .debug_info section, for resolving relative reference dies. */
241 unsigned int offset;
57349743 242
a738430d
MK
243 /* Pointer to this compilation unit header in the .debug_info
244 section. */
fe1b8b76 245 gdb_byte *cu_head_ptr;
57349743 246
a738430d
MK
247 /* Pointer to the first die of this compilation unit. This will be
248 the first byte following the compilation unit header. */
fe1b8b76 249 gdb_byte *first_die_ptr;
af34e669 250
a738430d
MK
251 /* Pointer to the next compilation unit header in the program. */
252 struct comp_unit_head *next;
0d53c4c4 253
a738430d
MK
254 /* Base address of this compilation unit. */
255 CORE_ADDR base_address;
0d53c4c4 256
a738430d
MK
257 /* Non-zero if base_address has been set. */
258 int base_known;
259};
c906108c 260
10b3939b
DJ
261/* Fixed size for the DIE hash table. */
262#ifndef REF_HASH_SIZE
263#define REF_HASH_SIZE 1021
264#endif
265
e7c27a73
DJ
266/* Internal state when decoding a particular compilation unit. */
267struct dwarf2_cu
268{
269 /* The objfile containing this compilation unit. */
270 struct objfile *objfile;
271
272 /* The header of the compilation unit.
273
274 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 275 should logically be moved to the dwarf2_cu structure. */
e7c27a73 276 struct comp_unit_head header;
e142c38c
DJ
277
278 struct function_range *first_fn, *last_fn, *cached_fn;
279
280 /* The language we are debugging. */
281 enum language language;
282 const struct language_defn *language_defn;
283
b0f35d58
DL
284 const char *producer;
285
e142c38c
DJ
286 /* The generic symbol table building routines have separate lists for
287 file scope symbols and all all other scopes (local scopes). So
288 we need to select the right one to pass to add_symbol_to_list().
289 We do it by keeping a pointer to the correct list in list_in_scope.
290
291 FIXME: The original dwarf code just treated the file scope as the
292 first local scope, and all other local scopes as nested local
293 scopes, and worked fine. Check to see if we really need to
294 distinguish these in buildsym.c. */
295 struct pending **list_in_scope;
296
297 /* Maintain an array of referenced fundamental types for the current
298 compilation unit being read. For DWARF version 1, we have to construct
299 the fundamental types on the fly, since no information about the
300 fundamental types is supplied. Each such fundamental type is created by
301 calling a language dependent routine to create the type, and then a
302 pointer to that type is then placed in the array at the index specified
303 by it's FT_<TYPENAME> value. The array has a fixed size set by the
304 FT_NUM_MEMBERS compile time constant, which is the number of predefined
305 fundamental types gdb knows how to construct. */
306 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
307
308 /* DWARF abbreviation table associated with this compilation unit. */
309 struct abbrev_info **dwarf2_abbrevs;
310
311 /* Storage for the abbrev table. */
312 struct obstack abbrev_obstack;
72bf9492
DJ
313
314 /* Hash table holding all the loaded partial DIEs. */
315 htab_t partial_dies;
316
317 /* Storage for things with the same lifetime as this read-in compilation
318 unit, including partial DIEs. */
319 struct obstack comp_unit_obstack;
320
ae038cb0
DJ
321 /* When multiple dwarf2_cu structures are living in memory, this field
322 chains them all together, so that they can be released efficiently.
323 We will probably also want a generation counter so that most-recently-used
324 compilation units are cached... */
325 struct dwarf2_per_cu_data *read_in_chain;
326
327 /* Backchain to our per_cu entry if the tree has been built. */
328 struct dwarf2_per_cu_data *per_cu;
329
330 /* How many compilation units ago was this CU last referenced? */
331 int last_used;
332
10b3939b
DJ
333 /* A hash table of die offsets for following references. */
334 struct die_info *die_ref_table[REF_HASH_SIZE];
335
336 /* Full DIEs if read in. */
337 struct die_info *dies;
338
339 /* A set of pointers to dwarf2_per_cu_data objects for compilation
340 units referenced by this one. Only set during full symbol processing;
341 partial symbol tables do not have dependencies. */
342 htab_t dependencies;
343
cb1df416
DJ
344 /* Header data from the line table, during full symbol processing. */
345 struct line_header *line_header;
346
ae038cb0
DJ
347 /* Mark used when releasing cached dies. */
348 unsigned int mark : 1;
349
350 /* This flag will be set if this compilation unit might include
351 inter-compilation-unit references. */
352 unsigned int has_form_ref_addr : 1;
353
72bf9492
DJ
354 /* This flag will be set if this compilation unit includes any
355 DW_TAG_namespace DIEs. If we know that there are explicit
356 DIEs for namespaces, we don't need to try to infer them
357 from mangled names. */
358 unsigned int has_namespace_info : 1;
e7c27a73
DJ
359};
360
10b3939b
DJ
361/* Persistent data held for a compilation unit, even when not
362 processing it. We put a pointer to this structure in the
363 read_symtab_private field of the psymtab. If we encounter
364 inter-compilation-unit references, we also maintain a sorted
365 list of all compilation units. */
366
ae038cb0
DJ
367struct dwarf2_per_cu_data
368{
5afb4e99 369 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
370 bytes should suffice to store the length of any compilation unit
371 - if it doesn't, GDB will fall over anyway. */
372 unsigned long offset;
5afb4e99 373 unsigned long length : 30;
ae038cb0
DJ
374
375 /* Flag indicating this compilation unit will be read in before
376 any of the current compilation units are processed. */
377 unsigned long queued : 1;
378
5afb4e99
DJ
379 /* This flag will be set if we need to load absolutely all DIEs
380 for this compilation unit, instead of just the ones we think
381 are interesting. It gets set if we look for a DIE in the
382 hash table and don't find it. */
383 unsigned int load_all_dies : 1;
384
ae038cb0
DJ
385 /* Set iff currently read in. */
386 struct dwarf2_cu *cu;
1c379e20
DJ
387
388 /* If full symbols for this CU have been read in, then this field
389 holds a map of DIE offsets to types. It isn't always possible
390 to reconstruct this information later, so we have to preserve
391 it. */
1c379e20 392 htab_t type_hash;
10b3939b 393
31ffec48
DJ
394 /* The partial symbol table associated with this compilation unit,
395 or NULL for partial units (which do not have an associated
396 symtab). */
10b3939b 397 struct partial_symtab *psymtab;
ae038cb0
DJ
398};
399
debd256d
JB
400/* The line number information for a compilation unit (found in the
401 .debug_line section) begins with a "statement program header",
402 which contains the following information. */
403struct line_header
404{
405 unsigned int total_length;
406 unsigned short version;
407 unsigned int header_length;
408 unsigned char minimum_instruction_length;
409 unsigned char default_is_stmt;
410 int line_base;
411 unsigned char line_range;
412 unsigned char opcode_base;
413
414 /* standard_opcode_lengths[i] is the number of operands for the
415 standard opcode whose value is i. This means that
416 standard_opcode_lengths[0] is unused, and the last meaningful
417 element is standard_opcode_lengths[opcode_base - 1]. */
418 unsigned char *standard_opcode_lengths;
419
420 /* The include_directories table. NOTE! These strings are not
421 allocated with xmalloc; instead, they are pointers into
422 debug_line_buffer. If you try to free them, `free' will get
423 indigestion. */
424 unsigned int num_include_dirs, include_dirs_size;
425 char **include_dirs;
426
427 /* The file_names table. NOTE! These strings are not allocated
428 with xmalloc; instead, they are pointers into debug_line_buffer.
429 Don't try to free them directly. */
430 unsigned int num_file_names, file_names_size;
431 struct file_entry
c906108c 432 {
debd256d
JB
433 char *name;
434 unsigned int dir_index;
435 unsigned int mod_time;
436 unsigned int length;
aaa75496 437 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 438 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
439 } *file_names;
440
441 /* The start and end of the statement program following this
6502dd73 442 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 443 gdb_byte *statement_program_start, *statement_program_end;
debd256d 444};
c906108c
SS
445
446/* When we construct a partial symbol table entry we only
447 need this much information. */
448struct partial_die_info
449 {
72bf9492 450 /* Offset of this DIE. */
c906108c 451 unsigned int offset;
72bf9492
DJ
452
453 /* DWARF-2 tag for this DIE. */
454 ENUM_BITFIELD(dwarf_tag) tag : 16;
455
456 /* Language code associated with this DIE. This is only used
457 for the compilation unit DIE. */
458 unsigned int language : 8;
459
460 /* Assorted flags describing the data found in this DIE. */
461 unsigned int has_children : 1;
462 unsigned int is_external : 1;
463 unsigned int is_declaration : 1;
464 unsigned int has_type : 1;
465 unsigned int has_specification : 1;
aaa75496 466 unsigned int has_stmt_list : 1;
72bf9492
DJ
467 unsigned int has_pc_info : 1;
468
469 /* Flag set if the SCOPE field of this structure has been
470 computed. */
471 unsigned int scope_set : 1;
472
fa4028e9
JB
473 /* Flag set if the DIE has a byte_size attribute. */
474 unsigned int has_byte_size : 1;
475
72bf9492
DJ
476 /* The name of this DIE. Normally the value of DW_AT_name, but
477 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
478 other fashion. */
c906108c 479 char *name;
57c22c6c 480 char *dirname;
72bf9492
DJ
481
482 /* The scope to prepend to our children. This is generally
483 allocated on the comp_unit_obstack, so will disappear
484 when this compilation unit leaves the cache. */
485 char *scope;
486
487 /* The location description associated with this DIE, if any. */
488 struct dwarf_block *locdesc;
489
490 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
491 CORE_ADDR lowpc;
492 CORE_ADDR highpc;
72bf9492
DJ
493
494 /* Pointer into the info_buffer pointing at the target of
495 DW_AT_sibling, if any. */
fe1b8b76 496 gdb_byte *sibling;
72bf9492
DJ
497
498 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
499 DW_AT_specification (or DW_AT_abstract_origin or
500 DW_AT_extension). */
501 unsigned int spec_offset;
502
aaa75496
JB
503 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
504 unsigned int line_offset;
505
72bf9492
DJ
506 /* Pointers to this DIE's parent, first child, and next sibling,
507 if any. */
508 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
509 };
510
511/* This data structure holds the information of an abbrev. */
512struct abbrev_info
513 {
514 unsigned int number; /* number identifying abbrev */
515 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
516 unsigned short has_children; /* boolean */
517 unsigned short num_attrs; /* number of attributes */
c906108c
SS
518 struct attr_abbrev *attrs; /* an array of attribute descriptions */
519 struct abbrev_info *next; /* next in chain */
520 };
521
522struct attr_abbrev
523 {
524 enum dwarf_attribute name;
525 enum dwarf_form form;
526 };
527
528/* This data structure holds a complete die structure. */
529struct die_info
530 {
c5aa993b 531 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
532 unsigned int abbrev; /* Abbrev number */
533 unsigned int offset; /* Offset in .debug_info section */
534 unsigned int num_attrs; /* Number of attributes */
535 struct attribute *attrs; /* An array of attributes */
536 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
537
538 /* The dies in a compilation unit form an n-ary tree. PARENT
539 points to this die's parent; CHILD points to the first child of
540 this node; and all the children of a given node are chained
541 together via their SIBLING fields, terminated by a die whose
542 tag is zero. */
639d11d3
DC
543 struct die_info *child; /* Its first child, if any. */
544 struct die_info *sibling; /* Its next sibling, if any. */
545 struct die_info *parent; /* Its parent, if any. */
78ba4af6 546
c5aa993b 547 struct type *type; /* Cached type information */
c906108c
SS
548 };
549
550/* Attributes have a name and a value */
551struct attribute
552 {
553 enum dwarf_attribute name;
554 enum dwarf_form form;
555 union
556 {
557 char *str;
558 struct dwarf_block *blk;
ce5d95e1
JB
559 unsigned long unsnd;
560 long int snd;
c906108c
SS
561 CORE_ADDR addr;
562 }
563 u;
564 };
565
5fb290d7
DJ
566struct function_range
567{
568 const char *name;
569 CORE_ADDR lowpc, highpc;
570 int seen_line;
571 struct function_range *next;
572};
573
c906108c
SS
574/* Get at parts of an attribute structure */
575
576#define DW_STRING(attr) ((attr)->u.str)
577#define DW_UNSND(attr) ((attr)->u.unsnd)
578#define DW_BLOCK(attr) ((attr)->u.blk)
579#define DW_SND(attr) ((attr)->u.snd)
580#define DW_ADDR(attr) ((attr)->u.addr)
581
582/* Blocks are a bunch of untyped bytes. */
583struct dwarf_block
584 {
585 unsigned int size;
fe1b8b76 586 gdb_byte *data;
c906108c
SS
587 };
588
c906108c
SS
589#ifndef ATTR_ALLOC_CHUNK
590#define ATTR_ALLOC_CHUNK 4
591#endif
592
c906108c
SS
593/* Allocate fields for structs, unions and enums in this size. */
594#ifndef DW_FIELD_ALLOC_CHUNK
595#define DW_FIELD_ALLOC_CHUNK 4
596#endif
597
c906108c
SS
598/* A zeroed version of a partial die for initialization purposes. */
599static struct partial_die_info zeroed_partial_die;
600
c906108c
SS
601/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
602 but this would require a corresponding change in unpack_field_as_long
603 and friends. */
604static int bits_per_byte = 8;
605
606/* The routines that read and process dies for a C struct or C++ class
607 pass lists of data member fields and lists of member function fields
608 in an instance of a field_info structure, as defined below. */
609struct field_info
c5aa993b
JM
610 {
611 /* List of data member and baseclasses fields. */
612 struct nextfield
613 {
614 struct nextfield *next;
615 int accessibility;
616 int virtuality;
617 struct field field;
618 }
619 *fields;
c906108c 620
c5aa993b
JM
621 /* Number of fields. */
622 int nfields;
c906108c 623
c5aa993b
JM
624 /* Number of baseclasses. */
625 int nbaseclasses;
c906108c 626
c5aa993b
JM
627 /* Set if the accesibility of one of the fields is not public. */
628 int non_public_fields;
c906108c 629
c5aa993b
JM
630 /* Member function fields array, entries are allocated in the order they
631 are encountered in the object file. */
632 struct nextfnfield
633 {
634 struct nextfnfield *next;
635 struct fn_field fnfield;
636 }
637 *fnfields;
c906108c 638
c5aa993b
JM
639 /* Member function fieldlist array, contains name of possibly overloaded
640 member function, number of overloaded member functions and a pointer
641 to the head of the member function field chain. */
642 struct fnfieldlist
643 {
644 char *name;
645 int length;
646 struct nextfnfield *head;
647 }
648 *fnfieldlists;
c906108c 649
c5aa993b
JM
650 /* Number of entries in the fnfieldlists array. */
651 int nfnfields;
652 };
c906108c 653
10b3939b
DJ
654/* One item on the queue of compilation units to read in full symbols
655 for. */
656struct dwarf2_queue_item
657{
658 struct dwarf2_per_cu_data *per_cu;
659 struct dwarf2_queue_item *next;
660};
661
662/* The current queue. */
663static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
664
ae038cb0
DJ
665/* Loaded secondary compilation units are kept in memory until they
666 have not been referenced for the processing of this many
667 compilation units. Set this to zero to disable caching. Cache
668 sizes of up to at least twenty will improve startup time for
669 typical inter-CU-reference binaries, at an obvious memory cost. */
670static int dwarf2_max_cache_age = 5;
920d2a44
AC
671static void
672show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
673 struct cmd_list_element *c, const char *value)
674{
675 fprintf_filtered (file, _("\
676The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
677 value);
678}
679
ae038cb0 680
c906108c
SS
681/* Various complaints about symbol reading that don't abort the process */
682
4d3c2250
KB
683static void
684dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 685{
4d3c2250 686 complaint (&symfile_complaints,
e2e0b3e5 687 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
688}
689
25e43795
DJ
690static void
691dwarf2_debug_line_missing_file_complaint (void)
692{
693 complaint (&symfile_complaints,
694 _(".debug_line section has line data without a file"));
695}
696
4d3c2250
KB
697static void
698dwarf2_complex_location_expr_complaint (void)
2e276125 699{
e2e0b3e5 700 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
701}
702
4d3c2250
KB
703static void
704dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
705 int arg3)
2e276125 706{
4d3c2250 707 complaint (&symfile_complaints,
e2e0b3e5 708 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
709 arg2, arg3);
710}
711
712static void
713dwarf2_macros_too_long_complaint (void)
2e276125 714{
4d3c2250 715 complaint (&symfile_complaints,
e2e0b3e5 716 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
717}
718
719static void
720dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 721{
4d3c2250 722 complaint (&symfile_complaints,
e2e0b3e5 723 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
724 arg1);
725}
726
727static void
728dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 729{
4d3c2250 730 complaint (&symfile_complaints,
e2e0b3e5 731 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 732}
c906108c 733
c906108c
SS
734/* local function prototypes */
735
4efb68b1 736static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
737
738#if 0
a14ed312 739static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
740#endif
741
aaa75496
JB
742static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
743 struct objfile *);
744
745static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
746 struct partial_die_info *,
747 struct partial_symtab *);
748
a14ed312 749static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 750
72bf9492
DJ
751static void scan_partial_symbols (struct partial_die_info *,
752 CORE_ADDR *, CORE_ADDR *,
753 struct dwarf2_cu *);
c906108c 754
72bf9492
DJ
755static void add_partial_symbol (struct partial_die_info *,
756 struct dwarf2_cu *);
63d06c5c 757
72bf9492 758static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 759
72bf9492
DJ
760static void add_partial_namespace (struct partial_die_info *pdi,
761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
762 struct dwarf2_cu *cu);
63d06c5c 763
72bf9492
DJ
764static void add_partial_enumeration (struct partial_die_info *enum_pdi,
765 struct dwarf2_cu *cu);
91c24f0a 766
fe1b8b76
JB
767static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
768 gdb_byte *info_ptr,
769 bfd *abfd,
770 struct dwarf2_cu *cu);
91c24f0a 771
a14ed312 772static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 773
a14ed312 774static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 775
fe1b8b76 776gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 777
e7c27a73 778static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 779
f3dd6933 780static void dwarf2_free_abbrev_table (void *);
c906108c 781
fe1b8b76 782static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 783 struct dwarf2_cu *);
72bf9492 784
57349743 785static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 786 struct dwarf2_cu *);
c906108c 787
fe1b8b76 788static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
789 struct dwarf2_cu *);
790
fe1b8b76
JB
791static gdb_byte *read_partial_die (struct partial_die_info *,
792 struct abbrev_info *abbrev, unsigned int,
793 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 794
72bf9492 795static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 796 struct dwarf2_cu *);
72bf9492
DJ
797
798static void fixup_partial_die (struct partial_die_info *,
799 struct dwarf2_cu *);
800
fe1b8b76
JB
801static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
802 struct dwarf2_cu *, int *);
c906108c 803
fe1b8b76
JB
804static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
805 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 806
fe1b8b76
JB
807static gdb_byte *read_attribute_value (struct attribute *, unsigned,
808 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 809
fe1b8b76 810static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 811
fe1b8b76 812static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 813
fe1b8b76 814static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 815
fe1b8b76 816static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 817
fe1b8b76 818static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 819
fe1b8b76 820static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 821 unsigned int *);
c906108c 822
fe1b8b76 823static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 824 struct comp_unit_head *, unsigned int *);
613e1657 825
fe1b8b76 826static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 827 unsigned int *);
613e1657 828
fe1b8b76 829static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 830
fe1b8b76 831static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 832
fe1b8b76
JB
833static char *read_indirect_string (bfd *, gdb_byte *,
834 const struct comp_unit_head *,
835 unsigned int *);
4bdf3d34 836
fe1b8b76 837static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 838
fe1b8b76 839static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 840
fe1b8b76 841static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 842
e142c38c 843static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 844
e142c38c
DJ
845static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
846 struct dwarf2_cu *);
c906108c 847
05cf31d1
JB
848static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
849 struct dwarf2_cu *cu);
850
e142c38c 851static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 852
e142c38c
DJ
853static struct die_info *die_specification (struct die_info *die,
854 struct dwarf2_cu *);
63d06c5c 855
debd256d
JB
856static void free_line_header (struct line_header *lh);
857
aaa75496
JB
858static void add_file_name (struct line_header *, char *, unsigned int,
859 unsigned int, unsigned int);
860
debd256d
JB
861static struct line_header *(dwarf_decode_line_header
862 (unsigned int offset,
e7c27a73 863 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
864
865static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 866 struct dwarf2_cu *, struct partial_symtab *);
c906108c 867
4f1520fb 868static void dwarf2_start_subfile (char *, char *, char *);
c906108c 869
a14ed312 870static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 871 struct dwarf2_cu *);
c906108c 872
a14ed312 873static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 874 struct dwarf2_cu *);
c906108c 875
2df3850c
JM
876static void dwarf2_const_value_data (struct attribute *attr,
877 struct symbol *sym,
878 int bits);
879
e7c27a73 880static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 881
e7c27a73
DJ
882static struct type *die_containing_type (struct die_info *,
883 struct dwarf2_cu *);
c906108c 884
e7c27a73 885static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 886
e7c27a73 887static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 888
086ed43d 889static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 890
fe1b8b76
JB
891static char *typename_concat (struct obstack *,
892 const char *prefix,
893 const char *suffix,
987504bb 894 struct dwarf2_cu *);
63d06c5c 895
e7c27a73 896static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 897
e7c27a73 898static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 899
a02abb62
JB
900static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
901
e7c27a73 902static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 903
e7c27a73 904static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 905
e7c27a73 906static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 907
a14ed312 908static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 909 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 910
fae299cd
DC
911static void get_scope_pc_bounds (struct die_info *,
912 CORE_ADDR *, CORE_ADDR *,
913 struct dwarf2_cu *);
914
a14ed312 915static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 916 struct dwarf2_cu *);
c906108c 917
a14ed312 918static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 919 struct type *, struct dwarf2_cu *);
c906108c 920
a14ed312 921static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 922 struct die_info *, struct type *,
e7c27a73 923 struct dwarf2_cu *);
c906108c 924
a14ed312 925static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 926 struct type *, struct dwarf2_cu *);
c906108c 927
134d01f1
DJ
928static void read_structure_type (struct die_info *, struct dwarf2_cu *);
929
930static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 931
8176b9b8
DC
932static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
933
e7c27a73 934static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 935
e7c27a73 936static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 937
38d518c9 938static const char *namespace_name (struct die_info *die,
e142c38c 939 int *is_anonymous, struct dwarf2_cu *);
38d518c9 940
134d01f1
DJ
941static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
942
943static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 944
e7c27a73 945static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 946
e7c27a73 947static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 948
e7c27a73 949static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 950
7ca2d3a3
DL
951static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
952 struct dwarf2_cu *);
953
e7c27a73 954static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 955
e7c27a73
DJ
956static void read_tag_ptr_to_member_type (struct die_info *,
957 struct dwarf2_cu *);
c906108c 958
e7c27a73 959static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 960
e7c27a73 961static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 962
e7c27a73 963static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 964
e7c27a73 965static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 966
e7c27a73 967static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 968
fe1b8b76 969static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 970
fe1b8b76 971static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 972 struct dwarf2_cu *,
fe1b8b76 973 gdb_byte **new_info_ptr,
639d11d3
DC
974 struct die_info *parent);
975
fe1b8b76 976static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 977 struct dwarf2_cu *,
fe1b8b76 978 gdb_byte **new_info_ptr,
639d11d3
DC
979 struct die_info *parent);
980
a14ed312 981static void free_die_list (struct die_info *);
c906108c 982
e7c27a73 983static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 984
e142c38c 985static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 986
e142c38c 987static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 988
e142c38c
DJ
989static struct die_info *dwarf2_extension (struct die_info *die,
990 struct dwarf2_cu *);
9219021c 991
a14ed312 992static char *dwarf_tag_name (unsigned int);
c906108c 993
a14ed312 994static char *dwarf_attr_name (unsigned int);
c906108c 995
a14ed312 996static char *dwarf_form_name (unsigned int);
c906108c 997
a14ed312 998static char *dwarf_stack_op_name (unsigned int);
c906108c 999
a14ed312 1000static char *dwarf_bool_name (unsigned int);
c906108c 1001
a14ed312 1002static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1003
1004#if 0
a14ed312 1005static char *dwarf_cfi_name (unsigned int);
c906108c 1006
a14ed312 1007struct die_info *copy_die (struct die_info *);
c906108c
SS
1008#endif
1009
f9aca02d 1010static struct die_info *sibling_die (struct die_info *);
c906108c 1011
f9aca02d 1012static void dump_die (struct die_info *);
c906108c 1013
f9aca02d 1014static void dump_die_list (struct die_info *);
c906108c 1015
10b3939b
DJ
1016static void store_in_ref_table (unsigned int, struct die_info *,
1017 struct dwarf2_cu *);
c906108c 1018
e142c38c
DJ
1019static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1020 struct dwarf2_cu *);
c906108c 1021
a02abb62
JB
1022static int dwarf2_get_attr_constant_value (struct attribute *, int);
1023
10b3939b
DJ
1024static struct die_info *follow_die_ref (struct die_info *,
1025 struct attribute *,
1026 struct dwarf2_cu *);
c906108c 1027
e142c38c
DJ
1028static struct type *dwarf2_fundamental_type (struct objfile *, int,
1029 struct dwarf2_cu *);
c906108c
SS
1030
1031/* memory allocation interface */
1032
7b5a2f43 1033static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1034
f3dd6933 1035static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1036
a14ed312 1037static struct die_info *dwarf_alloc_die (void);
c906108c 1038
e142c38c 1039static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1040
e142c38c
DJ
1041static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1042 struct dwarf2_cu *);
5fb290d7 1043
2e276125 1044static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1045 char *, bfd *, struct dwarf2_cu *);
2e276125 1046
8e19ed76
PS
1047static int attr_form_is_block (struct attribute *);
1048
4c2df51b
DJ
1049static void
1050dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 1051 struct dwarf2_cu *cu);
4c2df51b 1052
fe1b8b76
JB
1053static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1054 struct dwarf2_cu *cu);
4bb7a0a7 1055
72bf9492
DJ
1056static void free_stack_comp_unit (void *);
1057
72bf9492
DJ
1058static hashval_t partial_die_hash (const void *item);
1059
1060static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1061
ae038cb0
DJ
1062static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1063 (unsigned long offset, struct objfile *objfile);
1064
1065static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1066 (unsigned long offset, struct objfile *objfile);
1067
1068static void free_one_comp_unit (void *);
1069
1070static void free_cached_comp_units (void *);
1071
1072static void age_cached_comp_units (void);
1073
1074static void free_one_cached_comp_unit (void *);
1075
1c379e20
DJ
1076static void set_die_type (struct die_info *, struct type *,
1077 struct dwarf2_cu *);
1078
1c379e20
DJ
1079static void reset_die_and_siblings_types (struct die_info *,
1080 struct dwarf2_cu *);
1c379e20 1081
ae038cb0
DJ
1082static void create_all_comp_units (struct objfile *);
1083
31ffec48
DJ
1084static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1085 struct objfile *);
10b3939b
DJ
1086
1087static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1088
1089static void dwarf2_add_dependence (struct dwarf2_cu *,
1090 struct dwarf2_per_cu_data *);
1091
ae038cb0
DJ
1092static void dwarf2_mark (struct dwarf2_cu *);
1093
1094static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1095
72019c9c
GM
1096static void read_set_type (struct die_info *, struct dwarf2_cu *);
1097
1098
c906108c
SS
1099/* Try to locate the sections we need for DWARF 2 debugging
1100 information and return true if we have enough to do something. */
1101
1102int
6502dd73 1103dwarf2_has_info (struct objfile *objfile)
c906108c 1104{
6502dd73
DJ
1105 struct dwarf2_per_objfile *data;
1106
1107 /* Initialize per-objfile state. */
1108 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1109 memset (data, 0, sizeof (*data));
1110 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1111 dwarf2_per_objfile = data;
1112
188dd5d6
DJ
1113 dwarf_info_section = 0;
1114 dwarf_abbrev_section = 0;
1115 dwarf_line_section = 0;
1116 dwarf_str_section = 0;
1117 dwarf_macinfo_section = 0;
1118 dwarf_frame_section = 0;
1119 dwarf_eh_frame_section = 0;
1120 dwarf_ranges_section = 0;
1121 dwarf_loc_section = 0;
af34e669 1122
6502dd73 1123 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1124 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1125}
1126
1127/* This function is mapped across the sections and remembers the
1128 offset and size of each of the debugging sections we are interested
1129 in. */
1130
1131static void
72dca2f5 1132dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1133{
6314a349 1134 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1135 {
2c500098 1136 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1137 dwarf_info_section = sectp;
c906108c 1138 }
6314a349 1139 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1140 {
2c500098 1141 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1142 dwarf_abbrev_section = sectp;
c906108c 1143 }
6314a349 1144 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1145 {
2c500098 1146 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1147 dwarf_line_section = sectp;
c906108c 1148 }
6314a349 1149 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1150 {
2c500098 1151 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1152 dwarf_pubnames_section = sectp;
c906108c 1153 }
6314a349 1154 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1155 {
2c500098 1156 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1157 dwarf_aranges_section = sectp;
c906108c 1158 }
6314a349 1159 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1160 {
2c500098 1161 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1162 dwarf_loc_section = sectp;
c906108c 1163 }
6314a349 1164 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1165 {
2c500098 1166 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1167 dwarf_macinfo_section = sectp;
c906108c 1168 }
6314a349 1169 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1170 {
2c500098 1171 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1172 dwarf_str_section = sectp;
c906108c 1173 }
6314a349 1174 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1175 {
2c500098 1176 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1177 dwarf_frame_section = sectp;
b6af0555 1178 }
6314a349 1179 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1180 {
3799ccc6
EZ
1181 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1182 if (aflag & SEC_HAS_CONTENTS)
1183 {
2c500098 1184 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1185 dwarf_eh_frame_section = sectp;
1186 }
b6af0555 1187 }
6314a349 1188 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1189 {
2c500098 1190 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1191 dwarf_ranges_section = sectp;
af34e669 1192 }
72dca2f5
FR
1193
1194 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1195 && bfd_section_vma (abfd, sectp) == 0)
1196 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1197}
1198
1199/* Build a partial symbol table. */
1200
1201void
fba45db2 1202dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1203{
c906108c
SS
1204 /* We definitely need the .debug_info and .debug_abbrev sections */
1205
6502dd73
DJ
1206 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1207 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1208
1209 if (dwarf_line_section)
6502dd73 1210 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1211 else
6502dd73 1212 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1213
188dd5d6 1214 if (dwarf_str_section)
6502dd73 1215 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1216 else
6502dd73 1217 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1218
188dd5d6 1219 if (dwarf_macinfo_section)
6502dd73 1220 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1221 dwarf_macinfo_section);
2e276125 1222 else
6502dd73 1223 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1224
188dd5d6 1225 if (dwarf_ranges_section)
6502dd73 1226 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1227 else
6502dd73 1228 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1229
188dd5d6 1230 if (dwarf_loc_section)
6502dd73 1231 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1232 else
6502dd73 1233 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1234
ef96bde8
EZ
1235 if (mainline
1236 || (objfile->global_psymbols.size == 0
1237 && objfile->static_psymbols.size == 0))
c906108c
SS
1238 {
1239 init_psymbol_list (objfile, 1024);
1240 }
1241
1242#if 0
1243 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1244 {
d4f3574e 1245 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1246 .debug_pubnames sections */
1247
d4f3574e 1248 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1249 }
1250 else
1251#endif
1252 /* only test this case for now */
c5aa993b 1253 {
c906108c 1254 /* In this case we have to work a bit harder */
d4f3574e 1255 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1256 }
1257}
1258
1259#if 0
1260/* Build the partial symbol table from the information in the
1261 .debug_pubnames and .debug_aranges sections. */
1262
1263static void
fba45db2 1264dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1265{
1266 bfd *abfd = objfile->obfd;
1267 char *aranges_buffer, *pubnames_buffer;
1268 char *aranges_ptr, *pubnames_ptr;
1269 unsigned int entry_length, version, info_offset, info_size;
1270
1271 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1272 dwarf_pubnames_section);
c906108c 1273 pubnames_ptr = pubnames_buffer;
6502dd73 1274 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1275 {
613e1657 1276 struct comp_unit_head cu_header;
891d2f0b 1277 unsigned int bytes_read;
613e1657
KB
1278
1279 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1280 &bytes_read);
613e1657 1281 pubnames_ptr += bytes_read;
c906108c
SS
1282 version = read_1_byte (abfd, pubnames_ptr);
1283 pubnames_ptr += 1;
1284 info_offset = read_4_bytes (abfd, pubnames_ptr);
1285 pubnames_ptr += 4;
1286 info_size = read_4_bytes (abfd, pubnames_ptr);
1287 pubnames_ptr += 4;
1288 }
1289
1290 aranges_buffer = dwarf2_read_section (objfile,
086df311 1291 dwarf_aranges_section);
c906108c
SS
1292
1293}
1294#endif
1295
107d2387 1296/* Read in the comp unit header information from the debug_info at
917c78fc 1297 info_ptr. */
107d2387 1298
fe1b8b76 1299static gdb_byte *
107d2387 1300read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1301 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1302{
1303 int signed_addr;
891d2f0b 1304 unsigned int bytes_read;
613e1657
KB
1305 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1306 &bytes_read);
1307 info_ptr += bytes_read;
107d2387
AC
1308 cu_header->version = read_2_bytes (abfd, info_ptr);
1309 info_ptr += 2;
613e1657
KB
1310 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1311 &bytes_read);
1312 info_ptr += bytes_read;
107d2387
AC
1313 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1314 info_ptr += 1;
1315 signed_addr = bfd_get_sign_extend_vma (abfd);
1316 if (signed_addr < 0)
8e65ff28 1317 internal_error (__FILE__, __LINE__,
e2e0b3e5 1318 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1319 cu_header->signed_addr_p = signed_addr;
1320 return info_ptr;
1321}
1322
fe1b8b76
JB
1323static gdb_byte *
1324partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1325 bfd *abfd)
1326{
fe1b8b76 1327 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1328
1329 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1330
2b949cb6 1331 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1332 error (_("Dwarf Error: wrong version in compilation unit header "
1333 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1334 2, bfd_get_filename (abfd));
1335
1336 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1337 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1338 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1339 (long) header->abbrev_offset,
1340 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1341 bfd_get_filename (abfd));
1342
1343 if (beg_of_comp_unit + header->length + header->initial_length_size
1344 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1345 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1346 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1347 (long) header->length,
1348 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1349 bfd_get_filename (abfd));
1350
1351 return info_ptr;
1352}
1353
aaa75496
JB
1354/* Allocate a new partial symtab for file named NAME and mark this new
1355 partial symtab as being an include of PST. */
1356
1357static void
1358dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1359 struct objfile *objfile)
1360{
1361 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1362
1363 subpst->section_offsets = pst->section_offsets;
1364 subpst->textlow = 0;
1365 subpst->texthigh = 0;
1366
1367 subpst->dependencies = (struct partial_symtab **)
1368 obstack_alloc (&objfile->objfile_obstack,
1369 sizeof (struct partial_symtab *));
1370 subpst->dependencies[0] = pst;
1371 subpst->number_of_dependencies = 1;
1372
1373 subpst->globals_offset = 0;
1374 subpst->n_global_syms = 0;
1375 subpst->statics_offset = 0;
1376 subpst->n_static_syms = 0;
1377 subpst->symtab = NULL;
1378 subpst->read_symtab = pst->read_symtab;
1379 subpst->readin = 0;
1380
1381 /* No private part is necessary for include psymtabs. This property
1382 can be used to differentiate between such include psymtabs and
10b3939b 1383 the regular ones. */
58a9656e 1384 subpst->read_symtab_private = NULL;
aaa75496
JB
1385}
1386
1387/* Read the Line Number Program data and extract the list of files
1388 included by the source file represented by PST. Build an include
1389 partial symtab for each of these included files.
1390
1391 This procedure assumes that there *is* a Line Number Program in
1392 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1393 before calling this procedure. */
1394
1395static void
1396dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1397 struct partial_die_info *pdi,
1398 struct partial_symtab *pst)
1399{
1400 struct objfile *objfile = cu->objfile;
1401 bfd *abfd = objfile->obfd;
1402 struct line_header *lh;
1403
1404 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1405 if (lh == NULL)
1406 return; /* No linetable, so no includes. */
1407
1408 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1409
1410 free_line_header (lh);
1411}
1412
1413
c906108c
SS
1414/* Build the partial symbol table by doing a quick pass through the
1415 .debug_info and .debug_abbrev sections. */
1416
1417static void
fba45db2 1418dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1419{
1420 /* Instead of reading this into a big buffer, we should probably use
1421 mmap() on architectures that support it. (FIXME) */
1422 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1423 gdb_byte *info_ptr;
1424 gdb_byte *beg_of_comp_unit;
c906108c
SS
1425 struct partial_die_info comp_unit_die;
1426 struct partial_symtab *pst;
ae038cb0 1427 struct cleanup *back_to;
e142c38c 1428 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1429
6502dd73 1430 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1431
ae038cb0
DJ
1432 /* Any cached compilation units will be linked by the per-objfile
1433 read_in_chain. Make sure to free them when we're done. */
1434 back_to = make_cleanup (free_cached_comp_units, NULL);
1435
10b3939b
DJ
1436 create_all_comp_units (objfile);
1437
6502dd73 1438 /* Since the objects we're extracting from .debug_info vary in
af703f96 1439 length, only the individual functions to extract them (like
72bf9492 1440 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1441 the buffer is large enough to hold another complete object.
1442
6502dd73
DJ
1443 At the moment, they don't actually check that. If .debug_info
1444 holds just one extra byte after the last compilation unit's dies,
1445 then read_comp_unit_head will happily read off the end of the
1446 buffer. read_partial_die is similarly casual. Those functions
1447 should be fixed.
af703f96
JB
1448
1449 For this loop condition, simply checking whether there's any data
1450 left at all should be sufficient. */
6502dd73
DJ
1451 while (info_ptr < (dwarf2_per_objfile->info_buffer
1452 + dwarf2_per_objfile->info_size))
c906108c 1453 {
f3dd6933 1454 struct cleanup *back_to_inner;
e7c27a73 1455 struct dwarf2_cu cu;
72bf9492
DJ
1456 struct abbrev_info *abbrev;
1457 unsigned int bytes_read;
1458 struct dwarf2_per_cu_data *this_cu;
1459
c906108c 1460 beg_of_comp_unit = info_ptr;
c906108c 1461
72bf9492
DJ
1462 memset (&cu, 0, sizeof (cu));
1463
1464 obstack_init (&cu.comp_unit_obstack);
1465
1466 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1467
e7c27a73 1468 cu.objfile = objfile;
72bf9492 1469 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1470
57349743 1471 /* Complete the cu_header */
6502dd73 1472 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1473 cu.header.first_die_ptr = info_ptr;
1474 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1475
e142c38c
DJ
1476 cu.list_in_scope = &file_symbols;
1477
c906108c 1478 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1479 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1480 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1481
10b3939b 1482 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1483
c906108c 1484 /* Read the compilation unit die */
72bf9492
DJ
1485 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1486 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1487 abfd, info_ptr, &cu);
c906108c 1488
31ffec48
DJ
1489 if (comp_unit_die.tag == DW_TAG_partial_unit)
1490 {
1491 info_ptr = (beg_of_comp_unit + cu.header.length
1492 + cu.header.initial_length_size);
1493 do_cleanups (back_to_inner);
1494 continue;
1495 }
1496
c906108c 1497 /* Set the language we're debugging */
e142c38c 1498 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1499
1500 /* Allocate a new partial symbol table structure */
d4f3574e 1501 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1502 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1503 comp_unit_die.lowpc,
1504 objfile->global_psymbols.next,
1505 objfile->static_psymbols.next);
1506
ae038cb0
DJ
1507 if (comp_unit_die.dirname)
1508 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1509
10b3939b
DJ
1510 pst->read_symtab_private = (char *) this_cu;
1511
613e1657 1512 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1513
1514 /* Store the function that reads in the rest of the symbol table */
1515 pst->read_symtab = dwarf2_psymtab_to_symtab;
1516
10b3939b
DJ
1517 /* If this compilation unit was already read in, free the
1518 cached copy in order to read it in again. This is
1519 necessary because we skipped some symbols when we first
1520 read in the compilation unit (see load_partial_dies).
1521 This problem could be avoided, but the benefit is
1522 unclear. */
1523 if (this_cu->cu != NULL)
1524 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1525
10b3939b 1526 cu.per_cu = this_cu;
ae038cb0 1527
10b3939b
DJ
1528 /* Note that this is a pointer to our stack frame, being
1529 added to a global data structure. It will be cleaned up
1530 in free_stack_comp_unit when we finish with this
1531 compilation unit. */
1532 this_cu->cu = &cu;
ae038cb0 1533
10b3939b 1534 this_cu->psymtab = pst;
ae038cb0 1535
c906108c
SS
1536 /* Check if comp unit has_children.
1537 If so, read the rest of the partial symbols from this comp unit.
1538 If not, there's no more debug_info for this comp unit. */
1539 if (comp_unit_die.has_children)
1540 {
72bf9492
DJ
1541 struct partial_die_info *first_die;
1542
91c24f0a
DC
1543 lowpc = ((CORE_ADDR) -1);
1544 highpc = ((CORE_ADDR) 0);
1545
72bf9492
DJ
1546 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1547
1548 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1549
91c24f0a
DC
1550 /* If we didn't find a lowpc, set it to highpc to avoid
1551 complaints from `maint check'. */
1552 if (lowpc == ((CORE_ADDR) -1))
1553 lowpc = highpc;
72bf9492 1554
c906108c
SS
1555 /* If the compilation unit didn't have an explicit address range,
1556 then use the information extracted from its child dies. */
0b010bcc 1557 if (! comp_unit_die.has_pc_info)
c906108c 1558 {
c5aa993b 1559 comp_unit_die.lowpc = lowpc;
c906108c
SS
1560 comp_unit_die.highpc = highpc;
1561 }
1562 }
c5aa993b 1563 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1564 pst->texthigh = comp_unit_die.highpc + baseaddr;
1565
1566 pst->n_global_syms = objfile->global_psymbols.next -
1567 (objfile->global_psymbols.list + pst->globals_offset);
1568 pst->n_static_syms = objfile->static_psymbols.next -
1569 (objfile->static_psymbols.list + pst->statics_offset);
1570 sort_pst_symbols (pst);
1571
1572 /* If there is already a psymtab or symtab for a file of this
1573 name, remove it. (If there is a symtab, more drastic things
1574 also happen.) This happens in VxWorks. */
1575 free_named_symtabs (pst->filename);
1576
dd373385
EZ
1577 info_ptr = beg_of_comp_unit + cu.header.length
1578 + cu.header.initial_length_size;
1579
aaa75496
JB
1580 if (comp_unit_die.has_stmt_list)
1581 {
1582 /* Get the list of files included in the current compilation unit,
1583 and build a psymtab for each of them. */
1584 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1585 }
1586
f3dd6933 1587 do_cleanups (back_to_inner);
c906108c 1588 }
ae038cb0
DJ
1589 do_cleanups (back_to);
1590}
1591
1592/* Load the DIEs for a secondary CU into memory. */
1593
1594static void
1595load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1596{
1597 bfd *abfd = objfile->obfd;
fe1b8b76 1598 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1599 struct partial_die_info comp_unit_die;
1600 struct dwarf2_cu *cu;
1601 struct abbrev_info *abbrev;
1602 unsigned int bytes_read;
1603 struct cleanup *back_to;
1604
1605 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1606 beg_of_comp_unit = info_ptr;
1607
1608 cu = xmalloc (sizeof (struct dwarf2_cu));
1609 memset (cu, 0, sizeof (struct dwarf2_cu));
1610
1611 obstack_init (&cu->comp_unit_obstack);
1612
1613 cu->objfile = objfile;
1614 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1615
1616 /* Complete the cu_header. */
1617 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1618 cu->header.first_die_ptr = info_ptr;
1619 cu->header.cu_head_ptr = beg_of_comp_unit;
1620
1621 /* Read the abbrevs for this compilation unit into a table. */
1622 dwarf2_read_abbrevs (abfd, cu);
1623 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1624
1625 /* Read the compilation unit die. */
1626 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1627 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1628 abfd, info_ptr, cu);
1629
1630 /* Set the language we're debugging. */
1631 set_cu_language (comp_unit_die.language, cu);
1632
1633 /* Link this compilation unit into the compilation unit tree. */
1634 this_cu->cu = cu;
1635 cu->per_cu = this_cu;
1636
1637 /* Check if comp unit has_children.
1638 If so, read the rest of the partial symbols from this comp unit.
1639 If not, there's no more debug_info for this comp unit. */
1640 if (comp_unit_die.has_children)
1641 load_partial_dies (abfd, info_ptr, 0, cu);
1642
1643 do_cleanups (back_to);
1644}
1645
1646/* Create a list of all compilation units in OBJFILE. We do this only
1647 if an inter-comp-unit reference is found; presumably if there is one,
1648 there will be many, and one will occur early in the .debug_info section.
1649 So there's no point in building this list incrementally. */
1650
1651static void
1652create_all_comp_units (struct objfile *objfile)
1653{
1654 int n_allocated;
1655 int n_comp_units;
1656 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1657 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1658
1659 n_comp_units = 0;
1660 n_allocated = 10;
1661 all_comp_units = xmalloc (n_allocated
1662 * sizeof (struct dwarf2_per_cu_data *));
1663
1664 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1665 {
1666 struct comp_unit_head cu_header;
fe1b8b76 1667 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1668 struct dwarf2_per_cu_data *this_cu;
1669 unsigned long offset;
891d2f0b 1670 unsigned int bytes_read;
ae038cb0
DJ
1671
1672 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1673
1674 /* Read just enough information to find out where the next
1675 compilation unit is. */
dd373385 1676 cu_header.initial_length_size = 0;
ae038cb0
DJ
1677 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1678 &cu_header, &bytes_read);
1679
1680 /* Save the compilation unit for later lookup. */
1681 this_cu = obstack_alloc (&objfile->objfile_obstack,
1682 sizeof (struct dwarf2_per_cu_data));
1683 memset (this_cu, 0, sizeof (*this_cu));
1684 this_cu->offset = offset;
1685 this_cu->length = cu_header.length + cu_header.initial_length_size;
1686
1687 if (n_comp_units == n_allocated)
1688 {
1689 n_allocated *= 2;
1690 all_comp_units = xrealloc (all_comp_units,
1691 n_allocated
1692 * sizeof (struct dwarf2_per_cu_data *));
1693 }
1694 all_comp_units[n_comp_units++] = this_cu;
1695
1696 info_ptr = info_ptr + this_cu->length;
1697 }
1698
1699 dwarf2_per_objfile->all_comp_units
1700 = obstack_alloc (&objfile->objfile_obstack,
1701 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1702 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1703 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1704 xfree (all_comp_units);
1705 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1706}
1707
72bf9492
DJ
1708/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1709 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1710 in CU. */
c906108c 1711
72bf9492
DJ
1712static void
1713scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1714 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1715{
e7c27a73 1716 struct objfile *objfile = cu->objfile;
c906108c 1717 bfd *abfd = objfile->obfd;
72bf9492 1718 struct partial_die_info *pdi;
c906108c 1719
91c24f0a
DC
1720 /* Now, march along the PDI's, descending into ones which have
1721 interesting children but skipping the children of the other ones,
1722 until we reach the end of the compilation unit. */
c906108c 1723
72bf9492 1724 pdi = first_die;
91c24f0a 1725
72bf9492
DJ
1726 while (pdi != NULL)
1727 {
1728 fixup_partial_die (pdi, cu);
c906108c 1729
91c24f0a
DC
1730 /* Anonymous namespaces have no name but have interesting
1731 children, so we need to look at them. Ditto for anonymous
1732 enums. */
933c6fe4 1733
72bf9492
DJ
1734 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1735 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1736 {
72bf9492 1737 switch (pdi->tag)
c906108c
SS
1738 {
1739 case DW_TAG_subprogram:
72bf9492 1740 if (pdi->has_pc_info)
c906108c 1741 {
72bf9492 1742 if (pdi->lowpc < *lowpc)
c906108c 1743 {
72bf9492 1744 *lowpc = pdi->lowpc;
c906108c 1745 }
72bf9492 1746 if (pdi->highpc > *highpc)
c906108c 1747 {
72bf9492 1748 *highpc = pdi->highpc;
c906108c 1749 }
72bf9492 1750 if (!pdi->is_declaration)
c906108c 1751 {
72bf9492 1752 add_partial_symbol (pdi, cu);
c906108c
SS
1753 }
1754 }
1755 break;
1756 case DW_TAG_variable:
1757 case DW_TAG_typedef:
91c24f0a 1758 case DW_TAG_union_type:
72bf9492 1759 if (!pdi->is_declaration)
63d06c5c 1760 {
72bf9492 1761 add_partial_symbol (pdi, cu);
63d06c5c
DC
1762 }
1763 break;
c906108c
SS
1764 case DW_TAG_class_type:
1765 case DW_TAG_structure_type:
72bf9492 1766 if (!pdi->is_declaration)
c906108c 1767 {
72bf9492 1768 add_partial_symbol (pdi, cu);
c906108c
SS
1769 }
1770 break;
91c24f0a 1771 case DW_TAG_enumeration_type:
72bf9492
DJ
1772 if (!pdi->is_declaration)
1773 add_partial_enumeration (pdi, cu);
c906108c
SS
1774 break;
1775 case DW_TAG_base_type:
a02abb62 1776 case DW_TAG_subrange_type:
c906108c 1777 /* File scope base type definitions are added to the partial
c5aa993b 1778 symbol table. */
72bf9492 1779 add_partial_symbol (pdi, cu);
c906108c 1780 break;
d9fa45fe 1781 case DW_TAG_namespace:
72bf9492 1782 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1783 break;
c906108c
SS
1784 default:
1785 break;
1786 }
1787 }
1788
72bf9492
DJ
1789 /* If the die has a sibling, skip to the sibling. */
1790
1791 pdi = pdi->die_sibling;
1792 }
1793}
1794
1795/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1796
72bf9492 1797 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1798 name is concatenated with "::" and the partial DIE's name. For
1799 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1800 Enumerators are an exception; they use the scope of their parent
1801 enumeration type, i.e. the name of the enumeration type is not
1802 prepended to the enumerator.
91c24f0a 1803
72bf9492
DJ
1804 There are two complexities. One is DW_AT_specification; in this
1805 case "parent" means the parent of the target of the specification,
1806 instead of the direct parent of the DIE. The other is compilers
1807 which do not emit DW_TAG_namespace; in this case we try to guess
1808 the fully qualified name of structure types from their members'
1809 linkage names. This must be done using the DIE's children rather
1810 than the children of any DW_AT_specification target. We only need
1811 to do this for structures at the top level, i.e. if the target of
1812 any DW_AT_specification (if any; otherwise the DIE itself) does not
1813 have a parent. */
1814
1815/* Compute the scope prefix associated with PDI's parent, in
1816 compilation unit CU. The result will be allocated on CU's
1817 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1818 field. NULL is returned if no prefix is necessary. */
1819static char *
1820partial_die_parent_scope (struct partial_die_info *pdi,
1821 struct dwarf2_cu *cu)
1822{
1823 char *grandparent_scope;
1824 struct partial_die_info *parent, *real_pdi;
91c24f0a 1825
72bf9492
DJ
1826 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1827 then this means the parent of the specification DIE. */
1828
1829 real_pdi = pdi;
72bf9492 1830 while (real_pdi->has_specification)
10b3939b 1831 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1832
1833 parent = real_pdi->die_parent;
1834 if (parent == NULL)
1835 return NULL;
1836
1837 if (parent->scope_set)
1838 return parent->scope;
1839
1840 fixup_partial_die (parent, cu);
1841
10b3939b 1842 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1843
1844 if (parent->tag == DW_TAG_namespace
1845 || parent->tag == DW_TAG_structure_type
1846 || parent->tag == DW_TAG_class_type
1847 || parent->tag == DW_TAG_union_type)
1848 {
1849 if (grandparent_scope == NULL)
1850 parent->scope = parent->name;
1851 else
987504bb
JJ
1852 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1853 parent->name, cu);
72bf9492
DJ
1854 }
1855 else if (parent->tag == DW_TAG_enumeration_type)
1856 /* Enumerators should not get the name of the enumeration as a prefix. */
1857 parent->scope = grandparent_scope;
1858 else
1859 {
1860 /* FIXME drow/2004-04-01: What should we be doing with
1861 function-local names? For partial symbols, we should probably be
1862 ignoring them. */
1863 complaint (&symfile_complaints,
e2e0b3e5 1864 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1865 parent->tag, pdi->offset);
1866 parent->scope = grandparent_scope;
c906108c
SS
1867 }
1868
72bf9492
DJ
1869 parent->scope_set = 1;
1870 return parent->scope;
1871}
1872
1873/* Return the fully scoped name associated with PDI, from compilation unit
1874 CU. The result will be allocated with malloc. */
1875static char *
1876partial_die_full_name (struct partial_die_info *pdi,
1877 struct dwarf2_cu *cu)
1878{
1879 char *parent_scope;
1880
1881 parent_scope = partial_die_parent_scope (pdi, cu);
1882 if (parent_scope == NULL)
1883 return NULL;
1884 else
987504bb 1885 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1886}
1887
1888static void
72bf9492 1889add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1890{
e7c27a73 1891 struct objfile *objfile = cu->objfile;
c906108c 1892 CORE_ADDR addr = 0;
72bf9492
DJ
1893 char *actual_name;
1894 const char *my_prefix;
5c4e30ca 1895 const struct partial_symbol *psym = NULL;
e142c38c 1896 CORE_ADDR baseaddr;
72bf9492 1897 int built_actual_name = 0;
e142c38c
DJ
1898
1899 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1900
72bf9492
DJ
1901 actual_name = NULL;
1902
1903 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1904 {
72bf9492
DJ
1905 actual_name = partial_die_full_name (pdi, cu);
1906 if (actual_name)
1907 built_actual_name = 1;
63d06c5c
DC
1908 }
1909
72bf9492
DJ
1910 if (actual_name == NULL)
1911 actual_name = pdi->name;
1912
c906108c
SS
1913 switch (pdi->tag)
1914 {
1915 case DW_TAG_subprogram:
1916 if (pdi->is_external)
1917 {
38d518c9 1918 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1919 mst_text, objfile); */
38d518c9 1920 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1921 VAR_DOMAIN, LOC_BLOCK,
1922 &objfile->global_psymbols,
1923 0, pdi->lowpc + baseaddr,
e142c38c 1924 cu->language, objfile);
c906108c
SS
1925 }
1926 else
1927 {
38d518c9 1928 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1929 mst_file_text, objfile); */
38d518c9 1930 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1931 VAR_DOMAIN, LOC_BLOCK,
1932 &objfile->static_psymbols,
1933 0, pdi->lowpc + baseaddr,
e142c38c 1934 cu->language, objfile);
c906108c
SS
1935 }
1936 break;
1937 case DW_TAG_variable:
1938 if (pdi->is_external)
1939 {
1940 /* Global Variable.
1941 Don't enter into the minimal symbol tables as there is
1942 a minimal symbol table entry from the ELF symbols already.
1943 Enter into partial symbol table if it has a location
1944 descriptor or a type.
1945 If the location descriptor is missing, new_symbol will create
1946 a LOC_UNRESOLVED symbol, the address of the variable will then
1947 be determined from the minimal symbol table whenever the variable
1948 is referenced.
1949 The address for the partial symbol table entry is not
1950 used by GDB, but it comes in handy for debugging partial symbol
1951 table building. */
1952
1953 if (pdi->locdesc)
e7c27a73 1954 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1955 if (pdi->locdesc || pdi->has_type)
38d518c9 1956 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1957 VAR_DOMAIN, LOC_STATIC,
1958 &objfile->global_psymbols,
1959 0, addr + baseaddr,
e142c38c 1960 cu->language, objfile);
c906108c
SS
1961 }
1962 else
1963 {
1964 /* Static Variable. Skip symbols without location descriptors. */
1965 if (pdi->locdesc == NULL)
1966 return;
e7c27a73 1967 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1968 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1969 mst_file_data, objfile); */
38d518c9 1970 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1971 VAR_DOMAIN, LOC_STATIC,
1972 &objfile->static_psymbols,
1973 0, addr + baseaddr,
e142c38c 1974 cu->language, objfile);
c906108c
SS
1975 }
1976 break;
1977 case DW_TAG_typedef:
1978 case DW_TAG_base_type:
a02abb62 1979 case DW_TAG_subrange_type:
38d518c9 1980 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1981 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1982 &objfile->static_psymbols,
e142c38c 1983 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1984 break;
72bf9492
DJ
1985 case DW_TAG_namespace:
1986 add_psymbol_to_list (actual_name, strlen (actual_name),
1987 VAR_DOMAIN, LOC_TYPEDEF,
1988 &objfile->global_psymbols,
1989 0, (CORE_ADDR) 0, cu->language, objfile);
1990 break;
c906108c
SS
1991 case DW_TAG_class_type:
1992 case DW_TAG_structure_type:
1993 case DW_TAG_union_type:
1994 case DW_TAG_enumeration_type:
fa4028e9
JB
1995 /* Skip external references. The DWARF standard says in the section
1996 about "Structure, Union, and Class Type Entries": "An incomplete
1997 structure, union or class type is represented by a structure,
1998 union or class entry that does not have a byte size attribute
1999 and that has a DW_AT_declaration attribute." */
2000 if (!pdi->has_byte_size && pdi->is_declaration)
2001 return;
2002
63d06c5c
DC
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
38d518c9 2005 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2006 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
63d06c5c
DC
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
e142c38c 2011 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2012
987504bb 2013 if (cu->language == language_cplus
8c6860bb
JB
2014 || cu->language == language_java
2015 || cu->language == language_ada)
c906108c 2016 {
987504bb 2017 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2018 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2019 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2020 &objfile->global_psymbols,
e142c38c 2021 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2022 }
2023 break;
2024 case DW_TAG_enumerator:
38d518c9 2025 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2026 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
f6fe98ef
DJ
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
e142c38c 2031 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2032 break;
2033 default:
2034 break;
2035 }
5c4e30ca
DC
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
72bf9492
DJ
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
e142c38c 2046 if (cu->language == language_cplus
72bf9492 2047 && cu->has_namespace_info == 0
5c4e30ca
DC
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
72bf9492
DJ
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
c906108c
SS
2055}
2056
72bf9492
DJ
2057/* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2059 name listed in the die. */
2060
2061static int
72bf9492 2062pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2063{
63d06c5c
DC
2064 switch (tag)
2065 {
72bf9492 2066 case DW_TAG_namespace:
63d06c5c
DC
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077}
2078
5c4e30ca
DC
2079/* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
91c24f0a 2082
72bf9492
DJ
2083static void
2084add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2086 struct dwarf2_cu *cu)
91c24f0a 2087{
e7c27a73 2088 struct objfile *objfile = cu->objfile;
5c4e30ca 2089
72bf9492 2090 /* Add a symbol for the namespace. */
e7c27a73 2091
72bf9492 2092 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2093
2094 /* Now scan partial symbols in that namespace. */
2095
91c24f0a 2096 if (pdi->has_children)
72bf9492 2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2098}
2099
72bf9492
DJ
2100/* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
63d06c5c 2103
72bf9492
DJ
2104static void
2105guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
63d06c5c 2107{
987504bb
JJ
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
72bf9492 2110 && cu->has_namespace_info == 0
63d06c5c
DC
2111 && struct_pdi->has_children)
2112 {
63d06c5c
DC
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
134d01f1 2117 prefix (but see comment in read_structure_type). */
63d06c5c 2118
72bf9492
DJ
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
5d51ca54 2121
72bf9492
DJ
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
5d51ca54 2125
72bf9492 2126 real_pdi = struct_pdi;
72bf9492 2127 while (real_pdi->has_specification)
10b3939b 2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2129
72bf9492
DJ
2130 if (real_pdi->die_parent != NULL)
2131 return;
63d06c5c 2132
72bf9492
DJ
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2136 {
72bf9492 2137 char *actual_class_name
31c27f77
JJ
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
63d06c5c 2140 if (actual_class_name != NULL)
72bf9492
DJ
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
63d06c5c
DC
2148 break;
2149 }
72bf9492
DJ
2150
2151 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2152 }
2153 }
63d06c5c
DC
2154}
2155
91c24f0a
DC
2156/* Read a partial die corresponding to an enumeration type. */
2157
72bf9492
DJ
2158static void
2159add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
91c24f0a 2161{
e7c27a73 2162 struct objfile *objfile = cu->objfile;
91c24f0a 2163 bfd *abfd = objfile->obfd;
72bf9492 2164 struct partial_die_info *pdi;
91c24f0a
DC
2165
2166 if (enum_pdi->name != NULL)
72bf9492
DJ
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
91c24f0a 2171 {
72bf9492 2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2174 else
72bf9492
DJ
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
91c24f0a 2177 }
91c24f0a
DC
2178}
2179
4bb7a0a7
DJ
2180/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185static struct abbrev_info *
fe1b8b76 2186peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2187 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2188{
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
8a3fe4f8 2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206}
2207
2208/* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
fe1b8b76
JB
2212static gdb_byte *
2213skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2214{
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226}
2227
2228/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
fe1b8b76
JB
2234static gdb_byte *
2235skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2236 struct dwarf2_cu *cu)
2237{
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2252 else
6502dd73
DJ
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
8a3fe4f8 2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326}
2327
2328/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
91c24f0a 2330
fe1b8b76
JB
2331static gdb_byte *
2332locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2333 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2334{
2335 /* Do we know the sibling already? */
72bf9492 2336
91c24f0a
DC
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
4bb7a0a7 2345 /* Skip the children the long way. */
91c24f0a 2346
4bb7a0a7 2347 return skip_children (info_ptr, cu);
91c24f0a
DC
2348}
2349
c906108c
SS
2350/* Expand this partial symbol table into a full symbol table. */
2351
2352static void
fba45db2 2353dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2354{
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
8a3fe4f8 2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
a3f17187 2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2367 gdb_flush (gdb_stdout);
2368 }
2369
10b3939b
DJ
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
c906108c
SS
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
a3f17187 2378 printf_filtered (_("done.\n"));
c906108c
SS
2379 }
2380 }
2381}
2382
10b3939b
DJ
2383/* Add PER_CU to the queue. */
2384
2385static void
2386queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387{
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401}
2402
2403/* Process the queue. */
2404
2405static void
2406process_queue (struct objfile *objfile)
2407{
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
31ffec48 2418 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
31ffec48 2425 if (item->per_cu->type_hash)
10b3939b
DJ
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
31ffec48 2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443}
2444
2445/* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449static void
2450dwarf2_release_queue (void *dummy)
2451{
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472}
2473
2474/* Read in full symbols for PST, and anything it depends on. */
2475
c906108c 2476static void
fba45db2 2477psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2478{
10b3939b 2479 struct dwarf2_per_cu_data *per_cu;
c906108c 2480 struct cleanup *back_to;
aaa75496
JB
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
a3f17187 2489 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
10b3939b
DJ
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
aaa75496
JB
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
c906108c 2510
10b3939b
DJ
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522}
2523
2524/* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526static struct dwarf2_cu *
31ffec48 2527load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2528{
31ffec48 2529 bfd *abfd = objfile->obfd;
10b3939b
DJ
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
fe1b8b76 2532 gdb_byte *info_ptr;
10b3939b
DJ
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
6502dd73 2536
c906108c 2537 /* Set local variables from the partial symbol table info. */
10b3939b 2538 offset = per_cu->offset;
6502dd73
DJ
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2541
10b3939b
DJ
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2544
10b3939b
DJ
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2547
31ffec48 2548 cu->objfile = objfile;
e7c27a73 2549
c906108c 2550 /* read in the comp_unit header */
10b3939b 2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2552
2553 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
c906108c 2558
10b3939b
DJ
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
e142c38c 2561
10b3939b
DJ
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
e142c38c 2578
10b3939b
DJ
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
c906108c 2582
10b3939b
DJ
2583 return cu;
2584}
2585
2586/* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589static void
2590process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591{
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
c906108c 2611
0d53c4c4
DJ
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
10b3939b
DJ
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
0d53c4c4 2620
10b3939b 2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2622 if (attr)
2623 {
10b3939b
DJ
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
0d53c4c4
DJ
2626 }
2627 else
2628 {
10b3939b 2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2630 if (attr)
2631 {
10b3939b
DJ
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
0d53c4c4
DJ
2634 }
2635 }
2636
c906108c 2637 /* Do line number decoding in read_file_scope () */
10b3939b 2638 process_die (cu->dies, cu);
c906108c 2639
fae299cd
DC
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
10b3939b 2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2644
613e1657 2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
10b3939b 2651 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2652 {
10b3939b 2653 symtab->language = cu->language;
c906108c
SS
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
c906108c
SS
2657
2658 do_cleanups (back_to);
2659}
2660
2661/* Process a die and its children. */
2662
2663static void
e7c27a73 2664process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2665{
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
e7c27a73 2671 read_file_scope (die, cu);
c906108c
SS
2672 break;
2673 case DW_TAG_subprogram:
e7c27a73
DJ
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
c906108c
SS
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
c5aa993b
JM
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2681 break;
2682 case DW_TAG_lexical_block:
14898363
L
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
e7c27a73 2685 read_lexical_block_scope (die, cu);
c906108c
SS
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
134d01f1
DJ
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
c906108c
SS
2692 break;
2693 case DW_TAG_enumeration_type:
134d01f1
DJ
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
c906108c 2696 break;
134d01f1
DJ
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
c906108c 2701 case DW_TAG_subroutine_type:
e7c27a73 2702 read_subroutine_type (die, cu);
c906108c 2703 break;
72019c9c
GM
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
c906108c 2707 case DW_TAG_array_type:
e7c27a73 2708 read_array_type (die, cu);
c906108c
SS
2709 break;
2710 case DW_TAG_pointer_type:
e7c27a73 2711 read_tag_pointer_type (die, cu);
c906108c
SS
2712 break;
2713 case DW_TAG_ptr_to_member_type:
e7c27a73 2714 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2715 break;
2716 case DW_TAG_reference_type:
e7c27a73 2717 read_tag_reference_type (die, cu);
c906108c
SS
2718 break;
2719 case DW_TAG_string_type:
e7c27a73 2720 read_tag_string_type (die, cu);
c906108c 2721 break;
134d01f1
DJ
2722 /* END FIXME */
2723
c906108c 2724 case DW_TAG_base_type:
e7c27a73 2725 read_base_type (die, cu);
134d01f1
DJ
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
c906108c 2729 break;
a02abb62
JB
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
134d01f1
DJ
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
a02abb62 2735 break;
c906108c 2736 case DW_TAG_common_block:
e7c27a73 2737 read_common_block (die, cu);
c906108c
SS
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
d9fa45fe 2741 case DW_TAG_namespace:
63d06c5c 2742 processing_has_namespace_info = 1;
e7c27a73 2743 read_namespace (die, cu);
d9fa45fe
DC
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
63d06c5c 2753 processing_has_namespace_info = 1;
639d11d3 2754 gdb_assert (die->child == NULL);
d9fa45fe 2755 break;
c906108c 2756 default:
e7c27a73 2757 new_symbol (die, NULL, cu);
c906108c
SS
2758 break;
2759 }
2760}
2761
5fb290d7 2762static void
e142c38c 2763initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2764{
e142c38c 2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2766}
2767
cb1df416
DJ
2768static void
2769free_cu_line_header (void *arg)
2770{
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775}
2776
c906108c 2777static void
e7c27a73 2778read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2779{
e7c27a73
DJ
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
debd256d 2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
e1024ff1 2786 char *name = NULL;
c906108c
SS
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
debd256d 2790 struct line_header *line_header = 0;
e142c38c
DJ
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2794
fae299cd 2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2acceee2 2799 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
e142c38c 2804 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2805 if (attr)
2806 {
2807 name = DW_STRING (attr);
2808 }
e1024ff1 2809
e142c38c 2810 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 2811 if (attr)
e1024ff1
DJ
2812 comp_dir = DW_STRING (attr);
2813 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 2814 {
e1024ff1
DJ
2815 comp_dir = ldirname (name);
2816 if (comp_dir != NULL)
2817 make_cleanup (xfree, comp_dir);
2818 }
2819 if (comp_dir != NULL)
2820 {
2821 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2822 directory, get rid of it. */
2823 char *cp = strchr (comp_dir, ':');
c906108c 2824
e1024ff1
DJ
2825 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2826 comp_dir = cp + 1;
c906108c
SS
2827 }
2828
e1024ff1
DJ
2829 if (name == NULL)
2830 name = "<unknown>";
2831
e142c38c 2832 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2833 if (attr)
2834 {
e142c38c 2835 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2836 }
2837
b0f35d58
DL
2838 attr = dwarf2_attr (die, DW_AT_producer, cu);
2839 if (attr)
2840 cu->producer = DW_STRING (attr);
303b6f5d 2841
c906108c
SS
2842 /* We assume that we're processing GCC output. */
2843 processing_gcc_compilation = 2;
c906108c
SS
2844
2845 /* The compilation unit may be in a different language or objfile,
2846 zero out all remembered fundamental types. */
e142c38c 2847 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2848
2849 start_symtab (name, comp_dir, lowpc);
2850 record_debugformat ("DWARF 2");
303b6f5d 2851 record_producer (cu->producer);
c906108c 2852
e142c38c 2853 initialize_cu_func_list (cu);
c906108c 2854
cb1df416
DJ
2855 /* Decode line number information if present. We do this before
2856 processing child DIEs, so that the line header table is available
2857 for DW_AT_decl_file. */
e142c38c 2858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2859 if (attr)
2860 {
debd256d 2861 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2862 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2863 if (line_header)
2864 {
cb1df416
DJ
2865 cu->line_header = line_header;
2866 make_cleanup (free_cu_line_header, cu);
aaa75496 2867 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2868 }
5fb290d7 2869 }
debd256d 2870
cb1df416
DJ
2871 /* Process all dies in compilation unit. */
2872 if (die->child != NULL)
2873 {
2874 child_die = die->child;
2875 while (child_die && child_die->tag)
2876 {
2877 process_die (child_die, cu);
2878 child_die = sibling_die (child_die);
2879 }
2880 }
2881
2e276125
JB
2882 /* Decode macro information, if present. Dwarf 2 macro information
2883 refers to information in the line number info statement program
2884 header, so we can only read it if we've read the header
2885 successfully. */
e142c38c 2886 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2887 if (attr && line_header)
2e276125
JB
2888 {
2889 unsigned int macro_offset = DW_UNSND (attr);
2890 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2891 comp_dir, abfd, cu);
2e276125 2892 }
debd256d 2893 do_cleanups (back_to);
5fb290d7
DJ
2894}
2895
2896static void
e142c38c
DJ
2897add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2898 struct dwarf2_cu *cu)
5fb290d7
DJ
2899{
2900 struct function_range *thisfn;
2901
2902 thisfn = (struct function_range *)
7b5a2f43 2903 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2904 thisfn->name = name;
2905 thisfn->lowpc = lowpc;
2906 thisfn->highpc = highpc;
2907 thisfn->seen_line = 0;
2908 thisfn->next = NULL;
2909
e142c38c
DJ
2910 if (cu->last_fn == NULL)
2911 cu->first_fn = thisfn;
5fb290d7 2912 else
e142c38c 2913 cu->last_fn->next = thisfn;
5fb290d7 2914
e142c38c 2915 cu->last_fn = thisfn;
c906108c
SS
2916}
2917
2918static void
e7c27a73 2919read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2920{
e7c27a73 2921 struct objfile *objfile = cu->objfile;
52f0bd74 2922 struct context_stack *new;
c906108c
SS
2923 CORE_ADDR lowpc;
2924 CORE_ADDR highpc;
2925 struct die_info *child_die;
2926 struct attribute *attr;
2927 char *name;
fdde2d81
DC
2928 const char *previous_prefix = processing_current_prefix;
2929 struct cleanup *back_to = NULL;
e142c38c 2930 CORE_ADDR baseaddr;
c906108c 2931
e142c38c
DJ
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2935
2936 /* Ignore functions with missing or empty names and functions with
2937 missing or invalid low and high pc attributes. */
e7c27a73 2938 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2939 return;
2940
987504bb
JJ
2941 if (cu->language == language_cplus
2942 || cu->language == language_java)
fdde2d81 2943 {
086ed43d 2944 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2945
2a35147e
JB
2946 /* NOTE: carlton/2004-01-23: We have to be careful in the
2947 presence of DW_AT_specification. For example, with GCC 3.4,
2948 given the code
2949
2950 namespace N {
2951 void foo() {
2952 // Definition of N::foo.
2953 }
2954 }
2955
2956 then we'll have a tree of DIEs like this:
2957
2958 1: DW_TAG_compile_unit
2959 2: DW_TAG_namespace // N
2960 3: DW_TAG_subprogram // declaration of N::foo
2961 4: DW_TAG_subprogram // definition of N::foo
2962 DW_AT_specification // refers to die #3
2963
2964 Thus, when processing die #4, we have to pretend that we're
2965 in the context of its DW_AT_specification, namely the contex
2966 of die #3. */
fdde2d81
DC
2967
2968 if (spec_die != NULL)
2969 {
e142c38c 2970 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2971 processing_current_prefix = specification_prefix;
2972 back_to = make_cleanup (xfree, specification_prefix);
2973 }
2974 }
2975
c906108c
SS
2976 lowpc += baseaddr;
2977 highpc += baseaddr;
2978
5fb290d7 2979 /* Record the function range for dwarf_decode_lines. */
e142c38c 2980 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2981
c906108c 2982 new = push_context (0, lowpc);
e7c27a73 2983 new->name = new_symbol (die, die->type, cu);
4c2df51b 2984
4cecd739
DJ
2985 /* If there is a location expression for DW_AT_frame_base, record
2986 it. */
e142c38c 2987 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2988 if (attr)
c034e007
AC
2989 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2990 expression is being recorded directly in the function's symbol
2991 and not in a separate frame-base object. I guess this hack is
2992 to avoid adding some sort of frame-base adjunct/annex to the
2993 function's symbol :-(. The problem with doing this is that it
2994 results in a function symbol with a location expression that
2995 has nothing to do with the location of the function, ouch! The
2996 relationship should be: a function's symbol has-a frame base; a
2997 frame-base has-a location expression. */
e7c27a73 2998 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2999
e142c38c 3000 cu->list_in_scope = &local_symbols;
c906108c 3001
639d11d3 3002 if (die->child != NULL)
c906108c 3003 {
639d11d3 3004 child_die = die->child;
c906108c
SS
3005 while (child_die && child_die->tag)
3006 {
e7c27a73 3007 process_die (child_die, cu);
c906108c
SS
3008 child_die = sibling_die (child_die);
3009 }
3010 }
3011
3012 new = pop_context ();
3013 /* Make a block for the local symbols within. */
3014 finish_block (new->name, &local_symbols, new->old_blocks,
3015 lowpc, highpc, objfile);
208d8187
JB
3016
3017 /* In C++, we can have functions nested inside functions (e.g., when
3018 a function declares a class that has methods). This means that
3019 when we finish processing a function scope, we may need to go
3020 back to building a containing block's symbol lists. */
3021 local_symbols = new->locals;
3022 param_symbols = new->params;
3023
921e78cf
JB
3024 /* If we've finished processing a top-level function, subsequent
3025 symbols go in the file symbol list. */
3026 if (outermost_context_p ())
e142c38c 3027 cu->list_in_scope = &file_symbols;
fdde2d81
DC
3028
3029 processing_current_prefix = previous_prefix;
3030 if (back_to != NULL)
3031 do_cleanups (back_to);
c906108c
SS
3032}
3033
3034/* Process all the DIES contained within a lexical block scope. Start
3035 a new scope, process the dies, and then close the scope. */
3036
3037static void
e7c27a73 3038read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3039{
e7c27a73 3040 struct objfile *objfile = cu->objfile;
52f0bd74 3041 struct context_stack *new;
c906108c
SS
3042 CORE_ADDR lowpc, highpc;
3043 struct die_info *child_die;
e142c38c
DJ
3044 CORE_ADDR baseaddr;
3045
3046 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3047
3048 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3049 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3050 as multiple lexical blocks? Handling children in a sane way would
3051 be nasty. Might be easier to properly extend generic blocks to
3052 describe ranges. */
e7c27a73 3053 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3054 return;
3055 lowpc += baseaddr;
3056 highpc += baseaddr;
3057
3058 push_context (0, lowpc);
639d11d3 3059 if (die->child != NULL)
c906108c 3060 {
639d11d3 3061 child_die = die->child;
c906108c
SS
3062 while (child_die && child_die->tag)
3063 {
e7c27a73 3064 process_die (child_die, cu);
c906108c
SS
3065 child_die = sibling_die (child_die);
3066 }
3067 }
3068 new = pop_context ();
3069
3070 if (local_symbols != NULL)
3071 {
3072 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3073 highpc, objfile);
3074 }
3075 local_symbols = new->locals;
3076}
3077
af34e669
DJ
3078/* Get low and high pc attributes from a die. Return 1 if the attributes
3079 are present and valid, otherwise, return 0. Return -1 if the range is
3080 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3081static int
af34e669 3082dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3083 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 3084{
e7c27a73
DJ
3085 struct objfile *objfile = cu->objfile;
3086 struct comp_unit_head *cu_header = &cu->header;
c906108c 3087 struct attribute *attr;
af34e669
DJ
3088 bfd *obfd = objfile->obfd;
3089 CORE_ADDR low = 0;
3090 CORE_ADDR high = 0;
3091 int ret = 0;
c906108c 3092
e142c38c 3093 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3094 if (attr)
af34e669
DJ
3095 {
3096 high = DW_ADDR (attr);
e142c38c 3097 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3098 if (attr)
3099 low = DW_ADDR (attr);
3100 else
3101 /* Found high w/o low attribute. */
3102 return 0;
3103
3104 /* Found consecutive range of addresses. */
3105 ret = 1;
3106 }
c906108c 3107 else
af34e669 3108 {
e142c38c 3109 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3110 if (attr != NULL)
3111 {
3112 unsigned int addr_size = cu_header->addr_size;
3113 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3114 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3115 .debug_ranges section. */
af34e669
DJ
3116 unsigned int offset = DW_UNSND (attr);
3117 /* Base address selection entry. */
0d53c4c4
DJ
3118 CORE_ADDR base;
3119 int found_base;
891d2f0b 3120 unsigned int dummy;
fe1b8b76 3121 gdb_byte *buffer;
af34e669
DJ
3122 CORE_ADDR marker;
3123 int low_set;
3124
0d53c4c4
DJ
3125 found_base = cu_header->base_known;
3126 base = cu_header->base_address;
a604369a 3127
6502dd73 3128 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
3129 {
3130 complaint (&symfile_complaints,
e2e0b3e5 3131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
a604369a
KB
3132 offset);
3133 return 0;
3134 }
6502dd73 3135 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 3136
af34e669 3137 /* Read in the largest possible address. */
e7c27a73 3138 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3139 if ((marker & mask) == mask)
3140 {
3141 /* If we found the largest possible address, then
3142 read the base address. */
e7c27a73 3143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3144 buffer += 2 * addr_size;
3145 offset += 2 * addr_size;
3146 found_base = 1;
3147 }
3148
3149 low_set = 0;
3150
3151 while (1)
3152 {
3153 CORE_ADDR range_beginning, range_end;
3154
e7c27a73 3155 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 3156 buffer += addr_size;
e7c27a73 3157 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3158 buffer += addr_size;
3159 offset += 2 * addr_size;
3160
3161 /* An end of list marker is a pair of zero addresses. */
3162 if (range_beginning == 0 && range_end == 0)
3163 /* Found the end of list entry. */
3164 break;
3165
3166 /* Each base address selection entry is a pair of 2 values.
3167 The first is the largest possible address, the second is
3168 the base address. Check for a base address here. */
3169 if ((range_beginning & mask) == mask)
3170 {
3171 /* If we found the largest possible address, then
3172 read the base address. */
e7c27a73 3173 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3174 found_base = 1;
3175 continue;
3176 }
3177
3178 if (!found_base)
3179 {
3180 /* We have no valid base address for the ranges
3181 data. */
3182 complaint (&symfile_complaints,
e2e0b3e5 3183 _("Invalid .debug_ranges data (no base address)"));
af34e669
DJ
3184 return 0;
3185 }
3186
8f05cde5
DJ
3187 range_beginning += base;
3188 range_end += base;
3189
af34e669
DJ
3190 /* FIXME: This is recording everything as a low-high
3191 segment of consecutive addresses. We should have a
3192 data structure for discontiguous block ranges
3193 instead. */
3194 if (! low_set)
3195 {
3196 low = range_beginning;
3197 high = range_end;
3198 low_set = 1;
3199 }
3200 else
3201 {
3202 if (range_beginning < low)
3203 low = range_beginning;
3204 if (range_end > high)
3205 high = range_end;
3206 }
3207 }
3208
3209 if (! low_set)
3210 /* If the first entry is an end-of-list marker, the range
3211 describes an empty scope, i.e. no instructions. */
3212 return 0;
3213
3214 ret = -1;
3215 }
3216 }
c906108c
SS
3217
3218 if (high < low)
3219 return 0;
3220
3221 /* When using the GNU linker, .gnu.linkonce. sections are used to
3222 eliminate duplicate copies of functions and vtables and such.
3223 The linker will arbitrarily choose one and discard the others.
3224 The AT_*_pc values for such functions refer to local labels in
3225 these sections. If the section from that file was discarded, the
3226 labels are not in the output, so the relocs get a value of 0.
3227 If this is a discarded function, mark the pc bounds as invalid,
3228 so that GDB will ignore it. */
72dca2f5 3229 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3230 return 0;
3231
3232 *lowpc = low;
3233 *highpc = high;
af34e669 3234 return ret;
c906108c
SS
3235}
3236
fae299cd
DC
3237/* Get the low and high pc's represented by the scope DIE, and store
3238 them in *LOWPC and *HIGHPC. If the correct values can't be
3239 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3240
3241static void
3242get_scope_pc_bounds (struct die_info *die,
3243 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3244 struct dwarf2_cu *cu)
3245{
3246 CORE_ADDR best_low = (CORE_ADDR) -1;
3247 CORE_ADDR best_high = (CORE_ADDR) 0;
3248 CORE_ADDR current_low, current_high;
3249
3250 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3251 {
3252 best_low = current_low;
3253 best_high = current_high;
3254 }
3255 else
3256 {
3257 struct die_info *child = die->child;
3258
3259 while (child && child->tag)
3260 {
3261 switch (child->tag) {
3262 case DW_TAG_subprogram:
3263 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3264 {
3265 best_low = min (best_low, current_low);
3266 best_high = max (best_high, current_high);
3267 }
3268 break;
3269 case DW_TAG_namespace:
3270 /* FIXME: carlton/2004-01-16: Should we do this for
3271 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3272 that current GCC's always emit the DIEs corresponding
3273 to definitions of methods of classes as children of a
3274 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3275 the DIEs giving the declarations, which could be
3276 anywhere). But I don't see any reason why the
3277 standards says that they have to be there. */
3278 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3279
3280 if (current_low != ((CORE_ADDR) -1))
3281 {
3282 best_low = min (best_low, current_low);
3283 best_high = max (best_high, current_high);
3284 }
3285 break;
3286 default:
3287 /* Ignore. */
3288 break;
3289 }
3290
3291 child = sibling_die (child);
3292 }
3293 }
3294
3295 *lowpc = best_low;
3296 *highpc = best_high;
3297}
3298
c906108c
SS
3299/* Add an aggregate field to the field list. */
3300
3301static void
107d2387 3302dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3303 struct dwarf2_cu *cu)
3304{
3305 struct objfile *objfile = cu->objfile;
c906108c
SS
3306 struct nextfield *new_field;
3307 struct attribute *attr;
3308 struct field *fp;
3309 char *fieldname = "";
3310
3311 /* Allocate a new field list entry and link it in. */
3312 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3313 make_cleanup (xfree, new_field);
c906108c
SS
3314 memset (new_field, 0, sizeof (struct nextfield));
3315 new_field->next = fip->fields;
3316 fip->fields = new_field;
3317 fip->nfields++;
3318
3319 /* Handle accessibility and virtuality of field.
3320 The default accessibility for members is public, the default
3321 accessibility for inheritance is private. */
3322 if (die->tag != DW_TAG_inheritance)
3323 new_field->accessibility = DW_ACCESS_public;
3324 else
3325 new_field->accessibility = DW_ACCESS_private;
3326 new_field->virtuality = DW_VIRTUALITY_none;
3327
e142c38c 3328 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3329 if (attr)
3330 new_field->accessibility = DW_UNSND (attr);
3331 if (new_field->accessibility != DW_ACCESS_public)
3332 fip->non_public_fields = 1;
e142c38c 3333 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3334 if (attr)
3335 new_field->virtuality = DW_UNSND (attr);
3336
3337 fp = &new_field->field;
a9a9bd0f 3338
e142c38c 3339 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3340 {
a9a9bd0f
DC
3341 /* Data member other than a C++ static data member. */
3342
c906108c 3343 /* Get type of field. */
e7c27a73 3344 fp->type = die_type (die, cu);
c906108c 3345
01ad7f36
DJ
3346 FIELD_STATIC_KIND (*fp) = 0;
3347
c906108c 3348 /* Get bit size of field (zero if none). */
e142c38c 3349 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3350 if (attr)
3351 {
3352 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3353 }
3354 else
3355 {
3356 FIELD_BITSIZE (*fp) = 0;
3357 }
3358
3359 /* Get bit offset of field. */
e142c38c 3360 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3361 if (attr)
3362 {
3363 FIELD_BITPOS (*fp) =
e7c27a73 3364 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
3365 }
3366 else
3367 FIELD_BITPOS (*fp) = 0;
e142c38c 3368 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3369 if (attr)
3370 {
3371 if (BITS_BIG_ENDIAN)
3372 {
3373 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3374 additional bit offset from the MSB of the containing
3375 anonymous object to the MSB of the field. We don't
3376 have to do anything special since we don't need to
3377 know the size of the anonymous object. */
c906108c
SS
3378 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3379 }
3380 else
3381 {
3382 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3383 MSB of the anonymous object, subtract off the number of
3384 bits from the MSB of the field to the MSB of the
3385 object, and then subtract off the number of bits of
3386 the field itself. The result is the bit offset of
3387 the LSB of the field. */
c906108c
SS
3388 int anonymous_size;
3389 int bit_offset = DW_UNSND (attr);
3390
e142c38c 3391 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3392 if (attr)
3393 {
3394 /* The size of the anonymous object containing
3395 the bit field is explicit, so use the
3396 indicated size (in bytes). */
3397 anonymous_size = DW_UNSND (attr);
3398 }
3399 else
3400 {
3401 /* The size of the anonymous object containing
3402 the bit field must be inferred from the type
3403 attribute of the data member containing the
3404 bit field. */
3405 anonymous_size = TYPE_LENGTH (fp->type);
3406 }
3407 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3408 - bit_offset - FIELD_BITSIZE (*fp);
3409 }
3410 }
3411
3412 /* Get name of field. */
e142c38c 3413 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3414 if (attr && DW_STRING (attr))
3415 fieldname = DW_STRING (attr);
d8151005
DJ
3416
3417 /* The name is already allocated along with this objfile, so we don't
3418 need to duplicate it for the type. */
3419 fp->name = fieldname;
c906108c
SS
3420
3421 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3422 pointer or virtual base class pointer) to private. */
e142c38c 3423 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3424 {
3425 new_field->accessibility = DW_ACCESS_private;
3426 fip->non_public_fields = 1;
3427 }
3428 }
a9a9bd0f 3429 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3430 {
a9a9bd0f
DC
3431 /* C++ static member. */
3432
3433 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3434 is a declaration, but all versions of G++ as of this writing
3435 (so through at least 3.2.1) incorrectly generate
3436 DW_TAG_variable tags. */
3437
c906108c 3438 char *physname;
c906108c 3439
a9a9bd0f 3440 /* Get name of field. */
e142c38c 3441 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3442 if (attr && DW_STRING (attr))
3443 fieldname = DW_STRING (attr);
3444 else
c906108c
SS
3445 return;
3446
2df3850c 3447 /* Get physical name. */
e142c38c 3448 physname = dwarf2_linkage_name (die, cu);
c906108c 3449
d8151005
DJ
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3453 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3454 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
e142c38c 3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3460 if (attr)
e7c27a73 3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3462 * bits_per_byte);
c906108c 3463 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3464 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3465 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469}
3470
3471/* Create the vector of fields, and attach it to the type. */
3472
3473static void
fba45db2 3474dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3475 struct dwarf2_cu *cu)
c906108c
SS
3476{
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3508 unsigned char *pointer;
c906108c
SS
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
c5aa993b
JM
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
c906108c 3528
c5aa993b
JM
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
c906108c 3532
c5aa993b
JM
3533 case DW_ACCESS_public:
3534 break;
c906108c 3535
c5aa993b
JM
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
e2e0b3e5 3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3540 fip->fields->accessibility);
c5aa993b
JM
3541 }
3542 break;
c906108c
SS
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
c5aa993b
JM
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
c906108c
SS
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556}
3557
c906108c
SS
3558/* Add a member function to the proper fieldlist. */
3559
3560static void
107d2387 3561dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3562 struct type *type, struct dwarf2_cu *cu)
c906108c 3563{
e7c27a73 3564 struct objfile *objfile = cu->objfile;
c906108c
SS
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
2df3850c 3573 /* Get name of member function. */
e142c38c 3574 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3575 if (attr && DW_STRING (attr))
3576 fieldname = DW_STRING (attr);
c906108c 3577 else
2df3850c 3578 return;
c906108c 3579
2df3850c 3580 /* Get the mangled name. */
e142c38c 3581 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3582
3583 /* Look up member function name in fieldlist. */
3584 for (i = 0; i < fip->nfnfields; i++)
3585 {
27bfe10e 3586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3587 break;
3588 }
3589
3590 /* Create new list element if necessary. */
3591 if (i < fip->nfnfields)
3592 flp = &fip->fnfieldlists[i];
3593 else
3594 {
3595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3596 {
3597 fip->fnfieldlists = (struct fnfieldlist *)
3598 xrealloc (fip->fnfieldlists,
3599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3600 * sizeof (struct fnfieldlist));
c906108c 3601 if (fip->nfnfields == 0)
c13c43fd 3602 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3603 }
3604 flp = &fip->fnfieldlists[fip->nfnfields];
3605 flp->name = fieldname;
3606 flp->length = 0;
3607 flp->head = NULL;
3608 fip->nfnfields++;
3609 }
3610
3611 /* Create a new member function field and chain it to the field list
3612 entry. */
3613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3614 make_cleanup (xfree, new_fnfield);
c906108c
SS
3615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3616 new_fnfield->next = flp->head;
3617 flp->head = new_fnfield;
3618 flp->length++;
3619
3620 /* Fill in the member function field info. */
3621 fnp = &new_fnfield->fnfield;
d8151005
DJ
3622 /* The name is already allocated along with this objfile, so we don't
3623 need to duplicate it for the type. */
3624 fnp->physname = physname ? physname : "";
c906108c
SS
3625 fnp->type = alloc_type (objfile);
3626 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3627 {
c906108c 3628 int nparams = TYPE_NFIELDS (die->type);
c906108c 3629
e26fb1d7
DC
3630 /* TYPE is the domain of this method, and DIE->TYPE is the type
3631 of the method itself (TYPE_CODE_METHOD). */
3632 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3633 TYPE_TARGET_TYPE (die->type),
3634 TYPE_FIELDS (die->type),
3635 TYPE_NFIELDS (die->type),
3636 TYPE_VARARGS (die->type));
c906108c
SS
3637
3638 /* Handle static member functions.
c5aa993b
JM
3639 Dwarf2 has no clean way to discern C++ static and non-static
3640 member functions. G++ helps GDB by marking the first
3641 parameter for non-static member functions (which is the
3642 this pointer) as artificial. We obtain this information
3643 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3644 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3645 fnp->voffset = VOFFSET_STATIC;
3646 }
3647 else
e2e0b3e5 3648 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3649 physname);
c906108c
SS
3650
3651 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3652 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3653 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3654
3655 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3656 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3657
3658 /* Get accessibility. */
e142c38c 3659 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3660 if (attr)
3661 {
3662 switch (DW_UNSND (attr))
3663 {
c5aa993b
JM
3664 case DW_ACCESS_private:
3665 fnp->is_private = 1;
3666 break;
3667 case DW_ACCESS_protected:
3668 fnp->is_protected = 1;
3669 break;
c906108c
SS
3670 }
3671 }
3672
b02dede2 3673 /* Check for artificial methods. */
e142c38c 3674 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3675 if (attr && DW_UNSND (attr) != 0)
3676 fnp->is_artificial = 1;
3677
c906108c 3678 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3679 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3680 if (attr)
8e19ed76
PS
3681 {
3682 /* Support the .debug_loc offsets */
3683 if (attr_form_is_block (attr))
3684 {
e7c27a73 3685 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3686 }
3687 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3688 {
4d3c2250 3689 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3690 }
3691 else
3692 {
4d3c2250
KB
3693 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3694 fieldname);
8e19ed76
PS
3695 }
3696 }
c906108c
SS
3697}
3698
3699/* Create the vector of member function fields, and attach it to the type. */
3700
3701static void
fba45db2 3702dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3703 struct dwarf2_cu *cu)
c906108c
SS
3704{
3705 struct fnfieldlist *flp;
3706 int total_length = 0;
3707 int i;
3708
3709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3710 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3711 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3712
3713 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3714 {
3715 struct nextfnfield *nfp = flp->head;
3716 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3717 int k;
3718
3719 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3720 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3721 fn_flp->fn_fields = (struct fn_field *)
3722 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3723 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3724 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3725
3726 total_length += flp->length;
3727 }
3728
3729 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3730 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3731}
3732
1168df01
JB
3733/* Returns non-zero if NAME is the name of a vtable member in CU's
3734 language, zero otherwise. */
3735static int
3736is_vtable_name (const char *name, struct dwarf2_cu *cu)
3737{
3738 static const char vptr[] = "_vptr";
987504bb 3739 static const char vtable[] = "vtable";
1168df01 3740
987504bb
JJ
3741 /* Look for the C++ and Java forms of the vtable. */
3742 if ((cu->language == language_java
3743 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3744 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3745 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3746 return 1;
3747
3748 return 0;
3749}
3750
c0dd20ea
DJ
3751/* GCC outputs unnamed structures that are really pointers to member
3752 functions, with the ABI-specified layout. If DIE (from CU) describes
3753 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3754 zero.
3755
3756 GCC shouldn't do this; it should just output pointer to member DIEs.
3757 This is GCC PR debug/28767. */
c0dd20ea
DJ
3758
3759static int
3760quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3761{
3762 struct objfile *objfile = cu->objfile;
3763 struct type *type;
3764 struct die_info *pfn_die, *delta_die;
3765 struct attribute *pfn_name, *delta_name;
3766 struct type *pfn_type, *domain_type;
3767
3768 /* Check for a structure with no name and two children. */
3769 if (die->tag != DW_TAG_structure_type
3770 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3771 || die->child == NULL
3772 || die->child->sibling == NULL
3773 || (die->child->sibling->sibling != NULL
3774 && die->child->sibling->sibling->tag != DW_TAG_padding))
3775 return 0;
3776
3777 /* Check for __pfn and __delta members. */
3778 pfn_die = die->child;
3779 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3780 if (pfn_die->tag != DW_TAG_member
3781 || pfn_name == NULL
3782 || DW_STRING (pfn_name) == NULL
3783 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3784 return 0;
3785
3786 delta_die = pfn_die->sibling;
3787 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3788 if (delta_die->tag != DW_TAG_member
3789 || delta_name == NULL
3790 || DW_STRING (delta_name) == NULL
3791 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3792 return 0;
3793
3794 /* Find the type of the method. */
3795 pfn_type = die_type (pfn_die, cu);
3796 if (pfn_type == NULL
3797 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3798 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3799 return 0;
3800
3801 /* Look for the "this" argument. */
3802 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3803 if (TYPE_NFIELDS (pfn_type) == 0
3804 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3805 return 0;
3806
3807 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3808 type = alloc_type (objfile);
3809 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3810 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3811 TYPE_VARARGS (pfn_type));
0d5de010 3812 type = lookup_methodptr_type (type);
c0dd20ea
DJ
3813 set_die_type (die, type, cu);
3814
3815 return 1;
3816}
1168df01 3817
c906108c
SS
3818/* Called when we find the DIE that starts a structure or union scope
3819 (definition) to process all dies that define the members of the
3820 structure or union.
3821
3822 NOTE: we need to call struct_type regardless of whether or not the
3823 DIE has an at_name attribute, since it might be an anonymous
3824 structure or union. This gets the type entered into our set of
3825 user defined types.
3826
3827 However, if the structure is incomplete (an opaque struct/union)
3828 then suppress creating a symbol table entry for it since gdb only
3829 wants to find the one with the complete definition. Note that if
3830 it is complete, we just call new_symbol, which does it's own
3831 checking about whether the struct/union is anonymous or not (and
3832 suppresses creating a symbol table entry itself). */
3833
3834static void
134d01f1 3835read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3836{
e7c27a73 3837 struct objfile *objfile = cu->objfile;
c906108c
SS
3838 struct type *type;
3839 struct attribute *attr;
63d06c5c
DC
3840 const char *previous_prefix = processing_current_prefix;
3841 struct cleanup *back_to = NULL;
c906108c 3842
134d01f1
DJ
3843 if (die->type)
3844 return;
3845
c0dd20ea
DJ
3846 if (quirk_gcc_member_function_pointer (die, cu))
3847 return;
c906108c 3848
c0dd20ea 3849 type = alloc_type (objfile);
c906108c 3850 INIT_CPLUS_SPECIFIC (type);
e142c38c 3851 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3852 if (attr && DW_STRING (attr))
3853 {
987504bb
JJ
3854 if (cu->language == language_cplus
3855 || cu->language == language_java)
63d06c5c 3856 {
8176b9b8
DC
3857 char *new_prefix = determine_class_name (die, cu);
3858 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3859 strlen (new_prefix),
3860 &objfile->objfile_obstack);
3861 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3862 processing_current_prefix = new_prefix;
3863 }
3864 else
3865 {
d8151005
DJ
3866 /* The name is already allocated along with this objfile, so
3867 we don't need to duplicate it for the type. */
8176b9b8 3868 TYPE_TAG_NAME (type) = DW_STRING (attr);
63d06c5c 3869 }
c906108c
SS
3870 }
3871
3872 if (die->tag == DW_TAG_structure_type)
3873 {
3874 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3875 }
3876 else if (die->tag == DW_TAG_union_type)
3877 {
3878 TYPE_CODE (type) = TYPE_CODE_UNION;
3879 }
3880 else
3881 {
3882 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3883 in gdbtypes.h. */
c906108c
SS
3884 TYPE_CODE (type) = TYPE_CODE_CLASS;
3885 }
3886
e142c38c 3887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3888 if (attr)
3889 {
3890 TYPE_LENGTH (type) = DW_UNSND (attr);
3891 }
3892 else
3893 {
3894 TYPE_LENGTH (type) = 0;
3895 }
3896
d77b6808 3897 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
dc718098
JB
3898 if (die_is_declaration (die, cu))
3899 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3900
c906108c
SS
3901 /* We need to add the type field to the die immediately so we don't
3902 infinitely recurse when dealing with pointers to the structure
3903 type within the structure itself. */
1c379e20 3904 set_die_type (die, type, cu);
c906108c 3905
e142c38c 3906 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3907 {
3908 struct field_info fi;
3909 struct die_info *child_die;
3910 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3911
3912 memset (&fi, 0, sizeof (struct field_info));
3913
639d11d3 3914 child_die = die->child;
c906108c
SS
3915
3916 while (child_die && child_die->tag)
3917 {
a9a9bd0f
DC
3918 if (child_die->tag == DW_TAG_member
3919 || child_die->tag == DW_TAG_variable)
c906108c 3920 {
a9a9bd0f
DC
3921 /* NOTE: carlton/2002-11-05: A C++ static data member
3922 should be a DW_TAG_member that is a declaration, but
3923 all versions of G++ as of this writing (so through at
3924 least 3.2.1) incorrectly generate DW_TAG_variable
3925 tags for them instead. */
e7c27a73 3926 dwarf2_add_field (&fi, child_die, cu);
c906108c 3927 }
8713b1b1 3928 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3929 {
3930 /* C++ member function. */
134d01f1 3931 read_type_die (child_die, cu);
e7c27a73 3932 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3933 }
3934 else if (child_die->tag == DW_TAG_inheritance)
3935 {
3936 /* C++ base class field. */
e7c27a73 3937 dwarf2_add_field (&fi, child_die, cu);
c906108c 3938 }
c906108c
SS
3939 child_die = sibling_die (child_die);
3940 }
3941
3942 /* Attach fields and member functions to the type. */
3943 if (fi.nfields)
e7c27a73 3944 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3945 if (fi.nfnfields)
3946 {
e7c27a73 3947 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3948
c5aa993b 3949 /* Get the type which refers to the base class (possibly this
c906108c
SS
3950 class itself) which contains the vtable pointer for the current
3951 class from the DW_AT_containing_type attribute. */
3952
e142c38c 3953 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3954 {
e7c27a73 3955 struct type *t = die_containing_type (die, cu);
c906108c
SS
3956
3957 TYPE_VPTR_BASETYPE (type) = t;
3958 if (type == t)
3959 {
c906108c
SS
3960 int i;
3961
3962 /* Our own class provides vtbl ptr. */
3963 for (i = TYPE_NFIELDS (t) - 1;
3964 i >= TYPE_N_BASECLASSES (t);
3965 --i)
3966 {
3967 char *fieldname = TYPE_FIELD_NAME (t, i);
3968
1168df01 3969 if (is_vtable_name (fieldname, cu))
c906108c
SS
3970 {
3971 TYPE_VPTR_FIELDNO (type) = i;
3972 break;
3973 }
3974 }
3975
3976 /* Complain if virtual function table field not found. */
3977 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 3978 complaint (&symfile_complaints,
e2e0b3e5 3979 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
3980 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3981 "");
c906108c
SS
3982 }
3983 else
3984 {
3985 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3986 }
3987 }
f6235d4c
EZ
3988 else if (cu->producer
3989 && strncmp (cu->producer,
3990 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3991 {
3992 /* The IBM XLC compiler does not provide direct indication
3993 of the containing type, but the vtable pointer is
3994 always named __vfp. */
3995
3996 int i;
3997
3998 for (i = TYPE_NFIELDS (type) - 1;
3999 i >= TYPE_N_BASECLASSES (type);
4000 --i)
4001 {
4002 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4003 {
4004 TYPE_VPTR_FIELDNO (type) = i;
4005 TYPE_VPTR_BASETYPE (type) = type;
4006 break;
4007 }
4008 }
4009 }
c906108c
SS
4010 }
4011
c906108c
SS
4012 do_cleanups (back_to);
4013 }
63d06c5c
DC
4014
4015 processing_current_prefix = previous_prefix;
4016 if (back_to != NULL)
4017 do_cleanups (back_to);
c906108c
SS
4018}
4019
134d01f1
DJ
4020static void
4021process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4022{
4023 struct objfile *objfile = cu->objfile;
4024 const char *previous_prefix = processing_current_prefix;
90aeadfc 4025 struct die_info *child_die = die->child;
c906108c 4026
134d01f1
DJ
4027 if (TYPE_TAG_NAME (die->type) != NULL)
4028 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 4029
90aeadfc
DC
4030 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4031 snapshots) has been known to create a die giving a declaration
4032 for a class that has, as a child, a die giving a definition for a
4033 nested class. So we have to process our children even if the
4034 current die is a declaration. Normally, of course, a declaration
4035 won't have any children at all. */
134d01f1 4036
90aeadfc
DC
4037 while (child_die != NULL && child_die->tag)
4038 {
4039 if (child_die->tag == DW_TAG_member
4040 || child_die->tag == DW_TAG_variable
4041 || child_die->tag == DW_TAG_inheritance)
134d01f1 4042 {
90aeadfc 4043 /* Do nothing. */
134d01f1 4044 }
90aeadfc
DC
4045 else
4046 process_die (child_die, cu);
134d01f1 4047
90aeadfc 4048 child_die = sibling_die (child_die);
134d01f1
DJ
4049 }
4050
fa4028e9
JB
4051 /* Do not consider external references. According to the DWARF standard,
4052 these DIEs are identified by the fact that they have no byte_size
4053 attribute, and a declaration attribute. */
4054 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4055 || !die_is_declaration (die, cu))
90aeadfc
DC
4056 new_symbol (die, die->type, cu);
4057
134d01f1
DJ
4058 processing_current_prefix = previous_prefix;
4059}
4060
4061/* Given a DW_AT_enumeration_type die, set its type. We do not
4062 complete the type's fields yet, or create any symbols. */
c906108c
SS
4063
4064static void
134d01f1 4065read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4066{
e7c27a73 4067 struct objfile *objfile = cu->objfile;
c906108c 4068 struct type *type;
c906108c 4069 struct attribute *attr;
134d01f1
DJ
4070
4071 if (die->type)
4072 return;
c906108c
SS
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
e142c38c 4077 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4078 if (attr && DW_STRING (attr))
4079 {
d8151005 4080 char *name = DW_STRING (attr);
63d06c5c
DC
4081
4082 if (processing_has_namespace_info)
4083 {
987504bb
JJ
4084 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4085 processing_current_prefix,
4086 name, cu);
63d06c5c
DC
4087 }
4088 else
4089 {
d8151005
DJ
4090 /* The name is already allocated along with this objfile, so
4091 we don't need to duplicate it for the type. */
4092 TYPE_TAG_NAME (type) = name;
63d06c5c 4093 }
c906108c
SS
4094 }
4095
e142c38c 4096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4097 if (attr)
4098 {
4099 TYPE_LENGTH (type) = DW_UNSND (attr);
4100 }
4101 else
4102 {
4103 TYPE_LENGTH (type) = 0;
4104 }
4105
1c379e20 4106 set_die_type (die, type, cu);
134d01f1
DJ
4107}
4108
8176b9b8 4109/* Determine the name of the type represented by DIE, which should be
987504bb 4110 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4111 is responsible for xfree()'ing it. */
4112
4113static char *
4114determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4115{
4116 struct cleanup *back_to = NULL;
4117 struct die_info *spec_die = die_specification (die, cu);
4118 char *new_prefix = NULL;
4119
4120 /* If this is the definition of a class that is declared by another
4121 die, then processing_current_prefix may not be accurate; see
4122 read_func_scope for a similar example. */
4123 if (spec_die != NULL)
4124 {
4125 char *specification_prefix = determine_prefix (spec_die, cu);
4126 processing_current_prefix = specification_prefix;
4127 back_to = make_cleanup (xfree, specification_prefix);
4128 }
4129
4130 /* If we don't have namespace debug info, guess the name by trying
4131 to demangle the names of members, just like we did in
72bf9492 4132 guess_structure_name. */
8176b9b8
DC
4133 if (!processing_has_namespace_info)
4134 {
4135 struct die_info *child;
4136
4137 for (child = die->child;
4138 child != NULL && child->tag != 0;
4139 child = sibling_die (child))
4140 {
4141 if (child->tag == DW_TAG_subprogram)
4142 {
31c27f77
JJ
4143 new_prefix
4144 = language_class_name_from_physname (cu->language_defn,
4145 dwarf2_linkage_name
8176b9b8
DC
4146 (child, cu));
4147
4148 if (new_prefix != NULL)
4149 break;
4150 }
4151 }
4152 }
4153
4154 if (new_prefix == NULL)
4155 {
4156 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4157 new_prefix = typename_concat (NULL, processing_current_prefix,
4158 name ? name : "<<anonymous>>",
4159 cu);
8176b9b8
DC
4160 }
4161
4162 if (back_to != NULL)
4163 do_cleanups (back_to);
4164
4165 return new_prefix;
4166}
4167
134d01f1
DJ
4168/* Given a pointer to a die which begins an enumeration, process all
4169 the dies that define the members of the enumeration, and create the
4170 symbol for the enumeration type.
4171
4172 NOTE: We reverse the order of the element list. */
4173
4174static void
4175process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4176{
4177 struct objfile *objfile = cu->objfile;
4178 struct die_info *child_die;
4179 struct field *fields;
4180 struct attribute *attr;
4181 struct symbol *sym;
4182 int num_fields;
4183 int unsigned_enum = 1;
4184
c906108c
SS
4185 num_fields = 0;
4186 fields = NULL;
639d11d3 4187 if (die->child != NULL)
c906108c 4188 {
639d11d3 4189 child_die = die->child;
c906108c
SS
4190 while (child_die && child_die->tag)
4191 {
4192 if (child_die->tag != DW_TAG_enumerator)
4193 {
e7c27a73 4194 process_die (child_die, cu);
c906108c
SS
4195 }
4196 else
4197 {
e142c38c 4198 attr = dwarf2_attr (child_die, DW_AT_name, cu);
c906108c
SS
4199 if (attr)
4200 {
134d01f1 4201 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4202 if (SYMBOL_VALUE (sym) < 0)
4203 unsigned_enum = 0;
4204
4205 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4206 {
4207 fields = (struct field *)
4208 xrealloc (fields,
4209 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4210 * sizeof (struct field));
c906108c
SS
4211 }
4212
22abf04a 4213 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4214 FIELD_TYPE (fields[num_fields]) = NULL;
4215 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4216 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4217 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4218
4219 num_fields++;
4220 }
4221 }
4222
4223 child_die = sibling_die (child_die);
4224 }
4225
4226 if (num_fields)
4227 {
134d01f1
DJ
4228 TYPE_NFIELDS (die->type) = num_fields;
4229 TYPE_FIELDS (die->type) = (struct field *)
4230 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4231 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4232 sizeof (struct field) * num_fields);
b8c9b27d 4233 xfree (fields);
c906108c
SS
4234 }
4235 if (unsigned_enum)
134d01f1 4236 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4237 }
134d01f1
DJ
4238
4239 new_symbol (die, die->type, cu);
c906108c
SS
4240}
4241
4242/* Extract all information from a DW_TAG_array_type DIE and put it in
4243 the DIE's type field. For now, this only handles one dimensional
4244 arrays. */
4245
4246static void
e7c27a73 4247read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4248{
e7c27a73 4249 struct objfile *objfile = cu->objfile;
c906108c
SS
4250 struct die_info *child_die;
4251 struct type *type = NULL;
4252 struct type *element_type, *range_type, *index_type;
4253 struct type **range_types = NULL;
4254 struct attribute *attr;
4255 int ndim = 0;
4256 struct cleanup *back_to;
4257
4258 /* Return if we've already decoded this type. */
4259 if (die->type)
4260 {
4261 return;
4262 }
4263
e7c27a73 4264 element_type = die_type (die, cu);
c906108c
SS
4265
4266 /* Irix 6.2 native cc creates array types without children for
4267 arrays with unspecified length. */
639d11d3 4268 if (die->child == NULL)
c906108c 4269 {
e142c38c 4270 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4271 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4272 set_die_type (die, create_array_type (NULL, element_type, range_type),
4273 cu);
c906108c
SS
4274 return;
4275 }
4276
4277 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4278 child_die = die->child;
c906108c
SS
4279 while (child_die && child_die->tag)
4280 {
4281 if (child_die->tag == DW_TAG_subrange_type)
4282 {
a02abb62 4283 read_subrange_type (child_die, cu);
c906108c 4284
a02abb62
JB
4285 if (child_die->type != NULL)
4286 {
4287 /* The range type was succesfully read. Save it for
4288 the array type creation. */
4289 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4290 {
4291 range_types = (struct type **)
4292 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4293 * sizeof (struct type *));
4294 if (ndim == 0)
4295 make_cleanup (free_current_contents, &range_types);
4296 }
4297 range_types[ndim++] = child_die->type;
4298 }
c906108c
SS
4299 }
4300 child_die = sibling_die (child_die);
4301 }
4302
4303 /* Dwarf2 dimensions are output from left to right, create the
4304 necessary array types in backwards order. */
7ca2d3a3 4305
c906108c 4306 type = element_type;
7ca2d3a3
DL
4307
4308 if (read_array_order (die, cu) == DW_ORD_col_major)
4309 {
4310 int i = 0;
4311 while (i < ndim)
4312 type = create_array_type (NULL, type, range_types[i++]);
4313 }
4314 else
4315 {
4316 while (ndim-- > 0)
4317 type = create_array_type (NULL, type, range_types[ndim]);
4318 }
c906108c 4319
f5f8a009
EZ
4320 /* Understand Dwarf2 support for vector types (like they occur on
4321 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4322 array type. This is not part of the Dwarf2/3 standard yet, but a
4323 custom vendor extension. The main difference between a regular
4324 array and the vector variant is that vectors are passed by value
4325 to functions. */
e142c38c 4326 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009
EZ
4327 if (attr)
4328 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4329
714e295e
JB
4330 attr = dwarf2_attr (die, DW_AT_name, cu);
4331 if (attr && DW_STRING (attr))
4332 TYPE_NAME (type) = DW_STRING (attr);
4333
c906108c
SS
4334 do_cleanups (back_to);
4335
4336 /* Install the type in the die. */
1c379e20 4337 set_die_type (die, type, cu);
c906108c
SS
4338}
4339
7ca2d3a3
DL
4340static enum dwarf_array_dim_ordering
4341read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4342{
4343 struct attribute *attr;
4344
4345 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4346
4347 if (attr) return DW_SND (attr);
4348
4349 /*
4350 GNU F77 is a special case, as at 08/2004 array type info is the
4351 opposite order to the dwarf2 specification, but data is still
4352 laid out as per normal fortran.
4353
4354 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4355 version checking.
4356 */
4357
4358 if (cu->language == language_fortran &&
4359 cu->producer && strstr (cu->producer, "GNU F77"))
4360 {
4361 return DW_ORD_row_major;
4362 }
4363
4364 switch (cu->language_defn->la_array_ordering)
4365 {
4366 case array_column_major:
4367 return DW_ORD_col_major;
4368 case array_row_major:
4369 default:
4370 return DW_ORD_row_major;
4371 };
4372}
4373
72019c9c
GM
4374/* Extract all information from a DW_TAG_set_type DIE and put it in
4375 the DIE's type field. */
4376
4377static void
4378read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4379{
4380 if (die->type == NULL)
4381 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4382}
7ca2d3a3 4383
c906108c
SS
4384/* First cut: install each common block member as a global variable. */
4385
4386static void
e7c27a73 4387read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4388{
4389 struct die_info *child_die;
4390 struct attribute *attr;
4391 struct symbol *sym;
4392 CORE_ADDR base = (CORE_ADDR) 0;
4393
e142c38c 4394 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4395 if (attr)
4396 {
8e19ed76
PS
4397 /* Support the .debug_loc offsets */
4398 if (attr_form_is_block (attr))
4399 {
e7c27a73 4400 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
4401 }
4402 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4403 {
4d3c2250 4404 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4405 }
4406 else
4407 {
4d3c2250
KB
4408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4409 "common block member");
8e19ed76 4410 }
c906108c 4411 }
639d11d3 4412 if (die->child != NULL)
c906108c 4413 {
639d11d3 4414 child_die = die->child;
c906108c
SS
4415 while (child_die && child_die->tag)
4416 {
e7c27a73 4417 sym = new_symbol (child_die, NULL, cu);
e142c38c 4418 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4419 if (attr)
4420 {
4421 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4422 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4423 add_symbol_to_list (sym, &global_symbols);
4424 }
4425 child_die = sibling_die (child_die);
4426 }
4427 }
4428}
4429
d9fa45fe
DC
4430/* Read a C++ namespace. */
4431
d9fa45fe 4432static void
e7c27a73 4433read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4434{
e7c27a73 4435 struct objfile *objfile = cu->objfile;
38d518c9 4436 const char *previous_prefix = processing_current_prefix;
63d06c5c 4437 const char *name;
9219021c
DC
4438 int is_anonymous;
4439 struct die_info *current_die;
987504bb 4440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4441
e142c38c 4442 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4443
4444 /* Now build the name of the current namespace. */
4445
38d518c9 4446 if (previous_prefix[0] == '\0')
9219021c 4447 {
38d518c9 4448 processing_current_prefix = name;
9219021c
DC
4449 }
4450 else
4451 {
987504bb
JJ
4452 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4453 make_cleanup (xfree, temp_name);
38d518c9 4454 processing_current_prefix = temp_name;
9219021c
DC
4455 }
4456
5c4e30ca
DC
4457 /* Add a symbol associated to this if we haven't seen the namespace
4458 before. Also, add a using directive if it's an anonymous
4459 namespace. */
9219021c 4460
e142c38c 4461 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4462 {
4463 struct type *type;
4464
4465 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4466 this cast will hopefully become unnecessary. */
4467 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4468 (char *) processing_current_prefix,
5c4e30ca
DC
4469 objfile);
4470 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4471
e7c27a73 4472 new_symbol (die, type, cu);
1c379e20 4473 set_die_type (die, type, cu);
5c4e30ca
DC
4474
4475 if (is_anonymous)
38d518c9
EZ
4476 cp_add_using_directive (processing_current_prefix,
4477 strlen (previous_prefix),
4478 strlen (processing_current_prefix));
5c4e30ca 4479 }
9219021c 4480
639d11d3 4481 if (die->child != NULL)
d9fa45fe 4482 {
639d11d3 4483 struct die_info *child_die = die->child;
d9fa45fe
DC
4484
4485 while (child_die && child_die->tag)
4486 {
e7c27a73 4487 process_die (child_die, cu);
d9fa45fe
DC
4488 child_die = sibling_die (child_die);
4489 }
4490 }
9219021c 4491
38d518c9 4492 processing_current_prefix = previous_prefix;
987504bb 4493 do_cleanups (back_to);
38d518c9
EZ
4494}
4495
4496/* Return the name of the namespace represented by DIE. Set
4497 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4498 namespace. */
4499
4500static const char *
e142c38c 4501namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4502{
4503 struct die_info *current_die;
4504 const char *name = NULL;
4505
4506 /* Loop through the extensions until we find a name. */
4507
4508 for (current_die = die;
4509 current_die != NULL;
e142c38c 4510 current_die = dwarf2_extension (die, cu))
38d518c9 4511 {
e142c38c 4512 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4513 if (name != NULL)
4514 break;
4515 }
4516
4517 /* Is it an anonymous namespace? */
4518
4519 *is_anonymous = (name == NULL);
4520 if (*is_anonymous)
4521 name = "(anonymous namespace)";
4522
4523 return name;
d9fa45fe
DC
4524}
4525
c906108c
SS
4526/* Extract all information from a DW_TAG_pointer_type DIE and add to
4527 the user defined type vector. */
4528
4529static void
e7c27a73 4530read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4531{
e7c27a73 4532 struct comp_unit_head *cu_header = &cu->header;
c906108c 4533 struct type *type;
8b2dbe47
KB
4534 struct attribute *attr_byte_size;
4535 struct attribute *attr_address_class;
4536 int byte_size, addr_class;
c906108c
SS
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
e7c27a73 4543 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4544
e142c38c 4545 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4546 if (attr_byte_size)
4547 byte_size = DW_UNSND (attr_byte_size);
c906108c 4548 else
8b2dbe47
KB
4549 byte_size = cu_header->addr_size;
4550
e142c38c 4551 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4552 if (attr_address_class)
4553 addr_class = DW_UNSND (attr_address_class);
4554 else
4555 addr_class = DW_ADDR_none;
4556
4557 /* If the pointer size or address class is different than the
4558 default, create a type variant marked as such and set the
4559 length accordingly. */
4560 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4561 {
8b2dbe47
KB
4562 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4563 {
4564 int type_flags;
4565
4566 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4567 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4568 type = make_type_with_address_space (type, type_flags);
4569 }
4570 else if (TYPE_LENGTH (type) != byte_size)
4571 {
e2e0b3e5 4572 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4573 }
4574 else {
4575 /* Should we also complain about unhandled address classes? */
4576 }
c906108c 4577 }
8b2dbe47
KB
4578
4579 TYPE_LENGTH (type) = byte_size;
1c379e20 4580 set_die_type (die, type, cu);
c906108c
SS
4581}
4582
4583/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4584 the user defined type vector. */
4585
4586static void
e7c27a73 4587read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4588{
e7c27a73 4589 struct objfile *objfile = cu->objfile;
c906108c
SS
4590 struct type *type;
4591 struct type *to_type;
4592 struct type *domain;
4593
4594 if (die->type)
4595 {
4596 return;
4597 }
4598
e7c27a73
DJ
4599 to_type = die_type (die, cu);
4600 domain = die_containing_type (die, cu);
0d5de010
DJ
4601
4602 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4603 type = lookup_methodptr_type (to_type);
4604 else
4605 type = lookup_memberptr_type (to_type, domain);
c906108c 4606
1c379e20 4607 set_die_type (die, type, cu);
c906108c
SS
4608}
4609
4610/* Extract all information from a DW_TAG_reference_type DIE and add to
4611 the user defined type vector. */
4612
4613static void
e7c27a73 4614read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4615{
e7c27a73 4616 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4617 struct type *type;
4618 struct attribute *attr;
4619
4620 if (die->type)
4621 {
4622 return;
4623 }
4624
e7c27a73 4625 type = lookup_reference_type (die_type (die, cu));
e142c38c 4626 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4627 if (attr)
4628 {
4629 TYPE_LENGTH (type) = DW_UNSND (attr);
4630 }
4631 else
4632 {
107d2387 4633 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4634 }
1c379e20 4635 set_die_type (die, type, cu);
c906108c
SS
4636}
4637
4638static void
e7c27a73 4639read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4640{
090c42a4
JB
4641 struct type *base_type;
4642
c906108c
SS
4643 if (die->type)
4644 {
4645 return;
4646 }
4647
e7c27a73 4648 base_type = die_type (die, cu);
1c379e20
DJ
4649 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4650 cu);
c906108c
SS
4651}
4652
4653static void
e7c27a73 4654read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4655{
090c42a4
JB
4656 struct type *base_type;
4657
c906108c
SS
4658 if (die->type)
4659 {
4660 return;
4661 }
4662
e7c27a73 4663 base_type = die_type (die, cu);
1c379e20
DJ
4664 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4665 cu);
c906108c
SS
4666}
4667
4668/* Extract all information from a DW_TAG_string_type DIE and add to
4669 the user defined type vector. It isn't really a user defined type,
4670 but it behaves like one, with other DIE's using an AT_user_def_type
4671 attribute to reference it. */
4672
4673static void
e7c27a73 4674read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4675{
e7c27a73 4676 struct objfile *objfile = cu->objfile;
c906108c
SS
4677 struct type *type, *range_type, *index_type, *char_type;
4678 struct attribute *attr;
4679 unsigned int length;
4680
4681 if (die->type)
4682 {
4683 return;
4684 }
4685
e142c38c 4686 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4687 if (attr)
4688 {
4689 length = DW_UNSND (attr);
4690 }
4691 else
4692 {
b21b22e0 4693 /* check for the DW_AT_byte_size attribute */
e142c38c 4694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4695 if (attr)
4696 {
4697 length = DW_UNSND (attr);
4698 }
4699 else
4700 {
4701 length = 1;
4702 }
c906108c 4703 }
e142c38c 4704 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4705 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4706 if (cu->language == language_fortran)
b21b22e0
PS
4707 {
4708 /* Need to create a unique string type for bounds
4709 information */
4710 type = create_string_type (0, range_type);
4711 }
4712 else
4713 {
e142c38c 4714 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4715 type = create_string_type (char_type, range_type);
4716 }
1c379e20 4717 set_die_type (die, type, cu);
c906108c
SS
4718}
4719
4720/* Handle DIES due to C code like:
4721
4722 struct foo
c5aa993b
JM
4723 {
4724 int (*funcp)(int a, long l);
4725 int b;
4726 };
c906108c
SS
4727
4728 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4729 */
c906108c
SS
4730
4731static void
e7c27a73 4732read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4733{
4734 struct type *type; /* Type that this function returns */
4735 struct type *ftype; /* Function that returns above type */
4736 struct attribute *attr;
4737
4738 /* Decode the type that this subroutine returns */
4739 if (die->type)
4740 {
4741 return;
4742 }
e7c27a73 4743 type = die_type (die, cu);
1326e61b 4744 ftype = make_function_type (type, (struct type **) 0);
c906108c 4745
987504bb 4746 /* All functions in C++ and Java have prototypes. */
e142c38c 4747 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4748 if ((attr && (DW_UNSND (attr) != 0))
987504bb
JJ
4749 || cu->language == language_cplus
4750 || cu->language == language_java)
c906108c
SS
4751 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4752
639d11d3 4753 if (die->child != NULL)
c906108c
SS
4754 {
4755 struct die_info *child_die;
4756 int nparams = 0;
4757 int iparams = 0;
4758
4759 /* Count the number of parameters.
4760 FIXME: GDB currently ignores vararg functions, but knows about
4761 vararg member functions. */
639d11d3 4762 child_die = die->child;
c906108c
SS
4763 while (child_die && child_die->tag)
4764 {
4765 if (child_die->tag == DW_TAG_formal_parameter)
4766 nparams++;
4767 else if (child_die->tag == DW_TAG_unspecified_parameters)
4768 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4769 child_die = sibling_die (child_die);
4770 }
4771
4772 /* Allocate storage for parameters and fill them in. */
4773 TYPE_NFIELDS (ftype) = nparams;
4774 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4775 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4776
639d11d3 4777 child_die = die->child;
c906108c
SS
4778 while (child_die && child_die->tag)
4779 {
4780 if (child_die->tag == DW_TAG_formal_parameter)
4781 {
4782 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4783 member functions. G++ helps GDB by marking the first
4784 parameter for non-static member functions (which is the
4785 this pointer) as artificial. We pass this information
4786 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4787 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4788 if (attr)
4789 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4790 else
4791 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4792 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4793 iparams++;
4794 }
4795 child_die = sibling_die (child_die);
4796 }
4797 }
4798
1c379e20 4799 set_die_type (die, ftype, cu);
c906108c
SS
4800}
4801
4802static void
e7c27a73 4803read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4804{
e7c27a73 4805 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4806 struct attribute *attr;
4807 char *name = NULL;
c906108c
SS
4808
4809 if (!die->type)
4810 {
e142c38c 4811 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c 4812 if (attr && DW_STRING (attr))
2f038fcb
FF
4813 {
4814 name = DW_STRING (attr);
4815 }
1c379e20
DJ
4816 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4817 TYPE_FLAG_TARGET_STUB, name, objfile),
4818 cu);
e7c27a73 4819 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4820 }
4821}
4822
4823/* Find a representation of a given base type and install
4824 it in the TYPE field of the die. */
4825
4826static void
e7c27a73 4827read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4828{
e7c27a73 4829 struct objfile *objfile = cu->objfile;
c906108c
SS
4830 struct type *type;
4831 struct attribute *attr;
4832 int encoding = 0, size = 0;
4833
4834 /* If we've already decoded this die, this is a no-op. */
4835 if (die->type)
4836 {
4837 return;
4838 }
4839
e142c38c 4840 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4841 if (attr)
4842 {
4843 encoding = DW_UNSND (attr);
4844 }
e142c38c 4845 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4846 if (attr)
4847 {
4848 size = DW_UNSND (attr);
4849 }
e142c38c 4850 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4851 if (attr && DW_STRING (attr))
4852 {
4853 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4854 int type_flags = 0;
c906108c
SS
4855
4856 switch (encoding)
4857 {
4858 case DW_ATE_address:
4859 /* Turn DW_ATE_address into a void * pointer. */
4860 code = TYPE_CODE_PTR;
f5ef7c67 4861 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4862 break;
4863 case DW_ATE_boolean:
4864 code = TYPE_CODE_BOOL;
f5ef7c67 4865 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4866 break;
4867 case DW_ATE_complex_float:
4868 code = TYPE_CODE_COMPLEX;
4869 break;
4870 case DW_ATE_float:
4871 code = TYPE_CODE_FLT;
4872 break;
4873 case DW_ATE_signed:
c906108c
SS
4874 break;
4875 case DW_ATE_unsigned:
72019c9c
GM
4876 type_flags |= TYPE_FLAG_UNSIGNED;
4877 break;
4878 case DW_ATE_signed_char:
4879 if (cu->language == language_m2)
4880 code = TYPE_CODE_CHAR;
4881 break;
4882 case DW_ATE_unsigned_char:
4883 if (cu->language == language_m2)
4884 code = TYPE_CODE_CHAR;
f5ef7c67 4885 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4886 break;
4887 default:
e2e0b3e5 4888 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4d3c2250 4889 dwarf_type_encoding_name (encoding));
c906108c
SS
4890 break;
4891 }
f5ef7c67 4892 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
c906108c 4893 if (encoding == DW_ATE_address)
e142c38c
DJ
4894 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4895 cu);
f65ca430
DJ
4896 else if (encoding == DW_ATE_complex_float)
4897 {
4898 if (size == 32)
4899 TYPE_TARGET_TYPE (type)
e142c38c 4900 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4901 else if (size == 16)
4902 TYPE_TARGET_TYPE (type)
e142c38c 4903 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4904 else if (size == 8)
4905 TYPE_TARGET_TYPE (type)
e142c38c 4906 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4907 }
c906108c
SS
4908 }
4909 else
4910 {
e7c27a73 4911 type = dwarf_base_type (encoding, size, cu);
c906108c 4912 }
1c379e20 4913 set_die_type (die, type, cu);
c906108c
SS
4914}
4915
a02abb62
JB
4916/* Read the given DW_AT_subrange DIE. */
4917
4918static void
4919read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4920{
4921 struct type *base_type;
4922 struct type *range_type;
4923 struct attribute *attr;
4924 int low = 0;
4925 int high = -1;
4926
4927 /* If we have already decoded this die, then nothing more to do. */
4928 if (die->type)
4929 return;
4930
4931 base_type = die_type (die, cu);
3d1f72c2 4932 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
4933 {
4934 complaint (&symfile_complaints,
e2e0b3e5 4935 _("DW_AT_type missing from DW_TAG_subrange_type"));
3d1f72c2 4936 base_type = dwarf_base_type (DW_ATE_signed, TARGET_ADDR_BIT / 8, cu);
a02abb62
JB
4937 }
4938
e142c38c 4939 if (cu->language == language_fortran)
a02abb62
JB
4940 {
4941 /* FORTRAN implies a lower bound of 1, if not given. */
4942 low = 1;
4943 }
4944
dd5e6932
DJ
4945 /* FIXME: For variable sized arrays either of these could be
4946 a variable rather than a constant value. We'll allow it,
4947 but we don't know how to handle it. */
e142c38c 4948 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4949 if (attr)
4950 low = dwarf2_get_attr_constant_value (attr, 0);
4951
e142c38c 4952 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4953 if (attr)
4954 {
4955 if (attr->form == DW_FORM_block1)
4956 {
4957 /* GCC encodes arrays with unspecified or dynamic length
4958 with a DW_FORM_block1 attribute.
4959 FIXME: GDB does not yet know how to handle dynamic
4960 arrays properly, treat them as arrays with unspecified
4961 length for now.
4962
4963 FIXME: jimb/2003-09-22: GDB does not really know
4964 how to handle arrays of unspecified length
4965 either; we just represent them as zero-length
4966 arrays. Choose an appropriate upper bound given
4967 the lower bound we've computed above. */
4968 high = low - 1;
4969 }
4970 else
4971 high = dwarf2_get_attr_constant_value (attr, 1);
4972 }
4973
4974 range_type = create_range_type (NULL, base_type, low, high);
4975
e142c38c 4976 attr = dwarf2_attr (die, DW_AT_name, cu);
a02abb62
JB
4977 if (attr && DW_STRING (attr))
4978 TYPE_NAME (range_type) = DW_STRING (attr);
4979
e142c38c 4980 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4981 if (attr)
4982 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4983
1c379e20 4984 set_die_type (die, range_type, cu);
a02abb62
JB
4985}
4986
81a17f79
JB
4987static void
4988read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4989{
4990 struct type *type;
4991 struct attribute *attr;
4992
4993 if (die->type)
4994 return;
4995
4996 /* For now, we only support the C meaning of an unspecified type: void. */
4997
4998 attr = dwarf2_attr (die, DW_AT_name, cu);
4999 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
5000 cu->objfile);
5001
5002 set_die_type (die, type, cu);
5003}
a02abb62 5004
c906108c
SS
5005/* Read a whole compilation unit into a linked list of dies. */
5006
f9aca02d 5007static struct die_info *
fe1b8b76 5008read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 5009{
e7c27a73 5010 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
5011}
5012
5013/* Read a single die and all its descendents. Set the die's sibling
5014 field to NULL; set other fields in the die correctly, and set all
5015 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5016 location of the info_ptr after reading all of those dies. PARENT
5017 is the parent of the die in question. */
5018
5019static struct die_info *
fe1b8b76 5020read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5021 struct dwarf2_cu *cu,
fe1b8b76 5022 gdb_byte **new_info_ptr,
639d11d3
DC
5023 struct die_info *parent)
5024{
5025 struct die_info *die;
fe1b8b76 5026 gdb_byte *cur_ptr;
639d11d3
DC
5027 int has_children;
5028
e7c27a73 5029 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 5030 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
5031
5032 if (has_children)
5033 {
e7c27a73 5034 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5035 new_info_ptr, die);
5036 }
5037 else
5038 {
5039 die->child = NULL;
5040 *new_info_ptr = cur_ptr;
5041 }
5042
5043 die->sibling = NULL;
5044 die->parent = parent;
5045 return die;
5046}
5047
5048/* Read a die, all of its descendents, and all of its siblings; set
5049 all of the fields of all of the dies correctly. Arguments are as
5050 in read_die_and_children. */
5051
5052static struct die_info *
fe1b8b76 5053read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5054 struct dwarf2_cu *cu,
fe1b8b76 5055 gdb_byte **new_info_ptr,
639d11d3
DC
5056 struct die_info *parent)
5057{
5058 struct die_info *first_die, *last_sibling;
fe1b8b76 5059 gdb_byte *cur_ptr;
639d11d3 5060
c906108c 5061 cur_ptr = info_ptr;
639d11d3
DC
5062 first_die = last_sibling = NULL;
5063
5064 while (1)
c906108c 5065 {
639d11d3 5066 struct die_info *die
e7c27a73 5067 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5068
5069 if (!first_die)
c906108c 5070 {
639d11d3 5071 first_die = die;
c906108c 5072 }
639d11d3 5073 else
c906108c 5074 {
639d11d3 5075 last_sibling->sibling = die;
c906108c
SS
5076 }
5077
639d11d3 5078 if (die->tag == 0)
c906108c 5079 {
639d11d3
DC
5080 *new_info_ptr = cur_ptr;
5081 return first_die;
c906108c
SS
5082 }
5083 else
5084 {
639d11d3 5085 last_sibling = die;
c906108c
SS
5086 }
5087 }
c906108c
SS
5088}
5089
5090/* Free a linked list of dies. */
5091
5092static void
fba45db2 5093free_die_list (struct die_info *dies)
c906108c
SS
5094{
5095 struct die_info *die, *next;
5096
5097 die = dies;
5098 while (die)
5099 {
639d11d3
DC
5100 if (die->child != NULL)
5101 free_die_list (die->child);
5102 next = die->sibling;
b8c9b27d
KB
5103 xfree (die->attrs);
5104 xfree (die);
c906108c
SS
5105 die = next;
5106 }
5107}
5108
5109/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 5110 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 5111
fe1b8b76 5112gdb_byte *
188dd5d6 5113dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5114{
5115 bfd *abfd = objfile->obfd;
fe1b8b76 5116 gdb_byte *buf, *retbuf;
2c500098 5117 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5118
5119 if (size == 0)
5120 return NULL;
5121
fe1b8b76
JB
5122 buf = obstack_alloc (&objfile->objfile_obstack, size);
5123 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5124 if (retbuf != NULL)
5125 return retbuf;
5126
188dd5d6
DJ
5127 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5128 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5129 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5130 bfd_get_filename (abfd));
5131
c906108c
SS
5132 return buf;
5133}
5134
5135/* In DWARF version 2, the description of the debugging information is
5136 stored in a separate .debug_abbrev section. Before we read any
5137 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5138 in a hash table. This function also sets flags in CU describing
5139 the data found in the abbrev table. */
c906108c
SS
5140
5141static void
e7c27a73 5142dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5143{
e7c27a73 5144 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5145 gdb_byte *abbrev_ptr;
c906108c
SS
5146 struct abbrev_info *cur_abbrev;
5147 unsigned int abbrev_number, bytes_read, abbrev_name;
5148 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5149 struct attr_abbrev *cur_attrs;
5150 unsigned int allocated_attrs;
c906108c 5151
57349743 5152 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5153 obstack_init (&cu->abbrev_obstack);
5154 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5155 (ABBREV_HASH_SIZE
5156 * sizeof (struct abbrev_info *)));
5157 memset (cu->dwarf2_abbrevs, 0,
5158 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5159
6502dd73 5160 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5161 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5162 abbrev_ptr += bytes_read;
5163
f3dd6933
DJ
5164 allocated_attrs = ATTR_ALLOC_CHUNK;
5165 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5166
c906108c
SS
5167 /* loop until we reach an abbrev number of 0 */
5168 while (abbrev_number)
5169 {
f3dd6933 5170 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5171
5172 /* read in abbrev header */
5173 cur_abbrev->number = abbrev_number;
5174 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5175 abbrev_ptr += bytes_read;
5176 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5177 abbrev_ptr += 1;
5178
72bf9492
DJ
5179 if (cur_abbrev->tag == DW_TAG_namespace)
5180 cu->has_namespace_info = 1;
5181
c906108c
SS
5182 /* now read in declarations */
5183 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5184 abbrev_ptr += bytes_read;
5185 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5186 abbrev_ptr += bytes_read;
5187 while (abbrev_name)
5188 {
f3dd6933 5189 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5190 {
f3dd6933
DJ
5191 allocated_attrs += ATTR_ALLOC_CHUNK;
5192 cur_attrs
5193 = xrealloc (cur_attrs, (allocated_attrs
5194 * sizeof (struct attr_abbrev)));
c906108c 5195 }
ae038cb0
DJ
5196
5197 /* Record whether this compilation unit might have
5198 inter-compilation-unit references. If we don't know what form
5199 this attribute will have, then it might potentially be a
5200 DW_FORM_ref_addr, so we conservatively expect inter-CU
5201 references. */
5202
5203 if (abbrev_form == DW_FORM_ref_addr
5204 || abbrev_form == DW_FORM_indirect)
5205 cu->has_form_ref_addr = 1;
5206
f3dd6933
DJ
5207 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5208 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5209 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5210 abbrev_ptr += bytes_read;
5211 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5212 abbrev_ptr += bytes_read;
5213 }
5214
f3dd6933
DJ
5215 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5216 (cur_abbrev->num_attrs
5217 * sizeof (struct attr_abbrev)));
5218 memcpy (cur_abbrev->attrs, cur_attrs,
5219 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5220
c906108c 5221 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5222 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5223 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5224
5225 /* Get next abbreviation.
5226 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5227 always properly terminated with an abbrev number of 0.
5228 Exit loop if we encounter an abbreviation which we have
5229 already read (which means we are about to read the abbreviations
5230 for the next compile unit) or if the end of the abbreviation
5231 table is reached. */
6502dd73
DJ
5232 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5233 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5234 break;
5235 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5236 abbrev_ptr += bytes_read;
e7c27a73 5237 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5238 break;
5239 }
f3dd6933
DJ
5240
5241 xfree (cur_attrs);
c906108c
SS
5242}
5243
f3dd6933 5244/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5245
c906108c 5246static void
f3dd6933 5247dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5248{
f3dd6933 5249 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5250
f3dd6933
DJ
5251 obstack_free (&cu->abbrev_obstack, NULL);
5252 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5253}
5254
5255/* Lookup an abbrev_info structure in the abbrev hash table. */
5256
5257static struct abbrev_info *
e7c27a73 5258dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5259{
5260 unsigned int hash_number;
5261 struct abbrev_info *abbrev;
5262
5263 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5264 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5265
5266 while (abbrev)
5267 {
5268 if (abbrev->number == number)
5269 return abbrev;
5270 else
5271 abbrev = abbrev->next;
5272 }
5273 return NULL;
5274}
5275
72bf9492
DJ
5276/* Returns nonzero if TAG represents a type that we might generate a partial
5277 symbol for. */
5278
5279static int
5280is_type_tag_for_partial (int tag)
5281{
5282 switch (tag)
5283 {
5284#if 0
5285 /* Some types that would be reasonable to generate partial symbols for,
5286 that we don't at present. */
5287 case DW_TAG_array_type:
5288 case DW_TAG_file_type:
5289 case DW_TAG_ptr_to_member_type:
5290 case DW_TAG_set_type:
5291 case DW_TAG_string_type:
5292 case DW_TAG_subroutine_type:
5293#endif
5294 case DW_TAG_base_type:
5295 case DW_TAG_class_type:
5296 case DW_TAG_enumeration_type:
5297 case DW_TAG_structure_type:
5298 case DW_TAG_subrange_type:
5299 case DW_TAG_typedef:
5300 case DW_TAG_union_type:
5301 return 1;
5302 default:
5303 return 0;
5304 }
5305}
5306
5307/* Load all DIEs that are interesting for partial symbols into memory. */
5308
5309static struct partial_die_info *
fe1b8b76 5310load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5311 struct dwarf2_cu *cu)
5312{
5313 struct partial_die_info *part_die;
5314 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5315 struct abbrev_info *abbrev;
5316 unsigned int bytes_read;
5afb4e99 5317 unsigned int load_all = 0;
72bf9492
DJ
5318
5319 int nesting_level = 1;
5320
5321 parent_die = NULL;
5322 last_die = NULL;
5323
5afb4e99
DJ
5324 if (cu->per_cu && cu->per_cu->load_all_dies)
5325 load_all = 1;
5326
72bf9492
DJ
5327 cu->partial_dies
5328 = htab_create_alloc_ex (cu->header.length / 12,
5329 partial_die_hash,
5330 partial_die_eq,
5331 NULL,
5332 &cu->comp_unit_obstack,
5333 hashtab_obstack_allocate,
5334 dummy_obstack_deallocate);
5335
5336 part_die = obstack_alloc (&cu->comp_unit_obstack,
5337 sizeof (struct partial_die_info));
5338
5339 while (1)
5340 {
5341 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5342
5343 /* A NULL abbrev means the end of a series of children. */
5344 if (abbrev == NULL)
5345 {
5346 if (--nesting_level == 0)
5347 {
5348 /* PART_DIE was probably the last thing allocated on the
5349 comp_unit_obstack, so we could call obstack_free
5350 here. We don't do that because the waste is small,
5351 and will be cleaned up when we're done with this
5352 compilation unit. This way, we're also more robust
5353 against other users of the comp_unit_obstack. */
5354 return first_die;
5355 }
5356 info_ptr += bytes_read;
5357 last_die = parent_die;
5358 parent_die = parent_die->die_parent;
5359 continue;
5360 }
5361
5afb4e99
DJ
5362 /* Check whether this DIE is interesting enough to save. Normally
5363 we would not be interested in members here, but there may be
5364 later variables referencing them via DW_AT_specification (for
5365 static members). */
5366 if (!load_all
5367 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5368 && abbrev->tag != DW_TAG_enumerator
5369 && abbrev->tag != DW_TAG_subprogram
5370 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5371 && abbrev->tag != DW_TAG_namespace
5372 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5373 {
5374 /* Otherwise we skip to the next sibling, if any. */
5375 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5376 continue;
5377 }
5378
5379 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5380 abfd, info_ptr, cu);
5381
5382 /* This two-pass algorithm for processing partial symbols has a
5383 high cost in cache pressure. Thus, handle some simple cases
5384 here which cover the majority of C partial symbols. DIEs
5385 which neither have specification tags in them, nor could have
5386 specification tags elsewhere pointing at them, can simply be
5387 processed and discarded.
5388
5389 This segment is also optional; scan_partial_symbols and
5390 add_partial_symbol will handle these DIEs if we chain
5391 them in normally. When compilers which do not emit large
5392 quantities of duplicate debug information are more common,
5393 this code can probably be removed. */
5394
5395 /* Any complete simple types at the top level (pretty much all
5396 of them, for a language without namespaces), can be processed
5397 directly. */
5398 if (parent_die == NULL
5399 && part_die->has_specification == 0
5400 && part_die->is_declaration == 0
5401 && (part_die->tag == DW_TAG_typedef
5402 || part_die->tag == DW_TAG_base_type
5403 || part_die->tag == DW_TAG_subrange_type))
5404 {
5405 if (building_psymtab && part_die->name != NULL)
5406 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5407 VAR_DOMAIN, LOC_TYPEDEF,
5408 &cu->objfile->static_psymbols,
5409 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5410 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5411 continue;
5412 }
5413
5414 /* If we're at the second level, and we're an enumerator, and
5415 our parent has no specification (meaning possibly lives in a
5416 namespace elsewhere), then we can add the partial symbol now
5417 instead of queueing it. */
5418 if (part_die->tag == DW_TAG_enumerator
5419 && parent_die != NULL
5420 && parent_die->die_parent == NULL
5421 && parent_die->tag == DW_TAG_enumeration_type
5422 && parent_die->has_specification == 0)
5423 {
5424 if (part_die->name == NULL)
e2e0b3e5 5425 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5426 else if (building_psymtab)
5427 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5428 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5429 (cu->language == language_cplus
5430 || cu->language == language_java)
72bf9492
DJ
5431 ? &cu->objfile->global_psymbols
5432 : &cu->objfile->static_psymbols,
5433 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5434
5435 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5436 continue;
5437 }
5438
5439 /* We'll save this DIE so link it in. */
5440 part_die->die_parent = parent_die;
5441 part_die->die_sibling = NULL;
5442 part_die->die_child = NULL;
5443
5444 if (last_die && last_die == parent_die)
5445 last_die->die_child = part_die;
5446 else if (last_die)
5447 last_die->die_sibling = part_die;
5448
5449 last_die = part_die;
5450
5451 if (first_die == NULL)
5452 first_die = part_die;
5453
5454 /* Maybe add the DIE to the hash table. Not all DIEs that we
5455 find interesting need to be in the hash table, because we
5456 also have the parent/sibling/child chains; only those that we
5457 might refer to by offset later during partial symbol reading.
5458
5459 For now this means things that might have be the target of a
5460 DW_AT_specification, DW_AT_abstract_origin, or
5461 DW_AT_extension. DW_AT_extension will refer only to
5462 namespaces; DW_AT_abstract_origin refers to functions (and
5463 many things under the function DIE, but we do not recurse
5464 into function DIEs during partial symbol reading) and
5465 possibly variables as well; DW_AT_specification refers to
5466 declarations. Declarations ought to have the DW_AT_declaration
5467 flag. It happens that GCC forgets to put it in sometimes, but
5468 only for functions, not for types.
5469
5470 Adding more things than necessary to the hash table is harmless
5471 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5472 wasted time in find_partial_die, when we reread the compilation
5473 unit with load_all_dies set. */
72bf9492 5474
5afb4e99
DJ
5475 if (load_all
5476 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5477 || abbrev->tag == DW_TAG_variable
5478 || abbrev->tag == DW_TAG_namespace
5479 || part_die->is_declaration)
5480 {
5481 void **slot;
5482
5483 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5484 part_die->offset, INSERT);
5485 *slot = part_die;
5486 }
5487
5488 part_die = obstack_alloc (&cu->comp_unit_obstack,
5489 sizeof (struct partial_die_info));
5490
5491 /* For some DIEs we want to follow their children (if any). For C
5492 we have no reason to follow the children of structures; for other
5493 languages we have to, both so that we can get at method physnames
5494 to infer fully qualified class names, and for DW_AT_specification. */
5495 if (last_die->has_children
5afb4e99
DJ
5496 && (load_all
5497 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5498 || last_die->tag == DW_TAG_enumeration_type
5499 || (cu->language != language_c
5500 && (last_die->tag == DW_TAG_class_type
5501 || last_die->tag == DW_TAG_structure_type
5502 || last_die->tag == DW_TAG_union_type))))
5503 {
5504 nesting_level++;
5505 parent_die = last_die;
5506 continue;
5507 }
5508
5509 /* Otherwise we skip to the next sibling, if any. */
5510 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5511
5512 /* Back to the top, do it again. */
5513 }
5514}
5515
c906108c
SS
5516/* Read a minimal amount of information into the minimal die structure. */
5517
fe1b8b76 5518static gdb_byte *
72bf9492
DJ
5519read_partial_die (struct partial_die_info *part_die,
5520 struct abbrev_info *abbrev,
5521 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5522 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5523{
72bf9492 5524 unsigned int bytes_read, i;
c906108c 5525 struct attribute attr;
c5aa993b 5526 int has_low_pc_attr = 0;
c906108c
SS
5527 int has_high_pc_attr = 0;
5528
72bf9492 5529 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5530
6502dd73 5531 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5532
5533 info_ptr += abbrev_len;
5534
5535 if (abbrev == NULL)
5536 return info_ptr;
5537
c906108c
SS
5538 part_die->tag = abbrev->tag;
5539 part_die->has_children = abbrev->has_children;
c906108c
SS
5540
5541 for (i = 0; i < abbrev->num_attrs; ++i)
5542 {
e7c27a73 5543 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5544
5545 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5546 partial symbol table. */
c906108c
SS
5547 switch (attr.name)
5548 {
5549 case DW_AT_name:
5550
5551 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5552 if (part_die->name == NULL)
5553 part_die->name = DW_STRING (&attr);
5554 break;
57c22c6c
BR
5555 case DW_AT_comp_dir:
5556 if (part_die->dirname == NULL)
5557 part_die->dirname = DW_STRING (&attr);
5558 break;
c906108c
SS
5559 case DW_AT_MIPS_linkage_name:
5560 part_die->name = DW_STRING (&attr);
5561 break;
5562 case DW_AT_low_pc:
5563 has_low_pc_attr = 1;
5564 part_die->lowpc = DW_ADDR (&attr);
5565 break;
5566 case DW_AT_high_pc:
5567 has_high_pc_attr = 1;
5568 part_die->highpc = DW_ADDR (&attr);
5569 break;
5570 case DW_AT_location:
8e19ed76
PS
5571 /* Support the .debug_loc offsets */
5572 if (attr_form_is_block (&attr))
5573 {
5574 part_die->locdesc = DW_BLOCK (&attr);
5575 }
5576 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5577 {
4d3c2250 5578 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5579 }
5580 else
5581 {
4d3c2250
KB
5582 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5583 "partial symbol information");
8e19ed76 5584 }
c906108c
SS
5585 break;
5586 case DW_AT_language:
5587 part_die->language = DW_UNSND (&attr);
5588 break;
5589 case DW_AT_external:
5590 part_die->is_external = DW_UNSND (&attr);
5591 break;
5592 case DW_AT_declaration:
5593 part_die->is_declaration = DW_UNSND (&attr);
5594 break;
5595 case DW_AT_type:
5596 part_die->has_type = 1;
5597 break;
5598 case DW_AT_abstract_origin:
5599 case DW_AT_specification:
72bf9492
DJ
5600 case DW_AT_extension:
5601 part_die->has_specification = 1;
5602 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5603 break;
5604 case DW_AT_sibling:
5605 /* Ignore absolute siblings, they might point outside of
5606 the current compile unit. */
5607 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5608 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5609 else
6502dd73
DJ
5610 part_die->sibling = dwarf2_per_objfile->info_buffer
5611 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5612 break;
aaa75496
JB
5613 case DW_AT_stmt_list:
5614 part_die->has_stmt_list = 1;
5615 part_die->line_offset = DW_UNSND (&attr);
5616 break;
fa4028e9
JB
5617 case DW_AT_byte_size:
5618 part_die->has_byte_size = 1;
5619 break;
c906108c
SS
5620 default:
5621 break;
5622 }
5623 }
5624
c906108c
SS
5625 /* When using the GNU linker, .gnu.linkonce. sections are used to
5626 eliminate duplicate copies of functions and vtables and such.
5627 The linker will arbitrarily choose one and discard the others.
5628 The AT_*_pc values for such functions refer to local labels in
5629 these sections. If the section from that file was discarded, the
5630 labels are not in the output, so the relocs get a value of 0.
5631 If this is a discarded function, mark the pc bounds as invalid,
5632 so that GDB will ignore it. */
5633 if (has_low_pc_attr && has_high_pc_attr
5634 && part_die->lowpc < part_die->highpc
5635 && (part_die->lowpc != 0
72dca2f5 5636 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5637 part_die->has_pc_info = 1;
c906108c
SS
5638 return info_ptr;
5639}
5640
72bf9492
DJ
5641/* Find a cached partial DIE at OFFSET in CU. */
5642
5643static struct partial_die_info *
5644find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5645{
5646 struct partial_die_info *lookup_die = NULL;
5647 struct partial_die_info part_die;
5648
5649 part_die.offset = offset;
5650 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5651
72bf9492
DJ
5652 return lookup_die;
5653}
5654
5655/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5656
5657static struct partial_die_info *
10b3939b 5658find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5659{
5afb4e99
DJ
5660 struct dwarf2_per_cu_data *per_cu = NULL;
5661 struct partial_die_info *pd = NULL;
72bf9492
DJ
5662
5663 if (offset >= cu->header.offset
5664 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5665 {
5666 pd = find_partial_die_in_comp_unit (offset, cu);
5667 if (pd != NULL)
5668 return pd;
5669 }
72bf9492 5670
ae038cb0
DJ
5671 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5672
ae038cb0
DJ
5673 if (per_cu->cu == NULL)
5674 {
5675 load_comp_unit (per_cu, cu->objfile);
5676 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5677 dwarf2_per_objfile->read_in_chain = per_cu;
5678 }
5679
5680 per_cu->cu->last_used = 0;
5afb4e99
DJ
5681 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5682
5683 if (pd == NULL && per_cu->load_all_dies == 0)
5684 {
5685 struct cleanup *back_to;
5686 struct partial_die_info comp_unit_die;
5687 struct abbrev_info *abbrev;
5688 unsigned int bytes_read;
5689 char *info_ptr;
5690
5691 per_cu->load_all_dies = 1;
5692
5693 /* Re-read the DIEs. */
5694 back_to = make_cleanup (null_cleanup, 0);
5695 if (per_cu->cu->dwarf2_abbrevs == NULL)
5696 {
5697 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5698 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5699 }
5700 info_ptr = per_cu->cu->header.first_die_ptr;
5701 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5702 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5703 per_cu->cu->objfile->obfd, info_ptr,
5704 per_cu->cu);
5705 if (comp_unit_die.has_children)
5706 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5707 do_cleanups (back_to);
5708
5709 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5710 }
5711
5712 if (pd == NULL)
5713 internal_error (__FILE__, __LINE__,
5714 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5715 offset, bfd_get_filename (cu->objfile->obfd));
5716 return pd;
72bf9492
DJ
5717}
5718
5719/* Adjust PART_DIE before generating a symbol for it. This function
5720 may set the is_external flag or change the DIE's name. */
5721
5722static void
5723fixup_partial_die (struct partial_die_info *part_die,
5724 struct dwarf2_cu *cu)
5725{
5726 /* If we found a reference attribute and the DIE has no name, try
5727 to find a name in the referred to DIE. */
5728
5729 if (part_die->name == NULL && part_die->has_specification)
5730 {
5731 struct partial_die_info *spec_die;
72bf9492 5732
10b3939b 5733 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5734
10b3939b 5735 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5736
5737 if (spec_die->name)
5738 {
5739 part_die->name = spec_die->name;
5740
5741 /* Copy DW_AT_external attribute if it is set. */
5742 if (spec_die->is_external)
5743 part_die->is_external = spec_die->is_external;
5744 }
5745 }
5746
5747 /* Set default names for some unnamed DIEs. */
5748 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5749 || part_die->tag == DW_TAG_class_type))
5750 part_die->name = "(anonymous class)";
5751
5752 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5753 part_die->name = "(anonymous namespace)";
5754
5755 if (part_die->tag == DW_TAG_structure_type
5756 || part_die->tag == DW_TAG_class_type
5757 || part_die->tag == DW_TAG_union_type)
5758 guess_structure_name (part_die, cu);
5759}
5760
639d11d3
DC
5761/* Read the die from the .debug_info section buffer. Set DIEP to
5762 point to a newly allocated die with its information, except for its
5763 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5764 whether the die has children or not. */
c906108c 5765
fe1b8b76
JB
5766static gdb_byte *
5767read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5768 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5769{
5770 unsigned int abbrev_number, bytes_read, i, offset;
5771 struct abbrev_info *abbrev;
5772 struct die_info *die;
5773
6502dd73 5774 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5775 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5776 info_ptr += bytes_read;
5777 if (!abbrev_number)
5778 {
5779 die = dwarf_alloc_die ();
5780 die->tag = 0;
5781 die->abbrev = abbrev_number;
5782 die->type = NULL;
5783 *diep = die;
639d11d3 5784 *has_children = 0;
c906108c
SS
5785 return info_ptr;
5786 }
5787
e7c27a73 5788 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5789 if (!abbrev)
5790 {
8a3fe4f8 5791 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5792 abbrev_number,
639d11d3 5793 bfd_get_filename (abfd));
c906108c
SS
5794 }
5795 die = dwarf_alloc_die ();
5796 die->offset = offset;
5797 die->tag = abbrev->tag;
c906108c
SS
5798 die->abbrev = abbrev_number;
5799 die->type = NULL;
5800
5801 die->num_attrs = abbrev->num_attrs;
5802 die->attrs = (struct attribute *)
5803 xmalloc (die->num_attrs * sizeof (struct attribute));
5804
5805 for (i = 0; i < abbrev->num_attrs; ++i)
5806 {
5807 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5808 abfd, info_ptr, cu);
10b3939b
DJ
5809
5810 /* If this attribute is an absolute reference to a different
5811 compilation unit, make sure that compilation unit is loaded
5812 also. */
5813 if (die->attrs[i].form == DW_FORM_ref_addr
5814 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5815 || (DW_ADDR (&die->attrs[i])
5816 >= cu->header.offset + cu->header.length)))
5817 {
5818 struct dwarf2_per_cu_data *per_cu;
5819 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5820 cu->objfile);
5821
5822 /* Mark the dependence relation so that we don't flush PER_CU
5823 too early. */
5824 dwarf2_add_dependence (cu, per_cu);
5825
5826 /* If it's already on the queue, we have nothing to do. */
5827 if (per_cu->queued)
5828 continue;
5829
5830 /* If the compilation unit is already loaded, just mark it as
5831 used. */
5832 if (per_cu->cu != NULL)
5833 {
5834 per_cu->cu->last_used = 0;
5835 continue;
5836 }
5837
5838 /* Add it to the queue. */
5839 queue_comp_unit (per_cu);
5840 }
c906108c
SS
5841 }
5842
5843 *diep = die;
639d11d3 5844 *has_children = abbrev->has_children;
c906108c
SS
5845 return info_ptr;
5846}
5847
a8329558 5848/* Read an attribute value described by an attribute form. */
c906108c 5849
fe1b8b76 5850static gdb_byte *
a8329558 5851read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5852 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5853 struct dwarf2_cu *cu)
c906108c 5854{
e7c27a73 5855 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5856 unsigned int bytes_read;
5857 struct dwarf_block *blk;
5858
a8329558
KW
5859 attr->form = form;
5860 switch (form)
c906108c
SS
5861 {
5862 case DW_FORM_addr:
5863 case DW_FORM_ref_addr:
e7c27a73 5864 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5865 info_ptr += bytes_read;
c906108c
SS
5866 break;
5867 case DW_FORM_block2:
7b5a2f43 5868 blk = dwarf_alloc_block (cu);
c906108c
SS
5869 blk->size = read_2_bytes (abfd, info_ptr);
5870 info_ptr += 2;
5871 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5872 info_ptr += blk->size;
5873 DW_BLOCK (attr) = blk;
5874 break;
5875 case DW_FORM_block4:
7b5a2f43 5876 blk = dwarf_alloc_block (cu);
c906108c
SS
5877 blk->size = read_4_bytes (abfd, info_ptr);
5878 info_ptr += 4;
5879 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5880 info_ptr += blk->size;
5881 DW_BLOCK (attr) = blk;
5882 break;
5883 case DW_FORM_data2:
5884 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5885 info_ptr += 2;
5886 break;
5887 case DW_FORM_data4:
5888 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5889 info_ptr += 4;
5890 break;
5891 case DW_FORM_data8:
5892 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5893 info_ptr += 8;
5894 break;
5895 case DW_FORM_string:
5896 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5897 info_ptr += bytes_read;
5898 break;
4bdf3d34
JJ
5899 case DW_FORM_strp:
5900 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5901 &bytes_read);
5902 info_ptr += bytes_read;
5903 break;
c906108c 5904 case DW_FORM_block:
7b5a2f43 5905 blk = dwarf_alloc_block (cu);
c906108c
SS
5906 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5907 info_ptr += bytes_read;
5908 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5909 info_ptr += blk->size;
5910 DW_BLOCK (attr) = blk;
5911 break;
5912 case DW_FORM_block1:
7b5a2f43 5913 blk = dwarf_alloc_block (cu);
c906108c
SS
5914 blk->size = read_1_byte (abfd, info_ptr);
5915 info_ptr += 1;
5916 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5917 info_ptr += blk->size;
5918 DW_BLOCK (attr) = blk;
5919 break;
5920 case DW_FORM_data1:
5921 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5922 info_ptr += 1;
5923 break;
5924 case DW_FORM_flag:
5925 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5926 info_ptr += 1;
5927 break;
5928 case DW_FORM_sdata:
5929 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5930 info_ptr += bytes_read;
5931 break;
5932 case DW_FORM_udata:
5933 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5934 info_ptr += bytes_read;
5935 break;
5936 case DW_FORM_ref1:
10b3939b 5937 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
5938 info_ptr += 1;
5939 break;
5940 case DW_FORM_ref2:
10b3939b 5941 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
5942 info_ptr += 2;
5943 break;
5944 case DW_FORM_ref4:
10b3939b 5945 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
5946 info_ptr += 4;
5947 break;
613e1657 5948 case DW_FORM_ref8:
10b3939b 5949 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
5950 info_ptr += 8;
5951 break;
c906108c 5952 case DW_FORM_ref_udata:
10b3939b
DJ
5953 DW_ADDR (attr) = (cu->header.offset
5954 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
5955 info_ptr += bytes_read;
5956 break;
c906108c 5957 case DW_FORM_indirect:
a8329558
KW
5958 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5959 info_ptr += bytes_read;
e7c27a73 5960 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5961 break;
c906108c 5962 default:
8a3fe4f8 5963 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
5964 dwarf_form_name (form),
5965 bfd_get_filename (abfd));
c906108c
SS
5966 }
5967 return info_ptr;
5968}
5969
a8329558
KW
5970/* Read an attribute described by an abbreviated attribute. */
5971
fe1b8b76 5972static gdb_byte *
a8329558 5973read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 5974 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5975{
5976 attr->name = abbrev->name;
e7c27a73 5977 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5978}
5979
c906108c
SS
5980/* read dwarf information from a buffer */
5981
5982static unsigned int
fe1b8b76 5983read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 5984{
fe1b8b76 5985 return bfd_get_8 (abfd, buf);
c906108c
SS
5986}
5987
5988static int
fe1b8b76 5989read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 5990{
fe1b8b76 5991 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
5992}
5993
5994static unsigned int
fe1b8b76 5995read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5996{
fe1b8b76 5997 return bfd_get_16 (abfd, buf);
c906108c
SS
5998}
5999
6000static int
fe1b8b76 6001read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6002{
fe1b8b76 6003 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
6004}
6005
6006static unsigned int
fe1b8b76 6007read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6008{
fe1b8b76 6009 return bfd_get_32 (abfd, buf);
c906108c
SS
6010}
6011
6012static int
fe1b8b76 6013read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6014{
fe1b8b76 6015 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
6016}
6017
ce5d95e1 6018static unsigned long
fe1b8b76 6019read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6020{
fe1b8b76 6021 return bfd_get_64 (abfd, buf);
c906108c
SS
6022}
6023
6024static CORE_ADDR
fe1b8b76 6025read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 6026 unsigned int *bytes_read)
c906108c 6027{
e7c27a73 6028 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6029 CORE_ADDR retval = 0;
6030
107d2387 6031 if (cu_header->signed_addr_p)
c906108c 6032 {
107d2387
AC
6033 switch (cu_header->addr_size)
6034 {
6035 case 2:
fe1b8b76 6036 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
6037 break;
6038 case 4:
fe1b8b76 6039 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6040 break;
6041 case 8:
fe1b8b76 6042 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6043 break;
6044 default:
8e65ff28 6045 internal_error (__FILE__, __LINE__,
e2e0b3e5 6046 _("read_address: bad switch, signed [in module %s]"),
659b0389 6047 bfd_get_filename (abfd));
107d2387
AC
6048 }
6049 }
6050 else
6051 {
6052 switch (cu_header->addr_size)
6053 {
6054 case 2:
fe1b8b76 6055 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6056 break;
6057 case 4:
fe1b8b76 6058 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6059 break;
6060 case 8:
fe1b8b76 6061 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6062 break;
6063 default:
8e65ff28 6064 internal_error (__FILE__, __LINE__,
e2e0b3e5 6065 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6066 bfd_get_filename (abfd));
107d2387 6067 }
c906108c 6068 }
64367e0a 6069
107d2387
AC
6070 *bytes_read = cu_header->addr_size;
6071 return retval;
c906108c
SS
6072}
6073
f7ef9339 6074/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6075 specification allows the initial length to take up either 4 bytes
6076 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6077 bytes describe the length and all offsets will be 8 bytes in length
6078 instead of 4.
6079
f7ef9339
KB
6080 An older, non-standard 64-bit format is also handled by this
6081 function. The older format in question stores the initial length
6082 as an 8-byte quantity without an escape value. Lengths greater
6083 than 2^32 aren't very common which means that the initial 4 bytes
6084 is almost always zero. Since a length value of zero doesn't make
6085 sense for the 32-bit format, this initial zero can be considered to
6086 be an escape value which indicates the presence of the older 64-bit
6087 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6088 greater than 4GB. If it becomes necessary to handle lengths
6089 somewhat larger than 4GB, we could allow other small values (such
6090 as the non-sensical values of 1, 2, and 3) to also be used as
6091 escape values indicating the presence of the old format.
f7ef9339 6092
917c78fc
MK
6093 The value returned via bytes_read should be used to increment the
6094 relevant pointer after calling read_initial_length().
613e1657
KB
6095
6096 As a side effect, this function sets the fields initial_length_size
6097 and offset_size in cu_header to the values appropriate for the
6098 length field. (The format of the initial length field determines
dd373385 6099 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6100
6101 [ Note: read_initial_length() and read_offset() are based on the
6102 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6103 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6104 from:
6105
f7ef9339 6106 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6107
6108 This document is only a draft and is subject to change. (So beware.)
6109
f7ef9339 6110 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6111 determined empirically by examining 64-bit ELF files produced by
6112 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6113
6114 - Kevin, July 16, 2002
613e1657
KB
6115 ] */
6116
6117static LONGEST
fe1b8b76 6118read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6119 unsigned int *bytes_read)
613e1657 6120{
fe1b8b76 6121 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6122
dd373385 6123 if (length == 0xffffffff)
613e1657 6124 {
fe1b8b76 6125 length = bfd_get_64 (abfd, buf + 4);
613e1657 6126 *bytes_read = 12;
613e1657 6127 }
dd373385 6128 else if (length == 0)
f7ef9339 6129 {
dd373385 6130 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6131 length = bfd_get_64 (abfd, buf);
f7ef9339 6132 *bytes_read = 8;
f7ef9339 6133 }
613e1657
KB
6134 else
6135 {
6136 *bytes_read = 4;
613e1657
KB
6137 }
6138
dd373385
EZ
6139 if (cu_header)
6140 {
6141 gdb_assert (cu_header->initial_length_size == 0
6142 || cu_header->initial_length_size == 4
6143 || cu_header->initial_length_size == 8
6144 || cu_header->initial_length_size == 12);
6145
6146 if (cu_header->initial_length_size != 0
6147 && cu_header->initial_length_size != *bytes_read)
6148 complaint (&symfile_complaints,
6149 _("intermixed 32-bit and 64-bit DWARF sections"));
6150
6151 cu_header->initial_length_size = *bytes_read;
6152 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6153 }
6154
6155 return length;
613e1657
KB
6156}
6157
6158/* Read an offset from the data stream. The size of the offset is
917c78fc 6159 given by cu_header->offset_size. */
613e1657
KB
6160
6161static LONGEST
fe1b8b76 6162read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6163 unsigned int *bytes_read)
613e1657
KB
6164{
6165 LONGEST retval = 0;
6166
6167 switch (cu_header->offset_size)
6168 {
6169 case 4:
fe1b8b76 6170 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6171 *bytes_read = 4;
6172 break;
6173 case 8:
fe1b8b76 6174 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6175 *bytes_read = 8;
6176 break;
6177 default:
8e65ff28 6178 internal_error (__FILE__, __LINE__,
e2e0b3e5 6179 _("read_offset: bad switch [in module %s]"),
659b0389 6180 bfd_get_filename (abfd));
613e1657
KB
6181 }
6182
917c78fc 6183 return retval;
613e1657
KB
6184}
6185
fe1b8b76
JB
6186static gdb_byte *
6187read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6188{
6189 /* If the size of a host char is 8 bits, we can return a pointer
6190 to the buffer, otherwise we have to copy the data to a buffer
6191 allocated on the temporary obstack. */
4bdf3d34 6192 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6193 return buf;
c906108c
SS
6194}
6195
6196static char *
fe1b8b76 6197read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6198{
6199 /* If the size of a host char is 8 bits, we can return a pointer
6200 to the string, otherwise we have to copy the string to a buffer
6201 allocated on the temporary obstack. */
4bdf3d34 6202 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6203 if (*buf == '\0')
6204 {
6205 *bytes_read_ptr = 1;
6206 return NULL;
6207 }
fe1b8b76
JB
6208 *bytes_read_ptr = strlen ((char *) buf) + 1;
6209 return (char *) buf;
4bdf3d34
JJ
6210}
6211
6212static char *
fe1b8b76 6213read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6214 const struct comp_unit_head *cu_header,
6215 unsigned int *bytes_read_ptr)
6216{
6217 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6218 bytes_read_ptr);
c906108c 6219
6502dd73 6220 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6221 {
8a3fe4f8 6222 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6223 bfd_get_filename (abfd));
4bdf3d34 6224 return NULL;
c906108c 6225 }
6502dd73 6226 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6227 {
8a3fe4f8 6228 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6229 bfd_get_filename (abfd));
c906108c
SS
6230 return NULL;
6231 }
4bdf3d34 6232 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6233 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6234 return NULL;
fe1b8b76 6235 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6236}
6237
ce5d95e1 6238static unsigned long
fe1b8b76 6239read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6240{
ce5d95e1
JB
6241 unsigned long result;
6242 unsigned int num_read;
c906108c
SS
6243 int i, shift;
6244 unsigned char byte;
6245
6246 result = 0;
6247 shift = 0;
6248 num_read = 0;
6249 i = 0;
6250 while (1)
6251 {
fe1b8b76 6252 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6253 buf++;
6254 num_read++;
ce5d95e1 6255 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6256 if ((byte & 128) == 0)
6257 {
6258 break;
6259 }
6260 shift += 7;
6261 }
6262 *bytes_read_ptr = num_read;
6263 return result;
6264}
6265
ce5d95e1 6266static long
fe1b8b76 6267read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6268{
ce5d95e1 6269 long result;
77e0b926 6270 int i, shift, num_read;
c906108c
SS
6271 unsigned char byte;
6272
6273 result = 0;
6274 shift = 0;
c906108c
SS
6275 num_read = 0;
6276 i = 0;
6277 while (1)
6278 {
fe1b8b76 6279 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6280 buf++;
6281 num_read++;
ce5d95e1 6282 result |= ((long)(byte & 127) << shift);
c906108c
SS
6283 shift += 7;
6284 if ((byte & 128) == 0)
6285 {
6286 break;
6287 }
6288 }
77e0b926
DJ
6289 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6290 result |= -(((long)1) << shift);
c906108c
SS
6291 *bytes_read_ptr = num_read;
6292 return result;
6293}
6294
4bb7a0a7
DJ
6295/* Return a pointer to just past the end of an LEB128 number in BUF. */
6296
fe1b8b76
JB
6297static gdb_byte *
6298skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6299{
6300 int byte;
6301
6302 while (1)
6303 {
fe1b8b76 6304 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6305 buf++;
6306 if ((byte & 128) == 0)
6307 return buf;
6308 }
6309}
6310
c906108c 6311static void
e142c38c 6312set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6313{
6314 switch (lang)
6315 {
6316 case DW_LANG_C89:
6317 case DW_LANG_C:
e142c38c 6318 cu->language = language_c;
c906108c
SS
6319 break;
6320 case DW_LANG_C_plus_plus:
e142c38c 6321 cu->language = language_cplus;
c906108c
SS
6322 break;
6323 case DW_LANG_Fortran77:
6324 case DW_LANG_Fortran90:
b21b22e0 6325 case DW_LANG_Fortran95:
e142c38c 6326 cu->language = language_fortran;
c906108c
SS
6327 break;
6328 case DW_LANG_Mips_Assembler:
e142c38c 6329 cu->language = language_asm;
c906108c 6330 break;
bebd888e 6331 case DW_LANG_Java:
e142c38c 6332 cu->language = language_java;
bebd888e 6333 break;
c906108c 6334 case DW_LANG_Ada83:
8aaf0b47 6335 case DW_LANG_Ada95:
bc5f45f8
JB
6336 cu->language = language_ada;
6337 break;
72019c9c
GM
6338 case DW_LANG_Modula2:
6339 cu->language = language_m2;
6340 break;
fe8e67fd
PM
6341 case DW_LANG_Pascal83:
6342 cu->language = language_pascal;
6343 break;
c906108c
SS
6344 case DW_LANG_Cobol74:
6345 case DW_LANG_Cobol85:
c906108c 6346 default:
e142c38c 6347 cu->language = language_minimal;
c906108c
SS
6348 break;
6349 }
e142c38c 6350 cu->language_defn = language_def (cu->language);
c906108c
SS
6351}
6352
6353/* Return the named attribute or NULL if not there. */
6354
6355static struct attribute *
e142c38c 6356dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6357{
6358 unsigned int i;
6359 struct attribute *spec = NULL;
6360
6361 for (i = 0; i < die->num_attrs; ++i)
6362 {
6363 if (die->attrs[i].name == name)
10b3939b 6364 return &die->attrs[i];
c906108c
SS
6365 if (die->attrs[i].name == DW_AT_specification
6366 || die->attrs[i].name == DW_AT_abstract_origin)
6367 spec = &die->attrs[i];
6368 }
c906108c 6369
10b3939b
DJ
6370 if (spec)
6371 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6372
c906108c
SS
6373 return NULL;
6374}
6375
05cf31d1
JB
6376/* Return non-zero iff the attribute NAME is defined for the given DIE,
6377 and holds a non-zero value. This function should only be used for
6378 DW_FORM_flag attributes. */
6379
6380static int
6381dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6382{
6383 struct attribute *attr = dwarf2_attr (die, name, cu);
6384
6385 return (attr && DW_UNSND (attr));
6386}
6387
3ca72b44 6388static int
e142c38c 6389die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6390{
05cf31d1
JB
6391 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6392 which value is non-zero. However, we have to be careful with
6393 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6394 (via dwarf2_flag_true_p) follows this attribute. So we may
6395 end up accidently finding a declaration attribute that belongs
6396 to a different DIE referenced by the specification attribute,
6397 even though the given DIE does not have a declaration attribute. */
6398 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6399 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6400}
6401
63d06c5c
DC
6402/* Return the die giving the specification for DIE, if there is
6403 one. */
6404
6405static struct die_info *
e142c38c 6406die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6407{
e142c38c 6408 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6409
6410 if (spec_attr == NULL)
6411 return NULL;
6412 else
10b3939b 6413 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6414}
c906108c 6415
debd256d
JB
6416/* Free the line_header structure *LH, and any arrays and strings it
6417 refers to. */
6418static void
6419free_line_header (struct line_header *lh)
6420{
6421 if (lh->standard_opcode_lengths)
a8bc7b56 6422 xfree (lh->standard_opcode_lengths);
debd256d
JB
6423
6424 /* Remember that all the lh->file_names[i].name pointers are
6425 pointers into debug_line_buffer, and don't need to be freed. */
6426 if (lh->file_names)
a8bc7b56 6427 xfree (lh->file_names);
debd256d
JB
6428
6429 /* Similarly for the include directory names. */
6430 if (lh->include_dirs)
a8bc7b56 6431 xfree (lh->include_dirs);
debd256d 6432
a8bc7b56 6433 xfree (lh);
debd256d
JB
6434}
6435
6436
6437/* Add an entry to LH's include directory table. */
6438static void
6439add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6440{
debd256d
JB
6441 /* Grow the array if necessary. */
6442 if (lh->include_dirs_size == 0)
c5aa993b 6443 {
debd256d
JB
6444 lh->include_dirs_size = 1; /* for testing */
6445 lh->include_dirs = xmalloc (lh->include_dirs_size
6446 * sizeof (*lh->include_dirs));
6447 }
6448 else if (lh->num_include_dirs >= lh->include_dirs_size)
6449 {
6450 lh->include_dirs_size *= 2;
6451 lh->include_dirs = xrealloc (lh->include_dirs,
6452 (lh->include_dirs_size
6453 * sizeof (*lh->include_dirs)));
c5aa993b 6454 }
c906108c 6455
debd256d
JB
6456 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6457}
6458
6459
6460/* Add an entry to LH's file name table. */
6461static void
6462add_file_name (struct line_header *lh,
6463 char *name,
6464 unsigned int dir_index,
6465 unsigned int mod_time,
6466 unsigned int length)
6467{
6468 struct file_entry *fe;
6469
6470 /* Grow the array if necessary. */
6471 if (lh->file_names_size == 0)
6472 {
6473 lh->file_names_size = 1; /* for testing */
6474 lh->file_names = xmalloc (lh->file_names_size
6475 * sizeof (*lh->file_names));
6476 }
6477 else if (lh->num_file_names >= lh->file_names_size)
6478 {
6479 lh->file_names_size *= 2;
6480 lh->file_names = xrealloc (lh->file_names,
6481 (lh->file_names_size
6482 * sizeof (*lh->file_names)));
6483 }
6484
6485 fe = &lh->file_names[lh->num_file_names++];
6486 fe->name = name;
6487 fe->dir_index = dir_index;
6488 fe->mod_time = mod_time;
6489 fe->length = length;
aaa75496 6490 fe->included_p = 0;
cb1df416 6491 fe->symtab = NULL;
debd256d
JB
6492}
6493
6494
6495/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6496 .debug_line, according to the endianness of ABFD. Return a pointer
6497 to a struct line_header, allocated using xmalloc.
debd256d
JB
6498
6499 NOTE: the strings in the include directory and file name tables of
6500 the returned object point into debug_line_buffer, and must not be
6501 freed. */
6502static struct line_header *
6503dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6504 struct dwarf2_cu *cu)
debd256d
JB
6505{
6506 struct cleanup *back_to;
6507 struct line_header *lh;
fe1b8b76 6508 gdb_byte *line_ptr;
891d2f0b 6509 unsigned int bytes_read;
debd256d
JB
6510 int i;
6511 char *cur_dir, *cur_file;
6512
6502dd73 6513 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6514 {
e2e0b3e5 6515 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6516 return 0;
6517 }
6518
a738430d
MK
6519 /* Make sure that at least there's room for the total_length field.
6520 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6521 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6522 {
4d3c2250 6523 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6524 return 0;
6525 }
6526
6527 lh = xmalloc (sizeof (*lh));
6528 memset (lh, 0, sizeof (*lh));
6529 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6530 (void *) lh);
6531
6502dd73 6532 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6533
a738430d 6534 /* Read in the header. */
dd373385
EZ
6535 lh->total_length =
6536 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6537 line_ptr += bytes_read;
6502dd73
DJ
6538 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6539 + dwarf2_per_objfile->line_size))
debd256d 6540 {
4d3c2250 6541 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6542 return 0;
6543 }
6544 lh->statement_program_end = line_ptr + lh->total_length;
6545 lh->version = read_2_bytes (abfd, line_ptr);
6546 line_ptr += 2;
e7c27a73 6547 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6548 line_ptr += bytes_read;
6549 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6550 line_ptr += 1;
6551 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6552 line_ptr += 1;
6553 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6554 line_ptr += 1;
6555 lh->line_range = read_1_byte (abfd, line_ptr);
6556 line_ptr += 1;
6557 lh->opcode_base = read_1_byte (abfd, line_ptr);
6558 line_ptr += 1;
6559 lh->standard_opcode_lengths
fe1b8b76 6560 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6561
6562 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6563 for (i = 1; i < lh->opcode_base; ++i)
6564 {
6565 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6566 line_ptr += 1;
6567 }
6568
a738430d 6569 /* Read directory table. */
debd256d
JB
6570 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6571 {
6572 line_ptr += bytes_read;
6573 add_include_dir (lh, cur_dir);
6574 }
6575 line_ptr += bytes_read;
6576
a738430d 6577 /* Read file name table. */
debd256d
JB
6578 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6579 {
6580 unsigned int dir_index, mod_time, length;
6581
6582 line_ptr += bytes_read;
6583 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6584 line_ptr += bytes_read;
6585 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6586 line_ptr += bytes_read;
6587 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6588 line_ptr += bytes_read;
6589
6590 add_file_name (lh, cur_file, dir_index, mod_time, length);
6591 }
6592 line_ptr += bytes_read;
6593 lh->statement_program_start = line_ptr;
6594
6502dd73
DJ
6595 if (line_ptr > (dwarf2_per_objfile->line_buffer
6596 + dwarf2_per_objfile->line_size))
4d3c2250 6597 complaint (&symfile_complaints,
e2e0b3e5 6598 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6599
6600 discard_cleanups (back_to);
6601 return lh;
6602}
c906108c 6603
5fb290d7
DJ
6604/* This function exists to work around a bug in certain compilers
6605 (particularly GCC 2.95), in which the first line number marker of a
6606 function does not show up until after the prologue, right before
6607 the second line number marker. This function shifts ADDRESS down
6608 to the beginning of the function if necessary, and is called on
6609 addresses passed to record_line. */
6610
6611static CORE_ADDR
e142c38c 6612check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6613{
6614 struct function_range *fn;
6615
6616 /* Find the function_range containing address. */
e142c38c 6617 if (!cu->first_fn)
5fb290d7
DJ
6618 return address;
6619
e142c38c
DJ
6620 if (!cu->cached_fn)
6621 cu->cached_fn = cu->first_fn;
5fb290d7 6622
e142c38c 6623 fn = cu->cached_fn;
5fb290d7
DJ
6624 while (fn)
6625 if (fn->lowpc <= address && fn->highpc > address)
6626 goto found;
6627 else
6628 fn = fn->next;
6629
e142c38c
DJ
6630 fn = cu->first_fn;
6631 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6632 if (fn->lowpc <= address && fn->highpc > address)
6633 goto found;
6634 else
6635 fn = fn->next;
6636
6637 return address;
6638
6639 found:
6640 if (fn->seen_line)
6641 return address;
6642 if (address != fn->lowpc)
4d3c2250 6643 complaint (&symfile_complaints,
e2e0b3e5 6644 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6645 (unsigned long) address, fn->name);
5fb290d7
DJ
6646 fn->seen_line = 1;
6647 return fn->lowpc;
6648}
6649
aaa75496
JB
6650/* Decode the Line Number Program (LNP) for the given line_header
6651 structure and CU. The actual information extracted and the type
6652 of structures created from the LNP depends on the value of PST.
6653
6654 1. If PST is NULL, then this procedure uses the data from the program
6655 to create all necessary symbol tables, and their linetables.
6656 The compilation directory of the file is passed in COMP_DIR,
6657 and must not be NULL.
6658
6659 2. If PST is not NULL, this procedure reads the program to determine
6660 the list of files included by the unit represented by PST, and
6661 builds all the associated partial symbol tables. In this case,
6662 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6663 is not used to compute the full name of the symtab, and therefore
6664 omitting it when building the partial symtab does not introduce
6665 the potential for inconsistency - a partial symtab and its associated
6666 symbtab having a different fullname -). */
debd256d 6667
c906108c 6668static void
debd256d 6669dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6670 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6671{
fe1b8b76
JB
6672 gdb_byte *line_ptr;
6673 gdb_byte *line_end;
e7c27a73 6674 unsigned int bytes_read;
c906108c 6675 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6676 CORE_ADDR baseaddr;
6677 struct objfile *objfile = cu->objfile;
aaa75496 6678 const int decode_for_pst_p = (pst != NULL);
cb1df416 6679 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
6680
6681 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6682
debd256d
JB
6683 line_ptr = lh->statement_program_start;
6684 line_end = lh->statement_program_end;
c906108c
SS
6685
6686 /* Read the statement sequences until there's nothing left. */
6687 while (line_ptr < line_end)
6688 {
6689 /* state machine registers */
6690 CORE_ADDR address = 0;
6691 unsigned int file = 1;
6692 unsigned int line = 1;
6693 unsigned int column = 0;
debd256d 6694 int is_stmt = lh->default_is_stmt;
c906108c
SS
6695 int basic_block = 0;
6696 int end_sequence = 0;
6697
aaa75496 6698 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6699 {
aaa75496 6700 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6701 /* lh->include_dirs and lh->file_names are 0-based, but the
6702 directory and file name numbers in the statement program
6703 are 1-based. */
6704 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6705 char *dir = NULL;
a738430d 6706
debd256d
JB
6707 if (fe->dir_index)
6708 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6709
6710 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6711 }
6712
a738430d 6713 /* Decode the table. */
c5aa993b 6714 while (!end_sequence)
c906108c
SS
6715 {
6716 op_code = read_1_byte (abfd, line_ptr);
6717 line_ptr += 1;
9aa1fe7e 6718
debd256d 6719 if (op_code >= lh->opcode_base)
a738430d
MK
6720 {
6721 /* Special operand. */
debd256d
JB
6722 adj_opcode = op_code - lh->opcode_base;
6723 address += (adj_opcode / lh->line_range)
6724 * lh->minimum_instruction_length;
6725 line += lh->line_base + (adj_opcode % lh->line_range);
25e43795
DJ
6726 if (lh->num_file_names < file)
6727 dwarf2_debug_line_missing_file_complaint ();
6728 else
6729 {
6730 lh->file_names[file - 1].included_p = 1;
6731 if (!decode_for_pst_p)
6732 {
6733 if (last_subfile != current_subfile)
6734 {
6735 if (last_subfile)
6736 record_line (last_subfile, 0, address);
6737 last_subfile = current_subfile;
6738 }
6739 /* Append row to matrix using current values. */
6740 record_line (current_subfile, line,
6741 check_cu_functions (address, cu));
366da635 6742 }
25e43795 6743 }
9aa1fe7e
GK
6744 basic_block = 1;
6745 }
6746 else switch (op_code)
c906108c
SS
6747 {
6748 case DW_LNS_extended_op:
473b7be6
DJ
6749 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6750 line_ptr += bytes_read;
c906108c
SS
6751 extended_op = read_1_byte (abfd, line_ptr);
6752 line_ptr += 1;
6753 switch (extended_op)
6754 {
6755 case DW_LNE_end_sequence:
6756 end_sequence = 1;
25e43795
DJ
6757
6758 if (lh->num_file_names < file)
6759 dwarf2_debug_line_missing_file_complaint ();
6760 else
6761 {
6762 lh->file_names[file - 1].included_p = 1;
6763 if (!decode_for_pst_p)
6764 record_line (current_subfile, 0, address);
6765 }
c906108c
SS
6766 break;
6767 case DW_LNE_set_address:
e7c27a73 6768 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6769 line_ptr += bytes_read;
6770 address += baseaddr;
c906108c
SS
6771 break;
6772 case DW_LNE_define_file:
debd256d
JB
6773 {
6774 char *cur_file;
6775 unsigned int dir_index, mod_time, length;
6776
6777 cur_file = read_string (abfd, line_ptr, &bytes_read);
6778 line_ptr += bytes_read;
6779 dir_index =
6780 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6781 line_ptr += bytes_read;
6782 mod_time =
6783 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6784 line_ptr += bytes_read;
6785 length =
6786 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6787 line_ptr += bytes_read;
6788 add_file_name (lh, cur_file, dir_index, mod_time, length);
6789 }
c906108c
SS
6790 break;
6791 default:
4d3c2250 6792 complaint (&symfile_complaints,
e2e0b3e5 6793 _("mangled .debug_line section"));
debd256d 6794 return;
c906108c
SS
6795 }
6796 break;
6797 case DW_LNS_copy:
25e43795
DJ
6798 if (lh->num_file_names < file)
6799 dwarf2_debug_line_missing_file_complaint ();
6800 else
366da635 6801 {
25e43795
DJ
6802 lh->file_names[file - 1].included_p = 1;
6803 if (!decode_for_pst_p)
6804 {
6805 if (last_subfile != current_subfile)
6806 {
6807 if (last_subfile)
6808 record_line (last_subfile, 0, address);
6809 last_subfile = current_subfile;
6810 }
6811 record_line (current_subfile, line,
6812 check_cu_functions (address, cu));
6813 }
366da635 6814 }
c906108c
SS
6815 basic_block = 0;
6816 break;
6817 case DW_LNS_advance_pc:
debd256d 6818 address += lh->minimum_instruction_length
c906108c
SS
6819 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6820 line_ptr += bytes_read;
6821 break;
6822 case DW_LNS_advance_line:
6823 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6824 line_ptr += bytes_read;
6825 break;
6826 case DW_LNS_set_file:
debd256d 6827 {
a738430d
MK
6828 /* The arrays lh->include_dirs and lh->file_names are
6829 0-based, but the directory and file name numbers in
6830 the statement program are 1-based. */
debd256d 6831 struct file_entry *fe;
4f1520fb 6832 char *dir = NULL;
a738430d 6833
debd256d
JB
6834 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6835 line_ptr += bytes_read;
25e43795
DJ
6836 if (lh->num_file_names < file)
6837 dwarf2_debug_line_missing_file_complaint ();
6838 else
6839 {
6840 fe = &lh->file_names[file - 1];
6841 if (fe->dir_index)
6842 dir = lh->include_dirs[fe->dir_index - 1];
6843 if (!decode_for_pst_p)
6844 {
6845 last_subfile = current_subfile;
6846 dwarf2_start_subfile (fe->name, dir, comp_dir);
6847 }
6848 }
debd256d 6849 }
c906108c
SS
6850 break;
6851 case DW_LNS_set_column:
6852 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6853 line_ptr += bytes_read;
6854 break;
6855 case DW_LNS_negate_stmt:
6856 is_stmt = (!is_stmt);
6857 break;
6858 case DW_LNS_set_basic_block:
6859 basic_block = 1;
6860 break;
c2c6d25f
JM
6861 /* Add to the address register of the state machine the
6862 address increment value corresponding to special opcode
a738430d
MK
6863 255. I.e., this value is scaled by the minimum
6864 instruction length since special opcode 255 would have
6865 scaled the the increment. */
c906108c 6866 case DW_LNS_const_add_pc:
debd256d
JB
6867 address += (lh->minimum_instruction_length
6868 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6869 break;
6870 case DW_LNS_fixed_advance_pc:
6871 address += read_2_bytes (abfd, line_ptr);
6872 line_ptr += 2;
6873 break;
9aa1fe7e 6874 default:
a738430d
MK
6875 {
6876 /* Unknown standard opcode, ignore it. */
9aa1fe7e 6877 int i;
a738430d 6878
debd256d 6879 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6880 {
6881 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6882 line_ptr += bytes_read;
6883 }
6884 }
c906108c
SS
6885 }
6886 }
6887 }
aaa75496
JB
6888
6889 if (decode_for_pst_p)
6890 {
6891 int file_index;
6892
6893 /* Now that we're done scanning the Line Header Program, we can
6894 create the psymtab of each included file. */
6895 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6896 if (lh->file_names[file_index].included_p == 1)
6897 {
5b5464ad
JB
6898 const struct file_entry fe = lh->file_names [file_index];
6899 char *include_name = fe.name;
6900 char *dir_name = NULL;
6901 char *pst_filename = pst->filename;
6902
6903 if (fe.dir_index)
6904 dir_name = lh->include_dirs[fe.dir_index - 1];
6905
6906 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6907 {
1754f103
MK
6908 include_name = concat (dir_name, SLASH_STRING,
6909 include_name, (char *)NULL);
5b5464ad
JB
6910 make_cleanup (xfree, include_name);
6911 }
6912
6913 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6914 {
1754f103
MK
6915 pst_filename = concat (pst->dirname, SLASH_STRING,
6916 pst_filename, (char *)NULL);
5b5464ad
JB
6917 make_cleanup (xfree, pst_filename);
6918 }
6919
6920 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
6921 dwarf2_create_include_psymtab (include_name, pst, objfile);
6922 }
6923 }
cb1df416
DJ
6924 else
6925 {
6926 /* Make sure a symtab is created for every file, even files
6927 which contain only variables (i.e. no code with associated
6928 line numbers). */
6929
6930 int i;
6931 struct file_entry *fe;
6932
6933 for (i = 0; i < lh->num_file_names; i++)
6934 {
6935 char *dir = NULL;
6936 fe = &lh->file_names[i];
6937 if (fe->dir_index)
6938 dir = lh->include_dirs[fe->dir_index - 1];
6939 dwarf2_start_subfile (fe->name, dir, comp_dir);
6940
6941 /* Skip the main file; we don't need it, and it must be
6942 allocated last, so that it will show up before the
6943 non-primary symtabs in the objfile's symtab list. */
6944 if (current_subfile == first_subfile)
6945 continue;
6946
6947 if (current_subfile->symtab == NULL)
6948 current_subfile->symtab = allocate_symtab (current_subfile->name,
6949 cu->objfile);
6950 fe->symtab = current_subfile->symtab;
6951 }
6952 }
c906108c
SS
6953}
6954
6955/* Start a subfile for DWARF. FILENAME is the name of the file and
6956 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
6957 or NULL if not known. COMP_DIR is the compilation directory for the
6958 linetable's compilation unit or NULL if not known.
c906108c
SS
6959 This routine tries to keep line numbers from identical absolute and
6960 relative file names in a common subfile.
6961
6962 Using the `list' example from the GDB testsuite, which resides in
6963 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6964 of /srcdir/list0.c yields the following debugging information for list0.c:
6965
c5aa993b
JM
6966 DW_AT_name: /srcdir/list0.c
6967 DW_AT_comp_dir: /compdir
357e46e7 6968 files.files[0].name: list0.h
c5aa993b 6969 files.files[0].dir: /srcdir
357e46e7 6970 files.files[1].name: list0.c
c5aa993b 6971 files.files[1].dir: /srcdir
c906108c
SS
6972
6973 The line number information for list0.c has to end up in a single
4f1520fb
FR
6974 subfile, so that `break /srcdir/list0.c:1' works as expected.
6975 start_subfile will ensure that this happens provided that we pass the
6976 concatenation of files.files[1].dir and files.files[1].name as the
6977 subfile's name. */
c906108c
SS
6978
6979static void
4f1520fb 6980dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 6981{
4f1520fb
FR
6982 char *fullname;
6983
6984 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6985 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6986 second argument to start_subfile. To be consistent, we do the
6987 same here. In order not to lose the line information directory,
6988 we concatenate it to the filename when it makes sense.
6989 Note that the Dwarf3 standard says (speaking of filenames in line
6990 information): ``The directory index is ignored for file names
6991 that represent full path names''. Thus ignoring dirname in the
6992 `else' branch below isn't an issue. */
c906108c 6993
d5166ae1 6994 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
6995 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6996 else
6997 fullname = filename;
c906108c 6998
4f1520fb
FR
6999 start_subfile (fullname, comp_dir);
7000
7001 if (fullname != filename)
7002 xfree (fullname);
c906108c
SS
7003}
7004
4c2df51b
DJ
7005static void
7006var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 7007 struct dwarf2_cu *cu)
4c2df51b 7008{
e7c27a73
DJ
7009 struct objfile *objfile = cu->objfile;
7010 struct comp_unit_head *cu_header = &cu->header;
7011
4c2df51b
DJ
7012 /* NOTE drow/2003-01-30: There used to be a comment and some special
7013 code here to turn a symbol with DW_AT_external and a
7014 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7015 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7016 with some versions of binutils) where shared libraries could have
7017 relocations against symbols in their debug information - the
7018 minimal symbol would have the right address, but the debug info
7019 would not. It's no longer necessary, because we will explicitly
7020 apply relocations when we read in the debug information now. */
7021
7022 /* A DW_AT_location attribute with no contents indicates that a
7023 variable has been optimized away. */
7024 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7025 {
7026 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7027 return;
7028 }
7029
7030 /* Handle one degenerate form of location expression specially, to
7031 preserve GDB's previous behavior when section offsets are
7032 specified. If this is just a DW_OP_addr then mark this symbol
7033 as LOC_STATIC. */
7034
7035 if (attr_form_is_block (attr)
7036 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7037 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7038 {
891d2f0b 7039 unsigned int dummy;
4c2df51b
DJ
7040
7041 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 7042 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
7043 fixup_symbol_section (sym, objfile);
7044 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7045 SYMBOL_SECTION (sym));
7046 SYMBOL_CLASS (sym) = LOC_STATIC;
7047 return;
7048 }
7049
7050 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7051 expression evaluator, and use LOC_COMPUTED only when necessary
7052 (i.e. when the value of a register or memory location is
7053 referenced, or a thread-local block, etc.). Then again, it might
7054 not be worthwhile. I'm assuming that it isn't unless performance
7055 or memory numbers show me otherwise. */
7056
e7c27a73 7057 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
7058 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7059}
7060
c906108c
SS
7061/* Given a pointer to a DWARF information entry, figure out if we need
7062 to make a symbol table entry for it, and if so, create a new entry
7063 and return a pointer to it.
7064 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 7065 used the passed type. */
c906108c
SS
7066
7067static struct symbol *
e7c27a73 7068new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 7069{
e7c27a73 7070 struct objfile *objfile = cu->objfile;
c906108c
SS
7071 struct symbol *sym = NULL;
7072 char *name;
7073 struct attribute *attr = NULL;
7074 struct attribute *attr2 = NULL;
e142c38c
DJ
7075 CORE_ADDR baseaddr;
7076
7077 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7078
5c4e30ca 7079 if (die->tag != DW_TAG_namespace)
e142c38c 7080 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
7081 else
7082 name = TYPE_NAME (type);
7083
c906108c
SS
7084 if (name)
7085 {
4a146b47 7086 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
7087 sizeof (struct symbol));
7088 OBJSTAT (objfile, n_syms++);
7089 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7090
7091 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7092 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7093 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7094
7095 /* Default assumptions.
c5aa993b 7096 Use the passed type or decode it from the die. */
176620f1 7097 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7098 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7099 if (type != NULL)
7100 SYMBOL_TYPE (sym) = type;
7101 else
e7c27a73 7102 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7103 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7104 if (attr)
7105 {
7106 SYMBOL_LINE (sym) = DW_UNSND (attr);
7107 }
cb1df416
DJ
7108
7109 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7110 if (attr)
7111 {
7112 int file_index = DW_UNSND (attr);
7113 if (cu->line_header == NULL
7114 || file_index > cu->line_header->num_file_names)
7115 complaint (&symfile_complaints,
7116 _("file index out of range"));
1c3d648d 7117 else if (file_index > 0)
cb1df416
DJ
7118 {
7119 struct file_entry *fe;
7120 fe = &cu->line_header->file_names[file_index - 1];
7121 SYMBOL_SYMTAB (sym) = fe->symtab;
7122 }
7123 }
7124
c906108c
SS
7125 switch (die->tag)
7126 {
7127 case DW_TAG_label:
e142c38c 7128 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7129 if (attr)
7130 {
7131 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7132 }
7133 SYMBOL_CLASS (sym) = LOC_LABEL;
7134 break;
7135 case DW_TAG_subprogram:
7136 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7137 finish_block. */
7138 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7139 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7140 if (attr2 && (DW_UNSND (attr2) != 0))
7141 {
7142 add_symbol_to_list (sym, &global_symbols);
7143 }
7144 else
7145 {
e142c38c 7146 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7147 }
7148 break;
7149 case DW_TAG_variable:
7150 /* Compilation with minimal debug info may result in variables
7151 with missing type entries. Change the misleading `void' type
7152 to something sensible. */
7153 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7154 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
7155 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
7156 "<variable, no debug info>",
7157 objfile);
e142c38c 7158 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7159 if (attr)
7160 {
e7c27a73 7161 dwarf2_const_value (attr, sym, cu);
e142c38c 7162 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7163 if (attr2 && (DW_UNSND (attr2) != 0))
7164 add_symbol_to_list (sym, &global_symbols);
7165 else
e142c38c 7166 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7167 break;
7168 }
e142c38c 7169 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7170 if (attr)
7171 {
e7c27a73 7172 var_decode_location (attr, sym, cu);
e142c38c 7173 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7174 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7175 add_symbol_to_list (sym, &global_symbols);
c906108c 7176 else
e142c38c 7177 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7178 }
7179 else
7180 {
7181 /* We do not know the address of this symbol.
c5aa993b
JM
7182 If it is an external symbol and we have type information
7183 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7184 The address of the variable will then be determined from
7185 the minimal symbol table whenever the variable is
7186 referenced. */
e142c38c 7187 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7188 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7189 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7190 {
7191 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7192 add_symbol_to_list (sym, &global_symbols);
7193 }
7194 }
7195 break;
7196 case DW_TAG_formal_parameter:
e142c38c 7197 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7198 if (attr)
7199 {
e7c27a73 7200 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7201 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7202 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7203 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7204 }
e142c38c 7205 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7206 if (attr)
7207 {
e7c27a73 7208 dwarf2_const_value (attr, sym, cu);
c906108c 7209 }
e142c38c 7210 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7211 break;
7212 case DW_TAG_unspecified_parameters:
7213 /* From varargs functions; gdb doesn't seem to have any
7214 interest in this information, so just ignore it for now.
7215 (FIXME?) */
7216 break;
7217 case DW_TAG_class_type:
7218 case DW_TAG_structure_type:
7219 case DW_TAG_union_type:
72019c9c 7220 case DW_TAG_set_type:
c906108c
SS
7221 case DW_TAG_enumeration_type:
7222 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7223 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7224
63d06c5c
DC
7225 /* Make sure that the symbol includes appropriate enclosing
7226 classes/namespaces in its name. These are calculated in
134d01f1 7227 read_structure_type, and the correct name is saved in
63d06c5c
DC
7228 the type. */
7229
987504bb
JJ
7230 if (cu->language == language_cplus
7231 || cu->language == language_java)
c906108c 7232 {
63d06c5c
DC
7233 struct type *type = SYMBOL_TYPE (sym);
7234
7235 if (TYPE_TAG_NAME (type) != NULL)
7236 {
7237 /* FIXME: carlton/2003-11-10: Should this use
7238 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7239 arises further down in this function.) */
7240 /* The type's name is already allocated along with
7241 this objfile, so we don't need to duplicate it
7242 for the symbol. */
7243 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7244 }
c906108c 7245 }
63d06c5c
DC
7246
7247 {
987504bb 7248 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7249 really ever be static objects: otherwise, if you try
7250 to, say, break of a class's method and you're in a file
7251 which doesn't mention that class, it won't work unless
7252 the check for all static symbols in lookup_symbol_aux
7253 saves you. See the OtherFileClass tests in
7254 gdb.c++/namespace.exp. */
7255
7256 struct pending **list_to_add;
7257
e142c38c 7258 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7259 && (cu->language == language_cplus
7260 || cu->language == language_java)
e142c38c 7261 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7262
7263 add_symbol_to_list (sym, list_to_add);
7264
7265 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7266 defines a typedef for "foo". A Java class declaration also
7267 defines a typedef for the class. Synthesize a typedef symbol
7268 so that "ptype foo" works as expected. */
7269 if (cu->language == language_cplus
8c6860bb
JB
7270 || cu->language == language_java
7271 || cu->language == language_ada)
63d06c5c
DC
7272 {
7273 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7274 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7275 sizeof (struct symbol));
7276 *typedef_sym = *sym;
7277 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7278 /* The symbol's name is already allocated along with
7279 this objfile, so we don't need to duplicate it for
7280 the type. */
63d06c5c 7281 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7283 add_symbol_to_list (typedef_sym, list_to_add);
7284 }
7285 }
c906108c
SS
7286 break;
7287 case DW_TAG_typedef:
63d06c5c
DC
7288 if (processing_has_namespace_info
7289 && processing_current_prefix[0] != '\0')
7290 {
987504bb
JJ
7291 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7292 processing_current_prefix,
7293 name, cu);
63d06c5c
DC
7294 }
7295 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7296 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7297 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7298 break;
c906108c 7299 case DW_TAG_base_type:
a02abb62 7300 case DW_TAG_subrange_type:
c906108c 7301 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7302 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7303 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7304 break;
7305 case DW_TAG_enumerator:
63d06c5c
DC
7306 if (processing_has_namespace_info
7307 && processing_current_prefix[0] != '\0')
7308 {
987504bb
JJ
7309 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7310 processing_current_prefix,
7311 name, cu);
63d06c5c 7312 }
e142c38c 7313 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7314 if (attr)
7315 {
e7c27a73 7316 dwarf2_const_value (attr, sym, cu);
c906108c 7317 }
63d06c5c
DC
7318 {
7319 /* NOTE: carlton/2003-11-10: See comment above in the
7320 DW_TAG_class_type, etc. block. */
7321
7322 struct pending **list_to_add;
7323
e142c38c 7324 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7325 && (cu->language == language_cplus
7326 || cu->language == language_java)
e142c38c 7327 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7328
7329 add_symbol_to_list (sym, list_to_add);
7330 }
c906108c 7331 break;
5c4e30ca
DC
7332 case DW_TAG_namespace:
7333 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7334 add_symbol_to_list (sym, &global_symbols);
7335 break;
c906108c
SS
7336 default:
7337 /* Not a tag we recognize. Hopefully we aren't processing
7338 trash data, but since we must specifically ignore things
7339 we don't recognize, there is nothing else we should do at
7340 this point. */
e2e0b3e5 7341 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7342 dwarf_tag_name (die->tag));
c906108c
SS
7343 break;
7344 }
7345 }
7346 return (sym);
7347}
7348
7349/* Copy constant value from an attribute to a symbol. */
7350
7351static void
107d2387 7352dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7353 struct dwarf2_cu *cu)
c906108c 7354{
e7c27a73
DJ
7355 struct objfile *objfile = cu->objfile;
7356 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7357 struct dwarf_block *blk;
7358
7359 switch (attr->form)
7360 {
7361 case DW_FORM_addr:
107d2387 7362 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7363 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7364 cu_header->addr_size,
7365 TYPE_LENGTH (SYMBOL_TYPE
7366 (sym)));
4e38b386 7367 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7368 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7369 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7370 it's body - store_unsigned_integer. */
7371 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7372 DW_ADDR (attr));
c906108c
SS
7373 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7374 break;
7375 case DW_FORM_block1:
7376 case DW_FORM_block2:
7377 case DW_FORM_block4:
7378 case DW_FORM_block:
7379 blk = DW_BLOCK (attr);
7380 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7381 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7382 blk->size,
7383 TYPE_LENGTH (SYMBOL_TYPE
7384 (sym)));
4e38b386 7385 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7386 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7387 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7388 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7389 break;
2df3850c
JM
7390
7391 /* The DW_AT_const_value attributes are supposed to carry the
7392 symbol's value "represented as it would be on the target
7393 architecture." By the time we get here, it's already been
7394 converted to host endianness, so we just need to sign- or
7395 zero-extend it as appropriate. */
7396 case DW_FORM_data1:
7397 dwarf2_const_value_data (attr, sym, 8);
7398 break;
c906108c 7399 case DW_FORM_data2:
2df3850c
JM
7400 dwarf2_const_value_data (attr, sym, 16);
7401 break;
c906108c 7402 case DW_FORM_data4:
2df3850c
JM
7403 dwarf2_const_value_data (attr, sym, 32);
7404 break;
c906108c 7405 case DW_FORM_data8:
2df3850c
JM
7406 dwarf2_const_value_data (attr, sym, 64);
7407 break;
7408
c906108c 7409 case DW_FORM_sdata:
2df3850c
JM
7410 SYMBOL_VALUE (sym) = DW_SND (attr);
7411 SYMBOL_CLASS (sym) = LOC_CONST;
7412 break;
7413
c906108c
SS
7414 case DW_FORM_udata:
7415 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7416 SYMBOL_CLASS (sym) = LOC_CONST;
7417 break;
2df3850c 7418
c906108c 7419 default:
4d3c2250 7420 complaint (&symfile_complaints,
e2e0b3e5 7421 _("unsupported const value attribute form: '%s'"),
4d3c2250 7422 dwarf_form_name (attr->form));
c906108c
SS
7423 SYMBOL_VALUE (sym) = 0;
7424 SYMBOL_CLASS (sym) = LOC_CONST;
7425 break;
7426 }
7427}
7428
2df3850c
JM
7429
7430/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7431 or zero-extend it as appropriate for the symbol's type. */
7432static void
7433dwarf2_const_value_data (struct attribute *attr,
7434 struct symbol *sym,
7435 int bits)
7436{
7437 LONGEST l = DW_UNSND (attr);
7438
7439 if (bits < sizeof (l) * 8)
7440 {
7441 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7442 l &= ((LONGEST) 1 << bits) - 1;
7443 else
bf9198f1 7444 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7445 }
7446
7447 SYMBOL_VALUE (sym) = l;
7448 SYMBOL_CLASS (sym) = LOC_CONST;
7449}
7450
7451
c906108c
SS
7452/* Return the type of the die in question using its DW_AT_type attribute. */
7453
7454static struct type *
e7c27a73 7455die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7456{
7457 struct type *type;
7458 struct attribute *type_attr;
7459 struct die_info *type_die;
c906108c 7460
e142c38c 7461 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7462 if (!type_attr)
7463 {
7464 /* A missing DW_AT_type represents a void type. */
e142c38c 7465 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
7466 }
7467 else
10b3939b
DJ
7468 type_die = follow_die_ref (die, type_attr, cu);
7469
e7c27a73 7470 type = tag_type_to_type (type_die, cu);
c906108c
SS
7471 if (!type)
7472 {
7473 dump_die (type_die);
8a3fe4f8 7474 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7475 cu->objfile->name);
c906108c
SS
7476 }
7477 return type;
7478}
7479
7480/* Return the containing type of the die in question using its
7481 DW_AT_containing_type attribute. */
7482
7483static struct type *
e7c27a73 7484die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7485{
7486 struct type *type = NULL;
7487 struct attribute *type_attr;
7488 struct die_info *type_die = NULL;
c906108c 7489
e142c38c 7490 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7491 if (type_attr)
7492 {
10b3939b 7493 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7494 type = tag_type_to_type (type_die, cu);
c906108c
SS
7495 }
7496 if (!type)
7497 {
7498 if (type_die)
7499 dump_die (type_die);
8a3fe4f8 7500 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7501 cu->objfile->name);
c906108c
SS
7502 }
7503 return type;
7504}
7505
c906108c 7506static struct type *
e7c27a73 7507tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7508{
7509 if (die->type)
7510 {
7511 return die->type;
7512 }
7513 else
7514 {
e7c27a73 7515 read_type_die (die, cu);
c906108c
SS
7516 if (!die->type)
7517 {
7518 dump_die (die);
8a3fe4f8 7519 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7520 cu->objfile->name);
c906108c
SS
7521 }
7522 return die->type;
7523 }
7524}
7525
7526static void
e7c27a73 7527read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7528{
e142c38c 7529 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7530 const char *old_prefix = processing_current_prefix;
7531 struct cleanup *back_to = make_cleanup (xfree, prefix);
7532 processing_current_prefix = prefix;
7533
c906108c
SS
7534 switch (die->tag)
7535 {
7536 case DW_TAG_class_type:
7537 case DW_TAG_structure_type:
7538 case DW_TAG_union_type:
134d01f1 7539 read_structure_type (die, cu);
c906108c
SS
7540 break;
7541 case DW_TAG_enumeration_type:
134d01f1 7542 read_enumeration_type (die, cu);
c906108c
SS
7543 break;
7544 case DW_TAG_subprogram:
7545 case DW_TAG_subroutine_type:
e7c27a73 7546 read_subroutine_type (die, cu);
c906108c
SS
7547 break;
7548 case DW_TAG_array_type:
e7c27a73 7549 read_array_type (die, cu);
c906108c 7550 break;
72019c9c
GM
7551 case DW_TAG_set_type:
7552 read_set_type (die, cu);
7553 break;
c906108c 7554 case DW_TAG_pointer_type:
e7c27a73 7555 read_tag_pointer_type (die, cu);
c906108c
SS
7556 break;
7557 case DW_TAG_ptr_to_member_type:
e7c27a73 7558 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7559 break;
7560 case DW_TAG_reference_type:
e7c27a73 7561 read_tag_reference_type (die, cu);
c906108c
SS
7562 break;
7563 case DW_TAG_const_type:
e7c27a73 7564 read_tag_const_type (die, cu);
c906108c
SS
7565 break;
7566 case DW_TAG_volatile_type:
e7c27a73 7567 read_tag_volatile_type (die, cu);
c906108c
SS
7568 break;
7569 case DW_TAG_string_type:
e7c27a73 7570 read_tag_string_type (die, cu);
c906108c
SS
7571 break;
7572 case DW_TAG_typedef:
e7c27a73 7573 read_typedef (die, cu);
c906108c 7574 break;
a02abb62
JB
7575 case DW_TAG_subrange_type:
7576 read_subrange_type (die, cu);
7577 break;
c906108c 7578 case DW_TAG_base_type:
e7c27a73 7579 read_base_type (die, cu);
c906108c 7580 break;
81a17f79
JB
7581 case DW_TAG_unspecified_type:
7582 read_unspecified_type (die, cu);
7583 break;
c906108c 7584 default:
a1f5b845 7585 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7586 dwarf_tag_name (die->tag));
c906108c
SS
7587 break;
7588 }
63d06c5c
DC
7589
7590 processing_current_prefix = old_prefix;
7591 do_cleanups (back_to);
7592}
7593
fdde2d81
DC
7594/* Return the name of the namespace/class that DIE is defined within,
7595 or "" if we can't tell. The caller should xfree the result. */
7596
7597/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7598 therein) for an example of how to use this function to deal with
7599 DW_AT_specification. */
7600
7601static char *
e142c38c 7602determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7603{
7604 struct die_info *parent;
7605
987504bb
JJ
7606 if (cu->language != language_cplus
7607 && cu->language != language_java)
63d06c5c
DC
7608 return NULL;
7609
7610 parent = die->parent;
7611
7612 if (parent == NULL)
7613 {
8176b9b8 7614 return xstrdup ("");
63d06c5c
DC
7615 }
7616 else
7617 {
63d06c5c
DC
7618 switch (parent->tag) {
7619 case DW_TAG_namespace:
7620 {
8176b9b8
DC
7621 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7622 before doing this check? */
7623 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7624 {
7625 return xstrdup (TYPE_TAG_NAME (parent->type));
7626 }
7627 else
7628 {
7629 int dummy;
7630 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7631 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7632 namespace_name (parent, &dummy,
987504bb
JJ
7633 cu),
7634 cu);
8176b9b8
DC
7635 xfree (parent_prefix);
7636 return retval;
7637 }
63d06c5c
DC
7638 }
7639 break;
7640 case DW_TAG_class_type:
7641 case DW_TAG_structure_type:
7642 {
8176b9b8 7643 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7644 {
8176b9b8 7645 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7646 }
7647 else
8176b9b8
DC
7648 {
7649 const char *old_prefix = processing_current_prefix;
7650 char *new_prefix = determine_prefix (parent, cu);
7651 char *retval;
7652
7653 processing_current_prefix = new_prefix;
7654 retval = determine_class_name (parent, cu);
7655 processing_current_prefix = old_prefix;
7656
7657 xfree (new_prefix);
7658 return retval;
7659 }
63d06c5c 7660 }
63d06c5c 7661 default:
8176b9b8 7662 return determine_prefix (parent, cu);
63d06c5c 7663 }
63d06c5c
DC
7664 }
7665}
7666
987504bb
JJ
7667/* Return a newly-allocated string formed by concatenating PREFIX and
7668 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7669 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7670 perform an obconcat, otherwise allocate storage for the result. The CU argument
7671 is used to determine the language and hence, the appropriate separator. */
7672
7673#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7674
7675static char *
987504bb
JJ
7676typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7677 struct dwarf2_cu *cu)
63d06c5c 7678{
987504bb 7679 char *sep;
63d06c5c 7680
987504bb
JJ
7681 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7682 sep = "";
7683 else if (cu->language == language_java)
7684 sep = ".";
7685 else
7686 sep = "::";
63d06c5c 7687
987504bb
JJ
7688 if (obs == NULL)
7689 {
7690 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7691 retval[0] = '\0';
7692
7693 if (prefix)
7694 {
7695 strcpy (retval, prefix);
7696 strcat (retval, sep);
7697 }
7698 if (suffix)
7699 strcat (retval, suffix);
7700
63d06c5c
DC
7701 return retval;
7702 }
987504bb
JJ
7703 else
7704 {
7705 /* We have an obstack. */
7706 return obconcat (obs, prefix, sep, suffix);
7707 }
63d06c5c
DC
7708}
7709
c906108c 7710static struct type *
e7c27a73 7711dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 7712{
e7c27a73
DJ
7713 struct objfile *objfile = cu->objfile;
7714
c906108c
SS
7715 /* FIXME - this should not produce a new (struct type *)
7716 every time. It should cache base types. */
7717 struct type *type;
7718 switch (encoding)
7719 {
7720 case DW_ATE_address:
e142c38c 7721 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
7722 return type;
7723 case DW_ATE_boolean:
e142c38c 7724 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
7725 return type;
7726 case DW_ATE_complex_float:
7727 if (size == 16)
7728 {
e142c38c 7729 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
7730 }
7731 else
7732 {
e142c38c 7733 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
7734 }
7735 return type;
7736 case DW_ATE_float:
7737 if (size == 8)
7738 {
e142c38c 7739 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
7740 }
7741 else
7742 {
e142c38c 7743 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
7744 }
7745 return type;
7746 case DW_ATE_signed:
7747 switch (size)
7748 {
7749 case 1:
e142c38c 7750 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7751 break;
7752 case 2:
e142c38c 7753 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
7754 break;
7755 default:
7756 case 4:
e142c38c 7757 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7758 break;
7759 }
7760 return type;
7761 case DW_ATE_signed_char:
e142c38c 7762 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7763 return type;
7764 case DW_ATE_unsigned:
7765 switch (size)
7766 {
7767 case 1:
e142c38c 7768 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7769 break;
7770 case 2:
e142c38c 7771 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
7772 break;
7773 default:
7774 case 4:
e142c38c 7775 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
7776 break;
7777 }
7778 return type;
7779 case DW_ATE_unsigned_char:
e142c38c 7780 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7781 return type;
7782 default:
e142c38c 7783 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7784 return type;
7785 }
7786}
7787
7788#if 0
7789struct die_info *
fba45db2 7790copy_die (struct die_info *old_die)
c906108c
SS
7791{
7792 struct die_info *new_die;
7793 int i, num_attrs;
7794
7795 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7796 memset (new_die, 0, sizeof (struct die_info));
7797
7798 new_die->tag = old_die->tag;
7799 new_die->has_children = old_die->has_children;
7800 new_die->abbrev = old_die->abbrev;
7801 new_die->offset = old_die->offset;
7802 new_die->type = NULL;
7803
7804 num_attrs = old_die->num_attrs;
7805 new_die->num_attrs = num_attrs;
7806 new_die->attrs = (struct attribute *)
7807 xmalloc (num_attrs * sizeof (struct attribute));
7808
7809 for (i = 0; i < old_die->num_attrs; ++i)
7810 {
7811 new_die->attrs[i].name = old_die->attrs[i].name;
7812 new_die->attrs[i].form = old_die->attrs[i].form;
7813 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7814 }
7815
7816 new_die->next = NULL;
7817 return new_die;
7818}
7819#endif
7820
7821/* Return sibling of die, NULL if no sibling. */
7822
f9aca02d 7823static struct die_info *
fba45db2 7824sibling_die (struct die_info *die)
c906108c 7825{
639d11d3 7826 return die->sibling;
c906108c
SS
7827}
7828
7829/* Get linkage name of a die, return NULL if not found. */
7830
7831static char *
e142c38c 7832dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7833{
7834 struct attribute *attr;
7835
e142c38c 7836 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7837 if (attr && DW_STRING (attr))
7838 return DW_STRING (attr);
e142c38c 7839 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7840 if (attr && DW_STRING (attr))
7841 return DW_STRING (attr);
7842 return NULL;
7843}
7844
9219021c
DC
7845/* Get name of a die, return NULL if not found. */
7846
7847static char *
e142c38c 7848dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7849{
7850 struct attribute *attr;
7851
e142c38c 7852 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7853 if (attr && DW_STRING (attr))
7854 return DW_STRING (attr);
7855 return NULL;
7856}
7857
7858/* Return the die that this die in an extension of, or NULL if there
7859 is none. */
7860
7861static struct die_info *
e142c38c 7862dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7863{
7864 struct attribute *attr;
9219021c 7865
e142c38c 7866 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7867 if (attr == NULL)
7868 return NULL;
7869
10b3939b 7870 return follow_die_ref (die, attr, cu);
9219021c
DC
7871}
7872
c906108c
SS
7873/* Convert a DIE tag into its string name. */
7874
7875static char *
aa1ee363 7876dwarf_tag_name (unsigned tag)
c906108c
SS
7877{
7878 switch (tag)
7879 {
7880 case DW_TAG_padding:
7881 return "DW_TAG_padding";
7882 case DW_TAG_array_type:
7883 return "DW_TAG_array_type";
7884 case DW_TAG_class_type:
7885 return "DW_TAG_class_type";
7886 case DW_TAG_entry_point:
7887 return "DW_TAG_entry_point";
7888 case DW_TAG_enumeration_type:
7889 return "DW_TAG_enumeration_type";
7890 case DW_TAG_formal_parameter:
7891 return "DW_TAG_formal_parameter";
7892 case DW_TAG_imported_declaration:
7893 return "DW_TAG_imported_declaration";
7894 case DW_TAG_label:
7895 return "DW_TAG_label";
7896 case DW_TAG_lexical_block:
7897 return "DW_TAG_lexical_block";
7898 case DW_TAG_member:
7899 return "DW_TAG_member";
7900 case DW_TAG_pointer_type:
7901 return "DW_TAG_pointer_type";
7902 case DW_TAG_reference_type:
7903 return "DW_TAG_reference_type";
7904 case DW_TAG_compile_unit:
7905 return "DW_TAG_compile_unit";
7906 case DW_TAG_string_type:
7907 return "DW_TAG_string_type";
7908 case DW_TAG_structure_type:
7909 return "DW_TAG_structure_type";
7910 case DW_TAG_subroutine_type:
7911 return "DW_TAG_subroutine_type";
7912 case DW_TAG_typedef:
7913 return "DW_TAG_typedef";
7914 case DW_TAG_union_type:
7915 return "DW_TAG_union_type";
7916 case DW_TAG_unspecified_parameters:
7917 return "DW_TAG_unspecified_parameters";
7918 case DW_TAG_variant:
7919 return "DW_TAG_variant";
7920 case DW_TAG_common_block:
7921 return "DW_TAG_common_block";
7922 case DW_TAG_common_inclusion:
7923 return "DW_TAG_common_inclusion";
7924 case DW_TAG_inheritance:
7925 return "DW_TAG_inheritance";
7926 case DW_TAG_inlined_subroutine:
7927 return "DW_TAG_inlined_subroutine";
7928 case DW_TAG_module:
7929 return "DW_TAG_module";
7930 case DW_TAG_ptr_to_member_type:
7931 return "DW_TAG_ptr_to_member_type";
7932 case DW_TAG_set_type:
7933 return "DW_TAG_set_type";
7934 case DW_TAG_subrange_type:
7935 return "DW_TAG_subrange_type";
7936 case DW_TAG_with_stmt:
7937 return "DW_TAG_with_stmt";
7938 case DW_TAG_access_declaration:
7939 return "DW_TAG_access_declaration";
7940 case DW_TAG_base_type:
7941 return "DW_TAG_base_type";
7942 case DW_TAG_catch_block:
7943 return "DW_TAG_catch_block";
7944 case DW_TAG_const_type:
7945 return "DW_TAG_const_type";
7946 case DW_TAG_constant:
7947 return "DW_TAG_constant";
7948 case DW_TAG_enumerator:
7949 return "DW_TAG_enumerator";
7950 case DW_TAG_file_type:
7951 return "DW_TAG_file_type";
7952 case DW_TAG_friend:
7953 return "DW_TAG_friend";
7954 case DW_TAG_namelist:
7955 return "DW_TAG_namelist";
7956 case DW_TAG_namelist_item:
7957 return "DW_TAG_namelist_item";
7958 case DW_TAG_packed_type:
7959 return "DW_TAG_packed_type";
7960 case DW_TAG_subprogram:
7961 return "DW_TAG_subprogram";
7962 case DW_TAG_template_type_param:
7963 return "DW_TAG_template_type_param";
7964 case DW_TAG_template_value_param:
7965 return "DW_TAG_template_value_param";
7966 case DW_TAG_thrown_type:
7967 return "DW_TAG_thrown_type";
7968 case DW_TAG_try_block:
7969 return "DW_TAG_try_block";
7970 case DW_TAG_variant_part:
7971 return "DW_TAG_variant_part";
7972 case DW_TAG_variable:
7973 return "DW_TAG_variable";
7974 case DW_TAG_volatile_type:
7975 return "DW_TAG_volatile_type";
d9fa45fe
DC
7976 case DW_TAG_dwarf_procedure:
7977 return "DW_TAG_dwarf_procedure";
7978 case DW_TAG_restrict_type:
7979 return "DW_TAG_restrict_type";
7980 case DW_TAG_interface_type:
7981 return "DW_TAG_interface_type";
7982 case DW_TAG_namespace:
7983 return "DW_TAG_namespace";
7984 case DW_TAG_imported_module:
7985 return "DW_TAG_imported_module";
7986 case DW_TAG_unspecified_type:
7987 return "DW_TAG_unspecified_type";
7988 case DW_TAG_partial_unit:
7989 return "DW_TAG_partial_unit";
7990 case DW_TAG_imported_unit:
7991 return "DW_TAG_imported_unit";
b7619582
GF
7992 case DW_TAG_condition:
7993 return "DW_TAG_condition";
7994 case DW_TAG_shared_type:
7995 return "DW_TAG_shared_type";
c906108c
SS
7996 case DW_TAG_MIPS_loop:
7997 return "DW_TAG_MIPS_loop";
b7619582
GF
7998 case DW_TAG_HP_array_descriptor:
7999 return "DW_TAG_HP_array_descriptor";
c906108c
SS
8000 case DW_TAG_format_label:
8001 return "DW_TAG_format_label";
8002 case DW_TAG_function_template:
8003 return "DW_TAG_function_template";
8004 case DW_TAG_class_template:
8005 return "DW_TAG_class_template";
b7619582
GF
8006 case DW_TAG_GNU_BINCL:
8007 return "DW_TAG_GNU_BINCL";
8008 case DW_TAG_GNU_EINCL:
8009 return "DW_TAG_GNU_EINCL";
8010 case DW_TAG_upc_shared_type:
8011 return "DW_TAG_upc_shared_type";
8012 case DW_TAG_upc_strict_type:
8013 return "DW_TAG_upc_strict_type";
8014 case DW_TAG_upc_relaxed_type:
8015 return "DW_TAG_upc_relaxed_type";
8016 case DW_TAG_PGI_kanji_type:
8017 return "DW_TAG_PGI_kanji_type";
8018 case DW_TAG_PGI_interface_block:
8019 return "DW_TAG_PGI_interface_block";
c906108c
SS
8020 default:
8021 return "DW_TAG_<unknown>";
8022 }
8023}
8024
8025/* Convert a DWARF attribute code into its string name. */
8026
8027static char *
aa1ee363 8028dwarf_attr_name (unsigned attr)
c906108c
SS
8029{
8030 switch (attr)
8031 {
8032 case DW_AT_sibling:
8033 return "DW_AT_sibling";
8034 case DW_AT_location:
8035 return "DW_AT_location";
8036 case DW_AT_name:
8037 return "DW_AT_name";
8038 case DW_AT_ordering:
8039 return "DW_AT_ordering";
8040 case DW_AT_subscr_data:
8041 return "DW_AT_subscr_data";
8042 case DW_AT_byte_size:
8043 return "DW_AT_byte_size";
8044 case DW_AT_bit_offset:
8045 return "DW_AT_bit_offset";
8046 case DW_AT_bit_size:
8047 return "DW_AT_bit_size";
8048 case DW_AT_element_list:
8049 return "DW_AT_element_list";
8050 case DW_AT_stmt_list:
8051 return "DW_AT_stmt_list";
8052 case DW_AT_low_pc:
8053 return "DW_AT_low_pc";
8054 case DW_AT_high_pc:
8055 return "DW_AT_high_pc";
8056 case DW_AT_language:
8057 return "DW_AT_language";
8058 case DW_AT_member:
8059 return "DW_AT_member";
8060 case DW_AT_discr:
8061 return "DW_AT_discr";
8062 case DW_AT_discr_value:
8063 return "DW_AT_discr_value";
8064 case DW_AT_visibility:
8065 return "DW_AT_visibility";
8066 case DW_AT_import:
8067 return "DW_AT_import";
8068 case DW_AT_string_length:
8069 return "DW_AT_string_length";
8070 case DW_AT_common_reference:
8071 return "DW_AT_common_reference";
8072 case DW_AT_comp_dir:
8073 return "DW_AT_comp_dir";
8074 case DW_AT_const_value:
8075 return "DW_AT_const_value";
8076 case DW_AT_containing_type:
8077 return "DW_AT_containing_type";
8078 case DW_AT_default_value:
8079 return "DW_AT_default_value";
8080 case DW_AT_inline:
8081 return "DW_AT_inline";
8082 case DW_AT_is_optional:
8083 return "DW_AT_is_optional";
8084 case DW_AT_lower_bound:
8085 return "DW_AT_lower_bound";
8086 case DW_AT_producer:
8087 return "DW_AT_producer";
8088 case DW_AT_prototyped:
8089 return "DW_AT_prototyped";
8090 case DW_AT_return_addr:
8091 return "DW_AT_return_addr";
8092 case DW_AT_start_scope:
8093 return "DW_AT_start_scope";
8094 case DW_AT_stride_size:
8095 return "DW_AT_stride_size";
8096 case DW_AT_upper_bound:
8097 return "DW_AT_upper_bound";
8098 case DW_AT_abstract_origin:
8099 return "DW_AT_abstract_origin";
8100 case DW_AT_accessibility:
8101 return "DW_AT_accessibility";
8102 case DW_AT_address_class:
8103 return "DW_AT_address_class";
8104 case DW_AT_artificial:
8105 return "DW_AT_artificial";
8106 case DW_AT_base_types:
8107 return "DW_AT_base_types";
8108 case DW_AT_calling_convention:
8109 return "DW_AT_calling_convention";
8110 case DW_AT_count:
8111 return "DW_AT_count";
8112 case DW_AT_data_member_location:
8113 return "DW_AT_data_member_location";
8114 case DW_AT_decl_column:
8115 return "DW_AT_decl_column";
8116 case DW_AT_decl_file:
8117 return "DW_AT_decl_file";
8118 case DW_AT_decl_line:
8119 return "DW_AT_decl_line";
8120 case DW_AT_declaration:
8121 return "DW_AT_declaration";
8122 case DW_AT_discr_list:
8123 return "DW_AT_discr_list";
8124 case DW_AT_encoding:
8125 return "DW_AT_encoding";
8126 case DW_AT_external:
8127 return "DW_AT_external";
8128 case DW_AT_frame_base:
8129 return "DW_AT_frame_base";
8130 case DW_AT_friend:
8131 return "DW_AT_friend";
8132 case DW_AT_identifier_case:
8133 return "DW_AT_identifier_case";
8134 case DW_AT_macro_info:
8135 return "DW_AT_macro_info";
8136 case DW_AT_namelist_items:
8137 return "DW_AT_namelist_items";
8138 case DW_AT_priority:
8139 return "DW_AT_priority";
8140 case DW_AT_segment:
8141 return "DW_AT_segment";
8142 case DW_AT_specification:
8143 return "DW_AT_specification";
8144 case DW_AT_static_link:
8145 return "DW_AT_static_link";
8146 case DW_AT_type:
8147 return "DW_AT_type";
8148 case DW_AT_use_location:
8149 return "DW_AT_use_location";
8150 case DW_AT_variable_parameter:
8151 return "DW_AT_variable_parameter";
8152 case DW_AT_virtuality:
8153 return "DW_AT_virtuality";
8154 case DW_AT_vtable_elem_location:
8155 return "DW_AT_vtable_elem_location";
b7619582 8156 /* DWARF 3 values. */
d9fa45fe
DC
8157 case DW_AT_allocated:
8158 return "DW_AT_allocated";
8159 case DW_AT_associated:
8160 return "DW_AT_associated";
8161 case DW_AT_data_location:
8162 return "DW_AT_data_location";
8163 case DW_AT_stride:
8164 return "DW_AT_stride";
8165 case DW_AT_entry_pc:
8166 return "DW_AT_entry_pc";
8167 case DW_AT_use_UTF8:
8168 return "DW_AT_use_UTF8";
8169 case DW_AT_extension:
8170 return "DW_AT_extension";
8171 case DW_AT_ranges:
8172 return "DW_AT_ranges";
8173 case DW_AT_trampoline:
8174 return "DW_AT_trampoline";
8175 case DW_AT_call_column:
8176 return "DW_AT_call_column";
8177 case DW_AT_call_file:
8178 return "DW_AT_call_file";
8179 case DW_AT_call_line:
8180 return "DW_AT_call_line";
b7619582
GF
8181 case DW_AT_description:
8182 return "DW_AT_description";
8183 case DW_AT_binary_scale:
8184 return "DW_AT_binary_scale";
8185 case DW_AT_decimal_scale:
8186 return "DW_AT_decimal_scale";
8187 case DW_AT_small:
8188 return "DW_AT_small";
8189 case DW_AT_decimal_sign:
8190 return "DW_AT_decimal_sign";
8191 case DW_AT_digit_count:
8192 return "DW_AT_digit_count";
8193 case DW_AT_picture_string:
8194 return "DW_AT_picture_string";
8195 case DW_AT_mutable:
8196 return "DW_AT_mutable";
8197 case DW_AT_threads_scaled:
8198 return "DW_AT_threads_scaled";
8199 case DW_AT_explicit:
8200 return "DW_AT_explicit";
8201 case DW_AT_object_pointer:
8202 return "DW_AT_object_pointer";
8203 case DW_AT_endianity:
8204 return "DW_AT_endianity";
8205 case DW_AT_elemental:
8206 return "DW_AT_elemental";
8207 case DW_AT_pure:
8208 return "DW_AT_pure";
8209 case DW_AT_recursive:
8210 return "DW_AT_recursive";
c906108c 8211#ifdef MIPS
b7619582 8212 /* SGI/MIPS extensions. */
c906108c
SS
8213 case DW_AT_MIPS_fde:
8214 return "DW_AT_MIPS_fde";
8215 case DW_AT_MIPS_loop_begin:
8216 return "DW_AT_MIPS_loop_begin";
8217 case DW_AT_MIPS_tail_loop_begin:
8218 return "DW_AT_MIPS_tail_loop_begin";
8219 case DW_AT_MIPS_epilog_begin:
8220 return "DW_AT_MIPS_epilog_begin";
8221 case DW_AT_MIPS_loop_unroll_factor:
8222 return "DW_AT_MIPS_loop_unroll_factor";
8223 case DW_AT_MIPS_software_pipeline_depth:
8224 return "DW_AT_MIPS_software_pipeline_depth";
8225 case DW_AT_MIPS_linkage_name:
8226 return "DW_AT_MIPS_linkage_name";
b7619582
GF
8227 case DW_AT_MIPS_stride:
8228 return "DW_AT_MIPS_stride";
8229 case DW_AT_MIPS_abstract_name:
8230 return "DW_AT_MIPS_abstract_name";
8231 case DW_AT_MIPS_clone_origin:
8232 return "DW_AT_MIPS_clone_origin";
8233 case DW_AT_MIPS_has_inlines:
8234 return "DW_AT_MIPS_has_inlines";
8235#endif
8236 /* HP extensions. */
8237 case DW_AT_HP_block_index:
8238 return "DW_AT_HP_block_index";
8239 case DW_AT_HP_unmodifiable:
8240 return "DW_AT_HP_unmodifiable";
8241 case DW_AT_HP_actuals_stmt_list:
8242 return "DW_AT_HP_actuals_stmt_list";
8243 case DW_AT_HP_proc_per_section:
8244 return "DW_AT_HP_proc_per_section";
8245 case DW_AT_HP_raw_data_ptr:
8246 return "DW_AT_HP_raw_data_ptr";
8247 case DW_AT_HP_pass_by_reference:
8248 return "DW_AT_HP_pass_by_reference";
8249 case DW_AT_HP_opt_level:
8250 return "DW_AT_HP_opt_level";
8251 case DW_AT_HP_prof_version_id:
8252 return "DW_AT_HP_prof_version_id";
8253 case DW_AT_HP_opt_flags:
8254 return "DW_AT_HP_opt_flags";
8255 case DW_AT_HP_cold_region_low_pc:
8256 return "DW_AT_HP_cold_region_low_pc";
8257 case DW_AT_HP_cold_region_high_pc:
8258 return "DW_AT_HP_cold_region_high_pc";
8259 case DW_AT_HP_all_variables_modifiable:
8260 return "DW_AT_HP_all_variables_modifiable";
8261 case DW_AT_HP_linkage_name:
8262 return "DW_AT_HP_linkage_name";
8263 case DW_AT_HP_prof_flags:
8264 return "DW_AT_HP_prof_flags";
8265 /* GNU extensions. */
c906108c
SS
8266 case DW_AT_sf_names:
8267 return "DW_AT_sf_names";
8268 case DW_AT_src_info:
8269 return "DW_AT_src_info";
8270 case DW_AT_mac_info:
8271 return "DW_AT_mac_info";
8272 case DW_AT_src_coords:
8273 return "DW_AT_src_coords";
8274 case DW_AT_body_begin:
8275 return "DW_AT_body_begin";
8276 case DW_AT_body_end:
8277 return "DW_AT_body_end";
f5f8a009
EZ
8278 case DW_AT_GNU_vector:
8279 return "DW_AT_GNU_vector";
b7619582
GF
8280 /* VMS extensions. */
8281 case DW_AT_VMS_rtnbeg_pd_address:
8282 return "DW_AT_VMS_rtnbeg_pd_address";
8283 /* UPC extension. */
8284 case DW_AT_upc_threads_scaled:
8285 return "DW_AT_upc_threads_scaled";
8286 /* PGI (STMicroelectronics) extensions. */
8287 case DW_AT_PGI_lbase:
8288 return "DW_AT_PGI_lbase";
8289 case DW_AT_PGI_soffset:
8290 return "DW_AT_PGI_soffset";
8291 case DW_AT_PGI_lstride:
8292 return "DW_AT_PGI_lstride";
c906108c
SS
8293 default:
8294 return "DW_AT_<unknown>";
8295 }
8296}
8297
8298/* Convert a DWARF value form code into its string name. */
8299
8300static char *
aa1ee363 8301dwarf_form_name (unsigned form)
c906108c
SS
8302{
8303 switch (form)
8304 {
8305 case DW_FORM_addr:
8306 return "DW_FORM_addr";
8307 case DW_FORM_block2:
8308 return "DW_FORM_block2";
8309 case DW_FORM_block4:
8310 return "DW_FORM_block4";
8311 case DW_FORM_data2:
8312 return "DW_FORM_data2";
8313 case DW_FORM_data4:
8314 return "DW_FORM_data4";
8315 case DW_FORM_data8:
8316 return "DW_FORM_data8";
8317 case DW_FORM_string:
8318 return "DW_FORM_string";
8319 case DW_FORM_block:
8320 return "DW_FORM_block";
8321 case DW_FORM_block1:
8322 return "DW_FORM_block1";
8323 case DW_FORM_data1:
8324 return "DW_FORM_data1";
8325 case DW_FORM_flag:
8326 return "DW_FORM_flag";
8327 case DW_FORM_sdata:
8328 return "DW_FORM_sdata";
8329 case DW_FORM_strp:
8330 return "DW_FORM_strp";
8331 case DW_FORM_udata:
8332 return "DW_FORM_udata";
8333 case DW_FORM_ref_addr:
8334 return "DW_FORM_ref_addr";
8335 case DW_FORM_ref1:
8336 return "DW_FORM_ref1";
8337 case DW_FORM_ref2:
8338 return "DW_FORM_ref2";
8339 case DW_FORM_ref4:
8340 return "DW_FORM_ref4";
8341 case DW_FORM_ref8:
8342 return "DW_FORM_ref8";
8343 case DW_FORM_ref_udata:
8344 return "DW_FORM_ref_udata";
8345 case DW_FORM_indirect:
8346 return "DW_FORM_indirect";
8347 default:
8348 return "DW_FORM_<unknown>";
8349 }
8350}
8351
8352/* Convert a DWARF stack opcode into its string name. */
8353
8354static char *
aa1ee363 8355dwarf_stack_op_name (unsigned op)
c906108c
SS
8356{
8357 switch (op)
8358 {
8359 case DW_OP_addr:
8360 return "DW_OP_addr";
8361 case DW_OP_deref:
8362 return "DW_OP_deref";
8363 case DW_OP_const1u:
8364 return "DW_OP_const1u";
8365 case DW_OP_const1s:
8366 return "DW_OP_const1s";
8367 case DW_OP_const2u:
8368 return "DW_OP_const2u";
8369 case DW_OP_const2s:
8370 return "DW_OP_const2s";
8371 case DW_OP_const4u:
8372 return "DW_OP_const4u";
8373 case DW_OP_const4s:
8374 return "DW_OP_const4s";
8375 case DW_OP_const8u:
8376 return "DW_OP_const8u";
8377 case DW_OP_const8s:
8378 return "DW_OP_const8s";
8379 case DW_OP_constu:
8380 return "DW_OP_constu";
8381 case DW_OP_consts:
8382 return "DW_OP_consts";
8383 case DW_OP_dup:
8384 return "DW_OP_dup";
8385 case DW_OP_drop:
8386 return "DW_OP_drop";
8387 case DW_OP_over:
8388 return "DW_OP_over";
8389 case DW_OP_pick:
8390 return "DW_OP_pick";
8391 case DW_OP_swap:
8392 return "DW_OP_swap";
8393 case DW_OP_rot:
8394 return "DW_OP_rot";
8395 case DW_OP_xderef:
8396 return "DW_OP_xderef";
8397 case DW_OP_abs:
8398 return "DW_OP_abs";
8399 case DW_OP_and:
8400 return "DW_OP_and";
8401 case DW_OP_div:
8402 return "DW_OP_div";
8403 case DW_OP_minus:
8404 return "DW_OP_minus";
8405 case DW_OP_mod:
8406 return "DW_OP_mod";
8407 case DW_OP_mul:
8408 return "DW_OP_mul";
8409 case DW_OP_neg:
8410 return "DW_OP_neg";
8411 case DW_OP_not:
8412 return "DW_OP_not";
8413 case DW_OP_or:
8414 return "DW_OP_or";
8415 case DW_OP_plus:
8416 return "DW_OP_plus";
8417 case DW_OP_plus_uconst:
8418 return "DW_OP_plus_uconst";
8419 case DW_OP_shl:
8420 return "DW_OP_shl";
8421 case DW_OP_shr:
8422 return "DW_OP_shr";
8423 case DW_OP_shra:
8424 return "DW_OP_shra";
8425 case DW_OP_xor:
8426 return "DW_OP_xor";
8427 case DW_OP_bra:
8428 return "DW_OP_bra";
8429 case DW_OP_eq:
8430 return "DW_OP_eq";
8431 case DW_OP_ge:
8432 return "DW_OP_ge";
8433 case DW_OP_gt:
8434 return "DW_OP_gt";
8435 case DW_OP_le:
8436 return "DW_OP_le";
8437 case DW_OP_lt:
8438 return "DW_OP_lt";
8439 case DW_OP_ne:
8440 return "DW_OP_ne";
8441 case DW_OP_skip:
8442 return "DW_OP_skip";
8443 case DW_OP_lit0:
8444 return "DW_OP_lit0";
8445 case DW_OP_lit1:
8446 return "DW_OP_lit1";
8447 case DW_OP_lit2:
8448 return "DW_OP_lit2";
8449 case DW_OP_lit3:
8450 return "DW_OP_lit3";
8451 case DW_OP_lit4:
8452 return "DW_OP_lit4";
8453 case DW_OP_lit5:
8454 return "DW_OP_lit5";
8455 case DW_OP_lit6:
8456 return "DW_OP_lit6";
8457 case DW_OP_lit7:
8458 return "DW_OP_lit7";
8459 case DW_OP_lit8:
8460 return "DW_OP_lit8";
8461 case DW_OP_lit9:
8462 return "DW_OP_lit9";
8463 case DW_OP_lit10:
8464 return "DW_OP_lit10";
8465 case DW_OP_lit11:
8466 return "DW_OP_lit11";
8467 case DW_OP_lit12:
8468 return "DW_OP_lit12";
8469 case DW_OP_lit13:
8470 return "DW_OP_lit13";
8471 case DW_OP_lit14:
8472 return "DW_OP_lit14";
8473 case DW_OP_lit15:
8474 return "DW_OP_lit15";
8475 case DW_OP_lit16:
8476 return "DW_OP_lit16";
8477 case DW_OP_lit17:
8478 return "DW_OP_lit17";
8479 case DW_OP_lit18:
8480 return "DW_OP_lit18";
8481 case DW_OP_lit19:
8482 return "DW_OP_lit19";
8483 case DW_OP_lit20:
8484 return "DW_OP_lit20";
8485 case DW_OP_lit21:
8486 return "DW_OP_lit21";
8487 case DW_OP_lit22:
8488 return "DW_OP_lit22";
8489 case DW_OP_lit23:
8490 return "DW_OP_lit23";
8491 case DW_OP_lit24:
8492 return "DW_OP_lit24";
8493 case DW_OP_lit25:
8494 return "DW_OP_lit25";
8495 case DW_OP_lit26:
8496 return "DW_OP_lit26";
8497 case DW_OP_lit27:
8498 return "DW_OP_lit27";
8499 case DW_OP_lit28:
8500 return "DW_OP_lit28";
8501 case DW_OP_lit29:
8502 return "DW_OP_lit29";
8503 case DW_OP_lit30:
8504 return "DW_OP_lit30";
8505 case DW_OP_lit31:
8506 return "DW_OP_lit31";
8507 case DW_OP_reg0:
8508 return "DW_OP_reg0";
8509 case DW_OP_reg1:
8510 return "DW_OP_reg1";
8511 case DW_OP_reg2:
8512 return "DW_OP_reg2";
8513 case DW_OP_reg3:
8514 return "DW_OP_reg3";
8515 case DW_OP_reg4:
8516 return "DW_OP_reg4";
8517 case DW_OP_reg5:
8518 return "DW_OP_reg5";
8519 case DW_OP_reg6:
8520 return "DW_OP_reg6";
8521 case DW_OP_reg7:
8522 return "DW_OP_reg7";
8523 case DW_OP_reg8:
8524 return "DW_OP_reg8";
8525 case DW_OP_reg9:
8526 return "DW_OP_reg9";
8527 case DW_OP_reg10:
8528 return "DW_OP_reg10";
8529 case DW_OP_reg11:
8530 return "DW_OP_reg11";
8531 case DW_OP_reg12:
8532 return "DW_OP_reg12";
8533 case DW_OP_reg13:
8534 return "DW_OP_reg13";
8535 case DW_OP_reg14:
8536 return "DW_OP_reg14";
8537 case DW_OP_reg15:
8538 return "DW_OP_reg15";
8539 case DW_OP_reg16:
8540 return "DW_OP_reg16";
8541 case DW_OP_reg17:
8542 return "DW_OP_reg17";
8543 case DW_OP_reg18:
8544 return "DW_OP_reg18";
8545 case DW_OP_reg19:
8546 return "DW_OP_reg19";
8547 case DW_OP_reg20:
8548 return "DW_OP_reg20";
8549 case DW_OP_reg21:
8550 return "DW_OP_reg21";
8551 case DW_OP_reg22:
8552 return "DW_OP_reg22";
8553 case DW_OP_reg23:
8554 return "DW_OP_reg23";
8555 case DW_OP_reg24:
8556 return "DW_OP_reg24";
8557 case DW_OP_reg25:
8558 return "DW_OP_reg25";
8559 case DW_OP_reg26:
8560 return "DW_OP_reg26";
8561 case DW_OP_reg27:
8562 return "DW_OP_reg27";
8563 case DW_OP_reg28:
8564 return "DW_OP_reg28";
8565 case DW_OP_reg29:
8566 return "DW_OP_reg29";
8567 case DW_OP_reg30:
8568 return "DW_OP_reg30";
8569 case DW_OP_reg31:
8570 return "DW_OP_reg31";
8571 case DW_OP_breg0:
8572 return "DW_OP_breg0";
8573 case DW_OP_breg1:
8574 return "DW_OP_breg1";
8575 case DW_OP_breg2:
8576 return "DW_OP_breg2";
8577 case DW_OP_breg3:
8578 return "DW_OP_breg3";
8579 case DW_OP_breg4:
8580 return "DW_OP_breg4";
8581 case DW_OP_breg5:
8582 return "DW_OP_breg5";
8583 case DW_OP_breg6:
8584 return "DW_OP_breg6";
8585 case DW_OP_breg7:
8586 return "DW_OP_breg7";
8587 case DW_OP_breg8:
8588 return "DW_OP_breg8";
8589 case DW_OP_breg9:
8590 return "DW_OP_breg9";
8591 case DW_OP_breg10:
8592 return "DW_OP_breg10";
8593 case DW_OP_breg11:
8594 return "DW_OP_breg11";
8595 case DW_OP_breg12:
8596 return "DW_OP_breg12";
8597 case DW_OP_breg13:
8598 return "DW_OP_breg13";
8599 case DW_OP_breg14:
8600 return "DW_OP_breg14";
8601 case DW_OP_breg15:
8602 return "DW_OP_breg15";
8603 case DW_OP_breg16:
8604 return "DW_OP_breg16";
8605 case DW_OP_breg17:
8606 return "DW_OP_breg17";
8607 case DW_OP_breg18:
8608 return "DW_OP_breg18";
8609 case DW_OP_breg19:
8610 return "DW_OP_breg19";
8611 case DW_OP_breg20:
8612 return "DW_OP_breg20";
8613 case DW_OP_breg21:
8614 return "DW_OP_breg21";
8615 case DW_OP_breg22:
8616 return "DW_OP_breg22";
8617 case DW_OP_breg23:
8618 return "DW_OP_breg23";
8619 case DW_OP_breg24:
8620 return "DW_OP_breg24";
8621 case DW_OP_breg25:
8622 return "DW_OP_breg25";
8623 case DW_OP_breg26:
8624 return "DW_OP_breg26";
8625 case DW_OP_breg27:
8626 return "DW_OP_breg27";
8627 case DW_OP_breg28:
8628 return "DW_OP_breg28";
8629 case DW_OP_breg29:
8630 return "DW_OP_breg29";
8631 case DW_OP_breg30:
8632 return "DW_OP_breg30";
8633 case DW_OP_breg31:
8634 return "DW_OP_breg31";
8635 case DW_OP_regx:
8636 return "DW_OP_regx";
8637 case DW_OP_fbreg:
8638 return "DW_OP_fbreg";
8639 case DW_OP_bregx:
8640 return "DW_OP_bregx";
8641 case DW_OP_piece:
8642 return "DW_OP_piece";
8643 case DW_OP_deref_size:
8644 return "DW_OP_deref_size";
8645 case DW_OP_xderef_size:
8646 return "DW_OP_xderef_size";
8647 case DW_OP_nop:
8648 return "DW_OP_nop";
b7619582 8649 /* DWARF 3 extensions. */
ed348acc
EZ
8650 case DW_OP_push_object_address:
8651 return "DW_OP_push_object_address";
8652 case DW_OP_call2:
8653 return "DW_OP_call2";
8654 case DW_OP_call4:
8655 return "DW_OP_call4";
8656 case DW_OP_call_ref:
8657 return "DW_OP_call_ref";
b7619582
GF
8658 /* GNU extensions. */
8659 case DW_OP_form_tls_address:
8660 return "DW_OP_form_tls_address";
8661 case DW_OP_call_frame_cfa:
8662 return "DW_OP_call_frame_cfa";
8663 case DW_OP_bit_piece:
8664 return "DW_OP_bit_piece";
ed348acc
EZ
8665 case DW_OP_GNU_push_tls_address:
8666 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
8667 case DW_OP_GNU_uninit:
8668 return "DW_OP_GNU_uninit";
b7619582
GF
8669 /* HP extensions. */
8670 case DW_OP_HP_is_value:
8671 return "DW_OP_HP_is_value";
8672 case DW_OP_HP_fltconst4:
8673 return "DW_OP_HP_fltconst4";
8674 case DW_OP_HP_fltconst8:
8675 return "DW_OP_HP_fltconst8";
8676 case DW_OP_HP_mod_range:
8677 return "DW_OP_HP_mod_range";
8678 case DW_OP_HP_unmod_range:
8679 return "DW_OP_HP_unmod_range";
8680 case DW_OP_HP_tls:
8681 return "DW_OP_HP_tls";
c906108c
SS
8682 default:
8683 return "OP_<unknown>";
8684 }
8685}
8686
8687static char *
fba45db2 8688dwarf_bool_name (unsigned mybool)
c906108c
SS
8689{
8690 if (mybool)
8691 return "TRUE";
8692 else
8693 return "FALSE";
8694}
8695
8696/* Convert a DWARF type code into its string name. */
8697
8698static char *
aa1ee363 8699dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8700{
8701 switch (enc)
8702 {
b7619582
GF
8703 case DW_ATE_void:
8704 return "DW_ATE_void";
c906108c
SS
8705 case DW_ATE_address:
8706 return "DW_ATE_address";
8707 case DW_ATE_boolean:
8708 return "DW_ATE_boolean";
8709 case DW_ATE_complex_float:
8710 return "DW_ATE_complex_float";
8711 case DW_ATE_float:
8712 return "DW_ATE_float";
8713 case DW_ATE_signed:
8714 return "DW_ATE_signed";
8715 case DW_ATE_signed_char:
8716 return "DW_ATE_signed_char";
8717 case DW_ATE_unsigned:
8718 return "DW_ATE_unsigned";
8719 case DW_ATE_unsigned_char:
8720 return "DW_ATE_unsigned_char";
b7619582 8721 /* DWARF 3. */
d9fa45fe
DC
8722 case DW_ATE_imaginary_float:
8723 return "DW_ATE_imaginary_float";
b7619582
GF
8724 case DW_ATE_packed_decimal:
8725 return "DW_ATE_packed_decimal";
8726 case DW_ATE_numeric_string:
8727 return "DW_ATE_numeric_string";
8728 case DW_ATE_edited:
8729 return "DW_ATE_edited";
8730 case DW_ATE_signed_fixed:
8731 return "DW_ATE_signed_fixed";
8732 case DW_ATE_unsigned_fixed:
8733 return "DW_ATE_unsigned_fixed";
8734 case DW_ATE_decimal_float:
8735 return "DW_ATE_decimal_float";
8736 /* HP extensions. */
8737 case DW_ATE_HP_float80:
8738 return "DW_ATE_HP_float80";
8739 case DW_ATE_HP_complex_float80:
8740 return "DW_ATE_HP_complex_float80";
8741 case DW_ATE_HP_float128:
8742 return "DW_ATE_HP_float128";
8743 case DW_ATE_HP_complex_float128:
8744 return "DW_ATE_HP_complex_float128";
8745 case DW_ATE_HP_floathpintel:
8746 return "DW_ATE_HP_floathpintel";
8747 case DW_ATE_HP_imaginary_float80:
8748 return "DW_ATE_HP_imaginary_float80";
8749 case DW_ATE_HP_imaginary_float128:
8750 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
8751 default:
8752 return "DW_ATE_<unknown>";
8753 }
8754}
8755
8756/* Convert a DWARF call frame info operation to its string name. */
8757
8758#if 0
8759static char *
aa1ee363 8760dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8761{
8762 switch (cfi_opc)
8763 {
8764 case DW_CFA_advance_loc:
8765 return "DW_CFA_advance_loc";
8766 case DW_CFA_offset:
8767 return "DW_CFA_offset";
8768 case DW_CFA_restore:
8769 return "DW_CFA_restore";
8770 case DW_CFA_nop:
8771 return "DW_CFA_nop";
8772 case DW_CFA_set_loc:
8773 return "DW_CFA_set_loc";
8774 case DW_CFA_advance_loc1:
8775 return "DW_CFA_advance_loc1";
8776 case DW_CFA_advance_loc2:
8777 return "DW_CFA_advance_loc2";
8778 case DW_CFA_advance_loc4:
8779 return "DW_CFA_advance_loc4";
8780 case DW_CFA_offset_extended:
8781 return "DW_CFA_offset_extended";
8782 case DW_CFA_restore_extended:
8783 return "DW_CFA_restore_extended";
8784 case DW_CFA_undefined:
8785 return "DW_CFA_undefined";
8786 case DW_CFA_same_value:
8787 return "DW_CFA_same_value";
8788 case DW_CFA_register:
8789 return "DW_CFA_register";
8790 case DW_CFA_remember_state:
8791 return "DW_CFA_remember_state";
8792 case DW_CFA_restore_state:
8793 return "DW_CFA_restore_state";
8794 case DW_CFA_def_cfa:
8795 return "DW_CFA_def_cfa";
8796 case DW_CFA_def_cfa_register:
8797 return "DW_CFA_def_cfa_register";
8798 case DW_CFA_def_cfa_offset:
8799 return "DW_CFA_def_cfa_offset";
b7619582 8800 /* DWARF 3. */
985cb1a3
JM
8801 case DW_CFA_def_cfa_expression:
8802 return "DW_CFA_def_cfa_expression";
8803 case DW_CFA_expression:
8804 return "DW_CFA_expression";
8805 case DW_CFA_offset_extended_sf:
8806 return "DW_CFA_offset_extended_sf";
8807 case DW_CFA_def_cfa_sf:
8808 return "DW_CFA_def_cfa_sf";
8809 case DW_CFA_def_cfa_offset_sf:
8810 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
8811 case DW_CFA_val_offset:
8812 return "DW_CFA_val_offset";
8813 case DW_CFA_val_offset_sf:
8814 return "DW_CFA_val_offset_sf";
8815 case DW_CFA_val_expression:
8816 return "DW_CFA_val_expression";
8817 /* SGI/MIPS specific. */
c906108c
SS
8818 case DW_CFA_MIPS_advance_loc8:
8819 return "DW_CFA_MIPS_advance_loc8";
b7619582 8820 /* GNU extensions. */
985cb1a3
JM
8821 case DW_CFA_GNU_window_save:
8822 return "DW_CFA_GNU_window_save";
8823 case DW_CFA_GNU_args_size:
8824 return "DW_CFA_GNU_args_size";
8825 case DW_CFA_GNU_negative_offset_extended:
8826 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
8827 default:
8828 return "DW_CFA_<unknown>";
8829 }
8830}
8831#endif
8832
f9aca02d 8833static void
fba45db2 8834dump_die (struct die_info *die)
c906108c
SS
8835{
8836 unsigned int i;
8837
48cd0caa 8838 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8839 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8840 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8841 dwarf_bool_name (die->child != NULL));
c906108c 8842
48cd0caa 8843 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8844 for (i = 0; i < die->num_attrs; ++i)
8845 {
48cd0caa 8846 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8847 dwarf_attr_name (die->attrs[i].name),
8848 dwarf_form_name (die->attrs[i].form));
8849 switch (die->attrs[i].form)
8850 {
8851 case DW_FORM_ref_addr:
8852 case DW_FORM_addr:
48cd0caa 8853 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8854 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8855 break;
8856 case DW_FORM_block2:
8857 case DW_FORM_block4:
8858 case DW_FORM_block:
8859 case DW_FORM_block1:
48cd0caa 8860 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8861 break;
10b3939b
DJ
8862 case DW_FORM_ref1:
8863 case DW_FORM_ref2:
8864 case DW_FORM_ref4:
8865 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8866 (long) (DW_ADDR (&die->attrs[i])));
8867 break;
c906108c
SS
8868 case DW_FORM_data1:
8869 case DW_FORM_data2:
8870 case DW_FORM_data4:
ce5d95e1 8871 case DW_FORM_data8:
c906108c
SS
8872 case DW_FORM_udata:
8873 case DW_FORM_sdata:
48cd0caa 8874 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8875 break;
8876 case DW_FORM_string:
4bdf3d34 8877 case DW_FORM_strp:
48cd0caa 8878 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8879 DW_STRING (&die->attrs[i])
c5aa993b 8880 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8881 break;
8882 case DW_FORM_flag:
8883 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8884 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8885 else
48cd0caa 8886 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8887 break;
a8329558
KW
8888 case DW_FORM_indirect:
8889 /* the reader will have reduced the indirect form to
8890 the "base form" so this form should not occur */
48cd0caa 8891 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8892 break;
c906108c 8893 default:
48cd0caa 8894 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8895 die->attrs[i].form);
c906108c 8896 }
48cd0caa 8897 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8898 }
8899}
8900
f9aca02d 8901static void
fba45db2 8902dump_die_list (struct die_info *die)
c906108c
SS
8903{
8904 while (die)
8905 {
8906 dump_die (die);
639d11d3
DC
8907 if (die->child != NULL)
8908 dump_die_list (die->child);
8909 if (die->sibling != NULL)
8910 dump_die_list (die->sibling);
c906108c
SS
8911 }
8912}
8913
f9aca02d 8914static void
10b3939b
DJ
8915store_in_ref_table (unsigned int offset, struct die_info *die,
8916 struct dwarf2_cu *cu)
c906108c
SS
8917{
8918 int h;
8919 struct die_info *old;
8920
8921 h = (offset % REF_HASH_SIZE);
10b3939b 8922 old = cu->die_ref_table[h];
c906108c 8923 die->next_ref = old;
10b3939b 8924 cu->die_ref_table[h] = die;
c906108c
SS
8925}
8926
8927static unsigned int
e142c38c 8928dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
8929{
8930 unsigned int result = 0;
8931
8932 switch (attr->form)
8933 {
8934 case DW_FORM_ref_addr:
c906108c
SS
8935 case DW_FORM_ref1:
8936 case DW_FORM_ref2:
8937 case DW_FORM_ref4:
613e1657 8938 case DW_FORM_ref8:
c906108c 8939 case DW_FORM_ref_udata:
10b3939b 8940 result = DW_ADDR (attr);
c906108c
SS
8941 break;
8942 default:
4d3c2250 8943 complaint (&symfile_complaints,
e2e0b3e5 8944 _("unsupported die ref attribute form: '%s'"),
4d3c2250 8945 dwarf_form_name (attr->form));
c906108c
SS
8946 }
8947 return result;
8948}
8949
a02abb62
JB
8950/* Return the constant value held by the given attribute. Return -1
8951 if the value held by the attribute is not constant. */
8952
8953static int
8954dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8955{
8956 if (attr->form == DW_FORM_sdata)
8957 return DW_SND (attr);
8958 else if (attr->form == DW_FORM_udata
8959 || attr->form == DW_FORM_data1
8960 || attr->form == DW_FORM_data2
8961 || attr->form == DW_FORM_data4
8962 || attr->form == DW_FORM_data8)
8963 return DW_UNSND (attr);
8964 else
8965 {
e2e0b3e5 8966 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
8967 dwarf_form_name (attr->form));
8968 return default_value;
8969 }
8970}
8971
f9aca02d 8972static struct die_info *
10b3939b
DJ
8973follow_die_ref (struct die_info *src_die, struct attribute *attr,
8974 struct dwarf2_cu *cu)
c906108c
SS
8975{
8976 struct die_info *die;
10b3939b 8977 unsigned int offset;
c906108c 8978 int h;
10b3939b
DJ
8979 struct die_info temp_die;
8980 struct dwarf2_cu *target_cu;
8981
8982 offset = dwarf2_get_ref_die_offset (attr, cu);
8983
8984 if (DW_ADDR (attr) < cu->header.offset
8985 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8986 {
8987 struct dwarf2_per_cu_data *per_cu;
8988 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8989 cu->objfile);
8990 target_cu = per_cu->cu;
8991 }
8992 else
8993 target_cu = cu;
c906108c
SS
8994
8995 h = (offset % REF_HASH_SIZE);
10b3939b 8996 die = target_cu->die_ref_table[h];
c906108c
SS
8997 while (die)
8998 {
8999 if (die->offset == offset)
10b3939b 9000 return die;
c906108c
SS
9001 die = die->next_ref;
9002 }
10b3939b 9003
8a3fe4f8
AC
9004 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9005 "at 0x%lx [in module %s]"),
10b3939b
DJ
9006 (long) src_die->offset, (long) offset, cu->objfile->name);
9007
c906108c
SS
9008 return NULL;
9009}
9010
9011static struct type *
e142c38c
DJ
9012dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9013 struct dwarf2_cu *cu)
c906108c
SS
9014{
9015 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9016 {
8a3fe4f8 9017 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
659b0389 9018 typeid, objfile->name);
c906108c
SS
9019 }
9020
9021 /* Look for this particular type in the fundamental type vector. If
9022 one is not found, create and install one appropriate for the
9023 current language and the current target machine. */
9024
e142c38c 9025 if (cu->ftypes[typeid] == NULL)
c906108c 9026 {
e142c38c 9027 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
9028 }
9029
e142c38c 9030 return (cu->ftypes[typeid]);
c906108c
SS
9031}
9032
9033/* Decode simple location descriptions.
9034 Given a pointer to a dwarf block that defines a location, compute
9035 the location and return the value.
9036
4cecd739
DJ
9037 NOTE drow/2003-11-18: This function is called in two situations
9038 now: for the address of static or global variables (partial symbols
9039 only) and for offsets into structures which are expected to be
9040 (more or less) constant. The partial symbol case should go away,
9041 and only the constant case should remain. That will let this
9042 function complain more accurately. A few special modes are allowed
9043 without complaint for global variables (for instance, global
9044 register values and thread-local values).
c906108c
SS
9045
9046 A location description containing no operations indicates that the
4cecd739 9047 object is optimized out. The return value is 0 for that case.
6b992462
DJ
9048 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9049 callers will only want a very basic result and this can become a
9050 complaint.
c906108c 9051
c906108c
SS
9052 Note that stack[0] is unused except as a default error return.
9053 Note that stack overflow is not yet handled. */
9054
9055static CORE_ADDR
e7c27a73 9056decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 9057{
e7c27a73
DJ
9058 struct objfile *objfile = cu->objfile;
9059 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9060 int i;
9061 int size = blk->size;
fe1b8b76 9062 gdb_byte *data = blk->data;
c906108c
SS
9063 CORE_ADDR stack[64];
9064 int stacki;
9065 unsigned int bytes_read, unsnd;
fe1b8b76 9066 gdb_byte op;
c906108c
SS
9067
9068 i = 0;
9069 stacki = 0;
9070 stack[stacki] = 0;
c906108c
SS
9071
9072 while (i < size)
9073 {
c906108c
SS
9074 op = data[i++];
9075 switch (op)
9076 {
f1bea926
JM
9077 case DW_OP_lit0:
9078 case DW_OP_lit1:
9079 case DW_OP_lit2:
9080 case DW_OP_lit3:
9081 case DW_OP_lit4:
9082 case DW_OP_lit5:
9083 case DW_OP_lit6:
9084 case DW_OP_lit7:
9085 case DW_OP_lit8:
9086 case DW_OP_lit9:
9087 case DW_OP_lit10:
9088 case DW_OP_lit11:
9089 case DW_OP_lit12:
9090 case DW_OP_lit13:
9091 case DW_OP_lit14:
9092 case DW_OP_lit15:
9093 case DW_OP_lit16:
9094 case DW_OP_lit17:
9095 case DW_OP_lit18:
9096 case DW_OP_lit19:
9097 case DW_OP_lit20:
9098 case DW_OP_lit21:
9099 case DW_OP_lit22:
9100 case DW_OP_lit23:
9101 case DW_OP_lit24:
9102 case DW_OP_lit25:
9103 case DW_OP_lit26:
9104 case DW_OP_lit27:
9105 case DW_OP_lit28:
9106 case DW_OP_lit29:
9107 case DW_OP_lit30:
9108 case DW_OP_lit31:
9109 stack[++stacki] = op - DW_OP_lit0;
9110 break;
9111
c906108c
SS
9112 case DW_OP_reg0:
9113 case DW_OP_reg1:
9114 case DW_OP_reg2:
9115 case DW_OP_reg3:
9116 case DW_OP_reg4:
9117 case DW_OP_reg5:
9118 case DW_OP_reg6:
9119 case DW_OP_reg7:
9120 case DW_OP_reg8:
9121 case DW_OP_reg9:
9122 case DW_OP_reg10:
9123 case DW_OP_reg11:
9124 case DW_OP_reg12:
9125 case DW_OP_reg13:
9126 case DW_OP_reg14:
9127 case DW_OP_reg15:
9128 case DW_OP_reg16:
9129 case DW_OP_reg17:
9130 case DW_OP_reg18:
9131 case DW_OP_reg19:
9132 case DW_OP_reg20:
9133 case DW_OP_reg21:
9134 case DW_OP_reg22:
9135 case DW_OP_reg23:
9136 case DW_OP_reg24:
9137 case DW_OP_reg25:
9138 case DW_OP_reg26:
9139 case DW_OP_reg27:
9140 case DW_OP_reg28:
9141 case DW_OP_reg29:
9142 case DW_OP_reg30:
9143 case DW_OP_reg31:
c906108c 9144 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
9145 if (i < size)
9146 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9147 break;
9148
9149 case DW_OP_regx:
c906108c
SS
9150 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9151 i += bytes_read;
c906108c 9152 stack[++stacki] = unsnd;
4cecd739
DJ
9153 if (i < size)
9154 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9155 break;
9156
9157 case DW_OP_addr:
107d2387 9158 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 9159 cu, &bytes_read);
107d2387 9160 i += bytes_read;
c906108c
SS
9161 break;
9162
9163 case DW_OP_const1u:
9164 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9165 i += 1;
9166 break;
9167
9168 case DW_OP_const1s:
9169 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9170 i += 1;
9171 break;
9172
9173 case DW_OP_const2u:
9174 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9175 i += 2;
9176 break;
9177
9178 case DW_OP_const2s:
9179 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9180 i += 2;
9181 break;
9182
9183 case DW_OP_const4u:
9184 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9185 i += 4;
9186 break;
9187
9188 case DW_OP_const4s:
9189 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9190 i += 4;
9191 break;
9192
9193 case DW_OP_constu:
9194 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 9195 &bytes_read);
c906108c
SS
9196 i += bytes_read;
9197 break;
9198
9199 case DW_OP_consts:
9200 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9201 i += bytes_read;
9202 break;
9203
f1bea926
JM
9204 case DW_OP_dup:
9205 stack[stacki + 1] = stack[stacki];
9206 stacki++;
9207 break;
9208
c906108c
SS
9209 case DW_OP_plus:
9210 stack[stacki - 1] += stack[stacki];
9211 stacki--;
9212 break;
9213
9214 case DW_OP_plus_uconst:
9215 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9216 i += bytes_read;
9217 break;
9218
9219 case DW_OP_minus:
f1bea926 9220 stack[stacki - 1] -= stack[stacki];
c906108c
SS
9221 stacki--;
9222 break;
9223
7a292a7a 9224 case DW_OP_deref:
7a292a7a 9225 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
9226 this using GDB's address_class enum. This is valid for partial
9227 global symbols, although the variable's address will be bogus
9228 in the psymtab. */
7a292a7a 9229 if (i < size)
4d3c2250 9230 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
9231 break;
9232
9d774e44 9233 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
9234 /* The top of the stack has the offset from the beginning
9235 of the thread control block at which the variable is located. */
9236 /* Nothing should follow this operator, so the top of stack would
9237 be returned. */
4cecd739
DJ
9238 /* This is valid for partial global symbols, but the variable's
9239 address will be bogus in the psymtab. */
9d774e44 9240 if (i < size)
4d3c2250 9241 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
9242 break;
9243
42be36b3
CT
9244 case DW_OP_GNU_uninit:
9245 break;
9246
c906108c 9247 default:
e2e0b3e5 9248 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 9249 dwarf_stack_op_name (op));
c906108c
SS
9250 return (stack[stacki]);
9251 }
9252 }
9253 return (stack[stacki]);
9254}
9255
9256/* memory allocation interface */
9257
c906108c 9258static struct dwarf_block *
7b5a2f43 9259dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
9260{
9261 struct dwarf_block *blk;
9262
9263 blk = (struct dwarf_block *)
7b5a2f43 9264 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
9265 return (blk);
9266}
9267
9268static struct abbrev_info *
f3dd6933 9269dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9270{
9271 struct abbrev_info *abbrev;
9272
f3dd6933
DJ
9273 abbrev = (struct abbrev_info *)
9274 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9275 memset (abbrev, 0, sizeof (struct abbrev_info));
9276 return (abbrev);
9277}
9278
9279static struct die_info *
fba45db2 9280dwarf_alloc_die (void)
c906108c
SS
9281{
9282 struct die_info *die;
9283
9284 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9285 memset (die, 0, sizeof (struct die_info));
9286 return (die);
9287}
2e276125
JB
9288
9289\f
9290/* Macro support. */
9291
9292
9293/* Return the full name of file number I in *LH's file name table.
9294 Use COMP_DIR as the name of the current directory of the
9295 compilation. The result is allocated using xmalloc; the caller is
9296 responsible for freeing it. */
9297static char *
9298file_full_name (int file, struct line_header *lh, const char *comp_dir)
9299{
6a83a1e6
EZ
9300 /* Is the file number a valid index into the line header's file name
9301 table? Remember that file numbers start with one, not zero. */
9302 if (1 <= file && file <= lh->num_file_names)
9303 {
9304 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9305
6a83a1e6
EZ
9306 if (IS_ABSOLUTE_PATH (fe->name))
9307 return xstrdup (fe->name);
9308 else
9309 {
9310 const char *dir;
9311 int dir_len;
9312 char *full_name;
9313
9314 if (fe->dir_index)
9315 dir = lh->include_dirs[fe->dir_index - 1];
9316 else
9317 dir = comp_dir;
9318
9319 if (dir)
9320 {
9321 dir_len = strlen (dir);
9322 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9323 strcpy (full_name, dir);
9324 full_name[dir_len] = '/';
9325 strcpy (full_name + dir_len + 1, fe->name);
9326 return full_name;
9327 }
9328 else
9329 return xstrdup (fe->name);
9330 }
9331 }
2e276125
JB
9332 else
9333 {
6a83a1e6
EZ
9334 /* The compiler produced a bogus file number. We can at least
9335 record the macro definitions made in the file, even if we
9336 won't be able to find the file by name. */
9337 char fake_name[80];
9338 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9339
6a83a1e6
EZ
9340 complaint (&symfile_complaints,
9341 _("bad file number in macro information (%d)"),
9342 file);
2e276125 9343
6a83a1e6 9344 return xstrdup (fake_name);
2e276125
JB
9345 }
9346}
9347
9348
9349static struct macro_source_file *
9350macro_start_file (int file, int line,
9351 struct macro_source_file *current_file,
9352 const char *comp_dir,
9353 struct line_header *lh, struct objfile *objfile)
9354{
9355 /* The full name of this source file. */
9356 char *full_name = file_full_name (file, lh, comp_dir);
9357
9358 /* We don't create a macro table for this compilation unit
9359 at all until we actually get a filename. */
9360 if (! pending_macros)
4a146b47 9361 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9362 objfile->macro_cache);
2e276125
JB
9363
9364 if (! current_file)
9365 /* If we have no current file, then this must be the start_file
9366 directive for the compilation unit's main source file. */
9367 current_file = macro_set_main (pending_macros, full_name);
9368 else
9369 current_file = macro_include (current_file, line, full_name);
9370
9371 xfree (full_name);
9372
9373 return current_file;
9374}
9375
9376
9377/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9378 followed by a null byte. */
9379static char *
9380copy_string (const char *buf, int len)
9381{
9382 char *s = xmalloc (len + 1);
9383 memcpy (s, buf, len);
9384 s[len] = '\0';
9385
9386 return s;
9387}
9388
9389
9390static const char *
9391consume_improper_spaces (const char *p, const char *body)
9392{
9393 if (*p == ' ')
9394 {
4d3c2250 9395 complaint (&symfile_complaints,
e2e0b3e5 9396 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9397 body);
2e276125
JB
9398
9399 while (*p == ' ')
9400 p++;
9401 }
9402
9403 return p;
9404}
9405
9406
9407static void
9408parse_macro_definition (struct macro_source_file *file, int line,
9409 const char *body)
9410{
9411 const char *p;
9412
9413 /* The body string takes one of two forms. For object-like macro
9414 definitions, it should be:
9415
9416 <macro name> " " <definition>
9417
9418 For function-like macro definitions, it should be:
9419
9420 <macro name> "() " <definition>
9421 or
9422 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9423
9424 Spaces may appear only where explicitly indicated, and in the
9425 <definition>.
9426
9427 The Dwarf 2 spec says that an object-like macro's name is always
9428 followed by a space, but versions of GCC around March 2002 omit
9429 the space when the macro's definition is the empty string.
9430
9431 The Dwarf 2 spec says that there should be no spaces between the
9432 formal arguments in a function-like macro's formal argument list,
9433 but versions of GCC around March 2002 include spaces after the
9434 commas. */
9435
9436
9437 /* Find the extent of the macro name. The macro name is terminated
9438 by either a space or null character (for an object-like macro) or
9439 an opening paren (for a function-like macro). */
9440 for (p = body; *p; p++)
9441 if (*p == ' ' || *p == '(')
9442 break;
9443
9444 if (*p == ' ' || *p == '\0')
9445 {
9446 /* It's an object-like macro. */
9447 int name_len = p - body;
9448 char *name = copy_string (body, name_len);
9449 const char *replacement;
9450
9451 if (*p == ' ')
9452 replacement = body + name_len + 1;
9453 else
9454 {
4d3c2250 9455 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9456 replacement = body + name_len;
9457 }
9458
9459 macro_define_object (file, line, name, replacement);
9460
9461 xfree (name);
9462 }
9463 else if (*p == '(')
9464 {
9465 /* It's a function-like macro. */
9466 char *name = copy_string (body, p - body);
9467 int argc = 0;
9468 int argv_size = 1;
9469 char **argv = xmalloc (argv_size * sizeof (*argv));
9470
9471 p++;
9472
9473 p = consume_improper_spaces (p, body);
9474
9475 /* Parse the formal argument list. */
9476 while (*p && *p != ')')
9477 {
9478 /* Find the extent of the current argument name. */
9479 const char *arg_start = p;
9480
9481 while (*p && *p != ',' && *p != ')' && *p != ' ')
9482 p++;
9483
9484 if (! *p || p == arg_start)
4d3c2250 9485 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9486 else
9487 {
9488 /* Make sure argv has room for the new argument. */
9489 if (argc >= argv_size)
9490 {
9491 argv_size *= 2;
9492 argv = xrealloc (argv, argv_size * sizeof (*argv));
9493 }
9494
9495 argv[argc++] = copy_string (arg_start, p - arg_start);
9496 }
9497
9498 p = consume_improper_spaces (p, body);
9499
9500 /* Consume the comma, if present. */
9501 if (*p == ',')
9502 {
9503 p++;
9504
9505 p = consume_improper_spaces (p, body);
9506 }
9507 }
9508
9509 if (*p == ')')
9510 {
9511 p++;
9512
9513 if (*p == ' ')
9514 /* Perfectly formed definition, no complaints. */
9515 macro_define_function (file, line, name,
9516 argc, (const char **) argv,
9517 p + 1);
9518 else if (*p == '\0')
9519 {
9520 /* Complain, but do define it. */
4d3c2250 9521 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9522 macro_define_function (file, line, name,
9523 argc, (const char **) argv,
9524 p);
9525 }
9526 else
9527 /* Just complain. */
4d3c2250 9528 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9529 }
9530 else
9531 /* Just complain. */
4d3c2250 9532 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9533
9534 xfree (name);
9535 {
9536 int i;
9537
9538 for (i = 0; i < argc; i++)
9539 xfree (argv[i]);
9540 }
9541 xfree (argv);
9542 }
9543 else
4d3c2250 9544 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9545}
9546
9547
9548static void
9549dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9550 char *comp_dir, bfd *abfd,
e7c27a73 9551 struct dwarf2_cu *cu)
2e276125 9552{
fe1b8b76 9553 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9554 struct macro_source_file *current_file = 0;
9555
6502dd73 9556 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9557 {
e2e0b3e5 9558 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9559 return;
9560 }
9561
6502dd73
DJ
9562 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9563 mac_end = dwarf2_per_objfile->macinfo_buffer
9564 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9565
9566 for (;;)
9567 {
9568 enum dwarf_macinfo_record_type macinfo_type;
9569
9570 /* Do we at least have room for a macinfo type byte? */
9571 if (mac_ptr >= mac_end)
9572 {
4d3c2250 9573 dwarf2_macros_too_long_complaint ();
2e276125
JB
9574 return;
9575 }
9576
9577 macinfo_type = read_1_byte (abfd, mac_ptr);
9578 mac_ptr++;
9579
9580 switch (macinfo_type)
9581 {
9582 /* A zero macinfo type indicates the end of the macro
9583 information. */
9584 case 0:
9585 return;
9586
9587 case DW_MACINFO_define:
9588 case DW_MACINFO_undef:
9589 {
891d2f0b 9590 unsigned int bytes_read;
2e276125
JB
9591 int line;
9592 char *body;
9593
9594 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9595 mac_ptr += bytes_read;
9596 body = read_string (abfd, mac_ptr, &bytes_read);
9597 mac_ptr += bytes_read;
9598
9599 if (! current_file)
4d3c2250 9600 complaint (&symfile_complaints,
e2e0b3e5 9601 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9602 macinfo_type ==
9603 DW_MACINFO_define ? "definition" : macinfo_type ==
9604 DW_MACINFO_undef ? "undefinition" :
9605 "something-or-other", body);
2e276125
JB
9606 else
9607 {
9608 if (macinfo_type == DW_MACINFO_define)
9609 parse_macro_definition (current_file, line, body);
9610 else if (macinfo_type == DW_MACINFO_undef)
9611 macro_undef (current_file, line, body);
9612 }
9613 }
9614 break;
9615
9616 case DW_MACINFO_start_file:
9617 {
891d2f0b 9618 unsigned int bytes_read;
2e276125
JB
9619 int line, file;
9620
9621 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9622 mac_ptr += bytes_read;
9623 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9624 mac_ptr += bytes_read;
9625
9626 current_file = macro_start_file (file, line,
9627 current_file, comp_dir,
e7c27a73 9628 lh, cu->objfile);
2e276125
JB
9629 }
9630 break;
9631
9632 case DW_MACINFO_end_file:
9633 if (! current_file)
4d3c2250 9634 complaint (&symfile_complaints,
e2e0b3e5 9635 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9636 else
9637 {
9638 current_file = current_file->included_by;
9639 if (! current_file)
9640 {
9641 enum dwarf_macinfo_record_type next_type;
9642
9643 /* GCC circa March 2002 doesn't produce the zero
9644 type byte marking the end of the compilation
9645 unit. Complain if it's not there, but exit no
9646 matter what. */
9647
9648 /* Do we at least have room for a macinfo type byte? */
9649 if (mac_ptr >= mac_end)
9650 {
4d3c2250 9651 dwarf2_macros_too_long_complaint ();
2e276125
JB
9652 return;
9653 }
9654
9655 /* We don't increment mac_ptr here, so this is just
9656 a look-ahead. */
9657 next_type = read_1_byte (abfd, mac_ptr);
9658 if (next_type != 0)
4d3c2250 9659 complaint (&symfile_complaints,
e2e0b3e5 9660 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9661
9662 return;
9663 }
9664 }
9665 break;
9666
9667 case DW_MACINFO_vendor_ext:
9668 {
891d2f0b 9669 unsigned int bytes_read;
2e276125
JB
9670 int constant;
9671 char *string;
9672
9673 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9674 mac_ptr += bytes_read;
9675 string = read_string (abfd, mac_ptr, &bytes_read);
9676 mac_ptr += bytes_read;
9677
9678 /* We don't recognize any vendor extensions. */
9679 }
9680 break;
9681 }
9682 }
9683}
8e19ed76
PS
9684
9685/* Check if the attribute's form is a DW_FORM_block*
9686 if so return true else false. */
9687static int
9688attr_form_is_block (struct attribute *attr)
9689{
9690 return (attr == NULL ? 0 :
9691 attr->form == DW_FORM_block1
9692 || attr->form == DW_FORM_block2
9693 || attr->form == DW_FORM_block4
9694 || attr->form == DW_FORM_block);
9695}
4c2df51b
DJ
9696
9697static void
9698dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9699 struct dwarf2_cu *cu)
4c2df51b 9700{
99bcc461
DJ
9701 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9702 /* ".debug_loc" may not exist at all, or the offset may be outside
9703 the section. If so, fall through to the complaint in the
9704 other branch. */
9705 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9706 {
0d53c4c4 9707 struct dwarf2_loclist_baton *baton;
4c2df51b 9708
4a146b47 9709 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9710 sizeof (struct dwarf2_loclist_baton));
e7c27a73 9711 baton->objfile = cu->objfile;
4c2df51b 9712
0d53c4c4
DJ
9713 /* We don't know how long the location list is, but make sure we
9714 don't run off the edge of the section. */
6502dd73
DJ
9715 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9716 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9717 baton->base_address = cu->header.base_address;
9718 if (cu->header.base_known == 0)
0d53c4c4 9719 complaint (&symfile_complaints,
e2e0b3e5 9720 _("Location list used without specifying the CU base address."));
4c2df51b 9721
a67af2b9 9722 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9723 SYMBOL_LOCATION_BATON (sym) = baton;
9724 }
9725 else
9726 {
9727 struct dwarf2_locexpr_baton *baton;
9728
4a146b47 9729 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9730 sizeof (struct dwarf2_locexpr_baton));
e7c27a73 9731 baton->objfile = cu->objfile;
0d53c4c4
DJ
9732
9733 if (attr_form_is_block (attr))
9734 {
9735 /* Note that we're just copying the block's data pointer
9736 here, not the actual data. We're still pointing into the
6502dd73
DJ
9737 info_buffer for SYM's objfile; right now we never release
9738 that buffer, but when we do clean up properly this may
9739 need to change. */
0d53c4c4
DJ
9740 baton->size = DW_BLOCK (attr)->size;
9741 baton->data = DW_BLOCK (attr)->data;
9742 }
9743 else
9744 {
9745 dwarf2_invalid_attrib_class_complaint ("location description",
9746 SYMBOL_NATURAL_NAME (sym));
9747 baton->size = 0;
9748 baton->data = NULL;
9749 }
9750
a67af2b9 9751 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9752 SYMBOL_LOCATION_BATON (sym) = baton;
9753 }
4c2df51b 9754}
6502dd73 9755
ae038cb0 9756/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9757 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9758
9759static struct dwarf2_per_cu_data *
9760dwarf2_find_containing_comp_unit (unsigned long offset,
9761 struct objfile *objfile)
9762{
9763 struct dwarf2_per_cu_data *this_cu;
9764 int low, high;
9765
ae038cb0
DJ
9766 low = 0;
9767 high = dwarf2_per_objfile->n_comp_units - 1;
9768 while (high > low)
9769 {
9770 int mid = low + (high - low) / 2;
9771 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9772 high = mid;
9773 else
9774 low = mid + 1;
9775 }
9776 gdb_assert (low == high);
9777 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9778 {
10b3939b 9779 if (low == 0)
8a3fe4f8
AC
9780 error (_("Dwarf Error: could not find partial DIE containing "
9781 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9782 (long) offset, bfd_get_filename (objfile->obfd));
9783
ae038cb0
DJ
9784 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9785 return dwarf2_per_objfile->all_comp_units[low-1];
9786 }
9787 else
9788 {
9789 this_cu = dwarf2_per_objfile->all_comp_units[low];
9790 if (low == dwarf2_per_objfile->n_comp_units - 1
9791 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9792 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9793 gdb_assert (offset < this_cu->offset + this_cu->length);
9794 return this_cu;
9795 }
9796}
9797
10b3939b
DJ
9798/* Locate the compilation unit from OBJFILE which is located at exactly
9799 OFFSET. Raises an error on failure. */
9800
ae038cb0
DJ
9801static struct dwarf2_per_cu_data *
9802dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9803{
9804 struct dwarf2_per_cu_data *this_cu;
9805 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9806 if (this_cu->offset != offset)
8a3fe4f8 9807 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9808 return this_cu;
9809}
9810
9811/* Release one cached compilation unit, CU. We unlink it from the tree
9812 of compilation units, but we don't remove it from the read_in_chain;
9813 the caller is responsible for that. */
9814
9815static void
9816free_one_comp_unit (void *data)
9817{
9818 struct dwarf2_cu *cu = data;
9819
9820 if (cu->per_cu != NULL)
9821 cu->per_cu->cu = NULL;
9822 cu->per_cu = NULL;
9823
9824 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9825 if (cu->dies)
9826 free_die_list (cu->dies);
ae038cb0
DJ
9827
9828 xfree (cu);
9829}
9830
72bf9492 9831/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9832 when we're finished with it. We can't free the pointer itself, but be
9833 sure to unlink it from the cache. Also release any associated storage
9834 and perform cache maintenance.
72bf9492
DJ
9835
9836 Only used during partial symbol parsing. */
9837
9838static void
9839free_stack_comp_unit (void *data)
9840{
9841 struct dwarf2_cu *cu = data;
9842
9843 obstack_free (&cu->comp_unit_obstack, NULL);
9844 cu->partial_dies = NULL;
ae038cb0
DJ
9845
9846 if (cu->per_cu != NULL)
9847 {
9848 /* This compilation unit is on the stack in our caller, so we
9849 should not xfree it. Just unlink it. */
9850 cu->per_cu->cu = NULL;
9851 cu->per_cu = NULL;
9852
9853 /* If we had a per-cu pointer, then we may have other compilation
9854 units loaded, so age them now. */
9855 age_cached_comp_units ();
9856 }
9857}
9858
9859/* Free all cached compilation units. */
9860
9861static void
9862free_cached_comp_units (void *data)
9863{
9864 struct dwarf2_per_cu_data *per_cu, **last_chain;
9865
9866 per_cu = dwarf2_per_objfile->read_in_chain;
9867 last_chain = &dwarf2_per_objfile->read_in_chain;
9868 while (per_cu != NULL)
9869 {
9870 struct dwarf2_per_cu_data *next_cu;
9871
9872 next_cu = per_cu->cu->read_in_chain;
9873
9874 free_one_comp_unit (per_cu->cu);
9875 *last_chain = next_cu;
9876
9877 per_cu = next_cu;
9878 }
9879}
9880
9881/* Increase the age counter on each cached compilation unit, and free
9882 any that are too old. */
9883
9884static void
9885age_cached_comp_units (void)
9886{
9887 struct dwarf2_per_cu_data *per_cu, **last_chain;
9888
9889 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9890 per_cu = dwarf2_per_objfile->read_in_chain;
9891 while (per_cu != NULL)
9892 {
9893 per_cu->cu->last_used ++;
9894 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9895 dwarf2_mark (per_cu->cu);
9896 per_cu = per_cu->cu->read_in_chain;
9897 }
9898
9899 per_cu = dwarf2_per_objfile->read_in_chain;
9900 last_chain = &dwarf2_per_objfile->read_in_chain;
9901 while (per_cu != NULL)
9902 {
9903 struct dwarf2_per_cu_data *next_cu;
9904
9905 next_cu = per_cu->cu->read_in_chain;
9906
9907 if (!per_cu->cu->mark)
9908 {
9909 free_one_comp_unit (per_cu->cu);
9910 *last_chain = next_cu;
9911 }
9912 else
9913 last_chain = &per_cu->cu->read_in_chain;
9914
9915 per_cu = next_cu;
9916 }
9917}
9918
9919/* Remove a single compilation unit from the cache. */
9920
9921static void
9922free_one_cached_comp_unit (void *target_cu)
9923{
9924 struct dwarf2_per_cu_data *per_cu, **last_chain;
9925
9926 per_cu = dwarf2_per_objfile->read_in_chain;
9927 last_chain = &dwarf2_per_objfile->read_in_chain;
9928 while (per_cu != NULL)
9929 {
9930 struct dwarf2_per_cu_data *next_cu;
9931
9932 next_cu = per_cu->cu->read_in_chain;
9933
9934 if (per_cu->cu == target_cu)
9935 {
9936 free_one_comp_unit (per_cu->cu);
9937 *last_chain = next_cu;
9938 break;
9939 }
9940 else
9941 last_chain = &per_cu->cu->read_in_chain;
9942
9943 per_cu = next_cu;
9944 }
9945}
9946
1c379e20
DJ
9947/* A pair of DIE offset and GDB type pointer. We store these
9948 in a hash table separate from the DIEs, and preserve them
9949 when the DIEs are flushed out of cache. */
9950
9951struct dwarf2_offset_and_type
9952{
9953 unsigned int offset;
9954 struct type *type;
9955};
9956
9957/* Hash function for a dwarf2_offset_and_type. */
9958
9959static hashval_t
9960offset_and_type_hash (const void *item)
9961{
9962 const struct dwarf2_offset_and_type *ofs = item;
9963 return ofs->offset;
9964}
9965
9966/* Equality function for a dwarf2_offset_and_type. */
9967
9968static int
9969offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9970{
9971 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9972 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9973 return ofs_lhs->offset == ofs_rhs->offset;
9974}
9975
9976/* Set the type associated with DIE to TYPE. Save it in CU's hash
9977 table if necessary. */
9978
9979static void
9980set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9981{
9982 struct dwarf2_offset_and_type **slot, ofs;
9983
9984 die->type = type;
9985
9986 if (cu->per_cu == NULL)
9987 return;
9988
9989 if (cu->per_cu->type_hash == NULL)
9990 cu->per_cu->type_hash
9991 = htab_create_alloc_ex (cu->header.length / 24,
9992 offset_and_type_hash,
9993 offset_and_type_eq,
9994 NULL,
9995 &cu->objfile->objfile_obstack,
9996 hashtab_obstack_allocate,
9997 dummy_obstack_deallocate);
9998
9999 ofs.offset = die->offset;
10000 ofs.type = type;
10001 slot = (struct dwarf2_offset_and_type **)
10002 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10003 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10004 **slot = ofs;
10005}
10006
1c379e20
DJ
10007/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10008 have a saved type. */
10009
10010static struct type *
10011get_die_type (struct die_info *die, htab_t type_hash)
10012{
10013 struct dwarf2_offset_and_type *slot, ofs;
10014
10015 ofs.offset = die->offset;
10016 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10017 if (slot)
10018 return slot->type;
10019 else
10020 return NULL;
10021}
10022
10023/* Restore the types of the DIE tree starting at START_DIE from the hash
10024 table saved in CU. */
10025
10026static void
10027reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10028{
10029 struct die_info *die;
10030
10031 if (cu->per_cu->type_hash == NULL)
10032 return;
10033
10034 for (die = start_die; die != NULL; die = die->sibling)
10035 {
10036 die->type = get_die_type (die, cu->per_cu->type_hash);
10037 if (die->child != NULL)
10038 reset_die_and_siblings_types (die->child, cu);
10039 }
10040}
10041
10b3939b
DJ
10042/* Set the mark field in CU and in every other compilation unit in the
10043 cache that we must keep because we are keeping CU. */
10044
10045/* Add a dependence relationship from CU to REF_PER_CU. */
10046
10047static void
10048dwarf2_add_dependence (struct dwarf2_cu *cu,
10049 struct dwarf2_per_cu_data *ref_per_cu)
10050{
10051 void **slot;
10052
10053 if (cu->dependencies == NULL)
10054 cu->dependencies
10055 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10056 NULL, &cu->comp_unit_obstack,
10057 hashtab_obstack_allocate,
10058 dummy_obstack_deallocate);
10059
10060 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10061 if (*slot == NULL)
10062 *slot = ref_per_cu;
10063}
1c379e20 10064
ae038cb0
DJ
10065/* Set the mark field in CU and in every other compilation unit in the
10066 cache that we must keep because we are keeping CU. */
10067
10b3939b
DJ
10068static int
10069dwarf2_mark_helper (void **slot, void *data)
10070{
10071 struct dwarf2_per_cu_data *per_cu;
10072
10073 per_cu = (struct dwarf2_per_cu_data *) *slot;
10074 if (per_cu->cu->mark)
10075 return 1;
10076 per_cu->cu->mark = 1;
10077
10078 if (per_cu->cu->dependencies != NULL)
10079 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10080
10081 return 1;
10082}
10083
ae038cb0
DJ
10084static void
10085dwarf2_mark (struct dwarf2_cu *cu)
10086{
10087 if (cu->mark)
10088 return;
10089 cu->mark = 1;
10b3939b
DJ
10090 if (cu->dependencies != NULL)
10091 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
10092}
10093
10094static void
10095dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10096{
10097 while (per_cu)
10098 {
10099 per_cu->cu->mark = 0;
10100 per_cu = per_cu->cu->read_in_chain;
10101 }
72bf9492
DJ
10102}
10103
72bf9492
DJ
10104/* Trivial hash function for partial_die_info: the hash value of a DIE
10105 is its offset in .debug_info for this objfile. */
10106
10107static hashval_t
10108partial_die_hash (const void *item)
10109{
10110 const struct partial_die_info *part_die = item;
10111 return part_die->offset;
10112}
10113
10114/* Trivial comparison function for partial_die_info structures: two DIEs
10115 are equal if they have the same offset. */
10116
10117static int
10118partial_die_eq (const void *item_lhs, const void *item_rhs)
10119{
10120 const struct partial_die_info *part_die_lhs = item_lhs;
10121 const struct partial_die_info *part_die_rhs = item_rhs;
10122 return part_die_lhs->offset == part_die_rhs->offset;
10123}
10124
ae038cb0
DJ
10125static struct cmd_list_element *set_dwarf2_cmdlist;
10126static struct cmd_list_element *show_dwarf2_cmdlist;
10127
10128static void
10129set_dwarf2_cmd (char *args, int from_tty)
10130{
10131 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10132}
10133
10134static void
10135show_dwarf2_cmd (char *args, int from_tty)
10136{
10137 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10138}
10139
6502dd73
DJ
10140void _initialize_dwarf2_read (void);
10141
10142void
10143_initialize_dwarf2_read (void)
10144{
10145 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 10146
1bedd215
AC
10147 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10148Set DWARF 2 specific variables.\n\
10149Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10150 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10151 0/*allow-unknown*/, &maintenance_set_cmdlist);
10152
1bedd215
AC
10153 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10154Show DWARF 2 specific variables\n\
10155Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10156 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10157 0/*allow-unknown*/, &maintenance_show_cmdlist);
10158
10159 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
10160 &dwarf2_max_cache_age, _("\
10161Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10162Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10163A higher limit means that cached compilation units will be stored\n\
10164in memory longer, and more total memory will be used. Zero disables\n\
10165caching, which can slow down startup."),
2c5b56ce 10166 NULL,
920d2a44 10167 show_dwarf2_max_cache_age,
2c5b56ce 10168 &set_dwarf2_cmdlist,
ae038cb0 10169 &show_dwarf2_cmdlist);
6502dd73 10170}
This page took 1.185961 seconds and 4 git commands to generate.