Support stepping through PPC PLT with securePLT.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
0b302171 3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
c906108c
SS
33#include "symtab.h"
34#include "gdbtypes.h"
c906108c 35#include "objfiles.h"
fa8f86ff 36#include "dwarf2.h"
c906108c
SS
37#include "buildsym.h"
38#include "demangle.h"
50f182aa 39#include "gdb-demangle.h"
c906108c 40#include "expression.h"
d5166ae1 41#include "filenames.h" /* for DOSish file names */
2e276125 42#include "macrotab.h"
c906108c
SS
43#include "language.h"
44#include "complaints.h"
357e46e7 45#include "bcache.h"
4c2df51b
DJ
46#include "dwarf2expr.h"
47#include "dwarf2loc.h"
9219021c 48#include "cp-support.h"
72bf9492 49#include "hashtab.h"
ae038cb0
DJ
50#include "command.h"
51#include "gdbcmd.h"
edb3359d 52#include "block.h"
ff013f42 53#include "addrmap.h"
94af9270
KS
54#include "typeprint.h"
55#include "jv-lang.h"
ccefe4c4 56#include "psympriv.h"
9291a0cd
TT
57#include "exceptions.h"
58#include "gdb_stat.h"
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5
PA
61#include "c-lang.h"
62#include "valprint.h"
60d5a603 63#include <ctype.h>
4c2df51b 64
c906108c
SS
65#include <fcntl.h>
66#include "gdb_string.h"
4bdf3d34 67#include "gdb_assert.h"
c906108c 68#include <sys/types.h>
233a11ab
CS
69#ifdef HAVE_ZLIB_H
70#include <zlib.h>
71#endif
dce234bc
PP
72#ifdef HAVE_MMAP
73#include <sys/mman.h>
85d9bd0e
TT
74#ifndef MAP_FAILED
75#define MAP_FAILED ((void *) -1)
76#endif
dce234bc 77#endif
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
d97bc12b
DE
82/* When non-zero, dump DIEs after they are read in. */
83static int dwarf2_die_debug = 0;
84
900e11f9
JK
85/* When non-zero, cross-check physname against demangler. */
86static int check_physname = 0;
87
dce234bc
PP
88static int pagesize;
89
df8a16a1
DJ
90/* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
93
94static int processing_has_namespace_info;
95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
dce234bc
PP
98struct dwarf2_section_info
99{
100 asection *asection;
101 gdb_byte *buffer;
102 bfd_size_type size;
b315ab21
TG
103 /* Not NULL if the section was actually mmapped. */
104 void *map_addr;
105 /* Page aligned size of mmapped area. */
106 bfd_size_type map_len;
be391dca
TT
107 /* True if we have tried to read this section. */
108 int readin;
dce234bc
PP
109};
110
8b70b953
TT
111typedef struct dwarf2_section_info dwarf2_section_info_def;
112DEF_VEC_O (dwarf2_section_info_def);
113
9291a0cd
TT
114/* All offsets in the index are of this type. It must be
115 architecture-independent. */
116typedef uint32_t offset_type;
117
118DEF_VEC_I (offset_type);
119
120/* A description of the mapped index. The file format is described in
121 a comment by the code that writes the index. */
122struct mapped_index
123{
559a7a62
JK
124 /* Index data format version. */
125 int version;
126
9291a0cd
TT
127 /* The total length of the buffer. */
128 off_t total_size;
b11b1f88 129
9291a0cd
TT
130 /* A pointer to the address table data. */
131 const gdb_byte *address_table;
b11b1f88 132
9291a0cd
TT
133 /* Size of the address table data in bytes. */
134 offset_type address_table_size;
b11b1f88 135
3876f04e
DE
136 /* The symbol table, implemented as a hash table. */
137 const offset_type *symbol_table;
b11b1f88 138
9291a0cd 139 /* Size in slots, each slot is 2 offset_types. */
3876f04e 140 offset_type symbol_table_slots;
b11b1f88 141
9291a0cd
TT
142 /* A pointer to the constant pool. */
143 const char *constant_pool;
144};
145
9cdd5dbd
DE
146/* Collection of data recorded per objfile.
147 This hangs off of dwarf2_objfile_data_key. */
148
6502dd73
DJ
149struct dwarf2_per_objfile
150{
dce234bc
PP
151 struct dwarf2_section_info info;
152 struct dwarf2_section_info abbrev;
153 struct dwarf2_section_info line;
dce234bc
PP
154 struct dwarf2_section_info loc;
155 struct dwarf2_section_info macinfo;
cf2c3c16 156 struct dwarf2_section_info macro;
dce234bc
PP
157 struct dwarf2_section_info str;
158 struct dwarf2_section_info ranges;
159 struct dwarf2_section_info frame;
160 struct dwarf2_section_info eh_frame;
9291a0cd 161 struct dwarf2_section_info gdb_index;
ae038cb0 162
8b70b953
TT
163 VEC (dwarf2_section_info_def) *types;
164
be391dca
TT
165 /* Back link. */
166 struct objfile *objfile;
167
d467dd73 168 /* Table of all the compilation units. This is used to locate
10b3939b 169 the target compilation unit of a particular reference. */
ae038cb0
DJ
170 struct dwarf2_per_cu_data **all_comp_units;
171
172 /* The number of compilation units in ALL_COMP_UNITS. */
173 int n_comp_units;
174
1fd400ff 175 /* The number of .debug_types-related CUs. */
d467dd73 176 int n_type_units;
1fd400ff 177
d467dd73
DE
178 /* The .debug_types-related CUs (TUs). */
179 struct dwarf2_per_cu_data **all_type_units;
1fd400ff 180
ae038cb0
DJ
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 184
348e048f
DE
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
72dca2f5
FR
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
9291a0cd 192
ae2de4f8
DE
193 /* True if we are using the mapped index,
194 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
195 unsigned char using_index;
196
ae2de4f8 197 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 198 struct mapped_index *index_table;
98bfdba5 199
7b9f3c50
DE
200 /* When using index_table, this keeps track of all quick_file_names entries.
201 TUs can share line table entries with CUs or other TUs, and there can be
202 a lot more TUs than unique line tables, so we maintain a separate table
203 of all line table entries to support the sharing. */
204 htab_t quick_file_names_table;
205
98bfdba5
PA
206 /* Set during partial symbol reading, to prevent queueing of full
207 symbols. */
208 int reading_partial_symbols;
673bfd45
DE
209
210 /* Table mapping type .debug_info DIE offsets to types.
211 This is NULL if not allocated yet.
212 It (currently) makes sense to allocate debug_types_type_hash lazily.
213 To keep things simple we allocate both lazily. */
214 htab_t debug_info_type_hash;
215
216 /* Table mapping type .debug_types DIE offsets to types.
217 This is NULL if not allocated yet. */
218 htab_t debug_types_type_hash;
6502dd73
DJ
219};
220
221static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 222
251d32d9 223/* Default names of the debugging sections. */
c906108c 224
233a11ab
CS
225/* Note that if the debugging section has been compressed, it might
226 have a name like .zdebug_info. */
227
9cdd5dbd
DE
228static const struct dwarf2_debug_sections dwarf2_elf_names =
229{
251d32d9
TG
230 { ".debug_info", ".zdebug_info" },
231 { ".debug_abbrev", ".zdebug_abbrev" },
232 { ".debug_line", ".zdebug_line" },
233 { ".debug_loc", ".zdebug_loc" },
234 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 235 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
236 { ".debug_str", ".zdebug_str" },
237 { ".debug_ranges", ".zdebug_ranges" },
238 { ".debug_types", ".zdebug_types" },
239 { ".debug_frame", ".zdebug_frame" },
240 { ".eh_frame", NULL },
24d3216f
TT
241 { ".gdb_index", ".zgdb_index" },
242 23
251d32d9 243};
c906108c
SS
244
245/* local data types */
246
0963b4bd 247/* We hold several abbreviation tables in memory at the same time. */
57349743
JB
248#ifndef ABBREV_HASH_SIZE
249#define ABBREV_HASH_SIZE 121
250#endif
251
107d2387
AC
252/* The data in a compilation unit header, after target2host
253 translation, looks like this. */
c906108c 254struct comp_unit_head
a738430d 255{
c764a876 256 unsigned int length;
a738430d 257 short version;
a738430d
MK
258 unsigned char addr_size;
259 unsigned char signed_addr_p;
9cbfa09e 260 unsigned int abbrev_offset;
57349743 261
a738430d
MK
262 /* Size of file offsets; either 4 or 8. */
263 unsigned int offset_size;
57349743 264
a738430d
MK
265 /* Size of the length field; either 4 or 12. */
266 unsigned int initial_length_size;
57349743 267
a738430d
MK
268 /* Offset to the first byte of this compilation unit header in the
269 .debug_info section, for resolving relative reference dies. */
270 unsigned int offset;
57349743 271
d00adf39
DE
272 /* Offset to first die in this cu from the start of the cu.
273 This will be the first byte following the compilation unit header. */
274 unsigned int first_die_offset;
a738430d 275};
c906108c 276
3da10d80
KS
277/* Type used for delaying computation of method physnames.
278 See comments for compute_delayed_physnames. */
279struct delayed_method_info
280{
281 /* The type to which the method is attached, i.e., its parent class. */
282 struct type *type;
283
284 /* The index of the method in the type's function fieldlists. */
285 int fnfield_index;
286
287 /* The index of the method in the fieldlist. */
288 int index;
289
290 /* The name of the DIE. */
291 const char *name;
292
293 /* The DIE associated with this method. */
294 struct die_info *die;
295};
296
297typedef struct delayed_method_info delayed_method_info;
298DEF_VEC_O (delayed_method_info);
299
e7c27a73
DJ
300/* Internal state when decoding a particular compilation unit. */
301struct dwarf2_cu
302{
303 /* The objfile containing this compilation unit. */
304 struct objfile *objfile;
305
d00adf39 306 /* The header of the compilation unit. */
e7c27a73 307 struct comp_unit_head header;
e142c38c 308
d00adf39
DE
309 /* Base address of this compilation unit. */
310 CORE_ADDR base_address;
311
312 /* Non-zero if base_address has been set. */
313 int base_known;
314
e142c38c
DJ
315 /* The language we are debugging. */
316 enum language language;
317 const struct language_defn *language_defn;
318
b0f35d58
DL
319 const char *producer;
320
e142c38c
DJ
321 /* The generic symbol table building routines have separate lists for
322 file scope symbols and all all other scopes (local scopes). So
323 we need to select the right one to pass to add_symbol_to_list().
324 We do it by keeping a pointer to the correct list in list_in_scope.
325
326 FIXME: The original dwarf code just treated the file scope as the
327 first local scope, and all other local scopes as nested local
328 scopes, and worked fine. Check to see if we really need to
329 distinguish these in buildsym.c. */
330 struct pending **list_in_scope;
331
f3dd6933
DJ
332 /* DWARF abbreviation table associated with this compilation unit. */
333 struct abbrev_info **dwarf2_abbrevs;
334
335 /* Storage for the abbrev table. */
336 struct obstack abbrev_obstack;
72bf9492
DJ
337
338 /* Hash table holding all the loaded partial DIEs. */
339 htab_t partial_dies;
340
341 /* Storage for things with the same lifetime as this read-in compilation
342 unit, including partial DIEs. */
343 struct obstack comp_unit_obstack;
344
ae038cb0
DJ
345 /* When multiple dwarf2_cu structures are living in memory, this field
346 chains them all together, so that they can be released efficiently.
347 We will probably also want a generation counter so that most-recently-used
348 compilation units are cached... */
349 struct dwarf2_per_cu_data *read_in_chain;
350
351 /* Backchain to our per_cu entry if the tree has been built. */
352 struct dwarf2_per_cu_data *per_cu;
353
354 /* How many compilation units ago was this CU last referenced? */
355 int last_used;
356
10b3939b 357 /* A hash table of die offsets for following references. */
51545339 358 htab_t die_hash;
10b3939b
DJ
359
360 /* Full DIEs if read in. */
361 struct die_info *dies;
362
363 /* A set of pointers to dwarf2_per_cu_data objects for compilation
364 units referenced by this one. Only set during full symbol processing;
365 partial symbol tables do not have dependencies. */
366 htab_t dependencies;
367
cb1df416
DJ
368 /* Header data from the line table, during full symbol processing. */
369 struct line_header *line_header;
370
3da10d80
KS
371 /* A list of methods which need to have physnames computed
372 after all type information has been read. */
373 VEC (delayed_method_info) *method_list;
374
96408a79
SA
375 /* To be copied to symtab->call_site_htab. */
376 htab_t call_site_htab;
377
ae038cb0
DJ
378 /* Mark used when releasing cached dies. */
379 unsigned int mark : 1;
380
381 /* This flag will be set if this compilation unit might include
382 inter-compilation-unit references. */
383 unsigned int has_form_ref_addr : 1;
384
72bf9492
DJ
385 /* This flag will be set if this compilation unit includes any
386 DW_TAG_namespace DIEs. If we know that there are explicit
387 DIEs for namespaces, we don't need to try to infer them
388 from mangled names. */
389 unsigned int has_namespace_info : 1;
8be455d7
JK
390
391 /* This CU references .debug_loc. See the symtab->locations_valid field.
392 This test is imperfect as there may exist optimized debug code not using
393 any location list and still facing inlining issues if handled as
394 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 395 unsigned int has_loclist : 1;
e7c27a73
DJ
396};
397
10b3939b
DJ
398/* Persistent data held for a compilation unit, even when not
399 processing it. We put a pointer to this structure in the
28dee7f5 400 read_symtab_private field of the psymtab. */
10b3939b 401
ae038cb0
DJ
402struct dwarf2_per_cu_data
403{
348e048f 404 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 405 bytes should suffice to store the length of any compilation unit
45452591
DE
406 - if it doesn't, GDB will fall over anyway.
407 NOTE: Unlike comp_unit_head.length, this length includes
408 initial_length_size. */
c764a876 409 unsigned int offset;
348e048f 410 unsigned int length : 29;
ae038cb0
DJ
411
412 /* Flag indicating this compilation unit will be read in before
413 any of the current compilation units are processed. */
c764a876 414 unsigned int queued : 1;
ae038cb0 415
5afb4e99
DJ
416 /* This flag will be set if we need to load absolutely all DIEs
417 for this compilation unit, instead of just the ones we think
418 are interesting. It gets set if we look for a DIE in the
419 hash table and don't find it. */
420 unsigned int load_all_dies : 1;
421
8b70b953
TT
422 /* Non-null if this CU is from .debug_types; in which case it points
423 to the section. Otherwise it's from .debug_info. */
b0df02fd 424 struct dwarf2_section_info *debug_types_section;
348e048f 425
17ea53c3
JK
426 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
427 of the CU cache it gets reset to NULL again. */
ae038cb0 428 struct dwarf2_cu *cu;
1c379e20 429
9cdd5dbd
DE
430 /* The corresponding objfile.
431 Normally we can get the objfile from dwarf2_per_objfile.
432 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
433 struct objfile *objfile;
434
435 /* When using partial symbol tables, the 'psymtab' field is active.
436 Otherwise the 'quick' field is active. */
437 union
438 {
439 /* The partial symbol table associated with this compilation unit,
440 or NULL for partial units (which do not have an associated
441 symtab). */
442 struct partial_symtab *psymtab;
443
444 /* Data needed by the "quick" functions. */
445 struct dwarf2_per_cu_quick_data *quick;
446 } v;
ae038cb0
DJ
447};
448
348e048f
DE
449/* Entry in the signatured_types hash table. */
450
451struct signatured_type
452{
453 ULONGEST signature;
454
348e048f
DE
455 /* Offset in .debug_types of the type defined by this TU. */
456 unsigned int type_offset;
457
458 /* The CU(/TU) of this type. */
459 struct dwarf2_per_cu_data per_cu;
460};
461
0963b4bd
MS
462/* Struct used to pass misc. parameters to read_die_and_children, et
463 al. which are used for both .debug_info and .debug_types dies.
464 All parameters here are unchanging for the life of the call. This
465 struct exists to abstract away the constant parameters of die
466 reading. */
93311388
DE
467
468struct die_reader_specs
469{
470 /* The bfd of this objfile. */
471 bfd* abfd;
472
473 /* The CU of the DIE we are parsing. */
474 struct dwarf2_cu *cu;
475
476 /* Pointer to start of section buffer.
477 This is either the start of .debug_info or .debug_types. */
478 const gdb_byte *buffer;
479};
480
debd256d
JB
481/* The line number information for a compilation unit (found in the
482 .debug_line section) begins with a "statement program header",
483 which contains the following information. */
484struct line_header
485{
486 unsigned int total_length;
487 unsigned short version;
488 unsigned int header_length;
489 unsigned char minimum_instruction_length;
2dc7f7b3 490 unsigned char maximum_ops_per_instruction;
debd256d
JB
491 unsigned char default_is_stmt;
492 int line_base;
493 unsigned char line_range;
494 unsigned char opcode_base;
495
496 /* standard_opcode_lengths[i] is the number of operands for the
497 standard opcode whose value is i. This means that
498 standard_opcode_lengths[0] is unused, and the last meaningful
499 element is standard_opcode_lengths[opcode_base - 1]. */
500 unsigned char *standard_opcode_lengths;
501
502 /* The include_directories table. NOTE! These strings are not
503 allocated with xmalloc; instead, they are pointers into
504 debug_line_buffer. If you try to free them, `free' will get
505 indigestion. */
506 unsigned int num_include_dirs, include_dirs_size;
507 char **include_dirs;
508
509 /* The file_names table. NOTE! These strings are not allocated
510 with xmalloc; instead, they are pointers into debug_line_buffer.
511 Don't try to free them directly. */
512 unsigned int num_file_names, file_names_size;
513 struct file_entry
c906108c 514 {
debd256d
JB
515 char *name;
516 unsigned int dir_index;
517 unsigned int mod_time;
518 unsigned int length;
aaa75496 519 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 520 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
521 } *file_names;
522
523 /* The start and end of the statement program following this
6502dd73 524 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 525 gdb_byte *statement_program_start, *statement_program_end;
debd256d 526};
c906108c
SS
527
528/* When we construct a partial symbol table entry we only
0963b4bd 529 need this much information. */
c906108c
SS
530struct partial_die_info
531 {
72bf9492 532 /* Offset of this DIE. */
c906108c 533 unsigned int offset;
72bf9492
DJ
534
535 /* DWARF-2 tag for this DIE. */
536 ENUM_BITFIELD(dwarf_tag) tag : 16;
537
72bf9492
DJ
538 /* Assorted flags describing the data found in this DIE. */
539 unsigned int has_children : 1;
540 unsigned int is_external : 1;
541 unsigned int is_declaration : 1;
542 unsigned int has_type : 1;
543 unsigned int has_specification : 1;
544 unsigned int has_pc_info : 1;
545
546 /* Flag set if the SCOPE field of this structure has been
547 computed. */
548 unsigned int scope_set : 1;
549
fa4028e9
JB
550 /* Flag set if the DIE has a byte_size attribute. */
551 unsigned int has_byte_size : 1;
552
98bfdba5
PA
553 /* Flag set if any of the DIE's children are template arguments. */
554 unsigned int has_template_arguments : 1;
555
abc72ce4
DE
556 /* Flag set if fixup_partial_die has been called on this die. */
557 unsigned int fixup_called : 1;
558
72bf9492 559 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 560 sometimes a default name for unnamed DIEs. */
c906108c 561 char *name;
72bf9492 562
abc72ce4
DE
563 /* The linkage name, if present. */
564 const char *linkage_name;
565
72bf9492
DJ
566 /* The scope to prepend to our children. This is generally
567 allocated on the comp_unit_obstack, so will disappear
568 when this compilation unit leaves the cache. */
569 char *scope;
570
571 /* The location description associated with this DIE, if any. */
572 struct dwarf_block *locdesc;
573
574 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
575 CORE_ADDR lowpc;
576 CORE_ADDR highpc;
72bf9492 577
93311388 578 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 579 DW_AT_sibling, if any. */
abc72ce4
DE
580 /* NOTE: This member isn't strictly necessary, read_partial_die could
581 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 582 gdb_byte *sibling;
72bf9492
DJ
583
584 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
585 DW_AT_specification (or DW_AT_abstract_origin or
586 DW_AT_extension). */
587 unsigned int spec_offset;
588
589 /* Pointers to this DIE's parent, first child, and next sibling,
590 if any. */
591 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
592 };
593
0963b4bd 594/* This data structure holds the information of an abbrev. */
c906108c
SS
595struct abbrev_info
596 {
597 unsigned int number; /* number identifying abbrev */
598 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
599 unsigned short has_children; /* boolean */
600 unsigned short num_attrs; /* number of attributes */
c906108c
SS
601 struct attr_abbrev *attrs; /* an array of attribute descriptions */
602 struct abbrev_info *next; /* next in chain */
603 };
604
605struct attr_abbrev
606 {
9d25dd43
DE
607 ENUM_BITFIELD(dwarf_attribute) name : 16;
608 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
609 };
610
0963b4bd 611/* Attributes have a name and a value. */
b60c80d6
DJ
612struct attribute
613 {
9d25dd43 614 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
615 ENUM_BITFIELD(dwarf_form) form : 15;
616
617 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
618 field should be in u.str (existing only for DW_STRING) but it is kept
619 here for better struct attribute alignment. */
620 unsigned int string_is_canonical : 1;
621
b60c80d6
DJ
622 union
623 {
624 char *str;
625 struct dwarf_block *blk;
43bbcdc2
PH
626 ULONGEST unsnd;
627 LONGEST snd;
b60c80d6 628 CORE_ADDR addr;
348e048f 629 struct signatured_type *signatured_type;
b60c80d6
DJ
630 }
631 u;
632 };
633
0963b4bd 634/* This data structure holds a complete die structure. */
c906108c
SS
635struct die_info
636 {
76815b17
DE
637 /* DWARF-2 tag for this DIE. */
638 ENUM_BITFIELD(dwarf_tag) tag : 16;
639
640 /* Number of attributes */
98bfdba5
PA
641 unsigned char num_attrs;
642
643 /* True if we're presently building the full type name for the
644 type derived from this DIE. */
645 unsigned char building_fullname : 1;
76815b17
DE
646
647 /* Abbrev number */
648 unsigned int abbrev;
649
93311388 650 /* Offset in .debug_info or .debug_types section. */
76815b17 651 unsigned int offset;
78ba4af6
JB
652
653 /* The dies in a compilation unit form an n-ary tree. PARENT
654 points to this die's parent; CHILD points to the first child of
655 this node; and all the children of a given node are chained
4950bc1c 656 together via their SIBLING fields. */
639d11d3
DC
657 struct die_info *child; /* Its first child, if any. */
658 struct die_info *sibling; /* Its next sibling, if any. */
659 struct die_info *parent; /* Its parent, if any. */
c906108c 660
b60c80d6
DJ
661 /* An array of attributes, with NUM_ATTRS elements. There may be
662 zero, but it's not common and zero-sized arrays are not
663 sufficiently portable C. */
664 struct attribute attrs[1];
c906108c
SS
665 };
666
0963b4bd 667/* Get at parts of an attribute structure. */
c906108c
SS
668
669#define DW_STRING(attr) ((attr)->u.str)
8285870a 670#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
671#define DW_UNSND(attr) ((attr)->u.unsnd)
672#define DW_BLOCK(attr) ((attr)->u.blk)
673#define DW_SND(attr) ((attr)->u.snd)
674#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 675#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 676
0963b4bd 677/* Blocks are a bunch of untyped bytes. */
c906108c
SS
678struct dwarf_block
679 {
680 unsigned int size;
1d6edc3c
JK
681
682 /* Valid only if SIZE is not zero. */
fe1b8b76 683 gdb_byte *data;
c906108c
SS
684 };
685
c906108c
SS
686#ifndef ATTR_ALLOC_CHUNK
687#define ATTR_ALLOC_CHUNK 4
688#endif
689
c906108c
SS
690/* Allocate fields for structs, unions and enums in this size. */
691#ifndef DW_FIELD_ALLOC_CHUNK
692#define DW_FIELD_ALLOC_CHUNK 4
693#endif
694
c906108c
SS
695/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
696 but this would require a corresponding change in unpack_field_as_long
697 and friends. */
698static int bits_per_byte = 8;
699
700/* The routines that read and process dies for a C struct or C++ class
701 pass lists of data member fields and lists of member function fields
702 in an instance of a field_info structure, as defined below. */
703struct field_info
c5aa993b 704 {
0963b4bd 705 /* List of data member and baseclasses fields. */
c5aa993b
JM
706 struct nextfield
707 {
708 struct nextfield *next;
709 int accessibility;
710 int virtuality;
711 struct field field;
712 }
7d0ccb61 713 *fields, *baseclasses;
c906108c 714
7d0ccb61 715 /* Number of fields (including baseclasses). */
c5aa993b 716 int nfields;
c906108c 717
c5aa993b
JM
718 /* Number of baseclasses. */
719 int nbaseclasses;
c906108c 720
c5aa993b
JM
721 /* Set if the accesibility of one of the fields is not public. */
722 int non_public_fields;
c906108c 723
c5aa993b
JM
724 /* Member function fields array, entries are allocated in the order they
725 are encountered in the object file. */
726 struct nextfnfield
727 {
728 struct nextfnfield *next;
729 struct fn_field fnfield;
730 }
731 *fnfields;
c906108c 732
c5aa993b
JM
733 /* Member function fieldlist array, contains name of possibly overloaded
734 member function, number of overloaded member functions and a pointer
735 to the head of the member function field chain. */
736 struct fnfieldlist
737 {
738 char *name;
739 int length;
740 struct nextfnfield *head;
741 }
742 *fnfieldlists;
c906108c 743
c5aa993b
JM
744 /* Number of entries in the fnfieldlists array. */
745 int nfnfields;
98751a41
JK
746
747 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
748 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
749 struct typedef_field_list
750 {
751 struct typedef_field field;
752 struct typedef_field_list *next;
753 }
754 *typedef_field_list;
755 unsigned typedef_field_list_count;
c5aa993b 756 };
c906108c 757
10b3939b
DJ
758/* One item on the queue of compilation units to read in full symbols
759 for. */
760struct dwarf2_queue_item
761{
762 struct dwarf2_per_cu_data *per_cu;
763 struct dwarf2_queue_item *next;
764};
765
766/* The current queue. */
767static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
768
ae038cb0
DJ
769/* Loaded secondary compilation units are kept in memory until they
770 have not been referenced for the processing of this many
771 compilation units. Set this to zero to disable caching. Cache
772 sizes of up to at least twenty will improve startup time for
773 typical inter-CU-reference binaries, at an obvious memory cost. */
774static int dwarf2_max_cache_age = 5;
920d2a44
AC
775static void
776show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
777 struct cmd_list_element *c, const char *value)
778{
3e43a32a
MS
779 fprintf_filtered (file, _("The upper bound on the age of cached "
780 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
781 value);
782}
783
ae038cb0 784
0963b4bd 785/* Various complaints about symbol reading that don't abort the process. */
c906108c 786
4d3c2250
KB
787static void
788dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 789{
4d3c2250 790 complaint (&symfile_complaints,
e2e0b3e5 791 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
792}
793
25e43795
DJ
794static void
795dwarf2_debug_line_missing_file_complaint (void)
796{
797 complaint (&symfile_complaints,
798 _(".debug_line section has line data without a file"));
799}
800
59205f5a
JB
801static void
802dwarf2_debug_line_missing_end_sequence_complaint (void)
803{
804 complaint (&symfile_complaints,
3e43a32a
MS
805 _(".debug_line section has line "
806 "program sequence without an end"));
59205f5a
JB
807}
808
4d3c2250
KB
809static void
810dwarf2_complex_location_expr_complaint (void)
2e276125 811{
e2e0b3e5 812 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
813}
814
4d3c2250
KB
815static void
816dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
817 int arg3)
2e276125 818{
4d3c2250 819 complaint (&symfile_complaints,
3e43a32a
MS
820 _("const value length mismatch for '%s', got %d, expected %d"),
821 arg1, arg2, arg3);
4d3c2250
KB
822}
823
824static void
cf2c3c16 825dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
2e276125 826{
4d3c2250 827 complaint (&symfile_complaints,
cf2c3c16
TT
828 _("macro info runs off end of `%s' section"),
829 section->asection->name);
4d3c2250
KB
830}
831
832static void
833dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 834{
4d3c2250 835 complaint (&symfile_complaints,
3e43a32a
MS
836 _("macro debug info contains a "
837 "malformed macro definition:\n`%s'"),
4d3c2250
KB
838 arg1);
839}
840
841static void
842dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 843{
4d3c2250 844 complaint (&symfile_complaints,
3e43a32a
MS
845 _("invalid attribute class or form for '%s' in '%s'"),
846 arg1, arg2);
4d3c2250 847}
c906108c 848
c906108c
SS
849/* local function prototypes */
850
4efb68b1 851static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 852
aaa75496
JB
853static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
854 struct objfile *);
855
918dd910
JK
856static void dwarf2_find_base_address (struct die_info *die,
857 struct dwarf2_cu *cu);
858
c67a9c90 859static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 860
72bf9492
DJ
861static void scan_partial_symbols (struct partial_die_info *,
862 CORE_ADDR *, CORE_ADDR *,
5734ee8b 863 int, struct dwarf2_cu *);
c906108c 864
72bf9492
DJ
865static void add_partial_symbol (struct partial_die_info *,
866 struct dwarf2_cu *);
63d06c5c 867
72bf9492
DJ
868static void add_partial_namespace (struct partial_die_info *pdi,
869 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 870 int need_pc, struct dwarf2_cu *cu);
63d06c5c 871
5d7cb8df
JK
872static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
873 CORE_ADDR *highpc, int need_pc,
874 struct dwarf2_cu *cu);
875
72bf9492
DJ
876static void add_partial_enumeration (struct partial_die_info *enum_pdi,
877 struct dwarf2_cu *cu);
91c24f0a 878
bc30ff58
JB
879static void add_partial_subprogram (struct partial_die_info *pdi,
880 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 881 int need_pc, struct dwarf2_cu *cu);
bc30ff58 882
fe1b8b76 883static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
884 gdb_byte *buffer, gdb_byte *info_ptr,
885 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 886
a14ed312 887static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 888
a14ed312 889static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 890
e5fe5e75 891static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
c906108c 892
f3dd6933 893static void dwarf2_free_abbrev_table (void *);
c906108c 894
6caca83c
CC
895static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
896
fe1b8b76 897static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 898 struct dwarf2_cu *);
72bf9492 899
57349743 900static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 901 struct dwarf2_cu *);
c906108c 902
93311388
DE
903static struct partial_die_info *load_partial_dies (bfd *,
904 gdb_byte *, gdb_byte *,
905 int, struct dwarf2_cu *);
72bf9492 906
fe1b8b76 907static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
908 struct abbrev_info *abbrev,
909 unsigned int, bfd *,
910 gdb_byte *, gdb_byte *,
911 struct dwarf2_cu *);
c906108c 912
c764a876 913static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 914 struct dwarf2_cu *);
72bf9492
DJ
915
916static void fixup_partial_die (struct partial_die_info *,
917 struct dwarf2_cu *);
918
fe1b8b76
JB
919static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
920 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 921
fe1b8b76
JB
922static gdb_byte *read_attribute_value (struct attribute *, unsigned,
923 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 924
fe1b8b76 925static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 926
fe1b8b76 927static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 928
fe1b8b76 929static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 930
fe1b8b76 931static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 932
93311388 933static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 934
fe1b8b76 935static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 936 unsigned int *);
c906108c 937
c764a876
DE
938static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
939
940static LONGEST read_checked_initial_length_and_offset
941 (bfd *, gdb_byte *, const struct comp_unit_head *,
942 unsigned int *, unsigned int *);
613e1657 943
fe1b8b76 944static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
945 unsigned int *);
946
947static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 948
fe1b8b76 949static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 950
9b1c24c8 951static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 952
fe1b8b76
JB
953static char *read_indirect_string (bfd *, gdb_byte *,
954 const struct comp_unit_head *,
955 unsigned int *);
4bdf3d34 956
fe1b8b76 957static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 958
fe1b8b76 959static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 960
fe1b8b76 961static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 962
e142c38c 963static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 964
e142c38c
DJ
965static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
966 struct dwarf2_cu *);
c906108c 967
348e048f
DE
968static struct attribute *dwarf2_attr_no_follow (struct die_info *,
969 unsigned int,
970 struct dwarf2_cu *);
971
05cf31d1
JB
972static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
973 struct dwarf2_cu *cu);
974
e142c38c 975static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 976
e142c38c 977static struct die_info *die_specification (struct die_info *die,
f2f0e013 978 struct dwarf2_cu **);
63d06c5c 979
debd256d
JB
980static void free_line_header (struct line_header *lh);
981
aaa75496
JB
982static void add_file_name (struct line_header *, char *, unsigned int,
983 unsigned int, unsigned int);
984
debd256d
JB
985static struct line_header *(dwarf_decode_line_header
986 (unsigned int offset,
e7c27a73 987 bfd *abfd, struct dwarf2_cu *cu));
debd256d 988
f3f5162e
DE
989static void dwarf_decode_lines (struct line_header *, const char *,
990 struct dwarf2_cu *, struct partial_symtab *,
991 int);
c906108c 992
72b9f47f 993static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 994
a14ed312 995static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 996 struct dwarf2_cu *);
c906108c 997
34eaf542
TT
998static struct symbol *new_symbol_full (struct die_info *, struct type *,
999 struct dwarf2_cu *, struct symbol *);
1000
a14ed312 1001static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1002 struct dwarf2_cu *);
c906108c 1003
98bfdba5
PA
1004static void dwarf2_const_value_attr (struct attribute *attr,
1005 struct type *type,
1006 const char *name,
1007 struct obstack *obstack,
1008 struct dwarf2_cu *cu, long *value,
1009 gdb_byte **bytes,
1010 struct dwarf2_locexpr_baton **baton);
2df3850c 1011
e7c27a73 1012static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1013
b4ba55a1
JB
1014static int need_gnat_info (struct dwarf2_cu *);
1015
3e43a32a
MS
1016static struct type *die_descriptive_type (struct die_info *,
1017 struct dwarf2_cu *);
b4ba55a1
JB
1018
1019static void set_descriptive_type (struct type *, struct die_info *,
1020 struct dwarf2_cu *);
1021
e7c27a73
DJ
1022static struct type *die_containing_type (struct die_info *,
1023 struct dwarf2_cu *);
c906108c 1024
673bfd45
DE
1025static struct type *lookup_die_type (struct die_info *, struct attribute *,
1026 struct dwarf2_cu *);
c906108c 1027
f792889a 1028static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1029
673bfd45
DE
1030static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1031
086ed43d 1032static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1033
6e70227d 1034static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1035 const char *suffix, int physname,
1036 struct dwarf2_cu *cu);
63d06c5c 1037
e7c27a73 1038static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1039
348e048f
DE
1040static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1041
e7c27a73 1042static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1043
e7c27a73 1044static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1045
96408a79
SA
1046static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1047
ff013f42
JK
1048static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1049 struct dwarf2_cu *, struct partial_symtab *);
1050
a14ed312 1051static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1052 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1053 struct partial_symtab *);
c906108c 1054
fae299cd
DC
1055static void get_scope_pc_bounds (struct die_info *,
1056 CORE_ADDR *, CORE_ADDR *,
1057 struct dwarf2_cu *);
1058
801e3a5b
JB
1059static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1060 CORE_ADDR, struct dwarf2_cu *);
1061
a14ed312 1062static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1063 struct dwarf2_cu *);
c906108c 1064
a14ed312 1065static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1066 struct type *, struct dwarf2_cu *);
c906108c 1067
a14ed312 1068static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1069 struct die_info *, struct type *,
e7c27a73 1070 struct dwarf2_cu *);
c906108c 1071
a14ed312 1072static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1073 struct type *,
1074 struct dwarf2_cu *);
c906108c 1075
134d01f1 1076static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1077
e7c27a73 1078static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1079
e7c27a73 1080static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1081
5d7cb8df
JK
1082static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1083
27aa8d6a
SW
1084static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1085
f55ee35c
JK
1086static struct type *read_module_type (struct die_info *die,
1087 struct dwarf2_cu *cu);
1088
38d518c9 1089static const char *namespace_name (struct die_info *die,
e142c38c 1090 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1091
134d01f1 1092static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1093
e7c27a73 1094static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1095
6e70227d 1096static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1097 struct dwarf2_cu *);
1098
93311388 1099static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1100
93311388
DE
1101static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1102 gdb_byte *info_ptr,
d97bc12b
DE
1103 gdb_byte **new_info_ptr,
1104 struct die_info *parent);
1105
93311388
DE
1106static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1107 gdb_byte *info_ptr,
fe1b8b76 1108 gdb_byte **new_info_ptr,
639d11d3
DC
1109 struct die_info *parent);
1110
93311388
DE
1111static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1112 gdb_byte *info_ptr,
fe1b8b76 1113 gdb_byte **new_info_ptr,
639d11d3
DC
1114 struct die_info *parent);
1115
93311388
DE
1116static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1117 struct die_info **, gdb_byte *,
1118 int *);
1119
e7c27a73 1120static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1121
71c25dea
TT
1122static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1123 struct obstack *);
1124
e142c38c 1125static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1126
98bfdba5
PA
1127static const char *dwarf2_full_name (char *name,
1128 struct die_info *die,
1129 struct dwarf2_cu *cu);
1130
e142c38c 1131static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1132 struct dwarf2_cu **);
9219021c 1133
a14ed312 1134static char *dwarf_tag_name (unsigned int);
c906108c 1135
a14ed312 1136static char *dwarf_attr_name (unsigned int);
c906108c 1137
a14ed312 1138static char *dwarf_form_name (unsigned int);
c906108c 1139
a14ed312 1140static char *dwarf_bool_name (unsigned int);
c906108c 1141
a14ed312 1142static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1143
1144#if 0
a14ed312 1145static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1146#endif
1147
f9aca02d 1148static struct die_info *sibling_die (struct die_info *);
c906108c 1149
d97bc12b
DE
1150static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1151
1152static void dump_die_for_error (struct die_info *);
1153
1154static void dump_die_1 (struct ui_file *, int level, int max_level,
1155 struct die_info *);
c906108c 1156
d97bc12b 1157/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1158
51545339 1159static void store_in_ref_table (struct die_info *,
10b3939b 1160 struct dwarf2_cu *);
c906108c 1161
93311388
DE
1162static int is_ref_attr (struct attribute *);
1163
c764a876 1164static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1165
43bbcdc2 1166static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1167
348e048f
DE
1168static struct die_info *follow_die_ref_or_sig (struct die_info *,
1169 struct attribute *,
1170 struct dwarf2_cu **);
1171
10b3939b
DJ
1172static struct die_info *follow_die_ref (struct die_info *,
1173 struct attribute *,
f2f0e013 1174 struct dwarf2_cu **);
c906108c 1175
348e048f
DE
1176static struct die_info *follow_die_sig (struct die_info *,
1177 struct attribute *,
1178 struct dwarf2_cu **);
1179
6c83ed52
TT
1180static struct signatured_type *lookup_signatured_type_at_offset
1181 (struct objfile *objfile,
1182 struct dwarf2_section_info *section,
1183 unsigned int offset);
1184
e5fe5e75 1185static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1186
a0f42c21 1187static void read_signatured_type (struct signatured_type *type_sig);
348e048f 1188
c906108c
SS
1189/* memory allocation interface */
1190
7b5a2f43 1191static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1192
f3dd6933 1193static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1194
b60c80d6 1195static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1196
2e276125 1197static void dwarf_decode_macros (struct line_header *, unsigned int,
cf2c3c16
TT
1198 char *, bfd *, struct dwarf2_cu *,
1199 struct dwarf2_section_info *,
1200 int);
2e276125 1201
8e19ed76
PS
1202static int attr_form_is_block (struct attribute *);
1203
3690dd37
JB
1204static int attr_form_is_section_offset (struct attribute *);
1205
1206static int attr_form_is_constant (struct attribute *);
1207
8cf6f0b1
TT
1208static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1209 struct dwarf2_loclist_baton *baton,
1210 struct attribute *attr);
1211
93e7bd98
DJ
1212static void dwarf2_symbol_mark_computed (struct attribute *attr,
1213 struct symbol *sym,
1214 struct dwarf2_cu *cu);
4c2df51b 1215
93311388
DE
1216static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1217 struct abbrev_info *abbrev,
1218 struct dwarf2_cu *cu);
4bb7a0a7 1219
72bf9492
DJ
1220static void free_stack_comp_unit (void *);
1221
72bf9492
DJ
1222static hashval_t partial_die_hash (const void *item);
1223
1224static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1225
ae038cb0 1226static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1227 (unsigned int offset, struct objfile *objfile);
ae038cb0 1228
9816fde3 1229static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1230 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1231
1232static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1233 struct die_info *comp_unit_die);
93311388 1234
68dc6402 1235static void free_heap_comp_unit (void *);
ae038cb0
DJ
1236
1237static void free_cached_comp_units (void *);
1238
1239static void age_cached_comp_units (void);
1240
1241static void free_one_cached_comp_unit (void *);
1242
f792889a
DJ
1243static struct type *set_die_type (struct die_info *, struct type *,
1244 struct dwarf2_cu *);
1c379e20 1245
ae038cb0
DJ
1246static void create_all_comp_units (struct objfile *);
1247
1fd400ff
TT
1248static int create_debug_types_hash_table (struct objfile *objfile);
1249
a0f42c21 1250static void load_full_comp_unit (struct dwarf2_per_cu_data *);
10b3939b
DJ
1251
1252static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1253
1254static void dwarf2_add_dependence (struct dwarf2_cu *,
1255 struct dwarf2_per_cu_data *);
1256
ae038cb0
DJ
1257static void dwarf2_mark (struct dwarf2_cu *);
1258
1259static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1260
673bfd45
DE
1261static struct type *get_die_type_at_offset (unsigned int,
1262 struct dwarf2_per_cu_data *per_cu);
1263
f792889a 1264static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1265
9291a0cd
TT
1266static void dwarf2_release_queue (void *dummy);
1267
a0f42c21 1268static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
9291a0cd 1269
a0f42c21 1270static void process_queue (void);
9291a0cd
TT
1271
1272static void find_file_and_directory (struct die_info *die,
1273 struct dwarf2_cu *cu,
1274 char **name, char **comp_dir);
1275
1276static char *file_full_name (int file, struct line_header *lh,
1277 const char *comp_dir);
1278
9ff913ba
DE
1279static gdb_byte *read_and_check_comp_unit_head
1280 (struct comp_unit_head *header,
1281 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1282 int is_debug_types_section);
9291a0cd
TT
1283
1284static void init_cu_die_reader (struct die_reader_specs *reader,
1285 struct dwarf2_cu *cu);
1286
673bfd45 1287static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1288
9291a0cd
TT
1289#if WORDS_BIGENDIAN
1290
1291/* Convert VALUE between big- and little-endian. */
1292static offset_type
1293byte_swap (offset_type value)
1294{
1295 offset_type result;
1296
1297 result = (value & 0xff) << 24;
1298 result |= (value & 0xff00) << 8;
1299 result |= (value & 0xff0000) >> 8;
1300 result |= (value & 0xff000000) >> 24;
1301 return result;
1302}
1303
1304#define MAYBE_SWAP(V) byte_swap (V)
1305
1306#else
1307#define MAYBE_SWAP(V) (V)
1308#endif /* WORDS_BIGENDIAN */
1309
1310/* The suffix for an index file. */
1311#define INDEX_SUFFIX ".gdb-index"
1312
3da10d80
KS
1313static const char *dwarf2_physname (char *name, struct die_info *die,
1314 struct dwarf2_cu *cu);
1315
c906108c 1316/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1317 information and return true if we have enough to do something.
1318 NAMES points to the dwarf2 section names, or is NULL if the standard
1319 ELF names are used. */
c906108c
SS
1320
1321int
251d32d9
TG
1322dwarf2_has_info (struct objfile *objfile,
1323 const struct dwarf2_debug_sections *names)
c906108c 1324{
be391dca
TT
1325 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1326 if (!dwarf2_per_objfile)
1327 {
1328 /* Initialize per-objfile state. */
1329 struct dwarf2_per_objfile *data
1330 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1331
be391dca
TT
1332 memset (data, 0, sizeof (*data));
1333 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1334 dwarf2_per_objfile = data;
6502dd73 1335
251d32d9
TG
1336 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1337 (void *) names);
be391dca
TT
1338 dwarf2_per_objfile->objfile = objfile;
1339 }
1340 return (dwarf2_per_objfile->info.asection != NULL
1341 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1342}
1343
251d32d9
TG
1344/* When loading sections, we look either for uncompressed section or for
1345 compressed section names. */
233a11ab
CS
1346
1347static int
251d32d9
TG
1348section_is_p (const char *section_name,
1349 const struct dwarf2_section_names *names)
233a11ab 1350{
251d32d9
TG
1351 if (names->normal != NULL
1352 && strcmp (section_name, names->normal) == 0)
1353 return 1;
1354 if (names->compressed != NULL
1355 && strcmp (section_name, names->compressed) == 0)
1356 return 1;
1357 return 0;
233a11ab
CS
1358}
1359
c906108c
SS
1360/* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364static void
251d32d9 1365dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1366{
251d32d9
TG
1367 const struct dwarf2_debug_sections *names;
1368
1369 if (vnames == NULL)
1370 names = &dwarf2_elf_names;
1371 else
1372 names = (const struct dwarf2_debug_sections *) vnames;
1373
1374 if (section_is_p (sectp->name, &names->info))
c906108c 1375 {
dce234bc
PP
1376 dwarf2_per_objfile->info.asection = sectp;
1377 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1378 }
251d32d9 1379 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1380 {
dce234bc
PP
1381 dwarf2_per_objfile->abbrev.asection = sectp;
1382 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1383 }
251d32d9 1384 else if (section_is_p (sectp->name, &names->line))
c906108c 1385 {
dce234bc
PP
1386 dwarf2_per_objfile->line.asection = sectp;
1387 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1388 }
251d32d9 1389 else if (section_is_p (sectp->name, &names->loc))
c906108c 1390 {
dce234bc
PP
1391 dwarf2_per_objfile->loc.asection = sectp;
1392 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1393 }
251d32d9 1394 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1395 {
dce234bc
PP
1396 dwarf2_per_objfile->macinfo.asection = sectp;
1397 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1398 }
cf2c3c16
TT
1399 else if (section_is_p (sectp->name, &names->macro))
1400 {
1401 dwarf2_per_objfile->macro.asection = sectp;
1402 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1403 }
251d32d9 1404 else if (section_is_p (sectp->name, &names->str))
c906108c 1405 {
dce234bc
PP
1406 dwarf2_per_objfile->str.asection = sectp;
1407 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1408 }
251d32d9 1409 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1410 {
dce234bc
PP
1411 dwarf2_per_objfile->frame.asection = sectp;
1412 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1413 }
251d32d9 1414 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1415 {
3799ccc6 1416 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1417
3799ccc6
EZ
1418 if (aflag & SEC_HAS_CONTENTS)
1419 {
dce234bc
PP
1420 dwarf2_per_objfile->eh_frame.asection = sectp;
1421 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1422 }
b6af0555 1423 }
251d32d9 1424 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1425 {
dce234bc
PP
1426 dwarf2_per_objfile->ranges.asection = sectp;
1427 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1428 }
251d32d9 1429 else if (section_is_p (sectp->name, &names->types))
348e048f 1430 {
8b70b953
TT
1431 struct dwarf2_section_info type_section;
1432
1433 memset (&type_section, 0, sizeof (type_section));
1434 type_section.asection = sectp;
1435 type_section.size = bfd_get_section_size (sectp);
1436
1437 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1438 &type_section);
348e048f 1439 }
251d32d9 1440 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1441 {
1442 dwarf2_per_objfile->gdb_index.asection = sectp;
1443 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1444 }
dce234bc 1445
72dca2f5
FR
1446 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1447 && bfd_section_vma (abfd, sectp) == 0)
1448 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1449}
1450
dce234bc
PP
1451/* Decompress a section that was compressed using zlib. Store the
1452 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1453
1454static void
dce234bc
PP
1455zlib_decompress_section (struct objfile *objfile, asection *sectp,
1456 gdb_byte **outbuf, bfd_size_type *outsize)
1457{
1458 bfd *abfd = objfile->obfd;
1459#ifndef HAVE_ZLIB_H
1460 error (_("Support for zlib-compressed DWARF data (from '%s') "
1461 "is disabled in this copy of GDB"),
1462 bfd_get_filename (abfd));
1463#else
1464 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1465 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1466 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1467 bfd_size_type uncompressed_size;
1468 gdb_byte *uncompressed_buffer;
1469 z_stream strm;
1470 int rc;
1471 int header_size = 12;
1472
1473 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1474 || bfd_bread (compressed_buffer,
1475 compressed_size, abfd) != compressed_size)
dce234bc
PP
1476 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1477 bfd_get_filename (abfd));
1478
1479 /* Read the zlib header. In this case, it should be "ZLIB" followed
1480 by the uncompressed section size, 8 bytes in big-endian order. */
1481 if (compressed_size < header_size
1482 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1483 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1484 bfd_get_filename (abfd));
1485 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1486 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1487 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1488 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1489 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1490 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1491 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1492 uncompressed_size += compressed_buffer[11];
1493
1494 /* It is possible the section consists of several compressed
1495 buffers concatenated together, so we uncompress in a loop. */
1496 strm.zalloc = NULL;
1497 strm.zfree = NULL;
1498 strm.opaque = NULL;
1499 strm.avail_in = compressed_size - header_size;
1500 strm.next_in = (Bytef*) compressed_buffer + header_size;
1501 strm.avail_out = uncompressed_size;
1502 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1503 uncompressed_size);
1504 rc = inflateInit (&strm);
1505 while (strm.avail_in > 0)
1506 {
1507 if (rc != Z_OK)
1508 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1509 bfd_get_filename (abfd), rc);
1510 strm.next_out = ((Bytef*) uncompressed_buffer
1511 + (uncompressed_size - strm.avail_out));
1512 rc = inflate (&strm, Z_FINISH);
1513 if (rc != Z_STREAM_END)
1514 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1515 bfd_get_filename (abfd), rc);
1516 rc = inflateReset (&strm);
1517 }
1518 rc = inflateEnd (&strm);
1519 if (rc != Z_OK
1520 || strm.avail_out != 0)
1521 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1522 bfd_get_filename (abfd), rc);
1523
affddf13 1524 do_cleanups (cleanup);
dce234bc
PP
1525 *outbuf = uncompressed_buffer;
1526 *outsize = uncompressed_size;
1527#endif
233a11ab
CS
1528}
1529
9e0ac564
TT
1530/* A helper function that decides whether a section is empty. */
1531
1532static int
1533dwarf2_section_empty_p (struct dwarf2_section_info *info)
1534{
1535 return info->asection == NULL || info->size == 0;
1536}
1537
9cdd5dbd 1538/* Read the contents of the section INFO from object file specified by
dce234bc
PP
1539 OBJFILE, store info about the section into INFO.
1540 If the section is compressed, uncompress it before returning. */
c906108c 1541
dce234bc
PP
1542static void
1543dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1544{
dce234bc
PP
1545 bfd *abfd = objfile->obfd;
1546 asection *sectp = info->asection;
1547 gdb_byte *buf, *retbuf;
1548 unsigned char header[4];
c906108c 1549
be391dca
TT
1550 if (info->readin)
1551 return;
dce234bc 1552 info->buffer = NULL;
b315ab21 1553 info->map_addr = NULL;
be391dca 1554 info->readin = 1;
188dd5d6 1555
9e0ac564 1556 if (dwarf2_section_empty_p (info))
dce234bc 1557 return;
c906108c 1558
dce234bc
PP
1559 /* Check if the file has a 4-byte header indicating compression. */
1560 if (info->size > sizeof (header)
1561 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1562 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1563 {
1564 /* Upon decompression, update the buffer and its size. */
1565 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1566 {
1567 zlib_decompress_section (objfile, sectp, &info->buffer,
1568 &info->size);
1569 return;
1570 }
1571 }
4bdf3d34 1572
dce234bc
PP
1573#ifdef HAVE_MMAP
1574 if (pagesize == 0)
1575 pagesize = getpagesize ();
2e276125 1576
dce234bc
PP
1577 /* Only try to mmap sections which are large enough: we don't want to
1578 waste space due to fragmentation. Also, only try mmap for sections
1579 without relocations. */
1580
1581 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1582 {
b315ab21
TG
1583 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1584 MAP_PRIVATE, sectp->filepos,
1585 &info->map_addr, &info->map_len);
dce234bc 1586
b315ab21 1587 if ((caddr_t)info->buffer != MAP_FAILED)
dce234bc 1588 {
be391dca 1589#if HAVE_POSIX_MADVISE
b315ab21 1590 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
be391dca 1591#endif
dce234bc
PP
1592 return;
1593 }
1594 }
1595#endif
1596
1597 /* If we get here, we are a normal, not-compressed section. */
1598 info->buffer = buf
1599 = obstack_alloc (&objfile->objfile_obstack, info->size);
1600
1601 /* When debugging .o files, we may need to apply relocations; see
1602 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1603 We never compress sections in .o files, so we only need to
1604 try this when the section is not compressed. */
ac8035ab 1605 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1606 if (retbuf != NULL)
1607 {
1608 info->buffer = retbuf;
1609 return;
1610 }
1611
1612 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1613 || bfd_bread (buf, info->size, abfd) != info->size)
1614 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1615 bfd_get_filename (abfd));
1616}
1617
9e0ac564
TT
1618/* A helper function that returns the size of a section in a safe way.
1619 If you are positive that the section has been read before using the
1620 size, then it is safe to refer to the dwarf2_section_info object's
1621 "size" field directly. In other cases, you must call this
1622 function, because for compressed sections the size field is not set
1623 correctly until the section has been read. */
1624
1625static bfd_size_type
1626dwarf2_section_size (struct objfile *objfile,
1627 struct dwarf2_section_info *info)
1628{
1629 if (!info->readin)
1630 dwarf2_read_section (objfile, info);
1631 return info->size;
1632}
1633
dce234bc 1634/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1635 SECTION_NAME. */
af34e669 1636
dce234bc 1637void
3017a003
TG
1638dwarf2_get_section_info (struct objfile *objfile,
1639 enum dwarf2_section_enum sect,
dce234bc
PP
1640 asection **sectp, gdb_byte **bufp,
1641 bfd_size_type *sizep)
1642{
1643 struct dwarf2_per_objfile *data
1644 = objfile_data (objfile, dwarf2_objfile_data_key);
1645 struct dwarf2_section_info *info;
a3b2a86b
TT
1646
1647 /* We may see an objfile without any DWARF, in which case we just
1648 return nothing. */
1649 if (data == NULL)
1650 {
1651 *sectp = NULL;
1652 *bufp = NULL;
1653 *sizep = 0;
1654 return;
1655 }
3017a003
TG
1656 switch (sect)
1657 {
1658 case DWARF2_DEBUG_FRAME:
1659 info = &data->frame;
1660 break;
1661 case DWARF2_EH_FRAME:
1662 info = &data->eh_frame;
1663 break;
1664 default:
1665 gdb_assert_not_reached ("unexpected section");
1666 }
dce234bc 1667
9e0ac564 1668 dwarf2_read_section (objfile, info);
dce234bc
PP
1669
1670 *sectp = info->asection;
1671 *bufp = info->buffer;
1672 *sizep = info->size;
1673}
1674
9291a0cd 1675\f
7b9f3c50
DE
1676/* DWARF quick_symbols_functions support. */
1677
1678/* TUs can share .debug_line entries, and there can be a lot more TUs than
1679 unique line tables, so we maintain a separate table of all .debug_line
1680 derived entries to support the sharing.
1681 All the quick functions need is the list of file names. We discard the
1682 line_header when we're done and don't need to record it here. */
1683struct quick_file_names
1684{
1685 /* The offset in .debug_line of the line table. We hash on this. */
1686 unsigned int offset;
1687
1688 /* The number of entries in file_names, real_names. */
1689 unsigned int num_file_names;
1690
1691 /* The file names from the line table, after being run through
1692 file_full_name. */
1693 const char **file_names;
1694
1695 /* The file names from the line table after being run through
1696 gdb_realpath. These are computed lazily. */
1697 const char **real_names;
1698};
1699
1700/* When using the index (and thus not using psymtabs), each CU has an
1701 object of this type. This is used to hold information needed by
1702 the various "quick" methods. */
1703struct dwarf2_per_cu_quick_data
1704{
1705 /* The file table. This can be NULL if there was no file table
1706 or it's currently not read in.
1707 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1708 struct quick_file_names *file_names;
1709
1710 /* The corresponding symbol table. This is NULL if symbols for this
1711 CU have not yet been read. */
1712 struct symtab *symtab;
1713
1714 /* A temporary mark bit used when iterating over all CUs in
1715 expand_symtabs_matching. */
1716 unsigned int mark : 1;
1717
1718 /* True if we've tried to read the file table and found there isn't one.
1719 There will be no point in trying to read it again next time. */
1720 unsigned int no_file_data : 1;
1721};
1722
1723/* Hash function for a quick_file_names. */
1724
1725static hashval_t
1726hash_file_name_entry (const void *e)
1727{
1728 const struct quick_file_names *file_data = e;
1729
1730 return file_data->offset;
1731}
1732
1733/* Equality function for a quick_file_names. */
1734
1735static int
1736eq_file_name_entry (const void *a, const void *b)
1737{
1738 const struct quick_file_names *ea = a;
1739 const struct quick_file_names *eb = b;
1740
1741 return ea->offset == eb->offset;
1742}
1743
1744/* Delete function for a quick_file_names. */
1745
1746static void
1747delete_file_name_entry (void *e)
1748{
1749 struct quick_file_names *file_data = e;
1750 int i;
1751
1752 for (i = 0; i < file_data->num_file_names; ++i)
1753 {
1754 xfree ((void*) file_data->file_names[i]);
1755 if (file_data->real_names)
1756 xfree ((void*) file_data->real_names[i]);
1757 }
1758
1759 /* The space for the struct itself lives on objfile_obstack,
1760 so we don't free it here. */
1761}
1762
1763/* Create a quick_file_names hash table. */
1764
1765static htab_t
1766create_quick_file_names_table (unsigned int nr_initial_entries)
1767{
1768 return htab_create_alloc (nr_initial_entries,
1769 hash_file_name_entry, eq_file_name_entry,
1770 delete_file_name_entry, xcalloc, xfree);
1771}
9291a0cd 1772
918dd910
JK
1773/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1774 have to be created afterwards. You should call age_cached_comp_units after
1775 processing PER_CU->CU. dw2_setup must have been already called. */
1776
1777static void
1778load_cu (struct dwarf2_per_cu_data *per_cu)
1779{
b0df02fd 1780 if (per_cu->debug_types_section)
e5fe5e75 1781 load_full_type_unit (per_cu);
918dd910 1782 else
a0f42c21 1783 load_full_comp_unit (per_cu);
918dd910 1784
918dd910 1785 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
1786
1787 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
1788}
1789
a0f42c21 1790/* Read in the symbols for PER_CU. */
2fdf6df6 1791
9291a0cd 1792static void
a0f42c21 1793dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
1794{
1795 struct cleanup *back_to;
1796
1797 back_to = make_cleanup (dwarf2_release_queue, NULL);
1798
a0f42c21 1799 queue_comp_unit (per_cu);
9291a0cd 1800
918dd910 1801 load_cu (per_cu);
9291a0cd 1802
a0f42c21 1803 process_queue ();
9291a0cd
TT
1804
1805 /* Age the cache, releasing compilation units that have not
1806 been used recently. */
1807 age_cached_comp_units ();
1808
1809 do_cleanups (back_to);
1810}
1811
1812/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1813 the objfile from which this CU came. Returns the resulting symbol
1814 table. */
2fdf6df6 1815
9291a0cd 1816static struct symtab *
a0f42c21 1817dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
1818{
1819 if (!per_cu->v.quick->symtab)
1820 {
1821 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1822 increment_reading_symtab ();
a0f42c21 1823 dw2_do_instantiate_symtab (per_cu);
9291a0cd
TT
1824 do_cleanups (back_to);
1825 }
1826 return per_cu->v.quick->symtab;
1827}
1828
1fd400ff 1829/* Return the CU given its index. */
2fdf6df6 1830
1fd400ff
TT
1831static struct dwarf2_per_cu_data *
1832dw2_get_cu (int index)
1833{
1834 if (index >= dwarf2_per_objfile->n_comp_units)
1835 {
1836 index -= dwarf2_per_objfile->n_comp_units;
d467dd73 1837 return dwarf2_per_objfile->all_type_units[index];
1fd400ff
TT
1838 }
1839 return dwarf2_per_objfile->all_comp_units[index];
1840}
1841
9291a0cd
TT
1842/* A helper function that knows how to read a 64-bit value in a way
1843 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1844 otherwise. */
2fdf6df6 1845
9291a0cd
TT
1846static int
1847extract_cu_value (const char *bytes, ULONGEST *result)
1848{
1849 if (sizeof (ULONGEST) < 8)
1850 {
1851 int i;
1852
1853 /* Ignore the upper 4 bytes if they are all zero. */
1854 for (i = 0; i < 4; ++i)
1855 if (bytes[i + 4] != 0)
1856 return 0;
1857
1858 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1859 }
1860 else
1861 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1862 return 1;
1863}
1864
1865/* Read the CU list from the mapped index, and use it to create all
1866 the CU objects for this objfile. Return 0 if something went wrong,
1867 1 if everything went ok. */
2fdf6df6 1868
9291a0cd 1869static int
1fd400ff
TT
1870create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1871 offset_type cu_list_elements)
9291a0cd
TT
1872{
1873 offset_type i;
9291a0cd
TT
1874
1875 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1876 dwarf2_per_objfile->all_comp_units
1877 = obstack_alloc (&objfile->objfile_obstack,
1878 dwarf2_per_objfile->n_comp_units
1879 * sizeof (struct dwarf2_per_cu_data *));
1880
1881 for (i = 0; i < cu_list_elements; i += 2)
1882 {
1883 struct dwarf2_per_cu_data *the_cu;
1884 ULONGEST offset, length;
1885
1886 if (!extract_cu_value (cu_list, &offset)
1887 || !extract_cu_value (cu_list + 8, &length))
1888 return 0;
1889 cu_list += 2 * 8;
1890
1891 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1892 struct dwarf2_per_cu_data);
1893 the_cu->offset = offset;
1894 the_cu->length = length;
1895 the_cu->objfile = objfile;
1896 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1897 struct dwarf2_per_cu_quick_data);
1898 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1899 }
1900
1901 return 1;
1902}
1903
1fd400ff 1904/* Create the signatured type hash table from the index. */
673bfd45 1905
1fd400ff 1906static int
673bfd45 1907create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 1908 struct dwarf2_section_info *section,
673bfd45
DE
1909 const gdb_byte *bytes,
1910 offset_type elements)
1fd400ff
TT
1911{
1912 offset_type i;
673bfd45 1913 htab_t sig_types_hash;
1fd400ff 1914
d467dd73
DE
1915 dwarf2_per_objfile->n_type_units = elements / 3;
1916 dwarf2_per_objfile->all_type_units
1fd400ff 1917 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 1918 dwarf2_per_objfile->n_type_units
1fd400ff
TT
1919 * sizeof (struct dwarf2_per_cu_data *));
1920
673bfd45 1921 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1922
1923 for (i = 0; i < elements; i += 3)
1924 {
1925 struct signatured_type *type_sig;
1926 ULONGEST offset, type_offset, signature;
1927 void **slot;
1928
1929 if (!extract_cu_value (bytes, &offset)
1930 || !extract_cu_value (bytes + 8, &type_offset))
1931 return 0;
1932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1933 bytes += 3 * 8;
1934
1935 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1936 struct signatured_type);
1937 type_sig->signature = signature;
1fd400ff 1938 type_sig->type_offset = type_offset;
b0df02fd 1939 type_sig->per_cu.debug_types_section = section;
1fd400ff
TT
1940 type_sig->per_cu.offset = offset;
1941 type_sig->per_cu.objfile = objfile;
1942 type_sig->per_cu.v.quick
1943 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1944 struct dwarf2_per_cu_quick_data);
1945
673bfd45 1946 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
1947 *slot = type_sig;
1948
d467dd73 1949 dwarf2_per_objfile->all_type_units[i / 3] = &type_sig->per_cu;
1fd400ff
TT
1950 }
1951
673bfd45 1952 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
1953
1954 return 1;
1955}
1956
9291a0cd
TT
1957/* Read the address map data from the mapped index, and use it to
1958 populate the objfile's psymtabs_addrmap. */
2fdf6df6 1959
9291a0cd
TT
1960static void
1961create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1962{
1963 const gdb_byte *iter, *end;
1964 struct obstack temp_obstack;
1965 struct addrmap *mutable_map;
1966 struct cleanup *cleanup;
1967 CORE_ADDR baseaddr;
1968
1969 obstack_init (&temp_obstack);
1970 cleanup = make_cleanup_obstack_free (&temp_obstack);
1971 mutable_map = addrmap_create_mutable (&temp_obstack);
1972
1973 iter = index->address_table;
1974 end = iter + index->address_table_size;
1975
1976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1977
1978 while (iter < end)
1979 {
1980 ULONGEST hi, lo, cu_index;
1981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1982 iter += 8;
1983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1984 iter += 8;
1985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1986 iter += 4;
1987
1988 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 1989 dw2_get_cu (cu_index));
9291a0cd
TT
1990 }
1991
1992 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1993 &objfile->objfile_obstack);
1994 do_cleanups (cleanup);
1995}
1996
59d7bcaf
JK
1997/* The hash function for strings in the mapped index. This is the same as
1998 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
1999 implementation. This is necessary because the hash function is tied to the
2000 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2001 SYMBOL_HASH_NEXT.
2002
2003 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2004
9291a0cd 2005static hashval_t
559a7a62 2006mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2007{
2008 const unsigned char *str = (const unsigned char *) p;
2009 hashval_t r = 0;
2010 unsigned char c;
2011
2012 while ((c = *str++) != 0)
559a7a62
JK
2013 {
2014 if (index_version >= 5)
2015 c = tolower (c);
2016 r = r * 67 + c - 113;
2017 }
9291a0cd
TT
2018
2019 return r;
2020}
2021
2022/* Find a slot in the mapped index INDEX for the object named NAME.
2023 If NAME is found, set *VEC_OUT to point to the CU vector in the
2024 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2025
9291a0cd
TT
2026static int
2027find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2028 offset_type **vec_out)
2029{
0cf03b49
JK
2030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2031 offset_type hash;
9291a0cd 2032 offset_type slot, step;
559a7a62 2033 int (*cmp) (const char *, const char *);
9291a0cd 2034
0cf03b49
JK
2035 if (current_language->la_language == language_cplus
2036 || current_language->la_language == language_java
2037 || current_language->la_language == language_fortran)
2038 {
2039 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2040 not contain any. */
2041 const char *paren = strchr (name, '(');
2042
2043 if (paren)
2044 {
2045 char *dup;
2046
2047 dup = xmalloc (paren - name + 1);
2048 memcpy (dup, name, paren - name);
2049 dup[paren - name] = 0;
2050
2051 make_cleanup (xfree, dup);
2052 name = dup;
2053 }
2054 }
2055
559a7a62
JK
2056 /* Index version 4 did not support case insensitive searches. But the
2057 indexes for case insensitive languages are built in lowercase, therefore
2058 simulate our NAME being searched is also lowercased. */
2059 hash = mapped_index_string_hash ((index->version == 4
2060 && case_sensitivity == case_sensitive_off
2061 ? 5 : index->version),
2062 name);
2063
3876f04e
DE
2064 slot = hash & (index->symbol_table_slots - 1);
2065 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2066 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2067
2068 for (;;)
2069 {
2070 /* Convert a slot number to an offset into the table. */
2071 offset_type i = 2 * slot;
2072 const char *str;
3876f04e 2073 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2074 {
2075 do_cleanups (back_to);
2076 return 0;
2077 }
9291a0cd 2078
3876f04e 2079 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2080 if (!cmp (name, str))
9291a0cd
TT
2081 {
2082 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2083 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2084 do_cleanups (back_to);
9291a0cd
TT
2085 return 1;
2086 }
2087
3876f04e 2088 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2089 }
2090}
2091
2092/* Read the index file. If everything went ok, initialize the "quick"
2093 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 2094
9291a0cd
TT
2095static int
2096dwarf2_read_index (struct objfile *objfile)
2097{
9291a0cd
TT
2098 char *addr;
2099 struct mapped_index *map;
b3b272e1 2100 offset_type *metadata;
ac0b195c
KW
2101 const gdb_byte *cu_list;
2102 const gdb_byte *types_list = NULL;
2103 offset_type version, cu_list_elements;
2104 offset_type types_list_elements = 0;
1fd400ff 2105 int i;
9291a0cd 2106
9e0ac564 2107 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
9291a0cd 2108 return 0;
82430852
JK
2109
2110 /* Older elfutils strip versions could keep the section in the main
2111 executable while splitting it for the separate debug info file. */
2112 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2113 & SEC_HAS_CONTENTS) == 0)
2114 return 0;
2115
9291a0cd
TT
2116 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2117
2118 addr = dwarf2_per_objfile->gdb_index.buffer;
2119 /* Version check. */
1fd400ff 2120 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2121 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2122 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2123 contained incomplete addrmap. So, it seems better to just ignore such
559a7a62
JK
2124 indices. Index version 4 uses a different hash function than index
2125 version 5 and later. */
831adc1f 2126 if (version < 4)
9291a0cd 2127 return 0;
594e8718
JK
2128 /* Indexes with higher version than the one supported by GDB may be no
2129 longer backward compatible. */
559a7a62 2130 if (version > 5)
594e8718 2131 return 0;
9291a0cd
TT
2132
2133 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
559a7a62 2134 map->version = version;
b3b272e1 2135 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2136
2137 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2138
2139 i = 0;
2140 cu_list = addr + MAYBE_SWAP (metadata[i]);
2141 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2142 / 8);
1fd400ff
TT
2143 ++i;
2144
987d643c
TT
2145 types_list = addr + MAYBE_SWAP (metadata[i]);
2146 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2147 - MAYBE_SWAP (metadata[i]))
2148 / 8);
2149 ++i;
1fd400ff
TT
2150
2151 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2152 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2153 - MAYBE_SWAP (metadata[i]));
2154 ++i;
2155
3876f04e
DE
2156 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2157 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2158 - MAYBE_SWAP (metadata[i]))
2159 / (2 * sizeof (offset_type)));
1fd400ff 2160 ++i;
9291a0cd 2161
1fd400ff
TT
2162 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2163
2164 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2165 return 0;
2166
8b70b953
TT
2167 if (types_list_elements)
2168 {
2169 struct dwarf2_section_info *section;
2170
2171 /* We can only handle a single .debug_types when we have an
2172 index. */
2173 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2174 return 0;
2175
2176 section = VEC_index (dwarf2_section_info_def,
2177 dwarf2_per_objfile->types, 0);
2178
2179 if (!create_signatured_type_table_from_index (objfile, section,
2180 types_list,
2181 types_list_elements))
2182 return 0;
2183 }
9291a0cd
TT
2184
2185 create_addrmap_from_index (objfile, map);
2186
2187 dwarf2_per_objfile->index_table = map;
2188 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2189 dwarf2_per_objfile->quick_file_names_table =
2190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2191
2192 return 1;
2193}
2194
2195/* A helper for the "quick" functions which sets the global
2196 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2197
9291a0cd
TT
2198static void
2199dw2_setup (struct objfile *objfile)
2200{
2201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2202 gdb_assert (dwarf2_per_objfile);
2203}
2204
2205/* A helper for the "quick" functions which attempts to read the line
2206 table for THIS_CU. */
2fdf6df6 2207
7b9f3c50
DE
2208static struct quick_file_names *
2209dw2_get_file_names (struct objfile *objfile,
2210 struct dwarf2_per_cu_data *this_cu)
9291a0cd
TT
2211{
2212 bfd *abfd = objfile->obfd;
7b9f3c50 2213 struct line_header *lh;
9291a0cd
TT
2214 struct attribute *attr;
2215 struct cleanup *cleanups;
2216 struct die_info *comp_unit_die;
36374493 2217 struct dwarf2_section_info* sec;
9ff913ba 2218 gdb_byte *info_ptr;
9291a0cd
TT
2219 int has_children, i;
2220 struct dwarf2_cu cu;
9ff913ba 2221 unsigned int bytes_read;
9291a0cd
TT
2222 struct die_reader_specs reader_specs;
2223 char *name, *comp_dir;
7b9f3c50
DE
2224 void **slot;
2225 struct quick_file_names *qfn;
2226 unsigned int line_offset;
9291a0cd 2227
7b9f3c50
DE
2228 if (this_cu->v.quick->file_names != NULL)
2229 return this_cu->v.quick->file_names;
2230 /* If we know there is no line data, no point in looking again. */
2231 if (this_cu->v.quick->no_file_data)
2232 return NULL;
9291a0cd 2233
23745b47 2234 init_one_comp_unit (&cu, this_cu);
9291a0cd
TT
2235 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2236
b0df02fd
DE
2237 if (this_cu->debug_types_section)
2238 sec = this_cu->debug_types_section;
36374493
DE
2239 else
2240 sec = &dwarf2_per_objfile->info;
2241 dwarf2_read_section (objfile, sec);
9ff913ba 2242 info_ptr = sec->buffer + this_cu->offset;
9291a0cd 2243
9ff913ba
DE
2244 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2245 this_cu->debug_types_section != NULL);
9291a0cd 2246
6caca83c 2247 /* Skip dummy compilation units. */
9ff913ba 2248 if (info_ptr >= (sec->buffer + sec->size)
6caca83c
CC
2249 || peek_abbrev_code (abfd, info_ptr) == 0)
2250 {
2251 do_cleanups (cleanups);
2252 return NULL;
2253 }
2254
e5fe5e75 2255 dwarf2_read_abbrevs (&cu);
9291a0cd
TT
2256 make_cleanup (dwarf2_free_abbrev_table, &cu);
2257
9291a0cd 2258 init_cu_die_reader (&reader_specs, &cu);
e8e80198
MS
2259 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2260 &has_children);
9291a0cd 2261
7b9f3c50
DE
2262 lh = NULL;
2263 slot = NULL;
2264 line_offset = 0;
9291a0cd
TT
2265 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2266 if (attr)
2267 {
7b9f3c50
DE
2268 struct quick_file_names find_entry;
2269
2270 line_offset = DW_UNSND (attr);
2271
2272 /* We may have already read in this line header (TU line header sharing).
2273 If we have we're done. */
2274 find_entry.offset = line_offset;
2275 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2276 &find_entry, INSERT);
2277 if (*slot != NULL)
2278 {
2279 do_cleanups (cleanups);
2280 this_cu->v.quick->file_names = *slot;
2281 return *slot;
2282 }
2283
9291a0cd
TT
2284 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2285 }
2286 if (lh == NULL)
2287 {
2288 do_cleanups (cleanups);
7b9f3c50
DE
2289 this_cu->v.quick->no_file_data = 1;
2290 return NULL;
9291a0cd
TT
2291 }
2292
7b9f3c50
DE
2293 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2294 qfn->offset = line_offset;
2295 gdb_assert (slot != NULL);
2296 *slot = qfn;
9291a0cd 2297
7b9f3c50 2298 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
9291a0cd 2299
7b9f3c50
DE
2300 qfn->num_file_names = lh->num_file_names;
2301 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2302 lh->num_file_names * sizeof (char *));
9291a0cd 2303 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2304 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2305 qfn->real_names = NULL;
9291a0cd 2306
7b9f3c50 2307 free_line_header (lh);
9291a0cd 2308 do_cleanups (cleanups);
7b9f3c50
DE
2309
2310 this_cu->v.quick->file_names = qfn;
2311 return qfn;
9291a0cd
TT
2312}
2313
2314/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2315 real path for a given file name from the line table. */
2fdf6df6 2316
9291a0cd 2317static const char *
7b9f3c50
DE
2318dw2_get_real_path (struct objfile *objfile,
2319 struct quick_file_names *qfn, int index)
9291a0cd 2320{
7b9f3c50
DE
2321 if (qfn->real_names == NULL)
2322 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2323 qfn->num_file_names, sizeof (char *));
9291a0cd 2324
7b9f3c50
DE
2325 if (qfn->real_names[index] == NULL)
2326 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2327
7b9f3c50 2328 return qfn->real_names[index];
9291a0cd
TT
2329}
2330
2331static struct symtab *
2332dw2_find_last_source_symtab (struct objfile *objfile)
2333{
2334 int index;
ae2de4f8 2335
9291a0cd
TT
2336 dw2_setup (objfile);
2337 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 2338 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
2339}
2340
7b9f3c50
DE
2341/* Traversal function for dw2_forget_cached_source_info. */
2342
2343static int
2344dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2345{
7b9f3c50 2346 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2347
7b9f3c50 2348 if (file_data->real_names)
9291a0cd 2349 {
7b9f3c50 2350 int i;
9291a0cd 2351
7b9f3c50 2352 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2353 {
7b9f3c50
DE
2354 xfree ((void*) file_data->real_names[i]);
2355 file_data->real_names[i] = NULL;
9291a0cd
TT
2356 }
2357 }
7b9f3c50
DE
2358
2359 return 1;
2360}
2361
2362static void
2363dw2_forget_cached_source_info (struct objfile *objfile)
2364{
2365 dw2_setup (objfile);
2366
2367 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2368 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2369}
2370
f8eba3c6
TT
2371/* Helper function for dw2_map_symtabs_matching_filename that expands
2372 the symtabs and calls the iterator. */
2373
2374static int
2375dw2_map_expand_apply (struct objfile *objfile,
2376 struct dwarf2_per_cu_data *per_cu,
2377 const char *name,
2378 const char *full_path, const char *real_path,
2379 int (*callback) (struct symtab *, void *),
2380 void *data)
2381{
2382 struct symtab *last_made = objfile->symtabs;
2383
2384 /* Don't visit already-expanded CUs. */
2385 if (per_cu->v.quick->symtab)
2386 return 0;
2387
2388 /* This may expand more than one symtab, and we want to iterate over
2389 all of them. */
a0f42c21 2390 dw2_instantiate_symtab (per_cu);
f8eba3c6
TT
2391
2392 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2393 objfile->symtabs, last_made);
2394}
2395
2396/* Implementation of the map_symtabs_matching_filename method. */
2397
9291a0cd 2398static int
f8eba3c6
TT
2399dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2400 const char *full_path, const char *real_path,
2401 int (*callback) (struct symtab *, void *),
2402 void *data)
9291a0cd
TT
2403{
2404 int i;
c011a4f4 2405 const char *name_basename = lbasename (name);
4aac40c8
TT
2406 int name_len = strlen (name);
2407 int is_abs = IS_ABSOLUTE_PATH (name);
9291a0cd
TT
2408
2409 dw2_setup (objfile);
ae2de4f8 2410
1fd400ff 2411 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2412 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd
TT
2413 {
2414 int j;
e254ef6a 2415 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2416 struct quick_file_names *file_data;
9291a0cd 2417
3d7bb9d9 2418 /* We only need to look at symtabs not already expanded. */
e254ef6a 2419 if (per_cu->v.quick->symtab)
9291a0cd
TT
2420 continue;
2421
7b9f3c50
DE
2422 file_data = dw2_get_file_names (objfile, per_cu);
2423 if (file_data == NULL)
9291a0cd
TT
2424 continue;
2425
7b9f3c50 2426 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2427 {
7b9f3c50 2428 const char *this_name = file_data->file_names[j];
9291a0cd 2429
4aac40c8
TT
2430 if (FILENAME_CMP (name, this_name) == 0
2431 || (!is_abs && compare_filenames_for_search (this_name,
2432 name, name_len)))
9291a0cd 2433 {
f8eba3c6
TT
2434 if (dw2_map_expand_apply (objfile, per_cu,
2435 name, full_path, real_path,
2436 callback, data))
2437 return 1;
9291a0cd
TT
2438 }
2439
4aac40c8
TT
2440 {
2441 if (dw2_map_expand_apply (objfile, per_cu,
2442 name, full_path, real_path,
2443 callback, data))
2444 return 1;
2445 }
9291a0cd 2446
c011a4f4
DE
2447 /* Before we invoke realpath, which can get expensive when many
2448 files are involved, do a quick comparison of the basenames. */
2449 if (! basenames_may_differ
2450 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2451 continue;
2452
9291a0cd
TT
2453 if (full_path != NULL)
2454 {
7b9f3c50
DE
2455 const char *this_real_name = dw2_get_real_path (objfile,
2456 file_data, j);
9291a0cd 2457
7b9f3c50 2458 if (this_real_name != NULL
4aac40c8
TT
2459 && (FILENAME_CMP (full_path, this_real_name) == 0
2460 || (!is_abs
2461 && compare_filenames_for_search (this_real_name,
2462 name, name_len))))
9291a0cd 2463 {
f8eba3c6
TT
2464 if (dw2_map_expand_apply (objfile, per_cu,
2465 name, full_path, real_path,
2466 callback, data))
2467 return 1;
9291a0cd
TT
2468 }
2469 }
2470
2471 if (real_path != NULL)
2472 {
7b9f3c50
DE
2473 const char *this_real_name = dw2_get_real_path (objfile,
2474 file_data, j);
9291a0cd 2475
7b9f3c50 2476 if (this_real_name != NULL
4aac40c8
TT
2477 && (FILENAME_CMP (real_path, this_real_name) == 0
2478 || (!is_abs
2479 && compare_filenames_for_search (this_real_name,
2480 name, name_len))))
9291a0cd 2481 {
f8eba3c6
TT
2482 if (dw2_map_expand_apply (objfile, per_cu,
2483 name, full_path, real_path,
2484 callback, data))
2485 return 1;
9291a0cd
TT
2486 }
2487 }
2488 }
2489 }
2490
9291a0cd
TT
2491 return 0;
2492}
2493
2494static struct symtab *
2495dw2_lookup_symbol (struct objfile *objfile, int block_index,
2496 const char *name, domain_enum domain)
2497{
774b6a14 2498 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2499 instead. */
2500 return NULL;
2501}
2502
2503/* A helper function that expands all symtabs that hold an object
2504 named NAME. */
2fdf6df6 2505
9291a0cd
TT
2506static void
2507dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2508{
2509 dw2_setup (objfile);
2510
ae2de4f8 2511 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2512 if (dwarf2_per_objfile->index_table)
2513 {
2514 offset_type *vec;
2515
2516 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2517 name, &vec))
2518 {
2519 offset_type i, len = MAYBE_SWAP (*vec);
2520 for (i = 0; i < len; ++i)
2521 {
2522 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2523 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2524
a0f42c21 2525 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
2526 }
2527 }
2528 }
2529}
2530
774b6a14
TT
2531static void
2532dw2_pre_expand_symtabs_matching (struct objfile *objfile,
8903c50d 2533 enum block_enum block_kind, const char *name,
774b6a14 2534 domain_enum domain)
9291a0cd 2535{
774b6a14 2536 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2537}
2538
2539static void
2540dw2_print_stats (struct objfile *objfile)
2541{
2542 int i, count;
2543
2544 dw2_setup (objfile);
2545 count = 0;
1fd400ff 2546 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2547 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 2548 {
e254ef6a 2549 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2550
e254ef6a 2551 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2552 ++count;
2553 }
2554 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2555}
2556
2557static void
2558dw2_dump (struct objfile *objfile)
2559{
2560 /* Nothing worth printing. */
2561}
2562
2563static void
2564dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2565 struct section_offsets *delta)
2566{
2567 /* There's nothing to relocate here. */
2568}
2569
2570static void
2571dw2_expand_symtabs_for_function (struct objfile *objfile,
2572 const char *func_name)
2573{
2574 dw2_do_expand_symtabs_matching (objfile, func_name);
2575}
2576
2577static void
2578dw2_expand_all_symtabs (struct objfile *objfile)
2579{
2580 int i;
2581
2582 dw2_setup (objfile);
1fd400ff
TT
2583
2584 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2585 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 2586 {
e254ef6a 2587 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2588
a0f42c21 2589 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
2590 }
2591}
2592
2593static void
2594dw2_expand_symtabs_with_filename (struct objfile *objfile,
2595 const char *filename)
2596{
2597 int i;
2598
2599 dw2_setup (objfile);
d4637a04
DE
2600
2601 /* We don't need to consider type units here.
2602 This is only called for examining code, e.g. expand_line_sal.
2603 There can be an order of magnitude (or more) more type units
2604 than comp units, and we avoid them if we can. */
2605
2606 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2607 {
2608 int j;
e254ef6a 2609 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2610 struct quick_file_names *file_data;
9291a0cd 2611
3d7bb9d9 2612 /* We only need to look at symtabs not already expanded. */
e254ef6a 2613 if (per_cu->v.quick->symtab)
9291a0cd
TT
2614 continue;
2615
7b9f3c50
DE
2616 file_data = dw2_get_file_names (objfile, per_cu);
2617 if (file_data == NULL)
9291a0cd
TT
2618 continue;
2619
7b9f3c50 2620 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2621 {
7b9f3c50 2622 const char *this_name = file_data->file_names[j];
1ef75ecc 2623 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2624 {
a0f42c21 2625 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
2626 break;
2627 }
2628 }
2629 }
2630}
2631
dd786858 2632static const char *
9291a0cd
TT
2633dw2_find_symbol_file (struct objfile *objfile, const char *name)
2634{
e254ef6a 2635 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2636 offset_type *vec;
7b9f3c50 2637 struct quick_file_names *file_data;
9291a0cd
TT
2638
2639 dw2_setup (objfile);
2640
ae2de4f8 2641 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 2642 if (!dwarf2_per_objfile->index_table)
96408a79
SA
2643 {
2644 struct symtab *s;
2645
2646 ALL_OBJFILE_SYMTABS (objfile, s)
2647 if (s->primary)
2648 {
2649 struct blockvector *bv = BLOCKVECTOR (s);
2650 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2651 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2652
2653 if (sym)
2654 return sym->symtab->filename;
2655 }
2656 return NULL;
2657 }
9291a0cd
TT
2658
2659 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2660 name, &vec))
2661 return NULL;
2662
2663 /* Note that this just looks at the very first one named NAME -- but
2664 actually we are looking for a function. find_main_filename
2665 should be rewritten so that it doesn't require a custom hook. It
2666 could just use the ordinary symbol tables. */
2667 /* vec[0] is the length, which must always be >0. */
e254ef6a 2668 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2669
7b9f3c50
DE
2670 file_data = dw2_get_file_names (objfile, per_cu);
2671 if (file_data == NULL)
9291a0cd
TT
2672 return NULL;
2673
7b9f3c50 2674 return file_data->file_names[file_data->num_file_names - 1];
9291a0cd
TT
2675}
2676
2677static void
40658b94
PH
2678dw2_map_matching_symbols (const char * name, domain_enum namespace,
2679 struct objfile *objfile, int global,
2680 int (*callback) (struct block *,
2681 struct symbol *, void *),
2edb89d3
JK
2682 void *data, symbol_compare_ftype *match,
2683 symbol_compare_ftype *ordered_compare)
9291a0cd 2684{
40658b94 2685 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2686 current language is Ada for a non-Ada objfile using GNU index. As Ada
2687 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2688}
2689
2690static void
f8eba3c6
TT
2691dw2_expand_symtabs_matching
2692 (struct objfile *objfile,
2693 int (*file_matcher) (const char *, void *),
e078317b 2694 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
2695 enum search_domain kind,
2696 void *data)
9291a0cd
TT
2697{
2698 int i;
2699 offset_type iter;
4b5246aa 2700 struct mapped_index *index;
9291a0cd
TT
2701
2702 dw2_setup (objfile);
ae2de4f8
DE
2703
2704 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2705 if (!dwarf2_per_objfile->index_table)
2706 return;
4b5246aa 2707 index = dwarf2_per_objfile->index_table;
9291a0cd 2708
7b08b9eb
JK
2709 if (file_matcher != NULL)
2710 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2711 + dwarf2_per_objfile->n_type_units); ++i)
7b08b9eb
JK
2712 {
2713 int j;
2714 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2715 struct quick_file_names *file_data;
2716
2717 per_cu->v.quick->mark = 0;
3d7bb9d9
DE
2718
2719 /* We only need to look at symtabs not already expanded. */
7b08b9eb
JK
2720 if (per_cu->v.quick->symtab)
2721 continue;
2722
2723 file_data = dw2_get_file_names (objfile, per_cu);
2724 if (file_data == NULL)
2725 continue;
2726
2727 for (j = 0; j < file_data->num_file_names; ++j)
2728 {
2729 if (file_matcher (file_data->file_names[j], data))
2730 {
2731 per_cu->v.quick->mark = 1;
2732 break;
2733 }
2734 }
2735 }
9291a0cd 2736
3876f04e 2737 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2738 {
2739 offset_type idx = 2 * iter;
2740 const char *name;
2741 offset_type *vec, vec_len, vec_idx;
2742
3876f04e 2743 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2744 continue;
2745
3876f04e 2746 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 2747
e078317b 2748 if (! (*name_matcher) (name, data))
9291a0cd
TT
2749 continue;
2750
2751 /* The name was matched, now expand corresponding CUs that were
2752 marked. */
4b5246aa 2753 vec = (offset_type *) (index->constant_pool
3876f04e 2754 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2755 vec_len = MAYBE_SWAP (vec[0]);
2756 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2757 {
e254ef6a 2758 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2759
e254ef6a 2760 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
7b08b9eb 2761 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 2762 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
2763 }
2764 }
2765}
2766
2767static struct symtab *
2768dw2_find_pc_sect_symtab (struct objfile *objfile,
2769 struct minimal_symbol *msymbol,
2770 CORE_ADDR pc,
2771 struct obj_section *section,
2772 int warn_if_readin)
2773{
2774 struct dwarf2_per_cu_data *data;
2775
2776 dw2_setup (objfile);
2777
2778 if (!objfile->psymtabs_addrmap)
2779 return NULL;
2780
2781 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2782 if (!data)
2783 return NULL;
2784
2785 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2786 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2787 paddress (get_objfile_arch (objfile), pc));
2788
a0f42c21 2789 return dw2_instantiate_symtab (data);
9291a0cd
TT
2790}
2791
9291a0cd 2792static void
44b13c5a 2793dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 2794 void *data, int need_fullname)
9291a0cd
TT
2795{
2796 int i;
2797
2798 dw2_setup (objfile);
ae2de4f8 2799
1fd400ff 2800 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2801 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd
TT
2802 {
2803 int j;
e254ef6a 2804 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2805 struct quick_file_names *file_data;
9291a0cd 2806
3d7bb9d9 2807 /* We only need to look at symtabs not already expanded. */
e254ef6a 2808 if (per_cu->v.quick->symtab)
9291a0cd
TT
2809 continue;
2810
7b9f3c50
DE
2811 file_data = dw2_get_file_names (objfile, per_cu);
2812 if (file_data == NULL)
9291a0cd
TT
2813 continue;
2814
7b9f3c50 2815 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2816 {
74e2f255
DE
2817 const char *this_real_name;
2818
2819 if (need_fullname)
2820 this_real_name = dw2_get_real_path (objfile, file_data, j);
2821 else
2822 this_real_name = NULL;
7b9f3c50 2823 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
2824 }
2825 }
2826}
2827
2828static int
2829dw2_has_symbols (struct objfile *objfile)
2830{
2831 return 1;
2832}
2833
2834const struct quick_symbol_functions dwarf2_gdb_index_functions =
2835{
2836 dw2_has_symbols,
2837 dw2_find_last_source_symtab,
2838 dw2_forget_cached_source_info,
f8eba3c6 2839 dw2_map_symtabs_matching_filename,
9291a0cd 2840 dw2_lookup_symbol,
774b6a14 2841 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2842 dw2_print_stats,
2843 dw2_dump,
2844 dw2_relocate,
2845 dw2_expand_symtabs_for_function,
2846 dw2_expand_all_symtabs,
2847 dw2_expand_symtabs_with_filename,
2848 dw2_find_symbol_file,
40658b94 2849 dw2_map_matching_symbols,
9291a0cd
TT
2850 dw2_expand_symtabs_matching,
2851 dw2_find_pc_sect_symtab,
9291a0cd
TT
2852 dw2_map_symbol_filenames
2853};
2854
2855/* Initialize for reading DWARF for this objfile. Return 0 if this
2856 file will use psymtabs, or 1 if using the GNU index. */
2857
2858int
2859dwarf2_initialize_objfile (struct objfile *objfile)
2860{
2861 /* If we're about to read full symbols, don't bother with the
2862 indices. In this case we also don't care if some other debug
2863 format is making psymtabs, because they are all about to be
2864 expanded anyway. */
2865 if ((objfile->flags & OBJF_READNOW))
2866 {
2867 int i;
2868
2869 dwarf2_per_objfile->using_index = 1;
2870 create_all_comp_units (objfile);
1fd400ff 2871 create_debug_types_hash_table (objfile);
7b9f3c50
DE
2872 dwarf2_per_objfile->quick_file_names_table =
2873 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 2874
1fd400ff 2875 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2876 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 2877 {
e254ef6a 2878 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2879
e254ef6a
DE
2880 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2881 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2882 }
2883
2884 /* Return 1 so that gdb sees the "quick" functions. However,
2885 these functions will be no-ops because we will have expanded
2886 all symtabs. */
2887 return 1;
2888 }
2889
2890 if (dwarf2_read_index (objfile))
2891 return 1;
2892
9291a0cd
TT
2893 return 0;
2894}
2895
2896\f
2897
dce234bc
PP
2898/* Build a partial symbol table. */
2899
2900void
f29dff0a 2901dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2902{
f29dff0a 2903 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2904 {
2905 init_psymbol_list (objfile, 1024);
2906 }
2907
d146bf1e 2908 dwarf2_build_psymtabs_hard (objfile);
c906108c 2909}
c906108c 2910
45452591
DE
2911/* Return TRUE if OFFSET is within CU_HEADER. */
2912
2913static inline int
2914offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2915{
2916 unsigned int bottom = cu_header->offset;
2917 unsigned int top = (cu_header->offset
2918 + cu_header->length
2919 + cu_header->initial_length_size);
9a619af0 2920
45452591
DE
2921 return (offset >= bottom && offset < top);
2922}
2923
93311388
DE
2924/* Read in the comp unit header information from the debug_info at info_ptr.
2925 NOTE: This leaves members offset, first_die_offset to be filled in
2926 by the caller. */
107d2387 2927
fe1b8b76 2928static gdb_byte *
107d2387 2929read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2930 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2931{
2932 int signed_addr;
891d2f0b 2933 unsigned int bytes_read;
c764a876
DE
2934
2935 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2936 cu_header->initial_length_size = bytes_read;
2937 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2938 info_ptr += bytes_read;
107d2387
AC
2939 cu_header->version = read_2_bytes (abfd, info_ptr);
2940 info_ptr += 2;
613e1657 2941 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2942 &bytes_read);
613e1657 2943 info_ptr += bytes_read;
107d2387
AC
2944 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2945 info_ptr += 1;
2946 signed_addr = bfd_get_sign_extend_vma (abfd);
2947 if (signed_addr < 0)
8e65ff28 2948 internal_error (__FILE__, __LINE__,
e2e0b3e5 2949 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2950 cu_header->signed_addr_p = signed_addr;
c764a876 2951
107d2387
AC
2952 return info_ptr;
2953}
2954
9ff913ba
DE
2955/* Subroutine of read_and_check_comp_unit_head and
2956 read_and_check_type_unit_head to simplify them.
2957 Perform various error checking on the header. */
2958
2959static void
2960error_check_comp_unit_head (struct comp_unit_head *header,
2961 struct dwarf2_section_info *section)
2962{
2963 bfd *abfd = section->asection->owner;
2964 const char *filename = bfd_get_filename (abfd);
2965
2966 if (header->version != 2 && header->version != 3 && header->version != 4)
2967 error (_("Dwarf Error: wrong version in compilation unit header "
2968 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2969 filename);
2970
2971 if (header->abbrev_offset
2972 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2973 &dwarf2_per_objfile->abbrev))
2974 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2975 "(offset 0x%lx + 6) [in module %s]"),
2976 (long) header->abbrev_offset, (long) header->offset,
2977 filename);
2978
2979 /* Cast to unsigned long to use 64-bit arithmetic when possible to
2980 avoid potential 32-bit overflow. */
2981 if (((unsigned long) header->offset
2982 + header->length + header->initial_length_size)
2983 > section->size)
2984 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2985 "(offset 0x%lx + 0) [in module %s]"),
2986 (long) header->length, (long) header->offset,
2987 filename);
2988}
2989
2990/* Read in a CU/TU header and perform some basic error checking.
2991 The contents of the header are stored in HEADER.
2992 The result is a pointer to the start of the first DIE. */
adabb602 2993
fe1b8b76 2994static gdb_byte *
9ff913ba
DE
2995read_and_check_comp_unit_head (struct comp_unit_head *header,
2996 struct dwarf2_section_info *section,
2997 gdb_byte *info_ptr,
2998 int is_debug_types_section)
72bf9492 2999{
fe1b8b76 3000 gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 3001 bfd *abfd = section->asection->owner;
72bf9492 3002
9ff913ba 3003 header->offset = beg_of_comp_unit - section->buffer;
adabb602 3004
72bf9492
DJ
3005 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3006
460c1c54
CC
3007 /* If we're reading a type unit, skip over the signature and
3008 type_offset fields. */
b0df02fd 3009 if (is_debug_types_section)
460c1c54
CC
3010 info_ptr += 8 /*signature*/ + header->offset_size;
3011
adabb602
DE
3012 header->first_die_offset = info_ptr - beg_of_comp_unit;
3013
9ff913ba 3014 error_check_comp_unit_head (header, section);
72bf9492
DJ
3015
3016 return info_ptr;
3017}
3018
348e048f
DE
3019/* Read in the types comp unit header information from .debug_types entry at
3020 types_ptr. The result is a pointer to one past the end of the header. */
3021
3022static gdb_byte *
9ff913ba
DE
3023read_and_check_type_unit_head (struct comp_unit_head *header,
3024 struct dwarf2_section_info *section,
3025 gdb_byte *info_ptr,
3026 ULONGEST *signature, unsigned int *type_offset)
348e048f 3027{
9ff913ba
DE
3028 gdb_byte *beg_of_comp_unit = info_ptr;
3029 bfd *abfd = section->asection->owner;
348e048f 3030
9ff913ba 3031 header->offset = beg_of_comp_unit - section->buffer;
348e048f 3032
9ff913ba 3033 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 3034
9ff913ba
DE
3035 /* If we're reading a type unit, skip over the signature and
3036 type_offset fields. */
3037 if (signature != NULL)
3038 *signature = read_8_bytes (abfd, info_ptr);
3039 info_ptr += 8;
3040 if (type_offset != NULL)
3041 *type_offset = read_offset_1 (abfd, info_ptr, header->offset_size);
3042 info_ptr += header->offset_size;
3043
3044 header->first_die_offset = info_ptr - beg_of_comp_unit;
348e048f 3045
9ff913ba
DE
3046 error_check_comp_unit_head (header, section);
3047
3048 return info_ptr;
348e048f
DE
3049}
3050
aaa75496
JB
3051/* Allocate a new partial symtab for file named NAME and mark this new
3052 partial symtab as being an include of PST. */
3053
3054static void
3055dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3056 struct objfile *objfile)
3057{
3058 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3059
3060 subpst->section_offsets = pst->section_offsets;
3061 subpst->textlow = 0;
3062 subpst->texthigh = 0;
3063
3064 subpst->dependencies = (struct partial_symtab **)
3065 obstack_alloc (&objfile->objfile_obstack,
3066 sizeof (struct partial_symtab *));
3067 subpst->dependencies[0] = pst;
3068 subpst->number_of_dependencies = 1;
3069
3070 subpst->globals_offset = 0;
3071 subpst->n_global_syms = 0;
3072 subpst->statics_offset = 0;
3073 subpst->n_static_syms = 0;
3074 subpst->symtab = NULL;
3075 subpst->read_symtab = pst->read_symtab;
3076 subpst->readin = 0;
3077
3078 /* No private part is necessary for include psymtabs. This property
3079 can be used to differentiate between such include psymtabs and
10b3939b 3080 the regular ones. */
58a9656e 3081 subpst->read_symtab_private = NULL;
aaa75496
JB
3082}
3083
3084/* Read the Line Number Program data and extract the list of files
3085 included by the source file represented by PST. Build an include
d85a05f0 3086 partial symtab for each of these included files. */
aaa75496
JB
3087
3088static void
3089dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 3090 struct die_info *die,
aaa75496
JB
3091 struct partial_symtab *pst)
3092{
3093 struct objfile *objfile = cu->objfile;
3094 bfd *abfd = objfile->obfd;
d85a05f0
DJ
3095 struct line_header *lh = NULL;
3096 struct attribute *attr;
aaa75496 3097
d85a05f0
DJ
3098 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3099 if (attr)
3100 {
3101 unsigned int line_offset = DW_UNSND (attr);
9a619af0 3102
d85a05f0
DJ
3103 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3104 }
aaa75496
JB
3105 if (lh == NULL)
3106 return; /* No linetable, so no includes. */
3107
c6da4cef 3108 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 3109 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
3110
3111 free_line_header (lh);
3112}
3113
348e048f
DE
3114static hashval_t
3115hash_type_signature (const void *item)
3116{
3117 const struct signatured_type *type_sig = item;
9a619af0 3118
348e048f
DE
3119 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3120 return type_sig->signature;
3121}
3122
3123static int
3124eq_type_signature (const void *item_lhs, const void *item_rhs)
3125{
3126 const struct signatured_type *lhs = item_lhs;
3127 const struct signatured_type *rhs = item_rhs;
9a619af0 3128
348e048f
DE
3129 return lhs->signature == rhs->signature;
3130}
3131
1fd400ff
TT
3132/* Allocate a hash table for signatured types. */
3133
3134static htab_t
673bfd45 3135allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
3136{
3137 return htab_create_alloc_ex (41,
3138 hash_type_signature,
3139 eq_type_signature,
3140 NULL,
3141 &objfile->objfile_obstack,
3142 hashtab_obstack_allocate,
3143 dummy_obstack_deallocate);
3144}
3145
d467dd73 3146/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
3147
3148static int
d467dd73 3149add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
3150{
3151 struct signatured_type *sigt = *slot;
3152 struct dwarf2_per_cu_data ***datap = datum;
3153
3154 **datap = &sigt->per_cu;
3155 ++*datap;
3156
3157 return 1;
3158}
3159
d467dd73 3160/* Create the hash table of all entries in the .debug_types section(s).
348e048f
DE
3161 The result is zero if there is an error (e.g. missing .debug_types section),
3162 otherwise non-zero. */
3163
3164static int
3165create_debug_types_hash_table (struct objfile *objfile)
3166{
8b70b953 3167 htab_t types_htab = NULL;
1fd400ff 3168 struct dwarf2_per_cu_data **iter;
8b70b953
TT
3169 int ix;
3170 struct dwarf2_section_info *section;
348e048f 3171
8b70b953 3172 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
348e048f
DE
3173 {
3174 dwarf2_per_objfile->signatured_types = NULL;
3175 return 0;
3176 }
3177
8b70b953
TT
3178 for (ix = 0;
3179 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3180 ix, section);
3181 ++ix)
3182 {
3183 gdb_byte *info_ptr, *end_ptr;
348e048f 3184
8b70b953
TT
3185 dwarf2_read_section (objfile, section);
3186 info_ptr = section->buffer;
348e048f 3187
8b70b953
TT
3188 if (info_ptr == NULL)
3189 continue;
348e048f 3190
8b70b953
TT
3191 if (types_htab == NULL)
3192 types_htab = allocate_signatured_type_table (objfile);
348e048f 3193
8b70b953
TT
3194 if (dwarf2_die_debug)
3195 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3196
3197 end_ptr = info_ptr + section->size;
3198 while (info_ptr < end_ptr)
3199 {
3200 unsigned int offset;
8b70b953 3201 unsigned int type_offset;
8b70b953
TT
3202 ULONGEST signature;
3203 struct signatured_type *type_sig;
3204 void **slot;
3205 gdb_byte *ptr = info_ptr;
9ff913ba 3206 struct comp_unit_head header;
348e048f 3207
8b70b953 3208 offset = ptr - section->buffer;
348e048f 3209
8b70b953 3210 /* We need to read the type's signature in order to build the hash
9ff913ba 3211 table, but we don't need anything else just yet. */
348e048f 3212
9ff913ba
DE
3213 ptr = read_and_check_type_unit_head (&header, section, ptr,
3214 &signature, &type_offset);
6caca83c
CC
3215
3216 /* Skip dummy type units. */
3217 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3218 {
9ff913ba 3219 info_ptr = info_ptr + header.initial_length_size + header.length;
6caca83c
CC
3220 continue;
3221 }
8b70b953
TT
3222
3223 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3224 memset (type_sig, 0, sizeof (*type_sig));
3225 type_sig->signature = signature;
3226 type_sig->type_offset = type_offset;
3227 type_sig->per_cu.objfile = objfile;
b0df02fd 3228 type_sig->per_cu.debug_types_section = section;
8b70b953
TT
3229 type_sig->per_cu.offset = offset;
3230
3231 slot = htab_find_slot (types_htab, type_sig, INSERT);
3232 gdb_assert (slot != NULL);
3233 if (*slot != NULL)
3234 {
3235 const struct signatured_type *dup_sig = *slot;
b3c8eb43 3236
8b70b953
TT
3237 complaint (&symfile_complaints,
3238 _("debug type entry at offset 0x%x is duplicate to the "
3239 "entry at offset 0x%x, signature 0x%s"),
3240 offset, dup_sig->per_cu.offset,
3241 phex (signature, sizeof (signature)));
3242 gdb_assert (signature == dup_sig->signature);
3243 }
3244 *slot = type_sig;
348e048f 3245
8b70b953
TT
3246 if (dwarf2_die_debug)
3247 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3248 offset, phex (signature, sizeof (signature)));
348e048f 3249
9ff913ba 3250 info_ptr = info_ptr + header.initial_length_size + header.length;
8b70b953 3251 }
348e048f
DE
3252 }
3253
3254 dwarf2_per_objfile->signatured_types = types_htab;
3255
d467dd73
DE
3256 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3257 dwarf2_per_objfile->all_type_units
1fd400ff 3258 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 3259 dwarf2_per_objfile->n_type_units
1fd400ff 3260 * sizeof (struct dwarf2_per_cu_data *));
d467dd73
DE
3261 iter = &dwarf2_per_objfile->all_type_units[0];
3262 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3263 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3264 == dwarf2_per_objfile->n_type_units);
1fd400ff 3265
348e048f
DE
3266 return 1;
3267}
3268
3269/* Lookup a signature based type.
3270 Returns NULL if SIG is not present in the table. */
3271
3272static struct signatured_type *
3273lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3274{
3275 struct signatured_type find_entry, *entry;
3276
3277 if (dwarf2_per_objfile->signatured_types == NULL)
3278 {
3279 complaint (&symfile_complaints,
55f1336d 3280 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
348e048f
DE
3281 return 0;
3282 }
3283
3284 find_entry.signature = sig;
3285 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3286 return entry;
3287}
3288
d85a05f0
DJ
3289/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3290
3291static void
3292init_cu_die_reader (struct die_reader_specs *reader,
3293 struct dwarf2_cu *cu)
3294{
3295 reader->abfd = cu->objfile->obfd;
3296 reader->cu = cu;
b0df02fd 3297 if (cu->per_cu->debug_types_section)
be391dca 3298 {
b0df02fd
DE
3299 gdb_assert (cu->per_cu->debug_types_section->readin);
3300 reader->buffer = cu->per_cu->debug_types_section->buffer;
be391dca 3301 }
d85a05f0 3302 else
be391dca
TT
3303 {
3304 gdb_assert (dwarf2_per_objfile->info.readin);
3305 reader->buffer = dwarf2_per_objfile->info.buffer;
3306 }
d85a05f0
DJ
3307}
3308
3309/* Find the base address of the compilation unit for range lists and
3310 location lists. It will normally be specified by DW_AT_low_pc.
3311 In DWARF-3 draft 4, the base address could be overridden by
3312 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3313 compilation units with discontinuous ranges. */
3314
3315static void
3316dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3317{
3318 struct attribute *attr;
3319
3320 cu->base_known = 0;
3321 cu->base_address = 0;
3322
3323 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3324 if (attr)
3325 {
3326 cu->base_address = DW_ADDR (attr);
3327 cu->base_known = 1;
3328 }
3329 else
3330 {
3331 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3332 if (attr)
3333 {
3334 cu->base_address = DW_ADDR (attr);
3335 cu->base_known = 1;
3336 }
3337 }
3338}
3339
348e048f
DE
3340/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3341 to combine the common parts.
21b2bd31
DE
3342 Process compilation unit THIS_CU for a psymtab.
3343 SECTION is the section the CU/TU comes from,
3344 either .debug_info or .debug_types. */
aaa75496 3345
21b2bd31 3346void
a0f42c21 3347process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
21b2bd31
DE
3348 struct dwarf2_section_info *section,
3349 int is_debug_types_section)
c906108c 3350{
a0f42c21 3351 struct objfile *objfile = this_cu->objfile;
c906108c 3352 bfd *abfd = objfile->obfd;
21b2bd31
DE
3353 gdb_byte *buffer = section->buffer;
3354 gdb_byte *info_ptr = buffer + this_cu->offset;
3355 unsigned int buffer_size = section->size;
93311388 3356 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3357 struct die_info *comp_unit_die;
c906108c 3358 struct partial_symtab *pst;
5734ee8b 3359 CORE_ADDR baseaddr;
93311388
DE
3360 struct cleanup *back_to_inner;
3361 struct dwarf2_cu cu;
d85a05f0
DJ
3362 int has_children, has_pc_info;
3363 struct attribute *attr;
d85a05f0
DJ
3364 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3365 struct die_reader_specs reader_specs;
3e2a0cee 3366 const char *filename;
c906108c 3367
23745b47
DE
3368 /* If this compilation unit was already read in, free the
3369 cached copy in order to read it in again. This is
3370 necessary because we skipped some symbols when we first
3371 read in the compilation unit (see load_partial_dies).
3372 This problem could be avoided, but the benefit is
3373 unclear. */
3374 if (this_cu->cu != NULL)
3375 free_one_cached_comp_unit (this_cu->cu);
3376
3377 /* Note that this is a pointer to our stack frame, being
3378 added to a global data structure. It will be cleaned up
3379 in free_stack_comp_unit when we finish with this
3380 compilation unit. */
3381 init_one_comp_unit (&cu, this_cu);
93311388 3382 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3383
9ff913ba
DE
3384 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3385 is_debug_types_section);
10b3939b 3386
6caca83c
CC
3387 /* Skip dummy compilation units. */
3388 if (info_ptr >= buffer + buffer_size
3389 || peek_abbrev_code (abfd, info_ptr) == 0)
3390 {
6caca83c 3391 do_cleanups (back_to_inner);
21b2bd31 3392 return;
6caca83c
CC
3393 }
3394
93311388 3395 cu.list_in_scope = &file_symbols;
af703f96 3396
93311388 3397 /* Read the abbrevs for this compilation unit into a table. */
e5fe5e75 3398 dwarf2_read_abbrevs (&cu);
93311388 3399 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3400
93311388 3401 /* Read the compilation unit die. */
d85a05f0
DJ
3402 init_cu_die_reader (&reader_specs, &cu);
3403 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3404 &has_children);
93311388 3405
21b2bd31 3406 if (is_debug_types_section)
348e048f 3407 {
b3c8eb43
JK
3408 /* LENGTH has not been set yet for type units. */
3409 gdb_assert (this_cu->offset == cu.header.offset);
348e048f
DE
3410 this_cu->length = cu.header.length + cu.header.initial_length_size;
3411 }
d85a05f0 3412 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3413 {
93311388 3414 do_cleanups (back_to_inner);
21b2bd31 3415 return;
93311388 3416 }
72bf9492 3417
9816fde3 3418 prepare_one_comp_unit (&cu, comp_unit_die);
c906108c 3419
93311388 3420 /* Allocate a new partial symbol table structure. */
d85a05f0 3421 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3e2a0cee
TT
3422 if (attr == NULL || !DW_STRING (attr))
3423 filename = "";
3424 else
3425 filename = DW_STRING (attr);
93311388 3426 pst = start_psymtab_common (objfile, objfile->section_offsets,
3e2a0cee 3427 filename,
93311388
DE
3428 /* TEXTLOW and TEXTHIGH are set below. */
3429 0,
3430 objfile->global_psymbols.next,
3431 objfile->static_psymbols.next);
9750bca9 3432 pst->psymtabs_addrmap_supported = 1;
72bf9492 3433
d85a05f0
DJ
3434 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3435 if (attr != NULL)
3436 pst->dirname = DW_STRING (attr);
72bf9492 3437
e38df1d0 3438 pst->read_symtab_private = this_cu;
72bf9492 3439
93311388 3440 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3441
0963b4bd 3442 /* Store the function that reads in the rest of the symbol table. */
93311388 3443 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3444
9291a0cd 3445 this_cu->v.psymtab = pst;
c906108c 3446
d85a05f0
DJ
3447 dwarf2_find_base_address (comp_unit_die, &cu);
3448
93311388
DE
3449 /* Possibly set the default values of LOWPC and HIGHPC from
3450 `DW_AT_ranges'. */
d85a05f0
DJ
3451 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3452 &best_highpc, &cu, pst);
3453 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3454 /* Store the contiguous range if it is not empty; it can be empty for
3455 CUs with no code. */
3456 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3457 best_lowpc + baseaddr,
3458 best_highpc + baseaddr - 1, pst);
93311388
DE
3459
3460 /* Check if comp unit has_children.
3461 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3462 If not, there's no more debug_info for this comp unit. */
d85a05f0 3463 if (has_children)
93311388
DE
3464 {
3465 struct partial_die_info *first_die;
3466 CORE_ADDR lowpc, highpc;
31ffec48 3467
93311388
DE
3468 lowpc = ((CORE_ADDR) -1);
3469 highpc = ((CORE_ADDR) 0);
c906108c 3470
93311388 3471 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3472
93311388 3473 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3474 ! has_pc_info, &cu);
57c22c6c 3475
93311388
DE
3476 /* If we didn't find a lowpc, set it to highpc to avoid
3477 complaints from `maint check'. */
3478 if (lowpc == ((CORE_ADDR) -1))
3479 lowpc = highpc;
10b3939b 3480
93311388
DE
3481 /* If the compilation unit didn't have an explicit address range,
3482 then use the information extracted from its child dies. */
d85a05f0 3483 if (! has_pc_info)
93311388 3484 {
d85a05f0
DJ
3485 best_lowpc = lowpc;
3486 best_highpc = highpc;
93311388
DE
3487 }
3488 }
d85a05f0
DJ
3489 pst->textlow = best_lowpc + baseaddr;
3490 pst->texthigh = best_highpc + baseaddr;
c906108c 3491
93311388
DE
3492 pst->n_global_syms = objfile->global_psymbols.next -
3493 (objfile->global_psymbols.list + pst->globals_offset);
3494 pst->n_static_syms = objfile->static_psymbols.next -
3495 (objfile->static_psymbols.list + pst->statics_offset);
3496 sort_pst_symbols (pst);
c906108c 3497
21b2bd31 3498 if (is_debug_types_section)
348e048f
DE
3499 {
3500 /* It's not clear we want to do anything with stmt lists here.
3501 Waiting to see what gcc ultimately does. */
3502 }
d85a05f0 3503 else
93311388
DE
3504 {
3505 /* Get the list of files included in the current compilation unit,
3506 and build a psymtab for each of them. */
d85a05f0 3507 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3508 }
ae038cb0 3509
93311388 3510 do_cleanups (back_to_inner);
93311388 3511}
ff013f42 3512
348e048f
DE
3513/* Traversal function for htab_traverse_noresize.
3514 Process one .debug_types comp-unit. */
3515
3516static int
3517process_type_comp_unit (void **slot, void *info)
3518{
3519 struct signatured_type *entry = (struct signatured_type *) *slot;
348e048f
DE
3520 struct dwarf2_per_cu_data *this_cu;
3521
a0f42c21 3522 gdb_assert (info == NULL);
348e048f 3523 this_cu = &entry->per_cu;
348e048f 3524
b0df02fd 3525 gdb_assert (this_cu->debug_types_section->readin);
21b2bd31 3526 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
348e048f
DE
3527
3528 return 1;
3529}
3530
3531/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3532 Build partial symbol tables for the .debug_types comp-units. */
3533
3534static void
3535build_type_psymtabs (struct objfile *objfile)
3536{
3537 if (! create_debug_types_hash_table (objfile))
3538 return;
3539
3540 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
a0f42c21 3541 process_type_comp_unit, NULL);
348e048f
DE
3542}
3543
60606b2c
TT
3544/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3545
3546static void
3547psymtabs_addrmap_cleanup (void *o)
3548{
3549 struct objfile *objfile = o;
ec61707d 3550
60606b2c
TT
3551 objfile->psymtabs_addrmap = NULL;
3552}
3553
93311388
DE
3554/* Build the partial symbol table by doing a quick pass through the
3555 .debug_info and .debug_abbrev sections. */
72bf9492 3556
93311388 3557static void
c67a9c90 3558dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3559{
60606b2c
TT
3560 struct cleanup *back_to, *addrmap_cleanup;
3561 struct obstack temp_obstack;
21b2bd31 3562 int i;
93311388 3563
98bfdba5
PA
3564 dwarf2_per_objfile->reading_partial_symbols = 1;
3565
be391dca 3566 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 3567
93311388
DE
3568 /* Any cached compilation units will be linked by the per-objfile
3569 read_in_chain. Make sure to free them when we're done. */
3570 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3571
348e048f
DE
3572 build_type_psymtabs (objfile);
3573
93311388 3574 create_all_comp_units (objfile);
c906108c 3575
60606b2c
TT
3576 /* Create a temporary address map on a temporary obstack. We later
3577 copy this to the final obstack. */
3578 obstack_init (&temp_obstack);
3579 make_cleanup_obstack_free (&temp_obstack);
3580 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3581 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3582
21b2bd31 3583 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 3584 {
21b2bd31 3585 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 3586
21b2bd31 3587 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
c906108c 3588 }
ff013f42
JK
3589
3590 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3591 &objfile->objfile_obstack);
60606b2c 3592 discard_cleanups (addrmap_cleanup);
ff013f42 3593
ae038cb0
DJ
3594 do_cleanups (back_to);
3595}
3596
93311388 3597/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3598
3599static void
a0f42c21 3600load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
ae038cb0 3601{
a0f42c21 3602 struct objfile *objfile = this_cu->objfile;
ae038cb0 3603 bfd *abfd = objfile->obfd;
adabb602 3604 gdb_byte *info_ptr;
d85a05f0 3605 struct die_info *comp_unit_die;
ae038cb0 3606 struct dwarf2_cu *cu;
1d9ec526 3607 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3608 int has_children;
3609 struct die_reader_specs reader_specs;
98bfdba5 3610 int read_cu = 0;
9ff913ba 3611 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
ae038cb0 3612
b0df02fd 3613 gdb_assert (! this_cu->debug_types_section);
348e048f 3614
9ff913ba
DE
3615 gdb_assert (section->readin);
3616 info_ptr = section->buffer + this_cu->offset;
ae038cb0 3617
98bfdba5
PA
3618 if (this_cu->cu == NULL)
3619 {
9816fde3 3620 cu = xmalloc (sizeof (*cu));
23745b47 3621 init_one_comp_unit (cu, this_cu);
ae038cb0 3622
98bfdba5 3623 read_cu = 1;
ae038cb0 3624
98bfdba5 3625 /* If an error occurs while loading, release our storage. */
68dc6402 3626 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
328c9494 3627
9ff913ba
DE
3628 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3629 0);
ae038cb0 3630
6caca83c 3631 /* Skip dummy compilation units. */
9ff913ba 3632 if (info_ptr >= (section->buffer + section->size)
6caca83c
CC
3633 || peek_abbrev_code (abfd, info_ptr) == 0)
3634 {
3635 do_cleanups (free_cu_cleanup);
3636 return;
3637 }
3638
98bfdba5
PA
3639 /* Link this CU into read_in_chain. */
3640 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3641 dwarf2_per_objfile->read_in_chain = this_cu;
3642 }
3643 else
3644 {
3645 cu = this_cu->cu;
3646 info_ptr += cu->header.first_die_offset;
3647 }
ae038cb0
DJ
3648
3649 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3650 gdb_assert (cu->dwarf2_abbrevs == NULL);
e5fe5e75 3651 dwarf2_read_abbrevs (cu);
98bfdba5 3652 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3653
3654 /* Read the compilation unit die. */
d85a05f0
DJ
3655 init_cu_die_reader (&reader_specs, cu);
3656 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3657 &has_children);
ae038cb0 3658
9816fde3 3659 prepare_one_comp_unit (cu, comp_unit_die);
ae038cb0 3660
ae038cb0
DJ
3661 /* Check if comp unit has_children.
3662 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3663 If not, there's no more debug_info for this comp unit. */
d85a05f0 3664 if (has_children)
9ff913ba 3665 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
ae038cb0 3666
98bfdba5
PA
3667 do_cleanups (free_abbrevs_cleanup);
3668
3669 if (read_cu)
3670 {
3671 /* We've successfully allocated this compilation unit. Let our
3672 caller clean it up when finished with it. */
3673 discard_cleanups (free_cu_cleanup);
3674 }
ae038cb0
DJ
3675}
3676
9cdd5dbd
DE
3677/* Create a list of all compilation units in OBJFILE.
3678 This is only done for -readnow and building partial symtabs. */
ae038cb0
DJ
3679
3680static void
3681create_all_comp_units (struct objfile *objfile)
3682{
3683 int n_allocated;
3684 int n_comp_units;
3685 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3686 gdb_byte *info_ptr;
3687
3688 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3689 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3690
3691 n_comp_units = 0;
3692 n_allocated = 10;
3693 all_comp_units = xmalloc (n_allocated
3694 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3695
3e43a32a
MS
3696 while (info_ptr < dwarf2_per_objfile->info.buffer
3697 + dwarf2_per_objfile->info.size)
ae038cb0 3698 {
c764a876 3699 unsigned int length, initial_length_size;
ae038cb0 3700 struct dwarf2_per_cu_data *this_cu;
c764a876 3701 unsigned int offset;
ae038cb0 3702
dce234bc 3703 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3704
3705 /* Read just enough information to find out where the next
3706 compilation unit is. */
c764a876
DE
3707 length = read_initial_length (objfile->obfd, info_ptr,
3708 &initial_length_size);
ae038cb0
DJ
3709
3710 /* Save the compilation unit for later lookup. */
3711 this_cu = obstack_alloc (&objfile->objfile_obstack,
3712 sizeof (struct dwarf2_per_cu_data));
3713 memset (this_cu, 0, sizeof (*this_cu));
3714 this_cu->offset = offset;
c764a876 3715 this_cu->length = length + initial_length_size;
9291a0cd 3716 this_cu->objfile = objfile;
ae038cb0
DJ
3717
3718 if (n_comp_units == n_allocated)
3719 {
3720 n_allocated *= 2;
3721 all_comp_units = xrealloc (all_comp_units,
3722 n_allocated
3723 * sizeof (struct dwarf2_per_cu_data *));
3724 }
3725 all_comp_units[n_comp_units++] = this_cu;
3726
3727 info_ptr = info_ptr + this_cu->length;
3728 }
3729
3730 dwarf2_per_objfile->all_comp_units
3731 = obstack_alloc (&objfile->objfile_obstack,
3732 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3733 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3734 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3735 xfree (all_comp_units);
3736 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3737}
3738
5734ee8b
DJ
3739/* Process all loaded DIEs for compilation unit CU, starting at
3740 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3741 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3742 DW_AT_ranges). If NEED_PC is set, then this function will set
3743 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3744 and record the covered ranges in the addrmap. */
c906108c 3745
72bf9492
DJ
3746static void
3747scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3748 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3749{
72bf9492 3750 struct partial_die_info *pdi;
c906108c 3751
91c24f0a
DC
3752 /* Now, march along the PDI's, descending into ones which have
3753 interesting children but skipping the children of the other ones,
3754 until we reach the end of the compilation unit. */
c906108c 3755
72bf9492 3756 pdi = first_die;
91c24f0a 3757
72bf9492
DJ
3758 while (pdi != NULL)
3759 {
3760 fixup_partial_die (pdi, cu);
c906108c 3761
f55ee35c 3762 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3763 children, so we need to look at them. Ditto for anonymous
3764 enums. */
933c6fe4 3765
72bf9492 3766 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3767 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3768 {
72bf9492 3769 switch (pdi->tag)
c906108c
SS
3770 {
3771 case DW_TAG_subprogram:
5734ee8b 3772 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3773 break;
72929c62 3774 case DW_TAG_constant:
c906108c
SS
3775 case DW_TAG_variable:
3776 case DW_TAG_typedef:
91c24f0a 3777 case DW_TAG_union_type:
72bf9492 3778 if (!pdi->is_declaration)
63d06c5c 3779 {
72bf9492 3780 add_partial_symbol (pdi, cu);
63d06c5c
DC
3781 }
3782 break;
c906108c 3783 case DW_TAG_class_type:
680b30c7 3784 case DW_TAG_interface_type:
c906108c 3785 case DW_TAG_structure_type:
72bf9492 3786 if (!pdi->is_declaration)
c906108c 3787 {
72bf9492 3788 add_partial_symbol (pdi, cu);
c906108c
SS
3789 }
3790 break;
91c24f0a 3791 case DW_TAG_enumeration_type:
72bf9492
DJ
3792 if (!pdi->is_declaration)
3793 add_partial_enumeration (pdi, cu);
c906108c
SS
3794 break;
3795 case DW_TAG_base_type:
a02abb62 3796 case DW_TAG_subrange_type:
c906108c 3797 /* File scope base type definitions are added to the partial
c5aa993b 3798 symbol table. */
72bf9492 3799 add_partial_symbol (pdi, cu);
c906108c 3800 break;
d9fa45fe 3801 case DW_TAG_namespace:
5734ee8b 3802 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3803 break;
5d7cb8df
JK
3804 case DW_TAG_module:
3805 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3806 break;
c906108c
SS
3807 default:
3808 break;
3809 }
3810 }
3811
72bf9492
DJ
3812 /* If the die has a sibling, skip to the sibling. */
3813
3814 pdi = pdi->die_sibling;
3815 }
3816}
3817
3818/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3819
72bf9492 3820 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3821 name is concatenated with "::" and the partial DIE's name. For
3822 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3823 Enumerators are an exception; they use the scope of their parent
3824 enumeration type, i.e. the name of the enumeration type is not
3825 prepended to the enumerator.
91c24f0a 3826
72bf9492
DJ
3827 There are two complexities. One is DW_AT_specification; in this
3828 case "parent" means the parent of the target of the specification,
3829 instead of the direct parent of the DIE. The other is compilers
3830 which do not emit DW_TAG_namespace; in this case we try to guess
3831 the fully qualified name of structure types from their members'
3832 linkage names. This must be done using the DIE's children rather
3833 than the children of any DW_AT_specification target. We only need
3834 to do this for structures at the top level, i.e. if the target of
3835 any DW_AT_specification (if any; otherwise the DIE itself) does not
3836 have a parent. */
3837
3838/* Compute the scope prefix associated with PDI's parent, in
3839 compilation unit CU. The result will be allocated on CU's
3840 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3841 field. NULL is returned if no prefix is necessary. */
3842static char *
3843partial_die_parent_scope (struct partial_die_info *pdi,
3844 struct dwarf2_cu *cu)
3845{
3846 char *grandparent_scope;
3847 struct partial_die_info *parent, *real_pdi;
91c24f0a 3848
72bf9492
DJ
3849 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3850 then this means the parent of the specification DIE. */
3851
3852 real_pdi = pdi;
72bf9492 3853 while (real_pdi->has_specification)
10b3939b 3854 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3855
3856 parent = real_pdi->die_parent;
3857 if (parent == NULL)
3858 return NULL;
3859
3860 if (parent->scope_set)
3861 return parent->scope;
3862
3863 fixup_partial_die (parent, cu);
3864
10b3939b 3865 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3866
acebe513
UW
3867 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3868 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3869 Work around this problem here. */
3870 if (cu->language == language_cplus
6e70227d 3871 && parent->tag == DW_TAG_namespace
acebe513
UW
3872 && strcmp (parent->name, "::") == 0
3873 && grandparent_scope == NULL)
3874 {
3875 parent->scope = NULL;
3876 parent->scope_set = 1;
3877 return NULL;
3878 }
3879
9c6c53f7
SA
3880 if (pdi->tag == DW_TAG_enumerator)
3881 /* Enumerators should not get the name of the enumeration as a prefix. */
3882 parent->scope = grandparent_scope;
3883 else if (parent->tag == DW_TAG_namespace
f55ee35c 3884 || parent->tag == DW_TAG_module
72bf9492
DJ
3885 || parent->tag == DW_TAG_structure_type
3886 || parent->tag == DW_TAG_class_type
680b30c7 3887 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3888 || parent->tag == DW_TAG_union_type
3889 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3890 {
3891 if (grandparent_scope == NULL)
3892 parent->scope = parent->name;
3893 else
3e43a32a
MS
3894 parent->scope = typename_concat (&cu->comp_unit_obstack,
3895 grandparent_scope,
f55ee35c 3896 parent->name, 0, cu);
72bf9492 3897 }
72bf9492
DJ
3898 else
3899 {
3900 /* FIXME drow/2004-04-01: What should we be doing with
3901 function-local names? For partial symbols, we should probably be
3902 ignoring them. */
3903 complaint (&symfile_complaints,
e2e0b3e5 3904 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3905 parent->tag, pdi->offset);
3906 parent->scope = grandparent_scope;
c906108c
SS
3907 }
3908
72bf9492
DJ
3909 parent->scope_set = 1;
3910 return parent->scope;
3911}
3912
3913/* Return the fully scoped name associated with PDI, from compilation unit
3914 CU. The result will be allocated with malloc. */
3915static char *
3916partial_die_full_name (struct partial_die_info *pdi,
3917 struct dwarf2_cu *cu)
3918{
3919 char *parent_scope;
3920
98bfdba5
PA
3921 /* If this is a template instantiation, we can not work out the
3922 template arguments from partial DIEs. So, unfortunately, we have
3923 to go through the full DIEs. At least any work we do building
3924 types here will be reused if full symbols are loaded later. */
3925 if (pdi->has_template_arguments)
3926 {
3927 fixup_partial_die (pdi, cu);
3928
3929 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3930 {
3931 struct die_info *die;
3932 struct attribute attr;
3933 struct dwarf2_cu *ref_cu = cu;
3934
3935 attr.name = 0;
3936 attr.form = DW_FORM_ref_addr;
3937 attr.u.addr = pdi->offset;
3938 die = follow_die_ref (NULL, &attr, &ref_cu);
3939
3940 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3941 }
3942 }
3943
72bf9492
DJ
3944 parent_scope = partial_die_parent_scope (pdi, cu);
3945 if (parent_scope == NULL)
3946 return NULL;
3947 else
f55ee35c 3948 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3949}
3950
3951static void
72bf9492 3952add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3953{
e7c27a73 3954 struct objfile *objfile = cu->objfile;
c906108c 3955 CORE_ADDR addr = 0;
decbce07 3956 char *actual_name = NULL;
e142c38c 3957 CORE_ADDR baseaddr;
72bf9492 3958 int built_actual_name = 0;
e142c38c
DJ
3959
3960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3961
94af9270
KS
3962 actual_name = partial_die_full_name (pdi, cu);
3963 if (actual_name)
3964 built_actual_name = 1;
63d06c5c 3965
72bf9492
DJ
3966 if (actual_name == NULL)
3967 actual_name = pdi->name;
3968
c906108c
SS
3969 switch (pdi->tag)
3970 {
3971 case DW_TAG_subprogram:
2cfa0c8d 3972 if (pdi->is_external || cu->language == language_ada)
c906108c 3973 {
2cfa0c8d
JB
3974 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3975 of the global scope. But in Ada, we want to be able to access
3976 nested procedures globally. So all Ada subprograms are stored
3977 in the global scope. */
f47fb265 3978 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3979 mst_text, objfile); */
f47fb265
MS
3980 add_psymbol_to_list (actual_name, strlen (actual_name),
3981 built_actual_name,
3982 VAR_DOMAIN, LOC_BLOCK,
3983 &objfile->global_psymbols,
3984 0, pdi->lowpc + baseaddr,
3985 cu->language, objfile);
c906108c
SS
3986 }
3987 else
3988 {
f47fb265 3989 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3990 mst_file_text, objfile); */
f47fb265
MS
3991 add_psymbol_to_list (actual_name, strlen (actual_name),
3992 built_actual_name,
3993 VAR_DOMAIN, LOC_BLOCK,
3994 &objfile->static_psymbols,
3995 0, pdi->lowpc + baseaddr,
3996 cu->language, objfile);
c906108c
SS
3997 }
3998 break;
72929c62
JB
3999 case DW_TAG_constant:
4000 {
4001 struct psymbol_allocation_list *list;
4002
4003 if (pdi->is_external)
4004 list = &objfile->global_psymbols;
4005 else
4006 list = &objfile->static_psymbols;
f47fb265
MS
4007 add_psymbol_to_list (actual_name, strlen (actual_name),
4008 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4009 list, 0, 0, cu->language, objfile);
72929c62
JB
4010 }
4011 break;
c906108c 4012 case DW_TAG_variable:
caac4577
JG
4013 if (pdi->locdesc)
4014 addr = decode_locdesc (pdi->locdesc, cu);
4015
4016 if (pdi->locdesc
4017 && addr == 0
4018 && !dwarf2_per_objfile->has_section_at_zero)
4019 {
4020 /* A global or static variable may also have been stripped
4021 out by the linker if unused, in which case its address
4022 will be nullified; do not add such variables into partial
4023 symbol table then. */
4024 }
4025 else if (pdi->is_external)
c906108c
SS
4026 {
4027 /* Global Variable.
4028 Don't enter into the minimal symbol tables as there is
4029 a minimal symbol table entry from the ELF symbols already.
4030 Enter into partial symbol table if it has a location
4031 descriptor or a type.
4032 If the location descriptor is missing, new_symbol will create
4033 a LOC_UNRESOLVED symbol, the address of the variable will then
4034 be determined from the minimal symbol table whenever the variable
4035 is referenced.
4036 The address for the partial symbol table entry is not
4037 used by GDB, but it comes in handy for debugging partial symbol
4038 table building. */
4039
c906108c 4040 if (pdi->locdesc || pdi->has_type)
f47fb265
MS
4041 add_psymbol_to_list (actual_name, strlen (actual_name),
4042 built_actual_name,
4043 VAR_DOMAIN, LOC_STATIC,
4044 &objfile->global_psymbols,
4045 0, addr + baseaddr,
4046 cu->language, objfile);
c906108c
SS
4047 }
4048 else
4049 {
0963b4bd 4050 /* Static Variable. Skip symbols without location descriptors. */
c906108c 4051 if (pdi->locdesc == NULL)
decbce07
MS
4052 {
4053 if (built_actual_name)
4054 xfree (actual_name);
4055 return;
4056 }
f47fb265 4057 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 4058 mst_file_data, objfile); */
f47fb265
MS
4059 add_psymbol_to_list (actual_name, strlen (actual_name),
4060 built_actual_name,
4061 VAR_DOMAIN, LOC_STATIC,
4062 &objfile->static_psymbols,
4063 0, addr + baseaddr,
4064 cu->language, objfile);
c906108c
SS
4065 }
4066 break;
4067 case DW_TAG_typedef:
4068 case DW_TAG_base_type:
a02abb62 4069 case DW_TAG_subrange_type:
38d518c9 4070 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4071 built_actual_name,
176620f1 4072 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 4073 &objfile->static_psymbols,
e142c38c 4074 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 4075 break;
72bf9492
DJ
4076 case DW_TAG_namespace:
4077 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4078 built_actual_name,
72bf9492
DJ
4079 VAR_DOMAIN, LOC_TYPEDEF,
4080 &objfile->global_psymbols,
4081 0, (CORE_ADDR) 0, cu->language, objfile);
4082 break;
c906108c 4083 case DW_TAG_class_type:
680b30c7 4084 case DW_TAG_interface_type:
c906108c
SS
4085 case DW_TAG_structure_type:
4086 case DW_TAG_union_type:
4087 case DW_TAG_enumeration_type:
fa4028e9
JB
4088 /* Skip external references. The DWARF standard says in the section
4089 about "Structure, Union, and Class Type Entries": "An incomplete
4090 structure, union or class type is represented by a structure,
4091 union or class entry that does not have a byte size attribute
4092 and that has a DW_AT_declaration attribute." */
4093 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
4094 {
4095 if (built_actual_name)
4096 xfree (actual_name);
4097 return;
4098 }
fa4028e9 4099
63d06c5c
DC
4100 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4101 static vs. global. */
38d518c9 4102 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4103 built_actual_name,
176620f1 4104 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
4105 (cu->language == language_cplus
4106 || cu->language == language_java)
63d06c5c
DC
4107 ? &objfile->global_psymbols
4108 : &objfile->static_psymbols,
e142c38c 4109 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 4110
c906108c
SS
4111 break;
4112 case DW_TAG_enumerator:
38d518c9 4113 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4114 built_actual_name,
176620f1 4115 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
4116 (cu->language == language_cplus
4117 || cu->language == language_java)
f6fe98ef
DJ
4118 ? &objfile->global_psymbols
4119 : &objfile->static_psymbols,
e142c38c 4120 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
4121 break;
4122 default:
4123 break;
4124 }
5c4e30ca 4125
72bf9492
DJ
4126 if (built_actual_name)
4127 xfree (actual_name);
c906108c
SS
4128}
4129
5c4e30ca
DC
4130/* Read a partial die corresponding to a namespace; also, add a symbol
4131 corresponding to that namespace to the symbol table. NAMESPACE is
4132 the name of the enclosing namespace. */
91c24f0a 4133
72bf9492
DJ
4134static void
4135add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 4136 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4137 int need_pc, struct dwarf2_cu *cu)
91c24f0a 4138{
72bf9492 4139 /* Add a symbol for the namespace. */
e7c27a73 4140
72bf9492 4141 add_partial_symbol (pdi, cu);
5c4e30ca
DC
4142
4143 /* Now scan partial symbols in that namespace. */
4144
91c24f0a 4145 if (pdi->has_children)
5734ee8b 4146 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
4147}
4148
5d7cb8df
JK
4149/* Read a partial die corresponding to a Fortran module. */
4150
4151static void
4152add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4153 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4154{
f55ee35c 4155 /* Now scan partial symbols in that module. */
5d7cb8df
JK
4156
4157 if (pdi->has_children)
4158 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4159}
4160
bc30ff58
JB
4161/* Read a partial die corresponding to a subprogram and create a partial
4162 symbol for that subprogram. When the CU language allows it, this
4163 routine also defines a partial symbol for each nested subprogram
4164 that this subprogram contains.
6e70227d 4165
bc30ff58
JB
4166 DIE my also be a lexical block, in which case we simply search
4167 recursively for suprograms defined inside that lexical block.
4168 Again, this is only performed when the CU language allows this
4169 type of definitions. */
4170
4171static void
4172add_partial_subprogram (struct partial_die_info *pdi,
4173 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4174 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4175{
4176 if (pdi->tag == DW_TAG_subprogram)
4177 {
4178 if (pdi->has_pc_info)
4179 {
4180 if (pdi->lowpc < *lowpc)
4181 *lowpc = pdi->lowpc;
4182 if (pdi->highpc > *highpc)
4183 *highpc = pdi->highpc;
5734ee8b
DJ
4184 if (need_pc)
4185 {
4186 CORE_ADDR baseaddr;
4187 struct objfile *objfile = cu->objfile;
4188
4189 baseaddr = ANOFFSET (objfile->section_offsets,
4190 SECT_OFF_TEXT (objfile));
4191 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4192 pdi->lowpc + baseaddr,
4193 pdi->highpc - 1 + baseaddr,
9291a0cd 4194 cu->per_cu->v.psymtab);
5734ee8b 4195 }
bc30ff58 4196 if (!pdi->is_declaration)
e8d05480
JB
4197 /* Ignore subprogram DIEs that do not have a name, they are
4198 illegal. Do not emit a complaint at this point, we will
4199 do so when we convert this psymtab into a symtab. */
4200 if (pdi->name)
4201 add_partial_symbol (pdi, cu);
bc30ff58
JB
4202 }
4203 }
6e70227d 4204
bc30ff58
JB
4205 if (! pdi->has_children)
4206 return;
4207
4208 if (cu->language == language_ada)
4209 {
4210 pdi = pdi->die_child;
4211 while (pdi != NULL)
4212 {
4213 fixup_partial_die (pdi, cu);
4214 if (pdi->tag == DW_TAG_subprogram
4215 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4216 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4217 pdi = pdi->die_sibling;
4218 }
4219 }
4220}
4221
91c24f0a
DC
4222/* Read a partial die corresponding to an enumeration type. */
4223
72bf9492
DJ
4224static void
4225add_partial_enumeration (struct partial_die_info *enum_pdi,
4226 struct dwarf2_cu *cu)
91c24f0a 4227{
72bf9492 4228 struct partial_die_info *pdi;
91c24f0a
DC
4229
4230 if (enum_pdi->name != NULL)
72bf9492
DJ
4231 add_partial_symbol (enum_pdi, cu);
4232
4233 pdi = enum_pdi->die_child;
4234 while (pdi)
91c24f0a 4235 {
72bf9492 4236 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4237 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 4238 else
72bf9492
DJ
4239 add_partial_symbol (pdi, cu);
4240 pdi = pdi->die_sibling;
91c24f0a 4241 }
91c24f0a
DC
4242}
4243
6caca83c
CC
4244/* Return the initial uleb128 in the die at INFO_PTR. */
4245
4246static unsigned int
4247peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4248{
4249 unsigned int bytes_read;
4250
4251 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4252}
4253
4bb7a0a7
DJ
4254/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4255 Return the corresponding abbrev, or NULL if the number is zero (indicating
4256 an empty DIE). In either case *BYTES_READ will be set to the length of
4257 the initial number. */
4258
4259static struct abbrev_info *
fe1b8b76 4260peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 4261 struct dwarf2_cu *cu)
4bb7a0a7
DJ
4262{
4263 bfd *abfd = cu->objfile->obfd;
4264 unsigned int abbrev_number;
4265 struct abbrev_info *abbrev;
4266
4267 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4268
4269 if (abbrev_number == 0)
4270 return NULL;
4271
4272 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4273 if (!abbrev)
4274 {
3e43a32a
MS
4275 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4276 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
4277 }
4278
4279 return abbrev;
4280}
4281
93311388
DE
4282/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4283 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
4284 DIE. Any children of the skipped DIEs will also be skipped. */
4285
fe1b8b76 4286static gdb_byte *
93311388 4287skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4288{
4289 struct abbrev_info *abbrev;
4290 unsigned int bytes_read;
4291
4292 while (1)
4293 {
4294 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4295 if (abbrev == NULL)
4296 return info_ptr + bytes_read;
4297 else
93311388 4298 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
4299 }
4300}
4301
93311388
DE
4302/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4303 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
4304 abbrev corresponding to that skipped uleb128 should be passed in
4305 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4306 children. */
4307
fe1b8b76 4308static gdb_byte *
93311388
DE
4309skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4310 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4311{
4312 unsigned int bytes_read;
4313 struct attribute attr;
4314 bfd *abfd = cu->objfile->obfd;
4315 unsigned int form, i;
4316
4317 for (i = 0; i < abbrev->num_attrs; i++)
4318 {
4319 /* The only abbrev we care about is DW_AT_sibling. */
4320 if (abbrev->attrs[i].name == DW_AT_sibling)
4321 {
4322 read_attribute (&attr, &abbrev->attrs[i],
4323 abfd, info_ptr, cu);
4324 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
4325 complaint (&symfile_complaints,
4326 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4327 else
93311388 4328 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4329 }
4330
4331 /* If it isn't DW_AT_sibling, skip this attribute. */
4332 form = abbrev->attrs[i].form;
4333 skip_attribute:
4334 switch (form)
4335 {
4bb7a0a7 4336 case DW_FORM_ref_addr:
ae411497
TT
4337 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4338 and later it is offset sized. */
4339 if (cu->header.version == 2)
4340 info_ptr += cu->header.addr_size;
4341 else
4342 info_ptr += cu->header.offset_size;
4343 break;
4344 case DW_FORM_addr:
4bb7a0a7
DJ
4345 info_ptr += cu->header.addr_size;
4346 break;
4347 case DW_FORM_data1:
4348 case DW_FORM_ref1:
4349 case DW_FORM_flag:
4350 info_ptr += 1;
4351 break;
2dc7f7b3
TT
4352 case DW_FORM_flag_present:
4353 break;
4bb7a0a7
DJ
4354 case DW_FORM_data2:
4355 case DW_FORM_ref2:
4356 info_ptr += 2;
4357 break;
4358 case DW_FORM_data4:
4359 case DW_FORM_ref4:
4360 info_ptr += 4;
4361 break;
4362 case DW_FORM_data8:
4363 case DW_FORM_ref8:
55f1336d 4364 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
4365 info_ptr += 8;
4366 break;
4367 case DW_FORM_string:
9b1c24c8 4368 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4369 info_ptr += bytes_read;
4370 break;
2dc7f7b3 4371 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4372 case DW_FORM_strp:
4373 info_ptr += cu->header.offset_size;
4374 break;
2dc7f7b3 4375 case DW_FORM_exprloc:
4bb7a0a7
DJ
4376 case DW_FORM_block:
4377 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4378 info_ptr += bytes_read;
4379 break;
4380 case DW_FORM_block1:
4381 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4382 break;
4383 case DW_FORM_block2:
4384 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4385 break;
4386 case DW_FORM_block4:
4387 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4388 break;
4389 case DW_FORM_sdata:
4390 case DW_FORM_udata:
4391 case DW_FORM_ref_udata:
4392 info_ptr = skip_leb128 (abfd, info_ptr);
4393 break;
4394 case DW_FORM_indirect:
4395 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4396 info_ptr += bytes_read;
4397 /* We need to continue parsing from here, so just go back to
4398 the top. */
4399 goto skip_attribute;
4400
4401 default:
3e43a32a
MS
4402 error (_("Dwarf Error: Cannot handle %s "
4403 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4404 dwarf_form_name (form),
4405 bfd_get_filename (abfd));
4406 }
4407 }
4408
4409 if (abbrev->has_children)
93311388 4410 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4411 else
4412 return info_ptr;
4413}
4414
93311388
DE
4415/* Locate ORIG_PDI's sibling.
4416 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4417 in BUFFER. */
91c24f0a 4418
fe1b8b76 4419static gdb_byte *
93311388
DE
4420locate_pdi_sibling (struct partial_die_info *orig_pdi,
4421 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4422 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4423{
4424 /* Do we know the sibling already? */
72bf9492 4425
91c24f0a
DC
4426 if (orig_pdi->sibling)
4427 return orig_pdi->sibling;
4428
4429 /* Are there any children to deal with? */
4430
4431 if (!orig_pdi->has_children)
4432 return info_ptr;
4433
4bb7a0a7 4434 /* Skip the children the long way. */
91c24f0a 4435
93311388 4436 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4437}
4438
c906108c
SS
4439/* Expand this partial symbol table into a full symbol table. */
4440
4441static void
fba45db2 4442dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4443{
c906108c
SS
4444 if (pst != NULL)
4445 {
4446 if (pst->readin)
4447 {
3e43a32a
MS
4448 warning (_("bug: psymtab for %s is already read in."),
4449 pst->filename);
c906108c
SS
4450 }
4451 else
4452 {
4453 if (info_verbose)
4454 {
3e43a32a
MS
4455 printf_filtered (_("Reading in symbols for %s..."),
4456 pst->filename);
c906108c
SS
4457 gdb_flush (gdb_stdout);
4458 }
4459
10b3939b
DJ
4460 /* Restore our global data. */
4461 dwarf2_per_objfile = objfile_data (pst->objfile,
4462 dwarf2_objfile_data_key);
4463
b2ab525c
KB
4464 /* If this psymtab is constructed from a debug-only objfile, the
4465 has_section_at_zero flag will not necessarily be correct. We
4466 can get the correct value for this flag by looking at the data
4467 associated with the (presumably stripped) associated objfile. */
4468 if (pst->objfile->separate_debug_objfile_backlink)
4469 {
4470 struct dwarf2_per_objfile *dpo_backlink
4471 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4472 dwarf2_objfile_data_key);
9a619af0 4473
b2ab525c
KB
4474 dwarf2_per_objfile->has_section_at_zero
4475 = dpo_backlink->has_section_at_zero;
4476 }
4477
98bfdba5
PA
4478 dwarf2_per_objfile->reading_partial_symbols = 0;
4479
c906108c
SS
4480 psymtab_to_symtab_1 (pst);
4481
4482 /* Finish up the debug error message. */
4483 if (info_verbose)
a3f17187 4484 printf_filtered (_("done.\n"));
c906108c
SS
4485 }
4486 }
4487}
9cdd5dbd
DE
4488\f
4489/* Reading in full CUs. */
c906108c 4490
10b3939b
DJ
4491/* Add PER_CU to the queue. */
4492
4493static void
a0f42c21 4494queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
10b3939b
DJ
4495{
4496 struct dwarf2_queue_item *item;
4497
4498 per_cu->queued = 1;
4499 item = xmalloc (sizeof (*item));
4500 item->per_cu = per_cu;
4501 item->next = NULL;
4502
4503 if (dwarf2_queue == NULL)
4504 dwarf2_queue = item;
4505 else
4506 dwarf2_queue_tail->next = item;
4507
4508 dwarf2_queue_tail = item;
4509}
4510
4511/* Process the queue. */
4512
4513static void
a0f42c21 4514process_queue (void)
10b3939b
DJ
4515{
4516 struct dwarf2_queue_item *item, *next_item;
4517
03dd20cc
DJ
4518 /* The queue starts out with one item, but following a DIE reference
4519 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4520 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4521 {
9291a0cd
TT
4522 if (dwarf2_per_objfile->using_index
4523 ? !item->per_cu->v.quick->symtab
4524 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4525 process_full_comp_unit (item->per_cu);
4526
4527 item->per_cu->queued = 0;
4528 next_item = item->next;
4529 xfree (item);
4530 }
4531
4532 dwarf2_queue_tail = NULL;
4533}
4534
4535/* Free all allocated queue entries. This function only releases anything if
4536 an error was thrown; if the queue was processed then it would have been
4537 freed as we went along. */
4538
4539static void
4540dwarf2_release_queue (void *dummy)
4541{
4542 struct dwarf2_queue_item *item, *last;
4543
4544 item = dwarf2_queue;
4545 while (item)
4546 {
4547 /* Anything still marked queued is likely to be in an
4548 inconsistent state, so discard it. */
4549 if (item->per_cu->queued)
4550 {
4551 if (item->per_cu->cu != NULL)
4552 free_one_cached_comp_unit (item->per_cu->cu);
4553 item->per_cu->queued = 0;
4554 }
4555
4556 last = item;
4557 item = item->next;
4558 xfree (last);
4559 }
4560
4561 dwarf2_queue = dwarf2_queue_tail = NULL;
4562}
4563
4564/* Read in full symbols for PST, and anything it depends on. */
4565
c906108c 4566static void
fba45db2 4567psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4568{
10b3939b 4569 struct dwarf2_per_cu_data *per_cu;
c906108c 4570 struct cleanup *back_to;
aaa75496
JB
4571 int i;
4572
4573 for (i = 0; i < pst->number_of_dependencies; i++)
4574 if (!pst->dependencies[i]->readin)
4575 {
4576 /* Inform about additional files that need to be read in. */
4577 if (info_verbose)
4578 {
a3f17187 4579 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4580 fputs_filtered (" ", gdb_stdout);
4581 wrap_here ("");
4582 fputs_filtered ("and ", gdb_stdout);
4583 wrap_here ("");
4584 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 4585 wrap_here (""); /* Flush output. */
aaa75496
JB
4586 gdb_flush (gdb_stdout);
4587 }
4588 psymtab_to_symtab_1 (pst->dependencies[i]);
4589 }
4590
e38df1d0 4591 per_cu = pst->read_symtab_private;
10b3939b
DJ
4592
4593 if (per_cu == NULL)
aaa75496
JB
4594 {
4595 /* It's an include file, no symbols to read for it.
4596 Everything is in the parent symtab. */
4597 pst->readin = 1;
4598 return;
4599 }
c906108c 4600
a0f42c21 4601 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
4602}
4603
93311388 4604/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4605
93311388 4606static void
a0f42c21 4607load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
10b3939b 4608{
a0f42c21 4609 struct objfile *objfile = per_cu->objfile;
31ffec48 4610 bfd *abfd = objfile->obfd;
10b3939b 4611 struct dwarf2_cu *cu;
c764a876 4612 unsigned int offset;
93311388 4613 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4614 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4615 struct attribute *attr;
98bfdba5 4616 int read_cu = 0;
6502dd73 4617
b0df02fd 4618 gdb_assert (! per_cu->debug_types_section);
348e048f 4619
c906108c 4620 /* Set local variables from the partial symbol table info. */
10b3939b 4621 offset = per_cu->offset;
6502dd73 4622
be391dca 4623 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4624 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4625 beg_of_comp_unit = info_ptr;
63d06c5c 4626
98bfdba5
PA
4627 if (per_cu->cu == NULL)
4628 {
9816fde3 4629 cu = xmalloc (sizeof (*cu));
23745b47 4630 init_one_comp_unit (cu, per_cu);
98bfdba5
PA
4631
4632 read_cu = 1;
c906108c 4633
98bfdba5 4634 /* If an error occurs while loading, release our storage. */
68dc6402 4635 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
c906108c 4636
98bfdba5
PA
4637 /* Read in the comp_unit header. */
4638 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4639
6caca83c
CC
4640 /* Skip dummy compilation units. */
4641 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4642 + dwarf2_per_objfile->info.size)
4643 || peek_abbrev_code (abfd, info_ptr) == 0)
4644 {
4645 do_cleanups (free_cu_cleanup);
4646 return;
4647 }
4648
98bfdba5
PA
4649 /* Complete the cu_header. */
4650 cu->header.offset = offset;
4651 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4652
98bfdba5 4653 /* Read the abbrevs for this compilation unit. */
e5fe5e75 4654 dwarf2_read_abbrevs (cu);
98bfdba5 4655 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4656
98bfdba5
PA
4657 /* Link this CU into read_in_chain. */
4658 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4659 dwarf2_per_objfile->read_in_chain = per_cu;
4660 }
4661 else
4662 {
4663 cu = per_cu->cu;
4664 info_ptr += cu->header.first_die_offset;
4665 }
e142c38c 4666
93311388 4667 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4668
4669 /* We try not to read any attributes in this function, because not
9cdd5dbd 4670 all CUs needed for references have been loaded yet, and symbol
10b3939b
DJ
4671 table processing isn't initialized. But we have to set the CU language,
4672 or we won't be able to build types correctly. */
9816fde3 4673 prepare_one_comp_unit (cu, cu->dies);
10b3939b 4674
a6c727b2
DJ
4675 /* Similarly, if we do not read the producer, we can not apply
4676 producer-specific interpretation. */
4677 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4678 if (attr)
4679 cu->producer = DW_STRING (attr);
4680
98bfdba5
PA
4681 if (read_cu)
4682 {
4683 do_cleanups (free_abbrevs_cleanup);
e142c38c 4684
98bfdba5
PA
4685 /* We've successfully allocated this compilation unit. Let our
4686 caller clean it up when finished with it. */
4687 discard_cleanups (free_cu_cleanup);
4688 }
10b3939b
DJ
4689}
4690
3da10d80
KS
4691/* Add a DIE to the delayed physname list. */
4692
4693static void
4694add_to_method_list (struct type *type, int fnfield_index, int index,
4695 const char *name, struct die_info *die,
4696 struct dwarf2_cu *cu)
4697{
4698 struct delayed_method_info mi;
4699 mi.type = type;
4700 mi.fnfield_index = fnfield_index;
4701 mi.index = index;
4702 mi.name = name;
4703 mi.die = die;
4704 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4705}
4706
4707/* A cleanup for freeing the delayed method list. */
4708
4709static void
4710free_delayed_list (void *ptr)
4711{
4712 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4713 if (cu->method_list != NULL)
4714 {
4715 VEC_free (delayed_method_info, cu->method_list);
4716 cu->method_list = NULL;
4717 }
4718}
4719
4720/* Compute the physnames of any methods on the CU's method list.
4721
4722 The computation of method physnames is delayed in order to avoid the
4723 (bad) condition that one of the method's formal parameters is of an as yet
4724 incomplete type. */
4725
4726static void
4727compute_delayed_physnames (struct dwarf2_cu *cu)
4728{
4729 int i;
4730 struct delayed_method_info *mi;
4731 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4732 {
1d06ead6 4733 const char *physname;
3da10d80
KS
4734 struct fn_fieldlist *fn_flp
4735 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
1d06ead6 4736 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
3da10d80
KS
4737 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4738 }
4739}
4740
9cdd5dbd 4741/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
4742 already been loaded into memory. */
4743
4744static void
4745process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4746{
10b3939b 4747 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4748 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4749 CORE_ADDR lowpc, highpc;
4750 struct symtab *symtab;
3da10d80 4751 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4752 CORE_ADDR baseaddr;
4753
4754 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4755
10b3939b
DJ
4756 buildsym_init ();
4757 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4758 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4759
4760 cu->list_in_scope = &file_symbols;
c906108c
SS
4761
4762 /* Do line number decoding in read_file_scope () */
10b3939b 4763 process_die (cu->dies, cu);
c906108c 4764
3da10d80
KS
4765 /* Now that we have processed all the DIEs in the CU, all the types
4766 should be complete, and it should now be safe to compute all of the
4767 physnames. */
4768 compute_delayed_physnames (cu);
4769 do_cleanups (delayed_list_cleanup);
4770
fae299cd
DC
4771 /* Some compilers don't define a DW_AT_high_pc attribute for the
4772 compilation unit. If the DW_AT_high_pc is missing, synthesize
4773 it, by scanning the DIE's below the compilation unit. */
10b3939b 4774 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4775
613e1657 4776 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c 4777
8be455d7 4778 if (symtab != NULL)
c906108c 4779 {
df15bd07 4780 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 4781
8be455d7
JK
4782 /* Set symtab language to language from DW_AT_language. If the
4783 compilation is from a C file generated by language preprocessors, do
4784 not set the language if it was already deduced by start_subfile. */
4785 if (!(cu->language == language_c && symtab->language != language_c))
4786 symtab->language = cu->language;
4787
4788 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4789 produce DW_AT_location with location lists but it can be possibly
4790 invalid without -fvar-tracking.
4791
4792 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4793 needed, it would be wrong due to missing DW_AT_producer there.
4794
4795 Still one can confuse GDB by using non-standard GCC compilation
4796 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4797 */
4632c0d0 4798 if (cu->has_loclist && gcc_4_minor >= 0)
8be455d7 4799 symtab->locations_valid = 1;
e0d00bc7
JK
4800
4801 if (gcc_4_minor >= 5)
4802 symtab->epilogue_unwind_valid = 1;
96408a79
SA
4803
4804 symtab->call_site_htab = cu->call_site_htab;
c906108c 4805 }
9291a0cd
TT
4806
4807 if (dwarf2_per_objfile->using_index)
4808 per_cu->v.quick->symtab = symtab;
4809 else
4810 {
4811 struct partial_symtab *pst = per_cu->v.psymtab;
4812 pst->symtab = symtab;
4813 pst->readin = 1;
4814 }
c906108c
SS
4815
4816 do_cleanups (back_to);
4817}
4818
4819/* Process a die and its children. */
4820
4821static void
e7c27a73 4822process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4823{
4824 switch (die->tag)
4825 {
4826 case DW_TAG_padding:
4827 break;
4828 case DW_TAG_compile_unit:
e7c27a73 4829 read_file_scope (die, cu);
c906108c 4830 break;
348e048f
DE
4831 case DW_TAG_type_unit:
4832 read_type_unit_scope (die, cu);
4833 break;
c906108c 4834 case DW_TAG_subprogram:
c906108c 4835 case DW_TAG_inlined_subroutine:
edb3359d 4836 read_func_scope (die, cu);
c906108c
SS
4837 break;
4838 case DW_TAG_lexical_block:
14898363
L
4839 case DW_TAG_try_block:
4840 case DW_TAG_catch_block:
e7c27a73 4841 read_lexical_block_scope (die, cu);
c906108c 4842 break;
96408a79
SA
4843 case DW_TAG_GNU_call_site:
4844 read_call_site_scope (die, cu);
4845 break;
c906108c 4846 case DW_TAG_class_type:
680b30c7 4847 case DW_TAG_interface_type:
c906108c
SS
4848 case DW_TAG_structure_type:
4849 case DW_TAG_union_type:
134d01f1 4850 process_structure_scope (die, cu);
c906108c
SS
4851 break;
4852 case DW_TAG_enumeration_type:
134d01f1 4853 process_enumeration_scope (die, cu);
c906108c 4854 break;
134d01f1 4855
f792889a
DJ
4856 /* These dies have a type, but processing them does not create
4857 a symbol or recurse to process the children. Therefore we can
4858 read them on-demand through read_type_die. */
c906108c 4859 case DW_TAG_subroutine_type:
72019c9c 4860 case DW_TAG_set_type:
c906108c 4861 case DW_TAG_array_type:
c906108c 4862 case DW_TAG_pointer_type:
c906108c 4863 case DW_TAG_ptr_to_member_type:
c906108c 4864 case DW_TAG_reference_type:
c906108c 4865 case DW_TAG_string_type:
c906108c 4866 break;
134d01f1 4867
c906108c 4868 case DW_TAG_base_type:
a02abb62 4869 case DW_TAG_subrange_type:
cb249c71 4870 case DW_TAG_typedef:
134d01f1
DJ
4871 /* Add a typedef symbol for the type definition, if it has a
4872 DW_AT_name. */
f792889a 4873 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4874 break;
c906108c 4875 case DW_TAG_common_block:
e7c27a73 4876 read_common_block (die, cu);
c906108c
SS
4877 break;
4878 case DW_TAG_common_inclusion:
4879 break;
d9fa45fe 4880 case DW_TAG_namespace:
63d06c5c 4881 processing_has_namespace_info = 1;
e7c27a73 4882 read_namespace (die, cu);
d9fa45fe 4883 break;
5d7cb8df 4884 case DW_TAG_module:
f55ee35c 4885 processing_has_namespace_info = 1;
5d7cb8df
JK
4886 read_module (die, cu);
4887 break;
d9fa45fe
DC
4888 case DW_TAG_imported_declaration:
4889 case DW_TAG_imported_module:
63d06c5c 4890 processing_has_namespace_info = 1;
27aa8d6a
SW
4891 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4892 || cu->language != language_fortran))
4893 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4894 dwarf_tag_name (die->tag));
4895 read_import_statement (die, cu);
d9fa45fe 4896 break;
c906108c 4897 default:
e7c27a73 4898 new_symbol (die, NULL, cu);
c906108c
SS
4899 break;
4900 }
4901}
4902
94af9270
KS
4903/* A helper function for dwarf2_compute_name which determines whether DIE
4904 needs to have the name of the scope prepended to the name listed in the
4905 die. */
4906
4907static int
4908die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4909{
1c809c68
TT
4910 struct attribute *attr;
4911
94af9270
KS
4912 switch (die->tag)
4913 {
4914 case DW_TAG_namespace:
4915 case DW_TAG_typedef:
4916 case DW_TAG_class_type:
4917 case DW_TAG_interface_type:
4918 case DW_TAG_structure_type:
4919 case DW_TAG_union_type:
4920 case DW_TAG_enumeration_type:
4921 case DW_TAG_enumerator:
4922 case DW_TAG_subprogram:
4923 case DW_TAG_member:
4924 return 1;
4925
4926 case DW_TAG_variable:
c2b0a229 4927 case DW_TAG_constant:
94af9270
KS
4928 /* We only need to prefix "globally" visible variables. These include
4929 any variable marked with DW_AT_external or any variable that
4930 lives in a namespace. [Variables in anonymous namespaces
4931 require prefixing, but they are not DW_AT_external.] */
4932
4933 if (dwarf2_attr (die, DW_AT_specification, cu))
4934 {
4935 struct dwarf2_cu *spec_cu = cu;
9a619af0 4936
94af9270
KS
4937 return die_needs_namespace (die_specification (die, &spec_cu),
4938 spec_cu);
4939 }
4940
1c809c68 4941 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4942 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4943 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4944 return 0;
4945 /* A variable in a lexical block of some kind does not need a
4946 namespace, even though in C++ such variables may be external
4947 and have a mangled name. */
4948 if (die->parent->tag == DW_TAG_lexical_block
4949 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4950 || die->parent->tag == DW_TAG_catch_block
4951 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4952 return 0;
4953 return 1;
94af9270
KS
4954
4955 default:
4956 return 0;
4957 }
4958}
4959
98bfdba5
PA
4960/* Retrieve the last character from a mem_file. */
4961
4962static void
4963do_ui_file_peek_last (void *object, const char *buffer, long length)
4964{
4965 char *last_char_p = (char *) object;
4966
4967 if (length > 0)
4968 *last_char_p = buffer[length - 1];
4969}
4970
94af9270
KS
4971/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4972 compute the physname for the object, which include a method's
4973 formal parameters (C++/Java) and return type (Java).
4974
af6b7be1
JB
4975 For Ada, return the DIE's linkage name rather than the fully qualified
4976 name. PHYSNAME is ignored..
4977
94af9270
KS
4978 The result is allocated on the objfile_obstack and canonicalized. */
4979
4980static const char *
4981dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4982 int physname)
4983{
bb5ed363
DE
4984 struct objfile *objfile = cu->objfile;
4985
94af9270
KS
4986 if (name == NULL)
4987 name = dwarf2_name (die, cu);
4988
f55ee35c
JK
4989 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4990 compute it by typename_concat inside GDB. */
4991 if (cu->language == language_ada
4992 || (cu->language == language_fortran && physname))
4993 {
4994 /* For Ada unit, we prefer the linkage name over the name, as
4995 the former contains the exported name, which the user expects
4996 to be able to reference. Ideally, we want the user to be able
4997 to reference this entity using either natural or linkage name,
4998 but we haven't started looking at this enhancement yet. */
4999 struct attribute *attr;
5000
5001 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5002 if (attr == NULL)
5003 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5004 if (attr && DW_STRING (attr))
5005 return DW_STRING (attr);
5006 }
5007
94af9270
KS
5008 /* These are the only languages we know how to qualify names in. */
5009 if (name != NULL
f55ee35c
JK
5010 && (cu->language == language_cplus || cu->language == language_java
5011 || cu->language == language_fortran))
94af9270
KS
5012 {
5013 if (die_needs_namespace (die, cu))
5014 {
5015 long length;
5016 char *prefix;
5017 struct ui_file *buf;
5018
5019 prefix = determine_prefix (die, cu);
5020 buf = mem_fileopen ();
5021 if (*prefix != '\0')
5022 {
f55ee35c
JK
5023 char *prefixed_name = typename_concat (NULL, prefix, name,
5024 physname, cu);
9a619af0 5025
94af9270
KS
5026 fputs_unfiltered (prefixed_name, buf);
5027 xfree (prefixed_name);
5028 }
5029 else
62d5b8da 5030 fputs_unfiltered (name, buf);
94af9270 5031
98bfdba5
PA
5032 /* Template parameters may be specified in the DIE's DW_AT_name, or
5033 as children with DW_TAG_template_type_param or
5034 DW_TAG_value_type_param. If the latter, add them to the name
5035 here. If the name already has template parameters, then
5036 skip this step; some versions of GCC emit both, and
5037 it is more efficient to use the pre-computed name.
5038
5039 Something to keep in mind about this process: it is very
5040 unlikely, or in some cases downright impossible, to produce
5041 something that will match the mangled name of a function.
5042 If the definition of the function has the same debug info,
5043 we should be able to match up with it anyway. But fallbacks
5044 using the minimal symbol, for instance to find a method
5045 implemented in a stripped copy of libstdc++, will not work.
5046 If we do not have debug info for the definition, we will have to
5047 match them up some other way.
5048
5049 When we do name matching there is a related problem with function
5050 templates; two instantiated function templates are allowed to
5051 differ only by their return types, which we do not add here. */
5052
5053 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5054 {
5055 struct attribute *attr;
5056 struct die_info *child;
5057 int first = 1;
5058
5059 die->building_fullname = 1;
5060
5061 for (child = die->child; child != NULL; child = child->sibling)
5062 {
5063 struct type *type;
5064 long value;
5065 gdb_byte *bytes;
5066 struct dwarf2_locexpr_baton *baton;
5067 struct value *v;
5068
5069 if (child->tag != DW_TAG_template_type_param
5070 && child->tag != DW_TAG_template_value_param)
5071 continue;
5072
5073 if (first)
5074 {
5075 fputs_unfiltered ("<", buf);
5076 first = 0;
5077 }
5078 else
5079 fputs_unfiltered (", ", buf);
5080
5081 attr = dwarf2_attr (child, DW_AT_type, cu);
5082 if (attr == NULL)
5083 {
5084 complaint (&symfile_complaints,
5085 _("template parameter missing DW_AT_type"));
5086 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5087 continue;
5088 }
5089 type = die_type (child, cu);
5090
5091 if (child->tag == DW_TAG_template_type_param)
5092 {
5093 c_print_type (type, "", buf, -1, 0);
5094 continue;
5095 }
5096
5097 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5098 if (attr == NULL)
5099 {
5100 complaint (&symfile_complaints,
3e43a32a
MS
5101 _("template parameter missing "
5102 "DW_AT_const_value"));
98bfdba5
PA
5103 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5104 continue;
5105 }
5106
5107 dwarf2_const_value_attr (attr, type, name,
5108 &cu->comp_unit_obstack, cu,
5109 &value, &bytes, &baton);
5110
5111 if (TYPE_NOSIGN (type))
5112 /* GDB prints characters as NUMBER 'CHAR'. If that's
5113 changed, this can use value_print instead. */
5114 c_printchar (value, type, buf);
5115 else
5116 {
5117 struct value_print_options opts;
5118
5119 if (baton != NULL)
5120 v = dwarf2_evaluate_loc_desc (type, NULL,
5121 baton->data,
5122 baton->size,
5123 baton->per_cu);
5124 else if (bytes != NULL)
5125 {
5126 v = allocate_value (type);
5127 memcpy (value_contents_writeable (v), bytes,
5128 TYPE_LENGTH (type));
5129 }
5130 else
5131 v = value_from_longest (type, value);
5132
3e43a32a
MS
5133 /* Specify decimal so that we do not depend on
5134 the radix. */
98bfdba5
PA
5135 get_formatted_print_options (&opts, 'd');
5136 opts.raw = 1;
5137 value_print (v, buf, &opts);
5138 release_value (v);
5139 value_free (v);
5140 }
5141 }
5142
5143 die->building_fullname = 0;
5144
5145 if (!first)
5146 {
5147 /* Close the argument list, with a space if necessary
5148 (nested templates). */
5149 char last_char = '\0';
5150 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5151 if (last_char == '>')
5152 fputs_unfiltered (" >", buf);
5153 else
5154 fputs_unfiltered (">", buf);
5155 }
5156 }
5157
94af9270
KS
5158 /* For Java and C++ methods, append formal parameter type
5159 information, if PHYSNAME. */
6e70227d 5160
94af9270
KS
5161 if (physname && die->tag == DW_TAG_subprogram
5162 && (cu->language == language_cplus
5163 || cu->language == language_java))
5164 {
5165 struct type *type = read_type_die (die, cu);
5166
3167638f 5167 c_type_print_args (type, buf, 1, cu->language);
94af9270
KS
5168
5169 if (cu->language == language_java)
5170 {
5171 /* For java, we must append the return type to method
0963b4bd 5172 names. */
94af9270
KS
5173 if (die->tag == DW_TAG_subprogram)
5174 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5175 0, 0);
5176 }
5177 else if (cu->language == language_cplus)
5178 {
60430eff
DJ
5179 /* Assume that an artificial first parameter is
5180 "this", but do not crash if it is not. RealView
5181 marks unnamed (and thus unused) parameters as
5182 artificial; there is no way to differentiate
5183 the two cases. */
94af9270
KS
5184 if (TYPE_NFIELDS (type) > 0
5185 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 5186 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
5187 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5188 0))))
94af9270
KS
5189 fputs_unfiltered (" const", buf);
5190 }
5191 }
5192
bb5ed363 5193 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
5194 &length);
5195 ui_file_delete (buf);
5196
5197 if (cu->language == language_cplus)
5198 {
5199 char *cname
5200 = dwarf2_canonicalize_name (name, cu,
bb5ed363 5201 &objfile->objfile_obstack);
9a619af0 5202
94af9270
KS
5203 if (cname != NULL)
5204 name = cname;
5205 }
5206 }
5207 }
5208
5209 return name;
5210}
5211
0114d602
DJ
5212/* Return the fully qualified name of DIE, based on its DW_AT_name.
5213 If scope qualifiers are appropriate they will be added. The result
5214 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
5215 not have a name. NAME may either be from a previous call to
5216 dwarf2_name or NULL.
5217
0963b4bd 5218 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
5219
5220static const char *
94af9270 5221dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 5222{
94af9270
KS
5223 return dwarf2_compute_name (name, die, cu, 0);
5224}
0114d602 5225
94af9270
KS
5226/* Construct a physname for the given DIE in CU. NAME may either be
5227 from a previous call to dwarf2_name or NULL. The result will be
5228 allocated on the objfile_objstack or NULL if the DIE does not have a
5229 name.
0114d602 5230
94af9270 5231 The output string will be canonicalized (if C++/Java). */
0114d602 5232
94af9270
KS
5233static const char *
5234dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5235{
bb5ed363 5236 struct objfile *objfile = cu->objfile;
900e11f9
JK
5237 struct attribute *attr;
5238 const char *retval, *mangled = NULL, *canon = NULL;
5239 struct cleanup *back_to;
5240 int need_copy = 1;
5241
5242 /* In this case dwarf2_compute_name is just a shortcut not building anything
5243 on its own. */
5244 if (!die_needs_namespace (die, cu))
5245 return dwarf2_compute_name (name, die, cu, 1);
5246
5247 back_to = make_cleanup (null_cleanup, NULL);
5248
5249 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5250 if (!attr)
5251 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5252
5253 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5254 has computed. */
5255 if (attr && DW_STRING (attr))
5256 {
5257 char *demangled;
5258
5259 mangled = DW_STRING (attr);
5260
5261 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5262 type. It is easier for GDB users to search for such functions as
5263 `name(params)' than `long name(params)'. In such case the minimal
5264 symbol names do not match the full symbol names but for template
5265 functions there is never a need to look up their definition from their
5266 declaration so the only disadvantage remains the minimal symbol
5267 variant `long name(params)' does not have the proper inferior type.
5268 */
5269
5270 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5271 | (cu->language == language_java
5272 ? DMGL_JAVA | DMGL_RET_POSTFIX
5273 : DMGL_RET_DROP)));
5274 if (demangled)
5275 {
5276 make_cleanup (xfree, demangled);
5277 canon = demangled;
5278 }
5279 else
5280 {
5281 canon = mangled;
5282 need_copy = 0;
5283 }
5284 }
5285
5286 if (canon == NULL || check_physname)
5287 {
5288 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5289
5290 if (canon != NULL && strcmp (physname, canon) != 0)
5291 {
5292 /* It may not mean a bug in GDB. The compiler could also
5293 compute DW_AT_linkage_name incorrectly. But in such case
5294 GDB would need to be bug-to-bug compatible. */
5295
5296 complaint (&symfile_complaints,
5297 _("Computed physname <%s> does not match demangled <%s> "
5298 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
bb5ed363 5299 physname, canon, mangled, die->offset, objfile->name);
900e11f9
JK
5300
5301 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5302 is available here - over computed PHYSNAME. It is safer
5303 against both buggy GDB and buggy compilers. */
5304
5305 retval = canon;
5306 }
5307 else
5308 {
5309 retval = physname;
5310 need_copy = 0;
5311 }
5312 }
5313 else
5314 retval = canon;
5315
5316 if (need_copy)
5317 retval = obsavestring (retval, strlen (retval),
bb5ed363 5318 &objfile->objfile_obstack);
900e11f9
JK
5319
5320 do_cleanups (back_to);
5321 return retval;
0114d602
DJ
5322}
5323
27aa8d6a
SW
5324/* Read the import statement specified by the given die and record it. */
5325
5326static void
5327read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5328{
bb5ed363 5329 struct objfile *objfile = cu->objfile;
27aa8d6a 5330 struct attribute *import_attr;
32019081 5331 struct die_info *imported_die, *child_die;
de4affc9 5332 struct dwarf2_cu *imported_cu;
27aa8d6a 5333 const char *imported_name;
794684b6 5334 const char *imported_name_prefix;
13387711
SW
5335 const char *canonical_name;
5336 const char *import_alias;
5337 const char *imported_declaration = NULL;
794684b6 5338 const char *import_prefix;
32019081
JK
5339 VEC (const_char_ptr) *excludes = NULL;
5340 struct cleanup *cleanups;
13387711
SW
5341
5342 char *temp;
27aa8d6a
SW
5343
5344 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5345 if (import_attr == NULL)
5346 {
5347 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5348 dwarf_tag_name (die->tag));
5349 return;
5350 }
5351
de4affc9
CC
5352 imported_cu = cu;
5353 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5354 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
5355 if (imported_name == NULL)
5356 {
5357 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5358
5359 The import in the following code:
5360 namespace A
5361 {
5362 typedef int B;
5363 }
5364
5365 int main ()
5366 {
5367 using A::B;
5368 B b;
5369 return b;
5370 }
5371
5372 ...
5373 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5374 <52> DW_AT_decl_file : 1
5375 <53> DW_AT_decl_line : 6
5376 <54> DW_AT_import : <0x75>
5377 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5378 <59> DW_AT_name : B
5379 <5b> DW_AT_decl_file : 1
5380 <5c> DW_AT_decl_line : 2
5381 <5d> DW_AT_type : <0x6e>
5382 ...
5383 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5384 <76> DW_AT_byte_size : 4
5385 <77> DW_AT_encoding : 5 (signed)
5386
5387 imports the wrong die ( 0x75 instead of 0x58 ).
5388 This case will be ignored until the gcc bug is fixed. */
5389 return;
5390 }
5391
82856980
SW
5392 /* Figure out the local name after import. */
5393 import_alias = dwarf2_name (die, cu);
27aa8d6a 5394
794684b6
SW
5395 /* Figure out where the statement is being imported to. */
5396 import_prefix = determine_prefix (die, cu);
5397
5398 /* Figure out what the scope of the imported die is and prepend it
5399 to the name of the imported die. */
de4affc9 5400 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 5401
f55ee35c
JK
5402 if (imported_die->tag != DW_TAG_namespace
5403 && imported_die->tag != DW_TAG_module)
794684b6 5404 {
13387711
SW
5405 imported_declaration = imported_name;
5406 canonical_name = imported_name_prefix;
794684b6 5407 }
13387711 5408 else if (strlen (imported_name_prefix) > 0)
794684b6 5409 {
13387711
SW
5410 temp = alloca (strlen (imported_name_prefix)
5411 + 2 + strlen (imported_name) + 1);
5412 strcpy (temp, imported_name_prefix);
5413 strcat (temp, "::");
5414 strcat (temp, imported_name);
5415 canonical_name = temp;
794684b6 5416 }
13387711
SW
5417 else
5418 canonical_name = imported_name;
794684b6 5419
32019081
JK
5420 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5421
5422 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5423 for (child_die = die->child; child_die && child_die->tag;
5424 child_die = sibling_die (child_die))
5425 {
5426 /* DWARF-4: A Fortran use statement with a “rename list” may be
5427 represented by an imported module entry with an import attribute
5428 referring to the module and owned entries corresponding to those
5429 entities that are renamed as part of being imported. */
5430
5431 if (child_die->tag != DW_TAG_imported_declaration)
5432 {
5433 complaint (&symfile_complaints,
5434 _("child DW_TAG_imported_declaration expected "
5435 "- DIE at 0x%x [in module %s]"),
bb5ed363 5436 child_die->offset, objfile->name);
32019081
JK
5437 continue;
5438 }
5439
5440 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5441 if (import_attr == NULL)
5442 {
5443 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5444 dwarf_tag_name (child_die->tag));
5445 continue;
5446 }
5447
5448 imported_cu = cu;
5449 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5450 &imported_cu);
5451 imported_name = dwarf2_name (imported_die, imported_cu);
5452 if (imported_name == NULL)
5453 {
5454 complaint (&symfile_complaints,
5455 _("child DW_TAG_imported_declaration has unknown "
5456 "imported name - DIE at 0x%x [in module %s]"),
bb5ed363 5457 child_die->offset, objfile->name);
32019081
JK
5458 continue;
5459 }
5460
5461 VEC_safe_push (const_char_ptr, excludes, imported_name);
5462
5463 process_die (child_die, cu);
5464 }
5465
c0cc3a76
SW
5466 cp_add_using_directive (import_prefix,
5467 canonical_name,
5468 import_alias,
13387711 5469 imported_declaration,
32019081 5470 excludes,
bb5ed363 5471 &objfile->objfile_obstack);
32019081
JK
5472
5473 do_cleanups (cleanups);
27aa8d6a
SW
5474}
5475
ae2de4f8
DE
5476/* Cleanup function for read_file_scope. */
5477
cb1df416
DJ
5478static void
5479free_cu_line_header (void *arg)
5480{
5481 struct dwarf2_cu *cu = arg;
5482
5483 free_line_header (cu->line_header);
5484 cu->line_header = NULL;
5485}
5486
9291a0cd
TT
5487static void
5488find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5489 char **name, char **comp_dir)
5490{
5491 struct attribute *attr;
5492
5493 *name = NULL;
5494 *comp_dir = NULL;
5495
5496 /* Find the filename. Do not use dwarf2_name here, since the filename
5497 is not a source language identifier. */
5498 attr = dwarf2_attr (die, DW_AT_name, cu);
5499 if (attr)
5500 {
5501 *name = DW_STRING (attr);
5502 }
5503
5504 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5505 if (attr)
5506 *comp_dir = DW_STRING (attr);
5507 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5508 {
5509 *comp_dir = ldirname (*name);
5510 if (*comp_dir != NULL)
5511 make_cleanup (xfree, *comp_dir);
5512 }
5513 if (*comp_dir != NULL)
5514 {
5515 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5516 directory, get rid of it. */
5517 char *cp = strchr (*comp_dir, ':');
5518
5519 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5520 *comp_dir = cp + 1;
5521 }
5522
5523 if (*name == NULL)
5524 *name = "<unknown>";
5525}
5526
f3f5162e
DE
5527/* Handle DW_AT_stmt_list for a compilation unit or type unit.
5528 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5529 COMP_DIR is the compilation directory.
5530 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
5531
5532static void
5533handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
f3f5162e 5534 const char *comp_dir, int want_line_info)
2ab95328
TT
5535{
5536 struct attribute *attr;
5537 struct objfile *objfile = cu->objfile;
5538 bfd *abfd = objfile->obfd;
5539
2ab95328
TT
5540 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5541 if (attr)
5542 {
5543 unsigned int line_offset = DW_UNSND (attr);
5544 struct line_header *line_header
5545 = dwarf_decode_line_header (line_offset, abfd, cu);
5546
5547 if (line_header)
5548 {
5549 cu->line_header = line_header;
5550 make_cleanup (free_cu_line_header, cu);
f3f5162e 5551 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
2ab95328
TT
5552 }
5553 }
5554}
5555
ae2de4f8
DE
5556/* Process DW_TAG_compile_unit. */
5557
c906108c 5558static void
e7c27a73 5559read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5560{
e7c27a73 5561 struct objfile *objfile = cu->objfile;
debd256d 5562 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5563 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5564 CORE_ADDR highpc = ((CORE_ADDR) 0);
5565 struct attribute *attr;
e1024ff1 5566 char *name = NULL;
c906108c
SS
5567 char *comp_dir = NULL;
5568 struct die_info *child_die;
5569 bfd *abfd = objfile->obfd;
e142c38c 5570 CORE_ADDR baseaddr;
6e70227d 5571
e142c38c 5572 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5573
fae299cd 5574 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5575
5576 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5577 from finish_block. */
2acceee2 5578 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5579 lowpc = highpc;
5580 lowpc += baseaddr;
5581 highpc += baseaddr;
5582
9291a0cd 5583 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5584
e142c38c 5585 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5586 if (attr)
5587 {
e142c38c 5588 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5589 }
5590
b0f35d58 5591 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5592 if (attr)
b0f35d58 5593 cu->producer = DW_STRING (attr);
303b6f5d 5594
f4b8a18d
KW
5595 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5596 standardised yet. As a workaround for the language detection we fall
5597 back to the DW_AT_producer string. */
5598 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5599 cu->language = language_opencl;
5600
0963b4bd 5601 /* We assume that we're processing GCC output. */
c906108c 5602 processing_gcc_compilation = 2;
c906108c 5603
df8a16a1
DJ
5604 processing_has_namespace_info = 0;
5605
c906108c
SS
5606 start_symtab (name, comp_dir, lowpc);
5607 record_debugformat ("DWARF 2");
303b6f5d 5608 record_producer (cu->producer);
c906108c 5609
f3f5162e
DE
5610 /* Decode line number information if present. We do this before
5611 processing child DIEs, so that the line header table is available
5612 for DW_AT_decl_file. */
5613 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
debd256d 5614
cb1df416
DJ
5615 /* Process all dies in compilation unit. */
5616 if (die->child != NULL)
5617 {
5618 child_die = die->child;
5619 while (child_die && child_die->tag)
5620 {
5621 process_die (child_die, cu);
5622 child_die = sibling_die (child_die);
5623 }
5624 }
5625
2e276125
JB
5626 /* Decode macro information, if present. Dwarf 2 macro information
5627 refers to information in the line number info statement program
5628 header, so we can only read it if we've read the header
5629 successfully. */
cf2c3c16 5630 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
2ab95328 5631 if (attr && cu->line_header)
2e276125 5632 {
cf2c3c16
TT
5633 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5634 complaint (&symfile_complaints,
5635 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5636
5637 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5638 comp_dir, abfd, cu,
5639 &dwarf2_per_objfile->macro, 1);
5640 }
5641 else
5642 {
5643 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5644 if (attr && cu->line_header)
5645 {
5646 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5647
cf2c3c16
TT
5648 dwarf_decode_macros (cu->line_header, macro_offset,
5649 comp_dir, abfd, cu,
5650 &dwarf2_per_objfile->macinfo, 0);
5651 }
2e276125 5652 }
9cdd5dbd 5653
debd256d 5654 do_cleanups (back_to);
5fb290d7
DJ
5655}
5656
ae2de4f8
DE
5657/* Process DW_TAG_type_unit.
5658 For TUs we want to skip the first top level sibling if it's not the
348e048f
DE
5659 actual type being defined by this TU. In this case the first top
5660 level sibling is there to provide context only. */
5661
5662static void
5663read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5664{
5665 struct objfile *objfile = cu->objfile;
5666 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5667 CORE_ADDR lowpc;
5668 struct attribute *attr;
5669 char *name = NULL;
5670 char *comp_dir = NULL;
5671 struct die_info *child_die;
5672 bfd *abfd = objfile->obfd;
348e048f
DE
5673
5674 /* start_symtab needs a low pc, but we don't really have one.
5675 Do what read_file_scope would do in the absence of such info. */
5676 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5677
5678 /* Find the filename. Do not use dwarf2_name here, since the filename
5679 is not a source language identifier. */
5680 attr = dwarf2_attr (die, DW_AT_name, cu);
5681 if (attr)
5682 name = DW_STRING (attr);
5683
5684 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5685 if (attr)
5686 comp_dir = DW_STRING (attr);
5687 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5688 {
5689 comp_dir = ldirname (name);
5690 if (comp_dir != NULL)
5691 make_cleanup (xfree, comp_dir);
5692 }
5693
5694 if (name == NULL)
5695 name = "<unknown>";
5696
5697 attr = dwarf2_attr (die, DW_AT_language, cu);
5698 if (attr)
5699 set_cu_language (DW_UNSND (attr), cu);
5700
5701 /* This isn't technically needed today. It is done for symmetry
5702 with read_file_scope. */
5703 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5704 if (attr)
348e048f
DE
5705 cu->producer = DW_STRING (attr);
5706
0963b4bd 5707 /* We assume that we're processing GCC output. */
348e048f
DE
5708 processing_gcc_compilation = 2;
5709
5710 processing_has_namespace_info = 0;
5711
5712 start_symtab (name, comp_dir, lowpc);
5713 record_debugformat ("DWARF 2");
5714 record_producer (cu->producer);
5715
f3f5162e
DE
5716 /* Decode line number information if present. We do this before
5717 processing child DIEs, so that the line header table is available
5718 for DW_AT_decl_file.
5719 We don't need the pc/line-number mapping for type units. */
5720 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
2ab95328 5721
348e048f
DE
5722 /* Process the dies in the type unit. */
5723 if (die->child == NULL)
5724 {
5725 dump_die_for_error (die);
5726 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5727 bfd_get_filename (abfd));
5728 }
5729
5730 child_die = die->child;
5731
5732 while (child_die && child_die->tag)
5733 {
5734 process_die (child_die, cu);
5735
5736 child_die = sibling_die (child_die);
5737 }
5738
5739 do_cleanups (back_to);
5740}
5741
d389af10
JK
5742/* qsort helper for inherit_abstract_dies. */
5743
5744static int
5745unsigned_int_compar (const void *ap, const void *bp)
5746{
5747 unsigned int a = *(unsigned int *) ap;
5748 unsigned int b = *(unsigned int *) bp;
5749
5750 return (a > b) - (b > a);
5751}
5752
5753/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
5754 Inherit only the children of the DW_AT_abstract_origin DIE not being
5755 already referenced by DW_AT_abstract_origin from the children of the
5756 current DIE. */
d389af10
JK
5757
5758static void
5759inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5760{
5761 struct die_info *child_die;
5762 unsigned die_children_count;
5763 /* CU offsets which were referenced by children of the current DIE. */
5764 unsigned *offsets;
5765 unsigned *offsets_end, *offsetp;
5766 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5767 struct die_info *origin_die;
5768 /* Iterator of the ORIGIN_DIE children. */
5769 struct die_info *origin_child_die;
5770 struct cleanup *cleanups;
5771 struct attribute *attr;
cd02d79d
PA
5772 struct dwarf2_cu *origin_cu;
5773 struct pending **origin_previous_list_in_scope;
d389af10
JK
5774
5775 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5776 if (!attr)
5777 return;
5778
cd02d79d
PA
5779 /* Note that following die references may follow to a die in a
5780 different cu. */
5781
5782 origin_cu = cu;
5783 origin_die = follow_die_ref (die, attr, &origin_cu);
5784
5785 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5786 symbols in. */
5787 origin_previous_list_in_scope = origin_cu->list_in_scope;
5788 origin_cu->list_in_scope = cu->list_in_scope;
5789
edb3359d
DJ
5790 if (die->tag != origin_die->tag
5791 && !(die->tag == DW_TAG_inlined_subroutine
5792 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5793 complaint (&symfile_complaints,
5794 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5795 die->offset, origin_die->offset);
5796
5797 child_die = die->child;
5798 die_children_count = 0;
5799 while (child_die && child_die->tag)
5800 {
5801 child_die = sibling_die (child_die);
5802 die_children_count++;
5803 }
5804 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5805 cleanups = make_cleanup (xfree, offsets);
5806
5807 offsets_end = offsets;
5808 child_die = die->child;
5809 while (child_die && child_die->tag)
5810 {
c38f313d
DJ
5811 /* For each CHILD_DIE, find the corresponding child of
5812 ORIGIN_DIE. If there is more than one layer of
5813 DW_AT_abstract_origin, follow them all; there shouldn't be,
5814 but GCC versions at least through 4.4 generate this (GCC PR
5815 40573). */
5816 struct die_info *child_origin_die = child_die;
cd02d79d 5817 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5818
c38f313d
DJ
5819 while (1)
5820 {
cd02d79d
PA
5821 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5822 child_origin_cu);
c38f313d
DJ
5823 if (attr == NULL)
5824 break;
cd02d79d
PA
5825 child_origin_die = follow_die_ref (child_origin_die, attr,
5826 &child_origin_cu);
c38f313d
DJ
5827 }
5828
d389af10
JK
5829 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5830 counterpart may exist. */
c38f313d 5831 if (child_origin_die != child_die)
d389af10 5832 {
edb3359d
DJ
5833 if (child_die->tag != child_origin_die->tag
5834 && !(child_die->tag == DW_TAG_inlined_subroutine
5835 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5836 complaint (&symfile_complaints,
5837 _("Child DIE 0x%x and its abstract origin 0x%x have "
5838 "different tags"), child_die->offset,
5839 child_origin_die->offset);
c38f313d
DJ
5840 if (child_origin_die->parent != origin_die)
5841 complaint (&symfile_complaints,
5842 _("Child DIE 0x%x and its abstract origin 0x%x have "
5843 "different parents"), child_die->offset,
5844 child_origin_die->offset);
5845 else
5846 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5847 }
5848 child_die = sibling_die (child_die);
5849 }
5850 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5851 unsigned_int_compar);
5852 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5853 if (offsetp[-1] == *offsetp)
3e43a32a
MS
5854 complaint (&symfile_complaints,
5855 _("Multiple children of DIE 0x%x refer "
5856 "to DIE 0x%x as their abstract origin"),
d389af10
JK
5857 die->offset, *offsetp);
5858
5859 offsetp = offsets;
5860 origin_child_die = origin_die->child;
5861 while (origin_child_die && origin_child_die->tag)
5862 {
5863 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5864 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5865 offsetp++;
5866 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5867 {
5868 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5869 process_die (origin_child_die, origin_cu);
d389af10
JK
5870 }
5871 origin_child_die = sibling_die (origin_child_die);
5872 }
cd02d79d 5873 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5874
5875 do_cleanups (cleanups);
5876}
5877
c906108c 5878static void
e7c27a73 5879read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5880{
e7c27a73 5881 struct objfile *objfile = cu->objfile;
52f0bd74 5882 struct context_stack *new;
c906108c
SS
5883 CORE_ADDR lowpc;
5884 CORE_ADDR highpc;
5885 struct die_info *child_die;
edb3359d 5886 struct attribute *attr, *call_line, *call_file;
c906108c 5887 char *name;
e142c38c 5888 CORE_ADDR baseaddr;
801e3a5b 5889 struct block *block;
edb3359d 5890 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5891 VEC (symbolp) *template_args = NULL;
5892 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5893
5894 if (inlined_func)
5895 {
5896 /* If we do not have call site information, we can't show the
5897 caller of this inlined function. That's too confusing, so
5898 only use the scope for local variables. */
5899 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5900 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5901 if (call_line == NULL || call_file == NULL)
5902 {
5903 read_lexical_block_scope (die, cu);
5904 return;
5905 }
5906 }
c906108c 5907
e142c38c
DJ
5908 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5909
94af9270 5910 name = dwarf2_name (die, cu);
c906108c 5911
e8d05480
JB
5912 /* Ignore functions with missing or empty names. These are actually
5913 illegal according to the DWARF standard. */
5914 if (name == NULL)
5915 {
5916 complaint (&symfile_complaints,
5917 _("missing name for subprogram DIE at %d"), die->offset);
5918 return;
5919 }
5920
5921 /* Ignore functions with missing or invalid low and high pc attributes. */
5922 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5923 {
ae4d0c03
PM
5924 attr = dwarf2_attr (die, DW_AT_external, cu);
5925 if (!attr || !DW_UNSND (attr))
5926 complaint (&symfile_complaints,
3e43a32a
MS
5927 _("cannot get low and high bounds "
5928 "for subprogram DIE at %d"),
ae4d0c03 5929 die->offset);
e8d05480
JB
5930 return;
5931 }
c906108c
SS
5932
5933 lowpc += baseaddr;
5934 highpc += baseaddr;
5935
34eaf542
TT
5936 /* If we have any template arguments, then we must allocate a
5937 different sort of symbol. */
5938 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5939 {
5940 if (child_die->tag == DW_TAG_template_type_param
5941 || child_die->tag == DW_TAG_template_value_param)
5942 {
5943 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5944 struct template_symbol);
5945 templ_func->base.is_cplus_template_function = 1;
5946 break;
5947 }
5948 }
5949
c906108c 5950 new = push_context (0, lowpc);
34eaf542
TT
5951 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5952 (struct symbol *) templ_func);
4c2df51b 5953
4cecd739
DJ
5954 /* If there is a location expression for DW_AT_frame_base, record
5955 it. */
e142c38c 5956 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5957 if (attr)
c034e007
AC
5958 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5959 expression is being recorded directly in the function's symbol
5960 and not in a separate frame-base object. I guess this hack is
5961 to avoid adding some sort of frame-base adjunct/annex to the
5962 function's symbol :-(. The problem with doing this is that it
5963 results in a function symbol with a location expression that
5964 has nothing to do with the location of the function, ouch! The
5965 relationship should be: a function's symbol has-a frame base; a
5966 frame-base has-a location expression. */
e7c27a73 5967 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5968
e142c38c 5969 cu->list_in_scope = &local_symbols;
c906108c 5970
639d11d3 5971 if (die->child != NULL)
c906108c 5972 {
639d11d3 5973 child_die = die->child;
c906108c
SS
5974 while (child_die && child_die->tag)
5975 {
34eaf542
TT
5976 if (child_die->tag == DW_TAG_template_type_param
5977 || child_die->tag == DW_TAG_template_value_param)
5978 {
5979 struct symbol *arg = new_symbol (child_die, NULL, cu);
5980
f1078f66
DJ
5981 if (arg != NULL)
5982 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5983 }
5984 else
5985 process_die (child_die, cu);
c906108c
SS
5986 child_die = sibling_die (child_die);
5987 }
5988 }
5989
d389af10
JK
5990 inherit_abstract_dies (die, cu);
5991
4a811a97
UW
5992 /* If we have a DW_AT_specification, we might need to import using
5993 directives from the context of the specification DIE. See the
5994 comment in determine_prefix. */
5995 if (cu->language == language_cplus
5996 && dwarf2_attr (die, DW_AT_specification, cu))
5997 {
5998 struct dwarf2_cu *spec_cu = cu;
5999 struct die_info *spec_die = die_specification (die, &spec_cu);
6000
6001 while (spec_die)
6002 {
6003 child_die = spec_die->child;
6004 while (child_die && child_die->tag)
6005 {
6006 if (child_die->tag == DW_TAG_imported_module)
6007 process_die (child_die, spec_cu);
6008 child_die = sibling_die (child_die);
6009 }
6010
6011 /* In some cases, GCC generates specification DIEs that
6012 themselves contain DW_AT_specification attributes. */
6013 spec_die = die_specification (spec_die, &spec_cu);
6014 }
6015 }
6016
c906108c
SS
6017 new = pop_context ();
6018 /* Make a block for the local symbols within. */
801e3a5b
JB
6019 block = finish_block (new->name, &local_symbols, new->old_blocks,
6020 lowpc, highpc, objfile);
6021
df8a16a1 6022 /* For C++, set the block's scope. */
f55ee35c 6023 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 6024 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 6025 determine_prefix (die, cu),
df8a16a1
DJ
6026 processing_has_namespace_info);
6027
801e3a5b
JB
6028 /* If we have address ranges, record them. */
6029 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 6030
34eaf542
TT
6031 /* Attach template arguments to function. */
6032 if (! VEC_empty (symbolp, template_args))
6033 {
6034 gdb_assert (templ_func != NULL);
6035
6036 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6037 templ_func->template_arguments
6038 = obstack_alloc (&objfile->objfile_obstack,
6039 (templ_func->n_template_arguments
6040 * sizeof (struct symbol *)));
6041 memcpy (templ_func->template_arguments,
6042 VEC_address (symbolp, template_args),
6043 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6044 VEC_free (symbolp, template_args);
6045 }
6046
208d8187
JB
6047 /* In C++, we can have functions nested inside functions (e.g., when
6048 a function declares a class that has methods). This means that
6049 when we finish processing a function scope, we may need to go
6050 back to building a containing block's symbol lists. */
6051 local_symbols = new->locals;
6052 param_symbols = new->params;
27aa8d6a 6053 using_directives = new->using_directives;
208d8187 6054
921e78cf
JB
6055 /* If we've finished processing a top-level function, subsequent
6056 symbols go in the file symbol list. */
6057 if (outermost_context_p ())
e142c38c 6058 cu->list_in_scope = &file_symbols;
c906108c
SS
6059}
6060
6061/* Process all the DIES contained within a lexical block scope. Start
6062 a new scope, process the dies, and then close the scope. */
6063
6064static void
e7c27a73 6065read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6066{
e7c27a73 6067 struct objfile *objfile = cu->objfile;
52f0bd74 6068 struct context_stack *new;
c906108c
SS
6069 CORE_ADDR lowpc, highpc;
6070 struct die_info *child_die;
e142c38c
DJ
6071 CORE_ADDR baseaddr;
6072
6073 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
6074
6075 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
6076 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6077 as multiple lexical blocks? Handling children in a sane way would
6e70227d 6078 be nasty. Might be easier to properly extend generic blocks to
af34e669 6079 describe ranges. */
d85a05f0 6080 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
6081 return;
6082 lowpc += baseaddr;
6083 highpc += baseaddr;
6084
6085 push_context (0, lowpc);
639d11d3 6086 if (die->child != NULL)
c906108c 6087 {
639d11d3 6088 child_die = die->child;
c906108c
SS
6089 while (child_die && child_die->tag)
6090 {
e7c27a73 6091 process_die (child_die, cu);
c906108c
SS
6092 child_die = sibling_die (child_die);
6093 }
6094 }
6095 new = pop_context ();
6096
8540c487 6097 if (local_symbols != NULL || using_directives != NULL)
c906108c 6098 {
801e3a5b
JB
6099 struct block *block
6100 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6101 highpc, objfile);
6102
6103 /* Note that recording ranges after traversing children, as we
6104 do here, means that recording a parent's ranges entails
6105 walking across all its children's ranges as they appear in
6106 the address map, which is quadratic behavior.
6107
6108 It would be nicer to record the parent's ranges before
6109 traversing its children, simply overriding whatever you find
6110 there. But since we don't even decide whether to create a
6111 block until after we've traversed its children, that's hard
6112 to do. */
6113 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
6114 }
6115 local_symbols = new->locals;
27aa8d6a 6116 using_directives = new->using_directives;
c906108c
SS
6117}
6118
96408a79
SA
6119/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6120
6121static void
6122read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6123{
6124 struct objfile *objfile = cu->objfile;
6125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6126 CORE_ADDR pc, baseaddr;
6127 struct attribute *attr;
6128 struct call_site *call_site, call_site_local;
6129 void **slot;
6130 int nparams;
6131 struct die_info *child_die;
6132
6133 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6134
6135 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6136 if (!attr)
6137 {
6138 complaint (&symfile_complaints,
6139 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6140 "DIE 0x%x [in module %s]"),
bb5ed363 6141 die->offset, objfile->name);
96408a79
SA
6142 return;
6143 }
6144 pc = DW_ADDR (attr) + baseaddr;
6145
6146 if (cu->call_site_htab == NULL)
6147 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6148 NULL, &objfile->objfile_obstack,
6149 hashtab_obstack_allocate, NULL);
6150 call_site_local.pc = pc;
6151 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6152 if (*slot != NULL)
6153 {
6154 complaint (&symfile_complaints,
6155 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6156 "DIE 0x%x [in module %s]"),
bb5ed363 6157 paddress (gdbarch, pc), die->offset, objfile->name);
96408a79
SA
6158 return;
6159 }
6160
6161 /* Count parameters at the caller. */
6162
6163 nparams = 0;
6164 for (child_die = die->child; child_die && child_die->tag;
6165 child_die = sibling_die (child_die))
6166 {
6167 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6168 {
6169 complaint (&symfile_complaints,
6170 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6171 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
bb5ed363 6172 child_die->tag, child_die->offset, objfile->name);
96408a79
SA
6173 continue;
6174 }
6175
6176 nparams++;
6177 }
6178
6179 call_site = obstack_alloc (&objfile->objfile_obstack,
6180 (sizeof (*call_site)
6181 + (sizeof (*call_site->parameter)
6182 * (nparams - 1))));
6183 *slot = call_site;
6184 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6185 call_site->pc = pc;
6186
6187 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6188 {
6189 struct die_info *func_die;
6190
6191 /* Skip also over DW_TAG_inlined_subroutine. */
6192 for (func_die = die->parent;
6193 func_die && func_die->tag != DW_TAG_subprogram
6194 && func_die->tag != DW_TAG_subroutine_type;
6195 func_die = func_die->parent);
6196
6197 /* DW_AT_GNU_all_call_sites is a superset
6198 of DW_AT_GNU_all_tail_call_sites. */
6199 if (func_die
6200 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6201 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6202 {
6203 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6204 not complete. But keep CALL_SITE for look ups via call_site_htab,
6205 both the initial caller containing the real return address PC and
6206 the final callee containing the current PC of a chain of tail
6207 calls do not need to have the tail call list complete. But any
6208 function candidate for a virtual tail call frame searched via
6209 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6210 determined unambiguously. */
6211 }
6212 else
6213 {
6214 struct type *func_type = NULL;
6215
6216 if (func_die)
6217 func_type = get_die_type (func_die, cu);
6218 if (func_type != NULL)
6219 {
6220 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6221
6222 /* Enlist this call site to the function. */
6223 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6224 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6225 }
6226 else
6227 complaint (&symfile_complaints,
6228 _("Cannot find function owning DW_TAG_GNU_call_site "
6229 "DIE 0x%x [in module %s]"),
bb5ed363 6230 die->offset, objfile->name);
96408a79
SA
6231 }
6232 }
6233
6234 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6235 if (attr == NULL)
6236 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6237 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6238 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6239 /* Keep NULL DWARF_BLOCK. */;
6240 else if (attr_form_is_block (attr))
6241 {
6242 struct dwarf2_locexpr_baton *dlbaton;
6243
6244 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6245 dlbaton->data = DW_BLOCK (attr)->data;
6246 dlbaton->size = DW_BLOCK (attr)->size;
6247 dlbaton->per_cu = cu->per_cu;
6248
6249 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6250 }
6251 else if (is_ref_attr (attr))
6252 {
96408a79
SA
6253 struct dwarf2_cu *target_cu = cu;
6254 struct die_info *target_die;
6255
6256 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6257 gdb_assert (target_cu->objfile == objfile);
6258 if (die_is_declaration (target_die, target_cu))
6259 {
6260 const char *target_physname;
6261
6262 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6263 if (target_physname == NULL)
6264 complaint (&symfile_complaints,
6265 _("DW_AT_GNU_call_site_target target DIE has invalid "
6266 "physname, for referencing DIE 0x%x [in module %s]"),
bb5ed363 6267 die->offset, objfile->name);
96408a79
SA
6268 else
6269 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6270 }
6271 else
6272 {
6273 CORE_ADDR lowpc;
6274
6275 /* DW_AT_entry_pc should be preferred. */
6276 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6277 complaint (&symfile_complaints,
6278 _("DW_AT_GNU_call_site_target target DIE has invalid "
6279 "low pc, for referencing DIE 0x%x [in module %s]"),
bb5ed363 6280 die->offset, objfile->name);
96408a79
SA
6281 else
6282 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6283 }
6284 }
6285 else
6286 complaint (&symfile_complaints,
6287 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6288 "block nor reference, for DIE 0x%x [in module %s]"),
bb5ed363 6289 die->offset, objfile->name);
96408a79
SA
6290
6291 call_site->per_cu = cu->per_cu;
6292
6293 for (child_die = die->child;
6294 child_die && child_die->tag;
6295 child_die = sibling_die (child_die))
6296 {
6297 struct dwarf2_locexpr_baton *dlbaton;
6298 struct call_site_parameter *parameter;
6299
6300 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6301 {
6302 /* Already printed the complaint above. */
6303 continue;
6304 }
6305
6306 gdb_assert (call_site->parameter_count < nparams);
6307 parameter = &call_site->parameter[call_site->parameter_count];
6308
6309 /* DW_AT_location specifies the register number. Value of the data
6310 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6311
6312 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6313 if (!attr || !attr_form_is_block (attr))
6314 {
6315 complaint (&symfile_complaints,
6316 _("No DW_FORM_block* DW_AT_location for "
6317 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
bb5ed363 6318 child_die->offset, objfile->name);
96408a79
SA
6319 continue;
6320 }
6321 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6322 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6323 if (parameter->dwarf_reg == -1
6324 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6325 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6326 &parameter->fb_offset))
6327 {
6328 complaint (&symfile_complaints,
6329 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6330 "for DW_FORM_block* DW_AT_location for "
6331 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
bb5ed363 6332 child_die->offset, objfile->name);
96408a79
SA
6333 continue;
6334 }
6335
6336 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6337 if (!attr_form_is_block (attr))
6338 {
6339 complaint (&symfile_complaints,
6340 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6341 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
bb5ed363 6342 child_die->offset, objfile->name);
96408a79
SA
6343 continue;
6344 }
6345 parameter->value = DW_BLOCK (attr)->data;
6346 parameter->value_size = DW_BLOCK (attr)->size;
6347
6348 /* Parameters are not pre-cleared by memset above. */
6349 parameter->data_value = NULL;
6350 parameter->data_value_size = 0;
6351 call_site->parameter_count++;
6352
6353 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6354 if (attr)
6355 {
6356 if (!attr_form_is_block (attr))
6357 complaint (&symfile_complaints,
6358 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6359 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
bb5ed363 6360 child_die->offset, objfile->name);
96408a79
SA
6361 else
6362 {
6363 parameter->data_value = DW_BLOCK (attr)->data;
6364 parameter->data_value_size = DW_BLOCK (attr)->size;
6365 }
6366 }
6367 }
6368}
6369
43039443 6370/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
6371 Return 1 if the attributes are present and valid, otherwise, return 0.
6372 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
6373
6374static int
6375dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
6376 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6377 struct partial_symtab *ranges_pst)
43039443
JK
6378{
6379 struct objfile *objfile = cu->objfile;
6380 struct comp_unit_head *cu_header = &cu->header;
6381 bfd *obfd = objfile->obfd;
6382 unsigned int addr_size = cu_header->addr_size;
6383 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6384 /* Base address selection entry. */
6385 CORE_ADDR base;
6386 int found_base;
6387 unsigned int dummy;
6388 gdb_byte *buffer;
6389 CORE_ADDR marker;
6390 int low_set;
6391 CORE_ADDR low = 0;
6392 CORE_ADDR high = 0;
ff013f42 6393 CORE_ADDR baseaddr;
43039443 6394
d00adf39
DE
6395 found_base = cu->base_known;
6396 base = cu->base_address;
43039443 6397
be391dca 6398 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 6399 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
6400 {
6401 complaint (&symfile_complaints,
6402 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6403 offset);
6404 return 0;
6405 }
dce234bc 6406 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
6407
6408 /* Read in the largest possible address. */
6409 marker = read_address (obfd, buffer, cu, &dummy);
6410 if ((marker & mask) == mask)
6411 {
6412 /* If we found the largest possible address, then
6413 read the base address. */
6414 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6415 buffer += 2 * addr_size;
6416 offset += 2 * addr_size;
6417 found_base = 1;
6418 }
6419
6420 low_set = 0;
6421
e7030f15 6422 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 6423
43039443
JK
6424 while (1)
6425 {
6426 CORE_ADDR range_beginning, range_end;
6427
6428 range_beginning = read_address (obfd, buffer, cu, &dummy);
6429 buffer += addr_size;
6430 range_end = read_address (obfd, buffer, cu, &dummy);
6431 buffer += addr_size;
6432 offset += 2 * addr_size;
6433
6434 /* An end of list marker is a pair of zero addresses. */
6435 if (range_beginning == 0 && range_end == 0)
6436 /* Found the end of list entry. */
6437 break;
6438
6439 /* Each base address selection entry is a pair of 2 values.
6440 The first is the largest possible address, the second is
6441 the base address. Check for a base address here. */
6442 if ((range_beginning & mask) == mask)
6443 {
6444 /* If we found the largest possible address, then
6445 read the base address. */
6446 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6447 found_base = 1;
6448 continue;
6449 }
6450
6451 if (!found_base)
6452 {
6453 /* We have no valid base address for the ranges
6454 data. */
6455 complaint (&symfile_complaints,
6456 _("Invalid .debug_ranges data (no base address)"));
6457 return 0;
6458 }
6459
9277c30c
UW
6460 if (range_beginning > range_end)
6461 {
6462 /* Inverted range entries are invalid. */
6463 complaint (&symfile_complaints,
6464 _("Invalid .debug_ranges data (inverted range)"));
6465 return 0;
6466 }
6467
6468 /* Empty range entries have no effect. */
6469 if (range_beginning == range_end)
6470 continue;
6471
43039443
JK
6472 range_beginning += base;
6473 range_end += base;
6474
9277c30c 6475 if (ranges_pst != NULL)
ff013f42 6476 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
6477 range_beginning + baseaddr,
6478 range_end - 1 + baseaddr,
ff013f42
JK
6479 ranges_pst);
6480
43039443
JK
6481 /* FIXME: This is recording everything as a low-high
6482 segment of consecutive addresses. We should have a
6483 data structure for discontiguous block ranges
6484 instead. */
6485 if (! low_set)
6486 {
6487 low = range_beginning;
6488 high = range_end;
6489 low_set = 1;
6490 }
6491 else
6492 {
6493 if (range_beginning < low)
6494 low = range_beginning;
6495 if (range_end > high)
6496 high = range_end;
6497 }
6498 }
6499
6500 if (! low_set)
6501 /* If the first entry is an end-of-list marker, the range
6502 describes an empty scope, i.e. no instructions. */
6503 return 0;
6504
6505 if (low_return)
6506 *low_return = low;
6507 if (high_return)
6508 *high_return = high;
6509 return 1;
6510}
6511
af34e669
DJ
6512/* Get low and high pc attributes from a die. Return 1 if the attributes
6513 are present and valid, otherwise, return 0. Return -1 if the range is
6514 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 6515static int
af34e669 6516dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
6517 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6518 struct partial_symtab *pst)
c906108c
SS
6519{
6520 struct attribute *attr;
af34e669
DJ
6521 CORE_ADDR low = 0;
6522 CORE_ADDR high = 0;
6523 int ret = 0;
c906108c 6524
e142c38c 6525 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 6526 if (attr)
af34e669
DJ
6527 {
6528 high = DW_ADDR (attr);
e142c38c 6529 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
6530 if (attr)
6531 low = DW_ADDR (attr);
6532 else
6533 /* Found high w/o low attribute. */
6534 return 0;
6535
6536 /* Found consecutive range of addresses. */
6537 ret = 1;
6538 }
c906108c 6539 else
af34e669 6540 {
e142c38c 6541 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
6542 if (attr != NULL)
6543 {
af34e669 6544 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 6545 .debug_ranges section. */
d85a05f0 6546 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 6547 return 0;
43039443 6548 /* Found discontinuous range of addresses. */
af34e669
DJ
6549 ret = -1;
6550 }
6551 }
c906108c 6552
9373cf26
JK
6553 /* read_partial_die has also the strict LOW < HIGH requirement. */
6554 if (high <= low)
c906108c
SS
6555 return 0;
6556
6557 /* When using the GNU linker, .gnu.linkonce. sections are used to
6558 eliminate duplicate copies of functions and vtables and such.
6559 The linker will arbitrarily choose one and discard the others.
6560 The AT_*_pc values for such functions refer to local labels in
6561 these sections. If the section from that file was discarded, the
6562 labels are not in the output, so the relocs get a value of 0.
6563 If this is a discarded function, mark the pc bounds as invalid,
6564 so that GDB will ignore it. */
72dca2f5 6565 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
6566 return 0;
6567
6568 *lowpc = low;
96408a79
SA
6569 if (highpc)
6570 *highpc = high;
af34e669 6571 return ret;
c906108c
SS
6572}
6573
b084d499
JB
6574/* Assuming that DIE represents a subprogram DIE or a lexical block, get
6575 its low and high PC addresses. Do nothing if these addresses could not
6576 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6577 and HIGHPC to the high address if greater than HIGHPC. */
6578
6579static void
6580dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6581 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6582 struct dwarf2_cu *cu)
6583{
6584 CORE_ADDR low, high;
6585 struct die_info *child = die->child;
6586
d85a05f0 6587 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
6588 {
6589 *lowpc = min (*lowpc, low);
6590 *highpc = max (*highpc, high);
6591 }
6592
6593 /* If the language does not allow nested subprograms (either inside
6594 subprograms or lexical blocks), we're done. */
6595 if (cu->language != language_ada)
6596 return;
6e70227d 6597
b084d499
JB
6598 /* Check all the children of the given DIE. If it contains nested
6599 subprograms, then check their pc bounds. Likewise, we need to
6600 check lexical blocks as well, as they may also contain subprogram
6601 definitions. */
6602 while (child && child->tag)
6603 {
6604 if (child->tag == DW_TAG_subprogram
6605 || child->tag == DW_TAG_lexical_block)
6606 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6607 child = sibling_die (child);
6608 }
6609}
6610
fae299cd
DC
6611/* Get the low and high pc's represented by the scope DIE, and store
6612 them in *LOWPC and *HIGHPC. If the correct values can't be
6613 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6614
6615static void
6616get_scope_pc_bounds (struct die_info *die,
6617 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6618 struct dwarf2_cu *cu)
6619{
6620 CORE_ADDR best_low = (CORE_ADDR) -1;
6621 CORE_ADDR best_high = (CORE_ADDR) 0;
6622 CORE_ADDR current_low, current_high;
6623
d85a05f0 6624 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
6625 {
6626 best_low = current_low;
6627 best_high = current_high;
6628 }
6629 else
6630 {
6631 struct die_info *child = die->child;
6632
6633 while (child && child->tag)
6634 {
6635 switch (child->tag) {
6636 case DW_TAG_subprogram:
b084d499 6637 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
6638 break;
6639 case DW_TAG_namespace:
f55ee35c 6640 case DW_TAG_module:
fae299cd
DC
6641 /* FIXME: carlton/2004-01-16: Should we do this for
6642 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6643 that current GCC's always emit the DIEs corresponding
6644 to definitions of methods of classes as children of a
6645 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6646 the DIEs giving the declarations, which could be
6647 anywhere). But I don't see any reason why the
6648 standards says that they have to be there. */
6649 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6650
6651 if (current_low != ((CORE_ADDR) -1))
6652 {
6653 best_low = min (best_low, current_low);
6654 best_high = max (best_high, current_high);
6655 }
6656 break;
6657 default:
0963b4bd 6658 /* Ignore. */
fae299cd
DC
6659 break;
6660 }
6661
6662 child = sibling_die (child);
6663 }
6664 }
6665
6666 *lowpc = best_low;
6667 *highpc = best_high;
6668}
6669
801e3a5b
JB
6670/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6671 in DIE. */
6672static void
6673dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6674 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6675{
bb5ed363 6676 struct objfile *objfile = cu->objfile;
801e3a5b
JB
6677 struct attribute *attr;
6678
6679 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6680 if (attr)
6681 {
6682 CORE_ADDR high = DW_ADDR (attr);
9a619af0 6683
801e3a5b
JB
6684 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6685 if (attr)
6686 {
6687 CORE_ADDR low = DW_ADDR (attr);
9a619af0 6688
801e3a5b
JB
6689 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6690 }
6691 }
6692
6693 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6694 if (attr)
6695 {
bb5ed363 6696 bfd *obfd = objfile->obfd;
801e3a5b
JB
6697
6698 /* The value of the DW_AT_ranges attribute is the offset of the
6699 address range list in the .debug_ranges section. */
6700 unsigned long offset = DW_UNSND (attr);
dce234bc 6701 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
6702
6703 /* For some target architectures, but not others, the
6704 read_address function sign-extends the addresses it returns.
6705 To recognize base address selection entries, we need a
6706 mask. */
6707 unsigned int addr_size = cu->header.addr_size;
6708 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6709
6710 /* The base address, to which the next pair is relative. Note
6711 that this 'base' is a DWARF concept: most entries in a range
6712 list are relative, to reduce the number of relocs against the
6713 debugging information. This is separate from this function's
6714 'baseaddr' argument, which GDB uses to relocate debugging
6715 information from a shared library based on the address at
6716 which the library was loaded. */
d00adf39
DE
6717 CORE_ADDR base = cu->base_address;
6718 int base_known = cu->base_known;
801e3a5b 6719
be391dca 6720 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 6721 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
6722 {
6723 complaint (&symfile_complaints,
6724 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6725 offset);
6726 return;
6727 }
6728
6729 for (;;)
6730 {
6731 unsigned int bytes_read;
6732 CORE_ADDR start, end;
6733
6734 start = read_address (obfd, buffer, cu, &bytes_read);
6735 buffer += bytes_read;
6736 end = read_address (obfd, buffer, cu, &bytes_read);
6737 buffer += bytes_read;
6738
6739 /* Did we find the end of the range list? */
6740 if (start == 0 && end == 0)
6741 break;
6742
6743 /* Did we find a base address selection entry? */
6744 else if ((start & base_select_mask) == base_select_mask)
6745 {
6746 base = end;
6747 base_known = 1;
6748 }
6749
6750 /* We found an ordinary address range. */
6751 else
6752 {
6753 if (!base_known)
6754 {
6755 complaint (&symfile_complaints,
3e43a32a
MS
6756 _("Invalid .debug_ranges data "
6757 "(no base address)"));
801e3a5b
JB
6758 return;
6759 }
6760
9277c30c
UW
6761 if (start > end)
6762 {
6763 /* Inverted range entries are invalid. */
6764 complaint (&symfile_complaints,
6765 _("Invalid .debug_ranges data "
6766 "(inverted range)"));
6767 return;
6768 }
6769
6770 /* Empty range entries have no effect. */
6771 if (start == end)
6772 continue;
6773
6e70227d
DE
6774 record_block_range (block,
6775 baseaddr + base + start,
801e3a5b
JB
6776 baseaddr + base + end - 1);
6777 }
6778 }
6779 }
6780}
6781
60d5a603
JK
6782/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6783 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6784 during 4.6.0 experimental. */
6785
6786static int
6787producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6788{
6789 const char *cs;
6790 int major, minor, release;
6791
6792 if (cu->producer == NULL)
6793 {
6794 /* For unknown compilers expect their behavior is DWARF version
6795 compliant.
6796
6797 GCC started to support .debug_types sections by -gdwarf-4 since
6798 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6799 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6800 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6801 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6802
6803 return 0;
6804 }
6805
6806 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6807
6808 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6809 {
6810 /* For non-GCC compilers expect their behavior is DWARF version
6811 compliant. */
6812
6813 return 0;
6814 }
6815 cs = &cu->producer[strlen ("GNU ")];
6816 while (*cs && !isdigit (*cs))
6817 cs++;
6818 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6819 {
6820 /* Not recognized as GCC. */
6821
6822 return 0;
6823 }
6824
6825 return major < 4 || (major == 4 && minor < 6);
6826}
6827
6828/* Return the default accessibility type if it is not overriden by
6829 DW_AT_accessibility. */
6830
6831static enum dwarf_access_attribute
6832dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6833{
6834 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6835 {
6836 /* The default DWARF 2 accessibility for members is public, the default
6837 accessibility for inheritance is private. */
6838
6839 if (die->tag != DW_TAG_inheritance)
6840 return DW_ACCESS_public;
6841 else
6842 return DW_ACCESS_private;
6843 }
6844 else
6845 {
6846 /* DWARF 3+ defines the default accessibility a different way. The same
6847 rules apply now for DW_TAG_inheritance as for the members and it only
6848 depends on the container kind. */
6849
6850 if (die->parent->tag == DW_TAG_class_type)
6851 return DW_ACCESS_private;
6852 else
6853 return DW_ACCESS_public;
6854 }
6855}
6856
74ac6d43
TT
6857/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6858 offset. If the attribute was not found return 0, otherwise return
6859 1. If it was found but could not properly be handled, set *OFFSET
6860 to 0. */
6861
6862static int
6863handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6864 LONGEST *offset)
6865{
6866 struct attribute *attr;
6867
6868 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6869 if (attr != NULL)
6870 {
6871 *offset = 0;
6872
6873 /* Note that we do not check for a section offset first here.
6874 This is because DW_AT_data_member_location is new in DWARF 4,
6875 so if we see it, we can assume that a constant form is really
6876 a constant and not a section offset. */
6877 if (attr_form_is_constant (attr))
6878 *offset = dwarf2_get_attr_constant_value (attr, 0);
6879 else if (attr_form_is_section_offset (attr))
6880 dwarf2_complex_location_expr_complaint ();
6881 else if (attr_form_is_block (attr))
6882 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6883 else
6884 dwarf2_complex_location_expr_complaint ();
6885
6886 return 1;
6887 }
6888
6889 return 0;
6890}
6891
c906108c
SS
6892/* Add an aggregate field to the field list. */
6893
6894static void
107d2387 6895dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6896 struct dwarf2_cu *cu)
6e70227d 6897{
e7c27a73 6898 struct objfile *objfile = cu->objfile;
5e2b427d 6899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6900 struct nextfield *new_field;
6901 struct attribute *attr;
6902 struct field *fp;
6903 char *fieldname = "";
6904
6905 /* Allocate a new field list entry and link it in. */
6906 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6907 make_cleanup (xfree, new_field);
c906108c 6908 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6909
6910 if (die->tag == DW_TAG_inheritance)
6911 {
6912 new_field->next = fip->baseclasses;
6913 fip->baseclasses = new_field;
6914 }
6915 else
6916 {
6917 new_field->next = fip->fields;
6918 fip->fields = new_field;
6919 }
c906108c
SS
6920 fip->nfields++;
6921
e142c38c 6922 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6923 if (attr)
6924 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
6925 else
6926 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
6927 if (new_field->accessibility != DW_ACCESS_public)
6928 fip->non_public_fields = 1;
60d5a603 6929
e142c38c 6930 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6931 if (attr)
6932 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
6933 else
6934 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
6935
6936 fp = &new_field->field;
a9a9bd0f 6937
e142c38c 6938 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6939 {
74ac6d43
TT
6940 LONGEST offset;
6941
a9a9bd0f 6942 /* Data member other than a C++ static data member. */
6e70227d 6943
c906108c 6944 /* Get type of field. */
e7c27a73 6945 fp->type = die_type (die, cu);
c906108c 6946
d6a843b5 6947 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6948
c906108c 6949 /* Get bit size of field (zero if none). */
e142c38c 6950 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6951 if (attr)
6952 {
6953 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6954 }
6955 else
6956 {
6957 FIELD_BITSIZE (*fp) = 0;
6958 }
6959
6960 /* Get bit offset of field. */
74ac6d43
TT
6961 if (handle_data_member_location (die, cu, &offset))
6962 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 6963 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6964 if (attr)
6965 {
5e2b427d 6966 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6967 {
6968 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6969 additional bit offset from the MSB of the containing
6970 anonymous object to the MSB of the field. We don't
6971 have to do anything special since we don't need to
6972 know the size of the anonymous object. */
c906108c
SS
6973 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6974 }
6975 else
6976 {
6977 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6978 MSB of the anonymous object, subtract off the number of
6979 bits from the MSB of the field to the MSB of the
6980 object, and then subtract off the number of bits of
6981 the field itself. The result is the bit offset of
6982 the LSB of the field. */
c906108c
SS
6983 int anonymous_size;
6984 int bit_offset = DW_UNSND (attr);
6985
e142c38c 6986 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6987 if (attr)
6988 {
6989 /* The size of the anonymous object containing
6990 the bit field is explicit, so use the
6991 indicated size (in bytes). */
6992 anonymous_size = DW_UNSND (attr);
6993 }
6994 else
6995 {
6996 /* The size of the anonymous object containing
6997 the bit field must be inferred from the type
6998 attribute of the data member containing the
6999 bit field. */
7000 anonymous_size = TYPE_LENGTH (fp->type);
7001 }
7002 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7003 - bit_offset - FIELD_BITSIZE (*fp);
7004 }
7005 }
7006
7007 /* Get name of field. */
39cbfefa
DJ
7008 fieldname = dwarf2_name (die, cu);
7009 if (fieldname == NULL)
7010 fieldname = "";
d8151005
DJ
7011
7012 /* The name is already allocated along with this objfile, so we don't
7013 need to duplicate it for the type. */
7014 fp->name = fieldname;
c906108c
SS
7015
7016 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 7017 pointer or virtual base class pointer) to private. */
e142c38c 7018 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 7019 {
d48cc9dd 7020 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
7021 new_field->accessibility = DW_ACCESS_private;
7022 fip->non_public_fields = 1;
7023 }
7024 }
a9a9bd0f 7025 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 7026 {
a9a9bd0f
DC
7027 /* C++ static member. */
7028
7029 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7030 is a declaration, but all versions of G++ as of this writing
7031 (so through at least 3.2.1) incorrectly generate
7032 DW_TAG_variable tags. */
6e70227d 7033
ff355380 7034 const char *physname;
c906108c 7035
a9a9bd0f 7036 /* Get name of field. */
39cbfefa
DJ
7037 fieldname = dwarf2_name (die, cu);
7038 if (fieldname == NULL)
c906108c
SS
7039 return;
7040
254e6b9e 7041 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
7042 if (attr
7043 /* Only create a symbol if this is an external value.
7044 new_symbol checks this and puts the value in the global symbol
7045 table, which we want. If it is not external, new_symbol
7046 will try to put the value in cu->list_in_scope which is wrong. */
7047 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
7048 {
7049 /* A static const member, not much different than an enum as far as
7050 we're concerned, except that we can support more types. */
7051 new_symbol (die, NULL, cu);
7052 }
7053
2df3850c 7054 /* Get physical name. */
ff355380 7055 physname = dwarf2_physname (fieldname, die, cu);
c906108c 7056
d8151005
DJ
7057 /* The name is already allocated along with this objfile, so we don't
7058 need to duplicate it for the type. */
7059 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 7060 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 7061 FIELD_NAME (*fp) = fieldname;
c906108c
SS
7062 }
7063 else if (die->tag == DW_TAG_inheritance)
7064 {
74ac6d43 7065 LONGEST offset;
d4b96c9a 7066
74ac6d43
TT
7067 /* C++ base class field. */
7068 if (handle_data_member_location (die, cu, &offset))
7069 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 7070 FIELD_BITSIZE (*fp) = 0;
e7c27a73 7071 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
7072 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7073 fip->nbaseclasses++;
7074 }
7075}
7076
98751a41
JK
7077/* Add a typedef defined in the scope of the FIP's class. */
7078
7079static void
7080dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7081 struct dwarf2_cu *cu)
6e70227d 7082{
98751a41 7083 struct objfile *objfile = cu->objfile;
98751a41
JK
7084 struct typedef_field_list *new_field;
7085 struct attribute *attr;
7086 struct typedef_field *fp;
7087 char *fieldname = "";
7088
7089 /* Allocate a new field list entry and link it in. */
7090 new_field = xzalloc (sizeof (*new_field));
7091 make_cleanup (xfree, new_field);
7092
7093 gdb_assert (die->tag == DW_TAG_typedef);
7094
7095 fp = &new_field->field;
7096
7097 /* Get name of field. */
7098 fp->name = dwarf2_name (die, cu);
7099 if (fp->name == NULL)
7100 return;
7101
7102 fp->type = read_type_die (die, cu);
7103
7104 new_field->next = fip->typedef_field_list;
7105 fip->typedef_field_list = new_field;
7106 fip->typedef_field_list_count++;
7107}
7108
c906108c
SS
7109/* Create the vector of fields, and attach it to the type. */
7110
7111static void
fba45db2 7112dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 7113 struct dwarf2_cu *cu)
c906108c
SS
7114{
7115 int nfields = fip->nfields;
7116
7117 /* Record the field count, allocate space for the array of fields,
7118 and create blank accessibility bitfields if necessary. */
7119 TYPE_NFIELDS (type) = nfields;
7120 TYPE_FIELDS (type) = (struct field *)
7121 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7122 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7123
b4ba55a1 7124 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
7125 {
7126 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7127
7128 TYPE_FIELD_PRIVATE_BITS (type) =
7129 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7130 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7131
7132 TYPE_FIELD_PROTECTED_BITS (type) =
7133 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7134 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7135
774b6a14
TT
7136 TYPE_FIELD_IGNORE_BITS (type) =
7137 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7138 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
7139 }
7140
7141 /* If the type has baseclasses, allocate and clear a bit vector for
7142 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 7143 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
7144 {
7145 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 7146 unsigned char *pointer;
c906108c
SS
7147
7148 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
7149 pointer = TYPE_ALLOC (type, num_bytes);
7150 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
7151 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7152 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7153 }
7154
3e43a32a
MS
7155 /* Copy the saved-up fields into the field vector. Start from the head of
7156 the list, adding to the tail of the field array, so that they end up in
7157 the same order in the array in which they were added to the list. */
c906108c
SS
7158 while (nfields-- > 0)
7159 {
7d0ccb61
DJ
7160 struct nextfield *fieldp;
7161
7162 if (fip->fields)
7163 {
7164 fieldp = fip->fields;
7165 fip->fields = fieldp->next;
7166 }
7167 else
7168 {
7169 fieldp = fip->baseclasses;
7170 fip->baseclasses = fieldp->next;
7171 }
7172
7173 TYPE_FIELD (type, nfields) = fieldp->field;
7174 switch (fieldp->accessibility)
c906108c 7175 {
c5aa993b 7176 case DW_ACCESS_private:
b4ba55a1
JB
7177 if (cu->language != language_ada)
7178 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 7179 break;
c906108c 7180
c5aa993b 7181 case DW_ACCESS_protected:
b4ba55a1
JB
7182 if (cu->language != language_ada)
7183 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 7184 break;
c906108c 7185
c5aa993b
JM
7186 case DW_ACCESS_public:
7187 break;
c906108c 7188
c5aa993b
JM
7189 default:
7190 /* Unknown accessibility. Complain and treat it as public. */
7191 {
e2e0b3e5 7192 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 7193 fieldp->accessibility);
c5aa993b
JM
7194 }
7195 break;
c906108c
SS
7196 }
7197 if (nfields < fip->nbaseclasses)
7198 {
7d0ccb61 7199 switch (fieldp->virtuality)
c906108c 7200 {
c5aa993b
JM
7201 case DW_VIRTUALITY_virtual:
7202 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 7203 if (cu->language == language_ada)
a73c6dcd 7204 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
7205 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7206 break;
c906108c
SS
7207 }
7208 }
c906108c
SS
7209 }
7210}
7211
c906108c
SS
7212/* Add a member function to the proper fieldlist. */
7213
7214static void
107d2387 7215dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 7216 struct type *type, struct dwarf2_cu *cu)
c906108c 7217{
e7c27a73 7218 struct objfile *objfile = cu->objfile;
c906108c
SS
7219 struct attribute *attr;
7220 struct fnfieldlist *flp;
7221 int i;
7222 struct fn_field *fnp;
7223 char *fieldname;
c906108c 7224 struct nextfnfield *new_fnfield;
f792889a 7225 struct type *this_type;
60d5a603 7226 enum dwarf_access_attribute accessibility;
c906108c 7227
b4ba55a1 7228 if (cu->language == language_ada)
a73c6dcd 7229 error (_("unexpected member function in Ada type"));
b4ba55a1 7230
2df3850c 7231 /* Get name of member function. */
39cbfefa
DJ
7232 fieldname = dwarf2_name (die, cu);
7233 if (fieldname == NULL)
2df3850c 7234 return;
c906108c 7235
c906108c
SS
7236 /* Look up member function name in fieldlist. */
7237 for (i = 0; i < fip->nfnfields; i++)
7238 {
27bfe10e 7239 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
7240 break;
7241 }
7242
7243 /* Create new list element if necessary. */
7244 if (i < fip->nfnfields)
7245 flp = &fip->fnfieldlists[i];
7246 else
7247 {
7248 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7249 {
7250 fip->fnfieldlists = (struct fnfieldlist *)
7251 xrealloc (fip->fnfieldlists,
7252 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7253 * sizeof (struct fnfieldlist));
c906108c 7254 if (fip->nfnfields == 0)
c13c43fd 7255 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
7256 }
7257 flp = &fip->fnfieldlists[fip->nfnfields];
7258 flp->name = fieldname;
7259 flp->length = 0;
7260 flp->head = NULL;
3da10d80 7261 i = fip->nfnfields++;
c906108c
SS
7262 }
7263
7264 /* Create a new member function field and chain it to the field list
0963b4bd 7265 entry. */
c906108c 7266 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 7267 make_cleanup (xfree, new_fnfield);
c906108c
SS
7268 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7269 new_fnfield->next = flp->head;
7270 flp->head = new_fnfield;
7271 flp->length++;
7272
7273 /* Fill in the member function field info. */
7274 fnp = &new_fnfield->fnfield;
3da10d80
KS
7275
7276 /* Delay processing of the physname until later. */
7277 if (cu->language == language_cplus || cu->language == language_java)
7278 {
7279 add_to_method_list (type, i, flp->length - 1, fieldname,
7280 die, cu);
7281 }
7282 else
7283 {
1d06ead6 7284 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
7285 fnp->physname = physname ? physname : "";
7286 }
7287
c906108c 7288 fnp->type = alloc_type (objfile);
f792889a
DJ
7289 this_type = read_type_die (die, cu);
7290 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 7291 {
f792889a 7292 int nparams = TYPE_NFIELDS (this_type);
c906108c 7293
f792889a 7294 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
7295 of the method itself (TYPE_CODE_METHOD). */
7296 smash_to_method_type (fnp->type, type,
f792889a
DJ
7297 TYPE_TARGET_TYPE (this_type),
7298 TYPE_FIELDS (this_type),
7299 TYPE_NFIELDS (this_type),
7300 TYPE_VARARGS (this_type));
c906108c
SS
7301
7302 /* Handle static member functions.
c5aa993b 7303 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
7304 member functions. G++ helps GDB by marking the first
7305 parameter for non-static member functions (which is the this
7306 pointer) as artificial. We obtain this information from
7307 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 7308 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
7309 fnp->voffset = VOFFSET_STATIC;
7310 }
7311 else
e2e0b3e5 7312 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 7313 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
7314
7315 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 7316 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 7317 fnp->fcontext = die_containing_type (die, cu);
c906108c 7318
3e43a32a
MS
7319 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7320 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
7321
7322 /* Get accessibility. */
e142c38c 7323 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 7324 if (attr)
60d5a603
JK
7325 accessibility = DW_UNSND (attr);
7326 else
7327 accessibility = dwarf2_default_access_attribute (die, cu);
7328 switch (accessibility)
c906108c 7329 {
60d5a603
JK
7330 case DW_ACCESS_private:
7331 fnp->is_private = 1;
7332 break;
7333 case DW_ACCESS_protected:
7334 fnp->is_protected = 1;
7335 break;
c906108c
SS
7336 }
7337
b02dede2 7338 /* Check for artificial methods. */
e142c38c 7339 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
7340 if (attr && DW_UNSND (attr) != 0)
7341 fnp->is_artificial = 1;
7342
0d564a31 7343 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
7344 function. For older versions of GCC, this is an offset in the
7345 appropriate virtual table, as specified by DW_AT_containing_type.
7346 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
7347 to the object address. */
7348
e142c38c 7349 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 7350 if (attr)
8e19ed76 7351 {
aec5aa8b 7352 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 7353 {
aec5aa8b
TT
7354 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7355 {
7356 /* Old-style GCC. */
7357 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7358 }
7359 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7360 || (DW_BLOCK (attr)->size > 1
7361 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7362 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7363 {
7364 struct dwarf_block blk;
7365 int offset;
7366
7367 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7368 ? 1 : 2);
7369 blk.size = DW_BLOCK (attr)->size - offset;
7370 blk.data = DW_BLOCK (attr)->data + offset;
7371 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7372 if ((fnp->voffset % cu->header.addr_size) != 0)
7373 dwarf2_complex_location_expr_complaint ();
7374 else
7375 fnp->voffset /= cu->header.addr_size;
7376 fnp->voffset += 2;
7377 }
7378 else
7379 dwarf2_complex_location_expr_complaint ();
7380
7381 if (!fnp->fcontext)
7382 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7383 }
3690dd37 7384 else if (attr_form_is_section_offset (attr))
8e19ed76 7385 {
4d3c2250 7386 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7387 }
7388 else
7389 {
4d3c2250
KB
7390 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7391 fieldname);
8e19ed76 7392 }
0d564a31 7393 }
d48cc9dd
DJ
7394 else
7395 {
7396 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7397 if (attr && DW_UNSND (attr))
7398 {
7399 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7400 complaint (&symfile_complaints,
3e43a32a
MS
7401 _("Member function \"%s\" (offset %d) is virtual "
7402 "but the vtable offset is not specified"),
d48cc9dd 7403 fieldname, die->offset);
9655fd1a 7404 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
7405 TYPE_CPLUS_DYNAMIC (type) = 1;
7406 }
7407 }
c906108c
SS
7408}
7409
7410/* Create the vector of member function fields, and attach it to the type. */
7411
7412static void
fba45db2 7413dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 7414 struct dwarf2_cu *cu)
c906108c
SS
7415{
7416 struct fnfieldlist *flp;
c906108c
SS
7417 int i;
7418
b4ba55a1 7419 if (cu->language == language_ada)
a73c6dcd 7420 error (_("unexpected member functions in Ada type"));
b4ba55a1 7421
c906108c
SS
7422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7423 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7424 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7425
7426 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7427 {
7428 struct nextfnfield *nfp = flp->head;
7429 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7430 int k;
7431
7432 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7433 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7434 fn_flp->fn_fields = (struct fn_field *)
7435 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7436 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 7437 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
7438 }
7439
7440 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
7441}
7442
1168df01
JB
7443/* Returns non-zero if NAME is the name of a vtable member in CU's
7444 language, zero otherwise. */
7445static int
7446is_vtable_name (const char *name, struct dwarf2_cu *cu)
7447{
7448 static const char vptr[] = "_vptr";
987504bb 7449 static const char vtable[] = "vtable";
1168df01 7450
987504bb
JJ
7451 /* Look for the C++ and Java forms of the vtable. */
7452 if ((cu->language == language_java
7453 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7454 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7455 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
7456 return 1;
7457
7458 return 0;
7459}
7460
c0dd20ea 7461/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
7462 functions, with the ABI-specified layout. If TYPE describes
7463 such a structure, smash it into a member function type.
61049d3b
DJ
7464
7465 GCC shouldn't do this; it should just output pointer to member DIEs.
7466 This is GCC PR debug/28767. */
c0dd20ea 7467
0b92b5bb
TT
7468static void
7469quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 7470{
0b92b5bb 7471 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
7472
7473 /* Check for a structure with no name and two children. */
0b92b5bb
TT
7474 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7475 return;
c0dd20ea
DJ
7476
7477 /* Check for __pfn and __delta members. */
0b92b5bb
TT
7478 if (TYPE_FIELD_NAME (type, 0) == NULL
7479 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7480 || TYPE_FIELD_NAME (type, 1) == NULL
7481 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7482 return;
c0dd20ea
DJ
7483
7484 /* Find the type of the method. */
0b92b5bb 7485 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
7486 if (pfn_type == NULL
7487 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7488 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 7489 return;
c0dd20ea
DJ
7490
7491 /* Look for the "this" argument. */
7492 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7493 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 7494 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 7495 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 7496 return;
c0dd20ea
DJ
7497
7498 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
7499 new_type = alloc_type (objfile);
7500 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
7501 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7502 TYPE_VARARGS (pfn_type));
0b92b5bb 7503 smash_to_methodptr_type (type, new_type);
c0dd20ea 7504}
1168df01 7505
c906108c 7506/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
7507 (definition) to create a type for the structure or union. Fill in
7508 the type's name and general properties; the members will not be
7509 processed until process_structure_type.
c906108c 7510
c767944b
DJ
7511 NOTE: we need to call these functions regardless of whether or not the
7512 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
7513 structure or union. This gets the type entered into our set of
7514 user defined types.
7515
7516 However, if the structure is incomplete (an opaque struct/union)
7517 then suppress creating a symbol table entry for it since gdb only
7518 wants to find the one with the complete definition. Note that if
7519 it is complete, we just call new_symbol, which does it's own
7520 checking about whether the struct/union is anonymous or not (and
7521 suppresses creating a symbol table entry itself). */
7522
f792889a 7523static struct type *
134d01f1 7524read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7525{
e7c27a73 7526 struct objfile *objfile = cu->objfile;
c906108c
SS
7527 struct type *type;
7528 struct attribute *attr;
39cbfefa 7529 char *name;
c906108c 7530
348e048f
DE
7531 /* If the definition of this type lives in .debug_types, read that type.
7532 Don't follow DW_AT_specification though, that will take us back up
7533 the chain and we want to go down. */
7534 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7535 if (attr)
7536 {
7537 struct dwarf2_cu *type_cu = cu;
7538 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7539
348e048f
DE
7540 /* We could just recurse on read_structure_type, but we need to call
7541 get_die_type to ensure only one type for this DIE is created.
7542 This is important, for example, because for c++ classes we need
7543 TYPE_NAME set which is only done by new_symbol. Blech. */
7544 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7545
7546 /* TYPE_CU may not be the same as CU.
7547 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7548 return set_die_type (die, type, cu);
7549 }
7550
c0dd20ea 7551 type = alloc_type (objfile);
c906108c 7552 INIT_CPLUS_SPECIFIC (type);
93311388 7553
39cbfefa
DJ
7554 name = dwarf2_name (die, cu);
7555 if (name != NULL)
c906108c 7556 {
987504bb
JJ
7557 if (cu->language == language_cplus
7558 || cu->language == language_java)
63d06c5c 7559 {
3da10d80
KS
7560 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7561
7562 /* dwarf2_full_name might have already finished building the DIE's
7563 type. If so, there is no need to continue. */
7564 if (get_die_type (die, cu) != NULL)
7565 return get_die_type (die, cu);
7566
7567 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
7568 if (die->tag == DW_TAG_structure_type
7569 || die->tag == DW_TAG_class_type)
7570 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
7571 }
7572 else
7573 {
d8151005
DJ
7574 /* The name is already allocated along with this objfile, so
7575 we don't need to duplicate it for the type. */
94af9270
KS
7576 TYPE_TAG_NAME (type) = (char *) name;
7577 if (die->tag == DW_TAG_class_type)
7578 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 7579 }
c906108c
SS
7580 }
7581
7582 if (die->tag == DW_TAG_structure_type)
7583 {
7584 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7585 }
7586 else if (die->tag == DW_TAG_union_type)
7587 {
7588 TYPE_CODE (type) = TYPE_CODE_UNION;
7589 }
7590 else
7591 {
c906108c
SS
7592 TYPE_CODE (type) = TYPE_CODE_CLASS;
7593 }
7594
0cc2414c
TT
7595 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7596 TYPE_DECLARED_CLASS (type) = 1;
7597
e142c38c 7598 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7599 if (attr)
7600 {
7601 TYPE_LENGTH (type) = DW_UNSND (attr);
7602 }
7603 else
7604 {
7605 TYPE_LENGTH (type) = 0;
7606 }
7607
876cecd0 7608 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 7609 if (die_is_declaration (die, cu))
876cecd0 7610 TYPE_STUB (type) = 1;
a6c727b2
DJ
7611 else if (attr == NULL && die->child == NULL
7612 && producer_is_realview (cu->producer))
7613 /* RealView does not output the required DW_AT_declaration
7614 on incomplete types. */
7615 TYPE_STUB (type) = 1;
dc718098 7616
c906108c
SS
7617 /* We need to add the type field to the die immediately so we don't
7618 infinitely recurse when dealing with pointers to the structure
0963b4bd 7619 type within the structure itself. */
1c379e20 7620 set_die_type (die, type, cu);
c906108c 7621
7e314c57
JK
7622 /* set_die_type should be already done. */
7623 set_descriptive_type (type, die, cu);
7624
c767944b
DJ
7625 return type;
7626}
7627
7628/* Finish creating a structure or union type, including filling in
7629 its members and creating a symbol for it. */
7630
7631static void
7632process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7633{
7634 struct objfile *objfile = cu->objfile;
7635 struct die_info *child_die = die->child;
7636 struct type *type;
7637
7638 type = get_die_type (die, cu);
7639 if (type == NULL)
7640 type = read_structure_type (die, cu);
7641
e142c38c 7642 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
7643 {
7644 struct field_info fi;
7645 struct die_info *child_die;
34eaf542 7646 VEC (symbolp) *template_args = NULL;
c767944b 7647 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
7648
7649 memset (&fi, 0, sizeof (struct field_info));
7650
639d11d3 7651 child_die = die->child;
c906108c
SS
7652
7653 while (child_die && child_die->tag)
7654 {
a9a9bd0f
DC
7655 if (child_die->tag == DW_TAG_member
7656 || child_die->tag == DW_TAG_variable)
c906108c 7657 {
a9a9bd0f
DC
7658 /* NOTE: carlton/2002-11-05: A C++ static data member
7659 should be a DW_TAG_member that is a declaration, but
7660 all versions of G++ as of this writing (so through at
7661 least 3.2.1) incorrectly generate DW_TAG_variable
7662 tags for them instead. */
e7c27a73 7663 dwarf2_add_field (&fi, child_die, cu);
c906108c 7664 }
8713b1b1 7665 else if (child_die->tag == DW_TAG_subprogram)
c906108c 7666 {
0963b4bd 7667 /* C++ member function. */
e7c27a73 7668 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
7669 }
7670 else if (child_die->tag == DW_TAG_inheritance)
7671 {
7672 /* C++ base class field. */
e7c27a73 7673 dwarf2_add_field (&fi, child_die, cu);
c906108c 7674 }
98751a41
JK
7675 else if (child_die->tag == DW_TAG_typedef)
7676 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
7677 else if (child_die->tag == DW_TAG_template_type_param
7678 || child_die->tag == DW_TAG_template_value_param)
7679 {
7680 struct symbol *arg = new_symbol (child_die, NULL, cu);
7681
f1078f66
DJ
7682 if (arg != NULL)
7683 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
7684 }
7685
c906108c
SS
7686 child_die = sibling_die (child_die);
7687 }
7688
34eaf542
TT
7689 /* Attach template arguments to type. */
7690 if (! VEC_empty (symbolp, template_args))
7691 {
7692 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7693 TYPE_N_TEMPLATE_ARGUMENTS (type)
7694 = VEC_length (symbolp, template_args);
7695 TYPE_TEMPLATE_ARGUMENTS (type)
7696 = obstack_alloc (&objfile->objfile_obstack,
7697 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7698 * sizeof (struct symbol *)));
7699 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7700 VEC_address (symbolp, template_args),
7701 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7702 * sizeof (struct symbol *)));
7703 VEC_free (symbolp, template_args);
7704 }
7705
c906108c
SS
7706 /* Attach fields and member functions to the type. */
7707 if (fi.nfields)
e7c27a73 7708 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
7709 if (fi.nfnfields)
7710 {
e7c27a73 7711 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 7712
c5aa993b 7713 /* Get the type which refers to the base class (possibly this
c906108c 7714 class itself) which contains the vtable pointer for the current
0d564a31
DJ
7715 class from the DW_AT_containing_type attribute. This use of
7716 DW_AT_containing_type is a GNU extension. */
c906108c 7717
e142c38c 7718 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 7719 {
e7c27a73 7720 struct type *t = die_containing_type (die, cu);
c906108c
SS
7721
7722 TYPE_VPTR_BASETYPE (type) = t;
7723 if (type == t)
7724 {
c906108c
SS
7725 int i;
7726
7727 /* Our own class provides vtbl ptr. */
7728 for (i = TYPE_NFIELDS (t) - 1;
7729 i >= TYPE_N_BASECLASSES (t);
7730 --i)
7731 {
7732 char *fieldname = TYPE_FIELD_NAME (t, i);
7733
1168df01 7734 if (is_vtable_name (fieldname, cu))
c906108c
SS
7735 {
7736 TYPE_VPTR_FIELDNO (type) = i;
7737 break;
7738 }
7739 }
7740
7741 /* Complain if virtual function table field not found. */
7742 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 7743 complaint (&symfile_complaints,
3e43a32a
MS
7744 _("virtual function table pointer "
7745 "not found when defining class '%s'"),
4d3c2250
KB
7746 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7747 "");
c906108c
SS
7748 }
7749 else
7750 {
7751 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7752 }
7753 }
f6235d4c
EZ
7754 else if (cu->producer
7755 && strncmp (cu->producer,
7756 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7757 {
7758 /* The IBM XLC compiler does not provide direct indication
7759 of the containing type, but the vtable pointer is
7760 always named __vfp. */
7761
7762 int i;
7763
7764 for (i = TYPE_NFIELDS (type) - 1;
7765 i >= TYPE_N_BASECLASSES (type);
7766 --i)
7767 {
7768 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7769 {
7770 TYPE_VPTR_FIELDNO (type) = i;
7771 TYPE_VPTR_BASETYPE (type) = type;
7772 break;
7773 }
7774 }
7775 }
c906108c 7776 }
98751a41
JK
7777
7778 /* Copy fi.typedef_field_list linked list elements content into the
7779 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7780 if (fi.typedef_field_list)
7781 {
7782 int i = fi.typedef_field_list_count;
7783
a0d7a4ff 7784 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
7785 TYPE_TYPEDEF_FIELD_ARRAY (type)
7786 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7787 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7788
7789 /* Reverse the list order to keep the debug info elements order. */
7790 while (--i >= 0)
7791 {
7792 struct typedef_field *dest, *src;
6e70227d 7793
98751a41
JK
7794 dest = &TYPE_TYPEDEF_FIELD (type, i);
7795 src = &fi.typedef_field_list->field;
7796 fi.typedef_field_list = fi.typedef_field_list->next;
7797 *dest = *src;
7798 }
7799 }
c767944b
DJ
7800
7801 do_cleanups (back_to);
eb2a6f42
TT
7802
7803 if (HAVE_CPLUS_STRUCT (type))
7804 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 7805 }
63d06c5c 7806
bb5ed363 7807 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 7808
90aeadfc
DC
7809 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7810 snapshots) has been known to create a die giving a declaration
7811 for a class that has, as a child, a die giving a definition for a
7812 nested class. So we have to process our children even if the
7813 current die is a declaration. Normally, of course, a declaration
7814 won't have any children at all. */
134d01f1 7815
90aeadfc
DC
7816 while (child_die != NULL && child_die->tag)
7817 {
7818 if (child_die->tag == DW_TAG_member
7819 || child_die->tag == DW_TAG_variable
34eaf542
TT
7820 || child_die->tag == DW_TAG_inheritance
7821 || child_die->tag == DW_TAG_template_value_param
7822 || child_die->tag == DW_TAG_template_type_param)
134d01f1 7823 {
90aeadfc 7824 /* Do nothing. */
134d01f1 7825 }
90aeadfc
DC
7826 else
7827 process_die (child_die, cu);
134d01f1 7828
90aeadfc 7829 child_die = sibling_die (child_die);
134d01f1
DJ
7830 }
7831
fa4028e9
JB
7832 /* Do not consider external references. According to the DWARF standard,
7833 these DIEs are identified by the fact that they have no byte_size
7834 attribute, and a declaration attribute. */
7835 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7836 || !die_is_declaration (die, cu))
c767944b 7837 new_symbol (die, type, cu);
134d01f1
DJ
7838}
7839
7840/* Given a DW_AT_enumeration_type die, set its type. We do not
7841 complete the type's fields yet, or create any symbols. */
c906108c 7842
f792889a 7843static struct type *
134d01f1 7844read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7845{
e7c27a73 7846 struct objfile *objfile = cu->objfile;
c906108c 7847 struct type *type;
c906108c 7848 struct attribute *attr;
0114d602 7849 const char *name;
134d01f1 7850
348e048f
DE
7851 /* If the definition of this type lives in .debug_types, read that type.
7852 Don't follow DW_AT_specification though, that will take us back up
7853 the chain and we want to go down. */
7854 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7855 if (attr)
7856 {
7857 struct dwarf2_cu *type_cu = cu;
7858 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7859
348e048f 7860 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7861
7862 /* TYPE_CU may not be the same as CU.
7863 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7864 return set_die_type (die, type, cu);
7865 }
7866
c906108c
SS
7867 type = alloc_type (objfile);
7868
7869 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7870 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7871 if (name != NULL)
0114d602 7872 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7873
e142c38c 7874 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7875 if (attr)
7876 {
7877 TYPE_LENGTH (type) = DW_UNSND (attr);
7878 }
7879 else
7880 {
7881 TYPE_LENGTH (type) = 0;
7882 }
7883
137033e9
JB
7884 /* The enumeration DIE can be incomplete. In Ada, any type can be
7885 declared as private in the package spec, and then defined only
7886 inside the package body. Such types are known as Taft Amendment
7887 Types. When another package uses such a type, an incomplete DIE
7888 may be generated by the compiler. */
02eb380e 7889 if (die_is_declaration (die, cu))
876cecd0 7890 TYPE_STUB (type) = 1;
02eb380e 7891
f792889a 7892 return set_die_type (die, type, cu);
134d01f1
DJ
7893}
7894
7895/* Given a pointer to a die which begins an enumeration, process all
7896 the dies that define the members of the enumeration, and create the
7897 symbol for the enumeration type.
7898
7899 NOTE: We reverse the order of the element list. */
7900
7901static void
7902process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7903{
f792889a 7904 struct type *this_type;
134d01f1 7905
f792889a
DJ
7906 this_type = get_die_type (die, cu);
7907 if (this_type == NULL)
7908 this_type = read_enumeration_type (die, cu);
9dc481d3 7909
639d11d3 7910 if (die->child != NULL)
c906108c 7911 {
9dc481d3
DE
7912 struct die_info *child_die;
7913 struct symbol *sym;
7914 struct field *fields = NULL;
7915 int num_fields = 0;
7916 int unsigned_enum = 1;
7917 char *name;
cafec441
TT
7918 int flag_enum = 1;
7919 ULONGEST mask = 0;
9dc481d3 7920
639d11d3 7921 child_die = die->child;
c906108c
SS
7922 while (child_die && child_die->tag)
7923 {
7924 if (child_die->tag != DW_TAG_enumerator)
7925 {
e7c27a73 7926 process_die (child_die, cu);
c906108c
SS
7927 }
7928 else
7929 {
39cbfefa
DJ
7930 name = dwarf2_name (child_die, cu);
7931 if (name)
c906108c 7932 {
f792889a 7933 sym = new_symbol (child_die, this_type, cu);
c906108c 7934 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
7935 {
7936 unsigned_enum = 0;
7937 flag_enum = 0;
7938 }
7939 else if ((mask & SYMBOL_VALUE (sym)) != 0)
7940 flag_enum = 0;
7941 else
7942 mask |= SYMBOL_VALUE (sym);
c906108c
SS
7943
7944 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7945 {
7946 fields = (struct field *)
7947 xrealloc (fields,
7948 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7949 * sizeof (struct field));
c906108c
SS
7950 }
7951
3567439c 7952 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7953 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7954 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7955 FIELD_BITSIZE (fields[num_fields]) = 0;
7956
7957 num_fields++;
7958 }
7959 }
7960
7961 child_die = sibling_die (child_die);
7962 }
7963
7964 if (num_fields)
7965 {
f792889a
DJ
7966 TYPE_NFIELDS (this_type) = num_fields;
7967 TYPE_FIELDS (this_type) = (struct field *)
7968 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7969 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7970 sizeof (struct field) * num_fields);
b8c9b27d 7971 xfree (fields);
c906108c
SS
7972 }
7973 if (unsigned_enum)
876cecd0 7974 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
7975 if (flag_enum)
7976 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 7977 }
134d01f1 7978
6c83ed52
TT
7979 /* If we are reading an enum from a .debug_types unit, and the enum
7980 is a declaration, and the enum is not the signatured type in the
7981 unit, then we do not want to add a symbol for it. Adding a
7982 symbol would in some cases obscure the true definition of the
7983 enum, giving users an incomplete type when the definition is
7984 actually available. Note that we do not want to do this for all
7985 enums which are just declarations, because C++0x allows forward
7986 enum declarations. */
b0df02fd 7987 if (cu->per_cu->debug_types_section
6c83ed52
TT
7988 && die_is_declaration (die, cu))
7989 {
7990 struct signatured_type *type_sig;
7991
7992 type_sig
7993 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
b0df02fd 7994 cu->per_cu->debug_types_section,
6c83ed52
TT
7995 cu->per_cu->offset);
7996 if (type_sig->type_offset != die->offset)
7997 return;
7998 }
7999
f792889a 8000 new_symbol (die, this_type, cu);
c906108c
SS
8001}
8002
8003/* Extract all information from a DW_TAG_array_type DIE and put it in
8004 the DIE's type field. For now, this only handles one dimensional
8005 arrays. */
8006
f792889a 8007static struct type *
e7c27a73 8008read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8009{
e7c27a73 8010 struct objfile *objfile = cu->objfile;
c906108c 8011 struct die_info *child_die;
7e314c57 8012 struct type *type;
c906108c
SS
8013 struct type *element_type, *range_type, *index_type;
8014 struct type **range_types = NULL;
8015 struct attribute *attr;
8016 int ndim = 0;
8017 struct cleanup *back_to;
39cbfefa 8018 char *name;
c906108c 8019
e7c27a73 8020 element_type = die_type (die, cu);
c906108c 8021
7e314c57
JK
8022 /* The die_type call above may have already set the type for this DIE. */
8023 type = get_die_type (die, cu);
8024 if (type)
8025 return type;
8026
c906108c
SS
8027 /* Irix 6.2 native cc creates array types without children for
8028 arrays with unspecified length. */
639d11d3 8029 if (die->child == NULL)
c906108c 8030 {
46bf5051 8031 index_type = objfile_type (objfile)->builtin_int;
c906108c 8032 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
8033 type = create_array_type (NULL, element_type, range_type);
8034 return set_die_type (die, type, cu);
c906108c
SS
8035 }
8036
8037 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 8038 child_die = die->child;
c906108c
SS
8039 while (child_die && child_die->tag)
8040 {
8041 if (child_die->tag == DW_TAG_subrange_type)
8042 {
f792889a 8043 struct type *child_type = read_type_die (child_die, cu);
9a619af0 8044
f792889a 8045 if (child_type != NULL)
a02abb62 8046 {
0963b4bd
MS
8047 /* The range type was succesfully read. Save it for the
8048 array type creation. */
a02abb62
JB
8049 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8050 {
8051 range_types = (struct type **)
8052 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8053 * sizeof (struct type *));
8054 if (ndim == 0)
8055 make_cleanup (free_current_contents, &range_types);
8056 }
f792889a 8057 range_types[ndim++] = child_type;
a02abb62 8058 }
c906108c
SS
8059 }
8060 child_die = sibling_die (child_die);
8061 }
8062
8063 /* Dwarf2 dimensions are output from left to right, create the
8064 necessary array types in backwards order. */
7ca2d3a3 8065
c906108c 8066 type = element_type;
7ca2d3a3
DL
8067
8068 if (read_array_order (die, cu) == DW_ORD_col_major)
8069 {
8070 int i = 0;
9a619af0 8071
7ca2d3a3
DL
8072 while (i < ndim)
8073 type = create_array_type (NULL, type, range_types[i++]);
8074 }
8075 else
8076 {
8077 while (ndim-- > 0)
8078 type = create_array_type (NULL, type, range_types[ndim]);
8079 }
c906108c 8080
f5f8a009
EZ
8081 /* Understand Dwarf2 support for vector types (like they occur on
8082 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8083 array type. This is not part of the Dwarf2/3 standard yet, but a
8084 custom vendor extension. The main difference between a regular
8085 array and the vector variant is that vectors are passed by value
8086 to functions. */
e142c38c 8087 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 8088 if (attr)
ea37ba09 8089 make_vector_type (type);
f5f8a009 8090
dbc98a8b
KW
8091 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8092 implementation may choose to implement triple vectors using this
8093 attribute. */
8094 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8095 if (attr)
8096 {
8097 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8098 TYPE_LENGTH (type) = DW_UNSND (attr);
8099 else
3e43a32a
MS
8100 complaint (&symfile_complaints,
8101 _("DW_AT_byte_size for array type smaller "
8102 "than the total size of elements"));
dbc98a8b
KW
8103 }
8104
39cbfefa
DJ
8105 name = dwarf2_name (die, cu);
8106 if (name)
8107 TYPE_NAME (type) = name;
6e70227d 8108
0963b4bd 8109 /* Install the type in the die. */
7e314c57
JK
8110 set_die_type (die, type, cu);
8111
8112 /* set_die_type should be already done. */
b4ba55a1
JB
8113 set_descriptive_type (type, die, cu);
8114
c906108c
SS
8115 do_cleanups (back_to);
8116
7e314c57 8117 return type;
c906108c
SS
8118}
8119
7ca2d3a3 8120static enum dwarf_array_dim_ordering
6e70227d 8121read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
8122{
8123 struct attribute *attr;
8124
8125 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8126
8127 if (attr) return DW_SND (attr);
8128
0963b4bd
MS
8129 /* GNU F77 is a special case, as at 08/2004 array type info is the
8130 opposite order to the dwarf2 specification, but data is still
8131 laid out as per normal fortran.
7ca2d3a3 8132
0963b4bd
MS
8133 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8134 version checking. */
7ca2d3a3 8135
905e0470
PM
8136 if (cu->language == language_fortran
8137 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
8138 {
8139 return DW_ORD_row_major;
8140 }
8141
6e70227d 8142 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
8143 {
8144 case array_column_major:
8145 return DW_ORD_col_major;
8146 case array_row_major:
8147 default:
8148 return DW_ORD_row_major;
8149 };
8150}
8151
72019c9c 8152/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 8153 the DIE's type field. */
72019c9c 8154
f792889a 8155static struct type *
72019c9c
GM
8156read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8157{
7e314c57
JK
8158 struct type *domain_type, *set_type;
8159 struct attribute *attr;
f792889a 8160
7e314c57
JK
8161 domain_type = die_type (die, cu);
8162
8163 /* The die_type call above may have already set the type for this DIE. */
8164 set_type = get_die_type (die, cu);
8165 if (set_type)
8166 return set_type;
8167
8168 set_type = create_set_type (NULL, domain_type);
8169
8170 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
8171 if (attr)
8172 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 8173
f792889a 8174 return set_die_type (die, set_type, cu);
72019c9c 8175}
7ca2d3a3 8176
c906108c
SS
8177/* First cut: install each common block member as a global variable. */
8178
8179static void
e7c27a73 8180read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8181{
8182 struct die_info *child_die;
8183 struct attribute *attr;
8184 struct symbol *sym;
8185 CORE_ADDR base = (CORE_ADDR) 0;
8186
e142c38c 8187 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8188 if (attr)
8189 {
0963b4bd 8190 /* Support the .debug_loc offsets. */
8e19ed76
PS
8191 if (attr_form_is_block (attr))
8192 {
e7c27a73 8193 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 8194 }
3690dd37 8195 else if (attr_form_is_section_offset (attr))
8e19ed76 8196 {
4d3c2250 8197 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
8198 }
8199 else
8200 {
4d3c2250
KB
8201 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8202 "common block member");
8e19ed76 8203 }
c906108c 8204 }
639d11d3 8205 if (die->child != NULL)
c906108c 8206 {
639d11d3 8207 child_die = die->child;
c906108c
SS
8208 while (child_die && child_die->tag)
8209 {
74ac6d43
TT
8210 LONGEST offset;
8211
e7c27a73 8212 sym = new_symbol (child_die, NULL, cu);
e8d28ef4
TT
8213 if (sym != NULL
8214 && handle_data_member_location (child_die, cu, &offset))
c906108c 8215 {
74ac6d43 8216 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
c906108c
SS
8217 add_symbol_to_list (sym, &global_symbols);
8218 }
8219 child_die = sibling_die (child_die);
8220 }
8221 }
8222}
8223
0114d602 8224/* Create a type for a C++ namespace. */
d9fa45fe 8225
0114d602
DJ
8226static struct type *
8227read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 8228{
e7c27a73 8229 struct objfile *objfile = cu->objfile;
0114d602 8230 const char *previous_prefix, *name;
9219021c 8231 int is_anonymous;
0114d602
DJ
8232 struct type *type;
8233
8234 /* For extensions, reuse the type of the original namespace. */
8235 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8236 {
8237 struct die_info *ext_die;
8238 struct dwarf2_cu *ext_cu = cu;
9a619af0 8239
0114d602
DJ
8240 ext_die = dwarf2_extension (die, &ext_cu);
8241 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
8242
8243 /* EXT_CU may not be the same as CU.
8244 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
8245 return set_die_type (die, type, cu);
8246 }
9219021c 8247
e142c38c 8248 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
8249
8250 /* Now build the name of the current namespace. */
8251
0114d602
DJ
8252 previous_prefix = determine_prefix (die, cu);
8253 if (previous_prefix[0] != '\0')
8254 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 8255 previous_prefix, name, 0, cu);
0114d602
DJ
8256
8257 /* Create the type. */
8258 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8259 objfile);
8260 TYPE_NAME (type) = (char *) name;
8261 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8262
60531b24 8263 return set_die_type (die, type, cu);
0114d602
DJ
8264}
8265
8266/* Read a C++ namespace. */
8267
8268static void
8269read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8270{
8271 struct objfile *objfile = cu->objfile;
0114d602 8272 int is_anonymous;
9219021c 8273
5c4e30ca
DC
8274 /* Add a symbol associated to this if we haven't seen the namespace
8275 before. Also, add a using directive if it's an anonymous
8276 namespace. */
9219021c 8277
f2f0e013 8278 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
8279 {
8280 struct type *type;
8281
0114d602 8282 type = read_type_die (die, cu);
e7c27a73 8283 new_symbol (die, type, cu);
5c4e30ca 8284
e8e80198 8285 namespace_name (die, &is_anonymous, cu);
5c4e30ca 8286 if (is_anonymous)
0114d602
DJ
8287 {
8288 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 8289
c0cc3a76 8290 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
32019081 8291 NULL, NULL, &objfile->objfile_obstack);
0114d602 8292 }
5c4e30ca 8293 }
9219021c 8294
639d11d3 8295 if (die->child != NULL)
d9fa45fe 8296 {
639d11d3 8297 struct die_info *child_die = die->child;
6e70227d 8298
d9fa45fe
DC
8299 while (child_die && child_die->tag)
8300 {
e7c27a73 8301 process_die (child_die, cu);
d9fa45fe
DC
8302 child_die = sibling_die (child_die);
8303 }
8304 }
38d518c9
EZ
8305}
8306
f55ee35c
JK
8307/* Read a Fortran module as type. This DIE can be only a declaration used for
8308 imported module. Still we need that type as local Fortran "use ... only"
8309 declaration imports depend on the created type in determine_prefix. */
8310
8311static struct type *
8312read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8313{
8314 struct objfile *objfile = cu->objfile;
8315 char *module_name;
8316 struct type *type;
8317
8318 module_name = dwarf2_name (die, cu);
8319 if (!module_name)
3e43a32a
MS
8320 complaint (&symfile_complaints,
8321 _("DW_TAG_module has no name, offset 0x%x"),
f55ee35c
JK
8322 die->offset);
8323 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8324
8325 /* determine_prefix uses TYPE_TAG_NAME. */
8326 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8327
8328 return set_die_type (die, type, cu);
8329}
8330
5d7cb8df
JK
8331/* Read a Fortran module. */
8332
8333static void
8334read_module (struct die_info *die, struct dwarf2_cu *cu)
8335{
8336 struct die_info *child_die = die->child;
8337
5d7cb8df
JK
8338 while (child_die && child_die->tag)
8339 {
8340 process_die (child_die, cu);
8341 child_die = sibling_die (child_die);
8342 }
8343}
8344
38d518c9
EZ
8345/* Return the name of the namespace represented by DIE. Set
8346 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8347 namespace. */
8348
8349static const char *
e142c38c 8350namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
8351{
8352 struct die_info *current_die;
8353 const char *name = NULL;
8354
8355 /* Loop through the extensions until we find a name. */
8356
8357 for (current_die = die;
8358 current_die != NULL;
f2f0e013 8359 current_die = dwarf2_extension (die, &cu))
38d518c9 8360 {
e142c38c 8361 name = dwarf2_name (current_die, cu);
38d518c9
EZ
8362 if (name != NULL)
8363 break;
8364 }
8365
8366 /* Is it an anonymous namespace? */
8367
8368 *is_anonymous = (name == NULL);
8369 if (*is_anonymous)
2b1dbab0 8370 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
8371
8372 return name;
d9fa45fe
DC
8373}
8374
c906108c
SS
8375/* Extract all information from a DW_TAG_pointer_type DIE and add to
8376 the user defined type vector. */
8377
f792889a 8378static struct type *
e7c27a73 8379read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8380{
5e2b427d 8381 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 8382 struct comp_unit_head *cu_header = &cu->header;
c906108c 8383 struct type *type;
8b2dbe47
KB
8384 struct attribute *attr_byte_size;
8385 struct attribute *attr_address_class;
8386 int byte_size, addr_class;
7e314c57
JK
8387 struct type *target_type;
8388
8389 target_type = die_type (die, cu);
c906108c 8390
7e314c57
JK
8391 /* The die_type call above may have already set the type for this DIE. */
8392 type = get_die_type (die, cu);
8393 if (type)
8394 return type;
8395
8396 type = lookup_pointer_type (target_type);
8b2dbe47 8397
e142c38c 8398 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
8399 if (attr_byte_size)
8400 byte_size = DW_UNSND (attr_byte_size);
c906108c 8401 else
8b2dbe47
KB
8402 byte_size = cu_header->addr_size;
8403
e142c38c 8404 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
8405 if (attr_address_class)
8406 addr_class = DW_UNSND (attr_address_class);
8407 else
8408 addr_class = DW_ADDR_none;
8409
8410 /* If the pointer size or address class is different than the
8411 default, create a type variant marked as such and set the
8412 length accordingly. */
8413 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 8414 {
5e2b427d 8415 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
8416 {
8417 int type_flags;
8418
849957d9 8419 type_flags = gdbarch_address_class_type_flags
5e2b427d 8420 (gdbarch, byte_size, addr_class);
876cecd0
TT
8421 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8422 == 0);
8b2dbe47
KB
8423 type = make_type_with_address_space (type, type_flags);
8424 }
8425 else if (TYPE_LENGTH (type) != byte_size)
8426 {
3e43a32a
MS
8427 complaint (&symfile_complaints,
8428 _("invalid pointer size %d"), byte_size);
8b2dbe47 8429 }
6e70227d 8430 else
9a619af0
MS
8431 {
8432 /* Should we also complain about unhandled address classes? */
8433 }
c906108c 8434 }
8b2dbe47
KB
8435
8436 TYPE_LENGTH (type) = byte_size;
f792889a 8437 return set_die_type (die, type, cu);
c906108c
SS
8438}
8439
8440/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8441 the user defined type vector. */
8442
f792889a 8443static struct type *
e7c27a73 8444read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8445{
8446 struct type *type;
8447 struct type *to_type;
8448 struct type *domain;
8449
e7c27a73
DJ
8450 to_type = die_type (die, cu);
8451 domain = die_containing_type (die, cu);
0d5de010 8452
7e314c57
JK
8453 /* The calls above may have already set the type for this DIE. */
8454 type = get_die_type (die, cu);
8455 if (type)
8456 return type;
8457
0d5de010
DJ
8458 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8459 type = lookup_methodptr_type (to_type);
8460 else
8461 type = lookup_memberptr_type (to_type, domain);
c906108c 8462
f792889a 8463 return set_die_type (die, type, cu);
c906108c
SS
8464}
8465
8466/* Extract all information from a DW_TAG_reference_type DIE and add to
8467 the user defined type vector. */
8468
f792889a 8469static struct type *
e7c27a73 8470read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8471{
e7c27a73 8472 struct comp_unit_head *cu_header = &cu->header;
7e314c57 8473 struct type *type, *target_type;
c906108c
SS
8474 struct attribute *attr;
8475
7e314c57
JK
8476 target_type = die_type (die, cu);
8477
8478 /* The die_type call above may have already set the type for this DIE. */
8479 type = get_die_type (die, cu);
8480 if (type)
8481 return type;
8482
8483 type = lookup_reference_type (target_type);
e142c38c 8484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8485 if (attr)
8486 {
8487 TYPE_LENGTH (type) = DW_UNSND (attr);
8488 }
8489 else
8490 {
107d2387 8491 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 8492 }
f792889a 8493 return set_die_type (die, type, cu);
c906108c
SS
8494}
8495
f792889a 8496static struct type *
e7c27a73 8497read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8498{
f792889a 8499 struct type *base_type, *cv_type;
c906108c 8500
e7c27a73 8501 base_type = die_type (die, cu);
7e314c57
JK
8502
8503 /* The die_type call above may have already set the type for this DIE. */
8504 cv_type = get_die_type (die, cu);
8505 if (cv_type)
8506 return cv_type;
8507
2f608a3a
KW
8508 /* In case the const qualifier is applied to an array type, the element type
8509 is so qualified, not the array type (section 6.7.3 of C99). */
8510 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8511 {
8512 struct type *el_type, *inner_array;
8513
8514 base_type = copy_type (base_type);
8515 inner_array = base_type;
8516
8517 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8518 {
8519 TYPE_TARGET_TYPE (inner_array) =
8520 copy_type (TYPE_TARGET_TYPE (inner_array));
8521 inner_array = TYPE_TARGET_TYPE (inner_array);
8522 }
8523
8524 el_type = TYPE_TARGET_TYPE (inner_array);
8525 TYPE_TARGET_TYPE (inner_array) =
8526 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8527
8528 return set_die_type (die, base_type, cu);
8529 }
8530
f792889a
DJ
8531 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8532 return set_die_type (die, cv_type, cu);
c906108c
SS
8533}
8534
f792889a 8535static struct type *
e7c27a73 8536read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8537{
f792889a 8538 struct type *base_type, *cv_type;
c906108c 8539
e7c27a73 8540 base_type = die_type (die, cu);
7e314c57
JK
8541
8542 /* The die_type call above may have already set the type for this DIE. */
8543 cv_type = get_die_type (die, cu);
8544 if (cv_type)
8545 return cv_type;
8546
f792889a
DJ
8547 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8548 return set_die_type (die, cv_type, cu);
c906108c
SS
8549}
8550
8551/* Extract all information from a DW_TAG_string_type DIE and add to
8552 the user defined type vector. It isn't really a user defined type,
8553 but it behaves like one, with other DIE's using an AT_user_def_type
8554 attribute to reference it. */
8555
f792889a 8556static struct type *
e7c27a73 8557read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8558{
e7c27a73 8559 struct objfile *objfile = cu->objfile;
3b7538c0 8560 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
8561 struct type *type, *range_type, *index_type, *char_type;
8562 struct attribute *attr;
8563 unsigned int length;
8564
e142c38c 8565 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
8566 if (attr)
8567 {
8568 length = DW_UNSND (attr);
8569 }
8570 else
8571 {
0963b4bd 8572 /* Check for the DW_AT_byte_size attribute. */
e142c38c 8573 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
8574 if (attr)
8575 {
8576 length = DW_UNSND (attr);
8577 }
8578 else
8579 {
8580 length = 1;
8581 }
c906108c 8582 }
6ccb9162 8583
46bf5051 8584 index_type = objfile_type (objfile)->builtin_int;
c906108c 8585 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
8586 char_type = language_string_char_type (cu->language_defn, gdbarch);
8587 type = create_string_type (NULL, char_type, range_type);
6ccb9162 8588
f792889a 8589 return set_die_type (die, type, cu);
c906108c
SS
8590}
8591
8592/* Handle DIES due to C code like:
8593
8594 struct foo
c5aa993b
JM
8595 {
8596 int (*funcp)(int a, long l);
8597 int b;
8598 };
c906108c 8599
0963b4bd 8600 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 8601
f792889a 8602static struct type *
e7c27a73 8603read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8604{
bb5ed363 8605 struct objfile *objfile = cu->objfile;
0963b4bd
MS
8606 struct type *type; /* Type that this function returns. */
8607 struct type *ftype; /* Function that returns above type. */
c906108c
SS
8608 struct attribute *attr;
8609
e7c27a73 8610 type = die_type (die, cu);
7e314c57
JK
8611
8612 /* The die_type call above may have already set the type for this DIE. */
8613 ftype = get_die_type (die, cu);
8614 if (ftype)
8615 return ftype;
8616
0c8b41f1 8617 ftype = lookup_function_type (type);
c906108c 8618
5b8101ae 8619 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 8620 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 8621 if ((attr && (DW_UNSND (attr) != 0))
987504bb 8622 || cu->language == language_cplus
5b8101ae
PM
8623 || cu->language == language_java
8624 || cu->language == language_pascal)
876cecd0 8625 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
8626 else if (producer_is_realview (cu->producer))
8627 /* RealView does not emit DW_AT_prototyped. We can not
8628 distinguish prototyped and unprototyped functions; default to
8629 prototyped, since that is more common in modern code (and
8630 RealView warns about unprototyped functions). */
8631 TYPE_PROTOTYPED (ftype) = 1;
c906108c 8632
c055b101
CV
8633 /* Store the calling convention in the type if it's available in
8634 the subroutine die. Otherwise set the calling convention to
8635 the default value DW_CC_normal. */
8636 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
8637 if (attr)
8638 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8639 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8640 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8641 else
8642 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
8643
8644 /* We need to add the subroutine type to the die immediately so
8645 we don't infinitely recurse when dealing with parameters
0963b4bd 8646 declared as the same subroutine type. */
76c10ea2 8647 set_die_type (die, ftype, cu);
6e70227d 8648
639d11d3 8649 if (die->child != NULL)
c906108c 8650 {
bb5ed363 8651 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 8652 struct die_info *child_die;
8072405b 8653 int nparams, iparams;
c906108c
SS
8654
8655 /* Count the number of parameters.
8656 FIXME: GDB currently ignores vararg functions, but knows about
8657 vararg member functions. */
8072405b 8658 nparams = 0;
639d11d3 8659 child_die = die->child;
c906108c
SS
8660 while (child_die && child_die->tag)
8661 {
8662 if (child_die->tag == DW_TAG_formal_parameter)
8663 nparams++;
8664 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 8665 TYPE_VARARGS (ftype) = 1;
c906108c
SS
8666 child_die = sibling_die (child_die);
8667 }
8668
8669 /* Allocate storage for parameters and fill them in. */
8670 TYPE_NFIELDS (ftype) = nparams;
8671 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 8672 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 8673
8072405b
JK
8674 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8675 even if we error out during the parameters reading below. */
8676 for (iparams = 0; iparams < nparams; iparams++)
8677 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8678
8679 iparams = 0;
639d11d3 8680 child_die = die->child;
c906108c
SS
8681 while (child_die && child_die->tag)
8682 {
8683 if (child_die->tag == DW_TAG_formal_parameter)
8684 {
3ce3b1ba
PA
8685 struct type *arg_type;
8686
8687 /* DWARF version 2 has no clean way to discern C++
8688 static and non-static member functions. G++ helps
8689 GDB by marking the first parameter for non-static
8690 member functions (which is the this pointer) as
8691 artificial. We pass this information to
8692 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8693
8694 DWARF version 3 added DW_AT_object_pointer, which GCC
8695 4.5 does not yet generate. */
e142c38c 8696 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
8697 if (attr)
8698 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8699 else
418835cc
KS
8700 {
8701 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8702
8703 /* GCC/43521: In java, the formal parameter
8704 "this" is sometimes not marked with DW_AT_artificial. */
8705 if (cu->language == language_java)
8706 {
8707 const char *name = dwarf2_name (child_die, cu);
9a619af0 8708
418835cc
KS
8709 if (name && !strcmp (name, "this"))
8710 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8711 }
8712 }
3ce3b1ba
PA
8713 arg_type = die_type (child_die, cu);
8714
8715 /* RealView does not mark THIS as const, which the testsuite
8716 expects. GCC marks THIS as const in method definitions,
8717 but not in the class specifications (GCC PR 43053). */
8718 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8719 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8720 {
8721 int is_this = 0;
8722 struct dwarf2_cu *arg_cu = cu;
8723 const char *name = dwarf2_name (child_die, cu);
8724
8725 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8726 if (attr)
8727 {
8728 /* If the compiler emits this, use it. */
8729 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8730 is_this = 1;
8731 }
8732 else if (name && strcmp (name, "this") == 0)
8733 /* Function definitions will have the argument names. */
8734 is_this = 1;
8735 else if (name == NULL && iparams == 0)
8736 /* Declarations may not have the names, so like
8737 elsewhere in GDB, assume an artificial first
8738 argument is "this". */
8739 is_this = 1;
8740
8741 if (is_this)
8742 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8743 arg_type, 0);
8744 }
8745
8746 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
8747 iparams++;
8748 }
8749 child_die = sibling_die (child_die);
8750 }
8751 }
8752
76c10ea2 8753 return ftype;
c906108c
SS
8754}
8755
f792889a 8756static struct type *
e7c27a73 8757read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8758{
e7c27a73 8759 struct objfile *objfile = cu->objfile;
0114d602 8760 const char *name = NULL;
3c8e0968 8761 struct type *this_type, *target_type;
c906108c 8762
94af9270 8763 name = dwarf2_full_name (NULL, die, cu);
f792889a 8764 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
8765 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8766 TYPE_NAME (this_type) = (char *) name;
f792889a 8767 set_die_type (die, this_type, cu);
3c8e0968
DE
8768 target_type = die_type (die, cu);
8769 if (target_type != this_type)
8770 TYPE_TARGET_TYPE (this_type) = target_type;
8771 else
8772 {
8773 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8774 spec and cause infinite loops in GDB. */
8775 complaint (&symfile_complaints,
8776 _("Self-referential DW_TAG_typedef "
8777 "- DIE at 0x%x [in module %s]"),
bb5ed363 8778 die->offset, objfile->name);
3c8e0968
DE
8779 TYPE_TARGET_TYPE (this_type) = NULL;
8780 }
f792889a 8781 return this_type;
c906108c
SS
8782}
8783
8784/* Find a representation of a given base type and install
8785 it in the TYPE field of the die. */
8786
f792889a 8787static struct type *
e7c27a73 8788read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8789{
e7c27a73 8790 struct objfile *objfile = cu->objfile;
c906108c
SS
8791 struct type *type;
8792 struct attribute *attr;
8793 int encoding = 0, size = 0;
39cbfefa 8794 char *name;
6ccb9162
UW
8795 enum type_code code = TYPE_CODE_INT;
8796 int type_flags = 0;
8797 struct type *target_type = NULL;
c906108c 8798
e142c38c 8799 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
8800 if (attr)
8801 {
8802 encoding = DW_UNSND (attr);
8803 }
e142c38c 8804 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8805 if (attr)
8806 {
8807 size = DW_UNSND (attr);
8808 }
39cbfefa 8809 name = dwarf2_name (die, cu);
6ccb9162 8810 if (!name)
c906108c 8811 {
6ccb9162
UW
8812 complaint (&symfile_complaints,
8813 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 8814 }
6ccb9162
UW
8815
8816 switch (encoding)
c906108c 8817 {
6ccb9162
UW
8818 case DW_ATE_address:
8819 /* Turn DW_ATE_address into a void * pointer. */
8820 code = TYPE_CODE_PTR;
8821 type_flags |= TYPE_FLAG_UNSIGNED;
8822 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8823 break;
8824 case DW_ATE_boolean:
8825 code = TYPE_CODE_BOOL;
8826 type_flags |= TYPE_FLAG_UNSIGNED;
8827 break;
8828 case DW_ATE_complex_float:
8829 code = TYPE_CODE_COMPLEX;
8830 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8831 break;
8832 case DW_ATE_decimal_float:
8833 code = TYPE_CODE_DECFLOAT;
8834 break;
8835 case DW_ATE_float:
8836 code = TYPE_CODE_FLT;
8837 break;
8838 case DW_ATE_signed:
8839 break;
8840 case DW_ATE_unsigned:
8841 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
8842 if (cu->language == language_fortran
8843 && name
8844 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8845 code = TYPE_CODE_CHAR;
6ccb9162
UW
8846 break;
8847 case DW_ATE_signed_char:
6e70227d 8848 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
8849 || cu->language == language_pascal
8850 || cu->language == language_fortran)
6ccb9162
UW
8851 code = TYPE_CODE_CHAR;
8852 break;
8853 case DW_ATE_unsigned_char:
868a0084 8854 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
8855 || cu->language == language_pascal
8856 || cu->language == language_fortran)
6ccb9162
UW
8857 code = TYPE_CODE_CHAR;
8858 type_flags |= TYPE_FLAG_UNSIGNED;
8859 break;
75079b2b
TT
8860 case DW_ATE_UTF:
8861 /* We just treat this as an integer and then recognize the
8862 type by name elsewhere. */
8863 break;
8864
6ccb9162
UW
8865 default:
8866 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8867 dwarf_type_encoding_name (encoding));
8868 break;
c906108c 8869 }
6ccb9162 8870
0114d602
DJ
8871 type = init_type (code, size, type_flags, NULL, objfile);
8872 TYPE_NAME (type) = name;
6ccb9162
UW
8873 TYPE_TARGET_TYPE (type) = target_type;
8874
0114d602 8875 if (name && strcmp (name, "char") == 0)
876cecd0 8876 TYPE_NOSIGN (type) = 1;
0114d602 8877
f792889a 8878 return set_die_type (die, type, cu);
c906108c
SS
8879}
8880
a02abb62
JB
8881/* Read the given DW_AT_subrange DIE. */
8882
f792889a 8883static struct type *
a02abb62
JB
8884read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8885{
8886 struct type *base_type;
8887 struct type *range_type;
8888 struct attribute *attr;
43bbcdc2
PH
8889 LONGEST low = 0;
8890 LONGEST high = -1;
39cbfefa 8891 char *name;
43bbcdc2 8892 LONGEST negative_mask;
e77813c8 8893
a02abb62 8894 base_type = die_type (die, cu);
953ac07e
JK
8895 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8896 check_typedef (base_type);
a02abb62 8897
7e314c57
JK
8898 /* The die_type call above may have already set the type for this DIE. */
8899 range_type = get_die_type (die, cu);
8900 if (range_type)
8901 return range_type;
8902
e142c38c 8903 if (cu->language == language_fortran)
6e70227d 8904 {
a02abb62
JB
8905 /* FORTRAN implies a lower bound of 1, if not given. */
8906 low = 1;
8907 }
8908
dd5e6932
DJ
8909 /* FIXME: For variable sized arrays either of these could be
8910 a variable rather than a constant value. We'll allow it,
8911 but we don't know how to handle it. */
e142c38c 8912 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
8913 if (attr)
8914 low = dwarf2_get_attr_constant_value (attr, 0);
8915
e142c38c 8916 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 8917 if (attr)
6e70227d 8918 {
d48323d8 8919 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
8920 {
8921 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8922 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8923 FIXME: GDB does not yet know how to handle dynamic
8924 arrays properly, treat them as arrays with unspecified
8925 length for now.
8926
8927 FIXME: jimb/2003-09-22: GDB does not really know
8928 how to handle arrays of unspecified length
8929 either; we just represent them as zero-length
8930 arrays. Choose an appropriate upper bound given
8931 the lower bound we've computed above. */
8932 high = low - 1;
8933 }
8934 else
8935 high = dwarf2_get_attr_constant_value (attr, 1);
8936 }
e77813c8
PM
8937 else
8938 {
8939 attr = dwarf2_attr (die, DW_AT_count, cu);
8940 if (attr)
8941 {
8942 int count = dwarf2_get_attr_constant_value (attr, 1);
8943 high = low + count - 1;
8944 }
c2ff108b
JK
8945 else
8946 {
8947 /* Unspecified array length. */
8948 high = low - 1;
8949 }
e77813c8
PM
8950 }
8951
8952 /* Dwarf-2 specifications explicitly allows to create subrange types
8953 without specifying a base type.
8954 In that case, the base type must be set to the type of
8955 the lower bound, upper bound or count, in that order, if any of these
8956 three attributes references an object that has a type.
8957 If no base type is found, the Dwarf-2 specifications say that
8958 a signed integer type of size equal to the size of an address should
8959 be used.
8960 For the following C code: `extern char gdb_int [];'
8961 GCC produces an empty range DIE.
8962 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 8963 high bound or count are not yet handled by this code. */
e77813c8
PM
8964 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8965 {
8966 struct objfile *objfile = cu->objfile;
8967 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8968 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8969 struct type *int_type = objfile_type (objfile)->builtin_int;
8970
8971 /* Test "int", "long int", and "long long int" objfile types,
8972 and select the first one having a size above or equal to the
8973 architecture address size. */
8974 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8975 base_type = int_type;
8976 else
8977 {
8978 int_type = objfile_type (objfile)->builtin_long;
8979 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8980 base_type = int_type;
8981 else
8982 {
8983 int_type = objfile_type (objfile)->builtin_long_long;
8984 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8985 base_type = int_type;
8986 }
8987 }
8988 }
a02abb62 8989
6e70227d 8990 negative_mask =
43bbcdc2
PH
8991 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8992 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8993 low |= negative_mask;
8994 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8995 high |= negative_mask;
8996
a02abb62
JB
8997 range_type = create_range_type (NULL, base_type, low, high);
8998
bbb0eef6
JK
8999 /* Mark arrays with dynamic length at least as an array of unspecified
9000 length. GDB could check the boundary but before it gets implemented at
9001 least allow accessing the array elements. */
d48323d8 9002 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
9003 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9004
c2ff108b
JK
9005 /* Ada expects an empty array on no boundary attributes. */
9006 if (attr == NULL && cu->language != language_ada)
9007 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9008
39cbfefa
DJ
9009 name = dwarf2_name (die, cu);
9010 if (name)
9011 TYPE_NAME (range_type) = name;
6e70227d 9012
e142c38c 9013 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
9014 if (attr)
9015 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9016
7e314c57
JK
9017 set_die_type (die, range_type, cu);
9018
9019 /* set_die_type should be already done. */
b4ba55a1
JB
9020 set_descriptive_type (range_type, die, cu);
9021
7e314c57 9022 return range_type;
a02abb62 9023}
6e70227d 9024
f792889a 9025static struct type *
81a17f79
JB
9026read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9027{
9028 struct type *type;
81a17f79 9029
81a17f79
JB
9030 /* For now, we only support the C meaning of an unspecified type: void. */
9031
0114d602
DJ
9032 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9033 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 9034
f792889a 9035 return set_die_type (die, type, cu);
81a17f79 9036}
a02abb62 9037
51545339
DJ
9038/* Trivial hash function for die_info: the hash value of a DIE
9039 is its offset in .debug_info for this objfile. */
9040
9041static hashval_t
9042die_hash (const void *item)
9043{
9044 const struct die_info *die = item;
9a619af0 9045
51545339
DJ
9046 return die->offset;
9047}
9048
9049/* Trivial comparison function for die_info structures: two DIEs
9050 are equal if they have the same offset. */
9051
9052static int
9053die_eq (const void *item_lhs, const void *item_rhs)
9054{
9055 const struct die_info *die_lhs = item_lhs;
9056 const struct die_info *die_rhs = item_rhs;
9a619af0 9057
51545339
DJ
9058 return die_lhs->offset == die_rhs->offset;
9059}
9060
c906108c
SS
9061/* Read a whole compilation unit into a linked list of dies. */
9062
f9aca02d 9063static struct die_info *
93311388 9064read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 9065{
93311388 9066 struct die_reader_specs reader_specs;
98bfdba5 9067 int read_abbrevs = 0;
1d9ec526 9068 struct cleanup *back_to = NULL;
98bfdba5
PA
9069 struct die_info *die;
9070
9071 if (cu->dwarf2_abbrevs == NULL)
9072 {
e5fe5e75 9073 dwarf2_read_abbrevs (cu);
98bfdba5
PA
9074 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9075 read_abbrevs = 1;
9076 }
93311388 9077
348e048f 9078 gdb_assert (cu->die_hash == NULL);
51545339
DJ
9079 cu->die_hash
9080 = htab_create_alloc_ex (cu->header.length / 12,
9081 die_hash,
9082 die_eq,
9083 NULL,
9084 &cu->comp_unit_obstack,
9085 hashtab_obstack_allocate,
9086 dummy_obstack_deallocate);
9087
93311388
DE
9088 init_cu_die_reader (&reader_specs, cu);
9089
98bfdba5
PA
9090 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9091
9092 if (read_abbrevs)
9093 do_cleanups (back_to);
9094
9095 return die;
639d11d3
DC
9096}
9097
d97bc12b
DE
9098/* Main entry point for reading a DIE and all children.
9099 Read the DIE and dump it if requested. */
9100
9101static struct die_info *
93311388
DE
9102read_die_and_children (const struct die_reader_specs *reader,
9103 gdb_byte *info_ptr,
d97bc12b
DE
9104 gdb_byte **new_info_ptr,
9105 struct die_info *parent)
9106{
93311388 9107 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
9108 new_info_ptr, parent);
9109
9110 if (dwarf2_die_debug)
9111 {
348e048f
DE
9112 fprintf_unfiltered (gdb_stdlog,
9113 "\nRead die from %s of %s:\n",
b0df02fd 9114 (reader->cu->per_cu->debug_types_section
8b70b953
TT
9115 ? ".debug_types"
9116 : ".debug_info"),
348e048f 9117 reader->abfd->filename);
d97bc12b
DE
9118 dump_die (result, dwarf2_die_debug);
9119 }
9120
9121 return result;
9122}
9123
639d11d3
DC
9124/* Read a single die and all its descendents. Set the die's sibling
9125 field to NULL; set other fields in the die correctly, and set all
9126 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9127 location of the info_ptr after reading all of those dies. PARENT
9128 is the parent of the die in question. */
9129
9130static struct die_info *
93311388
DE
9131read_die_and_children_1 (const struct die_reader_specs *reader,
9132 gdb_byte *info_ptr,
d97bc12b
DE
9133 gdb_byte **new_info_ptr,
9134 struct die_info *parent)
639d11d3
DC
9135{
9136 struct die_info *die;
fe1b8b76 9137 gdb_byte *cur_ptr;
639d11d3
DC
9138 int has_children;
9139
93311388 9140 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
9141 if (die == NULL)
9142 {
9143 *new_info_ptr = cur_ptr;
9144 return NULL;
9145 }
93311388 9146 store_in_ref_table (die, reader->cu);
639d11d3
DC
9147
9148 if (has_children)
348e048f 9149 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
9150 else
9151 {
9152 die->child = NULL;
9153 *new_info_ptr = cur_ptr;
9154 }
9155
9156 die->sibling = NULL;
9157 die->parent = parent;
9158 return die;
9159}
9160
9161/* Read a die, all of its descendents, and all of its siblings; set
9162 all of the fields of all of the dies correctly. Arguments are as
9163 in read_die_and_children. */
9164
9165static struct die_info *
93311388
DE
9166read_die_and_siblings (const struct die_reader_specs *reader,
9167 gdb_byte *info_ptr,
fe1b8b76 9168 gdb_byte **new_info_ptr,
639d11d3
DC
9169 struct die_info *parent)
9170{
9171 struct die_info *first_die, *last_sibling;
fe1b8b76 9172 gdb_byte *cur_ptr;
639d11d3 9173
c906108c 9174 cur_ptr = info_ptr;
639d11d3
DC
9175 first_die = last_sibling = NULL;
9176
9177 while (1)
c906108c 9178 {
639d11d3 9179 struct die_info *die
93311388 9180 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 9181
1d325ec1 9182 if (die == NULL)
c906108c 9183 {
639d11d3
DC
9184 *new_info_ptr = cur_ptr;
9185 return first_die;
c906108c 9186 }
1d325ec1
DJ
9187
9188 if (!first_die)
9189 first_die = die;
c906108c 9190 else
1d325ec1
DJ
9191 last_sibling->sibling = die;
9192
9193 last_sibling = die;
c906108c 9194 }
c906108c
SS
9195}
9196
93311388
DE
9197/* Read the die from the .debug_info section buffer. Set DIEP to
9198 point to a newly allocated die with its information, except for its
9199 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9200 whether the die has children or not. */
9201
9202static gdb_byte *
9203read_full_die (const struct die_reader_specs *reader,
9204 struct die_info **diep, gdb_byte *info_ptr,
9205 int *has_children)
9206{
9207 unsigned int abbrev_number, bytes_read, i, offset;
9208 struct abbrev_info *abbrev;
9209 struct die_info *die;
9210 struct dwarf2_cu *cu = reader->cu;
9211 bfd *abfd = reader->abfd;
9212
9213 offset = info_ptr - reader->buffer;
9214 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9215 info_ptr += bytes_read;
9216 if (!abbrev_number)
9217 {
9218 *diep = NULL;
9219 *has_children = 0;
9220 return info_ptr;
9221 }
9222
9223 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9224 if (!abbrev)
348e048f
DE
9225 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9226 abbrev_number,
9227 bfd_get_filename (abfd));
9228
93311388
DE
9229 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9230 die->offset = offset;
9231 die->tag = abbrev->tag;
9232 die->abbrev = abbrev_number;
9233
9234 die->num_attrs = abbrev->num_attrs;
9235
9236 for (i = 0; i < abbrev->num_attrs; ++i)
9237 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9238 abfd, info_ptr, cu);
9239
9240 *diep = die;
9241 *has_children = abbrev->has_children;
9242 return info_ptr;
9243}
9244
c906108c
SS
9245/* In DWARF version 2, the description of the debugging information is
9246 stored in a separate .debug_abbrev section. Before we read any
9247 dies from a section we read in all abbreviations and install them
72bf9492
DJ
9248 in a hash table. This function also sets flags in CU describing
9249 the data found in the abbrev table. */
c906108c
SS
9250
9251static void
e5fe5e75 9252dwarf2_read_abbrevs (struct dwarf2_cu *cu)
c906108c 9253{
e5fe5e75 9254 bfd *abfd = cu->objfile->obfd;
e7c27a73 9255 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 9256 gdb_byte *abbrev_ptr;
c906108c
SS
9257 struct abbrev_info *cur_abbrev;
9258 unsigned int abbrev_number, bytes_read, abbrev_name;
9259 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
9260 struct attr_abbrev *cur_attrs;
9261 unsigned int allocated_attrs;
c906108c 9262
0963b4bd 9263 /* Initialize dwarf2 abbrevs. */
f3dd6933
DJ
9264 obstack_init (&cu->abbrev_obstack);
9265 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9266 (ABBREV_HASH_SIZE
9267 * sizeof (struct abbrev_info *)));
9268 memset (cu->dwarf2_abbrevs, 0,
9269 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 9270
be391dca
TT
9271 dwarf2_read_section (dwarf2_per_objfile->objfile,
9272 &dwarf2_per_objfile->abbrev);
dce234bc 9273 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
9274 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9275 abbrev_ptr += bytes_read;
9276
f3dd6933
DJ
9277 allocated_attrs = ATTR_ALLOC_CHUNK;
9278 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 9279
0963b4bd 9280 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
9281 while (abbrev_number)
9282 {
f3dd6933 9283 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
9284
9285 /* read in abbrev header */
9286 cur_abbrev->number = abbrev_number;
9287 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9288 abbrev_ptr += bytes_read;
9289 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9290 abbrev_ptr += 1;
9291
72bf9492
DJ
9292 if (cur_abbrev->tag == DW_TAG_namespace)
9293 cu->has_namespace_info = 1;
9294
c906108c
SS
9295 /* now read in declarations */
9296 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9297 abbrev_ptr += bytes_read;
9298 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9299 abbrev_ptr += bytes_read;
9300 while (abbrev_name)
9301 {
f3dd6933 9302 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 9303 {
f3dd6933
DJ
9304 allocated_attrs += ATTR_ALLOC_CHUNK;
9305 cur_attrs
9306 = xrealloc (cur_attrs, (allocated_attrs
9307 * sizeof (struct attr_abbrev)));
c906108c 9308 }
ae038cb0
DJ
9309
9310 /* Record whether this compilation unit might have
9311 inter-compilation-unit references. If we don't know what form
9312 this attribute will have, then it might potentially be a
9313 DW_FORM_ref_addr, so we conservatively expect inter-CU
9314 references. */
9315
9316 if (abbrev_form == DW_FORM_ref_addr
9317 || abbrev_form == DW_FORM_indirect)
9318 cu->has_form_ref_addr = 1;
9319
f3dd6933
DJ
9320 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9321 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
9322 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9323 abbrev_ptr += bytes_read;
9324 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9325 abbrev_ptr += bytes_read;
9326 }
9327
f3dd6933
DJ
9328 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9329 (cur_abbrev->num_attrs
9330 * sizeof (struct attr_abbrev)));
9331 memcpy (cur_abbrev->attrs, cur_attrs,
9332 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9333
c906108c 9334 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
9335 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9336 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
9337
9338 /* Get next abbreviation.
9339 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
9340 always properly terminated with an abbrev number of 0.
9341 Exit loop if we encounter an abbreviation which we have
9342 already read (which means we are about to read the abbreviations
9343 for the next compile unit) or if the end of the abbreviation
9344 table is reached. */
dce234bc
PP
9345 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9346 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
9347 break;
9348 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9349 abbrev_ptr += bytes_read;
e7c27a73 9350 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
9351 break;
9352 }
f3dd6933
DJ
9353
9354 xfree (cur_attrs);
c906108c
SS
9355}
9356
f3dd6933 9357/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 9358
c906108c 9359static void
f3dd6933 9360dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 9361{
f3dd6933 9362 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 9363
f3dd6933
DJ
9364 obstack_free (&cu->abbrev_obstack, NULL);
9365 cu->dwarf2_abbrevs = NULL;
c906108c
SS
9366}
9367
9368/* Lookup an abbrev_info structure in the abbrev hash table. */
9369
9370static struct abbrev_info *
e7c27a73 9371dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
9372{
9373 unsigned int hash_number;
9374 struct abbrev_info *abbrev;
9375
9376 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 9377 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
9378
9379 while (abbrev)
9380 {
9381 if (abbrev->number == number)
9382 return abbrev;
9383 else
9384 abbrev = abbrev->next;
9385 }
9386 return NULL;
9387}
9388
72bf9492
DJ
9389/* Returns nonzero if TAG represents a type that we might generate a partial
9390 symbol for. */
9391
9392static int
9393is_type_tag_for_partial (int tag)
9394{
9395 switch (tag)
9396 {
9397#if 0
9398 /* Some types that would be reasonable to generate partial symbols for,
9399 that we don't at present. */
9400 case DW_TAG_array_type:
9401 case DW_TAG_file_type:
9402 case DW_TAG_ptr_to_member_type:
9403 case DW_TAG_set_type:
9404 case DW_TAG_string_type:
9405 case DW_TAG_subroutine_type:
9406#endif
9407 case DW_TAG_base_type:
9408 case DW_TAG_class_type:
680b30c7 9409 case DW_TAG_interface_type:
72bf9492
DJ
9410 case DW_TAG_enumeration_type:
9411 case DW_TAG_structure_type:
9412 case DW_TAG_subrange_type:
9413 case DW_TAG_typedef:
9414 case DW_TAG_union_type:
9415 return 1;
9416 default:
9417 return 0;
9418 }
9419}
9420
9421/* Load all DIEs that are interesting for partial symbols into memory. */
9422
9423static struct partial_die_info *
93311388
DE
9424load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9425 int building_psymtab, struct dwarf2_cu *cu)
72bf9492 9426{
bb5ed363 9427 struct objfile *objfile = cu->objfile;
72bf9492
DJ
9428 struct partial_die_info *part_die;
9429 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9430 struct abbrev_info *abbrev;
9431 unsigned int bytes_read;
5afb4e99 9432 unsigned int load_all = 0;
72bf9492
DJ
9433
9434 int nesting_level = 1;
9435
9436 parent_die = NULL;
9437 last_die = NULL;
9438
5afb4e99
DJ
9439 if (cu->per_cu && cu->per_cu->load_all_dies)
9440 load_all = 1;
9441
72bf9492
DJ
9442 cu->partial_dies
9443 = htab_create_alloc_ex (cu->header.length / 12,
9444 partial_die_hash,
9445 partial_die_eq,
9446 NULL,
9447 &cu->comp_unit_obstack,
9448 hashtab_obstack_allocate,
9449 dummy_obstack_deallocate);
9450
9451 part_die = obstack_alloc (&cu->comp_unit_obstack,
9452 sizeof (struct partial_die_info));
9453
9454 while (1)
9455 {
9456 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9457
9458 /* A NULL abbrev means the end of a series of children. */
9459 if (abbrev == NULL)
9460 {
9461 if (--nesting_level == 0)
9462 {
9463 /* PART_DIE was probably the last thing allocated on the
9464 comp_unit_obstack, so we could call obstack_free
9465 here. We don't do that because the waste is small,
9466 and will be cleaned up when we're done with this
9467 compilation unit. This way, we're also more robust
9468 against other users of the comp_unit_obstack. */
9469 return first_die;
9470 }
9471 info_ptr += bytes_read;
9472 last_die = parent_die;
9473 parent_die = parent_die->die_parent;
9474 continue;
9475 }
9476
98bfdba5
PA
9477 /* Check for template arguments. We never save these; if
9478 they're seen, we just mark the parent, and go on our way. */
9479 if (parent_die != NULL
9480 && cu->language == language_cplus
9481 && (abbrev->tag == DW_TAG_template_type_param
9482 || abbrev->tag == DW_TAG_template_value_param))
9483 {
9484 parent_die->has_template_arguments = 1;
9485
9486 if (!load_all)
9487 {
9488 /* We don't need a partial DIE for the template argument. */
9489 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9490 cu);
9491 continue;
9492 }
9493 }
9494
9495 /* We only recurse into subprograms looking for template arguments.
9496 Skip their other children. */
9497 if (!load_all
9498 && cu->language == language_cplus
9499 && parent_die != NULL
9500 && parent_die->tag == DW_TAG_subprogram)
9501 {
9502 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9503 continue;
9504 }
9505
5afb4e99
DJ
9506 /* Check whether this DIE is interesting enough to save. Normally
9507 we would not be interested in members here, but there may be
9508 later variables referencing them via DW_AT_specification (for
9509 static members). */
9510 if (!load_all
9511 && !is_type_tag_for_partial (abbrev->tag)
72929c62 9512 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
9513 && abbrev->tag != DW_TAG_enumerator
9514 && abbrev->tag != DW_TAG_subprogram
bc30ff58 9515 && abbrev->tag != DW_TAG_lexical_block
72bf9492 9516 && abbrev->tag != DW_TAG_variable
5afb4e99 9517 && abbrev->tag != DW_TAG_namespace
f55ee35c 9518 && abbrev->tag != DW_TAG_module
5afb4e99 9519 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
9520 {
9521 /* Otherwise we skip to the next sibling, if any. */
93311388 9522 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
9523 continue;
9524 }
9525
93311388
DE
9526 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9527 buffer, info_ptr, cu);
72bf9492
DJ
9528
9529 /* This two-pass algorithm for processing partial symbols has a
9530 high cost in cache pressure. Thus, handle some simple cases
9531 here which cover the majority of C partial symbols. DIEs
9532 which neither have specification tags in them, nor could have
9533 specification tags elsewhere pointing at them, can simply be
9534 processed and discarded.
9535
9536 This segment is also optional; scan_partial_symbols and
9537 add_partial_symbol will handle these DIEs if we chain
9538 them in normally. When compilers which do not emit large
9539 quantities of duplicate debug information are more common,
9540 this code can probably be removed. */
9541
9542 /* Any complete simple types at the top level (pretty much all
9543 of them, for a language without namespaces), can be processed
9544 directly. */
9545 if (parent_die == NULL
9546 && part_die->has_specification == 0
9547 && part_die->is_declaration == 0
d8228535 9548 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
9549 || part_die->tag == DW_TAG_base_type
9550 || part_die->tag == DW_TAG_subrange_type))
9551 {
9552 if (building_psymtab && part_die->name != NULL)
04a679b8 9553 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 9554 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
9555 &objfile->static_psymbols,
9556 0, (CORE_ADDR) 0, cu->language, objfile);
93311388 9557 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
9558 continue;
9559 }
9560
d8228535
JK
9561 /* The exception for DW_TAG_typedef with has_children above is
9562 a workaround of GCC PR debug/47510. In the case of this complaint
9563 type_name_no_tag_or_error will error on such types later.
9564
9565 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9566 it could not find the child DIEs referenced later, this is checked
9567 above. In correct DWARF DW_TAG_typedef should have no children. */
9568
9569 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9570 complaint (&symfile_complaints,
9571 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9572 "- DIE at 0x%x [in module %s]"),
bb5ed363 9573 part_die->offset, objfile->name);
d8228535 9574
72bf9492
DJ
9575 /* If we're at the second level, and we're an enumerator, and
9576 our parent has no specification (meaning possibly lives in a
9577 namespace elsewhere), then we can add the partial symbol now
9578 instead of queueing it. */
9579 if (part_die->tag == DW_TAG_enumerator
9580 && parent_die != NULL
9581 && parent_die->die_parent == NULL
9582 && parent_die->tag == DW_TAG_enumeration_type
9583 && parent_die->has_specification == 0)
9584 {
9585 if (part_die->name == NULL)
3e43a32a
MS
9586 complaint (&symfile_complaints,
9587 _("malformed enumerator DIE ignored"));
72bf9492 9588 else if (building_psymtab)
04a679b8 9589 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 9590 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
9591 (cu->language == language_cplus
9592 || cu->language == language_java)
bb5ed363
DE
9593 ? &objfile->global_psymbols
9594 : &objfile->static_psymbols,
9595 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 9596
93311388 9597 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
9598 continue;
9599 }
9600
9601 /* We'll save this DIE so link it in. */
9602 part_die->die_parent = parent_die;
9603 part_die->die_sibling = NULL;
9604 part_die->die_child = NULL;
9605
9606 if (last_die && last_die == parent_die)
9607 last_die->die_child = part_die;
9608 else if (last_die)
9609 last_die->die_sibling = part_die;
9610
9611 last_die = part_die;
9612
9613 if (first_die == NULL)
9614 first_die = part_die;
9615
9616 /* Maybe add the DIE to the hash table. Not all DIEs that we
9617 find interesting need to be in the hash table, because we
9618 also have the parent/sibling/child chains; only those that we
9619 might refer to by offset later during partial symbol reading.
9620
9621 For now this means things that might have be the target of a
9622 DW_AT_specification, DW_AT_abstract_origin, or
9623 DW_AT_extension. DW_AT_extension will refer only to
9624 namespaces; DW_AT_abstract_origin refers to functions (and
9625 many things under the function DIE, but we do not recurse
9626 into function DIEs during partial symbol reading) and
9627 possibly variables as well; DW_AT_specification refers to
9628 declarations. Declarations ought to have the DW_AT_declaration
9629 flag. It happens that GCC forgets to put it in sometimes, but
9630 only for functions, not for types.
9631
9632 Adding more things than necessary to the hash table is harmless
9633 except for the performance cost. Adding too few will result in
5afb4e99
DJ
9634 wasted time in find_partial_die, when we reread the compilation
9635 unit with load_all_dies set. */
72bf9492 9636
5afb4e99 9637 if (load_all
72929c62 9638 || abbrev->tag == DW_TAG_constant
5afb4e99 9639 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
9640 || abbrev->tag == DW_TAG_variable
9641 || abbrev->tag == DW_TAG_namespace
9642 || part_die->is_declaration)
9643 {
9644 void **slot;
9645
9646 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9647 part_die->offset, INSERT);
9648 *slot = part_die;
9649 }
9650
9651 part_die = obstack_alloc (&cu->comp_unit_obstack,
9652 sizeof (struct partial_die_info));
9653
9654 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 9655 we have no reason to follow the children of structures; for other
98bfdba5
PA
9656 languages we have to, so that we can get at method physnames
9657 to infer fully qualified class names, for DW_AT_specification,
9658 and for C++ template arguments. For C++, we also look one level
9659 inside functions to find template arguments (if the name of the
9660 function does not already contain the template arguments).
bc30ff58
JB
9661
9662 For Ada, we need to scan the children of subprograms and lexical
9663 blocks as well because Ada allows the definition of nested
9664 entities that could be interesting for the debugger, such as
9665 nested subprograms for instance. */
72bf9492 9666 if (last_die->has_children
5afb4e99
DJ
9667 && (load_all
9668 || last_die->tag == DW_TAG_namespace
f55ee35c 9669 || last_die->tag == DW_TAG_module
72bf9492 9670 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
9671 || (cu->language == language_cplus
9672 && last_die->tag == DW_TAG_subprogram
9673 && (last_die->name == NULL
9674 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
9675 || (cu->language != language_c
9676 && (last_die->tag == DW_TAG_class_type
680b30c7 9677 || last_die->tag == DW_TAG_interface_type
72bf9492 9678 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
9679 || last_die->tag == DW_TAG_union_type))
9680 || (cu->language == language_ada
9681 && (last_die->tag == DW_TAG_subprogram
9682 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
9683 {
9684 nesting_level++;
9685 parent_die = last_die;
9686 continue;
9687 }
9688
9689 /* Otherwise we skip to the next sibling, if any. */
93311388 9690 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
9691
9692 /* Back to the top, do it again. */
9693 }
9694}
9695
c906108c
SS
9696/* Read a minimal amount of information into the minimal die structure. */
9697
fe1b8b76 9698static gdb_byte *
72bf9492
DJ
9699read_partial_die (struct partial_die_info *part_die,
9700 struct abbrev_info *abbrev,
9701 unsigned int abbrev_len, bfd *abfd,
93311388
DE
9702 gdb_byte *buffer, gdb_byte *info_ptr,
9703 struct dwarf2_cu *cu)
c906108c 9704{
bb5ed363 9705 struct objfile *objfile = cu->objfile;
fa238c03 9706 unsigned int i;
c906108c 9707 struct attribute attr;
c5aa993b 9708 int has_low_pc_attr = 0;
c906108c
SS
9709 int has_high_pc_attr = 0;
9710
72bf9492 9711 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 9712
93311388 9713 part_die->offset = info_ptr - buffer;
72bf9492
DJ
9714
9715 info_ptr += abbrev_len;
9716
9717 if (abbrev == NULL)
9718 return info_ptr;
9719
c906108c
SS
9720 part_die->tag = abbrev->tag;
9721 part_die->has_children = abbrev->has_children;
c906108c
SS
9722
9723 for (i = 0; i < abbrev->num_attrs; ++i)
9724 {
e7c27a73 9725 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
9726
9727 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 9728 partial symbol table. */
c906108c
SS
9729 switch (attr.name)
9730 {
9731 case DW_AT_name:
71c25dea
TT
9732 switch (part_die->tag)
9733 {
9734 case DW_TAG_compile_unit:
348e048f 9735 case DW_TAG_type_unit:
71c25dea
TT
9736 /* Compilation units have a DW_AT_name that is a filename, not
9737 a source language identifier. */
9738 case DW_TAG_enumeration_type:
9739 case DW_TAG_enumerator:
9740 /* These tags always have simple identifiers already; no need
9741 to canonicalize them. */
9742 part_die->name = DW_STRING (&attr);
9743 break;
9744 default:
9745 part_die->name
9746 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 9747 &objfile->objfile_obstack);
71c25dea
TT
9748 break;
9749 }
c906108c 9750 break;
31ef98ae 9751 case DW_AT_linkage_name:
c906108c 9752 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
9753 /* Note that both forms of linkage name might appear. We
9754 assume they will be the same, and we only store the last
9755 one we see. */
94af9270
KS
9756 if (cu->language == language_ada)
9757 part_die->name = DW_STRING (&attr);
abc72ce4 9758 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
9759 break;
9760 case DW_AT_low_pc:
9761 has_low_pc_attr = 1;
9762 part_die->lowpc = DW_ADDR (&attr);
9763 break;
9764 case DW_AT_high_pc:
9765 has_high_pc_attr = 1;
9766 part_die->highpc = DW_ADDR (&attr);
9767 break;
9768 case DW_AT_location:
0963b4bd 9769 /* Support the .debug_loc offsets. */
8e19ed76
PS
9770 if (attr_form_is_block (&attr))
9771 {
9772 part_die->locdesc = DW_BLOCK (&attr);
9773 }
3690dd37 9774 else if (attr_form_is_section_offset (&attr))
8e19ed76 9775 {
4d3c2250 9776 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9777 }
9778 else
9779 {
4d3c2250
KB
9780 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9781 "partial symbol information");
8e19ed76 9782 }
c906108c 9783 break;
c906108c
SS
9784 case DW_AT_external:
9785 part_die->is_external = DW_UNSND (&attr);
9786 break;
9787 case DW_AT_declaration:
9788 part_die->is_declaration = DW_UNSND (&attr);
9789 break;
9790 case DW_AT_type:
9791 part_die->has_type = 1;
9792 break;
9793 case DW_AT_abstract_origin:
9794 case DW_AT_specification:
72bf9492
DJ
9795 case DW_AT_extension:
9796 part_die->has_specification = 1;
c764a876 9797 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
9798 break;
9799 case DW_AT_sibling:
9800 /* Ignore absolute siblings, they might point outside of
9801 the current compile unit. */
9802 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
9803 complaint (&symfile_complaints,
9804 _("ignoring absolute DW_AT_sibling"));
c906108c 9805 else
93311388 9806 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 9807 break;
fa4028e9
JB
9808 case DW_AT_byte_size:
9809 part_die->has_byte_size = 1;
9810 break;
68511cec
CES
9811 case DW_AT_calling_convention:
9812 /* DWARF doesn't provide a way to identify a program's source-level
9813 entry point. DW_AT_calling_convention attributes are only meant
9814 to describe functions' calling conventions.
9815
9816 However, because it's a necessary piece of information in
9817 Fortran, and because DW_CC_program is the only piece of debugging
9818 information whose definition refers to a 'main program' at all,
9819 several compilers have begun marking Fortran main programs with
9820 DW_CC_program --- even when those functions use the standard
9821 calling conventions.
9822
9823 So until DWARF specifies a way to provide this information and
9824 compilers pick up the new representation, we'll support this
9825 practice. */
9826 if (DW_UNSND (&attr) == DW_CC_program
9827 && cu->language == language_fortran)
01f8c46d
JK
9828 {
9829 set_main_name (part_die->name);
9830
9831 /* As this DIE has a static linkage the name would be difficult
9832 to look up later. */
9833 language_of_main = language_fortran;
9834 }
68511cec 9835 break;
c906108c
SS
9836 default:
9837 break;
9838 }
9839 }
9840
9373cf26
JK
9841 if (has_low_pc_attr && has_high_pc_attr)
9842 {
9843 /* When using the GNU linker, .gnu.linkonce. sections are used to
9844 eliminate duplicate copies of functions and vtables and such.
9845 The linker will arbitrarily choose one and discard the others.
9846 The AT_*_pc values for such functions refer to local labels in
9847 these sections. If the section from that file was discarded, the
9848 labels are not in the output, so the relocs get a value of 0.
9849 If this is a discarded function, mark the pc bounds as invalid,
9850 so that GDB will ignore it. */
9851 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9852 {
bb5ed363 9853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
9854
9855 complaint (&symfile_complaints,
9856 _("DW_AT_low_pc %s is zero "
9857 "for DIE at 0x%x [in module %s]"),
9858 paddress (gdbarch, part_die->lowpc),
bb5ed363 9859 part_die->offset, objfile->name);
9373cf26
JK
9860 }
9861 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9862 else if (part_die->lowpc >= part_die->highpc)
9863 {
bb5ed363 9864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
9865
9866 complaint (&symfile_complaints,
9867 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9868 "for DIE at 0x%x [in module %s]"),
9869 paddress (gdbarch, part_die->lowpc),
9870 paddress (gdbarch, part_die->highpc),
bb5ed363 9871 part_die->offset, objfile->name);
9373cf26
JK
9872 }
9873 else
9874 part_die->has_pc_info = 1;
9875 }
85cbf3d3 9876
c906108c
SS
9877 return info_ptr;
9878}
9879
72bf9492
DJ
9880/* Find a cached partial DIE at OFFSET in CU. */
9881
9882static struct partial_die_info *
c764a876 9883find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
9884{
9885 struct partial_die_info *lookup_die = NULL;
9886 struct partial_die_info part_die;
9887
9888 part_die.offset = offset;
9889 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9890
72bf9492
DJ
9891 return lookup_die;
9892}
9893
348e048f
DE
9894/* Find a partial DIE at OFFSET, which may or may not be in CU,
9895 except in the case of .debug_types DIEs which do not reference
9896 outside their CU (they do however referencing other types via
55f1336d 9897 DW_FORM_ref_sig8). */
72bf9492
DJ
9898
9899static struct partial_die_info *
c764a876 9900find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 9901{
bb5ed363 9902 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
9903 struct dwarf2_per_cu_data *per_cu = NULL;
9904 struct partial_die_info *pd = NULL;
72bf9492 9905
b0df02fd 9906 if (cu->per_cu->debug_types_section)
348e048f
DE
9907 {
9908 pd = find_partial_die_in_comp_unit (offset, cu);
9909 if (pd != NULL)
9910 return pd;
9911 goto not_found;
9912 }
9913
45452591 9914 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
9915 {
9916 pd = find_partial_die_in_comp_unit (offset, cu);
9917 if (pd != NULL)
9918 return pd;
9919 }
72bf9492 9920
bb5ed363 9921 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
ae038cb0 9922
98bfdba5 9923 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
a0f42c21 9924 load_partial_comp_unit (per_cu);
ae038cb0
DJ
9925
9926 per_cu->cu->last_used = 0;
5afb4e99
DJ
9927 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9928
9929 if (pd == NULL && per_cu->load_all_dies == 0)
9930 {
9931 struct cleanup *back_to;
9932 struct partial_die_info comp_unit_die;
9933 struct abbrev_info *abbrev;
9934 unsigned int bytes_read;
9935 char *info_ptr;
9936
9937 per_cu->load_all_dies = 1;
9938
9939 /* Re-read the DIEs. */
9940 back_to = make_cleanup (null_cleanup, 0);
9941 if (per_cu->cu->dwarf2_abbrevs == NULL)
9942 {
e5fe5e75 9943 dwarf2_read_abbrevs (per_cu->cu);
53d72f98 9944 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 9945 }
dce234bc 9946 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
9947 + per_cu->cu->header.offset
9948 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
9949 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9950 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
bb5ed363 9951 objfile->obfd,
93311388 9952 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
9953 per_cu->cu);
9954 if (comp_unit_die.has_children)
bb5ed363 9955 load_partial_dies (objfile->obfd,
93311388
DE
9956 dwarf2_per_objfile->info.buffer, info_ptr,
9957 0, per_cu->cu);
5afb4e99
DJ
9958 do_cleanups (back_to);
9959
9960 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9961 }
9962
348e048f
DE
9963 not_found:
9964
5afb4e99
DJ
9965 if (pd == NULL)
9966 internal_error (__FILE__, __LINE__,
3e43a32a
MS
9967 _("could not find partial DIE 0x%x "
9968 "in cache [from module %s]\n"),
bb5ed363 9969 offset, bfd_get_filename (objfile->obfd));
5afb4e99 9970 return pd;
72bf9492
DJ
9971}
9972
abc72ce4
DE
9973/* See if we can figure out if the class lives in a namespace. We do
9974 this by looking for a member function; its demangled name will
9975 contain namespace info, if there is any. */
9976
9977static void
9978guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9979 struct dwarf2_cu *cu)
9980{
9981 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9982 what template types look like, because the demangler
9983 frequently doesn't give the same name as the debug info. We
9984 could fix this by only using the demangled name to get the
9985 prefix (but see comment in read_structure_type). */
9986
9987 struct partial_die_info *real_pdi;
9988 struct partial_die_info *child_pdi;
9989
9990 /* If this DIE (this DIE's specification, if any) has a parent, then
9991 we should not do this. We'll prepend the parent's fully qualified
9992 name when we create the partial symbol. */
9993
9994 real_pdi = struct_pdi;
9995 while (real_pdi->has_specification)
9996 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9997
9998 if (real_pdi->die_parent != NULL)
9999 return;
10000
10001 for (child_pdi = struct_pdi->die_child;
10002 child_pdi != NULL;
10003 child_pdi = child_pdi->die_sibling)
10004 {
10005 if (child_pdi->tag == DW_TAG_subprogram
10006 && child_pdi->linkage_name != NULL)
10007 {
10008 char *actual_class_name
10009 = language_class_name_from_physname (cu->language_defn,
10010 child_pdi->linkage_name);
10011 if (actual_class_name != NULL)
10012 {
10013 struct_pdi->name
10014 = obsavestring (actual_class_name,
10015 strlen (actual_class_name),
10016 &cu->objfile->objfile_obstack);
10017 xfree (actual_class_name);
10018 }
10019 break;
10020 }
10021 }
10022}
10023
72bf9492
DJ
10024/* Adjust PART_DIE before generating a symbol for it. This function
10025 may set the is_external flag or change the DIE's name. */
10026
10027static void
10028fixup_partial_die (struct partial_die_info *part_die,
10029 struct dwarf2_cu *cu)
10030{
abc72ce4
DE
10031 /* Once we've fixed up a die, there's no point in doing so again.
10032 This also avoids a memory leak if we were to call
10033 guess_partial_die_structure_name multiple times. */
10034 if (part_die->fixup_called)
10035 return;
10036
72bf9492
DJ
10037 /* If we found a reference attribute and the DIE has no name, try
10038 to find a name in the referred to DIE. */
10039
10040 if (part_die->name == NULL && part_die->has_specification)
10041 {
10042 struct partial_die_info *spec_die;
72bf9492 10043
10b3939b 10044 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 10045
10b3939b 10046 fixup_partial_die (spec_die, cu);
72bf9492
DJ
10047
10048 if (spec_die->name)
10049 {
10050 part_die->name = spec_die->name;
10051
10052 /* Copy DW_AT_external attribute if it is set. */
10053 if (spec_die->is_external)
10054 part_die->is_external = spec_die->is_external;
10055 }
10056 }
10057
10058 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
10059
10060 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 10061 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 10062
abc72ce4
DE
10063 /* If there is no parent die to provide a namespace, and there are
10064 children, see if we can determine the namespace from their linkage
10065 name.
10066 NOTE: We need to do this even if cu->has_namespace_info != 0.
10067 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
10068 if (cu->language == language_cplus
8b70b953 10069 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
10070 && part_die->die_parent == NULL
10071 && part_die->has_children
10072 && (part_die->tag == DW_TAG_class_type
10073 || part_die->tag == DW_TAG_structure_type
10074 || part_die->tag == DW_TAG_union_type))
10075 guess_partial_die_structure_name (part_die, cu);
10076
53832f31
TT
10077 /* GCC might emit a nameless struct or union that has a linkage
10078 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10079 if (part_die->name == NULL
96408a79
SA
10080 && (part_die->tag == DW_TAG_class_type
10081 || part_die->tag == DW_TAG_interface_type
10082 || part_die->tag == DW_TAG_structure_type
10083 || part_die->tag == DW_TAG_union_type)
53832f31
TT
10084 && part_die->linkage_name != NULL)
10085 {
10086 char *demangled;
10087
10088 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10089 if (demangled)
10090 {
96408a79
SA
10091 const char *base;
10092
10093 /* Strip any leading namespaces/classes, keep only the base name.
10094 DW_AT_name for named DIEs does not contain the prefixes. */
10095 base = strrchr (demangled, ':');
10096 if (base && base > demangled && base[-1] == ':')
10097 base++;
10098 else
10099 base = demangled;
10100
10101 part_die->name = obsavestring (base, strlen (base),
53832f31
TT
10102 &cu->objfile->objfile_obstack);
10103 xfree (demangled);
10104 }
10105 }
10106
abc72ce4 10107 part_die->fixup_called = 1;
72bf9492
DJ
10108}
10109
a8329558 10110/* Read an attribute value described by an attribute form. */
c906108c 10111
fe1b8b76 10112static gdb_byte *
a8329558 10113read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 10114 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 10115 struct dwarf2_cu *cu)
c906108c 10116{
e7c27a73 10117 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
10118 unsigned int bytes_read;
10119 struct dwarf_block *blk;
10120
a8329558
KW
10121 attr->form = form;
10122 switch (form)
c906108c 10123 {
c906108c 10124 case DW_FORM_ref_addr:
ae411497
TT
10125 if (cu->header.version == 2)
10126 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10127 else
3e43a32a
MS
10128 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10129 &cu->header, &bytes_read);
ae411497
TT
10130 info_ptr += bytes_read;
10131 break;
10132 case DW_FORM_addr:
e7c27a73 10133 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 10134 info_ptr += bytes_read;
c906108c
SS
10135 break;
10136 case DW_FORM_block2:
7b5a2f43 10137 blk = dwarf_alloc_block (cu);
c906108c
SS
10138 blk->size = read_2_bytes (abfd, info_ptr);
10139 info_ptr += 2;
10140 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10141 info_ptr += blk->size;
10142 DW_BLOCK (attr) = blk;
10143 break;
10144 case DW_FORM_block4:
7b5a2f43 10145 blk = dwarf_alloc_block (cu);
c906108c
SS
10146 blk->size = read_4_bytes (abfd, info_ptr);
10147 info_ptr += 4;
10148 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10149 info_ptr += blk->size;
10150 DW_BLOCK (attr) = blk;
10151 break;
10152 case DW_FORM_data2:
10153 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10154 info_ptr += 2;
10155 break;
10156 case DW_FORM_data4:
10157 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10158 info_ptr += 4;
10159 break;
10160 case DW_FORM_data8:
10161 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10162 info_ptr += 8;
10163 break;
2dc7f7b3
TT
10164 case DW_FORM_sec_offset:
10165 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10166 info_ptr += bytes_read;
10167 break;
c906108c 10168 case DW_FORM_string:
9b1c24c8 10169 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 10170 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
10171 info_ptr += bytes_read;
10172 break;
4bdf3d34
JJ
10173 case DW_FORM_strp:
10174 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10175 &bytes_read);
8285870a 10176 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
10177 info_ptr += bytes_read;
10178 break;
2dc7f7b3 10179 case DW_FORM_exprloc:
c906108c 10180 case DW_FORM_block:
7b5a2f43 10181 blk = dwarf_alloc_block (cu);
c906108c
SS
10182 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10183 info_ptr += bytes_read;
10184 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10185 info_ptr += blk->size;
10186 DW_BLOCK (attr) = blk;
10187 break;
10188 case DW_FORM_block1:
7b5a2f43 10189 blk = dwarf_alloc_block (cu);
c906108c
SS
10190 blk->size = read_1_byte (abfd, info_ptr);
10191 info_ptr += 1;
10192 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10193 info_ptr += blk->size;
10194 DW_BLOCK (attr) = blk;
10195 break;
10196 case DW_FORM_data1:
10197 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10198 info_ptr += 1;
10199 break;
10200 case DW_FORM_flag:
10201 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10202 info_ptr += 1;
10203 break;
2dc7f7b3
TT
10204 case DW_FORM_flag_present:
10205 DW_UNSND (attr) = 1;
10206 break;
c906108c
SS
10207 case DW_FORM_sdata:
10208 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10209 info_ptr += bytes_read;
10210 break;
10211 case DW_FORM_udata:
10212 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10213 info_ptr += bytes_read;
10214 break;
10215 case DW_FORM_ref1:
10b3939b 10216 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
10217 info_ptr += 1;
10218 break;
10219 case DW_FORM_ref2:
10b3939b 10220 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
10221 info_ptr += 2;
10222 break;
10223 case DW_FORM_ref4:
10b3939b 10224 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
10225 info_ptr += 4;
10226 break;
613e1657 10227 case DW_FORM_ref8:
10b3939b 10228 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
10229 info_ptr += 8;
10230 break;
55f1336d 10231 case DW_FORM_ref_sig8:
348e048f
DE
10232 /* Convert the signature to something we can record in DW_UNSND
10233 for later lookup.
10234 NOTE: This is NULL if the type wasn't found. */
10235 DW_SIGNATURED_TYPE (attr) =
10236 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10237 info_ptr += 8;
10238 break;
c906108c 10239 case DW_FORM_ref_udata:
10b3939b
DJ
10240 DW_ADDR (attr) = (cu->header.offset
10241 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
10242 info_ptr += bytes_read;
10243 break;
c906108c 10244 case DW_FORM_indirect:
a8329558
KW
10245 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10246 info_ptr += bytes_read;
e7c27a73 10247 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 10248 break;
c906108c 10249 default:
8a3fe4f8 10250 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
10251 dwarf_form_name (form),
10252 bfd_get_filename (abfd));
c906108c 10253 }
28e94949
JB
10254
10255 /* We have seen instances where the compiler tried to emit a byte
10256 size attribute of -1 which ended up being encoded as an unsigned
10257 0xffffffff. Although 0xffffffff is technically a valid size value,
10258 an object of this size seems pretty unlikely so we can relatively
10259 safely treat these cases as if the size attribute was invalid and
10260 treat them as zero by default. */
10261 if (attr->name == DW_AT_byte_size
10262 && form == DW_FORM_data4
10263 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
10264 {
10265 complaint
10266 (&symfile_complaints,
43bbcdc2
PH
10267 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10268 hex_string (DW_UNSND (attr)));
01c66ae6
JB
10269 DW_UNSND (attr) = 0;
10270 }
28e94949 10271
c906108c
SS
10272 return info_ptr;
10273}
10274
a8329558
KW
10275/* Read an attribute described by an abbreviated attribute. */
10276
fe1b8b76 10277static gdb_byte *
a8329558 10278read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 10279 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
10280{
10281 attr->name = abbrev->name;
e7c27a73 10282 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
10283}
10284
0963b4bd 10285/* Read dwarf information from a buffer. */
c906108c
SS
10286
10287static unsigned int
fe1b8b76 10288read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 10289{
fe1b8b76 10290 return bfd_get_8 (abfd, buf);
c906108c
SS
10291}
10292
10293static int
fe1b8b76 10294read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 10295{
fe1b8b76 10296 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
10297}
10298
10299static unsigned int
fe1b8b76 10300read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 10301{
fe1b8b76 10302 return bfd_get_16 (abfd, buf);
c906108c
SS
10303}
10304
21ae7a4d
JK
10305static int
10306read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10307{
10308 return bfd_get_signed_16 (abfd, buf);
10309}
10310
c906108c 10311static unsigned int
fe1b8b76 10312read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 10313{
fe1b8b76 10314 return bfd_get_32 (abfd, buf);
c906108c
SS
10315}
10316
21ae7a4d
JK
10317static int
10318read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10319{
10320 return bfd_get_signed_32 (abfd, buf);
10321}
10322
93311388 10323static ULONGEST
fe1b8b76 10324read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 10325{
fe1b8b76 10326 return bfd_get_64 (abfd, buf);
c906108c
SS
10327}
10328
10329static CORE_ADDR
fe1b8b76 10330read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 10331 unsigned int *bytes_read)
c906108c 10332{
e7c27a73 10333 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
10334 CORE_ADDR retval = 0;
10335
107d2387 10336 if (cu_header->signed_addr_p)
c906108c 10337 {
107d2387
AC
10338 switch (cu_header->addr_size)
10339 {
10340 case 2:
fe1b8b76 10341 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
10342 break;
10343 case 4:
fe1b8b76 10344 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
10345 break;
10346 case 8:
fe1b8b76 10347 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
10348 break;
10349 default:
8e65ff28 10350 internal_error (__FILE__, __LINE__,
e2e0b3e5 10351 _("read_address: bad switch, signed [in module %s]"),
659b0389 10352 bfd_get_filename (abfd));
107d2387
AC
10353 }
10354 }
10355 else
10356 {
10357 switch (cu_header->addr_size)
10358 {
10359 case 2:
fe1b8b76 10360 retval = bfd_get_16 (abfd, buf);
107d2387
AC
10361 break;
10362 case 4:
fe1b8b76 10363 retval = bfd_get_32 (abfd, buf);
107d2387
AC
10364 break;
10365 case 8:
fe1b8b76 10366 retval = bfd_get_64 (abfd, buf);
107d2387
AC
10367 break;
10368 default:
8e65ff28 10369 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
10370 _("read_address: bad switch, "
10371 "unsigned [in module %s]"),
659b0389 10372 bfd_get_filename (abfd));
107d2387 10373 }
c906108c 10374 }
64367e0a 10375
107d2387
AC
10376 *bytes_read = cu_header->addr_size;
10377 return retval;
c906108c
SS
10378}
10379
f7ef9339 10380/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
10381 specification allows the initial length to take up either 4 bytes
10382 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10383 bytes describe the length and all offsets will be 8 bytes in length
10384 instead of 4.
10385
f7ef9339
KB
10386 An older, non-standard 64-bit format is also handled by this
10387 function. The older format in question stores the initial length
10388 as an 8-byte quantity without an escape value. Lengths greater
10389 than 2^32 aren't very common which means that the initial 4 bytes
10390 is almost always zero. Since a length value of zero doesn't make
10391 sense for the 32-bit format, this initial zero can be considered to
10392 be an escape value which indicates the presence of the older 64-bit
10393 format. As written, the code can't detect (old format) lengths
917c78fc
MK
10394 greater than 4GB. If it becomes necessary to handle lengths
10395 somewhat larger than 4GB, we could allow other small values (such
10396 as the non-sensical values of 1, 2, and 3) to also be used as
10397 escape values indicating the presence of the old format.
f7ef9339 10398
917c78fc
MK
10399 The value returned via bytes_read should be used to increment the
10400 relevant pointer after calling read_initial_length().
c764a876 10401
613e1657
KB
10402 [ Note: read_initial_length() and read_offset() are based on the
10403 document entitled "DWARF Debugging Information Format", revision
f7ef9339 10404 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
10405 from:
10406
f7ef9339 10407 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 10408
613e1657
KB
10409 This document is only a draft and is subject to change. (So beware.)
10410
f7ef9339 10411 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
10412 determined empirically by examining 64-bit ELF files produced by
10413 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
10414
10415 - Kevin, July 16, 2002
613e1657
KB
10416 ] */
10417
10418static LONGEST
c764a876 10419read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 10420{
fe1b8b76 10421 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 10422
dd373385 10423 if (length == 0xffffffff)
613e1657 10424 {
fe1b8b76 10425 length = bfd_get_64 (abfd, buf + 4);
613e1657 10426 *bytes_read = 12;
613e1657 10427 }
dd373385 10428 else if (length == 0)
f7ef9339 10429 {
dd373385 10430 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 10431 length = bfd_get_64 (abfd, buf);
f7ef9339 10432 *bytes_read = 8;
f7ef9339 10433 }
613e1657
KB
10434 else
10435 {
10436 *bytes_read = 4;
613e1657
KB
10437 }
10438
c764a876
DE
10439 return length;
10440}
dd373385 10441
c764a876
DE
10442/* Cover function for read_initial_length.
10443 Returns the length of the object at BUF, and stores the size of the
10444 initial length in *BYTES_READ and stores the size that offsets will be in
10445 *OFFSET_SIZE.
10446 If the initial length size is not equivalent to that specified in
10447 CU_HEADER then issue a complaint.
10448 This is useful when reading non-comp-unit headers. */
dd373385 10449
c764a876
DE
10450static LONGEST
10451read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10452 const struct comp_unit_head *cu_header,
10453 unsigned int *bytes_read,
10454 unsigned int *offset_size)
10455{
10456 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10457
10458 gdb_assert (cu_header->initial_length_size == 4
10459 || cu_header->initial_length_size == 8
10460 || cu_header->initial_length_size == 12);
10461
10462 if (cu_header->initial_length_size != *bytes_read)
10463 complaint (&symfile_complaints,
10464 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 10465
c764a876 10466 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 10467 return length;
613e1657
KB
10468}
10469
10470/* Read an offset from the data stream. The size of the offset is
917c78fc 10471 given by cu_header->offset_size. */
613e1657
KB
10472
10473static LONGEST
fe1b8b76 10474read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 10475 unsigned int *bytes_read)
c764a876
DE
10476{
10477 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 10478
c764a876
DE
10479 *bytes_read = cu_header->offset_size;
10480 return offset;
10481}
10482
10483/* Read an offset from the data stream. */
10484
10485static LONGEST
10486read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
10487{
10488 LONGEST retval = 0;
10489
c764a876 10490 switch (offset_size)
613e1657
KB
10491 {
10492 case 4:
fe1b8b76 10493 retval = bfd_get_32 (abfd, buf);
613e1657
KB
10494 break;
10495 case 8:
fe1b8b76 10496 retval = bfd_get_64 (abfd, buf);
613e1657
KB
10497 break;
10498 default:
8e65ff28 10499 internal_error (__FILE__, __LINE__,
c764a876 10500 _("read_offset_1: bad switch [in module %s]"),
659b0389 10501 bfd_get_filename (abfd));
613e1657
KB
10502 }
10503
917c78fc 10504 return retval;
613e1657
KB
10505}
10506
fe1b8b76
JB
10507static gdb_byte *
10508read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
10509{
10510 /* If the size of a host char is 8 bits, we can return a pointer
10511 to the buffer, otherwise we have to copy the data to a buffer
10512 allocated on the temporary obstack. */
4bdf3d34 10513 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 10514 return buf;
c906108c
SS
10515}
10516
10517static char *
9b1c24c8 10518read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
10519{
10520 /* If the size of a host char is 8 bits, we can return a pointer
10521 to the string, otherwise we have to copy the string to a buffer
10522 allocated on the temporary obstack. */
4bdf3d34 10523 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
10524 if (*buf == '\0')
10525 {
10526 *bytes_read_ptr = 1;
10527 return NULL;
10528 }
fe1b8b76
JB
10529 *bytes_read_ptr = strlen ((char *) buf) + 1;
10530 return (char *) buf;
4bdf3d34
JJ
10531}
10532
10533static char *
cf2c3c16 10534read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 10535{
be391dca 10536 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 10537 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
10538 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10539 bfd_get_filename (abfd));
dce234bc 10540 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
10541 error (_("DW_FORM_strp pointing outside of "
10542 ".debug_str section [in module %s]"),
10543 bfd_get_filename (abfd));
4bdf3d34 10544 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 10545 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 10546 return NULL;
dce234bc 10547 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
10548}
10549
cf2c3c16
TT
10550static char *
10551read_indirect_string (bfd *abfd, gdb_byte *buf,
10552 const struct comp_unit_head *cu_header,
10553 unsigned int *bytes_read_ptr)
10554{
10555 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10556
10557 return read_indirect_string_at_offset (abfd, str_offset);
10558}
10559
ce5d95e1 10560static unsigned long
fe1b8b76 10561read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 10562{
ce5d95e1
JB
10563 unsigned long result;
10564 unsigned int num_read;
c906108c
SS
10565 int i, shift;
10566 unsigned char byte;
10567
10568 result = 0;
10569 shift = 0;
10570 num_read = 0;
10571 i = 0;
10572 while (1)
10573 {
fe1b8b76 10574 byte = bfd_get_8 (abfd, buf);
c906108c
SS
10575 buf++;
10576 num_read++;
ce5d95e1 10577 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
10578 if ((byte & 128) == 0)
10579 {
10580 break;
10581 }
10582 shift += 7;
10583 }
10584 *bytes_read_ptr = num_read;
10585 return result;
10586}
10587
ce5d95e1 10588static long
fe1b8b76 10589read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 10590{
ce5d95e1 10591 long result;
77e0b926 10592 int i, shift, num_read;
c906108c
SS
10593 unsigned char byte;
10594
10595 result = 0;
10596 shift = 0;
c906108c
SS
10597 num_read = 0;
10598 i = 0;
10599 while (1)
10600 {
fe1b8b76 10601 byte = bfd_get_8 (abfd, buf);
c906108c
SS
10602 buf++;
10603 num_read++;
ce5d95e1 10604 result |= ((long)(byte & 127) << shift);
c906108c
SS
10605 shift += 7;
10606 if ((byte & 128) == 0)
10607 {
10608 break;
10609 }
10610 }
77e0b926
DJ
10611 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10612 result |= -(((long)1) << shift);
c906108c
SS
10613 *bytes_read_ptr = num_read;
10614 return result;
10615}
10616
4bb7a0a7
DJ
10617/* Return a pointer to just past the end of an LEB128 number in BUF. */
10618
fe1b8b76
JB
10619static gdb_byte *
10620skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
10621{
10622 int byte;
10623
10624 while (1)
10625 {
fe1b8b76 10626 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
10627 buf++;
10628 if ((byte & 128) == 0)
10629 return buf;
10630 }
10631}
10632
c906108c 10633static void
e142c38c 10634set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
10635{
10636 switch (lang)
10637 {
10638 case DW_LANG_C89:
76bee0cc 10639 case DW_LANG_C99:
c906108c 10640 case DW_LANG_C:
e142c38c 10641 cu->language = language_c;
c906108c
SS
10642 break;
10643 case DW_LANG_C_plus_plus:
e142c38c 10644 cu->language = language_cplus;
c906108c 10645 break;
6aecb9c2
JB
10646 case DW_LANG_D:
10647 cu->language = language_d;
10648 break;
c906108c
SS
10649 case DW_LANG_Fortran77:
10650 case DW_LANG_Fortran90:
b21b22e0 10651 case DW_LANG_Fortran95:
e142c38c 10652 cu->language = language_fortran;
c906108c
SS
10653 break;
10654 case DW_LANG_Mips_Assembler:
e142c38c 10655 cu->language = language_asm;
c906108c 10656 break;
bebd888e 10657 case DW_LANG_Java:
e142c38c 10658 cu->language = language_java;
bebd888e 10659 break;
c906108c 10660 case DW_LANG_Ada83:
8aaf0b47 10661 case DW_LANG_Ada95:
bc5f45f8
JB
10662 cu->language = language_ada;
10663 break;
72019c9c
GM
10664 case DW_LANG_Modula2:
10665 cu->language = language_m2;
10666 break;
fe8e67fd
PM
10667 case DW_LANG_Pascal83:
10668 cu->language = language_pascal;
10669 break;
22566fbd
DJ
10670 case DW_LANG_ObjC:
10671 cu->language = language_objc;
10672 break;
c906108c
SS
10673 case DW_LANG_Cobol74:
10674 case DW_LANG_Cobol85:
c906108c 10675 default:
e142c38c 10676 cu->language = language_minimal;
c906108c
SS
10677 break;
10678 }
e142c38c 10679 cu->language_defn = language_def (cu->language);
c906108c
SS
10680}
10681
10682/* Return the named attribute or NULL if not there. */
10683
10684static struct attribute *
e142c38c 10685dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
10686{
10687 unsigned int i;
10688 struct attribute *spec = NULL;
10689
10690 for (i = 0; i < die->num_attrs; ++i)
10691 {
10692 if (die->attrs[i].name == name)
10b3939b 10693 return &die->attrs[i];
c906108c
SS
10694 if (die->attrs[i].name == DW_AT_specification
10695 || die->attrs[i].name == DW_AT_abstract_origin)
10696 spec = &die->attrs[i];
10697 }
c906108c 10698
10b3939b 10699 if (spec)
f2f0e013
DJ
10700 {
10701 die = follow_die_ref (die, spec, &cu);
10702 return dwarf2_attr (die, name, cu);
10703 }
c5aa993b 10704
c906108c
SS
10705 return NULL;
10706}
10707
348e048f
DE
10708/* Return the named attribute or NULL if not there,
10709 but do not follow DW_AT_specification, etc.
10710 This is for use in contexts where we're reading .debug_types dies.
10711 Following DW_AT_specification, DW_AT_abstract_origin will take us
10712 back up the chain, and we want to go down. */
10713
10714static struct attribute *
10715dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10716 struct dwarf2_cu *cu)
10717{
10718 unsigned int i;
10719
10720 for (i = 0; i < die->num_attrs; ++i)
10721 if (die->attrs[i].name == name)
10722 return &die->attrs[i];
10723
10724 return NULL;
10725}
10726
05cf31d1
JB
10727/* Return non-zero iff the attribute NAME is defined for the given DIE,
10728 and holds a non-zero value. This function should only be used for
2dc7f7b3 10729 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
10730
10731static int
10732dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10733{
10734 struct attribute *attr = dwarf2_attr (die, name, cu);
10735
10736 return (attr && DW_UNSND (attr));
10737}
10738
3ca72b44 10739static int
e142c38c 10740die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 10741{
05cf31d1
JB
10742 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10743 which value is non-zero. However, we have to be careful with
10744 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10745 (via dwarf2_flag_true_p) follows this attribute. So we may
10746 end up accidently finding a declaration attribute that belongs
10747 to a different DIE referenced by the specification attribute,
10748 even though the given DIE does not have a declaration attribute. */
10749 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10750 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
10751}
10752
63d06c5c 10753/* Return the die giving the specification for DIE, if there is
f2f0e013 10754 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
10755 containing the return value on output. If there is no
10756 specification, but there is an abstract origin, that is
10757 returned. */
63d06c5c
DC
10758
10759static struct die_info *
f2f0e013 10760die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 10761{
f2f0e013
DJ
10762 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10763 *spec_cu);
63d06c5c 10764
edb3359d
DJ
10765 if (spec_attr == NULL)
10766 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10767
63d06c5c
DC
10768 if (spec_attr == NULL)
10769 return NULL;
10770 else
f2f0e013 10771 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 10772}
c906108c 10773
debd256d 10774/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
10775 refers to.
10776 NOTE: This is also used as a "cleanup" function. */
10777
debd256d
JB
10778static void
10779free_line_header (struct line_header *lh)
10780{
10781 if (lh->standard_opcode_lengths)
a8bc7b56 10782 xfree (lh->standard_opcode_lengths);
debd256d
JB
10783
10784 /* Remember that all the lh->file_names[i].name pointers are
10785 pointers into debug_line_buffer, and don't need to be freed. */
10786 if (lh->file_names)
a8bc7b56 10787 xfree (lh->file_names);
debd256d
JB
10788
10789 /* Similarly for the include directory names. */
10790 if (lh->include_dirs)
a8bc7b56 10791 xfree (lh->include_dirs);
debd256d 10792
a8bc7b56 10793 xfree (lh);
debd256d
JB
10794}
10795
debd256d 10796/* Add an entry to LH's include directory table. */
ae2de4f8 10797
debd256d
JB
10798static void
10799add_include_dir (struct line_header *lh, char *include_dir)
c906108c 10800{
debd256d
JB
10801 /* Grow the array if necessary. */
10802 if (lh->include_dirs_size == 0)
c5aa993b 10803 {
debd256d
JB
10804 lh->include_dirs_size = 1; /* for testing */
10805 lh->include_dirs = xmalloc (lh->include_dirs_size
10806 * sizeof (*lh->include_dirs));
10807 }
10808 else if (lh->num_include_dirs >= lh->include_dirs_size)
10809 {
10810 lh->include_dirs_size *= 2;
10811 lh->include_dirs = xrealloc (lh->include_dirs,
10812 (lh->include_dirs_size
10813 * sizeof (*lh->include_dirs)));
c5aa993b 10814 }
c906108c 10815
debd256d
JB
10816 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10817}
6e70227d 10818
debd256d 10819/* Add an entry to LH's file name table. */
ae2de4f8 10820
debd256d
JB
10821static void
10822add_file_name (struct line_header *lh,
10823 char *name,
10824 unsigned int dir_index,
10825 unsigned int mod_time,
10826 unsigned int length)
10827{
10828 struct file_entry *fe;
10829
10830 /* Grow the array if necessary. */
10831 if (lh->file_names_size == 0)
10832 {
10833 lh->file_names_size = 1; /* for testing */
10834 lh->file_names = xmalloc (lh->file_names_size
10835 * sizeof (*lh->file_names));
10836 }
10837 else if (lh->num_file_names >= lh->file_names_size)
10838 {
10839 lh->file_names_size *= 2;
10840 lh->file_names = xrealloc (lh->file_names,
10841 (lh->file_names_size
10842 * sizeof (*lh->file_names)));
10843 }
10844
10845 fe = &lh->file_names[lh->num_file_names++];
10846 fe->name = name;
10847 fe->dir_index = dir_index;
10848 fe->mod_time = mod_time;
10849 fe->length = length;
aaa75496 10850 fe->included_p = 0;
cb1df416 10851 fe->symtab = NULL;
debd256d 10852}
6e70227d 10853
debd256d 10854/* Read the statement program header starting at OFFSET in
6502dd73
DJ
10855 .debug_line, according to the endianness of ABFD. Return a pointer
10856 to a struct line_header, allocated using xmalloc.
debd256d
JB
10857
10858 NOTE: the strings in the include directory and file name tables of
10859 the returned object point into debug_line_buffer, and must not be
10860 freed. */
ae2de4f8 10861
debd256d
JB
10862static struct line_header *
10863dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 10864 struct dwarf2_cu *cu)
debd256d
JB
10865{
10866 struct cleanup *back_to;
10867 struct line_header *lh;
fe1b8b76 10868 gdb_byte *line_ptr;
c764a876 10869 unsigned int bytes_read, offset_size;
debd256d
JB
10870 int i;
10871 char *cur_dir, *cur_file;
10872
be391dca 10873 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 10874 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 10875 {
e2e0b3e5 10876 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
10877 return 0;
10878 }
10879
a738430d
MK
10880 /* Make sure that at least there's room for the total_length field.
10881 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 10882 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 10883 {
4d3c2250 10884 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10885 return 0;
10886 }
10887
10888 lh = xmalloc (sizeof (*lh));
10889 memset (lh, 0, sizeof (*lh));
10890 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10891 (void *) lh);
10892
dce234bc 10893 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 10894
a738430d 10895 /* Read in the header. */
6e70227d 10896 lh->total_length =
c764a876
DE
10897 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10898 &bytes_read, &offset_size);
debd256d 10899 line_ptr += bytes_read;
dce234bc
PP
10900 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10901 + dwarf2_per_objfile->line.size))
debd256d 10902 {
4d3c2250 10903 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10904 return 0;
10905 }
10906 lh->statement_program_end = line_ptr + lh->total_length;
10907 lh->version = read_2_bytes (abfd, line_ptr);
10908 line_ptr += 2;
c764a876
DE
10909 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10910 line_ptr += offset_size;
debd256d
JB
10911 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10912 line_ptr += 1;
2dc7f7b3
TT
10913 if (lh->version >= 4)
10914 {
10915 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10916 line_ptr += 1;
10917 }
10918 else
10919 lh->maximum_ops_per_instruction = 1;
10920
10921 if (lh->maximum_ops_per_instruction == 0)
10922 {
10923 lh->maximum_ops_per_instruction = 1;
10924 complaint (&symfile_complaints,
3e43a32a
MS
10925 _("invalid maximum_ops_per_instruction "
10926 "in `.debug_line' section"));
2dc7f7b3
TT
10927 }
10928
debd256d
JB
10929 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10930 line_ptr += 1;
10931 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10932 line_ptr += 1;
10933 lh->line_range = read_1_byte (abfd, line_ptr);
10934 line_ptr += 1;
10935 lh->opcode_base = read_1_byte (abfd, line_ptr);
10936 line_ptr += 1;
10937 lh->standard_opcode_lengths
fe1b8b76 10938 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
10939
10940 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10941 for (i = 1; i < lh->opcode_base; ++i)
10942 {
10943 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10944 line_ptr += 1;
10945 }
10946
a738430d 10947 /* Read directory table. */
9b1c24c8 10948 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10949 {
10950 line_ptr += bytes_read;
10951 add_include_dir (lh, cur_dir);
10952 }
10953 line_ptr += bytes_read;
10954
a738430d 10955 /* Read file name table. */
9b1c24c8 10956 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10957 {
10958 unsigned int dir_index, mod_time, length;
10959
10960 line_ptr += bytes_read;
10961 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10962 line_ptr += bytes_read;
10963 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10964 line_ptr += bytes_read;
10965 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10966 line_ptr += bytes_read;
10967
10968 add_file_name (lh, cur_file, dir_index, mod_time, length);
10969 }
10970 line_ptr += bytes_read;
6e70227d 10971 lh->statement_program_start = line_ptr;
debd256d 10972
dce234bc
PP
10973 if (line_ptr > (dwarf2_per_objfile->line.buffer
10974 + dwarf2_per_objfile->line.size))
4d3c2250 10975 complaint (&symfile_complaints,
3e43a32a
MS
10976 _("line number info header doesn't "
10977 "fit in `.debug_line' section"));
debd256d
JB
10978
10979 discard_cleanups (back_to);
10980 return lh;
10981}
c906108c 10982
c6da4cef
DE
10983/* Subroutine of dwarf_decode_lines to simplify it.
10984 Return the file name of the psymtab for included file FILE_INDEX
10985 in line header LH of PST.
10986 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10987 If space for the result is malloc'd, it will be freed by a cleanup.
10988 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10989
10990static char *
10991psymtab_include_file_name (const struct line_header *lh, int file_index,
10992 const struct partial_symtab *pst,
10993 const char *comp_dir)
10994{
10995 const struct file_entry fe = lh->file_names [file_index];
10996 char *include_name = fe.name;
10997 char *include_name_to_compare = include_name;
10998 char *dir_name = NULL;
72b9f47f
TT
10999 const char *pst_filename;
11000 char *copied_name = NULL;
c6da4cef
DE
11001 int file_is_pst;
11002
11003 if (fe.dir_index)
11004 dir_name = lh->include_dirs[fe.dir_index - 1];
11005
11006 if (!IS_ABSOLUTE_PATH (include_name)
11007 && (dir_name != NULL || comp_dir != NULL))
11008 {
11009 /* Avoid creating a duplicate psymtab for PST.
11010 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11011 Before we do the comparison, however, we need to account
11012 for DIR_NAME and COMP_DIR.
11013 First prepend dir_name (if non-NULL). If we still don't
11014 have an absolute path prepend comp_dir (if non-NULL).
11015 However, the directory we record in the include-file's
11016 psymtab does not contain COMP_DIR (to match the
11017 corresponding symtab(s)).
11018
11019 Example:
11020
11021 bash$ cd /tmp
11022 bash$ gcc -g ./hello.c
11023 include_name = "hello.c"
11024 dir_name = "."
11025 DW_AT_comp_dir = comp_dir = "/tmp"
11026 DW_AT_name = "./hello.c" */
11027
11028 if (dir_name != NULL)
11029 {
11030 include_name = concat (dir_name, SLASH_STRING,
11031 include_name, (char *)NULL);
11032 include_name_to_compare = include_name;
11033 make_cleanup (xfree, include_name);
11034 }
11035 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11036 {
11037 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11038 include_name, (char *)NULL);
11039 }
11040 }
11041
11042 pst_filename = pst->filename;
11043 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11044 {
72b9f47f
TT
11045 copied_name = concat (pst->dirname, SLASH_STRING,
11046 pst_filename, (char *)NULL);
11047 pst_filename = copied_name;
c6da4cef
DE
11048 }
11049
1e3fad37 11050 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
11051
11052 if (include_name_to_compare != include_name)
11053 xfree (include_name_to_compare);
72b9f47f
TT
11054 if (copied_name != NULL)
11055 xfree (copied_name);
c6da4cef
DE
11056
11057 if (file_is_pst)
11058 return NULL;
11059 return include_name;
11060}
11061
c91513d8
PP
11062/* Ignore this record_line request. */
11063
11064static void
11065noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11066{
11067 return;
11068}
11069
f3f5162e
DE
11070/* Subroutine of dwarf_decode_lines to simplify it.
11071 Process the line number information in LH. */
debd256d 11072
c906108c 11073static void
f3f5162e
DE
11074dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11075 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 11076{
a8c50c1f 11077 gdb_byte *line_ptr, *extended_end;
fe1b8b76 11078 gdb_byte *line_end;
a8c50c1f 11079 unsigned int bytes_read, extended_len;
c906108c 11080 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
11081 CORE_ADDR baseaddr;
11082 struct objfile *objfile = cu->objfile;
f3f5162e 11083 bfd *abfd = objfile->obfd;
fbf65064 11084 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 11085 const int decode_for_pst_p = (pst != NULL);
f3f5162e 11086 struct subfile *last_subfile = NULL;
c91513d8
PP
11087 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11088 = record_line;
e142c38c
DJ
11089
11090 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11091
debd256d
JB
11092 line_ptr = lh->statement_program_start;
11093 line_end = lh->statement_program_end;
c906108c
SS
11094
11095 /* Read the statement sequences until there's nothing left. */
11096 while (line_ptr < line_end)
11097 {
11098 /* state machine registers */
11099 CORE_ADDR address = 0;
11100 unsigned int file = 1;
11101 unsigned int line = 1;
11102 unsigned int column = 0;
debd256d 11103 int is_stmt = lh->default_is_stmt;
c906108c
SS
11104 int basic_block = 0;
11105 int end_sequence = 0;
fbf65064 11106 CORE_ADDR addr;
2dc7f7b3 11107 unsigned char op_index = 0;
c906108c 11108
aaa75496 11109 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 11110 {
aaa75496 11111 /* Start a subfile for the current file of the state machine. */
debd256d
JB
11112 /* lh->include_dirs and lh->file_names are 0-based, but the
11113 directory and file name numbers in the statement program
11114 are 1-based. */
11115 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 11116 char *dir = NULL;
a738430d 11117
debd256d
JB
11118 if (fe->dir_index)
11119 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
11120
11121 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
11122 }
11123
a738430d 11124 /* Decode the table. */
c5aa993b 11125 while (!end_sequence)
c906108c
SS
11126 {
11127 op_code = read_1_byte (abfd, line_ptr);
11128 line_ptr += 1;
59205f5a
JB
11129 if (line_ptr > line_end)
11130 {
11131 dwarf2_debug_line_missing_end_sequence_complaint ();
11132 break;
11133 }
9aa1fe7e 11134
debd256d 11135 if (op_code >= lh->opcode_base)
6e70227d 11136 {
a738430d 11137 /* Special operand. */
debd256d 11138 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
11139 address += (((op_index + (adj_opcode / lh->line_range))
11140 / lh->maximum_ops_per_instruction)
11141 * lh->minimum_instruction_length);
11142 op_index = ((op_index + (adj_opcode / lh->line_range))
11143 % lh->maximum_ops_per_instruction);
debd256d 11144 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 11145 if (lh->num_file_names < file || file == 0)
25e43795 11146 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
11147 /* For now we ignore lines not starting on an
11148 instruction boundary. */
11149 else if (op_index == 0)
25e43795
DJ
11150 {
11151 lh->file_names[file - 1].included_p = 1;
ca5f395d 11152 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
11153 {
11154 if (last_subfile != current_subfile)
11155 {
11156 addr = gdbarch_addr_bits_remove (gdbarch, address);
11157 if (last_subfile)
c91513d8 11158 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
11159 last_subfile = current_subfile;
11160 }
25e43795 11161 /* Append row to matrix using current values. */
7019d805 11162 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 11163 (*p_record_line) (current_subfile, line, addr);
366da635 11164 }
25e43795 11165 }
ca5f395d 11166 basic_block = 0;
9aa1fe7e
GK
11167 }
11168 else switch (op_code)
c906108c
SS
11169 {
11170 case DW_LNS_extended_op:
3e43a32a
MS
11171 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11172 &bytes_read);
473b7be6 11173 line_ptr += bytes_read;
a8c50c1f 11174 extended_end = line_ptr + extended_len;
c906108c
SS
11175 extended_op = read_1_byte (abfd, line_ptr);
11176 line_ptr += 1;
11177 switch (extended_op)
11178 {
11179 case DW_LNE_end_sequence:
c91513d8 11180 p_record_line = record_line;
c906108c 11181 end_sequence = 1;
c906108c
SS
11182 break;
11183 case DW_LNE_set_address:
e7c27a73 11184 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
11185
11186 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11187 {
11188 /* This line table is for a function which has been
11189 GCd by the linker. Ignore it. PR gdb/12528 */
11190
11191 long line_offset
11192 = line_ptr - dwarf2_per_objfile->line.buffer;
11193
11194 complaint (&symfile_complaints,
11195 _(".debug_line address at offset 0x%lx is 0 "
11196 "[in module %s]"),
bb5ed363 11197 line_offset, objfile->name);
c91513d8
PP
11198 p_record_line = noop_record_line;
11199 }
11200
2dc7f7b3 11201 op_index = 0;
107d2387
AC
11202 line_ptr += bytes_read;
11203 address += baseaddr;
c906108c
SS
11204 break;
11205 case DW_LNE_define_file:
debd256d
JB
11206 {
11207 char *cur_file;
11208 unsigned int dir_index, mod_time, length;
6e70227d 11209
3e43a32a
MS
11210 cur_file = read_direct_string (abfd, line_ptr,
11211 &bytes_read);
debd256d
JB
11212 line_ptr += bytes_read;
11213 dir_index =
11214 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11215 line_ptr += bytes_read;
11216 mod_time =
11217 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11218 line_ptr += bytes_read;
11219 length =
11220 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11221 line_ptr += bytes_read;
11222 add_file_name (lh, cur_file, dir_index, mod_time, length);
11223 }
c906108c 11224 break;
d0c6ba3d
CC
11225 case DW_LNE_set_discriminator:
11226 /* The discriminator is not interesting to the debugger;
11227 just ignore it. */
11228 line_ptr = extended_end;
11229 break;
c906108c 11230 default:
4d3c2250 11231 complaint (&symfile_complaints,
e2e0b3e5 11232 _("mangled .debug_line section"));
debd256d 11233 return;
c906108c 11234 }
a8c50c1f
DJ
11235 /* Make sure that we parsed the extended op correctly. If e.g.
11236 we expected a different address size than the producer used,
11237 we may have read the wrong number of bytes. */
11238 if (line_ptr != extended_end)
11239 {
11240 complaint (&symfile_complaints,
11241 _("mangled .debug_line section"));
11242 return;
11243 }
c906108c
SS
11244 break;
11245 case DW_LNS_copy:
59205f5a 11246 if (lh->num_file_names < file || file == 0)
25e43795
DJ
11247 dwarf2_debug_line_missing_file_complaint ();
11248 else
366da635 11249 {
25e43795 11250 lh->file_names[file - 1].included_p = 1;
ca5f395d 11251 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
11252 {
11253 if (last_subfile != current_subfile)
11254 {
11255 addr = gdbarch_addr_bits_remove (gdbarch, address);
11256 if (last_subfile)
c91513d8 11257 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
11258 last_subfile = current_subfile;
11259 }
7019d805 11260 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 11261 (*p_record_line) (current_subfile, line, addr);
fbf65064 11262 }
366da635 11263 }
c906108c
SS
11264 basic_block = 0;
11265 break;
11266 case DW_LNS_advance_pc:
2dc7f7b3
TT
11267 {
11268 CORE_ADDR adjust
11269 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11270
11271 address += (((op_index + adjust)
11272 / lh->maximum_ops_per_instruction)
11273 * lh->minimum_instruction_length);
11274 op_index = ((op_index + adjust)
11275 % lh->maximum_ops_per_instruction);
11276 line_ptr += bytes_read;
11277 }
c906108c
SS
11278 break;
11279 case DW_LNS_advance_line:
11280 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11281 line_ptr += bytes_read;
11282 break;
11283 case DW_LNS_set_file:
debd256d 11284 {
a738430d
MK
11285 /* The arrays lh->include_dirs and lh->file_names are
11286 0-based, but the directory and file name numbers in
11287 the statement program are 1-based. */
debd256d 11288 struct file_entry *fe;
4f1520fb 11289 char *dir = NULL;
a738430d 11290
debd256d
JB
11291 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11292 line_ptr += bytes_read;
59205f5a 11293 if (lh->num_file_names < file || file == 0)
25e43795
DJ
11294 dwarf2_debug_line_missing_file_complaint ();
11295 else
11296 {
11297 fe = &lh->file_names[file - 1];
11298 if (fe->dir_index)
11299 dir = lh->include_dirs[fe->dir_index - 1];
11300 if (!decode_for_pst_p)
11301 {
11302 last_subfile = current_subfile;
11303 dwarf2_start_subfile (fe->name, dir, comp_dir);
11304 }
11305 }
debd256d 11306 }
c906108c
SS
11307 break;
11308 case DW_LNS_set_column:
11309 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11310 line_ptr += bytes_read;
11311 break;
11312 case DW_LNS_negate_stmt:
11313 is_stmt = (!is_stmt);
11314 break;
11315 case DW_LNS_set_basic_block:
11316 basic_block = 1;
11317 break;
c2c6d25f
JM
11318 /* Add to the address register of the state machine the
11319 address increment value corresponding to special opcode
a738430d
MK
11320 255. I.e., this value is scaled by the minimum
11321 instruction length since special opcode 255 would have
b021a221 11322 scaled the increment. */
c906108c 11323 case DW_LNS_const_add_pc:
2dc7f7b3
TT
11324 {
11325 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11326
11327 address += (((op_index + adjust)
11328 / lh->maximum_ops_per_instruction)
11329 * lh->minimum_instruction_length);
11330 op_index = ((op_index + adjust)
11331 % lh->maximum_ops_per_instruction);
11332 }
c906108c
SS
11333 break;
11334 case DW_LNS_fixed_advance_pc:
11335 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 11336 op_index = 0;
c906108c
SS
11337 line_ptr += 2;
11338 break;
9aa1fe7e 11339 default:
a738430d
MK
11340 {
11341 /* Unknown standard opcode, ignore it. */
9aa1fe7e 11342 int i;
a738430d 11343
debd256d 11344 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
11345 {
11346 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11347 line_ptr += bytes_read;
11348 }
11349 }
c906108c
SS
11350 }
11351 }
59205f5a
JB
11352 if (lh->num_file_names < file || file == 0)
11353 dwarf2_debug_line_missing_file_complaint ();
11354 else
11355 {
11356 lh->file_names[file - 1].included_p = 1;
11357 if (!decode_for_pst_p)
fbf65064
UW
11358 {
11359 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 11360 (*p_record_line) (current_subfile, 0, addr);
fbf65064 11361 }
59205f5a 11362 }
c906108c 11363 }
f3f5162e
DE
11364}
11365
11366/* Decode the Line Number Program (LNP) for the given line_header
11367 structure and CU. The actual information extracted and the type
11368 of structures created from the LNP depends on the value of PST.
11369
11370 1. If PST is NULL, then this procedure uses the data from the program
11371 to create all necessary symbol tables, and their linetables.
11372
11373 2. If PST is not NULL, this procedure reads the program to determine
11374 the list of files included by the unit represented by PST, and
11375 builds all the associated partial symbol tables.
11376
11377 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11378 It is used for relative paths in the line table.
11379 NOTE: When processing partial symtabs (pst != NULL),
11380 comp_dir == pst->dirname.
11381
11382 NOTE: It is important that psymtabs have the same file name (via strcmp)
11383 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11384 symtab we don't use it in the name of the psymtabs we create.
11385 E.g. expand_line_sal requires this when finding psymtabs to expand.
11386 A good testcase for this is mb-inline.exp. */
11387
11388static void
11389dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11390 struct dwarf2_cu *cu, struct partial_symtab *pst,
11391 int want_line_info)
11392{
11393 struct objfile *objfile = cu->objfile;
11394 const int decode_for_pst_p = (pst != NULL);
11395 struct subfile *first_subfile = current_subfile;
11396
11397 if (want_line_info)
11398 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
11399
11400 if (decode_for_pst_p)
11401 {
11402 int file_index;
11403
11404 /* Now that we're done scanning the Line Header Program, we can
11405 create the psymtab of each included file. */
11406 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11407 if (lh->file_names[file_index].included_p == 1)
11408 {
c6da4cef
DE
11409 char *include_name =
11410 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11411 if (include_name != NULL)
aaa75496
JB
11412 dwarf2_create_include_psymtab (include_name, pst, objfile);
11413 }
11414 }
cb1df416
DJ
11415 else
11416 {
11417 /* Make sure a symtab is created for every file, even files
11418 which contain only variables (i.e. no code with associated
11419 line numbers). */
cb1df416 11420 int i;
cb1df416
DJ
11421
11422 for (i = 0; i < lh->num_file_names; i++)
11423 {
11424 char *dir = NULL;
f3f5162e 11425 struct file_entry *fe;
9a619af0 11426
cb1df416
DJ
11427 fe = &lh->file_names[i];
11428 if (fe->dir_index)
11429 dir = lh->include_dirs[fe->dir_index - 1];
11430 dwarf2_start_subfile (fe->name, dir, comp_dir);
11431
11432 /* Skip the main file; we don't need it, and it must be
11433 allocated last, so that it will show up before the
11434 non-primary symtabs in the objfile's symtab list. */
11435 if (current_subfile == first_subfile)
11436 continue;
11437
11438 if (current_subfile->symtab == NULL)
11439 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 11440 objfile);
cb1df416
DJ
11441 fe->symtab = current_subfile->symtab;
11442 }
11443 }
c906108c
SS
11444}
11445
11446/* Start a subfile for DWARF. FILENAME is the name of the file and
11447 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
11448 or NULL if not known. COMP_DIR is the compilation directory for the
11449 linetable's compilation unit or NULL if not known.
c906108c
SS
11450 This routine tries to keep line numbers from identical absolute and
11451 relative file names in a common subfile.
11452
11453 Using the `list' example from the GDB testsuite, which resides in
11454 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11455 of /srcdir/list0.c yields the following debugging information for list0.c:
11456
c5aa993b
JM
11457 DW_AT_name: /srcdir/list0.c
11458 DW_AT_comp_dir: /compdir
357e46e7 11459 files.files[0].name: list0.h
c5aa993b 11460 files.files[0].dir: /srcdir
357e46e7 11461 files.files[1].name: list0.c
c5aa993b 11462 files.files[1].dir: /srcdir
c906108c
SS
11463
11464 The line number information for list0.c has to end up in a single
4f1520fb
FR
11465 subfile, so that `break /srcdir/list0.c:1' works as expected.
11466 start_subfile will ensure that this happens provided that we pass the
11467 concatenation of files.files[1].dir and files.files[1].name as the
11468 subfile's name. */
c906108c
SS
11469
11470static void
3e43a32a
MS
11471dwarf2_start_subfile (char *filename, const char *dirname,
11472 const char *comp_dir)
c906108c 11473{
4f1520fb
FR
11474 char *fullname;
11475
11476 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11477 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11478 second argument to start_subfile. To be consistent, we do the
11479 same here. In order not to lose the line information directory,
11480 we concatenate it to the filename when it makes sense.
11481 Note that the Dwarf3 standard says (speaking of filenames in line
11482 information): ``The directory index is ignored for file names
11483 that represent full path names''. Thus ignoring dirname in the
11484 `else' branch below isn't an issue. */
c906108c 11485
d5166ae1 11486 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
11487 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11488 else
11489 fullname = filename;
c906108c 11490
4f1520fb
FR
11491 start_subfile (fullname, comp_dir);
11492
11493 if (fullname != filename)
11494 xfree (fullname);
c906108c
SS
11495}
11496
4c2df51b
DJ
11497static void
11498var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 11499 struct dwarf2_cu *cu)
4c2df51b 11500{
e7c27a73
DJ
11501 struct objfile *objfile = cu->objfile;
11502 struct comp_unit_head *cu_header = &cu->header;
11503
4c2df51b
DJ
11504 /* NOTE drow/2003-01-30: There used to be a comment and some special
11505 code here to turn a symbol with DW_AT_external and a
11506 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11507 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11508 with some versions of binutils) where shared libraries could have
11509 relocations against symbols in their debug information - the
11510 minimal symbol would have the right address, but the debug info
11511 would not. It's no longer necessary, because we will explicitly
11512 apply relocations when we read in the debug information now. */
11513
11514 /* A DW_AT_location attribute with no contents indicates that a
11515 variable has been optimized away. */
11516 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11517 {
11518 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11519 return;
11520 }
11521
11522 /* Handle one degenerate form of location expression specially, to
11523 preserve GDB's previous behavior when section offsets are
11524 specified. If this is just a DW_OP_addr then mark this symbol
11525 as LOC_STATIC. */
11526
11527 if (attr_form_is_block (attr)
11528 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11529 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11530 {
891d2f0b 11531 unsigned int dummy;
4c2df51b
DJ
11532
11533 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 11534 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 11535 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
11536 fixup_symbol_section (sym, objfile);
11537 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11538 SYMBOL_SECTION (sym));
4c2df51b
DJ
11539 return;
11540 }
11541
11542 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11543 expression evaluator, and use LOC_COMPUTED only when necessary
11544 (i.e. when the value of a register or memory location is
11545 referenced, or a thread-local block, etc.). Then again, it might
11546 not be worthwhile. I'm assuming that it isn't unless performance
11547 or memory numbers show me otherwise. */
11548
e7c27a73 11549 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b 11550 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8be455d7
JK
11551
11552 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11553 cu->has_loclist = 1;
4c2df51b
DJ
11554}
11555
c906108c
SS
11556/* Given a pointer to a DWARF information entry, figure out if we need
11557 to make a symbol table entry for it, and if so, create a new entry
11558 and return a pointer to it.
11559 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
11560 used the passed type.
11561 If SPACE is not NULL, use it to hold the new symbol. If it is
11562 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
11563
11564static struct symbol *
34eaf542
TT
11565new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11566 struct symbol *space)
c906108c 11567{
e7c27a73 11568 struct objfile *objfile = cu->objfile;
c906108c
SS
11569 struct symbol *sym = NULL;
11570 char *name;
11571 struct attribute *attr = NULL;
11572 struct attribute *attr2 = NULL;
e142c38c 11573 CORE_ADDR baseaddr;
e37fd15a
SW
11574 struct pending **list_to_add = NULL;
11575
edb3359d 11576 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
11577
11578 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11579
94af9270 11580 name = dwarf2_name (die, cu);
c906108c
SS
11581 if (name)
11582 {
94af9270 11583 const char *linkagename;
34eaf542 11584 int suppress_add = 0;
94af9270 11585
34eaf542
TT
11586 if (space)
11587 sym = space;
11588 else
11589 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 11590 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
11591
11592 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 11593 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
11594 linkagename = dwarf2_physname (name, die, cu);
11595 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 11596
f55ee35c
JK
11597 /* Fortran does not have mangling standard and the mangling does differ
11598 between gfortran, iFort etc. */
11599 if (cu->language == language_fortran
b250c185 11600 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
11601 symbol_set_demangled_name (&(sym->ginfo),
11602 (char *) dwarf2_full_name (name, die, cu),
11603 NULL);
f55ee35c 11604
c906108c 11605 /* Default assumptions.
c5aa993b 11606 Use the passed type or decode it from the die. */
176620f1 11607 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 11608 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
11609 if (type != NULL)
11610 SYMBOL_TYPE (sym) = type;
11611 else
e7c27a73 11612 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
11613 attr = dwarf2_attr (die,
11614 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11615 cu);
c906108c
SS
11616 if (attr)
11617 {
11618 SYMBOL_LINE (sym) = DW_UNSND (attr);
11619 }
cb1df416 11620
edb3359d
DJ
11621 attr = dwarf2_attr (die,
11622 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11623 cu);
cb1df416
DJ
11624 if (attr)
11625 {
11626 int file_index = DW_UNSND (attr);
9a619af0 11627
cb1df416
DJ
11628 if (cu->line_header == NULL
11629 || file_index > cu->line_header->num_file_names)
11630 complaint (&symfile_complaints,
11631 _("file index out of range"));
1c3d648d 11632 else if (file_index > 0)
cb1df416
DJ
11633 {
11634 struct file_entry *fe;
9a619af0 11635
cb1df416
DJ
11636 fe = &cu->line_header->file_names[file_index - 1];
11637 SYMBOL_SYMTAB (sym) = fe->symtab;
11638 }
11639 }
11640
c906108c
SS
11641 switch (die->tag)
11642 {
11643 case DW_TAG_label:
e142c38c 11644 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
11645 if (attr)
11646 {
11647 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11648 }
0f5238ed
TT
11649 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11650 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 11651 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 11652 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
11653 break;
11654 case DW_TAG_subprogram:
11655 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11656 finish_block. */
11657 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 11658 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
11659 if ((attr2 && (DW_UNSND (attr2) != 0))
11660 || cu->language == language_ada)
c906108c 11661 {
2cfa0c8d
JB
11662 /* Subprograms marked external are stored as a global symbol.
11663 Ada subprograms, whether marked external or not, are always
11664 stored as a global symbol, because we want to be able to
11665 access them globally. For instance, we want to be able
11666 to break on a nested subprogram without having to
11667 specify the context. */
e37fd15a 11668 list_to_add = &global_symbols;
c906108c
SS
11669 }
11670 else
11671 {
e37fd15a 11672 list_to_add = cu->list_in_scope;
c906108c
SS
11673 }
11674 break;
edb3359d
DJ
11675 case DW_TAG_inlined_subroutine:
11676 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11677 finish_block. */
11678 SYMBOL_CLASS (sym) = LOC_BLOCK;
11679 SYMBOL_INLINED (sym) = 1;
11680 /* Do not add the symbol to any lists. It will be found via
11681 BLOCK_FUNCTION from the blockvector. */
11682 break;
34eaf542
TT
11683 case DW_TAG_template_value_param:
11684 suppress_add = 1;
11685 /* Fall through. */
72929c62 11686 case DW_TAG_constant:
c906108c 11687 case DW_TAG_variable:
254e6b9e 11688 case DW_TAG_member:
0963b4bd
MS
11689 /* Compilation with minimal debug info may result in
11690 variables with missing type entries. Change the
11691 misleading `void' type to something sensible. */
c906108c 11692 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 11693 SYMBOL_TYPE (sym)
46bf5051 11694 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 11695
e142c38c 11696 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
11697 /* In the case of DW_TAG_member, we should only be called for
11698 static const members. */
11699 if (die->tag == DW_TAG_member)
11700 {
3863f96c
DE
11701 /* dwarf2_add_field uses die_is_declaration,
11702 so we do the same. */
254e6b9e
DE
11703 gdb_assert (die_is_declaration (die, cu));
11704 gdb_assert (attr);
11705 }
c906108c
SS
11706 if (attr)
11707 {
e7c27a73 11708 dwarf2_const_value (attr, sym, cu);
e142c38c 11709 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 11710 if (!suppress_add)
34eaf542
TT
11711 {
11712 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 11713 list_to_add = &global_symbols;
34eaf542 11714 else
e37fd15a 11715 list_to_add = cu->list_in_scope;
34eaf542 11716 }
c906108c
SS
11717 break;
11718 }
e142c38c 11719 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11720 if (attr)
11721 {
e7c27a73 11722 var_decode_location (attr, sym, cu);
e142c38c 11723 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
11724 if (SYMBOL_CLASS (sym) == LOC_STATIC
11725 && SYMBOL_VALUE_ADDRESS (sym) == 0
11726 && !dwarf2_per_objfile->has_section_at_zero)
11727 {
11728 /* When a static variable is eliminated by the linker,
11729 the corresponding debug information is not stripped
11730 out, but the variable address is set to null;
11731 do not add such variables into symbol table. */
11732 }
11733 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 11734 {
f55ee35c
JK
11735 /* Workaround gfortran PR debug/40040 - it uses
11736 DW_AT_location for variables in -fPIC libraries which may
11737 get overriden by other libraries/executable and get
11738 a different address. Resolve it by the minimal symbol
11739 which may come from inferior's executable using copy
11740 relocation. Make this workaround only for gfortran as for
11741 other compilers GDB cannot guess the minimal symbol
11742 Fortran mangling kind. */
11743 if (cu->language == language_fortran && die->parent
11744 && die->parent->tag == DW_TAG_module
11745 && cu->producer
11746 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11747 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11748
1c809c68
TT
11749 /* A variable with DW_AT_external is never static,
11750 but it may be block-scoped. */
11751 list_to_add = (cu->list_in_scope == &file_symbols
11752 ? &global_symbols : cu->list_in_scope);
1c809c68 11753 }
c906108c 11754 else
e37fd15a 11755 list_to_add = cu->list_in_scope;
c906108c
SS
11756 }
11757 else
11758 {
11759 /* We do not know the address of this symbol.
c5aa993b
JM
11760 If it is an external symbol and we have type information
11761 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11762 The address of the variable will then be determined from
11763 the minimal symbol table whenever the variable is
11764 referenced. */
e142c38c 11765 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 11766 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 11767 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 11768 {
0fe7935b
DJ
11769 /* A variable with DW_AT_external is never static, but it
11770 may be block-scoped. */
11771 list_to_add = (cu->list_in_scope == &file_symbols
11772 ? &global_symbols : cu->list_in_scope);
11773
c906108c 11774 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 11775 }
442ddf59
JK
11776 else if (!die_is_declaration (die, cu))
11777 {
11778 /* Use the default LOC_OPTIMIZED_OUT class. */
11779 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
11780 if (!suppress_add)
11781 list_to_add = cu->list_in_scope;
442ddf59 11782 }
c906108c
SS
11783 }
11784 break;
11785 case DW_TAG_formal_parameter:
edb3359d
DJ
11786 /* If we are inside a function, mark this as an argument. If
11787 not, we might be looking at an argument to an inlined function
11788 when we do not have enough information to show inlined frames;
11789 pretend it's a local variable in that case so that the user can
11790 still see it. */
11791 if (context_stack_depth > 0
11792 && context_stack[context_stack_depth - 1].name != NULL)
11793 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 11794 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11795 if (attr)
11796 {
e7c27a73 11797 var_decode_location (attr, sym, cu);
c906108c 11798 }
e142c38c 11799 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11800 if (attr)
11801 {
e7c27a73 11802 dwarf2_const_value (attr, sym, cu);
c906108c 11803 }
f346a30d 11804
e37fd15a 11805 list_to_add = cu->list_in_scope;
c906108c
SS
11806 break;
11807 case DW_TAG_unspecified_parameters:
11808 /* From varargs functions; gdb doesn't seem to have any
11809 interest in this information, so just ignore it for now.
11810 (FIXME?) */
11811 break;
34eaf542
TT
11812 case DW_TAG_template_type_param:
11813 suppress_add = 1;
11814 /* Fall through. */
c906108c 11815 case DW_TAG_class_type:
680b30c7 11816 case DW_TAG_interface_type:
c906108c
SS
11817 case DW_TAG_structure_type:
11818 case DW_TAG_union_type:
72019c9c 11819 case DW_TAG_set_type:
c906108c
SS
11820 case DW_TAG_enumeration_type:
11821 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11822 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 11823
63d06c5c 11824 {
987504bb 11825 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
11826 really ever be static objects: otherwise, if you try
11827 to, say, break of a class's method and you're in a file
11828 which doesn't mention that class, it won't work unless
11829 the check for all static symbols in lookup_symbol_aux
11830 saves you. See the OtherFileClass tests in
11831 gdb.c++/namespace.exp. */
11832
e37fd15a 11833 if (!suppress_add)
34eaf542 11834 {
34eaf542
TT
11835 list_to_add = (cu->list_in_scope == &file_symbols
11836 && (cu->language == language_cplus
11837 || cu->language == language_java)
11838 ? &global_symbols : cu->list_in_scope);
63d06c5c 11839
64382290
TT
11840 /* The semantics of C++ state that "struct foo {
11841 ... }" also defines a typedef for "foo". A Java
11842 class declaration also defines a typedef for the
11843 class. */
11844 if (cu->language == language_cplus
11845 || cu->language == language_java
11846 || cu->language == language_ada)
11847 {
11848 /* The symbol's name is already allocated along
11849 with this objfile, so we don't need to
11850 duplicate it for the type. */
11851 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11852 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11853 }
63d06c5c
DC
11854 }
11855 }
c906108c
SS
11856 break;
11857 case DW_TAG_typedef:
63d06c5c
DC
11858 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11859 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11860 list_to_add = cu->list_in_scope;
63d06c5c 11861 break;
c906108c 11862 case DW_TAG_base_type:
a02abb62 11863 case DW_TAG_subrange_type:
c906108c 11864 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11865 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11866 list_to_add = cu->list_in_scope;
c906108c
SS
11867 break;
11868 case DW_TAG_enumerator:
e142c38c 11869 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11870 if (attr)
11871 {
e7c27a73 11872 dwarf2_const_value (attr, sym, cu);
c906108c 11873 }
63d06c5c
DC
11874 {
11875 /* NOTE: carlton/2003-11-10: See comment above in the
11876 DW_TAG_class_type, etc. block. */
11877
e142c38c 11878 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
11879 && (cu->language == language_cplus
11880 || cu->language == language_java)
e142c38c 11881 ? &global_symbols : cu->list_in_scope);
63d06c5c 11882 }
c906108c 11883 break;
5c4e30ca
DC
11884 case DW_TAG_namespace:
11885 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 11886 list_to_add = &global_symbols;
5c4e30ca 11887 break;
c906108c
SS
11888 default:
11889 /* Not a tag we recognize. Hopefully we aren't processing
11890 trash data, but since we must specifically ignore things
11891 we don't recognize, there is nothing else we should do at
0963b4bd 11892 this point. */
e2e0b3e5 11893 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 11894 dwarf_tag_name (die->tag));
c906108c
SS
11895 break;
11896 }
df8a16a1 11897
e37fd15a
SW
11898 if (suppress_add)
11899 {
11900 sym->hash_next = objfile->template_symbols;
11901 objfile->template_symbols = sym;
11902 list_to_add = NULL;
11903 }
11904
11905 if (list_to_add != NULL)
11906 add_symbol_to_list (sym, list_to_add);
11907
df8a16a1
DJ
11908 /* For the benefit of old versions of GCC, check for anonymous
11909 namespaces based on the demangled name. */
11910 if (!processing_has_namespace_info
94af9270 11911 && cu->language == language_cplus)
a10964d1 11912 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
11913 }
11914 return (sym);
11915}
11916
34eaf542
TT
11917/* A wrapper for new_symbol_full that always allocates a new symbol. */
11918
11919static struct symbol *
11920new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11921{
11922 return new_symbol_full (die, type, cu, NULL);
11923}
11924
98bfdba5
PA
11925/* Given an attr with a DW_FORM_dataN value in host byte order,
11926 zero-extend it as appropriate for the symbol's type. The DWARF
11927 standard (v4) is not entirely clear about the meaning of using
11928 DW_FORM_dataN for a constant with a signed type, where the type is
11929 wider than the data. The conclusion of a discussion on the DWARF
11930 list was that this is unspecified. We choose to always zero-extend
11931 because that is the interpretation long in use by GCC. */
c906108c 11932
98bfdba5
PA
11933static gdb_byte *
11934dwarf2_const_value_data (struct attribute *attr, struct type *type,
11935 const char *name, struct obstack *obstack,
11936 struct dwarf2_cu *cu, long *value, int bits)
c906108c 11937{
e7c27a73 11938 struct objfile *objfile = cu->objfile;
e17a4113
UW
11939 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11940 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
11941 LONGEST l = DW_UNSND (attr);
11942
11943 if (bits < sizeof (*value) * 8)
11944 {
11945 l &= ((LONGEST) 1 << bits) - 1;
11946 *value = l;
11947 }
11948 else if (bits == sizeof (*value) * 8)
11949 *value = l;
11950 else
11951 {
11952 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11953 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11954 return bytes;
11955 }
11956
11957 return NULL;
11958}
11959
11960/* Read a constant value from an attribute. Either set *VALUE, or if
11961 the value does not fit in *VALUE, set *BYTES - either already
11962 allocated on the objfile obstack, or newly allocated on OBSTACK,
11963 or, set *BATON, if we translated the constant to a location
11964 expression. */
11965
11966static void
11967dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11968 const char *name, struct obstack *obstack,
11969 struct dwarf2_cu *cu,
11970 long *value, gdb_byte **bytes,
11971 struct dwarf2_locexpr_baton **baton)
11972{
11973 struct objfile *objfile = cu->objfile;
11974 struct comp_unit_head *cu_header = &cu->header;
c906108c 11975 struct dwarf_block *blk;
98bfdba5
PA
11976 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11977 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11978
11979 *value = 0;
11980 *bytes = NULL;
11981 *baton = NULL;
c906108c
SS
11982
11983 switch (attr->form)
11984 {
11985 case DW_FORM_addr:
ac56253d 11986 {
ac56253d
TT
11987 gdb_byte *data;
11988
98bfdba5
PA
11989 if (TYPE_LENGTH (type) != cu_header->addr_size)
11990 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 11991 cu_header->addr_size,
98bfdba5 11992 TYPE_LENGTH (type));
ac56253d
TT
11993 /* Symbols of this form are reasonably rare, so we just
11994 piggyback on the existing location code rather than writing
11995 a new implementation of symbol_computed_ops. */
98bfdba5
PA
11996 *baton = obstack_alloc (&objfile->objfile_obstack,
11997 sizeof (struct dwarf2_locexpr_baton));
11998 (*baton)->per_cu = cu->per_cu;
11999 gdb_assert ((*baton)->per_cu);
ac56253d 12000
98bfdba5
PA
12001 (*baton)->size = 2 + cu_header->addr_size;
12002 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12003 (*baton)->data = data;
ac56253d
TT
12004
12005 data[0] = DW_OP_addr;
12006 store_unsigned_integer (&data[1], cu_header->addr_size,
12007 byte_order, DW_ADDR (attr));
12008 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 12009 }
c906108c 12010 break;
4ac36638 12011 case DW_FORM_string:
93b5768b 12012 case DW_FORM_strp:
98bfdba5
PA
12013 /* DW_STRING is already allocated on the objfile obstack, point
12014 directly to it. */
12015 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 12016 break;
c906108c
SS
12017 case DW_FORM_block1:
12018 case DW_FORM_block2:
12019 case DW_FORM_block4:
12020 case DW_FORM_block:
2dc7f7b3 12021 case DW_FORM_exprloc:
c906108c 12022 blk = DW_BLOCK (attr);
98bfdba5
PA
12023 if (TYPE_LENGTH (type) != blk->size)
12024 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12025 TYPE_LENGTH (type));
12026 *bytes = blk->data;
c906108c 12027 break;
2df3850c
JM
12028
12029 /* The DW_AT_const_value attributes are supposed to carry the
12030 symbol's value "represented as it would be on the target
12031 architecture." By the time we get here, it's already been
12032 converted to host endianness, so we just need to sign- or
12033 zero-extend it as appropriate. */
12034 case DW_FORM_data1:
3e43a32a
MS
12035 *bytes = dwarf2_const_value_data (attr, type, name,
12036 obstack, cu, value, 8);
2df3850c 12037 break;
c906108c 12038 case DW_FORM_data2:
3e43a32a
MS
12039 *bytes = dwarf2_const_value_data (attr, type, name,
12040 obstack, cu, value, 16);
2df3850c 12041 break;
c906108c 12042 case DW_FORM_data4:
3e43a32a
MS
12043 *bytes = dwarf2_const_value_data (attr, type, name,
12044 obstack, cu, value, 32);
2df3850c 12045 break;
c906108c 12046 case DW_FORM_data8:
3e43a32a
MS
12047 *bytes = dwarf2_const_value_data (attr, type, name,
12048 obstack, cu, value, 64);
2df3850c
JM
12049 break;
12050
c906108c 12051 case DW_FORM_sdata:
98bfdba5 12052 *value = DW_SND (attr);
2df3850c
JM
12053 break;
12054
c906108c 12055 case DW_FORM_udata:
98bfdba5 12056 *value = DW_UNSND (attr);
c906108c 12057 break;
2df3850c 12058
c906108c 12059 default:
4d3c2250 12060 complaint (&symfile_complaints,
e2e0b3e5 12061 _("unsupported const value attribute form: '%s'"),
4d3c2250 12062 dwarf_form_name (attr->form));
98bfdba5 12063 *value = 0;
c906108c
SS
12064 break;
12065 }
12066}
12067
2df3850c 12068
98bfdba5
PA
12069/* Copy constant value from an attribute to a symbol. */
12070
2df3850c 12071static void
98bfdba5
PA
12072dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12073 struct dwarf2_cu *cu)
2df3850c 12074{
98bfdba5
PA
12075 struct objfile *objfile = cu->objfile;
12076 struct comp_unit_head *cu_header = &cu->header;
12077 long value;
12078 gdb_byte *bytes;
12079 struct dwarf2_locexpr_baton *baton;
2df3850c 12080
98bfdba5
PA
12081 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12082 SYMBOL_PRINT_NAME (sym),
12083 &objfile->objfile_obstack, cu,
12084 &value, &bytes, &baton);
2df3850c 12085
98bfdba5
PA
12086 if (baton != NULL)
12087 {
12088 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12089 SYMBOL_LOCATION_BATON (sym) = baton;
12090 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12091 }
12092 else if (bytes != NULL)
12093 {
12094 SYMBOL_VALUE_BYTES (sym) = bytes;
12095 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12096 }
12097 else
12098 {
12099 SYMBOL_VALUE (sym) = value;
12100 SYMBOL_CLASS (sym) = LOC_CONST;
12101 }
2df3850c
JM
12102}
12103
c906108c
SS
12104/* Return the type of the die in question using its DW_AT_type attribute. */
12105
12106static struct type *
e7c27a73 12107die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12108{
c906108c 12109 struct attribute *type_attr;
c906108c 12110
e142c38c 12111 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
12112 if (!type_attr)
12113 {
12114 /* A missing DW_AT_type represents a void type. */
46bf5051 12115 return objfile_type (cu->objfile)->builtin_void;
c906108c 12116 }
348e048f 12117
673bfd45 12118 return lookup_die_type (die, type_attr, cu);
c906108c
SS
12119}
12120
b4ba55a1
JB
12121/* True iff CU's producer generates GNAT Ada auxiliary information
12122 that allows to find parallel types through that information instead
12123 of having to do expensive parallel lookups by type name. */
12124
12125static int
12126need_gnat_info (struct dwarf2_cu *cu)
12127{
12128 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12129 of GNAT produces this auxiliary information, without any indication
12130 that it is produced. Part of enhancing the FSF version of GNAT
12131 to produce that information will be to put in place an indicator
12132 that we can use in order to determine whether the descriptive type
12133 info is available or not. One suggestion that has been made is
12134 to use a new attribute, attached to the CU die. For now, assume
12135 that the descriptive type info is not available. */
12136 return 0;
12137}
12138
b4ba55a1
JB
12139/* Return the auxiliary type of the die in question using its
12140 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12141 attribute is not present. */
12142
12143static struct type *
12144die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12145{
b4ba55a1 12146 struct attribute *type_attr;
b4ba55a1
JB
12147
12148 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12149 if (!type_attr)
12150 return NULL;
12151
673bfd45 12152 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
12153}
12154
12155/* If DIE has a descriptive_type attribute, then set the TYPE's
12156 descriptive type accordingly. */
12157
12158static void
12159set_descriptive_type (struct type *type, struct die_info *die,
12160 struct dwarf2_cu *cu)
12161{
12162 struct type *descriptive_type = die_descriptive_type (die, cu);
12163
12164 if (descriptive_type)
12165 {
12166 ALLOCATE_GNAT_AUX_TYPE (type);
12167 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12168 }
12169}
12170
c906108c
SS
12171/* Return the containing type of the die in question using its
12172 DW_AT_containing_type attribute. */
12173
12174static struct type *
e7c27a73 12175die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12176{
c906108c 12177 struct attribute *type_attr;
c906108c 12178
e142c38c 12179 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
12180 if (!type_attr)
12181 error (_("Dwarf Error: Problem turning containing type into gdb type "
12182 "[in module %s]"), cu->objfile->name);
12183
673bfd45 12184 return lookup_die_type (die, type_attr, cu);
c906108c
SS
12185}
12186
673bfd45
DE
12187/* Look up the type of DIE in CU using its type attribute ATTR.
12188 If there is no type substitute an error marker. */
12189
c906108c 12190static struct type *
673bfd45
DE
12191lookup_die_type (struct die_info *die, struct attribute *attr,
12192 struct dwarf2_cu *cu)
c906108c 12193{
bb5ed363 12194 struct objfile *objfile = cu->objfile;
f792889a
DJ
12195 struct type *this_type;
12196
673bfd45
DE
12197 /* First see if we have it cached. */
12198
12199 if (is_ref_attr (attr))
12200 {
12201 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12202
12203 this_type = get_die_type_at_offset (offset, cu->per_cu);
12204 }
55f1336d 12205 else if (attr->form == DW_FORM_ref_sig8)
673bfd45
DE
12206 {
12207 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12208 struct dwarf2_cu *sig_cu;
12209 unsigned int offset;
12210
12211 /* sig_type will be NULL if the signatured type is missing from
12212 the debug info. */
12213 if (sig_type == NULL)
12214 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12215 "at 0x%x [in module %s]"),
bb5ed363 12216 die->offset, objfile->name);
673bfd45 12217
b0df02fd 12218 gdb_assert (sig_type->per_cu.debug_types_section);
b3c8eb43 12219 offset = sig_type->per_cu.offset + sig_type->type_offset;
673bfd45
DE
12220 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12221 }
12222 else
12223 {
12224 dump_die_for_error (die);
12225 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
bb5ed363 12226 dwarf_attr_name (attr->name), objfile->name);
673bfd45
DE
12227 }
12228
12229 /* If not cached we need to read it in. */
12230
12231 if (this_type == NULL)
12232 {
12233 struct die_info *type_die;
12234 struct dwarf2_cu *type_cu = cu;
12235
12236 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12237 /* If the type is cached, we should have found it above. */
12238 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12239 this_type = read_type_die_1 (type_die, type_cu);
12240 }
12241
12242 /* If we still don't have a type use an error marker. */
12243
12244 if (this_type == NULL)
c906108c 12245 {
b00fdb78
TT
12246 char *message, *saved;
12247
12248 /* read_type_die already issued a complaint. */
12249 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
bb5ed363 12250 objfile->name,
b00fdb78
TT
12251 cu->header.offset,
12252 die->offset);
bb5ed363 12253 saved = obstack_copy0 (&objfile->objfile_obstack,
b00fdb78
TT
12254 message, strlen (message));
12255 xfree (message);
12256
bb5ed363 12257 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
c906108c 12258 }
673bfd45 12259
f792889a 12260 return this_type;
c906108c
SS
12261}
12262
673bfd45
DE
12263/* Return the type in DIE, CU.
12264 Returns NULL for invalid types.
12265
12266 This first does a lookup in the appropriate type_hash table,
12267 and only reads the die in if necessary.
12268
12269 NOTE: This can be called when reading in partial or full symbols. */
12270
f792889a 12271static struct type *
e7c27a73 12272read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12273{
f792889a
DJ
12274 struct type *this_type;
12275
12276 this_type = get_die_type (die, cu);
12277 if (this_type)
12278 return this_type;
12279
673bfd45
DE
12280 return read_type_die_1 (die, cu);
12281}
12282
12283/* Read the type in DIE, CU.
12284 Returns NULL for invalid types. */
12285
12286static struct type *
12287read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12288{
12289 struct type *this_type = NULL;
12290
c906108c
SS
12291 switch (die->tag)
12292 {
12293 case DW_TAG_class_type:
680b30c7 12294 case DW_TAG_interface_type:
c906108c
SS
12295 case DW_TAG_structure_type:
12296 case DW_TAG_union_type:
f792889a 12297 this_type = read_structure_type (die, cu);
c906108c
SS
12298 break;
12299 case DW_TAG_enumeration_type:
f792889a 12300 this_type = read_enumeration_type (die, cu);
c906108c
SS
12301 break;
12302 case DW_TAG_subprogram:
12303 case DW_TAG_subroutine_type:
edb3359d 12304 case DW_TAG_inlined_subroutine:
f792889a 12305 this_type = read_subroutine_type (die, cu);
c906108c
SS
12306 break;
12307 case DW_TAG_array_type:
f792889a 12308 this_type = read_array_type (die, cu);
c906108c 12309 break;
72019c9c 12310 case DW_TAG_set_type:
f792889a 12311 this_type = read_set_type (die, cu);
72019c9c 12312 break;
c906108c 12313 case DW_TAG_pointer_type:
f792889a 12314 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
12315 break;
12316 case DW_TAG_ptr_to_member_type:
f792889a 12317 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
12318 break;
12319 case DW_TAG_reference_type:
f792889a 12320 this_type = read_tag_reference_type (die, cu);
c906108c
SS
12321 break;
12322 case DW_TAG_const_type:
f792889a 12323 this_type = read_tag_const_type (die, cu);
c906108c
SS
12324 break;
12325 case DW_TAG_volatile_type:
f792889a 12326 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
12327 break;
12328 case DW_TAG_string_type:
f792889a 12329 this_type = read_tag_string_type (die, cu);
c906108c
SS
12330 break;
12331 case DW_TAG_typedef:
f792889a 12332 this_type = read_typedef (die, cu);
c906108c 12333 break;
a02abb62 12334 case DW_TAG_subrange_type:
f792889a 12335 this_type = read_subrange_type (die, cu);
a02abb62 12336 break;
c906108c 12337 case DW_TAG_base_type:
f792889a 12338 this_type = read_base_type (die, cu);
c906108c 12339 break;
81a17f79 12340 case DW_TAG_unspecified_type:
f792889a 12341 this_type = read_unspecified_type (die, cu);
81a17f79 12342 break;
0114d602
DJ
12343 case DW_TAG_namespace:
12344 this_type = read_namespace_type (die, cu);
12345 break;
f55ee35c
JK
12346 case DW_TAG_module:
12347 this_type = read_module_type (die, cu);
12348 break;
c906108c 12349 default:
3e43a32a
MS
12350 complaint (&symfile_complaints,
12351 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 12352 dwarf_tag_name (die->tag));
c906108c
SS
12353 break;
12354 }
63d06c5c 12355
f792889a 12356 return this_type;
63d06c5c
DC
12357}
12358
abc72ce4
DE
12359/* See if we can figure out if the class lives in a namespace. We do
12360 this by looking for a member function; its demangled name will
12361 contain namespace info, if there is any.
12362 Return the computed name or NULL.
12363 Space for the result is allocated on the objfile's obstack.
12364 This is the full-die version of guess_partial_die_structure_name.
12365 In this case we know DIE has no useful parent. */
12366
12367static char *
12368guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12369{
12370 struct die_info *spec_die;
12371 struct dwarf2_cu *spec_cu;
12372 struct die_info *child;
12373
12374 spec_cu = cu;
12375 spec_die = die_specification (die, &spec_cu);
12376 if (spec_die != NULL)
12377 {
12378 die = spec_die;
12379 cu = spec_cu;
12380 }
12381
12382 for (child = die->child;
12383 child != NULL;
12384 child = child->sibling)
12385 {
12386 if (child->tag == DW_TAG_subprogram)
12387 {
12388 struct attribute *attr;
12389
12390 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12391 if (attr == NULL)
12392 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12393 if (attr != NULL)
12394 {
12395 char *actual_name
12396 = language_class_name_from_physname (cu->language_defn,
12397 DW_STRING (attr));
12398 char *name = NULL;
12399
12400 if (actual_name != NULL)
12401 {
12402 char *die_name = dwarf2_name (die, cu);
12403
12404 if (die_name != NULL
12405 && strcmp (die_name, actual_name) != 0)
12406 {
12407 /* Strip off the class name from the full name.
12408 We want the prefix. */
12409 int die_name_len = strlen (die_name);
12410 int actual_name_len = strlen (actual_name);
12411
12412 /* Test for '::' as a sanity check. */
12413 if (actual_name_len > die_name_len + 2
3e43a32a
MS
12414 && actual_name[actual_name_len
12415 - die_name_len - 1] == ':')
abc72ce4
DE
12416 name =
12417 obsavestring (actual_name,
12418 actual_name_len - die_name_len - 2,
12419 &cu->objfile->objfile_obstack);
12420 }
12421 }
12422 xfree (actual_name);
12423 return name;
12424 }
12425 }
12426 }
12427
12428 return NULL;
12429}
12430
96408a79
SA
12431/* GCC might emit a nameless typedef that has a linkage name. Determine the
12432 prefix part in such case. See
12433 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12434
12435static char *
12436anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12437{
12438 struct attribute *attr;
12439 char *base;
12440
12441 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12442 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12443 return NULL;
12444
12445 attr = dwarf2_attr (die, DW_AT_name, cu);
12446 if (attr != NULL && DW_STRING (attr) != NULL)
12447 return NULL;
12448
12449 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12450 if (attr == NULL)
12451 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12452 if (attr == NULL || DW_STRING (attr) == NULL)
12453 return NULL;
12454
12455 /* dwarf2_name had to be already called. */
12456 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12457
12458 /* Strip the base name, keep any leading namespaces/classes. */
12459 base = strrchr (DW_STRING (attr), ':');
12460 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12461 return "";
12462
12463 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12464 &cu->objfile->objfile_obstack);
12465}
12466
fdde2d81 12467/* Return the name of the namespace/class that DIE is defined within,
0114d602 12468 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 12469
0114d602
DJ
12470 For example, if we're within the method foo() in the following
12471 code:
12472
12473 namespace N {
12474 class C {
12475 void foo () {
12476 }
12477 };
12478 }
12479
12480 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
12481
12482static char *
e142c38c 12483determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 12484{
0114d602
DJ
12485 struct die_info *parent, *spec_die;
12486 struct dwarf2_cu *spec_cu;
12487 struct type *parent_type;
96408a79 12488 char *retval;
63d06c5c 12489
f55ee35c
JK
12490 if (cu->language != language_cplus && cu->language != language_java
12491 && cu->language != language_fortran)
0114d602
DJ
12492 return "";
12493
96408a79
SA
12494 retval = anonymous_struct_prefix (die, cu);
12495 if (retval)
12496 return retval;
12497
0114d602
DJ
12498 /* We have to be careful in the presence of DW_AT_specification.
12499 For example, with GCC 3.4, given the code
12500
12501 namespace N {
12502 void foo() {
12503 // Definition of N::foo.
12504 }
12505 }
12506
12507 then we'll have a tree of DIEs like this:
12508
12509 1: DW_TAG_compile_unit
12510 2: DW_TAG_namespace // N
12511 3: DW_TAG_subprogram // declaration of N::foo
12512 4: DW_TAG_subprogram // definition of N::foo
12513 DW_AT_specification // refers to die #3
12514
12515 Thus, when processing die #4, we have to pretend that we're in
12516 the context of its DW_AT_specification, namely the contex of die
12517 #3. */
12518 spec_cu = cu;
12519 spec_die = die_specification (die, &spec_cu);
12520 if (spec_die == NULL)
12521 parent = die->parent;
12522 else
63d06c5c 12523 {
0114d602
DJ
12524 parent = spec_die->parent;
12525 cu = spec_cu;
63d06c5c 12526 }
0114d602
DJ
12527
12528 if (parent == NULL)
12529 return "";
98bfdba5
PA
12530 else if (parent->building_fullname)
12531 {
12532 const char *name;
12533 const char *parent_name;
12534
12535 /* It has been seen on RealView 2.2 built binaries,
12536 DW_TAG_template_type_param types actually _defined_ as
12537 children of the parent class:
12538
12539 enum E {};
12540 template class <class Enum> Class{};
12541 Class<enum E> class_e;
12542
12543 1: DW_TAG_class_type (Class)
12544 2: DW_TAG_enumeration_type (E)
12545 3: DW_TAG_enumerator (enum1:0)
12546 3: DW_TAG_enumerator (enum2:1)
12547 ...
12548 2: DW_TAG_template_type_param
12549 DW_AT_type DW_FORM_ref_udata (E)
12550
12551 Besides being broken debug info, it can put GDB into an
12552 infinite loop. Consider:
12553
12554 When we're building the full name for Class<E>, we'll start
12555 at Class, and go look over its template type parameters,
12556 finding E. We'll then try to build the full name of E, and
12557 reach here. We're now trying to build the full name of E,
12558 and look over the parent DIE for containing scope. In the
12559 broken case, if we followed the parent DIE of E, we'd again
12560 find Class, and once again go look at its template type
12561 arguments, etc., etc. Simply don't consider such parent die
12562 as source-level parent of this die (it can't be, the language
12563 doesn't allow it), and break the loop here. */
12564 name = dwarf2_name (die, cu);
12565 parent_name = dwarf2_name (parent, cu);
12566 complaint (&symfile_complaints,
12567 _("template param type '%s' defined within parent '%s'"),
12568 name ? name : "<unknown>",
12569 parent_name ? parent_name : "<unknown>");
12570 return "";
12571 }
63d06c5c 12572 else
0114d602
DJ
12573 switch (parent->tag)
12574 {
63d06c5c 12575 case DW_TAG_namespace:
0114d602 12576 parent_type = read_type_die (parent, cu);
acebe513
UW
12577 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12578 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12579 Work around this problem here. */
12580 if (cu->language == language_cplus
12581 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12582 return "";
0114d602
DJ
12583 /* We give a name to even anonymous namespaces. */
12584 return TYPE_TAG_NAME (parent_type);
63d06c5c 12585 case DW_TAG_class_type:
680b30c7 12586 case DW_TAG_interface_type:
63d06c5c 12587 case DW_TAG_structure_type:
0114d602 12588 case DW_TAG_union_type:
f55ee35c 12589 case DW_TAG_module:
0114d602
DJ
12590 parent_type = read_type_die (parent, cu);
12591 if (TYPE_TAG_NAME (parent_type) != NULL)
12592 return TYPE_TAG_NAME (parent_type);
12593 else
12594 /* An anonymous structure is only allowed non-static data
12595 members; no typedefs, no member functions, et cetera.
12596 So it does not need a prefix. */
12597 return "";
abc72ce4
DE
12598 case DW_TAG_compile_unit:
12599 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12600 if (cu->language == language_cplus
8b70b953 12601 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
12602 && die->child != NULL
12603 && (die->tag == DW_TAG_class_type
12604 || die->tag == DW_TAG_structure_type
12605 || die->tag == DW_TAG_union_type))
12606 {
12607 char *name = guess_full_die_structure_name (die, cu);
12608 if (name != NULL)
12609 return name;
12610 }
12611 return "";
63d06c5c 12612 default:
8176b9b8 12613 return determine_prefix (parent, cu);
63d06c5c 12614 }
63d06c5c
DC
12615}
12616
3e43a32a
MS
12617/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12618 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12619 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12620 an obconcat, otherwise allocate storage for the result. The CU argument is
12621 used to determine the language and hence, the appropriate separator. */
987504bb 12622
f55ee35c 12623#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
12624
12625static char *
f55ee35c
JK
12626typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12627 int physname, struct dwarf2_cu *cu)
63d06c5c 12628{
f55ee35c 12629 const char *lead = "";
5c315b68 12630 const char *sep;
63d06c5c 12631
3e43a32a
MS
12632 if (suffix == NULL || suffix[0] == '\0'
12633 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
12634 sep = "";
12635 else if (cu->language == language_java)
12636 sep = ".";
f55ee35c
JK
12637 else if (cu->language == language_fortran && physname)
12638 {
12639 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12640 DW_AT_MIPS_linkage_name is preferred and used instead. */
12641
12642 lead = "__";
12643 sep = "_MOD_";
12644 }
987504bb
JJ
12645 else
12646 sep = "::";
63d06c5c 12647
6dd47d34
DE
12648 if (prefix == NULL)
12649 prefix = "";
12650 if (suffix == NULL)
12651 suffix = "";
12652
987504bb
JJ
12653 if (obs == NULL)
12654 {
3e43a32a
MS
12655 char *retval
12656 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 12657
f55ee35c
JK
12658 strcpy (retval, lead);
12659 strcat (retval, prefix);
6dd47d34
DE
12660 strcat (retval, sep);
12661 strcat (retval, suffix);
63d06c5c
DC
12662 return retval;
12663 }
987504bb
JJ
12664 else
12665 {
12666 /* We have an obstack. */
f55ee35c 12667 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 12668 }
63d06c5c
DC
12669}
12670
c906108c
SS
12671/* Return sibling of die, NULL if no sibling. */
12672
f9aca02d 12673static struct die_info *
fba45db2 12674sibling_die (struct die_info *die)
c906108c 12675{
639d11d3 12676 return die->sibling;
c906108c
SS
12677}
12678
71c25dea
TT
12679/* Get name of a die, return NULL if not found. */
12680
12681static char *
12682dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12683 struct obstack *obstack)
12684{
12685 if (name && cu->language == language_cplus)
12686 {
12687 char *canon_name = cp_canonicalize_string (name);
12688
12689 if (canon_name != NULL)
12690 {
12691 if (strcmp (canon_name, name) != 0)
12692 name = obsavestring (canon_name, strlen (canon_name),
12693 obstack);
12694 xfree (canon_name);
12695 }
12696 }
12697
12698 return name;
c906108c
SS
12699}
12700
9219021c
DC
12701/* Get name of a die, return NULL if not found. */
12702
12703static char *
e142c38c 12704dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
12705{
12706 struct attribute *attr;
12707
e142c38c 12708 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
12709 if ((!attr || !DW_STRING (attr))
12710 && die->tag != DW_TAG_class_type
12711 && die->tag != DW_TAG_interface_type
12712 && die->tag != DW_TAG_structure_type
12713 && die->tag != DW_TAG_union_type)
71c25dea
TT
12714 return NULL;
12715
12716 switch (die->tag)
12717 {
12718 case DW_TAG_compile_unit:
12719 /* Compilation units have a DW_AT_name that is a filename, not
12720 a source language identifier. */
12721 case DW_TAG_enumeration_type:
12722 case DW_TAG_enumerator:
12723 /* These tags always have simple identifiers already; no need
12724 to canonicalize them. */
12725 return DW_STRING (attr);
907af001 12726
418835cc
KS
12727 case DW_TAG_subprogram:
12728 /* Java constructors will all be named "<init>", so return
12729 the class name when we see this special case. */
12730 if (cu->language == language_java
12731 && DW_STRING (attr) != NULL
12732 && strcmp (DW_STRING (attr), "<init>") == 0)
12733 {
12734 struct dwarf2_cu *spec_cu = cu;
12735 struct die_info *spec_die;
12736
12737 /* GCJ will output '<init>' for Java constructor names.
12738 For this special case, return the name of the parent class. */
12739
12740 /* GCJ may output suprogram DIEs with AT_specification set.
12741 If so, use the name of the specified DIE. */
12742 spec_die = die_specification (die, &spec_cu);
12743 if (spec_die != NULL)
12744 return dwarf2_name (spec_die, spec_cu);
12745
12746 do
12747 {
12748 die = die->parent;
12749 if (die->tag == DW_TAG_class_type)
12750 return dwarf2_name (die, cu);
12751 }
12752 while (die->tag != DW_TAG_compile_unit);
12753 }
907af001
UW
12754 break;
12755
12756 case DW_TAG_class_type:
12757 case DW_TAG_interface_type:
12758 case DW_TAG_structure_type:
12759 case DW_TAG_union_type:
12760 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12761 structures or unions. These were of the form "._%d" in GCC 4.1,
12762 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12763 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
12764 if (attr && DW_STRING (attr)
12765 && (strncmp (DW_STRING (attr), "._", 2) == 0
12766 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 12767 return NULL;
53832f31
TT
12768
12769 /* GCC might emit a nameless typedef that has a linkage name. See
12770 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12771 if (!attr || DW_STRING (attr) == NULL)
12772 {
df5c6c50 12773 char *demangled = NULL;
53832f31
TT
12774
12775 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12776 if (attr == NULL)
12777 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12778
12779 if (attr == NULL || DW_STRING (attr) == NULL)
12780 return NULL;
12781
df5c6c50
JK
12782 /* Avoid demangling DW_STRING (attr) the second time on a second
12783 call for the same DIE. */
12784 if (!DW_STRING_IS_CANONICAL (attr))
12785 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
12786
12787 if (demangled)
12788 {
96408a79
SA
12789 char *base;
12790
53832f31 12791 /* FIXME: we already did this for the partial symbol... */
96408a79
SA
12792 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12793 &cu->objfile->objfile_obstack);
53832f31
TT
12794 DW_STRING_IS_CANONICAL (attr) = 1;
12795 xfree (demangled);
96408a79
SA
12796
12797 /* Strip any leading namespaces/classes, keep only the base name.
12798 DW_AT_name for named DIEs does not contain the prefixes. */
12799 base = strrchr (DW_STRING (attr), ':');
12800 if (base && base > DW_STRING (attr) && base[-1] == ':')
12801 return &base[1];
12802 else
12803 return DW_STRING (attr);
53832f31
TT
12804 }
12805 }
907af001
UW
12806 break;
12807
71c25dea 12808 default:
907af001
UW
12809 break;
12810 }
12811
12812 if (!DW_STRING_IS_CANONICAL (attr))
12813 {
12814 DW_STRING (attr)
12815 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12816 &cu->objfile->objfile_obstack);
12817 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 12818 }
907af001 12819 return DW_STRING (attr);
9219021c
DC
12820}
12821
12822/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
12823 is none. *EXT_CU is the CU containing DIE on input, and the CU
12824 containing the return value on output. */
9219021c
DC
12825
12826static struct die_info *
f2f0e013 12827dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
12828{
12829 struct attribute *attr;
9219021c 12830
f2f0e013 12831 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
12832 if (attr == NULL)
12833 return NULL;
12834
f2f0e013 12835 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
12836}
12837
c906108c
SS
12838/* Convert a DIE tag into its string name. */
12839
12840static char *
aa1ee363 12841dwarf_tag_name (unsigned tag)
c906108c
SS
12842{
12843 switch (tag)
12844 {
12845 case DW_TAG_padding:
12846 return "DW_TAG_padding";
12847 case DW_TAG_array_type:
12848 return "DW_TAG_array_type";
12849 case DW_TAG_class_type:
12850 return "DW_TAG_class_type";
12851 case DW_TAG_entry_point:
12852 return "DW_TAG_entry_point";
12853 case DW_TAG_enumeration_type:
12854 return "DW_TAG_enumeration_type";
12855 case DW_TAG_formal_parameter:
12856 return "DW_TAG_formal_parameter";
12857 case DW_TAG_imported_declaration:
12858 return "DW_TAG_imported_declaration";
12859 case DW_TAG_label:
12860 return "DW_TAG_label";
12861 case DW_TAG_lexical_block:
12862 return "DW_TAG_lexical_block";
12863 case DW_TAG_member:
12864 return "DW_TAG_member";
12865 case DW_TAG_pointer_type:
12866 return "DW_TAG_pointer_type";
12867 case DW_TAG_reference_type:
12868 return "DW_TAG_reference_type";
12869 case DW_TAG_compile_unit:
12870 return "DW_TAG_compile_unit";
12871 case DW_TAG_string_type:
12872 return "DW_TAG_string_type";
12873 case DW_TAG_structure_type:
12874 return "DW_TAG_structure_type";
12875 case DW_TAG_subroutine_type:
12876 return "DW_TAG_subroutine_type";
12877 case DW_TAG_typedef:
12878 return "DW_TAG_typedef";
12879 case DW_TAG_union_type:
12880 return "DW_TAG_union_type";
12881 case DW_TAG_unspecified_parameters:
12882 return "DW_TAG_unspecified_parameters";
12883 case DW_TAG_variant:
12884 return "DW_TAG_variant";
12885 case DW_TAG_common_block:
12886 return "DW_TAG_common_block";
12887 case DW_TAG_common_inclusion:
12888 return "DW_TAG_common_inclusion";
12889 case DW_TAG_inheritance:
12890 return "DW_TAG_inheritance";
12891 case DW_TAG_inlined_subroutine:
12892 return "DW_TAG_inlined_subroutine";
12893 case DW_TAG_module:
12894 return "DW_TAG_module";
12895 case DW_TAG_ptr_to_member_type:
12896 return "DW_TAG_ptr_to_member_type";
12897 case DW_TAG_set_type:
12898 return "DW_TAG_set_type";
12899 case DW_TAG_subrange_type:
12900 return "DW_TAG_subrange_type";
12901 case DW_TAG_with_stmt:
12902 return "DW_TAG_with_stmt";
12903 case DW_TAG_access_declaration:
12904 return "DW_TAG_access_declaration";
12905 case DW_TAG_base_type:
12906 return "DW_TAG_base_type";
12907 case DW_TAG_catch_block:
12908 return "DW_TAG_catch_block";
12909 case DW_TAG_const_type:
12910 return "DW_TAG_const_type";
12911 case DW_TAG_constant:
12912 return "DW_TAG_constant";
12913 case DW_TAG_enumerator:
12914 return "DW_TAG_enumerator";
12915 case DW_TAG_file_type:
12916 return "DW_TAG_file_type";
12917 case DW_TAG_friend:
12918 return "DW_TAG_friend";
12919 case DW_TAG_namelist:
12920 return "DW_TAG_namelist";
12921 case DW_TAG_namelist_item:
12922 return "DW_TAG_namelist_item";
12923 case DW_TAG_packed_type:
12924 return "DW_TAG_packed_type";
12925 case DW_TAG_subprogram:
12926 return "DW_TAG_subprogram";
12927 case DW_TAG_template_type_param:
12928 return "DW_TAG_template_type_param";
12929 case DW_TAG_template_value_param:
12930 return "DW_TAG_template_value_param";
12931 case DW_TAG_thrown_type:
12932 return "DW_TAG_thrown_type";
12933 case DW_TAG_try_block:
12934 return "DW_TAG_try_block";
12935 case DW_TAG_variant_part:
12936 return "DW_TAG_variant_part";
12937 case DW_TAG_variable:
12938 return "DW_TAG_variable";
12939 case DW_TAG_volatile_type:
12940 return "DW_TAG_volatile_type";
d9fa45fe
DC
12941 case DW_TAG_dwarf_procedure:
12942 return "DW_TAG_dwarf_procedure";
12943 case DW_TAG_restrict_type:
12944 return "DW_TAG_restrict_type";
12945 case DW_TAG_interface_type:
12946 return "DW_TAG_interface_type";
12947 case DW_TAG_namespace:
12948 return "DW_TAG_namespace";
12949 case DW_TAG_imported_module:
12950 return "DW_TAG_imported_module";
12951 case DW_TAG_unspecified_type:
12952 return "DW_TAG_unspecified_type";
12953 case DW_TAG_partial_unit:
12954 return "DW_TAG_partial_unit";
12955 case DW_TAG_imported_unit:
12956 return "DW_TAG_imported_unit";
b7619582
GF
12957 case DW_TAG_condition:
12958 return "DW_TAG_condition";
12959 case DW_TAG_shared_type:
12960 return "DW_TAG_shared_type";
348e048f
DE
12961 case DW_TAG_type_unit:
12962 return "DW_TAG_type_unit";
c906108c
SS
12963 case DW_TAG_MIPS_loop:
12964 return "DW_TAG_MIPS_loop";
b7619582
GF
12965 case DW_TAG_HP_array_descriptor:
12966 return "DW_TAG_HP_array_descriptor";
c906108c
SS
12967 case DW_TAG_format_label:
12968 return "DW_TAG_format_label";
12969 case DW_TAG_function_template:
12970 return "DW_TAG_function_template";
12971 case DW_TAG_class_template:
12972 return "DW_TAG_class_template";
b7619582
GF
12973 case DW_TAG_GNU_BINCL:
12974 return "DW_TAG_GNU_BINCL";
12975 case DW_TAG_GNU_EINCL:
12976 return "DW_TAG_GNU_EINCL";
12977 case DW_TAG_upc_shared_type:
12978 return "DW_TAG_upc_shared_type";
12979 case DW_TAG_upc_strict_type:
12980 return "DW_TAG_upc_strict_type";
12981 case DW_TAG_upc_relaxed_type:
12982 return "DW_TAG_upc_relaxed_type";
12983 case DW_TAG_PGI_kanji_type:
12984 return "DW_TAG_PGI_kanji_type";
12985 case DW_TAG_PGI_interface_block:
12986 return "DW_TAG_PGI_interface_block";
96408a79
SA
12987 case DW_TAG_GNU_call_site:
12988 return "DW_TAG_GNU_call_site";
c906108c
SS
12989 default:
12990 return "DW_TAG_<unknown>";
12991 }
12992}
12993
12994/* Convert a DWARF attribute code into its string name. */
12995
12996static char *
aa1ee363 12997dwarf_attr_name (unsigned attr)
c906108c
SS
12998{
12999 switch (attr)
13000 {
13001 case DW_AT_sibling:
13002 return "DW_AT_sibling";
13003 case DW_AT_location:
13004 return "DW_AT_location";
13005 case DW_AT_name:
13006 return "DW_AT_name";
13007 case DW_AT_ordering:
13008 return "DW_AT_ordering";
13009 case DW_AT_subscr_data:
13010 return "DW_AT_subscr_data";
13011 case DW_AT_byte_size:
13012 return "DW_AT_byte_size";
13013 case DW_AT_bit_offset:
13014 return "DW_AT_bit_offset";
13015 case DW_AT_bit_size:
13016 return "DW_AT_bit_size";
13017 case DW_AT_element_list:
13018 return "DW_AT_element_list";
13019 case DW_AT_stmt_list:
13020 return "DW_AT_stmt_list";
13021 case DW_AT_low_pc:
13022 return "DW_AT_low_pc";
13023 case DW_AT_high_pc:
13024 return "DW_AT_high_pc";
13025 case DW_AT_language:
13026 return "DW_AT_language";
13027 case DW_AT_member:
13028 return "DW_AT_member";
13029 case DW_AT_discr:
13030 return "DW_AT_discr";
13031 case DW_AT_discr_value:
13032 return "DW_AT_discr_value";
13033 case DW_AT_visibility:
13034 return "DW_AT_visibility";
13035 case DW_AT_import:
13036 return "DW_AT_import";
13037 case DW_AT_string_length:
13038 return "DW_AT_string_length";
13039 case DW_AT_common_reference:
13040 return "DW_AT_common_reference";
13041 case DW_AT_comp_dir:
13042 return "DW_AT_comp_dir";
13043 case DW_AT_const_value:
13044 return "DW_AT_const_value";
13045 case DW_AT_containing_type:
13046 return "DW_AT_containing_type";
13047 case DW_AT_default_value:
13048 return "DW_AT_default_value";
13049 case DW_AT_inline:
13050 return "DW_AT_inline";
13051 case DW_AT_is_optional:
13052 return "DW_AT_is_optional";
13053 case DW_AT_lower_bound:
13054 return "DW_AT_lower_bound";
13055 case DW_AT_producer:
13056 return "DW_AT_producer";
13057 case DW_AT_prototyped:
13058 return "DW_AT_prototyped";
13059 case DW_AT_return_addr:
13060 return "DW_AT_return_addr";
13061 case DW_AT_start_scope:
13062 return "DW_AT_start_scope";
09fa0d7c
JK
13063 case DW_AT_bit_stride:
13064 return "DW_AT_bit_stride";
c906108c
SS
13065 case DW_AT_upper_bound:
13066 return "DW_AT_upper_bound";
13067 case DW_AT_abstract_origin:
13068 return "DW_AT_abstract_origin";
13069 case DW_AT_accessibility:
13070 return "DW_AT_accessibility";
13071 case DW_AT_address_class:
13072 return "DW_AT_address_class";
13073 case DW_AT_artificial:
13074 return "DW_AT_artificial";
13075 case DW_AT_base_types:
13076 return "DW_AT_base_types";
13077 case DW_AT_calling_convention:
13078 return "DW_AT_calling_convention";
13079 case DW_AT_count:
13080 return "DW_AT_count";
13081 case DW_AT_data_member_location:
13082 return "DW_AT_data_member_location";
13083 case DW_AT_decl_column:
13084 return "DW_AT_decl_column";
13085 case DW_AT_decl_file:
13086 return "DW_AT_decl_file";
13087 case DW_AT_decl_line:
13088 return "DW_AT_decl_line";
13089 case DW_AT_declaration:
13090 return "DW_AT_declaration";
13091 case DW_AT_discr_list:
13092 return "DW_AT_discr_list";
13093 case DW_AT_encoding:
13094 return "DW_AT_encoding";
13095 case DW_AT_external:
13096 return "DW_AT_external";
13097 case DW_AT_frame_base:
13098 return "DW_AT_frame_base";
13099 case DW_AT_friend:
13100 return "DW_AT_friend";
13101 case DW_AT_identifier_case:
13102 return "DW_AT_identifier_case";
13103 case DW_AT_macro_info:
13104 return "DW_AT_macro_info";
13105 case DW_AT_namelist_items:
13106 return "DW_AT_namelist_items";
13107 case DW_AT_priority:
13108 return "DW_AT_priority";
13109 case DW_AT_segment:
13110 return "DW_AT_segment";
13111 case DW_AT_specification:
13112 return "DW_AT_specification";
13113 case DW_AT_static_link:
13114 return "DW_AT_static_link";
13115 case DW_AT_type:
13116 return "DW_AT_type";
13117 case DW_AT_use_location:
13118 return "DW_AT_use_location";
13119 case DW_AT_variable_parameter:
13120 return "DW_AT_variable_parameter";
13121 case DW_AT_virtuality:
13122 return "DW_AT_virtuality";
13123 case DW_AT_vtable_elem_location:
13124 return "DW_AT_vtable_elem_location";
b7619582 13125 /* DWARF 3 values. */
d9fa45fe
DC
13126 case DW_AT_allocated:
13127 return "DW_AT_allocated";
13128 case DW_AT_associated:
13129 return "DW_AT_associated";
13130 case DW_AT_data_location:
13131 return "DW_AT_data_location";
09fa0d7c
JK
13132 case DW_AT_byte_stride:
13133 return "DW_AT_byte_stride";
d9fa45fe
DC
13134 case DW_AT_entry_pc:
13135 return "DW_AT_entry_pc";
13136 case DW_AT_use_UTF8:
13137 return "DW_AT_use_UTF8";
13138 case DW_AT_extension:
13139 return "DW_AT_extension";
13140 case DW_AT_ranges:
13141 return "DW_AT_ranges";
13142 case DW_AT_trampoline:
13143 return "DW_AT_trampoline";
13144 case DW_AT_call_column:
13145 return "DW_AT_call_column";
13146 case DW_AT_call_file:
13147 return "DW_AT_call_file";
13148 case DW_AT_call_line:
13149 return "DW_AT_call_line";
b7619582
GF
13150 case DW_AT_description:
13151 return "DW_AT_description";
13152 case DW_AT_binary_scale:
13153 return "DW_AT_binary_scale";
13154 case DW_AT_decimal_scale:
13155 return "DW_AT_decimal_scale";
13156 case DW_AT_small:
13157 return "DW_AT_small";
13158 case DW_AT_decimal_sign:
13159 return "DW_AT_decimal_sign";
13160 case DW_AT_digit_count:
13161 return "DW_AT_digit_count";
13162 case DW_AT_picture_string:
13163 return "DW_AT_picture_string";
13164 case DW_AT_mutable:
13165 return "DW_AT_mutable";
13166 case DW_AT_threads_scaled:
13167 return "DW_AT_threads_scaled";
13168 case DW_AT_explicit:
13169 return "DW_AT_explicit";
13170 case DW_AT_object_pointer:
13171 return "DW_AT_object_pointer";
13172 case DW_AT_endianity:
13173 return "DW_AT_endianity";
13174 case DW_AT_elemental:
13175 return "DW_AT_elemental";
13176 case DW_AT_pure:
13177 return "DW_AT_pure";
13178 case DW_AT_recursive:
13179 return "DW_AT_recursive";
348e048f
DE
13180 /* DWARF 4 values. */
13181 case DW_AT_signature:
13182 return "DW_AT_signature";
31ef98ae
TT
13183 case DW_AT_linkage_name:
13184 return "DW_AT_linkage_name";
b7619582 13185 /* SGI/MIPS extensions. */
c764a876 13186#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
13187 case DW_AT_MIPS_fde:
13188 return "DW_AT_MIPS_fde";
c764a876 13189#endif
c906108c
SS
13190 case DW_AT_MIPS_loop_begin:
13191 return "DW_AT_MIPS_loop_begin";
13192 case DW_AT_MIPS_tail_loop_begin:
13193 return "DW_AT_MIPS_tail_loop_begin";
13194 case DW_AT_MIPS_epilog_begin:
13195 return "DW_AT_MIPS_epilog_begin";
13196 case DW_AT_MIPS_loop_unroll_factor:
13197 return "DW_AT_MIPS_loop_unroll_factor";
13198 case DW_AT_MIPS_software_pipeline_depth:
13199 return "DW_AT_MIPS_software_pipeline_depth";
13200 case DW_AT_MIPS_linkage_name:
13201 return "DW_AT_MIPS_linkage_name";
b7619582
GF
13202 case DW_AT_MIPS_stride:
13203 return "DW_AT_MIPS_stride";
13204 case DW_AT_MIPS_abstract_name:
13205 return "DW_AT_MIPS_abstract_name";
13206 case DW_AT_MIPS_clone_origin:
13207 return "DW_AT_MIPS_clone_origin";
13208 case DW_AT_MIPS_has_inlines:
13209 return "DW_AT_MIPS_has_inlines";
b7619582 13210 /* HP extensions. */
c764a876 13211#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
13212 case DW_AT_HP_block_index:
13213 return "DW_AT_HP_block_index";
c764a876 13214#endif
b7619582
GF
13215 case DW_AT_HP_unmodifiable:
13216 return "DW_AT_HP_unmodifiable";
13217 case DW_AT_HP_actuals_stmt_list:
13218 return "DW_AT_HP_actuals_stmt_list";
13219 case DW_AT_HP_proc_per_section:
13220 return "DW_AT_HP_proc_per_section";
13221 case DW_AT_HP_raw_data_ptr:
13222 return "DW_AT_HP_raw_data_ptr";
13223 case DW_AT_HP_pass_by_reference:
13224 return "DW_AT_HP_pass_by_reference";
13225 case DW_AT_HP_opt_level:
13226 return "DW_AT_HP_opt_level";
13227 case DW_AT_HP_prof_version_id:
13228 return "DW_AT_HP_prof_version_id";
13229 case DW_AT_HP_opt_flags:
13230 return "DW_AT_HP_opt_flags";
13231 case DW_AT_HP_cold_region_low_pc:
13232 return "DW_AT_HP_cold_region_low_pc";
13233 case DW_AT_HP_cold_region_high_pc:
13234 return "DW_AT_HP_cold_region_high_pc";
13235 case DW_AT_HP_all_variables_modifiable:
13236 return "DW_AT_HP_all_variables_modifiable";
13237 case DW_AT_HP_linkage_name:
13238 return "DW_AT_HP_linkage_name";
13239 case DW_AT_HP_prof_flags:
13240 return "DW_AT_HP_prof_flags";
13241 /* GNU extensions. */
c906108c
SS
13242 case DW_AT_sf_names:
13243 return "DW_AT_sf_names";
13244 case DW_AT_src_info:
13245 return "DW_AT_src_info";
13246 case DW_AT_mac_info:
13247 return "DW_AT_mac_info";
13248 case DW_AT_src_coords:
13249 return "DW_AT_src_coords";
13250 case DW_AT_body_begin:
13251 return "DW_AT_body_begin";
13252 case DW_AT_body_end:
13253 return "DW_AT_body_end";
f5f8a009
EZ
13254 case DW_AT_GNU_vector:
13255 return "DW_AT_GNU_vector";
2de00c64
DE
13256 case DW_AT_GNU_odr_signature:
13257 return "DW_AT_GNU_odr_signature";
b7619582
GF
13258 /* VMS extensions. */
13259 case DW_AT_VMS_rtnbeg_pd_address:
13260 return "DW_AT_VMS_rtnbeg_pd_address";
13261 /* UPC extension. */
13262 case DW_AT_upc_threads_scaled:
13263 return "DW_AT_upc_threads_scaled";
13264 /* PGI (STMicroelectronics) extensions. */
13265 case DW_AT_PGI_lbase:
13266 return "DW_AT_PGI_lbase";
13267 case DW_AT_PGI_soffset:
13268 return "DW_AT_PGI_soffset";
13269 case DW_AT_PGI_lstride:
13270 return "DW_AT_PGI_lstride";
c906108c
SS
13271 default:
13272 return "DW_AT_<unknown>";
13273 }
13274}
13275
13276/* Convert a DWARF value form code into its string name. */
13277
13278static char *
aa1ee363 13279dwarf_form_name (unsigned form)
c906108c
SS
13280{
13281 switch (form)
13282 {
13283 case DW_FORM_addr:
13284 return "DW_FORM_addr";
13285 case DW_FORM_block2:
13286 return "DW_FORM_block2";
13287 case DW_FORM_block4:
13288 return "DW_FORM_block4";
13289 case DW_FORM_data2:
13290 return "DW_FORM_data2";
13291 case DW_FORM_data4:
13292 return "DW_FORM_data4";
13293 case DW_FORM_data8:
13294 return "DW_FORM_data8";
13295 case DW_FORM_string:
13296 return "DW_FORM_string";
13297 case DW_FORM_block:
13298 return "DW_FORM_block";
13299 case DW_FORM_block1:
13300 return "DW_FORM_block1";
13301 case DW_FORM_data1:
13302 return "DW_FORM_data1";
13303 case DW_FORM_flag:
13304 return "DW_FORM_flag";
13305 case DW_FORM_sdata:
13306 return "DW_FORM_sdata";
13307 case DW_FORM_strp:
13308 return "DW_FORM_strp";
13309 case DW_FORM_udata:
13310 return "DW_FORM_udata";
13311 case DW_FORM_ref_addr:
13312 return "DW_FORM_ref_addr";
13313 case DW_FORM_ref1:
13314 return "DW_FORM_ref1";
13315 case DW_FORM_ref2:
13316 return "DW_FORM_ref2";
13317 case DW_FORM_ref4:
13318 return "DW_FORM_ref4";
13319 case DW_FORM_ref8:
13320 return "DW_FORM_ref8";
13321 case DW_FORM_ref_udata:
13322 return "DW_FORM_ref_udata";
13323 case DW_FORM_indirect:
13324 return "DW_FORM_indirect";
348e048f
DE
13325 case DW_FORM_sec_offset:
13326 return "DW_FORM_sec_offset";
13327 case DW_FORM_exprloc:
13328 return "DW_FORM_exprloc";
13329 case DW_FORM_flag_present:
13330 return "DW_FORM_flag_present";
55f1336d
TT
13331 case DW_FORM_ref_sig8:
13332 return "DW_FORM_ref_sig8";
c906108c
SS
13333 default:
13334 return "DW_FORM_<unknown>";
13335 }
13336}
13337
13338/* Convert a DWARF stack opcode into its string name. */
13339
9eae7c52 13340const char *
b1bfef65 13341dwarf_stack_op_name (unsigned op)
c906108c
SS
13342{
13343 switch (op)
13344 {
13345 case DW_OP_addr:
13346 return "DW_OP_addr";
13347 case DW_OP_deref:
13348 return "DW_OP_deref";
13349 case DW_OP_const1u:
13350 return "DW_OP_const1u";
13351 case DW_OP_const1s:
13352 return "DW_OP_const1s";
13353 case DW_OP_const2u:
13354 return "DW_OP_const2u";
13355 case DW_OP_const2s:
13356 return "DW_OP_const2s";
13357 case DW_OP_const4u:
13358 return "DW_OP_const4u";
13359 case DW_OP_const4s:
13360 return "DW_OP_const4s";
13361 case DW_OP_const8u:
13362 return "DW_OP_const8u";
13363 case DW_OP_const8s:
13364 return "DW_OP_const8s";
13365 case DW_OP_constu:
13366 return "DW_OP_constu";
13367 case DW_OP_consts:
13368 return "DW_OP_consts";
13369 case DW_OP_dup:
13370 return "DW_OP_dup";
13371 case DW_OP_drop:
13372 return "DW_OP_drop";
13373 case DW_OP_over:
13374 return "DW_OP_over";
13375 case DW_OP_pick:
13376 return "DW_OP_pick";
13377 case DW_OP_swap:
13378 return "DW_OP_swap";
13379 case DW_OP_rot:
13380 return "DW_OP_rot";
13381 case DW_OP_xderef:
13382 return "DW_OP_xderef";
13383 case DW_OP_abs:
13384 return "DW_OP_abs";
13385 case DW_OP_and:
13386 return "DW_OP_and";
13387 case DW_OP_div:
13388 return "DW_OP_div";
13389 case DW_OP_minus:
13390 return "DW_OP_minus";
13391 case DW_OP_mod:
13392 return "DW_OP_mod";
13393 case DW_OP_mul:
13394 return "DW_OP_mul";
13395 case DW_OP_neg:
13396 return "DW_OP_neg";
13397 case DW_OP_not:
13398 return "DW_OP_not";
13399 case DW_OP_or:
13400 return "DW_OP_or";
13401 case DW_OP_plus:
13402 return "DW_OP_plus";
13403 case DW_OP_plus_uconst:
13404 return "DW_OP_plus_uconst";
13405 case DW_OP_shl:
13406 return "DW_OP_shl";
13407 case DW_OP_shr:
13408 return "DW_OP_shr";
13409 case DW_OP_shra:
13410 return "DW_OP_shra";
13411 case DW_OP_xor:
13412 return "DW_OP_xor";
13413 case DW_OP_bra:
13414 return "DW_OP_bra";
13415 case DW_OP_eq:
13416 return "DW_OP_eq";
13417 case DW_OP_ge:
13418 return "DW_OP_ge";
13419 case DW_OP_gt:
13420 return "DW_OP_gt";
13421 case DW_OP_le:
13422 return "DW_OP_le";
13423 case DW_OP_lt:
13424 return "DW_OP_lt";
13425 case DW_OP_ne:
13426 return "DW_OP_ne";
13427 case DW_OP_skip:
13428 return "DW_OP_skip";
13429 case DW_OP_lit0:
13430 return "DW_OP_lit0";
13431 case DW_OP_lit1:
13432 return "DW_OP_lit1";
13433 case DW_OP_lit2:
13434 return "DW_OP_lit2";
13435 case DW_OP_lit3:
13436 return "DW_OP_lit3";
13437 case DW_OP_lit4:
13438 return "DW_OP_lit4";
13439 case DW_OP_lit5:
13440 return "DW_OP_lit5";
13441 case DW_OP_lit6:
13442 return "DW_OP_lit6";
13443 case DW_OP_lit7:
13444 return "DW_OP_lit7";
13445 case DW_OP_lit8:
13446 return "DW_OP_lit8";
13447 case DW_OP_lit9:
13448 return "DW_OP_lit9";
13449 case DW_OP_lit10:
13450 return "DW_OP_lit10";
13451 case DW_OP_lit11:
13452 return "DW_OP_lit11";
13453 case DW_OP_lit12:
13454 return "DW_OP_lit12";
13455 case DW_OP_lit13:
13456 return "DW_OP_lit13";
13457 case DW_OP_lit14:
13458 return "DW_OP_lit14";
13459 case DW_OP_lit15:
13460 return "DW_OP_lit15";
13461 case DW_OP_lit16:
13462 return "DW_OP_lit16";
13463 case DW_OP_lit17:
13464 return "DW_OP_lit17";
13465 case DW_OP_lit18:
13466 return "DW_OP_lit18";
13467 case DW_OP_lit19:
13468 return "DW_OP_lit19";
13469 case DW_OP_lit20:
13470 return "DW_OP_lit20";
13471 case DW_OP_lit21:
13472 return "DW_OP_lit21";
13473 case DW_OP_lit22:
13474 return "DW_OP_lit22";
13475 case DW_OP_lit23:
13476 return "DW_OP_lit23";
13477 case DW_OP_lit24:
13478 return "DW_OP_lit24";
13479 case DW_OP_lit25:
13480 return "DW_OP_lit25";
13481 case DW_OP_lit26:
13482 return "DW_OP_lit26";
13483 case DW_OP_lit27:
13484 return "DW_OP_lit27";
13485 case DW_OP_lit28:
13486 return "DW_OP_lit28";
13487 case DW_OP_lit29:
13488 return "DW_OP_lit29";
13489 case DW_OP_lit30:
13490 return "DW_OP_lit30";
13491 case DW_OP_lit31:
13492 return "DW_OP_lit31";
13493 case DW_OP_reg0:
13494 return "DW_OP_reg0";
13495 case DW_OP_reg1:
13496 return "DW_OP_reg1";
13497 case DW_OP_reg2:
13498 return "DW_OP_reg2";
13499 case DW_OP_reg3:
13500 return "DW_OP_reg3";
13501 case DW_OP_reg4:
13502 return "DW_OP_reg4";
13503 case DW_OP_reg5:
13504 return "DW_OP_reg5";
13505 case DW_OP_reg6:
13506 return "DW_OP_reg6";
13507 case DW_OP_reg7:
13508 return "DW_OP_reg7";
13509 case DW_OP_reg8:
13510 return "DW_OP_reg8";
13511 case DW_OP_reg9:
13512 return "DW_OP_reg9";
13513 case DW_OP_reg10:
13514 return "DW_OP_reg10";
13515 case DW_OP_reg11:
13516 return "DW_OP_reg11";
13517 case DW_OP_reg12:
13518 return "DW_OP_reg12";
13519 case DW_OP_reg13:
13520 return "DW_OP_reg13";
13521 case DW_OP_reg14:
13522 return "DW_OP_reg14";
13523 case DW_OP_reg15:
13524 return "DW_OP_reg15";
13525 case DW_OP_reg16:
13526 return "DW_OP_reg16";
13527 case DW_OP_reg17:
13528 return "DW_OP_reg17";
13529 case DW_OP_reg18:
13530 return "DW_OP_reg18";
13531 case DW_OP_reg19:
13532 return "DW_OP_reg19";
13533 case DW_OP_reg20:
13534 return "DW_OP_reg20";
13535 case DW_OP_reg21:
13536 return "DW_OP_reg21";
13537 case DW_OP_reg22:
13538 return "DW_OP_reg22";
13539 case DW_OP_reg23:
13540 return "DW_OP_reg23";
13541 case DW_OP_reg24:
13542 return "DW_OP_reg24";
13543 case DW_OP_reg25:
13544 return "DW_OP_reg25";
13545 case DW_OP_reg26:
13546 return "DW_OP_reg26";
13547 case DW_OP_reg27:
13548 return "DW_OP_reg27";
13549 case DW_OP_reg28:
13550 return "DW_OP_reg28";
13551 case DW_OP_reg29:
13552 return "DW_OP_reg29";
13553 case DW_OP_reg30:
13554 return "DW_OP_reg30";
13555 case DW_OP_reg31:
13556 return "DW_OP_reg31";
13557 case DW_OP_breg0:
13558 return "DW_OP_breg0";
13559 case DW_OP_breg1:
13560 return "DW_OP_breg1";
13561 case DW_OP_breg2:
13562 return "DW_OP_breg2";
13563 case DW_OP_breg3:
13564 return "DW_OP_breg3";
13565 case DW_OP_breg4:
13566 return "DW_OP_breg4";
13567 case DW_OP_breg5:
13568 return "DW_OP_breg5";
13569 case DW_OP_breg6:
13570 return "DW_OP_breg6";
13571 case DW_OP_breg7:
13572 return "DW_OP_breg7";
13573 case DW_OP_breg8:
13574 return "DW_OP_breg8";
13575 case DW_OP_breg9:
13576 return "DW_OP_breg9";
13577 case DW_OP_breg10:
13578 return "DW_OP_breg10";
13579 case DW_OP_breg11:
13580 return "DW_OP_breg11";
13581 case DW_OP_breg12:
13582 return "DW_OP_breg12";
13583 case DW_OP_breg13:
13584 return "DW_OP_breg13";
13585 case DW_OP_breg14:
13586 return "DW_OP_breg14";
13587 case DW_OP_breg15:
13588 return "DW_OP_breg15";
13589 case DW_OP_breg16:
13590 return "DW_OP_breg16";
13591 case DW_OP_breg17:
13592 return "DW_OP_breg17";
13593 case DW_OP_breg18:
13594 return "DW_OP_breg18";
13595 case DW_OP_breg19:
13596 return "DW_OP_breg19";
13597 case DW_OP_breg20:
13598 return "DW_OP_breg20";
13599 case DW_OP_breg21:
13600 return "DW_OP_breg21";
13601 case DW_OP_breg22:
13602 return "DW_OP_breg22";
13603 case DW_OP_breg23:
13604 return "DW_OP_breg23";
13605 case DW_OP_breg24:
13606 return "DW_OP_breg24";
13607 case DW_OP_breg25:
13608 return "DW_OP_breg25";
13609 case DW_OP_breg26:
13610 return "DW_OP_breg26";
13611 case DW_OP_breg27:
13612 return "DW_OP_breg27";
13613 case DW_OP_breg28:
13614 return "DW_OP_breg28";
13615 case DW_OP_breg29:
13616 return "DW_OP_breg29";
13617 case DW_OP_breg30:
13618 return "DW_OP_breg30";
13619 case DW_OP_breg31:
13620 return "DW_OP_breg31";
13621 case DW_OP_regx:
13622 return "DW_OP_regx";
13623 case DW_OP_fbreg:
13624 return "DW_OP_fbreg";
13625 case DW_OP_bregx:
13626 return "DW_OP_bregx";
13627 case DW_OP_piece:
13628 return "DW_OP_piece";
13629 case DW_OP_deref_size:
13630 return "DW_OP_deref_size";
13631 case DW_OP_xderef_size:
13632 return "DW_OP_xderef_size";
13633 case DW_OP_nop:
13634 return "DW_OP_nop";
b7619582 13635 /* DWARF 3 extensions. */
ed348acc
EZ
13636 case DW_OP_push_object_address:
13637 return "DW_OP_push_object_address";
13638 case DW_OP_call2:
13639 return "DW_OP_call2";
13640 case DW_OP_call4:
13641 return "DW_OP_call4";
13642 case DW_OP_call_ref:
13643 return "DW_OP_call_ref";
b7619582
GF
13644 case DW_OP_form_tls_address:
13645 return "DW_OP_form_tls_address";
13646 case DW_OP_call_frame_cfa:
13647 return "DW_OP_call_frame_cfa";
13648 case DW_OP_bit_piece:
13649 return "DW_OP_bit_piece";
9eae7c52
TT
13650 /* DWARF 4 extensions. */
13651 case DW_OP_implicit_value:
13652 return "DW_OP_implicit_value";
13653 case DW_OP_stack_value:
13654 return "DW_OP_stack_value";
13655 /* GNU extensions. */
ed348acc
EZ
13656 case DW_OP_GNU_push_tls_address:
13657 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
13658 case DW_OP_GNU_uninit:
13659 return "DW_OP_GNU_uninit";
8cf6f0b1
TT
13660 case DW_OP_GNU_implicit_pointer:
13661 return "DW_OP_GNU_implicit_pointer";
8a9b8146
TT
13662 case DW_OP_GNU_entry_value:
13663 return "DW_OP_GNU_entry_value";
13664 case DW_OP_GNU_const_type:
13665 return "DW_OP_GNU_const_type";
13666 case DW_OP_GNU_regval_type:
13667 return "DW_OP_GNU_regval_type";
13668 case DW_OP_GNU_deref_type:
13669 return "DW_OP_GNU_deref_type";
13670 case DW_OP_GNU_convert:
13671 return "DW_OP_GNU_convert";
13672 case DW_OP_GNU_reinterpret:
13673 return "DW_OP_GNU_reinterpret";
c906108c 13674 default:
b1bfef65 13675 return NULL;
c906108c
SS
13676 }
13677}
13678
13679static char *
fba45db2 13680dwarf_bool_name (unsigned mybool)
c906108c
SS
13681{
13682 if (mybool)
13683 return "TRUE";
13684 else
13685 return "FALSE";
13686}
13687
13688/* Convert a DWARF type code into its string name. */
13689
13690static char *
aa1ee363 13691dwarf_type_encoding_name (unsigned enc)
c906108c
SS
13692{
13693 switch (enc)
13694 {
b7619582
GF
13695 case DW_ATE_void:
13696 return "DW_ATE_void";
c906108c
SS
13697 case DW_ATE_address:
13698 return "DW_ATE_address";
13699 case DW_ATE_boolean:
13700 return "DW_ATE_boolean";
13701 case DW_ATE_complex_float:
13702 return "DW_ATE_complex_float";
13703 case DW_ATE_float:
13704 return "DW_ATE_float";
13705 case DW_ATE_signed:
13706 return "DW_ATE_signed";
13707 case DW_ATE_signed_char:
13708 return "DW_ATE_signed_char";
13709 case DW_ATE_unsigned:
13710 return "DW_ATE_unsigned";
13711 case DW_ATE_unsigned_char:
13712 return "DW_ATE_unsigned_char";
b7619582 13713 /* DWARF 3. */
d9fa45fe
DC
13714 case DW_ATE_imaginary_float:
13715 return "DW_ATE_imaginary_float";
b7619582
GF
13716 case DW_ATE_packed_decimal:
13717 return "DW_ATE_packed_decimal";
13718 case DW_ATE_numeric_string:
13719 return "DW_ATE_numeric_string";
13720 case DW_ATE_edited:
13721 return "DW_ATE_edited";
13722 case DW_ATE_signed_fixed:
13723 return "DW_ATE_signed_fixed";
13724 case DW_ATE_unsigned_fixed:
13725 return "DW_ATE_unsigned_fixed";
13726 case DW_ATE_decimal_float:
13727 return "DW_ATE_decimal_float";
75079b2b
TT
13728 /* DWARF 4. */
13729 case DW_ATE_UTF:
13730 return "DW_ATE_UTF";
b7619582
GF
13731 /* HP extensions. */
13732 case DW_ATE_HP_float80:
13733 return "DW_ATE_HP_float80";
13734 case DW_ATE_HP_complex_float80:
13735 return "DW_ATE_HP_complex_float80";
13736 case DW_ATE_HP_float128:
13737 return "DW_ATE_HP_float128";
13738 case DW_ATE_HP_complex_float128:
13739 return "DW_ATE_HP_complex_float128";
13740 case DW_ATE_HP_floathpintel:
13741 return "DW_ATE_HP_floathpintel";
13742 case DW_ATE_HP_imaginary_float80:
13743 return "DW_ATE_HP_imaginary_float80";
13744 case DW_ATE_HP_imaginary_float128:
13745 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
13746 default:
13747 return "DW_ATE_<unknown>";
13748 }
13749}
13750
0963b4bd 13751/* Convert a DWARF call frame info operation to its string name. */
c906108c
SS
13752
13753#if 0
13754static char *
aa1ee363 13755dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
13756{
13757 switch (cfi_opc)
13758 {
13759 case DW_CFA_advance_loc:
13760 return "DW_CFA_advance_loc";
13761 case DW_CFA_offset:
13762 return "DW_CFA_offset";
13763 case DW_CFA_restore:
13764 return "DW_CFA_restore";
13765 case DW_CFA_nop:
13766 return "DW_CFA_nop";
13767 case DW_CFA_set_loc:
13768 return "DW_CFA_set_loc";
13769 case DW_CFA_advance_loc1:
13770 return "DW_CFA_advance_loc1";
13771 case DW_CFA_advance_loc2:
13772 return "DW_CFA_advance_loc2";
13773 case DW_CFA_advance_loc4:
13774 return "DW_CFA_advance_loc4";
13775 case DW_CFA_offset_extended:
13776 return "DW_CFA_offset_extended";
13777 case DW_CFA_restore_extended:
13778 return "DW_CFA_restore_extended";
13779 case DW_CFA_undefined:
13780 return "DW_CFA_undefined";
13781 case DW_CFA_same_value:
13782 return "DW_CFA_same_value";
13783 case DW_CFA_register:
13784 return "DW_CFA_register";
13785 case DW_CFA_remember_state:
13786 return "DW_CFA_remember_state";
13787 case DW_CFA_restore_state:
13788 return "DW_CFA_restore_state";
13789 case DW_CFA_def_cfa:
13790 return "DW_CFA_def_cfa";
13791 case DW_CFA_def_cfa_register:
13792 return "DW_CFA_def_cfa_register";
13793 case DW_CFA_def_cfa_offset:
13794 return "DW_CFA_def_cfa_offset";
b7619582 13795 /* DWARF 3. */
985cb1a3
JM
13796 case DW_CFA_def_cfa_expression:
13797 return "DW_CFA_def_cfa_expression";
13798 case DW_CFA_expression:
13799 return "DW_CFA_expression";
13800 case DW_CFA_offset_extended_sf:
13801 return "DW_CFA_offset_extended_sf";
13802 case DW_CFA_def_cfa_sf:
13803 return "DW_CFA_def_cfa_sf";
13804 case DW_CFA_def_cfa_offset_sf:
13805 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
13806 case DW_CFA_val_offset:
13807 return "DW_CFA_val_offset";
13808 case DW_CFA_val_offset_sf:
13809 return "DW_CFA_val_offset_sf";
13810 case DW_CFA_val_expression:
13811 return "DW_CFA_val_expression";
13812 /* SGI/MIPS specific. */
c906108c
SS
13813 case DW_CFA_MIPS_advance_loc8:
13814 return "DW_CFA_MIPS_advance_loc8";
b7619582 13815 /* GNU extensions. */
985cb1a3
JM
13816 case DW_CFA_GNU_window_save:
13817 return "DW_CFA_GNU_window_save";
13818 case DW_CFA_GNU_args_size:
13819 return "DW_CFA_GNU_args_size";
13820 case DW_CFA_GNU_negative_offset_extended:
13821 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
13822 default:
13823 return "DW_CFA_<unknown>";
13824 }
13825}
13826#endif
13827
f9aca02d 13828static void
d97bc12b 13829dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
13830{
13831 unsigned int i;
13832
d97bc12b
DE
13833 print_spaces (indent, f);
13834 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 13835 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
13836
13837 if (die->parent != NULL)
13838 {
13839 print_spaces (indent, f);
13840 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13841 die->parent->offset);
13842 }
13843
13844 print_spaces (indent, f);
13845 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 13846 dwarf_bool_name (die->child != NULL));
c906108c 13847
d97bc12b
DE
13848 print_spaces (indent, f);
13849 fprintf_unfiltered (f, " attributes:\n");
13850
c906108c
SS
13851 for (i = 0; i < die->num_attrs; ++i)
13852 {
d97bc12b
DE
13853 print_spaces (indent, f);
13854 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
13855 dwarf_attr_name (die->attrs[i].name),
13856 dwarf_form_name (die->attrs[i].form));
d97bc12b 13857
c906108c
SS
13858 switch (die->attrs[i].form)
13859 {
13860 case DW_FORM_ref_addr:
13861 case DW_FORM_addr:
d97bc12b 13862 fprintf_unfiltered (f, "address: ");
5af949e3 13863 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
13864 break;
13865 case DW_FORM_block2:
13866 case DW_FORM_block4:
13867 case DW_FORM_block:
13868 case DW_FORM_block1:
3e43a32a
MS
13869 fprintf_unfiltered (f, "block: size %d",
13870 DW_BLOCK (&die->attrs[i])->size);
c906108c 13871 break;
2dc7f7b3
TT
13872 case DW_FORM_exprloc:
13873 fprintf_unfiltered (f, "expression: size %u",
13874 DW_BLOCK (&die->attrs[i])->size);
13875 break;
10b3939b
DJ
13876 case DW_FORM_ref1:
13877 case DW_FORM_ref2:
13878 case DW_FORM_ref4:
d97bc12b 13879 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
13880 (long) (DW_ADDR (&die->attrs[i])));
13881 break;
c906108c
SS
13882 case DW_FORM_data1:
13883 case DW_FORM_data2:
13884 case DW_FORM_data4:
ce5d95e1 13885 case DW_FORM_data8:
c906108c
SS
13886 case DW_FORM_udata:
13887 case DW_FORM_sdata:
43bbcdc2
PH
13888 fprintf_unfiltered (f, "constant: %s",
13889 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 13890 break;
2dc7f7b3
TT
13891 case DW_FORM_sec_offset:
13892 fprintf_unfiltered (f, "section offset: %s",
13893 pulongest (DW_UNSND (&die->attrs[i])));
13894 break;
55f1336d 13895 case DW_FORM_ref_sig8:
348e048f
DE
13896 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13897 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
b3c8eb43 13898 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
348e048f
DE
13899 else
13900 fprintf_unfiltered (f, "signatured type, offset: unknown");
13901 break;
c906108c 13902 case DW_FORM_string:
4bdf3d34 13903 case DW_FORM_strp:
8285870a 13904 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 13905 DW_STRING (&die->attrs[i])
8285870a
JK
13906 ? DW_STRING (&die->attrs[i]) : "",
13907 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
13908 break;
13909 case DW_FORM_flag:
13910 if (DW_UNSND (&die->attrs[i]))
d97bc12b 13911 fprintf_unfiltered (f, "flag: TRUE");
c906108c 13912 else
d97bc12b 13913 fprintf_unfiltered (f, "flag: FALSE");
c906108c 13914 break;
2dc7f7b3
TT
13915 case DW_FORM_flag_present:
13916 fprintf_unfiltered (f, "flag: TRUE");
13917 break;
a8329558 13918 case DW_FORM_indirect:
0963b4bd
MS
13919 /* The reader will have reduced the indirect form to
13920 the "base form" so this form should not occur. */
3e43a32a
MS
13921 fprintf_unfiltered (f,
13922 "unexpected attribute form: DW_FORM_indirect");
a8329558 13923 break;
c906108c 13924 default:
d97bc12b 13925 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 13926 die->attrs[i].form);
d97bc12b 13927 break;
c906108c 13928 }
d97bc12b 13929 fprintf_unfiltered (f, "\n");
c906108c
SS
13930 }
13931}
13932
f9aca02d 13933static void
d97bc12b 13934dump_die_for_error (struct die_info *die)
c906108c 13935{
d97bc12b
DE
13936 dump_die_shallow (gdb_stderr, 0, die);
13937}
13938
13939static void
13940dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13941{
13942 int indent = level * 4;
13943
13944 gdb_assert (die != NULL);
13945
13946 if (level >= max_level)
13947 return;
13948
13949 dump_die_shallow (f, indent, die);
13950
13951 if (die->child != NULL)
c906108c 13952 {
d97bc12b
DE
13953 print_spaces (indent, f);
13954 fprintf_unfiltered (f, " Children:");
13955 if (level + 1 < max_level)
13956 {
13957 fprintf_unfiltered (f, "\n");
13958 dump_die_1 (f, level + 1, max_level, die->child);
13959 }
13960 else
13961 {
3e43a32a
MS
13962 fprintf_unfiltered (f,
13963 " [not printed, max nesting level reached]\n");
d97bc12b
DE
13964 }
13965 }
13966
13967 if (die->sibling != NULL && level > 0)
13968 {
13969 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
13970 }
13971}
13972
d97bc12b
DE
13973/* This is called from the pdie macro in gdbinit.in.
13974 It's not static so gcc will keep a copy callable from gdb. */
13975
13976void
13977dump_die (struct die_info *die, int max_level)
13978{
13979 dump_die_1 (gdb_stdlog, 0, max_level, die);
13980}
13981
f9aca02d 13982static void
51545339 13983store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13984{
51545339 13985 void **slot;
c906108c 13986
51545339
DJ
13987 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13988
13989 *slot = die;
c906108c
SS
13990}
13991
93311388
DE
13992static int
13993is_ref_attr (struct attribute *attr)
c906108c 13994{
c906108c
SS
13995 switch (attr->form)
13996 {
13997 case DW_FORM_ref_addr:
c906108c
SS
13998 case DW_FORM_ref1:
13999 case DW_FORM_ref2:
14000 case DW_FORM_ref4:
613e1657 14001 case DW_FORM_ref8:
c906108c 14002 case DW_FORM_ref_udata:
93311388 14003 return 1;
c906108c 14004 default:
93311388 14005 return 0;
c906108c 14006 }
93311388
DE
14007}
14008
14009static unsigned int
14010dwarf2_get_ref_die_offset (struct attribute *attr)
14011{
14012 if (is_ref_attr (attr))
14013 return DW_ADDR (attr);
14014
14015 complaint (&symfile_complaints,
14016 _("unsupported die ref attribute form: '%s'"),
14017 dwarf_form_name (attr->form));
14018 return 0;
c906108c
SS
14019}
14020
43bbcdc2
PH
14021/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14022 * the value held by the attribute is not constant. */
a02abb62 14023
43bbcdc2 14024static LONGEST
a02abb62
JB
14025dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14026{
14027 if (attr->form == DW_FORM_sdata)
14028 return DW_SND (attr);
14029 else if (attr->form == DW_FORM_udata
14030 || attr->form == DW_FORM_data1
14031 || attr->form == DW_FORM_data2
14032 || attr->form == DW_FORM_data4
14033 || attr->form == DW_FORM_data8)
14034 return DW_UNSND (attr);
14035 else
14036 {
3e43a32a
MS
14037 complaint (&symfile_complaints,
14038 _("Attribute value is not a constant (%s)"),
a02abb62
JB
14039 dwarf_form_name (attr->form));
14040 return default_value;
14041 }
14042}
14043
03dd20cc 14044/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
14045 unit and add it to our queue.
14046 The result is non-zero if PER_CU was queued, otherwise the result is zero
14047 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 14048
348e048f 14049static int
03dd20cc
DJ
14050maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14051 struct dwarf2_per_cu_data *per_cu)
14052{
98bfdba5
PA
14053 /* We may arrive here during partial symbol reading, if we need full
14054 DIEs to process an unusual case (e.g. template arguments). Do
14055 not queue PER_CU, just tell our caller to load its DIEs. */
14056 if (dwarf2_per_objfile->reading_partial_symbols)
14057 {
14058 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14059 return 1;
14060 return 0;
14061 }
14062
03dd20cc
DJ
14063 /* Mark the dependence relation so that we don't flush PER_CU
14064 too early. */
14065 dwarf2_add_dependence (this_cu, per_cu);
14066
14067 /* If it's already on the queue, we have nothing to do. */
14068 if (per_cu->queued)
348e048f 14069 return 0;
03dd20cc
DJ
14070
14071 /* If the compilation unit is already loaded, just mark it as
14072 used. */
14073 if (per_cu->cu != NULL)
14074 {
14075 per_cu->cu->last_used = 0;
348e048f 14076 return 0;
03dd20cc
DJ
14077 }
14078
14079 /* Add it to the queue. */
a0f42c21 14080 queue_comp_unit (per_cu);
348e048f
DE
14081
14082 return 1;
14083}
14084
14085/* Follow reference or signature attribute ATTR of SRC_DIE.
14086 On entry *REF_CU is the CU of SRC_DIE.
14087 On exit *REF_CU is the CU of the result. */
14088
14089static struct die_info *
14090follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14091 struct dwarf2_cu **ref_cu)
14092{
14093 struct die_info *die;
14094
14095 if (is_ref_attr (attr))
14096 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 14097 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
14098 die = follow_die_sig (src_die, attr, ref_cu);
14099 else
14100 {
14101 dump_die_for_error (src_die);
14102 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14103 (*ref_cu)->objfile->name);
14104 }
14105
14106 return die;
03dd20cc
DJ
14107}
14108
5c631832 14109/* Follow reference OFFSET.
673bfd45
DE
14110 On entry *REF_CU is the CU of the source die referencing OFFSET.
14111 On exit *REF_CU is the CU of the result.
14112 Returns NULL if OFFSET is invalid. */
f504f079 14113
f9aca02d 14114static struct die_info *
5c631832 14115follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 14116{
10b3939b 14117 struct die_info temp_die;
f2f0e013 14118 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 14119
348e048f
DE
14120 gdb_assert (cu->per_cu != NULL);
14121
98bfdba5
PA
14122 target_cu = cu;
14123
b0df02fd 14124 if (cu->per_cu->debug_types_section)
348e048f
DE
14125 {
14126 /* .debug_types CUs cannot reference anything outside their CU.
14127 If they need to, they have to reference a signatured type via
55f1336d 14128 DW_FORM_ref_sig8. */
348e048f 14129 if (! offset_in_cu_p (&cu->header, offset))
5c631832 14130 return NULL;
348e048f
DE
14131 }
14132 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
14133 {
14134 struct dwarf2_per_cu_data *per_cu;
9a619af0 14135
45452591 14136 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
14137
14138 /* If necessary, add it to the queue and load its DIEs. */
348e048f 14139 if (maybe_queue_comp_unit (cu, per_cu))
a0f42c21 14140 load_full_comp_unit (per_cu);
03dd20cc 14141
10b3939b
DJ
14142 target_cu = per_cu->cu;
14143 }
98bfdba5
PA
14144 else if (cu->dies == NULL)
14145 {
14146 /* We're loading full DIEs during partial symbol reading. */
14147 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
a0f42c21 14148 load_full_comp_unit (cu->per_cu);
98bfdba5 14149 }
c906108c 14150
f2f0e013 14151 *ref_cu = target_cu;
51545339 14152 temp_die.offset = offset;
5c631832
JK
14153 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14154}
10b3939b 14155
5c631832
JK
14156/* Follow reference attribute ATTR of SRC_DIE.
14157 On entry *REF_CU is the CU of SRC_DIE.
14158 On exit *REF_CU is the CU of the result. */
14159
14160static struct die_info *
14161follow_die_ref (struct die_info *src_die, struct attribute *attr,
14162 struct dwarf2_cu **ref_cu)
14163{
14164 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14165 struct dwarf2_cu *cu = *ref_cu;
14166 struct die_info *die;
14167
14168 die = follow_die_offset (offset, ref_cu);
14169 if (!die)
14170 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14171 "at 0x%x [in module %s]"),
14172 offset, src_die->offset, cu->objfile->name);
348e048f 14173
5c631832
JK
14174 return die;
14175}
14176
d83e736b
JK
14177/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14178 Returned value is intended for DW_OP_call*. Returned
14179 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
14180
14181struct dwarf2_locexpr_baton
14182dwarf2_fetch_die_location_block (unsigned int offset,
8cf6f0b1
TT
14183 struct dwarf2_per_cu_data *per_cu,
14184 CORE_ADDR (*get_frame_pc) (void *baton),
14185 void *baton)
5c631832 14186{
918dd910 14187 struct dwarf2_cu *cu;
5c631832
JK
14188 struct die_info *die;
14189 struct attribute *attr;
14190 struct dwarf2_locexpr_baton retval;
14191
8cf6f0b1
TT
14192 dw2_setup (per_cu->objfile);
14193
918dd910
JK
14194 if (per_cu->cu == NULL)
14195 load_cu (per_cu);
14196 cu = per_cu->cu;
14197
5c631832
JK
14198 die = follow_die_offset (offset, &cu);
14199 if (!die)
14200 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
bb5ed363 14201 offset, per_cu->objfile->name);
5c631832
JK
14202
14203 attr = dwarf2_attr (die, DW_AT_location, cu);
14204 if (!attr)
14205 {
e103e986
JK
14206 /* DWARF: "If there is no such attribute, then there is no effect.".
14207 DATA is ignored if SIZE is 0. */
5c631832 14208
e103e986 14209 retval.data = NULL;
5c631832
JK
14210 retval.size = 0;
14211 }
8cf6f0b1
TT
14212 else if (attr_form_is_section_offset (attr))
14213 {
14214 struct dwarf2_loclist_baton loclist_baton;
14215 CORE_ADDR pc = (*get_frame_pc) (baton);
14216 size_t size;
14217
14218 fill_in_loclist_baton (cu, &loclist_baton, attr);
14219
14220 retval.data = dwarf2_find_location_expression (&loclist_baton,
14221 &size, pc);
14222 retval.size = size;
14223 }
5c631832
JK
14224 else
14225 {
14226 if (!attr_form_is_block (attr))
14227 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14228 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
bb5ed363 14229 offset, per_cu->objfile->name);
5c631832
JK
14230
14231 retval.data = DW_BLOCK (attr)->data;
14232 retval.size = DW_BLOCK (attr)->size;
14233 }
14234 retval.per_cu = cu->per_cu;
918dd910 14235
918dd910
JK
14236 age_cached_comp_units ();
14237
5c631832 14238 return retval;
348e048f
DE
14239}
14240
8a9b8146
TT
14241/* Return the type of the DIE at DIE_OFFSET in the CU named by
14242 PER_CU. */
14243
14244struct type *
14245dwarf2_get_die_type (unsigned int die_offset,
14246 struct dwarf2_per_cu_data *per_cu)
14247{
8a9b8146 14248 dw2_setup (per_cu->objfile);
9ff3b74f 14249 return get_die_type_at_offset (die_offset, per_cu);
8a9b8146
TT
14250}
14251
348e048f
DE
14252/* Follow the signature attribute ATTR in SRC_DIE.
14253 On entry *REF_CU is the CU of SRC_DIE.
14254 On exit *REF_CU is the CU of the result. */
14255
14256static struct die_info *
14257follow_die_sig (struct die_info *src_die, struct attribute *attr,
14258 struct dwarf2_cu **ref_cu)
14259{
14260 struct objfile *objfile = (*ref_cu)->objfile;
14261 struct die_info temp_die;
14262 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14263 struct dwarf2_cu *sig_cu;
14264 struct die_info *die;
14265
14266 /* sig_type will be NULL if the signatured type is missing from
14267 the debug info. */
14268 if (sig_type == NULL)
14269 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14270 "at 0x%x [in module %s]"),
14271 src_die->offset, objfile->name);
14272
14273 /* If necessary, add it to the queue and load its DIEs. */
14274
14275 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
a0f42c21 14276 read_signatured_type (sig_type);
348e048f
DE
14277
14278 gdb_assert (sig_type->per_cu.cu != NULL);
14279
14280 sig_cu = sig_type->per_cu.cu;
14281 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14282 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14283 if (die)
14284 {
14285 *ref_cu = sig_cu;
14286 return die;
14287 }
14288
3e43a32a
MS
14289 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14290 "from DIE at 0x%x [in module %s]"),
348e048f
DE
14291 sig_type->type_offset, src_die->offset, objfile->name);
14292}
14293
14294/* Given an offset of a signatured type, return its signatured_type. */
14295
14296static struct signatured_type *
8b70b953
TT
14297lookup_signatured_type_at_offset (struct objfile *objfile,
14298 struct dwarf2_section_info *section,
14299 unsigned int offset)
348e048f 14300{
8b70b953 14301 gdb_byte *info_ptr = section->buffer + offset;
348e048f
DE
14302 unsigned int length, initial_length_size;
14303 unsigned int sig_offset;
14304 struct signatured_type find_entry, *type_sig;
14305
14306 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14307 sig_offset = (initial_length_size
14308 + 2 /*version*/
14309 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14310 + 1 /*address_size*/);
14311 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14312 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14313
14314 /* This is only used to lookup previously recorded types.
14315 If we didn't find it, it's our bug. */
14316 gdb_assert (type_sig != NULL);
b3c8eb43 14317 gdb_assert (offset == type_sig->per_cu.offset);
348e048f
DE
14318
14319 return type_sig;
14320}
14321
e5fe5e75 14322/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
14323
14324static void
e5fe5e75 14325load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 14326{
e5fe5e75
DE
14327 struct objfile *objfile = per_cu->objfile;
14328 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14329 unsigned int offset = per_cu->offset;
348e048f
DE
14330 struct signatured_type *type_sig;
14331
8b70b953 14332 dwarf2_read_section (objfile, sect);
be391dca 14333
348e048f 14334 /* We have the section offset, but we need the signature to do the
e5fe5e75
DE
14335 hash table lookup. */
14336 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14337 the signature to assert we found the right one.
14338 Ok, but it's a lot of work. We should simplify things so any needed
14339 assert doesn't require all this clumsiness. */
8b70b953 14340 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
348e048f
DE
14341
14342 gdb_assert (type_sig->per_cu.cu == NULL);
14343
a0f42c21 14344 read_signatured_type (type_sig);
348e048f
DE
14345
14346 gdb_assert (type_sig->per_cu.cu != NULL);
14347}
14348
14349/* Read in a signatured type and build its CU and DIEs. */
14350
14351static void
a0f42c21 14352read_signatured_type (struct signatured_type *type_sig)
348e048f 14353{
a0f42c21 14354 struct objfile *objfile = type_sig->per_cu.objfile;
1fd400ff 14355 gdb_byte *types_ptr;
348e048f
DE
14356 struct die_reader_specs reader_specs;
14357 struct dwarf2_cu *cu;
14358 ULONGEST signature;
14359 struct cleanup *back_to, *free_cu_cleanup;
b0df02fd 14360 struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
348e048f 14361
8b70b953
TT
14362 dwarf2_read_section (objfile, section);
14363 types_ptr = section->buffer + type_sig->per_cu.offset;
1fd400ff 14364
348e048f
DE
14365 gdb_assert (type_sig->per_cu.cu == NULL);
14366
9816fde3 14367 cu = xmalloc (sizeof (*cu));
23745b47 14368 init_one_comp_unit (cu, &type_sig->per_cu);
348e048f
DE
14369
14370 /* If an error occurs while loading, release our storage. */
68dc6402 14371 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
348e048f 14372
9ff913ba
DE
14373 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14374 &signature, NULL);
348e048f
DE
14375 gdb_assert (signature == type_sig->signature);
14376
14377 cu->die_hash
14378 = htab_create_alloc_ex (cu->header.length / 12,
14379 die_hash,
14380 die_eq,
14381 NULL,
14382 &cu->comp_unit_obstack,
14383 hashtab_obstack_allocate,
14384 dummy_obstack_deallocate);
14385
e5fe5e75 14386 dwarf2_read_abbrevs (cu);
348e048f
DE
14387 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14388
14389 init_cu_die_reader (&reader_specs, cu);
14390
14391 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14392 NULL /*parent*/);
14393
14394 /* We try not to read any attributes in this function, because not
9cdd5dbd 14395 all CUs needed for references have been loaded yet, and symbol
348e048f
DE
14396 table processing isn't initialized. But we have to set the CU language,
14397 or we won't be able to build types correctly. */
9816fde3 14398 prepare_one_comp_unit (cu, cu->dies);
348e048f
DE
14399
14400 do_cleanups (back_to);
14401
14402 /* We've successfully allocated this compilation unit. Let our caller
14403 clean it up when finished with it. */
14404 discard_cleanups (free_cu_cleanup);
14405
14406 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14407 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
14408}
14409
c906108c
SS
14410/* Decode simple location descriptions.
14411 Given a pointer to a dwarf block that defines a location, compute
14412 the location and return the value.
14413
4cecd739
DJ
14414 NOTE drow/2003-11-18: This function is called in two situations
14415 now: for the address of static or global variables (partial symbols
14416 only) and for offsets into structures which are expected to be
14417 (more or less) constant. The partial symbol case should go away,
14418 and only the constant case should remain. That will let this
14419 function complain more accurately. A few special modes are allowed
14420 without complaint for global variables (for instance, global
14421 register values and thread-local values).
c906108c
SS
14422
14423 A location description containing no operations indicates that the
4cecd739 14424 object is optimized out. The return value is 0 for that case.
6b992462
DJ
14425 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14426 callers will only want a very basic result and this can become a
21ae7a4d
JK
14427 complaint.
14428
14429 Note that stack[0] is unused except as a default error return. */
c906108c
SS
14430
14431static CORE_ADDR
e7c27a73 14432decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 14433{
e7c27a73 14434 struct objfile *objfile = cu->objfile;
21ae7a4d
JK
14435 int i;
14436 int size = blk->size;
14437 gdb_byte *data = blk->data;
14438 CORE_ADDR stack[64];
14439 int stacki;
14440 unsigned int bytes_read, unsnd;
14441 gdb_byte op;
c906108c 14442
21ae7a4d
JK
14443 i = 0;
14444 stacki = 0;
14445 stack[stacki] = 0;
14446 stack[++stacki] = 0;
14447
14448 while (i < size)
14449 {
14450 op = data[i++];
14451 switch (op)
14452 {
14453 case DW_OP_lit0:
14454 case DW_OP_lit1:
14455 case DW_OP_lit2:
14456 case DW_OP_lit3:
14457 case DW_OP_lit4:
14458 case DW_OP_lit5:
14459 case DW_OP_lit6:
14460 case DW_OP_lit7:
14461 case DW_OP_lit8:
14462 case DW_OP_lit9:
14463 case DW_OP_lit10:
14464 case DW_OP_lit11:
14465 case DW_OP_lit12:
14466 case DW_OP_lit13:
14467 case DW_OP_lit14:
14468 case DW_OP_lit15:
14469 case DW_OP_lit16:
14470 case DW_OP_lit17:
14471 case DW_OP_lit18:
14472 case DW_OP_lit19:
14473 case DW_OP_lit20:
14474 case DW_OP_lit21:
14475 case DW_OP_lit22:
14476 case DW_OP_lit23:
14477 case DW_OP_lit24:
14478 case DW_OP_lit25:
14479 case DW_OP_lit26:
14480 case DW_OP_lit27:
14481 case DW_OP_lit28:
14482 case DW_OP_lit29:
14483 case DW_OP_lit30:
14484 case DW_OP_lit31:
14485 stack[++stacki] = op - DW_OP_lit0;
14486 break;
f1bea926 14487
21ae7a4d
JK
14488 case DW_OP_reg0:
14489 case DW_OP_reg1:
14490 case DW_OP_reg2:
14491 case DW_OP_reg3:
14492 case DW_OP_reg4:
14493 case DW_OP_reg5:
14494 case DW_OP_reg6:
14495 case DW_OP_reg7:
14496 case DW_OP_reg8:
14497 case DW_OP_reg9:
14498 case DW_OP_reg10:
14499 case DW_OP_reg11:
14500 case DW_OP_reg12:
14501 case DW_OP_reg13:
14502 case DW_OP_reg14:
14503 case DW_OP_reg15:
14504 case DW_OP_reg16:
14505 case DW_OP_reg17:
14506 case DW_OP_reg18:
14507 case DW_OP_reg19:
14508 case DW_OP_reg20:
14509 case DW_OP_reg21:
14510 case DW_OP_reg22:
14511 case DW_OP_reg23:
14512 case DW_OP_reg24:
14513 case DW_OP_reg25:
14514 case DW_OP_reg26:
14515 case DW_OP_reg27:
14516 case DW_OP_reg28:
14517 case DW_OP_reg29:
14518 case DW_OP_reg30:
14519 case DW_OP_reg31:
14520 stack[++stacki] = op - DW_OP_reg0;
14521 if (i < size)
14522 dwarf2_complex_location_expr_complaint ();
14523 break;
c906108c 14524
21ae7a4d
JK
14525 case DW_OP_regx:
14526 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14527 i += bytes_read;
14528 stack[++stacki] = unsnd;
14529 if (i < size)
14530 dwarf2_complex_location_expr_complaint ();
14531 break;
c906108c 14532
21ae7a4d
JK
14533 case DW_OP_addr:
14534 stack[++stacki] = read_address (objfile->obfd, &data[i],
14535 cu, &bytes_read);
14536 i += bytes_read;
14537 break;
d53d4ac5 14538
21ae7a4d
JK
14539 case DW_OP_const1u:
14540 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14541 i += 1;
14542 break;
14543
14544 case DW_OP_const1s:
14545 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14546 i += 1;
14547 break;
14548
14549 case DW_OP_const2u:
14550 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14551 i += 2;
14552 break;
14553
14554 case DW_OP_const2s:
14555 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14556 i += 2;
14557 break;
d53d4ac5 14558
21ae7a4d
JK
14559 case DW_OP_const4u:
14560 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14561 i += 4;
14562 break;
14563
14564 case DW_OP_const4s:
14565 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14566 i += 4;
14567 break;
14568
585861ea
JK
14569 case DW_OP_const8u:
14570 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14571 i += 8;
14572 break;
14573
21ae7a4d
JK
14574 case DW_OP_constu:
14575 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14576 &bytes_read);
14577 i += bytes_read;
14578 break;
14579
14580 case DW_OP_consts:
14581 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14582 i += bytes_read;
14583 break;
14584
14585 case DW_OP_dup:
14586 stack[stacki + 1] = stack[stacki];
14587 stacki++;
14588 break;
14589
14590 case DW_OP_plus:
14591 stack[stacki - 1] += stack[stacki];
14592 stacki--;
14593 break;
14594
14595 case DW_OP_plus_uconst:
14596 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14597 &bytes_read);
14598 i += bytes_read;
14599 break;
14600
14601 case DW_OP_minus:
14602 stack[stacki - 1] -= stack[stacki];
14603 stacki--;
14604 break;
14605
14606 case DW_OP_deref:
14607 /* If we're not the last op, then we definitely can't encode
14608 this using GDB's address_class enum. This is valid for partial
14609 global symbols, although the variable's address will be bogus
14610 in the psymtab. */
14611 if (i < size)
14612 dwarf2_complex_location_expr_complaint ();
14613 break;
14614
14615 case DW_OP_GNU_push_tls_address:
14616 /* The top of the stack has the offset from the beginning
14617 of the thread control block at which the variable is located. */
14618 /* Nothing should follow this operator, so the top of stack would
14619 be returned. */
14620 /* This is valid for partial global symbols, but the variable's
585861ea
JK
14621 address will be bogus in the psymtab. Make it always at least
14622 non-zero to not look as a variable garbage collected by linker
14623 which have DW_OP_addr 0. */
21ae7a4d
JK
14624 if (i < size)
14625 dwarf2_complex_location_expr_complaint ();
585861ea 14626 stack[stacki]++;
21ae7a4d
JK
14627 break;
14628
14629 case DW_OP_GNU_uninit:
14630 break;
14631
14632 default:
14633 {
14634 const char *name = dwarf_stack_op_name (op);
14635
14636 if (name)
14637 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14638 name);
14639 else
14640 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14641 op);
14642 }
14643
14644 return (stack[stacki]);
d53d4ac5 14645 }
3c6e0cb3 14646
21ae7a4d
JK
14647 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14648 outside of the allocated space. Also enforce minimum>0. */
14649 if (stacki >= ARRAY_SIZE (stack) - 1)
14650 {
14651 complaint (&symfile_complaints,
14652 _("location description stack overflow"));
14653 return 0;
14654 }
14655
14656 if (stacki <= 0)
14657 {
14658 complaint (&symfile_complaints,
14659 _("location description stack underflow"));
14660 return 0;
14661 }
14662 }
14663 return (stack[stacki]);
c906108c
SS
14664}
14665
14666/* memory allocation interface */
14667
c906108c 14668static struct dwarf_block *
7b5a2f43 14669dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
14670{
14671 struct dwarf_block *blk;
14672
14673 blk = (struct dwarf_block *)
7b5a2f43 14674 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
14675 return (blk);
14676}
14677
14678static struct abbrev_info *
f3dd6933 14679dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
14680{
14681 struct abbrev_info *abbrev;
14682
f3dd6933
DJ
14683 abbrev = (struct abbrev_info *)
14684 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
14685 memset (abbrev, 0, sizeof (struct abbrev_info));
14686 return (abbrev);
14687}
14688
14689static struct die_info *
b60c80d6 14690dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
14691{
14692 struct die_info *die;
b60c80d6
DJ
14693 size_t size = sizeof (struct die_info);
14694
14695 if (num_attrs > 1)
14696 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 14697
b60c80d6 14698 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
14699 memset (die, 0, sizeof (struct die_info));
14700 return (die);
14701}
2e276125
JB
14702
14703\f
14704/* Macro support. */
14705
2e276125
JB
14706/* Return the full name of file number I in *LH's file name table.
14707 Use COMP_DIR as the name of the current directory of the
14708 compilation. The result is allocated using xmalloc; the caller is
14709 responsible for freeing it. */
14710static char *
14711file_full_name (int file, struct line_header *lh, const char *comp_dir)
14712{
6a83a1e6
EZ
14713 /* Is the file number a valid index into the line header's file name
14714 table? Remember that file numbers start with one, not zero. */
14715 if (1 <= file && file <= lh->num_file_names)
14716 {
14717 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 14718
6a83a1e6
EZ
14719 if (IS_ABSOLUTE_PATH (fe->name))
14720 return xstrdup (fe->name);
14721 else
14722 {
14723 const char *dir;
14724 int dir_len;
14725 char *full_name;
14726
14727 if (fe->dir_index)
14728 dir = lh->include_dirs[fe->dir_index - 1];
14729 else
14730 dir = comp_dir;
14731
14732 if (dir)
14733 {
14734 dir_len = strlen (dir);
14735 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14736 strcpy (full_name, dir);
14737 full_name[dir_len] = '/';
14738 strcpy (full_name + dir_len + 1, fe->name);
14739 return full_name;
14740 }
14741 else
14742 return xstrdup (fe->name);
14743 }
14744 }
2e276125
JB
14745 else
14746 {
6a83a1e6
EZ
14747 /* The compiler produced a bogus file number. We can at least
14748 record the macro definitions made in the file, even if we
14749 won't be able to find the file by name. */
14750 char fake_name[80];
9a619af0 14751
6a83a1e6 14752 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 14753
6e70227d 14754 complaint (&symfile_complaints,
6a83a1e6
EZ
14755 _("bad file number in macro information (%d)"),
14756 file);
2e276125 14757
6a83a1e6 14758 return xstrdup (fake_name);
2e276125
JB
14759 }
14760}
14761
14762
14763static struct macro_source_file *
14764macro_start_file (int file, int line,
14765 struct macro_source_file *current_file,
14766 const char *comp_dir,
14767 struct line_header *lh, struct objfile *objfile)
14768{
14769 /* The full name of this source file. */
14770 char *full_name = file_full_name (file, lh, comp_dir);
14771
14772 /* We don't create a macro table for this compilation unit
14773 at all until we actually get a filename. */
14774 if (! pending_macros)
4a146b47 14775 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 14776 objfile->macro_cache);
2e276125
JB
14777
14778 if (! current_file)
14779 /* If we have no current file, then this must be the start_file
14780 directive for the compilation unit's main source file. */
14781 current_file = macro_set_main (pending_macros, full_name);
14782 else
14783 current_file = macro_include (current_file, line, full_name);
14784
14785 xfree (full_name);
6e70227d 14786
2e276125
JB
14787 return current_file;
14788}
14789
14790
14791/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14792 followed by a null byte. */
14793static char *
14794copy_string (const char *buf, int len)
14795{
14796 char *s = xmalloc (len + 1);
9a619af0 14797
2e276125
JB
14798 memcpy (s, buf, len);
14799 s[len] = '\0';
2e276125
JB
14800 return s;
14801}
14802
14803
14804static const char *
14805consume_improper_spaces (const char *p, const char *body)
14806{
14807 if (*p == ' ')
14808 {
4d3c2250 14809 complaint (&symfile_complaints,
3e43a32a
MS
14810 _("macro definition contains spaces "
14811 "in formal argument list:\n`%s'"),
4d3c2250 14812 body);
2e276125
JB
14813
14814 while (*p == ' ')
14815 p++;
14816 }
14817
14818 return p;
14819}
14820
14821
14822static void
14823parse_macro_definition (struct macro_source_file *file, int line,
14824 const char *body)
14825{
14826 const char *p;
14827
14828 /* The body string takes one of two forms. For object-like macro
14829 definitions, it should be:
14830
14831 <macro name> " " <definition>
14832
14833 For function-like macro definitions, it should be:
14834
14835 <macro name> "() " <definition>
14836 or
14837 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14838
14839 Spaces may appear only where explicitly indicated, and in the
14840 <definition>.
14841
14842 The Dwarf 2 spec says that an object-like macro's name is always
14843 followed by a space, but versions of GCC around March 2002 omit
6e70227d 14844 the space when the macro's definition is the empty string.
2e276125
JB
14845
14846 The Dwarf 2 spec says that there should be no spaces between the
14847 formal arguments in a function-like macro's formal argument list,
14848 but versions of GCC around March 2002 include spaces after the
14849 commas. */
14850
14851
14852 /* Find the extent of the macro name. The macro name is terminated
14853 by either a space or null character (for an object-like macro) or
14854 an opening paren (for a function-like macro). */
14855 for (p = body; *p; p++)
14856 if (*p == ' ' || *p == '(')
14857 break;
14858
14859 if (*p == ' ' || *p == '\0')
14860 {
14861 /* It's an object-like macro. */
14862 int name_len = p - body;
14863 char *name = copy_string (body, name_len);
14864 const char *replacement;
14865
14866 if (*p == ' ')
14867 replacement = body + name_len + 1;
14868 else
14869 {
4d3c2250 14870 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14871 replacement = body + name_len;
14872 }
6e70227d 14873
2e276125
JB
14874 macro_define_object (file, line, name, replacement);
14875
14876 xfree (name);
14877 }
14878 else if (*p == '(')
14879 {
14880 /* It's a function-like macro. */
14881 char *name = copy_string (body, p - body);
14882 int argc = 0;
14883 int argv_size = 1;
14884 char **argv = xmalloc (argv_size * sizeof (*argv));
14885
14886 p++;
14887
14888 p = consume_improper_spaces (p, body);
14889
14890 /* Parse the formal argument list. */
14891 while (*p && *p != ')')
14892 {
14893 /* Find the extent of the current argument name. */
14894 const char *arg_start = p;
14895
14896 while (*p && *p != ',' && *p != ')' && *p != ' ')
14897 p++;
14898
14899 if (! *p || p == arg_start)
4d3c2250 14900 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14901 else
14902 {
14903 /* Make sure argv has room for the new argument. */
14904 if (argc >= argv_size)
14905 {
14906 argv_size *= 2;
14907 argv = xrealloc (argv, argv_size * sizeof (*argv));
14908 }
14909
14910 argv[argc++] = copy_string (arg_start, p - arg_start);
14911 }
14912
14913 p = consume_improper_spaces (p, body);
14914
14915 /* Consume the comma, if present. */
14916 if (*p == ',')
14917 {
14918 p++;
14919
14920 p = consume_improper_spaces (p, body);
14921 }
14922 }
14923
14924 if (*p == ')')
14925 {
14926 p++;
14927
14928 if (*p == ' ')
14929 /* Perfectly formed definition, no complaints. */
14930 macro_define_function (file, line, name,
6e70227d 14931 argc, (const char **) argv,
2e276125
JB
14932 p + 1);
14933 else if (*p == '\0')
14934 {
14935 /* Complain, but do define it. */
4d3c2250 14936 dwarf2_macro_malformed_definition_complaint (body);
2e276125 14937 macro_define_function (file, line, name,
6e70227d 14938 argc, (const char **) argv,
2e276125
JB
14939 p);
14940 }
14941 else
14942 /* Just complain. */
4d3c2250 14943 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14944 }
14945 else
14946 /* Just complain. */
4d3c2250 14947 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14948
14949 xfree (name);
14950 {
14951 int i;
14952
14953 for (i = 0; i < argc; i++)
14954 xfree (argv[i]);
14955 }
14956 xfree (argv);
14957 }
14958 else
4d3c2250 14959 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14960}
14961
cf2c3c16
TT
14962/* Skip some bytes from BYTES according to the form given in FORM.
14963 Returns the new pointer. */
2e276125 14964
cf2c3c16
TT
14965static gdb_byte *
14966skip_form_bytes (bfd *abfd, gdb_byte *bytes,
14967 enum dwarf_form form,
14968 unsigned int offset_size,
14969 struct dwarf2_section_info *section)
2e276125 14970{
cf2c3c16 14971 unsigned int bytes_read;
2e276125 14972
cf2c3c16 14973 switch (form)
2e276125 14974 {
cf2c3c16
TT
14975 case DW_FORM_data1:
14976 case DW_FORM_flag:
14977 ++bytes;
14978 break;
14979
14980 case DW_FORM_data2:
14981 bytes += 2;
14982 break;
14983
14984 case DW_FORM_data4:
14985 bytes += 4;
14986 break;
14987
14988 case DW_FORM_data8:
14989 bytes += 8;
14990 break;
14991
14992 case DW_FORM_string:
14993 read_direct_string (abfd, bytes, &bytes_read);
14994 bytes += bytes_read;
14995 break;
14996
14997 case DW_FORM_sec_offset:
14998 case DW_FORM_strp:
14999 bytes += offset_size;
15000 break;
15001
15002 case DW_FORM_block:
15003 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15004 bytes += bytes_read;
15005 break;
15006
15007 case DW_FORM_block1:
15008 bytes += 1 + read_1_byte (abfd, bytes);
15009 break;
15010 case DW_FORM_block2:
15011 bytes += 2 + read_2_bytes (abfd, bytes);
15012 break;
15013 case DW_FORM_block4:
15014 bytes += 4 + read_4_bytes (abfd, bytes);
15015 break;
15016
15017 case DW_FORM_sdata:
15018 case DW_FORM_udata:
15019 bytes = skip_leb128 (abfd, bytes);
15020 break;
15021
15022 default:
15023 {
15024 complain:
15025 complaint (&symfile_complaints,
15026 _("invalid form 0x%x in `%s'"),
15027 form,
15028 section->asection->name);
15029 return NULL;
15030 }
2e276125
JB
15031 }
15032
cf2c3c16
TT
15033 return bytes;
15034}
757a13d0 15035
cf2c3c16
TT
15036/* A helper for dwarf_decode_macros that handles skipping an unknown
15037 opcode. Returns an updated pointer to the macro data buffer; or,
15038 on error, issues a complaint and returns NULL. */
757a13d0 15039
cf2c3c16
TT
15040static gdb_byte *
15041skip_unknown_opcode (unsigned int opcode,
15042 gdb_byte **opcode_definitions,
15043 gdb_byte *mac_ptr,
15044 bfd *abfd,
15045 unsigned int offset_size,
15046 struct dwarf2_section_info *section)
15047{
15048 unsigned int bytes_read, i;
15049 unsigned long arg;
15050 gdb_byte *defn;
2e276125 15051
cf2c3c16 15052 if (opcode_definitions[opcode] == NULL)
2e276125 15053 {
cf2c3c16
TT
15054 complaint (&symfile_complaints,
15055 _("unrecognized DW_MACFINO opcode 0x%x"),
15056 opcode);
15057 return NULL;
15058 }
2e276125 15059
cf2c3c16
TT
15060 defn = opcode_definitions[opcode];
15061 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15062 defn += bytes_read;
2e276125 15063
cf2c3c16
TT
15064 for (i = 0; i < arg; ++i)
15065 {
15066 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15067 if (mac_ptr == NULL)
15068 {
15069 /* skip_form_bytes already issued the complaint. */
15070 return NULL;
15071 }
15072 }
757a13d0 15073
cf2c3c16
TT
15074 return mac_ptr;
15075}
757a13d0 15076
cf2c3c16
TT
15077/* A helper function which parses the header of a macro section.
15078 If the macro section is the extended (for now called "GNU") type,
15079 then this updates *OFFSET_SIZE. Returns a pointer to just after
15080 the header, or issues a complaint and returns NULL on error. */
757a13d0 15081
cf2c3c16
TT
15082static gdb_byte *
15083dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15084 bfd *abfd,
15085 gdb_byte *mac_ptr,
15086 unsigned int *offset_size,
15087 int section_is_gnu)
15088{
15089 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 15090
cf2c3c16
TT
15091 if (section_is_gnu)
15092 {
15093 unsigned int version, flags;
757a13d0 15094
cf2c3c16
TT
15095 version = read_2_bytes (abfd, mac_ptr);
15096 if (version != 4)
15097 {
15098 complaint (&symfile_complaints,
15099 _("unrecognized version `%d' in .debug_macro section"),
15100 version);
15101 return NULL;
15102 }
15103 mac_ptr += 2;
757a13d0 15104
cf2c3c16
TT
15105 flags = read_1_byte (abfd, mac_ptr);
15106 ++mac_ptr;
15107 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 15108
cf2c3c16
TT
15109 if ((flags & 2) != 0)
15110 /* We don't need the line table offset. */
15111 mac_ptr += *offset_size;
757a13d0 15112
cf2c3c16
TT
15113 /* Vendor opcode descriptions. */
15114 if ((flags & 4) != 0)
15115 {
15116 unsigned int i, count;
757a13d0 15117
cf2c3c16
TT
15118 count = read_1_byte (abfd, mac_ptr);
15119 ++mac_ptr;
15120 for (i = 0; i < count; ++i)
15121 {
15122 unsigned int opcode, bytes_read;
15123 unsigned long arg;
15124
15125 opcode = read_1_byte (abfd, mac_ptr);
15126 ++mac_ptr;
15127 opcode_definitions[opcode] = mac_ptr;
15128 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15129 mac_ptr += bytes_read;
15130 mac_ptr += arg;
15131 }
757a13d0 15132 }
cf2c3c16 15133 }
757a13d0 15134
cf2c3c16
TT
15135 return mac_ptr;
15136}
757a13d0 15137
cf2c3c16
TT
15138/* A helper for dwarf_decode_macros that handles the GNU extensions,
15139 including DW_GNU_MACINFO_transparent_include. */
15140
15141static void
15142dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15143 struct macro_source_file *current_file,
15144 struct line_header *lh, char *comp_dir,
15145 struct dwarf2_section_info *section,
15146 int section_is_gnu,
15147 unsigned int offset_size,
15148 struct objfile *objfile)
15149{
15150 enum dwarf_macro_record_type macinfo_type;
15151 int at_commandline;
15152 gdb_byte *opcode_definitions[256];
757a13d0 15153
cf2c3c16
TT
15154 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15155 &offset_size, section_is_gnu);
15156 if (mac_ptr == NULL)
15157 {
15158 /* We already issued a complaint. */
15159 return;
15160 }
757a13d0
JK
15161
15162 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15163 GDB is still reading the definitions from command line. First
15164 DW_MACINFO_start_file will need to be ignored as it was already executed
15165 to create CURRENT_FILE for the main source holding also the command line
15166 definitions. On first met DW_MACINFO_start_file this flag is reset to
15167 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15168
15169 at_commandline = 1;
15170
15171 do
15172 {
15173 /* Do we at least have room for a macinfo type byte? */
15174 if (mac_ptr >= mac_end)
15175 {
cf2c3c16 15176 dwarf2_macros_too_long_complaint (section);
757a13d0
JK
15177 break;
15178 }
15179
15180 macinfo_type = read_1_byte (abfd, mac_ptr);
15181 mac_ptr++;
15182
cf2c3c16
TT
15183 /* Note that we rely on the fact that the corresponding GNU and
15184 DWARF constants are the same. */
757a13d0
JK
15185 switch (macinfo_type)
15186 {
15187 /* A zero macinfo type indicates the end of the macro
15188 information. */
15189 case 0:
15190 break;
2e276125 15191
cf2c3c16
TT
15192 case DW_MACRO_GNU_define:
15193 case DW_MACRO_GNU_undef:
15194 case DW_MACRO_GNU_define_indirect:
15195 case DW_MACRO_GNU_undef_indirect:
2e276125 15196 {
891d2f0b 15197 unsigned int bytes_read;
2e276125
JB
15198 int line;
15199 char *body;
cf2c3c16 15200 int is_define;
2e276125 15201
cf2c3c16
TT
15202 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15203 mac_ptr += bytes_read;
15204
15205 if (macinfo_type == DW_MACRO_GNU_define
15206 || macinfo_type == DW_MACRO_GNU_undef)
15207 {
15208 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15209 mac_ptr += bytes_read;
15210 }
15211 else
15212 {
15213 LONGEST str_offset;
15214
15215 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15216 mac_ptr += offset_size;
2e276125 15217
cf2c3c16
TT
15218 body = read_indirect_string_at_offset (abfd, str_offset);
15219 }
15220
15221 is_define = (macinfo_type == DW_MACRO_GNU_define
15222 || macinfo_type == DW_MACRO_GNU_define_indirect);
2e276125 15223 if (! current_file)
757a13d0
JK
15224 {
15225 /* DWARF violation as no main source is present. */
15226 complaint (&symfile_complaints,
15227 _("debug info with no main source gives macro %s "
15228 "on line %d: %s"),
cf2c3c16
TT
15229 is_define ? _("definition") : _("undefinition"),
15230 line, body);
757a13d0
JK
15231 break;
15232 }
3e43a32a
MS
15233 if ((line == 0 && !at_commandline)
15234 || (line != 0 && at_commandline))
4d3c2250 15235 complaint (&symfile_complaints,
757a13d0
JK
15236 _("debug info gives %s macro %s with %s line %d: %s"),
15237 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 15238 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
15239 line == 0 ? _("zero") : _("non-zero"), line, body);
15240
cf2c3c16 15241 if (is_define)
757a13d0 15242 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
15243 else
15244 {
15245 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15246 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15247 macro_undef (current_file, line, body);
15248 }
2e276125
JB
15249 }
15250 break;
15251
cf2c3c16 15252 case DW_MACRO_GNU_start_file:
2e276125 15253 {
891d2f0b 15254 unsigned int bytes_read;
2e276125
JB
15255 int line, file;
15256
15257 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15258 mac_ptr += bytes_read;
15259 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15260 mac_ptr += bytes_read;
15261
3e43a32a
MS
15262 if ((line == 0 && !at_commandline)
15263 || (line != 0 && at_commandline))
757a13d0
JK
15264 complaint (&symfile_complaints,
15265 _("debug info gives source %d included "
15266 "from %s at %s line %d"),
15267 file, at_commandline ? _("command-line") : _("file"),
15268 line == 0 ? _("zero") : _("non-zero"), line);
15269
15270 if (at_commandline)
15271 {
cf2c3c16
TT
15272 /* This DW_MACRO_GNU_start_file was executed in the
15273 pass one. */
757a13d0
JK
15274 at_commandline = 0;
15275 }
15276 else
15277 current_file = macro_start_file (file, line,
15278 current_file, comp_dir,
cf2c3c16 15279 lh, objfile);
2e276125
JB
15280 }
15281 break;
15282
cf2c3c16 15283 case DW_MACRO_GNU_end_file:
2e276125 15284 if (! current_file)
4d3c2250 15285 complaint (&symfile_complaints,
3e43a32a
MS
15286 _("macro debug info has an unmatched "
15287 "`close_file' directive"));
2e276125
JB
15288 else
15289 {
15290 current_file = current_file->included_by;
15291 if (! current_file)
15292 {
cf2c3c16 15293 enum dwarf_macro_record_type next_type;
2e276125
JB
15294
15295 /* GCC circa March 2002 doesn't produce the zero
15296 type byte marking the end of the compilation
15297 unit. Complain if it's not there, but exit no
15298 matter what. */
15299
15300 /* Do we at least have room for a macinfo type byte? */
15301 if (mac_ptr >= mac_end)
15302 {
cf2c3c16 15303 dwarf2_macros_too_long_complaint (section);
2e276125
JB
15304 return;
15305 }
15306
15307 /* We don't increment mac_ptr here, so this is just
15308 a look-ahead. */
15309 next_type = read_1_byte (abfd, mac_ptr);
15310 if (next_type != 0)
4d3c2250 15311 complaint (&symfile_complaints,
3e43a32a
MS
15312 _("no terminating 0-type entry for "
15313 "macros in `.debug_macinfo' section"));
2e276125
JB
15314
15315 return;
15316 }
15317 }
15318 break;
15319
cf2c3c16
TT
15320 case DW_MACRO_GNU_transparent_include:
15321 {
15322 LONGEST offset;
15323
15324 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15325 mac_ptr += offset_size;
15326
15327 dwarf_decode_macro_bytes (abfd,
15328 section->buffer + offset,
15329 mac_end, current_file,
15330 lh, comp_dir,
15331 section, section_is_gnu,
15332 offset_size, objfile);
15333 }
15334 break;
15335
2e276125 15336 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
15337 if (!section_is_gnu)
15338 {
15339 unsigned int bytes_read;
15340 int constant;
2e276125 15341
cf2c3c16
TT
15342 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15343 mac_ptr += bytes_read;
15344 read_direct_string (abfd, mac_ptr, &bytes_read);
15345 mac_ptr += bytes_read;
2e276125 15346
cf2c3c16
TT
15347 /* We don't recognize any vendor extensions. */
15348 break;
15349 }
15350 /* FALLTHROUGH */
15351
15352 default:
15353 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15354 mac_ptr, abfd, offset_size,
15355 section);
15356 if (mac_ptr == NULL)
15357 return;
15358 break;
2e276125 15359 }
757a13d0 15360 } while (macinfo_type != 0);
2e276125 15361}
8e19ed76 15362
cf2c3c16
TT
15363static void
15364dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15365 char *comp_dir, bfd *abfd,
15366 struct dwarf2_cu *cu,
15367 struct dwarf2_section_info *section,
15368 int section_is_gnu)
15369{
bb5ed363 15370 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
15371 gdb_byte *mac_ptr, *mac_end;
15372 struct macro_source_file *current_file = 0;
15373 enum dwarf_macro_record_type macinfo_type;
15374 unsigned int offset_size = cu->header.offset_size;
15375 gdb_byte *opcode_definitions[256];
15376
bb5ed363 15377 dwarf2_read_section (objfile, section);
cf2c3c16
TT
15378 if (section->buffer == NULL)
15379 {
15380 complaint (&symfile_complaints, _("missing %s section"),
15381 section->asection->name);
15382 return;
15383 }
15384
15385 /* First pass: Find the name of the base filename.
15386 This filename is needed in order to process all macros whose definition
15387 (or undefinition) comes from the command line. These macros are defined
15388 before the first DW_MACINFO_start_file entry, and yet still need to be
15389 associated to the base file.
15390
15391 To determine the base file name, we scan the macro definitions until we
15392 reach the first DW_MACINFO_start_file entry. We then initialize
15393 CURRENT_FILE accordingly so that any macro definition found before the
15394 first DW_MACINFO_start_file can still be associated to the base file. */
15395
15396 mac_ptr = section->buffer + offset;
15397 mac_end = section->buffer + section->size;
15398
15399 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15400 &offset_size, section_is_gnu);
15401 if (mac_ptr == NULL)
15402 {
15403 /* We already issued a complaint. */
15404 return;
15405 }
15406
15407 do
15408 {
15409 /* Do we at least have room for a macinfo type byte? */
15410 if (mac_ptr >= mac_end)
15411 {
15412 /* Complaint is printed during the second pass as GDB will probably
15413 stop the first pass earlier upon finding
15414 DW_MACINFO_start_file. */
15415 break;
15416 }
15417
15418 macinfo_type = read_1_byte (abfd, mac_ptr);
15419 mac_ptr++;
15420
15421 /* Note that we rely on the fact that the corresponding GNU and
15422 DWARF constants are the same. */
15423 switch (macinfo_type)
15424 {
15425 /* A zero macinfo type indicates the end of the macro
15426 information. */
15427 case 0:
15428 break;
15429
15430 case DW_MACRO_GNU_define:
15431 case DW_MACRO_GNU_undef:
15432 /* Only skip the data by MAC_PTR. */
15433 {
15434 unsigned int bytes_read;
15435
15436 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15437 mac_ptr += bytes_read;
15438 read_direct_string (abfd, mac_ptr, &bytes_read);
15439 mac_ptr += bytes_read;
15440 }
15441 break;
15442
15443 case DW_MACRO_GNU_start_file:
15444 {
15445 unsigned int bytes_read;
15446 int line, file;
15447
15448 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15449 mac_ptr += bytes_read;
15450 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15451 mac_ptr += bytes_read;
15452
15453 current_file = macro_start_file (file, line, current_file,
bb5ed363 15454 comp_dir, lh, objfile);
cf2c3c16
TT
15455 }
15456 break;
15457
15458 case DW_MACRO_GNU_end_file:
15459 /* No data to skip by MAC_PTR. */
15460 break;
15461
15462 case DW_MACRO_GNU_define_indirect:
15463 case DW_MACRO_GNU_undef_indirect:
15464 {
15465 unsigned int bytes_read;
15466
15467 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15468 mac_ptr += bytes_read;
15469 mac_ptr += offset_size;
15470 }
15471 break;
15472
15473 case DW_MACRO_GNU_transparent_include:
15474 /* Note that, according to the spec, a transparent include
15475 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15476 skip this opcode. */
15477 mac_ptr += offset_size;
15478 break;
15479
15480 case DW_MACINFO_vendor_ext:
15481 /* Only skip the data by MAC_PTR. */
15482 if (!section_is_gnu)
15483 {
15484 unsigned int bytes_read;
15485
15486 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15487 mac_ptr += bytes_read;
15488 read_direct_string (abfd, mac_ptr, &bytes_read);
15489 mac_ptr += bytes_read;
15490 }
15491 /* FALLTHROUGH */
15492
15493 default:
15494 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15495 mac_ptr, abfd, offset_size,
15496 section);
15497 if (mac_ptr == NULL)
15498 return;
15499 break;
15500 }
15501 } while (macinfo_type != 0 && current_file == NULL);
15502
15503 /* Second pass: Process all entries.
15504
15505 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15506 command-line macro definitions/undefinitions. This flag is unset when we
15507 reach the first DW_MACINFO_start_file entry. */
15508
15509 dwarf_decode_macro_bytes (abfd, section->buffer + offset, mac_end,
15510 current_file, lh, comp_dir, section, section_is_gnu,
bb5ed363 15511 offset_size, objfile);
cf2c3c16
TT
15512}
15513
8e19ed76 15514/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 15515 if so return true else false. */
8e19ed76
PS
15516static int
15517attr_form_is_block (struct attribute *attr)
15518{
15519 return (attr == NULL ? 0 :
15520 attr->form == DW_FORM_block1
15521 || attr->form == DW_FORM_block2
15522 || attr->form == DW_FORM_block4
2dc7f7b3
TT
15523 || attr->form == DW_FORM_block
15524 || attr->form == DW_FORM_exprloc);
8e19ed76 15525}
4c2df51b 15526
c6a0999f
JB
15527/* Return non-zero if ATTR's value is a section offset --- classes
15528 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15529 You may use DW_UNSND (attr) to retrieve such offsets.
15530
15531 Section 7.5.4, "Attribute Encodings", explains that no attribute
15532 may have a value that belongs to more than one of these classes; it
15533 would be ambiguous if we did, because we use the same forms for all
15534 of them. */
3690dd37
JB
15535static int
15536attr_form_is_section_offset (struct attribute *attr)
15537{
15538 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
15539 || attr->form == DW_FORM_data8
15540 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
15541}
15542
15543
15544/* Return non-zero if ATTR's value falls in the 'constant' class, or
15545 zero otherwise. When this function returns true, you can apply
15546 dwarf2_get_attr_constant_value to it.
15547
15548 However, note that for some attributes you must check
15549 attr_form_is_section_offset before using this test. DW_FORM_data4
15550 and DW_FORM_data8 are members of both the constant class, and of
15551 the classes that contain offsets into other debug sections
15552 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15553 that, if an attribute's can be either a constant or one of the
15554 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15555 taken as section offsets, not constants. */
15556static int
15557attr_form_is_constant (struct attribute *attr)
15558{
15559 switch (attr->form)
15560 {
15561 case DW_FORM_sdata:
15562 case DW_FORM_udata:
15563 case DW_FORM_data1:
15564 case DW_FORM_data2:
15565 case DW_FORM_data4:
15566 case DW_FORM_data8:
15567 return 1;
15568 default:
15569 return 0;
15570 }
15571}
15572
8cf6f0b1
TT
15573/* A helper function that fills in a dwarf2_loclist_baton. */
15574
15575static void
15576fill_in_loclist_baton (struct dwarf2_cu *cu,
15577 struct dwarf2_loclist_baton *baton,
15578 struct attribute *attr)
15579{
15580 dwarf2_read_section (dwarf2_per_objfile->objfile,
15581 &dwarf2_per_objfile->loc);
15582
15583 baton->per_cu = cu->per_cu;
15584 gdb_assert (baton->per_cu);
15585 /* We don't know how long the location list is, but make sure we
15586 don't run off the edge of the section. */
15587 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15588 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15589 baton->base_address = cu->base_address;
15590}
15591
4c2df51b
DJ
15592static void
15593dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 15594 struct dwarf2_cu *cu)
4c2df51b 15595{
bb5ed363
DE
15596 struct objfile *objfile = dwarf2_per_objfile->objfile;
15597
3690dd37 15598 if (attr_form_is_section_offset (attr)
99bcc461
DJ
15599 /* ".debug_loc" may not exist at all, or the offset may be outside
15600 the section. If so, fall through to the complaint in the
15601 other branch. */
bb5ed363 15602 && DW_UNSND (attr) < dwarf2_section_size (objfile,
9e0ac564 15603 &dwarf2_per_objfile->loc))
4c2df51b 15604 {
0d53c4c4 15605 struct dwarf2_loclist_baton *baton;
4c2df51b 15606
bb5ed363 15607 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 15608 sizeof (struct dwarf2_loclist_baton));
4c2df51b 15609
8cf6f0b1 15610 fill_in_loclist_baton (cu, baton, attr);
be391dca 15611
d00adf39 15612 if (cu->base_known == 0)
0d53c4c4 15613 complaint (&symfile_complaints,
3e43a32a
MS
15614 _("Location list used without "
15615 "specifying the CU base address."));
4c2df51b 15616
768a979c 15617 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
15618 SYMBOL_LOCATION_BATON (sym) = baton;
15619 }
15620 else
15621 {
15622 struct dwarf2_locexpr_baton *baton;
15623
bb5ed363 15624 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 15625 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
15626 baton->per_cu = cu->per_cu;
15627 gdb_assert (baton->per_cu);
0d53c4c4
DJ
15628
15629 if (attr_form_is_block (attr))
15630 {
15631 /* Note that we're just copying the block's data pointer
15632 here, not the actual data. We're still pointing into the
6502dd73
DJ
15633 info_buffer for SYM's objfile; right now we never release
15634 that buffer, but when we do clean up properly this may
15635 need to change. */
0d53c4c4
DJ
15636 baton->size = DW_BLOCK (attr)->size;
15637 baton->data = DW_BLOCK (attr)->data;
15638 }
15639 else
15640 {
15641 dwarf2_invalid_attrib_class_complaint ("location description",
15642 SYMBOL_NATURAL_NAME (sym));
15643 baton->size = 0;
0d53c4c4 15644 }
6e70227d 15645
768a979c 15646 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
15647 SYMBOL_LOCATION_BATON (sym) = baton;
15648 }
4c2df51b 15649}
6502dd73 15650
9aa1f1e3
TT
15651/* Return the OBJFILE associated with the compilation unit CU. If CU
15652 came from a separate debuginfo file, then the master objfile is
15653 returned. */
ae0d2f24
UW
15654
15655struct objfile *
15656dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15657{
9291a0cd 15658 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
15659
15660 /* Return the master objfile, so that we can report and look up the
15661 correct file containing this variable. */
15662 if (objfile->separate_debug_objfile_backlink)
15663 objfile = objfile->separate_debug_objfile_backlink;
15664
15665 return objfile;
15666}
15667
96408a79
SA
15668/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15669 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15670 CU_HEADERP first. */
15671
15672static const struct comp_unit_head *
15673per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15674 struct dwarf2_per_cu_data *per_cu)
15675{
15676 struct objfile *objfile;
15677 struct dwarf2_per_objfile *per_objfile;
15678 gdb_byte *info_ptr;
15679
15680 if (per_cu->cu)
15681 return &per_cu->cu->header;
15682
15683 objfile = per_cu->objfile;
15684 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15685 info_ptr = per_objfile->info.buffer + per_cu->offset;
15686
15687 memset (cu_headerp, 0, sizeof (*cu_headerp));
15688 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15689
15690 return cu_headerp;
15691}
15692
ae0d2f24
UW
15693/* Return the address size given in the compilation unit header for CU. */
15694
98714339 15695int
ae0d2f24
UW
15696dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15697{
96408a79
SA
15698 struct comp_unit_head cu_header_local;
15699 const struct comp_unit_head *cu_headerp;
c471e790 15700
96408a79
SA
15701 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15702
15703 return cu_headerp->addr_size;
ae0d2f24
UW
15704}
15705
9eae7c52
TT
15706/* Return the offset size given in the compilation unit header for CU. */
15707
15708int
15709dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15710{
96408a79
SA
15711 struct comp_unit_head cu_header_local;
15712 const struct comp_unit_head *cu_headerp;
9c6c53f7 15713
96408a79
SA
15714 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15715
15716 return cu_headerp->offset_size;
15717}
15718
15719/* See its dwarf2loc.h declaration. */
15720
15721int
15722dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15723{
15724 struct comp_unit_head cu_header_local;
15725 const struct comp_unit_head *cu_headerp;
15726
15727 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15728
15729 if (cu_headerp->version == 2)
15730 return cu_headerp->addr_size;
15731 else
15732 return cu_headerp->offset_size;
181cebd4
JK
15733}
15734
9aa1f1e3
TT
15735/* Return the text offset of the CU. The returned offset comes from
15736 this CU's objfile. If this objfile came from a separate debuginfo
15737 file, then the offset may be different from the corresponding
15738 offset in the parent objfile. */
15739
15740CORE_ADDR
15741dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15742{
bb3fa9d0 15743 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
15744
15745 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15746}
15747
348e048f
DE
15748/* Locate the .debug_info compilation unit from CU's objfile which contains
15749 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
15750
15751static struct dwarf2_per_cu_data *
c764a876 15752dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
15753 struct objfile *objfile)
15754{
15755 struct dwarf2_per_cu_data *this_cu;
15756 int low, high;
15757
ae038cb0
DJ
15758 low = 0;
15759 high = dwarf2_per_objfile->n_comp_units - 1;
15760 while (high > low)
15761 {
15762 int mid = low + (high - low) / 2;
9a619af0 15763
ae038cb0
DJ
15764 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15765 high = mid;
15766 else
15767 low = mid + 1;
15768 }
15769 gdb_assert (low == high);
15770 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15771 {
10b3939b 15772 if (low == 0)
8a3fe4f8
AC
15773 error (_("Dwarf Error: could not find partial DIE containing "
15774 "offset 0x%lx [in module %s]"),
10b3939b
DJ
15775 (long) offset, bfd_get_filename (objfile->obfd));
15776
ae038cb0
DJ
15777 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15778 return dwarf2_per_objfile->all_comp_units[low-1];
15779 }
15780 else
15781 {
15782 this_cu = dwarf2_per_objfile->all_comp_units[low];
15783 if (low == dwarf2_per_objfile->n_comp_units - 1
15784 && offset >= this_cu->offset + this_cu->length)
c764a876 15785 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
15786 gdb_assert (offset < this_cu->offset + this_cu->length);
15787 return this_cu;
15788 }
15789}
15790
23745b47 15791/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 15792
9816fde3 15793static void
23745b47 15794init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 15795{
9816fde3 15796 memset (cu, 0, sizeof (*cu));
23745b47
DE
15797 per_cu->cu = cu;
15798 cu->per_cu = per_cu;
15799 cu->objfile = per_cu->objfile;
93311388 15800 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
15801}
15802
15803/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15804
15805static void
15806prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15807{
15808 struct attribute *attr;
15809
15810 /* Set the language we're debugging. */
15811 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15812 if (attr)
15813 set_cu_language (DW_UNSND (attr), cu);
15814 else
9cded63f
TT
15815 {
15816 cu->language = language_minimal;
15817 cu->language_defn = language_def (cu->language);
15818 }
93311388
DE
15819}
15820
ae038cb0
DJ
15821/* Release one cached compilation unit, CU. We unlink it from the tree
15822 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
15823 the caller is responsible for that.
15824 NOTE: DATA is a void * because this function is also used as a
15825 cleanup routine. */
ae038cb0
DJ
15826
15827static void
68dc6402 15828free_heap_comp_unit (void *data)
ae038cb0
DJ
15829{
15830 struct dwarf2_cu *cu = data;
15831
23745b47
DE
15832 gdb_assert (cu->per_cu != NULL);
15833 cu->per_cu->cu = NULL;
ae038cb0
DJ
15834 cu->per_cu = NULL;
15835
15836 obstack_free (&cu->comp_unit_obstack, NULL);
15837
15838 xfree (cu);
15839}
15840
72bf9492 15841/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
15842 when we're finished with it. We can't free the pointer itself, but be
15843 sure to unlink it from the cache. Also release any associated storage
15844 and perform cache maintenance.
72bf9492
DJ
15845
15846 Only used during partial symbol parsing. */
15847
15848static void
15849free_stack_comp_unit (void *data)
15850{
15851 struct dwarf2_cu *cu = data;
15852
23745b47
DE
15853 gdb_assert (cu->per_cu != NULL);
15854 cu->per_cu->cu = NULL;
15855 cu->per_cu = NULL;
15856
72bf9492
DJ
15857 obstack_free (&cu->comp_unit_obstack, NULL);
15858 cu->partial_dies = NULL;
ae038cb0 15859
23745b47
DE
15860 /* The previous code only did this if per_cu != NULL.
15861 But that would always succeed, so now we just unconditionally do
15862 the aging. This seems like the wrong place to do such aging,
15863 but cleaning that up is left for later. */
15864 age_cached_comp_units ();
ae038cb0
DJ
15865}
15866
15867/* Free all cached compilation units. */
15868
15869static void
15870free_cached_comp_units (void *data)
15871{
15872 struct dwarf2_per_cu_data *per_cu, **last_chain;
15873
15874 per_cu = dwarf2_per_objfile->read_in_chain;
15875 last_chain = &dwarf2_per_objfile->read_in_chain;
15876 while (per_cu != NULL)
15877 {
15878 struct dwarf2_per_cu_data *next_cu;
15879
15880 next_cu = per_cu->cu->read_in_chain;
15881
68dc6402 15882 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
15883 *last_chain = next_cu;
15884
15885 per_cu = next_cu;
15886 }
15887}
15888
15889/* Increase the age counter on each cached compilation unit, and free
15890 any that are too old. */
15891
15892static void
15893age_cached_comp_units (void)
15894{
15895 struct dwarf2_per_cu_data *per_cu, **last_chain;
15896
15897 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15898 per_cu = dwarf2_per_objfile->read_in_chain;
15899 while (per_cu != NULL)
15900 {
15901 per_cu->cu->last_used ++;
15902 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
15903 dwarf2_mark (per_cu->cu);
15904 per_cu = per_cu->cu->read_in_chain;
15905 }
15906
15907 per_cu = dwarf2_per_objfile->read_in_chain;
15908 last_chain = &dwarf2_per_objfile->read_in_chain;
15909 while (per_cu != NULL)
15910 {
15911 struct dwarf2_per_cu_data *next_cu;
15912
15913 next_cu = per_cu->cu->read_in_chain;
15914
15915 if (!per_cu->cu->mark)
15916 {
68dc6402 15917 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
15918 *last_chain = next_cu;
15919 }
15920 else
15921 last_chain = &per_cu->cu->read_in_chain;
15922
15923 per_cu = next_cu;
15924 }
15925}
15926
15927/* Remove a single compilation unit from the cache. */
15928
15929static void
15930free_one_cached_comp_unit (void *target_cu)
15931{
15932 struct dwarf2_per_cu_data *per_cu, **last_chain;
15933
15934 per_cu = dwarf2_per_objfile->read_in_chain;
15935 last_chain = &dwarf2_per_objfile->read_in_chain;
15936 while (per_cu != NULL)
15937 {
15938 struct dwarf2_per_cu_data *next_cu;
15939
15940 next_cu = per_cu->cu->read_in_chain;
15941
15942 if (per_cu->cu == target_cu)
15943 {
68dc6402 15944 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
15945 *last_chain = next_cu;
15946 break;
15947 }
15948 else
15949 last_chain = &per_cu->cu->read_in_chain;
15950
15951 per_cu = next_cu;
15952 }
15953}
15954
fe3e1990
DJ
15955/* Release all extra memory associated with OBJFILE. */
15956
15957void
15958dwarf2_free_objfile (struct objfile *objfile)
15959{
15960 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15961
15962 if (dwarf2_per_objfile == NULL)
15963 return;
15964
15965 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
15966 free_cached_comp_units (NULL);
15967
7b9f3c50
DE
15968 if (dwarf2_per_objfile->quick_file_names_table)
15969 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 15970
fe3e1990
DJ
15971 /* Everything else should be on the objfile obstack. */
15972}
15973
1c379e20
DJ
15974/* A pair of DIE offset and GDB type pointer. We store these
15975 in a hash table separate from the DIEs, and preserve them
15976 when the DIEs are flushed out of cache. */
15977
15978struct dwarf2_offset_and_type
15979{
15980 unsigned int offset;
15981 struct type *type;
15982};
15983
15984/* Hash function for a dwarf2_offset_and_type. */
15985
15986static hashval_t
15987offset_and_type_hash (const void *item)
15988{
15989 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 15990
1c379e20
DJ
15991 return ofs->offset;
15992}
15993
15994/* Equality function for a dwarf2_offset_and_type. */
15995
15996static int
15997offset_and_type_eq (const void *item_lhs, const void *item_rhs)
15998{
15999 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16000 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 16001
1c379e20
DJ
16002 return ofs_lhs->offset == ofs_rhs->offset;
16003}
16004
16005/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
16006 table if necessary. For convenience, return TYPE.
16007
16008 The DIEs reading must have careful ordering to:
16009 * Not cause infite loops trying to read in DIEs as a prerequisite for
16010 reading current DIE.
16011 * Not trying to dereference contents of still incompletely read in types
16012 while reading in other DIEs.
16013 * Enable referencing still incompletely read in types just by a pointer to
16014 the type without accessing its fields.
16015
16016 Therefore caller should follow these rules:
16017 * Try to fetch any prerequisite types we may need to build this DIE type
16018 before building the type and calling set_die_type.
e71ec853 16019 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
16020 possible before fetching more types to complete the current type.
16021 * Make the type as complete as possible before fetching more types. */
1c379e20 16022
f792889a 16023static struct type *
1c379e20
DJ
16024set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16025{
16026 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
16027 struct objfile *objfile = cu->objfile;
16028 htab_t *type_hash_ptr;
1c379e20 16029
b4ba55a1
JB
16030 /* For Ada types, make sure that the gnat-specific data is always
16031 initialized (if not already set). There are a few types where
16032 we should not be doing so, because the type-specific area is
16033 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16034 where the type-specific area is used to store the floatformat).
16035 But this is not a problem, because the gnat-specific information
16036 is actually not needed for these types. */
16037 if (need_gnat_info (cu)
16038 && TYPE_CODE (type) != TYPE_CODE_FUNC
16039 && TYPE_CODE (type) != TYPE_CODE_FLT
16040 && !HAVE_GNAT_AUX_INFO (type))
16041 INIT_GNAT_SPECIFIC (type);
16042
b0df02fd 16043 if (cu->per_cu->debug_types_section)
673bfd45
DE
16044 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16045 else
16046 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16047
16048 if (*type_hash_ptr == NULL)
f792889a 16049 {
673bfd45
DE
16050 *type_hash_ptr
16051 = htab_create_alloc_ex (127,
f792889a
DJ
16052 offset_and_type_hash,
16053 offset_and_type_eq,
16054 NULL,
673bfd45 16055 &objfile->objfile_obstack,
f792889a
DJ
16056 hashtab_obstack_allocate,
16057 dummy_obstack_deallocate);
f792889a 16058 }
1c379e20
DJ
16059
16060 ofs.offset = die->offset;
16061 ofs.type = type;
16062 slot = (struct dwarf2_offset_and_type **)
673bfd45 16063 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
16064 if (*slot)
16065 complaint (&symfile_complaints,
16066 _("A problem internal to GDB: DIE 0x%x has type already set"),
16067 die->offset);
673bfd45 16068 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 16069 **slot = ofs;
f792889a 16070 return type;
1c379e20
DJ
16071}
16072
673bfd45
DE
16073/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16074 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
16075
16076static struct type *
673bfd45
DE
16077get_die_type_at_offset (unsigned int offset,
16078 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
16079{
16080 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 16081 htab_t type_hash;
f792889a 16082
b0df02fd 16083 if (per_cu->debug_types_section)
673bfd45
DE
16084 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16085 else
16086 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
16087 if (type_hash == NULL)
16088 return NULL;
1c379e20 16089
673bfd45 16090 ofs.offset = offset;
1c379e20
DJ
16091 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16092 if (slot)
16093 return slot->type;
16094 else
16095 return NULL;
16096}
16097
673bfd45
DE
16098/* Look up the type for DIE in the appropriate type_hash table,
16099 or return NULL if DIE does not have a saved type. */
16100
16101static struct type *
16102get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16103{
16104 return get_die_type_at_offset (die->offset, cu->per_cu);
16105}
16106
10b3939b
DJ
16107/* Add a dependence relationship from CU to REF_PER_CU. */
16108
16109static void
16110dwarf2_add_dependence (struct dwarf2_cu *cu,
16111 struct dwarf2_per_cu_data *ref_per_cu)
16112{
16113 void **slot;
16114
16115 if (cu->dependencies == NULL)
16116 cu->dependencies
16117 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16118 NULL, &cu->comp_unit_obstack,
16119 hashtab_obstack_allocate,
16120 dummy_obstack_deallocate);
16121
16122 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16123 if (*slot == NULL)
16124 *slot = ref_per_cu;
16125}
1c379e20 16126
f504f079
DE
16127/* Subroutine of dwarf2_mark to pass to htab_traverse.
16128 Set the mark field in every compilation unit in the
ae038cb0
DJ
16129 cache that we must keep because we are keeping CU. */
16130
10b3939b
DJ
16131static int
16132dwarf2_mark_helper (void **slot, void *data)
16133{
16134 struct dwarf2_per_cu_data *per_cu;
16135
16136 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
16137
16138 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16139 reading of the chain. As such dependencies remain valid it is not much
16140 useful to track and undo them during QUIT cleanups. */
16141 if (per_cu->cu == NULL)
16142 return 1;
16143
10b3939b
DJ
16144 if (per_cu->cu->mark)
16145 return 1;
16146 per_cu->cu->mark = 1;
16147
16148 if (per_cu->cu->dependencies != NULL)
16149 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16150
16151 return 1;
16152}
16153
f504f079
DE
16154/* Set the mark field in CU and in every other compilation unit in the
16155 cache that we must keep because we are keeping CU. */
16156
ae038cb0
DJ
16157static void
16158dwarf2_mark (struct dwarf2_cu *cu)
16159{
16160 if (cu->mark)
16161 return;
16162 cu->mark = 1;
10b3939b
DJ
16163 if (cu->dependencies != NULL)
16164 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
16165}
16166
16167static void
16168dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16169{
16170 while (per_cu)
16171 {
16172 per_cu->cu->mark = 0;
16173 per_cu = per_cu->cu->read_in_chain;
16174 }
72bf9492
DJ
16175}
16176
72bf9492
DJ
16177/* Trivial hash function for partial_die_info: the hash value of a DIE
16178 is its offset in .debug_info for this objfile. */
16179
16180static hashval_t
16181partial_die_hash (const void *item)
16182{
16183 const struct partial_die_info *part_die = item;
9a619af0 16184
72bf9492
DJ
16185 return part_die->offset;
16186}
16187
16188/* Trivial comparison function for partial_die_info structures: two DIEs
16189 are equal if they have the same offset. */
16190
16191static int
16192partial_die_eq (const void *item_lhs, const void *item_rhs)
16193{
16194 const struct partial_die_info *part_die_lhs = item_lhs;
16195 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 16196
72bf9492
DJ
16197 return part_die_lhs->offset == part_die_rhs->offset;
16198}
16199
ae038cb0
DJ
16200static struct cmd_list_element *set_dwarf2_cmdlist;
16201static struct cmd_list_element *show_dwarf2_cmdlist;
16202
16203static void
16204set_dwarf2_cmd (char *args, int from_tty)
16205{
16206 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16207}
16208
16209static void
16210show_dwarf2_cmd (char *args, int from_tty)
6e70227d 16211{
ae038cb0
DJ
16212 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16213}
16214
dce234bc
PP
16215/* If section described by INFO was mmapped, munmap it now. */
16216
16217static void
16218munmap_section_buffer (struct dwarf2_section_info *info)
16219{
b315ab21 16220 if (info->map_addr != NULL)
dce234bc
PP
16221 {
16222#ifdef HAVE_MMAP
b315ab21 16223 int res;
9a619af0 16224
b315ab21
TG
16225 res = munmap (info->map_addr, info->map_len);
16226 gdb_assert (res == 0);
dce234bc
PP
16227#else
16228 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 16229 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
16230#endif
16231 }
16232}
16233
16234/* munmap debug sections for OBJFILE, if necessary. */
16235
16236static void
c1bd65d0 16237dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
16238{
16239 struct dwarf2_per_objfile *data = d;
8b70b953
TT
16240 int ix;
16241 struct dwarf2_section_info *section;
9a619af0 16242
16be1145
DE
16243 /* This is sorted according to the order they're defined in to make it easier
16244 to keep in sync. */
dce234bc
PP
16245 munmap_section_buffer (&data->info);
16246 munmap_section_buffer (&data->abbrev);
16247 munmap_section_buffer (&data->line);
16be1145 16248 munmap_section_buffer (&data->loc);
dce234bc 16249 munmap_section_buffer (&data->macinfo);
cf2c3c16 16250 munmap_section_buffer (&data->macro);
16be1145 16251 munmap_section_buffer (&data->str);
dce234bc 16252 munmap_section_buffer (&data->ranges);
dce234bc
PP
16253 munmap_section_buffer (&data->frame);
16254 munmap_section_buffer (&data->eh_frame);
9291a0cd 16255 munmap_section_buffer (&data->gdb_index);
8b70b953
TT
16256
16257 for (ix = 0;
16258 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16259 ++ix)
16260 munmap_section_buffer (section);
16261
16262 VEC_free (dwarf2_section_info_def, data->types);
9291a0cd
TT
16263}
16264
16265\f
ae2de4f8 16266/* The "save gdb-index" command. */
9291a0cd
TT
16267
16268/* The contents of the hash table we create when building the string
16269 table. */
16270struct strtab_entry
16271{
16272 offset_type offset;
16273 const char *str;
16274};
16275
559a7a62
JK
16276/* Hash function for a strtab_entry.
16277
16278 Function is used only during write_hash_table so no index format backward
16279 compatibility is needed. */
b89be57b 16280
9291a0cd
TT
16281static hashval_t
16282hash_strtab_entry (const void *e)
16283{
16284 const struct strtab_entry *entry = e;
559a7a62 16285 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
16286}
16287
16288/* Equality function for a strtab_entry. */
b89be57b 16289
9291a0cd
TT
16290static int
16291eq_strtab_entry (const void *a, const void *b)
16292{
16293 const struct strtab_entry *ea = a;
16294 const struct strtab_entry *eb = b;
16295 return !strcmp (ea->str, eb->str);
16296}
16297
16298/* Create a strtab_entry hash table. */
b89be57b 16299
9291a0cd
TT
16300static htab_t
16301create_strtab (void)
16302{
16303 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16304 xfree, xcalloc, xfree);
16305}
16306
16307/* Add a string to the constant pool. Return the string's offset in
16308 host order. */
b89be57b 16309
9291a0cd
TT
16310static offset_type
16311add_string (htab_t table, struct obstack *cpool, const char *str)
16312{
16313 void **slot;
16314 struct strtab_entry entry;
16315 struct strtab_entry *result;
16316
16317 entry.str = str;
16318 slot = htab_find_slot (table, &entry, INSERT);
16319 if (*slot)
16320 result = *slot;
16321 else
16322 {
16323 result = XNEW (struct strtab_entry);
16324 result->offset = obstack_object_size (cpool);
16325 result->str = str;
16326 obstack_grow_str0 (cpool, str);
16327 *slot = result;
16328 }
16329 return result->offset;
16330}
16331
16332/* An entry in the symbol table. */
16333struct symtab_index_entry
16334{
16335 /* The name of the symbol. */
16336 const char *name;
16337 /* The offset of the name in the constant pool. */
16338 offset_type index_offset;
16339 /* A sorted vector of the indices of all the CUs that hold an object
16340 of this name. */
16341 VEC (offset_type) *cu_indices;
16342};
16343
16344/* The symbol table. This is a power-of-2-sized hash table. */
16345struct mapped_symtab
16346{
16347 offset_type n_elements;
16348 offset_type size;
16349 struct symtab_index_entry **data;
16350};
16351
16352/* Hash function for a symtab_index_entry. */
b89be57b 16353
9291a0cd
TT
16354static hashval_t
16355hash_symtab_entry (const void *e)
16356{
16357 const struct symtab_index_entry *entry = e;
16358 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16359 sizeof (offset_type) * VEC_length (offset_type,
16360 entry->cu_indices),
16361 0);
16362}
16363
16364/* Equality function for a symtab_index_entry. */
b89be57b 16365
9291a0cd
TT
16366static int
16367eq_symtab_entry (const void *a, const void *b)
16368{
16369 const struct symtab_index_entry *ea = a;
16370 const struct symtab_index_entry *eb = b;
16371 int len = VEC_length (offset_type, ea->cu_indices);
16372 if (len != VEC_length (offset_type, eb->cu_indices))
16373 return 0;
16374 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16375 VEC_address (offset_type, eb->cu_indices),
16376 sizeof (offset_type) * len);
16377}
16378
16379/* Destroy a symtab_index_entry. */
b89be57b 16380
9291a0cd
TT
16381static void
16382delete_symtab_entry (void *p)
16383{
16384 struct symtab_index_entry *entry = p;
16385 VEC_free (offset_type, entry->cu_indices);
16386 xfree (entry);
16387}
16388
16389/* Create a hash table holding symtab_index_entry objects. */
b89be57b 16390
9291a0cd 16391static htab_t
3876f04e 16392create_symbol_hash_table (void)
9291a0cd
TT
16393{
16394 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16395 delete_symtab_entry, xcalloc, xfree);
16396}
16397
16398/* Create a new mapped symtab object. */
b89be57b 16399
9291a0cd
TT
16400static struct mapped_symtab *
16401create_mapped_symtab (void)
16402{
16403 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16404 symtab->n_elements = 0;
16405 symtab->size = 1024;
16406 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16407 return symtab;
16408}
16409
16410/* Destroy a mapped_symtab. */
b89be57b 16411
9291a0cd
TT
16412static void
16413cleanup_mapped_symtab (void *p)
16414{
16415 struct mapped_symtab *symtab = p;
16416 /* The contents of the array are freed when the other hash table is
16417 destroyed. */
16418 xfree (symtab->data);
16419 xfree (symtab);
16420}
16421
16422/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
16423 the slot.
16424
16425 Function is used only during write_hash_table so no index format backward
16426 compatibility is needed. */
b89be57b 16427
9291a0cd
TT
16428static struct symtab_index_entry **
16429find_slot (struct mapped_symtab *symtab, const char *name)
16430{
559a7a62 16431 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
16432
16433 index = hash & (symtab->size - 1);
16434 step = ((hash * 17) & (symtab->size - 1)) | 1;
16435
16436 for (;;)
16437 {
16438 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16439 return &symtab->data[index];
16440 index = (index + step) & (symtab->size - 1);
16441 }
16442}
16443
16444/* Expand SYMTAB's hash table. */
b89be57b 16445
9291a0cd
TT
16446static void
16447hash_expand (struct mapped_symtab *symtab)
16448{
16449 offset_type old_size = symtab->size;
16450 offset_type i;
16451 struct symtab_index_entry **old_entries = symtab->data;
16452
16453 symtab->size *= 2;
16454 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16455
16456 for (i = 0; i < old_size; ++i)
16457 {
16458 if (old_entries[i])
16459 {
16460 struct symtab_index_entry **slot = find_slot (symtab,
16461 old_entries[i]->name);
16462 *slot = old_entries[i];
16463 }
16464 }
16465
16466 xfree (old_entries);
16467}
16468
16469/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16470 is the index of the CU in which the symbol appears. */
b89be57b 16471
9291a0cd
TT
16472static void
16473add_index_entry (struct mapped_symtab *symtab, const char *name,
16474 offset_type cu_index)
16475{
16476 struct symtab_index_entry **slot;
16477
16478 ++symtab->n_elements;
16479 if (4 * symtab->n_elements / 3 >= symtab->size)
16480 hash_expand (symtab);
16481
16482 slot = find_slot (symtab, name);
16483 if (!*slot)
16484 {
16485 *slot = XNEW (struct symtab_index_entry);
16486 (*slot)->name = name;
16487 (*slot)->cu_indices = NULL;
16488 }
16489 /* Don't push an index twice. Due to how we add entries we only
16490 have to check the last one. */
16491 if (VEC_empty (offset_type, (*slot)->cu_indices)
cf31e6f9 16492 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
9291a0cd
TT
16493 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16494}
16495
16496/* Add a vector of indices to the constant pool. */
b89be57b 16497
9291a0cd 16498static offset_type
3876f04e 16499add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
16500 struct symtab_index_entry *entry)
16501{
16502 void **slot;
16503
3876f04e 16504 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
16505 if (!*slot)
16506 {
16507 offset_type len = VEC_length (offset_type, entry->cu_indices);
16508 offset_type val = MAYBE_SWAP (len);
16509 offset_type iter;
16510 int i;
16511
16512 *slot = entry;
16513 entry->index_offset = obstack_object_size (cpool);
16514
16515 obstack_grow (cpool, &val, sizeof (val));
16516 for (i = 0;
16517 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16518 ++i)
16519 {
16520 val = MAYBE_SWAP (iter);
16521 obstack_grow (cpool, &val, sizeof (val));
16522 }
16523 }
16524 else
16525 {
16526 struct symtab_index_entry *old_entry = *slot;
16527 entry->index_offset = old_entry->index_offset;
16528 entry = old_entry;
16529 }
16530 return entry->index_offset;
16531}
16532
16533/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16534 constant pool entries going into the obstack CPOOL. */
b89be57b 16535
9291a0cd
TT
16536static void
16537write_hash_table (struct mapped_symtab *symtab,
16538 struct obstack *output, struct obstack *cpool)
16539{
16540 offset_type i;
3876f04e 16541 htab_t symbol_hash_table;
9291a0cd
TT
16542 htab_t str_table;
16543
3876f04e 16544 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 16545 str_table = create_strtab ();
3876f04e 16546
9291a0cd
TT
16547 /* We add all the index vectors to the constant pool first, to
16548 ensure alignment is ok. */
16549 for (i = 0; i < symtab->size; ++i)
16550 {
16551 if (symtab->data[i])
3876f04e 16552 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
16553 }
16554
16555 /* Now write out the hash table. */
16556 for (i = 0; i < symtab->size; ++i)
16557 {
16558 offset_type str_off, vec_off;
16559
16560 if (symtab->data[i])
16561 {
16562 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16563 vec_off = symtab->data[i]->index_offset;
16564 }
16565 else
16566 {
16567 /* While 0 is a valid constant pool index, it is not valid
16568 to have 0 for both offsets. */
16569 str_off = 0;
16570 vec_off = 0;
16571 }
16572
16573 str_off = MAYBE_SWAP (str_off);
16574 vec_off = MAYBE_SWAP (vec_off);
16575
16576 obstack_grow (output, &str_off, sizeof (str_off));
16577 obstack_grow (output, &vec_off, sizeof (vec_off));
16578 }
16579
16580 htab_delete (str_table);
3876f04e 16581 htab_delete (symbol_hash_table);
9291a0cd
TT
16582}
16583
0a5429f6
DE
16584/* Struct to map psymtab to CU index in the index file. */
16585struct psymtab_cu_index_map
16586{
16587 struct partial_symtab *psymtab;
16588 unsigned int cu_index;
16589};
16590
16591static hashval_t
16592hash_psymtab_cu_index (const void *item)
16593{
16594 const struct psymtab_cu_index_map *map = item;
16595
16596 return htab_hash_pointer (map->psymtab);
16597}
16598
16599static int
16600eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16601{
16602 const struct psymtab_cu_index_map *lhs = item_lhs;
16603 const struct psymtab_cu_index_map *rhs = item_rhs;
16604
16605 return lhs->psymtab == rhs->psymtab;
16606}
16607
16608/* Helper struct for building the address table. */
16609struct addrmap_index_data
16610{
16611 struct objfile *objfile;
16612 struct obstack *addr_obstack;
16613 htab_t cu_index_htab;
16614
16615 /* Non-zero if the previous_* fields are valid.
16616 We can't write an entry until we see the next entry (since it is only then
16617 that we know the end of the entry). */
16618 int previous_valid;
16619 /* Index of the CU in the table of all CUs in the index file. */
16620 unsigned int previous_cu_index;
0963b4bd 16621 /* Start address of the CU. */
0a5429f6
DE
16622 CORE_ADDR previous_cu_start;
16623};
16624
16625/* Write an address entry to OBSTACK. */
b89be57b 16626
9291a0cd 16627static void
0a5429f6
DE
16628add_address_entry (struct objfile *objfile, struct obstack *obstack,
16629 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 16630{
0a5429f6 16631 offset_type cu_index_to_write;
9291a0cd
TT
16632 char addr[8];
16633 CORE_ADDR baseaddr;
16634
16635 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16636
0a5429f6
DE
16637 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16638 obstack_grow (obstack, addr, 8);
16639 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16640 obstack_grow (obstack, addr, 8);
16641 cu_index_to_write = MAYBE_SWAP (cu_index);
16642 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16643}
16644
16645/* Worker function for traversing an addrmap to build the address table. */
16646
16647static int
16648add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16649{
16650 struct addrmap_index_data *data = datap;
16651 struct partial_symtab *pst = obj;
16652 offset_type cu_index;
16653 void **slot;
16654
16655 if (data->previous_valid)
16656 add_address_entry (data->objfile, data->addr_obstack,
16657 data->previous_cu_start, start_addr,
16658 data->previous_cu_index);
16659
16660 data->previous_cu_start = start_addr;
16661 if (pst != NULL)
16662 {
16663 struct psymtab_cu_index_map find_map, *map;
16664 find_map.psymtab = pst;
16665 map = htab_find (data->cu_index_htab, &find_map);
16666 gdb_assert (map != NULL);
16667 data->previous_cu_index = map->cu_index;
16668 data->previous_valid = 1;
16669 }
16670 else
16671 data->previous_valid = 0;
16672
16673 return 0;
16674}
16675
16676/* Write OBJFILE's address map to OBSTACK.
16677 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16678 in the index file. */
16679
16680static void
16681write_address_map (struct objfile *objfile, struct obstack *obstack,
16682 htab_t cu_index_htab)
16683{
16684 struct addrmap_index_data addrmap_index_data;
16685
16686 /* When writing the address table, we have to cope with the fact that
16687 the addrmap iterator only provides the start of a region; we have to
16688 wait until the next invocation to get the start of the next region. */
16689
16690 addrmap_index_data.objfile = objfile;
16691 addrmap_index_data.addr_obstack = obstack;
16692 addrmap_index_data.cu_index_htab = cu_index_htab;
16693 addrmap_index_data.previous_valid = 0;
16694
16695 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16696 &addrmap_index_data);
16697
16698 /* It's highly unlikely the last entry (end address = 0xff...ff)
16699 is valid, but we should still handle it.
16700 The end address is recorded as the start of the next region, but that
16701 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16702 anyway. */
16703 if (addrmap_index_data.previous_valid)
16704 add_address_entry (objfile, obstack,
16705 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16706 addrmap_index_data.previous_cu_index);
9291a0cd
TT
16707}
16708
16709/* Add a list of partial symbols to SYMTAB. */
b89be57b 16710
9291a0cd
TT
16711static void
16712write_psymbols (struct mapped_symtab *symtab,
987d643c 16713 htab_t psyms_seen,
9291a0cd
TT
16714 struct partial_symbol **psymp,
16715 int count,
987d643c
TT
16716 offset_type cu_index,
16717 int is_static)
9291a0cd
TT
16718{
16719 for (; count-- > 0; ++psymp)
16720 {
987d643c
TT
16721 void **slot, *lookup;
16722
9291a0cd
TT
16723 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16724 error (_("Ada is not currently supported by the index"));
987d643c
TT
16725
16726 /* We only want to add a given psymbol once. However, we also
16727 want to account for whether it is global or static. So, we
16728 may add it twice, using slightly different values. */
16729 if (is_static)
16730 {
16731 uintptr_t val = 1 | (uintptr_t) *psymp;
16732
16733 lookup = (void *) val;
16734 }
16735 else
16736 lookup = *psymp;
16737
16738 /* Only add a given psymbol once. */
16739 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16740 if (!*slot)
16741 {
16742 *slot = lookup;
bb2f58dc 16743 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
987d643c 16744 }
9291a0cd
TT
16745 }
16746}
16747
16748/* Write the contents of an ("unfinished") obstack to FILE. Throw an
16749 exception if there is an error. */
b89be57b 16750
9291a0cd
TT
16751static void
16752write_obstack (FILE *file, struct obstack *obstack)
16753{
16754 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16755 file)
16756 != obstack_object_size (obstack))
16757 error (_("couldn't data write to file"));
16758}
16759
16760/* Unlink a file if the argument is not NULL. */
b89be57b 16761
9291a0cd
TT
16762static void
16763unlink_if_set (void *p)
16764{
16765 char **filename = p;
16766 if (*filename)
16767 unlink (*filename);
16768}
16769
1fd400ff
TT
16770/* A helper struct used when iterating over debug_types. */
16771struct signatured_type_index_data
16772{
16773 struct objfile *objfile;
16774 struct mapped_symtab *symtab;
16775 struct obstack *types_list;
987d643c 16776 htab_t psyms_seen;
1fd400ff
TT
16777 int cu_index;
16778};
16779
16780/* A helper function that writes a single signatured_type to an
16781 obstack. */
b89be57b 16782
1fd400ff
TT
16783static int
16784write_one_signatured_type (void **slot, void *d)
16785{
16786 struct signatured_type_index_data *info = d;
16787 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
16788 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16789 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
16790 gdb_byte val[8];
16791
16792 write_psymbols (info->symtab,
987d643c 16793 info->psyms_seen,
3e43a32a
MS
16794 info->objfile->global_psymbols.list
16795 + psymtab->globals_offset,
987d643c
TT
16796 psymtab->n_global_syms, info->cu_index,
16797 0);
1fd400ff 16798 write_psymbols (info->symtab,
987d643c 16799 info->psyms_seen,
3e43a32a
MS
16800 info->objfile->static_psymbols.list
16801 + psymtab->statics_offset,
987d643c
TT
16802 psymtab->n_static_syms, info->cu_index,
16803 1);
1fd400ff 16804
b3c8eb43 16805 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
1fd400ff
TT
16806 obstack_grow (info->types_list, val, 8);
16807 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16808 obstack_grow (info->types_list, val, 8);
16809 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16810 obstack_grow (info->types_list, val, 8);
16811
16812 ++info->cu_index;
16813
16814 return 1;
16815}
16816
9291a0cd 16817/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 16818
9291a0cd
TT
16819static void
16820write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16821{
16822 struct cleanup *cleanup;
16823 char *filename, *cleanup_filename;
1fd400ff
TT
16824 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16825 struct obstack cu_list, types_cu_list;
9291a0cd
TT
16826 int i;
16827 FILE *out_file;
16828 struct mapped_symtab *symtab;
16829 offset_type val, size_of_contents, total_len;
16830 struct stat st;
16831 char buf[8];
987d643c 16832 htab_t psyms_seen;
0a5429f6
DE
16833 htab_t cu_index_htab;
16834 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 16835
b4f2f049 16836 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 16837 return;
b4f2f049 16838
9291a0cd
TT
16839 if (dwarf2_per_objfile->using_index)
16840 error (_("Cannot use an index to create the index"));
16841
8b70b953
TT
16842 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16843 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16844
9291a0cd 16845 if (stat (objfile->name, &st) < 0)
7e17e088 16846 perror_with_name (objfile->name);
9291a0cd
TT
16847
16848 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16849 INDEX_SUFFIX, (char *) NULL);
16850 cleanup = make_cleanup (xfree, filename);
16851
16852 out_file = fopen (filename, "wb");
16853 if (!out_file)
16854 error (_("Can't open `%s' for writing"), filename);
16855
16856 cleanup_filename = filename;
16857 make_cleanup (unlink_if_set, &cleanup_filename);
16858
16859 symtab = create_mapped_symtab ();
16860 make_cleanup (cleanup_mapped_symtab, symtab);
16861
16862 obstack_init (&addr_obstack);
16863 make_cleanup_obstack_free (&addr_obstack);
16864
16865 obstack_init (&cu_list);
16866 make_cleanup_obstack_free (&cu_list);
16867
1fd400ff
TT
16868 obstack_init (&types_cu_list);
16869 make_cleanup_obstack_free (&types_cu_list);
16870
987d643c
TT
16871 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16872 NULL, xcalloc, xfree);
96408a79 16873 make_cleanup_htab_delete (psyms_seen);
987d643c 16874
0a5429f6
DE
16875 /* While we're scanning CU's create a table that maps a psymtab pointer
16876 (which is what addrmap records) to its index (which is what is recorded
16877 in the index file). This will later be needed to write the address
16878 table. */
16879 cu_index_htab = htab_create_alloc (100,
16880 hash_psymtab_cu_index,
16881 eq_psymtab_cu_index,
16882 NULL, xcalloc, xfree);
96408a79 16883 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
16884 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16885 xmalloc (sizeof (struct psymtab_cu_index_map)
16886 * dwarf2_per_objfile->n_comp_units);
16887 make_cleanup (xfree, psymtab_cu_index_map);
16888
16889 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
16890 work here. Also, the debug_types entries do not appear in
16891 all_comp_units, but only in their own hash table. */
9291a0cd
TT
16892 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16893 {
3e43a32a
MS
16894 struct dwarf2_per_cu_data *per_cu
16895 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 16896 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 16897 gdb_byte val[8];
0a5429f6
DE
16898 struct psymtab_cu_index_map *map;
16899 void **slot;
9291a0cd
TT
16900
16901 write_psymbols (symtab,
987d643c 16902 psyms_seen,
9291a0cd 16903 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
16904 psymtab->n_global_syms, i,
16905 0);
9291a0cd 16906 write_psymbols (symtab,
987d643c 16907 psyms_seen,
9291a0cd 16908 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
16909 psymtab->n_static_syms, i,
16910 1);
9291a0cd 16911
0a5429f6
DE
16912 map = &psymtab_cu_index_map[i];
16913 map->psymtab = psymtab;
16914 map->cu_index = i;
16915 slot = htab_find_slot (cu_index_htab, map, INSERT);
16916 gdb_assert (slot != NULL);
16917 gdb_assert (*slot == NULL);
16918 *slot = map;
9291a0cd 16919
e254ef6a 16920 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 16921 obstack_grow (&cu_list, val, 8);
e254ef6a 16922 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
16923 obstack_grow (&cu_list, val, 8);
16924 }
16925
0a5429f6
DE
16926 /* Dump the address map. */
16927 write_address_map (objfile, &addr_obstack, cu_index_htab);
16928
1fd400ff
TT
16929 /* Write out the .debug_type entries, if any. */
16930 if (dwarf2_per_objfile->signatured_types)
16931 {
16932 struct signatured_type_index_data sig_data;
16933
16934 sig_data.objfile = objfile;
16935 sig_data.symtab = symtab;
16936 sig_data.types_list = &types_cu_list;
987d643c 16937 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
16938 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
16939 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
16940 write_one_signatured_type, &sig_data);
16941 }
16942
9291a0cd
TT
16943 obstack_init (&constant_pool);
16944 make_cleanup_obstack_free (&constant_pool);
16945 obstack_init (&symtab_obstack);
16946 make_cleanup_obstack_free (&symtab_obstack);
16947 write_hash_table (symtab, &symtab_obstack, &constant_pool);
16948
16949 obstack_init (&contents);
16950 make_cleanup_obstack_free (&contents);
1fd400ff 16951 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
16952 total_len = size_of_contents;
16953
16954 /* The version number. */
559a7a62 16955 val = MAYBE_SWAP (5);
9291a0cd
TT
16956 obstack_grow (&contents, &val, sizeof (val));
16957
16958 /* The offset of the CU list from the start of the file. */
16959 val = MAYBE_SWAP (total_len);
16960 obstack_grow (&contents, &val, sizeof (val));
16961 total_len += obstack_object_size (&cu_list);
16962
1fd400ff
TT
16963 /* The offset of the types CU list from the start of the file. */
16964 val = MAYBE_SWAP (total_len);
16965 obstack_grow (&contents, &val, sizeof (val));
16966 total_len += obstack_object_size (&types_cu_list);
16967
9291a0cd
TT
16968 /* The offset of the address table from the start of the file. */
16969 val = MAYBE_SWAP (total_len);
16970 obstack_grow (&contents, &val, sizeof (val));
16971 total_len += obstack_object_size (&addr_obstack);
16972
16973 /* The offset of the symbol table from the start of the file. */
16974 val = MAYBE_SWAP (total_len);
16975 obstack_grow (&contents, &val, sizeof (val));
16976 total_len += obstack_object_size (&symtab_obstack);
16977
16978 /* The offset of the constant pool from the start of the file. */
16979 val = MAYBE_SWAP (total_len);
16980 obstack_grow (&contents, &val, sizeof (val));
16981 total_len += obstack_object_size (&constant_pool);
16982
16983 gdb_assert (obstack_object_size (&contents) == size_of_contents);
16984
16985 write_obstack (out_file, &contents);
16986 write_obstack (out_file, &cu_list);
1fd400ff 16987 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
16988 write_obstack (out_file, &addr_obstack);
16989 write_obstack (out_file, &symtab_obstack);
16990 write_obstack (out_file, &constant_pool);
16991
16992 fclose (out_file);
16993
16994 /* We want to keep the file, so we set cleanup_filename to NULL
16995 here. See unlink_if_set. */
16996 cleanup_filename = NULL;
16997
16998 do_cleanups (cleanup);
16999}
17000
90476074
TT
17001/* Implementation of the `save gdb-index' command.
17002
17003 Note that the file format used by this command is documented in the
17004 GDB manual. Any changes here must be documented there. */
11570e71 17005
9291a0cd
TT
17006static void
17007save_gdb_index_command (char *arg, int from_tty)
17008{
17009 struct objfile *objfile;
17010
17011 if (!arg || !*arg)
96d19272 17012 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
17013
17014 ALL_OBJFILES (objfile)
17015 {
17016 struct stat st;
17017
17018 /* If the objfile does not correspond to an actual file, skip it. */
17019 if (stat (objfile->name, &st) < 0)
17020 continue;
17021
17022 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17023 if (dwarf2_per_objfile)
17024 {
17025 volatile struct gdb_exception except;
17026
17027 TRY_CATCH (except, RETURN_MASK_ERROR)
17028 {
17029 write_psymtabs_to_index (objfile, arg);
17030 }
17031 if (except.reason < 0)
17032 exception_fprintf (gdb_stderr, except,
17033 _("Error while writing index for `%s': "),
17034 objfile->name);
17035 }
17036 }
dce234bc
PP
17037}
17038
9291a0cd
TT
17039\f
17040
9eae7c52
TT
17041int dwarf2_always_disassemble;
17042
17043static void
17044show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17045 struct cmd_list_element *c, const char *value)
17046{
3e43a32a
MS
17047 fprintf_filtered (file,
17048 _("Whether to always disassemble "
17049 "DWARF expressions is %s.\n"),
9eae7c52
TT
17050 value);
17051}
17052
900e11f9
JK
17053static void
17054show_check_physname (struct ui_file *file, int from_tty,
17055 struct cmd_list_element *c, const char *value)
17056{
17057 fprintf_filtered (file,
17058 _("Whether to check \"physname\" is %s.\n"),
17059 value);
17060}
17061
6502dd73
DJ
17062void _initialize_dwarf2_read (void);
17063
17064void
17065_initialize_dwarf2_read (void)
17066{
96d19272
JK
17067 struct cmd_list_element *c;
17068
dce234bc 17069 dwarf2_objfile_data_key
c1bd65d0 17070 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 17071
1bedd215
AC
17072 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17073Set DWARF 2 specific variables.\n\
17074Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
17075 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17076 0/*allow-unknown*/, &maintenance_set_cmdlist);
17077
1bedd215
AC
17078 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17079Show DWARF 2 specific variables\n\
17080Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
17081 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17082 0/*allow-unknown*/, &maintenance_show_cmdlist);
17083
17084 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
17085 &dwarf2_max_cache_age, _("\
17086Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17087Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17088A higher limit means that cached compilation units will be stored\n\
17089in memory longer, and more total memory will be used. Zero disables\n\
17090caching, which can slow down startup."),
2c5b56ce 17091 NULL,
920d2a44 17092 show_dwarf2_max_cache_age,
2c5b56ce 17093 &set_dwarf2_cmdlist,
ae038cb0 17094 &show_dwarf2_cmdlist);
d97bc12b 17095
9eae7c52
TT
17096 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17097 &dwarf2_always_disassemble, _("\
17098Set whether `info address' always disassembles DWARF expressions."), _("\
17099Show whether `info address' always disassembles DWARF expressions."), _("\
17100When enabled, DWARF expressions are always printed in an assembly-like\n\
17101syntax. When disabled, expressions will be printed in a more\n\
17102conversational style, when possible."),
17103 NULL,
17104 show_dwarf2_always_disassemble,
17105 &set_dwarf2_cmdlist,
17106 &show_dwarf2_cmdlist);
17107
d97bc12b
DE
17108 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17109Set debugging of the dwarf2 DIE reader."), _("\
17110Show debugging of the dwarf2 DIE reader."), _("\
17111When enabled (non-zero), DIEs are dumped after they are read in.\n\
17112The value is the maximum depth to print."),
17113 NULL,
17114 NULL,
17115 &setdebuglist, &showdebuglist);
9291a0cd 17116
900e11f9
JK
17117 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17118Set cross-checking of \"physname\" code against demangler."), _("\
17119Show cross-checking of \"physname\" code against demangler."), _("\
17120When enabled, GDB's internal \"physname\" code is checked against\n\
17121the demangler."),
17122 NULL, show_check_physname,
17123 &setdebuglist, &showdebuglist);
17124
96d19272 17125 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 17126 _("\
fc1a9d6e 17127Save a gdb-index file.\n\
11570e71 17128Usage: save gdb-index DIRECTORY"),
96d19272
JK
17129 &save_cmdlist);
17130 set_cmd_completer (c, filename_completer);
6502dd73 17131}
This page took 3.980786 seconds and 4 git commands to generate.