gdb.ada/dyn_arrayidx.exp: Add additional_flags=-gnat12.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
73be47f5
DE
79/* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
45cfd468 81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 82static unsigned int dwarf2_read_debug = 0;
45cfd468 83
d97bc12b 84/* When non-zero, dump DIEs after they are read in. */
ccce17b0 85static unsigned int dwarf2_die_debug = 0;
d97bc12b 86
900e11f9
JK
87/* When non-zero, cross-check physname against demangler. */
88static int check_physname = 0;
89
481860b3 90/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 91static int use_deprecated_index_sections = 0;
481860b3 92
6502dd73
DJ
93static const struct objfile_data *dwarf2_objfile_data_key;
94
f1e6e072
TT
95/* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97static int dwarf2_locexpr_index;
98static int dwarf2_loclist_index;
99static int dwarf2_locexpr_block_index;
100static int dwarf2_loclist_block_index;
101
73869dc2
DE
102/* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
dce234bc
PP
118struct dwarf2_section_info
119{
73869dc2
DE
120 union
121 {
e5aa3347 122 /* If this is a real section, the bfd section. */
73869dc2
DE
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 125 section. */
73869dc2
DE
126 struct dwarf2_section_info *containing_section;
127 } s;
19ac8c2e 128 /* Pointer to section data, only valid if readin. */
d521ce57 129 const gdb_byte *buffer;
73869dc2 130 /* The size of the section, real or virtual. */
dce234bc 131 bfd_size_type size;
73869dc2
DE
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
be391dca 135 /* True if we have tried to read this section. */
73869dc2
DE
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
dce234bc
PP
140};
141
8b70b953
TT
142typedef struct dwarf2_section_info dwarf2_section_info_def;
143DEF_VEC_O (dwarf2_section_info_def);
144
9291a0cd
TT
145/* All offsets in the index are of this type. It must be
146 architecture-independent. */
147typedef uint32_t offset_type;
148
149DEF_VEC_I (offset_type);
150
156942c7
DE
151/* Ensure only legit values are used. */
152#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158/* Ensure only legit values are used. */
159#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166/* Ensure we don't use more than the alloted nuber of bits for the CU. */
167#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
9291a0cd
TT
173/* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175struct mapped_index
176{
559a7a62
JK
177 /* Index data format version. */
178 int version;
179
9291a0cd
TT
180 /* The total length of the buffer. */
181 off_t total_size;
b11b1f88 182
9291a0cd
TT
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
b11b1f88 185
9291a0cd
TT
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
b11b1f88 188
3876f04e
DE
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
b11b1f88 191
9291a0cd 192 /* Size in slots, each slot is 2 offset_types. */
3876f04e 193 offset_type symbol_table_slots;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197};
198
95554aad
TT
199typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200DEF_VEC_P (dwarf2_per_cu_ptr);
201
9cdd5dbd
DE
202/* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
6502dd73
DJ
205struct dwarf2_per_objfile
206{
dce234bc
PP
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
dce234bc
PP
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
cf2c3c16 212 struct dwarf2_section_info macro;
dce234bc
PP
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
3019eac3 215 struct dwarf2_section_info addr;
dce234bc
PP
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
9291a0cd 218 struct dwarf2_section_info gdb_index;
ae038cb0 219
8b70b953
TT
220 VEC (dwarf2_section_info_def) *types;
221
be391dca
TT
222 /* Back link. */
223 struct objfile *objfile;
224
d467dd73 225 /* Table of all the compilation units. This is used to locate
10b3939b 226 the target compilation unit of a particular reference. */
ae038cb0
DJ
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
1fd400ff 232 /* The number of .debug_types-related CUs. */
d467dd73 233 int n_type_units;
1fd400ff 234
6aa5f3a6
DE
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
a2ce51a0
DE
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
b4dd5633 241 struct signatured_type **all_type_units;
1fd400ff 242
f4dc4d17
DE
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
72dca2f5 246
348e048f
DE
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
f4dc4d17
DE
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
6aa5f3a6 259 int nr_all_type_units_reallocs;
f4dc4d17
DE
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
3019eac3
DE
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
80626a55
DE
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
36586728
TT
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
72dca2f5
FR
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
9291a0cd 283
ae2de4f8
DE
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
286 unsigned char using_index;
287
ae2de4f8 288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 289 struct mapped_index *index_table;
98bfdba5 290
7b9f3c50 291 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
7b9f3c50
DE
298 htab_t quick_file_names_table;
299
98bfdba5
PA
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
673bfd45 303
dee91e82 304 /* Table mapping type DIEs to their struct type *.
673bfd45 305 This is NULL if not allocated yet.
02142a6c 306 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 307 htab_t die_type_hash;
95554aad
TT
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
311
312 /* Table containing line_header indexed by offset and offset_in_dwz. */
313 htab_t line_header_hash;
6502dd73
DJ
314};
315
316static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 317
251d32d9 318/* Default names of the debugging sections. */
c906108c 319
233a11ab
CS
320/* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
9cdd5dbd
DE
323static const struct dwarf2_debug_sections dwarf2_elf_names =
324{
251d32d9
TG
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 330 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
3019eac3 334 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
24d3216f
TT
337 { ".gdb_index", ".zgdb_index" },
338 23
251d32d9 339};
c906108c 340
80626a55 341/* List of DWO/DWP sections. */
3019eac3 342
80626a55 343static const struct dwop_section_names
3019eac3
DE
344{
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
09262596
DE
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
3019eac3
DE
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
80626a55
DE
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
3019eac3 356}
80626a55 357dwop_section_names =
3019eac3
DE
358{
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
370};
371
c906108c
SS
372/* local data types */
373
107d2387
AC
374/* The data in a compilation unit header, after target2host
375 translation, looks like this. */
c906108c 376struct comp_unit_head
a738430d 377{
c764a876 378 unsigned int length;
a738430d 379 short version;
a738430d
MK
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
b64f50a1 382 sect_offset abbrev_offset;
57349743 383
a738430d
MK
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
57349743 386
a738430d
MK
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
57349743 389
a738430d
MK
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
b64f50a1 392 sect_offset offset;
57349743 393
d00adf39
DE
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
b64f50a1 396 cu_offset first_die_offset;
a738430d 397};
c906108c 398
3da10d80
KS
399/* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401struct delayed_method_info
402{
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417};
418
419typedef struct delayed_method_info delayed_method_info;
420DEF_VEC_O (delayed_method_info);
421
e7c27a73
DJ
422/* Internal state when decoding a particular compilation unit. */
423struct dwarf2_cu
424{
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
d00adf39 428 /* The header of the compilation unit. */
e7c27a73 429 struct comp_unit_head header;
e142c38c 430
d00adf39
DE
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
e142c38c
DJ
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
b0f35d58
DL
441 const char *producer;
442
e142c38c
DJ
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
433df2d4
DE
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
72bf9492 458
b64f50a1
JK
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
ae038cb0
DJ
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
69d751e3 473 /* Backlink to our per_cu entry. */
ae038cb0
DJ
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
b64f50a1
JK
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
51545339 481 htab_t die_hash;
10b3939b
DJ
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
cb1df416
DJ
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
3da10d80
KS
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
96408a79
SA
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
034e5797
DE
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
3019eac3
DE
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
1dbab08b 514 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
515 ULONGEST addr_base;
516
2e3cf129
DE
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
1dbab08b 519 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 520 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
527 ULONGEST ranges_base;
528
ae038cb0
DJ
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
8be455d7
JK
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 536 unsigned int has_loclist : 1;
ba919b58 537
1b80a9fa
JK
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
ba919b58
TT
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 544 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 545 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
552};
553
10b3939b
DJ
554/* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
28dee7f5 556 read_symtab_private field of the psymtab. */
10b3939b 557
ae038cb0
DJ
558struct dwarf2_per_cu_data
559{
36586728 560 /* The start offset and length of this compilation unit.
45452591 561 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
b64f50a1 565 sect_offset offset;
36586728 566 unsigned int length;
ae038cb0
DJ
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
c764a876 570 unsigned int queued : 1;
ae038cb0 571
0d99eb77
DE
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
0186c6a7
DE
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
3019eac3
DE
581 unsigned int is_debug_types : 1;
582
36586728
TT
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
a2ce51a0
DE
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
7ee85ab1
DE
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
3019eac3
DE
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
8a0459fd 605 struct dwarf2_section_info *section;
348e048f 606
17ea53c3
JK
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
ae038cb0 609 struct dwarf2_cu *cu;
1c379e20 610
9cdd5dbd
DE
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
614 struct objfile *objfile;
615
fffbe6a8
YQ
616 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
617 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
95554aad 621 or NULL for unread partial units. */
9291a0cd
TT
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
95554aad 627
796a7ff8
DE
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
647};
648
348e048f
DE
649/* Entry in the signatured_types hash table. */
650
651struct signatured_type
652{
42e7ad6c 653 /* The "per_cu" object of this type.
ac9ec31b 654 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
3019eac3 659 /* The type's signature. */
348e048f
DE
660 ULONGEST signature;
661
3019eac3 662 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
0186c6a7
DE
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
ac9ec31b
DE
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
a2ce51a0
DE
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
348e048f
DE
686};
687
0186c6a7
DE
688typedef struct signatured_type *sig_type_ptr;
689DEF_VEC_P (sig_type_ptr);
690
094b34ac
DE
691/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694struct stmt_list_hash
695{
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701};
702
f4dc4d17
DE
703/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706struct type_unit_group
707{
0186c6a7 708 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
8a0459fd 713#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
714 struct dwarf2_per_cu_data per_cu;
715
0186c6a7
DE
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
f4dc4d17 720
43f3e411 721 /* The compunit symtab.
094b34ac 722 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
723 so we create an essentially anonymous symtab as the compunit symtab. */
724 struct compunit_symtab *compunit_symtab;
f4dc4d17 725
094b34ac
DE
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
f4dc4d17
DE
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742};
743
73869dc2 744/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
745
746struct dwo_sections
747{
748 struct dwarf2_section_info abbrev;
3019eac3
DE
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
09262596
DE
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
3019eac3
DE
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
80626a55
DE
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
3019eac3
DE
757 VEC (dwarf2_section_info_def) *types;
758};
759
c88ee1f0 760/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
761
762struct dwo_unit
763{
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 773 struct dwarf2_section_info *section;
3019eac3 774
19ac8c2e 775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781};
782
73869dc2
DE
783/* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787enum dwp_v2_section_ids
788{
789 DW_SECT_MIN = 1
790};
791
80626a55 792/* Data for one DWO file.
57d63ce2
DE
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
3019eac3
DE
802
803struct dwo_file
804{
0ac5b59e 805 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
0ac5b59e
DE
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
3019eac3 813
80626a55
DE
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
3019eac3 817
73869dc2
DE
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
3019eac3
DE
821 struct dwo_sections sections;
822
19c3d4c9
DE
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
3019eac3
DE
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833};
834
80626a55
DE
835/* These sections are what may appear in a DWP file. */
836
837struct dwp_sections
838{
73869dc2 839 /* These are used by both DWP version 1 and 2. */
80626a55
DE
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
73869dc2
DE
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
80626a55
DE
860};
861
73869dc2
DE
862/* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 864
73869dc2 865struct virtual_v1_dwo_sections
80626a55
DE
866{
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 874 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
875 struct dwarf2_section_info info_or_types;
876};
877
73869dc2
DE
878/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883struct virtual_v2_dwo_sections
884{
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907};
908
80626a55
DE
909/* Contents of DWP hash tables. */
910
911struct dwp_hash_table
912{
73869dc2 913 uint32_t version, nr_columns;
80626a55 914 uint32_t nr_units, nr_slots;
73869dc2
DE
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926#define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
80626a55
DE
938};
939
940/* Data for one DWP file. */
941
942struct dwp_file
943{
944 /* Name of the file. */
945 const char *name;
946
73869dc2
DE
947 /* File format version. */
948 int version;
949
93417882 950 /* The bfd. */
80626a55
DE
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
57d63ce2 956 /* Table of CUs in the file. */
80626a55
DE
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
19ac8c2e
DE
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
80626a55 965
73869dc2
DE
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
80626a55
DE
968 unsigned int num_sections;
969 asection **elf_sections;
970};
971
36586728
TT
972/* This represents a '.dwz' file. */
973
974struct dwz_file
975{
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
2ec9a5e0 982 struct dwarf2_section_info gdb_index;
36586728
TT
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986};
987
0963b4bd
MS
988/* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
dee91e82 991 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
992
993struct die_reader_specs
994{
a32a8923 995 /* The bfd of die_section. */
93311388
DE
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
80626a55 1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1002 struct dwo_file *dwo_file;
1003
dee91e82 1004 /* The section the die comes from.
3019eac3 1005 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
d521ce57 1009 const gdb_byte *buffer;
f664829e
DE
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
a2ce51a0
DE
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
93311388
DE
1016};
1017
fd820528 1018/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1019typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1020 const gdb_byte *info_ptr,
dee91e82
DE
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
debd256d
JB
1025/* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028struct line_header
1029{
527f3840
JK
1030 /* Offset of line number information in .debug_line section. */
1031 sect_offset offset;
1032
1033 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1034 unsigned offset_in_dwz : 1;
1035
debd256d
JB
1036 unsigned int total_length;
1037 unsigned short version;
1038 unsigned int header_length;
1039 unsigned char minimum_instruction_length;
2dc7f7b3 1040 unsigned char maximum_ops_per_instruction;
debd256d
JB
1041 unsigned char default_is_stmt;
1042 int line_base;
1043 unsigned char line_range;
1044 unsigned char opcode_base;
1045
1046 /* standard_opcode_lengths[i] is the number of operands for the
1047 standard opcode whose value is i. This means that
1048 standard_opcode_lengths[0] is unused, and the last meaningful
1049 element is standard_opcode_lengths[opcode_base - 1]. */
1050 unsigned char *standard_opcode_lengths;
1051
1052 /* The include_directories table. NOTE! These strings are not
1053 allocated with xmalloc; instead, they are pointers into
1054 debug_line_buffer. If you try to free them, `free' will get
1055 indigestion. */
1056 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1057 const char **include_dirs;
debd256d
JB
1058
1059 /* The file_names table. NOTE! These strings are not allocated
1060 with xmalloc; instead, they are pointers into debug_line_buffer.
1061 Don't try to free them directly. */
1062 unsigned int num_file_names, file_names_size;
1063 struct file_entry
c906108c 1064 {
d521ce57 1065 const char *name;
debd256d
JB
1066 unsigned int dir_index;
1067 unsigned int mod_time;
1068 unsigned int length;
aaa75496 1069 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1070 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1071 } *file_names;
1072
1073 /* The start and end of the statement program following this
6502dd73 1074 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1075 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1076};
c906108c
SS
1077
1078/* When we construct a partial symbol table entry we only
0963b4bd 1079 need this much information. */
c906108c
SS
1080struct partial_die_info
1081 {
72bf9492 1082 /* Offset of this DIE. */
b64f50a1 1083 sect_offset offset;
72bf9492
DJ
1084
1085 /* DWARF-2 tag for this DIE. */
1086 ENUM_BITFIELD(dwarf_tag) tag : 16;
1087
72bf9492
DJ
1088 /* Assorted flags describing the data found in this DIE. */
1089 unsigned int has_children : 1;
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
481860b3 1095 unsigned int may_be_inlined : 1;
72bf9492
DJ
1096
1097 /* Flag set if the SCOPE field of this structure has been
1098 computed. */
1099 unsigned int scope_set : 1;
1100
fa4028e9
JB
1101 /* Flag set if the DIE has a byte_size attribute. */
1102 unsigned int has_byte_size : 1;
1103
98bfdba5
PA
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
abc72ce4
DE
1107 /* Flag set if fixup_partial_die has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
36586728
TT
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
72bf9492 1116 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1117 sometimes a default name for unnamed DIEs. */
15d034d0 1118 const char *name;
72bf9492 1119
abc72ce4
DE
1120 /* The linkage name, if present. */
1121 const char *linkage_name;
1122
72bf9492
DJ
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
15d034d0 1126 const char *scope;
72bf9492 1127
95554aad
TT
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset offset;
1136 } d;
72bf9492
DJ
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1139 CORE_ADDR lowpc;
1140 CORE_ADDR highpc;
72bf9492 1141
93311388 1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1143 DW_AT_sibling, if any. */
abc72ce4
DE
1144 /* NOTE: This member isn't strictly necessary, read_partial_die could
1145 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1146 const gdb_byte *sibling;
72bf9492
DJ
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
b64f50a1 1151 sect_offset spec_offset;
72bf9492
DJ
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1156 };
1157
0963b4bd 1158/* This data structure holds the information of an abbrev. */
c906108c
SS
1159struct abbrev_info
1160 {
1161 unsigned int number; /* number identifying abbrev */
1162 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1163 unsigned short has_children; /* boolean */
1164 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1165 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1166 struct abbrev_info *next; /* next in chain */
1167 };
1168
1169struct attr_abbrev
1170 {
9d25dd43
DE
1171 ENUM_BITFIELD(dwarf_attribute) name : 16;
1172 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1173 };
1174
433df2d4
DE
1175/* Size of abbrev_table.abbrev_hash_table. */
1176#define ABBREV_HASH_SIZE 121
1177
1178/* Top level data structure to contain an abbreviation table. */
1179
1180struct abbrev_table
1181{
f4dc4d17
DE
1182 /* Where the abbrev table came from.
1183 This is used as a sanity check when the table is used. */
433df2d4
DE
1184 sect_offset offset;
1185
1186 /* Storage for the abbrev table. */
1187 struct obstack abbrev_obstack;
1188
1189 /* Hash table of abbrevs.
1190 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1191 It could be statically allocated, but the previous code didn't so we
1192 don't either. */
1193 struct abbrev_info **abbrevs;
1194};
1195
0963b4bd 1196/* Attributes have a name and a value. */
b60c80d6
DJ
1197struct attribute
1198 {
9d25dd43 1199 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1200 ENUM_BITFIELD(dwarf_form) form : 15;
1201
1202 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1203 field should be in u.str (existing only for DW_STRING) but it is kept
1204 here for better struct attribute alignment. */
1205 unsigned int string_is_canonical : 1;
1206
b60c80d6
DJ
1207 union
1208 {
15d034d0 1209 const char *str;
b60c80d6 1210 struct dwarf_block *blk;
43bbcdc2
PH
1211 ULONGEST unsnd;
1212 LONGEST snd;
b60c80d6 1213 CORE_ADDR addr;
ac9ec31b 1214 ULONGEST signature;
b60c80d6
DJ
1215 }
1216 u;
1217 };
1218
0963b4bd 1219/* This data structure holds a complete die structure. */
c906108c
SS
1220struct die_info
1221 {
76815b17
DE
1222 /* DWARF-2 tag for this DIE. */
1223 ENUM_BITFIELD(dwarf_tag) tag : 16;
1224
1225 /* Number of attributes */
98bfdba5
PA
1226 unsigned char num_attrs;
1227
1228 /* True if we're presently building the full type name for the
1229 type derived from this DIE. */
1230 unsigned char building_fullname : 1;
76815b17 1231
adde2bff
DE
1232 /* True if this die is in process. PR 16581. */
1233 unsigned char in_process : 1;
1234
76815b17
DE
1235 /* Abbrev number */
1236 unsigned int abbrev;
1237
93311388 1238 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1239 sect_offset offset;
78ba4af6
JB
1240
1241 /* The dies in a compilation unit form an n-ary tree. PARENT
1242 points to this die's parent; CHILD points to the first child of
1243 this node; and all the children of a given node are chained
4950bc1c 1244 together via their SIBLING fields. */
639d11d3
DC
1245 struct die_info *child; /* Its first child, if any. */
1246 struct die_info *sibling; /* Its next sibling, if any. */
1247 struct die_info *parent; /* Its parent, if any. */
c906108c 1248
b60c80d6
DJ
1249 /* An array of attributes, with NUM_ATTRS elements. There may be
1250 zero, but it's not common and zero-sized arrays are not
1251 sufficiently portable C. */
1252 struct attribute attrs[1];
c906108c
SS
1253 };
1254
0963b4bd 1255/* Get at parts of an attribute structure. */
c906108c
SS
1256
1257#define DW_STRING(attr) ((attr)->u.str)
8285870a 1258#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1259#define DW_UNSND(attr) ((attr)->u.unsnd)
1260#define DW_BLOCK(attr) ((attr)->u.blk)
1261#define DW_SND(attr) ((attr)->u.snd)
1262#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1263#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1264
0963b4bd 1265/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1266struct dwarf_block
1267 {
56eb65bd 1268 size_t size;
1d6edc3c
JK
1269
1270 /* Valid only if SIZE is not zero. */
d521ce57 1271 const gdb_byte *data;
c906108c
SS
1272 };
1273
c906108c
SS
1274#ifndef ATTR_ALLOC_CHUNK
1275#define ATTR_ALLOC_CHUNK 4
1276#endif
1277
c906108c
SS
1278/* Allocate fields for structs, unions and enums in this size. */
1279#ifndef DW_FIELD_ALLOC_CHUNK
1280#define DW_FIELD_ALLOC_CHUNK 4
1281#endif
1282
c906108c
SS
1283/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1284 but this would require a corresponding change in unpack_field_as_long
1285 and friends. */
1286static int bits_per_byte = 8;
1287
1288/* The routines that read and process dies for a C struct or C++ class
1289 pass lists of data member fields and lists of member function fields
1290 in an instance of a field_info structure, as defined below. */
1291struct field_info
c5aa993b 1292 {
0963b4bd 1293 /* List of data member and baseclasses fields. */
c5aa993b
JM
1294 struct nextfield
1295 {
1296 struct nextfield *next;
1297 int accessibility;
1298 int virtuality;
1299 struct field field;
1300 }
7d0ccb61 1301 *fields, *baseclasses;
c906108c 1302
7d0ccb61 1303 /* Number of fields (including baseclasses). */
c5aa993b 1304 int nfields;
c906108c 1305
c5aa993b
JM
1306 /* Number of baseclasses. */
1307 int nbaseclasses;
c906108c 1308
c5aa993b
JM
1309 /* Set if the accesibility of one of the fields is not public. */
1310 int non_public_fields;
c906108c 1311
c5aa993b
JM
1312 /* Member function fields array, entries are allocated in the order they
1313 are encountered in the object file. */
1314 struct nextfnfield
1315 {
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318 }
1319 *fnfields;
c906108c 1320
c5aa993b
JM
1321 /* Member function fieldlist array, contains name of possibly overloaded
1322 member function, number of overloaded member functions and a pointer
1323 to the head of the member function field chain. */
1324 struct fnfieldlist
1325 {
15d034d0 1326 const char *name;
c5aa993b
JM
1327 int length;
1328 struct nextfnfield *head;
1329 }
1330 *fnfieldlists;
c906108c 1331
c5aa993b
JM
1332 /* Number of entries in the fnfieldlists array. */
1333 int nfnfields;
98751a41
JK
1334
1335 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1336 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1337 struct typedef_field_list
1338 {
1339 struct typedef_field field;
1340 struct typedef_field_list *next;
1341 }
1342 *typedef_field_list;
1343 unsigned typedef_field_list_count;
c5aa993b 1344 };
c906108c 1345
10b3939b
DJ
1346/* One item on the queue of compilation units to read in full symbols
1347 for. */
1348struct dwarf2_queue_item
1349{
1350 struct dwarf2_per_cu_data *per_cu;
95554aad 1351 enum language pretend_language;
10b3939b
DJ
1352 struct dwarf2_queue_item *next;
1353};
1354
1355/* The current queue. */
1356static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1357
ae038cb0
DJ
1358/* Loaded secondary compilation units are kept in memory until they
1359 have not been referenced for the processing of this many
1360 compilation units. Set this to zero to disable caching. Cache
1361 sizes of up to at least twenty will improve startup time for
1362 typical inter-CU-reference binaries, at an obvious memory cost. */
1363static int dwarf2_max_cache_age = 5;
920d2a44
AC
1364static void
1365show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c, const char *value)
1367{
3e43a32a
MS
1368 fprintf_filtered (file, _("The upper bound on the age of cached "
1369 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1370 value);
1371}
4390d890 1372\f
c906108c
SS
1373/* local function prototypes */
1374
a32a8923
DE
1375static const char *get_section_name (const struct dwarf2_section_info *);
1376
1377static const char *get_section_file_name (const struct dwarf2_section_info *);
1378
4efb68b1 1379static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1380
918dd910
JK
1381static void dwarf2_find_base_address (struct die_info *die,
1382 struct dwarf2_cu *cu);
1383
0018ea6f
DE
1384static struct partial_symtab *create_partial_symtab
1385 (struct dwarf2_per_cu_data *per_cu, const char *name);
1386
c67a9c90 1387static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1388
72bf9492
DJ
1389static void scan_partial_symbols (struct partial_die_info *,
1390 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1391 int, struct dwarf2_cu *);
c906108c 1392
72bf9492
DJ
1393static void add_partial_symbol (struct partial_die_info *,
1394 struct dwarf2_cu *);
63d06c5c 1395
72bf9492
DJ
1396static void add_partial_namespace (struct partial_die_info *pdi,
1397 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1398 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1399
5d7cb8df 1400static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1401 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1402 struct dwarf2_cu *cu);
1403
72bf9492
DJ
1404static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1405 struct dwarf2_cu *cu);
91c24f0a 1406
bc30ff58
JB
1407static void add_partial_subprogram (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1409 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1410
257e7a09
YQ
1411static void dwarf2_read_symtab (struct partial_symtab *,
1412 struct objfile *);
c906108c 1413
a14ed312 1414static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1415
433df2d4
DE
1416static struct abbrev_info *abbrev_table_lookup_abbrev
1417 (const struct abbrev_table *, unsigned int);
1418
1419static struct abbrev_table *abbrev_table_read_table
1420 (struct dwarf2_section_info *, sect_offset);
1421
1422static void abbrev_table_free (struct abbrev_table *);
1423
f4dc4d17
DE
1424static void abbrev_table_free_cleanup (void *);
1425
dee91e82
DE
1426static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1427 struct dwarf2_section_info *);
c906108c 1428
f3dd6933 1429static void dwarf2_free_abbrev_table (void *);
c906108c 1430
d521ce57 1431static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1432
dee91e82 1433static struct partial_die_info *load_partial_dies
d521ce57 1434 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1435
d521ce57
TT
1436static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1437 struct partial_die_info *,
1438 struct abbrev_info *,
1439 unsigned int,
1440 const gdb_byte *);
c906108c 1441
36586728 1442static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1443 struct dwarf2_cu *);
72bf9492
DJ
1444
1445static void fixup_partial_die (struct partial_die_info *,
1446 struct dwarf2_cu *);
1447
d521ce57
TT
1448static const gdb_byte *read_attribute (const struct die_reader_specs *,
1449 struct attribute *, struct attr_abbrev *,
1450 const gdb_byte *);
a8329558 1451
a1855c1d 1452static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1453
a1855c1d 1454static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1455
a1855c1d 1456static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1457
a1855c1d 1458static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1459
a1855c1d 1460static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1461
d521ce57 1462static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1463 unsigned int *);
c906108c 1464
d521ce57 1465static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1466
1467static LONGEST read_checked_initial_length_and_offset
d521ce57 1468 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1469 unsigned int *, unsigned int *);
613e1657 1470
d521ce57
TT
1471static LONGEST read_offset (bfd *, const gdb_byte *,
1472 const struct comp_unit_head *,
c764a876
DE
1473 unsigned int *);
1474
d521ce57 1475static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1476
f4dc4d17
DE
1477static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1478 sect_offset);
1479
d521ce57 1480static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1481
d521ce57 1482static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1483
d521ce57
TT
1484static const char *read_indirect_string (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
4bdf3d34 1487
d521ce57 1488static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1489
d521ce57 1490static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1491
d521ce57 1492static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1493
d521ce57
TT
1494static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1495 const gdb_byte *,
3019eac3
DE
1496 unsigned int *);
1497
d521ce57 1498static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1499 ULONGEST str_index);
3019eac3 1500
e142c38c 1501static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1502
e142c38c
DJ
1503static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1504 struct dwarf2_cu *);
c906108c 1505
348e048f 1506static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1507 unsigned int);
348e048f 1508
05cf31d1
JB
1509static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1510 struct dwarf2_cu *cu);
1511
e142c38c 1512static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1513
e142c38c 1514static struct die_info *die_specification (struct die_info *die,
f2f0e013 1515 struct dwarf2_cu **);
63d06c5c 1516
debd256d
JB
1517static void free_line_header (struct line_header *lh);
1518
3019eac3
DE
1519static struct line_header *dwarf_decode_line_header (unsigned int offset,
1520 struct dwarf2_cu *cu);
debd256d 1521
f3f5162e 1522static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1523 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1524 CORE_ADDR, int decode_mapping);
c906108c 1525
4d663531 1526static void dwarf2_start_subfile (const char *, const char *);
c906108c 1527
43f3e411
DE
1528static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1529 const char *, const char *,
1530 CORE_ADDR);
f4dc4d17 1531
a14ed312 1532static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1533 struct dwarf2_cu *);
c906108c 1534
34eaf542
TT
1535static struct symbol *new_symbol_full (struct die_info *, struct type *,
1536 struct dwarf2_cu *, struct symbol *);
1537
ff39bb5e 1538static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1539 struct dwarf2_cu *);
c906108c 1540
ff39bb5e 1541static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1542 struct type *type,
1543 const char *name,
1544 struct obstack *obstack,
12df843f 1545 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1546 const gdb_byte **bytes,
98bfdba5 1547 struct dwarf2_locexpr_baton **baton);
2df3850c 1548
e7c27a73 1549static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1550
b4ba55a1
JB
1551static int need_gnat_info (struct dwarf2_cu *);
1552
3e43a32a
MS
1553static struct type *die_descriptive_type (struct die_info *,
1554 struct dwarf2_cu *);
b4ba55a1
JB
1555
1556static void set_descriptive_type (struct type *, struct die_info *,
1557 struct dwarf2_cu *);
1558
e7c27a73
DJ
1559static struct type *die_containing_type (struct die_info *,
1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1563 struct dwarf2_cu *);
c906108c 1564
f792889a 1565static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1566
673bfd45
DE
1567static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1568
0d5cff50 1569static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1570
6e70227d 1571static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1572 const char *suffix, int physname,
1573 struct dwarf2_cu *cu);
63d06c5c 1574
e7c27a73 1575static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1576
348e048f
DE
1577static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1578
e7c27a73 1579static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1580
e7c27a73 1581static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1582
96408a79
SA
1583static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1584
ff013f42
JK
1585static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *, struct partial_symtab *);
1587
a14ed312 1588static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1589 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1590 struct partial_symtab *);
c906108c 1591
fae299cd
DC
1592static void get_scope_pc_bounds (struct die_info *,
1593 CORE_ADDR *, CORE_ADDR *,
1594 struct dwarf2_cu *);
1595
801e3a5b
JB
1596static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1597 CORE_ADDR, struct dwarf2_cu *);
1598
a14ed312 1599static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1600 struct dwarf2_cu *);
c906108c 1601
a14ed312 1602static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1603 struct type *, struct dwarf2_cu *);
c906108c 1604
a14ed312 1605static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1606 struct die_info *, struct type *,
e7c27a73 1607 struct dwarf2_cu *);
c906108c 1608
a14ed312 1609static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1610 struct type *,
1611 struct dwarf2_cu *);
c906108c 1612
134d01f1 1613static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1614
e7c27a73 1615static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1616
e7c27a73 1617static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1618
5d7cb8df
JK
1619static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1620
27aa8d6a
SW
1621static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1622
74921315
KS
1623static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1624
f55ee35c
JK
1625static struct type *read_module_type (struct die_info *die,
1626 struct dwarf2_cu *cu);
1627
38d518c9 1628static const char *namespace_name (struct die_info *die,
e142c38c 1629 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1630
134d01f1 1631static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1632
e7c27a73 1633static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1634
6e70227d 1635static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1636 struct dwarf2_cu *);
1637
bf6af496 1638static struct die_info *read_die_and_siblings_1
d521ce57 1639 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1640 struct die_info *);
639d11d3 1641
dee91e82 1642static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1643 const gdb_byte *info_ptr,
1644 const gdb_byte **new_info_ptr,
639d11d3
DC
1645 struct die_info *parent);
1646
d521ce57
TT
1647static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1648 struct die_info **, const gdb_byte *,
1649 int *, int);
3019eac3 1650
d521ce57
TT
1651static const gdb_byte *read_full_die (const struct die_reader_specs *,
1652 struct die_info **, const gdb_byte *,
1653 int *);
93311388 1654
e7c27a73 1655static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1656
15d034d0
TT
1657static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1658 struct obstack *);
71c25dea 1659
15d034d0 1660static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1661
15d034d0 1662static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1663 struct die_info *die,
1664 struct dwarf2_cu *cu);
1665
ca69b9e6
DE
1666static const char *dwarf2_physname (const char *name, struct die_info *die,
1667 struct dwarf2_cu *cu);
1668
e142c38c 1669static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1670 struct dwarf2_cu **);
9219021c 1671
f39c6ffd 1672static const char *dwarf_tag_name (unsigned int);
c906108c 1673
f39c6ffd 1674static const char *dwarf_attr_name (unsigned int);
c906108c 1675
f39c6ffd 1676static const char *dwarf_form_name (unsigned int);
c906108c 1677
a14ed312 1678static char *dwarf_bool_name (unsigned int);
c906108c 1679
f39c6ffd 1680static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1681
f9aca02d 1682static struct die_info *sibling_die (struct die_info *);
c906108c 1683
d97bc12b
DE
1684static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1685
1686static void dump_die_for_error (struct die_info *);
1687
1688static void dump_die_1 (struct ui_file *, int level, int max_level,
1689 struct die_info *);
c906108c 1690
d97bc12b 1691/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1692
51545339 1693static void store_in_ref_table (struct die_info *,
10b3939b 1694 struct dwarf2_cu *);
c906108c 1695
ff39bb5e 1696static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1697
ff39bb5e 1698static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1699
348e048f 1700static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1701 const struct attribute *,
348e048f
DE
1702 struct dwarf2_cu **);
1703
10b3939b 1704static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1705 const struct attribute *,
f2f0e013 1706 struct dwarf2_cu **);
c906108c 1707
348e048f 1708static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1709 const struct attribute *,
348e048f
DE
1710 struct dwarf2_cu **);
1711
ac9ec31b
DE
1712static struct type *get_signatured_type (struct die_info *, ULONGEST,
1713 struct dwarf2_cu *);
1714
1715static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1716 const struct attribute *,
ac9ec31b
DE
1717 struct dwarf2_cu *);
1718
e5fe5e75 1719static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1720
52dc124a 1721static void read_signatured_type (struct signatured_type *);
348e048f 1722
c906108c
SS
1723/* memory allocation interface */
1724
7b5a2f43 1725static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1726
b60c80d6 1727static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1728
43f3e411 1729static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1730
6e5a29e1 1731static int attr_form_is_block (const struct attribute *);
8e19ed76 1732
6e5a29e1 1733static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1734
6e5a29e1 1735static int attr_form_is_constant (const struct attribute *);
3690dd37 1736
6e5a29e1 1737static int attr_form_is_ref (const struct attribute *);
7771576e 1738
8cf6f0b1
TT
1739static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1740 struct dwarf2_loclist_baton *baton,
ff39bb5e 1741 const struct attribute *attr);
8cf6f0b1 1742
ff39bb5e 1743static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1744 struct symbol *sym,
f1e6e072
TT
1745 struct dwarf2_cu *cu,
1746 int is_block);
4c2df51b 1747
d521ce57
TT
1748static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1749 const gdb_byte *info_ptr,
1750 struct abbrev_info *abbrev);
4bb7a0a7 1751
72bf9492
DJ
1752static void free_stack_comp_unit (void *);
1753
72bf9492
DJ
1754static hashval_t partial_die_hash (const void *item);
1755
1756static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1757
ae038cb0 1758static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1759 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1760
9816fde3 1761static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1762 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1763
1764static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1765 struct die_info *comp_unit_die,
1766 enum language pretend_language);
93311388 1767
68dc6402 1768static void free_heap_comp_unit (void *);
ae038cb0
DJ
1769
1770static void free_cached_comp_units (void *);
1771
1772static void age_cached_comp_units (void);
1773
dee91e82 1774static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1775
f792889a
DJ
1776static struct type *set_die_type (struct die_info *, struct type *,
1777 struct dwarf2_cu *);
1c379e20 1778
ae038cb0
DJ
1779static void create_all_comp_units (struct objfile *);
1780
0e50663e 1781static int create_all_type_units (struct objfile *);
1fd400ff 1782
95554aad
TT
1783static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1784 enum language);
10b3939b 1785
95554aad
TT
1786static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1787 enum language);
10b3939b 1788
f4dc4d17
DE
1789static void process_full_type_unit (struct dwarf2_per_cu_data *,
1790 enum language);
1791
10b3939b
DJ
1792static void dwarf2_add_dependence (struct dwarf2_cu *,
1793 struct dwarf2_per_cu_data *);
1794
ae038cb0
DJ
1795static void dwarf2_mark (struct dwarf2_cu *);
1796
1797static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1798
b64f50a1 1799static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1800 struct dwarf2_per_cu_data *);
673bfd45 1801
f792889a 1802static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1803
9291a0cd
TT
1804static void dwarf2_release_queue (void *dummy);
1805
95554aad
TT
1806static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1807 enum language pretend_language);
1808
a0f42c21 1809static void process_queue (void);
9291a0cd
TT
1810
1811static void find_file_and_directory (struct die_info *die,
1812 struct dwarf2_cu *cu,
15d034d0 1813 const char **name, const char **comp_dir);
9291a0cd
TT
1814
1815static char *file_full_name (int file, struct line_header *lh,
1816 const char *comp_dir);
1817
d521ce57 1818static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1819 (struct comp_unit_head *header,
1820 struct dwarf2_section_info *section,
d521ce57 1821 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1822 int is_debug_types_section);
1823
fd820528 1824static void init_cutu_and_read_dies
f4dc4d17
DE
1825 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1826 int use_existing_cu, int keep,
3019eac3
DE
1827 die_reader_func_ftype *die_reader_func, void *data);
1828
dee91e82
DE
1829static void init_cutu_and_read_dies_simple
1830 (struct dwarf2_per_cu_data *this_cu,
1831 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1832
673bfd45 1833static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1834
3019eac3
DE
1835static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1836
57d63ce2
DE
1837static struct dwo_unit *lookup_dwo_unit_in_dwp
1838 (struct dwp_file *dwp_file, const char *comp_dir,
1839 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1840
1841static struct dwp_file *get_dwp_file (void);
1842
3019eac3 1843static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1844 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1845
1846static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1847 (struct signatured_type *, const char *, const char *);
3019eac3 1848
89e63ee4
DE
1849static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1850
3019eac3
DE
1851static void free_dwo_file_cleanup (void *);
1852
95554aad
TT
1853static void process_cu_includes (void);
1854
1b80a9fa 1855static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1856
1857static void free_line_header_voidp (void *arg);
4390d890
DE
1858\f
1859/* Various complaints about symbol reading that don't abort the process. */
1860
1861static void
1862dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1863{
1864 complaint (&symfile_complaints,
1865 _("statement list doesn't fit in .debug_line section"));
1866}
1867
1868static void
1869dwarf2_debug_line_missing_file_complaint (void)
1870{
1871 complaint (&symfile_complaints,
1872 _(".debug_line section has line data without a file"));
1873}
1874
1875static void
1876dwarf2_debug_line_missing_end_sequence_complaint (void)
1877{
1878 complaint (&symfile_complaints,
1879 _(".debug_line section has line "
1880 "program sequence without an end"));
1881}
1882
1883static void
1884dwarf2_complex_location_expr_complaint (void)
1885{
1886 complaint (&symfile_complaints, _("location expression too complex"));
1887}
1888
1889static void
1890dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1891 int arg3)
1892{
1893 complaint (&symfile_complaints,
1894 _("const value length mismatch for '%s', got %d, expected %d"),
1895 arg1, arg2, arg3);
1896}
1897
1898static void
1899dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1900{
1901 complaint (&symfile_complaints,
1902 _("debug info runs off end of %s section"
1903 " [in module %s]"),
a32a8923
DE
1904 get_section_name (section),
1905 get_section_file_name (section));
4390d890 1906}
1b80a9fa 1907
4390d890
DE
1908static void
1909dwarf2_macro_malformed_definition_complaint (const char *arg1)
1910{
1911 complaint (&symfile_complaints,
1912 _("macro debug info contains a "
1913 "malformed macro definition:\n`%s'"),
1914 arg1);
1915}
1916
1917static void
1918dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1919{
1920 complaint (&symfile_complaints,
1921 _("invalid attribute class or form for '%s' in '%s'"),
1922 arg1, arg2);
1923}
527f3840
JK
1924
1925/* Hash function for line_header_hash. */
1926
1927static hashval_t
1928line_header_hash (const struct line_header *ofs)
1929{
1930 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1931}
1932
1933/* Hash function for htab_create_alloc_ex for line_header_hash. */
1934
1935static hashval_t
1936line_header_hash_voidp (const void *item)
1937{
1938 const struct line_header *ofs = item;
1939
1940 return line_header_hash (ofs);
1941}
1942
1943/* Equality function for line_header_hash. */
1944
1945static int
1946line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1947{
1948 const struct line_header *ofs_lhs = item_lhs;
1949 const struct line_header *ofs_rhs = item_rhs;
1950
1951 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1952 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1953}
1954
4390d890 1955\f
9291a0cd
TT
1956#if WORDS_BIGENDIAN
1957
1958/* Convert VALUE between big- and little-endian. */
1959static offset_type
1960byte_swap (offset_type value)
1961{
1962 offset_type result;
1963
1964 result = (value & 0xff) << 24;
1965 result |= (value & 0xff00) << 8;
1966 result |= (value & 0xff0000) >> 8;
1967 result |= (value & 0xff000000) >> 24;
1968 return result;
1969}
1970
1971#define MAYBE_SWAP(V) byte_swap (V)
1972
1973#else
1974#define MAYBE_SWAP(V) (V)
1975#endif /* WORDS_BIGENDIAN */
1976
31aa7e4e
JB
1977/* Read the given attribute value as an address, taking the attribute's
1978 form into account. */
1979
1980static CORE_ADDR
1981attr_value_as_address (struct attribute *attr)
1982{
1983 CORE_ADDR addr;
1984
1985 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1986 {
1987 /* Aside from a few clearly defined exceptions, attributes that
1988 contain an address must always be in DW_FORM_addr form.
1989 Unfortunately, some compilers happen to be violating this
1990 requirement by encoding addresses using other forms, such
1991 as DW_FORM_data4 for example. For those broken compilers,
1992 we try to do our best, without any guarantee of success,
1993 to interpret the address correctly. It would also be nice
1994 to generate a complaint, but that would require us to maintain
1995 a list of legitimate cases where a non-address form is allowed,
1996 as well as update callers to pass in at least the CU's DWARF
1997 version. This is more overhead than what we're willing to
1998 expand for a pretty rare case. */
1999 addr = DW_UNSND (attr);
2000 }
2001 else
2002 addr = DW_ADDR (attr);
2003
2004 return addr;
2005}
2006
9291a0cd
TT
2007/* The suffix for an index file. */
2008#define INDEX_SUFFIX ".gdb-index"
2009
c906108c 2010/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2011 information and return true if we have enough to do something.
2012 NAMES points to the dwarf2 section names, or is NULL if the standard
2013 ELF names are used. */
c906108c
SS
2014
2015int
251d32d9
TG
2016dwarf2_has_info (struct objfile *objfile,
2017 const struct dwarf2_debug_sections *names)
c906108c 2018{
be391dca
TT
2019 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2020 if (!dwarf2_per_objfile)
2021 {
2022 /* Initialize per-objfile state. */
2023 struct dwarf2_per_objfile *data
2024 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 2025
be391dca
TT
2026 memset (data, 0, sizeof (*data));
2027 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2028 dwarf2_per_objfile = data;
6502dd73 2029
251d32d9
TG
2030 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2031 (void *) names);
be391dca
TT
2032 dwarf2_per_objfile->objfile = objfile;
2033 }
73869dc2
DE
2034 return (!dwarf2_per_objfile->info.is_virtual
2035 && dwarf2_per_objfile->info.s.asection != NULL
2036 && !dwarf2_per_objfile->abbrev.is_virtual
2037 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2038}
2039
2040/* Return the containing section of virtual section SECTION. */
2041
2042static struct dwarf2_section_info *
2043get_containing_section (const struct dwarf2_section_info *section)
2044{
2045 gdb_assert (section->is_virtual);
2046 return section->s.containing_section;
c906108c
SS
2047}
2048
a32a8923
DE
2049/* Return the bfd owner of SECTION. */
2050
2051static struct bfd *
2052get_section_bfd_owner (const struct dwarf2_section_info *section)
2053{
73869dc2
DE
2054 if (section->is_virtual)
2055 {
2056 section = get_containing_section (section);
2057 gdb_assert (!section->is_virtual);
2058 }
2059 return section->s.asection->owner;
a32a8923
DE
2060}
2061
2062/* Return the bfd section of SECTION.
2063 Returns NULL if the section is not present. */
2064
2065static asection *
2066get_section_bfd_section (const struct dwarf2_section_info *section)
2067{
73869dc2
DE
2068 if (section->is_virtual)
2069 {
2070 section = get_containing_section (section);
2071 gdb_assert (!section->is_virtual);
2072 }
2073 return section->s.asection;
a32a8923
DE
2074}
2075
2076/* Return the name of SECTION. */
2077
2078static const char *
2079get_section_name (const struct dwarf2_section_info *section)
2080{
2081 asection *sectp = get_section_bfd_section (section);
2082
2083 gdb_assert (sectp != NULL);
2084 return bfd_section_name (get_section_bfd_owner (section), sectp);
2085}
2086
2087/* Return the name of the file SECTION is in. */
2088
2089static const char *
2090get_section_file_name (const struct dwarf2_section_info *section)
2091{
2092 bfd *abfd = get_section_bfd_owner (section);
2093
2094 return bfd_get_filename (abfd);
2095}
2096
2097/* Return the id of SECTION.
2098 Returns 0 if SECTION doesn't exist. */
2099
2100static int
2101get_section_id (const struct dwarf2_section_info *section)
2102{
2103 asection *sectp = get_section_bfd_section (section);
2104
2105 if (sectp == NULL)
2106 return 0;
2107 return sectp->id;
2108}
2109
2110/* Return the flags of SECTION.
73869dc2 2111 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2112
2113static int
2114get_section_flags (const struct dwarf2_section_info *section)
2115{
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 gdb_assert (sectp != NULL);
2119 return bfd_get_section_flags (sectp->owner, sectp);
2120}
2121
251d32d9
TG
2122/* When loading sections, we look either for uncompressed section or for
2123 compressed section names. */
233a11ab
CS
2124
2125static int
251d32d9
TG
2126section_is_p (const char *section_name,
2127 const struct dwarf2_section_names *names)
233a11ab 2128{
251d32d9
TG
2129 if (names->normal != NULL
2130 && strcmp (section_name, names->normal) == 0)
2131 return 1;
2132 if (names->compressed != NULL
2133 && strcmp (section_name, names->compressed) == 0)
2134 return 1;
2135 return 0;
233a11ab
CS
2136}
2137
c906108c
SS
2138/* This function is mapped across the sections and remembers the
2139 offset and size of each of the debugging sections we are interested
2140 in. */
2141
2142static void
251d32d9 2143dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2144{
251d32d9 2145 const struct dwarf2_debug_sections *names;
dc7650b8 2146 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2147
2148 if (vnames == NULL)
2149 names = &dwarf2_elf_names;
2150 else
2151 names = (const struct dwarf2_debug_sections *) vnames;
2152
dc7650b8
JK
2153 if ((aflag & SEC_HAS_CONTENTS) == 0)
2154 {
2155 }
2156 else if (section_is_p (sectp->name, &names->info))
c906108c 2157 {
73869dc2 2158 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2159 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2160 }
251d32d9 2161 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2162 {
73869dc2 2163 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2164 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2165 }
251d32d9 2166 else if (section_is_p (sectp->name, &names->line))
c906108c 2167 {
73869dc2 2168 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2169 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2170 }
251d32d9 2171 else if (section_is_p (sectp->name, &names->loc))
c906108c 2172 {
73869dc2 2173 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2174 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2175 }
251d32d9 2176 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2177 {
73869dc2 2178 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2179 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2180 }
cf2c3c16
TT
2181 else if (section_is_p (sectp->name, &names->macro))
2182 {
73869dc2 2183 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2184 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2185 }
251d32d9 2186 else if (section_is_p (sectp->name, &names->str))
c906108c 2187 {
73869dc2 2188 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2189 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2190 }
3019eac3
DE
2191 else if (section_is_p (sectp->name, &names->addr))
2192 {
73869dc2 2193 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2194 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2195 }
251d32d9 2196 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2197 {
73869dc2 2198 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2199 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2200 }
251d32d9 2201 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2202 {
73869dc2 2203 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2204 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2205 }
251d32d9 2206 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2207 {
73869dc2 2208 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2209 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2210 }
251d32d9 2211 else if (section_is_p (sectp->name, &names->types))
348e048f 2212 {
8b70b953
TT
2213 struct dwarf2_section_info type_section;
2214
2215 memset (&type_section, 0, sizeof (type_section));
73869dc2 2216 type_section.s.asection = sectp;
8b70b953
TT
2217 type_section.size = bfd_get_section_size (sectp);
2218
2219 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2220 &type_section);
348e048f 2221 }
251d32d9 2222 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2223 {
73869dc2 2224 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2225 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2226 }
dce234bc 2227
72dca2f5
FR
2228 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2229 && bfd_section_vma (abfd, sectp) == 0)
2230 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2231}
2232
fceca515
DE
2233/* A helper function that decides whether a section is empty,
2234 or not present. */
9e0ac564
TT
2235
2236static int
19ac8c2e 2237dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2238{
73869dc2
DE
2239 if (section->is_virtual)
2240 return section->size == 0;
2241 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2242}
2243
3019eac3
DE
2244/* Read the contents of the section INFO.
2245 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2246 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2247 of the DWO file.
dce234bc 2248 If the section is compressed, uncompress it before returning. */
c906108c 2249
dce234bc
PP
2250static void
2251dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2252{
a32a8923 2253 asection *sectp;
3019eac3 2254 bfd *abfd;
dce234bc 2255 gdb_byte *buf, *retbuf;
c906108c 2256
be391dca
TT
2257 if (info->readin)
2258 return;
dce234bc 2259 info->buffer = NULL;
be391dca 2260 info->readin = 1;
188dd5d6 2261
9e0ac564 2262 if (dwarf2_section_empty_p (info))
dce234bc 2263 return;
c906108c 2264
a32a8923 2265 sectp = get_section_bfd_section (info);
3019eac3 2266
73869dc2
DE
2267 /* If this is a virtual section we need to read in the real one first. */
2268 if (info->is_virtual)
2269 {
2270 struct dwarf2_section_info *containing_section =
2271 get_containing_section (info);
2272
2273 gdb_assert (sectp != NULL);
2274 if ((sectp->flags & SEC_RELOC) != 0)
2275 {
2276 error (_("Dwarf Error: DWP format V2 with relocations is not"
2277 " supported in section %s [in module %s]"),
2278 get_section_name (info), get_section_file_name (info));
2279 }
2280 dwarf2_read_section (objfile, containing_section);
2281 /* Other code should have already caught virtual sections that don't
2282 fit. */
2283 gdb_assert (info->virtual_offset + info->size
2284 <= containing_section->size);
2285 /* If the real section is empty or there was a problem reading the
2286 section we shouldn't get here. */
2287 gdb_assert (containing_section->buffer != NULL);
2288 info->buffer = containing_section->buffer + info->virtual_offset;
2289 return;
2290 }
2291
4bf44c1c
TT
2292 /* If the section has relocations, we must read it ourselves.
2293 Otherwise we attach it to the BFD. */
2294 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2295 {
d521ce57 2296 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2297 return;
dce234bc 2298 }
dce234bc 2299
4bf44c1c
TT
2300 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2301 info->buffer = buf;
dce234bc
PP
2302
2303 /* When debugging .o files, we may need to apply relocations; see
2304 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2305 We never compress sections in .o files, so we only need to
2306 try this when the section is not compressed. */
ac8035ab 2307 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2308 if (retbuf != NULL)
2309 {
2310 info->buffer = retbuf;
2311 return;
2312 }
2313
a32a8923
DE
2314 abfd = get_section_bfd_owner (info);
2315 gdb_assert (abfd != NULL);
2316
dce234bc
PP
2317 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2318 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2319 {
2320 error (_("Dwarf Error: Can't read DWARF data"
2321 " in section %s [in module %s]"),
2322 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2323 }
dce234bc
PP
2324}
2325
9e0ac564
TT
2326/* A helper function that returns the size of a section in a safe way.
2327 If you are positive that the section has been read before using the
2328 size, then it is safe to refer to the dwarf2_section_info object's
2329 "size" field directly. In other cases, you must call this
2330 function, because for compressed sections the size field is not set
2331 correctly until the section has been read. */
2332
2333static bfd_size_type
2334dwarf2_section_size (struct objfile *objfile,
2335 struct dwarf2_section_info *info)
2336{
2337 if (!info->readin)
2338 dwarf2_read_section (objfile, info);
2339 return info->size;
2340}
2341
dce234bc 2342/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2343 SECTION_NAME. */
af34e669 2344
dce234bc 2345void
3017a003
TG
2346dwarf2_get_section_info (struct objfile *objfile,
2347 enum dwarf2_section_enum sect,
d521ce57 2348 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2349 bfd_size_type *sizep)
2350{
2351 struct dwarf2_per_objfile *data
2352 = objfile_data (objfile, dwarf2_objfile_data_key);
2353 struct dwarf2_section_info *info;
a3b2a86b
TT
2354
2355 /* We may see an objfile without any DWARF, in which case we just
2356 return nothing. */
2357 if (data == NULL)
2358 {
2359 *sectp = NULL;
2360 *bufp = NULL;
2361 *sizep = 0;
2362 return;
2363 }
3017a003
TG
2364 switch (sect)
2365 {
2366 case DWARF2_DEBUG_FRAME:
2367 info = &data->frame;
2368 break;
2369 case DWARF2_EH_FRAME:
2370 info = &data->eh_frame;
2371 break;
2372 default:
2373 gdb_assert_not_reached ("unexpected section");
2374 }
dce234bc 2375
9e0ac564 2376 dwarf2_read_section (objfile, info);
dce234bc 2377
a32a8923 2378 *sectp = get_section_bfd_section (info);
dce234bc
PP
2379 *bufp = info->buffer;
2380 *sizep = info->size;
2381}
2382
36586728
TT
2383/* A helper function to find the sections for a .dwz file. */
2384
2385static void
2386locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2387{
2388 struct dwz_file *dwz_file = arg;
2389
2390 /* Note that we only support the standard ELF names, because .dwz
2391 is ELF-only (at the time of writing). */
2392 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2393 {
73869dc2 2394 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2395 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2398 {
73869dc2 2399 dwz_file->info.s.asection = sectp;
36586728
TT
2400 dwz_file->info.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2403 {
73869dc2 2404 dwz_file->str.s.asection = sectp;
36586728
TT
2405 dwz_file->str.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2408 {
73869dc2 2409 dwz_file->line.s.asection = sectp;
36586728
TT
2410 dwz_file->line.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2413 {
73869dc2 2414 dwz_file->macro.s.asection = sectp;
36586728
TT
2415 dwz_file->macro.size = bfd_get_section_size (sectp);
2416 }
2ec9a5e0
TT
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2418 {
73869dc2 2419 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2420 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2421 }
36586728
TT
2422}
2423
4db1a1dc
TT
2424/* Open the separate '.dwz' debug file, if needed. Return NULL if
2425 there is no .gnu_debugaltlink section in the file. Error if there
2426 is such a section but the file cannot be found. */
36586728
TT
2427
2428static struct dwz_file *
2429dwarf2_get_dwz_file (void)
2430{
4db1a1dc
TT
2431 bfd *dwz_bfd;
2432 char *data;
36586728
TT
2433 struct cleanup *cleanup;
2434 const char *filename;
2435 struct dwz_file *result;
acd13123 2436 bfd_size_type buildid_len_arg;
dc294be5
TT
2437 size_t buildid_len;
2438 bfd_byte *buildid;
36586728
TT
2439
2440 if (dwarf2_per_objfile->dwz_file != NULL)
2441 return dwarf2_per_objfile->dwz_file;
2442
4db1a1dc
TT
2443 bfd_set_error (bfd_error_no_error);
2444 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2445 &buildid_len_arg, &buildid);
4db1a1dc
TT
2446 if (data == NULL)
2447 {
2448 if (bfd_get_error () == bfd_error_no_error)
2449 return NULL;
2450 error (_("could not read '.gnu_debugaltlink' section: %s"),
2451 bfd_errmsg (bfd_get_error ()));
2452 }
36586728 2453 cleanup = make_cleanup (xfree, data);
dc294be5 2454 make_cleanup (xfree, buildid);
36586728 2455
acd13123
TT
2456 buildid_len = (size_t) buildid_len_arg;
2457
f9d83a0b 2458 filename = (const char *) data;
36586728
TT
2459 if (!IS_ABSOLUTE_PATH (filename))
2460 {
4262abfb 2461 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2462 char *rel;
2463
2464 make_cleanup (xfree, abs);
2465 abs = ldirname (abs);
2466 make_cleanup (xfree, abs);
2467
2468 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2469 make_cleanup (xfree, rel);
2470 filename = rel;
2471 }
2472
dc294be5
TT
2473 /* First try the file name given in the section. If that doesn't
2474 work, try to use the build-id instead. */
36586728 2475 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2476 if (dwz_bfd != NULL)
36586728 2477 {
dc294be5
TT
2478 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2479 {
2480 gdb_bfd_unref (dwz_bfd);
2481 dwz_bfd = NULL;
2482 }
36586728
TT
2483 }
2484
dc294be5
TT
2485 if (dwz_bfd == NULL)
2486 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2487
2488 if (dwz_bfd == NULL)
2489 error (_("could not find '.gnu_debugaltlink' file for %s"),
2490 objfile_name (dwarf2_per_objfile->objfile));
2491
36586728
TT
2492 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2493 struct dwz_file);
2494 result->dwz_bfd = dwz_bfd;
2495
2496 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2497
2498 do_cleanups (cleanup);
2499
13aaf454 2500 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2501 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2502 return result;
2503}
9291a0cd 2504\f
7b9f3c50
DE
2505/* DWARF quick_symbols_functions support. */
2506
2507/* TUs can share .debug_line entries, and there can be a lot more TUs than
2508 unique line tables, so we maintain a separate table of all .debug_line
2509 derived entries to support the sharing.
2510 All the quick functions need is the list of file names. We discard the
2511 line_header when we're done and don't need to record it here. */
2512struct quick_file_names
2513{
094b34ac
DE
2514 /* The data used to construct the hash key. */
2515 struct stmt_list_hash hash;
7b9f3c50
DE
2516
2517 /* The number of entries in file_names, real_names. */
2518 unsigned int num_file_names;
2519
2520 /* The file names from the line table, after being run through
2521 file_full_name. */
2522 const char **file_names;
2523
2524 /* The file names from the line table after being run through
2525 gdb_realpath. These are computed lazily. */
2526 const char **real_names;
2527};
2528
2529/* When using the index (and thus not using psymtabs), each CU has an
2530 object of this type. This is used to hold information needed by
2531 the various "quick" methods. */
2532struct dwarf2_per_cu_quick_data
2533{
2534 /* The file table. This can be NULL if there was no file table
2535 or it's currently not read in.
2536 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2537 struct quick_file_names *file_names;
2538
2539 /* The corresponding symbol table. This is NULL if symbols for this
2540 CU have not yet been read. */
43f3e411 2541 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2542
2543 /* A temporary mark bit used when iterating over all CUs in
2544 expand_symtabs_matching. */
2545 unsigned int mark : 1;
2546
2547 /* True if we've tried to read the file table and found there isn't one.
2548 There will be no point in trying to read it again next time. */
2549 unsigned int no_file_data : 1;
2550};
2551
094b34ac
DE
2552/* Utility hash function for a stmt_list_hash. */
2553
2554static hashval_t
2555hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2556{
2557 hashval_t v = 0;
2558
2559 if (stmt_list_hash->dwo_unit != NULL)
2560 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2561 v += stmt_list_hash->line_offset.sect_off;
2562 return v;
2563}
2564
2565/* Utility equality function for a stmt_list_hash. */
2566
2567static int
2568eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2569 const struct stmt_list_hash *rhs)
2570{
2571 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2572 return 0;
2573 if (lhs->dwo_unit != NULL
2574 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2575 return 0;
2576
2577 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2578}
2579
7b9f3c50
DE
2580/* Hash function for a quick_file_names. */
2581
2582static hashval_t
2583hash_file_name_entry (const void *e)
2584{
2585 const struct quick_file_names *file_data = e;
2586
094b34ac 2587 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2588}
2589
2590/* Equality function for a quick_file_names. */
2591
2592static int
2593eq_file_name_entry (const void *a, const void *b)
2594{
2595 const struct quick_file_names *ea = a;
2596 const struct quick_file_names *eb = b;
2597
094b34ac 2598 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2599}
2600
2601/* Delete function for a quick_file_names. */
2602
2603static void
2604delete_file_name_entry (void *e)
2605{
2606 struct quick_file_names *file_data = e;
2607 int i;
2608
2609 for (i = 0; i < file_data->num_file_names; ++i)
2610 {
2611 xfree ((void*) file_data->file_names[i]);
2612 if (file_data->real_names)
2613 xfree ((void*) file_data->real_names[i]);
2614 }
2615
2616 /* The space for the struct itself lives on objfile_obstack,
2617 so we don't free it here. */
2618}
2619
2620/* Create a quick_file_names hash table. */
2621
2622static htab_t
2623create_quick_file_names_table (unsigned int nr_initial_entries)
2624{
2625 return htab_create_alloc (nr_initial_entries,
2626 hash_file_name_entry, eq_file_name_entry,
2627 delete_file_name_entry, xcalloc, xfree);
2628}
9291a0cd 2629
918dd910
JK
2630/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2631 have to be created afterwards. You should call age_cached_comp_units after
2632 processing PER_CU->CU. dw2_setup must have been already called. */
2633
2634static void
2635load_cu (struct dwarf2_per_cu_data *per_cu)
2636{
3019eac3 2637 if (per_cu->is_debug_types)
e5fe5e75 2638 load_full_type_unit (per_cu);
918dd910 2639 else
95554aad 2640 load_full_comp_unit (per_cu, language_minimal);
918dd910 2641
918dd910 2642 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2643
2644 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2645}
2646
a0f42c21 2647/* Read in the symbols for PER_CU. */
2fdf6df6 2648
9291a0cd 2649static void
a0f42c21 2650dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2651{
2652 struct cleanup *back_to;
2653
f4dc4d17
DE
2654 /* Skip type_unit_groups, reading the type units they contain
2655 is handled elsewhere. */
2656 if (IS_TYPE_UNIT_GROUP (per_cu))
2657 return;
2658
9291a0cd
TT
2659 back_to = make_cleanup (dwarf2_release_queue, NULL);
2660
95554aad 2661 if (dwarf2_per_objfile->using_index
43f3e411 2662 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2663 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2664 {
2665 queue_comp_unit (per_cu, language_minimal);
2666 load_cu (per_cu);
89e63ee4
DE
2667
2668 /* If we just loaded a CU from a DWO, and we're working with an index
2669 that may badly handle TUs, load all the TUs in that DWO as well.
2670 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2671 if (!per_cu->is_debug_types
2672 && per_cu->cu->dwo_unit != NULL
2673 && dwarf2_per_objfile->index_table != NULL
2674 && dwarf2_per_objfile->index_table->version <= 7
2675 /* DWP files aren't supported yet. */
2676 && get_dwp_file () == NULL)
2677 queue_and_load_all_dwo_tus (per_cu);
95554aad 2678 }
9291a0cd 2679
a0f42c21 2680 process_queue ();
9291a0cd
TT
2681
2682 /* Age the cache, releasing compilation units that have not
2683 been used recently. */
2684 age_cached_comp_units ();
2685
2686 do_cleanups (back_to);
2687}
2688
2689/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2690 the objfile from which this CU came. Returns the resulting symbol
2691 table. */
2fdf6df6 2692
43f3e411 2693static struct compunit_symtab *
a0f42c21 2694dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2695{
95554aad 2696 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2697 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2698 {
2699 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2700 increment_reading_symtab ();
a0f42c21 2701 dw2_do_instantiate_symtab (per_cu);
95554aad 2702 process_cu_includes ();
9291a0cd
TT
2703 do_cleanups (back_to);
2704 }
f194fefb 2705
43f3e411 2706 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2707}
2708
8832e7e3 2709/* Return the CU/TU given its index.
f4dc4d17
DE
2710
2711 This is intended for loops like:
2712
2713 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2714 + dwarf2_per_objfile->n_type_units); ++i)
2715 {
8832e7e3 2716 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2717
2718 ...;
2719 }
2720*/
2fdf6df6 2721
1fd400ff 2722static struct dwarf2_per_cu_data *
8832e7e3 2723dw2_get_cutu (int index)
1fd400ff
TT
2724{
2725 if (index >= dwarf2_per_objfile->n_comp_units)
2726 {
f4dc4d17 2727 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2728 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2729 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2730 }
2731
2732 return dwarf2_per_objfile->all_comp_units[index];
2733}
2734
8832e7e3
DE
2735/* Return the CU given its index.
2736 This differs from dw2_get_cutu in that it's for when you know INDEX
2737 refers to a CU. */
f4dc4d17
DE
2738
2739static struct dwarf2_per_cu_data *
8832e7e3 2740dw2_get_cu (int index)
f4dc4d17 2741{
8832e7e3 2742 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2743
1fd400ff
TT
2744 return dwarf2_per_objfile->all_comp_units[index];
2745}
2746
2ec9a5e0
TT
2747/* A helper for create_cus_from_index that handles a given list of
2748 CUs. */
2fdf6df6 2749
74a0d9f6 2750static void
2ec9a5e0
TT
2751create_cus_from_index_list (struct objfile *objfile,
2752 const gdb_byte *cu_list, offset_type n_elements,
2753 struct dwarf2_section_info *section,
2754 int is_dwz,
2755 int base_offset)
9291a0cd
TT
2756{
2757 offset_type i;
9291a0cd 2758
2ec9a5e0 2759 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2760 {
2761 struct dwarf2_per_cu_data *the_cu;
2762 ULONGEST offset, length;
2763
74a0d9f6
JK
2764 gdb_static_assert (sizeof (ULONGEST) >= 8);
2765 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2766 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2767 cu_list += 2 * 8;
2768
2769 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2770 struct dwarf2_per_cu_data);
b64f50a1 2771 the_cu->offset.sect_off = offset;
9291a0cd
TT
2772 the_cu->length = length;
2773 the_cu->objfile = objfile;
8a0459fd 2774 the_cu->section = section;
9291a0cd
TT
2775 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2776 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2777 the_cu->is_dwz = is_dwz;
2778 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2779 }
9291a0cd
TT
2780}
2781
2ec9a5e0 2782/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2783 the CU objects for this objfile. */
2ec9a5e0 2784
74a0d9f6 2785static void
2ec9a5e0
TT
2786create_cus_from_index (struct objfile *objfile,
2787 const gdb_byte *cu_list, offset_type cu_list_elements,
2788 const gdb_byte *dwz_list, offset_type dwz_elements)
2789{
2790 struct dwz_file *dwz;
2791
2792 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2793 dwarf2_per_objfile->all_comp_units
2794 = obstack_alloc (&objfile->objfile_obstack,
2795 dwarf2_per_objfile->n_comp_units
2796 * sizeof (struct dwarf2_per_cu_data *));
2797
74a0d9f6
JK
2798 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2799 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2800
2801 if (dwz_elements == 0)
74a0d9f6 2802 return;
2ec9a5e0
TT
2803
2804 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2805 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2806 cu_list_elements / 2);
2ec9a5e0
TT
2807}
2808
1fd400ff 2809/* Create the signatured type hash table from the index. */
673bfd45 2810
74a0d9f6 2811static void
673bfd45 2812create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2813 struct dwarf2_section_info *section,
673bfd45
DE
2814 const gdb_byte *bytes,
2815 offset_type elements)
1fd400ff
TT
2816{
2817 offset_type i;
673bfd45 2818 htab_t sig_types_hash;
1fd400ff 2819
6aa5f3a6
DE
2820 dwarf2_per_objfile->n_type_units
2821 = dwarf2_per_objfile->n_allocated_type_units
2822 = elements / 3;
d467dd73 2823 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2824 = xmalloc (dwarf2_per_objfile->n_type_units
2825 * sizeof (struct signatured_type *));
1fd400ff 2826
673bfd45 2827 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2828
2829 for (i = 0; i < elements; i += 3)
2830 {
52dc124a
DE
2831 struct signatured_type *sig_type;
2832 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2833 void **slot;
2834
74a0d9f6
JK
2835 gdb_static_assert (sizeof (ULONGEST) >= 8);
2836 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2837 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2838 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2839 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2840 bytes += 3 * 8;
2841
52dc124a 2842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2843 struct signatured_type);
52dc124a 2844 sig_type->signature = signature;
3019eac3
DE
2845 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2846 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2847 sig_type->per_cu.section = section;
52dc124a
DE
2848 sig_type->per_cu.offset.sect_off = offset;
2849 sig_type->per_cu.objfile = objfile;
2850 sig_type->per_cu.v.quick
1fd400ff
TT
2851 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2852 struct dwarf2_per_cu_quick_data);
2853
52dc124a
DE
2854 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2855 *slot = sig_type;
1fd400ff 2856
b4dd5633 2857 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2858 }
2859
673bfd45 2860 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2861}
2862
9291a0cd
TT
2863/* Read the address map data from the mapped index, and use it to
2864 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2865
9291a0cd
TT
2866static void
2867create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2868{
3e29f34a 2869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2870 const gdb_byte *iter, *end;
2871 struct obstack temp_obstack;
2872 struct addrmap *mutable_map;
2873 struct cleanup *cleanup;
2874 CORE_ADDR baseaddr;
2875
2876 obstack_init (&temp_obstack);
2877 cleanup = make_cleanup_obstack_free (&temp_obstack);
2878 mutable_map = addrmap_create_mutable (&temp_obstack);
2879
2880 iter = index->address_table;
2881 end = iter + index->address_table_size;
2882
2883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2884
2885 while (iter < end)
2886 {
2887 ULONGEST hi, lo, cu_index;
2888 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2889 iter += 8;
2890 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2891 iter += 8;
2892 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2893 iter += 4;
f652bce2 2894
24a55014 2895 if (lo > hi)
f652bce2 2896 {
24a55014
DE
2897 complaint (&symfile_complaints,
2898 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2899 hex_string (lo), hex_string (hi));
24a55014 2900 continue;
f652bce2 2901 }
24a55014
DE
2902
2903 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2904 {
2905 complaint (&symfile_complaints,
2906 _(".gdb_index address table has invalid CU number %u"),
2907 (unsigned) cu_index);
24a55014 2908 continue;
f652bce2 2909 }
24a55014 2910
3e29f34a
MR
2911 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2912 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2913 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2914 }
2915
2916 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2917 &objfile->objfile_obstack);
2918 do_cleanups (cleanup);
2919}
2920
59d7bcaf
JK
2921/* The hash function for strings in the mapped index. This is the same as
2922 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2923 implementation. This is necessary because the hash function is tied to the
2924 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2925 SYMBOL_HASH_NEXT.
2926
2927 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2928
9291a0cd 2929static hashval_t
559a7a62 2930mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2931{
2932 const unsigned char *str = (const unsigned char *) p;
2933 hashval_t r = 0;
2934 unsigned char c;
2935
2936 while ((c = *str++) != 0)
559a7a62
JK
2937 {
2938 if (index_version >= 5)
2939 c = tolower (c);
2940 r = r * 67 + c - 113;
2941 }
9291a0cd
TT
2942
2943 return r;
2944}
2945
2946/* Find a slot in the mapped index INDEX for the object named NAME.
2947 If NAME is found, set *VEC_OUT to point to the CU vector in the
2948 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2949
9291a0cd
TT
2950static int
2951find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2952 offset_type **vec_out)
2953{
0cf03b49
JK
2954 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2955 offset_type hash;
9291a0cd 2956 offset_type slot, step;
559a7a62 2957 int (*cmp) (const char *, const char *);
9291a0cd 2958
0cf03b49
JK
2959 if (current_language->la_language == language_cplus
2960 || current_language->la_language == language_java
2961 || current_language->la_language == language_fortran)
2962 {
2963 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2964 not contain any. */
a8719064 2965
72998fb3 2966 if (strchr (name, '(') != NULL)
0cf03b49 2967 {
72998fb3 2968 char *without_params = cp_remove_params (name);
0cf03b49 2969
72998fb3
DE
2970 if (without_params != NULL)
2971 {
2972 make_cleanup (xfree, without_params);
2973 name = without_params;
2974 }
0cf03b49
JK
2975 }
2976 }
2977
559a7a62 2978 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2979 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2980 simulate our NAME being searched is also lowercased. */
2981 hash = mapped_index_string_hash ((index->version == 4
2982 && case_sensitivity == case_sensitive_off
2983 ? 5 : index->version),
2984 name);
2985
3876f04e
DE
2986 slot = hash & (index->symbol_table_slots - 1);
2987 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2988 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2989
2990 for (;;)
2991 {
2992 /* Convert a slot number to an offset into the table. */
2993 offset_type i = 2 * slot;
2994 const char *str;
3876f04e 2995 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2996 {
2997 do_cleanups (back_to);
2998 return 0;
2999 }
9291a0cd 3000
3876f04e 3001 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3002 if (!cmp (name, str))
9291a0cd
TT
3003 {
3004 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3005 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3006 do_cleanups (back_to);
9291a0cd
TT
3007 return 1;
3008 }
3009
3876f04e 3010 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3011 }
3012}
3013
2ec9a5e0
TT
3014/* A helper function that reads the .gdb_index from SECTION and fills
3015 in MAP. FILENAME is the name of the file containing the section;
3016 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3017 ok to use deprecated sections.
3018
3019 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3020 out parameters that are filled in with information about the CU and
3021 TU lists in the section.
3022
3023 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3024
9291a0cd 3025static int
2ec9a5e0
TT
3026read_index_from_section (struct objfile *objfile,
3027 const char *filename,
3028 int deprecated_ok,
3029 struct dwarf2_section_info *section,
3030 struct mapped_index *map,
3031 const gdb_byte **cu_list,
3032 offset_type *cu_list_elements,
3033 const gdb_byte **types_list,
3034 offset_type *types_list_elements)
9291a0cd 3035{
948f8e3d 3036 const gdb_byte *addr;
2ec9a5e0 3037 offset_type version;
b3b272e1 3038 offset_type *metadata;
1fd400ff 3039 int i;
9291a0cd 3040
2ec9a5e0 3041 if (dwarf2_section_empty_p (section))
9291a0cd 3042 return 0;
82430852
JK
3043
3044 /* Older elfutils strip versions could keep the section in the main
3045 executable while splitting it for the separate debug info file. */
a32a8923 3046 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3047 return 0;
3048
2ec9a5e0 3049 dwarf2_read_section (objfile, section);
9291a0cd 3050
2ec9a5e0 3051 addr = section->buffer;
9291a0cd 3052 /* Version check. */
1fd400ff 3053 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3054 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3055 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3056 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3057 indices. */
831adc1f 3058 if (version < 4)
481860b3
GB
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3064 filename);
481860b3
GB
3065 warning_printed = 1;
3066 }
3067 return 0;
3068 }
3069 /* Index version 4 uses a different hash function than index version
3070 5 and later.
3071
3072 Versions earlier than 6 did not emit psymbols for inlined
3073 functions. Using these files will cause GDB not to be able to
3074 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3075 indices unless the user has done
3076 "set use-deprecated-index-sections on". */
2ec9a5e0 3077 if (version < 6 && !deprecated_ok)
481860b3
GB
3078 {
3079 static int warning_printed = 0;
3080 if (!warning_printed)
3081 {
e615022a
DE
3082 warning (_("\
3083Skipping deprecated .gdb_index section in %s.\n\
3084Do \"set use-deprecated-index-sections on\" before the file is read\n\
3085to use the section anyway."),
2ec9a5e0 3086 filename);
481860b3
GB
3087 warning_printed = 1;
3088 }
3089 return 0;
3090 }
796a7ff8 3091 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3092 of the TU (for symbols coming from TUs),
3093 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3094 Plus gold-generated indices can have duplicate entries for global symbols,
3095 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3096 These are just performance bugs, and we can't distinguish gdb-generated
3097 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3098
481860b3 3099 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3100 longer backward compatible. */
796a7ff8 3101 if (version > 8)
594e8718 3102 return 0;
9291a0cd 3103
559a7a62 3104 map->version = version;
2ec9a5e0 3105 map->total_size = section->size;
9291a0cd
TT
3106
3107 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3108
3109 i = 0;
2ec9a5e0
TT
3110 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3111 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3112 / 8);
1fd400ff
TT
3113 ++i;
3114
2ec9a5e0
TT
3115 *types_list = addr + MAYBE_SWAP (metadata[i]);
3116 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3117 - MAYBE_SWAP (metadata[i]))
3118 / 8);
987d643c 3119 ++i;
1fd400ff
TT
3120
3121 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3122 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3123 - MAYBE_SWAP (metadata[i]));
3124 ++i;
3125
3876f04e
DE
3126 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3127 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3129 / (2 * sizeof (offset_type)));
1fd400ff 3130 ++i;
9291a0cd 3131
f9d83a0b 3132 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3133
2ec9a5e0
TT
3134 return 1;
3135}
3136
3137
3138/* Read the index file. If everything went ok, initialize the "quick"
3139 elements of all the CUs and return 1. Otherwise, return 0. */
3140
3141static int
3142dwarf2_read_index (struct objfile *objfile)
3143{
3144 struct mapped_index local_map, *map;
3145 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3146 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3147 struct dwz_file *dwz;
2ec9a5e0 3148
4262abfb 3149 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3150 use_deprecated_index_sections,
3151 &dwarf2_per_objfile->gdb_index, &local_map,
3152 &cu_list, &cu_list_elements,
3153 &types_list, &types_list_elements))
3154 return 0;
3155
0fefef59 3156 /* Don't use the index if it's empty. */
2ec9a5e0 3157 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3158 return 0;
3159
2ec9a5e0
TT
3160 /* If there is a .dwz file, read it so we can get its CU list as
3161 well. */
4db1a1dc
TT
3162 dwz = dwarf2_get_dwz_file ();
3163 if (dwz != NULL)
2ec9a5e0 3164 {
2ec9a5e0
TT
3165 struct mapped_index dwz_map;
3166 const gdb_byte *dwz_types_ignore;
3167 offset_type dwz_types_elements_ignore;
3168
3169 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3170 1,
3171 &dwz->gdb_index, &dwz_map,
3172 &dwz_list, &dwz_list_elements,
3173 &dwz_types_ignore,
3174 &dwz_types_elements_ignore))
3175 {
3176 warning (_("could not read '.gdb_index' section from %s; skipping"),
3177 bfd_get_filename (dwz->dwz_bfd));
3178 return 0;
3179 }
3180 }
3181
74a0d9f6
JK
3182 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3183 dwz_list_elements);
1fd400ff 3184
8b70b953
TT
3185 if (types_list_elements)
3186 {
3187 struct dwarf2_section_info *section;
3188
3189 /* We can only handle a single .debug_types when we have an
3190 index. */
3191 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3192 return 0;
3193
3194 section = VEC_index (dwarf2_section_info_def,
3195 dwarf2_per_objfile->types, 0);
3196
74a0d9f6
JK
3197 create_signatured_type_table_from_index (objfile, section, types_list,
3198 types_list_elements);
8b70b953 3199 }
9291a0cd 3200
2ec9a5e0
TT
3201 create_addrmap_from_index (objfile, &local_map);
3202
3203 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3204 *map = local_map;
9291a0cd
TT
3205
3206 dwarf2_per_objfile->index_table = map;
3207 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3208 dwarf2_per_objfile->quick_file_names_table =
3209 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3210
3211 return 1;
3212}
3213
3214/* A helper for the "quick" functions which sets the global
3215 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3216
9291a0cd
TT
3217static void
3218dw2_setup (struct objfile *objfile)
3219{
3220 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3221 gdb_assert (dwarf2_per_objfile);
3222}
3223
dee91e82 3224/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3225
dee91e82
DE
3226static void
3227dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3228 const gdb_byte *info_ptr,
dee91e82
DE
3229 struct die_info *comp_unit_die,
3230 int has_children,
3231 void *data)
9291a0cd 3232{
dee91e82
DE
3233 struct dwarf2_cu *cu = reader->cu;
3234 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3235 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3236 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3237 struct line_header *lh;
9291a0cd 3238 struct attribute *attr;
dee91e82 3239 int i;
15d034d0 3240 const char *name, *comp_dir;
7b9f3c50
DE
3241 void **slot;
3242 struct quick_file_names *qfn;
3243 unsigned int line_offset;
9291a0cd 3244
0186c6a7
DE
3245 gdb_assert (! this_cu->is_debug_types);
3246
07261596
TT
3247 /* Our callers never want to match partial units -- instead they
3248 will match the enclosing full CU. */
3249 if (comp_unit_die->tag == DW_TAG_partial_unit)
3250 {
3251 this_cu->v.quick->no_file_data = 1;
3252 return;
3253 }
3254
0186c6a7 3255 lh_cu = this_cu;
7b9f3c50
DE
3256 lh = NULL;
3257 slot = NULL;
3258 line_offset = 0;
dee91e82
DE
3259
3260 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3261 if (attr)
3262 {
7b9f3c50
DE
3263 struct quick_file_names find_entry;
3264
3265 line_offset = DW_UNSND (attr);
3266
3267 /* We may have already read in this line header (TU line header sharing).
3268 If we have we're done. */
094b34ac
DE
3269 find_entry.hash.dwo_unit = cu->dwo_unit;
3270 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3271 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3272 &find_entry, INSERT);
3273 if (*slot != NULL)
3274 {
094b34ac 3275 lh_cu->v.quick->file_names = *slot;
dee91e82 3276 return;
7b9f3c50
DE
3277 }
3278
3019eac3 3279 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3280 }
3281 if (lh == NULL)
3282 {
094b34ac 3283 lh_cu->v.quick->no_file_data = 1;
dee91e82 3284 return;
9291a0cd
TT
3285 }
3286
7b9f3c50 3287 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3288 qfn->hash.dwo_unit = cu->dwo_unit;
3289 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3290 gdb_assert (slot != NULL);
3291 *slot = qfn;
9291a0cd 3292
dee91e82 3293 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3294
7b9f3c50
DE
3295 qfn->num_file_names = lh->num_file_names;
3296 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3297 lh->num_file_names * sizeof (char *));
9291a0cd 3298 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3299 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3300 qfn->real_names = NULL;
9291a0cd 3301
7b9f3c50 3302 free_line_header (lh);
7b9f3c50 3303
094b34ac 3304 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3305}
3306
3307/* A helper for the "quick" functions which attempts to read the line
3308 table for THIS_CU. */
3309
3310static struct quick_file_names *
e4a48d9d 3311dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3312{
0186c6a7
DE
3313 /* This should never be called for TUs. */
3314 gdb_assert (! this_cu->is_debug_types);
3315 /* Nor type unit groups. */
3316 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3317
dee91e82
DE
3318 if (this_cu->v.quick->file_names != NULL)
3319 return this_cu->v.quick->file_names;
3320 /* If we know there is no line data, no point in looking again. */
3321 if (this_cu->v.quick->no_file_data)
3322 return NULL;
3323
0186c6a7 3324 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3325
3326 if (this_cu->v.quick->no_file_data)
3327 return NULL;
3328 return this_cu->v.quick->file_names;
9291a0cd
TT
3329}
3330
3331/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3332 real path for a given file name from the line table. */
2fdf6df6 3333
9291a0cd 3334static const char *
7b9f3c50
DE
3335dw2_get_real_path (struct objfile *objfile,
3336 struct quick_file_names *qfn, int index)
9291a0cd 3337{
7b9f3c50
DE
3338 if (qfn->real_names == NULL)
3339 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3340 qfn->num_file_names, const char *);
9291a0cd 3341
7b9f3c50
DE
3342 if (qfn->real_names[index] == NULL)
3343 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3344
7b9f3c50 3345 return qfn->real_names[index];
9291a0cd
TT
3346}
3347
3348static struct symtab *
3349dw2_find_last_source_symtab (struct objfile *objfile)
3350{
43f3e411 3351 struct compunit_symtab *cust;
9291a0cd 3352 int index;
ae2de4f8 3353
9291a0cd
TT
3354 dw2_setup (objfile);
3355 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3356 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3357 if (cust == NULL)
3358 return NULL;
3359 return compunit_primary_filetab (cust);
9291a0cd
TT
3360}
3361
7b9f3c50
DE
3362/* Traversal function for dw2_forget_cached_source_info. */
3363
3364static int
3365dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3366{
7b9f3c50 3367 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3368
7b9f3c50 3369 if (file_data->real_names)
9291a0cd 3370 {
7b9f3c50 3371 int i;
9291a0cd 3372
7b9f3c50 3373 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3374 {
7b9f3c50
DE
3375 xfree ((void*) file_data->real_names[i]);
3376 file_data->real_names[i] = NULL;
9291a0cd
TT
3377 }
3378 }
7b9f3c50
DE
3379
3380 return 1;
3381}
3382
3383static void
3384dw2_forget_cached_source_info (struct objfile *objfile)
3385{
3386 dw2_setup (objfile);
3387
3388 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3389 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3390}
3391
f8eba3c6
TT
3392/* Helper function for dw2_map_symtabs_matching_filename that expands
3393 the symtabs and calls the iterator. */
3394
3395static int
3396dw2_map_expand_apply (struct objfile *objfile,
3397 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3398 const char *name, const char *real_path,
f8eba3c6
TT
3399 int (*callback) (struct symtab *, void *),
3400 void *data)
3401{
43f3e411 3402 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3403
3404 /* Don't visit already-expanded CUs. */
43f3e411 3405 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3406 return 0;
3407
3408 /* This may expand more than one symtab, and we want to iterate over
3409 all of them. */
a0f42c21 3410 dw2_instantiate_symtab (per_cu);
f8eba3c6 3411
f5b95b50 3412 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3413 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3414}
3415
3416/* Implementation of the map_symtabs_matching_filename method. */
3417
9291a0cd 3418static int
f8eba3c6 3419dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3420 const char *real_path,
f8eba3c6
TT
3421 int (*callback) (struct symtab *, void *),
3422 void *data)
9291a0cd
TT
3423{
3424 int i;
c011a4f4 3425 const char *name_basename = lbasename (name);
9291a0cd
TT
3426
3427 dw2_setup (objfile);
ae2de4f8 3428
848e3e78
DE
3429 /* The rule is CUs specify all the files, including those used by
3430 any TU, so there's no need to scan TUs here. */
f4dc4d17 3431
848e3e78 3432 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3433 {
3434 int j;
8832e7e3 3435 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3436 struct quick_file_names *file_data;
9291a0cd 3437
3d7bb9d9 3438 /* We only need to look at symtabs not already expanded. */
43f3e411 3439 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3440 continue;
3441
e4a48d9d 3442 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3443 if (file_data == NULL)
9291a0cd
TT
3444 continue;
3445
7b9f3c50 3446 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3447 {
7b9f3c50 3448 const char *this_name = file_data->file_names[j];
da235a7c 3449 const char *this_real_name;
9291a0cd 3450
af529f8f 3451 if (compare_filenames_for_search (this_name, name))
9291a0cd 3452 {
f5b95b50 3453 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3454 callback, data))
3455 return 1;
288e77a7 3456 continue;
4aac40c8 3457 }
9291a0cd 3458
c011a4f4
DE
3459 /* Before we invoke realpath, which can get expensive when many
3460 files are involved, do a quick comparison of the basenames. */
3461 if (! basenames_may_differ
3462 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3463 continue;
3464
da235a7c
JK
3465 this_real_name = dw2_get_real_path (objfile, file_data, j);
3466 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3467 {
da235a7c
JK
3468 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3469 callback, data))
3470 return 1;
288e77a7 3471 continue;
da235a7c 3472 }
9291a0cd 3473
da235a7c
JK
3474 if (real_path != NULL)
3475 {
af529f8f
JK
3476 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3477 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3478 if (this_real_name != NULL
af529f8f 3479 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3480 {
f5b95b50 3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3482 callback, data))
3483 return 1;
288e77a7 3484 continue;
9291a0cd
TT
3485 }
3486 }
3487 }
3488 }
3489
9291a0cd
TT
3490 return 0;
3491}
3492
da51c347
DE
3493/* Struct used to manage iterating over all CUs looking for a symbol. */
3494
3495struct dw2_symtab_iterator
9291a0cd 3496{
da51c347
DE
3497 /* The internalized form of .gdb_index. */
3498 struct mapped_index *index;
3499 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3500 int want_specific_block;
3501 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3502 Unused if !WANT_SPECIFIC_BLOCK. */
3503 int block_index;
3504 /* The kind of symbol we're looking for. */
3505 domain_enum domain;
3506 /* The list of CUs from the index entry of the symbol,
3507 or NULL if not found. */
3508 offset_type *vec;
3509 /* The next element in VEC to look at. */
3510 int next;
3511 /* The number of elements in VEC, or zero if there is no match. */
3512 int length;
8943b874
DE
3513 /* Have we seen a global version of the symbol?
3514 If so we can ignore all further global instances.
3515 This is to work around gold/15646, inefficient gold-generated
3516 indices. */
3517 int global_seen;
da51c347 3518};
9291a0cd 3519
da51c347
DE
3520/* Initialize the index symtab iterator ITER.
3521 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3522 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3523
9291a0cd 3524static void
da51c347
DE
3525dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3526 struct mapped_index *index,
3527 int want_specific_block,
3528 int block_index,
3529 domain_enum domain,
3530 const char *name)
3531{
3532 iter->index = index;
3533 iter->want_specific_block = want_specific_block;
3534 iter->block_index = block_index;
3535 iter->domain = domain;
3536 iter->next = 0;
8943b874 3537 iter->global_seen = 0;
da51c347
DE
3538
3539 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3540 iter->length = MAYBE_SWAP (*iter->vec);
3541 else
3542 {
3543 iter->vec = NULL;
3544 iter->length = 0;
3545 }
3546}
3547
3548/* Return the next matching CU or NULL if there are no more. */
3549
3550static struct dwarf2_per_cu_data *
3551dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3552{
3553 for ( ; iter->next < iter->length; ++iter->next)
3554 {
3555 offset_type cu_index_and_attrs =
3556 MAYBE_SWAP (iter->vec[iter->next + 1]);
3557 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3558 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3559 int want_static = iter->block_index != GLOBAL_BLOCK;
3560 /* This value is only valid for index versions >= 7. */
3561 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3562 gdb_index_symbol_kind symbol_kind =
3563 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3564 /* Only check the symbol attributes if they're present.
3565 Indices prior to version 7 don't record them,
3566 and indices >= 7 may elide them for certain symbols
3567 (gold does this). */
3568 int attrs_valid =
3569 (iter->index->version >= 7
3570 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3571
3190f0c6
DE
3572 /* Don't crash on bad data. */
3573 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3574 + dwarf2_per_objfile->n_type_units))
3575 {
3576 complaint (&symfile_complaints,
3577 _(".gdb_index entry has bad CU index"
4262abfb
JK
3578 " [in module %s]"),
3579 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3580 continue;
3581 }
3582
8832e7e3 3583 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3584
da51c347 3585 /* Skip if already read in. */
43f3e411 3586 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3587 continue;
3588
8943b874
DE
3589 /* Check static vs global. */
3590 if (attrs_valid)
3591 {
3592 if (iter->want_specific_block
3593 && want_static != is_static)
3594 continue;
3595 /* Work around gold/15646. */
3596 if (!is_static && iter->global_seen)
3597 continue;
3598 if (!is_static)
3599 iter->global_seen = 1;
3600 }
da51c347
DE
3601
3602 /* Only check the symbol's kind if it has one. */
3603 if (attrs_valid)
3604 {
3605 switch (iter->domain)
3606 {
3607 case VAR_DOMAIN:
3608 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3609 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3610 /* Some types are also in VAR_DOMAIN. */
3611 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3612 continue;
3613 break;
3614 case STRUCT_DOMAIN:
3615 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3616 continue;
3617 break;
3618 case LABEL_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3620 continue;
3621 break;
3622 default:
3623 break;
3624 }
3625 }
3626
3627 ++iter->next;
3628 return per_cu;
3629 }
3630
3631 return NULL;
3632}
3633
43f3e411 3634static struct compunit_symtab *
da51c347
DE
3635dw2_lookup_symbol (struct objfile *objfile, int block_index,
3636 const char *name, domain_enum domain)
9291a0cd 3637{
43f3e411 3638 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3639 struct mapped_index *index;
3640
9291a0cd
TT
3641 dw2_setup (objfile);
3642
156942c7
DE
3643 index = dwarf2_per_objfile->index_table;
3644
da51c347 3645 /* index is NULL if OBJF_READNOW. */
156942c7 3646 if (index)
9291a0cd 3647 {
da51c347
DE
3648 struct dw2_symtab_iterator iter;
3649 struct dwarf2_per_cu_data *per_cu;
3650
3651 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3652
da51c347 3653 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3654 {
da51c347 3655 struct symbol *sym = NULL;
43f3e411
DE
3656 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3657 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3658 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347
DE
3659
3660 /* Some caution must be observed with overloaded functions
3661 and methods, since the index will not contain any overload
3662 information (but NAME might contain it). */
f194fefb 3663 sym = block_lookup_symbol (block, name, domain);
1fd400ff 3664
da51c347
DE
3665 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3666 {
3667 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3668 return stab;
3669
3670 stab_best = stab;
9291a0cd 3671 }
da51c347
DE
3672
3673 /* Keep looking through other CUs. */
9291a0cd
TT
3674 }
3675 }
9291a0cd 3676
da51c347 3677 return stab_best;
9291a0cd
TT
3678}
3679
3680static void
3681dw2_print_stats (struct objfile *objfile)
3682{
e4a48d9d 3683 int i, total, count;
9291a0cd
TT
3684
3685 dw2_setup (objfile);
e4a48d9d 3686 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3687 count = 0;
e4a48d9d 3688 for (i = 0; i < total; ++i)
9291a0cd 3689 {
8832e7e3 3690 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3691
43f3e411 3692 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3693 ++count;
3694 }
e4a48d9d 3695 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3696 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3697}
3698
779bd270
DE
3699/* This dumps minimal information about the index.
3700 It is called via "mt print objfiles".
3701 One use is to verify .gdb_index has been loaded by the
3702 gdb.dwarf2/gdb-index.exp testcase. */
3703
9291a0cd
TT
3704static void
3705dw2_dump (struct objfile *objfile)
3706{
779bd270
DE
3707 dw2_setup (objfile);
3708 gdb_assert (dwarf2_per_objfile->using_index);
3709 printf_filtered (".gdb_index:");
3710 if (dwarf2_per_objfile->index_table != NULL)
3711 {
3712 printf_filtered (" version %d\n",
3713 dwarf2_per_objfile->index_table->version);
3714 }
3715 else
3716 printf_filtered (" faked for \"readnow\"\n");
3717 printf_filtered ("\n");
9291a0cd
TT
3718}
3719
3720static void
3189cb12
DE
3721dw2_relocate (struct objfile *objfile,
3722 const struct section_offsets *new_offsets,
3723 const struct section_offsets *delta)
9291a0cd
TT
3724{
3725 /* There's nothing to relocate here. */
3726}
3727
3728static void
3729dw2_expand_symtabs_for_function (struct objfile *objfile,
3730 const char *func_name)
3731{
da51c347
DE
3732 struct mapped_index *index;
3733
3734 dw2_setup (objfile);
3735
3736 index = dwarf2_per_objfile->index_table;
3737
3738 /* index is NULL if OBJF_READNOW. */
3739 if (index)
3740 {
3741 struct dw2_symtab_iterator iter;
3742 struct dwarf2_per_cu_data *per_cu;
3743
3744 /* Note: It doesn't matter what we pass for block_index here. */
3745 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3746 func_name);
3747
3748 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3749 dw2_instantiate_symtab (per_cu);
3750 }
9291a0cd
TT
3751}
3752
3753static void
3754dw2_expand_all_symtabs (struct objfile *objfile)
3755{
3756 int i;
3757
3758 dw2_setup (objfile);
1fd400ff
TT
3759
3760 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3761 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3762 {
8832e7e3 3763 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3764
a0f42c21 3765 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3766 }
3767}
3768
3769static void
652a8996
JK
3770dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3771 const char *fullname)
9291a0cd
TT
3772{
3773 int i;
3774
3775 dw2_setup (objfile);
d4637a04
DE
3776
3777 /* We don't need to consider type units here.
3778 This is only called for examining code, e.g. expand_line_sal.
3779 There can be an order of magnitude (or more) more type units
3780 than comp units, and we avoid them if we can. */
3781
3782 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3783 {
3784 int j;
8832e7e3 3785 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3786 struct quick_file_names *file_data;
9291a0cd 3787
3d7bb9d9 3788 /* We only need to look at symtabs not already expanded. */
43f3e411 3789 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3790 continue;
3791
e4a48d9d 3792 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3793 if (file_data == NULL)
9291a0cd
TT
3794 continue;
3795
7b9f3c50 3796 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3797 {
652a8996
JK
3798 const char *this_fullname = file_data->file_names[j];
3799
3800 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3801 {
a0f42c21 3802 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3803 break;
3804 }
3805 }
3806 }
3807}
3808
9291a0cd 3809static void
ade7ed9e
DE
3810dw2_map_matching_symbols (struct objfile *objfile,
3811 const char * name, domain_enum namespace,
3812 int global,
40658b94
PH
3813 int (*callback) (struct block *,
3814 struct symbol *, void *),
2edb89d3
JK
3815 void *data, symbol_compare_ftype *match,
3816 symbol_compare_ftype *ordered_compare)
9291a0cd 3817{
40658b94 3818 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3819 current language is Ada for a non-Ada objfile using GNU index. As Ada
3820 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3821}
3822
3823static void
f8eba3c6
TT
3824dw2_expand_symtabs_matching
3825 (struct objfile *objfile,
206f2a57
DE
3826 expand_symtabs_file_matcher_ftype *file_matcher,
3827 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3828 enum search_domain kind,
3829 void *data)
9291a0cd
TT
3830{
3831 int i;
3832 offset_type iter;
4b5246aa 3833 struct mapped_index *index;
9291a0cd
TT
3834
3835 dw2_setup (objfile);
ae2de4f8
DE
3836
3837 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3838 if (!dwarf2_per_objfile->index_table)
3839 return;
4b5246aa 3840 index = dwarf2_per_objfile->index_table;
9291a0cd 3841
7b08b9eb 3842 if (file_matcher != NULL)
24c79950
TT
3843 {
3844 struct cleanup *cleanup;
3845 htab_t visited_found, visited_not_found;
3846
3847 visited_found = htab_create_alloc (10,
3848 htab_hash_pointer, htab_eq_pointer,
3849 NULL, xcalloc, xfree);
3850 cleanup = make_cleanup_htab_delete (visited_found);
3851 visited_not_found = htab_create_alloc (10,
3852 htab_hash_pointer, htab_eq_pointer,
3853 NULL, xcalloc, xfree);
3854 make_cleanup_htab_delete (visited_not_found);
3855
848e3e78
DE
3856 /* The rule is CUs specify all the files, including those used by
3857 any TU, so there's no need to scan TUs here. */
3858
3859 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3860 {
3861 int j;
8832e7e3 3862 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3863 struct quick_file_names *file_data;
3864 void **slot;
7b08b9eb 3865
24c79950 3866 per_cu->v.quick->mark = 0;
3d7bb9d9 3867
24c79950 3868 /* We only need to look at symtabs not already expanded. */
43f3e411 3869 if (per_cu->v.quick->compunit_symtab)
24c79950 3870 continue;
7b08b9eb 3871
e4a48d9d 3872 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3873 if (file_data == NULL)
3874 continue;
7b08b9eb 3875
24c79950
TT
3876 if (htab_find (visited_not_found, file_data) != NULL)
3877 continue;
3878 else if (htab_find (visited_found, file_data) != NULL)
3879 {
3880 per_cu->v.quick->mark = 1;
3881 continue;
3882 }
3883
3884 for (j = 0; j < file_data->num_file_names; ++j)
3885 {
da235a7c
JK
3886 const char *this_real_name;
3887
fbd9ab74 3888 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3889 {
3890 per_cu->v.quick->mark = 1;
3891 break;
3892 }
da235a7c
JK
3893
3894 /* Before we invoke realpath, which can get expensive when many
3895 files are involved, do a quick comparison of the basenames. */
3896 if (!basenames_may_differ
3897 && !file_matcher (lbasename (file_data->file_names[j]),
3898 data, 1))
3899 continue;
3900
3901 this_real_name = dw2_get_real_path (objfile, file_data, j);
3902 if (file_matcher (this_real_name, data, 0))
3903 {
3904 per_cu->v.quick->mark = 1;
3905 break;
3906 }
24c79950
TT
3907 }
3908
3909 slot = htab_find_slot (per_cu->v.quick->mark
3910 ? visited_found
3911 : visited_not_found,
3912 file_data, INSERT);
3913 *slot = file_data;
3914 }
3915
3916 do_cleanups (cleanup);
3917 }
9291a0cd 3918
3876f04e 3919 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3920 {
3921 offset_type idx = 2 * iter;
3922 const char *name;
3923 offset_type *vec, vec_len, vec_idx;
8943b874 3924 int global_seen = 0;
9291a0cd 3925
3876f04e 3926 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3927 continue;
3928
3876f04e 3929 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3930
206f2a57 3931 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3932 continue;
3933
3934 /* The name was matched, now expand corresponding CUs that were
3935 marked. */
4b5246aa 3936 vec = (offset_type *) (index->constant_pool
3876f04e 3937 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3938 vec_len = MAYBE_SWAP (vec[0]);
3939 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3940 {
e254ef6a 3941 struct dwarf2_per_cu_data *per_cu;
156942c7 3942 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3943 /* This value is only valid for index versions >= 7. */
3944 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3945 gdb_index_symbol_kind symbol_kind =
3946 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3947 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3948 /* Only check the symbol attributes if they're present.
3949 Indices prior to version 7 don't record them,
3950 and indices >= 7 may elide them for certain symbols
3951 (gold does this). */
3952 int attrs_valid =
3953 (index->version >= 7
3954 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3955
8943b874
DE
3956 /* Work around gold/15646. */
3957 if (attrs_valid)
3958 {
3959 if (!is_static && global_seen)
3960 continue;
3961 if (!is_static)
3962 global_seen = 1;
3963 }
3964
3190f0c6
DE
3965 /* Only check the symbol's kind if it has one. */
3966 if (attrs_valid)
156942c7
DE
3967 {
3968 switch (kind)
3969 {
3970 case VARIABLES_DOMAIN:
3971 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3972 continue;
3973 break;
3974 case FUNCTIONS_DOMAIN:
3975 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3976 continue;
3977 break;
3978 case TYPES_DOMAIN:
3979 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3980 continue;
3981 break;
3982 default:
3983 break;
3984 }
3985 }
3986
3190f0c6
DE
3987 /* Don't crash on bad data. */
3988 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3989 + dwarf2_per_objfile->n_type_units))
3990 {
3991 complaint (&symfile_complaints,
3992 _(".gdb_index entry has bad CU index"
4262abfb 3993 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3994 continue;
3995 }
3996
8832e7e3 3997 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3998 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3999 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4000 }
4001 }
4002}
4003
43f3e411 4004/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4005 symtab. */
4006
43f3e411
DE
4007static struct compunit_symtab *
4008recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4009 CORE_ADDR pc)
9703b513
TT
4010{
4011 int i;
4012
43f3e411
DE
4013 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4014 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4015 return cust;
9703b513 4016
43f3e411 4017 if (cust->includes == NULL)
a3ec0bb1
DE
4018 return NULL;
4019
43f3e411 4020 for (i = 0; cust->includes[i]; ++i)
9703b513 4021 {
43f3e411 4022 struct compunit_symtab *s = cust->includes[i];
9703b513 4023
43f3e411 4024 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4025 if (s != NULL)
4026 return s;
4027 }
4028
4029 return NULL;
4030}
4031
43f3e411
DE
4032static struct compunit_symtab *
4033dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4034 struct bound_minimal_symbol msymbol,
4035 CORE_ADDR pc,
4036 struct obj_section *section,
4037 int warn_if_readin)
9291a0cd
TT
4038{
4039 struct dwarf2_per_cu_data *data;
43f3e411 4040 struct compunit_symtab *result;
9291a0cd
TT
4041
4042 dw2_setup (objfile);
4043
4044 if (!objfile->psymtabs_addrmap)
4045 return NULL;
4046
4047 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4048 if (!data)
4049 return NULL;
4050
43f3e411 4051 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4052 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4053 paddress (get_objfile_arch (objfile), pc));
4054
43f3e411
DE
4055 result
4056 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4057 pc);
9703b513
TT
4058 gdb_assert (result != NULL);
4059 return result;
9291a0cd
TT
4060}
4061
9291a0cd 4062static void
44b13c5a 4063dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4064 void *data, int need_fullname)
9291a0cd
TT
4065{
4066 int i;
24c79950
TT
4067 struct cleanup *cleanup;
4068 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4069 NULL, xcalloc, xfree);
9291a0cd 4070
24c79950 4071 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4072 dw2_setup (objfile);
ae2de4f8 4073
848e3e78
DE
4074 /* The rule is CUs specify all the files, including those used by
4075 any TU, so there's no need to scan TUs here.
4076 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4077
848e3e78 4078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4079 {
8832e7e3 4080 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4081
43f3e411 4082 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4083 {
4084 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4085 INSERT);
4086
4087 *slot = per_cu->v.quick->file_names;
4088 }
4089 }
4090
848e3e78 4091 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4092 {
4093 int j;
8832e7e3 4094 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4095 struct quick_file_names *file_data;
24c79950 4096 void **slot;
9291a0cd 4097
3d7bb9d9 4098 /* We only need to look at symtabs not already expanded. */
43f3e411 4099 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4100 continue;
4101
e4a48d9d 4102 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4103 if (file_data == NULL)
9291a0cd
TT
4104 continue;
4105
24c79950
TT
4106 slot = htab_find_slot (visited, file_data, INSERT);
4107 if (*slot)
4108 {
4109 /* Already visited. */
4110 continue;
4111 }
4112 *slot = file_data;
4113
7b9f3c50 4114 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4115 {
74e2f255
DE
4116 const char *this_real_name;
4117
4118 if (need_fullname)
4119 this_real_name = dw2_get_real_path (objfile, file_data, j);
4120 else
4121 this_real_name = NULL;
7b9f3c50 4122 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4123 }
4124 }
24c79950
TT
4125
4126 do_cleanups (cleanup);
9291a0cd
TT
4127}
4128
4129static int
4130dw2_has_symbols (struct objfile *objfile)
4131{
4132 return 1;
4133}
4134
4135const struct quick_symbol_functions dwarf2_gdb_index_functions =
4136{
4137 dw2_has_symbols,
4138 dw2_find_last_source_symtab,
4139 dw2_forget_cached_source_info,
f8eba3c6 4140 dw2_map_symtabs_matching_filename,
9291a0cd 4141 dw2_lookup_symbol,
9291a0cd
TT
4142 dw2_print_stats,
4143 dw2_dump,
4144 dw2_relocate,
4145 dw2_expand_symtabs_for_function,
4146 dw2_expand_all_symtabs,
652a8996 4147 dw2_expand_symtabs_with_fullname,
40658b94 4148 dw2_map_matching_symbols,
9291a0cd 4149 dw2_expand_symtabs_matching,
43f3e411 4150 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4151 dw2_map_symbol_filenames
4152};
4153
4154/* Initialize for reading DWARF for this objfile. Return 0 if this
4155 file will use psymtabs, or 1 if using the GNU index. */
4156
4157int
4158dwarf2_initialize_objfile (struct objfile *objfile)
4159{
4160 /* If we're about to read full symbols, don't bother with the
4161 indices. In this case we also don't care if some other debug
4162 format is making psymtabs, because they are all about to be
4163 expanded anyway. */
4164 if ((objfile->flags & OBJF_READNOW))
4165 {
4166 int i;
4167
4168 dwarf2_per_objfile->using_index = 1;
4169 create_all_comp_units (objfile);
0e50663e 4170 create_all_type_units (objfile);
7b9f3c50
DE
4171 dwarf2_per_objfile->quick_file_names_table =
4172 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4173
1fd400ff 4174 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4175 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4176 {
8832e7e3 4177 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4178
e254ef6a
DE
4179 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4180 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4181 }
4182
4183 /* Return 1 so that gdb sees the "quick" functions. However,
4184 these functions will be no-ops because we will have expanded
4185 all symtabs. */
4186 return 1;
4187 }
4188
4189 if (dwarf2_read_index (objfile))
4190 return 1;
4191
9291a0cd
TT
4192 return 0;
4193}
4194
4195\f
4196
dce234bc
PP
4197/* Build a partial symbol table. */
4198
4199void
f29dff0a 4200dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4201{
c9bf0622
TT
4202 volatile struct gdb_exception except;
4203
f29dff0a 4204 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4205 {
4206 init_psymbol_list (objfile, 1024);
4207 }
4208
c9bf0622
TT
4209 TRY_CATCH (except, RETURN_MASK_ERROR)
4210 {
4211 /* This isn't really ideal: all the data we allocate on the
4212 objfile's obstack is still uselessly kept around. However,
4213 freeing it seems unsafe. */
4214 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4215
4216 dwarf2_build_psymtabs_hard (objfile);
4217 discard_cleanups (cleanups);
4218 }
4219 if (except.reason < 0)
4220 exception_print (gdb_stderr, except);
c906108c 4221}
c906108c 4222
1ce1cefd
DE
4223/* Return the total length of the CU described by HEADER. */
4224
4225static unsigned int
4226get_cu_length (const struct comp_unit_head *header)
4227{
4228 return header->initial_length_size + header->length;
4229}
4230
45452591
DE
4231/* Return TRUE if OFFSET is within CU_HEADER. */
4232
4233static inline int
b64f50a1 4234offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4235{
b64f50a1 4236 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4237 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4238
b64f50a1 4239 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4240}
4241
3b80fe9b
DE
4242/* Find the base address of the compilation unit for range lists and
4243 location lists. It will normally be specified by DW_AT_low_pc.
4244 In DWARF-3 draft 4, the base address could be overridden by
4245 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4246 compilation units with discontinuous ranges. */
4247
4248static void
4249dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4250{
4251 struct attribute *attr;
4252
4253 cu->base_known = 0;
4254 cu->base_address = 0;
4255
4256 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4257 if (attr)
4258 {
31aa7e4e 4259 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4260 cu->base_known = 1;
4261 }
4262 else
4263 {
4264 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4265 if (attr)
4266 {
31aa7e4e 4267 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4268 cu->base_known = 1;
4269 }
4270 }
4271}
4272
93311388
DE
4273/* Read in the comp unit header information from the debug_info at info_ptr.
4274 NOTE: This leaves members offset, first_die_offset to be filled in
4275 by the caller. */
107d2387 4276
d521ce57 4277static const gdb_byte *
107d2387 4278read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4279 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4280{
4281 int signed_addr;
891d2f0b 4282 unsigned int bytes_read;
c764a876
DE
4283
4284 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4285 cu_header->initial_length_size = bytes_read;
4286 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4287 info_ptr += bytes_read;
107d2387
AC
4288 cu_header->version = read_2_bytes (abfd, info_ptr);
4289 info_ptr += 2;
b64f50a1
JK
4290 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4291 &bytes_read);
613e1657 4292 info_ptr += bytes_read;
107d2387
AC
4293 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4294 info_ptr += 1;
4295 signed_addr = bfd_get_sign_extend_vma (abfd);
4296 if (signed_addr < 0)
8e65ff28 4297 internal_error (__FILE__, __LINE__,
e2e0b3e5 4298 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4299 cu_header->signed_addr_p = signed_addr;
c764a876 4300
107d2387
AC
4301 return info_ptr;
4302}
4303
36586728
TT
4304/* Helper function that returns the proper abbrev section for
4305 THIS_CU. */
4306
4307static struct dwarf2_section_info *
4308get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4309{
4310 struct dwarf2_section_info *abbrev;
4311
4312 if (this_cu->is_dwz)
4313 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4314 else
4315 abbrev = &dwarf2_per_objfile->abbrev;
4316
4317 return abbrev;
4318}
4319
9ff913ba
DE
4320/* Subroutine of read_and_check_comp_unit_head and
4321 read_and_check_type_unit_head to simplify them.
4322 Perform various error checking on the header. */
4323
4324static void
4325error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4326 struct dwarf2_section_info *section,
4327 struct dwarf2_section_info *abbrev_section)
9ff913ba 4328{
a32a8923
DE
4329 bfd *abfd = get_section_bfd_owner (section);
4330 const char *filename = get_section_file_name (section);
9ff913ba
DE
4331
4332 if (header->version != 2 && header->version != 3 && header->version != 4)
4333 error (_("Dwarf Error: wrong version in compilation unit header "
4334 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4335 filename);
4336
b64f50a1 4337 if (header->abbrev_offset.sect_off
36586728 4338 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4339 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4340 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4341 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4342 filename);
4343
4344 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4345 avoid potential 32-bit overflow. */
1ce1cefd 4346 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4347 > section->size)
4348 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4349 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4350 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4351 filename);
4352}
4353
4354/* Read in a CU/TU header and perform some basic error checking.
4355 The contents of the header are stored in HEADER.
4356 The result is a pointer to the start of the first DIE. */
adabb602 4357
d521ce57 4358static const gdb_byte *
9ff913ba
DE
4359read_and_check_comp_unit_head (struct comp_unit_head *header,
4360 struct dwarf2_section_info *section,
4bdcc0c1 4361 struct dwarf2_section_info *abbrev_section,
d521ce57 4362 const gdb_byte *info_ptr,
9ff913ba 4363 int is_debug_types_section)
72bf9492 4364{
d521ce57 4365 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4366 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4367
b64f50a1 4368 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4369
72bf9492
DJ
4370 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4371
460c1c54
CC
4372 /* If we're reading a type unit, skip over the signature and
4373 type_offset fields. */
b0df02fd 4374 if (is_debug_types_section)
460c1c54
CC
4375 info_ptr += 8 /*signature*/ + header->offset_size;
4376
b64f50a1 4377 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4378
4bdcc0c1 4379 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4380
4381 return info_ptr;
4382}
4383
348e048f
DE
4384/* Read in the types comp unit header information from .debug_types entry at
4385 types_ptr. The result is a pointer to one past the end of the header. */
4386
d521ce57 4387static const gdb_byte *
9ff913ba
DE
4388read_and_check_type_unit_head (struct comp_unit_head *header,
4389 struct dwarf2_section_info *section,
4bdcc0c1 4390 struct dwarf2_section_info *abbrev_section,
d521ce57 4391 const gdb_byte *info_ptr,
dee91e82
DE
4392 ULONGEST *signature,
4393 cu_offset *type_offset_in_tu)
348e048f 4394{
d521ce57 4395 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4396 bfd *abfd = get_section_bfd_owner (section);
348e048f 4397
b64f50a1 4398 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4399
9ff913ba 4400 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4401
9ff913ba
DE
4402 /* If we're reading a type unit, skip over the signature and
4403 type_offset fields. */
4404 if (signature != NULL)
4405 *signature = read_8_bytes (abfd, info_ptr);
4406 info_ptr += 8;
dee91e82
DE
4407 if (type_offset_in_tu != NULL)
4408 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4409 header->offset_size);
9ff913ba
DE
4410 info_ptr += header->offset_size;
4411
b64f50a1 4412 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4413
4bdcc0c1 4414 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4415
4416 return info_ptr;
348e048f
DE
4417}
4418
f4dc4d17
DE
4419/* Fetch the abbreviation table offset from a comp or type unit header. */
4420
4421static sect_offset
4422read_abbrev_offset (struct dwarf2_section_info *section,
4423 sect_offset offset)
4424{
a32a8923 4425 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4426 const gdb_byte *info_ptr;
f4dc4d17
DE
4427 unsigned int length, initial_length_size, offset_size;
4428 sect_offset abbrev_offset;
4429
4430 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4431 info_ptr = section->buffer + offset.sect_off;
4432 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4433 offset_size = initial_length_size == 4 ? 4 : 8;
4434 info_ptr += initial_length_size + 2 /*version*/;
4435 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4436 return abbrev_offset;
4437}
4438
aaa75496
JB
4439/* Allocate a new partial symtab for file named NAME and mark this new
4440 partial symtab as being an include of PST. */
4441
4442static void
d521ce57 4443dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4444 struct objfile *objfile)
4445{
4446 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4447
fbd9ab74
JK
4448 if (!IS_ABSOLUTE_PATH (subpst->filename))
4449 {
4450 /* It shares objfile->objfile_obstack. */
4451 subpst->dirname = pst->dirname;
4452 }
4453
aaa75496
JB
4454 subpst->section_offsets = pst->section_offsets;
4455 subpst->textlow = 0;
4456 subpst->texthigh = 0;
4457
4458 subpst->dependencies = (struct partial_symtab **)
4459 obstack_alloc (&objfile->objfile_obstack,
4460 sizeof (struct partial_symtab *));
4461 subpst->dependencies[0] = pst;
4462 subpst->number_of_dependencies = 1;
4463
4464 subpst->globals_offset = 0;
4465 subpst->n_global_syms = 0;
4466 subpst->statics_offset = 0;
4467 subpst->n_static_syms = 0;
43f3e411 4468 subpst->compunit_symtab = NULL;
aaa75496
JB
4469 subpst->read_symtab = pst->read_symtab;
4470 subpst->readin = 0;
4471
4472 /* No private part is necessary for include psymtabs. This property
4473 can be used to differentiate between such include psymtabs and
10b3939b 4474 the regular ones. */
58a9656e 4475 subpst->read_symtab_private = NULL;
aaa75496
JB
4476}
4477
4478/* Read the Line Number Program data and extract the list of files
4479 included by the source file represented by PST. Build an include
d85a05f0 4480 partial symtab for each of these included files. */
aaa75496
JB
4481
4482static void
4483dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4484 struct die_info *die,
4485 struct partial_symtab *pst)
aaa75496 4486{
d85a05f0
DJ
4487 struct line_header *lh = NULL;
4488 struct attribute *attr;
aaa75496 4489
d85a05f0
DJ
4490 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4491 if (attr)
3019eac3 4492 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4493 if (lh == NULL)
4494 return; /* No linetable, so no includes. */
4495
c6da4cef 4496 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4497 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4498
4499 free_line_header (lh);
4500}
4501
348e048f 4502static hashval_t
52dc124a 4503hash_signatured_type (const void *item)
348e048f 4504{
52dc124a 4505 const struct signatured_type *sig_type = item;
9a619af0 4506
348e048f 4507 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4508 return sig_type->signature;
348e048f
DE
4509}
4510
4511static int
52dc124a 4512eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4513{
4514 const struct signatured_type *lhs = item_lhs;
4515 const struct signatured_type *rhs = item_rhs;
9a619af0 4516
348e048f
DE
4517 return lhs->signature == rhs->signature;
4518}
4519
1fd400ff
TT
4520/* Allocate a hash table for signatured types. */
4521
4522static htab_t
673bfd45 4523allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4524{
4525 return htab_create_alloc_ex (41,
52dc124a
DE
4526 hash_signatured_type,
4527 eq_signatured_type,
1fd400ff
TT
4528 NULL,
4529 &objfile->objfile_obstack,
4530 hashtab_obstack_allocate,
4531 dummy_obstack_deallocate);
4532}
4533
d467dd73 4534/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4535
4536static int
d467dd73 4537add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4538{
4539 struct signatured_type *sigt = *slot;
b4dd5633 4540 struct signatured_type ***datap = datum;
1fd400ff 4541
b4dd5633 4542 **datap = sigt;
1fd400ff
TT
4543 ++*datap;
4544
4545 return 1;
4546}
4547
c88ee1f0
DE
4548/* Create the hash table of all entries in the .debug_types
4549 (or .debug_types.dwo) section(s).
4550 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4551 otherwise it is NULL.
4552
4553 The result is a pointer to the hash table or NULL if there are no types.
4554
4555 Note: This function processes DWO files only, not DWP files. */
348e048f 4556
3019eac3
DE
4557static htab_t
4558create_debug_types_hash_table (struct dwo_file *dwo_file,
4559 VEC (dwarf2_section_info_def) *types)
348e048f 4560{
3019eac3 4561 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4562 htab_t types_htab = NULL;
8b70b953
TT
4563 int ix;
4564 struct dwarf2_section_info *section;
4bdcc0c1 4565 struct dwarf2_section_info *abbrev_section;
348e048f 4566
3019eac3
DE
4567 if (VEC_empty (dwarf2_section_info_def, types))
4568 return NULL;
348e048f 4569
4bdcc0c1
DE
4570 abbrev_section = (dwo_file != NULL
4571 ? &dwo_file->sections.abbrev
4572 : &dwarf2_per_objfile->abbrev);
4573
09406207
DE
4574 if (dwarf2_read_debug)
4575 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4576 dwo_file ? ".dwo" : "",
a32a8923 4577 get_section_file_name (abbrev_section));
09406207 4578
8b70b953 4579 for (ix = 0;
3019eac3 4580 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4581 ++ix)
4582 {
3019eac3 4583 bfd *abfd;
d521ce57 4584 const gdb_byte *info_ptr, *end_ptr;
348e048f 4585
8b70b953
TT
4586 dwarf2_read_section (objfile, section);
4587 info_ptr = section->buffer;
348e048f 4588
8b70b953
TT
4589 if (info_ptr == NULL)
4590 continue;
348e048f 4591
3019eac3 4592 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4593 not present, in which case the bfd is unknown. */
4594 abfd = get_section_bfd_owner (section);
3019eac3 4595
dee91e82
DE
4596 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4597 because we don't need to read any dies: the signature is in the
4598 header. */
8b70b953
TT
4599
4600 end_ptr = info_ptr + section->size;
4601 while (info_ptr < end_ptr)
4602 {
b64f50a1 4603 sect_offset offset;
3019eac3 4604 cu_offset type_offset_in_tu;
8b70b953 4605 ULONGEST signature;
52dc124a 4606 struct signatured_type *sig_type;
3019eac3 4607 struct dwo_unit *dwo_tu;
8b70b953 4608 void **slot;
d521ce57 4609 const gdb_byte *ptr = info_ptr;
9ff913ba 4610 struct comp_unit_head header;
dee91e82 4611 unsigned int length;
348e048f 4612
b64f50a1 4613 offset.sect_off = ptr - section->buffer;
348e048f 4614
8b70b953 4615 /* We need to read the type's signature in order to build the hash
9ff913ba 4616 table, but we don't need anything else just yet. */
348e048f 4617
4bdcc0c1
DE
4618 ptr = read_and_check_type_unit_head (&header, section,
4619 abbrev_section, ptr,
3019eac3 4620 &signature, &type_offset_in_tu);
6caca83c 4621
1ce1cefd 4622 length = get_cu_length (&header);
dee91e82 4623
6caca83c 4624 /* Skip dummy type units. */
dee91e82
DE
4625 if (ptr >= info_ptr + length
4626 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4627 {
1ce1cefd 4628 info_ptr += length;
6caca83c
CC
4629 continue;
4630 }
8b70b953 4631
0349ea22
DE
4632 if (types_htab == NULL)
4633 {
4634 if (dwo_file)
4635 types_htab = allocate_dwo_unit_table (objfile);
4636 else
4637 types_htab = allocate_signatured_type_table (objfile);
4638 }
4639
3019eac3
DE
4640 if (dwo_file)
4641 {
4642 sig_type = NULL;
4643 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4644 struct dwo_unit);
4645 dwo_tu->dwo_file = dwo_file;
4646 dwo_tu->signature = signature;
4647 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4648 dwo_tu->section = section;
3019eac3
DE
4649 dwo_tu->offset = offset;
4650 dwo_tu->length = length;
4651 }
4652 else
4653 {
4654 /* N.B.: type_offset is not usable if this type uses a DWO file.
4655 The real type_offset is in the DWO file. */
4656 dwo_tu = NULL;
4657 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4658 struct signatured_type);
4659 sig_type->signature = signature;
4660 sig_type->type_offset_in_tu = type_offset_in_tu;
4661 sig_type->per_cu.objfile = objfile;
4662 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4663 sig_type->per_cu.section = section;
3019eac3
DE
4664 sig_type->per_cu.offset = offset;
4665 sig_type->per_cu.length = length;
4666 }
8b70b953 4667
3019eac3
DE
4668 slot = htab_find_slot (types_htab,
4669 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4670 INSERT);
8b70b953
TT
4671 gdb_assert (slot != NULL);
4672 if (*slot != NULL)
4673 {
3019eac3
DE
4674 sect_offset dup_offset;
4675
4676 if (dwo_file)
4677 {
4678 const struct dwo_unit *dup_tu = *slot;
4679
4680 dup_offset = dup_tu->offset;
4681 }
4682 else
4683 {
4684 const struct signatured_type *dup_tu = *slot;
4685
4686 dup_offset = dup_tu->per_cu.offset;
4687 }
b3c8eb43 4688
8b70b953 4689 complaint (&symfile_complaints,
c88ee1f0 4690 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4691 " the entry at offset 0x%x, signature %s"),
3019eac3 4692 offset.sect_off, dup_offset.sect_off,
4031ecc5 4693 hex_string (signature));
8b70b953 4694 }
3019eac3 4695 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4696
73be47f5 4697 if (dwarf2_read_debug > 1)
4031ecc5 4698 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4699 offset.sect_off,
4031ecc5 4700 hex_string (signature));
348e048f 4701
dee91e82 4702 info_ptr += length;
8b70b953 4703 }
348e048f
DE
4704 }
4705
3019eac3
DE
4706 return types_htab;
4707}
4708
4709/* Create the hash table of all entries in the .debug_types section,
4710 and initialize all_type_units.
4711 The result is zero if there is an error (e.g. missing .debug_types section),
4712 otherwise non-zero. */
4713
4714static int
4715create_all_type_units (struct objfile *objfile)
4716{
4717 htab_t types_htab;
b4dd5633 4718 struct signatured_type **iter;
3019eac3
DE
4719
4720 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4721 if (types_htab == NULL)
4722 {
4723 dwarf2_per_objfile->signatured_types = NULL;
4724 return 0;
4725 }
4726
348e048f
DE
4727 dwarf2_per_objfile->signatured_types = types_htab;
4728
6aa5f3a6
DE
4729 dwarf2_per_objfile->n_type_units
4730 = dwarf2_per_objfile->n_allocated_type_units
4731 = htab_elements (types_htab);
d467dd73 4732 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4733 = xmalloc (dwarf2_per_objfile->n_type_units
4734 * sizeof (struct signatured_type *));
d467dd73
DE
4735 iter = &dwarf2_per_objfile->all_type_units[0];
4736 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4737 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4738 == dwarf2_per_objfile->n_type_units);
1fd400ff 4739
348e048f
DE
4740 return 1;
4741}
4742
6aa5f3a6
DE
4743/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4744 If SLOT is non-NULL, it is the entry to use in the hash table.
4745 Otherwise we find one. */
4746
4747static struct signatured_type *
4748add_type_unit (ULONGEST sig, void **slot)
4749{
4750 struct objfile *objfile = dwarf2_per_objfile->objfile;
4751 int n_type_units = dwarf2_per_objfile->n_type_units;
4752 struct signatured_type *sig_type;
4753
4754 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4755 ++n_type_units;
4756 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4757 {
4758 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4759 dwarf2_per_objfile->n_allocated_type_units = 1;
4760 dwarf2_per_objfile->n_allocated_type_units *= 2;
4761 dwarf2_per_objfile->all_type_units
4762 = xrealloc (dwarf2_per_objfile->all_type_units,
4763 dwarf2_per_objfile->n_allocated_type_units
4764 * sizeof (struct signatured_type *));
4765 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4766 }
4767 dwarf2_per_objfile->n_type_units = n_type_units;
4768
4769 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4770 struct signatured_type);
4771 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4772 sig_type->signature = sig;
4773 sig_type->per_cu.is_debug_types = 1;
4774 if (dwarf2_per_objfile->using_index)
4775 {
4776 sig_type->per_cu.v.quick =
4777 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4778 struct dwarf2_per_cu_quick_data);
4779 }
4780
4781 if (slot == NULL)
4782 {
4783 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4784 sig_type, INSERT);
4785 }
4786 gdb_assert (*slot == NULL);
4787 *slot = sig_type;
4788 /* The rest of sig_type must be filled in by the caller. */
4789 return sig_type;
4790}
4791
a2ce51a0
DE
4792/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4793 Fill in SIG_ENTRY with DWO_ENTRY. */
4794
4795static void
4796fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4797 struct signatured_type *sig_entry,
4798 struct dwo_unit *dwo_entry)
4799{
7ee85ab1 4800 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4801 gdb_assert (! sig_entry->per_cu.queued);
4802 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4803 if (dwarf2_per_objfile->using_index)
4804 {
4805 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4806 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4807 }
4808 else
4809 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4810 gdb_assert (sig_entry->signature == dwo_entry->signature);
4811 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4812 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4813 gdb_assert (sig_entry->dwo_unit == NULL);
4814
4815 sig_entry->per_cu.section = dwo_entry->section;
4816 sig_entry->per_cu.offset = dwo_entry->offset;
4817 sig_entry->per_cu.length = dwo_entry->length;
4818 sig_entry->per_cu.reading_dwo_directly = 1;
4819 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4820 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4821 sig_entry->dwo_unit = dwo_entry;
4822}
4823
4824/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4825 If we haven't read the TU yet, create the signatured_type data structure
4826 for a TU to be read in directly from a DWO file, bypassing the stub.
4827 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4828 using .gdb_index, then when reading a CU we want to stay in the DWO file
4829 containing that CU. Otherwise we could end up reading several other DWO
4830 files (due to comdat folding) to process the transitive closure of all the
4831 mentioned TUs, and that can be slow. The current DWO file will have every
4832 type signature that it needs.
a2ce51a0
DE
4833 We only do this for .gdb_index because in the psymtab case we already have
4834 to read all the DWOs to build the type unit groups. */
4835
4836static struct signatured_type *
4837lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4838{
4839 struct objfile *objfile = dwarf2_per_objfile->objfile;
4840 struct dwo_file *dwo_file;
4841 struct dwo_unit find_dwo_entry, *dwo_entry;
4842 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4843 void **slot;
a2ce51a0
DE
4844
4845 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4846
6aa5f3a6
DE
4847 /* If TU skeletons have been removed then we may not have read in any
4848 TUs yet. */
4849 if (dwarf2_per_objfile->signatured_types == NULL)
4850 {
4851 dwarf2_per_objfile->signatured_types
4852 = allocate_signatured_type_table (objfile);
4853 }
a2ce51a0
DE
4854
4855 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4856 Use the global signatured_types array to do our own comdat-folding
4857 of types. If this is the first time we're reading this TU, and
4858 the TU has an entry in .gdb_index, replace the recorded data from
4859 .gdb_index with this TU. */
a2ce51a0 4860
a2ce51a0 4861 find_sig_entry.signature = sig;
6aa5f3a6
DE
4862 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4863 &find_sig_entry, INSERT);
4864 sig_entry = *slot;
7ee85ab1
DE
4865
4866 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4867 read. Don't reassign the global entry to point to this DWO if that's
4868 the case. Also note that if the TU is already being read, it may not
4869 have come from a DWO, the program may be a mix of Fission-compiled
4870 code and non-Fission-compiled code. */
4871
4872 /* Have we already tried to read this TU?
4873 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4874 needn't exist in the global table yet). */
4875 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4876 return sig_entry;
4877
6aa5f3a6
DE
4878 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4879 dwo_unit of the TU itself. */
4880 dwo_file = cu->dwo_unit->dwo_file;
4881
a2ce51a0
DE
4882 /* Ok, this is the first time we're reading this TU. */
4883 if (dwo_file->tus == NULL)
4884 return NULL;
4885 find_dwo_entry.signature = sig;
4886 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4887 if (dwo_entry == NULL)
4888 return NULL;
4889
6aa5f3a6
DE
4890 /* If the global table doesn't have an entry for this TU, add one. */
4891 if (sig_entry == NULL)
4892 sig_entry = add_type_unit (sig, slot);
4893
a2ce51a0 4894 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4895 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4896 return sig_entry;
4897}
4898
a2ce51a0
DE
4899/* Subroutine of lookup_signatured_type.
4900 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4901 then try the DWP file. If the TU stub (skeleton) has been removed then
4902 it won't be in .gdb_index. */
a2ce51a0
DE
4903
4904static struct signatured_type *
4905lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4906{
4907 struct objfile *objfile = dwarf2_per_objfile->objfile;
4908 struct dwp_file *dwp_file = get_dwp_file ();
4909 struct dwo_unit *dwo_entry;
4910 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4911 void **slot;
a2ce51a0
DE
4912
4913 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4914 gdb_assert (dwp_file != NULL);
4915
6aa5f3a6
DE
4916 /* If TU skeletons have been removed then we may not have read in any
4917 TUs yet. */
4918 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4919 {
6aa5f3a6
DE
4920 dwarf2_per_objfile->signatured_types
4921 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4922 }
4923
6aa5f3a6
DE
4924 find_sig_entry.signature = sig;
4925 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4926 &find_sig_entry, INSERT);
4927 sig_entry = *slot;
4928
4929 /* Have we already tried to read this TU?
4930 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4931 needn't exist in the global table yet). */
4932 if (sig_entry != NULL)
4933 return sig_entry;
4934
a2ce51a0
DE
4935 if (dwp_file->tus == NULL)
4936 return NULL;
57d63ce2
DE
4937 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4938 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4939 if (dwo_entry == NULL)
4940 return NULL;
4941
6aa5f3a6 4942 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4943 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4944
a2ce51a0
DE
4945 return sig_entry;
4946}
4947
380bca97 4948/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4949 Returns NULL if signature SIG is not present in the table.
4950 It is up to the caller to complain about this. */
348e048f
DE
4951
4952static struct signatured_type *
a2ce51a0 4953lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4954{
a2ce51a0
DE
4955 if (cu->dwo_unit
4956 && dwarf2_per_objfile->using_index)
4957 {
4958 /* We're in a DWO/DWP file, and we're using .gdb_index.
4959 These cases require special processing. */
4960 if (get_dwp_file () == NULL)
4961 return lookup_dwo_signatured_type (cu, sig);
4962 else
4963 return lookup_dwp_signatured_type (cu, sig);
4964 }
4965 else
4966 {
4967 struct signatured_type find_entry, *entry;
348e048f 4968
a2ce51a0
DE
4969 if (dwarf2_per_objfile->signatured_types == NULL)
4970 return NULL;
4971 find_entry.signature = sig;
4972 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4973 return entry;
4974 }
348e048f 4975}
42e7ad6c
DE
4976\f
4977/* Low level DIE reading support. */
348e048f 4978
d85a05f0
DJ
4979/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4980
4981static void
4982init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4983 struct dwarf2_cu *cu,
3019eac3
DE
4984 struct dwarf2_section_info *section,
4985 struct dwo_file *dwo_file)
d85a05f0 4986{
fceca515 4987 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4988 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4989 reader->cu = cu;
3019eac3 4990 reader->dwo_file = dwo_file;
dee91e82
DE
4991 reader->die_section = section;
4992 reader->buffer = section->buffer;
f664829e 4993 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4994 reader->comp_dir = NULL;
d85a05f0
DJ
4995}
4996
b0c7bfa9
DE
4997/* Subroutine of init_cutu_and_read_dies to simplify it.
4998 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4999 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5000 already.
5001
5002 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5003 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5004 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5005 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5006 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5007 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5008 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5009 are filled in with the info of the DIE from the DWO file.
5010 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5011 provided an abbrev table to use.
5012 The result is non-zero if a valid (non-dummy) DIE was found. */
5013
5014static int
5015read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5016 struct dwo_unit *dwo_unit,
5017 int abbrev_table_provided,
5018 struct die_info *stub_comp_unit_die,
a2ce51a0 5019 const char *stub_comp_dir,
b0c7bfa9 5020 struct die_reader_specs *result_reader,
d521ce57 5021 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5022 struct die_info **result_comp_unit_die,
5023 int *result_has_children)
5024{
5025 struct objfile *objfile = dwarf2_per_objfile->objfile;
5026 struct dwarf2_cu *cu = this_cu->cu;
5027 struct dwarf2_section_info *section;
5028 bfd *abfd;
d521ce57 5029 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5030 ULONGEST signature; /* Or dwo_id. */
5031 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5032 int i,num_extra_attrs;
5033 struct dwarf2_section_info *dwo_abbrev_section;
5034 struct attribute *attr;
5035 struct die_info *comp_unit_die;
5036
b0aeadb3
DE
5037 /* At most one of these may be provided. */
5038 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5039
b0c7bfa9
DE
5040 /* These attributes aren't processed until later:
5041 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5042 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5043 referenced later. However, these attributes are found in the stub
5044 which we won't have later. In order to not impose this complication
5045 on the rest of the code, we read them here and copy them to the
5046 DWO CU/TU die. */
b0c7bfa9
DE
5047
5048 stmt_list = NULL;
5049 low_pc = NULL;
5050 high_pc = NULL;
5051 ranges = NULL;
5052 comp_dir = NULL;
5053
5054 if (stub_comp_unit_die != NULL)
5055 {
5056 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5057 DWO file. */
5058 if (! this_cu->is_debug_types)
5059 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5060 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5061 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5062 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5063 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5064
5065 /* There should be a DW_AT_addr_base attribute here (if needed).
5066 We need the value before we can process DW_FORM_GNU_addr_index. */
5067 cu->addr_base = 0;
5068 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5069 if (attr)
5070 cu->addr_base = DW_UNSND (attr);
5071
5072 /* There should be a DW_AT_ranges_base attribute here (if needed).
5073 We need the value before we can process DW_AT_ranges. */
5074 cu->ranges_base = 0;
5075 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5076 if (attr)
5077 cu->ranges_base = DW_UNSND (attr);
5078 }
a2ce51a0
DE
5079 else if (stub_comp_dir != NULL)
5080 {
5081 /* Reconstruct the comp_dir attribute to simplify the code below. */
5082 comp_dir = (struct attribute *)
5083 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5084 comp_dir->name = DW_AT_comp_dir;
5085 comp_dir->form = DW_FORM_string;
5086 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5087 DW_STRING (comp_dir) = stub_comp_dir;
5088 }
b0c7bfa9
DE
5089
5090 /* Set up for reading the DWO CU/TU. */
5091 cu->dwo_unit = dwo_unit;
5092 section = dwo_unit->section;
5093 dwarf2_read_section (objfile, section);
a32a8923 5094 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5095 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5096 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5097 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5098
5099 if (this_cu->is_debug_types)
5100 {
5101 ULONGEST header_signature;
5102 cu_offset type_offset_in_tu;
5103 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5104
5105 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5106 dwo_abbrev_section,
5107 info_ptr,
5108 &header_signature,
5109 &type_offset_in_tu);
a2ce51a0
DE
5110 /* This is not an assert because it can be caused by bad debug info. */
5111 if (sig_type->signature != header_signature)
5112 {
5113 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5114 " TU at offset 0x%x [in module %s]"),
5115 hex_string (sig_type->signature),
5116 hex_string (header_signature),
5117 dwo_unit->offset.sect_off,
5118 bfd_get_filename (abfd));
5119 }
b0c7bfa9
DE
5120 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5121 /* For DWOs coming from DWP files, we don't know the CU length
5122 nor the type's offset in the TU until now. */
5123 dwo_unit->length = get_cu_length (&cu->header);
5124 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5125
5126 /* Establish the type offset that can be used to lookup the type.
5127 For DWO files, we don't know it until now. */
5128 sig_type->type_offset_in_section.sect_off =
5129 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5130 }
5131 else
5132 {
5133 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5134 dwo_abbrev_section,
5135 info_ptr, 0);
5136 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5137 /* For DWOs coming from DWP files, we don't know the CU length
5138 until now. */
5139 dwo_unit->length = get_cu_length (&cu->header);
5140 }
5141
02142a6c
DE
5142 /* Replace the CU's original abbrev table with the DWO's.
5143 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5144 if (abbrev_table_provided)
5145 {
5146 /* Don't free the provided abbrev table, the caller of
5147 init_cutu_and_read_dies owns it. */
5148 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5149 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5150 make_cleanup (dwarf2_free_abbrev_table, cu);
5151 }
5152 else
5153 {
5154 dwarf2_free_abbrev_table (cu);
5155 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5156 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5157 }
5158
5159 /* Read in the die, but leave space to copy over the attributes
5160 from the stub. This has the benefit of simplifying the rest of
5161 the code - all the work to maintain the illusion of a single
5162 DW_TAG_{compile,type}_unit DIE is done here. */
5163 num_extra_attrs = ((stmt_list != NULL)
5164 + (low_pc != NULL)
5165 + (high_pc != NULL)
5166 + (ranges != NULL)
5167 + (comp_dir != NULL));
5168 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5169 result_has_children, num_extra_attrs);
5170
5171 /* Copy over the attributes from the stub to the DIE we just read in. */
5172 comp_unit_die = *result_comp_unit_die;
5173 i = comp_unit_die->num_attrs;
5174 if (stmt_list != NULL)
5175 comp_unit_die->attrs[i++] = *stmt_list;
5176 if (low_pc != NULL)
5177 comp_unit_die->attrs[i++] = *low_pc;
5178 if (high_pc != NULL)
5179 comp_unit_die->attrs[i++] = *high_pc;
5180 if (ranges != NULL)
5181 comp_unit_die->attrs[i++] = *ranges;
5182 if (comp_dir != NULL)
5183 comp_unit_die->attrs[i++] = *comp_dir;
5184 comp_unit_die->num_attrs += num_extra_attrs;
5185
bf6af496
DE
5186 if (dwarf2_die_debug)
5187 {
5188 fprintf_unfiltered (gdb_stdlog,
5189 "Read die from %s@0x%x of %s:\n",
a32a8923 5190 get_section_name (section),
bf6af496
DE
5191 (unsigned) (begin_info_ptr - section->buffer),
5192 bfd_get_filename (abfd));
5193 dump_die (comp_unit_die, dwarf2_die_debug);
5194 }
5195
a2ce51a0
DE
5196 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5197 TUs by skipping the stub and going directly to the entry in the DWO file.
5198 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5199 to get it via circuitous means. Blech. */
5200 if (comp_dir != NULL)
5201 result_reader->comp_dir = DW_STRING (comp_dir);
5202
b0c7bfa9
DE
5203 /* Skip dummy compilation units. */
5204 if (info_ptr >= begin_info_ptr + dwo_unit->length
5205 || peek_abbrev_code (abfd, info_ptr) == 0)
5206 return 0;
5207
5208 *result_info_ptr = info_ptr;
5209 return 1;
5210}
5211
5212/* Subroutine of init_cutu_and_read_dies to simplify it.
5213 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5214 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5215
5216static struct dwo_unit *
5217lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5218 struct die_info *comp_unit_die)
5219{
5220 struct dwarf2_cu *cu = this_cu->cu;
5221 struct attribute *attr;
5222 ULONGEST signature;
5223 struct dwo_unit *dwo_unit;
5224 const char *comp_dir, *dwo_name;
5225
a2ce51a0
DE
5226 gdb_assert (cu != NULL);
5227
b0c7bfa9
DE
5228 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5229 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5230 gdb_assert (attr != NULL);
5231 dwo_name = DW_STRING (attr);
5232 comp_dir = NULL;
5233 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5234 if (attr)
5235 comp_dir = DW_STRING (attr);
5236
5237 if (this_cu->is_debug_types)
5238 {
5239 struct signatured_type *sig_type;
5240
5241 /* Since this_cu is the first member of struct signatured_type,
5242 we can go from a pointer to one to a pointer to the other. */
5243 sig_type = (struct signatured_type *) this_cu;
5244 signature = sig_type->signature;
5245 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5246 }
5247 else
5248 {
5249 struct attribute *attr;
5250
5251 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5252 if (! attr)
5253 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5254 " [in module %s]"),
4262abfb 5255 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5256 signature = DW_UNSND (attr);
5257 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5258 signature);
5259 }
5260
b0c7bfa9
DE
5261 return dwo_unit;
5262}
5263
a2ce51a0 5264/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5265 See it for a description of the parameters.
5266 Read a TU directly from a DWO file, bypassing the stub.
5267
5268 Note: This function could be a little bit simpler if we shared cleanups
5269 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5270 to do, so we keep this function self-contained. Or we could move this
5271 into our caller, but it's complex enough already. */
a2ce51a0
DE
5272
5273static void
6aa5f3a6
DE
5274init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5275 int use_existing_cu, int keep,
a2ce51a0
DE
5276 die_reader_func_ftype *die_reader_func,
5277 void *data)
5278{
5279 struct dwarf2_cu *cu;
5280 struct signatured_type *sig_type;
6aa5f3a6 5281 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5282 struct die_reader_specs reader;
5283 const gdb_byte *info_ptr;
5284 struct die_info *comp_unit_die;
5285 int has_children;
5286
5287 /* Verify we can do the following downcast, and that we have the
5288 data we need. */
5289 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5290 sig_type = (struct signatured_type *) this_cu;
5291 gdb_assert (sig_type->dwo_unit != NULL);
5292
5293 cleanups = make_cleanup (null_cleanup, NULL);
5294
6aa5f3a6
DE
5295 if (use_existing_cu && this_cu->cu != NULL)
5296 {
5297 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5298 cu = this_cu->cu;
5299 /* There's no need to do the rereading_dwo_cu handling that
5300 init_cutu_and_read_dies does since we don't read the stub. */
5301 }
5302 else
5303 {
5304 /* If !use_existing_cu, this_cu->cu must be NULL. */
5305 gdb_assert (this_cu->cu == NULL);
5306 cu = xmalloc (sizeof (*cu));
5307 init_one_comp_unit (cu, this_cu);
5308 /* If an error occurs while loading, release our storage. */
5309 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5310 }
5311
5312 /* A future optimization, if needed, would be to use an existing
5313 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5314 could share abbrev tables. */
a2ce51a0
DE
5315
5316 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5317 0 /* abbrev_table_provided */,
5318 NULL /* stub_comp_unit_die */,
5319 sig_type->dwo_unit->dwo_file->comp_dir,
5320 &reader, &info_ptr,
5321 &comp_unit_die, &has_children) == 0)
5322 {
5323 /* Dummy die. */
5324 do_cleanups (cleanups);
5325 return;
5326 }
5327
5328 /* All the "real" work is done here. */
5329 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5330
6aa5f3a6 5331 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5332 but the alternative is making the latter more complex.
5333 This function is only for the special case of using DWO files directly:
5334 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5335 if (free_cu_cleanup != NULL)
a2ce51a0 5336 {
6aa5f3a6
DE
5337 if (keep)
5338 {
5339 /* We've successfully allocated this compilation unit. Let our
5340 caller clean it up when finished with it. */
5341 discard_cleanups (free_cu_cleanup);
a2ce51a0 5342
6aa5f3a6
DE
5343 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5344 So we have to manually free the abbrev table. */
5345 dwarf2_free_abbrev_table (cu);
a2ce51a0 5346
6aa5f3a6
DE
5347 /* Link this CU into read_in_chain. */
5348 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5349 dwarf2_per_objfile->read_in_chain = this_cu;
5350 }
5351 else
5352 do_cleanups (free_cu_cleanup);
a2ce51a0 5353 }
a2ce51a0
DE
5354
5355 do_cleanups (cleanups);
5356}
5357
fd820528 5358/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5359 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5360
f4dc4d17
DE
5361 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5362 Otherwise the table specified in the comp unit header is read in and used.
5363 This is an optimization for when we already have the abbrev table.
5364
dee91e82
DE
5365 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5366 Otherwise, a new CU is allocated with xmalloc.
5367
5368 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5369 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5370
5371 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5372 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5373
70221824 5374static void
fd820528 5375init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5376 struct abbrev_table *abbrev_table,
fd820528
DE
5377 int use_existing_cu, int keep,
5378 die_reader_func_ftype *die_reader_func,
5379 void *data)
c906108c 5380{
dee91e82 5381 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5382 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5383 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5384 struct dwarf2_cu *cu;
d521ce57 5385 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5386 struct die_reader_specs reader;
d85a05f0 5387 struct die_info *comp_unit_die;
dee91e82 5388 int has_children;
d85a05f0 5389 struct attribute *attr;
365156ad 5390 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5391 struct signatured_type *sig_type = NULL;
4bdcc0c1 5392 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5393 /* Non-zero if CU currently points to a DWO file and we need to
5394 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5395 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5396 int rereading_dwo_cu = 0;
c906108c 5397
09406207
DE
5398 if (dwarf2_die_debug)
5399 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5400 this_cu->is_debug_types ? "type" : "comp",
5401 this_cu->offset.sect_off);
5402
dee91e82
DE
5403 if (use_existing_cu)
5404 gdb_assert (keep);
23745b47 5405
a2ce51a0
DE
5406 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5407 file (instead of going through the stub), short-circuit all of this. */
5408 if (this_cu->reading_dwo_directly)
5409 {
5410 /* Narrow down the scope of possibilities to have to understand. */
5411 gdb_assert (this_cu->is_debug_types);
5412 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5413 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5414 die_reader_func, data);
a2ce51a0
DE
5415 return;
5416 }
5417
dee91e82
DE
5418 cleanups = make_cleanup (null_cleanup, NULL);
5419
5420 /* This is cheap if the section is already read in. */
5421 dwarf2_read_section (objfile, section);
5422
5423 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5424
5425 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5426
5427 if (use_existing_cu && this_cu->cu != NULL)
5428 {
5429 cu = this_cu->cu;
42e7ad6c
DE
5430 /* If this CU is from a DWO file we need to start over, we need to
5431 refetch the attributes from the skeleton CU.
5432 This could be optimized by retrieving those attributes from when we
5433 were here the first time: the previous comp_unit_die was stored in
5434 comp_unit_obstack. But there's no data yet that we need this
5435 optimization. */
5436 if (cu->dwo_unit != NULL)
5437 rereading_dwo_cu = 1;
dee91e82
DE
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5443 cu = xmalloc (sizeof (*cu));
5444 init_one_comp_unit (cu, this_cu);
dee91e82 5445 /* If an error occurs while loading, release our storage. */
365156ad 5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5447 }
dee91e82 5448
b0c7bfa9 5449 /* Get the header. */
42e7ad6c
DE
5450 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5451 {
5452 /* We already have the header, there's no need to read it in again. */
5453 info_ptr += cu->header.first_die_offset.cu_off;
5454 }
5455 else
5456 {
3019eac3 5457 if (this_cu->is_debug_types)
dee91e82
DE
5458 {
5459 ULONGEST signature;
42e7ad6c 5460 cu_offset type_offset_in_tu;
dee91e82 5461
4bdcc0c1
DE
5462 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5463 abbrev_section, info_ptr,
42e7ad6c
DE
5464 &signature,
5465 &type_offset_in_tu);
dee91e82 5466
42e7ad6c
DE
5467 /* Since per_cu is the first member of struct signatured_type,
5468 we can go from a pointer to one to a pointer to the other. */
5469 sig_type = (struct signatured_type *) this_cu;
5470 gdb_assert (sig_type->signature == signature);
5471 gdb_assert (sig_type->type_offset_in_tu.cu_off
5472 == type_offset_in_tu.cu_off);
dee91e82
DE
5473 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5474
42e7ad6c
DE
5475 /* LENGTH has not been set yet for type units if we're
5476 using .gdb_index. */
1ce1cefd 5477 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5478
5479 /* Establish the type offset that can be used to lookup the type. */
5480 sig_type->type_offset_in_section.sect_off =
5481 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5482 }
5483 else
5484 {
4bdcc0c1
DE
5485 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5486 abbrev_section,
5487 info_ptr, 0);
dee91e82
DE
5488
5489 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5490 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5491 }
5492 }
10b3939b 5493
6caca83c 5494 /* Skip dummy compilation units. */
dee91e82 5495 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5496 || peek_abbrev_code (abfd, info_ptr) == 0)
5497 {
dee91e82 5498 do_cleanups (cleanups);
21b2bd31 5499 return;
6caca83c
CC
5500 }
5501
433df2d4
DE
5502 /* If we don't have them yet, read the abbrevs for this compilation unit.
5503 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5504 done. Note that it's important that if the CU had an abbrev table
5505 on entry we don't free it when we're done: Somewhere up the call stack
5506 it may be in use. */
f4dc4d17
DE
5507 if (abbrev_table != NULL)
5508 {
5509 gdb_assert (cu->abbrev_table == NULL);
5510 gdb_assert (cu->header.abbrev_offset.sect_off
5511 == abbrev_table->offset.sect_off);
5512 cu->abbrev_table = abbrev_table;
5513 }
5514 else if (cu->abbrev_table == NULL)
dee91e82 5515 {
4bdcc0c1 5516 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5517 make_cleanup (dwarf2_free_abbrev_table, cu);
5518 }
42e7ad6c
DE
5519 else if (rereading_dwo_cu)
5520 {
5521 dwarf2_free_abbrev_table (cu);
5522 dwarf2_read_abbrevs (cu, abbrev_section);
5523 }
af703f96 5524
dee91e82 5525 /* Read the top level CU/TU die. */
3019eac3 5526 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5527 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5528
b0c7bfa9
DE
5529 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5530 from the DWO file.
5531 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5532 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5533 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5534 if (attr)
5535 {
3019eac3 5536 struct dwo_unit *dwo_unit;
b0c7bfa9 5537 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5538
5539 if (has_children)
6a506a2d
DE
5540 {
5541 complaint (&symfile_complaints,
5542 _("compilation unit with DW_AT_GNU_dwo_name"
5543 " has children (offset 0x%x) [in module %s]"),
5544 this_cu->offset.sect_off, bfd_get_filename (abfd));
5545 }
b0c7bfa9 5546 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5547 if (dwo_unit != NULL)
3019eac3 5548 {
6a506a2d
DE
5549 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5550 abbrev_table != NULL,
a2ce51a0 5551 comp_unit_die, NULL,
6a506a2d
DE
5552 &reader, &info_ptr,
5553 &dwo_comp_unit_die, &has_children) == 0)
5554 {
5555 /* Dummy die. */
5556 do_cleanups (cleanups);
5557 return;
5558 }
5559 comp_unit_die = dwo_comp_unit_die;
5560 }
5561 else
5562 {
5563 /* Yikes, we couldn't find the rest of the DIE, we only have
5564 the stub. A complaint has already been logged. There's
5565 not much more we can do except pass on the stub DIE to
5566 die_reader_func. We don't want to throw an error on bad
5567 debug info. */
3019eac3
DE
5568 }
5569 }
5570
b0c7bfa9 5571 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5572 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5573
b0c7bfa9 5574 /* Done, clean up. */
365156ad 5575 if (free_cu_cleanup != NULL)
348e048f 5576 {
365156ad
TT
5577 if (keep)
5578 {
5579 /* We've successfully allocated this compilation unit. Let our
5580 caller clean it up when finished with it. */
5581 discard_cleanups (free_cu_cleanup);
dee91e82 5582
365156ad
TT
5583 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5584 So we have to manually free the abbrev table. */
5585 dwarf2_free_abbrev_table (cu);
dee91e82 5586
365156ad
TT
5587 /* Link this CU into read_in_chain. */
5588 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5589 dwarf2_per_objfile->read_in_chain = this_cu;
5590 }
5591 else
5592 do_cleanups (free_cu_cleanup);
348e048f 5593 }
365156ad
TT
5594
5595 do_cleanups (cleanups);
dee91e82
DE
5596}
5597
33e80786
DE
5598/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5600 to have already done the lookup to find the DWO file).
dee91e82
DE
5601
5602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5603 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5604
5605 We fill in THIS_CU->length.
5606
5607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5608 linker) then DIE_READER_FUNC will not get called.
5609
5610 THIS_CU->cu is always freed when done.
3019eac3
DE
5611 This is done in order to not leave THIS_CU->cu in a state where we have
5612 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5613
5614static void
5615init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5616 struct dwo_file *dwo_file,
dee91e82
DE
5617 die_reader_func_ftype *die_reader_func,
5618 void *data)
5619{
5620 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5621 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5622 bfd *abfd = get_section_bfd_owner (section);
33e80786 5623 struct dwarf2_section_info *abbrev_section;
dee91e82 5624 struct dwarf2_cu cu;
d521ce57 5625 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5626 struct die_reader_specs reader;
5627 struct cleanup *cleanups;
5628 struct die_info *comp_unit_die;
5629 int has_children;
5630
09406207
DE
5631 if (dwarf2_die_debug)
5632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5633 this_cu->is_debug_types ? "type" : "comp",
5634 this_cu->offset.sect_off);
5635
dee91e82
DE
5636 gdb_assert (this_cu->cu == NULL);
5637
33e80786
DE
5638 abbrev_section = (dwo_file != NULL
5639 ? &dwo_file->sections.abbrev
5640 : get_abbrev_section_for_cu (this_cu));
5641
dee91e82
DE
5642 /* This is cheap if the section is already read in. */
5643 dwarf2_read_section (objfile, section);
5644
5645 init_one_comp_unit (&cu, this_cu);
5646
5647 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5648
5649 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5650 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5651 abbrev_section, info_ptr,
3019eac3 5652 this_cu->is_debug_types);
dee91e82 5653
1ce1cefd 5654 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5655
5656 /* Skip dummy compilation units. */
5657 if (info_ptr >= begin_info_ptr + this_cu->length
5658 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5659 {
dee91e82 5660 do_cleanups (cleanups);
21b2bd31 5661 return;
93311388 5662 }
72bf9492 5663
dee91e82
DE
5664 dwarf2_read_abbrevs (&cu, abbrev_section);
5665 make_cleanup (dwarf2_free_abbrev_table, &cu);
5666
3019eac3 5667 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5668 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5669
5670 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5671
5672 do_cleanups (cleanups);
5673}
5674
3019eac3
DE
5675/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5676 does not lookup the specified DWO file.
5677 This cannot be used to read DWO files.
dee91e82
DE
5678
5679 THIS_CU->cu is always freed when done.
3019eac3
DE
5680 This is done in order to not leave THIS_CU->cu in a state where we have
5681 to care whether it refers to the "main" CU or the DWO CU.
5682 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5683
5684static void
5685init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5686 die_reader_func_ftype *die_reader_func,
5687 void *data)
5688{
33e80786 5689 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5690}
0018ea6f
DE
5691\f
5692/* Type Unit Groups.
dee91e82 5693
0018ea6f
DE
5694 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5695 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5696 so that all types coming from the same compilation (.o file) are grouped
5697 together. A future step could be to put the types in the same symtab as
5698 the CU the types ultimately came from. */
ff013f42 5699
f4dc4d17
DE
5700static hashval_t
5701hash_type_unit_group (const void *item)
5702{
094b34ac 5703 const struct type_unit_group *tu_group = item;
f4dc4d17 5704
094b34ac 5705 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5706}
348e048f
DE
5707
5708static int
f4dc4d17 5709eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5710{
f4dc4d17
DE
5711 const struct type_unit_group *lhs = item_lhs;
5712 const struct type_unit_group *rhs = item_rhs;
348e048f 5713
094b34ac 5714 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5715}
348e048f 5716
f4dc4d17
DE
5717/* Allocate a hash table for type unit groups. */
5718
5719static htab_t
5720allocate_type_unit_groups_table (void)
5721{
5722 return htab_create_alloc_ex (3,
5723 hash_type_unit_group,
5724 eq_type_unit_group,
5725 NULL,
5726 &dwarf2_per_objfile->objfile->objfile_obstack,
5727 hashtab_obstack_allocate,
5728 dummy_obstack_deallocate);
5729}
dee91e82 5730
f4dc4d17
DE
5731/* Type units that don't have DW_AT_stmt_list are grouped into their own
5732 partial symtabs. We combine several TUs per psymtab to not let the size
5733 of any one psymtab grow too big. */
5734#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5735#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5736
094b34ac 5737/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5738 Create the type_unit_group object used to hold one or more TUs. */
5739
5740static struct type_unit_group *
094b34ac 5741create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5742{
5743 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5744 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5745 struct type_unit_group *tu_group;
f4dc4d17
DE
5746
5747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5748 struct type_unit_group);
094b34ac 5749 per_cu = &tu_group->per_cu;
f4dc4d17 5750 per_cu->objfile = objfile;
f4dc4d17 5751
094b34ac
DE
5752 if (dwarf2_per_objfile->using_index)
5753 {
5754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5755 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5756 }
5757 else
5758 {
5759 unsigned int line_offset = line_offset_struct.sect_off;
5760 struct partial_symtab *pst;
5761 char *name;
5762
5763 /* Give the symtab a useful name for debug purposes. */
5764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5765 name = xstrprintf ("<type_units_%d>",
5766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5767 else
5768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5769
5770 pst = create_partial_symtab (per_cu, name);
5771 pst->anonymous = 1;
f4dc4d17 5772
094b34ac
DE
5773 xfree (name);
5774 }
f4dc4d17 5775
094b34ac
DE
5776 tu_group->hash.dwo_unit = cu->dwo_unit;
5777 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5778
5779 return tu_group;
5780}
5781
094b34ac
DE
5782/* Look up the type_unit_group for type unit CU, and create it if necessary.
5783 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5784
5785static struct type_unit_group *
ff39bb5e 5786get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5787{
5788 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5789 struct type_unit_group *tu_group;
5790 void **slot;
5791 unsigned int line_offset;
5792 struct type_unit_group type_unit_group_for_lookup;
5793
5794 if (dwarf2_per_objfile->type_unit_groups == NULL)
5795 {
5796 dwarf2_per_objfile->type_unit_groups =
5797 allocate_type_unit_groups_table ();
5798 }
5799
5800 /* Do we need to create a new group, or can we use an existing one? */
5801
5802 if (stmt_list)
5803 {
5804 line_offset = DW_UNSND (stmt_list);
5805 ++tu_stats->nr_symtab_sharers;
5806 }
5807 else
5808 {
5809 /* Ugh, no stmt_list. Rare, but we have to handle it.
5810 We can do various things here like create one group per TU or
5811 spread them over multiple groups to split up the expansion work.
5812 To avoid worst case scenarios (too many groups or too large groups)
5813 we, umm, group them in bunches. */
5814 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5815 | (tu_stats->nr_stmt_less_type_units
5816 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5817 ++tu_stats->nr_stmt_less_type_units;
5818 }
5819
094b34ac
DE
5820 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5821 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5822 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5823 &type_unit_group_for_lookup, INSERT);
5824 if (*slot != NULL)
5825 {
5826 tu_group = *slot;
5827 gdb_assert (tu_group != NULL);
5828 }
5829 else
5830 {
5831 sect_offset line_offset_struct;
5832
5833 line_offset_struct.sect_off = line_offset;
094b34ac 5834 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5835 *slot = tu_group;
5836 ++tu_stats->nr_symtabs;
5837 }
5838
5839 return tu_group;
5840}
0018ea6f
DE
5841\f
5842/* Partial symbol tables. */
5843
5844/* Create a psymtab named NAME and assign it to PER_CU.
5845
5846 The caller must fill in the following details:
5847 dirname, textlow, texthigh. */
5848
5849static struct partial_symtab *
5850create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5851{
5852 struct objfile *objfile = per_cu->objfile;
5853 struct partial_symtab *pst;
5854
5855 pst = start_psymtab_common (objfile, objfile->section_offsets,
5856 name, 0,
5857 objfile->global_psymbols.next,
5858 objfile->static_psymbols.next);
5859
5860 pst->psymtabs_addrmap_supported = 1;
5861
5862 /* This is the glue that links PST into GDB's symbol API. */
5863 pst->read_symtab_private = per_cu;
5864 pst->read_symtab = dwarf2_read_symtab;
5865 per_cu->v.psymtab = pst;
5866
5867 return pst;
5868}
5869
b93601f3
TT
5870/* The DATA object passed to process_psymtab_comp_unit_reader has this
5871 type. */
5872
5873struct process_psymtab_comp_unit_data
5874{
5875 /* True if we are reading a DW_TAG_partial_unit. */
5876
5877 int want_partial_unit;
5878
5879 /* The "pretend" language that is used if the CU doesn't declare a
5880 language. */
5881
5882 enum language pretend_language;
5883};
5884
0018ea6f
DE
5885/* die_reader_func for process_psymtab_comp_unit. */
5886
5887static void
5888process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5889 const gdb_byte *info_ptr,
0018ea6f
DE
5890 struct die_info *comp_unit_die,
5891 int has_children,
5892 void *data)
5893{
5894 struct dwarf2_cu *cu = reader->cu;
5895 struct objfile *objfile = cu->objfile;
3e29f34a 5896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f
DE
5897 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5898 struct attribute *attr;
5899 CORE_ADDR baseaddr;
5900 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5901 struct partial_symtab *pst;
5902 int has_pc_info;
5903 const char *filename;
b93601f3 5904 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5905
b93601f3 5906 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5907 return;
5908
5909 gdb_assert (! per_cu->is_debug_types);
5910
b93601f3 5911 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5912
5913 cu->list_in_scope = &file_symbols;
5914
5915 /* Allocate a new partial symbol table structure. */
5916 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5917 if (attr == NULL || !DW_STRING (attr))
5918 filename = "";
5919 else
5920 filename = DW_STRING (attr);
5921
5922 pst = create_partial_symtab (per_cu, filename);
5923
5924 /* This must be done before calling dwarf2_build_include_psymtabs. */
5925 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5926 if (attr != NULL)
5927 pst->dirname = DW_STRING (attr);
5928
5929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5930
5931 dwarf2_find_base_address (comp_unit_die, cu);
5932
5933 /* Possibly set the default values of LOWPC and HIGHPC from
5934 `DW_AT_ranges'. */
5935 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5936 &best_highpc, cu, pst);
5937 if (has_pc_info == 1 && best_lowpc < best_highpc)
5938 /* Store the contiguous range if it is not empty; it can be empty for
5939 CUs with no code. */
5940 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5941 gdbarch_adjust_dwarf2_addr (gdbarch,
5942 best_lowpc + baseaddr),
5943 gdbarch_adjust_dwarf2_addr (gdbarch,
5944 best_highpc + baseaddr) - 1,
5945 pst);
0018ea6f
DE
5946
5947 /* Check if comp unit has_children.
5948 If so, read the rest of the partial symbols from this comp unit.
5949 If not, there's no more debug_info for this comp unit. */
5950 if (has_children)
5951 {
5952 struct partial_die_info *first_die;
5953 CORE_ADDR lowpc, highpc;
5954
5955 lowpc = ((CORE_ADDR) -1);
5956 highpc = ((CORE_ADDR) 0);
5957
5958 first_die = load_partial_dies (reader, info_ptr, 1);
5959
5960 scan_partial_symbols (first_die, &lowpc, &highpc,
5961 ! has_pc_info, cu);
5962
5963 /* If we didn't find a lowpc, set it to highpc to avoid
5964 complaints from `maint check'. */
5965 if (lowpc == ((CORE_ADDR) -1))
5966 lowpc = highpc;
5967
5968 /* If the compilation unit didn't have an explicit address range,
5969 then use the information extracted from its child dies. */
5970 if (! has_pc_info)
5971 {
5972 best_lowpc = lowpc;
5973 best_highpc = highpc;
5974 }
5975 }
3e29f34a
MR
5976 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5977 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f
DE
5978
5979 pst->n_global_syms = objfile->global_psymbols.next -
5980 (objfile->global_psymbols.list + pst->globals_offset);
5981 pst->n_static_syms = objfile->static_psymbols.next -
5982 (objfile->static_psymbols.list + pst->statics_offset);
5983 sort_pst_symbols (objfile, pst);
5984
5985 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5986 {
5987 int i;
5988 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5989 struct dwarf2_per_cu_data *iter;
5990
5991 /* Fill in 'dependencies' here; we fill in 'users' in a
5992 post-pass. */
5993 pst->number_of_dependencies = len;
5994 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5995 len * sizeof (struct symtab *));
5996 for (i = 0;
5997 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5998 i, iter);
5999 ++i)
6000 pst->dependencies[i] = iter->v.psymtab;
6001
6002 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6003 }
6004
6005 /* Get the list of files included in the current compilation unit,
6006 and build a psymtab for each of them. */
6007 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6008
6009 if (dwarf2_read_debug)
6010 {
6011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6012
6013 fprintf_unfiltered (gdb_stdlog,
6014 "Psymtab for %s unit @0x%x: %s - %s"
6015 ", %d global, %d static syms\n",
6016 per_cu->is_debug_types ? "type" : "comp",
6017 per_cu->offset.sect_off,
6018 paddress (gdbarch, pst->textlow),
6019 paddress (gdbarch, pst->texthigh),
6020 pst->n_global_syms, pst->n_static_syms);
6021 }
6022}
6023
6024/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6025 Process compilation unit THIS_CU for a psymtab. */
6026
6027static void
6028process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6029 int want_partial_unit,
6030 enum language pretend_language)
0018ea6f 6031{
b93601f3
TT
6032 struct process_psymtab_comp_unit_data info;
6033
0018ea6f
DE
6034 /* If this compilation unit was already read in, free the
6035 cached copy in order to read it in again. This is
6036 necessary because we skipped some symbols when we first
6037 read in the compilation unit (see load_partial_dies).
6038 This problem could be avoided, but the benefit is unclear. */
6039 if (this_cu->cu != NULL)
6040 free_one_cached_comp_unit (this_cu);
6041
6042 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6043 info.want_partial_unit = want_partial_unit;
6044 info.pretend_language = pretend_language;
0018ea6f
DE
6045 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6046 process_psymtab_comp_unit_reader,
b93601f3 6047 &info);
0018ea6f
DE
6048
6049 /* Age out any secondary CUs. */
6050 age_cached_comp_units ();
6051}
f4dc4d17
DE
6052
6053/* Reader function for build_type_psymtabs. */
6054
6055static void
6056build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6057 const gdb_byte *info_ptr,
f4dc4d17
DE
6058 struct die_info *type_unit_die,
6059 int has_children,
6060 void *data)
6061{
6062 struct objfile *objfile = dwarf2_per_objfile->objfile;
6063 struct dwarf2_cu *cu = reader->cu;
6064 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6065 struct signatured_type *sig_type;
f4dc4d17
DE
6066 struct type_unit_group *tu_group;
6067 struct attribute *attr;
6068 struct partial_die_info *first_die;
6069 CORE_ADDR lowpc, highpc;
6070 struct partial_symtab *pst;
6071
6072 gdb_assert (data == NULL);
0186c6a7
DE
6073 gdb_assert (per_cu->is_debug_types);
6074 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6075
6076 if (! has_children)
6077 return;
6078
6079 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6080 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6081
0186c6a7 6082 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6083
6084 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6085 cu->list_in_scope = &file_symbols;
6086 pst = create_partial_symtab (per_cu, "");
6087 pst->anonymous = 1;
6088
6089 first_die = load_partial_dies (reader, info_ptr, 1);
6090
6091 lowpc = (CORE_ADDR) -1;
6092 highpc = (CORE_ADDR) 0;
6093 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6094
6095 pst->n_global_syms = objfile->global_psymbols.next -
6096 (objfile->global_psymbols.list + pst->globals_offset);
6097 pst->n_static_syms = objfile->static_psymbols.next -
6098 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6099 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6100}
6101
73051182
DE
6102/* Struct used to sort TUs by their abbreviation table offset. */
6103
6104struct tu_abbrev_offset
6105{
6106 struct signatured_type *sig_type;
6107 sect_offset abbrev_offset;
6108};
6109
6110/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6111
6112static int
6113sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6114{
6115 const struct tu_abbrev_offset * const *a = ap;
6116 const struct tu_abbrev_offset * const *b = bp;
6117 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6118 unsigned int boff = (*b)->abbrev_offset.sect_off;
6119
6120 return (aoff > boff) - (aoff < boff);
6121}
6122
6123/* Efficiently read all the type units.
6124 This does the bulk of the work for build_type_psymtabs.
6125
6126 The efficiency is because we sort TUs by the abbrev table they use and
6127 only read each abbrev table once. In one program there are 200K TUs
6128 sharing 8K abbrev tables.
6129
6130 The main purpose of this function is to support building the
6131 dwarf2_per_objfile->type_unit_groups table.
6132 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6133 can collapse the search space by grouping them by stmt_list.
6134 The savings can be significant, in the same program from above the 200K TUs
6135 share 8K stmt_list tables.
6136
6137 FUNC is expected to call get_type_unit_group, which will create the
6138 struct type_unit_group if necessary and add it to
6139 dwarf2_per_objfile->type_unit_groups. */
6140
6141static void
6142build_type_psymtabs_1 (void)
6143{
6144 struct objfile *objfile = dwarf2_per_objfile->objfile;
6145 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6146 struct cleanup *cleanups;
6147 struct abbrev_table *abbrev_table;
6148 sect_offset abbrev_offset;
6149 struct tu_abbrev_offset *sorted_by_abbrev;
6150 struct type_unit_group **iter;
6151 int i;
6152
6153 /* It's up to the caller to not call us multiple times. */
6154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6155
6156 if (dwarf2_per_objfile->n_type_units == 0)
6157 return;
6158
6159 /* TUs typically share abbrev tables, and there can be way more TUs than
6160 abbrev tables. Sort by abbrev table to reduce the number of times we
6161 read each abbrev table in.
6162 Alternatives are to punt or to maintain a cache of abbrev tables.
6163 This is simpler and efficient enough for now.
6164
6165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6166 symtab to use). Typically TUs with the same abbrev offset have the same
6167 stmt_list value too so in practice this should work well.
6168
6169 The basic algorithm here is:
6170
6171 sort TUs by abbrev table
6172 for each TU with same abbrev table:
6173 read abbrev table if first user
6174 read TU top level DIE
6175 [IWBN if DWO skeletons had DW_AT_stmt_list]
6176 call FUNC */
6177
6178 if (dwarf2_read_debug)
6179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6180
6181 /* Sort in a separate table to maintain the order of all_type_units
6182 for .gdb_index: TU indices directly index all_type_units. */
6183 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6184 dwarf2_per_objfile->n_type_units);
6185 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6186 {
6187 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6188
6189 sorted_by_abbrev[i].sig_type = sig_type;
6190 sorted_by_abbrev[i].abbrev_offset =
6191 read_abbrev_offset (sig_type->per_cu.section,
6192 sig_type->per_cu.offset);
6193 }
6194 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6195 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6196 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6197
6198 abbrev_offset.sect_off = ~(unsigned) 0;
6199 abbrev_table = NULL;
6200 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6201
6202 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6203 {
6204 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6205
6206 /* Switch to the next abbrev table if necessary. */
6207 if (abbrev_table == NULL
6208 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6209 {
6210 if (abbrev_table != NULL)
6211 {
6212 abbrev_table_free (abbrev_table);
6213 /* Reset to NULL in case abbrev_table_read_table throws
6214 an error: abbrev_table_free_cleanup will get called. */
6215 abbrev_table = NULL;
6216 }
6217 abbrev_offset = tu->abbrev_offset;
6218 abbrev_table =
6219 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6220 abbrev_offset);
6221 ++tu_stats->nr_uniq_abbrev_tables;
6222 }
6223
6224 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6225 build_type_psymtabs_reader, NULL);
6226 }
6227
73051182 6228 do_cleanups (cleanups);
6aa5f3a6 6229}
73051182 6230
6aa5f3a6
DE
6231/* Print collected type unit statistics. */
6232
6233static void
6234print_tu_stats (void)
6235{
6236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6237
6238 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6239 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6240 dwarf2_per_objfile->n_type_units);
6241 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6242 tu_stats->nr_uniq_abbrev_tables);
6243 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6244 tu_stats->nr_symtabs);
6245 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6246 tu_stats->nr_symtab_sharers);
6247 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6248 tu_stats->nr_stmt_less_type_units);
6249 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6250 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6251}
6252
f4dc4d17
DE
6253/* Traversal function for build_type_psymtabs. */
6254
6255static int
6256build_type_psymtab_dependencies (void **slot, void *info)
6257{
6258 struct objfile *objfile = dwarf2_per_objfile->objfile;
6259 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6260 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6261 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6262 int len = VEC_length (sig_type_ptr, tu_group->tus);
6263 struct signatured_type *iter;
f4dc4d17
DE
6264 int i;
6265
6266 gdb_assert (len > 0);
0186c6a7 6267 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6268
6269 pst->number_of_dependencies = len;
6270 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6271 len * sizeof (struct psymtab *));
6272 for (i = 0;
0186c6a7 6273 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6274 ++i)
6275 {
0186c6a7
DE
6276 gdb_assert (iter->per_cu.is_debug_types);
6277 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6278 iter->type_unit_group = tu_group;
f4dc4d17
DE
6279 }
6280
0186c6a7 6281 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6282
6283 return 1;
6284}
6285
6286/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6287 Build partial symbol tables for the .debug_types comp-units. */
6288
6289static void
6290build_type_psymtabs (struct objfile *objfile)
6291{
0e50663e 6292 if (! create_all_type_units (objfile))
348e048f
DE
6293 return;
6294
73051182 6295 build_type_psymtabs_1 ();
6aa5f3a6 6296}
f4dc4d17 6297
6aa5f3a6
DE
6298/* Traversal function for process_skeletonless_type_unit.
6299 Read a TU in a DWO file and build partial symbols for it. */
6300
6301static int
6302process_skeletonless_type_unit (void **slot, void *info)
6303{
6304 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6305 struct objfile *objfile = info;
6306 struct signatured_type find_entry, *entry;
6307
6308 /* If this TU doesn't exist in the global table, add it and read it in. */
6309
6310 if (dwarf2_per_objfile->signatured_types == NULL)
6311 {
6312 dwarf2_per_objfile->signatured_types
6313 = allocate_signatured_type_table (objfile);
6314 }
6315
6316 find_entry.signature = dwo_unit->signature;
6317 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6318 INSERT);
6319 /* If we've already seen this type there's nothing to do. What's happening
6320 is we're doing our own version of comdat-folding here. */
6321 if (*slot != NULL)
6322 return 1;
6323
6324 /* This does the job that create_all_type_units would have done for
6325 this TU. */
6326 entry = add_type_unit (dwo_unit->signature, slot);
6327 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6328 *slot = entry;
6329
6330 /* This does the job that build_type_psymtabs_1 would have done. */
6331 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6332 build_type_psymtabs_reader, NULL);
6333
6334 return 1;
6335}
6336
6337/* Traversal function for process_skeletonless_type_units. */
6338
6339static int
6340process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6341{
6342 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6343
6344 if (dwo_file->tus != NULL)
6345 {
6346 htab_traverse_noresize (dwo_file->tus,
6347 process_skeletonless_type_unit, info);
6348 }
6349
6350 return 1;
6351}
6352
6353/* Scan all TUs of DWO files, verifying we've processed them.
6354 This is needed in case a TU was emitted without its skeleton.
6355 Note: This can't be done until we know what all the DWO files are. */
6356
6357static void
6358process_skeletonless_type_units (struct objfile *objfile)
6359{
6360 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6361 if (get_dwp_file () == NULL
6362 && dwarf2_per_objfile->dwo_files != NULL)
6363 {
6364 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6365 process_dwo_file_for_skeletonless_type_units,
6366 objfile);
6367 }
348e048f
DE
6368}
6369
60606b2c
TT
6370/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6371
6372static void
6373psymtabs_addrmap_cleanup (void *o)
6374{
6375 struct objfile *objfile = o;
ec61707d 6376
60606b2c
TT
6377 objfile->psymtabs_addrmap = NULL;
6378}
6379
95554aad
TT
6380/* Compute the 'user' field for each psymtab in OBJFILE. */
6381
6382static void
6383set_partial_user (struct objfile *objfile)
6384{
6385 int i;
6386
6387 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6388 {
8832e7e3 6389 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6390 struct partial_symtab *pst = per_cu->v.psymtab;
6391 int j;
6392
36586728
TT
6393 if (pst == NULL)
6394 continue;
6395
95554aad
TT
6396 for (j = 0; j < pst->number_of_dependencies; ++j)
6397 {
6398 /* Set the 'user' field only if it is not already set. */
6399 if (pst->dependencies[j]->user == NULL)
6400 pst->dependencies[j]->user = pst;
6401 }
6402 }
6403}
6404
93311388
DE
6405/* Build the partial symbol table by doing a quick pass through the
6406 .debug_info and .debug_abbrev sections. */
72bf9492 6407
93311388 6408static void
c67a9c90 6409dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6410{
60606b2c
TT
6411 struct cleanup *back_to, *addrmap_cleanup;
6412 struct obstack temp_obstack;
21b2bd31 6413 int i;
93311388 6414
45cfd468
DE
6415 if (dwarf2_read_debug)
6416 {
6417 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6418 objfile_name (objfile));
45cfd468
DE
6419 }
6420
98bfdba5
PA
6421 dwarf2_per_objfile->reading_partial_symbols = 1;
6422
be391dca 6423 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6424
93311388
DE
6425 /* Any cached compilation units will be linked by the per-objfile
6426 read_in_chain. Make sure to free them when we're done. */
6427 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6428
348e048f
DE
6429 build_type_psymtabs (objfile);
6430
93311388 6431 create_all_comp_units (objfile);
c906108c 6432
60606b2c
TT
6433 /* Create a temporary address map on a temporary obstack. We later
6434 copy this to the final obstack. */
6435 obstack_init (&temp_obstack);
6436 make_cleanup_obstack_free (&temp_obstack);
6437 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6438 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6439
21b2bd31 6440 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6441 {
8832e7e3 6442 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6443
b93601f3 6444 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6445 }
ff013f42 6446
6aa5f3a6
DE
6447 /* This has to wait until we read the CUs, we need the list of DWOs. */
6448 process_skeletonless_type_units (objfile);
6449
6450 /* Now that all TUs have been processed we can fill in the dependencies. */
6451 if (dwarf2_per_objfile->type_unit_groups != NULL)
6452 {
6453 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6454 build_type_psymtab_dependencies, NULL);
6455 }
6456
6457 if (dwarf2_read_debug)
6458 print_tu_stats ();
6459
95554aad
TT
6460 set_partial_user (objfile);
6461
ff013f42
JK
6462 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6463 &objfile->objfile_obstack);
60606b2c 6464 discard_cleanups (addrmap_cleanup);
ff013f42 6465
ae038cb0 6466 do_cleanups (back_to);
45cfd468
DE
6467
6468 if (dwarf2_read_debug)
6469 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6470 objfile_name (objfile));
ae038cb0
DJ
6471}
6472
3019eac3 6473/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6474
6475static void
dee91e82 6476load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6477 const gdb_byte *info_ptr,
dee91e82
DE
6478 struct die_info *comp_unit_die,
6479 int has_children,
6480 void *data)
ae038cb0 6481{
dee91e82 6482 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6483
95554aad 6484 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6485
ae038cb0
DJ
6486 /* Check if comp unit has_children.
6487 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6488 If not, there's no more debug_info for this comp unit. */
d85a05f0 6489 if (has_children)
dee91e82
DE
6490 load_partial_dies (reader, info_ptr, 0);
6491}
98bfdba5 6492
dee91e82
DE
6493/* Load the partial DIEs for a secondary CU into memory.
6494 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6495
dee91e82
DE
6496static void
6497load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6498{
f4dc4d17
DE
6499 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6500 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6501}
6502
ae038cb0 6503static void
36586728
TT
6504read_comp_units_from_section (struct objfile *objfile,
6505 struct dwarf2_section_info *section,
6506 unsigned int is_dwz,
6507 int *n_allocated,
6508 int *n_comp_units,
6509 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6510{
d521ce57 6511 const gdb_byte *info_ptr;
a32a8923 6512 bfd *abfd = get_section_bfd_owner (section);
be391dca 6513
bf6af496
DE
6514 if (dwarf2_read_debug)
6515 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6516 get_section_name (section),
6517 get_section_file_name (section));
bf6af496 6518
36586728 6519 dwarf2_read_section (objfile, section);
ae038cb0 6520
36586728 6521 info_ptr = section->buffer;
6e70227d 6522
36586728 6523 while (info_ptr < section->buffer + section->size)
ae038cb0 6524 {
c764a876 6525 unsigned int length, initial_length_size;
ae038cb0 6526 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6527 sect_offset offset;
ae038cb0 6528
36586728 6529 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6530
6531 /* Read just enough information to find out where the next
6532 compilation unit is. */
36586728 6533 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6534
6535 /* Save the compilation unit for later lookup. */
6536 this_cu = obstack_alloc (&objfile->objfile_obstack,
6537 sizeof (struct dwarf2_per_cu_data));
6538 memset (this_cu, 0, sizeof (*this_cu));
6539 this_cu->offset = offset;
c764a876 6540 this_cu->length = length + initial_length_size;
36586728 6541 this_cu->is_dwz = is_dwz;
9291a0cd 6542 this_cu->objfile = objfile;
8a0459fd 6543 this_cu->section = section;
ae038cb0 6544
36586728 6545 if (*n_comp_units == *n_allocated)
ae038cb0 6546 {
36586728
TT
6547 *n_allocated *= 2;
6548 *all_comp_units = xrealloc (*all_comp_units,
6549 *n_allocated
6550 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6551 }
36586728
TT
6552 (*all_comp_units)[*n_comp_units] = this_cu;
6553 ++*n_comp_units;
ae038cb0
DJ
6554
6555 info_ptr = info_ptr + this_cu->length;
6556 }
36586728
TT
6557}
6558
6559/* Create a list of all compilation units in OBJFILE.
6560 This is only done for -readnow and building partial symtabs. */
6561
6562static void
6563create_all_comp_units (struct objfile *objfile)
6564{
6565 int n_allocated;
6566 int n_comp_units;
6567 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6568 struct dwz_file *dwz;
36586728
TT
6569
6570 n_comp_units = 0;
6571 n_allocated = 10;
6572 all_comp_units = xmalloc (n_allocated
6573 * sizeof (struct dwarf2_per_cu_data *));
6574
6575 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6576 &n_allocated, &n_comp_units, &all_comp_units);
6577
4db1a1dc
TT
6578 dwz = dwarf2_get_dwz_file ();
6579 if (dwz != NULL)
6580 read_comp_units_from_section (objfile, &dwz->info, 1,
6581 &n_allocated, &n_comp_units,
6582 &all_comp_units);
ae038cb0
DJ
6583
6584 dwarf2_per_objfile->all_comp_units
6585 = obstack_alloc (&objfile->objfile_obstack,
6586 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6587 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6588 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6589 xfree (all_comp_units);
6590 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6591}
6592
5734ee8b 6593/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6594 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6595 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6596 DW_AT_ranges). See the comments of add_partial_subprogram on how
6597 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6598
72bf9492
DJ
6599static void
6600scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6601 CORE_ADDR *highpc, int set_addrmap,
6602 struct dwarf2_cu *cu)
c906108c 6603{
72bf9492 6604 struct partial_die_info *pdi;
c906108c 6605
91c24f0a
DC
6606 /* Now, march along the PDI's, descending into ones which have
6607 interesting children but skipping the children of the other ones,
6608 until we reach the end of the compilation unit. */
c906108c 6609
72bf9492 6610 pdi = first_die;
91c24f0a 6611
72bf9492
DJ
6612 while (pdi != NULL)
6613 {
6614 fixup_partial_die (pdi, cu);
c906108c 6615
f55ee35c 6616 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6617 children, so we need to look at them. Ditto for anonymous
6618 enums. */
933c6fe4 6619
72bf9492 6620 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6621 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6622 || pdi->tag == DW_TAG_imported_unit)
c906108c 6623 {
72bf9492 6624 switch (pdi->tag)
c906108c
SS
6625 {
6626 case DW_TAG_subprogram:
cdc07690 6627 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6628 break;
72929c62 6629 case DW_TAG_constant:
c906108c
SS
6630 case DW_TAG_variable:
6631 case DW_TAG_typedef:
91c24f0a 6632 case DW_TAG_union_type:
72bf9492 6633 if (!pdi->is_declaration)
63d06c5c 6634 {
72bf9492 6635 add_partial_symbol (pdi, cu);
63d06c5c
DC
6636 }
6637 break;
c906108c 6638 case DW_TAG_class_type:
680b30c7 6639 case DW_TAG_interface_type:
c906108c 6640 case DW_TAG_structure_type:
72bf9492 6641 if (!pdi->is_declaration)
c906108c 6642 {
72bf9492 6643 add_partial_symbol (pdi, cu);
c906108c
SS
6644 }
6645 break;
91c24f0a 6646 case DW_TAG_enumeration_type:
72bf9492
DJ
6647 if (!pdi->is_declaration)
6648 add_partial_enumeration (pdi, cu);
c906108c
SS
6649 break;
6650 case DW_TAG_base_type:
a02abb62 6651 case DW_TAG_subrange_type:
c906108c 6652 /* File scope base type definitions are added to the partial
c5aa993b 6653 symbol table. */
72bf9492 6654 add_partial_symbol (pdi, cu);
c906108c 6655 break;
d9fa45fe 6656 case DW_TAG_namespace:
cdc07690 6657 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6658 break;
5d7cb8df 6659 case DW_TAG_module:
cdc07690 6660 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6661 break;
95554aad
TT
6662 case DW_TAG_imported_unit:
6663 {
6664 struct dwarf2_per_cu_data *per_cu;
6665
f4dc4d17
DE
6666 /* For now we don't handle imported units in type units. */
6667 if (cu->per_cu->is_debug_types)
6668 {
6669 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6670 " supported in type units [in module %s]"),
4262abfb 6671 objfile_name (cu->objfile));
f4dc4d17
DE
6672 }
6673
95554aad 6674 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6675 pdi->is_dwz,
95554aad
TT
6676 cu->objfile);
6677
6678 /* Go read the partial unit, if needed. */
6679 if (per_cu->v.psymtab == NULL)
b93601f3 6680 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6681
f4dc4d17 6682 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6683 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6684 }
6685 break;
74921315
KS
6686 case DW_TAG_imported_declaration:
6687 add_partial_symbol (pdi, cu);
6688 break;
c906108c
SS
6689 default:
6690 break;
6691 }
6692 }
6693
72bf9492
DJ
6694 /* If the die has a sibling, skip to the sibling. */
6695
6696 pdi = pdi->die_sibling;
6697 }
6698}
6699
6700/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6701
72bf9492 6702 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6703 name is concatenated with "::" and the partial DIE's name. For
6704 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6705 Enumerators are an exception; they use the scope of their parent
6706 enumeration type, i.e. the name of the enumeration type is not
6707 prepended to the enumerator.
91c24f0a 6708
72bf9492
DJ
6709 There are two complexities. One is DW_AT_specification; in this
6710 case "parent" means the parent of the target of the specification,
6711 instead of the direct parent of the DIE. The other is compilers
6712 which do not emit DW_TAG_namespace; in this case we try to guess
6713 the fully qualified name of structure types from their members'
6714 linkage names. This must be done using the DIE's children rather
6715 than the children of any DW_AT_specification target. We only need
6716 to do this for structures at the top level, i.e. if the target of
6717 any DW_AT_specification (if any; otherwise the DIE itself) does not
6718 have a parent. */
6719
6720/* Compute the scope prefix associated with PDI's parent, in
6721 compilation unit CU. The result will be allocated on CU's
6722 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6723 field. NULL is returned if no prefix is necessary. */
15d034d0 6724static const char *
72bf9492
DJ
6725partial_die_parent_scope (struct partial_die_info *pdi,
6726 struct dwarf2_cu *cu)
6727{
15d034d0 6728 const char *grandparent_scope;
72bf9492 6729 struct partial_die_info *parent, *real_pdi;
91c24f0a 6730
72bf9492
DJ
6731 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6732 then this means the parent of the specification DIE. */
6733
6734 real_pdi = pdi;
72bf9492 6735 while (real_pdi->has_specification)
36586728
TT
6736 real_pdi = find_partial_die (real_pdi->spec_offset,
6737 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6738
6739 parent = real_pdi->die_parent;
6740 if (parent == NULL)
6741 return NULL;
6742
6743 if (parent->scope_set)
6744 return parent->scope;
6745
6746 fixup_partial_die (parent, cu);
6747
10b3939b 6748 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6749
acebe513
UW
6750 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6751 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6752 Work around this problem here. */
6753 if (cu->language == language_cplus
6e70227d 6754 && parent->tag == DW_TAG_namespace
acebe513
UW
6755 && strcmp (parent->name, "::") == 0
6756 && grandparent_scope == NULL)
6757 {
6758 parent->scope = NULL;
6759 parent->scope_set = 1;
6760 return NULL;
6761 }
6762
9c6c53f7
SA
6763 if (pdi->tag == DW_TAG_enumerator)
6764 /* Enumerators should not get the name of the enumeration as a prefix. */
6765 parent->scope = grandparent_scope;
6766 else if (parent->tag == DW_TAG_namespace
f55ee35c 6767 || parent->tag == DW_TAG_module
72bf9492
DJ
6768 || parent->tag == DW_TAG_structure_type
6769 || parent->tag == DW_TAG_class_type
680b30c7 6770 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6771 || parent->tag == DW_TAG_union_type
6772 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6773 {
6774 if (grandparent_scope == NULL)
6775 parent->scope = parent->name;
6776 else
3e43a32a
MS
6777 parent->scope = typename_concat (&cu->comp_unit_obstack,
6778 grandparent_scope,
f55ee35c 6779 parent->name, 0, cu);
72bf9492 6780 }
72bf9492
DJ
6781 else
6782 {
6783 /* FIXME drow/2004-04-01: What should we be doing with
6784 function-local names? For partial symbols, we should probably be
6785 ignoring them. */
6786 complaint (&symfile_complaints,
e2e0b3e5 6787 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6788 parent->tag, pdi->offset.sect_off);
72bf9492 6789 parent->scope = grandparent_scope;
c906108c
SS
6790 }
6791
72bf9492
DJ
6792 parent->scope_set = 1;
6793 return parent->scope;
6794}
6795
6796/* Return the fully scoped name associated with PDI, from compilation unit
6797 CU. The result will be allocated with malloc. */
4568ecf9 6798
72bf9492
DJ
6799static char *
6800partial_die_full_name (struct partial_die_info *pdi,
6801 struct dwarf2_cu *cu)
6802{
15d034d0 6803 const char *parent_scope;
72bf9492 6804
98bfdba5
PA
6805 /* If this is a template instantiation, we can not work out the
6806 template arguments from partial DIEs. So, unfortunately, we have
6807 to go through the full DIEs. At least any work we do building
6808 types here will be reused if full symbols are loaded later. */
6809 if (pdi->has_template_arguments)
6810 {
6811 fixup_partial_die (pdi, cu);
6812
6813 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6814 {
6815 struct die_info *die;
6816 struct attribute attr;
6817 struct dwarf2_cu *ref_cu = cu;
6818
b64f50a1 6819 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6820 attr.name = 0;
6821 attr.form = DW_FORM_ref_addr;
4568ecf9 6822 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6823 die = follow_die_ref (NULL, &attr, &ref_cu);
6824
6825 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6826 }
6827 }
6828
72bf9492
DJ
6829 parent_scope = partial_die_parent_scope (pdi, cu);
6830 if (parent_scope == NULL)
6831 return NULL;
6832 else
f55ee35c 6833 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6834}
6835
6836static void
72bf9492 6837add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6838{
e7c27a73 6839 struct objfile *objfile = cu->objfile;
3e29f34a 6840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6841 CORE_ADDR addr = 0;
15d034d0 6842 const char *actual_name = NULL;
e142c38c 6843 CORE_ADDR baseaddr;
15d034d0 6844 char *built_actual_name;
e142c38c
DJ
6845
6846 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6847
15d034d0
TT
6848 built_actual_name = partial_die_full_name (pdi, cu);
6849 if (built_actual_name != NULL)
6850 actual_name = built_actual_name;
63d06c5c 6851
72bf9492
DJ
6852 if (actual_name == NULL)
6853 actual_name = pdi->name;
6854
c906108c
SS
6855 switch (pdi->tag)
6856 {
6857 case DW_TAG_subprogram:
3e29f34a 6858 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6859 if (pdi->is_external || cu->language == language_ada)
c906108c 6860 {
2cfa0c8d
JB
6861 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6862 of the global scope. But in Ada, we want to be able to access
6863 nested procedures globally. So all Ada subprograms are stored
6864 in the global scope. */
3e29f34a
MR
6865 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6866 objfile); */
f47fb265 6867 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6868 built_actual_name != NULL,
f47fb265
MS
6869 VAR_DOMAIN, LOC_BLOCK,
6870 &objfile->global_psymbols,
3e29f34a 6871 0, addr, cu->language, objfile);
c906108c
SS
6872 }
6873 else
6874 {
3e29f34a
MR
6875 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6876 objfile); */
f47fb265 6877 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6878 built_actual_name != NULL,
f47fb265
MS
6879 VAR_DOMAIN, LOC_BLOCK,
6880 &objfile->static_psymbols,
3e29f34a 6881 0, addr, cu->language, objfile);
c906108c
SS
6882 }
6883 break;
72929c62
JB
6884 case DW_TAG_constant:
6885 {
6886 struct psymbol_allocation_list *list;
6887
6888 if (pdi->is_external)
6889 list = &objfile->global_psymbols;
6890 else
6891 list = &objfile->static_psymbols;
f47fb265 6892 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6893 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6894 list, 0, 0, cu->language, objfile);
72929c62
JB
6895 }
6896 break;
c906108c 6897 case DW_TAG_variable:
95554aad
TT
6898 if (pdi->d.locdesc)
6899 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6900
95554aad 6901 if (pdi->d.locdesc
caac4577
JG
6902 && addr == 0
6903 && !dwarf2_per_objfile->has_section_at_zero)
6904 {
6905 /* A global or static variable may also have been stripped
6906 out by the linker if unused, in which case its address
6907 will be nullified; do not add such variables into partial
6908 symbol table then. */
6909 }
6910 else if (pdi->is_external)
c906108c
SS
6911 {
6912 /* Global Variable.
6913 Don't enter into the minimal symbol tables as there is
6914 a minimal symbol table entry from the ELF symbols already.
6915 Enter into partial symbol table if it has a location
6916 descriptor or a type.
6917 If the location descriptor is missing, new_symbol will create
6918 a LOC_UNRESOLVED symbol, the address of the variable will then
6919 be determined from the minimal symbol table whenever the variable
6920 is referenced.
6921 The address for the partial symbol table entry is not
6922 used by GDB, but it comes in handy for debugging partial symbol
6923 table building. */
6924
95554aad 6925 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6926 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6927 built_actual_name != NULL,
f47fb265
MS
6928 VAR_DOMAIN, LOC_STATIC,
6929 &objfile->global_psymbols,
6930 0, addr + baseaddr,
6931 cu->language, objfile);
c906108c
SS
6932 }
6933 else
6934 {
0963b4bd 6935 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6936 if (pdi->d.locdesc == NULL)
decbce07 6937 {
15d034d0 6938 xfree (built_actual_name);
decbce07
MS
6939 return;
6940 }
f47fb265 6941 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6942 mst_file_data, objfile); */
f47fb265 6943 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6944 built_actual_name != NULL,
f47fb265
MS
6945 VAR_DOMAIN, LOC_STATIC,
6946 &objfile->static_psymbols,
6947 0, addr + baseaddr,
6948 cu->language, objfile);
c906108c
SS
6949 }
6950 break;
6951 case DW_TAG_typedef:
6952 case DW_TAG_base_type:
a02abb62 6953 case DW_TAG_subrange_type:
38d518c9 6954 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6955 built_actual_name != NULL,
176620f1 6956 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6957 &objfile->static_psymbols,
e142c38c 6958 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6959 break;
74921315 6960 case DW_TAG_imported_declaration:
72bf9492
DJ
6961 case DW_TAG_namespace:
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6963 built_actual_name != NULL,
72bf9492
DJ
6964 VAR_DOMAIN, LOC_TYPEDEF,
6965 &objfile->global_psymbols,
6966 0, (CORE_ADDR) 0, cu->language, objfile);
6967 break;
530e8392
KB
6968 case DW_TAG_module:
6969 add_psymbol_to_list (actual_name, strlen (actual_name),
6970 built_actual_name != NULL,
6971 MODULE_DOMAIN, LOC_TYPEDEF,
6972 &objfile->global_psymbols,
6973 0, (CORE_ADDR) 0, cu->language, objfile);
6974 break;
c906108c 6975 case DW_TAG_class_type:
680b30c7 6976 case DW_TAG_interface_type:
c906108c
SS
6977 case DW_TAG_structure_type:
6978 case DW_TAG_union_type:
6979 case DW_TAG_enumeration_type:
fa4028e9
JB
6980 /* Skip external references. The DWARF standard says in the section
6981 about "Structure, Union, and Class Type Entries": "An incomplete
6982 structure, union or class type is represented by a structure,
6983 union or class entry that does not have a byte size attribute
6984 and that has a DW_AT_declaration attribute." */
6985 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6986 {
15d034d0 6987 xfree (built_actual_name);
decbce07
MS
6988 return;
6989 }
fa4028e9 6990
63d06c5c
DC
6991 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6992 static vs. global. */
38d518c9 6993 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6994 built_actual_name != NULL,
176620f1 6995 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6996 (cu->language == language_cplus
6997 || cu->language == language_java)
63d06c5c
DC
6998 ? &objfile->global_psymbols
6999 : &objfile->static_psymbols,
e142c38c 7000 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 7001
c906108c
SS
7002 break;
7003 case DW_TAG_enumerator:
38d518c9 7004 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7005 built_actual_name != NULL,
176620f1 7006 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7007 (cu->language == language_cplus
7008 || cu->language == language_java)
f6fe98ef
DJ
7009 ? &objfile->global_psymbols
7010 : &objfile->static_psymbols,
e142c38c 7011 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
7012 break;
7013 default:
7014 break;
7015 }
5c4e30ca 7016
15d034d0 7017 xfree (built_actual_name);
c906108c
SS
7018}
7019
5c4e30ca
DC
7020/* Read a partial die corresponding to a namespace; also, add a symbol
7021 corresponding to that namespace to the symbol table. NAMESPACE is
7022 the name of the enclosing namespace. */
91c24f0a 7023
72bf9492
DJ
7024static void
7025add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7026 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7027 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7028{
72bf9492 7029 /* Add a symbol for the namespace. */
e7c27a73 7030
72bf9492 7031 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7032
7033 /* Now scan partial symbols in that namespace. */
7034
91c24f0a 7035 if (pdi->has_children)
cdc07690 7036 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7037}
7038
5d7cb8df
JK
7039/* Read a partial die corresponding to a Fortran module. */
7040
7041static void
7042add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7043 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7044{
530e8392
KB
7045 /* Add a symbol for the namespace. */
7046
7047 add_partial_symbol (pdi, cu);
7048
f55ee35c 7049 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7050
7051 if (pdi->has_children)
cdc07690 7052 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7053}
7054
bc30ff58
JB
7055/* Read a partial die corresponding to a subprogram and create a partial
7056 symbol for that subprogram. When the CU language allows it, this
7057 routine also defines a partial symbol for each nested subprogram
cdc07690 7058 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7059 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7060 and highest PC values found in PDI.
6e70227d 7061
cdc07690
YQ
7062 PDI may also be a lexical block, in which case we simply search
7063 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7064 Again, this is only performed when the CU language allows this
7065 type of definitions. */
7066
7067static void
7068add_partial_subprogram (struct partial_die_info *pdi,
7069 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7070 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7071{
7072 if (pdi->tag == DW_TAG_subprogram)
7073 {
7074 if (pdi->has_pc_info)
7075 {
7076 if (pdi->lowpc < *lowpc)
7077 *lowpc = pdi->lowpc;
7078 if (pdi->highpc > *highpc)
7079 *highpc = pdi->highpc;
cdc07690 7080 if (set_addrmap)
5734ee8b 7081 {
5734ee8b 7082 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7084 CORE_ADDR baseaddr;
7085 CORE_ADDR highpc;
7086 CORE_ADDR lowpc;
5734ee8b
DJ
7087
7088 baseaddr = ANOFFSET (objfile->section_offsets,
7089 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7090 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7091 pdi->lowpc + baseaddr);
7092 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7093 pdi->highpc + baseaddr);
7094 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7095 cu->per_cu->v.psymtab);
5734ee8b 7096 }
481860b3
GB
7097 }
7098
7099 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7100 {
bc30ff58 7101 if (!pdi->is_declaration)
e8d05480
JB
7102 /* Ignore subprogram DIEs that do not have a name, they are
7103 illegal. Do not emit a complaint at this point, we will
7104 do so when we convert this psymtab into a symtab. */
7105 if (pdi->name)
7106 add_partial_symbol (pdi, cu);
bc30ff58
JB
7107 }
7108 }
6e70227d 7109
bc30ff58
JB
7110 if (! pdi->has_children)
7111 return;
7112
7113 if (cu->language == language_ada)
7114 {
7115 pdi = pdi->die_child;
7116 while (pdi != NULL)
7117 {
7118 fixup_partial_die (pdi, cu);
7119 if (pdi->tag == DW_TAG_subprogram
7120 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7121 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7122 pdi = pdi->die_sibling;
7123 }
7124 }
7125}
7126
91c24f0a
DC
7127/* Read a partial die corresponding to an enumeration type. */
7128
72bf9492
DJ
7129static void
7130add_partial_enumeration (struct partial_die_info *enum_pdi,
7131 struct dwarf2_cu *cu)
91c24f0a 7132{
72bf9492 7133 struct partial_die_info *pdi;
91c24f0a
DC
7134
7135 if (enum_pdi->name != NULL)
72bf9492
DJ
7136 add_partial_symbol (enum_pdi, cu);
7137
7138 pdi = enum_pdi->die_child;
7139 while (pdi)
91c24f0a 7140 {
72bf9492 7141 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7142 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7143 else
72bf9492
DJ
7144 add_partial_symbol (pdi, cu);
7145 pdi = pdi->die_sibling;
91c24f0a 7146 }
91c24f0a
DC
7147}
7148
6caca83c
CC
7149/* Return the initial uleb128 in the die at INFO_PTR. */
7150
7151static unsigned int
d521ce57 7152peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7153{
7154 unsigned int bytes_read;
7155
7156 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7157}
7158
4bb7a0a7
DJ
7159/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7160 Return the corresponding abbrev, or NULL if the number is zero (indicating
7161 an empty DIE). In either case *BYTES_READ will be set to the length of
7162 the initial number. */
7163
7164static struct abbrev_info *
d521ce57 7165peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7166 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7167{
7168 bfd *abfd = cu->objfile->obfd;
7169 unsigned int abbrev_number;
7170 struct abbrev_info *abbrev;
7171
7172 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7173
7174 if (abbrev_number == 0)
7175 return NULL;
7176
433df2d4 7177 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7178 if (!abbrev)
7179 {
422b9917
DE
7180 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7181 " at offset 0x%x [in module %s]"),
7182 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7183 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7184 }
7185
7186 return abbrev;
7187}
7188
93311388
DE
7189/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7190 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7191 DIE. Any children of the skipped DIEs will also be skipped. */
7192
d521ce57
TT
7193static const gdb_byte *
7194skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7195{
dee91e82 7196 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7197 struct abbrev_info *abbrev;
7198 unsigned int bytes_read;
7199
7200 while (1)
7201 {
7202 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7203 if (abbrev == NULL)
7204 return info_ptr + bytes_read;
7205 else
dee91e82 7206 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7207 }
7208}
7209
93311388
DE
7210/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7211 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7212 abbrev corresponding to that skipped uleb128 should be passed in
7213 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7214 children. */
7215
d521ce57
TT
7216static const gdb_byte *
7217skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7218 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7219{
7220 unsigned int bytes_read;
7221 struct attribute attr;
dee91e82
DE
7222 bfd *abfd = reader->abfd;
7223 struct dwarf2_cu *cu = reader->cu;
d521ce57 7224 const gdb_byte *buffer = reader->buffer;
f664829e 7225 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7226 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7227 unsigned int form, i;
7228
7229 for (i = 0; i < abbrev->num_attrs; i++)
7230 {
7231 /* The only abbrev we care about is DW_AT_sibling. */
7232 if (abbrev->attrs[i].name == DW_AT_sibling)
7233 {
dee91e82 7234 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7235 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7236 complaint (&symfile_complaints,
7237 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7238 else
b9502d3f
WN
7239 {
7240 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7241 const gdb_byte *sibling_ptr = buffer + off;
7242
7243 if (sibling_ptr < info_ptr)
7244 complaint (&symfile_complaints,
7245 _("DW_AT_sibling points backwards"));
22869d73
KS
7246 else if (sibling_ptr > reader->buffer_end)
7247 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7248 else
7249 return sibling_ptr;
7250 }
4bb7a0a7
DJ
7251 }
7252
7253 /* If it isn't DW_AT_sibling, skip this attribute. */
7254 form = abbrev->attrs[i].form;
7255 skip_attribute:
7256 switch (form)
7257 {
4bb7a0a7 7258 case DW_FORM_ref_addr:
ae411497
TT
7259 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7260 and later it is offset sized. */
7261 if (cu->header.version == 2)
7262 info_ptr += cu->header.addr_size;
7263 else
7264 info_ptr += cu->header.offset_size;
7265 break;
36586728
TT
7266 case DW_FORM_GNU_ref_alt:
7267 info_ptr += cu->header.offset_size;
7268 break;
ae411497 7269 case DW_FORM_addr:
4bb7a0a7
DJ
7270 info_ptr += cu->header.addr_size;
7271 break;
7272 case DW_FORM_data1:
7273 case DW_FORM_ref1:
7274 case DW_FORM_flag:
7275 info_ptr += 1;
7276 break;
2dc7f7b3
TT
7277 case DW_FORM_flag_present:
7278 break;
4bb7a0a7
DJ
7279 case DW_FORM_data2:
7280 case DW_FORM_ref2:
7281 info_ptr += 2;
7282 break;
7283 case DW_FORM_data4:
7284 case DW_FORM_ref4:
7285 info_ptr += 4;
7286 break;
7287 case DW_FORM_data8:
7288 case DW_FORM_ref8:
55f1336d 7289 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7290 info_ptr += 8;
7291 break;
7292 case DW_FORM_string:
9b1c24c8 7293 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7294 info_ptr += bytes_read;
7295 break;
2dc7f7b3 7296 case DW_FORM_sec_offset:
4bb7a0a7 7297 case DW_FORM_strp:
36586728 7298 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7299 info_ptr += cu->header.offset_size;
7300 break;
2dc7f7b3 7301 case DW_FORM_exprloc:
4bb7a0a7
DJ
7302 case DW_FORM_block:
7303 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7304 info_ptr += bytes_read;
7305 break;
7306 case DW_FORM_block1:
7307 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7308 break;
7309 case DW_FORM_block2:
7310 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7311 break;
7312 case DW_FORM_block4:
7313 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7314 break;
7315 case DW_FORM_sdata:
7316 case DW_FORM_udata:
7317 case DW_FORM_ref_udata:
3019eac3
DE
7318 case DW_FORM_GNU_addr_index:
7319 case DW_FORM_GNU_str_index:
d521ce57 7320 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7321 break;
7322 case DW_FORM_indirect:
7323 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7324 info_ptr += bytes_read;
7325 /* We need to continue parsing from here, so just go back to
7326 the top. */
7327 goto skip_attribute;
7328
7329 default:
3e43a32a
MS
7330 error (_("Dwarf Error: Cannot handle %s "
7331 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7332 dwarf_form_name (form),
7333 bfd_get_filename (abfd));
7334 }
7335 }
7336
7337 if (abbrev->has_children)
dee91e82 7338 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7339 else
7340 return info_ptr;
7341}
7342
93311388 7343/* Locate ORIG_PDI's sibling.
dee91e82 7344 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7345
d521ce57 7346static const gdb_byte *
dee91e82
DE
7347locate_pdi_sibling (const struct die_reader_specs *reader,
7348 struct partial_die_info *orig_pdi,
d521ce57 7349 const gdb_byte *info_ptr)
91c24f0a
DC
7350{
7351 /* Do we know the sibling already? */
72bf9492 7352
91c24f0a
DC
7353 if (orig_pdi->sibling)
7354 return orig_pdi->sibling;
7355
7356 /* Are there any children to deal with? */
7357
7358 if (!orig_pdi->has_children)
7359 return info_ptr;
7360
4bb7a0a7 7361 /* Skip the children the long way. */
91c24f0a 7362
dee91e82 7363 return skip_children (reader, info_ptr);
91c24f0a
DC
7364}
7365
257e7a09 7366/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7367 not NULL. */
c906108c
SS
7368
7369static void
257e7a09
YQ
7370dwarf2_read_symtab (struct partial_symtab *self,
7371 struct objfile *objfile)
c906108c 7372{
257e7a09 7373 if (self->readin)
c906108c 7374 {
442e4d9c 7375 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7376 self->filename);
442e4d9c
YQ
7377 }
7378 else
7379 {
7380 if (info_verbose)
c906108c 7381 {
442e4d9c 7382 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7383 self->filename);
442e4d9c 7384 gdb_flush (gdb_stdout);
c906108c 7385 }
c906108c 7386
442e4d9c
YQ
7387 /* Restore our global data. */
7388 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7389
442e4d9c
YQ
7390 /* If this psymtab is constructed from a debug-only objfile, the
7391 has_section_at_zero flag will not necessarily be correct. We
7392 can get the correct value for this flag by looking at the data
7393 associated with the (presumably stripped) associated objfile. */
7394 if (objfile->separate_debug_objfile_backlink)
7395 {
7396 struct dwarf2_per_objfile *dpo_backlink
7397 = objfile_data (objfile->separate_debug_objfile_backlink,
7398 dwarf2_objfile_data_key);
9a619af0 7399
442e4d9c
YQ
7400 dwarf2_per_objfile->has_section_at_zero
7401 = dpo_backlink->has_section_at_zero;
7402 }
b2ab525c 7403
442e4d9c 7404 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7405
257e7a09 7406 psymtab_to_symtab_1 (self);
c906108c 7407
442e4d9c
YQ
7408 /* Finish up the debug error message. */
7409 if (info_verbose)
7410 printf_filtered (_("done.\n"));
c906108c 7411 }
95554aad
TT
7412
7413 process_cu_includes ();
c906108c 7414}
9cdd5dbd
DE
7415\f
7416/* Reading in full CUs. */
c906108c 7417
10b3939b
DJ
7418/* Add PER_CU to the queue. */
7419
7420static void
95554aad
TT
7421queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7422 enum language pretend_language)
10b3939b
DJ
7423{
7424 struct dwarf2_queue_item *item;
7425
7426 per_cu->queued = 1;
7427 item = xmalloc (sizeof (*item));
7428 item->per_cu = per_cu;
95554aad 7429 item->pretend_language = pretend_language;
10b3939b
DJ
7430 item->next = NULL;
7431
7432 if (dwarf2_queue == NULL)
7433 dwarf2_queue = item;
7434 else
7435 dwarf2_queue_tail->next = item;
7436
7437 dwarf2_queue_tail = item;
7438}
7439
89e63ee4
DE
7440/* If PER_CU is not yet queued, add it to the queue.
7441 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7442 dependency.
0907af0c 7443 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7444 meaning either PER_CU is already queued or it is already loaded.
7445
7446 N.B. There is an invariant here that if a CU is queued then it is loaded.
7447 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7448
7449static int
89e63ee4 7450maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7451 struct dwarf2_per_cu_data *per_cu,
7452 enum language pretend_language)
7453{
7454 /* We may arrive here during partial symbol reading, if we need full
7455 DIEs to process an unusual case (e.g. template arguments). Do
7456 not queue PER_CU, just tell our caller to load its DIEs. */
7457 if (dwarf2_per_objfile->reading_partial_symbols)
7458 {
7459 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7460 return 1;
7461 return 0;
7462 }
7463
7464 /* Mark the dependence relation so that we don't flush PER_CU
7465 too early. */
89e63ee4
DE
7466 if (dependent_cu != NULL)
7467 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7468
7469 /* If it's already on the queue, we have nothing to do. */
7470 if (per_cu->queued)
7471 return 0;
7472
7473 /* If the compilation unit is already loaded, just mark it as
7474 used. */
7475 if (per_cu->cu != NULL)
7476 {
7477 per_cu->cu->last_used = 0;
7478 return 0;
7479 }
7480
7481 /* Add it to the queue. */
7482 queue_comp_unit (per_cu, pretend_language);
7483
7484 return 1;
7485}
7486
10b3939b
DJ
7487/* Process the queue. */
7488
7489static void
a0f42c21 7490process_queue (void)
10b3939b
DJ
7491{
7492 struct dwarf2_queue_item *item, *next_item;
7493
45cfd468
DE
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog,
7497 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7498 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7499 }
7500
03dd20cc
DJ
7501 /* The queue starts out with one item, but following a DIE reference
7502 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7503 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7504 {
9291a0cd 7505 if (dwarf2_per_objfile->using_index
43f3e411 7506 ? !item->per_cu->v.quick->compunit_symtab
9291a0cd 7507 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7508 {
7509 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7510 unsigned int debug_print_threshold;
247f5c4f 7511 char buf[100];
f4dc4d17 7512
247f5c4f 7513 if (per_cu->is_debug_types)
f4dc4d17 7514 {
247f5c4f
DE
7515 struct signatured_type *sig_type =
7516 (struct signatured_type *) per_cu;
7517
7518 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7519 hex_string (sig_type->signature),
7520 per_cu->offset.sect_off);
7521 /* There can be 100s of TUs.
7522 Only print them in verbose mode. */
7523 debug_print_threshold = 2;
f4dc4d17 7524 }
247f5c4f 7525 else
73be47f5
DE
7526 {
7527 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7528 debug_print_threshold = 1;
7529 }
247f5c4f 7530
73be47f5 7531 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7532 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7533
7534 if (per_cu->is_debug_types)
7535 process_full_type_unit (per_cu, item->pretend_language);
7536 else
7537 process_full_comp_unit (per_cu, item->pretend_language);
7538
73be47f5 7539 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7540 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7541 }
10b3939b
DJ
7542
7543 item->per_cu->queued = 0;
7544 next_item = item->next;
7545 xfree (item);
7546 }
7547
7548 dwarf2_queue_tail = NULL;
45cfd468
DE
7549
7550 if (dwarf2_read_debug)
7551 {
7552 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7553 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7554 }
10b3939b
DJ
7555}
7556
7557/* Free all allocated queue entries. This function only releases anything if
7558 an error was thrown; if the queue was processed then it would have been
7559 freed as we went along. */
7560
7561static void
7562dwarf2_release_queue (void *dummy)
7563{
7564 struct dwarf2_queue_item *item, *last;
7565
7566 item = dwarf2_queue;
7567 while (item)
7568 {
7569 /* Anything still marked queued is likely to be in an
7570 inconsistent state, so discard it. */
7571 if (item->per_cu->queued)
7572 {
7573 if (item->per_cu->cu != NULL)
dee91e82 7574 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7575 item->per_cu->queued = 0;
7576 }
7577
7578 last = item;
7579 item = item->next;
7580 xfree (last);
7581 }
7582
7583 dwarf2_queue = dwarf2_queue_tail = NULL;
7584}
7585
7586/* Read in full symbols for PST, and anything it depends on. */
7587
c906108c 7588static void
fba45db2 7589psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7590{
10b3939b 7591 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7592 int i;
7593
95554aad
TT
7594 if (pst->readin)
7595 return;
7596
aaa75496 7597 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7598 if (!pst->dependencies[i]->readin
7599 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7600 {
7601 /* Inform about additional files that need to be read in. */
7602 if (info_verbose)
7603 {
a3f17187 7604 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7605 fputs_filtered (" ", gdb_stdout);
7606 wrap_here ("");
7607 fputs_filtered ("and ", gdb_stdout);
7608 wrap_here ("");
7609 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7610 wrap_here (""); /* Flush output. */
aaa75496
JB
7611 gdb_flush (gdb_stdout);
7612 }
7613 psymtab_to_symtab_1 (pst->dependencies[i]);
7614 }
7615
e38df1d0 7616 per_cu = pst->read_symtab_private;
10b3939b
DJ
7617
7618 if (per_cu == NULL)
aaa75496
JB
7619 {
7620 /* It's an include file, no symbols to read for it.
7621 Everything is in the parent symtab. */
7622 pst->readin = 1;
7623 return;
7624 }
c906108c 7625
a0f42c21 7626 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7627}
7628
dee91e82
DE
7629/* Trivial hash function for die_info: the hash value of a DIE
7630 is its offset in .debug_info for this objfile. */
10b3939b 7631
dee91e82
DE
7632static hashval_t
7633die_hash (const void *item)
10b3939b 7634{
dee91e82 7635 const struct die_info *die = item;
6502dd73 7636
dee91e82
DE
7637 return die->offset.sect_off;
7638}
63d06c5c 7639
dee91e82
DE
7640/* Trivial comparison function for die_info structures: two DIEs
7641 are equal if they have the same offset. */
98bfdba5 7642
dee91e82
DE
7643static int
7644die_eq (const void *item_lhs, const void *item_rhs)
7645{
7646 const struct die_info *die_lhs = item_lhs;
7647 const struct die_info *die_rhs = item_rhs;
c906108c 7648
dee91e82
DE
7649 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7650}
c906108c 7651
dee91e82
DE
7652/* die_reader_func for load_full_comp_unit.
7653 This is identical to read_signatured_type_reader,
7654 but is kept separate for now. */
c906108c 7655
dee91e82
DE
7656static void
7657load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7658 const gdb_byte *info_ptr,
dee91e82
DE
7659 struct die_info *comp_unit_die,
7660 int has_children,
7661 void *data)
7662{
7663 struct dwarf2_cu *cu = reader->cu;
95554aad 7664 enum language *language_ptr = data;
6caca83c 7665
dee91e82
DE
7666 gdb_assert (cu->die_hash == NULL);
7667 cu->die_hash =
7668 htab_create_alloc_ex (cu->header.length / 12,
7669 die_hash,
7670 die_eq,
7671 NULL,
7672 &cu->comp_unit_obstack,
7673 hashtab_obstack_allocate,
7674 dummy_obstack_deallocate);
e142c38c 7675
dee91e82
DE
7676 if (has_children)
7677 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7678 &info_ptr, comp_unit_die);
7679 cu->dies = comp_unit_die;
7680 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7681
7682 /* We try not to read any attributes in this function, because not
9cdd5dbd 7683 all CUs needed for references have been loaded yet, and symbol
10b3939b 7684 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7685 or we won't be able to build types correctly.
7686 Similarly, if we do not read the producer, we can not apply
7687 producer-specific interpretation. */
95554aad 7688 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7689}
10b3939b 7690
dee91e82 7691/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7692
dee91e82 7693static void
95554aad
TT
7694load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7695 enum language pretend_language)
dee91e82 7696{
3019eac3 7697 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7698
f4dc4d17
DE
7699 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7700 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7701}
7702
3da10d80
KS
7703/* Add a DIE to the delayed physname list. */
7704
7705static void
7706add_to_method_list (struct type *type, int fnfield_index, int index,
7707 const char *name, struct die_info *die,
7708 struct dwarf2_cu *cu)
7709{
7710 struct delayed_method_info mi;
7711 mi.type = type;
7712 mi.fnfield_index = fnfield_index;
7713 mi.index = index;
7714 mi.name = name;
7715 mi.die = die;
7716 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7717}
7718
7719/* A cleanup for freeing the delayed method list. */
7720
7721static void
7722free_delayed_list (void *ptr)
7723{
7724 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7725 if (cu->method_list != NULL)
7726 {
7727 VEC_free (delayed_method_info, cu->method_list);
7728 cu->method_list = NULL;
7729 }
7730}
7731
7732/* Compute the physnames of any methods on the CU's method list.
7733
7734 The computation of method physnames is delayed in order to avoid the
7735 (bad) condition that one of the method's formal parameters is of an as yet
7736 incomplete type. */
7737
7738static void
7739compute_delayed_physnames (struct dwarf2_cu *cu)
7740{
7741 int i;
7742 struct delayed_method_info *mi;
7743 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7744 {
1d06ead6 7745 const char *physname;
3da10d80
KS
7746 struct fn_fieldlist *fn_flp
7747 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7748 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7749 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7750 = physname ? physname : "";
3da10d80
KS
7751 }
7752}
7753
a766d390
DE
7754/* Go objects should be embedded in a DW_TAG_module DIE,
7755 and it's not clear if/how imported objects will appear.
7756 To keep Go support simple until that's worked out,
7757 go back through what we've read and create something usable.
7758 We could do this while processing each DIE, and feels kinda cleaner,
7759 but that way is more invasive.
7760 This is to, for example, allow the user to type "p var" or "b main"
7761 without having to specify the package name, and allow lookups
7762 of module.object to work in contexts that use the expression
7763 parser. */
7764
7765static void
7766fixup_go_packaging (struct dwarf2_cu *cu)
7767{
7768 char *package_name = NULL;
7769 struct pending *list;
7770 int i;
7771
7772 for (list = global_symbols; list != NULL; list = list->next)
7773 {
7774 for (i = 0; i < list->nsyms; ++i)
7775 {
7776 struct symbol *sym = list->symbol[i];
7777
7778 if (SYMBOL_LANGUAGE (sym) == language_go
7779 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7780 {
7781 char *this_package_name = go_symbol_package_name (sym);
7782
7783 if (this_package_name == NULL)
7784 continue;
7785 if (package_name == NULL)
7786 package_name = this_package_name;
7787 else
7788 {
7789 if (strcmp (package_name, this_package_name) != 0)
7790 complaint (&symfile_complaints,
7791 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7792 (symbol_symtab (sym) != NULL
7793 ? symtab_to_filename_for_display
7794 (symbol_symtab (sym))
4262abfb 7795 : objfile_name (cu->objfile)),
a766d390
DE
7796 this_package_name, package_name);
7797 xfree (this_package_name);
7798 }
7799 }
7800 }
7801 }
7802
7803 if (package_name != NULL)
7804 {
7805 struct objfile *objfile = cu->objfile;
34a68019
TT
7806 const char *saved_package_name
7807 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7808 package_name,
7809 strlen (package_name));
a766d390 7810 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7811 saved_package_name, objfile);
a766d390
DE
7812 struct symbol *sym;
7813
7814 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7815
e623cf5d 7816 sym = allocate_symbol (objfile);
f85f34ed 7817 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7818 SYMBOL_SET_NAMES (sym, saved_package_name,
7819 strlen (saved_package_name), 0, objfile);
a766d390
DE
7820 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7821 e.g., "main" finds the "main" module and not C's main(). */
7822 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7823 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7824 SYMBOL_TYPE (sym) = type;
7825
7826 add_symbol_to_list (sym, &global_symbols);
7827
7828 xfree (package_name);
7829 }
7830}
7831
95554aad
TT
7832/* Return the symtab for PER_CU. This works properly regardless of
7833 whether we're using the index or psymtabs. */
7834
43f3e411
DE
7835static struct compunit_symtab *
7836get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7837{
7838 return (dwarf2_per_objfile->using_index
43f3e411
DE
7839 ? per_cu->v.quick->compunit_symtab
7840 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7841}
7842
7843/* A helper function for computing the list of all symbol tables
7844 included by PER_CU. */
7845
7846static void
43f3e411 7847recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7848 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7849 struct dwarf2_per_cu_data *per_cu,
43f3e411 7850 struct compunit_symtab *immediate_parent)
95554aad
TT
7851{
7852 void **slot;
7853 int ix;
43f3e411 7854 struct compunit_symtab *cust;
95554aad
TT
7855 struct dwarf2_per_cu_data *iter;
7856
7857 slot = htab_find_slot (all_children, per_cu, INSERT);
7858 if (*slot != NULL)
7859 {
7860 /* This inclusion and its children have been processed. */
7861 return;
7862 }
7863
7864 *slot = per_cu;
7865 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7866 cust = get_compunit_symtab (per_cu);
7867 if (cust != NULL)
ec94af83
DE
7868 {
7869 /* If this is a type unit only add its symbol table if we haven't
7870 seen it yet (type unit per_cu's can share symtabs). */
7871 if (per_cu->is_debug_types)
7872 {
43f3e411 7873 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7874 if (*slot == NULL)
7875 {
43f3e411
DE
7876 *slot = cust;
7877 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7878 if (cust->user == NULL)
7879 cust->user = immediate_parent;
ec94af83
DE
7880 }
7881 }
7882 else
f9125b6c 7883 {
43f3e411
DE
7884 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7885 if (cust->user == NULL)
7886 cust->user = immediate_parent;
f9125b6c 7887 }
ec94af83 7888 }
95554aad
TT
7889
7890 for (ix = 0;
796a7ff8 7891 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7892 ++ix)
ec94af83
DE
7893 {
7894 recursively_compute_inclusions (result, all_children,
43f3e411 7895 all_type_symtabs, iter, cust);
ec94af83 7896 }
95554aad
TT
7897}
7898
43f3e411 7899/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7900 PER_CU. */
7901
7902static void
43f3e411 7903compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7904{
f4dc4d17
DE
7905 gdb_assert (! per_cu->is_debug_types);
7906
796a7ff8 7907 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7908 {
7909 int ix, len;
ec94af83 7910 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7911 struct compunit_symtab *compunit_symtab_iter;
7912 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7913 htab_t all_children, all_type_symtabs;
43f3e411 7914 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7915
7916 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7917 if (cust == NULL)
95554aad
TT
7918 return;
7919
7920 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7921 NULL, xcalloc, xfree);
ec94af83
DE
7922 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7923 NULL, xcalloc, xfree);
95554aad
TT
7924
7925 for (ix = 0;
796a7ff8 7926 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7927 ix, per_cu_iter);
95554aad 7928 ++ix)
ec94af83
DE
7929 {
7930 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7931 all_type_symtabs, per_cu_iter,
43f3e411 7932 cust);
ec94af83 7933 }
95554aad 7934
ec94af83 7935 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7936 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7937 cust->includes
95554aad
TT
7938 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7939 (len + 1) * sizeof (struct symtab *));
7940 for (ix = 0;
43f3e411
DE
7941 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7942 compunit_symtab_iter);
95554aad 7943 ++ix)
43f3e411
DE
7944 cust->includes[ix] = compunit_symtab_iter;
7945 cust->includes[len] = NULL;
95554aad 7946
43f3e411 7947 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7948 htab_delete (all_children);
ec94af83 7949 htab_delete (all_type_symtabs);
95554aad
TT
7950 }
7951}
7952
7953/* Compute the 'includes' field for the symtabs of all the CUs we just
7954 read. */
7955
7956static void
7957process_cu_includes (void)
7958{
7959 int ix;
7960 struct dwarf2_per_cu_data *iter;
7961
7962 for (ix = 0;
7963 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7964 ix, iter);
7965 ++ix)
f4dc4d17
DE
7966 {
7967 if (! iter->is_debug_types)
43f3e411 7968 compute_compunit_symtab_includes (iter);
f4dc4d17 7969 }
95554aad
TT
7970
7971 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7972}
7973
9cdd5dbd 7974/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7975 already been loaded into memory. */
7976
7977static void
95554aad
TT
7978process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7979 enum language pretend_language)
10b3939b 7980{
10b3939b 7981 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7982 struct objfile *objfile = per_cu->objfile;
3e29f34a 7983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 7984 CORE_ADDR lowpc, highpc;
43f3e411 7985 struct compunit_symtab *cust;
3da10d80 7986 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7987 CORE_ADDR baseaddr;
4359dff1 7988 struct block *static_block;
3e29f34a 7989 CORE_ADDR addr;
10b3939b
DJ
7990
7991 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7992
10b3939b
DJ
7993 buildsym_init ();
7994 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7995 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7996
7997 cu->list_in_scope = &file_symbols;
c906108c 7998
95554aad
TT
7999 cu->language = pretend_language;
8000 cu->language_defn = language_def (cu->language);
8001
c906108c 8002 /* Do line number decoding in read_file_scope () */
10b3939b 8003 process_die (cu->dies, cu);
c906108c 8004
a766d390
DE
8005 /* For now fudge the Go package. */
8006 if (cu->language == language_go)
8007 fixup_go_packaging (cu);
8008
3da10d80
KS
8009 /* Now that we have processed all the DIEs in the CU, all the types
8010 should be complete, and it should now be safe to compute all of the
8011 physnames. */
8012 compute_delayed_physnames (cu);
8013 do_cleanups (delayed_list_cleanup);
8014
fae299cd
DC
8015 /* Some compilers don't define a DW_AT_high_pc attribute for the
8016 compilation unit. If the DW_AT_high_pc is missing, synthesize
8017 it, by scanning the DIE's below the compilation unit. */
10b3939b 8018 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8019
3e29f34a
MR
8020 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8021 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8022
8023 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8024 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8025 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8026 addrmap to help ensure it has an accurate map of pc values belonging to
8027 this comp unit. */
8028 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8029
43f3e411
DE
8030 cust = end_symtab_from_static_block (static_block,
8031 SECT_OFF_TEXT (objfile), 0);
c906108c 8032
43f3e411 8033 if (cust != NULL)
c906108c 8034 {
df15bd07 8035 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8036
8be455d7
JK
8037 /* Set symtab language to language from DW_AT_language. If the
8038 compilation is from a C file generated by language preprocessors, do
8039 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
8040 if (!(cu->language == language_c
8041 && COMPUNIT_FILETABS (cust)->language != language_c))
8042 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8043
8044 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8045 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8046 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8047 there were bugs in prologue debug info, fixed later in GCC-4.5
8048 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8049
8050 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8051 needed, it would be wrong due to missing DW_AT_producer there.
8052
8053 Still one can confuse GDB by using non-standard GCC compilation
8054 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8055 */
ab260dad 8056 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8057 cust->locations_valid = 1;
e0d00bc7
JK
8058
8059 if (gcc_4_minor >= 5)
43f3e411 8060 cust->epilogue_unwind_valid = 1;
96408a79 8061
43f3e411 8062 cust->call_site_htab = cu->call_site_htab;
c906108c 8063 }
9291a0cd
TT
8064
8065 if (dwarf2_per_objfile->using_index)
43f3e411 8066 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8067 else
8068 {
8069 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8070 pst->compunit_symtab = cust;
9291a0cd
TT
8071 pst->readin = 1;
8072 }
c906108c 8073
95554aad
TT
8074 /* Push it for inclusion processing later. */
8075 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8076
c906108c 8077 do_cleanups (back_to);
f4dc4d17 8078}
45cfd468 8079
f4dc4d17
DE
8080/* Generate full symbol information for type unit PER_CU, whose DIEs have
8081 already been loaded into memory. */
8082
8083static void
8084process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8085 enum language pretend_language)
8086{
8087 struct dwarf2_cu *cu = per_cu->cu;
8088 struct objfile *objfile = per_cu->objfile;
43f3e411 8089 struct compunit_symtab *cust;
f4dc4d17 8090 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8091 struct signatured_type *sig_type;
8092
8093 gdb_assert (per_cu->is_debug_types);
8094 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8095
8096 buildsym_init ();
8097 back_to = make_cleanup (really_free_pendings, NULL);
8098 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8099
8100 cu->list_in_scope = &file_symbols;
8101
8102 cu->language = pretend_language;
8103 cu->language_defn = language_def (cu->language);
8104
8105 /* The symbol tables are set up in read_type_unit_scope. */
8106 process_die (cu->dies, cu);
8107
8108 /* For now fudge the Go package. */
8109 if (cu->language == language_go)
8110 fixup_go_packaging (cu);
8111
8112 /* Now that we have processed all the DIEs in the CU, all the types
8113 should be complete, and it should now be safe to compute all of the
8114 physnames. */
8115 compute_delayed_physnames (cu);
8116 do_cleanups (delayed_list_cleanup);
8117
8118 /* TUs share symbol tables.
8119 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8120 of it with end_expandable_symtab. Otherwise, complete the addition of
8121 this TU's symbols to the existing symtab. */
43f3e411 8122 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8123 {
43f3e411
DE
8124 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8125 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8126
43f3e411 8127 if (cust != NULL)
f4dc4d17
DE
8128 {
8129 /* Set symtab language to language from DW_AT_language. If the
8130 compilation is from a C file generated by language preprocessors,
8131 do not set the language if it was already deduced by
8132 start_subfile. */
43f3e411
DE
8133 if (!(cu->language == language_c
8134 && COMPUNIT_FILETABS (cust)->language != language_c))
8135 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8136 }
8137 }
8138 else
8139 {
0ab9ce85 8140 augment_type_symtab ();
43f3e411 8141 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8142 }
8143
8144 if (dwarf2_per_objfile->using_index)
43f3e411 8145 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8146 else
8147 {
8148 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8149 pst->compunit_symtab = cust;
f4dc4d17 8150 pst->readin = 1;
45cfd468 8151 }
f4dc4d17
DE
8152
8153 do_cleanups (back_to);
c906108c
SS
8154}
8155
95554aad
TT
8156/* Process an imported unit DIE. */
8157
8158static void
8159process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8160{
8161 struct attribute *attr;
8162
f4dc4d17
DE
8163 /* For now we don't handle imported units in type units. */
8164 if (cu->per_cu->is_debug_types)
8165 {
8166 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8167 " supported in type units [in module %s]"),
4262abfb 8168 objfile_name (cu->objfile));
f4dc4d17
DE
8169 }
8170
95554aad
TT
8171 attr = dwarf2_attr (die, DW_AT_import, cu);
8172 if (attr != NULL)
8173 {
8174 struct dwarf2_per_cu_data *per_cu;
8175 struct symtab *imported_symtab;
8176 sect_offset offset;
36586728 8177 int is_dwz;
95554aad
TT
8178
8179 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8180 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8181 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8182
69d751e3 8183 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8184 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8185 load_full_comp_unit (per_cu, cu->language);
8186
796a7ff8 8187 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8188 per_cu);
8189 }
8190}
8191
adde2bff
DE
8192/* Reset the in_process bit of a die. */
8193
8194static void
8195reset_die_in_process (void *arg)
8196{
8197 struct die_info *die = arg;
8c3cb9fa 8198
adde2bff
DE
8199 die->in_process = 0;
8200}
8201
c906108c
SS
8202/* Process a die and its children. */
8203
8204static void
e7c27a73 8205process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8206{
adde2bff
DE
8207 struct cleanup *in_process;
8208
8209 /* We should only be processing those not already in process. */
8210 gdb_assert (!die->in_process);
8211
8212 die->in_process = 1;
8213 in_process = make_cleanup (reset_die_in_process,die);
8214
c906108c
SS
8215 switch (die->tag)
8216 {
8217 case DW_TAG_padding:
8218 break;
8219 case DW_TAG_compile_unit:
95554aad 8220 case DW_TAG_partial_unit:
e7c27a73 8221 read_file_scope (die, cu);
c906108c 8222 break;
348e048f
DE
8223 case DW_TAG_type_unit:
8224 read_type_unit_scope (die, cu);
8225 break;
c906108c 8226 case DW_TAG_subprogram:
c906108c 8227 case DW_TAG_inlined_subroutine:
edb3359d 8228 read_func_scope (die, cu);
c906108c
SS
8229 break;
8230 case DW_TAG_lexical_block:
14898363
L
8231 case DW_TAG_try_block:
8232 case DW_TAG_catch_block:
e7c27a73 8233 read_lexical_block_scope (die, cu);
c906108c 8234 break;
96408a79
SA
8235 case DW_TAG_GNU_call_site:
8236 read_call_site_scope (die, cu);
8237 break;
c906108c 8238 case DW_TAG_class_type:
680b30c7 8239 case DW_TAG_interface_type:
c906108c
SS
8240 case DW_TAG_structure_type:
8241 case DW_TAG_union_type:
134d01f1 8242 process_structure_scope (die, cu);
c906108c
SS
8243 break;
8244 case DW_TAG_enumeration_type:
134d01f1 8245 process_enumeration_scope (die, cu);
c906108c 8246 break;
134d01f1 8247
f792889a
DJ
8248 /* These dies have a type, but processing them does not create
8249 a symbol or recurse to process the children. Therefore we can
8250 read them on-demand through read_type_die. */
c906108c 8251 case DW_TAG_subroutine_type:
72019c9c 8252 case DW_TAG_set_type:
c906108c 8253 case DW_TAG_array_type:
c906108c 8254 case DW_TAG_pointer_type:
c906108c 8255 case DW_TAG_ptr_to_member_type:
c906108c 8256 case DW_TAG_reference_type:
c906108c 8257 case DW_TAG_string_type:
c906108c 8258 break;
134d01f1 8259
c906108c 8260 case DW_TAG_base_type:
a02abb62 8261 case DW_TAG_subrange_type:
cb249c71 8262 case DW_TAG_typedef:
134d01f1
DJ
8263 /* Add a typedef symbol for the type definition, if it has a
8264 DW_AT_name. */
f792889a 8265 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8266 break;
c906108c 8267 case DW_TAG_common_block:
e7c27a73 8268 read_common_block (die, cu);
c906108c
SS
8269 break;
8270 case DW_TAG_common_inclusion:
8271 break;
d9fa45fe 8272 case DW_TAG_namespace:
4d4ec4e5 8273 cu->processing_has_namespace_info = 1;
e7c27a73 8274 read_namespace (die, cu);
d9fa45fe 8275 break;
5d7cb8df 8276 case DW_TAG_module:
4d4ec4e5 8277 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8278 read_module (die, cu);
8279 break;
d9fa45fe 8280 case DW_TAG_imported_declaration:
74921315
KS
8281 cu->processing_has_namespace_info = 1;
8282 if (read_namespace_alias (die, cu))
8283 break;
8284 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8285 case DW_TAG_imported_module:
4d4ec4e5 8286 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8287 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8288 || cu->language != language_fortran))
8289 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8290 dwarf_tag_name (die->tag));
8291 read_import_statement (die, cu);
d9fa45fe 8292 break;
95554aad
TT
8293
8294 case DW_TAG_imported_unit:
8295 process_imported_unit_die (die, cu);
8296 break;
8297
c906108c 8298 default:
e7c27a73 8299 new_symbol (die, NULL, cu);
c906108c
SS
8300 break;
8301 }
adde2bff
DE
8302
8303 do_cleanups (in_process);
c906108c 8304}
ca69b9e6
DE
8305\f
8306/* DWARF name computation. */
c906108c 8307
94af9270
KS
8308/* A helper function for dwarf2_compute_name which determines whether DIE
8309 needs to have the name of the scope prepended to the name listed in the
8310 die. */
8311
8312static int
8313die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8314{
1c809c68
TT
8315 struct attribute *attr;
8316
94af9270
KS
8317 switch (die->tag)
8318 {
8319 case DW_TAG_namespace:
8320 case DW_TAG_typedef:
8321 case DW_TAG_class_type:
8322 case DW_TAG_interface_type:
8323 case DW_TAG_structure_type:
8324 case DW_TAG_union_type:
8325 case DW_TAG_enumeration_type:
8326 case DW_TAG_enumerator:
8327 case DW_TAG_subprogram:
8328 case DW_TAG_member:
74921315 8329 case DW_TAG_imported_declaration:
94af9270
KS
8330 return 1;
8331
8332 case DW_TAG_variable:
c2b0a229 8333 case DW_TAG_constant:
94af9270
KS
8334 /* We only need to prefix "globally" visible variables. These include
8335 any variable marked with DW_AT_external or any variable that
8336 lives in a namespace. [Variables in anonymous namespaces
8337 require prefixing, but they are not DW_AT_external.] */
8338
8339 if (dwarf2_attr (die, DW_AT_specification, cu))
8340 {
8341 struct dwarf2_cu *spec_cu = cu;
9a619af0 8342
94af9270
KS
8343 return die_needs_namespace (die_specification (die, &spec_cu),
8344 spec_cu);
8345 }
8346
1c809c68 8347 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8348 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8349 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8350 return 0;
8351 /* A variable in a lexical block of some kind does not need a
8352 namespace, even though in C++ such variables may be external
8353 and have a mangled name. */
8354 if (die->parent->tag == DW_TAG_lexical_block
8355 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8356 || die->parent->tag == DW_TAG_catch_block
8357 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8358 return 0;
8359 return 1;
94af9270
KS
8360
8361 default:
8362 return 0;
8363 }
8364}
8365
98bfdba5
PA
8366/* Retrieve the last character from a mem_file. */
8367
8368static void
8369do_ui_file_peek_last (void *object, const char *buffer, long length)
8370{
8371 char *last_char_p = (char *) object;
8372
8373 if (length > 0)
8374 *last_char_p = buffer[length - 1];
8375}
8376
94af9270 8377/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8378 compute the physname for the object, which include a method's:
8379 - formal parameters (C++/Java),
8380 - receiver type (Go),
8381 - return type (Java).
8382
8383 The term "physname" is a bit confusing.
8384 For C++, for example, it is the demangled name.
8385 For Go, for example, it's the mangled name.
94af9270 8386
af6b7be1
JB
8387 For Ada, return the DIE's linkage name rather than the fully qualified
8388 name. PHYSNAME is ignored..
8389
94af9270
KS
8390 The result is allocated on the objfile_obstack and canonicalized. */
8391
8392static const char *
15d034d0
TT
8393dwarf2_compute_name (const char *name,
8394 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8395 int physname)
8396{
bb5ed363
DE
8397 struct objfile *objfile = cu->objfile;
8398
94af9270
KS
8399 if (name == NULL)
8400 name = dwarf2_name (die, cu);
8401
f55ee35c
JK
8402 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8403 compute it by typename_concat inside GDB. */
8404 if (cu->language == language_ada
8405 || (cu->language == language_fortran && physname))
8406 {
8407 /* For Ada unit, we prefer the linkage name over the name, as
8408 the former contains the exported name, which the user expects
8409 to be able to reference. Ideally, we want the user to be able
8410 to reference this entity using either natural or linkage name,
8411 but we haven't started looking at this enhancement yet. */
8412 struct attribute *attr;
8413
8414 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8415 if (attr == NULL)
8416 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8417 if (attr && DW_STRING (attr))
8418 return DW_STRING (attr);
8419 }
8420
94af9270
KS
8421 /* These are the only languages we know how to qualify names in. */
8422 if (name != NULL
f55ee35c
JK
8423 && (cu->language == language_cplus || cu->language == language_java
8424 || cu->language == language_fortran))
94af9270
KS
8425 {
8426 if (die_needs_namespace (die, cu))
8427 {
8428 long length;
0d5cff50 8429 const char *prefix;
94af9270 8430 struct ui_file *buf;
34a68019
TT
8431 char *intermediate_name;
8432 const char *canonical_name = NULL;
94af9270
KS
8433
8434 prefix = determine_prefix (die, cu);
8435 buf = mem_fileopen ();
8436 if (*prefix != '\0')
8437 {
f55ee35c
JK
8438 char *prefixed_name = typename_concat (NULL, prefix, name,
8439 physname, cu);
9a619af0 8440
94af9270
KS
8441 fputs_unfiltered (prefixed_name, buf);
8442 xfree (prefixed_name);
8443 }
8444 else
62d5b8da 8445 fputs_unfiltered (name, buf);
94af9270 8446
98bfdba5
PA
8447 /* Template parameters may be specified in the DIE's DW_AT_name, or
8448 as children with DW_TAG_template_type_param or
8449 DW_TAG_value_type_param. If the latter, add them to the name
8450 here. If the name already has template parameters, then
8451 skip this step; some versions of GCC emit both, and
8452 it is more efficient to use the pre-computed name.
8453
8454 Something to keep in mind about this process: it is very
8455 unlikely, or in some cases downright impossible, to produce
8456 something that will match the mangled name of a function.
8457 If the definition of the function has the same debug info,
8458 we should be able to match up with it anyway. But fallbacks
8459 using the minimal symbol, for instance to find a method
8460 implemented in a stripped copy of libstdc++, will not work.
8461 If we do not have debug info for the definition, we will have to
8462 match them up some other way.
8463
8464 When we do name matching there is a related problem with function
8465 templates; two instantiated function templates are allowed to
8466 differ only by their return types, which we do not add here. */
8467
8468 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8469 {
8470 struct attribute *attr;
8471 struct die_info *child;
8472 int first = 1;
8473
8474 die->building_fullname = 1;
8475
8476 for (child = die->child; child != NULL; child = child->sibling)
8477 {
8478 struct type *type;
12df843f 8479 LONGEST value;
d521ce57 8480 const gdb_byte *bytes;
98bfdba5
PA
8481 struct dwarf2_locexpr_baton *baton;
8482 struct value *v;
8483
8484 if (child->tag != DW_TAG_template_type_param
8485 && child->tag != DW_TAG_template_value_param)
8486 continue;
8487
8488 if (first)
8489 {
8490 fputs_unfiltered ("<", buf);
8491 first = 0;
8492 }
8493 else
8494 fputs_unfiltered (", ", buf);
8495
8496 attr = dwarf2_attr (child, DW_AT_type, cu);
8497 if (attr == NULL)
8498 {
8499 complaint (&symfile_complaints,
8500 _("template parameter missing DW_AT_type"));
8501 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8502 continue;
8503 }
8504 type = die_type (child, cu);
8505
8506 if (child->tag == DW_TAG_template_type_param)
8507 {
79d43c61 8508 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8509 continue;
8510 }
8511
8512 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8513 if (attr == NULL)
8514 {
8515 complaint (&symfile_complaints,
3e43a32a
MS
8516 _("template parameter missing "
8517 "DW_AT_const_value"));
98bfdba5
PA
8518 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8519 continue;
8520 }
8521
8522 dwarf2_const_value_attr (attr, type, name,
8523 &cu->comp_unit_obstack, cu,
8524 &value, &bytes, &baton);
8525
8526 if (TYPE_NOSIGN (type))
8527 /* GDB prints characters as NUMBER 'CHAR'. If that's
8528 changed, this can use value_print instead. */
8529 c_printchar (value, type, buf);
8530 else
8531 {
8532 struct value_print_options opts;
8533
8534 if (baton != NULL)
8535 v = dwarf2_evaluate_loc_desc (type, NULL,
8536 baton->data,
8537 baton->size,
8538 baton->per_cu);
8539 else if (bytes != NULL)
8540 {
8541 v = allocate_value (type);
8542 memcpy (value_contents_writeable (v), bytes,
8543 TYPE_LENGTH (type));
8544 }
8545 else
8546 v = value_from_longest (type, value);
8547
3e43a32a
MS
8548 /* Specify decimal so that we do not depend on
8549 the radix. */
98bfdba5
PA
8550 get_formatted_print_options (&opts, 'd');
8551 opts.raw = 1;
8552 value_print (v, buf, &opts);
8553 release_value (v);
8554 value_free (v);
8555 }
8556 }
8557
8558 die->building_fullname = 0;
8559
8560 if (!first)
8561 {
8562 /* Close the argument list, with a space if necessary
8563 (nested templates). */
8564 char last_char = '\0';
8565 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8566 if (last_char == '>')
8567 fputs_unfiltered (" >", buf);
8568 else
8569 fputs_unfiltered (">", buf);
8570 }
8571 }
8572
94af9270
KS
8573 /* For Java and C++ methods, append formal parameter type
8574 information, if PHYSNAME. */
6e70227d 8575
94af9270
KS
8576 if (physname && die->tag == DW_TAG_subprogram
8577 && (cu->language == language_cplus
8578 || cu->language == language_java))
8579 {
8580 struct type *type = read_type_die (die, cu);
8581
79d43c61
TT
8582 c_type_print_args (type, buf, 1, cu->language,
8583 &type_print_raw_options);
94af9270
KS
8584
8585 if (cu->language == language_java)
8586 {
8587 /* For java, we must append the return type to method
0963b4bd 8588 names. */
94af9270
KS
8589 if (die->tag == DW_TAG_subprogram)
8590 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8591 0, 0, &type_print_raw_options);
94af9270
KS
8592 }
8593 else if (cu->language == language_cplus)
8594 {
60430eff
DJ
8595 /* Assume that an artificial first parameter is
8596 "this", but do not crash if it is not. RealView
8597 marks unnamed (and thus unused) parameters as
8598 artificial; there is no way to differentiate
8599 the two cases. */
94af9270
KS
8600 if (TYPE_NFIELDS (type) > 0
8601 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8602 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8603 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8604 0))))
94af9270
KS
8605 fputs_unfiltered (" const", buf);
8606 }
8607 }
8608
34a68019 8609 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8610 ui_file_delete (buf);
8611
8612 if (cu->language == language_cplus)
34a68019
TT
8613 canonical_name
8614 = dwarf2_canonicalize_name (intermediate_name, cu,
8615 &objfile->per_bfd->storage_obstack);
8616
8617 /* If we only computed INTERMEDIATE_NAME, or if
8618 INTERMEDIATE_NAME is already canonical, then we need to
8619 copy it to the appropriate obstack. */
8620 if (canonical_name == NULL || canonical_name == intermediate_name)
8621 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8622 intermediate_name,
8623 strlen (intermediate_name));
8624 else
8625 name = canonical_name;
9a619af0 8626
34a68019 8627 xfree (intermediate_name);
94af9270
KS
8628 }
8629 }
8630
8631 return name;
8632}
8633
0114d602
DJ
8634/* Return the fully qualified name of DIE, based on its DW_AT_name.
8635 If scope qualifiers are appropriate they will be added. The result
34a68019 8636 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8637 not have a name. NAME may either be from a previous call to
8638 dwarf2_name or NULL.
8639
0963b4bd 8640 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8641
8642static const char *
15d034d0 8643dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8644{
94af9270
KS
8645 return dwarf2_compute_name (name, die, cu, 0);
8646}
0114d602 8647
94af9270
KS
8648/* Construct a physname for the given DIE in CU. NAME may either be
8649 from a previous call to dwarf2_name or NULL. The result will be
8650 allocated on the objfile_objstack or NULL if the DIE does not have a
8651 name.
0114d602 8652
94af9270 8653 The output string will be canonicalized (if C++/Java). */
0114d602 8654
94af9270 8655static const char *
15d034d0 8656dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8657{
bb5ed363 8658 struct objfile *objfile = cu->objfile;
900e11f9
JK
8659 struct attribute *attr;
8660 const char *retval, *mangled = NULL, *canon = NULL;
8661 struct cleanup *back_to;
8662 int need_copy = 1;
8663
8664 /* In this case dwarf2_compute_name is just a shortcut not building anything
8665 on its own. */
8666 if (!die_needs_namespace (die, cu))
8667 return dwarf2_compute_name (name, die, cu, 1);
8668
8669 back_to = make_cleanup (null_cleanup, NULL);
8670
8671 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8672 if (!attr)
8673 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8674
8675 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8676 has computed. */
8677 if (attr && DW_STRING (attr))
8678 {
8679 char *demangled;
8680
8681 mangled = DW_STRING (attr);
8682
8683 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8684 type. It is easier for GDB users to search for such functions as
8685 `name(params)' than `long name(params)'. In such case the minimal
8686 symbol names do not match the full symbol names but for template
8687 functions there is never a need to look up their definition from their
8688 declaration so the only disadvantage remains the minimal symbol
8689 variant `long name(params)' does not have the proper inferior type.
8690 */
8691
a766d390
DE
8692 if (cu->language == language_go)
8693 {
8694 /* This is a lie, but we already lie to the caller new_symbol_full.
8695 new_symbol_full assumes we return the mangled name.
8696 This just undoes that lie until things are cleaned up. */
8697 demangled = NULL;
8698 }
8699 else
8700 {
8de20a37
TT
8701 demangled = gdb_demangle (mangled,
8702 (DMGL_PARAMS | DMGL_ANSI
8703 | (cu->language == language_java
8704 ? DMGL_JAVA | DMGL_RET_POSTFIX
8705 : DMGL_RET_DROP)));
a766d390 8706 }
900e11f9
JK
8707 if (demangled)
8708 {
8709 make_cleanup (xfree, demangled);
8710 canon = demangled;
8711 }
8712 else
8713 {
8714 canon = mangled;
8715 need_copy = 0;
8716 }
8717 }
8718
8719 if (canon == NULL || check_physname)
8720 {
8721 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8722
8723 if (canon != NULL && strcmp (physname, canon) != 0)
8724 {
8725 /* It may not mean a bug in GDB. The compiler could also
8726 compute DW_AT_linkage_name incorrectly. But in such case
8727 GDB would need to be bug-to-bug compatible. */
8728
8729 complaint (&symfile_complaints,
8730 _("Computed physname <%s> does not match demangled <%s> "
8731 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8732 physname, canon, mangled, die->offset.sect_off,
8733 objfile_name (objfile));
900e11f9
JK
8734
8735 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8736 is available here - over computed PHYSNAME. It is safer
8737 against both buggy GDB and buggy compilers. */
8738
8739 retval = canon;
8740 }
8741 else
8742 {
8743 retval = physname;
8744 need_copy = 0;
8745 }
8746 }
8747 else
8748 retval = canon;
8749
8750 if (need_copy)
34a68019
TT
8751 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8752 retval, strlen (retval));
900e11f9
JK
8753
8754 do_cleanups (back_to);
8755 return retval;
0114d602
DJ
8756}
8757
74921315
KS
8758/* Inspect DIE in CU for a namespace alias. If one exists, record
8759 a new symbol for it.
8760
8761 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8762
8763static int
8764read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8765{
8766 struct attribute *attr;
8767
8768 /* If the die does not have a name, this is not a namespace
8769 alias. */
8770 attr = dwarf2_attr (die, DW_AT_name, cu);
8771 if (attr != NULL)
8772 {
8773 int num;
8774 struct die_info *d = die;
8775 struct dwarf2_cu *imported_cu = cu;
8776
8777 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8778 keep inspecting DIEs until we hit the underlying import. */
8779#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8780 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8781 {
8782 attr = dwarf2_attr (d, DW_AT_import, cu);
8783 if (attr == NULL)
8784 break;
8785
8786 d = follow_die_ref (d, attr, &imported_cu);
8787 if (d->tag != DW_TAG_imported_declaration)
8788 break;
8789 }
8790
8791 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8792 {
8793 complaint (&symfile_complaints,
8794 _("DIE at 0x%x has too many recursively imported "
8795 "declarations"), d->offset.sect_off);
8796 return 0;
8797 }
8798
8799 if (attr != NULL)
8800 {
8801 struct type *type;
8802 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8803
8804 type = get_die_type_at_offset (offset, cu->per_cu);
8805 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8806 {
8807 /* This declaration is a global namespace alias. Add
8808 a symbol for it whose type is the aliased namespace. */
8809 new_symbol (die, type, cu);
8810 return 1;
8811 }
8812 }
8813 }
8814
8815 return 0;
8816}
8817
27aa8d6a
SW
8818/* Read the import statement specified by the given die and record it. */
8819
8820static void
8821read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8822{
bb5ed363 8823 struct objfile *objfile = cu->objfile;
27aa8d6a 8824 struct attribute *import_attr;
32019081 8825 struct die_info *imported_die, *child_die;
de4affc9 8826 struct dwarf2_cu *imported_cu;
27aa8d6a 8827 const char *imported_name;
794684b6 8828 const char *imported_name_prefix;
13387711
SW
8829 const char *canonical_name;
8830 const char *import_alias;
8831 const char *imported_declaration = NULL;
794684b6 8832 const char *import_prefix;
32019081
JK
8833 VEC (const_char_ptr) *excludes = NULL;
8834 struct cleanup *cleanups;
13387711 8835
27aa8d6a
SW
8836 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8837 if (import_attr == NULL)
8838 {
8839 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8840 dwarf_tag_name (die->tag));
8841 return;
8842 }
8843
de4affc9
CC
8844 imported_cu = cu;
8845 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8846 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8847 if (imported_name == NULL)
8848 {
8849 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8850
8851 The import in the following code:
8852 namespace A
8853 {
8854 typedef int B;
8855 }
8856
8857 int main ()
8858 {
8859 using A::B;
8860 B b;
8861 return b;
8862 }
8863
8864 ...
8865 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8866 <52> DW_AT_decl_file : 1
8867 <53> DW_AT_decl_line : 6
8868 <54> DW_AT_import : <0x75>
8869 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8870 <59> DW_AT_name : B
8871 <5b> DW_AT_decl_file : 1
8872 <5c> DW_AT_decl_line : 2
8873 <5d> DW_AT_type : <0x6e>
8874 ...
8875 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8876 <76> DW_AT_byte_size : 4
8877 <77> DW_AT_encoding : 5 (signed)
8878
8879 imports the wrong die ( 0x75 instead of 0x58 ).
8880 This case will be ignored until the gcc bug is fixed. */
8881 return;
8882 }
8883
82856980
SW
8884 /* Figure out the local name after import. */
8885 import_alias = dwarf2_name (die, cu);
27aa8d6a 8886
794684b6
SW
8887 /* Figure out where the statement is being imported to. */
8888 import_prefix = determine_prefix (die, cu);
8889
8890 /* Figure out what the scope of the imported die is and prepend it
8891 to the name of the imported die. */
de4affc9 8892 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8893
f55ee35c
JK
8894 if (imported_die->tag != DW_TAG_namespace
8895 && imported_die->tag != DW_TAG_module)
794684b6 8896 {
13387711
SW
8897 imported_declaration = imported_name;
8898 canonical_name = imported_name_prefix;
794684b6 8899 }
13387711 8900 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8901 canonical_name = obconcat (&objfile->objfile_obstack,
8902 imported_name_prefix, "::", imported_name,
8903 (char *) NULL);
13387711
SW
8904 else
8905 canonical_name = imported_name;
794684b6 8906
32019081
JK
8907 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8908
8909 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8910 for (child_die = die->child; child_die && child_die->tag;
8911 child_die = sibling_die (child_die))
8912 {
8913 /* DWARF-4: A Fortran use statement with a “rename list” may be
8914 represented by an imported module entry with an import attribute
8915 referring to the module and owned entries corresponding to those
8916 entities that are renamed as part of being imported. */
8917
8918 if (child_die->tag != DW_TAG_imported_declaration)
8919 {
8920 complaint (&symfile_complaints,
8921 _("child DW_TAG_imported_declaration expected "
8922 "- DIE at 0x%x [in module %s]"),
4262abfb 8923 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8924 continue;
8925 }
8926
8927 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8928 if (import_attr == NULL)
8929 {
8930 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8931 dwarf_tag_name (child_die->tag));
8932 continue;
8933 }
8934
8935 imported_cu = cu;
8936 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8937 &imported_cu);
8938 imported_name = dwarf2_name (imported_die, imported_cu);
8939 if (imported_name == NULL)
8940 {
8941 complaint (&symfile_complaints,
8942 _("child DW_TAG_imported_declaration has unknown "
8943 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8944 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8945 continue;
8946 }
8947
8948 VEC_safe_push (const_char_ptr, excludes, imported_name);
8949
8950 process_die (child_die, cu);
8951 }
8952
c0cc3a76
SW
8953 cp_add_using_directive (import_prefix,
8954 canonical_name,
8955 import_alias,
13387711 8956 imported_declaration,
32019081 8957 excludes,
12aaed36 8958 0,
bb5ed363 8959 &objfile->objfile_obstack);
32019081
JK
8960
8961 do_cleanups (cleanups);
27aa8d6a
SW
8962}
8963
f4dc4d17 8964/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8965
cb1df416
DJ
8966static void
8967free_cu_line_header (void *arg)
8968{
8969 struct dwarf2_cu *cu = arg;
8970
8971 free_line_header (cu->line_header);
8972 cu->line_header = NULL;
8973}
8974
1b80a9fa
JK
8975/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8976 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8977 this, it was first present in GCC release 4.3.0. */
8978
8979static int
8980producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8981{
8982 if (!cu->checked_producer)
8983 check_producer (cu);
8984
8985 return cu->producer_is_gcc_lt_4_3;
8986}
8987
9291a0cd
TT
8988static void
8989find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8990 const char **name, const char **comp_dir)
9291a0cd
TT
8991{
8992 struct attribute *attr;
8993
8994 *name = NULL;
8995 *comp_dir = NULL;
8996
8997 /* Find the filename. Do not use dwarf2_name here, since the filename
8998 is not a source language identifier. */
8999 attr = dwarf2_attr (die, DW_AT_name, cu);
9000 if (attr)
9001 {
9002 *name = DW_STRING (attr);
9003 }
9004
9005 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9006 if (attr)
9007 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
9008 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9009 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9010 {
15d034d0
TT
9011 char *d = ldirname (*name);
9012
9013 *comp_dir = d;
9014 if (d != NULL)
9015 make_cleanup (xfree, d);
9291a0cd
TT
9016 }
9017 if (*comp_dir != NULL)
9018 {
9019 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9020 directory, get rid of it. */
9021 char *cp = strchr (*comp_dir, ':');
9022
9023 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9024 *comp_dir = cp + 1;
9025 }
9026
9027 if (*name == NULL)
9028 *name = "<unknown>";
9029}
9030
f4dc4d17
DE
9031/* Handle DW_AT_stmt_list for a compilation unit.
9032 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9033 COMP_DIR is the compilation directory. LOWPC is passed to
9034 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9035
9036static void
9037handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9038 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9039{
527f3840 9040 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9041 struct attribute *attr;
527f3840
JK
9042 unsigned int line_offset;
9043 struct line_header line_header_local;
9044 hashval_t line_header_local_hash;
9045 unsigned u;
9046 void **slot;
9047 int decode_mapping;
2ab95328 9048
f4dc4d17
DE
9049 gdb_assert (! cu->per_cu->is_debug_types);
9050
2ab95328 9051 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9052 if (attr == NULL)
9053 return;
9054
9055 line_offset = DW_UNSND (attr);
9056
9057 /* The line header hash table is only created if needed (it exists to
9058 prevent redundant reading of the line table for partial_units).
9059 If we're given a partial_unit, we'll need it. If we're given a
9060 compile_unit, then use the line header hash table if it's already
9061 created, but don't create one just yet. */
9062
9063 if (dwarf2_per_objfile->line_header_hash == NULL
9064 && die->tag == DW_TAG_partial_unit)
2ab95328 9065 {
527f3840
JK
9066 dwarf2_per_objfile->line_header_hash
9067 = htab_create_alloc_ex (127, line_header_hash_voidp,
9068 line_header_eq_voidp,
9069 free_line_header_voidp,
9070 &objfile->objfile_obstack,
9071 hashtab_obstack_allocate,
9072 dummy_obstack_deallocate);
9073 }
2ab95328 9074
527f3840
JK
9075 line_header_local.offset.sect_off = line_offset;
9076 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9077 line_header_local_hash = line_header_hash (&line_header_local);
9078 if (dwarf2_per_objfile->line_header_hash != NULL)
9079 {
9080 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9081 &line_header_local,
9082 line_header_local_hash, NO_INSERT);
9083
9084 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9085 is not present in *SLOT (since if there is something in *SLOT then
9086 it will be for a partial_unit). */
9087 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9088 {
527f3840
JK
9089 gdb_assert (*slot != NULL);
9090 cu->line_header = *slot;
9091 return;
dee91e82 9092 }
2ab95328 9093 }
527f3840
JK
9094
9095 /* dwarf_decode_line_header does not yet provide sufficient information.
9096 We always have to call also dwarf_decode_lines for it. */
9097 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9098 if (cu->line_header == NULL)
9099 return;
9100
9101 if (dwarf2_per_objfile->line_header_hash == NULL)
9102 slot = NULL;
9103 else
9104 {
9105 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9106 &line_header_local,
9107 line_header_local_hash, INSERT);
9108 gdb_assert (slot != NULL);
9109 }
9110 if (slot != NULL && *slot == NULL)
9111 {
9112 /* This newly decoded line number information unit will be owned
9113 by line_header_hash hash table. */
9114 *slot = cu->line_header;
9115 }
9116 else
9117 {
9118 /* We cannot free any current entry in (*slot) as that struct line_header
9119 may be already used by multiple CUs. Create only temporary decoded
9120 line_header for this CU - it may happen at most once for each line
9121 number information unit. And if we're not using line_header_hash
9122 then this is what we want as well. */
9123 gdb_assert (die->tag != DW_TAG_partial_unit);
9124 make_cleanup (free_cu_line_header, cu);
9125 }
9126 decode_mapping = (die->tag != DW_TAG_partial_unit);
9127 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9128 decode_mapping);
2ab95328
TT
9129}
9130
95554aad 9131/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9132
c906108c 9133static void
e7c27a73 9134read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9135{
dee91e82 9136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9138 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9139 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9140 CORE_ADDR highpc = ((CORE_ADDR) 0);
9141 struct attribute *attr;
15d034d0
TT
9142 const char *name = NULL;
9143 const char *comp_dir = NULL;
c906108c
SS
9144 struct die_info *child_die;
9145 bfd *abfd = objfile->obfd;
e142c38c 9146 CORE_ADDR baseaddr;
6e70227d 9147
e142c38c 9148 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9149
fae299cd 9150 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9151
9152 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9153 from finish_block. */
2acceee2 9154 if (lowpc == ((CORE_ADDR) -1))
c906108c 9155 lowpc = highpc;
3e29f34a 9156 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9157
9291a0cd 9158 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9159
95554aad 9160 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9161
f4b8a18d
KW
9162 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9163 standardised yet. As a workaround for the language detection we fall
9164 back to the DW_AT_producer string. */
9165 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9166 cu->language = language_opencl;
9167
3019eac3
DE
9168 /* Similar hack for Go. */
9169 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9170 set_cu_language (DW_LANG_Go, cu);
9171
f4dc4d17 9172 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9173
9174 /* Decode line number information if present. We do this before
9175 processing child DIEs, so that the line header table is available
9176 for DW_AT_decl_file. */
c3b7b696 9177 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9178
9179 /* Process all dies in compilation unit. */
9180 if (die->child != NULL)
9181 {
9182 child_die = die->child;
9183 while (child_die && child_die->tag)
9184 {
9185 process_die (child_die, cu);
9186 child_die = sibling_die (child_die);
9187 }
9188 }
9189
9190 /* Decode macro information, if present. Dwarf 2 macro information
9191 refers to information in the line number info statement program
9192 header, so we can only read it if we've read the header
9193 successfully. */
9194 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9195 if (attr && cu->line_header)
9196 {
9197 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9198 complaint (&symfile_complaints,
9199 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9200
43f3e411 9201 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9202 }
9203 else
9204 {
9205 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9206 if (attr && cu->line_header)
9207 {
9208 unsigned int macro_offset = DW_UNSND (attr);
9209
43f3e411 9210 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9211 }
9212 }
9213
9214 do_cleanups (back_to);
9215}
9216
f4dc4d17
DE
9217/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9218 Create the set of symtabs used by this TU, or if this TU is sharing
9219 symtabs with another TU and the symtabs have already been created
9220 then restore those symtabs in the line header.
9221 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9222
9223static void
f4dc4d17 9224setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9225{
f4dc4d17
DE
9226 struct objfile *objfile = dwarf2_per_objfile->objfile;
9227 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9228 struct type_unit_group *tu_group;
9229 int first_time;
9230 struct line_header *lh;
3019eac3 9231 struct attribute *attr;
f4dc4d17 9232 unsigned int i, line_offset;
0186c6a7 9233 struct signatured_type *sig_type;
3019eac3 9234
f4dc4d17 9235 gdb_assert (per_cu->is_debug_types);
0186c6a7 9236 sig_type = (struct signatured_type *) per_cu;
3019eac3 9237
f4dc4d17 9238 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9239
f4dc4d17 9240 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9241 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9242 if (sig_type->type_unit_group == NULL)
9243 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9244 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9245
9246 /* If we've already processed this stmt_list there's no real need to
9247 do it again, we could fake it and just recreate the part we need
9248 (file name,index -> symtab mapping). If data shows this optimization
9249 is useful we can do it then. */
43f3e411 9250 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9251
9252 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9253 debug info. */
9254 lh = NULL;
9255 if (attr != NULL)
3019eac3 9256 {
f4dc4d17
DE
9257 line_offset = DW_UNSND (attr);
9258 lh = dwarf_decode_line_header (line_offset, cu);
9259 }
9260 if (lh == NULL)
9261 {
9262 if (first_time)
9263 dwarf2_start_symtab (cu, "", NULL, 0);
9264 else
9265 {
9266 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9267 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9268 }
f4dc4d17 9269 return;
3019eac3
DE
9270 }
9271
f4dc4d17
DE
9272 cu->line_header = lh;
9273 make_cleanup (free_cu_line_header, cu);
3019eac3 9274
f4dc4d17
DE
9275 if (first_time)
9276 {
43f3e411 9277 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9278
f4dc4d17
DE
9279 tu_group->num_symtabs = lh->num_file_names;
9280 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9281
f4dc4d17
DE
9282 for (i = 0; i < lh->num_file_names; ++i)
9283 {
d521ce57 9284 const char *dir = NULL;
f4dc4d17 9285 struct file_entry *fe = &lh->file_names[i];
3019eac3 9286
f4dc4d17
DE
9287 if (fe->dir_index)
9288 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9289 dwarf2_start_subfile (fe->name, dir);
3019eac3 9290
f4dc4d17
DE
9291 if (current_subfile->symtab == NULL)
9292 {
9293 /* NOTE: start_subfile will recognize when it's been passed
9294 a file it has already seen. So we can't assume there's a
43f3e411 9295 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9296 lh->file_names may contain dups. */
43f3e411
DE
9297 current_subfile->symtab
9298 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9299 }
9300
9301 fe->symtab = current_subfile->symtab;
9302 tu_group->symtabs[i] = fe->symtab;
9303 }
9304 }
9305 else
3019eac3 9306 {
0ab9ce85 9307 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9308
9309 for (i = 0; i < lh->num_file_names; ++i)
9310 {
9311 struct file_entry *fe = &lh->file_names[i];
9312
9313 fe->symtab = tu_group->symtabs[i];
9314 }
3019eac3
DE
9315 }
9316
f4dc4d17
DE
9317 /* The main symtab is allocated last. Type units don't have DW_AT_name
9318 so they don't have a "real" (so to speak) symtab anyway.
9319 There is later code that will assign the main symtab to all symbols
9320 that don't have one. We need to handle the case of a symbol with a
9321 missing symtab (DW_AT_decl_file) anyway. */
9322}
3019eac3 9323
f4dc4d17
DE
9324/* Process DW_TAG_type_unit.
9325 For TUs we want to skip the first top level sibling if it's not the
9326 actual type being defined by this TU. In this case the first top
9327 level sibling is there to provide context only. */
3019eac3 9328
f4dc4d17
DE
9329static void
9330read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9331{
9332 struct die_info *child_die;
3019eac3 9333
f4dc4d17
DE
9334 prepare_one_comp_unit (cu, die, language_minimal);
9335
9336 /* Initialize (or reinitialize) the machinery for building symtabs.
9337 We do this before processing child DIEs, so that the line header table
9338 is available for DW_AT_decl_file. */
9339 setup_type_unit_groups (die, cu);
9340
9341 if (die->child != NULL)
9342 {
9343 child_die = die->child;
9344 while (child_die && child_die->tag)
9345 {
9346 process_die (child_die, cu);
9347 child_die = sibling_die (child_die);
9348 }
9349 }
3019eac3
DE
9350}
9351\f
80626a55
DE
9352/* DWO/DWP files.
9353
9354 http://gcc.gnu.org/wiki/DebugFission
9355 http://gcc.gnu.org/wiki/DebugFissionDWP
9356
9357 To simplify handling of both DWO files ("object" files with the DWARF info)
9358 and DWP files (a file with the DWOs packaged up into one file), we treat
9359 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9360
9361static hashval_t
9362hash_dwo_file (const void *item)
9363{
9364 const struct dwo_file *dwo_file = item;
a2ce51a0 9365 hashval_t hash;
3019eac3 9366
a2ce51a0
DE
9367 hash = htab_hash_string (dwo_file->dwo_name);
9368 if (dwo_file->comp_dir != NULL)
9369 hash += htab_hash_string (dwo_file->comp_dir);
9370 return hash;
3019eac3
DE
9371}
9372
9373static int
9374eq_dwo_file (const void *item_lhs, const void *item_rhs)
9375{
9376 const struct dwo_file *lhs = item_lhs;
9377 const struct dwo_file *rhs = item_rhs;
9378
a2ce51a0
DE
9379 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9380 return 0;
9381 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9382 return lhs->comp_dir == rhs->comp_dir;
9383 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9384}
9385
9386/* Allocate a hash table for DWO files. */
9387
9388static htab_t
9389allocate_dwo_file_hash_table (void)
9390{
9391 struct objfile *objfile = dwarf2_per_objfile->objfile;
9392
9393 return htab_create_alloc_ex (41,
9394 hash_dwo_file,
9395 eq_dwo_file,
9396 NULL,
9397 &objfile->objfile_obstack,
9398 hashtab_obstack_allocate,
9399 dummy_obstack_deallocate);
9400}
9401
80626a55
DE
9402/* Lookup DWO file DWO_NAME. */
9403
9404static void **
0ac5b59e 9405lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9406{
9407 struct dwo_file find_entry;
9408 void **slot;
9409
9410 if (dwarf2_per_objfile->dwo_files == NULL)
9411 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9412
9413 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9414 find_entry.dwo_name = dwo_name;
9415 find_entry.comp_dir = comp_dir;
80626a55
DE
9416 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9417
9418 return slot;
9419}
9420
3019eac3
DE
9421static hashval_t
9422hash_dwo_unit (const void *item)
9423{
9424 const struct dwo_unit *dwo_unit = item;
9425
9426 /* This drops the top 32 bits of the id, but is ok for a hash. */
9427 return dwo_unit->signature;
9428}
9429
9430static int
9431eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9432{
9433 const struct dwo_unit *lhs = item_lhs;
9434 const struct dwo_unit *rhs = item_rhs;
9435
9436 /* The signature is assumed to be unique within the DWO file.
9437 So while object file CU dwo_id's always have the value zero,
9438 that's OK, assuming each object file DWO file has only one CU,
9439 and that's the rule for now. */
9440 return lhs->signature == rhs->signature;
9441}
9442
9443/* Allocate a hash table for DWO CUs,TUs.
9444 There is one of these tables for each of CUs,TUs for each DWO file. */
9445
9446static htab_t
9447allocate_dwo_unit_table (struct objfile *objfile)
9448{
9449 /* Start out with a pretty small number.
9450 Generally DWO files contain only one CU and maybe some TUs. */
9451 return htab_create_alloc_ex (3,
9452 hash_dwo_unit,
9453 eq_dwo_unit,
9454 NULL,
9455 &objfile->objfile_obstack,
9456 hashtab_obstack_allocate,
9457 dummy_obstack_deallocate);
9458}
9459
80626a55 9460/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9461
19c3d4c9 9462struct create_dwo_cu_data
3019eac3
DE
9463{
9464 struct dwo_file *dwo_file;
19c3d4c9 9465 struct dwo_unit dwo_unit;
3019eac3
DE
9466};
9467
19c3d4c9 9468/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9469
9470static void
19c3d4c9
DE
9471create_dwo_cu_reader (const struct die_reader_specs *reader,
9472 const gdb_byte *info_ptr,
9473 struct die_info *comp_unit_die,
9474 int has_children,
9475 void *datap)
3019eac3
DE
9476{
9477 struct dwarf2_cu *cu = reader->cu;
9478 struct objfile *objfile = dwarf2_per_objfile->objfile;
9479 sect_offset offset = cu->per_cu->offset;
8a0459fd 9480 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9481 struct create_dwo_cu_data *data = datap;
3019eac3 9482 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9483 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9484 struct attribute *attr;
3019eac3
DE
9485
9486 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9487 if (attr == NULL)
9488 {
19c3d4c9
DE
9489 complaint (&symfile_complaints,
9490 _("Dwarf Error: debug entry at offset 0x%x is missing"
9491 " its dwo_id [in module %s]"),
9492 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9493 return;
9494 }
9495
3019eac3
DE
9496 dwo_unit->dwo_file = dwo_file;
9497 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9498 dwo_unit->section = section;
3019eac3
DE
9499 dwo_unit->offset = offset;
9500 dwo_unit->length = cu->per_cu->length;
9501
09406207 9502 if (dwarf2_read_debug)
4031ecc5
DE
9503 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9504 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9505}
9506
19c3d4c9
DE
9507/* Create the dwo_unit for the lone CU in DWO_FILE.
9508 Note: This function processes DWO files only, not DWP files. */
3019eac3 9509
19c3d4c9
DE
9510static struct dwo_unit *
9511create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9512{
9513 struct objfile *objfile = dwarf2_per_objfile->objfile;
9514 struct dwarf2_section_info *section = &dwo_file->sections.info;
9515 bfd *abfd;
9516 htab_t cu_htab;
d521ce57 9517 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9518 struct create_dwo_cu_data create_dwo_cu_data;
9519 struct dwo_unit *dwo_unit;
3019eac3
DE
9520
9521 dwarf2_read_section (objfile, section);
9522 info_ptr = section->buffer;
9523
9524 if (info_ptr == NULL)
9525 return NULL;
9526
9527 /* We can't set abfd until now because the section may be empty or
9528 not present, in which case section->asection will be NULL. */
a32a8923 9529 abfd = get_section_bfd_owner (section);
3019eac3 9530
09406207 9531 if (dwarf2_read_debug)
19c3d4c9
DE
9532 {
9533 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9534 get_section_name (section),
9535 get_section_file_name (section));
19c3d4c9 9536 }
3019eac3 9537
19c3d4c9
DE
9538 create_dwo_cu_data.dwo_file = dwo_file;
9539 dwo_unit = NULL;
3019eac3
DE
9540
9541 end_ptr = info_ptr + section->size;
9542 while (info_ptr < end_ptr)
9543 {
9544 struct dwarf2_per_cu_data per_cu;
9545
19c3d4c9
DE
9546 memset (&create_dwo_cu_data.dwo_unit, 0,
9547 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9548 memset (&per_cu, 0, sizeof (per_cu));
9549 per_cu.objfile = objfile;
9550 per_cu.is_debug_types = 0;
9551 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9552 per_cu.section = section;
3019eac3 9553
33e80786 9554 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9555 create_dwo_cu_reader,
9556 &create_dwo_cu_data);
9557
9558 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9559 {
9560 /* If we've already found one, complain. We only support one
9561 because having more than one requires hacking the dwo_name of
9562 each to match, which is highly unlikely to happen. */
9563 if (dwo_unit != NULL)
9564 {
9565 complaint (&symfile_complaints,
9566 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9567 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9568 break;
9569 }
9570
9571 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9572 *dwo_unit = create_dwo_cu_data.dwo_unit;
9573 }
3019eac3
DE
9574
9575 info_ptr += per_cu.length;
9576 }
9577
19c3d4c9 9578 return dwo_unit;
3019eac3
DE
9579}
9580
80626a55
DE
9581/* DWP file .debug_{cu,tu}_index section format:
9582 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9583
d2415c6c
DE
9584 DWP Version 1:
9585
80626a55
DE
9586 Both index sections have the same format, and serve to map a 64-bit
9587 signature to a set of section numbers. Each section begins with a header,
9588 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9589 indexes, and a pool of 32-bit section numbers. The index sections will be
9590 aligned at 8-byte boundaries in the file.
9591
d2415c6c
DE
9592 The index section header consists of:
9593
9594 V, 32 bit version number
9595 -, 32 bits unused
9596 N, 32 bit number of compilation units or type units in the index
9597 M, 32 bit number of slots in the hash table
80626a55 9598
d2415c6c 9599 Numbers are recorded using the byte order of the application binary.
80626a55 9600
d2415c6c
DE
9601 The hash table begins at offset 16 in the section, and consists of an array
9602 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9603 order of the application binary). Unused slots in the hash table are 0.
9604 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9605
d2415c6c
DE
9606 The parallel table begins immediately after the hash table
9607 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9608 array of 32-bit indexes (using the byte order of the application binary),
9609 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9610 table contains a 32-bit index into the pool of section numbers. For unused
9611 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9612
73869dc2
DE
9613 The pool of section numbers begins immediately following the hash table
9614 (at offset 16 + 12 * M from the beginning of the section). The pool of
9615 section numbers consists of an array of 32-bit words (using the byte order
9616 of the application binary). Each item in the array is indexed starting
9617 from 0. The hash table entry provides the index of the first section
9618 number in the set. Additional section numbers in the set follow, and the
9619 set is terminated by a 0 entry (section number 0 is not used in ELF).
9620
9621 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9622 section must be the first entry in the set, and the .debug_abbrev.dwo must
9623 be the second entry. Other members of the set may follow in any order.
9624
9625 ---
9626
9627 DWP Version 2:
9628
9629 DWP Version 2 combines all the .debug_info, etc. sections into one,
9630 and the entries in the index tables are now offsets into these sections.
9631 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9632 section.
9633
9634 Index Section Contents:
9635 Header
9636 Hash Table of Signatures dwp_hash_table.hash_table
9637 Parallel Table of Indices dwp_hash_table.unit_table
9638 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9639 Table of Section Sizes dwp_hash_table.v2.sizes
9640
9641 The index section header consists of:
9642
9643 V, 32 bit version number
9644 L, 32 bit number of columns in the table of section offsets
9645 N, 32 bit number of compilation units or type units in the index
9646 M, 32 bit number of slots in the hash table
9647
9648 Numbers are recorded using the byte order of the application binary.
9649
9650 The hash table has the same format as version 1.
9651 The parallel table of indices has the same format as version 1,
9652 except that the entries are origin-1 indices into the table of sections
9653 offsets and the table of section sizes.
9654
9655 The table of offsets begins immediately following the parallel table
9656 (at offset 16 + 12 * M from the beginning of the section). The table is
9657 a two-dimensional array of 32-bit words (using the byte order of the
9658 application binary), with L columns and N+1 rows, in row-major order.
9659 Each row in the array is indexed starting from 0. The first row provides
9660 a key to the remaining rows: each column in this row provides an identifier
9661 for a debug section, and the offsets in the same column of subsequent rows
9662 refer to that section. The section identifiers are:
9663
9664 DW_SECT_INFO 1 .debug_info.dwo
9665 DW_SECT_TYPES 2 .debug_types.dwo
9666 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9667 DW_SECT_LINE 4 .debug_line.dwo
9668 DW_SECT_LOC 5 .debug_loc.dwo
9669 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9670 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9671 DW_SECT_MACRO 8 .debug_macro.dwo
9672
9673 The offsets provided by the CU and TU index sections are the base offsets
9674 for the contributions made by each CU or TU to the corresponding section
9675 in the package file. Each CU and TU header contains an abbrev_offset
9676 field, used to find the abbreviations table for that CU or TU within the
9677 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9678 be interpreted as relative to the base offset given in the index section.
9679 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9680 should be interpreted as relative to the base offset for .debug_line.dwo,
9681 and offsets into other debug sections obtained from DWARF attributes should
9682 also be interpreted as relative to the corresponding base offset.
9683
9684 The table of sizes begins immediately following the table of offsets.
9685 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9686 with L columns and N rows, in row-major order. Each row in the array is
9687 indexed starting from 1 (row 0 is shared by the two tables).
9688
9689 ---
9690
9691 Hash table lookup is handled the same in version 1 and 2:
9692
9693 We assume that N and M will not exceed 2^32 - 1.
9694 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9695
d2415c6c
DE
9696 Given a 64-bit compilation unit signature or a type signature S, an entry
9697 in the hash table is located as follows:
80626a55 9698
d2415c6c
DE
9699 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9700 the low-order k bits all set to 1.
80626a55 9701
d2415c6c 9702 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9703
d2415c6c
DE
9704 3) If the hash table entry at index H matches the signature, use that
9705 entry. If the hash table entry at index H is unused (all zeroes),
9706 terminate the search: the signature is not present in the table.
80626a55 9707
d2415c6c 9708 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9709
d2415c6c 9710 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9711 to stop at an unused slot or find the match. */
80626a55
DE
9712
9713/* Create a hash table to map DWO IDs to their CU/TU entry in
9714 .debug_{info,types}.dwo in DWP_FILE.
9715 Returns NULL if there isn't one.
9716 Note: This function processes DWP files only, not DWO files. */
9717
9718static struct dwp_hash_table *
9719create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9720{
9721 struct objfile *objfile = dwarf2_per_objfile->objfile;
9722 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9723 const gdb_byte *index_ptr, *index_end;
80626a55 9724 struct dwarf2_section_info *index;
73869dc2 9725 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9726 struct dwp_hash_table *htab;
9727
9728 if (is_debug_types)
9729 index = &dwp_file->sections.tu_index;
9730 else
9731 index = &dwp_file->sections.cu_index;
9732
9733 if (dwarf2_section_empty_p (index))
9734 return NULL;
9735 dwarf2_read_section (objfile, index);
9736
9737 index_ptr = index->buffer;
9738 index_end = index_ptr + index->size;
9739
9740 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9741 index_ptr += 4;
9742 if (version == 2)
9743 nr_columns = read_4_bytes (dbfd, index_ptr);
9744 else
9745 nr_columns = 0;
9746 index_ptr += 4;
80626a55
DE
9747 nr_units = read_4_bytes (dbfd, index_ptr);
9748 index_ptr += 4;
9749 nr_slots = read_4_bytes (dbfd, index_ptr);
9750 index_ptr += 4;
9751
73869dc2 9752 if (version != 1 && version != 2)
80626a55 9753 {
21aa081e 9754 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9755 " [in module %s]"),
21aa081e 9756 pulongest (version), dwp_file->name);
80626a55
DE
9757 }
9758 if (nr_slots != (nr_slots & -nr_slots))
9759 {
21aa081e 9760 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9761 " is not power of 2 [in module %s]"),
21aa081e 9762 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9763 }
9764
9765 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9766 htab->version = version;
9767 htab->nr_columns = nr_columns;
80626a55
DE
9768 htab->nr_units = nr_units;
9769 htab->nr_slots = nr_slots;
9770 htab->hash_table = index_ptr;
9771 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9772
9773 /* Exit early if the table is empty. */
9774 if (nr_slots == 0 || nr_units == 0
9775 || (version == 2 && nr_columns == 0))
9776 {
9777 /* All must be zero. */
9778 if (nr_slots != 0 || nr_units != 0
9779 || (version == 2 && nr_columns != 0))
9780 {
9781 complaint (&symfile_complaints,
9782 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9783 " all zero [in modules %s]"),
9784 dwp_file->name);
9785 }
9786 return htab;
9787 }
9788
9789 if (version == 1)
9790 {
9791 htab->section_pool.v1.indices =
9792 htab->unit_table + sizeof (uint32_t) * nr_slots;
9793 /* It's harder to decide whether the section is too small in v1.
9794 V1 is deprecated anyway so we punt. */
9795 }
9796 else
9797 {
9798 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9799 int *ids = htab->section_pool.v2.section_ids;
9800 /* Reverse map for error checking. */
9801 int ids_seen[DW_SECT_MAX + 1];
9802 int i;
9803
9804 if (nr_columns < 2)
9805 {
9806 error (_("Dwarf Error: bad DWP hash table, too few columns"
9807 " in section table [in module %s]"),
9808 dwp_file->name);
9809 }
9810 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9811 {
9812 error (_("Dwarf Error: bad DWP hash table, too many columns"
9813 " in section table [in module %s]"),
9814 dwp_file->name);
9815 }
9816 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9817 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9818 for (i = 0; i < nr_columns; ++i)
9819 {
9820 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9821
9822 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9823 {
9824 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9825 " in section table [in module %s]"),
9826 id, dwp_file->name);
9827 }
9828 if (ids_seen[id] != -1)
9829 {
9830 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9831 " id %d in section table [in module %s]"),
9832 id, dwp_file->name);
9833 }
9834 ids_seen[id] = i;
9835 ids[i] = id;
9836 }
9837 /* Must have exactly one info or types section. */
9838 if (((ids_seen[DW_SECT_INFO] != -1)
9839 + (ids_seen[DW_SECT_TYPES] != -1))
9840 != 1)
9841 {
9842 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9843 " DWO info/types section [in module %s]"),
9844 dwp_file->name);
9845 }
9846 /* Must have an abbrev section. */
9847 if (ids_seen[DW_SECT_ABBREV] == -1)
9848 {
9849 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9850 " section [in module %s]"),
9851 dwp_file->name);
9852 }
9853 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9854 htab->section_pool.v2.sizes =
9855 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9856 * nr_units * nr_columns);
9857 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9858 * nr_units * nr_columns))
9859 > index_end)
9860 {
9861 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9862 " [in module %s]"),
9863 dwp_file->name);
9864 }
9865 }
80626a55
DE
9866
9867 return htab;
9868}
9869
9870/* Update SECTIONS with the data from SECTP.
9871
9872 This function is like the other "locate" section routines that are
9873 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9874 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9875
9876 The result is non-zero for success, or zero if an error was found. */
9877
9878static int
73869dc2
DE
9879locate_v1_virtual_dwo_sections (asection *sectp,
9880 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9881{
9882 const struct dwop_section_names *names = &dwop_section_names;
9883
9884 if (section_is_p (sectp->name, &names->abbrev_dwo))
9885 {
9886 /* There can be only one. */
73869dc2 9887 if (sections->abbrev.s.asection != NULL)
80626a55 9888 return 0;
73869dc2 9889 sections->abbrev.s.asection = sectp;
80626a55
DE
9890 sections->abbrev.size = bfd_get_section_size (sectp);
9891 }
9892 else if (section_is_p (sectp->name, &names->info_dwo)
9893 || section_is_p (sectp->name, &names->types_dwo))
9894 {
9895 /* There can be only one. */
73869dc2 9896 if (sections->info_or_types.s.asection != NULL)
80626a55 9897 return 0;
73869dc2 9898 sections->info_or_types.s.asection = sectp;
80626a55
DE
9899 sections->info_or_types.size = bfd_get_section_size (sectp);
9900 }
9901 else if (section_is_p (sectp->name, &names->line_dwo))
9902 {
9903 /* There can be only one. */
73869dc2 9904 if (sections->line.s.asection != NULL)
80626a55 9905 return 0;
73869dc2 9906 sections->line.s.asection = sectp;
80626a55
DE
9907 sections->line.size = bfd_get_section_size (sectp);
9908 }
9909 else if (section_is_p (sectp->name, &names->loc_dwo))
9910 {
9911 /* There can be only one. */
73869dc2 9912 if (sections->loc.s.asection != NULL)
80626a55 9913 return 0;
73869dc2 9914 sections->loc.s.asection = sectp;
80626a55
DE
9915 sections->loc.size = bfd_get_section_size (sectp);
9916 }
9917 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9918 {
9919 /* There can be only one. */
73869dc2 9920 if (sections->macinfo.s.asection != NULL)
80626a55 9921 return 0;
73869dc2 9922 sections->macinfo.s.asection = sectp;
80626a55
DE
9923 sections->macinfo.size = bfd_get_section_size (sectp);
9924 }
9925 else if (section_is_p (sectp->name, &names->macro_dwo))
9926 {
9927 /* There can be only one. */
73869dc2 9928 if (sections->macro.s.asection != NULL)
80626a55 9929 return 0;
73869dc2 9930 sections->macro.s.asection = sectp;
80626a55
DE
9931 sections->macro.size = bfd_get_section_size (sectp);
9932 }
9933 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9934 {
9935 /* There can be only one. */
73869dc2 9936 if (sections->str_offsets.s.asection != NULL)
80626a55 9937 return 0;
73869dc2 9938 sections->str_offsets.s.asection = sectp;
80626a55
DE
9939 sections->str_offsets.size = bfd_get_section_size (sectp);
9940 }
9941 else
9942 {
9943 /* No other kind of section is valid. */
9944 return 0;
9945 }
9946
9947 return 1;
9948}
9949
73869dc2
DE
9950/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9951 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9952 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9953 This is for DWP version 1 files. */
80626a55
DE
9954
9955static struct dwo_unit *
73869dc2
DE
9956create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9957 uint32_t unit_index,
9958 const char *comp_dir,
9959 ULONGEST signature, int is_debug_types)
80626a55
DE
9960{
9961 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9962 const struct dwp_hash_table *dwp_htab =
9963 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9964 bfd *dbfd = dwp_file->dbfd;
9965 const char *kind = is_debug_types ? "TU" : "CU";
9966 struct dwo_file *dwo_file;
9967 struct dwo_unit *dwo_unit;
73869dc2 9968 struct virtual_v1_dwo_sections sections;
80626a55
DE
9969 void **dwo_file_slot;
9970 char *virtual_dwo_name;
9971 struct dwarf2_section_info *cutu;
9972 struct cleanup *cleanups;
9973 int i;
9974
73869dc2
DE
9975 gdb_assert (dwp_file->version == 1);
9976
80626a55
DE
9977 if (dwarf2_read_debug)
9978 {
73869dc2 9979 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9980 kind,
73869dc2 9981 pulongest (unit_index), hex_string (signature),
80626a55
DE
9982 dwp_file->name);
9983 }
9984
19ac8c2e 9985 /* Fetch the sections of this DWO unit.
80626a55
DE
9986 Put a limit on the number of sections we look for so that bad data
9987 doesn't cause us to loop forever. */
9988
73869dc2 9989#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9990 (1 /* .debug_info or .debug_types */ \
9991 + 1 /* .debug_abbrev */ \
9992 + 1 /* .debug_line */ \
9993 + 1 /* .debug_loc */ \
9994 + 1 /* .debug_str_offsets */ \
19ac8c2e 9995 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9996 + 1 /* trailing zero */)
9997
9998 memset (&sections, 0, sizeof (sections));
9999 cleanups = make_cleanup (null_cleanup, 0);
10000
73869dc2 10001 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10002 {
10003 asection *sectp;
10004 uint32_t section_nr =
10005 read_4_bytes (dbfd,
73869dc2
DE
10006 dwp_htab->section_pool.v1.indices
10007 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10008
10009 if (section_nr == 0)
10010 break;
10011 if (section_nr >= dwp_file->num_sections)
10012 {
10013 error (_("Dwarf Error: bad DWP hash table, section number too large"
10014 " [in module %s]"),
10015 dwp_file->name);
10016 }
10017
10018 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10019 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10020 {
10021 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10022 " [in module %s]"),
10023 dwp_file->name);
10024 }
10025 }
10026
10027 if (i < 2
a32a8923
DE
10028 || dwarf2_section_empty_p (&sections.info_or_types)
10029 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10030 {
10031 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10032 " [in module %s]"),
10033 dwp_file->name);
10034 }
73869dc2 10035 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10036 {
10037 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10038 " [in module %s]"),
10039 dwp_file->name);
10040 }
10041
10042 /* It's easier for the rest of the code if we fake a struct dwo_file and
10043 have dwo_unit "live" in that. At least for now.
10044
10045 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10046 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10047 file, we can combine them back into a virtual DWO file to save space
10048 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10049 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10050
2792b94d
PM
10051 virtual_dwo_name =
10052 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10053 get_section_id (&sections.abbrev),
10054 get_section_id (&sections.line),
10055 get_section_id (&sections.loc),
10056 get_section_id (&sections.str_offsets));
80626a55
DE
10057 make_cleanup (xfree, virtual_dwo_name);
10058 /* Can we use an existing virtual DWO file? */
0ac5b59e 10059 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10060 /* Create one if necessary. */
10061 if (*dwo_file_slot == NULL)
10062 {
10063 if (dwarf2_read_debug)
10064 {
10065 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10066 virtual_dwo_name);
10067 }
10068 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10069 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10070 virtual_dwo_name,
10071 strlen (virtual_dwo_name));
10072 dwo_file->comp_dir = comp_dir;
80626a55
DE
10073 dwo_file->sections.abbrev = sections.abbrev;
10074 dwo_file->sections.line = sections.line;
10075 dwo_file->sections.loc = sections.loc;
10076 dwo_file->sections.macinfo = sections.macinfo;
10077 dwo_file->sections.macro = sections.macro;
10078 dwo_file->sections.str_offsets = sections.str_offsets;
10079 /* The "str" section is global to the entire DWP file. */
10080 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10081 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10082 there's no need to record it in dwo_file.
10083 Also, we can't simply record type sections in dwo_file because
10084 we record a pointer into the vector in dwo_unit. As we collect more
10085 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10086 for it, invalidating all copies of pointers into the previous
10087 contents. */
80626a55
DE
10088 *dwo_file_slot = dwo_file;
10089 }
10090 else
10091 {
10092 if (dwarf2_read_debug)
10093 {
10094 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10095 virtual_dwo_name);
10096 }
10097 dwo_file = *dwo_file_slot;
10098 }
10099 do_cleanups (cleanups);
10100
10101 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10102 dwo_unit->dwo_file = dwo_file;
10103 dwo_unit->signature = signature;
8a0459fd
DE
10104 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10105 sizeof (struct dwarf2_section_info));
10106 *dwo_unit->section = sections.info_or_types;
57d63ce2 10107 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10108
10109 return dwo_unit;
10110}
10111
73869dc2
DE
10112/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10113 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10114 piece within that section used by a TU/CU, return a virtual section
10115 of just that piece. */
10116
10117static struct dwarf2_section_info
10118create_dwp_v2_section (struct dwarf2_section_info *section,
10119 bfd_size_type offset, bfd_size_type size)
10120{
10121 struct dwarf2_section_info result;
10122 asection *sectp;
10123
10124 gdb_assert (section != NULL);
10125 gdb_assert (!section->is_virtual);
10126
10127 memset (&result, 0, sizeof (result));
10128 result.s.containing_section = section;
10129 result.is_virtual = 1;
10130
10131 if (size == 0)
10132 return result;
10133
10134 sectp = get_section_bfd_section (section);
10135
10136 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10137 bounds of the real section. This is a pretty-rare event, so just
10138 flag an error (easier) instead of a warning and trying to cope. */
10139 if (sectp == NULL
10140 || offset + size > bfd_get_section_size (sectp))
10141 {
10142 bfd *abfd = sectp->owner;
10143
10144 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10145 " in section %s [in module %s]"),
10146 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10147 objfile_name (dwarf2_per_objfile->objfile));
10148 }
10149
10150 result.virtual_offset = offset;
10151 result.size = size;
10152 return result;
10153}
10154
10155/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10156 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10157 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10158 This is for DWP version 2 files. */
10159
10160static struct dwo_unit *
10161create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10162 uint32_t unit_index,
10163 const char *comp_dir,
10164 ULONGEST signature, int is_debug_types)
10165{
10166 struct objfile *objfile = dwarf2_per_objfile->objfile;
10167 const struct dwp_hash_table *dwp_htab =
10168 is_debug_types ? dwp_file->tus : dwp_file->cus;
10169 bfd *dbfd = dwp_file->dbfd;
10170 const char *kind = is_debug_types ? "TU" : "CU";
10171 struct dwo_file *dwo_file;
10172 struct dwo_unit *dwo_unit;
10173 struct virtual_v2_dwo_sections sections;
10174 void **dwo_file_slot;
10175 char *virtual_dwo_name;
10176 struct dwarf2_section_info *cutu;
10177 struct cleanup *cleanups;
10178 int i;
10179
10180 gdb_assert (dwp_file->version == 2);
10181
10182 if (dwarf2_read_debug)
10183 {
10184 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10185 kind,
10186 pulongest (unit_index), hex_string (signature),
10187 dwp_file->name);
10188 }
10189
10190 /* Fetch the section offsets of this DWO unit. */
10191
10192 memset (&sections, 0, sizeof (sections));
10193 cleanups = make_cleanup (null_cleanup, 0);
10194
10195 for (i = 0; i < dwp_htab->nr_columns; ++i)
10196 {
10197 uint32_t offset = read_4_bytes (dbfd,
10198 dwp_htab->section_pool.v2.offsets
10199 + (((unit_index - 1) * dwp_htab->nr_columns
10200 + i)
10201 * sizeof (uint32_t)));
10202 uint32_t size = read_4_bytes (dbfd,
10203 dwp_htab->section_pool.v2.sizes
10204 + (((unit_index - 1) * dwp_htab->nr_columns
10205 + i)
10206 * sizeof (uint32_t)));
10207
10208 switch (dwp_htab->section_pool.v2.section_ids[i])
10209 {
10210 case DW_SECT_INFO:
10211 case DW_SECT_TYPES:
10212 sections.info_or_types_offset = offset;
10213 sections.info_or_types_size = size;
10214 break;
10215 case DW_SECT_ABBREV:
10216 sections.abbrev_offset = offset;
10217 sections.abbrev_size = size;
10218 break;
10219 case DW_SECT_LINE:
10220 sections.line_offset = offset;
10221 sections.line_size = size;
10222 break;
10223 case DW_SECT_LOC:
10224 sections.loc_offset = offset;
10225 sections.loc_size = size;
10226 break;
10227 case DW_SECT_STR_OFFSETS:
10228 sections.str_offsets_offset = offset;
10229 sections.str_offsets_size = size;
10230 break;
10231 case DW_SECT_MACINFO:
10232 sections.macinfo_offset = offset;
10233 sections.macinfo_size = size;
10234 break;
10235 case DW_SECT_MACRO:
10236 sections.macro_offset = offset;
10237 sections.macro_size = size;
10238 break;
10239 }
10240 }
10241
10242 /* It's easier for the rest of the code if we fake a struct dwo_file and
10243 have dwo_unit "live" in that. At least for now.
10244
10245 The DWP file can be made up of a random collection of CUs and TUs.
10246 However, for each CU + set of TUs that came from the same original DWO
10247 file, we can combine them back into a virtual DWO file to save space
10248 (fewer struct dwo_file objects to allocate). Remember that for really
10249 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10250
10251 virtual_dwo_name =
10252 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10253 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10254 (long) (sections.line_size ? sections.line_offset : 0),
10255 (long) (sections.loc_size ? sections.loc_offset : 0),
10256 (long) (sections.str_offsets_size
10257 ? sections.str_offsets_offset : 0));
10258 make_cleanup (xfree, virtual_dwo_name);
10259 /* Can we use an existing virtual DWO file? */
10260 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10261 /* Create one if necessary. */
10262 if (*dwo_file_slot == NULL)
10263 {
10264 if (dwarf2_read_debug)
10265 {
10266 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10267 virtual_dwo_name);
10268 }
10269 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10270 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10271 virtual_dwo_name,
10272 strlen (virtual_dwo_name));
10273 dwo_file->comp_dir = comp_dir;
10274 dwo_file->sections.abbrev =
10275 create_dwp_v2_section (&dwp_file->sections.abbrev,
10276 sections.abbrev_offset, sections.abbrev_size);
10277 dwo_file->sections.line =
10278 create_dwp_v2_section (&dwp_file->sections.line,
10279 sections.line_offset, sections.line_size);
10280 dwo_file->sections.loc =
10281 create_dwp_v2_section (&dwp_file->sections.loc,
10282 sections.loc_offset, sections.loc_size);
10283 dwo_file->sections.macinfo =
10284 create_dwp_v2_section (&dwp_file->sections.macinfo,
10285 sections.macinfo_offset, sections.macinfo_size);
10286 dwo_file->sections.macro =
10287 create_dwp_v2_section (&dwp_file->sections.macro,
10288 sections.macro_offset, sections.macro_size);
10289 dwo_file->sections.str_offsets =
10290 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10291 sections.str_offsets_offset,
10292 sections.str_offsets_size);
10293 /* The "str" section is global to the entire DWP file. */
10294 dwo_file->sections.str = dwp_file->sections.str;
10295 /* The info or types section is assigned below to dwo_unit,
10296 there's no need to record it in dwo_file.
10297 Also, we can't simply record type sections in dwo_file because
10298 we record a pointer into the vector in dwo_unit. As we collect more
10299 types we'll grow the vector and eventually have to reallocate space
10300 for it, invalidating all copies of pointers into the previous
10301 contents. */
10302 *dwo_file_slot = dwo_file;
10303 }
10304 else
10305 {
10306 if (dwarf2_read_debug)
10307 {
10308 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10309 virtual_dwo_name);
10310 }
10311 dwo_file = *dwo_file_slot;
10312 }
10313 do_cleanups (cleanups);
10314
10315 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10316 dwo_unit->dwo_file = dwo_file;
10317 dwo_unit->signature = signature;
10318 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10319 sizeof (struct dwarf2_section_info));
10320 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10321 ? &dwp_file->sections.types
10322 : &dwp_file->sections.info,
10323 sections.info_or_types_offset,
10324 sections.info_or_types_size);
10325 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10326
10327 return dwo_unit;
10328}
10329
57d63ce2
DE
10330/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10331 Returns NULL if the signature isn't found. */
80626a55
DE
10332
10333static struct dwo_unit *
57d63ce2
DE
10334lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10335 ULONGEST signature, int is_debug_types)
80626a55 10336{
57d63ce2
DE
10337 const struct dwp_hash_table *dwp_htab =
10338 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10339 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10340 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10341 uint32_t hash = signature & mask;
10342 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10343 unsigned int i;
10344 void **slot;
10345 struct dwo_unit find_dwo_cu, *dwo_cu;
10346
10347 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10348 find_dwo_cu.signature = signature;
19ac8c2e
DE
10349 slot = htab_find_slot (is_debug_types
10350 ? dwp_file->loaded_tus
10351 : dwp_file->loaded_cus,
10352 &find_dwo_cu, INSERT);
80626a55
DE
10353
10354 if (*slot != NULL)
10355 return *slot;
10356
10357 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10358 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10359 {
10360 ULONGEST signature_in_table;
10361
10362 signature_in_table =
57d63ce2 10363 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10364 if (signature_in_table == signature)
10365 {
57d63ce2
DE
10366 uint32_t unit_index =
10367 read_4_bytes (dbfd,
10368 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10369
73869dc2
DE
10370 if (dwp_file->version == 1)
10371 {
10372 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10373 comp_dir, signature,
10374 is_debug_types);
10375 }
10376 else
10377 {
10378 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10379 comp_dir, signature,
10380 is_debug_types);
10381 }
80626a55
DE
10382 return *slot;
10383 }
10384 if (signature_in_table == 0)
10385 return NULL;
10386 hash = (hash + hash2) & mask;
10387 }
10388
10389 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10390 " [in module %s]"),
10391 dwp_file->name);
10392}
10393
ab5088bf 10394/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10395 Open the file specified by FILE_NAME and hand it off to BFD for
10396 preliminary analysis. Return a newly initialized bfd *, which
10397 includes a canonicalized copy of FILE_NAME.
80626a55 10398 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10399 SEARCH_CWD is true if the current directory is to be searched.
10400 It will be searched before debug-file-directory.
13aaf454
DE
10401 If successful, the file is added to the bfd include table of the
10402 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10403 If unable to find/open the file, return NULL.
3019eac3
DE
10404 NOTE: This function is derived from symfile_bfd_open. */
10405
10406static bfd *
6ac97d4c 10407try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10408{
10409 bfd *sym_bfd;
80626a55 10410 int desc, flags;
3019eac3 10411 char *absolute_name;
9c02c129
DE
10412 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10413 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10414 to debug_file_directory. */
10415 char *search_path;
10416 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10417
6ac97d4c
DE
10418 if (search_cwd)
10419 {
10420 if (*debug_file_directory != '\0')
10421 search_path = concat (".", dirname_separator_string,
10422 debug_file_directory, NULL);
10423 else
10424 search_path = xstrdup (".");
10425 }
9c02c129 10426 else
6ac97d4c 10427 search_path = xstrdup (debug_file_directory);
3019eac3 10428
492c0ab7 10429 flags = OPF_RETURN_REALPATH;
80626a55
DE
10430 if (is_dwp)
10431 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10432 desc = openp (search_path, flags, file_name,
3019eac3 10433 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10434 xfree (search_path);
3019eac3
DE
10435 if (desc < 0)
10436 return NULL;
10437
bb397797 10438 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10439 xfree (absolute_name);
9c02c129
DE
10440 if (sym_bfd == NULL)
10441 return NULL;
3019eac3
DE
10442 bfd_set_cacheable (sym_bfd, 1);
10443
10444 if (!bfd_check_format (sym_bfd, bfd_object))
10445 {
cbb099e8 10446 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10447 return NULL;
10448 }
10449
13aaf454
DE
10450 /* Success. Record the bfd as having been included by the objfile's bfd.
10451 This is important because things like demangled_names_hash lives in the
10452 objfile's per_bfd space and may have references to things like symbol
10453 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10454 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10455
3019eac3
DE
10456 return sym_bfd;
10457}
10458
ab5088bf 10459/* Try to open DWO file FILE_NAME.
3019eac3
DE
10460 COMP_DIR is the DW_AT_comp_dir attribute.
10461 The result is the bfd handle of the file.
10462 If there is a problem finding or opening the file, return NULL.
10463 Upon success, the canonicalized path of the file is stored in the bfd,
10464 same as symfile_bfd_open. */
10465
10466static bfd *
ab5088bf 10467open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10468{
10469 bfd *abfd;
3019eac3 10470
80626a55 10471 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10472 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10473
10474 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10475
10476 if (comp_dir != NULL)
10477 {
80626a55 10478 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10479
10480 /* NOTE: If comp_dir is a relative path, this will also try the
10481 search path, which seems useful. */
6ac97d4c 10482 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10483 xfree (path_to_try);
10484 if (abfd != NULL)
10485 return abfd;
10486 }
10487
10488 /* That didn't work, try debug-file-directory, which, despite its name,
10489 is a list of paths. */
10490
10491 if (*debug_file_directory == '\0')
10492 return NULL;
10493
6ac97d4c 10494 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10495}
10496
80626a55
DE
10497/* This function is mapped across the sections and remembers the offset and
10498 size of each of the DWO debugging sections we are interested in. */
10499
10500static void
10501dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10502{
10503 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10504 const struct dwop_section_names *names = &dwop_section_names;
10505
10506 if (section_is_p (sectp->name, &names->abbrev_dwo))
10507 {
73869dc2 10508 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10509 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10510 }
10511 else if (section_is_p (sectp->name, &names->info_dwo))
10512 {
73869dc2 10513 dwo_sections->info.s.asection = sectp;
80626a55
DE
10514 dwo_sections->info.size = bfd_get_section_size (sectp);
10515 }
10516 else if (section_is_p (sectp->name, &names->line_dwo))
10517 {
73869dc2 10518 dwo_sections->line.s.asection = sectp;
80626a55
DE
10519 dwo_sections->line.size = bfd_get_section_size (sectp);
10520 }
10521 else if (section_is_p (sectp->name, &names->loc_dwo))
10522 {
73869dc2 10523 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10524 dwo_sections->loc.size = bfd_get_section_size (sectp);
10525 }
10526 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10527 {
73869dc2 10528 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10529 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10530 }
10531 else if (section_is_p (sectp->name, &names->macro_dwo))
10532 {
73869dc2 10533 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10534 dwo_sections->macro.size = bfd_get_section_size (sectp);
10535 }
10536 else if (section_is_p (sectp->name, &names->str_dwo))
10537 {
73869dc2 10538 dwo_sections->str.s.asection = sectp;
80626a55
DE
10539 dwo_sections->str.size = bfd_get_section_size (sectp);
10540 }
10541 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10542 {
73869dc2 10543 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10544 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->types_dwo))
10547 {
10548 struct dwarf2_section_info type_section;
10549
10550 memset (&type_section, 0, sizeof (type_section));
73869dc2 10551 type_section.s.asection = sectp;
80626a55
DE
10552 type_section.size = bfd_get_section_size (sectp);
10553 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10554 &type_section);
10555 }
10556}
10557
ab5088bf 10558/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10559 by PER_CU. This is for the non-DWP case.
80626a55 10560 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10561
10562static struct dwo_file *
0ac5b59e
DE
10563open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10564 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10565{
10566 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10567 struct dwo_file *dwo_file;
10568 bfd *dbfd;
3019eac3
DE
10569 struct cleanup *cleanups;
10570
ab5088bf 10571 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10572 if (dbfd == NULL)
10573 {
10574 if (dwarf2_read_debug)
10575 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10576 return NULL;
10577 }
10578 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10579 dwo_file->dwo_name = dwo_name;
10580 dwo_file->comp_dir = comp_dir;
80626a55 10581 dwo_file->dbfd = dbfd;
3019eac3
DE
10582
10583 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10584
80626a55 10585 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10586
19c3d4c9 10587 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10588
10589 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10590 dwo_file->sections.types);
10591
10592 discard_cleanups (cleanups);
10593
80626a55
DE
10594 if (dwarf2_read_debug)
10595 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10596
3019eac3
DE
10597 return dwo_file;
10598}
10599
80626a55 10600/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10601 size of each of the DWP debugging sections common to version 1 and 2 that
10602 we are interested in. */
3019eac3 10603
80626a55 10604static void
73869dc2
DE
10605dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10606 void *dwp_file_ptr)
3019eac3 10607{
80626a55
DE
10608 struct dwp_file *dwp_file = dwp_file_ptr;
10609 const struct dwop_section_names *names = &dwop_section_names;
10610 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10611
80626a55 10612 /* Record the ELF section number for later lookup: this is what the
73869dc2 10613 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10614 gdb_assert (elf_section_nr < dwp_file->num_sections);
10615 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10616
80626a55
DE
10617 /* Look for specific sections that we need. */
10618 if (section_is_p (sectp->name, &names->str_dwo))
10619 {
73869dc2 10620 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10621 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10622 }
10623 else if (section_is_p (sectp->name, &names->cu_index))
10624 {
73869dc2 10625 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10626 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10627 }
10628 else if (section_is_p (sectp->name, &names->tu_index))
10629 {
73869dc2 10630 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10631 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10632 }
10633}
3019eac3 10634
73869dc2
DE
10635/* This function is mapped across the sections and remembers the offset and
10636 size of each of the DWP version 2 debugging sections that we are interested
10637 in. This is split into a separate function because we don't know if we
10638 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10639
10640static void
10641dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10642{
10643 struct dwp_file *dwp_file = dwp_file_ptr;
10644 const struct dwop_section_names *names = &dwop_section_names;
10645 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10646
10647 /* Record the ELF section number for later lookup: this is what the
10648 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10649 gdb_assert (elf_section_nr < dwp_file->num_sections);
10650 dwp_file->elf_sections[elf_section_nr] = sectp;
10651
10652 /* Look for specific sections that we need. */
10653 if (section_is_p (sectp->name, &names->abbrev_dwo))
10654 {
10655 dwp_file->sections.abbrev.s.asection = sectp;
10656 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10657 }
10658 else if (section_is_p (sectp->name, &names->info_dwo))
10659 {
10660 dwp_file->sections.info.s.asection = sectp;
10661 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->line_dwo))
10664 {
10665 dwp_file->sections.line.s.asection = sectp;
10666 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10667 }
10668 else if (section_is_p (sectp->name, &names->loc_dwo))
10669 {
10670 dwp_file->sections.loc.s.asection = sectp;
10671 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10672 }
10673 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10674 {
10675 dwp_file->sections.macinfo.s.asection = sectp;
10676 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10677 }
10678 else if (section_is_p (sectp->name, &names->macro_dwo))
10679 {
10680 dwp_file->sections.macro.s.asection = sectp;
10681 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10682 }
10683 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10684 {
10685 dwp_file->sections.str_offsets.s.asection = sectp;
10686 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10687 }
10688 else if (section_is_p (sectp->name, &names->types_dwo))
10689 {
10690 dwp_file->sections.types.s.asection = sectp;
10691 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10692 }
10693}
10694
80626a55 10695/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10696
80626a55
DE
10697static hashval_t
10698hash_dwp_loaded_cutus (const void *item)
10699{
10700 const struct dwo_unit *dwo_unit = item;
3019eac3 10701
80626a55
DE
10702 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10703 return dwo_unit->signature;
3019eac3
DE
10704}
10705
80626a55 10706/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10707
80626a55
DE
10708static int
10709eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10710{
80626a55
DE
10711 const struct dwo_unit *dua = a;
10712 const struct dwo_unit *dub = b;
3019eac3 10713
80626a55
DE
10714 return dua->signature == dub->signature;
10715}
3019eac3 10716
80626a55 10717/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10718
80626a55
DE
10719static htab_t
10720allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10721{
10722 return htab_create_alloc_ex (3,
10723 hash_dwp_loaded_cutus,
10724 eq_dwp_loaded_cutus,
10725 NULL,
10726 &objfile->objfile_obstack,
10727 hashtab_obstack_allocate,
10728 dummy_obstack_deallocate);
10729}
3019eac3 10730
ab5088bf
DE
10731/* Try to open DWP file FILE_NAME.
10732 The result is the bfd handle of the file.
10733 If there is a problem finding or opening the file, return NULL.
10734 Upon success, the canonicalized path of the file is stored in the bfd,
10735 same as symfile_bfd_open. */
10736
10737static bfd *
10738open_dwp_file (const char *file_name)
10739{
6ac97d4c
DE
10740 bfd *abfd;
10741
10742 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10743 if (abfd != NULL)
10744 return abfd;
10745
10746 /* Work around upstream bug 15652.
10747 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10748 [Whether that's a "bug" is debatable, but it is getting in our way.]
10749 We have no real idea where the dwp file is, because gdb's realpath-ing
10750 of the executable's path may have discarded the needed info.
10751 [IWBN if the dwp file name was recorded in the executable, akin to
10752 .gnu_debuglink, but that doesn't exist yet.]
10753 Strip the directory from FILE_NAME and search again. */
10754 if (*debug_file_directory != '\0')
10755 {
10756 /* Don't implicitly search the current directory here.
10757 If the user wants to search "." to handle this case,
10758 it must be added to debug-file-directory. */
10759 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10760 0 /*search_cwd*/);
10761 }
10762
10763 return NULL;
ab5088bf
DE
10764}
10765
80626a55
DE
10766/* Initialize the use of the DWP file for the current objfile.
10767 By convention the name of the DWP file is ${objfile}.dwp.
10768 The result is NULL if it can't be found. */
a766d390 10769
80626a55 10770static struct dwp_file *
ab5088bf 10771open_and_init_dwp_file (void)
80626a55
DE
10772{
10773 struct objfile *objfile = dwarf2_per_objfile->objfile;
10774 struct dwp_file *dwp_file;
10775 char *dwp_name;
10776 bfd *dbfd;
10777 struct cleanup *cleanups;
10778
82bf32bc
JK
10779 /* Try to find first .dwp for the binary file before any symbolic links
10780 resolving. */
10781 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10782 cleanups = make_cleanup (xfree, dwp_name);
10783
ab5088bf 10784 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10785 if (dbfd == NULL
10786 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10787 {
10788 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10789 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10790 make_cleanup (xfree, dwp_name);
10791 dbfd = open_dwp_file (dwp_name);
10792 }
10793
80626a55
DE
10794 if (dbfd == NULL)
10795 {
10796 if (dwarf2_read_debug)
10797 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10798 do_cleanups (cleanups);
10799 return NULL;
3019eac3 10800 }
80626a55 10801 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10802 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10803 dwp_file->dbfd = dbfd;
10804 do_cleanups (cleanups);
c906108c 10805
80626a55
DE
10806 /* +1: section 0 is unused */
10807 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10808 dwp_file->elf_sections =
10809 OBSTACK_CALLOC (&objfile->objfile_obstack,
10810 dwp_file->num_sections, asection *);
10811
73869dc2 10812 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10813
10814 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10815
10816 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10817
73869dc2
DE
10818 /* The DWP file version is stored in the hash table. Oh well. */
10819 if (dwp_file->cus->version != dwp_file->tus->version)
10820 {
10821 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10822 pretty bizarre. We use pulongest here because that's the established
4d65956b 10823 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10824 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10825 " TU version %s [in DWP file %s]"),
10826 pulongest (dwp_file->cus->version),
10827 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10828 }
10829 dwp_file->version = dwp_file->cus->version;
10830
10831 if (dwp_file->version == 2)
10832 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10833
19ac8c2e
DE
10834 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10835 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10836
80626a55
DE
10837 if (dwarf2_read_debug)
10838 {
10839 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10840 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10841 " %s CUs, %s TUs\n",
10842 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10843 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10844 }
10845
10846 return dwp_file;
3019eac3 10847}
c906108c 10848
ab5088bf
DE
10849/* Wrapper around open_and_init_dwp_file, only open it once. */
10850
10851static struct dwp_file *
10852get_dwp_file (void)
10853{
10854 if (! dwarf2_per_objfile->dwp_checked)
10855 {
10856 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10857 dwarf2_per_objfile->dwp_checked = 1;
10858 }
10859 return dwarf2_per_objfile->dwp_file;
10860}
10861
80626a55
DE
10862/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10863 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10864 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10865 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10866 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10867
10868 This is called, for example, when wanting to read a variable with a
10869 complex location. Therefore we don't want to do file i/o for every call.
10870 Therefore we don't want to look for a DWO file on every call.
10871 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10872 then we check if we've already seen DWO_NAME, and only THEN do we check
10873 for a DWO file.
10874
1c658ad5 10875 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10876 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10877
3019eac3 10878static struct dwo_unit *
80626a55
DE
10879lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10880 const char *dwo_name, const char *comp_dir,
10881 ULONGEST signature, int is_debug_types)
3019eac3
DE
10882{
10883 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10884 const char *kind = is_debug_types ? "TU" : "CU";
10885 void **dwo_file_slot;
3019eac3 10886 struct dwo_file *dwo_file;
80626a55 10887 struct dwp_file *dwp_file;
cb1df416 10888
6a506a2d
DE
10889 /* First see if there's a DWP file.
10890 If we have a DWP file but didn't find the DWO inside it, don't
10891 look for the original DWO file. It makes gdb behave differently
10892 depending on whether one is debugging in the build tree. */
cf2c3c16 10893
ab5088bf 10894 dwp_file = get_dwp_file ();
80626a55 10895 if (dwp_file != NULL)
cf2c3c16 10896 {
80626a55
DE
10897 const struct dwp_hash_table *dwp_htab =
10898 is_debug_types ? dwp_file->tus : dwp_file->cus;
10899
10900 if (dwp_htab != NULL)
10901 {
10902 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10903 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10904 signature, is_debug_types);
80626a55
DE
10905
10906 if (dwo_cutu != NULL)
10907 {
10908 if (dwarf2_read_debug)
10909 {
10910 fprintf_unfiltered (gdb_stdlog,
10911 "Virtual DWO %s %s found: @%s\n",
10912 kind, hex_string (signature),
10913 host_address_to_string (dwo_cutu));
10914 }
10915 return dwo_cutu;
10916 }
10917 }
10918 }
6a506a2d 10919 else
80626a55 10920 {
6a506a2d 10921 /* No DWP file, look for the DWO file. */
80626a55 10922
6a506a2d
DE
10923 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10924 if (*dwo_file_slot == NULL)
80626a55 10925 {
6a506a2d
DE
10926 /* Read in the file and build a table of the CUs/TUs it contains. */
10927 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10928 }
6a506a2d
DE
10929 /* NOTE: This will be NULL if unable to open the file. */
10930 dwo_file = *dwo_file_slot;
3019eac3 10931
6a506a2d 10932 if (dwo_file != NULL)
19c3d4c9 10933 {
6a506a2d
DE
10934 struct dwo_unit *dwo_cutu = NULL;
10935
10936 if (is_debug_types && dwo_file->tus)
10937 {
10938 struct dwo_unit find_dwo_cutu;
10939
10940 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10941 find_dwo_cutu.signature = signature;
10942 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10943 }
10944 else if (!is_debug_types && dwo_file->cu)
80626a55 10945 {
6a506a2d
DE
10946 if (signature == dwo_file->cu->signature)
10947 dwo_cutu = dwo_file->cu;
10948 }
10949
10950 if (dwo_cutu != NULL)
10951 {
10952 if (dwarf2_read_debug)
10953 {
10954 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10955 kind, dwo_name, hex_string (signature),
10956 host_address_to_string (dwo_cutu));
10957 }
10958 return dwo_cutu;
80626a55
DE
10959 }
10960 }
2e276125 10961 }
9cdd5dbd 10962
80626a55
DE
10963 /* We didn't find it. This could mean a dwo_id mismatch, or
10964 someone deleted the DWO/DWP file, or the search path isn't set up
10965 correctly to find the file. */
10966
10967 if (dwarf2_read_debug)
10968 {
10969 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10970 kind, dwo_name, hex_string (signature));
10971 }
3019eac3 10972
6656a72d
DE
10973 /* This is a warning and not a complaint because it can be caused by
10974 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10975 {
10976 /* Print the name of the DWP file if we looked there, helps the user
10977 better diagnose the problem. */
10978 char *dwp_text = NULL;
10979 struct cleanup *cleanups;
10980
10981 if (dwp_file != NULL)
10982 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10983 cleanups = make_cleanup (xfree, dwp_text);
10984
10985 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10986 " [in module %s]"),
10987 kind, dwo_name, hex_string (signature),
10988 dwp_text != NULL ? dwp_text : "",
10989 this_unit->is_debug_types ? "TU" : "CU",
10990 this_unit->offset.sect_off, objfile_name (objfile));
10991
10992 do_cleanups (cleanups);
10993 }
3019eac3 10994 return NULL;
5fb290d7
DJ
10995}
10996
80626a55
DE
10997/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10998 See lookup_dwo_cutu_unit for details. */
10999
11000static struct dwo_unit *
11001lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11002 const char *dwo_name, const char *comp_dir,
11003 ULONGEST signature)
11004{
11005 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11006}
11007
11008/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11009 See lookup_dwo_cutu_unit for details. */
11010
11011static struct dwo_unit *
11012lookup_dwo_type_unit (struct signatured_type *this_tu,
11013 const char *dwo_name, const char *comp_dir)
11014{
11015 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11016}
11017
89e63ee4
DE
11018/* Traversal function for queue_and_load_all_dwo_tus. */
11019
11020static int
11021queue_and_load_dwo_tu (void **slot, void *info)
11022{
11023 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11024 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11025 ULONGEST signature = dwo_unit->signature;
11026 struct signatured_type *sig_type =
11027 lookup_dwo_signatured_type (per_cu->cu, signature);
11028
11029 if (sig_type != NULL)
11030 {
11031 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11032
11033 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11034 a real dependency of PER_CU on SIG_TYPE. That is detected later
11035 while processing PER_CU. */
11036 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11037 load_full_type_unit (sig_cu);
11038 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11039 }
11040
11041 return 1;
11042}
11043
11044/* Queue all TUs contained in the DWO of PER_CU to be read in.
11045 The DWO may have the only definition of the type, though it may not be
11046 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11047 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11048
11049static void
11050queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11051{
11052 struct dwo_unit *dwo_unit;
11053 struct dwo_file *dwo_file;
11054
11055 gdb_assert (!per_cu->is_debug_types);
11056 gdb_assert (get_dwp_file () == NULL);
11057 gdb_assert (per_cu->cu != NULL);
11058
11059 dwo_unit = per_cu->cu->dwo_unit;
11060 gdb_assert (dwo_unit != NULL);
11061
11062 dwo_file = dwo_unit->dwo_file;
11063 if (dwo_file->tus != NULL)
11064 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11065}
11066
3019eac3
DE
11067/* Free all resources associated with DWO_FILE.
11068 Close the DWO file and munmap the sections.
11069 All memory should be on the objfile obstack. */
348e048f
DE
11070
11071static void
3019eac3 11072free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11073{
3019eac3
DE
11074 int ix;
11075 struct dwarf2_section_info *section;
348e048f 11076
5c6fa7ab 11077 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11078 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11079
3019eac3
DE
11080 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11081}
348e048f 11082
3019eac3 11083/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11084
3019eac3
DE
11085static void
11086free_dwo_file_cleanup (void *arg)
11087{
11088 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11089 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11090
3019eac3
DE
11091 free_dwo_file (dwo_file, objfile);
11092}
348e048f 11093
3019eac3 11094/* Traversal function for free_dwo_files. */
2ab95328 11095
3019eac3
DE
11096static int
11097free_dwo_file_from_slot (void **slot, void *info)
11098{
11099 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11100 struct objfile *objfile = (struct objfile *) info;
348e048f 11101
3019eac3 11102 free_dwo_file (dwo_file, objfile);
348e048f 11103
3019eac3
DE
11104 return 1;
11105}
348e048f 11106
3019eac3 11107/* Free all resources associated with DWO_FILES. */
348e048f 11108
3019eac3
DE
11109static void
11110free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11111{
11112 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11113}
3019eac3
DE
11114\f
11115/* Read in various DIEs. */
348e048f 11116
d389af10
JK
11117/* qsort helper for inherit_abstract_dies. */
11118
11119static int
11120unsigned_int_compar (const void *ap, const void *bp)
11121{
11122 unsigned int a = *(unsigned int *) ap;
11123 unsigned int b = *(unsigned int *) bp;
11124
11125 return (a > b) - (b > a);
11126}
11127
11128/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11129 Inherit only the children of the DW_AT_abstract_origin DIE not being
11130 already referenced by DW_AT_abstract_origin from the children of the
11131 current DIE. */
d389af10
JK
11132
11133static void
11134inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11135{
11136 struct die_info *child_die;
11137 unsigned die_children_count;
11138 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11139 sect_offset *offsets;
11140 sect_offset *offsets_end, *offsetp;
d389af10
JK
11141 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11142 struct die_info *origin_die;
11143 /* Iterator of the ORIGIN_DIE children. */
11144 struct die_info *origin_child_die;
11145 struct cleanup *cleanups;
11146 struct attribute *attr;
cd02d79d
PA
11147 struct dwarf2_cu *origin_cu;
11148 struct pending **origin_previous_list_in_scope;
d389af10
JK
11149
11150 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11151 if (!attr)
11152 return;
11153
cd02d79d
PA
11154 /* Note that following die references may follow to a die in a
11155 different cu. */
11156
11157 origin_cu = cu;
11158 origin_die = follow_die_ref (die, attr, &origin_cu);
11159
11160 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11161 symbols in. */
11162 origin_previous_list_in_scope = origin_cu->list_in_scope;
11163 origin_cu->list_in_scope = cu->list_in_scope;
11164
edb3359d
DJ
11165 if (die->tag != origin_die->tag
11166 && !(die->tag == DW_TAG_inlined_subroutine
11167 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11168 complaint (&symfile_complaints,
11169 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11170 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11171
11172 child_die = die->child;
11173 die_children_count = 0;
11174 while (child_die && child_die->tag)
11175 {
11176 child_die = sibling_die (child_die);
11177 die_children_count++;
11178 }
11179 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11180 cleanups = make_cleanup (xfree, offsets);
11181
11182 offsets_end = offsets;
11183 child_die = die->child;
11184 while (child_die && child_die->tag)
11185 {
c38f313d
DJ
11186 /* For each CHILD_DIE, find the corresponding child of
11187 ORIGIN_DIE. If there is more than one layer of
11188 DW_AT_abstract_origin, follow them all; there shouldn't be,
11189 but GCC versions at least through 4.4 generate this (GCC PR
11190 40573). */
11191 struct die_info *child_origin_die = child_die;
cd02d79d 11192 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11193
c38f313d
DJ
11194 while (1)
11195 {
cd02d79d
PA
11196 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11197 child_origin_cu);
c38f313d
DJ
11198 if (attr == NULL)
11199 break;
cd02d79d
PA
11200 child_origin_die = follow_die_ref (child_origin_die, attr,
11201 &child_origin_cu);
c38f313d
DJ
11202 }
11203
d389af10
JK
11204 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11205 counterpart may exist. */
c38f313d 11206 if (child_origin_die != child_die)
d389af10 11207 {
edb3359d
DJ
11208 if (child_die->tag != child_origin_die->tag
11209 && !(child_die->tag == DW_TAG_inlined_subroutine
11210 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11211 complaint (&symfile_complaints,
11212 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11213 "different tags"), child_die->offset.sect_off,
11214 child_origin_die->offset.sect_off);
c38f313d
DJ
11215 if (child_origin_die->parent != origin_die)
11216 complaint (&symfile_complaints,
11217 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11218 "different parents"), child_die->offset.sect_off,
11219 child_origin_die->offset.sect_off);
c38f313d
DJ
11220 else
11221 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11222 }
11223 child_die = sibling_die (child_die);
11224 }
11225 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11226 unsigned_int_compar);
11227 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11228 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11229 complaint (&symfile_complaints,
11230 _("Multiple children of DIE 0x%x refer "
11231 "to DIE 0x%x as their abstract origin"),
b64f50a1 11232 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11233
11234 offsetp = offsets;
11235 origin_child_die = origin_die->child;
11236 while (origin_child_die && origin_child_die->tag)
11237 {
11238 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11239 while (offsetp < offsets_end
11240 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11241 offsetp++;
b64f50a1
JK
11242 if (offsetp >= offsets_end
11243 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11244 {
adde2bff
DE
11245 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11246 Check whether we're already processing ORIGIN_CHILD_DIE.
11247 This can happen with mutually referenced abstract_origins.
11248 PR 16581. */
11249 if (!origin_child_die->in_process)
11250 process_die (origin_child_die, origin_cu);
d389af10
JK
11251 }
11252 origin_child_die = sibling_die (origin_child_die);
11253 }
cd02d79d 11254 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11255
11256 do_cleanups (cleanups);
11257}
11258
c906108c 11259static void
e7c27a73 11260read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11261{
e7c27a73 11262 struct objfile *objfile = cu->objfile;
3e29f34a 11263 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11264 struct context_stack *new;
c906108c
SS
11265 CORE_ADDR lowpc;
11266 CORE_ADDR highpc;
11267 struct die_info *child_die;
edb3359d 11268 struct attribute *attr, *call_line, *call_file;
15d034d0 11269 const char *name;
e142c38c 11270 CORE_ADDR baseaddr;
801e3a5b 11271 struct block *block;
edb3359d 11272 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11273 VEC (symbolp) *template_args = NULL;
11274 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11275
11276 if (inlined_func)
11277 {
11278 /* If we do not have call site information, we can't show the
11279 caller of this inlined function. That's too confusing, so
11280 only use the scope for local variables. */
11281 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11282 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11283 if (call_line == NULL || call_file == NULL)
11284 {
11285 read_lexical_block_scope (die, cu);
11286 return;
11287 }
11288 }
c906108c 11289
e142c38c
DJ
11290 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11291
94af9270 11292 name = dwarf2_name (die, cu);
c906108c 11293
e8d05480
JB
11294 /* Ignore functions with missing or empty names. These are actually
11295 illegal according to the DWARF standard. */
11296 if (name == NULL)
11297 {
11298 complaint (&symfile_complaints,
b64f50a1
JK
11299 _("missing name for subprogram DIE at %d"),
11300 die->offset.sect_off);
e8d05480
JB
11301 return;
11302 }
11303
11304 /* Ignore functions with missing or invalid low and high pc attributes. */
11305 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11306 {
ae4d0c03
PM
11307 attr = dwarf2_attr (die, DW_AT_external, cu);
11308 if (!attr || !DW_UNSND (attr))
11309 complaint (&symfile_complaints,
3e43a32a
MS
11310 _("cannot get low and high bounds "
11311 "for subprogram DIE at %d"),
b64f50a1 11312 die->offset.sect_off);
e8d05480
JB
11313 return;
11314 }
c906108c 11315
3e29f34a
MR
11316 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11317 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11318
34eaf542
TT
11319 /* If we have any template arguments, then we must allocate a
11320 different sort of symbol. */
11321 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11322 {
11323 if (child_die->tag == DW_TAG_template_type_param
11324 || child_die->tag == DW_TAG_template_value_param)
11325 {
e623cf5d 11326 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11327 templ_func->base.is_cplus_template_function = 1;
11328 break;
11329 }
11330 }
11331
c906108c 11332 new = push_context (0, lowpc);
34eaf542
TT
11333 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11334 (struct symbol *) templ_func);
4c2df51b 11335
4cecd739
DJ
11336 /* If there is a location expression for DW_AT_frame_base, record
11337 it. */
e142c38c 11338 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11339 if (attr)
f1e6e072 11340 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11341
e142c38c 11342 cu->list_in_scope = &local_symbols;
c906108c 11343
639d11d3 11344 if (die->child != NULL)
c906108c 11345 {
639d11d3 11346 child_die = die->child;
c906108c
SS
11347 while (child_die && child_die->tag)
11348 {
34eaf542
TT
11349 if (child_die->tag == DW_TAG_template_type_param
11350 || child_die->tag == DW_TAG_template_value_param)
11351 {
11352 struct symbol *arg = new_symbol (child_die, NULL, cu);
11353
f1078f66
DJ
11354 if (arg != NULL)
11355 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11356 }
11357 else
11358 process_die (child_die, cu);
c906108c
SS
11359 child_die = sibling_die (child_die);
11360 }
11361 }
11362
d389af10
JK
11363 inherit_abstract_dies (die, cu);
11364
4a811a97
UW
11365 /* If we have a DW_AT_specification, we might need to import using
11366 directives from the context of the specification DIE. See the
11367 comment in determine_prefix. */
11368 if (cu->language == language_cplus
11369 && dwarf2_attr (die, DW_AT_specification, cu))
11370 {
11371 struct dwarf2_cu *spec_cu = cu;
11372 struct die_info *spec_die = die_specification (die, &spec_cu);
11373
11374 while (spec_die)
11375 {
11376 child_die = spec_die->child;
11377 while (child_die && child_die->tag)
11378 {
11379 if (child_die->tag == DW_TAG_imported_module)
11380 process_die (child_die, spec_cu);
11381 child_die = sibling_die (child_die);
11382 }
11383
11384 /* In some cases, GCC generates specification DIEs that
11385 themselves contain DW_AT_specification attributes. */
11386 spec_die = die_specification (spec_die, &spec_cu);
11387 }
11388 }
11389
c906108c
SS
11390 new = pop_context ();
11391 /* Make a block for the local symbols within. */
801e3a5b 11392 block = finish_block (new->name, &local_symbols, new->old_blocks,
4d663531 11393 lowpc, highpc);
801e3a5b 11394
df8a16a1 11395 /* For C++, set the block's scope. */
195a3f6c 11396 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11397 && cu->processing_has_namespace_info)
195a3f6c
TT
11398 block_set_scope (block, determine_prefix (die, cu),
11399 &objfile->objfile_obstack);
df8a16a1 11400
801e3a5b
JB
11401 /* If we have address ranges, record them. */
11402 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11403
3e29f34a
MR
11404 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11405
34eaf542
TT
11406 /* Attach template arguments to function. */
11407 if (! VEC_empty (symbolp, template_args))
11408 {
11409 gdb_assert (templ_func != NULL);
11410
11411 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11412 templ_func->template_arguments
11413 = obstack_alloc (&objfile->objfile_obstack,
11414 (templ_func->n_template_arguments
11415 * sizeof (struct symbol *)));
11416 memcpy (templ_func->template_arguments,
11417 VEC_address (symbolp, template_args),
11418 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11419 VEC_free (symbolp, template_args);
11420 }
11421
208d8187
JB
11422 /* In C++, we can have functions nested inside functions (e.g., when
11423 a function declares a class that has methods). This means that
11424 when we finish processing a function scope, we may need to go
11425 back to building a containing block's symbol lists. */
11426 local_symbols = new->locals;
27aa8d6a 11427 using_directives = new->using_directives;
208d8187 11428
921e78cf
JB
11429 /* If we've finished processing a top-level function, subsequent
11430 symbols go in the file symbol list. */
11431 if (outermost_context_p ())
e142c38c 11432 cu->list_in_scope = &file_symbols;
c906108c
SS
11433}
11434
11435/* Process all the DIES contained within a lexical block scope. Start
11436 a new scope, process the dies, and then close the scope. */
11437
11438static void
e7c27a73 11439read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11440{
e7c27a73 11441 struct objfile *objfile = cu->objfile;
3e29f34a 11442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11443 struct context_stack *new;
c906108c
SS
11444 CORE_ADDR lowpc, highpc;
11445 struct die_info *child_die;
e142c38c
DJ
11446 CORE_ADDR baseaddr;
11447
11448 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11449
11450 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11451 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11452 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11453 be nasty. Might be easier to properly extend generic blocks to
af34e669 11454 describe ranges. */
d85a05f0 11455 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11456 return;
3e29f34a
MR
11457 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11458 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11459
11460 push_context (0, lowpc);
639d11d3 11461 if (die->child != NULL)
c906108c 11462 {
639d11d3 11463 child_die = die->child;
c906108c
SS
11464 while (child_die && child_die->tag)
11465 {
e7c27a73 11466 process_die (child_die, cu);
c906108c
SS
11467 child_die = sibling_die (child_die);
11468 }
11469 }
11470 new = pop_context ();
11471
8540c487 11472 if (local_symbols != NULL || using_directives != NULL)
c906108c 11473 {
801e3a5b
JB
11474 struct block *block
11475 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4d663531 11476 highpc);
801e3a5b
JB
11477
11478 /* Note that recording ranges after traversing children, as we
11479 do here, means that recording a parent's ranges entails
11480 walking across all its children's ranges as they appear in
11481 the address map, which is quadratic behavior.
11482
11483 It would be nicer to record the parent's ranges before
11484 traversing its children, simply overriding whatever you find
11485 there. But since we don't even decide whether to create a
11486 block until after we've traversed its children, that's hard
11487 to do. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11489 }
11490 local_symbols = new->locals;
27aa8d6a 11491 using_directives = new->using_directives;
c906108c
SS
11492}
11493
96408a79
SA
11494/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11495
11496static void
11497read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11498{
11499 struct objfile *objfile = cu->objfile;
11500 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11501 CORE_ADDR pc, baseaddr;
11502 struct attribute *attr;
11503 struct call_site *call_site, call_site_local;
11504 void **slot;
11505 int nparams;
11506 struct die_info *child_die;
11507
11508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11509
11510 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11511 if (!attr)
11512 {
11513 complaint (&symfile_complaints,
11514 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11515 "DIE 0x%x [in module %s]"),
4262abfb 11516 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11517 return;
11518 }
31aa7e4e 11519 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11520 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11521
11522 if (cu->call_site_htab == NULL)
11523 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11524 NULL, &objfile->objfile_obstack,
11525 hashtab_obstack_allocate, NULL);
11526 call_site_local.pc = pc;
11527 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11528 if (*slot != NULL)
11529 {
11530 complaint (&symfile_complaints,
11531 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11532 "DIE 0x%x [in module %s]"),
4262abfb
JK
11533 paddress (gdbarch, pc), die->offset.sect_off,
11534 objfile_name (objfile));
96408a79
SA
11535 return;
11536 }
11537
11538 /* Count parameters at the caller. */
11539
11540 nparams = 0;
11541 for (child_die = die->child; child_die && child_die->tag;
11542 child_die = sibling_die (child_die))
11543 {
11544 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11545 {
11546 complaint (&symfile_complaints,
11547 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11548 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11549 child_die->tag, child_die->offset.sect_off,
11550 objfile_name (objfile));
96408a79
SA
11551 continue;
11552 }
11553
11554 nparams++;
11555 }
11556
11557 call_site = obstack_alloc (&objfile->objfile_obstack,
11558 (sizeof (*call_site)
11559 + (sizeof (*call_site->parameter)
11560 * (nparams - 1))));
11561 *slot = call_site;
11562 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11563 call_site->pc = pc;
11564
11565 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11566 {
11567 struct die_info *func_die;
11568
11569 /* Skip also over DW_TAG_inlined_subroutine. */
11570 for (func_die = die->parent;
11571 func_die && func_die->tag != DW_TAG_subprogram
11572 && func_die->tag != DW_TAG_subroutine_type;
11573 func_die = func_die->parent);
11574
11575 /* DW_AT_GNU_all_call_sites is a superset
11576 of DW_AT_GNU_all_tail_call_sites. */
11577 if (func_die
11578 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11579 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11580 {
11581 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11582 not complete. But keep CALL_SITE for look ups via call_site_htab,
11583 both the initial caller containing the real return address PC and
11584 the final callee containing the current PC of a chain of tail
11585 calls do not need to have the tail call list complete. But any
11586 function candidate for a virtual tail call frame searched via
11587 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11588 determined unambiguously. */
11589 }
11590 else
11591 {
11592 struct type *func_type = NULL;
11593
11594 if (func_die)
11595 func_type = get_die_type (func_die, cu);
11596 if (func_type != NULL)
11597 {
11598 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11599
11600 /* Enlist this call site to the function. */
11601 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11602 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11603 }
11604 else
11605 complaint (&symfile_complaints,
11606 _("Cannot find function owning DW_TAG_GNU_call_site "
11607 "DIE 0x%x [in module %s]"),
4262abfb 11608 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11609 }
11610 }
11611
11612 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11613 if (attr == NULL)
11614 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11615 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11616 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11617 /* Keep NULL DWARF_BLOCK. */;
11618 else if (attr_form_is_block (attr))
11619 {
11620 struct dwarf2_locexpr_baton *dlbaton;
11621
11622 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11623 dlbaton->data = DW_BLOCK (attr)->data;
11624 dlbaton->size = DW_BLOCK (attr)->size;
11625 dlbaton->per_cu = cu->per_cu;
11626
11627 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11628 }
7771576e 11629 else if (attr_form_is_ref (attr))
96408a79 11630 {
96408a79
SA
11631 struct dwarf2_cu *target_cu = cu;
11632 struct die_info *target_die;
11633
ac9ec31b 11634 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11635 gdb_assert (target_cu->objfile == objfile);
11636 if (die_is_declaration (target_die, target_cu))
11637 {
9112db09
JK
11638 const char *target_physname = NULL;
11639 struct attribute *target_attr;
11640
11641 /* Prefer the mangled name; otherwise compute the demangled one. */
11642 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11643 if (target_attr == NULL)
11644 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11645 target_cu);
11646 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11647 target_physname = DW_STRING (target_attr);
11648 else
11649 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11650 if (target_physname == NULL)
11651 complaint (&symfile_complaints,
11652 _("DW_AT_GNU_call_site_target target DIE has invalid "
11653 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11654 die->offset.sect_off, objfile_name (objfile));
96408a79 11655 else
7d455152 11656 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11657 }
11658 else
11659 {
11660 CORE_ADDR lowpc;
11661
11662 /* DW_AT_entry_pc should be preferred. */
11663 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11664 complaint (&symfile_complaints,
11665 _("DW_AT_GNU_call_site_target target DIE has invalid "
11666 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11667 die->offset.sect_off, objfile_name (objfile));
96408a79 11668 else
3e29f34a
MR
11669 {
11670 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11671 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11672 }
96408a79
SA
11673 }
11674 }
11675 else
11676 complaint (&symfile_complaints,
11677 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11678 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11679 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11680
11681 call_site->per_cu = cu->per_cu;
11682
11683 for (child_die = die->child;
11684 child_die && child_die->tag;
11685 child_die = sibling_die (child_die))
11686 {
96408a79 11687 struct call_site_parameter *parameter;
1788b2d3 11688 struct attribute *loc, *origin;
96408a79
SA
11689
11690 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11691 {
11692 /* Already printed the complaint above. */
11693 continue;
11694 }
11695
11696 gdb_assert (call_site->parameter_count < nparams);
11697 parameter = &call_site->parameter[call_site->parameter_count];
11698
1788b2d3
JK
11699 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11700 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11701 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11702
24c5c679 11703 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11704 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11705 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11706 {
11707 sect_offset offset;
11708
11709 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11710 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11711 if (!offset_in_cu_p (&cu->header, offset))
11712 {
11713 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11714 binding can be done only inside one CU. Such referenced DIE
11715 therefore cannot be even moved to DW_TAG_partial_unit. */
11716 complaint (&symfile_complaints,
11717 _("DW_AT_abstract_origin offset is not in CU for "
11718 "DW_TAG_GNU_call_site child DIE 0x%x "
11719 "[in module %s]"),
4262abfb 11720 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11721 continue;
11722 }
1788b2d3
JK
11723 parameter->u.param_offset.cu_off = (offset.sect_off
11724 - cu->header.offset.sect_off);
11725 }
11726 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11727 {
11728 complaint (&symfile_complaints,
11729 _("No DW_FORM_block* DW_AT_location for "
11730 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11731 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11732 continue;
11733 }
24c5c679 11734 else
96408a79 11735 {
24c5c679
JK
11736 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11737 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11738 if (parameter->u.dwarf_reg != -1)
11739 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11740 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11741 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11742 &parameter->u.fb_offset))
11743 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11744 else
11745 {
11746 complaint (&symfile_complaints,
11747 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11748 "for DW_FORM_block* DW_AT_location is supported for "
11749 "DW_TAG_GNU_call_site child DIE 0x%x "
11750 "[in module %s]"),
4262abfb 11751 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11752 continue;
11753 }
96408a79
SA
11754 }
11755
11756 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11757 if (!attr_form_is_block (attr))
11758 {
11759 complaint (&symfile_complaints,
11760 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11761 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11762 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11763 continue;
11764 }
11765 parameter->value = DW_BLOCK (attr)->data;
11766 parameter->value_size = DW_BLOCK (attr)->size;
11767
11768 /* Parameters are not pre-cleared by memset above. */
11769 parameter->data_value = NULL;
11770 parameter->data_value_size = 0;
11771 call_site->parameter_count++;
11772
11773 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11774 if (attr)
11775 {
11776 if (!attr_form_is_block (attr))
11777 complaint (&symfile_complaints,
11778 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11779 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11780 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11781 else
11782 {
11783 parameter->data_value = DW_BLOCK (attr)->data;
11784 parameter->data_value_size = DW_BLOCK (attr)->size;
11785 }
11786 }
11787 }
11788}
11789
43039443 11790/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11791 Return 1 if the attributes are present and valid, otherwise, return 0.
11792 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11793
11794static int
11795dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11796 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11797 struct partial_symtab *ranges_pst)
43039443
JK
11798{
11799 struct objfile *objfile = cu->objfile;
3e29f34a 11800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11801 struct comp_unit_head *cu_header = &cu->header;
11802 bfd *obfd = objfile->obfd;
11803 unsigned int addr_size = cu_header->addr_size;
11804 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11805 /* Base address selection entry. */
11806 CORE_ADDR base;
11807 int found_base;
11808 unsigned int dummy;
d521ce57 11809 const gdb_byte *buffer;
43039443
JK
11810 CORE_ADDR marker;
11811 int low_set;
11812 CORE_ADDR low = 0;
11813 CORE_ADDR high = 0;
ff013f42 11814 CORE_ADDR baseaddr;
43039443 11815
d00adf39
DE
11816 found_base = cu->base_known;
11817 base = cu->base_address;
43039443 11818
be391dca 11819 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11820 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11821 {
11822 complaint (&symfile_complaints,
11823 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11824 offset);
11825 return 0;
11826 }
dce234bc 11827 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11828
11829 /* Read in the largest possible address. */
11830 marker = read_address (obfd, buffer, cu, &dummy);
11831 if ((marker & mask) == mask)
11832 {
11833 /* If we found the largest possible address, then
11834 read the base address. */
11835 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11836 buffer += 2 * addr_size;
11837 offset += 2 * addr_size;
11838 found_base = 1;
11839 }
11840
11841 low_set = 0;
11842
e7030f15 11843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11844
43039443
JK
11845 while (1)
11846 {
11847 CORE_ADDR range_beginning, range_end;
11848
11849 range_beginning = read_address (obfd, buffer, cu, &dummy);
11850 buffer += addr_size;
11851 range_end = read_address (obfd, buffer, cu, &dummy);
11852 buffer += addr_size;
11853 offset += 2 * addr_size;
11854
11855 /* An end of list marker is a pair of zero addresses. */
11856 if (range_beginning == 0 && range_end == 0)
11857 /* Found the end of list entry. */
11858 break;
11859
11860 /* Each base address selection entry is a pair of 2 values.
11861 The first is the largest possible address, the second is
11862 the base address. Check for a base address here. */
11863 if ((range_beginning & mask) == mask)
11864 {
11865 /* If we found the largest possible address, then
11866 read the base address. */
11867 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11868 found_base = 1;
11869 continue;
11870 }
11871
11872 if (!found_base)
11873 {
11874 /* We have no valid base address for the ranges
11875 data. */
11876 complaint (&symfile_complaints,
11877 _("Invalid .debug_ranges data (no base address)"));
11878 return 0;
11879 }
11880
9277c30c
UW
11881 if (range_beginning > range_end)
11882 {
11883 /* Inverted range entries are invalid. */
11884 complaint (&symfile_complaints,
11885 _("Invalid .debug_ranges data (inverted range)"));
11886 return 0;
11887 }
11888
11889 /* Empty range entries have no effect. */
11890 if (range_beginning == range_end)
11891 continue;
11892
43039443
JK
11893 range_beginning += base;
11894 range_end += base;
11895
01093045
DE
11896 /* A not-uncommon case of bad debug info.
11897 Don't pollute the addrmap with bad data. */
11898 if (range_beginning + baseaddr == 0
11899 && !dwarf2_per_objfile->has_section_at_zero)
11900 {
11901 complaint (&symfile_complaints,
11902 _(".debug_ranges entry has start address of zero"
4262abfb 11903 " [in module %s]"), objfile_name (objfile));
01093045
DE
11904 continue;
11905 }
11906
9277c30c 11907 if (ranges_pst != NULL)
3e29f34a
MR
11908 {
11909 CORE_ADDR lowpc;
11910 CORE_ADDR highpc;
11911
11912 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11913 range_beginning + baseaddr);
11914 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11915 range_end + baseaddr);
11916 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11917 ranges_pst);
11918 }
ff013f42 11919
43039443
JK
11920 /* FIXME: This is recording everything as a low-high
11921 segment of consecutive addresses. We should have a
11922 data structure for discontiguous block ranges
11923 instead. */
11924 if (! low_set)
11925 {
11926 low = range_beginning;
11927 high = range_end;
11928 low_set = 1;
11929 }
11930 else
11931 {
11932 if (range_beginning < low)
11933 low = range_beginning;
11934 if (range_end > high)
11935 high = range_end;
11936 }
11937 }
11938
11939 if (! low_set)
11940 /* If the first entry is an end-of-list marker, the range
11941 describes an empty scope, i.e. no instructions. */
11942 return 0;
11943
11944 if (low_return)
11945 *low_return = low;
11946 if (high_return)
11947 *high_return = high;
11948 return 1;
11949}
11950
af34e669
DJ
11951/* Get low and high pc attributes from a die. Return 1 if the attributes
11952 are present and valid, otherwise, return 0. Return -1 if the range is
11953 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11954
c906108c 11955static int
af34e669 11956dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11957 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11958 struct partial_symtab *pst)
c906108c
SS
11959{
11960 struct attribute *attr;
91da1414 11961 struct attribute *attr_high;
af34e669
DJ
11962 CORE_ADDR low = 0;
11963 CORE_ADDR high = 0;
11964 int ret = 0;
c906108c 11965
91da1414
MW
11966 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11967 if (attr_high)
af34e669 11968 {
e142c38c 11969 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11970 if (attr)
91da1414 11971 {
31aa7e4e
JB
11972 low = attr_value_as_address (attr);
11973 high = attr_value_as_address (attr_high);
11974 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11975 high += low;
91da1414 11976 }
af34e669
DJ
11977 else
11978 /* Found high w/o low attribute. */
11979 return 0;
11980
11981 /* Found consecutive range of addresses. */
11982 ret = 1;
11983 }
c906108c 11984 else
af34e669 11985 {
e142c38c 11986 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11987 if (attr != NULL)
11988 {
ab435259
DE
11989 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11990 We take advantage of the fact that DW_AT_ranges does not appear
11991 in DW_TAG_compile_unit of DWO files. */
11992 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11993 unsigned int ranges_offset = (DW_UNSND (attr)
11994 + (need_ranges_base
11995 ? cu->ranges_base
11996 : 0));
2e3cf129 11997
af34e669 11998 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11999 .debug_ranges section. */
2e3cf129 12000 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12001 return 0;
43039443 12002 /* Found discontinuous range of addresses. */
af34e669
DJ
12003 ret = -1;
12004 }
12005 }
c906108c 12006
9373cf26
JK
12007 /* read_partial_die has also the strict LOW < HIGH requirement. */
12008 if (high <= low)
c906108c
SS
12009 return 0;
12010
12011 /* When using the GNU linker, .gnu.linkonce. sections are used to
12012 eliminate duplicate copies of functions and vtables and such.
12013 The linker will arbitrarily choose one and discard the others.
12014 The AT_*_pc values for such functions refer to local labels in
12015 these sections. If the section from that file was discarded, the
12016 labels are not in the output, so the relocs get a value of 0.
12017 If this is a discarded function, mark the pc bounds as invalid,
12018 so that GDB will ignore it. */
72dca2f5 12019 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12020 return 0;
12021
12022 *lowpc = low;
96408a79
SA
12023 if (highpc)
12024 *highpc = high;
af34e669 12025 return ret;
c906108c
SS
12026}
12027
b084d499
JB
12028/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12029 its low and high PC addresses. Do nothing if these addresses could not
12030 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12031 and HIGHPC to the high address if greater than HIGHPC. */
12032
12033static void
12034dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12035 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12036 struct dwarf2_cu *cu)
12037{
12038 CORE_ADDR low, high;
12039 struct die_info *child = die->child;
12040
d85a05f0 12041 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12042 {
12043 *lowpc = min (*lowpc, low);
12044 *highpc = max (*highpc, high);
12045 }
12046
12047 /* If the language does not allow nested subprograms (either inside
12048 subprograms or lexical blocks), we're done. */
12049 if (cu->language != language_ada)
12050 return;
6e70227d 12051
b084d499
JB
12052 /* Check all the children of the given DIE. If it contains nested
12053 subprograms, then check their pc bounds. Likewise, we need to
12054 check lexical blocks as well, as they may also contain subprogram
12055 definitions. */
12056 while (child && child->tag)
12057 {
12058 if (child->tag == DW_TAG_subprogram
12059 || child->tag == DW_TAG_lexical_block)
12060 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12061 child = sibling_die (child);
12062 }
12063}
12064
fae299cd
DC
12065/* Get the low and high pc's represented by the scope DIE, and store
12066 them in *LOWPC and *HIGHPC. If the correct values can't be
12067 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12068
12069static void
12070get_scope_pc_bounds (struct die_info *die,
12071 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12072 struct dwarf2_cu *cu)
12073{
12074 CORE_ADDR best_low = (CORE_ADDR) -1;
12075 CORE_ADDR best_high = (CORE_ADDR) 0;
12076 CORE_ADDR current_low, current_high;
12077
d85a05f0 12078 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12079 {
12080 best_low = current_low;
12081 best_high = current_high;
12082 }
12083 else
12084 {
12085 struct die_info *child = die->child;
12086
12087 while (child && child->tag)
12088 {
12089 switch (child->tag) {
12090 case DW_TAG_subprogram:
b084d499 12091 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12092 break;
12093 case DW_TAG_namespace:
f55ee35c 12094 case DW_TAG_module:
fae299cd
DC
12095 /* FIXME: carlton/2004-01-16: Should we do this for
12096 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12097 that current GCC's always emit the DIEs corresponding
12098 to definitions of methods of classes as children of a
12099 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12100 the DIEs giving the declarations, which could be
12101 anywhere). But I don't see any reason why the
12102 standards says that they have to be there. */
12103 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12104
12105 if (current_low != ((CORE_ADDR) -1))
12106 {
12107 best_low = min (best_low, current_low);
12108 best_high = max (best_high, current_high);
12109 }
12110 break;
12111 default:
0963b4bd 12112 /* Ignore. */
fae299cd
DC
12113 break;
12114 }
12115
12116 child = sibling_die (child);
12117 }
12118 }
12119
12120 *lowpc = best_low;
12121 *highpc = best_high;
12122}
12123
801e3a5b
JB
12124/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12125 in DIE. */
380bca97 12126
801e3a5b
JB
12127static void
12128dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12129 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12130{
bb5ed363 12131 struct objfile *objfile = cu->objfile;
3e29f34a 12132 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12133 struct attribute *attr;
91da1414 12134 struct attribute *attr_high;
801e3a5b 12135
91da1414
MW
12136 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12137 if (attr_high)
801e3a5b 12138 {
801e3a5b
JB
12139 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12140 if (attr)
12141 {
31aa7e4e
JB
12142 CORE_ADDR low = attr_value_as_address (attr);
12143 CORE_ADDR high = attr_value_as_address (attr_high);
12144
12145 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12146 high += low;
9a619af0 12147
3e29f34a
MR
12148 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12149 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12150 record_block_range (block, low, high - 1);
801e3a5b
JB
12151 }
12152 }
12153
12154 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12155 if (attr)
12156 {
bb5ed363 12157 bfd *obfd = objfile->obfd;
ab435259
DE
12158 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12159 We take advantage of the fact that DW_AT_ranges does not appear
12160 in DW_TAG_compile_unit of DWO files. */
12161 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12162
12163 /* The value of the DW_AT_ranges attribute is the offset of the
12164 address range list in the .debug_ranges section. */
ab435259
DE
12165 unsigned long offset = (DW_UNSND (attr)
12166 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12167 const gdb_byte *buffer;
801e3a5b
JB
12168
12169 /* For some target architectures, but not others, the
12170 read_address function sign-extends the addresses it returns.
12171 To recognize base address selection entries, we need a
12172 mask. */
12173 unsigned int addr_size = cu->header.addr_size;
12174 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12175
12176 /* The base address, to which the next pair is relative. Note
12177 that this 'base' is a DWARF concept: most entries in a range
12178 list are relative, to reduce the number of relocs against the
12179 debugging information. This is separate from this function's
12180 'baseaddr' argument, which GDB uses to relocate debugging
12181 information from a shared library based on the address at
12182 which the library was loaded. */
d00adf39
DE
12183 CORE_ADDR base = cu->base_address;
12184 int base_known = cu->base_known;
801e3a5b 12185
d62bfeaf 12186 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12187 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12188 {
12189 complaint (&symfile_complaints,
12190 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12191 offset);
12192 return;
12193 }
d62bfeaf 12194 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12195
12196 for (;;)
12197 {
12198 unsigned int bytes_read;
12199 CORE_ADDR start, end;
12200
12201 start = read_address (obfd, buffer, cu, &bytes_read);
12202 buffer += bytes_read;
12203 end = read_address (obfd, buffer, cu, &bytes_read);
12204 buffer += bytes_read;
12205
12206 /* Did we find the end of the range list? */
12207 if (start == 0 && end == 0)
12208 break;
12209
12210 /* Did we find a base address selection entry? */
12211 else if ((start & base_select_mask) == base_select_mask)
12212 {
12213 base = end;
12214 base_known = 1;
12215 }
12216
12217 /* We found an ordinary address range. */
12218 else
12219 {
12220 if (!base_known)
12221 {
12222 complaint (&symfile_complaints,
3e43a32a
MS
12223 _("Invalid .debug_ranges data "
12224 "(no base address)"));
801e3a5b
JB
12225 return;
12226 }
12227
9277c30c
UW
12228 if (start > end)
12229 {
12230 /* Inverted range entries are invalid. */
12231 complaint (&symfile_complaints,
12232 _("Invalid .debug_ranges data "
12233 "(inverted range)"));
12234 return;
12235 }
12236
12237 /* Empty range entries have no effect. */
12238 if (start == end)
12239 continue;
12240
01093045
DE
12241 start += base + baseaddr;
12242 end += base + baseaddr;
12243
12244 /* A not-uncommon case of bad debug info.
12245 Don't pollute the addrmap with bad data. */
12246 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12247 {
12248 complaint (&symfile_complaints,
12249 _(".debug_ranges entry has start address of zero"
4262abfb 12250 " [in module %s]"), objfile_name (objfile));
01093045
DE
12251 continue;
12252 }
12253
3e29f34a
MR
12254 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12255 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12256 record_block_range (block, start, end - 1);
801e3a5b
JB
12257 }
12258 }
12259 }
12260}
12261
685b1105
JK
12262/* Check whether the producer field indicates either of GCC < 4.6, or the
12263 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12264
685b1105
JK
12265static void
12266check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12267{
12268 const char *cs;
38360086 12269 int major, minor;
60d5a603
JK
12270
12271 if (cu->producer == NULL)
12272 {
12273 /* For unknown compilers expect their behavior is DWARF version
12274 compliant.
12275
12276 GCC started to support .debug_types sections by -gdwarf-4 since
12277 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12278 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12279 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12280 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12281 }
38360086 12282 else if ((major = producer_is_gcc (cu->producer, &minor)) > 0)
60d5a603 12283 {
38360086
MW
12284 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12285 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105
JK
12286 }
12287 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12288 cu->producer_is_icc = 1;
12289 else
12290 {
12291 /* For other non-GCC compilers, expect their behavior is DWARF version
12292 compliant. */
60d5a603
JK
12293 }
12294
ba919b58 12295 cu->checked_producer = 1;
685b1105 12296}
ba919b58 12297
685b1105
JK
12298/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12299 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12300 during 4.6.0 experimental. */
12301
12302static int
12303producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12304{
12305 if (!cu->checked_producer)
12306 check_producer (cu);
12307
12308 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12309}
12310
12311/* Return the default accessibility type if it is not overriden by
12312 DW_AT_accessibility. */
12313
12314static enum dwarf_access_attribute
12315dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12316{
12317 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12318 {
12319 /* The default DWARF 2 accessibility for members is public, the default
12320 accessibility for inheritance is private. */
12321
12322 if (die->tag != DW_TAG_inheritance)
12323 return DW_ACCESS_public;
12324 else
12325 return DW_ACCESS_private;
12326 }
12327 else
12328 {
12329 /* DWARF 3+ defines the default accessibility a different way. The same
12330 rules apply now for DW_TAG_inheritance as for the members and it only
12331 depends on the container kind. */
12332
12333 if (die->parent->tag == DW_TAG_class_type)
12334 return DW_ACCESS_private;
12335 else
12336 return DW_ACCESS_public;
12337 }
12338}
12339
74ac6d43
TT
12340/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12341 offset. If the attribute was not found return 0, otherwise return
12342 1. If it was found but could not properly be handled, set *OFFSET
12343 to 0. */
12344
12345static int
12346handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12347 LONGEST *offset)
12348{
12349 struct attribute *attr;
12350
12351 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12352 if (attr != NULL)
12353 {
12354 *offset = 0;
12355
12356 /* Note that we do not check for a section offset first here.
12357 This is because DW_AT_data_member_location is new in DWARF 4,
12358 so if we see it, we can assume that a constant form is really
12359 a constant and not a section offset. */
12360 if (attr_form_is_constant (attr))
12361 *offset = dwarf2_get_attr_constant_value (attr, 0);
12362 else if (attr_form_is_section_offset (attr))
12363 dwarf2_complex_location_expr_complaint ();
12364 else if (attr_form_is_block (attr))
12365 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12366 else
12367 dwarf2_complex_location_expr_complaint ();
12368
12369 return 1;
12370 }
12371
12372 return 0;
12373}
12374
c906108c
SS
12375/* Add an aggregate field to the field list. */
12376
12377static void
107d2387 12378dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12379 struct dwarf2_cu *cu)
6e70227d 12380{
e7c27a73 12381 struct objfile *objfile = cu->objfile;
5e2b427d 12382 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12383 struct nextfield *new_field;
12384 struct attribute *attr;
12385 struct field *fp;
15d034d0 12386 const char *fieldname = "";
c906108c
SS
12387
12388 /* Allocate a new field list entry and link it in. */
12389 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12390 make_cleanup (xfree, new_field);
c906108c 12391 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12392
12393 if (die->tag == DW_TAG_inheritance)
12394 {
12395 new_field->next = fip->baseclasses;
12396 fip->baseclasses = new_field;
12397 }
12398 else
12399 {
12400 new_field->next = fip->fields;
12401 fip->fields = new_field;
12402 }
c906108c
SS
12403 fip->nfields++;
12404
e142c38c 12405 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12406 if (attr)
12407 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12408 else
12409 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12410 if (new_field->accessibility != DW_ACCESS_public)
12411 fip->non_public_fields = 1;
60d5a603 12412
e142c38c 12413 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12414 if (attr)
12415 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12416 else
12417 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12418
12419 fp = &new_field->field;
a9a9bd0f 12420
e142c38c 12421 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12422 {
74ac6d43
TT
12423 LONGEST offset;
12424
a9a9bd0f 12425 /* Data member other than a C++ static data member. */
6e70227d 12426
c906108c 12427 /* Get type of field. */
e7c27a73 12428 fp->type = die_type (die, cu);
c906108c 12429
d6a843b5 12430 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12431
c906108c 12432 /* Get bit size of field (zero if none). */
e142c38c 12433 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12434 if (attr)
12435 {
12436 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12437 }
12438 else
12439 {
12440 FIELD_BITSIZE (*fp) = 0;
12441 }
12442
12443 /* Get bit offset of field. */
74ac6d43
TT
12444 if (handle_data_member_location (die, cu, &offset))
12445 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12446 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12447 if (attr)
12448 {
5e2b427d 12449 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12450 {
12451 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12452 additional bit offset from the MSB of the containing
12453 anonymous object to the MSB of the field. We don't
12454 have to do anything special since we don't need to
12455 know the size of the anonymous object. */
f41f5e61 12456 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12457 }
12458 else
12459 {
12460 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12461 MSB of the anonymous object, subtract off the number of
12462 bits from the MSB of the field to the MSB of the
12463 object, and then subtract off the number of bits of
12464 the field itself. The result is the bit offset of
12465 the LSB of the field. */
c906108c
SS
12466 int anonymous_size;
12467 int bit_offset = DW_UNSND (attr);
12468
e142c38c 12469 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12470 if (attr)
12471 {
12472 /* The size of the anonymous object containing
12473 the bit field is explicit, so use the
12474 indicated size (in bytes). */
12475 anonymous_size = DW_UNSND (attr);
12476 }
12477 else
12478 {
12479 /* The size of the anonymous object containing
12480 the bit field must be inferred from the type
12481 attribute of the data member containing the
12482 bit field. */
12483 anonymous_size = TYPE_LENGTH (fp->type);
12484 }
f41f5e61
PA
12485 SET_FIELD_BITPOS (*fp,
12486 (FIELD_BITPOS (*fp)
12487 + anonymous_size * bits_per_byte
12488 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12489 }
12490 }
12491
12492 /* Get name of field. */
39cbfefa
DJ
12493 fieldname = dwarf2_name (die, cu);
12494 if (fieldname == NULL)
12495 fieldname = "";
d8151005
DJ
12496
12497 /* The name is already allocated along with this objfile, so we don't
12498 need to duplicate it for the type. */
12499 fp->name = fieldname;
c906108c
SS
12500
12501 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12502 pointer or virtual base class pointer) to private. */
e142c38c 12503 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12504 {
d48cc9dd 12505 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12506 new_field->accessibility = DW_ACCESS_private;
12507 fip->non_public_fields = 1;
12508 }
12509 }
a9a9bd0f 12510 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12511 {
a9a9bd0f
DC
12512 /* C++ static member. */
12513
12514 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12515 is a declaration, but all versions of G++ as of this writing
12516 (so through at least 3.2.1) incorrectly generate
12517 DW_TAG_variable tags. */
6e70227d 12518
ff355380 12519 const char *physname;
c906108c 12520
a9a9bd0f 12521 /* Get name of field. */
39cbfefa
DJ
12522 fieldname = dwarf2_name (die, cu);
12523 if (fieldname == NULL)
c906108c
SS
12524 return;
12525
254e6b9e 12526 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12527 if (attr
12528 /* Only create a symbol if this is an external value.
12529 new_symbol checks this and puts the value in the global symbol
12530 table, which we want. If it is not external, new_symbol
12531 will try to put the value in cu->list_in_scope which is wrong. */
12532 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12533 {
12534 /* A static const member, not much different than an enum as far as
12535 we're concerned, except that we can support more types. */
12536 new_symbol (die, NULL, cu);
12537 }
12538
2df3850c 12539 /* Get physical name. */
ff355380 12540 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12541
d8151005
DJ
12542 /* The name is already allocated along with this objfile, so we don't
12543 need to duplicate it for the type. */
12544 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12545 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12546 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12547 }
12548 else if (die->tag == DW_TAG_inheritance)
12549 {
74ac6d43 12550 LONGEST offset;
d4b96c9a 12551
74ac6d43
TT
12552 /* C++ base class field. */
12553 if (handle_data_member_location (die, cu, &offset))
12554 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12555 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12556 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12557 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12558 fip->nbaseclasses++;
12559 }
12560}
12561
98751a41
JK
12562/* Add a typedef defined in the scope of the FIP's class. */
12563
12564static void
12565dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12566 struct dwarf2_cu *cu)
6e70227d 12567{
98751a41 12568 struct objfile *objfile = cu->objfile;
98751a41
JK
12569 struct typedef_field_list *new_field;
12570 struct attribute *attr;
12571 struct typedef_field *fp;
12572 char *fieldname = "";
12573
12574 /* Allocate a new field list entry and link it in. */
12575 new_field = xzalloc (sizeof (*new_field));
12576 make_cleanup (xfree, new_field);
12577
12578 gdb_assert (die->tag == DW_TAG_typedef);
12579
12580 fp = &new_field->field;
12581
12582 /* Get name of field. */
12583 fp->name = dwarf2_name (die, cu);
12584 if (fp->name == NULL)
12585 return;
12586
12587 fp->type = read_type_die (die, cu);
12588
12589 new_field->next = fip->typedef_field_list;
12590 fip->typedef_field_list = new_field;
12591 fip->typedef_field_list_count++;
12592}
12593
c906108c
SS
12594/* Create the vector of fields, and attach it to the type. */
12595
12596static void
fba45db2 12597dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12598 struct dwarf2_cu *cu)
c906108c
SS
12599{
12600 int nfields = fip->nfields;
12601
12602 /* Record the field count, allocate space for the array of fields,
12603 and create blank accessibility bitfields if necessary. */
12604 TYPE_NFIELDS (type) = nfields;
12605 TYPE_FIELDS (type) = (struct field *)
12606 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12607 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12608
b4ba55a1 12609 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12610 {
12611 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12612
12613 TYPE_FIELD_PRIVATE_BITS (type) =
12614 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12615 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12616
12617 TYPE_FIELD_PROTECTED_BITS (type) =
12618 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12619 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12620
774b6a14
TT
12621 TYPE_FIELD_IGNORE_BITS (type) =
12622 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12623 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12624 }
12625
12626 /* If the type has baseclasses, allocate and clear a bit vector for
12627 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12628 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12629 {
12630 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12631 unsigned char *pointer;
c906108c
SS
12632
12633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12634 pointer = TYPE_ALLOC (type, num_bytes);
12635 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12636 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12637 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12638 }
12639
3e43a32a
MS
12640 /* Copy the saved-up fields into the field vector. Start from the head of
12641 the list, adding to the tail of the field array, so that they end up in
12642 the same order in the array in which they were added to the list. */
c906108c
SS
12643 while (nfields-- > 0)
12644 {
7d0ccb61
DJ
12645 struct nextfield *fieldp;
12646
12647 if (fip->fields)
12648 {
12649 fieldp = fip->fields;
12650 fip->fields = fieldp->next;
12651 }
12652 else
12653 {
12654 fieldp = fip->baseclasses;
12655 fip->baseclasses = fieldp->next;
12656 }
12657
12658 TYPE_FIELD (type, nfields) = fieldp->field;
12659 switch (fieldp->accessibility)
c906108c 12660 {
c5aa993b 12661 case DW_ACCESS_private:
b4ba55a1
JB
12662 if (cu->language != language_ada)
12663 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12664 break;
c906108c 12665
c5aa993b 12666 case DW_ACCESS_protected:
b4ba55a1
JB
12667 if (cu->language != language_ada)
12668 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12669 break;
c906108c 12670
c5aa993b
JM
12671 case DW_ACCESS_public:
12672 break;
c906108c 12673
c5aa993b
JM
12674 default:
12675 /* Unknown accessibility. Complain and treat it as public. */
12676 {
e2e0b3e5 12677 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12678 fieldp->accessibility);
c5aa993b
JM
12679 }
12680 break;
c906108c
SS
12681 }
12682 if (nfields < fip->nbaseclasses)
12683 {
7d0ccb61 12684 switch (fieldp->virtuality)
c906108c 12685 {
c5aa993b
JM
12686 case DW_VIRTUALITY_virtual:
12687 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12688 if (cu->language == language_ada)
a73c6dcd 12689 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12690 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12691 break;
c906108c
SS
12692 }
12693 }
c906108c
SS
12694 }
12695}
12696
7d27a96d
TT
12697/* Return true if this member function is a constructor, false
12698 otherwise. */
12699
12700static int
12701dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12702{
12703 const char *fieldname;
12704 const char *typename;
12705 int len;
12706
12707 if (die->parent == NULL)
12708 return 0;
12709
12710 if (die->parent->tag != DW_TAG_structure_type
12711 && die->parent->tag != DW_TAG_union_type
12712 && die->parent->tag != DW_TAG_class_type)
12713 return 0;
12714
12715 fieldname = dwarf2_name (die, cu);
12716 typename = dwarf2_name (die->parent, cu);
12717 if (fieldname == NULL || typename == NULL)
12718 return 0;
12719
12720 len = strlen (fieldname);
12721 return (strncmp (fieldname, typename, len) == 0
12722 && (typename[len] == '\0' || typename[len] == '<'));
12723}
12724
c906108c
SS
12725/* Add a member function to the proper fieldlist. */
12726
12727static void
107d2387 12728dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12729 struct type *type, struct dwarf2_cu *cu)
c906108c 12730{
e7c27a73 12731 struct objfile *objfile = cu->objfile;
c906108c
SS
12732 struct attribute *attr;
12733 struct fnfieldlist *flp;
12734 int i;
12735 struct fn_field *fnp;
15d034d0 12736 const char *fieldname;
c906108c 12737 struct nextfnfield *new_fnfield;
f792889a 12738 struct type *this_type;
60d5a603 12739 enum dwarf_access_attribute accessibility;
c906108c 12740
b4ba55a1 12741 if (cu->language == language_ada)
a73c6dcd 12742 error (_("unexpected member function in Ada type"));
b4ba55a1 12743
2df3850c 12744 /* Get name of member function. */
39cbfefa
DJ
12745 fieldname = dwarf2_name (die, cu);
12746 if (fieldname == NULL)
2df3850c 12747 return;
c906108c 12748
c906108c
SS
12749 /* Look up member function name in fieldlist. */
12750 for (i = 0; i < fip->nfnfields; i++)
12751 {
27bfe10e 12752 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12753 break;
12754 }
12755
12756 /* Create new list element if necessary. */
12757 if (i < fip->nfnfields)
12758 flp = &fip->fnfieldlists[i];
12759 else
12760 {
12761 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12762 {
12763 fip->fnfieldlists = (struct fnfieldlist *)
12764 xrealloc (fip->fnfieldlists,
12765 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12766 * sizeof (struct fnfieldlist));
c906108c 12767 if (fip->nfnfields == 0)
c13c43fd 12768 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12769 }
12770 flp = &fip->fnfieldlists[fip->nfnfields];
12771 flp->name = fieldname;
12772 flp->length = 0;
12773 flp->head = NULL;
3da10d80 12774 i = fip->nfnfields++;
c906108c
SS
12775 }
12776
12777 /* Create a new member function field and chain it to the field list
0963b4bd 12778 entry. */
c906108c 12779 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12780 make_cleanup (xfree, new_fnfield);
c906108c
SS
12781 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12782 new_fnfield->next = flp->head;
12783 flp->head = new_fnfield;
12784 flp->length++;
12785
12786 /* Fill in the member function field info. */
12787 fnp = &new_fnfield->fnfield;
3da10d80
KS
12788
12789 /* Delay processing of the physname until later. */
12790 if (cu->language == language_cplus || cu->language == language_java)
12791 {
12792 add_to_method_list (type, i, flp->length - 1, fieldname,
12793 die, cu);
12794 }
12795 else
12796 {
1d06ead6 12797 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12798 fnp->physname = physname ? physname : "";
12799 }
12800
c906108c 12801 fnp->type = alloc_type (objfile);
f792889a
DJ
12802 this_type = read_type_die (die, cu);
12803 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12804 {
f792889a 12805 int nparams = TYPE_NFIELDS (this_type);
c906108c 12806
f792889a 12807 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12808 of the method itself (TYPE_CODE_METHOD). */
12809 smash_to_method_type (fnp->type, type,
f792889a
DJ
12810 TYPE_TARGET_TYPE (this_type),
12811 TYPE_FIELDS (this_type),
12812 TYPE_NFIELDS (this_type),
12813 TYPE_VARARGS (this_type));
c906108c
SS
12814
12815 /* Handle static member functions.
c5aa993b 12816 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12817 member functions. G++ helps GDB by marking the first
12818 parameter for non-static member functions (which is the this
12819 pointer) as artificial. We obtain this information from
12820 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12821 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12822 fnp->voffset = VOFFSET_STATIC;
12823 }
12824 else
e2e0b3e5 12825 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12826 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12827
12828 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12829 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12830 fnp->fcontext = die_containing_type (die, cu);
c906108c 12831
3e43a32a
MS
12832 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12833 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12834
12835 /* Get accessibility. */
e142c38c 12836 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12837 if (attr)
60d5a603
JK
12838 accessibility = DW_UNSND (attr);
12839 else
12840 accessibility = dwarf2_default_access_attribute (die, cu);
12841 switch (accessibility)
c906108c 12842 {
60d5a603
JK
12843 case DW_ACCESS_private:
12844 fnp->is_private = 1;
12845 break;
12846 case DW_ACCESS_protected:
12847 fnp->is_protected = 1;
12848 break;
c906108c
SS
12849 }
12850
b02dede2 12851 /* Check for artificial methods. */
e142c38c 12852 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12853 if (attr && DW_UNSND (attr) != 0)
12854 fnp->is_artificial = 1;
12855
7d27a96d
TT
12856 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12857
0d564a31 12858 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12859 function. For older versions of GCC, this is an offset in the
12860 appropriate virtual table, as specified by DW_AT_containing_type.
12861 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12862 to the object address. */
12863
e142c38c 12864 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12865 if (attr)
8e19ed76 12866 {
aec5aa8b 12867 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12868 {
aec5aa8b
TT
12869 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12870 {
12871 /* Old-style GCC. */
12872 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12873 }
12874 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12875 || (DW_BLOCK (attr)->size > 1
12876 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12877 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12878 {
12879 struct dwarf_block blk;
12880 int offset;
12881
12882 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12883 ? 1 : 2);
12884 blk.size = DW_BLOCK (attr)->size - offset;
12885 blk.data = DW_BLOCK (attr)->data + offset;
12886 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12887 if ((fnp->voffset % cu->header.addr_size) != 0)
12888 dwarf2_complex_location_expr_complaint ();
12889 else
12890 fnp->voffset /= cu->header.addr_size;
12891 fnp->voffset += 2;
12892 }
12893 else
12894 dwarf2_complex_location_expr_complaint ();
12895
12896 if (!fnp->fcontext)
12897 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12898 }
3690dd37 12899 else if (attr_form_is_section_offset (attr))
8e19ed76 12900 {
4d3c2250 12901 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12902 }
12903 else
12904 {
4d3c2250
KB
12905 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12906 fieldname);
8e19ed76 12907 }
0d564a31 12908 }
d48cc9dd
DJ
12909 else
12910 {
12911 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12912 if (attr && DW_UNSND (attr))
12913 {
12914 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12915 complaint (&symfile_complaints,
3e43a32a
MS
12916 _("Member function \"%s\" (offset %d) is virtual "
12917 "but the vtable offset is not specified"),
b64f50a1 12918 fieldname, die->offset.sect_off);
9655fd1a 12919 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12920 TYPE_CPLUS_DYNAMIC (type) = 1;
12921 }
12922 }
c906108c
SS
12923}
12924
12925/* Create the vector of member function fields, and attach it to the type. */
12926
12927static void
fba45db2 12928dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12929 struct dwarf2_cu *cu)
c906108c
SS
12930{
12931 struct fnfieldlist *flp;
c906108c
SS
12932 int i;
12933
b4ba55a1 12934 if (cu->language == language_ada)
a73c6dcd 12935 error (_("unexpected member functions in Ada type"));
b4ba55a1 12936
c906108c
SS
12937 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12938 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12939 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12940
12941 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12942 {
12943 struct nextfnfield *nfp = flp->head;
12944 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12945 int k;
12946
12947 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12948 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12949 fn_flp->fn_fields = (struct fn_field *)
12950 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12951 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12952 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12953 }
12954
12955 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12956}
12957
1168df01
JB
12958/* Returns non-zero if NAME is the name of a vtable member in CU's
12959 language, zero otherwise. */
12960static int
12961is_vtable_name (const char *name, struct dwarf2_cu *cu)
12962{
12963 static const char vptr[] = "_vptr";
987504bb 12964 static const char vtable[] = "vtable";
1168df01 12965
987504bb
JJ
12966 /* Look for the C++ and Java forms of the vtable. */
12967 if ((cu->language == language_java
12968 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12969 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12970 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12971 return 1;
12972
12973 return 0;
12974}
12975
c0dd20ea 12976/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12977 functions, with the ABI-specified layout. If TYPE describes
12978 such a structure, smash it into a member function type.
61049d3b
DJ
12979
12980 GCC shouldn't do this; it should just output pointer to member DIEs.
12981 This is GCC PR debug/28767. */
c0dd20ea 12982
0b92b5bb
TT
12983static void
12984quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12985{
0b92b5bb 12986 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12987
12988 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12989 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12990 return;
c0dd20ea
DJ
12991
12992 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12993 if (TYPE_FIELD_NAME (type, 0) == NULL
12994 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12995 || TYPE_FIELD_NAME (type, 1) == NULL
12996 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12997 return;
c0dd20ea
DJ
12998
12999 /* Find the type of the method. */
0b92b5bb 13000 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13001 if (pfn_type == NULL
13002 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13003 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13004 return;
c0dd20ea
DJ
13005
13006 /* Look for the "this" argument. */
13007 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13008 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13009 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13010 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13011 return;
c0dd20ea
DJ
13012
13013 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
13014 new_type = alloc_type (objfile);
13015 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13016 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13017 TYPE_VARARGS (pfn_type));
0b92b5bb 13018 smash_to_methodptr_type (type, new_type);
c0dd20ea 13019}
1168df01 13020
685b1105
JK
13021/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13022 (icc). */
13023
13024static int
13025producer_is_icc (struct dwarf2_cu *cu)
13026{
13027 if (!cu->checked_producer)
13028 check_producer (cu);
13029
13030 return cu->producer_is_icc;
13031}
13032
c906108c 13033/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13034 (definition) to create a type for the structure or union. Fill in
13035 the type's name and general properties; the members will not be
83655187
DE
13036 processed until process_structure_scope. A symbol table entry for
13037 the type will also not be done until process_structure_scope (assuming
13038 the type has a name).
c906108c 13039
c767944b
DJ
13040 NOTE: we need to call these functions regardless of whether or not the
13041 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13042 structure or union. This gets the type entered into our set of
83655187 13043 user defined types. */
c906108c 13044
f792889a 13045static struct type *
134d01f1 13046read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13047{
e7c27a73 13048 struct objfile *objfile = cu->objfile;
c906108c
SS
13049 struct type *type;
13050 struct attribute *attr;
15d034d0 13051 const char *name;
c906108c 13052
348e048f
DE
13053 /* If the definition of this type lives in .debug_types, read that type.
13054 Don't follow DW_AT_specification though, that will take us back up
13055 the chain and we want to go down. */
45e58e77 13056 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13057 if (attr)
13058 {
ac9ec31b 13059 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13060
ac9ec31b 13061 /* The type's CU may not be the same as CU.
02142a6c 13062 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13063 return set_die_type (die, type, cu);
13064 }
13065
c0dd20ea 13066 type = alloc_type (objfile);
c906108c 13067 INIT_CPLUS_SPECIFIC (type);
93311388 13068
39cbfefa
DJ
13069 name = dwarf2_name (die, cu);
13070 if (name != NULL)
c906108c 13071 {
987504bb
JJ
13072 if (cu->language == language_cplus
13073 || cu->language == language_java)
63d06c5c 13074 {
15d034d0 13075 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13076
13077 /* dwarf2_full_name might have already finished building the DIE's
13078 type. If so, there is no need to continue. */
13079 if (get_die_type (die, cu) != NULL)
13080 return get_die_type (die, cu);
13081
13082 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13083 if (die->tag == DW_TAG_structure_type
13084 || die->tag == DW_TAG_class_type)
13085 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13086 }
13087 else
13088 {
d8151005
DJ
13089 /* The name is already allocated along with this objfile, so
13090 we don't need to duplicate it for the type. */
7d455152 13091 TYPE_TAG_NAME (type) = name;
94af9270
KS
13092 if (die->tag == DW_TAG_class_type)
13093 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13094 }
c906108c
SS
13095 }
13096
13097 if (die->tag == DW_TAG_structure_type)
13098 {
13099 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13100 }
13101 else if (die->tag == DW_TAG_union_type)
13102 {
13103 TYPE_CODE (type) = TYPE_CODE_UNION;
13104 }
13105 else
13106 {
4753d33b 13107 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13108 }
13109
0cc2414c
TT
13110 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13111 TYPE_DECLARED_CLASS (type) = 1;
13112
e142c38c 13113 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13114 if (attr)
13115 {
13116 TYPE_LENGTH (type) = DW_UNSND (attr);
13117 }
13118 else
13119 {
13120 TYPE_LENGTH (type) = 0;
13121 }
13122
422b1cb0 13123 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13124 {
13125 /* ICC does not output the required DW_AT_declaration
13126 on incomplete types, but gives them a size of zero. */
422b1cb0 13127 TYPE_STUB (type) = 1;
685b1105
JK
13128 }
13129 else
13130 TYPE_STUB_SUPPORTED (type) = 1;
13131
dc718098 13132 if (die_is_declaration (die, cu))
876cecd0 13133 TYPE_STUB (type) = 1;
a6c727b2
DJ
13134 else if (attr == NULL && die->child == NULL
13135 && producer_is_realview (cu->producer))
13136 /* RealView does not output the required DW_AT_declaration
13137 on incomplete types. */
13138 TYPE_STUB (type) = 1;
dc718098 13139
c906108c
SS
13140 /* We need to add the type field to the die immediately so we don't
13141 infinitely recurse when dealing with pointers to the structure
0963b4bd 13142 type within the structure itself. */
1c379e20 13143 set_die_type (die, type, cu);
c906108c 13144
7e314c57
JK
13145 /* set_die_type should be already done. */
13146 set_descriptive_type (type, die, cu);
13147
c767944b
DJ
13148 return type;
13149}
13150
13151/* Finish creating a structure or union type, including filling in
13152 its members and creating a symbol for it. */
13153
13154static void
13155process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13156{
13157 struct objfile *objfile = cu->objfile;
ca040673 13158 struct die_info *child_die;
c767944b
DJ
13159 struct type *type;
13160
13161 type = get_die_type (die, cu);
13162 if (type == NULL)
13163 type = read_structure_type (die, cu);
13164
e142c38c 13165 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13166 {
13167 struct field_info fi;
34eaf542 13168 VEC (symbolp) *template_args = NULL;
c767944b 13169 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13170
13171 memset (&fi, 0, sizeof (struct field_info));
13172
639d11d3 13173 child_die = die->child;
c906108c
SS
13174
13175 while (child_die && child_die->tag)
13176 {
a9a9bd0f
DC
13177 if (child_die->tag == DW_TAG_member
13178 || child_die->tag == DW_TAG_variable)
c906108c 13179 {
a9a9bd0f
DC
13180 /* NOTE: carlton/2002-11-05: A C++ static data member
13181 should be a DW_TAG_member that is a declaration, but
13182 all versions of G++ as of this writing (so through at
13183 least 3.2.1) incorrectly generate DW_TAG_variable
13184 tags for them instead. */
e7c27a73 13185 dwarf2_add_field (&fi, child_die, cu);
c906108c 13186 }
8713b1b1 13187 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13188 {
0963b4bd 13189 /* C++ member function. */
e7c27a73 13190 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13191 }
13192 else if (child_die->tag == DW_TAG_inheritance)
13193 {
13194 /* C++ base class field. */
e7c27a73 13195 dwarf2_add_field (&fi, child_die, cu);
c906108c 13196 }
98751a41
JK
13197 else if (child_die->tag == DW_TAG_typedef)
13198 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13199 else if (child_die->tag == DW_TAG_template_type_param
13200 || child_die->tag == DW_TAG_template_value_param)
13201 {
13202 struct symbol *arg = new_symbol (child_die, NULL, cu);
13203
f1078f66
DJ
13204 if (arg != NULL)
13205 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13206 }
13207
c906108c
SS
13208 child_die = sibling_die (child_die);
13209 }
13210
34eaf542
TT
13211 /* Attach template arguments to type. */
13212 if (! VEC_empty (symbolp, template_args))
13213 {
13214 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13215 TYPE_N_TEMPLATE_ARGUMENTS (type)
13216 = VEC_length (symbolp, template_args);
13217 TYPE_TEMPLATE_ARGUMENTS (type)
13218 = obstack_alloc (&objfile->objfile_obstack,
13219 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13220 * sizeof (struct symbol *)));
13221 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13222 VEC_address (symbolp, template_args),
13223 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13224 * sizeof (struct symbol *)));
13225 VEC_free (symbolp, template_args);
13226 }
13227
c906108c
SS
13228 /* Attach fields and member functions to the type. */
13229 if (fi.nfields)
e7c27a73 13230 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13231 if (fi.nfnfields)
13232 {
e7c27a73 13233 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13234
c5aa993b 13235 /* Get the type which refers to the base class (possibly this
c906108c 13236 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13237 class from the DW_AT_containing_type attribute. This use of
13238 DW_AT_containing_type is a GNU extension. */
c906108c 13239
e142c38c 13240 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13241 {
e7c27a73 13242 struct type *t = die_containing_type (die, cu);
c906108c
SS
13243
13244 TYPE_VPTR_BASETYPE (type) = t;
13245 if (type == t)
13246 {
c906108c
SS
13247 int i;
13248
13249 /* Our own class provides vtbl ptr. */
13250 for (i = TYPE_NFIELDS (t) - 1;
13251 i >= TYPE_N_BASECLASSES (t);
13252 --i)
13253 {
0d5cff50 13254 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13255
1168df01 13256 if (is_vtable_name (fieldname, cu))
c906108c
SS
13257 {
13258 TYPE_VPTR_FIELDNO (type) = i;
13259 break;
13260 }
13261 }
13262
13263 /* Complain if virtual function table field not found. */
13264 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13265 complaint (&symfile_complaints,
3e43a32a
MS
13266 _("virtual function table pointer "
13267 "not found when defining class '%s'"),
4d3c2250
KB
13268 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13269 "");
c906108c
SS
13270 }
13271 else
13272 {
13273 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13274 }
13275 }
f6235d4c
EZ
13276 else if (cu->producer
13277 && strncmp (cu->producer,
13278 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13279 {
13280 /* The IBM XLC compiler does not provide direct indication
13281 of the containing type, but the vtable pointer is
13282 always named __vfp. */
13283
13284 int i;
13285
13286 for (i = TYPE_NFIELDS (type) - 1;
13287 i >= TYPE_N_BASECLASSES (type);
13288 --i)
13289 {
13290 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13291 {
13292 TYPE_VPTR_FIELDNO (type) = i;
13293 TYPE_VPTR_BASETYPE (type) = type;
13294 break;
13295 }
13296 }
13297 }
c906108c 13298 }
98751a41
JK
13299
13300 /* Copy fi.typedef_field_list linked list elements content into the
13301 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13302 if (fi.typedef_field_list)
13303 {
13304 int i = fi.typedef_field_list_count;
13305
a0d7a4ff 13306 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13307 TYPE_TYPEDEF_FIELD_ARRAY (type)
13308 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13309 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13310
13311 /* Reverse the list order to keep the debug info elements order. */
13312 while (--i >= 0)
13313 {
13314 struct typedef_field *dest, *src;
6e70227d 13315
98751a41
JK
13316 dest = &TYPE_TYPEDEF_FIELD (type, i);
13317 src = &fi.typedef_field_list->field;
13318 fi.typedef_field_list = fi.typedef_field_list->next;
13319 *dest = *src;
13320 }
13321 }
c767944b
DJ
13322
13323 do_cleanups (back_to);
eb2a6f42
TT
13324
13325 if (HAVE_CPLUS_STRUCT (type))
13326 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13327 }
63d06c5c 13328
bb5ed363 13329 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13330
90aeadfc
DC
13331 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13332 snapshots) has been known to create a die giving a declaration
13333 for a class that has, as a child, a die giving a definition for a
13334 nested class. So we have to process our children even if the
13335 current die is a declaration. Normally, of course, a declaration
13336 won't have any children at all. */
134d01f1 13337
ca040673
DE
13338 child_die = die->child;
13339
90aeadfc
DC
13340 while (child_die != NULL && child_die->tag)
13341 {
13342 if (child_die->tag == DW_TAG_member
13343 || child_die->tag == DW_TAG_variable
34eaf542
TT
13344 || child_die->tag == DW_TAG_inheritance
13345 || child_die->tag == DW_TAG_template_value_param
13346 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13347 {
90aeadfc 13348 /* Do nothing. */
134d01f1 13349 }
90aeadfc
DC
13350 else
13351 process_die (child_die, cu);
134d01f1 13352
90aeadfc 13353 child_die = sibling_die (child_die);
134d01f1
DJ
13354 }
13355
fa4028e9
JB
13356 /* Do not consider external references. According to the DWARF standard,
13357 these DIEs are identified by the fact that they have no byte_size
13358 attribute, and a declaration attribute. */
13359 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13360 || !die_is_declaration (die, cu))
c767944b 13361 new_symbol (die, type, cu);
134d01f1
DJ
13362}
13363
55426c9d
JB
13364/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13365 update TYPE using some information only available in DIE's children. */
13366
13367static void
13368update_enumeration_type_from_children (struct die_info *die,
13369 struct type *type,
13370 struct dwarf2_cu *cu)
13371{
13372 struct obstack obstack;
60f7655a 13373 struct die_info *child_die;
55426c9d
JB
13374 int unsigned_enum = 1;
13375 int flag_enum = 1;
13376 ULONGEST mask = 0;
13377 struct cleanup *old_chain;
13378
13379 obstack_init (&obstack);
13380 old_chain = make_cleanup_obstack_free (&obstack);
13381
60f7655a
DE
13382 for (child_die = die->child;
13383 child_die != NULL && child_die->tag;
13384 child_die = sibling_die (child_die))
55426c9d
JB
13385 {
13386 struct attribute *attr;
13387 LONGEST value;
13388 const gdb_byte *bytes;
13389 struct dwarf2_locexpr_baton *baton;
13390 const char *name;
60f7655a 13391
55426c9d
JB
13392 if (child_die->tag != DW_TAG_enumerator)
13393 continue;
13394
13395 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13396 if (attr == NULL)
13397 continue;
13398
13399 name = dwarf2_name (child_die, cu);
13400 if (name == NULL)
13401 name = "<anonymous enumerator>";
13402
13403 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13404 &value, &bytes, &baton);
13405 if (value < 0)
13406 {
13407 unsigned_enum = 0;
13408 flag_enum = 0;
13409 }
13410 else if ((mask & value) != 0)
13411 flag_enum = 0;
13412 else
13413 mask |= value;
13414
13415 /* If we already know that the enum type is neither unsigned, nor
13416 a flag type, no need to look at the rest of the enumerates. */
13417 if (!unsigned_enum && !flag_enum)
13418 break;
55426c9d
JB
13419 }
13420
13421 if (unsigned_enum)
13422 TYPE_UNSIGNED (type) = 1;
13423 if (flag_enum)
13424 TYPE_FLAG_ENUM (type) = 1;
13425
13426 do_cleanups (old_chain);
13427}
13428
134d01f1
DJ
13429/* Given a DW_AT_enumeration_type die, set its type. We do not
13430 complete the type's fields yet, or create any symbols. */
c906108c 13431
f792889a 13432static struct type *
134d01f1 13433read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13434{
e7c27a73 13435 struct objfile *objfile = cu->objfile;
c906108c 13436 struct type *type;
c906108c 13437 struct attribute *attr;
0114d602 13438 const char *name;
134d01f1 13439
348e048f
DE
13440 /* If the definition of this type lives in .debug_types, read that type.
13441 Don't follow DW_AT_specification though, that will take us back up
13442 the chain and we want to go down. */
45e58e77 13443 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13444 if (attr)
13445 {
ac9ec31b 13446 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13447
ac9ec31b 13448 /* The type's CU may not be the same as CU.
02142a6c 13449 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13450 return set_die_type (die, type, cu);
13451 }
13452
c906108c
SS
13453 type = alloc_type (objfile);
13454
13455 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13456 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13457 if (name != NULL)
7d455152 13458 TYPE_TAG_NAME (type) = name;
c906108c 13459
0626fc76
TT
13460 attr = dwarf2_attr (die, DW_AT_type, cu);
13461 if (attr != NULL)
13462 {
13463 struct type *underlying_type = die_type (die, cu);
13464
13465 TYPE_TARGET_TYPE (type) = underlying_type;
13466 }
13467
e142c38c 13468 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13469 if (attr)
13470 {
13471 TYPE_LENGTH (type) = DW_UNSND (attr);
13472 }
13473 else
13474 {
13475 TYPE_LENGTH (type) = 0;
13476 }
13477
137033e9
JB
13478 /* The enumeration DIE can be incomplete. In Ada, any type can be
13479 declared as private in the package spec, and then defined only
13480 inside the package body. Such types are known as Taft Amendment
13481 Types. When another package uses such a type, an incomplete DIE
13482 may be generated by the compiler. */
02eb380e 13483 if (die_is_declaration (die, cu))
876cecd0 13484 TYPE_STUB (type) = 1;
02eb380e 13485
0626fc76
TT
13486 /* Finish the creation of this type by using the enum's children.
13487 We must call this even when the underlying type has been provided
13488 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13489 update_enumeration_type_from_children (die, type, cu);
13490
0626fc76
TT
13491 /* If this type has an underlying type that is not a stub, then we
13492 may use its attributes. We always use the "unsigned" attribute
13493 in this situation, because ordinarily we guess whether the type
13494 is unsigned -- but the guess can be wrong and the underlying type
13495 can tell us the reality. However, we defer to a local size
13496 attribute if one exists, because this lets the compiler override
13497 the underlying type if needed. */
13498 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13499 {
13500 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13501 if (TYPE_LENGTH (type) == 0)
13502 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13503 }
13504
3d567982
TT
13505 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13506
f792889a 13507 return set_die_type (die, type, cu);
134d01f1
DJ
13508}
13509
13510/* Given a pointer to a die which begins an enumeration, process all
13511 the dies that define the members of the enumeration, and create the
13512 symbol for the enumeration type.
13513
13514 NOTE: We reverse the order of the element list. */
13515
13516static void
13517process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13518{
f792889a 13519 struct type *this_type;
134d01f1 13520
f792889a
DJ
13521 this_type = get_die_type (die, cu);
13522 if (this_type == NULL)
13523 this_type = read_enumeration_type (die, cu);
9dc481d3 13524
639d11d3 13525 if (die->child != NULL)
c906108c 13526 {
9dc481d3
DE
13527 struct die_info *child_die;
13528 struct symbol *sym;
13529 struct field *fields = NULL;
13530 int num_fields = 0;
15d034d0 13531 const char *name;
9dc481d3 13532
639d11d3 13533 child_die = die->child;
c906108c
SS
13534 while (child_die && child_die->tag)
13535 {
13536 if (child_die->tag != DW_TAG_enumerator)
13537 {
e7c27a73 13538 process_die (child_die, cu);
c906108c
SS
13539 }
13540 else
13541 {
39cbfefa
DJ
13542 name = dwarf2_name (child_die, cu);
13543 if (name)
c906108c 13544 {
f792889a 13545 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13546
13547 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13548 {
13549 fields = (struct field *)
13550 xrealloc (fields,
13551 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13552 * sizeof (struct field));
c906108c
SS
13553 }
13554
3567439c 13555 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13556 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13557 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13558 FIELD_BITSIZE (fields[num_fields]) = 0;
13559
13560 num_fields++;
13561 }
13562 }
13563
13564 child_die = sibling_die (child_die);
13565 }
13566
13567 if (num_fields)
13568 {
f792889a
DJ
13569 TYPE_NFIELDS (this_type) = num_fields;
13570 TYPE_FIELDS (this_type) = (struct field *)
13571 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13572 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13573 sizeof (struct field) * num_fields);
b8c9b27d 13574 xfree (fields);
c906108c 13575 }
c906108c 13576 }
134d01f1 13577
6c83ed52
TT
13578 /* If we are reading an enum from a .debug_types unit, and the enum
13579 is a declaration, and the enum is not the signatured type in the
13580 unit, then we do not want to add a symbol for it. Adding a
13581 symbol would in some cases obscure the true definition of the
13582 enum, giving users an incomplete type when the definition is
13583 actually available. Note that we do not want to do this for all
13584 enums which are just declarations, because C++0x allows forward
13585 enum declarations. */
3019eac3 13586 if (cu->per_cu->is_debug_types
6c83ed52
TT
13587 && die_is_declaration (die, cu))
13588 {
52dc124a 13589 struct signatured_type *sig_type;
6c83ed52 13590
c0f78cd4 13591 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13592 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13593 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13594 return;
13595 }
13596
f792889a 13597 new_symbol (die, this_type, cu);
c906108c
SS
13598}
13599
13600/* Extract all information from a DW_TAG_array_type DIE and put it in
13601 the DIE's type field. For now, this only handles one dimensional
13602 arrays. */
13603
f792889a 13604static struct type *
e7c27a73 13605read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13606{
e7c27a73 13607 struct objfile *objfile = cu->objfile;
c906108c 13608 struct die_info *child_die;
7e314c57 13609 struct type *type;
c906108c
SS
13610 struct type *element_type, *range_type, *index_type;
13611 struct type **range_types = NULL;
13612 struct attribute *attr;
13613 int ndim = 0;
13614 struct cleanup *back_to;
15d034d0 13615 const char *name;
dc53a7ad 13616 unsigned int bit_stride = 0;
c906108c 13617
e7c27a73 13618 element_type = die_type (die, cu);
c906108c 13619
7e314c57
JK
13620 /* The die_type call above may have already set the type for this DIE. */
13621 type = get_die_type (die, cu);
13622 if (type)
13623 return type;
13624
dc53a7ad
JB
13625 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13626 if (attr != NULL)
13627 bit_stride = DW_UNSND (attr) * 8;
13628
13629 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13630 if (attr != NULL)
13631 bit_stride = DW_UNSND (attr);
13632
c906108c
SS
13633 /* Irix 6.2 native cc creates array types without children for
13634 arrays with unspecified length. */
639d11d3 13635 if (die->child == NULL)
c906108c 13636 {
46bf5051 13637 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13638 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13639 type = create_array_type_with_stride (NULL, element_type, range_type,
13640 bit_stride);
f792889a 13641 return set_die_type (die, type, cu);
c906108c
SS
13642 }
13643
13644 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13645 child_die = die->child;
c906108c
SS
13646 while (child_die && child_die->tag)
13647 {
13648 if (child_die->tag == DW_TAG_subrange_type)
13649 {
f792889a 13650 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13651
f792889a 13652 if (child_type != NULL)
a02abb62 13653 {
0963b4bd
MS
13654 /* The range type was succesfully read. Save it for the
13655 array type creation. */
a02abb62
JB
13656 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13657 {
13658 range_types = (struct type **)
13659 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13660 * sizeof (struct type *));
13661 if (ndim == 0)
13662 make_cleanup (free_current_contents, &range_types);
13663 }
f792889a 13664 range_types[ndim++] = child_type;
a02abb62 13665 }
c906108c
SS
13666 }
13667 child_die = sibling_die (child_die);
13668 }
13669
13670 /* Dwarf2 dimensions are output from left to right, create the
13671 necessary array types in backwards order. */
7ca2d3a3 13672
c906108c 13673 type = element_type;
7ca2d3a3
DL
13674
13675 if (read_array_order (die, cu) == DW_ORD_col_major)
13676 {
13677 int i = 0;
9a619af0 13678
7ca2d3a3 13679 while (i < ndim)
dc53a7ad
JB
13680 type = create_array_type_with_stride (NULL, type, range_types[i++],
13681 bit_stride);
7ca2d3a3
DL
13682 }
13683 else
13684 {
13685 while (ndim-- > 0)
dc53a7ad
JB
13686 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13687 bit_stride);
7ca2d3a3 13688 }
c906108c 13689
f5f8a009
EZ
13690 /* Understand Dwarf2 support for vector types (like they occur on
13691 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13692 array type. This is not part of the Dwarf2/3 standard yet, but a
13693 custom vendor extension. The main difference between a regular
13694 array and the vector variant is that vectors are passed by value
13695 to functions. */
e142c38c 13696 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13697 if (attr)
ea37ba09 13698 make_vector_type (type);
f5f8a009 13699
dbc98a8b
KW
13700 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13701 implementation may choose to implement triple vectors using this
13702 attribute. */
13703 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13704 if (attr)
13705 {
13706 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13707 TYPE_LENGTH (type) = DW_UNSND (attr);
13708 else
3e43a32a
MS
13709 complaint (&symfile_complaints,
13710 _("DW_AT_byte_size for array type smaller "
13711 "than the total size of elements"));
dbc98a8b
KW
13712 }
13713
39cbfefa
DJ
13714 name = dwarf2_name (die, cu);
13715 if (name)
13716 TYPE_NAME (type) = name;
6e70227d 13717
0963b4bd 13718 /* Install the type in the die. */
7e314c57
JK
13719 set_die_type (die, type, cu);
13720
13721 /* set_die_type should be already done. */
b4ba55a1
JB
13722 set_descriptive_type (type, die, cu);
13723
c906108c
SS
13724 do_cleanups (back_to);
13725
7e314c57 13726 return type;
c906108c
SS
13727}
13728
7ca2d3a3 13729static enum dwarf_array_dim_ordering
6e70227d 13730read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13731{
13732 struct attribute *attr;
13733
13734 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13735
13736 if (attr) return DW_SND (attr);
13737
0963b4bd
MS
13738 /* GNU F77 is a special case, as at 08/2004 array type info is the
13739 opposite order to the dwarf2 specification, but data is still
13740 laid out as per normal fortran.
7ca2d3a3 13741
0963b4bd
MS
13742 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13743 version checking. */
7ca2d3a3 13744
905e0470
PM
13745 if (cu->language == language_fortran
13746 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13747 {
13748 return DW_ORD_row_major;
13749 }
13750
6e70227d 13751 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13752 {
13753 case array_column_major:
13754 return DW_ORD_col_major;
13755 case array_row_major:
13756 default:
13757 return DW_ORD_row_major;
13758 };
13759}
13760
72019c9c 13761/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13762 the DIE's type field. */
72019c9c 13763
f792889a 13764static struct type *
72019c9c
GM
13765read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13766{
7e314c57
JK
13767 struct type *domain_type, *set_type;
13768 struct attribute *attr;
f792889a 13769
7e314c57
JK
13770 domain_type = die_type (die, cu);
13771
13772 /* The die_type call above may have already set the type for this DIE. */
13773 set_type = get_die_type (die, cu);
13774 if (set_type)
13775 return set_type;
13776
13777 set_type = create_set_type (NULL, domain_type);
13778
13779 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13780 if (attr)
13781 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13782
f792889a 13783 return set_die_type (die, set_type, cu);
72019c9c 13784}
7ca2d3a3 13785
0971de02
TT
13786/* A helper for read_common_block that creates a locexpr baton.
13787 SYM is the symbol which we are marking as computed.
13788 COMMON_DIE is the DIE for the common block.
13789 COMMON_LOC is the location expression attribute for the common
13790 block itself.
13791 MEMBER_LOC is the location expression attribute for the particular
13792 member of the common block that we are processing.
13793 CU is the CU from which the above come. */
13794
13795static void
13796mark_common_block_symbol_computed (struct symbol *sym,
13797 struct die_info *common_die,
13798 struct attribute *common_loc,
13799 struct attribute *member_loc,
13800 struct dwarf2_cu *cu)
13801{
13802 struct objfile *objfile = dwarf2_per_objfile->objfile;
13803 struct dwarf2_locexpr_baton *baton;
13804 gdb_byte *ptr;
13805 unsigned int cu_off;
13806 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13807 LONGEST offset = 0;
13808
13809 gdb_assert (common_loc && member_loc);
13810 gdb_assert (attr_form_is_block (common_loc));
13811 gdb_assert (attr_form_is_block (member_loc)
13812 || attr_form_is_constant (member_loc));
13813
13814 baton = obstack_alloc (&objfile->objfile_obstack,
13815 sizeof (struct dwarf2_locexpr_baton));
13816 baton->per_cu = cu->per_cu;
13817 gdb_assert (baton->per_cu);
13818
13819 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13820
13821 if (attr_form_is_constant (member_loc))
13822 {
13823 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13824 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13825 }
13826 else
13827 baton->size += DW_BLOCK (member_loc)->size;
13828
13829 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13830 baton->data = ptr;
13831
13832 *ptr++ = DW_OP_call4;
13833 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13834 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13835 ptr += 4;
13836
13837 if (attr_form_is_constant (member_loc))
13838 {
13839 *ptr++ = DW_OP_addr;
13840 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13841 ptr += cu->header.addr_size;
13842 }
13843 else
13844 {
13845 /* We have to copy the data here, because DW_OP_call4 will only
13846 use a DW_AT_location attribute. */
13847 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13848 ptr += DW_BLOCK (member_loc)->size;
13849 }
13850
13851 *ptr++ = DW_OP_plus;
13852 gdb_assert (ptr - baton->data == baton->size);
13853
0971de02 13854 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13855 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13856}
13857
4357ac6c
TT
13858/* Create appropriate locally-scoped variables for all the
13859 DW_TAG_common_block entries. Also create a struct common_block
13860 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13861 is used to sepate the common blocks name namespace from regular
13862 variable names. */
c906108c
SS
13863
13864static void
e7c27a73 13865read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13866{
0971de02
TT
13867 struct attribute *attr;
13868
13869 attr = dwarf2_attr (die, DW_AT_location, cu);
13870 if (attr)
13871 {
13872 /* Support the .debug_loc offsets. */
13873 if (attr_form_is_block (attr))
13874 {
13875 /* Ok. */
13876 }
13877 else if (attr_form_is_section_offset (attr))
13878 {
13879 dwarf2_complex_location_expr_complaint ();
13880 attr = NULL;
13881 }
13882 else
13883 {
13884 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13885 "common block member");
13886 attr = NULL;
13887 }
13888 }
13889
639d11d3 13890 if (die->child != NULL)
c906108c 13891 {
4357ac6c
TT
13892 struct objfile *objfile = cu->objfile;
13893 struct die_info *child_die;
13894 size_t n_entries = 0, size;
13895 struct common_block *common_block;
13896 struct symbol *sym;
74ac6d43 13897
4357ac6c
TT
13898 for (child_die = die->child;
13899 child_die && child_die->tag;
13900 child_die = sibling_die (child_die))
13901 ++n_entries;
13902
13903 size = (sizeof (struct common_block)
13904 + (n_entries - 1) * sizeof (struct symbol *));
13905 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13906 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13907 common_block->n_entries = 0;
13908
13909 for (child_die = die->child;
13910 child_die && child_die->tag;
13911 child_die = sibling_die (child_die))
13912 {
13913 /* Create the symbol in the DW_TAG_common_block block in the current
13914 symbol scope. */
e7c27a73 13915 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13916 if (sym != NULL)
13917 {
13918 struct attribute *member_loc;
13919
13920 common_block->contents[common_block->n_entries++] = sym;
13921
13922 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13923 cu);
13924 if (member_loc)
13925 {
13926 /* GDB has handled this for a long time, but it is
13927 not specified by DWARF. It seems to have been
13928 emitted by gfortran at least as recently as:
13929 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13930 complaint (&symfile_complaints,
13931 _("Variable in common block has "
13932 "DW_AT_data_member_location "
13933 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13934 child_die->offset.sect_off,
13935 objfile_name (cu->objfile));
0971de02
TT
13936
13937 if (attr_form_is_section_offset (member_loc))
13938 dwarf2_complex_location_expr_complaint ();
13939 else if (attr_form_is_constant (member_loc)
13940 || attr_form_is_block (member_loc))
13941 {
13942 if (attr)
13943 mark_common_block_symbol_computed (sym, die, attr,
13944 member_loc, cu);
13945 }
13946 else
13947 dwarf2_complex_location_expr_complaint ();
13948 }
13949 }
c906108c 13950 }
4357ac6c
TT
13951
13952 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13953 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13954 }
13955}
13956
0114d602 13957/* Create a type for a C++ namespace. */
d9fa45fe 13958
0114d602
DJ
13959static struct type *
13960read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13961{
e7c27a73 13962 struct objfile *objfile = cu->objfile;
0114d602 13963 const char *previous_prefix, *name;
9219021c 13964 int is_anonymous;
0114d602
DJ
13965 struct type *type;
13966
13967 /* For extensions, reuse the type of the original namespace. */
13968 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13969 {
13970 struct die_info *ext_die;
13971 struct dwarf2_cu *ext_cu = cu;
9a619af0 13972
0114d602
DJ
13973 ext_die = dwarf2_extension (die, &ext_cu);
13974 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13975
13976 /* EXT_CU may not be the same as CU.
02142a6c 13977 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13978 return set_die_type (die, type, cu);
13979 }
9219021c 13980
e142c38c 13981 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13982
13983 /* Now build the name of the current namespace. */
13984
0114d602
DJ
13985 previous_prefix = determine_prefix (die, cu);
13986 if (previous_prefix[0] != '\0')
13987 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13988 previous_prefix, name, 0, cu);
0114d602
DJ
13989
13990 /* Create the type. */
13991 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13992 objfile);
abee88f2 13993 TYPE_NAME (type) = name;
0114d602
DJ
13994 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13995
60531b24 13996 return set_die_type (die, type, cu);
0114d602
DJ
13997}
13998
13999/* Read a C++ namespace. */
14000
14001static void
14002read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14003{
14004 struct objfile *objfile = cu->objfile;
0114d602 14005 int is_anonymous;
9219021c 14006
5c4e30ca
DC
14007 /* Add a symbol associated to this if we haven't seen the namespace
14008 before. Also, add a using directive if it's an anonymous
14009 namespace. */
9219021c 14010
f2f0e013 14011 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14012 {
14013 struct type *type;
14014
0114d602 14015 type = read_type_die (die, cu);
e7c27a73 14016 new_symbol (die, type, cu);
5c4e30ca 14017
e8e80198 14018 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14019 if (is_anonymous)
0114d602
DJ
14020 {
14021 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14022
c0cc3a76 14023 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 14024 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14025 }
5c4e30ca 14026 }
9219021c 14027
639d11d3 14028 if (die->child != NULL)
d9fa45fe 14029 {
639d11d3 14030 struct die_info *child_die = die->child;
6e70227d 14031
d9fa45fe
DC
14032 while (child_die && child_die->tag)
14033 {
e7c27a73 14034 process_die (child_die, cu);
d9fa45fe
DC
14035 child_die = sibling_die (child_die);
14036 }
14037 }
38d518c9
EZ
14038}
14039
f55ee35c
JK
14040/* Read a Fortran module as type. This DIE can be only a declaration used for
14041 imported module. Still we need that type as local Fortran "use ... only"
14042 declaration imports depend on the created type in determine_prefix. */
14043
14044static struct type *
14045read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14046{
14047 struct objfile *objfile = cu->objfile;
15d034d0 14048 const char *module_name;
f55ee35c
JK
14049 struct type *type;
14050
14051 module_name = dwarf2_name (die, cu);
14052 if (!module_name)
3e43a32a
MS
14053 complaint (&symfile_complaints,
14054 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14055 die->offset.sect_off);
f55ee35c
JK
14056 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14057
14058 /* determine_prefix uses TYPE_TAG_NAME. */
14059 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14060
14061 return set_die_type (die, type, cu);
14062}
14063
5d7cb8df
JK
14064/* Read a Fortran module. */
14065
14066static void
14067read_module (struct die_info *die, struct dwarf2_cu *cu)
14068{
14069 struct die_info *child_die = die->child;
530e8392
KB
14070 struct type *type;
14071
14072 type = read_type_die (die, cu);
14073 new_symbol (die, type, cu);
5d7cb8df 14074
5d7cb8df
JK
14075 while (child_die && child_die->tag)
14076 {
14077 process_die (child_die, cu);
14078 child_die = sibling_die (child_die);
14079 }
14080}
14081
38d518c9
EZ
14082/* Return the name of the namespace represented by DIE. Set
14083 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14084 namespace. */
14085
14086static const char *
e142c38c 14087namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14088{
14089 struct die_info *current_die;
14090 const char *name = NULL;
14091
14092 /* Loop through the extensions until we find a name. */
14093
14094 for (current_die = die;
14095 current_die != NULL;
f2f0e013 14096 current_die = dwarf2_extension (die, &cu))
38d518c9 14097 {
e142c38c 14098 name = dwarf2_name (current_die, cu);
38d518c9
EZ
14099 if (name != NULL)
14100 break;
14101 }
14102
14103 /* Is it an anonymous namespace? */
14104
14105 *is_anonymous = (name == NULL);
14106 if (*is_anonymous)
2b1dbab0 14107 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14108
14109 return name;
d9fa45fe
DC
14110}
14111
c906108c
SS
14112/* Extract all information from a DW_TAG_pointer_type DIE and add to
14113 the user defined type vector. */
14114
f792889a 14115static struct type *
e7c27a73 14116read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14117{
5e2b427d 14118 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14119 struct comp_unit_head *cu_header = &cu->header;
c906108c 14120 struct type *type;
8b2dbe47
KB
14121 struct attribute *attr_byte_size;
14122 struct attribute *attr_address_class;
14123 int byte_size, addr_class;
7e314c57
JK
14124 struct type *target_type;
14125
14126 target_type = die_type (die, cu);
c906108c 14127
7e314c57
JK
14128 /* The die_type call above may have already set the type for this DIE. */
14129 type = get_die_type (die, cu);
14130 if (type)
14131 return type;
14132
14133 type = lookup_pointer_type (target_type);
8b2dbe47 14134
e142c38c 14135 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14136 if (attr_byte_size)
14137 byte_size = DW_UNSND (attr_byte_size);
c906108c 14138 else
8b2dbe47
KB
14139 byte_size = cu_header->addr_size;
14140
e142c38c 14141 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14142 if (attr_address_class)
14143 addr_class = DW_UNSND (attr_address_class);
14144 else
14145 addr_class = DW_ADDR_none;
14146
14147 /* If the pointer size or address class is different than the
14148 default, create a type variant marked as such and set the
14149 length accordingly. */
14150 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14151 {
5e2b427d 14152 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14153 {
14154 int type_flags;
14155
849957d9 14156 type_flags = gdbarch_address_class_type_flags
5e2b427d 14157 (gdbarch, byte_size, addr_class);
876cecd0
TT
14158 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14159 == 0);
8b2dbe47
KB
14160 type = make_type_with_address_space (type, type_flags);
14161 }
14162 else if (TYPE_LENGTH (type) != byte_size)
14163 {
3e43a32a
MS
14164 complaint (&symfile_complaints,
14165 _("invalid pointer size %d"), byte_size);
8b2dbe47 14166 }
6e70227d 14167 else
9a619af0
MS
14168 {
14169 /* Should we also complain about unhandled address classes? */
14170 }
c906108c 14171 }
8b2dbe47
KB
14172
14173 TYPE_LENGTH (type) = byte_size;
f792889a 14174 return set_die_type (die, type, cu);
c906108c
SS
14175}
14176
14177/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14178 the user defined type vector. */
14179
f792889a 14180static struct type *
e7c27a73 14181read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14182{
14183 struct type *type;
14184 struct type *to_type;
14185 struct type *domain;
14186
e7c27a73
DJ
14187 to_type = die_type (die, cu);
14188 domain = die_containing_type (die, cu);
0d5de010 14189
7e314c57
JK
14190 /* The calls above may have already set the type for this DIE. */
14191 type = get_die_type (die, cu);
14192 if (type)
14193 return type;
14194
0d5de010
DJ
14195 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14196 type = lookup_methodptr_type (to_type);
7078baeb
TT
14197 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14198 {
14199 struct type *new_type = alloc_type (cu->objfile);
14200
14201 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14202 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14203 TYPE_VARARGS (to_type));
14204 type = lookup_methodptr_type (new_type);
14205 }
0d5de010
DJ
14206 else
14207 type = lookup_memberptr_type (to_type, domain);
c906108c 14208
f792889a 14209 return set_die_type (die, type, cu);
c906108c
SS
14210}
14211
14212/* Extract all information from a DW_TAG_reference_type DIE and add to
14213 the user defined type vector. */
14214
f792889a 14215static struct type *
e7c27a73 14216read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14217{
e7c27a73 14218 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14219 struct type *type, *target_type;
c906108c
SS
14220 struct attribute *attr;
14221
7e314c57
JK
14222 target_type = die_type (die, cu);
14223
14224 /* The die_type call above may have already set the type for this DIE. */
14225 type = get_die_type (die, cu);
14226 if (type)
14227 return type;
14228
14229 type = lookup_reference_type (target_type);
e142c38c 14230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14231 if (attr)
14232 {
14233 TYPE_LENGTH (type) = DW_UNSND (attr);
14234 }
14235 else
14236 {
107d2387 14237 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14238 }
f792889a 14239 return set_die_type (die, type, cu);
c906108c
SS
14240}
14241
cf363f18
MW
14242/* Add the given cv-qualifiers to the element type of the array. GCC
14243 outputs DWARF type qualifiers that apply to an array, not the
14244 element type. But GDB relies on the array element type to carry
14245 the cv-qualifiers. This mimics section 6.7.3 of the C99
14246 specification. */
14247
14248static struct type *
14249add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14250 struct type *base_type, int cnst, int voltl)
14251{
14252 struct type *el_type, *inner_array;
14253
14254 base_type = copy_type (base_type);
14255 inner_array = base_type;
14256
14257 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14258 {
14259 TYPE_TARGET_TYPE (inner_array) =
14260 copy_type (TYPE_TARGET_TYPE (inner_array));
14261 inner_array = TYPE_TARGET_TYPE (inner_array);
14262 }
14263
14264 el_type = TYPE_TARGET_TYPE (inner_array);
14265 cnst |= TYPE_CONST (el_type);
14266 voltl |= TYPE_VOLATILE (el_type);
14267 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14268
14269 return set_die_type (die, base_type, cu);
14270}
14271
f792889a 14272static struct type *
e7c27a73 14273read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14274{
f792889a 14275 struct type *base_type, *cv_type;
c906108c 14276
e7c27a73 14277 base_type = die_type (die, cu);
7e314c57
JK
14278
14279 /* The die_type call above may have already set the type for this DIE. */
14280 cv_type = get_die_type (die, cu);
14281 if (cv_type)
14282 return cv_type;
14283
2f608a3a
KW
14284 /* In case the const qualifier is applied to an array type, the element type
14285 is so qualified, not the array type (section 6.7.3 of C99). */
14286 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14287 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14288
f792889a
DJ
14289 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14290 return set_die_type (die, cv_type, cu);
c906108c
SS
14291}
14292
f792889a 14293static struct type *
e7c27a73 14294read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14295{
f792889a 14296 struct type *base_type, *cv_type;
c906108c 14297
e7c27a73 14298 base_type = die_type (die, cu);
7e314c57
JK
14299
14300 /* The die_type call above may have already set the type for this DIE. */
14301 cv_type = get_die_type (die, cu);
14302 if (cv_type)
14303 return cv_type;
14304
cf363f18
MW
14305 /* In case the volatile qualifier is applied to an array type, the
14306 element type is so qualified, not the array type (section 6.7.3
14307 of C99). */
14308 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14309 return add_array_cv_type (die, cu, base_type, 0, 1);
14310
f792889a
DJ
14311 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14312 return set_die_type (die, cv_type, cu);
c906108c
SS
14313}
14314
06d66ee9
TT
14315/* Handle DW_TAG_restrict_type. */
14316
14317static struct type *
14318read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14319{
14320 struct type *base_type, *cv_type;
14321
14322 base_type = die_type (die, cu);
14323
14324 /* The die_type call above may have already set the type for this DIE. */
14325 cv_type = get_die_type (die, cu);
14326 if (cv_type)
14327 return cv_type;
14328
14329 cv_type = make_restrict_type (base_type);
14330 return set_die_type (die, cv_type, cu);
14331}
14332
c906108c
SS
14333/* Extract all information from a DW_TAG_string_type DIE and add to
14334 the user defined type vector. It isn't really a user defined type,
14335 but it behaves like one, with other DIE's using an AT_user_def_type
14336 attribute to reference it. */
14337
f792889a 14338static struct type *
e7c27a73 14339read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14340{
e7c27a73 14341 struct objfile *objfile = cu->objfile;
3b7538c0 14342 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14343 struct type *type, *range_type, *index_type, *char_type;
14344 struct attribute *attr;
14345 unsigned int length;
14346
e142c38c 14347 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14348 if (attr)
14349 {
14350 length = DW_UNSND (attr);
14351 }
14352 else
14353 {
0963b4bd 14354 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14355 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14356 if (attr)
14357 {
14358 length = DW_UNSND (attr);
14359 }
14360 else
14361 {
14362 length = 1;
14363 }
c906108c 14364 }
6ccb9162 14365
46bf5051 14366 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14367 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14368 char_type = language_string_char_type (cu->language_defn, gdbarch);
14369 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14370
f792889a 14371 return set_die_type (die, type, cu);
c906108c
SS
14372}
14373
4d804846
JB
14374/* Assuming that DIE corresponds to a function, returns nonzero
14375 if the function is prototyped. */
14376
14377static int
14378prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14379{
14380 struct attribute *attr;
14381
14382 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14383 if (attr && (DW_UNSND (attr) != 0))
14384 return 1;
14385
14386 /* The DWARF standard implies that the DW_AT_prototyped attribute
14387 is only meaninful for C, but the concept also extends to other
14388 languages that allow unprototyped functions (Eg: Objective C).
14389 For all other languages, assume that functions are always
14390 prototyped. */
14391 if (cu->language != language_c
14392 && cu->language != language_objc
14393 && cu->language != language_opencl)
14394 return 1;
14395
14396 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14397 prototyped and unprototyped functions; default to prototyped,
14398 since that is more common in modern code (and RealView warns
14399 about unprototyped functions). */
14400 if (producer_is_realview (cu->producer))
14401 return 1;
14402
14403 return 0;
14404}
14405
c906108c
SS
14406/* Handle DIES due to C code like:
14407
14408 struct foo
c5aa993b
JM
14409 {
14410 int (*funcp)(int a, long l);
14411 int b;
14412 };
c906108c 14413
0963b4bd 14414 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14415
f792889a 14416static struct type *
e7c27a73 14417read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14418{
bb5ed363 14419 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14420 struct type *type; /* Type that this function returns. */
14421 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14422 struct attribute *attr;
14423
e7c27a73 14424 type = die_type (die, cu);
7e314c57
JK
14425
14426 /* The die_type call above may have already set the type for this DIE. */
14427 ftype = get_die_type (die, cu);
14428 if (ftype)
14429 return ftype;
14430
0c8b41f1 14431 ftype = lookup_function_type (type);
c906108c 14432
4d804846 14433 if (prototyped_function_p (die, cu))
a6c727b2 14434 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14435
c055b101
CV
14436 /* Store the calling convention in the type if it's available in
14437 the subroutine die. Otherwise set the calling convention to
14438 the default value DW_CC_normal. */
14439 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14440 if (attr)
14441 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14442 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14443 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14444 else
14445 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14446
743649fd
MW
14447 /* Record whether the function returns normally to its caller or not
14448 if the DWARF producer set that information. */
14449 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14450 if (attr && (DW_UNSND (attr) != 0))
14451 TYPE_NO_RETURN (ftype) = 1;
14452
76c10ea2
GM
14453 /* We need to add the subroutine type to the die immediately so
14454 we don't infinitely recurse when dealing with parameters
0963b4bd 14455 declared as the same subroutine type. */
76c10ea2 14456 set_die_type (die, ftype, cu);
6e70227d 14457
639d11d3 14458 if (die->child != NULL)
c906108c 14459 {
bb5ed363 14460 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14461 struct die_info *child_die;
8072405b 14462 int nparams, iparams;
c906108c
SS
14463
14464 /* Count the number of parameters.
14465 FIXME: GDB currently ignores vararg functions, but knows about
14466 vararg member functions. */
8072405b 14467 nparams = 0;
639d11d3 14468 child_die = die->child;
c906108c
SS
14469 while (child_die && child_die->tag)
14470 {
14471 if (child_die->tag == DW_TAG_formal_parameter)
14472 nparams++;
14473 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14474 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14475 child_die = sibling_die (child_die);
14476 }
14477
14478 /* Allocate storage for parameters and fill them in. */
14479 TYPE_NFIELDS (ftype) = nparams;
14480 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14481 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14482
8072405b
JK
14483 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14484 even if we error out during the parameters reading below. */
14485 for (iparams = 0; iparams < nparams; iparams++)
14486 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14487
14488 iparams = 0;
639d11d3 14489 child_die = die->child;
c906108c
SS
14490 while (child_die && child_die->tag)
14491 {
14492 if (child_die->tag == DW_TAG_formal_parameter)
14493 {
3ce3b1ba
PA
14494 struct type *arg_type;
14495
14496 /* DWARF version 2 has no clean way to discern C++
14497 static and non-static member functions. G++ helps
14498 GDB by marking the first parameter for non-static
14499 member functions (which is the this pointer) as
14500 artificial. We pass this information to
14501 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14502
14503 DWARF version 3 added DW_AT_object_pointer, which GCC
14504 4.5 does not yet generate. */
e142c38c 14505 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14506 if (attr)
14507 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14508 else
418835cc
KS
14509 {
14510 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14511
14512 /* GCC/43521: In java, the formal parameter
14513 "this" is sometimes not marked with DW_AT_artificial. */
14514 if (cu->language == language_java)
14515 {
14516 const char *name = dwarf2_name (child_die, cu);
9a619af0 14517
418835cc
KS
14518 if (name && !strcmp (name, "this"))
14519 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14520 }
14521 }
3ce3b1ba
PA
14522 arg_type = die_type (child_die, cu);
14523
14524 /* RealView does not mark THIS as const, which the testsuite
14525 expects. GCC marks THIS as const in method definitions,
14526 but not in the class specifications (GCC PR 43053). */
14527 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14528 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14529 {
14530 int is_this = 0;
14531 struct dwarf2_cu *arg_cu = cu;
14532 const char *name = dwarf2_name (child_die, cu);
14533
14534 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14535 if (attr)
14536 {
14537 /* If the compiler emits this, use it. */
14538 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14539 is_this = 1;
14540 }
14541 else if (name && strcmp (name, "this") == 0)
14542 /* Function definitions will have the argument names. */
14543 is_this = 1;
14544 else if (name == NULL && iparams == 0)
14545 /* Declarations may not have the names, so like
14546 elsewhere in GDB, assume an artificial first
14547 argument is "this". */
14548 is_this = 1;
14549
14550 if (is_this)
14551 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14552 arg_type, 0);
14553 }
14554
14555 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14556 iparams++;
14557 }
14558 child_die = sibling_die (child_die);
14559 }
14560 }
14561
76c10ea2 14562 return ftype;
c906108c
SS
14563}
14564
f792889a 14565static struct type *
e7c27a73 14566read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14567{
e7c27a73 14568 struct objfile *objfile = cu->objfile;
0114d602 14569 const char *name = NULL;
3c8e0968 14570 struct type *this_type, *target_type;
c906108c 14571
94af9270 14572 name = dwarf2_full_name (NULL, die, cu);
f792889a 14573 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14574 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14575 TYPE_NAME (this_type) = name;
f792889a 14576 set_die_type (die, this_type, cu);
3c8e0968
DE
14577 target_type = die_type (die, cu);
14578 if (target_type != this_type)
14579 TYPE_TARGET_TYPE (this_type) = target_type;
14580 else
14581 {
14582 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14583 spec and cause infinite loops in GDB. */
14584 complaint (&symfile_complaints,
14585 _("Self-referential DW_TAG_typedef "
14586 "- DIE at 0x%x [in module %s]"),
4262abfb 14587 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14588 TYPE_TARGET_TYPE (this_type) = NULL;
14589 }
f792889a 14590 return this_type;
c906108c
SS
14591}
14592
14593/* Find a representation of a given base type and install
14594 it in the TYPE field of the die. */
14595
f792889a 14596static struct type *
e7c27a73 14597read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14598{
e7c27a73 14599 struct objfile *objfile = cu->objfile;
c906108c
SS
14600 struct type *type;
14601 struct attribute *attr;
14602 int encoding = 0, size = 0;
15d034d0 14603 const char *name;
6ccb9162
UW
14604 enum type_code code = TYPE_CODE_INT;
14605 int type_flags = 0;
14606 struct type *target_type = NULL;
c906108c 14607
e142c38c 14608 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14609 if (attr)
14610 {
14611 encoding = DW_UNSND (attr);
14612 }
e142c38c 14613 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14614 if (attr)
14615 {
14616 size = DW_UNSND (attr);
14617 }
39cbfefa 14618 name = dwarf2_name (die, cu);
6ccb9162 14619 if (!name)
c906108c 14620 {
6ccb9162
UW
14621 complaint (&symfile_complaints,
14622 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14623 }
6ccb9162
UW
14624
14625 switch (encoding)
c906108c 14626 {
6ccb9162
UW
14627 case DW_ATE_address:
14628 /* Turn DW_ATE_address into a void * pointer. */
14629 code = TYPE_CODE_PTR;
14630 type_flags |= TYPE_FLAG_UNSIGNED;
14631 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14632 break;
14633 case DW_ATE_boolean:
14634 code = TYPE_CODE_BOOL;
14635 type_flags |= TYPE_FLAG_UNSIGNED;
14636 break;
14637 case DW_ATE_complex_float:
14638 code = TYPE_CODE_COMPLEX;
14639 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14640 break;
14641 case DW_ATE_decimal_float:
14642 code = TYPE_CODE_DECFLOAT;
14643 break;
14644 case DW_ATE_float:
14645 code = TYPE_CODE_FLT;
14646 break;
14647 case DW_ATE_signed:
14648 break;
14649 case DW_ATE_unsigned:
14650 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14651 if (cu->language == language_fortran
14652 && name
14653 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14654 code = TYPE_CODE_CHAR;
6ccb9162
UW
14655 break;
14656 case DW_ATE_signed_char:
6e70227d 14657 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14658 || cu->language == language_pascal
14659 || cu->language == language_fortran)
6ccb9162
UW
14660 code = TYPE_CODE_CHAR;
14661 break;
14662 case DW_ATE_unsigned_char:
868a0084 14663 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14664 || cu->language == language_pascal
14665 || cu->language == language_fortran)
6ccb9162
UW
14666 code = TYPE_CODE_CHAR;
14667 type_flags |= TYPE_FLAG_UNSIGNED;
14668 break;
75079b2b
TT
14669 case DW_ATE_UTF:
14670 /* We just treat this as an integer and then recognize the
14671 type by name elsewhere. */
14672 break;
14673
6ccb9162
UW
14674 default:
14675 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14676 dwarf_type_encoding_name (encoding));
14677 break;
c906108c 14678 }
6ccb9162 14679
0114d602
DJ
14680 type = init_type (code, size, type_flags, NULL, objfile);
14681 TYPE_NAME (type) = name;
6ccb9162
UW
14682 TYPE_TARGET_TYPE (type) = target_type;
14683
0114d602 14684 if (name && strcmp (name, "char") == 0)
876cecd0 14685 TYPE_NOSIGN (type) = 1;
0114d602 14686
f792889a 14687 return set_die_type (die, type, cu);
c906108c
SS
14688}
14689
80180f79
SA
14690/* Parse dwarf attribute if it's a block, reference or constant and put the
14691 resulting value of the attribute into struct bound_prop.
14692 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14693
14694static int
14695attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14696 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14697{
14698 struct dwarf2_property_baton *baton;
14699 struct obstack *obstack = &cu->objfile->objfile_obstack;
14700
14701 if (attr == NULL || prop == NULL)
14702 return 0;
14703
14704 if (attr_form_is_block (attr))
14705 {
14706 baton = obstack_alloc (obstack, sizeof (*baton));
14707 baton->referenced_type = NULL;
14708 baton->locexpr.per_cu = cu->per_cu;
14709 baton->locexpr.size = DW_BLOCK (attr)->size;
14710 baton->locexpr.data = DW_BLOCK (attr)->data;
14711 prop->data.baton = baton;
14712 prop->kind = PROP_LOCEXPR;
14713 gdb_assert (prop->data.baton != NULL);
14714 }
14715 else if (attr_form_is_ref (attr))
14716 {
14717 struct dwarf2_cu *target_cu = cu;
14718 struct die_info *target_die;
14719 struct attribute *target_attr;
14720
14721 target_die = follow_die_ref (die, attr, &target_cu);
14722 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14723 if (target_attr == NULL)
14724 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14725 target_cu);
80180f79
SA
14726 if (target_attr == NULL)
14727 return 0;
14728
df25ebbd 14729 switch (target_attr->name)
80180f79 14730 {
df25ebbd
JB
14731 case DW_AT_location:
14732 if (attr_form_is_section_offset (target_attr))
14733 {
14734 baton = obstack_alloc (obstack, sizeof (*baton));
14735 baton->referenced_type = die_type (target_die, target_cu);
14736 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14737 prop->data.baton = baton;
14738 prop->kind = PROP_LOCLIST;
14739 gdb_assert (prop->data.baton != NULL);
14740 }
14741 else if (attr_form_is_block (target_attr))
14742 {
14743 baton = obstack_alloc (obstack, sizeof (*baton));
14744 baton->referenced_type = die_type (target_die, target_cu);
14745 baton->locexpr.per_cu = cu->per_cu;
14746 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14747 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14748 prop->data.baton = baton;
14749 prop->kind = PROP_LOCEXPR;
14750 gdb_assert (prop->data.baton != NULL);
14751 }
14752 else
14753 {
14754 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14755 "dynamic property");
14756 return 0;
14757 }
14758 break;
14759 case DW_AT_data_member_location:
14760 {
14761 LONGEST offset;
14762
14763 if (!handle_data_member_location (target_die, target_cu,
14764 &offset))
14765 return 0;
14766
14767 baton = obstack_alloc (obstack, sizeof (*baton));
14768 baton->referenced_type = get_die_type (target_die->parent,
14769 target_cu);
14770 baton->offset_info.offset = offset;
14771 baton->offset_info.type = die_type (target_die, target_cu);
14772 prop->data.baton = baton;
14773 prop->kind = PROP_ADDR_OFFSET;
14774 break;
14775 }
80180f79
SA
14776 }
14777 }
14778 else if (attr_form_is_constant (attr))
14779 {
14780 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14781 prop->kind = PROP_CONST;
14782 }
14783 else
14784 {
14785 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14786 dwarf2_name (die, cu));
14787 return 0;
14788 }
14789
14790 return 1;
14791}
14792
a02abb62
JB
14793/* Read the given DW_AT_subrange DIE. */
14794
f792889a 14795static struct type *
a02abb62
JB
14796read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14797{
4c9ad8c2 14798 struct type *base_type, *orig_base_type;
a02abb62
JB
14799 struct type *range_type;
14800 struct attribute *attr;
729efb13 14801 struct dynamic_prop low, high;
4fae6e18 14802 int low_default_is_valid;
c451ebe5 14803 int high_bound_is_count = 0;
15d034d0 14804 const char *name;
43bbcdc2 14805 LONGEST negative_mask;
e77813c8 14806
4c9ad8c2
TT
14807 orig_base_type = die_type (die, cu);
14808 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14809 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14810 creating the range type, but we use the result of check_typedef
14811 when examining properties of the type. */
14812 base_type = check_typedef (orig_base_type);
a02abb62 14813
7e314c57
JK
14814 /* The die_type call above may have already set the type for this DIE. */
14815 range_type = get_die_type (die, cu);
14816 if (range_type)
14817 return range_type;
14818
729efb13
SA
14819 low.kind = PROP_CONST;
14820 high.kind = PROP_CONST;
14821 high.data.const_val = 0;
14822
4fae6e18
JK
14823 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14824 omitting DW_AT_lower_bound. */
14825 switch (cu->language)
6e70227d 14826 {
4fae6e18
JK
14827 case language_c:
14828 case language_cplus:
729efb13 14829 low.data.const_val = 0;
4fae6e18
JK
14830 low_default_is_valid = 1;
14831 break;
14832 case language_fortran:
729efb13 14833 low.data.const_val = 1;
4fae6e18
JK
14834 low_default_is_valid = 1;
14835 break;
14836 case language_d:
14837 case language_java:
14838 case language_objc:
729efb13 14839 low.data.const_val = 0;
4fae6e18
JK
14840 low_default_is_valid = (cu->header.version >= 4);
14841 break;
14842 case language_ada:
14843 case language_m2:
14844 case language_pascal:
729efb13 14845 low.data.const_val = 1;
4fae6e18
JK
14846 low_default_is_valid = (cu->header.version >= 4);
14847 break;
14848 default:
729efb13 14849 low.data.const_val = 0;
4fae6e18
JK
14850 low_default_is_valid = 0;
14851 break;
a02abb62
JB
14852 }
14853
e142c38c 14854 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14855 if (attr)
11c1ba78 14856 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14857 else if (!low_default_is_valid)
14858 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14859 "- DIE at 0x%x [in module %s]"),
4262abfb 14860 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14861
e142c38c 14862 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14863 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14864 {
14865 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14866 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14867 {
c451ebe5
SA
14868 /* If bounds are constant do the final calculation here. */
14869 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14870 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14871 else
14872 high_bound_is_count = 1;
c2ff108b 14873 }
e77813c8
PM
14874 }
14875
14876 /* Dwarf-2 specifications explicitly allows to create subrange types
14877 without specifying a base type.
14878 In that case, the base type must be set to the type of
14879 the lower bound, upper bound or count, in that order, if any of these
14880 three attributes references an object that has a type.
14881 If no base type is found, the Dwarf-2 specifications say that
14882 a signed integer type of size equal to the size of an address should
14883 be used.
14884 For the following C code: `extern char gdb_int [];'
14885 GCC produces an empty range DIE.
14886 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14887 high bound or count are not yet handled by this code. */
e77813c8
PM
14888 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14889 {
14890 struct objfile *objfile = cu->objfile;
14891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14892 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14893 struct type *int_type = objfile_type (objfile)->builtin_int;
14894
14895 /* Test "int", "long int", and "long long int" objfile types,
14896 and select the first one having a size above or equal to the
14897 architecture address size. */
14898 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14899 base_type = int_type;
14900 else
14901 {
14902 int_type = objfile_type (objfile)->builtin_long;
14903 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14904 base_type = int_type;
14905 else
14906 {
14907 int_type = objfile_type (objfile)->builtin_long_long;
14908 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14909 base_type = int_type;
14910 }
14911 }
14912 }
a02abb62 14913
dbb9c2b1
JB
14914 /* Normally, the DWARF producers are expected to use a signed
14915 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14916 But this is unfortunately not always the case, as witnessed
14917 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14918 is used instead. To work around that ambiguity, we treat
14919 the bounds as signed, and thus sign-extend their values, when
14920 the base type is signed. */
6e70227d 14921 negative_mask =
43bbcdc2 14922 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14923 if (low.kind == PROP_CONST
14924 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14925 low.data.const_val |= negative_mask;
14926 if (high.kind == PROP_CONST
14927 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14928 high.data.const_val |= negative_mask;
43bbcdc2 14929
729efb13 14930 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14931
c451ebe5
SA
14932 if (high_bound_is_count)
14933 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14934
c2ff108b
JK
14935 /* Ada expects an empty array on no boundary attributes. */
14936 if (attr == NULL && cu->language != language_ada)
729efb13 14937 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14938
39cbfefa
DJ
14939 name = dwarf2_name (die, cu);
14940 if (name)
14941 TYPE_NAME (range_type) = name;
6e70227d 14942
e142c38c 14943 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14944 if (attr)
14945 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14946
7e314c57
JK
14947 set_die_type (die, range_type, cu);
14948
14949 /* set_die_type should be already done. */
b4ba55a1
JB
14950 set_descriptive_type (range_type, die, cu);
14951
7e314c57 14952 return range_type;
a02abb62 14953}
6e70227d 14954
f792889a 14955static struct type *
81a17f79
JB
14956read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14957{
14958 struct type *type;
81a17f79 14959
81a17f79
JB
14960 /* For now, we only support the C meaning of an unspecified type: void. */
14961
0114d602
DJ
14962 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14963 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14964
f792889a 14965 return set_die_type (die, type, cu);
81a17f79 14966}
a02abb62 14967
639d11d3
DC
14968/* Read a single die and all its descendents. Set the die's sibling
14969 field to NULL; set other fields in the die correctly, and set all
14970 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14971 location of the info_ptr after reading all of those dies. PARENT
14972 is the parent of the die in question. */
14973
14974static struct die_info *
dee91e82 14975read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14976 const gdb_byte *info_ptr,
14977 const gdb_byte **new_info_ptr,
dee91e82 14978 struct die_info *parent)
639d11d3
DC
14979{
14980 struct die_info *die;
d521ce57 14981 const gdb_byte *cur_ptr;
639d11d3
DC
14982 int has_children;
14983
bf6af496 14984 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14985 if (die == NULL)
14986 {
14987 *new_info_ptr = cur_ptr;
14988 return NULL;
14989 }
93311388 14990 store_in_ref_table (die, reader->cu);
639d11d3
DC
14991
14992 if (has_children)
bf6af496 14993 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14994 else
14995 {
14996 die->child = NULL;
14997 *new_info_ptr = cur_ptr;
14998 }
14999
15000 die->sibling = NULL;
15001 die->parent = parent;
15002 return die;
15003}
15004
15005/* Read a die, all of its descendents, and all of its siblings; set
15006 all of the fields of all of the dies correctly. Arguments are as
15007 in read_die_and_children. */
15008
15009static struct die_info *
bf6af496 15010read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15011 const gdb_byte *info_ptr,
15012 const gdb_byte **new_info_ptr,
bf6af496 15013 struct die_info *parent)
639d11d3
DC
15014{
15015 struct die_info *first_die, *last_sibling;
d521ce57 15016 const gdb_byte *cur_ptr;
639d11d3 15017
c906108c 15018 cur_ptr = info_ptr;
639d11d3
DC
15019 first_die = last_sibling = NULL;
15020
15021 while (1)
c906108c 15022 {
639d11d3 15023 struct die_info *die
dee91e82 15024 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15025
1d325ec1 15026 if (die == NULL)
c906108c 15027 {
639d11d3
DC
15028 *new_info_ptr = cur_ptr;
15029 return first_die;
c906108c 15030 }
1d325ec1
DJ
15031
15032 if (!first_die)
15033 first_die = die;
c906108c 15034 else
1d325ec1
DJ
15035 last_sibling->sibling = die;
15036
15037 last_sibling = die;
c906108c 15038 }
c906108c
SS
15039}
15040
bf6af496
DE
15041/* Read a die, all of its descendents, and all of its siblings; set
15042 all of the fields of all of the dies correctly. Arguments are as
15043 in read_die_and_children.
15044 This the main entry point for reading a DIE and all its children. */
15045
15046static struct die_info *
15047read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15048 const gdb_byte *info_ptr,
15049 const gdb_byte **new_info_ptr,
bf6af496
DE
15050 struct die_info *parent)
15051{
15052 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15053 new_info_ptr, parent);
15054
15055 if (dwarf2_die_debug)
15056 {
15057 fprintf_unfiltered (gdb_stdlog,
15058 "Read die from %s@0x%x of %s:\n",
a32a8923 15059 get_section_name (reader->die_section),
bf6af496
DE
15060 (unsigned) (info_ptr - reader->die_section->buffer),
15061 bfd_get_filename (reader->abfd));
15062 dump_die (die, dwarf2_die_debug);
15063 }
15064
15065 return die;
15066}
15067
3019eac3
DE
15068/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15069 attributes.
15070 The caller is responsible for filling in the extra attributes
15071 and updating (*DIEP)->num_attrs.
15072 Set DIEP to point to a newly allocated die with its information,
15073 except for its child, sibling, and parent fields.
15074 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15075
d521ce57 15076static const gdb_byte *
3019eac3 15077read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15078 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15079 int *has_children, int num_extra_attrs)
93311388 15080{
b64f50a1
JK
15081 unsigned int abbrev_number, bytes_read, i;
15082 sect_offset offset;
93311388
DE
15083 struct abbrev_info *abbrev;
15084 struct die_info *die;
15085 struct dwarf2_cu *cu = reader->cu;
15086 bfd *abfd = reader->abfd;
15087
b64f50a1 15088 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15089 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15090 info_ptr += bytes_read;
15091 if (!abbrev_number)
15092 {
15093 *diep = NULL;
15094 *has_children = 0;
15095 return info_ptr;
15096 }
15097
433df2d4 15098 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15099 if (!abbrev)
348e048f
DE
15100 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15101 abbrev_number,
15102 bfd_get_filename (abfd));
15103
3019eac3 15104 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15105 die->offset = offset;
15106 die->tag = abbrev->tag;
15107 die->abbrev = abbrev_number;
15108
3019eac3
DE
15109 /* Make the result usable.
15110 The caller needs to update num_attrs after adding the extra
15111 attributes. */
93311388
DE
15112 die->num_attrs = abbrev->num_attrs;
15113
15114 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15115 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15116 info_ptr);
93311388
DE
15117
15118 *diep = die;
15119 *has_children = abbrev->has_children;
15120 return info_ptr;
15121}
15122
3019eac3
DE
15123/* Read a die and all its attributes.
15124 Set DIEP to point to a newly allocated die with its information,
15125 except for its child, sibling, and parent fields.
15126 Set HAS_CHILDREN to tell whether the die has children or not. */
15127
d521ce57 15128static const gdb_byte *
3019eac3 15129read_full_die (const struct die_reader_specs *reader,
d521ce57 15130 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15131 int *has_children)
15132{
d521ce57 15133 const gdb_byte *result;
bf6af496
DE
15134
15135 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15136
15137 if (dwarf2_die_debug)
15138 {
15139 fprintf_unfiltered (gdb_stdlog,
15140 "Read die from %s@0x%x of %s:\n",
a32a8923 15141 get_section_name (reader->die_section),
bf6af496
DE
15142 (unsigned) (info_ptr - reader->die_section->buffer),
15143 bfd_get_filename (reader->abfd));
15144 dump_die (*diep, dwarf2_die_debug);
15145 }
15146
15147 return result;
3019eac3 15148}
433df2d4
DE
15149\f
15150/* Abbreviation tables.
3019eac3 15151
433df2d4 15152 In DWARF version 2, the description of the debugging information is
c906108c
SS
15153 stored in a separate .debug_abbrev section. Before we read any
15154 dies from a section we read in all abbreviations and install them
433df2d4
DE
15155 in a hash table. */
15156
15157/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15158
15159static struct abbrev_info *
15160abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15161{
15162 struct abbrev_info *abbrev;
15163
15164 abbrev = (struct abbrev_info *)
15165 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15166 memset (abbrev, 0, sizeof (struct abbrev_info));
15167 return abbrev;
15168}
15169
15170/* Add an abbreviation to the table. */
c906108c
SS
15171
15172static void
433df2d4
DE
15173abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15174 unsigned int abbrev_number,
15175 struct abbrev_info *abbrev)
15176{
15177 unsigned int hash_number;
15178
15179 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15180 abbrev->next = abbrev_table->abbrevs[hash_number];
15181 abbrev_table->abbrevs[hash_number] = abbrev;
15182}
dee91e82 15183
433df2d4
DE
15184/* Look up an abbrev in the table.
15185 Returns NULL if the abbrev is not found. */
15186
15187static struct abbrev_info *
15188abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15189 unsigned int abbrev_number)
c906108c 15190{
433df2d4
DE
15191 unsigned int hash_number;
15192 struct abbrev_info *abbrev;
15193
15194 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15195 abbrev = abbrev_table->abbrevs[hash_number];
15196
15197 while (abbrev)
15198 {
15199 if (abbrev->number == abbrev_number)
15200 return abbrev;
15201 abbrev = abbrev->next;
15202 }
15203 return NULL;
15204}
15205
15206/* Read in an abbrev table. */
15207
15208static struct abbrev_table *
15209abbrev_table_read_table (struct dwarf2_section_info *section,
15210 sect_offset offset)
15211{
15212 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15213 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15214 struct abbrev_table *abbrev_table;
d521ce57 15215 const gdb_byte *abbrev_ptr;
c906108c
SS
15216 struct abbrev_info *cur_abbrev;
15217 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15218 unsigned int abbrev_form;
f3dd6933
DJ
15219 struct attr_abbrev *cur_attrs;
15220 unsigned int allocated_attrs;
c906108c 15221
70ba0933 15222 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15223 abbrev_table->offset = offset;
433df2d4
DE
15224 obstack_init (&abbrev_table->abbrev_obstack);
15225 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15226 (ABBREV_HASH_SIZE
15227 * sizeof (struct abbrev_info *)));
15228 memset (abbrev_table->abbrevs, 0,
15229 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15230
433df2d4
DE
15231 dwarf2_read_section (objfile, section);
15232 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15233 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15234 abbrev_ptr += bytes_read;
15235
f3dd6933
DJ
15236 allocated_attrs = ATTR_ALLOC_CHUNK;
15237 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15238
0963b4bd 15239 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15240 while (abbrev_number)
15241 {
433df2d4 15242 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15243
15244 /* read in abbrev header */
15245 cur_abbrev->number = abbrev_number;
15246 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15247 abbrev_ptr += bytes_read;
15248 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15249 abbrev_ptr += 1;
15250
15251 /* now read in declarations */
15252 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15253 abbrev_ptr += bytes_read;
15254 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15255 abbrev_ptr += bytes_read;
15256 while (abbrev_name)
15257 {
f3dd6933 15258 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15259 {
f3dd6933
DJ
15260 allocated_attrs += ATTR_ALLOC_CHUNK;
15261 cur_attrs
15262 = xrealloc (cur_attrs, (allocated_attrs
15263 * sizeof (struct attr_abbrev)));
c906108c 15264 }
ae038cb0 15265
f3dd6933
DJ
15266 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15267 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15268 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15269 abbrev_ptr += bytes_read;
15270 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15271 abbrev_ptr += bytes_read;
15272 }
15273
433df2d4 15274 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15275 (cur_abbrev->num_attrs
15276 * sizeof (struct attr_abbrev)));
15277 memcpy (cur_abbrev->attrs, cur_attrs,
15278 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15279
433df2d4 15280 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15281
15282 /* Get next abbreviation.
15283 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15284 always properly terminated with an abbrev number of 0.
15285 Exit loop if we encounter an abbreviation which we have
15286 already read (which means we are about to read the abbreviations
15287 for the next compile unit) or if the end of the abbreviation
15288 table is reached. */
433df2d4 15289 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15290 break;
15291 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15292 abbrev_ptr += bytes_read;
433df2d4 15293 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15294 break;
15295 }
f3dd6933
DJ
15296
15297 xfree (cur_attrs);
433df2d4 15298 return abbrev_table;
c906108c
SS
15299}
15300
433df2d4 15301/* Free the resources held by ABBREV_TABLE. */
c906108c 15302
c906108c 15303static void
433df2d4 15304abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15305{
433df2d4
DE
15306 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15307 xfree (abbrev_table);
c906108c
SS
15308}
15309
f4dc4d17
DE
15310/* Same as abbrev_table_free but as a cleanup.
15311 We pass in a pointer to the pointer to the table so that we can
15312 set the pointer to NULL when we're done. It also simplifies
73051182 15313 build_type_psymtabs_1. */
f4dc4d17
DE
15314
15315static void
15316abbrev_table_free_cleanup (void *table_ptr)
15317{
15318 struct abbrev_table **abbrev_table_ptr = table_ptr;
15319
15320 if (*abbrev_table_ptr != NULL)
15321 abbrev_table_free (*abbrev_table_ptr);
15322 *abbrev_table_ptr = NULL;
15323}
15324
433df2d4
DE
15325/* Read the abbrev table for CU from ABBREV_SECTION. */
15326
15327static void
15328dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15329 struct dwarf2_section_info *abbrev_section)
c906108c 15330{
433df2d4
DE
15331 cu->abbrev_table =
15332 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15333}
c906108c 15334
433df2d4 15335/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15336
433df2d4
DE
15337static void
15338dwarf2_free_abbrev_table (void *ptr_to_cu)
15339{
15340 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15341
a2ce51a0
DE
15342 if (cu->abbrev_table != NULL)
15343 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15344 /* Set this to NULL so that we SEGV if we try to read it later,
15345 and also because free_comp_unit verifies this is NULL. */
15346 cu->abbrev_table = NULL;
15347}
15348\f
72bf9492
DJ
15349/* Returns nonzero if TAG represents a type that we might generate a partial
15350 symbol for. */
15351
15352static int
15353is_type_tag_for_partial (int tag)
15354{
15355 switch (tag)
15356 {
15357#if 0
15358 /* Some types that would be reasonable to generate partial symbols for,
15359 that we don't at present. */
15360 case DW_TAG_array_type:
15361 case DW_TAG_file_type:
15362 case DW_TAG_ptr_to_member_type:
15363 case DW_TAG_set_type:
15364 case DW_TAG_string_type:
15365 case DW_TAG_subroutine_type:
15366#endif
15367 case DW_TAG_base_type:
15368 case DW_TAG_class_type:
680b30c7 15369 case DW_TAG_interface_type:
72bf9492
DJ
15370 case DW_TAG_enumeration_type:
15371 case DW_TAG_structure_type:
15372 case DW_TAG_subrange_type:
15373 case DW_TAG_typedef:
15374 case DW_TAG_union_type:
15375 return 1;
15376 default:
15377 return 0;
15378 }
15379}
15380
15381/* Load all DIEs that are interesting for partial symbols into memory. */
15382
15383static struct partial_die_info *
dee91e82 15384load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15385 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15386{
dee91e82 15387 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15388 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15389 struct partial_die_info *part_die;
15390 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15391 struct abbrev_info *abbrev;
15392 unsigned int bytes_read;
5afb4e99 15393 unsigned int load_all = 0;
72bf9492
DJ
15394 int nesting_level = 1;
15395
15396 parent_die = NULL;
15397 last_die = NULL;
15398
7adf1e79
DE
15399 gdb_assert (cu->per_cu != NULL);
15400 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15401 load_all = 1;
15402
72bf9492
DJ
15403 cu->partial_dies
15404 = htab_create_alloc_ex (cu->header.length / 12,
15405 partial_die_hash,
15406 partial_die_eq,
15407 NULL,
15408 &cu->comp_unit_obstack,
15409 hashtab_obstack_allocate,
15410 dummy_obstack_deallocate);
15411
15412 part_die = obstack_alloc (&cu->comp_unit_obstack,
15413 sizeof (struct partial_die_info));
15414
15415 while (1)
15416 {
15417 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15418
15419 /* A NULL abbrev means the end of a series of children. */
15420 if (abbrev == NULL)
15421 {
15422 if (--nesting_level == 0)
15423 {
15424 /* PART_DIE was probably the last thing allocated on the
15425 comp_unit_obstack, so we could call obstack_free
15426 here. We don't do that because the waste is small,
15427 and will be cleaned up when we're done with this
15428 compilation unit. This way, we're also more robust
15429 against other users of the comp_unit_obstack. */
15430 return first_die;
15431 }
15432 info_ptr += bytes_read;
15433 last_die = parent_die;
15434 parent_die = parent_die->die_parent;
15435 continue;
15436 }
15437
98bfdba5
PA
15438 /* Check for template arguments. We never save these; if
15439 they're seen, we just mark the parent, and go on our way. */
15440 if (parent_die != NULL
15441 && cu->language == language_cplus
15442 && (abbrev->tag == DW_TAG_template_type_param
15443 || abbrev->tag == DW_TAG_template_value_param))
15444 {
15445 parent_die->has_template_arguments = 1;
15446
15447 if (!load_all)
15448 {
15449 /* We don't need a partial DIE for the template argument. */
dee91e82 15450 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15451 continue;
15452 }
15453 }
15454
0d99eb77 15455 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15456 Skip their other children. */
15457 if (!load_all
15458 && cu->language == language_cplus
15459 && parent_die != NULL
15460 && parent_die->tag == DW_TAG_subprogram)
15461 {
dee91e82 15462 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15463 continue;
15464 }
15465
5afb4e99
DJ
15466 /* Check whether this DIE is interesting enough to save. Normally
15467 we would not be interested in members here, but there may be
15468 later variables referencing them via DW_AT_specification (for
15469 static members). */
15470 if (!load_all
15471 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15472 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15473 && abbrev->tag != DW_TAG_enumerator
15474 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15475 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15476 && abbrev->tag != DW_TAG_variable
5afb4e99 15477 && abbrev->tag != DW_TAG_namespace
f55ee35c 15478 && abbrev->tag != DW_TAG_module
95554aad 15479 && abbrev->tag != DW_TAG_member
74921315
KS
15480 && abbrev->tag != DW_TAG_imported_unit
15481 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15482 {
15483 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15484 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15485 continue;
15486 }
15487
dee91e82
DE
15488 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15489 info_ptr);
72bf9492
DJ
15490
15491 /* This two-pass algorithm for processing partial symbols has a
15492 high cost in cache pressure. Thus, handle some simple cases
15493 here which cover the majority of C partial symbols. DIEs
15494 which neither have specification tags in them, nor could have
15495 specification tags elsewhere pointing at them, can simply be
15496 processed and discarded.
15497
15498 This segment is also optional; scan_partial_symbols and
15499 add_partial_symbol will handle these DIEs if we chain
15500 them in normally. When compilers which do not emit large
15501 quantities of duplicate debug information are more common,
15502 this code can probably be removed. */
15503
15504 /* Any complete simple types at the top level (pretty much all
15505 of them, for a language without namespaces), can be processed
15506 directly. */
15507 if (parent_die == NULL
15508 && part_die->has_specification == 0
15509 && part_die->is_declaration == 0
d8228535 15510 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15511 || part_die->tag == DW_TAG_base_type
15512 || part_die->tag == DW_TAG_subrange_type))
15513 {
15514 if (building_psymtab && part_die->name != NULL)
04a679b8 15515 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15516 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15517 &objfile->static_psymbols,
15518 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15519 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15520 continue;
15521 }
15522
d8228535
JK
15523 /* The exception for DW_TAG_typedef with has_children above is
15524 a workaround of GCC PR debug/47510. In the case of this complaint
15525 type_name_no_tag_or_error will error on such types later.
15526
15527 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15528 it could not find the child DIEs referenced later, this is checked
15529 above. In correct DWARF DW_TAG_typedef should have no children. */
15530
15531 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15532 complaint (&symfile_complaints,
15533 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15534 "- DIE at 0x%x [in module %s]"),
4262abfb 15535 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15536
72bf9492
DJ
15537 /* If we're at the second level, and we're an enumerator, and
15538 our parent has no specification (meaning possibly lives in a
15539 namespace elsewhere), then we can add the partial symbol now
15540 instead of queueing it. */
15541 if (part_die->tag == DW_TAG_enumerator
15542 && parent_die != NULL
15543 && parent_die->die_parent == NULL
15544 && parent_die->tag == DW_TAG_enumeration_type
15545 && parent_die->has_specification == 0)
15546 {
15547 if (part_die->name == NULL)
3e43a32a
MS
15548 complaint (&symfile_complaints,
15549 _("malformed enumerator DIE ignored"));
72bf9492 15550 else if (building_psymtab)
04a679b8 15551 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15552 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15553 (cu->language == language_cplus
15554 || cu->language == language_java)
bb5ed363
DE
15555 ? &objfile->global_psymbols
15556 : &objfile->static_psymbols,
15557 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15558
dee91e82 15559 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15560 continue;
15561 }
15562
15563 /* We'll save this DIE so link it in. */
15564 part_die->die_parent = parent_die;
15565 part_die->die_sibling = NULL;
15566 part_die->die_child = NULL;
15567
15568 if (last_die && last_die == parent_die)
15569 last_die->die_child = part_die;
15570 else if (last_die)
15571 last_die->die_sibling = part_die;
15572
15573 last_die = part_die;
15574
15575 if (first_die == NULL)
15576 first_die = part_die;
15577
15578 /* Maybe add the DIE to the hash table. Not all DIEs that we
15579 find interesting need to be in the hash table, because we
15580 also have the parent/sibling/child chains; only those that we
15581 might refer to by offset later during partial symbol reading.
15582
15583 For now this means things that might have be the target of a
15584 DW_AT_specification, DW_AT_abstract_origin, or
15585 DW_AT_extension. DW_AT_extension will refer only to
15586 namespaces; DW_AT_abstract_origin refers to functions (and
15587 many things under the function DIE, but we do not recurse
15588 into function DIEs during partial symbol reading) and
15589 possibly variables as well; DW_AT_specification refers to
15590 declarations. Declarations ought to have the DW_AT_declaration
15591 flag. It happens that GCC forgets to put it in sometimes, but
15592 only for functions, not for types.
15593
15594 Adding more things than necessary to the hash table is harmless
15595 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15596 wasted time in find_partial_die, when we reread the compilation
15597 unit with load_all_dies set. */
72bf9492 15598
5afb4e99 15599 if (load_all
72929c62 15600 || abbrev->tag == DW_TAG_constant
5afb4e99 15601 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15602 || abbrev->tag == DW_TAG_variable
15603 || abbrev->tag == DW_TAG_namespace
15604 || part_die->is_declaration)
15605 {
15606 void **slot;
15607
15608 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15609 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15610 *slot = part_die;
15611 }
15612
15613 part_die = obstack_alloc (&cu->comp_unit_obstack,
15614 sizeof (struct partial_die_info));
15615
15616 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15617 we have no reason to follow the children of structures; for other
98bfdba5
PA
15618 languages we have to, so that we can get at method physnames
15619 to infer fully qualified class names, for DW_AT_specification,
15620 and for C++ template arguments. For C++, we also look one level
15621 inside functions to find template arguments (if the name of the
15622 function does not already contain the template arguments).
bc30ff58
JB
15623
15624 For Ada, we need to scan the children of subprograms and lexical
15625 blocks as well because Ada allows the definition of nested
15626 entities that could be interesting for the debugger, such as
15627 nested subprograms for instance. */
72bf9492 15628 if (last_die->has_children
5afb4e99
DJ
15629 && (load_all
15630 || last_die->tag == DW_TAG_namespace
f55ee35c 15631 || last_die->tag == DW_TAG_module
72bf9492 15632 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15633 || (cu->language == language_cplus
15634 && last_die->tag == DW_TAG_subprogram
15635 && (last_die->name == NULL
15636 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15637 || (cu->language != language_c
15638 && (last_die->tag == DW_TAG_class_type
680b30c7 15639 || last_die->tag == DW_TAG_interface_type
72bf9492 15640 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15641 || last_die->tag == DW_TAG_union_type))
15642 || (cu->language == language_ada
15643 && (last_die->tag == DW_TAG_subprogram
15644 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15645 {
15646 nesting_level++;
15647 parent_die = last_die;
15648 continue;
15649 }
15650
15651 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15652 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15653
15654 /* Back to the top, do it again. */
15655 }
15656}
15657
c906108c
SS
15658/* Read a minimal amount of information into the minimal die structure. */
15659
d521ce57 15660static const gdb_byte *
dee91e82
DE
15661read_partial_die (const struct die_reader_specs *reader,
15662 struct partial_die_info *part_die,
15663 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15664 const gdb_byte *info_ptr)
c906108c 15665{
dee91e82 15666 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15667 struct objfile *objfile = cu->objfile;
d521ce57 15668 const gdb_byte *buffer = reader->buffer;
fa238c03 15669 unsigned int i;
c906108c 15670 struct attribute attr;
c5aa993b 15671 int has_low_pc_attr = 0;
c906108c 15672 int has_high_pc_attr = 0;
91da1414 15673 int high_pc_relative = 0;
c906108c 15674
72bf9492 15675 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15676
b64f50a1 15677 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15678
15679 info_ptr += abbrev_len;
15680
15681 if (abbrev == NULL)
15682 return info_ptr;
15683
c906108c
SS
15684 part_die->tag = abbrev->tag;
15685 part_die->has_children = abbrev->has_children;
c906108c
SS
15686
15687 for (i = 0; i < abbrev->num_attrs; ++i)
15688 {
dee91e82 15689 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15690
15691 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15692 partial symbol table. */
c906108c
SS
15693 switch (attr.name)
15694 {
15695 case DW_AT_name:
71c25dea
TT
15696 switch (part_die->tag)
15697 {
15698 case DW_TAG_compile_unit:
95554aad 15699 case DW_TAG_partial_unit:
348e048f 15700 case DW_TAG_type_unit:
71c25dea
TT
15701 /* Compilation units have a DW_AT_name that is a filename, not
15702 a source language identifier. */
15703 case DW_TAG_enumeration_type:
15704 case DW_TAG_enumerator:
15705 /* These tags always have simple identifiers already; no need
15706 to canonicalize them. */
15707 part_die->name = DW_STRING (&attr);
15708 break;
15709 default:
15710 part_die->name
15711 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15712 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15713 break;
15714 }
c906108c 15715 break;
31ef98ae 15716 case DW_AT_linkage_name:
c906108c 15717 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15718 /* Note that both forms of linkage name might appear. We
15719 assume they will be the same, and we only store the last
15720 one we see. */
94af9270
KS
15721 if (cu->language == language_ada)
15722 part_die->name = DW_STRING (&attr);
abc72ce4 15723 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15724 break;
15725 case DW_AT_low_pc:
15726 has_low_pc_attr = 1;
31aa7e4e 15727 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15728 break;
15729 case DW_AT_high_pc:
15730 has_high_pc_attr = 1;
31aa7e4e
JB
15731 part_die->highpc = attr_value_as_address (&attr);
15732 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15733 high_pc_relative = 1;
c906108c
SS
15734 break;
15735 case DW_AT_location:
0963b4bd 15736 /* Support the .debug_loc offsets. */
8e19ed76
PS
15737 if (attr_form_is_block (&attr))
15738 {
95554aad 15739 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15740 }
3690dd37 15741 else if (attr_form_is_section_offset (&attr))
8e19ed76 15742 {
4d3c2250 15743 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15744 }
15745 else
15746 {
4d3c2250
KB
15747 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15748 "partial symbol information");
8e19ed76 15749 }
c906108c 15750 break;
c906108c
SS
15751 case DW_AT_external:
15752 part_die->is_external = DW_UNSND (&attr);
15753 break;
15754 case DW_AT_declaration:
15755 part_die->is_declaration = DW_UNSND (&attr);
15756 break;
15757 case DW_AT_type:
15758 part_die->has_type = 1;
15759 break;
15760 case DW_AT_abstract_origin:
15761 case DW_AT_specification:
72bf9492
DJ
15762 case DW_AT_extension:
15763 part_die->has_specification = 1;
c764a876 15764 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15765 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15766 || cu->per_cu->is_dwz);
c906108c
SS
15767 break;
15768 case DW_AT_sibling:
15769 /* Ignore absolute siblings, they might point outside of
15770 the current compile unit. */
15771 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15772 complaint (&symfile_complaints,
15773 _("ignoring absolute DW_AT_sibling"));
c906108c 15774 else
b9502d3f
WN
15775 {
15776 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15777 const gdb_byte *sibling_ptr = buffer + off;
15778
15779 if (sibling_ptr < info_ptr)
15780 complaint (&symfile_complaints,
15781 _("DW_AT_sibling points backwards"));
22869d73
KS
15782 else if (sibling_ptr > reader->buffer_end)
15783 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15784 else
15785 part_die->sibling = sibling_ptr;
15786 }
c906108c 15787 break;
fa4028e9
JB
15788 case DW_AT_byte_size:
15789 part_die->has_byte_size = 1;
15790 break;
68511cec
CES
15791 case DW_AT_calling_convention:
15792 /* DWARF doesn't provide a way to identify a program's source-level
15793 entry point. DW_AT_calling_convention attributes are only meant
15794 to describe functions' calling conventions.
15795
15796 However, because it's a necessary piece of information in
15797 Fortran, and because DW_CC_program is the only piece of debugging
15798 information whose definition refers to a 'main program' at all,
15799 several compilers have begun marking Fortran main programs with
15800 DW_CC_program --- even when those functions use the standard
15801 calling conventions.
15802
15803 So until DWARF specifies a way to provide this information and
15804 compilers pick up the new representation, we'll support this
15805 practice. */
15806 if (DW_UNSND (&attr) == DW_CC_program
15807 && cu->language == language_fortran)
3d548a53 15808 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15809 break;
481860b3
GB
15810 case DW_AT_inline:
15811 if (DW_UNSND (&attr) == DW_INL_inlined
15812 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15813 part_die->may_be_inlined = 1;
15814 break;
95554aad
TT
15815
15816 case DW_AT_import:
15817 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15818 {
15819 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15820 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15821 || cu->per_cu->is_dwz);
15822 }
95554aad
TT
15823 break;
15824
c906108c
SS
15825 default:
15826 break;
15827 }
15828 }
15829
91da1414
MW
15830 if (high_pc_relative)
15831 part_die->highpc += part_die->lowpc;
15832
9373cf26
JK
15833 if (has_low_pc_attr && has_high_pc_attr)
15834 {
15835 /* When using the GNU linker, .gnu.linkonce. sections are used to
15836 eliminate duplicate copies of functions and vtables and such.
15837 The linker will arbitrarily choose one and discard the others.
15838 The AT_*_pc values for such functions refer to local labels in
15839 these sections. If the section from that file was discarded, the
15840 labels are not in the output, so the relocs get a value of 0.
15841 If this is a discarded function, mark the pc bounds as invalid,
15842 so that GDB will ignore it. */
15843 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15844 {
bb5ed363 15845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15846
15847 complaint (&symfile_complaints,
15848 _("DW_AT_low_pc %s is zero "
15849 "for DIE at 0x%x [in module %s]"),
15850 paddress (gdbarch, part_die->lowpc),
4262abfb 15851 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15852 }
15853 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15854 else if (part_die->lowpc >= part_die->highpc)
15855 {
bb5ed363 15856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15857
15858 complaint (&symfile_complaints,
15859 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15860 "for DIE at 0x%x [in module %s]"),
15861 paddress (gdbarch, part_die->lowpc),
15862 paddress (gdbarch, part_die->highpc),
4262abfb 15863 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15864 }
15865 else
15866 part_die->has_pc_info = 1;
15867 }
85cbf3d3 15868
c906108c
SS
15869 return info_ptr;
15870}
15871
72bf9492
DJ
15872/* Find a cached partial DIE at OFFSET in CU. */
15873
15874static struct partial_die_info *
b64f50a1 15875find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15876{
15877 struct partial_die_info *lookup_die = NULL;
15878 struct partial_die_info part_die;
15879
15880 part_die.offset = offset;
b64f50a1
JK
15881 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15882 offset.sect_off);
72bf9492 15883
72bf9492
DJ
15884 return lookup_die;
15885}
15886
348e048f
DE
15887/* Find a partial DIE at OFFSET, which may or may not be in CU,
15888 except in the case of .debug_types DIEs which do not reference
15889 outside their CU (they do however referencing other types via
55f1336d 15890 DW_FORM_ref_sig8). */
72bf9492
DJ
15891
15892static struct partial_die_info *
36586728 15893find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15894{
bb5ed363 15895 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15896 struct dwarf2_per_cu_data *per_cu = NULL;
15897 struct partial_die_info *pd = NULL;
72bf9492 15898
36586728
TT
15899 if (offset_in_dwz == cu->per_cu->is_dwz
15900 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15901 {
15902 pd = find_partial_die_in_comp_unit (offset, cu);
15903 if (pd != NULL)
15904 return pd;
0d99eb77
DE
15905 /* We missed recording what we needed.
15906 Load all dies and try again. */
15907 per_cu = cu->per_cu;
5afb4e99 15908 }
0d99eb77
DE
15909 else
15910 {
15911 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15912 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15913 {
15914 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15915 " external reference to offset 0x%lx [in module %s].\n"),
15916 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15917 bfd_get_filename (objfile->obfd));
15918 }
36586728
TT
15919 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15920 objfile);
72bf9492 15921
0d99eb77
DE
15922 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15923 load_partial_comp_unit (per_cu);
ae038cb0 15924
0d99eb77
DE
15925 per_cu->cu->last_used = 0;
15926 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15927 }
5afb4e99 15928
dee91e82
DE
15929 /* If we didn't find it, and not all dies have been loaded,
15930 load them all and try again. */
15931
5afb4e99
DJ
15932 if (pd == NULL && per_cu->load_all_dies == 0)
15933 {
5afb4e99 15934 per_cu->load_all_dies = 1;
fd820528
DE
15935
15936 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15937 THIS_CU->cu may already be in use. So we can't just free it and
15938 replace its DIEs with the ones we read in. Instead, we leave those
15939 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15940 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15941 set. */
dee91e82 15942 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15943
15944 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15945 }
15946
15947 if (pd == NULL)
15948 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15949 _("could not find partial DIE 0x%x "
15950 "in cache [from module %s]\n"),
b64f50a1 15951 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15952 return pd;
72bf9492
DJ
15953}
15954
abc72ce4
DE
15955/* See if we can figure out if the class lives in a namespace. We do
15956 this by looking for a member function; its demangled name will
15957 contain namespace info, if there is any. */
15958
15959static void
15960guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15961 struct dwarf2_cu *cu)
15962{
15963 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15964 what template types look like, because the demangler
15965 frequently doesn't give the same name as the debug info. We
15966 could fix this by only using the demangled name to get the
15967 prefix (but see comment in read_structure_type). */
15968
15969 struct partial_die_info *real_pdi;
15970 struct partial_die_info *child_pdi;
15971
15972 /* If this DIE (this DIE's specification, if any) has a parent, then
15973 we should not do this. We'll prepend the parent's fully qualified
15974 name when we create the partial symbol. */
15975
15976 real_pdi = struct_pdi;
15977 while (real_pdi->has_specification)
36586728
TT
15978 real_pdi = find_partial_die (real_pdi->spec_offset,
15979 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15980
15981 if (real_pdi->die_parent != NULL)
15982 return;
15983
15984 for (child_pdi = struct_pdi->die_child;
15985 child_pdi != NULL;
15986 child_pdi = child_pdi->die_sibling)
15987 {
15988 if (child_pdi->tag == DW_TAG_subprogram
15989 && child_pdi->linkage_name != NULL)
15990 {
15991 char *actual_class_name
15992 = language_class_name_from_physname (cu->language_defn,
15993 child_pdi->linkage_name);
15994 if (actual_class_name != NULL)
15995 {
15996 struct_pdi->name
34a68019 15997 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
15998 actual_class_name,
15999 strlen (actual_class_name));
abc72ce4
DE
16000 xfree (actual_class_name);
16001 }
16002 break;
16003 }
16004 }
16005}
16006
72bf9492
DJ
16007/* Adjust PART_DIE before generating a symbol for it. This function
16008 may set the is_external flag or change the DIE's name. */
16009
16010static void
16011fixup_partial_die (struct partial_die_info *part_die,
16012 struct dwarf2_cu *cu)
16013{
abc72ce4
DE
16014 /* Once we've fixed up a die, there's no point in doing so again.
16015 This also avoids a memory leak if we were to call
16016 guess_partial_die_structure_name multiple times. */
16017 if (part_die->fixup_called)
16018 return;
16019
72bf9492
DJ
16020 /* If we found a reference attribute and the DIE has no name, try
16021 to find a name in the referred to DIE. */
16022
16023 if (part_die->name == NULL && part_die->has_specification)
16024 {
16025 struct partial_die_info *spec_die;
72bf9492 16026
36586728
TT
16027 spec_die = find_partial_die (part_die->spec_offset,
16028 part_die->spec_is_dwz, cu);
72bf9492 16029
10b3939b 16030 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16031
16032 if (spec_die->name)
16033 {
16034 part_die->name = spec_die->name;
16035
16036 /* Copy DW_AT_external attribute if it is set. */
16037 if (spec_die->is_external)
16038 part_die->is_external = spec_die->is_external;
16039 }
16040 }
16041
16042 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16043
16044 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16045 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16046
abc72ce4
DE
16047 /* If there is no parent die to provide a namespace, and there are
16048 children, see if we can determine the namespace from their linkage
122d1940 16049 name. */
abc72ce4 16050 if (cu->language == language_cplus
8b70b953 16051 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16052 && part_die->die_parent == NULL
16053 && part_die->has_children
16054 && (part_die->tag == DW_TAG_class_type
16055 || part_die->tag == DW_TAG_structure_type
16056 || part_die->tag == DW_TAG_union_type))
16057 guess_partial_die_structure_name (part_die, cu);
16058
53832f31
TT
16059 /* GCC might emit a nameless struct or union that has a linkage
16060 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16061 if (part_die->name == NULL
96408a79
SA
16062 && (part_die->tag == DW_TAG_class_type
16063 || part_die->tag == DW_TAG_interface_type
16064 || part_die->tag == DW_TAG_structure_type
16065 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16066 && part_die->linkage_name != NULL)
16067 {
16068 char *demangled;
16069
8de20a37 16070 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16071 if (demangled)
16072 {
96408a79
SA
16073 const char *base;
16074
16075 /* Strip any leading namespaces/classes, keep only the base name.
16076 DW_AT_name for named DIEs does not contain the prefixes. */
16077 base = strrchr (demangled, ':');
16078 if (base && base > demangled && base[-1] == ':')
16079 base++;
16080 else
16081 base = demangled;
16082
34a68019
TT
16083 part_die->name
16084 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16085 base, strlen (base));
53832f31
TT
16086 xfree (demangled);
16087 }
16088 }
16089
abc72ce4 16090 part_die->fixup_called = 1;
72bf9492
DJ
16091}
16092
a8329558 16093/* Read an attribute value described by an attribute form. */
c906108c 16094
d521ce57 16095static const gdb_byte *
dee91e82
DE
16096read_attribute_value (const struct die_reader_specs *reader,
16097 struct attribute *attr, unsigned form,
d521ce57 16098 const gdb_byte *info_ptr)
c906108c 16099{
dee91e82 16100 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16101 struct objfile *objfile = cu->objfile;
16102 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16103 bfd *abfd = reader->abfd;
e7c27a73 16104 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16105 unsigned int bytes_read;
16106 struct dwarf_block *blk;
16107
a8329558
KW
16108 attr->form = form;
16109 switch (form)
c906108c 16110 {
c906108c 16111 case DW_FORM_ref_addr:
ae411497 16112 if (cu->header.version == 2)
4568ecf9 16113 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16114 else
4568ecf9
DE
16115 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16116 &cu->header, &bytes_read);
ae411497
TT
16117 info_ptr += bytes_read;
16118 break;
36586728
TT
16119 case DW_FORM_GNU_ref_alt:
16120 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16121 info_ptr += bytes_read;
16122 break;
ae411497 16123 case DW_FORM_addr:
e7c27a73 16124 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16125 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16126 info_ptr += bytes_read;
c906108c
SS
16127 break;
16128 case DW_FORM_block2:
7b5a2f43 16129 blk = dwarf_alloc_block (cu);
c906108c
SS
16130 blk->size = read_2_bytes (abfd, info_ptr);
16131 info_ptr += 2;
16132 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16133 info_ptr += blk->size;
16134 DW_BLOCK (attr) = blk;
16135 break;
16136 case DW_FORM_block4:
7b5a2f43 16137 blk = dwarf_alloc_block (cu);
c906108c
SS
16138 blk->size = read_4_bytes (abfd, info_ptr);
16139 info_ptr += 4;
16140 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16141 info_ptr += blk->size;
16142 DW_BLOCK (attr) = blk;
16143 break;
16144 case DW_FORM_data2:
16145 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16146 info_ptr += 2;
16147 break;
16148 case DW_FORM_data4:
16149 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16150 info_ptr += 4;
16151 break;
16152 case DW_FORM_data8:
16153 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16154 info_ptr += 8;
16155 break;
2dc7f7b3
TT
16156 case DW_FORM_sec_offset:
16157 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16158 info_ptr += bytes_read;
16159 break;
c906108c 16160 case DW_FORM_string:
9b1c24c8 16161 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16162 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16163 info_ptr += bytes_read;
16164 break;
4bdf3d34 16165 case DW_FORM_strp:
36586728
TT
16166 if (!cu->per_cu->is_dwz)
16167 {
16168 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16169 &bytes_read);
16170 DW_STRING_IS_CANONICAL (attr) = 0;
16171 info_ptr += bytes_read;
16172 break;
16173 }
16174 /* FALLTHROUGH */
16175 case DW_FORM_GNU_strp_alt:
16176 {
16177 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16178 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16179 &bytes_read);
16180
16181 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16182 DW_STRING_IS_CANONICAL (attr) = 0;
16183 info_ptr += bytes_read;
16184 }
4bdf3d34 16185 break;
2dc7f7b3 16186 case DW_FORM_exprloc:
c906108c 16187 case DW_FORM_block:
7b5a2f43 16188 blk = dwarf_alloc_block (cu);
c906108c
SS
16189 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16190 info_ptr += bytes_read;
16191 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16192 info_ptr += blk->size;
16193 DW_BLOCK (attr) = blk;
16194 break;
16195 case DW_FORM_block1:
7b5a2f43 16196 blk = dwarf_alloc_block (cu);
c906108c
SS
16197 blk->size = read_1_byte (abfd, info_ptr);
16198 info_ptr += 1;
16199 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16200 info_ptr += blk->size;
16201 DW_BLOCK (attr) = blk;
16202 break;
16203 case DW_FORM_data1:
16204 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16205 info_ptr += 1;
16206 break;
16207 case DW_FORM_flag:
16208 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16209 info_ptr += 1;
16210 break;
2dc7f7b3
TT
16211 case DW_FORM_flag_present:
16212 DW_UNSND (attr) = 1;
16213 break;
c906108c
SS
16214 case DW_FORM_sdata:
16215 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16216 info_ptr += bytes_read;
16217 break;
16218 case DW_FORM_udata:
16219 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16220 info_ptr += bytes_read;
16221 break;
16222 case DW_FORM_ref1:
4568ecf9
DE
16223 DW_UNSND (attr) = (cu->header.offset.sect_off
16224 + read_1_byte (abfd, info_ptr));
c906108c
SS
16225 info_ptr += 1;
16226 break;
16227 case DW_FORM_ref2:
4568ecf9
DE
16228 DW_UNSND (attr) = (cu->header.offset.sect_off
16229 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16230 info_ptr += 2;
16231 break;
16232 case DW_FORM_ref4:
4568ecf9
DE
16233 DW_UNSND (attr) = (cu->header.offset.sect_off
16234 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16235 info_ptr += 4;
16236 break;
613e1657 16237 case DW_FORM_ref8:
4568ecf9
DE
16238 DW_UNSND (attr) = (cu->header.offset.sect_off
16239 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16240 info_ptr += 8;
16241 break;
55f1336d 16242 case DW_FORM_ref_sig8:
ac9ec31b 16243 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16244 info_ptr += 8;
16245 break;
c906108c 16246 case DW_FORM_ref_udata:
4568ecf9
DE
16247 DW_UNSND (attr) = (cu->header.offset.sect_off
16248 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16249 info_ptr += bytes_read;
16250 break;
c906108c 16251 case DW_FORM_indirect:
a8329558
KW
16252 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16253 info_ptr += bytes_read;
dee91e82 16254 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16255 break;
3019eac3
DE
16256 case DW_FORM_GNU_addr_index:
16257 if (reader->dwo_file == NULL)
16258 {
16259 /* For now flag a hard error.
16260 Later we can turn this into a complaint. */
16261 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16262 dwarf_form_name (form),
16263 bfd_get_filename (abfd));
16264 }
16265 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16266 info_ptr += bytes_read;
16267 break;
16268 case DW_FORM_GNU_str_index:
16269 if (reader->dwo_file == NULL)
16270 {
16271 /* For now flag a hard error.
16272 Later we can turn this into a complaint if warranted. */
16273 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16274 dwarf_form_name (form),
16275 bfd_get_filename (abfd));
16276 }
16277 {
16278 ULONGEST str_index =
16279 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16280
342587c4 16281 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16282 DW_STRING_IS_CANONICAL (attr) = 0;
16283 info_ptr += bytes_read;
16284 }
16285 break;
c906108c 16286 default:
8a3fe4f8 16287 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16288 dwarf_form_name (form),
16289 bfd_get_filename (abfd));
c906108c 16290 }
28e94949 16291
36586728 16292 /* Super hack. */
7771576e 16293 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16294 attr->form = DW_FORM_GNU_ref_alt;
16295
28e94949
JB
16296 /* We have seen instances where the compiler tried to emit a byte
16297 size attribute of -1 which ended up being encoded as an unsigned
16298 0xffffffff. Although 0xffffffff is technically a valid size value,
16299 an object of this size seems pretty unlikely so we can relatively
16300 safely treat these cases as if the size attribute was invalid and
16301 treat them as zero by default. */
16302 if (attr->name == DW_AT_byte_size
16303 && form == DW_FORM_data4
16304 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16305 {
16306 complaint
16307 (&symfile_complaints,
43bbcdc2
PH
16308 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16309 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16310 DW_UNSND (attr) = 0;
16311 }
28e94949 16312
c906108c
SS
16313 return info_ptr;
16314}
16315
a8329558
KW
16316/* Read an attribute described by an abbreviated attribute. */
16317
d521ce57 16318static const gdb_byte *
dee91e82
DE
16319read_attribute (const struct die_reader_specs *reader,
16320 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16321 const gdb_byte *info_ptr)
a8329558
KW
16322{
16323 attr->name = abbrev->name;
dee91e82 16324 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16325}
16326
0963b4bd 16327/* Read dwarf information from a buffer. */
c906108c
SS
16328
16329static unsigned int
a1855c1d 16330read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16331{
fe1b8b76 16332 return bfd_get_8 (abfd, buf);
c906108c
SS
16333}
16334
16335static int
a1855c1d 16336read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16337{
fe1b8b76 16338 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16339}
16340
16341static unsigned int
a1855c1d 16342read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16343{
fe1b8b76 16344 return bfd_get_16 (abfd, buf);
c906108c
SS
16345}
16346
21ae7a4d 16347static int
a1855c1d 16348read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16349{
16350 return bfd_get_signed_16 (abfd, buf);
16351}
16352
c906108c 16353static unsigned int
a1855c1d 16354read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16355{
fe1b8b76 16356 return bfd_get_32 (abfd, buf);
c906108c
SS
16357}
16358
21ae7a4d 16359static int
a1855c1d 16360read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16361{
16362 return bfd_get_signed_32 (abfd, buf);
16363}
16364
93311388 16365static ULONGEST
a1855c1d 16366read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16367{
fe1b8b76 16368 return bfd_get_64 (abfd, buf);
c906108c
SS
16369}
16370
16371static CORE_ADDR
d521ce57 16372read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16373 unsigned int *bytes_read)
c906108c 16374{
e7c27a73 16375 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16376 CORE_ADDR retval = 0;
16377
107d2387 16378 if (cu_header->signed_addr_p)
c906108c 16379 {
107d2387
AC
16380 switch (cu_header->addr_size)
16381 {
16382 case 2:
fe1b8b76 16383 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16384 break;
16385 case 4:
fe1b8b76 16386 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16387 break;
16388 case 8:
fe1b8b76 16389 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16390 break;
16391 default:
8e65ff28 16392 internal_error (__FILE__, __LINE__,
e2e0b3e5 16393 _("read_address: bad switch, signed [in module %s]"),
659b0389 16394 bfd_get_filename (abfd));
107d2387
AC
16395 }
16396 }
16397 else
16398 {
16399 switch (cu_header->addr_size)
16400 {
16401 case 2:
fe1b8b76 16402 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16403 break;
16404 case 4:
fe1b8b76 16405 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16406 break;
16407 case 8:
fe1b8b76 16408 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16409 break;
16410 default:
8e65ff28 16411 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16412 _("read_address: bad switch, "
16413 "unsigned [in module %s]"),
659b0389 16414 bfd_get_filename (abfd));
107d2387 16415 }
c906108c 16416 }
64367e0a 16417
107d2387
AC
16418 *bytes_read = cu_header->addr_size;
16419 return retval;
c906108c
SS
16420}
16421
f7ef9339 16422/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16423 specification allows the initial length to take up either 4 bytes
16424 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16425 bytes describe the length and all offsets will be 8 bytes in length
16426 instead of 4.
16427
f7ef9339
KB
16428 An older, non-standard 64-bit format is also handled by this
16429 function. The older format in question stores the initial length
16430 as an 8-byte quantity without an escape value. Lengths greater
16431 than 2^32 aren't very common which means that the initial 4 bytes
16432 is almost always zero. Since a length value of zero doesn't make
16433 sense for the 32-bit format, this initial zero can be considered to
16434 be an escape value which indicates the presence of the older 64-bit
16435 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16436 greater than 4GB. If it becomes necessary to handle lengths
16437 somewhat larger than 4GB, we could allow other small values (such
16438 as the non-sensical values of 1, 2, and 3) to also be used as
16439 escape values indicating the presence of the old format.
f7ef9339 16440
917c78fc
MK
16441 The value returned via bytes_read should be used to increment the
16442 relevant pointer after calling read_initial_length().
c764a876 16443
613e1657
KB
16444 [ Note: read_initial_length() and read_offset() are based on the
16445 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16446 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16447 from:
16448
f7ef9339 16449 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16450
613e1657
KB
16451 This document is only a draft and is subject to change. (So beware.)
16452
f7ef9339 16453 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16454 determined empirically by examining 64-bit ELF files produced by
16455 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16456
16457 - Kevin, July 16, 2002
613e1657
KB
16458 ] */
16459
16460static LONGEST
d521ce57 16461read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16462{
fe1b8b76 16463 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16464
dd373385 16465 if (length == 0xffffffff)
613e1657 16466 {
fe1b8b76 16467 length = bfd_get_64 (abfd, buf + 4);
613e1657 16468 *bytes_read = 12;
613e1657 16469 }
dd373385 16470 else if (length == 0)
f7ef9339 16471 {
dd373385 16472 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16473 length = bfd_get_64 (abfd, buf);
f7ef9339 16474 *bytes_read = 8;
f7ef9339 16475 }
613e1657
KB
16476 else
16477 {
16478 *bytes_read = 4;
613e1657
KB
16479 }
16480
c764a876
DE
16481 return length;
16482}
dd373385 16483
c764a876
DE
16484/* Cover function for read_initial_length.
16485 Returns the length of the object at BUF, and stores the size of the
16486 initial length in *BYTES_READ and stores the size that offsets will be in
16487 *OFFSET_SIZE.
16488 If the initial length size is not equivalent to that specified in
16489 CU_HEADER then issue a complaint.
16490 This is useful when reading non-comp-unit headers. */
dd373385 16491
c764a876 16492static LONGEST
d521ce57 16493read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16494 const struct comp_unit_head *cu_header,
16495 unsigned int *bytes_read,
16496 unsigned int *offset_size)
16497{
16498 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16499
16500 gdb_assert (cu_header->initial_length_size == 4
16501 || cu_header->initial_length_size == 8
16502 || cu_header->initial_length_size == 12);
16503
16504 if (cu_header->initial_length_size != *bytes_read)
16505 complaint (&symfile_complaints,
16506 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16507
c764a876 16508 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16509 return length;
613e1657
KB
16510}
16511
16512/* Read an offset from the data stream. The size of the offset is
917c78fc 16513 given by cu_header->offset_size. */
613e1657
KB
16514
16515static LONGEST
d521ce57
TT
16516read_offset (bfd *abfd, const gdb_byte *buf,
16517 const struct comp_unit_head *cu_header,
891d2f0b 16518 unsigned int *bytes_read)
c764a876
DE
16519{
16520 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16521
c764a876
DE
16522 *bytes_read = cu_header->offset_size;
16523 return offset;
16524}
16525
16526/* Read an offset from the data stream. */
16527
16528static LONGEST
d521ce57 16529read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16530{
16531 LONGEST retval = 0;
16532
c764a876 16533 switch (offset_size)
613e1657
KB
16534 {
16535 case 4:
fe1b8b76 16536 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16537 break;
16538 case 8:
fe1b8b76 16539 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16540 break;
16541 default:
8e65ff28 16542 internal_error (__FILE__, __LINE__,
c764a876 16543 _("read_offset_1: bad switch [in module %s]"),
659b0389 16544 bfd_get_filename (abfd));
613e1657
KB
16545 }
16546
917c78fc 16547 return retval;
613e1657
KB
16548}
16549
d521ce57
TT
16550static const gdb_byte *
16551read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16552{
16553 /* If the size of a host char is 8 bits, we can return a pointer
16554 to the buffer, otherwise we have to copy the data to a buffer
16555 allocated on the temporary obstack. */
4bdf3d34 16556 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16557 return buf;
c906108c
SS
16558}
16559
d521ce57
TT
16560static const char *
16561read_direct_string (bfd *abfd, const gdb_byte *buf,
16562 unsigned int *bytes_read_ptr)
c906108c
SS
16563{
16564 /* If the size of a host char is 8 bits, we can return a pointer
16565 to the string, otherwise we have to copy the string to a buffer
16566 allocated on the temporary obstack. */
4bdf3d34 16567 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16568 if (*buf == '\0')
16569 {
16570 *bytes_read_ptr = 1;
16571 return NULL;
16572 }
d521ce57
TT
16573 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16574 return (const char *) buf;
4bdf3d34
JJ
16575}
16576
d521ce57 16577static const char *
cf2c3c16 16578read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16579{
be391dca 16580 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16581 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16582 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16583 bfd_get_filename (abfd));
dce234bc 16584 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16585 error (_("DW_FORM_strp pointing outside of "
16586 ".debug_str section [in module %s]"),
16587 bfd_get_filename (abfd));
4bdf3d34 16588 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16589 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16590 return NULL;
d521ce57 16591 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16592}
16593
36586728
TT
16594/* Read a string at offset STR_OFFSET in the .debug_str section from
16595 the .dwz file DWZ. Throw an error if the offset is too large. If
16596 the string consists of a single NUL byte, return NULL; otherwise
16597 return a pointer to the string. */
16598
d521ce57 16599static const char *
36586728
TT
16600read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16601{
16602 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16603
16604 if (dwz->str.buffer == NULL)
16605 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16606 "section [in module %s]"),
16607 bfd_get_filename (dwz->dwz_bfd));
16608 if (str_offset >= dwz->str.size)
16609 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16610 ".debug_str section [in module %s]"),
16611 bfd_get_filename (dwz->dwz_bfd));
16612 gdb_assert (HOST_CHAR_BIT == 8);
16613 if (dwz->str.buffer[str_offset] == '\0')
16614 return NULL;
d521ce57 16615 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16616}
16617
d521ce57
TT
16618static const char *
16619read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16620 const struct comp_unit_head *cu_header,
16621 unsigned int *bytes_read_ptr)
16622{
16623 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16624
16625 return read_indirect_string_at_offset (abfd, str_offset);
16626}
16627
12df843f 16628static ULONGEST
d521ce57
TT
16629read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16630 unsigned int *bytes_read_ptr)
c906108c 16631{
12df843f 16632 ULONGEST result;
ce5d95e1 16633 unsigned int num_read;
c906108c
SS
16634 int i, shift;
16635 unsigned char byte;
16636
16637 result = 0;
16638 shift = 0;
16639 num_read = 0;
16640 i = 0;
16641 while (1)
16642 {
fe1b8b76 16643 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16644 buf++;
16645 num_read++;
12df843f 16646 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16647 if ((byte & 128) == 0)
16648 {
16649 break;
16650 }
16651 shift += 7;
16652 }
16653 *bytes_read_ptr = num_read;
16654 return result;
16655}
16656
12df843f 16657static LONGEST
d521ce57
TT
16658read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16659 unsigned int *bytes_read_ptr)
c906108c 16660{
12df843f 16661 LONGEST result;
77e0b926 16662 int i, shift, num_read;
c906108c
SS
16663 unsigned char byte;
16664
16665 result = 0;
16666 shift = 0;
c906108c
SS
16667 num_read = 0;
16668 i = 0;
16669 while (1)
16670 {
fe1b8b76 16671 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16672 buf++;
16673 num_read++;
12df843f 16674 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16675 shift += 7;
16676 if ((byte & 128) == 0)
16677 {
16678 break;
16679 }
16680 }
77e0b926 16681 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16682 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16683 *bytes_read_ptr = num_read;
16684 return result;
16685}
16686
3019eac3
DE
16687/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16688 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16689 ADDR_SIZE is the size of addresses from the CU header. */
16690
16691static CORE_ADDR
16692read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16693{
16694 struct objfile *objfile = dwarf2_per_objfile->objfile;
16695 bfd *abfd = objfile->obfd;
16696 const gdb_byte *info_ptr;
16697
16698 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16699 if (dwarf2_per_objfile->addr.buffer == NULL)
16700 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16701 objfile_name (objfile));
3019eac3
DE
16702 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16703 error (_("DW_FORM_addr_index pointing outside of "
16704 ".debug_addr section [in module %s]"),
4262abfb 16705 objfile_name (objfile));
3019eac3
DE
16706 info_ptr = (dwarf2_per_objfile->addr.buffer
16707 + addr_base + addr_index * addr_size);
16708 if (addr_size == 4)
16709 return bfd_get_32 (abfd, info_ptr);
16710 else
16711 return bfd_get_64 (abfd, info_ptr);
16712}
16713
16714/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16715
16716static CORE_ADDR
16717read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16718{
16719 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16720}
16721
16722/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16723
16724static CORE_ADDR
d521ce57 16725read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16726 unsigned int *bytes_read)
16727{
16728 bfd *abfd = cu->objfile->obfd;
16729 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16730
16731 return read_addr_index (cu, addr_index);
16732}
16733
16734/* Data structure to pass results from dwarf2_read_addr_index_reader
16735 back to dwarf2_read_addr_index. */
16736
16737struct dwarf2_read_addr_index_data
16738{
16739 ULONGEST addr_base;
16740 int addr_size;
16741};
16742
16743/* die_reader_func for dwarf2_read_addr_index. */
16744
16745static void
16746dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16747 const gdb_byte *info_ptr,
3019eac3
DE
16748 struct die_info *comp_unit_die,
16749 int has_children,
16750 void *data)
16751{
16752 struct dwarf2_cu *cu = reader->cu;
16753 struct dwarf2_read_addr_index_data *aidata =
16754 (struct dwarf2_read_addr_index_data *) data;
16755
16756 aidata->addr_base = cu->addr_base;
16757 aidata->addr_size = cu->header.addr_size;
16758}
16759
16760/* Given an index in .debug_addr, fetch the value.
16761 NOTE: This can be called during dwarf expression evaluation,
16762 long after the debug information has been read, and thus per_cu->cu
16763 may no longer exist. */
16764
16765CORE_ADDR
16766dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16767 unsigned int addr_index)
16768{
16769 struct objfile *objfile = per_cu->objfile;
16770 struct dwarf2_cu *cu = per_cu->cu;
16771 ULONGEST addr_base;
16772 int addr_size;
16773
16774 /* This is intended to be called from outside this file. */
16775 dw2_setup (objfile);
16776
16777 /* We need addr_base and addr_size.
16778 If we don't have PER_CU->cu, we have to get it.
16779 Nasty, but the alternative is storing the needed info in PER_CU,
16780 which at this point doesn't seem justified: it's not clear how frequently
16781 it would get used and it would increase the size of every PER_CU.
16782 Entry points like dwarf2_per_cu_addr_size do a similar thing
16783 so we're not in uncharted territory here.
16784 Alas we need to be a bit more complicated as addr_base is contained
16785 in the DIE.
16786
16787 We don't need to read the entire CU(/TU).
16788 We just need the header and top level die.
a1b64ce1 16789
3019eac3 16790 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16791 For now we skip this optimization. */
3019eac3
DE
16792
16793 if (cu != NULL)
16794 {
16795 addr_base = cu->addr_base;
16796 addr_size = cu->header.addr_size;
16797 }
16798 else
16799 {
16800 struct dwarf2_read_addr_index_data aidata;
16801
a1b64ce1
DE
16802 /* Note: We can't use init_cutu_and_read_dies_simple here,
16803 we need addr_base. */
16804 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16805 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16806 addr_base = aidata.addr_base;
16807 addr_size = aidata.addr_size;
16808 }
16809
16810 return read_addr_index_1 (addr_index, addr_base, addr_size);
16811}
16812
57d63ce2
DE
16813/* Given a DW_FORM_GNU_str_index, fetch the string.
16814 This is only used by the Fission support. */
3019eac3 16815
d521ce57 16816static const char *
342587c4 16817read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16818{
16819 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16820 const char *objf_name = objfile_name (objfile);
3019eac3 16821 bfd *abfd = objfile->obfd;
342587c4 16822 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16823 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16824 struct dwarf2_section_info *str_offsets_section =
16825 &reader->dwo_file->sections.str_offsets;
d521ce57 16826 const gdb_byte *info_ptr;
3019eac3 16827 ULONGEST str_offset;
57d63ce2 16828 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16829
73869dc2
DE
16830 dwarf2_read_section (objfile, str_section);
16831 dwarf2_read_section (objfile, str_offsets_section);
16832 if (str_section->buffer == NULL)
57d63ce2 16833 error (_("%s used without .debug_str.dwo section"
3019eac3 16834 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16835 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16836 if (str_offsets_section->buffer == NULL)
57d63ce2 16837 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16838 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16839 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16840 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16841 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16842 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16843 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16844 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16845 + str_index * cu->header.offset_size);
16846 if (cu->header.offset_size == 4)
16847 str_offset = bfd_get_32 (abfd, info_ptr);
16848 else
16849 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16850 if (str_offset >= str_section->size)
57d63ce2 16851 error (_("Offset from %s pointing outside of"
3019eac3 16852 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16853 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16854 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16855}
16856
3019eac3
DE
16857/* Return the length of an LEB128 number in BUF. */
16858
16859static int
16860leb128_size (const gdb_byte *buf)
16861{
16862 const gdb_byte *begin = buf;
16863 gdb_byte byte;
16864
16865 while (1)
16866 {
16867 byte = *buf++;
16868 if ((byte & 128) == 0)
16869 return buf - begin;
16870 }
16871}
16872
c906108c 16873static void
e142c38c 16874set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16875{
16876 switch (lang)
16877 {
16878 case DW_LANG_C89:
76bee0cc 16879 case DW_LANG_C99:
0cfd832f 16880 case DW_LANG_C11:
c906108c 16881 case DW_LANG_C:
d1be3247 16882 case DW_LANG_UPC:
e142c38c 16883 cu->language = language_c;
c906108c
SS
16884 break;
16885 case DW_LANG_C_plus_plus:
0cfd832f
MW
16886 case DW_LANG_C_plus_plus_11:
16887 case DW_LANG_C_plus_plus_14:
e142c38c 16888 cu->language = language_cplus;
c906108c 16889 break;
6aecb9c2
JB
16890 case DW_LANG_D:
16891 cu->language = language_d;
16892 break;
c906108c
SS
16893 case DW_LANG_Fortran77:
16894 case DW_LANG_Fortran90:
b21b22e0 16895 case DW_LANG_Fortran95:
e142c38c 16896 cu->language = language_fortran;
c906108c 16897 break;
a766d390
DE
16898 case DW_LANG_Go:
16899 cu->language = language_go;
16900 break;
c906108c 16901 case DW_LANG_Mips_Assembler:
e142c38c 16902 cu->language = language_asm;
c906108c 16903 break;
bebd888e 16904 case DW_LANG_Java:
e142c38c 16905 cu->language = language_java;
bebd888e 16906 break;
c906108c 16907 case DW_LANG_Ada83:
8aaf0b47 16908 case DW_LANG_Ada95:
bc5f45f8
JB
16909 cu->language = language_ada;
16910 break;
72019c9c
GM
16911 case DW_LANG_Modula2:
16912 cu->language = language_m2;
16913 break;
fe8e67fd
PM
16914 case DW_LANG_Pascal83:
16915 cu->language = language_pascal;
16916 break;
22566fbd
DJ
16917 case DW_LANG_ObjC:
16918 cu->language = language_objc;
16919 break;
c906108c
SS
16920 case DW_LANG_Cobol74:
16921 case DW_LANG_Cobol85:
c906108c 16922 default:
e142c38c 16923 cu->language = language_minimal;
c906108c
SS
16924 break;
16925 }
e142c38c 16926 cu->language_defn = language_def (cu->language);
c906108c
SS
16927}
16928
16929/* Return the named attribute or NULL if not there. */
16930
16931static struct attribute *
e142c38c 16932dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16933{
a48e046c 16934 for (;;)
c906108c 16935 {
a48e046c
TT
16936 unsigned int i;
16937 struct attribute *spec = NULL;
16938
16939 for (i = 0; i < die->num_attrs; ++i)
16940 {
16941 if (die->attrs[i].name == name)
16942 return &die->attrs[i];
16943 if (die->attrs[i].name == DW_AT_specification
16944 || die->attrs[i].name == DW_AT_abstract_origin)
16945 spec = &die->attrs[i];
16946 }
16947
16948 if (!spec)
16949 break;
c906108c 16950
f2f0e013 16951 die = follow_die_ref (die, spec, &cu);
f2f0e013 16952 }
c5aa993b 16953
c906108c
SS
16954 return NULL;
16955}
16956
348e048f
DE
16957/* Return the named attribute or NULL if not there,
16958 but do not follow DW_AT_specification, etc.
16959 This is for use in contexts where we're reading .debug_types dies.
16960 Following DW_AT_specification, DW_AT_abstract_origin will take us
16961 back up the chain, and we want to go down. */
16962
16963static struct attribute *
45e58e77 16964dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16965{
16966 unsigned int i;
16967
16968 for (i = 0; i < die->num_attrs; ++i)
16969 if (die->attrs[i].name == name)
16970 return &die->attrs[i];
16971
16972 return NULL;
16973}
16974
05cf31d1
JB
16975/* Return non-zero iff the attribute NAME is defined for the given DIE,
16976 and holds a non-zero value. This function should only be used for
2dc7f7b3 16977 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16978
16979static int
16980dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16981{
16982 struct attribute *attr = dwarf2_attr (die, name, cu);
16983
16984 return (attr && DW_UNSND (attr));
16985}
16986
3ca72b44 16987static int
e142c38c 16988die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16989{
05cf31d1
JB
16990 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16991 which value is non-zero. However, we have to be careful with
16992 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16993 (via dwarf2_flag_true_p) follows this attribute. So we may
16994 end up accidently finding a declaration attribute that belongs
16995 to a different DIE referenced by the specification attribute,
16996 even though the given DIE does not have a declaration attribute. */
16997 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16998 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16999}
17000
63d06c5c 17001/* Return the die giving the specification for DIE, if there is
f2f0e013 17002 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17003 containing the return value on output. If there is no
17004 specification, but there is an abstract origin, that is
17005 returned. */
63d06c5c
DC
17006
17007static struct die_info *
f2f0e013 17008die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17009{
f2f0e013
DJ
17010 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17011 *spec_cu);
63d06c5c 17012
edb3359d
DJ
17013 if (spec_attr == NULL)
17014 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17015
63d06c5c
DC
17016 if (spec_attr == NULL)
17017 return NULL;
17018 else
f2f0e013 17019 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17020}
c906108c 17021
debd256d 17022/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17023 refers to.
17024 NOTE: This is also used as a "cleanup" function. */
17025
debd256d
JB
17026static void
17027free_line_header (struct line_header *lh)
17028{
17029 if (lh->standard_opcode_lengths)
a8bc7b56 17030 xfree (lh->standard_opcode_lengths);
debd256d
JB
17031
17032 /* Remember that all the lh->file_names[i].name pointers are
17033 pointers into debug_line_buffer, and don't need to be freed. */
17034 if (lh->file_names)
a8bc7b56 17035 xfree (lh->file_names);
debd256d
JB
17036
17037 /* Similarly for the include directory names. */
17038 if (lh->include_dirs)
a8bc7b56 17039 xfree (lh->include_dirs);
debd256d 17040
a8bc7b56 17041 xfree (lh);
debd256d
JB
17042}
17043
527f3840
JK
17044/* Stub for free_line_header to match void * callback types. */
17045
17046static void
17047free_line_header_voidp (void *arg)
17048{
17049 struct line_header *lh = arg;
17050
17051 free_line_header (lh);
17052}
17053
debd256d 17054/* Add an entry to LH's include directory table. */
ae2de4f8 17055
debd256d 17056static void
d521ce57 17057add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17058{
debd256d
JB
17059 /* Grow the array if necessary. */
17060 if (lh->include_dirs_size == 0)
c5aa993b 17061 {
debd256d
JB
17062 lh->include_dirs_size = 1; /* for testing */
17063 lh->include_dirs = xmalloc (lh->include_dirs_size
17064 * sizeof (*lh->include_dirs));
17065 }
17066 else if (lh->num_include_dirs >= lh->include_dirs_size)
17067 {
17068 lh->include_dirs_size *= 2;
17069 lh->include_dirs = xrealloc (lh->include_dirs,
17070 (lh->include_dirs_size
17071 * sizeof (*lh->include_dirs)));
c5aa993b 17072 }
c906108c 17073
debd256d
JB
17074 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17075}
6e70227d 17076
debd256d 17077/* Add an entry to LH's file name table. */
ae2de4f8 17078
debd256d
JB
17079static void
17080add_file_name (struct line_header *lh,
d521ce57 17081 const char *name,
debd256d
JB
17082 unsigned int dir_index,
17083 unsigned int mod_time,
17084 unsigned int length)
17085{
17086 struct file_entry *fe;
17087
17088 /* Grow the array if necessary. */
17089 if (lh->file_names_size == 0)
17090 {
17091 lh->file_names_size = 1; /* for testing */
17092 lh->file_names = xmalloc (lh->file_names_size
17093 * sizeof (*lh->file_names));
17094 }
17095 else if (lh->num_file_names >= lh->file_names_size)
17096 {
17097 lh->file_names_size *= 2;
17098 lh->file_names = xrealloc (lh->file_names,
17099 (lh->file_names_size
17100 * sizeof (*lh->file_names)));
17101 }
17102
17103 fe = &lh->file_names[lh->num_file_names++];
17104 fe->name = name;
17105 fe->dir_index = dir_index;
17106 fe->mod_time = mod_time;
17107 fe->length = length;
aaa75496 17108 fe->included_p = 0;
cb1df416 17109 fe->symtab = NULL;
debd256d 17110}
6e70227d 17111
36586728
TT
17112/* A convenience function to find the proper .debug_line section for a
17113 CU. */
17114
17115static struct dwarf2_section_info *
17116get_debug_line_section (struct dwarf2_cu *cu)
17117{
17118 struct dwarf2_section_info *section;
17119
17120 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17121 DWO file. */
17122 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17123 section = &cu->dwo_unit->dwo_file->sections.line;
17124 else if (cu->per_cu->is_dwz)
17125 {
17126 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17127
17128 section = &dwz->line;
17129 }
17130 else
17131 section = &dwarf2_per_objfile->line;
17132
17133 return section;
17134}
17135
debd256d 17136/* Read the statement program header starting at OFFSET in
3019eac3 17137 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17138 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17139 Returns NULL if there is a problem reading the header, e.g., if it
17140 has a version we don't understand.
debd256d
JB
17141
17142 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17143 the returned object point into the dwarf line section buffer,
17144 and must not be freed. */
ae2de4f8 17145
debd256d 17146static struct line_header *
3019eac3 17147dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17148{
17149 struct cleanup *back_to;
17150 struct line_header *lh;
d521ce57 17151 const gdb_byte *line_ptr;
c764a876 17152 unsigned int bytes_read, offset_size;
debd256d 17153 int i;
d521ce57 17154 const char *cur_dir, *cur_file;
3019eac3
DE
17155 struct dwarf2_section_info *section;
17156 bfd *abfd;
17157
36586728 17158 section = get_debug_line_section (cu);
3019eac3
DE
17159 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17160 if (section->buffer == NULL)
debd256d 17161 {
3019eac3
DE
17162 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17163 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17164 else
17165 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17166 return 0;
17167 }
17168
fceca515
DE
17169 /* We can't do this until we know the section is non-empty.
17170 Only then do we know we have such a section. */
a32a8923 17171 abfd = get_section_bfd_owner (section);
fceca515 17172
a738430d
MK
17173 /* Make sure that at least there's room for the total_length field.
17174 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17175 if (offset + 4 >= section->size)
debd256d 17176 {
4d3c2250 17177 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17178 return 0;
17179 }
17180
17181 lh = xmalloc (sizeof (*lh));
17182 memset (lh, 0, sizeof (*lh));
17183 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17184 (void *) lh);
17185
527f3840
JK
17186 lh->offset.sect_off = offset;
17187 lh->offset_in_dwz = cu->per_cu->is_dwz;
17188
3019eac3 17189 line_ptr = section->buffer + offset;
debd256d 17190
a738430d 17191 /* Read in the header. */
6e70227d 17192 lh->total_length =
c764a876
DE
17193 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17194 &bytes_read, &offset_size);
debd256d 17195 line_ptr += bytes_read;
3019eac3 17196 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17197 {
4d3c2250 17198 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17199 do_cleanups (back_to);
debd256d
JB
17200 return 0;
17201 }
17202 lh->statement_program_end = line_ptr + lh->total_length;
17203 lh->version = read_2_bytes (abfd, line_ptr);
17204 line_ptr += 2;
cd366ee8
DE
17205 if (lh->version > 4)
17206 {
17207 /* This is a version we don't understand. The format could have
17208 changed in ways we don't handle properly so just punt. */
17209 complaint (&symfile_complaints,
17210 _("unsupported version in .debug_line section"));
17211 return NULL;
17212 }
c764a876
DE
17213 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17214 line_ptr += offset_size;
debd256d
JB
17215 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17216 line_ptr += 1;
2dc7f7b3
TT
17217 if (lh->version >= 4)
17218 {
17219 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17220 line_ptr += 1;
17221 }
17222 else
17223 lh->maximum_ops_per_instruction = 1;
17224
17225 if (lh->maximum_ops_per_instruction == 0)
17226 {
17227 lh->maximum_ops_per_instruction = 1;
17228 complaint (&symfile_complaints,
3e43a32a
MS
17229 _("invalid maximum_ops_per_instruction "
17230 "in `.debug_line' section"));
2dc7f7b3
TT
17231 }
17232
debd256d
JB
17233 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17234 line_ptr += 1;
17235 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17236 line_ptr += 1;
17237 lh->line_range = read_1_byte (abfd, line_ptr);
17238 line_ptr += 1;
17239 lh->opcode_base = read_1_byte (abfd, line_ptr);
17240 line_ptr += 1;
17241 lh->standard_opcode_lengths
fe1b8b76 17242 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17243
17244 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17245 for (i = 1; i < lh->opcode_base; ++i)
17246 {
17247 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17248 line_ptr += 1;
17249 }
17250
a738430d 17251 /* Read directory table. */
9b1c24c8 17252 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17253 {
17254 line_ptr += bytes_read;
17255 add_include_dir (lh, cur_dir);
17256 }
17257 line_ptr += bytes_read;
17258
a738430d 17259 /* Read file name table. */
9b1c24c8 17260 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17261 {
17262 unsigned int dir_index, mod_time, length;
17263
17264 line_ptr += bytes_read;
17265 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17266 line_ptr += bytes_read;
17267 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17268 line_ptr += bytes_read;
17269 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17270 line_ptr += bytes_read;
17271
17272 add_file_name (lh, cur_file, dir_index, mod_time, length);
17273 }
17274 line_ptr += bytes_read;
6e70227d 17275 lh->statement_program_start = line_ptr;
debd256d 17276
3019eac3 17277 if (line_ptr > (section->buffer + section->size))
4d3c2250 17278 complaint (&symfile_complaints,
3e43a32a
MS
17279 _("line number info header doesn't "
17280 "fit in `.debug_line' section"));
debd256d
JB
17281
17282 discard_cleanups (back_to);
17283 return lh;
17284}
c906108c 17285
c6da4cef
DE
17286/* Subroutine of dwarf_decode_lines to simplify it.
17287 Return the file name of the psymtab for included file FILE_INDEX
17288 in line header LH of PST.
17289 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17290 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17291 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17292
17293 The function creates dangling cleanup registration. */
c6da4cef 17294
d521ce57 17295static const char *
c6da4cef
DE
17296psymtab_include_file_name (const struct line_header *lh, int file_index,
17297 const struct partial_symtab *pst,
17298 const char *comp_dir)
17299{
17300 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17301 const char *include_name = fe.name;
17302 const char *include_name_to_compare = include_name;
17303 const char *dir_name = NULL;
72b9f47f
TT
17304 const char *pst_filename;
17305 char *copied_name = NULL;
c6da4cef
DE
17306 int file_is_pst;
17307
17308 if (fe.dir_index)
17309 dir_name = lh->include_dirs[fe.dir_index - 1];
17310
17311 if (!IS_ABSOLUTE_PATH (include_name)
17312 && (dir_name != NULL || comp_dir != NULL))
17313 {
17314 /* Avoid creating a duplicate psymtab for PST.
17315 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17316 Before we do the comparison, however, we need to account
17317 for DIR_NAME and COMP_DIR.
17318 First prepend dir_name (if non-NULL). If we still don't
17319 have an absolute path prepend comp_dir (if non-NULL).
17320 However, the directory we record in the include-file's
17321 psymtab does not contain COMP_DIR (to match the
17322 corresponding symtab(s)).
17323
17324 Example:
17325
17326 bash$ cd /tmp
17327 bash$ gcc -g ./hello.c
17328 include_name = "hello.c"
17329 dir_name = "."
17330 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17331 DW_AT_name = "./hello.c"
17332
17333 */
c6da4cef
DE
17334
17335 if (dir_name != NULL)
17336 {
d521ce57
TT
17337 char *tem = concat (dir_name, SLASH_STRING,
17338 include_name, (char *)NULL);
17339
17340 make_cleanup (xfree, tem);
17341 include_name = tem;
c6da4cef 17342 include_name_to_compare = include_name;
c6da4cef
DE
17343 }
17344 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17345 {
d521ce57
TT
17346 char *tem = concat (comp_dir, SLASH_STRING,
17347 include_name, (char *)NULL);
17348
17349 make_cleanup (xfree, tem);
17350 include_name_to_compare = tem;
c6da4cef
DE
17351 }
17352 }
17353
17354 pst_filename = pst->filename;
17355 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17356 {
72b9f47f
TT
17357 copied_name = concat (pst->dirname, SLASH_STRING,
17358 pst_filename, (char *)NULL);
17359 pst_filename = copied_name;
c6da4cef
DE
17360 }
17361
1e3fad37 17362 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17363
72b9f47f
TT
17364 if (copied_name != NULL)
17365 xfree (copied_name);
c6da4cef
DE
17366
17367 if (file_is_pst)
17368 return NULL;
17369 return include_name;
17370}
17371
c91513d8
PP
17372/* Ignore this record_line request. */
17373
17374static void
17375noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17376{
17377 return;
17378}
17379
a05a36a5
DE
17380/* Return non-zero if we should add LINE to the line number table.
17381 LINE is the line to add, LAST_LINE is the last line that was added,
17382 LAST_SUBFILE is the subfile for LAST_LINE.
17383 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17384 had a non-zero discriminator.
17385
17386 We have to be careful in the presence of discriminators.
17387 E.g., for this line:
17388
17389 for (i = 0; i < 100000; i++);
17390
17391 clang can emit four line number entries for that one line,
17392 each with a different discriminator.
17393 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17394
17395 However, we want gdb to coalesce all four entries into one.
17396 Otherwise the user could stepi into the middle of the line and
17397 gdb would get confused about whether the pc really was in the
17398 middle of the line.
17399
17400 Things are further complicated by the fact that two consecutive
17401 line number entries for the same line is a heuristic used by gcc
17402 to denote the end of the prologue. So we can't just discard duplicate
17403 entries, we have to be selective about it. The heuristic we use is
17404 that we only collapse consecutive entries for the same line if at least
17405 one of those entries has a non-zero discriminator. PR 17276.
17406
17407 Note: Addresses in the line number state machine can never go backwards
17408 within one sequence, thus this coalescing is ok. */
17409
17410static int
17411dwarf_record_line_p (unsigned int line, unsigned int last_line,
17412 int line_has_non_zero_discriminator,
17413 struct subfile *last_subfile)
17414{
17415 if (current_subfile != last_subfile)
17416 return 1;
17417 if (line != last_line)
17418 return 1;
17419 /* Same line for the same file that we've seen already.
17420 As a last check, for pr 17276, only record the line if the line
17421 has never had a non-zero discriminator. */
17422 if (!line_has_non_zero_discriminator)
17423 return 1;
17424 return 0;
17425}
17426
252a6764
DE
17427/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17428 in the line table of subfile SUBFILE. */
17429
17430static void
17431dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17432 unsigned int line, CORE_ADDR address,
17433 record_line_ftype p_record_line)
17434{
17435 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17436
d5962de5 17437 (*p_record_line) (subfile, line, addr);
252a6764
DE
17438}
17439
17440/* Subroutine of dwarf_decode_lines_1 to simplify it.
17441 Mark the end of a set of line number records.
17442 The arguments are the same as for dwarf_record_line.
17443 If SUBFILE is NULL the request is ignored. */
17444
17445static void
17446dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17447 CORE_ADDR address, record_line_ftype p_record_line)
17448{
17449 if (subfile != NULL)
17450 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17451}
17452
f3f5162e
DE
17453/* Subroutine of dwarf_decode_lines to simplify it.
17454 Process the line number information in LH. */
debd256d 17455
c906108c 17456static void
43f3e411
DE
17457dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17458 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17459{
d521ce57
TT
17460 const gdb_byte *line_ptr, *extended_end;
17461 const gdb_byte *line_end;
a8c50c1f 17462 unsigned int bytes_read, extended_len;
699ca60a 17463 unsigned char op_code, extended_op;
e142c38c
DJ
17464 CORE_ADDR baseaddr;
17465 struct objfile *objfile = cu->objfile;
f3f5162e 17466 bfd *abfd = objfile->obfd;
fbf65064 17467 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17468 struct subfile *last_subfile = NULL;
c91513d8
PP
17469 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17470 = record_line;
e142c38c
DJ
17471
17472 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17473
debd256d
JB
17474 line_ptr = lh->statement_program_start;
17475 line_end = lh->statement_program_end;
c906108c
SS
17476
17477 /* Read the statement sequences until there's nothing left. */
17478 while (line_ptr < line_end)
17479 {
3e29f34a
MR
17480 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17481 on the initial 0 address as if there was a line entry for it
17482 so that the backend has a chance to adjust it and also record
17483 it in case it needs it. This is currently used by MIPS code,
17484 cf. `mips_adjust_dwarf2_line'. */
17485 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
c906108c
SS
17486 unsigned int file = 1;
17487 unsigned int line = 1;
debd256d 17488 int is_stmt = lh->default_is_stmt;
c906108c 17489 int end_sequence = 0;
2dc7f7b3 17490 unsigned char op_index = 0;
a05a36a5
DE
17491 unsigned int discriminator = 0;
17492 /* The last line number that was recorded, used to coalesce
17493 consecutive entries for the same line. This can happen, for
17494 example, when discriminators are present. PR 17276. */
17495 unsigned int last_line = 0;
17496 int line_has_non_zero_discriminator = 0;
c906108c 17497
aaa75496 17498 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17499 {
aaa75496 17500 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17501 /* lh->include_dirs and lh->file_names are 0-based, but the
17502 directory and file name numbers in the statement program
17503 are 1-based. */
17504 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17505 const char *dir = NULL;
a738430d 17506
debd256d
JB
17507 if (fe->dir_index)
17508 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17509
4d663531 17510 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17511 }
17512
a738430d 17513 /* Decode the table. */
c5aa993b 17514 while (!end_sequence)
c906108c
SS
17515 {
17516 op_code = read_1_byte (abfd, line_ptr);
17517 line_ptr += 1;
59205f5a
JB
17518 if (line_ptr > line_end)
17519 {
17520 dwarf2_debug_line_missing_end_sequence_complaint ();
17521 break;
17522 }
9aa1fe7e 17523
debd256d 17524 if (op_code >= lh->opcode_base)
6e70227d 17525 {
8e07a239 17526 /* Special opcode. */
699ca60a 17527 unsigned char adj_opcode;
3e29f34a 17528 CORE_ADDR addr_adj;
a05a36a5 17529 int line_delta;
8e07a239 17530
debd256d 17531 adj_opcode = op_code - lh->opcode_base;
3e29f34a 17532 addr_adj = (((op_index + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17533 / lh->maximum_ops_per_instruction)
17534 * lh->minimum_instruction_length);
3e29f34a 17535 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17536 op_index = ((op_index + (adj_opcode / lh->line_range))
17537 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17538 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17539 line += line_delta;
17540 if (line_delta != 0)
17541 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17542 if (lh->num_file_names < file || file == 0)
25e43795 17543 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17544 /* For now we ignore lines not starting on an
17545 instruction boundary. */
17546 else if (op_index == 0)
25e43795
DJ
17547 {
17548 lh->file_names[file - 1].included_p = 1;
ca5f395d 17549 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17550 {
17551 if (last_subfile != current_subfile)
17552 {
252a6764
DE
17553 dwarf_finish_line (gdbarch, last_subfile,
17554 address, p_record_line);
fbf65064 17555 }
a05a36a5
DE
17556 if (dwarf_record_line_p (line, last_line,
17557 line_has_non_zero_discriminator,
17558 last_subfile))
17559 {
17560 dwarf_record_line (gdbarch, current_subfile,
17561 line, address, p_record_line);
17562 }
17563 last_subfile = current_subfile;
17564 last_line = line;
366da635 17565 }
25e43795 17566 }
a05a36a5 17567 discriminator = 0;
9aa1fe7e
GK
17568 }
17569 else switch (op_code)
c906108c
SS
17570 {
17571 case DW_LNS_extended_op:
3e43a32a
MS
17572 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17573 &bytes_read);
473b7be6 17574 line_ptr += bytes_read;
a8c50c1f 17575 extended_end = line_ptr + extended_len;
c906108c
SS
17576 extended_op = read_1_byte (abfd, line_ptr);
17577 line_ptr += 1;
17578 switch (extended_op)
17579 {
17580 case DW_LNE_end_sequence:
c91513d8 17581 p_record_line = record_line;
c906108c 17582 end_sequence = 1;
c906108c
SS
17583 break;
17584 case DW_LNE_set_address:
e7c27a73 17585 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8 17586
c3b7b696
YQ
17587 /* If address < lowpc then it's not a usable value, it's
17588 outside the pc range of the CU. However, we restrict
17589 the test to only address values of zero to preserve
17590 GDB's previous behaviour which is to handle the specific
17591 case of a function being GC'd by the linker. */
17592 if (address == 0 && address < lowpc)
c91513d8
PP
17593 {
17594 /* This line table is for a function which has been
17595 GCd by the linker. Ignore it. PR gdb/12528 */
17596
17597 long line_offset
36586728 17598 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17599
17600 complaint (&symfile_complaints,
17601 _(".debug_line address at offset 0x%lx is 0 "
17602 "[in module %s]"),
4262abfb 17603 line_offset, objfile_name (objfile));
c91513d8 17604 p_record_line = noop_record_line;
37780ee5
DE
17605 /* Note: p_record_line is left as noop_record_line
17606 until we see DW_LNE_end_sequence. */
c91513d8
PP
17607 }
17608
2dc7f7b3 17609 op_index = 0;
107d2387
AC
17610 line_ptr += bytes_read;
17611 address += baseaddr;
3e29f34a 17612 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
c906108c
SS
17613 break;
17614 case DW_LNE_define_file:
debd256d 17615 {
d521ce57 17616 const char *cur_file;
debd256d 17617 unsigned int dir_index, mod_time, length;
6e70227d 17618
3e43a32a
MS
17619 cur_file = read_direct_string (abfd, line_ptr,
17620 &bytes_read);
debd256d
JB
17621 line_ptr += bytes_read;
17622 dir_index =
17623 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17624 line_ptr += bytes_read;
17625 mod_time =
17626 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17627 line_ptr += bytes_read;
17628 length =
17629 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17630 line_ptr += bytes_read;
17631 add_file_name (lh, cur_file, dir_index, mod_time, length);
17632 }
c906108c 17633 break;
d0c6ba3d
CC
17634 case DW_LNE_set_discriminator:
17635 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17636 just ignore it. We still need to check its value though:
17637 if there are consecutive entries for the same
17638 (non-prologue) line we want to coalesce them.
17639 PR 17276. */
17640 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17641 &bytes_read);
17642 line_has_non_zero_discriminator |= discriminator != 0;
17643 line_ptr += bytes_read;
d0c6ba3d 17644 break;
c906108c 17645 default:
4d3c2250 17646 complaint (&symfile_complaints,
e2e0b3e5 17647 _("mangled .debug_line section"));
debd256d 17648 return;
c906108c 17649 }
a8c50c1f
DJ
17650 /* Make sure that we parsed the extended op correctly. If e.g.
17651 we expected a different address size than the producer used,
17652 we may have read the wrong number of bytes. */
17653 if (line_ptr != extended_end)
17654 {
17655 complaint (&symfile_complaints,
17656 _("mangled .debug_line section"));
17657 return;
17658 }
c906108c
SS
17659 break;
17660 case DW_LNS_copy:
59205f5a 17661 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17662 dwarf2_debug_line_missing_file_complaint ();
17663 else
366da635 17664 {
25e43795 17665 lh->file_names[file - 1].included_p = 1;
ca5f395d 17666 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17667 {
17668 if (last_subfile != current_subfile)
17669 {
252a6764
DE
17670 dwarf_finish_line (gdbarch, last_subfile,
17671 address, p_record_line);
fbf65064 17672 }
a05a36a5
DE
17673 if (dwarf_record_line_p (line, last_line,
17674 line_has_non_zero_discriminator,
17675 last_subfile))
17676 {
17677 dwarf_record_line (gdbarch, current_subfile,
17678 line, address, p_record_line);
17679 }
17680 last_subfile = current_subfile;
17681 last_line = line;
fbf65064 17682 }
366da635 17683 }
a05a36a5 17684 discriminator = 0;
c906108c
SS
17685 break;
17686 case DW_LNS_advance_pc:
2dc7f7b3
TT
17687 {
17688 CORE_ADDR adjust
17689 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17690 CORE_ADDR addr_adj;
2dc7f7b3 17691
3e29f34a 17692 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17693 / lh->maximum_ops_per_instruction)
17694 * lh->minimum_instruction_length);
3e29f34a 17695 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17696 op_index = ((op_index + adjust)
17697 % lh->maximum_ops_per_instruction);
17698 line_ptr += bytes_read;
17699 }
c906108c
SS
17700 break;
17701 case DW_LNS_advance_line:
a05a36a5
DE
17702 {
17703 int line_delta
17704 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17705
17706 line += line_delta;
17707 if (line_delta != 0)
17708 line_has_non_zero_discriminator = discriminator != 0;
17709 line_ptr += bytes_read;
17710 }
c906108c
SS
17711 break;
17712 case DW_LNS_set_file:
debd256d 17713 {
a738430d
MK
17714 /* The arrays lh->include_dirs and lh->file_names are
17715 0-based, but the directory and file name numbers in
17716 the statement program are 1-based. */
debd256d 17717 struct file_entry *fe;
d521ce57 17718 const char *dir = NULL;
a738430d 17719
debd256d
JB
17720 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17721 line_ptr += bytes_read;
59205f5a 17722 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17723 dwarf2_debug_line_missing_file_complaint ();
17724 else
17725 {
17726 fe = &lh->file_names[file - 1];
17727 if (fe->dir_index)
17728 dir = lh->include_dirs[fe->dir_index - 1];
17729 if (!decode_for_pst_p)
17730 {
17731 last_subfile = current_subfile;
a05a36a5 17732 line_has_non_zero_discriminator = discriminator != 0;
4d663531 17733 dwarf2_start_subfile (fe->name, dir);
25e43795
DJ
17734 }
17735 }
debd256d 17736 }
c906108c
SS
17737 break;
17738 case DW_LNS_set_column:
0ad93d4f 17739 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17740 line_ptr += bytes_read;
17741 break;
17742 case DW_LNS_negate_stmt:
17743 is_stmt = (!is_stmt);
17744 break;
17745 case DW_LNS_set_basic_block:
c906108c 17746 break;
c2c6d25f
JM
17747 /* Add to the address register of the state machine the
17748 address increment value corresponding to special opcode
a738430d
MK
17749 255. I.e., this value is scaled by the minimum
17750 instruction length since special opcode 255 would have
b021a221 17751 scaled the increment. */
c906108c 17752 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17753 {
17754 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 17755 CORE_ADDR addr_adj;
2dc7f7b3 17756
3e29f34a 17757 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17758 / lh->maximum_ops_per_instruction)
17759 * lh->minimum_instruction_length);
3e29f34a 17760 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17761 op_index = ((op_index + adjust)
17762 % lh->maximum_ops_per_instruction);
17763 }
c906108c
SS
17764 break;
17765 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
17766 {
17767 CORE_ADDR addr_adj;
17768
17769 addr_adj = read_2_bytes (abfd, line_ptr);
17770 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17771 op_index = 0;
17772 line_ptr += 2;
17773 }
c906108c 17774 break;
9aa1fe7e 17775 default:
a738430d
MK
17776 {
17777 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17778 int i;
a738430d 17779
debd256d 17780 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17781 {
17782 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17783 line_ptr += bytes_read;
17784 }
17785 }
c906108c
SS
17786 }
17787 }
59205f5a
JB
17788 if (lh->num_file_names < file || file == 0)
17789 dwarf2_debug_line_missing_file_complaint ();
17790 else
17791 {
17792 lh->file_names[file - 1].included_p = 1;
17793 if (!decode_for_pst_p)
fbf65064 17794 {
252a6764
DE
17795 dwarf_finish_line (gdbarch, current_subfile, address,
17796 p_record_line);
fbf65064 17797 }
59205f5a 17798 }
c906108c 17799 }
f3f5162e
DE
17800}
17801
17802/* Decode the Line Number Program (LNP) for the given line_header
17803 structure and CU. The actual information extracted and the type
17804 of structures created from the LNP depends on the value of PST.
17805
17806 1. If PST is NULL, then this procedure uses the data from the program
17807 to create all necessary symbol tables, and their linetables.
17808
17809 2. If PST is not NULL, this procedure reads the program to determine
17810 the list of files included by the unit represented by PST, and
17811 builds all the associated partial symbol tables.
17812
17813 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17814 It is used for relative paths in the line table.
17815 NOTE: When processing partial symtabs (pst != NULL),
17816 comp_dir == pst->dirname.
17817
17818 NOTE: It is important that psymtabs have the same file name (via strcmp)
17819 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17820 symtab we don't use it in the name of the psymtabs we create.
17821 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
17822 A good testcase for this is mb-inline.exp.
17823
527f3840
JK
17824 LOWPC is the lowest address in CU (or 0 if not known).
17825
17826 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17827 for its PC<->lines mapping information. Otherwise only the filename
17828 table is read in. */
f3f5162e
DE
17829
17830static void
17831dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 17832 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 17833 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
17834{
17835 struct objfile *objfile = cu->objfile;
17836 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17837
527f3840
JK
17838 if (decode_mapping)
17839 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
17840
17841 if (decode_for_pst_p)
17842 {
17843 int file_index;
17844
17845 /* Now that we're done scanning the Line Header Program, we can
17846 create the psymtab of each included file. */
17847 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17848 if (lh->file_names[file_index].included_p == 1)
17849 {
d521ce57 17850 const char *include_name =
c6da4cef
DE
17851 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17852 if (include_name != NULL)
aaa75496
JB
17853 dwarf2_create_include_psymtab (include_name, pst, objfile);
17854 }
17855 }
cb1df416
DJ
17856 else
17857 {
17858 /* Make sure a symtab is created for every file, even files
17859 which contain only variables (i.e. no code with associated
17860 line numbers). */
43f3e411 17861 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 17862 int i;
cb1df416
DJ
17863
17864 for (i = 0; i < lh->num_file_names; i++)
17865 {
d521ce57 17866 const char *dir = NULL;
f3f5162e 17867 struct file_entry *fe;
9a619af0 17868
cb1df416
DJ
17869 fe = &lh->file_names[i];
17870 if (fe->dir_index)
17871 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 17872 dwarf2_start_subfile (fe->name, dir);
cb1df416 17873
cb1df416 17874 if (current_subfile->symtab == NULL)
43f3e411
DE
17875 {
17876 current_subfile->symtab
17877 = allocate_symtab (cust, current_subfile->name);
17878 }
cb1df416
DJ
17879 fe->symtab = current_subfile->symtab;
17880 }
17881 }
c906108c
SS
17882}
17883
17884/* Start a subfile for DWARF. FILENAME is the name of the file and
17885 DIRNAME the name of the source directory which contains FILENAME
4d663531 17886 or NULL if not known.
c906108c
SS
17887 This routine tries to keep line numbers from identical absolute and
17888 relative file names in a common subfile.
17889
17890 Using the `list' example from the GDB testsuite, which resides in
17891 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17892 of /srcdir/list0.c yields the following debugging information for list0.c:
17893
c5aa993b 17894 DW_AT_name: /srcdir/list0.c
4d663531 17895 DW_AT_comp_dir: /compdir
357e46e7 17896 files.files[0].name: list0.h
c5aa993b 17897 files.files[0].dir: /srcdir
357e46e7 17898 files.files[1].name: list0.c
c5aa993b 17899 files.files[1].dir: /srcdir
c906108c
SS
17900
17901 The line number information for list0.c has to end up in a single
4f1520fb
FR
17902 subfile, so that `break /srcdir/list0.c:1' works as expected.
17903 start_subfile will ensure that this happens provided that we pass the
17904 concatenation of files.files[1].dir and files.files[1].name as the
17905 subfile's name. */
c906108c
SS
17906
17907static void
4d663531 17908dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 17909{
d521ce57 17910 char *copy = NULL;
4f1520fb 17911
4d663531 17912 /* In order not to lose the line information directory,
4f1520fb
FR
17913 we concatenate it to the filename when it makes sense.
17914 Note that the Dwarf3 standard says (speaking of filenames in line
17915 information): ``The directory index is ignored for file names
17916 that represent full path names''. Thus ignoring dirname in the
17917 `else' branch below isn't an issue. */
c906108c 17918
d5166ae1 17919 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17920 {
17921 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17922 filename = copy;
17923 }
c906108c 17924
4d663531 17925 start_subfile (filename);
4f1520fb 17926
d521ce57
TT
17927 if (copy != NULL)
17928 xfree (copy);
c906108c
SS
17929}
17930
f4dc4d17
DE
17931/* Start a symtab for DWARF.
17932 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17933
43f3e411 17934static struct compunit_symtab *
f4dc4d17 17935dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17936 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 17937{
43f3e411
DE
17938 struct compunit_symtab *cust
17939 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17940
f4dc4d17
DE
17941 record_debugformat ("DWARF 2");
17942 record_producer (cu->producer);
17943
17944 /* We assume that we're processing GCC output. */
17945 processing_gcc_compilation = 2;
17946
4d4ec4e5 17947 cu->processing_has_namespace_info = 0;
43f3e411
DE
17948
17949 return cust;
f4dc4d17
DE
17950}
17951
4c2df51b
DJ
17952static void
17953var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17954 struct dwarf2_cu *cu)
4c2df51b 17955{
e7c27a73
DJ
17956 struct objfile *objfile = cu->objfile;
17957 struct comp_unit_head *cu_header = &cu->header;
17958
4c2df51b
DJ
17959 /* NOTE drow/2003-01-30: There used to be a comment and some special
17960 code here to turn a symbol with DW_AT_external and a
17961 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17962 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17963 with some versions of binutils) where shared libraries could have
17964 relocations against symbols in their debug information - the
17965 minimal symbol would have the right address, but the debug info
17966 would not. It's no longer necessary, because we will explicitly
17967 apply relocations when we read in the debug information now. */
17968
17969 /* A DW_AT_location attribute with no contents indicates that a
17970 variable has been optimized away. */
17971 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17972 {
f1e6e072 17973 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17974 return;
17975 }
17976
17977 /* Handle one degenerate form of location expression specially, to
17978 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17979 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17980 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17981
17982 if (attr_form_is_block (attr)
3019eac3
DE
17983 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17984 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17985 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17986 && (DW_BLOCK (attr)->size
17987 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17988 {
891d2f0b 17989 unsigned int dummy;
4c2df51b 17990
3019eac3
DE
17991 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17992 SYMBOL_VALUE_ADDRESS (sym) =
17993 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17994 else
17995 SYMBOL_VALUE_ADDRESS (sym) =
17996 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17997 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17998 fixup_symbol_section (sym, objfile);
17999 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18000 SYMBOL_SECTION (sym));
4c2df51b
DJ
18001 return;
18002 }
18003
18004 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18005 expression evaluator, and use LOC_COMPUTED only when necessary
18006 (i.e. when the value of a register or memory location is
18007 referenced, or a thread-local block, etc.). Then again, it might
18008 not be worthwhile. I'm assuming that it isn't unless performance
18009 or memory numbers show me otherwise. */
18010
f1e6e072 18011 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18012
f1e6e072 18013 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18014 cu->has_loclist = 1;
4c2df51b
DJ
18015}
18016
c906108c
SS
18017/* Given a pointer to a DWARF information entry, figure out if we need
18018 to make a symbol table entry for it, and if so, create a new entry
18019 and return a pointer to it.
18020 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18021 used the passed type.
18022 If SPACE is not NULL, use it to hold the new symbol. If it is
18023 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18024
18025static struct symbol *
34eaf542
TT
18026new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18027 struct symbol *space)
c906108c 18028{
e7c27a73 18029 struct objfile *objfile = cu->objfile;
3e29f34a 18030 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18031 struct symbol *sym = NULL;
15d034d0 18032 const char *name;
c906108c
SS
18033 struct attribute *attr = NULL;
18034 struct attribute *attr2 = NULL;
e142c38c 18035 CORE_ADDR baseaddr;
e37fd15a
SW
18036 struct pending **list_to_add = NULL;
18037
edb3359d 18038 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18039
18040 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18041
94af9270 18042 name = dwarf2_name (die, cu);
c906108c
SS
18043 if (name)
18044 {
94af9270 18045 const char *linkagename;
34eaf542 18046 int suppress_add = 0;
94af9270 18047
34eaf542
TT
18048 if (space)
18049 sym = space;
18050 else
e623cf5d 18051 sym = allocate_symbol (objfile);
c906108c 18052 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18053
18054 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18055 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18056 linkagename = dwarf2_physname (name, die, cu);
18057 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18058
f55ee35c
JK
18059 /* Fortran does not have mangling standard and the mangling does differ
18060 between gfortran, iFort etc. */
18061 if (cu->language == language_fortran
b250c185 18062 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18063 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18064 dwarf2_full_name (name, die, cu),
29df156d 18065 NULL);
f55ee35c 18066
c906108c 18067 /* Default assumptions.
c5aa993b 18068 Use the passed type or decode it from the die. */
176620f1 18069 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18070 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18071 if (type != NULL)
18072 SYMBOL_TYPE (sym) = type;
18073 else
e7c27a73 18074 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18075 attr = dwarf2_attr (die,
18076 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18077 cu);
c906108c
SS
18078 if (attr)
18079 {
18080 SYMBOL_LINE (sym) = DW_UNSND (attr);
18081 }
cb1df416 18082
edb3359d
DJ
18083 attr = dwarf2_attr (die,
18084 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18085 cu);
cb1df416
DJ
18086 if (attr)
18087 {
18088 int file_index = DW_UNSND (attr);
9a619af0 18089
cb1df416
DJ
18090 if (cu->line_header == NULL
18091 || file_index > cu->line_header->num_file_names)
18092 complaint (&symfile_complaints,
18093 _("file index out of range"));
1c3d648d 18094 else if (file_index > 0)
cb1df416
DJ
18095 {
18096 struct file_entry *fe;
9a619af0 18097
cb1df416 18098 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18099 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18100 }
18101 }
18102
c906108c
SS
18103 switch (die->tag)
18104 {
18105 case DW_TAG_label:
e142c38c 18106 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18107 if (attr)
3e29f34a
MR
18108 {
18109 CORE_ADDR addr;
18110
18111 addr = attr_value_as_address (attr);
18112 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18113 SYMBOL_VALUE_ADDRESS (sym) = addr;
18114 }
0f5238ed
TT
18115 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18116 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18117 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18118 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18119 break;
18120 case DW_TAG_subprogram:
18121 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18122 finish_block. */
f1e6e072 18123 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18124 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18125 if ((attr2 && (DW_UNSND (attr2) != 0))
18126 || cu->language == language_ada)
c906108c 18127 {
2cfa0c8d
JB
18128 /* Subprograms marked external are stored as a global symbol.
18129 Ada subprograms, whether marked external or not, are always
18130 stored as a global symbol, because we want to be able to
18131 access them globally. For instance, we want to be able
18132 to break on a nested subprogram without having to
18133 specify the context. */
e37fd15a 18134 list_to_add = &global_symbols;
c906108c
SS
18135 }
18136 else
18137 {
e37fd15a 18138 list_to_add = cu->list_in_scope;
c906108c
SS
18139 }
18140 break;
edb3359d
DJ
18141 case DW_TAG_inlined_subroutine:
18142 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18143 finish_block. */
f1e6e072 18144 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18145 SYMBOL_INLINED (sym) = 1;
481860b3 18146 list_to_add = cu->list_in_scope;
edb3359d 18147 break;
34eaf542
TT
18148 case DW_TAG_template_value_param:
18149 suppress_add = 1;
18150 /* Fall through. */
72929c62 18151 case DW_TAG_constant:
c906108c 18152 case DW_TAG_variable:
254e6b9e 18153 case DW_TAG_member:
0963b4bd
MS
18154 /* Compilation with minimal debug info may result in
18155 variables with missing type entries. Change the
18156 misleading `void' type to something sensible. */
c906108c 18157 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18158 SYMBOL_TYPE (sym)
46bf5051 18159 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18160
e142c38c 18161 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18162 /* In the case of DW_TAG_member, we should only be called for
18163 static const members. */
18164 if (die->tag == DW_TAG_member)
18165 {
3863f96c
DE
18166 /* dwarf2_add_field uses die_is_declaration,
18167 so we do the same. */
254e6b9e
DE
18168 gdb_assert (die_is_declaration (die, cu));
18169 gdb_assert (attr);
18170 }
c906108c
SS
18171 if (attr)
18172 {
e7c27a73 18173 dwarf2_const_value (attr, sym, cu);
e142c38c 18174 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18175 if (!suppress_add)
34eaf542
TT
18176 {
18177 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18178 list_to_add = &global_symbols;
34eaf542 18179 else
e37fd15a 18180 list_to_add = cu->list_in_scope;
34eaf542 18181 }
c906108c
SS
18182 break;
18183 }
e142c38c 18184 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18185 if (attr)
18186 {
e7c27a73 18187 var_decode_location (attr, sym, cu);
e142c38c 18188 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18189
18190 /* Fortran explicitly imports any global symbols to the local
18191 scope by DW_TAG_common_block. */
18192 if (cu->language == language_fortran && die->parent
18193 && die->parent->tag == DW_TAG_common_block)
18194 attr2 = NULL;
18195
caac4577
JG
18196 if (SYMBOL_CLASS (sym) == LOC_STATIC
18197 && SYMBOL_VALUE_ADDRESS (sym) == 0
18198 && !dwarf2_per_objfile->has_section_at_zero)
18199 {
18200 /* When a static variable is eliminated by the linker,
18201 the corresponding debug information is not stripped
18202 out, but the variable address is set to null;
18203 do not add such variables into symbol table. */
18204 }
18205 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18206 {
f55ee35c
JK
18207 /* Workaround gfortran PR debug/40040 - it uses
18208 DW_AT_location for variables in -fPIC libraries which may
18209 get overriden by other libraries/executable and get
18210 a different address. Resolve it by the minimal symbol
18211 which may come from inferior's executable using copy
18212 relocation. Make this workaround only for gfortran as for
18213 other compilers GDB cannot guess the minimal symbol
18214 Fortran mangling kind. */
18215 if (cu->language == language_fortran && die->parent
18216 && die->parent->tag == DW_TAG_module
18217 && cu->producer
18218 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 18219 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18220
1c809c68
TT
18221 /* A variable with DW_AT_external is never static,
18222 but it may be block-scoped. */
18223 list_to_add = (cu->list_in_scope == &file_symbols
18224 ? &global_symbols : cu->list_in_scope);
1c809c68 18225 }
c906108c 18226 else
e37fd15a 18227 list_to_add = cu->list_in_scope;
c906108c
SS
18228 }
18229 else
18230 {
18231 /* We do not know the address of this symbol.
c5aa993b
JM
18232 If it is an external symbol and we have type information
18233 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18234 The address of the variable will then be determined from
18235 the minimal symbol table whenever the variable is
18236 referenced. */
e142c38c 18237 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18238
18239 /* Fortran explicitly imports any global symbols to the local
18240 scope by DW_TAG_common_block. */
18241 if (cu->language == language_fortran && die->parent
18242 && die->parent->tag == DW_TAG_common_block)
18243 {
18244 /* SYMBOL_CLASS doesn't matter here because
18245 read_common_block is going to reset it. */
18246 if (!suppress_add)
18247 list_to_add = cu->list_in_scope;
18248 }
18249 else if (attr2 && (DW_UNSND (attr2) != 0)
18250 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18251 {
0fe7935b
DJ
18252 /* A variable with DW_AT_external is never static, but it
18253 may be block-scoped. */
18254 list_to_add = (cu->list_in_scope == &file_symbols
18255 ? &global_symbols : cu->list_in_scope);
18256
f1e6e072 18257 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18258 }
442ddf59
JK
18259 else if (!die_is_declaration (die, cu))
18260 {
18261 /* Use the default LOC_OPTIMIZED_OUT class. */
18262 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18263 if (!suppress_add)
18264 list_to_add = cu->list_in_scope;
442ddf59 18265 }
c906108c
SS
18266 }
18267 break;
18268 case DW_TAG_formal_parameter:
edb3359d
DJ
18269 /* If we are inside a function, mark this as an argument. If
18270 not, we might be looking at an argument to an inlined function
18271 when we do not have enough information to show inlined frames;
18272 pretend it's a local variable in that case so that the user can
18273 still see it. */
18274 if (context_stack_depth > 0
18275 && context_stack[context_stack_depth - 1].name != NULL)
18276 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18277 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18278 if (attr)
18279 {
e7c27a73 18280 var_decode_location (attr, sym, cu);
c906108c 18281 }
e142c38c 18282 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18283 if (attr)
18284 {
e7c27a73 18285 dwarf2_const_value (attr, sym, cu);
c906108c 18286 }
f346a30d 18287
e37fd15a 18288 list_to_add = cu->list_in_scope;
c906108c
SS
18289 break;
18290 case DW_TAG_unspecified_parameters:
18291 /* From varargs functions; gdb doesn't seem to have any
18292 interest in this information, so just ignore it for now.
18293 (FIXME?) */
18294 break;
34eaf542
TT
18295 case DW_TAG_template_type_param:
18296 suppress_add = 1;
18297 /* Fall through. */
c906108c 18298 case DW_TAG_class_type:
680b30c7 18299 case DW_TAG_interface_type:
c906108c
SS
18300 case DW_TAG_structure_type:
18301 case DW_TAG_union_type:
72019c9c 18302 case DW_TAG_set_type:
c906108c 18303 case DW_TAG_enumeration_type:
f1e6e072 18304 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18305 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18306
63d06c5c 18307 {
987504bb 18308 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18309 really ever be static objects: otherwise, if you try
18310 to, say, break of a class's method and you're in a file
18311 which doesn't mention that class, it won't work unless
18312 the check for all static symbols in lookup_symbol_aux
18313 saves you. See the OtherFileClass tests in
18314 gdb.c++/namespace.exp. */
18315
e37fd15a 18316 if (!suppress_add)
34eaf542 18317 {
34eaf542
TT
18318 list_to_add = (cu->list_in_scope == &file_symbols
18319 && (cu->language == language_cplus
18320 || cu->language == language_java)
18321 ? &global_symbols : cu->list_in_scope);
63d06c5c 18322
64382290
TT
18323 /* The semantics of C++ state that "struct foo {
18324 ... }" also defines a typedef for "foo". A Java
18325 class declaration also defines a typedef for the
18326 class. */
18327 if (cu->language == language_cplus
18328 || cu->language == language_java
18329 || cu->language == language_ada)
18330 {
18331 /* The symbol's name is already allocated along
18332 with this objfile, so we don't need to
18333 duplicate it for the type. */
18334 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18335 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18336 }
63d06c5c
DC
18337 }
18338 }
c906108c
SS
18339 break;
18340 case DW_TAG_typedef:
f1e6e072 18341 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18342 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18343 list_to_add = cu->list_in_scope;
63d06c5c 18344 break;
c906108c 18345 case DW_TAG_base_type:
a02abb62 18346 case DW_TAG_subrange_type:
f1e6e072 18347 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18348 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18349 list_to_add = cu->list_in_scope;
c906108c
SS
18350 break;
18351 case DW_TAG_enumerator:
e142c38c 18352 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18353 if (attr)
18354 {
e7c27a73 18355 dwarf2_const_value (attr, sym, cu);
c906108c 18356 }
63d06c5c
DC
18357 {
18358 /* NOTE: carlton/2003-11-10: See comment above in the
18359 DW_TAG_class_type, etc. block. */
18360
e142c38c 18361 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18362 && (cu->language == language_cplus
18363 || cu->language == language_java)
e142c38c 18364 ? &global_symbols : cu->list_in_scope);
63d06c5c 18365 }
c906108c 18366 break;
74921315 18367 case DW_TAG_imported_declaration:
5c4e30ca 18368 case DW_TAG_namespace:
f1e6e072 18369 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18370 list_to_add = &global_symbols;
5c4e30ca 18371 break;
530e8392
KB
18372 case DW_TAG_module:
18373 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18374 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18375 list_to_add = &global_symbols;
18376 break;
4357ac6c 18377 case DW_TAG_common_block:
f1e6e072 18378 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18379 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18380 add_symbol_to_list (sym, cu->list_in_scope);
18381 break;
c906108c
SS
18382 default:
18383 /* Not a tag we recognize. Hopefully we aren't processing
18384 trash data, but since we must specifically ignore things
18385 we don't recognize, there is nothing else we should do at
0963b4bd 18386 this point. */
e2e0b3e5 18387 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18388 dwarf_tag_name (die->tag));
c906108c
SS
18389 break;
18390 }
df8a16a1 18391
e37fd15a
SW
18392 if (suppress_add)
18393 {
18394 sym->hash_next = objfile->template_symbols;
18395 objfile->template_symbols = sym;
18396 list_to_add = NULL;
18397 }
18398
18399 if (list_to_add != NULL)
18400 add_symbol_to_list (sym, list_to_add);
18401
df8a16a1
DJ
18402 /* For the benefit of old versions of GCC, check for anonymous
18403 namespaces based on the demangled name. */
4d4ec4e5 18404 if (!cu->processing_has_namespace_info
94af9270 18405 && cu->language == language_cplus)
a10964d1 18406 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18407 }
18408 return (sym);
18409}
18410
34eaf542
TT
18411/* A wrapper for new_symbol_full that always allocates a new symbol. */
18412
18413static struct symbol *
18414new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18415{
18416 return new_symbol_full (die, type, cu, NULL);
18417}
18418
98bfdba5
PA
18419/* Given an attr with a DW_FORM_dataN value in host byte order,
18420 zero-extend it as appropriate for the symbol's type. The DWARF
18421 standard (v4) is not entirely clear about the meaning of using
18422 DW_FORM_dataN for a constant with a signed type, where the type is
18423 wider than the data. The conclusion of a discussion on the DWARF
18424 list was that this is unspecified. We choose to always zero-extend
18425 because that is the interpretation long in use by GCC. */
c906108c 18426
98bfdba5 18427static gdb_byte *
ff39bb5e 18428dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18429 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18430{
e7c27a73 18431 struct objfile *objfile = cu->objfile;
e17a4113
UW
18432 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18433 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18434 LONGEST l = DW_UNSND (attr);
18435
18436 if (bits < sizeof (*value) * 8)
18437 {
18438 l &= ((LONGEST) 1 << bits) - 1;
18439 *value = l;
18440 }
18441 else if (bits == sizeof (*value) * 8)
18442 *value = l;
18443 else
18444 {
18445 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18446 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18447 return bytes;
18448 }
18449
18450 return NULL;
18451}
18452
18453/* Read a constant value from an attribute. Either set *VALUE, or if
18454 the value does not fit in *VALUE, set *BYTES - either already
18455 allocated on the objfile obstack, or newly allocated on OBSTACK,
18456 or, set *BATON, if we translated the constant to a location
18457 expression. */
18458
18459static void
ff39bb5e 18460dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18461 const char *name, struct obstack *obstack,
18462 struct dwarf2_cu *cu,
d521ce57 18463 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18464 struct dwarf2_locexpr_baton **baton)
18465{
18466 struct objfile *objfile = cu->objfile;
18467 struct comp_unit_head *cu_header = &cu->header;
c906108c 18468 struct dwarf_block *blk;
98bfdba5
PA
18469 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18470 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18471
18472 *value = 0;
18473 *bytes = NULL;
18474 *baton = NULL;
c906108c
SS
18475
18476 switch (attr->form)
18477 {
18478 case DW_FORM_addr:
3019eac3 18479 case DW_FORM_GNU_addr_index:
ac56253d 18480 {
ac56253d
TT
18481 gdb_byte *data;
18482
98bfdba5
PA
18483 if (TYPE_LENGTH (type) != cu_header->addr_size)
18484 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18485 cu_header->addr_size,
98bfdba5 18486 TYPE_LENGTH (type));
ac56253d
TT
18487 /* Symbols of this form are reasonably rare, so we just
18488 piggyback on the existing location code rather than writing
18489 a new implementation of symbol_computed_ops. */
7919a973 18490 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18491 (*baton)->per_cu = cu->per_cu;
18492 gdb_assert ((*baton)->per_cu);
ac56253d 18493
98bfdba5 18494 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18495 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18496 (*baton)->data = data;
ac56253d
TT
18497
18498 data[0] = DW_OP_addr;
18499 store_unsigned_integer (&data[1], cu_header->addr_size,
18500 byte_order, DW_ADDR (attr));
18501 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18502 }
c906108c 18503 break;
4ac36638 18504 case DW_FORM_string:
93b5768b 18505 case DW_FORM_strp:
3019eac3 18506 case DW_FORM_GNU_str_index:
36586728 18507 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18508 /* DW_STRING is already allocated on the objfile obstack, point
18509 directly to it. */
d521ce57 18510 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18511 break;
c906108c
SS
18512 case DW_FORM_block1:
18513 case DW_FORM_block2:
18514 case DW_FORM_block4:
18515 case DW_FORM_block:
2dc7f7b3 18516 case DW_FORM_exprloc:
c906108c 18517 blk = DW_BLOCK (attr);
98bfdba5
PA
18518 if (TYPE_LENGTH (type) != blk->size)
18519 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18520 TYPE_LENGTH (type));
18521 *bytes = blk->data;
c906108c 18522 break;
2df3850c
JM
18523
18524 /* The DW_AT_const_value attributes are supposed to carry the
18525 symbol's value "represented as it would be on the target
18526 architecture." By the time we get here, it's already been
18527 converted to host endianness, so we just need to sign- or
18528 zero-extend it as appropriate. */
18529 case DW_FORM_data1:
3aef2284 18530 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18531 break;
c906108c 18532 case DW_FORM_data2:
3aef2284 18533 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18534 break;
c906108c 18535 case DW_FORM_data4:
3aef2284 18536 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18537 break;
c906108c 18538 case DW_FORM_data8:
3aef2284 18539 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18540 break;
18541
c906108c 18542 case DW_FORM_sdata:
98bfdba5 18543 *value = DW_SND (attr);
2df3850c
JM
18544 break;
18545
c906108c 18546 case DW_FORM_udata:
98bfdba5 18547 *value = DW_UNSND (attr);
c906108c 18548 break;
2df3850c 18549
c906108c 18550 default:
4d3c2250 18551 complaint (&symfile_complaints,
e2e0b3e5 18552 _("unsupported const value attribute form: '%s'"),
4d3c2250 18553 dwarf_form_name (attr->form));
98bfdba5 18554 *value = 0;
c906108c
SS
18555 break;
18556 }
18557}
18558
2df3850c 18559
98bfdba5
PA
18560/* Copy constant value from an attribute to a symbol. */
18561
2df3850c 18562static void
ff39bb5e 18563dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18564 struct dwarf2_cu *cu)
2df3850c 18565{
98bfdba5
PA
18566 struct objfile *objfile = cu->objfile;
18567 struct comp_unit_head *cu_header = &cu->header;
12df843f 18568 LONGEST value;
d521ce57 18569 const gdb_byte *bytes;
98bfdba5 18570 struct dwarf2_locexpr_baton *baton;
2df3850c 18571
98bfdba5
PA
18572 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18573 SYMBOL_PRINT_NAME (sym),
18574 &objfile->objfile_obstack, cu,
18575 &value, &bytes, &baton);
2df3850c 18576
98bfdba5
PA
18577 if (baton != NULL)
18578 {
98bfdba5 18579 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18580 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18581 }
18582 else if (bytes != NULL)
18583 {
18584 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18585 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18586 }
18587 else
18588 {
18589 SYMBOL_VALUE (sym) = value;
f1e6e072 18590 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18591 }
2df3850c
JM
18592}
18593
c906108c
SS
18594/* Return the type of the die in question using its DW_AT_type attribute. */
18595
18596static struct type *
e7c27a73 18597die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18598{
c906108c 18599 struct attribute *type_attr;
c906108c 18600
e142c38c 18601 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18602 if (!type_attr)
18603 {
18604 /* A missing DW_AT_type represents a void type. */
46bf5051 18605 return objfile_type (cu->objfile)->builtin_void;
c906108c 18606 }
348e048f 18607
673bfd45 18608 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18609}
18610
b4ba55a1
JB
18611/* True iff CU's producer generates GNAT Ada auxiliary information
18612 that allows to find parallel types through that information instead
18613 of having to do expensive parallel lookups by type name. */
18614
18615static int
18616need_gnat_info (struct dwarf2_cu *cu)
18617{
18618 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18619 of GNAT produces this auxiliary information, without any indication
18620 that it is produced. Part of enhancing the FSF version of GNAT
18621 to produce that information will be to put in place an indicator
18622 that we can use in order to determine whether the descriptive type
18623 info is available or not. One suggestion that has been made is
18624 to use a new attribute, attached to the CU die. For now, assume
18625 that the descriptive type info is not available. */
18626 return 0;
18627}
18628
b4ba55a1
JB
18629/* Return the auxiliary type of the die in question using its
18630 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18631 attribute is not present. */
18632
18633static struct type *
18634die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18635{
b4ba55a1 18636 struct attribute *type_attr;
b4ba55a1
JB
18637
18638 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18639 if (!type_attr)
18640 return NULL;
18641
673bfd45 18642 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18643}
18644
18645/* If DIE has a descriptive_type attribute, then set the TYPE's
18646 descriptive type accordingly. */
18647
18648static void
18649set_descriptive_type (struct type *type, struct die_info *die,
18650 struct dwarf2_cu *cu)
18651{
18652 struct type *descriptive_type = die_descriptive_type (die, cu);
18653
18654 if (descriptive_type)
18655 {
18656 ALLOCATE_GNAT_AUX_TYPE (type);
18657 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18658 }
18659}
18660
c906108c
SS
18661/* Return the containing type of the die in question using its
18662 DW_AT_containing_type attribute. */
18663
18664static struct type *
e7c27a73 18665die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18666{
c906108c 18667 struct attribute *type_attr;
c906108c 18668
e142c38c 18669 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18670 if (!type_attr)
18671 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18672 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18673
673bfd45 18674 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18675}
18676
ac9ec31b
DE
18677/* Return an error marker type to use for the ill formed type in DIE/CU. */
18678
18679static struct type *
18680build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18681{
18682 struct objfile *objfile = dwarf2_per_objfile->objfile;
18683 char *message, *saved;
18684
18685 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18686 objfile_name (objfile),
ac9ec31b
DE
18687 cu->header.offset.sect_off,
18688 die->offset.sect_off);
18689 saved = obstack_copy0 (&objfile->objfile_obstack,
18690 message, strlen (message));
18691 xfree (message);
18692
18693 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18694}
18695
673bfd45 18696/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18697 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18698 DW_AT_containing_type.
673bfd45
DE
18699 If there is no type substitute an error marker. */
18700
c906108c 18701static struct type *
ff39bb5e 18702lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18703 struct dwarf2_cu *cu)
c906108c 18704{
bb5ed363 18705 struct objfile *objfile = cu->objfile;
f792889a
DJ
18706 struct type *this_type;
18707
ac9ec31b
DE
18708 gdb_assert (attr->name == DW_AT_type
18709 || attr->name == DW_AT_GNAT_descriptive_type
18710 || attr->name == DW_AT_containing_type);
18711
673bfd45
DE
18712 /* First see if we have it cached. */
18713
36586728
TT
18714 if (attr->form == DW_FORM_GNU_ref_alt)
18715 {
18716 struct dwarf2_per_cu_data *per_cu;
18717 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18718
18719 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18720 this_type = get_die_type_at_offset (offset, per_cu);
18721 }
7771576e 18722 else if (attr_form_is_ref (attr))
673bfd45 18723 {
b64f50a1 18724 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18725
18726 this_type = get_die_type_at_offset (offset, cu->per_cu);
18727 }
55f1336d 18728 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18729 {
ac9ec31b 18730 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18731
ac9ec31b 18732 return get_signatured_type (die, signature, cu);
673bfd45
DE
18733 }
18734 else
18735 {
ac9ec31b
DE
18736 complaint (&symfile_complaints,
18737 _("Dwarf Error: Bad type attribute %s in DIE"
18738 " at 0x%x [in module %s]"),
18739 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18740 objfile_name (objfile));
ac9ec31b 18741 return build_error_marker_type (cu, die);
673bfd45
DE
18742 }
18743
18744 /* If not cached we need to read it in. */
18745
18746 if (this_type == NULL)
18747 {
ac9ec31b 18748 struct die_info *type_die = NULL;
673bfd45
DE
18749 struct dwarf2_cu *type_cu = cu;
18750
7771576e 18751 if (attr_form_is_ref (attr))
ac9ec31b
DE
18752 type_die = follow_die_ref (die, attr, &type_cu);
18753 if (type_die == NULL)
18754 return build_error_marker_type (cu, die);
18755 /* If we find the type now, it's probably because the type came
3019eac3
DE
18756 from an inter-CU reference and the type's CU got expanded before
18757 ours. */
ac9ec31b 18758 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18759 }
18760
18761 /* If we still don't have a type use an error marker. */
18762
18763 if (this_type == NULL)
ac9ec31b 18764 return build_error_marker_type (cu, die);
673bfd45 18765
f792889a 18766 return this_type;
c906108c
SS
18767}
18768
673bfd45
DE
18769/* Return the type in DIE, CU.
18770 Returns NULL for invalid types.
18771
02142a6c 18772 This first does a lookup in die_type_hash,
673bfd45
DE
18773 and only reads the die in if necessary.
18774
18775 NOTE: This can be called when reading in partial or full symbols. */
18776
f792889a 18777static struct type *
e7c27a73 18778read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18779{
f792889a
DJ
18780 struct type *this_type;
18781
18782 this_type = get_die_type (die, cu);
18783 if (this_type)
18784 return this_type;
18785
673bfd45
DE
18786 return read_type_die_1 (die, cu);
18787}
18788
18789/* Read the type in DIE, CU.
18790 Returns NULL for invalid types. */
18791
18792static struct type *
18793read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18794{
18795 struct type *this_type = NULL;
18796
c906108c
SS
18797 switch (die->tag)
18798 {
18799 case DW_TAG_class_type:
680b30c7 18800 case DW_TAG_interface_type:
c906108c
SS
18801 case DW_TAG_structure_type:
18802 case DW_TAG_union_type:
f792889a 18803 this_type = read_structure_type (die, cu);
c906108c
SS
18804 break;
18805 case DW_TAG_enumeration_type:
f792889a 18806 this_type = read_enumeration_type (die, cu);
c906108c
SS
18807 break;
18808 case DW_TAG_subprogram:
18809 case DW_TAG_subroutine_type:
edb3359d 18810 case DW_TAG_inlined_subroutine:
f792889a 18811 this_type = read_subroutine_type (die, cu);
c906108c
SS
18812 break;
18813 case DW_TAG_array_type:
f792889a 18814 this_type = read_array_type (die, cu);
c906108c 18815 break;
72019c9c 18816 case DW_TAG_set_type:
f792889a 18817 this_type = read_set_type (die, cu);
72019c9c 18818 break;
c906108c 18819 case DW_TAG_pointer_type:
f792889a 18820 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18821 break;
18822 case DW_TAG_ptr_to_member_type:
f792889a 18823 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18824 break;
18825 case DW_TAG_reference_type:
f792889a 18826 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18827 break;
18828 case DW_TAG_const_type:
f792889a 18829 this_type = read_tag_const_type (die, cu);
c906108c
SS
18830 break;
18831 case DW_TAG_volatile_type:
f792889a 18832 this_type = read_tag_volatile_type (die, cu);
c906108c 18833 break;
06d66ee9
TT
18834 case DW_TAG_restrict_type:
18835 this_type = read_tag_restrict_type (die, cu);
18836 break;
c906108c 18837 case DW_TAG_string_type:
f792889a 18838 this_type = read_tag_string_type (die, cu);
c906108c
SS
18839 break;
18840 case DW_TAG_typedef:
f792889a 18841 this_type = read_typedef (die, cu);
c906108c 18842 break;
a02abb62 18843 case DW_TAG_subrange_type:
f792889a 18844 this_type = read_subrange_type (die, cu);
a02abb62 18845 break;
c906108c 18846 case DW_TAG_base_type:
f792889a 18847 this_type = read_base_type (die, cu);
c906108c 18848 break;
81a17f79 18849 case DW_TAG_unspecified_type:
f792889a 18850 this_type = read_unspecified_type (die, cu);
81a17f79 18851 break;
0114d602
DJ
18852 case DW_TAG_namespace:
18853 this_type = read_namespace_type (die, cu);
18854 break;
f55ee35c
JK
18855 case DW_TAG_module:
18856 this_type = read_module_type (die, cu);
18857 break;
c906108c 18858 default:
3e43a32a
MS
18859 complaint (&symfile_complaints,
18860 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18861 dwarf_tag_name (die->tag));
c906108c
SS
18862 break;
18863 }
63d06c5c 18864
f792889a 18865 return this_type;
63d06c5c
DC
18866}
18867
abc72ce4
DE
18868/* See if we can figure out if the class lives in a namespace. We do
18869 this by looking for a member function; its demangled name will
18870 contain namespace info, if there is any.
18871 Return the computed name or NULL.
18872 Space for the result is allocated on the objfile's obstack.
18873 This is the full-die version of guess_partial_die_structure_name.
18874 In this case we know DIE has no useful parent. */
18875
18876static char *
18877guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18878{
18879 struct die_info *spec_die;
18880 struct dwarf2_cu *spec_cu;
18881 struct die_info *child;
18882
18883 spec_cu = cu;
18884 spec_die = die_specification (die, &spec_cu);
18885 if (spec_die != NULL)
18886 {
18887 die = spec_die;
18888 cu = spec_cu;
18889 }
18890
18891 for (child = die->child;
18892 child != NULL;
18893 child = child->sibling)
18894 {
18895 if (child->tag == DW_TAG_subprogram)
18896 {
18897 struct attribute *attr;
18898
18899 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18900 if (attr == NULL)
18901 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18902 if (attr != NULL)
18903 {
18904 char *actual_name
18905 = language_class_name_from_physname (cu->language_defn,
18906 DW_STRING (attr));
18907 char *name = NULL;
18908
18909 if (actual_name != NULL)
18910 {
15d034d0 18911 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18912
18913 if (die_name != NULL
18914 && strcmp (die_name, actual_name) != 0)
18915 {
18916 /* Strip off the class name from the full name.
18917 We want the prefix. */
18918 int die_name_len = strlen (die_name);
18919 int actual_name_len = strlen (actual_name);
18920
18921 /* Test for '::' as a sanity check. */
18922 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18923 && actual_name[actual_name_len
18924 - die_name_len - 1] == ':')
abc72ce4 18925 name =
34a68019 18926 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18927 actual_name,
18928 actual_name_len - die_name_len - 2);
abc72ce4
DE
18929 }
18930 }
18931 xfree (actual_name);
18932 return name;
18933 }
18934 }
18935 }
18936
18937 return NULL;
18938}
18939
96408a79
SA
18940/* GCC might emit a nameless typedef that has a linkage name. Determine the
18941 prefix part in such case. See
18942 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18943
18944static char *
18945anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18946{
18947 struct attribute *attr;
18948 char *base;
18949
18950 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18951 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18952 return NULL;
18953
18954 attr = dwarf2_attr (die, DW_AT_name, cu);
18955 if (attr != NULL && DW_STRING (attr) != NULL)
18956 return NULL;
18957
18958 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18959 if (attr == NULL)
18960 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18961 if (attr == NULL || DW_STRING (attr) == NULL)
18962 return NULL;
18963
18964 /* dwarf2_name had to be already called. */
18965 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18966
18967 /* Strip the base name, keep any leading namespaces/classes. */
18968 base = strrchr (DW_STRING (attr), ':');
18969 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18970 return "";
18971
34a68019 18972 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 18973 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18974}
18975
fdde2d81 18976/* Return the name of the namespace/class that DIE is defined within,
0114d602 18977 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18978
0114d602
DJ
18979 For example, if we're within the method foo() in the following
18980 code:
18981
18982 namespace N {
18983 class C {
18984 void foo () {
18985 }
18986 };
18987 }
18988
18989 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18990
0d5cff50 18991static const char *
e142c38c 18992determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18993{
0114d602
DJ
18994 struct die_info *parent, *spec_die;
18995 struct dwarf2_cu *spec_cu;
18996 struct type *parent_type;
96408a79 18997 char *retval;
63d06c5c 18998
f55ee35c
JK
18999 if (cu->language != language_cplus && cu->language != language_java
19000 && cu->language != language_fortran)
0114d602
DJ
19001 return "";
19002
96408a79
SA
19003 retval = anonymous_struct_prefix (die, cu);
19004 if (retval)
19005 return retval;
19006
0114d602
DJ
19007 /* We have to be careful in the presence of DW_AT_specification.
19008 For example, with GCC 3.4, given the code
19009
19010 namespace N {
19011 void foo() {
19012 // Definition of N::foo.
19013 }
19014 }
19015
19016 then we'll have a tree of DIEs like this:
19017
19018 1: DW_TAG_compile_unit
19019 2: DW_TAG_namespace // N
19020 3: DW_TAG_subprogram // declaration of N::foo
19021 4: DW_TAG_subprogram // definition of N::foo
19022 DW_AT_specification // refers to die #3
19023
19024 Thus, when processing die #4, we have to pretend that we're in
19025 the context of its DW_AT_specification, namely the contex of die
19026 #3. */
19027 spec_cu = cu;
19028 spec_die = die_specification (die, &spec_cu);
19029 if (spec_die == NULL)
19030 parent = die->parent;
19031 else
63d06c5c 19032 {
0114d602
DJ
19033 parent = spec_die->parent;
19034 cu = spec_cu;
63d06c5c 19035 }
0114d602
DJ
19036
19037 if (parent == NULL)
19038 return "";
98bfdba5
PA
19039 else if (parent->building_fullname)
19040 {
19041 const char *name;
19042 const char *parent_name;
19043
19044 /* It has been seen on RealView 2.2 built binaries,
19045 DW_TAG_template_type_param types actually _defined_ as
19046 children of the parent class:
19047
19048 enum E {};
19049 template class <class Enum> Class{};
19050 Class<enum E> class_e;
19051
19052 1: DW_TAG_class_type (Class)
19053 2: DW_TAG_enumeration_type (E)
19054 3: DW_TAG_enumerator (enum1:0)
19055 3: DW_TAG_enumerator (enum2:1)
19056 ...
19057 2: DW_TAG_template_type_param
19058 DW_AT_type DW_FORM_ref_udata (E)
19059
19060 Besides being broken debug info, it can put GDB into an
19061 infinite loop. Consider:
19062
19063 When we're building the full name for Class<E>, we'll start
19064 at Class, and go look over its template type parameters,
19065 finding E. We'll then try to build the full name of E, and
19066 reach here. We're now trying to build the full name of E,
19067 and look over the parent DIE for containing scope. In the
19068 broken case, if we followed the parent DIE of E, we'd again
19069 find Class, and once again go look at its template type
19070 arguments, etc., etc. Simply don't consider such parent die
19071 as source-level parent of this die (it can't be, the language
19072 doesn't allow it), and break the loop here. */
19073 name = dwarf2_name (die, cu);
19074 parent_name = dwarf2_name (parent, cu);
19075 complaint (&symfile_complaints,
19076 _("template param type '%s' defined within parent '%s'"),
19077 name ? name : "<unknown>",
19078 parent_name ? parent_name : "<unknown>");
19079 return "";
19080 }
63d06c5c 19081 else
0114d602
DJ
19082 switch (parent->tag)
19083 {
63d06c5c 19084 case DW_TAG_namespace:
0114d602 19085 parent_type = read_type_die (parent, cu);
acebe513
UW
19086 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19087 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19088 Work around this problem here. */
19089 if (cu->language == language_cplus
19090 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19091 return "";
0114d602
DJ
19092 /* We give a name to even anonymous namespaces. */
19093 return TYPE_TAG_NAME (parent_type);
63d06c5c 19094 case DW_TAG_class_type:
680b30c7 19095 case DW_TAG_interface_type:
63d06c5c 19096 case DW_TAG_structure_type:
0114d602 19097 case DW_TAG_union_type:
f55ee35c 19098 case DW_TAG_module:
0114d602
DJ
19099 parent_type = read_type_die (parent, cu);
19100 if (TYPE_TAG_NAME (parent_type) != NULL)
19101 return TYPE_TAG_NAME (parent_type);
19102 else
19103 /* An anonymous structure is only allowed non-static data
19104 members; no typedefs, no member functions, et cetera.
19105 So it does not need a prefix. */
19106 return "";
abc72ce4 19107 case DW_TAG_compile_unit:
95554aad 19108 case DW_TAG_partial_unit:
abc72ce4
DE
19109 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19110 if (cu->language == language_cplus
8b70b953 19111 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19112 && die->child != NULL
19113 && (die->tag == DW_TAG_class_type
19114 || die->tag == DW_TAG_structure_type
19115 || die->tag == DW_TAG_union_type))
19116 {
19117 char *name = guess_full_die_structure_name (die, cu);
19118 if (name != NULL)
19119 return name;
19120 }
19121 return "";
3d567982
TT
19122 case DW_TAG_enumeration_type:
19123 parent_type = read_type_die (parent, cu);
19124 if (TYPE_DECLARED_CLASS (parent_type))
19125 {
19126 if (TYPE_TAG_NAME (parent_type) != NULL)
19127 return TYPE_TAG_NAME (parent_type);
19128 return "";
19129 }
19130 /* Fall through. */
63d06c5c 19131 default:
8176b9b8 19132 return determine_prefix (parent, cu);
63d06c5c 19133 }
63d06c5c
DC
19134}
19135
3e43a32a
MS
19136/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19137 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19138 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19139 an obconcat, otherwise allocate storage for the result. The CU argument is
19140 used to determine the language and hence, the appropriate separator. */
987504bb 19141
f55ee35c 19142#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19143
19144static char *
f55ee35c
JK
19145typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19146 int physname, struct dwarf2_cu *cu)
63d06c5c 19147{
f55ee35c 19148 const char *lead = "";
5c315b68 19149 const char *sep;
63d06c5c 19150
3e43a32a
MS
19151 if (suffix == NULL || suffix[0] == '\0'
19152 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19153 sep = "";
19154 else if (cu->language == language_java)
19155 sep = ".";
f55ee35c
JK
19156 else if (cu->language == language_fortran && physname)
19157 {
19158 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19159 DW_AT_MIPS_linkage_name is preferred and used instead. */
19160
19161 lead = "__";
19162 sep = "_MOD_";
19163 }
987504bb
JJ
19164 else
19165 sep = "::";
63d06c5c 19166
6dd47d34
DE
19167 if (prefix == NULL)
19168 prefix = "";
19169 if (suffix == NULL)
19170 suffix = "";
19171
987504bb
JJ
19172 if (obs == NULL)
19173 {
3e43a32a
MS
19174 char *retval
19175 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19176
f55ee35c
JK
19177 strcpy (retval, lead);
19178 strcat (retval, prefix);
6dd47d34
DE
19179 strcat (retval, sep);
19180 strcat (retval, suffix);
63d06c5c
DC
19181 return retval;
19182 }
987504bb
JJ
19183 else
19184 {
19185 /* We have an obstack. */
f55ee35c 19186 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19187 }
63d06c5c
DC
19188}
19189
c906108c
SS
19190/* Return sibling of die, NULL if no sibling. */
19191
f9aca02d 19192static struct die_info *
fba45db2 19193sibling_die (struct die_info *die)
c906108c 19194{
639d11d3 19195 return die->sibling;
c906108c
SS
19196}
19197
71c25dea
TT
19198/* Get name of a die, return NULL if not found. */
19199
15d034d0
TT
19200static const char *
19201dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19202 struct obstack *obstack)
19203{
19204 if (name && cu->language == language_cplus)
19205 {
19206 char *canon_name = cp_canonicalize_string (name);
19207
19208 if (canon_name != NULL)
19209 {
19210 if (strcmp (canon_name, name) != 0)
10f0c4bb 19211 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19212 xfree (canon_name);
19213 }
19214 }
19215
19216 return name;
c906108c
SS
19217}
19218
9219021c
DC
19219/* Get name of a die, return NULL if not found. */
19220
15d034d0 19221static const char *
e142c38c 19222dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19223{
19224 struct attribute *attr;
19225
e142c38c 19226 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
19227 if ((!attr || !DW_STRING (attr))
19228 && die->tag != DW_TAG_class_type
19229 && die->tag != DW_TAG_interface_type
19230 && die->tag != DW_TAG_structure_type
19231 && die->tag != DW_TAG_union_type)
71c25dea
TT
19232 return NULL;
19233
19234 switch (die->tag)
19235 {
19236 case DW_TAG_compile_unit:
95554aad 19237 case DW_TAG_partial_unit:
71c25dea
TT
19238 /* Compilation units have a DW_AT_name that is a filename, not
19239 a source language identifier. */
19240 case DW_TAG_enumeration_type:
19241 case DW_TAG_enumerator:
19242 /* These tags always have simple identifiers already; no need
19243 to canonicalize them. */
19244 return DW_STRING (attr);
907af001 19245
418835cc
KS
19246 case DW_TAG_subprogram:
19247 /* Java constructors will all be named "<init>", so return
19248 the class name when we see this special case. */
19249 if (cu->language == language_java
19250 && DW_STRING (attr) != NULL
19251 && strcmp (DW_STRING (attr), "<init>") == 0)
19252 {
19253 struct dwarf2_cu *spec_cu = cu;
19254 struct die_info *spec_die;
19255
19256 /* GCJ will output '<init>' for Java constructor names.
19257 For this special case, return the name of the parent class. */
19258
cdc07690 19259 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19260 If so, use the name of the specified DIE. */
19261 spec_die = die_specification (die, &spec_cu);
19262 if (spec_die != NULL)
19263 return dwarf2_name (spec_die, spec_cu);
19264
19265 do
19266 {
19267 die = die->parent;
19268 if (die->tag == DW_TAG_class_type)
19269 return dwarf2_name (die, cu);
19270 }
95554aad
TT
19271 while (die->tag != DW_TAG_compile_unit
19272 && die->tag != DW_TAG_partial_unit);
418835cc 19273 }
907af001
UW
19274 break;
19275
19276 case DW_TAG_class_type:
19277 case DW_TAG_interface_type:
19278 case DW_TAG_structure_type:
19279 case DW_TAG_union_type:
19280 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19281 structures or unions. These were of the form "._%d" in GCC 4.1,
19282 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19283 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
19284 if (attr && DW_STRING (attr)
19285 && (strncmp (DW_STRING (attr), "._", 2) == 0
19286 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 19287 return NULL;
53832f31
TT
19288
19289 /* GCC might emit a nameless typedef that has a linkage name. See
19290 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19291 if (!attr || DW_STRING (attr) == NULL)
19292 {
df5c6c50 19293 char *demangled = NULL;
53832f31
TT
19294
19295 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19296 if (attr == NULL)
19297 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19298
19299 if (attr == NULL || DW_STRING (attr) == NULL)
19300 return NULL;
19301
df5c6c50
JK
19302 /* Avoid demangling DW_STRING (attr) the second time on a second
19303 call for the same DIE. */
19304 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19305 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19306
19307 if (demangled)
19308 {
96408a79
SA
19309 char *base;
19310
53832f31 19311 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19312 DW_STRING (attr)
19313 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19314 demangled, strlen (demangled));
53832f31
TT
19315 DW_STRING_IS_CANONICAL (attr) = 1;
19316 xfree (demangled);
96408a79
SA
19317
19318 /* Strip any leading namespaces/classes, keep only the base name.
19319 DW_AT_name for named DIEs does not contain the prefixes. */
19320 base = strrchr (DW_STRING (attr), ':');
19321 if (base && base > DW_STRING (attr) && base[-1] == ':')
19322 return &base[1];
19323 else
19324 return DW_STRING (attr);
53832f31
TT
19325 }
19326 }
907af001
UW
19327 break;
19328
71c25dea 19329 default:
907af001
UW
19330 break;
19331 }
19332
19333 if (!DW_STRING_IS_CANONICAL (attr))
19334 {
19335 DW_STRING (attr)
19336 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19337 &cu->objfile->per_bfd->storage_obstack);
907af001 19338 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19339 }
907af001 19340 return DW_STRING (attr);
9219021c
DC
19341}
19342
19343/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19344 is none. *EXT_CU is the CU containing DIE on input, and the CU
19345 containing the return value on output. */
9219021c
DC
19346
19347static struct die_info *
f2f0e013 19348dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19349{
19350 struct attribute *attr;
9219021c 19351
f2f0e013 19352 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19353 if (attr == NULL)
19354 return NULL;
19355
f2f0e013 19356 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19357}
19358
c906108c
SS
19359/* Convert a DIE tag into its string name. */
19360
f39c6ffd 19361static const char *
aa1ee363 19362dwarf_tag_name (unsigned tag)
c906108c 19363{
f39c6ffd
TT
19364 const char *name = get_DW_TAG_name (tag);
19365
19366 if (name == NULL)
19367 return "DW_TAG_<unknown>";
19368
19369 return name;
c906108c
SS
19370}
19371
19372/* Convert a DWARF attribute code into its string name. */
19373
f39c6ffd 19374static const char *
aa1ee363 19375dwarf_attr_name (unsigned attr)
c906108c 19376{
f39c6ffd
TT
19377 const char *name;
19378
c764a876 19379#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19380 if (attr == DW_AT_MIPS_fde)
19381 return "DW_AT_MIPS_fde";
19382#else
19383 if (attr == DW_AT_HP_block_index)
19384 return "DW_AT_HP_block_index";
c764a876 19385#endif
f39c6ffd
TT
19386
19387 name = get_DW_AT_name (attr);
19388
19389 if (name == NULL)
19390 return "DW_AT_<unknown>";
19391
19392 return name;
c906108c
SS
19393}
19394
19395/* Convert a DWARF value form code into its string name. */
19396
f39c6ffd 19397static const char *
aa1ee363 19398dwarf_form_name (unsigned form)
c906108c 19399{
f39c6ffd
TT
19400 const char *name = get_DW_FORM_name (form);
19401
19402 if (name == NULL)
19403 return "DW_FORM_<unknown>";
19404
19405 return name;
c906108c
SS
19406}
19407
19408static char *
fba45db2 19409dwarf_bool_name (unsigned mybool)
c906108c
SS
19410{
19411 if (mybool)
19412 return "TRUE";
19413 else
19414 return "FALSE";
19415}
19416
19417/* Convert a DWARF type code into its string name. */
19418
f39c6ffd 19419static const char *
aa1ee363 19420dwarf_type_encoding_name (unsigned enc)
c906108c 19421{
f39c6ffd 19422 const char *name = get_DW_ATE_name (enc);
c906108c 19423
f39c6ffd
TT
19424 if (name == NULL)
19425 return "DW_ATE_<unknown>";
c906108c 19426
f39c6ffd 19427 return name;
c906108c 19428}
c906108c 19429
f9aca02d 19430static void
d97bc12b 19431dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19432{
19433 unsigned int i;
19434
d97bc12b
DE
19435 print_spaces (indent, f);
19436 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19437 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19438
19439 if (die->parent != NULL)
19440 {
19441 print_spaces (indent, f);
19442 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19443 die->parent->offset.sect_off);
d97bc12b
DE
19444 }
19445
19446 print_spaces (indent, f);
19447 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19448 dwarf_bool_name (die->child != NULL));
c906108c 19449
d97bc12b
DE
19450 print_spaces (indent, f);
19451 fprintf_unfiltered (f, " attributes:\n");
19452
c906108c
SS
19453 for (i = 0; i < die->num_attrs; ++i)
19454 {
d97bc12b
DE
19455 print_spaces (indent, f);
19456 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19457 dwarf_attr_name (die->attrs[i].name),
19458 dwarf_form_name (die->attrs[i].form));
d97bc12b 19459
c906108c
SS
19460 switch (die->attrs[i].form)
19461 {
c906108c 19462 case DW_FORM_addr:
3019eac3 19463 case DW_FORM_GNU_addr_index:
d97bc12b 19464 fprintf_unfiltered (f, "address: ");
5af949e3 19465 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19466 break;
19467 case DW_FORM_block2:
19468 case DW_FORM_block4:
19469 case DW_FORM_block:
19470 case DW_FORM_block1:
56eb65bd
SP
19471 fprintf_unfiltered (f, "block: size %s",
19472 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19473 break;
2dc7f7b3 19474 case DW_FORM_exprloc:
56eb65bd
SP
19475 fprintf_unfiltered (f, "expression: size %s",
19476 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19477 break;
4568ecf9
DE
19478 case DW_FORM_ref_addr:
19479 fprintf_unfiltered (f, "ref address: ");
19480 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19481 break;
36586728
TT
19482 case DW_FORM_GNU_ref_alt:
19483 fprintf_unfiltered (f, "alt ref address: ");
19484 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19485 break;
10b3939b
DJ
19486 case DW_FORM_ref1:
19487 case DW_FORM_ref2:
19488 case DW_FORM_ref4:
4568ecf9
DE
19489 case DW_FORM_ref8:
19490 case DW_FORM_ref_udata:
d97bc12b 19491 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19492 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19493 break;
c906108c
SS
19494 case DW_FORM_data1:
19495 case DW_FORM_data2:
19496 case DW_FORM_data4:
ce5d95e1 19497 case DW_FORM_data8:
c906108c
SS
19498 case DW_FORM_udata:
19499 case DW_FORM_sdata:
43bbcdc2
PH
19500 fprintf_unfiltered (f, "constant: %s",
19501 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19502 break;
2dc7f7b3
TT
19503 case DW_FORM_sec_offset:
19504 fprintf_unfiltered (f, "section offset: %s",
19505 pulongest (DW_UNSND (&die->attrs[i])));
19506 break;
55f1336d 19507 case DW_FORM_ref_sig8:
ac9ec31b
DE
19508 fprintf_unfiltered (f, "signature: %s",
19509 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19510 break;
c906108c 19511 case DW_FORM_string:
4bdf3d34 19512 case DW_FORM_strp:
3019eac3 19513 case DW_FORM_GNU_str_index:
36586728 19514 case DW_FORM_GNU_strp_alt:
8285870a 19515 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19516 DW_STRING (&die->attrs[i])
8285870a
JK
19517 ? DW_STRING (&die->attrs[i]) : "",
19518 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19519 break;
19520 case DW_FORM_flag:
19521 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19522 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19523 else
d97bc12b 19524 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19525 break;
2dc7f7b3
TT
19526 case DW_FORM_flag_present:
19527 fprintf_unfiltered (f, "flag: TRUE");
19528 break;
a8329558 19529 case DW_FORM_indirect:
0963b4bd
MS
19530 /* The reader will have reduced the indirect form to
19531 the "base form" so this form should not occur. */
3e43a32a
MS
19532 fprintf_unfiltered (f,
19533 "unexpected attribute form: DW_FORM_indirect");
a8329558 19534 break;
c906108c 19535 default:
d97bc12b 19536 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19537 die->attrs[i].form);
d97bc12b 19538 break;
c906108c 19539 }
d97bc12b 19540 fprintf_unfiltered (f, "\n");
c906108c
SS
19541 }
19542}
19543
f9aca02d 19544static void
d97bc12b 19545dump_die_for_error (struct die_info *die)
c906108c 19546{
d97bc12b
DE
19547 dump_die_shallow (gdb_stderr, 0, die);
19548}
19549
19550static void
19551dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19552{
19553 int indent = level * 4;
19554
19555 gdb_assert (die != NULL);
19556
19557 if (level >= max_level)
19558 return;
19559
19560 dump_die_shallow (f, indent, die);
19561
19562 if (die->child != NULL)
c906108c 19563 {
d97bc12b
DE
19564 print_spaces (indent, f);
19565 fprintf_unfiltered (f, " Children:");
19566 if (level + 1 < max_level)
19567 {
19568 fprintf_unfiltered (f, "\n");
19569 dump_die_1 (f, level + 1, max_level, die->child);
19570 }
19571 else
19572 {
3e43a32a
MS
19573 fprintf_unfiltered (f,
19574 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19575 }
19576 }
19577
19578 if (die->sibling != NULL && level > 0)
19579 {
19580 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19581 }
19582}
19583
d97bc12b
DE
19584/* This is called from the pdie macro in gdbinit.in.
19585 It's not static so gcc will keep a copy callable from gdb. */
19586
19587void
19588dump_die (struct die_info *die, int max_level)
19589{
19590 dump_die_1 (gdb_stdlog, 0, max_level, die);
19591}
19592
f9aca02d 19593static void
51545339 19594store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19595{
51545339 19596 void **slot;
c906108c 19597
b64f50a1
JK
19598 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19599 INSERT);
51545339
DJ
19600
19601 *slot = die;
c906108c
SS
19602}
19603
b64f50a1
JK
19604/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19605 required kind. */
19606
19607static sect_offset
ff39bb5e 19608dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19609{
4568ecf9 19610 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19611
7771576e 19612 if (attr_form_is_ref (attr))
b64f50a1 19613 return retval;
93311388 19614
b64f50a1 19615 retval.sect_off = 0;
93311388
DE
19616 complaint (&symfile_complaints,
19617 _("unsupported die ref attribute form: '%s'"),
19618 dwarf_form_name (attr->form));
b64f50a1 19619 return retval;
c906108c
SS
19620}
19621
43bbcdc2
PH
19622/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19623 * the value held by the attribute is not constant. */
a02abb62 19624
43bbcdc2 19625static LONGEST
ff39bb5e 19626dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19627{
19628 if (attr->form == DW_FORM_sdata)
19629 return DW_SND (attr);
19630 else if (attr->form == DW_FORM_udata
19631 || attr->form == DW_FORM_data1
19632 || attr->form == DW_FORM_data2
19633 || attr->form == DW_FORM_data4
19634 || attr->form == DW_FORM_data8)
19635 return DW_UNSND (attr);
19636 else
19637 {
3e43a32a
MS
19638 complaint (&symfile_complaints,
19639 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19640 dwarf_form_name (attr->form));
19641 return default_value;
19642 }
19643}
19644
348e048f
DE
19645/* Follow reference or signature attribute ATTR of SRC_DIE.
19646 On entry *REF_CU is the CU of SRC_DIE.
19647 On exit *REF_CU is the CU of the result. */
19648
19649static struct die_info *
ff39bb5e 19650follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19651 struct dwarf2_cu **ref_cu)
19652{
19653 struct die_info *die;
19654
7771576e 19655 if (attr_form_is_ref (attr))
348e048f 19656 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19657 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19658 die = follow_die_sig (src_die, attr, ref_cu);
19659 else
19660 {
19661 dump_die_for_error (src_die);
19662 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19663 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19664 }
19665
19666 return die;
03dd20cc
DJ
19667}
19668
5c631832 19669/* Follow reference OFFSET.
673bfd45
DE
19670 On entry *REF_CU is the CU of the source die referencing OFFSET.
19671 On exit *REF_CU is the CU of the result.
19672 Returns NULL if OFFSET is invalid. */
f504f079 19673
f9aca02d 19674static struct die_info *
36586728
TT
19675follow_die_offset (sect_offset offset, int offset_in_dwz,
19676 struct dwarf2_cu **ref_cu)
c906108c 19677{
10b3939b 19678 struct die_info temp_die;
f2f0e013 19679 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19680
348e048f
DE
19681 gdb_assert (cu->per_cu != NULL);
19682
98bfdba5
PA
19683 target_cu = cu;
19684
3019eac3 19685 if (cu->per_cu->is_debug_types)
348e048f
DE
19686 {
19687 /* .debug_types CUs cannot reference anything outside their CU.
19688 If they need to, they have to reference a signatured type via
55f1336d 19689 DW_FORM_ref_sig8. */
348e048f 19690 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19691 return NULL;
348e048f 19692 }
36586728
TT
19693 else if (offset_in_dwz != cu->per_cu->is_dwz
19694 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19695 {
19696 struct dwarf2_per_cu_data *per_cu;
9a619af0 19697
36586728
TT
19698 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19699 cu->objfile);
03dd20cc
DJ
19700
19701 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19702 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19703 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19704
10b3939b
DJ
19705 target_cu = per_cu->cu;
19706 }
98bfdba5
PA
19707 else if (cu->dies == NULL)
19708 {
19709 /* We're loading full DIEs during partial symbol reading. */
19710 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19711 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19712 }
c906108c 19713
f2f0e013 19714 *ref_cu = target_cu;
51545339 19715 temp_die.offset = offset;
b64f50a1 19716 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19717}
10b3939b 19718
5c631832
JK
19719/* Follow reference attribute ATTR of SRC_DIE.
19720 On entry *REF_CU is the CU of SRC_DIE.
19721 On exit *REF_CU is the CU of the result. */
19722
19723static struct die_info *
ff39bb5e 19724follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19725 struct dwarf2_cu **ref_cu)
19726{
b64f50a1 19727 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19728 struct dwarf2_cu *cu = *ref_cu;
19729 struct die_info *die;
19730
36586728
TT
19731 die = follow_die_offset (offset,
19732 (attr->form == DW_FORM_GNU_ref_alt
19733 || cu->per_cu->is_dwz),
19734 ref_cu);
5c631832
JK
19735 if (!die)
19736 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19737 "at 0x%x [in module %s]"),
4262abfb
JK
19738 offset.sect_off, src_die->offset.sect_off,
19739 objfile_name (cu->objfile));
348e048f 19740
5c631832
JK
19741 return die;
19742}
19743
d83e736b
JK
19744/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19745 Returned value is intended for DW_OP_call*. Returned
19746 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19747
19748struct dwarf2_locexpr_baton
8b9737bf
TT
19749dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19750 struct dwarf2_per_cu_data *per_cu,
19751 CORE_ADDR (*get_frame_pc) (void *baton),
19752 void *baton)
5c631832 19753{
918dd910 19754 struct dwarf2_cu *cu;
5c631832
JK
19755 struct die_info *die;
19756 struct attribute *attr;
19757 struct dwarf2_locexpr_baton retval;
19758
8cf6f0b1
TT
19759 dw2_setup (per_cu->objfile);
19760
918dd910
JK
19761 if (per_cu->cu == NULL)
19762 load_cu (per_cu);
19763 cu = per_cu->cu;
19764
36586728 19765 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19766 if (!die)
19767 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19768 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19769
19770 attr = dwarf2_attr (die, DW_AT_location, cu);
19771 if (!attr)
19772 {
e103e986
JK
19773 /* DWARF: "If there is no such attribute, then there is no effect.".
19774 DATA is ignored if SIZE is 0. */
5c631832 19775
e103e986 19776 retval.data = NULL;
5c631832
JK
19777 retval.size = 0;
19778 }
8cf6f0b1
TT
19779 else if (attr_form_is_section_offset (attr))
19780 {
19781 struct dwarf2_loclist_baton loclist_baton;
19782 CORE_ADDR pc = (*get_frame_pc) (baton);
19783 size_t size;
19784
19785 fill_in_loclist_baton (cu, &loclist_baton, attr);
19786
19787 retval.data = dwarf2_find_location_expression (&loclist_baton,
19788 &size, pc);
19789 retval.size = size;
19790 }
5c631832
JK
19791 else
19792 {
19793 if (!attr_form_is_block (attr))
19794 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19795 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19796 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19797
19798 retval.data = DW_BLOCK (attr)->data;
19799 retval.size = DW_BLOCK (attr)->size;
19800 }
19801 retval.per_cu = cu->per_cu;
918dd910 19802
918dd910
JK
19803 age_cached_comp_units ();
19804
5c631832 19805 return retval;
348e048f
DE
19806}
19807
8b9737bf
TT
19808/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19809 offset. */
19810
19811struct dwarf2_locexpr_baton
19812dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19813 struct dwarf2_per_cu_data *per_cu,
19814 CORE_ADDR (*get_frame_pc) (void *baton),
19815 void *baton)
19816{
19817 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19818
19819 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19820}
19821
b6807d98
TT
19822/* Write a constant of a given type as target-ordered bytes into
19823 OBSTACK. */
19824
19825static const gdb_byte *
19826write_constant_as_bytes (struct obstack *obstack,
19827 enum bfd_endian byte_order,
19828 struct type *type,
19829 ULONGEST value,
19830 LONGEST *len)
19831{
19832 gdb_byte *result;
19833
19834 *len = TYPE_LENGTH (type);
19835 result = obstack_alloc (obstack, *len);
19836 store_unsigned_integer (result, *len, byte_order, value);
19837
19838 return result;
19839}
19840
19841/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19842 pointer to the constant bytes and set LEN to the length of the
19843 data. If memory is needed, allocate it on OBSTACK. If the DIE
19844 does not have a DW_AT_const_value, return NULL. */
19845
19846const gdb_byte *
19847dwarf2_fetch_constant_bytes (sect_offset offset,
19848 struct dwarf2_per_cu_data *per_cu,
19849 struct obstack *obstack,
19850 LONGEST *len)
19851{
19852 struct dwarf2_cu *cu;
19853 struct die_info *die;
19854 struct attribute *attr;
19855 const gdb_byte *result = NULL;
19856 struct type *type;
19857 LONGEST value;
19858 enum bfd_endian byte_order;
19859
19860 dw2_setup (per_cu->objfile);
19861
19862 if (per_cu->cu == NULL)
19863 load_cu (per_cu);
19864 cu = per_cu->cu;
19865
19866 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19867 if (!die)
19868 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19869 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19870
19871
19872 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19873 if (attr == NULL)
19874 return NULL;
19875
19876 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19877 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19878
19879 switch (attr->form)
19880 {
19881 case DW_FORM_addr:
19882 case DW_FORM_GNU_addr_index:
19883 {
19884 gdb_byte *tem;
19885
19886 *len = cu->header.addr_size;
19887 tem = obstack_alloc (obstack, *len);
19888 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19889 result = tem;
19890 }
19891 break;
19892 case DW_FORM_string:
19893 case DW_FORM_strp:
19894 case DW_FORM_GNU_str_index:
19895 case DW_FORM_GNU_strp_alt:
19896 /* DW_STRING is already allocated on the objfile obstack, point
19897 directly to it. */
19898 result = (const gdb_byte *) DW_STRING (attr);
19899 *len = strlen (DW_STRING (attr));
19900 break;
19901 case DW_FORM_block1:
19902 case DW_FORM_block2:
19903 case DW_FORM_block4:
19904 case DW_FORM_block:
19905 case DW_FORM_exprloc:
19906 result = DW_BLOCK (attr)->data;
19907 *len = DW_BLOCK (attr)->size;
19908 break;
19909
19910 /* The DW_AT_const_value attributes are supposed to carry the
19911 symbol's value "represented as it would be on the target
19912 architecture." By the time we get here, it's already been
19913 converted to host endianness, so we just need to sign- or
19914 zero-extend it as appropriate. */
19915 case DW_FORM_data1:
19916 type = die_type (die, cu);
19917 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19918 if (result == NULL)
19919 result = write_constant_as_bytes (obstack, byte_order,
19920 type, value, len);
19921 break;
19922 case DW_FORM_data2:
19923 type = die_type (die, cu);
19924 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19925 if (result == NULL)
19926 result = write_constant_as_bytes (obstack, byte_order,
19927 type, value, len);
19928 break;
19929 case DW_FORM_data4:
19930 type = die_type (die, cu);
19931 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19932 if (result == NULL)
19933 result = write_constant_as_bytes (obstack, byte_order,
19934 type, value, len);
19935 break;
19936 case DW_FORM_data8:
19937 type = die_type (die, cu);
19938 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19939 if (result == NULL)
19940 result = write_constant_as_bytes (obstack, byte_order,
19941 type, value, len);
19942 break;
19943
19944 case DW_FORM_sdata:
19945 type = die_type (die, cu);
19946 result = write_constant_as_bytes (obstack, byte_order,
19947 type, DW_SND (attr), len);
19948 break;
19949
19950 case DW_FORM_udata:
19951 type = die_type (die, cu);
19952 result = write_constant_as_bytes (obstack, byte_order,
19953 type, DW_UNSND (attr), len);
19954 break;
19955
19956 default:
19957 complaint (&symfile_complaints,
19958 _("unsupported const value attribute form: '%s'"),
19959 dwarf_form_name (attr->form));
19960 break;
19961 }
19962
19963 return result;
19964}
19965
8a9b8146
TT
19966/* Return the type of the DIE at DIE_OFFSET in the CU named by
19967 PER_CU. */
19968
19969struct type *
b64f50a1 19970dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19971 struct dwarf2_per_cu_data *per_cu)
19972{
b64f50a1
JK
19973 sect_offset die_offset_sect;
19974
8a9b8146 19975 dw2_setup (per_cu->objfile);
b64f50a1
JK
19976
19977 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19978 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19979}
19980
ac9ec31b 19981/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19982 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19983 On exit *REF_CU is the CU of the result.
19984 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19985
19986static struct die_info *
ac9ec31b
DE
19987follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19988 struct dwarf2_cu **ref_cu)
348e048f
DE
19989{
19990 struct objfile *objfile = (*ref_cu)->objfile;
19991 struct die_info temp_die;
348e048f
DE
19992 struct dwarf2_cu *sig_cu;
19993 struct die_info *die;
19994
ac9ec31b
DE
19995 /* While it might be nice to assert sig_type->type == NULL here,
19996 we can get here for DW_AT_imported_declaration where we need
19997 the DIE not the type. */
348e048f
DE
19998
19999 /* If necessary, add it to the queue and load its DIEs. */
20000
95554aad 20001 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20002 read_signatured_type (sig_type);
348e048f 20003
348e048f 20004 sig_cu = sig_type->per_cu.cu;
69d751e3 20005 gdb_assert (sig_cu != NULL);
3019eac3
DE
20006 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20007 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
20008 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20009 temp_die.offset.sect_off);
348e048f
DE
20010 if (die)
20011 {
796a7ff8
DE
20012 /* For .gdb_index version 7 keep track of included TUs.
20013 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20014 if (dwarf2_per_objfile->index_table != NULL
20015 && dwarf2_per_objfile->index_table->version <= 7)
20016 {
20017 VEC_safe_push (dwarf2_per_cu_ptr,
20018 (*ref_cu)->per_cu->imported_symtabs,
20019 sig_cu->per_cu);
20020 }
20021
348e048f
DE
20022 *ref_cu = sig_cu;
20023 return die;
20024 }
20025
ac9ec31b
DE
20026 return NULL;
20027}
20028
20029/* Follow signatured type referenced by ATTR in SRC_DIE.
20030 On entry *REF_CU is the CU of SRC_DIE.
20031 On exit *REF_CU is the CU of the result.
20032 The result is the DIE of the type.
20033 If the referenced type cannot be found an error is thrown. */
20034
20035static struct die_info *
ff39bb5e 20036follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20037 struct dwarf2_cu **ref_cu)
20038{
20039 ULONGEST signature = DW_SIGNATURE (attr);
20040 struct signatured_type *sig_type;
20041 struct die_info *die;
20042
20043 gdb_assert (attr->form == DW_FORM_ref_sig8);
20044
a2ce51a0 20045 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20046 /* sig_type will be NULL if the signatured type is missing from
20047 the debug info. */
20048 if (sig_type == NULL)
20049 {
20050 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20051 " from DIE at 0x%x [in module %s]"),
20052 hex_string (signature), src_die->offset.sect_off,
4262abfb 20053 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20054 }
20055
20056 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20057 if (die == NULL)
20058 {
20059 dump_die_for_error (src_die);
20060 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20061 " from DIE at 0x%x [in module %s]"),
20062 hex_string (signature), src_die->offset.sect_off,
4262abfb 20063 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20064 }
20065
20066 return die;
20067}
20068
20069/* Get the type specified by SIGNATURE referenced in DIE/CU,
20070 reading in and processing the type unit if necessary. */
20071
20072static struct type *
20073get_signatured_type (struct die_info *die, ULONGEST signature,
20074 struct dwarf2_cu *cu)
20075{
20076 struct signatured_type *sig_type;
20077 struct dwarf2_cu *type_cu;
20078 struct die_info *type_die;
20079 struct type *type;
20080
a2ce51a0 20081 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20082 /* sig_type will be NULL if the signatured type is missing from
20083 the debug info. */
20084 if (sig_type == NULL)
20085 {
20086 complaint (&symfile_complaints,
20087 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20088 " from DIE at 0x%x [in module %s]"),
20089 hex_string (signature), die->offset.sect_off,
4262abfb 20090 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20091 return build_error_marker_type (cu, die);
20092 }
20093
20094 /* If we already know the type we're done. */
20095 if (sig_type->type != NULL)
20096 return sig_type->type;
20097
20098 type_cu = cu;
20099 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20100 if (type_die != NULL)
20101 {
20102 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20103 is created. This is important, for example, because for c++ classes
20104 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20105 type = read_type_die (type_die, type_cu);
20106 if (type == NULL)
20107 {
20108 complaint (&symfile_complaints,
20109 _("Dwarf Error: Cannot build signatured type %s"
20110 " referenced from DIE at 0x%x [in module %s]"),
20111 hex_string (signature), die->offset.sect_off,
4262abfb 20112 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20113 type = build_error_marker_type (cu, die);
20114 }
20115 }
20116 else
20117 {
20118 complaint (&symfile_complaints,
20119 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20120 " from DIE at 0x%x [in module %s]"),
20121 hex_string (signature), die->offset.sect_off,
4262abfb 20122 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20123 type = build_error_marker_type (cu, die);
20124 }
20125 sig_type->type = type;
20126
20127 return type;
20128}
20129
20130/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20131 reading in and processing the type unit if necessary. */
20132
20133static struct type *
ff39bb5e 20134get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20135 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20136{
20137 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20138 if (attr_form_is_ref (attr))
ac9ec31b
DE
20139 {
20140 struct dwarf2_cu *type_cu = cu;
20141 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20142
20143 return read_type_die (type_die, type_cu);
20144 }
20145 else if (attr->form == DW_FORM_ref_sig8)
20146 {
20147 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20148 }
20149 else
20150 {
20151 complaint (&symfile_complaints,
20152 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20153 " at 0x%x [in module %s]"),
20154 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20155 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20156 return build_error_marker_type (cu, die);
20157 }
348e048f
DE
20158}
20159
e5fe5e75 20160/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20161
20162static void
e5fe5e75 20163load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20164{
52dc124a 20165 struct signatured_type *sig_type;
348e048f 20166
f4dc4d17
DE
20167 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20168 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20169
6721b2ec
DE
20170 /* We have the per_cu, but we need the signatured_type.
20171 Fortunately this is an easy translation. */
20172 gdb_assert (per_cu->is_debug_types);
20173 sig_type = (struct signatured_type *) per_cu;
348e048f 20174
6721b2ec 20175 gdb_assert (per_cu->cu == NULL);
348e048f 20176
52dc124a 20177 read_signatured_type (sig_type);
348e048f 20178
6721b2ec 20179 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20180}
20181
dee91e82
DE
20182/* die_reader_func for read_signatured_type.
20183 This is identical to load_full_comp_unit_reader,
20184 but is kept separate for now. */
348e048f
DE
20185
20186static void
dee91e82 20187read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20188 const gdb_byte *info_ptr,
dee91e82
DE
20189 struct die_info *comp_unit_die,
20190 int has_children,
20191 void *data)
348e048f 20192{
dee91e82 20193 struct dwarf2_cu *cu = reader->cu;
348e048f 20194
dee91e82
DE
20195 gdb_assert (cu->die_hash == NULL);
20196 cu->die_hash =
20197 htab_create_alloc_ex (cu->header.length / 12,
20198 die_hash,
20199 die_eq,
20200 NULL,
20201 &cu->comp_unit_obstack,
20202 hashtab_obstack_allocate,
20203 dummy_obstack_deallocate);
348e048f 20204
dee91e82
DE
20205 if (has_children)
20206 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20207 &info_ptr, comp_unit_die);
20208 cu->dies = comp_unit_die;
20209 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20210
20211 /* We try not to read any attributes in this function, because not
9cdd5dbd 20212 all CUs needed for references have been loaded yet, and symbol
348e048f 20213 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20214 or we won't be able to build types correctly.
20215 Similarly, if we do not read the producer, we can not apply
20216 producer-specific interpretation. */
95554aad 20217 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20218}
348e048f 20219
3019eac3
DE
20220/* Read in a signatured type and build its CU and DIEs.
20221 If the type is a stub for the real type in a DWO file,
20222 read in the real type from the DWO file as well. */
dee91e82
DE
20223
20224static void
20225read_signatured_type (struct signatured_type *sig_type)
20226{
20227 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20228
3019eac3 20229 gdb_assert (per_cu->is_debug_types);
dee91e82 20230 gdb_assert (per_cu->cu == NULL);
348e048f 20231
f4dc4d17
DE
20232 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20233 read_signatured_type_reader, NULL);
7ee85ab1 20234 sig_type->per_cu.tu_read = 1;
c906108c
SS
20235}
20236
c906108c
SS
20237/* Decode simple location descriptions.
20238 Given a pointer to a dwarf block that defines a location, compute
20239 the location and return the value.
20240
4cecd739
DJ
20241 NOTE drow/2003-11-18: This function is called in two situations
20242 now: for the address of static or global variables (partial symbols
20243 only) and for offsets into structures which are expected to be
20244 (more or less) constant. The partial symbol case should go away,
20245 and only the constant case should remain. That will let this
20246 function complain more accurately. A few special modes are allowed
20247 without complaint for global variables (for instance, global
20248 register values and thread-local values).
c906108c
SS
20249
20250 A location description containing no operations indicates that the
4cecd739 20251 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20252 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20253 callers will only want a very basic result and this can become a
21ae7a4d
JK
20254 complaint.
20255
20256 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20257
20258static CORE_ADDR
e7c27a73 20259decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20260{
e7c27a73 20261 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20262 size_t i;
20263 size_t size = blk->size;
d521ce57 20264 const gdb_byte *data = blk->data;
21ae7a4d
JK
20265 CORE_ADDR stack[64];
20266 int stacki;
20267 unsigned int bytes_read, unsnd;
20268 gdb_byte op;
c906108c 20269
21ae7a4d
JK
20270 i = 0;
20271 stacki = 0;
20272 stack[stacki] = 0;
20273 stack[++stacki] = 0;
20274
20275 while (i < size)
20276 {
20277 op = data[i++];
20278 switch (op)
20279 {
20280 case DW_OP_lit0:
20281 case DW_OP_lit1:
20282 case DW_OP_lit2:
20283 case DW_OP_lit3:
20284 case DW_OP_lit4:
20285 case DW_OP_lit5:
20286 case DW_OP_lit6:
20287 case DW_OP_lit7:
20288 case DW_OP_lit8:
20289 case DW_OP_lit9:
20290 case DW_OP_lit10:
20291 case DW_OP_lit11:
20292 case DW_OP_lit12:
20293 case DW_OP_lit13:
20294 case DW_OP_lit14:
20295 case DW_OP_lit15:
20296 case DW_OP_lit16:
20297 case DW_OP_lit17:
20298 case DW_OP_lit18:
20299 case DW_OP_lit19:
20300 case DW_OP_lit20:
20301 case DW_OP_lit21:
20302 case DW_OP_lit22:
20303 case DW_OP_lit23:
20304 case DW_OP_lit24:
20305 case DW_OP_lit25:
20306 case DW_OP_lit26:
20307 case DW_OP_lit27:
20308 case DW_OP_lit28:
20309 case DW_OP_lit29:
20310 case DW_OP_lit30:
20311 case DW_OP_lit31:
20312 stack[++stacki] = op - DW_OP_lit0;
20313 break;
f1bea926 20314
21ae7a4d
JK
20315 case DW_OP_reg0:
20316 case DW_OP_reg1:
20317 case DW_OP_reg2:
20318 case DW_OP_reg3:
20319 case DW_OP_reg4:
20320 case DW_OP_reg5:
20321 case DW_OP_reg6:
20322 case DW_OP_reg7:
20323 case DW_OP_reg8:
20324 case DW_OP_reg9:
20325 case DW_OP_reg10:
20326 case DW_OP_reg11:
20327 case DW_OP_reg12:
20328 case DW_OP_reg13:
20329 case DW_OP_reg14:
20330 case DW_OP_reg15:
20331 case DW_OP_reg16:
20332 case DW_OP_reg17:
20333 case DW_OP_reg18:
20334 case DW_OP_reg19:
20335 case DW_OP_reg20:
20336 case DW_OP_reg21:
20337 case DW_OP_reg22:
20338 case DW_OP_reg23:
20339 case DW_OP_reg24:
20340 case DW_OP_reg25:
20341 case DW_OP_reg26:
20342 case DW_OP_reg27:
20343 case DW_OP_reg28:
20344 case DW_OP_reg29:
20345 case DW_OP_reg30:
20346 case DW_OP_reg31:
20347 stack[++stacki] = op - DW_OP_reg0;
20348 if (i < size)
20349 dwarf2_complex_location_expr_complaint ();
20350 break;
c906108c 20351
21ae7a4d
JK
20352 case DW_OP_regx:
20353 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20354 i += bytes_read;
20355 stack[++stacki] = unsnd;
20356 if (i < size)
20357 dwarf2_complex_location_expr_complaint ();
20358 break;
c906108c 20359
21ae7a4d
JK
20360 case DW_OP_addr:
20361 stack[++stacki] = read_address (objfile->obfd, &data[i],
20362 cu, &bytes_read);
20363 i += bytes_read;
20364 break;
d53d4ac5 20365
21ae7a4d
JK
20366 case DW_OP_const1u:
20367 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20368 i += 1;
20369 break;
20370
20371 case DW_OP_const1s:
20372 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20373 i += 1;
20374 break;
20375
20376 case DW_OP_const2u:
20377 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20378 i += 2;
20379 break;
20380
20381 case DW_OP_const2s:
20382 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20383 i += 2;
20384 break;
d53d4ac5 20385
21ae7a4d
JK
20386 case DW_OP_const4u:
20387 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20388 i += 4;
20389 break;
20390
20391 case DW_OP_const4s:
20392 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20393 i += 4;
20394 break;
20395
585861ea
JK
20396 case DW_OP_const8u:
20397 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20398 i += 8;
20399 break;
20400
21ae7a4d
JK
20401 case DW_OP_constu:
20402 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20403 &bytes_read);
20404 i += bytes_read;
20405 break;
20406
20407 case DW_OP_consts:
20408 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20409 i += bytes_read;
20410 break;
20411
20412 case DW_OP_dup:
20413 stack[stacki + 1] = stack[stacki];
20414 stacki++;
20415 break;
20416
20417 case DW_OP_plus:
20418 stack[stacki - 1] += stack[stacki];
20419 stacki--;
20420 break;
20421
20422 case DW_OP_plus_uconst:
20423 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20424 &bytes_read);
20425 i += bytes_read;
20426 break;
20427
20428 case DW_OP_minus:
20429 stack[stacki - 1] -= stack[stacki];
20430 stacki--;
20431 break;
20432
20433 case DW_OP_deref:
20434 /* If we're not the last op, then we definitely can't encode
20435 this using GDB's address_class enum. This is valid for partial
20436 global symbols, although the variable's address will be bogus
20437 in the psymtab. */
20438 if (i < size)
20439 dwarf2_complex_location_expr_complaint ();
20440 break;
20441
20442 case DW_OP_GNU_push_tls_address:
20443 /* The top of the stack has the offset from the beginning
20444 of the thread control block at which the variable is located. */
20445 /* Nothing should follow this operator, so the top of stack would
20446 be returned. */
20447 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20448 address will be bogus in the psymtab. Make it always at least
20449 non-zero to not look as a variable garbage collected by linker
20450 which have DW_OP_addr 0. */
21ae7a4d
JK
20451 if (i < size)
20452 dwarf2_complex_location_expr_complaint ();
585861ea 20453 stack[stacki]++;
21ae7a4d
JK
20454 break;
20455
20456 case DW_OP_GNU_uninit:
20457 break;
20458
3019eac3 20459 case DW_OP_GNU_addr_index:
49f6c839 20460 case DW_OP_GNU_const_index:
3019eac3
DE
20461 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20462 &bytes_read);
20463 i += bytes_read;
20464 break;
20465
21ae7a4d
JK
20466 default:
20467 {
f39c6ffd 20468 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20469
20470 if (name)
20471 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20472 name);
20473 else
20474 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20475 op);
20476 }
20477
20478 return (stack[stacki]);
d53d4ac5 20479 }
3c6e0cb3 20480
21ae7a4d
JK
20481 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20482 outside of the allocated space. Also enforce minimum>0. */
20483 if (stacki >= ARRAY_SIZE (stack) - 1)
20484 {
20485 complaint (&symfile_complaints,
20486 _("location description stack overflow"));
20487 return 0;
20488 }
20489
20490 if (stacki <= 0)
20491 {
20492 complaint (&symfile_complaints,
20493 _("location description stack underflow"));
20494 return 0;
20495 }
20496 }
20497 return (stack[stacki]);
c906108c
SS
20498}
20499
20500/* memory allocation interface */
20501
c906108c 20502static struct dwarf_block *
7b5a2f43 20503dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20504{
20505 struct dwarf_block *blk;
20506
20507 blk = (struct dwarf_block *)
7b5a2f43 20508 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20509 return (blk);
20510}
20511
c906108c 20512static struct die_info *
b60c80d6 20513dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20514{
20515 struct die_info *die;
b60c80d6
DJ
20516 size_t size = sizeof (struct die_info);
20517
20518 if (num_attrs > 1)
20519 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20520
b60c80d6 20521 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20522 memset (die, 0, sizeof (struct die_info));
20523 return (die);
20524}
2e276125
JB
20525
20526\f
20527/* Macro support. */
20528
233d95b5
JK
20529/* Return file name relative to the compilation directory of file number I in
20530 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20531 responsible for freeing it. */
233d95b5 20532
2e276125 20533static char *
233d95b5 20534file_file_name (int file, struct line_header *lh)
2e276125 20535{
6a83a1e6
EZ
20536 /* Is the file number a valid index into the line header's file name
20537 table? Remember that file numbers start with one, not zero. */
20538 if (1 <= file && file <= lh->num_file_names)
20539 {
20540 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20541
233d95b5 20542 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20543 return xstrdup (fe->name);
233d95b5
JK
20544 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20545 fe->name, NULL);
6a83a1e6 20546 }
2e276125
JB
20547 else
20548 {
6a83a1e6
EZ
20549 /* The compiler produced a bogus file number. We can at least
20550 record the macro definitions made in the file, even if we
20551 won't be able to find the file by name. */
20552 char fake_name[80];
9a619af0 20553
8c042590
PM
20554 xsnprintf (fake_name, sizeof (fake_name),
20555 "<bad macro file number %d>", file);
2e276125 20556
6e70227d 20557 complaint (&symfile_complaints,
6a83a1e6
EZ
20558 _("bad file number in macro information (%d)"),
20559 file);
2e276125 20560
6a83a1e6 20561 return xstrdup (fake_name);
2e276125
JB
20562 }
20563}
20564
233d95b5
JK
20565/* Return the full name of file number I in *LH's file name table.
20566 Use COMP_DIR as the name of the current directory of the
20567 compilation. The result is allocated using xmalloc; the caller is
20568 responsible for freeing it. */
20569static char *
20570file_full_name (int file, struct line_header *lh, const char *comp_dir)
20571{
20572 /* Is the file number a valid index into the line header's file name
20573 table? Remember that file numbers start with one, not zero. */
20574 if (1 <= file && file <= lh->num_file_names)
20575 {
20576 char *relative = file_file_name (file, lh);
20577
20578 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20579 return relative;
20580 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20581 }
20582 else
20583 return file_file_name (file, lh);
20584}
20585
2e276125
JB
20586
20587static struct macro_source_file *
20588macro_start_file (int file, int line,
20589 struct macro_source_file *current_file,
43f3e411 20590 struct line_header *lh)
2e276125 20591{
233d95b5
JK
20592 /* File name relative to the compilation directory of this source file. */
20593 char *file_name = file_file_name (file, lh);
2e276125 20594
2e276125 20595 if (! current_file)
abc9d0dc 20596 {
fc474241
DE
20597 /* Note: We don't create a macro table for this compilation unit
20598 at all until we actually get a filename. */
43f3e411 20599 struct macro_table *macro_table = get_macro_table ();
fc474241 20600
abc9d0dc
TT
20601 /* If we have no current file, then this must be the start_file
20602 directive for the compilation unit's main source file. */
fc474241
DE
20603 current_file = macro_set_main (macro_table, file_name);
20604 macro_define_special (macro_table);
abc9d0dc 20605 }
2e276125 20606 else
233d95b5 20607 current_file = macro_include (current_file, line, file_name);
2e276125 20608
233d95b5 20609 xfree (file_name);
6e70227d 20610
2e276125
JB
20611 return current_file;
20612}
20613
20614
20615/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20616 followed by a null byte. */
20617static char *
20618copy_string (const char *buf, int len)
20619{
20620 char *s = xmalloc (len + 1);
9a619af0 20621
2e276125
JB
20622 memcpy (s, buf, len);
20623 s[len] = '\0';
2e276125
JB
20624 return s;
20625}
20626
20627
20628static const char *
20629consume_improper_spaces (const char *p, const char *body)
20630{
20631 if (*p == ' ')
20632 {
4d3c2250 20633 complaint (&symfile_complaints,
3e43a32a
MS
20634 _("macro definition contains spaces "
20635 "in formal argument list:\n`%s'"),
4d3c2250 20636 body);
2e276125
JB
20637
20638 while (*p == ' ')
20639 p++;
20640 }
20641
20642 return p;
20643}
20644
20645
20646static void
20647parse_macro_definition (struct macro_source_file *file, int line,
20648 const char *body)
20649{
20650 const char *p;
20651
20652 /* The body string takes one of two forms. For object-like macro
20653 definitions, it should be:
20654
20655 <macro name> " " <definition>
20656
20657 For function-like macro definitions, it should be:
20658
20659 <macro name> "() " <definition>
20660 or
20661 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20662
20663 Spaces may appear only where explicitly indicated, and in the
20664 <definition>.
20665
20666 The Dwarf 2 spec says that an object-like macro's name is always
20667 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20668 the space when the macro's definition is the empty string.
2e276125
JB
20669
20670 The Dwarf 2 spec says that there should be no spaces between the
20671 formal arguments in a function-like macro's formal argument list,
20672 but versions of GCC around March 2002 include spaces after the
20673 commas. */
20674
20675
20676 /* Find the extent of the macro name. The macro name is terminated
20677 by either a space or null character (for an object-like macro) or
20678 an opening paren (for a function-like macro). */
20679 for (p = body; *p; p++)
20680 if (*p == ' ' || *p == '(')
20681 break;
20682
20683 if (*p == ' ' || *p == '\0')
20684 {
20685 /* It's an object-like macro. */
20686 int name_len = p - body;
20687 char *name = copy_string (body, name_len);
20688 const char *replacement;
20689
20690 if (*p == ' ')
20691 replacement = body + name_len + 1;
20692 else
20693 {
4d3c2250 20694 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20695 replacement = body + name_len;
20696 }
6e70227d 20697
2e276125
JB
20698 macro_define_object (file, line, name, replacement);
20699
20700 xfree (name);
20701 }
20702 else if (*p == '(')
20703 {
20704 /* It's a function-like macro. */
20705 char *name = copy_string (body, p - body);
20706 int argc = 0;
20707 int argv_size = 1;
20708 char **argv = xmalloc (argv_size * sizeof (*argv));
20709
20710 p++;
20711
20712 p = consume_improper_spaces (p, body);
20713
20714 /* Parse the formal argument list. */
20715 while (*p && *p != ')')
20716 {
20717 /* Find the extent of the current argument name. */
20718 const char *arg_start = p;
20719
20720 while (*p && *p != ',' && *p != ')' && *p != ' ')
20721 p++;
20722
20723 if (! *p || p == arg_start)
4d3c2250 20724 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20725 else
20726 {
20727 /* Make sure argv has room for the new argument. */
20728 if (argc >= argv_size)
20729 {
20730 argv_size *= 2;
20731 argv = xrealloc (argv, argv_size * sizeof (*argv));
20732 }
20733
20734 argv[argc++] = copy_string (arg_start, p - arg_start);
20735 }
20736
20737 p = consume_improper_spaces (p, body);
20738
20739 /* Consume the comma, if present. */
20740 if (*p == ',')
20741 {
20742 p++;
20743
20744 p = consume_improper_spaces (p, body);
20745 }
20746 }
20747
20748 if (*p == ')')
20749 {
20750 p++;
20751
20752 if (*p == ' ')
20753 /* Perfectly formed definition, no complaints. */
20754 macro_define_function (file, line, name,
6e70227d 20755 argc, (const char **) argv,
2e276125
JB
20756 p + 1);
20757 else if (*p == '\0')
20758 {
20759 /* Complain, but do define it. */
4d3c2250 20760 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20761 macro_define_function (file, line, name,
6e70227d 20762 argc, (const char **) argv,
2e276125
JB
20763 p);
20764 }
20765 else
20766 /* Just complain. */
4d3c2250 20767 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20768 }
20769 else
20770 /* Just complain. */
4d3c2250 20771 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20772
20773 xfree (name);
20774 {
20775 int i;
20776
20777 for (i = 0; i < argc; i++)
20778 xfree (argv[i]);
20779 }
20780 xfree (argv);
20781 }
20782 else
4d3c2250 20783 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20784}
20785
cf2c3c16
TT
20786/* Skip some bytes from BYTES according to the form given in FORM.
20787 Returns the new pointer. */
2e276125 20788
d521ce57
TT
20789static const gdb_byte *
20790skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20791 enum dwarf_form form,
20792 unsigned int offset_size,
20793 struct dwarf2_section_info *section)
2e276125 20794{
cf2c3c16 20795 unsigned int bytes_read;
2e276125 20796
cf2c3c16 20797 switch (form)
2e276125 20798 {
cf2c3c16
TT
20799 case DW_FORM_data1:
20800 case DW_FORM_flag:
20801 ++bytes;
20802 break;
20803
20804 case DW_FORM_data2:
20805 bytes += 2;
20806 break;
20807
20808 case DW_FORM_data4:
20809 bytes += 4;
20810 break;
20811
20812 case DW_FORM_data8:
20813 bytes += 8;
20814 break;
20815
20816 case DW_FORM_string:
20817 read_direct_string (abfd, bytes, &bytes_read);
20818 bytes += bytes_read;
20819 break;
20820
20821 case DW_FORM_sec_offset:
20822 case DW_FORM_strp:
36586728 20823 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20824 bytes += offset_size;
20825 break;
20826
20827 case DW_FORM_block:
20828 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20829 bytes += bytes_read;
20830 break;
20831
20832 case DW_FORM_block1:
20833 bytes += 1 + read_1_byte (abfd, bytes);
20834 break;
20835 case DW_FORM_block2:
20836 bytes += 2 + read_2_bytes (abfd, bytes);
20837 break;
20838 case DW_FORM_block4:
20839 bytes += 4 + read_4_bytes (abfd, bytes);
20840 break;
20841
20842 case DW_FORM_sdata:
20843 case DW_FORM_udata:
3019eac3
DE
20844 case DW_FORM_GNU_addr_index:
20845 case DW_FORM_GNU_str_index:
d521ce57 20846 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20847 if (bytes == NULL)
20848 {
20849 dwarf2_section_buffer_overflow_complaint (section);
20850 return NULL;
20851 }
cf2c3c16
TT
20852 break;
20853
20854 default:
20855 {
20856 complain:
20857 complaint (&symfile_complaints,
20858 _("invalid form 0x%x in `%s'"),
a32a8923 20859 form, get_section_name (section));
cf2c3c16
TT
20860 return NULL;
20861 }
2e276125
JB
20862 }
20863
cf2c3c16
TT
20864 return bytes;
20865}
757a13d0 20866
cf2c3c16
TT
20867/* A helper for dwarf_decode_macros that handles skipping an unknown
20868 opcode. Returns an updated pointer to the macro data buffer; or,
20869 on error, issues a complaint and returns NULL. */
757a13d0 20870
d521ce57 20871static const gdb_byte *
cf2c3c16 20872skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20873 const gdb_byte **opcode_definitions,
20874 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20875 bfd *abfd,
20876 unsigned int offset_size,
20877 struct dwarf2_section_info *section)
20878{
20879 unsigned int bytes_read, i;
20880 unsigned long arg;
d521ce57 20881 const gdb_byte *defn;
2e276125 20882
cf2c3c16 20883 if (opcode_definitions[opcode] == NULL)
2e276125 20884 {
cf2c3c16
TT
20885 complaint (&symfile_complaints,
20886 _("unrecognized DW_MACFINO opcode 0x%x"),
20887 opcode);
20888 return NULL;
20889 }
2e276125 20890
cf2c3c16
TT
20891 defn = opcode_definitions[opcode];
20892 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20893 defn += bytes_read;
2e276125 20894
cf2c3c16
TT
20895 for (i = 0; i < arg; ++i)
20896 {
f664829e
DE
20897 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20898 section);
cf2c3c16
TT
20899 if (mac_ptr == NULL)
20900 {
20901 /* skip_form_bytes already issued the complaint. */
20902 return NULL;
20903 }
20904 }
757a13d0 20905
cf2c3c16
TT
20906 return mac_ptr;
20907}
757a13d0 20908
cf2c3c16
TT
20909/* A helper function which parses the header of a macro section.
20910 If the macro section is the extended (for now called "GNU") type,
20911 then this updates *OFFSET_SIZE. Returns a pointer to just after
20912 the header, or issues a complaint and returns NULL on error. */
757a13d0 20913
d521ce57
TT
20914static const gdb_byte *
20915dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20916 bfd *abfd,
d521ce57 20917 const gdb_byte *mac_ptr,
cf2c3c16
TT
20918 unsigned int *offset_size,
20919 int section_is_gnu)
20920{
20921 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20922
cf2c3c16
TT
20923 if (section_is_gnu)
20924 {
20925 unsigned int version, flags;
757a13d0 20926
cf2c3c16
TT
20927 version = read_2_bytes (abfd, mac_ptr);
20928 if (version != 4)
20929 {
20930 complaint (&symfile_complaints,
20931 _("unrecognized version `%d' in .debug_macro section"),
20932 version);
20933 return NULL;
20934 }
20935 mac_ptr += 2;
757a13d0 20936
cf2c3c16
TT
20937 flags = read_1_byte (abfd, mac_ptr);
20938 ++mac_ptr;
20939 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20940
cf2c3c16
TT
20941 if ((flags & 2) != 0)
20942 /* We don't need the line table offset. */
20943 mac_ptr += *offset_size;
757a13d0 20944
cf2c3c16
TT
20945 /* Vendor opcode descriptions. */
20946 if ((flags & 4) != 0)
20947 {
20948 unsigned int i, count;
757a13d0 20949
cf2c3c16
TT
20950 count = read_1_byte (abfd, mac_ptr);
20951 ++mac_ptr;
20952 for (i = 0; i < count; ++i)
20953 {
20954 unsigned int opcode, bytes_read;
20955 unsigned long arg;
20956
20957 opcode = read_1_byte (abfd, mac_ptr);
20958 ++mac_ptr;
20959 opcode_definitions[opcode] = mac_ptr;
20960 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20961 mac_ptr += bytes_read;
20962 mac_ptr += arg;
20963 }
757a13d0 20964 }
cf2c3c16 20965 }
757a13d0 20966
cf2c3c16
TT
20967 return mac_ptr;
20968}
757a13d0 20969
cf2c3c16 20970/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20971 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20972
20973static void
d521ce57
TT
20974dwarf_decode_macro_bytes (bfd *abfd,
20975 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20976 struct macro_source_file *current_file,
43f3e411 20977 struct line_header *lh,
cf2c3c16 20978 struct dwarf2_section_info *section,
36586728 20979 int section_is_gnu, int section_is_dwz,
cf2c3c16 20980 unsigned int offset_size,
8fc3fc34 20981 htab_t include_hash)
cf2c3c16 20982{
4d663531 20983 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
20984 enum dwarf_macro_record_type macinfo_type;
20985 int at_commandline;
d521ce57 20986 const gdb_byte *opcode_definitions[256];
757a13d0 20987
cf2c3c16
TT
20988 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20989 &offset_size, section_is_gnu);
20990 if (mac_ptr == NULL)
20991 {
20992 /* We already issued a complaint. */
20993 return;
20994 }
757a13d0
JK
20995
20996 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20997 GDB is still reading the definitions from command line. First
20998 DW_MACINFO_start_file will need to be ignored as it was already executed
20999 to create CURRENT_FILE for the main source holding also the command line
21000 definitions. On first met DW_MACINFO_start_file this flag is reset to
21001 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21002
21003 at_commandline = 1;
21004
21005 do
21006 {
21007 /* Do we at least have room for a macinfo type byte? */
21008 if (mac_ptr >= mac_end)
21009 {
f664829e 21010 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21011 break;
21012 }
21013
21014 macinfo_type = read_1_byte (abfd, mac_ptr);
21015 mac_ptr++;
21016
cf2c3c16
TT
21017 /* Note that we rely on the fact that the corresponding GNU and
21018 DWARF constants are the same. */
757a13d0
JK
21019 switch (macinfo_type)
21020 {
21021 /* A zero macinfo type indicates the end of the macro
21022 information. */
21023 case 0:
21024 break;
2e276125 21025
cf2c3c16
TT
21026 case DW_MACRO_GNU_define:
21027 case DW_MACRO_GNU_undef:
21028 case DW_MACRO_GNU_define_indirect:
21029 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21030 case DW_MACRO_GNU_define_indirect_alt:
21031 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21032 {
891d2f0b 21033 unsigned int bytes_read;
2e276125 21034 int line;
d521ce57 21035 const char *body;
cf2c3c16 21036 int is_define;
2e276125 21037
cf2c3c16
TT
21038 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21039 mac_ptr += bytes_read;
21040
21041 if (macinfo_type == DW_MACRO_GNU_define
21042 || macinfo_type == DW_MACRO_GNU_undef)
21043 {
21044 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21045 mac_ptr += bytes_read;
21046 }
21047 else
21048 {
21049 LONGEST str_offset;
21050
21051 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21052 mac_ptr += offset_size;
2e276125 21053
36586728 21054 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21055 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21056 || section_is_dwz)
36586728
TT
21057 {
21058 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21059
21060 body = read_indirect_string_from_dwz (dwz, str_offset);
21061 }
21062 else
21063 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21064 }
21065
21066 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21067 || macinfo_type == DW_MACRO_GNU_define_indirect
21068 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21069 if (! current_file)
757a13d0
JK
21070 {
21071 /* DWARF violation as no main source is present. */
21072 complaint (&symfile_complaints,
21073 _("debug info with no main source gives macro %s "
21074 "on line %d: %s"),
cf2c3c16
TT
21075 is_define ? _("definition") : _("undefinition"),
21076 line, body);
757a13d0
JK
21077 break;
21078 }
3e43a32a
MS
21079 if ((line == 0 && !at_commandline)
21080 || (line != 0 && at_commandline))
4d3c2250 21081 complaint (&symfile_complaints,
757a13d0
JK
21082 _("debug info gives %s macro %s with %s line %d: %s"),
21083 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21084 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21085 line == 0 ? _("zero") : _("non-zero"), line, body);
21086
cf2c3c16 21087 if (is_define)
757a13d0 21088 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21089 else
21090 {
21091 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21092 || macinfo_type == DW_MACRO_GNU_undef_indirect
21093 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21094 macro_undef (current_file, line, body);
21095 }
2e276125
JB
21096 }
21097 break;
21098
cf2c3c16 21099 case DW_MACRO_GNU_start_file:
2e276125 21100 {
891d2f0b 21101 unsigned int bytes_read;
2e276125
JB
21102 int line, file;
21103
21104 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21105 mac_ptr += bytes_read;
21106 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21107 mac_ptr += bytes_read;
21108
3e43a32a
MS
21109 if ((line == 0 && !at_commandline)
21110 || (line != 0 && at_commandline))
757a13d0
JK
21111 complaint (&symfile_complaints,
21112 _("debug info gives source %d included "
21113 "from %s at %s line %d"),
21114 file, at_commandline ? _("command-line") : _("file"),
21115 line == 0 ? _("zero") : _("non-zero"), line);
21116
21117 if (at_commandline)
21118 {
cf2c3c16
TT
21119 /* This DW_MACRO_GNU_start_file was executed in the
21120 pass one. */
757a13d0
JK
21121 at_commandline = 0;
21122 }
21123 else
43f3e411 21124 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21125 }
21126 break;
21127
cf2c3c16 21128 case DW_MACRO_GNU_end_file:
2e276125 21129 if (! current_file)
4d3c2250 21130 complaint (&symfile_complaints,
3e43a32a
MS
21131 _("macro debug info has an unmatched "
21132 "`close_file' directive"));
2e276125
JB
21133 else
21134 {
21135 current_file = current_file->included_by;
21136 if (! current_file)
21137 {
cf2c3c16 21138 enum dwarf_macro_record_type next_type;
2e276125
JB
21139
21140 /* GCC circa March 2002 doesn't produce the zero
21141 type byte marking the end of the compilation
21142 unit. Complain if it's not there, but exit no
21143 matter what. */
21144
21145 /* Do we at least have room for a macinfo type byte? */
21146 if (mac_ptr >= mac_end)
21147 {
f664829e 21148 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21149 return;
21150 }
21151
21152 /* We don't increment mac_ptr here, so this is just
21153 a look-ahead. */
21154 next_type = read_1_byte (abfd, mac_ptr);
21155 if (next_type != 0)
4d3c2250 21156 complaint (&symfile_complaints,
3e43a32a
MS
21157 _("no terminating 0-type entry for "
21158 "macros in `.debug_macinfo' section"));
2e276125
JB
21159
21160 return;
21161 }
21162 }
21163 break;
21164
cf2c3c16 21165 case DW_MACRO_GNU_transparent_include:
36586728 21166 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21167 {
21168 LONGEST offset;
8fc3fc34 21169 void **slot;
a036ba48
TT
21170 bfd *include_bfd = abfd;
21171 struct dwarf2_section_info *include_section = section;
21172 struct dwarf2_section_info alt_section;
d521ce57 21173 const gdb_byte *include_mac_end = mac_end;
a036ba48 21174 int is_dwz = section_is_dwz;
d521ce57 21175 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21176
21177 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21178 mac_ptr += offset_size;
21179
a036ba48
TT
21180 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21181 {
21182 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21183
4d663531 21184 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21185
a036ba48 21186 include_section = &dwz->macro;
a32a8923 21187 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21188 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21189 is_dwz = 1;
21190 }
21191
21192 new_mac_ptr = include_section->buffer + offset;
21193 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21194
8fc3fc34
TT
21195 if (*slot != NULL)
21196 {
21197 /* This has actually happened; see
21198 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21199 complaint (&symfile_complaints,
21200 _("recursive DW_MACRO_GNU_transparent_include in "
21201 ".debug_macro section"));
21202 }
21203 else
21204 {
d521ce57 21205 *slot = (void *) new_mac_ptr;
36586728 21206
a036ba48 21207 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21208 include_mac_end, current_file, lh,
36586728 21209 section, section_is_gnu, is_dwz,
4d663531 21210 offset_size, include_hash);
8fc3fc34 21211
d521ce57 21212 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21213 }
cf2c3c16
TT
21214 }
21215 break;
21216
2e276125 21217 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21218 if (!section_is_gnu)
21219 {
21220 unsigned int bytes_read;
21221 int constant;
2e276125 21222
cf2c3c16
TT
21223 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21224 mac_ptr += bytes_read;
21225 read_direct_string (abfd, mac_ptr, &bytes_read);
21226 mac_ptr += bytes_read;
2e276125 21227
cf2c3c16
TT
21228 /* We don't recognize any vendor extensions. */
21229 break;
21230 }
21231 /* FALLTHROUGH */
21232
21233 default:
21234 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21235 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21236 section);
21237 if (mac_ptr == NULL)
21238 return;
21239 break;
2e276125 21240 }
757a13d0 21241 } while (macinfo_type != 0);
2e276125 21242}
8e19ed76 21243
cf2c3c16 21244static void
09262596 21245dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21246 int section_is_gnu)
cf2c3c16 21247{
bb5ed363 21248 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21249 struct line_header *lh = cu->line_header;
21250 bfd *abfd;
d521ce57 21251 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21252 struct macro_source_file *current_file = 0;
21253 enum dwarf_macro_record_type macinfo_type;
21254 unsigned int offset_size = cu->header.offset_size;
d521ce57 21255 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21256 struct cleanup *cleanup;
21257 htab_t include_hash;
21258 void **slot;
09262596
DE
21259 struct dwarf2_section_info *section;
21260 const char *section_name;
21261
21262 if (cu->dwo_unit != NULL)
21263 {
21264 if (section_is_gnu)
21265 {
21266 section = &cu->dwo_unit->dwo_file->sections.macro;
21267 section_name = ".debug_macro.dwo";
21268 }
21269 else
21270 {
21271 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21272 section_name = ".debug_macinfo.dwo";
21273 }
21274 }
21275 else
21276 {
21277 if (section_is_gnu)
21278 {
21279 section = &dwarf2_per_objfile->macro;
21280 section_name = ".debug_macro";
21281 }
21282 else
21283 {
21284 section = &dwarf2_per_objfile->macinfo;
21285 section_name = ".debug_macinfo";
21286 }
21287 }
cf2c3c16 21288
bb5ed363 21289 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21290 if (section->buffer == NULL)
21291 {
fceca515 21292 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21293 return;
21294 }
a32a8923 21295 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21296
21297 /* First pass: Find the name of the base filename.
21298 This filename is needed in order to process all macros whose definition
21299 (or undefinition) comes from the command line. These macros are defined
21300 before the first DW_MACINFO_start_file entry, and yet still need to be
21301 associated to the base file.
21302
21303 To determine the base file name, we scan the macro definitions until we
21304 reach the first DW_MACINFO_start_file entry. We then initialize
21305 CURRENT_FILE accordingly so that any macro definition found before the
21306 first DW_MACINFO_start_file can still be associated to the base file. */
21307
21308 mac_ptr = section->buffer + offset;
21309 mac_end = section->buffer + section->size;
21310
21311 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21312 &offset_size, section_is_gnu);
21313 if (mac_ptr == NULL)
21314 {
21315 /* We already issued a complaint. */
21316 return;
21317 }
21318
21319 do
21320 {
21321 /* Do we at least have room for a macinfo type byte? */
21322 if (mac_ptr >= mac_end)
21323 {
21324 /* Complaint is printed during the second pass as GDB will probably
21325 stop the first pass earlier upon finding
21326 DW_MACINFO_start_file. */
21327 break;
21328 }
21329
21330 macinfo_type = read_1_byte (abfd, mac_ptr);
21331 mac_ptr++;
21332
21333 /* Note that we rely on the fact that the corresponding GNU and
21334 DWARF constants are the same. */
21335 switch (macinfo_type)
21336 {
21337 /* A zero macinfo type indicates the end of the macro
21338 information. */
21339 case 0:
21340 break;
21341
21342 case DW_MACRO_GNU_define:
21343 case DW_MACRO_GNU_undef:
21344 /* Only skip the data by MAC_PTR. */
21345 {
21346 unsigned int bytes_read;
21347
21348 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21349 mac_ptr += bytes_read;
21350 read_direct_string (abfd, mac_ptr, &bytes_read);
21351 mac_ptr += bytes_read;
21352 }
21353 break;
21354
21355 case DW_MACRO_GNU_start_file:
21356 {
21357 unsigned int bytes_read;
21358 int line, file;
21359
21360 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21361 mac_ptr += bytes_read;
21362 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21363 mac_ptr += bytes_read;
21364
43f3e411 21365 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21366 }
21367 break;
21368
21369 case DW_MACRO_GNU_end_file:
21370 /* No data to skip by MAC_PTR. */
21371 break;
21372
21373 case DW_MACRO_GNU_define_indirect:
21374 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21375 case DW_MACRO_GNU_define_indirect_alt:
21376 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21377 {
21378 unsigned int bytes_read;
21379
21380 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21381 mac_ptr += bytes_read;
21382 mac_ptr += offset_size;
21383 }
21384 break;
21385
21386 case DW_MACRO_GNU_transparent_include:
f7a35f02 21387 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21388 /* Note that, according to the spec, a transparent include
21389 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21390 skip this opcode. */
21391 mac_ptr += offset_size;
21392 break;
21393
21394 case DW_MACINFO_vendor_ext:
21395 /* Only skip the data by MAC_PTR. */
21396 if (!section_is_gnu)
21397 {
21398 unsigned int bytes_read;
21399
21400 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21401 mac_ptr += bytes_read;
21402 read_direct_string (abfd, mac_ptr, &bytes_read);
21403 mac_ptr += bytes_read;
21404 }
21405 /* FALLTHROUGH */
21406
21407 default:
21408 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21409 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21410 section);
21411 if (mac_ptr == NULL)
21412 return;
21413 break;
21414 }
21415 } while (macinfo_type != 0 && current_file == NULL);
21416
21417 /* Second pass: Process all entries.
21418
21419 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21420 command-line macro definitions/undefinitions. This flag is unset when we
21421 reach the first DW_MACINFO_start_file entry. */
21422
8fc3fc34
TT
21423 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21424 NULL, xcalloc, xfree);
21425 cleanup = make_cleanup_htab_delete (include_hash);
21426 mac_ptr = section->buffer + offset;
21427 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21428 *slot = (void *) mac_ptr;
8fc3fc34 21429 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21430 current_file, lh, section,
4d663531 21431 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21432 do_cleanups (cleanup);
cf2c3c16
TT
21433}
21434
8e19ed76 21435/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21436 if so return true else false. */
380bca97 21437
8e19ed76 21438static int
6e5a29e1 21439attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21440{
21441 return (attr == NULL ? 0 :
21442 attr->form == DW_FORM_block1
21443 || attr->form == DW_FORM_block2
21444 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21445 || attr->form == DW_FORM_block
21446 || attr->form == DW_FORM_exprloc);
8e19ed76 21447}
4c2df51b 21448
c6a0999f
JB
21449/* Return non-zero if ATTR's value is a section offset --- classes
21450 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21451 You may use DW_UNSND (attr) to retrieve such offsets.
21452
21453 Section 7.5.4, "Attribute Encodings", explains that no attribute
21454 may have a value that belongs to more than one of these classes; it
21455 would be ambiguous if we did, because we use the same forms for all
21456 of them. */
380bca97 21457
3690dd37 21458static int
6e5a29e1 21459attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21460{
21461 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21462 || attr->form == DW_FORM_data8
21463 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21464}
21465
3690dd37
JB
21466/* Return non-zero if ATTR's value falls in the 'constant' class, or
21467 zero otherwise. When this function returns true, you can apply
21468 dwarf2_get_attr_constant_value to it.
21469
21470 However, note that for some attributes you must check
21471 attr_form_is_section_offset before using this test. DW_FORM_data4
21472 and DW_FORM_data8 are members of both the constant class, and of
21473 the classes that contain offsets into other debug sections
21474 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21475 that, if an attribute's can be either a constant or one of the
21476 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21477 taken as section offsets, not constants. */
380bca97 21478
3690dd37 21479static int
6e5a29e1 21480attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21481{
21482 switch (attr->form)
21483 {
21484 case DW_FORM_sdata:
21485 case DW_FORM_udata:
21486 case DW_FORM_data1:
21487 case DW_FORM_data2:
21488 case DW_FORM_data4:
21489 case DW_FORM_data8:
21490 return 1;
21491 default:
21492 return 0;
21493 }
21494}
21495
7771576e
SA
21496
21497/* DW_ADDR is always stored already as sect_offset; despite for the forms
21498 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21499
21500static int
6e5a29e1 21501attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21502{
21503 switch (attr->form)
21504 {
21505 case DW_FORM_ref_addr:
21506 case DW_FORM_ref1:
21507 case DW_FORM_ref2:
21508 case DW_FORM_ref4:
21509 case DW_FORM_ref8:
21510 case DW_FORM_ref_udata:
21511 case DW_FORM_GNU_ref_alt:
21512 return 1;
21513 default:
21514 return 0;
21515 }
21516}
21517
3019eac3
DE
21518/* Return the .debug_loc section to use for CU.
21519 For DWO files use .debug_loc.dwo. */
21520
21521static struct dwarf2_section_info *
21522cu_debug_loc_section (struct dwarf2_cu *cu)
21523{
21524 if (cu->dwo_unit)
21525 return &cu->dwo_unit->dwo_file->sections.loc;
21526 return &dwarf2_per_objfile->loc;
21527}
21528
8cf6f0b1
TT
21529/* A helper function that fills in a dwarf2_loclist_baton. */
21530
21531static void
21532fill_in_loclist_baton (struct dwarf2_cu *cu,
21533 struct dwarf2_loclist_baton *baton,
ff39bb5e 21534 const struct attribute *attr)
8cf6f0b1 21535{
3019eac3
DE
21536 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21537
21538 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21539
21540 baton->per_cu = cu->per_cu;
21541 gdb_assert (baton->per_cu);
21542 /* We don't know how long the location list is, but make sure we
21543 don't run off the edge of the section. */
3019eac3
DE
21544 baton->size = section->size - DW_UNSND (attr);
21545 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21546 baton->base_address = cu->base_address;
f664829e 21547 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21548}
21549
4c2df51b 21550static void
ff39bb5e 21551dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21552 struct dwarf2_cu *cu, int is_block)
4c2df51b 21553{
bb5ed363 21554 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21555 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21556
3690dd37 21557 if (attr_form_is_section_offset (attr)
3019eac3 21558 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21559 the section. If so, fall through to the complaint in the
21560 other branch. */
3019eac3 21561 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21562 {
0d53c4c4 21563 struct dwarf2_loclist_baton *baton;
4c2df51b 21564
bb5ed363 21565 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21566 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21567
8cf6f0b1 21568 fill_in_loclist_baton (cu, baton, attr);
be391dca 21569
d00adf39 21570 if (cu->base_known == 0)
0d53c4c4 21571 complaint (&symfile_complaints,
3e43a32a
MS
21572 _("Location list used without "
21573 "specifying the CU base address."));
4c2df51b 21574
f1e6e072
TT
21575 SYMBOL_ACLASS_INDEX (sym) = (is_block
21576 ? dwarf2_loclist_block_index
21577 : dwarf2_loclist_index);
0d53c4c4
DJ
21578 SYMBOL_LOCATION_BATON (sym) = baton;
21579 }
21580 else
21581 {
21582 struct dwarf2_locexpr_baton *baton;
21583
bb5ed363 21584 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21585 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21586 baton->per_cu = cu->per_cu;
21587 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21588
21589 if (attr_form_is_block (attr))
21590 {
21591 /* Note that we're just copying the block's data pointer
21592 here, not the actual data. We're still pointing into the
6502dd73
DJ
21593 info_buffer for SYM's objfile; right now we never release
21594 that buffer, but when we do clean up properly this may
21595 need to change. */
0d53c4c4
DJ
21596 baton->size = DW_BLOCK (attr)->size;
21597 baton->data = DW_BLOCK (attr)->data;
21598 }
21599 else
21600 {
21601 dwarf2_invalid_attrib_class_complaint ("location description",
21602 SYMBOL_NATURAL_NAME (sym));
21603 baton->size = 0;
0d53c4c4 21604 }
6e70227d 21605
f1e6e072
TT
21606 SYMBOL_ACLASS_INDEX (sym) = (is_block
21607 ? dwarf2_locexpr_block_index
21608 : dwarf2_locexpr_index);
0d53c4c4
DJ
21609 SYMBOL_LOCATION_BATON (sym) = baton;
21610 }
4c2df51b 21611}
6502dd73 21612
9aa1f1e3
TT
21613/* Return the OBJFILE associated with the compilation unit CU. If CU
21614 came from a separate debuginfo file, then the master objfile is
21615 returned. */
ae0d2f24
UW
21616
21617struct objfile *
21618dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21619{
9291a0cd 21620 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21621
21622 /* Return the master objfile, so that we can report and look up the
21623 correct file containing this variable. */
21624 if (objfile->separate_debug_objfile_backlink)
21625 objfile = objfile->separate_debug_objfile_backlink;
21626
21627 return objfile;
21628}
21629
96408a79
SA
21630/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21631 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21632 CU_HEADERP first. */
21633
21634static const struct comp_unit_head *
21635per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21636 struct dwarf2_per_cu_data *per_cu)
21637{
d521ce57 21638 const gdb_byte *info_ptr;
96408a79
SA
21639
21640 if (per_cu->cu)
21641 return &per_cu->cu->header;
21642
8a0459fd 21643 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21644
21645 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21646 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21647
21648 return cu_headerp;
21649}
21650
ae0d2f24
UW
21651/* Return the address size given in the compilation unit header for CU. */
21652
98714339 21653int
ae0d2f24
UW
21654dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21655{
96408a79
SA
21656 struct comp_unit_head cu_header_local;
21657 const struct comp_unit_head *cu_headerp;
c471e790 21658
96408a79
SA
21659 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21660
21661 return cu_headerp->addr_size;
ae0d2f24
UW
21662}
21663
9eae7c52
TT
21664/* Return the offset size given in the compilation unit header for CU. */
21665
21666int
21667dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21668{
96408a79
SA
21669 struct comp_unit_head cu_header_local;
21670 const struct comp_unit_head *cu_headerp;
9c6c53f7 21671
96408a79
SA
21672 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21673
21674 return cu_headerp->offset_size;
21675}
21676
21677/* See its dwarf2loc.h declaration. */
21678
21679int
21680dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21681{
21682 struct comp_unit_head cu_header_local;
21683 const struct comp_unit_head *cu_headerp;
21684
21685 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21686
21687 if (cu_headerp->version == 2)
21688 return cu_headerp->addr_size;
21689 else
21690 return cu_headerp->offset_size;
181cebd4
JK
21691}
21692
9aa1f1e3
TT
21693/* Return the text offset of the CU. The returned offset comes from
21694 this CU's objfile. If this objfile came from a separate debuginfo
21695 file, then the offset may be different from the corresponding
21696 offset in the parent objfile. */
21697
21698CORE_ADDR
21699dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21700{
bb3fa9d0 21701 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21702
21703 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21704}
21705
348e048f
DE
21706/* Locate the .debug_info compilation unit from CU's objfile which contains
21707 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21708
21709static struct dwarf2_per_cu_data *
b64f50a1 21710dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21711 unsigned int offset_in_dwz,
ae038cb0
DJ
21712 struct objfile *objfile)
21713{
21714 struct dwarf2_per_cu_data *this_cu;
21715 int low, high;
36586728 21716 const sect_offset *cu_off;
ae038cb0 21717
ae038cb0
DJ
21718 low = 0;
21719 high = dwarf2_per_objfile->n_comp_units - 1;
21720 while (high > low)
21721 {
36586728 21722 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21723 int mid = low + (high - low) / 2;
9a619af0 21724
36586728
TT
21725 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21726 cu_off = &mid_cu->offset;
21727 if (mid_cu->is_dwz > offset_in_dwz
21728 || (mid_cu->is_dwz == offset_in_dwz
21729 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21730 high = mid;
21731 else
21732 low = mid + 1;
21733 }
21734 gdb_assert (low == high);
36586728
TT
21735 this_cu = dwarf2_per_objfile->all_comp_units[low];
21736 cu_off = &this_cu->offset;
21737 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21738 {
36586728 21739 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21740 error (_("Dwarf Error: could not find partial DIE containing "
21741 "offset 0x%lx [in module %s]"),
b64f50a1 21742 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21743
b64f50a1
JK
21744 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21745 <= offset.sect_off);
ae038cb0
DJ
21746 return dwarf2_per_objfile->all_comp_units[low-1];
21747 }
21748 else
21749 {
21750 this_cu = dwarf2_per_objfile->all_comp_units[low];
21751 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21752 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21753 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21754 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21755 return this_cu;
21756 }
21757}
21758
23745b47 21759/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21760
9816fde3 21761static void
23745b47 21762init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21763{
9816fde3 21764 memset (cu, 0, sizeof (*cu));
23745b47
DE
21765 per_cu->cu = cu;
21766 cu->per_cu = per_cu;
21767 cu->objfile = per_cu->objfile;
93311388 21768 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21769}
21770
21771/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21772
21773static void
95554aad
TT
21774prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21775 enum language pretend_language)
9816fde3
JK
21776{
21777 struct attribute *attr;
21778
21779 /* Set the language we're debugging. */
21780 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21781 if (attr)
21782 set_cu_language (DW_UNSND (attr), cu);
21783 else
9cded63f 21784 {
95554aad 21785 cu->language = pretend_language;
9cded63f
TT
21786 cu->language_defn = language_def (cu->language);
21787 }
dee91e82
DE
21788
21789 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21790 if (attr)
21791 cu->producer = DW_STRING (attr);
93311388
DE
21792}
21793
ae038cb0
DJ
21794/* Release one cached compilation unit, CU. We unlink it from the tree
21795 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21796 the caller is responsible for that.
21797 NOTE: DATA is a void * because this function is also used as a
21798 cleanup routine. */
ae038cb0
DJ
21799
21800static void
68dc6402 21801free_heap_comp_unit (void *data)
ae038cb0
DJ
21802{
21803 struct dwarf2_cu *cu = data;
21804
23745b47
DE
21805 gdb_assert (cu->per_cu != NULL);
21806 cu->per_cu->cu = NULL;
ae038cb0
DJ
21807 cu->per_cu = NULL;
21808
21809 obstack_free (&cu->comp_unit_obstack, NULL);
21810
21811 xfree (cu);
21812}
21813
72bf9492 21814/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21815 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21816 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21817
21818static void
21819free_stack_comp_unit (void *data)
21820{
21821 struct dwarf2_cu *cu = data;
21822
23745b47
DE
21823 gdb_assert (cu->per_cu != NULL);
21824 cu->per_cu->cu = NULL;
21825 cu->per_cu = NULL;
21826
72bf9492
DJ
21827 obstack_free (&cu->comp_unit_obstack, NULL);
21828 cu->partial_dies = NULL;
ae038cb0
DJ
21829}
21830
21831/* Free all cached compilation units. */
21832
21833static void
21834free_cached_comp_units (void *data)
21835{
21836 struct dwarf2_per_cu_data *per_cu, **last_chain;
21837
21838 per_cu = dwarf2_per_objfile->read_in_chain;
21839 last_chain = &dwarf2_per_objfile->read_in_chain;
21840 while (per_cu != NULL)
21841 {
21842 struct dwarf2_per_cu_data *next_cu;
21843
21844 next_cu = per_cu->cu->read_in_chain;
21845
68dc6402 21846 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21847 *last_chain = next_cu;
21848
21849 per_cu = next_cu;
21850 }
21851}
21852
21853/* Increase the age counter on each cached compilation unit, and free
21854 any that are too old. */
21855
21856static void
21857age_cached_comp_units (void)
21858{
21859 struct dwarf2_per_cu_data *per_cu, **last_chain;
21860
21861 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21862 per_cu = dwarf2_per_objfile->read_in_chain;
21863 while (per_cu != NULL)
21864 {
21865 per_cu->cu->last_used ++;
21866 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21867 dwarf2_mark (per_cu->cu);
21868 per_cu = per_cu->cu->read_in_chain;
21869 }
21870
21871 per_cu = dwarf2_per_objfile->read_in_chain;
21872 last_chain = &dwarf2_per_objfile->read_in_chain;
21873 while (per_cu != NULL)
21874 {
21875 struct dwarf2_per_cu_data *next_cu;
21876
21877 next_cu = per_cu->cu->read_in_chain;
21878
21879 if (!per_cu->cu->mark)
21880 {
68dc6402 21881 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21882 *last_chain = next_cu;
21883 }
21884 else
21885 last_chain = &per_cu->cu->read_in_chain;
21886
21887 per_cu = next_cu;
21888 }
21889}
21890
21891/* Remove a single compilation unit from the cache. */
21892
21893static void
dee91e82 21894free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21895{
21896 struct dwarf2_per_cu_data *per_cu, **last_chain;
21897
21898 per_cu = dwarf2_per_objfile->read_in_chain;
21899 last_chain = &dwarf2_per_objfile->read_in_chain;
21900 while (per_cu != NULL)
21901 {
21902 struct dwarf2_per_cu_data *next_cu;
21903
21904 next_cu = per_cu->cu->read_in_chain;
21905
dee91e82 21906 if (per_cu == target_per_cu)
ae038cb0 21907 {
68dc6402 21908 free_heap_comp_unit (per_cu->cu);
dee91e82 21909 per_cu->cu = NULL;
ae038cb0
DJ
21910 *last_chain = next_cu;
21911 break;
21912 }
21913 else
21914 last_chain = &per_cu->cu->read_in_chain;
21915
21916 per_cu = next_cu;
21917 }
21918}
21919
fe3e1990
DJ
21920/* Release all extra memory associated with OBJFILE. */
21921
21922void
21923dwarf2_free_objfile (struct objfile *objfile)
21924{
21925 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21926
21927 if (dwarf2_per_objfile == NULL)
21928 return;
21929
21930 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21931 free_cached_comp_units (NULL);
21932
7b9f3c50
DE
21933 if (dwarf2_per_objfile->quick_file_names_table)
21934 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21935
527f3840
JK
21936 if (dwarf2_per_objfile->line_header_hash)
21937 htab_delete (dwarf2_per_objfile->line_header_hash);
21938
fe3e1990
DJ
21939 /* Everything else should be on the objfile obstack. */
21940}
21941
dee91e82
DE
21942/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21943 We store these in a hash table separate from the DIEs, and preserve them
21944 when the DIEs are flushed out of cache.
21945
21946 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21947 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21948 or the type may come from a DWO file. Furthermore, while it's more logical
21949 to use per_cu->section+offset, with Fission the section with the data is in
21950 the DWO file but we don't know that section at the point we need it.
21951 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21952 because we can enter the lookup routine, get_die_type_at_offset, from
21953 outside this file, and thus won't necessarily have PER_CU->cu.
21954 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21955
dee91e82 21956struct dwarf2_per_cu_offset_and_type
1c379e20 21957{
dee91e82 21958 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21959 sect_offset offset;
1c379e20
DJ
21960 struct type *type;
21961};
21962
dee91e82 21963/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21964
21965static hashval_t
dee91e82 21966per_cu_offset_and_type_hash (const void *item)
1c379e20 21967{
dee91e82 21968 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21969
dee91e82 21970 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21971}
21972
dee91e82 21973/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21974
21975static int
dee91e82 21976per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21977{
dee91e82
DE
21978 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21979 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21980
dee91e82
DE
21981 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21982 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21983}
21984
21985/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21986 table if necessary. For convenience, return TYPE.
21987
21988 The DIEs reading must have careful ordering to:
21989 * Not cause infite loops trying to read in DIEs as a prerequisite for
21990 reading current DIE.
21991 * Not trying to dereference contents of still incompletely read in types
21992 while reading in other DIEs.
21993 * Enable referencing still incompletely read in types just by a pointer to
21994 the type without accessing its fields.
21995
21996 Therefore caller should follow these rules:
21997 * Try to fetch any prerequisite types we may need to build this DIE type
21998 before building the type and calling set_die_type.
e71ec853 21999 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22000 possible before fetching more types to complete the current type.
22001 * Make the type as complete as possible before fetching more types. */
1c379e20 22002
f792889a 22003static struct type *
1c379e20
DJ
22004set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22005{
dee91e82 22006 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22007 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22008 struct attribute *attr;
22009 struct dynamic_prop prop;
1c379e20 22010
b4ba55a1
JB
22011 /* For Ada types, make sure that the gnat-specific data is always
22012 initialized (if not already set). There are a few types where
22013 we should not be doing so, because the type-specific area is
22014 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22015 where the type-specific area is used to store the floatformat).
22016 But this is not a problem, because the gnat-specific information
22017 is actually not needed for these types. */
22018 if (need_gnat_info (cu)
22019 && TYPE_CODE (type) != TYPE_CODE_FUNC
22020 && TYPE_CODE (type) != TYPE_CODE_FLT
22021 && !HAVE_GNAT_AUX_INFO (type))
22022 INIT_GNAT_SPECIFIC (type);
22023
3cdcd0ce
JB
22024 /* Read DW_AT_data_location and set in type. */
22025 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22026 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22027 {
22028 TYPE_DATA_LOCATION (type)
22029 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
22030 *TYPE_DATA_LOCATION (type) = prop;
22031 }
22032
dee91e82 22033 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22034 {
dee91e82
DE
22035 dwarf2_per_objfile->die_type_hash =
22036 htab_create_alloc_ex (127,
22037 per_cu_offset_and_type_hash,
22038 per_cu_offset_and_type_eq,
22039 NULL,
22040 &objfile->objfile_obstack,
22041 hashtab_obstack_allocate,
22042 dummy_obstack_deallocate);
f792889a 22043 }
1c379e20 22044
dee91e82 22045 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22046 ofs.offset = die->offset;
22047 ofs.type = type;
dee91e82
DE
22048 slot = (struct dwarf2_per_cu_offset_and_type **)
22049 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22050 if (*slot)
22051 complaint (&symfile_complaints,
22052 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22053 die->offset.sect_off);
673bfd45 22054 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 22055 **slot = ofs;
f792889a 22056 return type;
1c379e20
DJ
22057}
22058
02142a6c
DE
22059/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22060 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22061
22062static struct type *
b64f50a1 22063get_die_type_at_offset (sect_offset offset,
673bfd45 22064 struct dwarf2_per_cu_data *per_cu)
1c379e20 22065{
dee91e82 22066 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22067
dee91e82 22068 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22069 return NULL;
1c379e20 22070
dee91e82 22071 ofs.per_cu = per_cu;
673bfd45 22072 ofs.offset = offset;
dee91e82 22073 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
22074 if (slot)
22075 return slot->type;
22076 else
22077 return NULL;
22078}
22079
02142a6c 22080/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22081 or return NULL if DIE does not have a saved type. */
22082
22083static struct type *
22084get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22085{
22086 return get_die_type_at_offset (die->offset, cu->per_cu);
22087}
22088
10b3939b
DJ
22089/* Add a dependence relationship from CU to REF_PER_CU. */
22090
22091static void
22092dwarf2_add_dependence (struct dwarf2_cu *cu,
22093 struct dwarf2_per_cu_data *ref_per_cu)
22094{
22095 void **slot;
22096
22097 if (cu->dependencies == NULL)
22098 cu->dependencies
22099 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22100 NULL, &cu->comp_unit_obstack,
22101 hashtab_obstack_allocate,
22102 dummy_obstack_deallocate);
22103
22104 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22105 if (*slot == NULL)
22106 *slot = ref_per_cu;
22107}
1c379e20 22108
f504f079
DE
22109/* Subroutine of dwarf2_mark to pass to htab_traverse.
22110 Set the mark field in every compilation unit in the
ae038cb0
DJ
22111 cache that we must keep because we are keeping CU. */
22112
10b3939b
DJ
22113static int
22114dwarf2_mark_helper (void **slot, void *data)
22115{
22116 struct dwarf2_per_cu_data *per_cu;
22117
22118 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22119
22120 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22121 reading of the chain. As such dependencies remain valid it is not much
22122 useful to track and undo them during QUIT cleanups. */
22123 if (per_cu->cu == NULL)
22124 return 1;
22125
10b3939b
DJ
22126 if (per_cu->cu->mark)
22127 return 1;
22128 per_cu->cu->mark = 1;
22129
22130 if (per_cu->cu->dependencies != NULL)
22131 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22132
22133 return 1;
22134}
22135
f504f079
DE
22136/* Set the mark field in CU and in every other compilation unit in the
22137 cache that we must keep because we are keeping CU. */
22138
ae038cb0
DJ
22139static void
22140dwarf2_mark (struct dwarf2_cu *cu)
22141{
22142 if (cu->mark)
22143 return;
22144 cu->mark = 1;
10b3939b
DJ
22145 if (cu->dependencies != NULL)
22146 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22147}
22148
22149static void
22150dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22151{
22152 while (per_cu)
22153 {
22154 per_cu->cu->mark = 0;
22155 per_cu = per_cu->cu->read_in_chain;
22156 }
72bf9492
DJ
22157}
22158
72bf9492
DJ
22159/* Trivial hash function for partial_die_info: the hash value of a DIE
22160 is its offset in .debug_info for this objfile. */
22161
22162static hashval_t
22163partial_die_hash (const void *item)
22164{
22165 const struct partial_die_info *part_die = item;
9a619af0 22166
b64f50a1 22167 return part_die->offset.sect_off;
72bf9492
DJ
22168}
22169
22170/* Trivial comparison function for partial_die_info structures: two DIEs
22171 are equal if they have the same offset. */
22172
22173static int
22174partial_die_eq (const void *item_lhs, const void *item_rhs)
22175{
22176 const struct partial_die_info *part_die_lhs = item_lhs;
22177 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22178
b64f50a1 22179 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22180}
22181
ae038cb0
DJ
22182static struct cmd_list_element *set_dwarf2_cmdlist;
22183static struct cmd_list_element *show_dwarf2_cmdlist;
22184
22185static void
22186set_dwarf2_cmd (char *args, int from_tty)
22187{
635c7e8a
TT
22188 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22189 gdb_stdout);
ae038cb0
DJ
22190}
22191
22192static void
22193show_dwarf2_cmd (char *args, int from_tty)
6e70227d 22194{
ae038cb0
DJ
22195 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22196}
22197
4bf44c1c 22198/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22199
22200static void
c1bd65d0 22201dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22202{
22203 struct dwarf2_per_objfile *data = d;
8b70b953 22204 int ix;
8b70b953 22205
626f2d1c
TT
22206 /* Make sure we don't accidentally use dwarf2_per_objfile while
22207 cleaning up. */
22208 dwarf2_per_objfile = NULL;
22209
59b0c7c1
JB
22210 for (ix = 0; ix < data->n_comp_units; ++ix)
22211 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22212
59b0c7c1 22213 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22214 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22215 data->all_type_units[ix]->per_cu.imported_symtabs);
22216 xfree (data->all_type_units);
95554aad 22217
8b70b953 22218 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22219
22220 if (data->dwo_files)
22221 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22222 if (data->dwp_file)
22223 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22224
22225 if (data->dwz_file && data->dwz_file->dwz_bfd)
22226 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22227}
22228
22229\f
ae2de4f8 22230/* The "save gdb-index" command. */
9291a0cd
TT
22231
22232/* The contents of the hash table we create when building the string
22233 table. */
22234struct strtab_entry
22235{
22236 offset_type offset;
22237 const char *str;
22238};
22239
559a7a62
JK
22240/* Hash function for a strtab_entry.
22241
22242 Function is used only during write_hash_table so no index format backward
22243 compatibility is needed. */
b89be57b 22244
9291a0cd
TT
22245static hashval_t
22246hash_strtab_entry (const void *e)
22247{
22248 const struct strtab_entry *entry = e;
559a7a62 22249 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22250}
22251
22252/* Equality function for a strtab_entry. */
b89be57b 22253
9291a0cd
TT
22254static int
22255eq_strtab_entry (const void *a, const void *b)
22256{
22257 const struct strtab_entry *ea = a;
22258 const struct strtab_entry *eb = b;
22259 return !strcmp (ea->str, eb->str);
22260}
22261
22262/* Create a strtab_entry hash table. */
b89be57b 22263
9291a0cd
TT
22264static htab_t
22265create_strtab (void)
22266{
22267 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22268 xfree, xcalloc, xfree);
22269}
22270
22271/* Add a string to the constant pool. Return the string's offset in
22272 host order. */
b89be57b 22273
9291a0cd
TT
22274static offset_type
22275add_string (htab_t table, struct obstack *cpool, const char *str)
22276{
22277 void **slot;
22278 struct strtab_entry entry;
22279 struct strtab_entry *result;
22280
22281 entry.str = str;
22282 slot = htab_find_slot (table, &entry, INSERT);
22283 if (*slot)
22284 result = *slot;
22285 else
22286 {
22287 result = XNEW (struct strtab_entry);
22288 result->offset = obstack_object_size (cpool);
22289 result->str = str;
22290 obstack_grow_str0 (cpool, str);
22291 *slot = result;
22292 }
22293 return result->offset;
22294}
22295
22296/* An entry in the symbol table. */
22297struct symtab_index_entry
22298{
22299 /* The name of the symbol. */
22300 const char *name;
22301 /* The offset of the name in the constant pool. */
22302 offset_type index_offset;
22303 /* A sorted vector of the indices of all the CUs that hold an object
22304 of this name. */
22305 VEC (offset_type) *cu_indices;
22306};
22307
22308/* The symbol table. This is a power-of-2-sized hash table. */
22309struct mapped_symtab
22310{
22311 offset_type n_elements;
22312 offset_type size;
22313 struct symtab_index_entry **data;
22314};
22315
22316/* Hash function for a symtab_index_entry. */
b89be57b 22317
9291a0cd
TT
22318static hashval_t
22319hash_symtab_entry (const void *e)
22320{
22321 const struct symtab_index_entry *entry = e;
22322 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22323 sizeof (offset_type) * VEC_length (offset_type,
22324 entry->cu_indices),
22325 0);
22326}
22327
22328/* Equality function for a symtab_index_entry. */
b89be57b 22329
9291a0cd
TT
22330static int
22331eq_symtab_entry (const void *a, const void *b)
22332{
22333 const struct symtab_index_entry *ea = a;
22334 const struct symtab_index_entry *eb = b;
22335 int len = VEC_length (offset_type, ea->cu_indices);
22336 if (len != VEC_length (offset_type, eb->cu_indices))
22337 return 0;
22338 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22339 VEC_address (offset_type, eb->cu_indices),
22340 sizeof (offset_type) * len);
22341}
22342
22343/* Destroy a symtab_index_entry. */
b89be57b 22344
9291a0cd
TT
22345static void
22346delete_symtab_entry (void *p)
22347{
22348 struct symtab_index_entry *entry = p;
22349 VEC_free (offset_type, entry->cu_indices);
22350 xfree (entry);
22351}
22352
22353/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22354
9291a0cd 22355static htab_t
3876f04e 22356create_symbol_hash_table (void)
9291a0cd
TT
22357{
22358 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22359 delete_symtab_entry, xcalloc, xfree);
22360}
22361
22362/* Create a new mapped symtab object. */
b89be57b 22363
9291a0cd
TT
22364static struct mapped_symtab *
22365create_mapped_symtab (void)
22366{
22367 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22368 symtab->n_elements = 0;
22369 symtab->size = 1024;
22370 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22371 return symtab;
22372}
22373
22374/* Destroy a mapped_symtab. */
b89be57b 22375
9291a0cd
TT
22376static void
22377cleanup_mapped_symtab (void *p)
22378{
22379 struct mapped_symtab *symtab = p;
22380 /* The contents of the array are freed when the other hash table is
22381 destroyed. */
22382 xfree (symtab->data);
22383 xfree (symtab);
22384}
22385
22386/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22387 the slot.
22388
22389 Function is used only during write_hash_table so no index format backward
22390 compatibility is needed. */
b89be57b 22391
9291a0cd
TT
22392static struct symtab_index_entry **
22393find_slot (struct mapped_symtab *symtab, const char *name)
22394{
559a7a62 22395 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22396
22397 index = hash & (symtab->size - 1);
22398 step = ((hash * 17) & (symtab->size - 1)) | 1;
22399
22400 for (;;)
22401 {
22402 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22403 return &symtab->data[index];
22404 index = (index + step) & (symtab->size - 1);
22405 }
22406}
22407
22408/* Expand SYMTAB's hash table. */
b89be57b 22409
9291a0cd
TT
22410static void
22411hash_expand (struct mapped_symtab *symtab)
22412{
22413 offset_type old_size = symtab->size;
22414 offset_type i;
22415 struct symtab_index_entry **old_entries = symtab->data;
22416
22417 symtab->size *= 2;
22418 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22419
22420 for (i = 0; i < old_size; ++i)
22421 {
22422 if (old_entries[i])
22423 {
22424 struct symtab_index_entry **slot = find_slot (symtab,
22425 old_entries[i]->name);
22426 *slot = old_entries[i];
22427 }
22428 }
22429
22430 xfree (old_entries);
22431}
22432
156942c7
DE
22433/* Add an entry to SYMTAB. NAME is the name of the symbol.
22434 CU_INDEX is the index of the CU in which the symbol appears.
22435 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22436
9291a0cd
TT
22437static void
22438add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22439 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22440 offset_type cu_index)
22441{
22442 struct symtab_index_entry **slot;
156942c7 22443 offset_type cu_index_and_attrs;
9291a0cd
TT
22444
22445 ++symtab->n_elements;
22446 if (4 * symtab->n_elements / 3 >= symtab->size)
22447 hash_expand (symtab);
22448
22449 slot = find_slot (symtab, name);
22450 if (!*slot)
22451 {
22452 *slot = XNEW (struct symtab_index_entry);
22453 (*slot)->name = name;
156942c7 22454 /* index_offset is set later. */
9291a0cd
TT
22455 (*slot)->cu_indices = NULL;
22456 }
156942c7
DE
22457
22458 cu_index_and_attrs = 0;
22459 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22460 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22461 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22462
22463 /* We don't want to record an index value twice as we want to avoid the
22464 duplication.
22465 We process all global symbols and then all static symbols
22466 (which would allow us to avoid the duplication by only having to check
22467 the last entry pushed), but a symbol could have multiple kinds in one CU.
22468 To keep things simple we don't worry about the duplication here and
22469 sort and uniqufy the list after we've processed all symbols. */
22470 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22471}
22472
22473/* qsort helper routine for uniquify_cu_indices. */
22474
22475static int
22476offset_type_compare (const void *ap, const void *bp)
22477{
22478 offset_type a = *(offset_type *) ap;
22479 offset_type b = *(offset_type *) bp;
22480
22481 return (a > b) - (b > a);
22482}
22483
22484/* Sort and remove duplicates of all symbols' cu_indices lists. */
22485
22486static void
22487uniquify_cu_indices (struct mapped_symtab *symtab)
22488{
22489 int i;
22490
22491 for (i = 0; i < symtab->size; ++i)
22492 {
22493 struct symtab_index_entry *entry = symtab->data[i];
22494
22495 if (entry
22496 && entry->cu_indices != NULL)
22497 {
22498 unsigned int next_to_insert, next_to_check;
22499 offset_type last_value;
22500
22501 qsort (VEC_address (offset_type, entry->cu_indices),
22502 VEC_length (offset_type, entry->cu_indices),
22503 sizeof (offset_type), offset_type_compare);
22504
22505 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22506 next_to_insert = 1;
22507 for (next_to_check = 1;
22508 next_to_check < VEC_length (offset_type, entry->cu_indices);
22509 ++next_to_check)
22510 {
22511 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22512 != last_value)
22513 {
22514 last_value = VEC_index (offset_type, entry->cu_indices,
22515 next_to_check);
22516 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22517 last_value);
22518 ++next_to_insert;
22519 }
22520 }
22521 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22522 }
22523 }
9291a0cd
TT
22524}
22525
22526/* Add a vector of indices to the constant pool. */
b89be57b 22527
9291a0cd 22528static offset_type
3876f04e 22529add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22530 struct symtab_index_entry *entry)
22531{
22532 void **slot;
22533
3876f04e 22534 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22535 if (!*slot)
22536 {
22537 offset_type len = VEC_length (offset_type, entry->cu_indices);
22538 offset_type val = MAYBE_SWAP (len);
22539 offset_type iter;
22540 int i;
22541
22542 *slot = entry;
22543 entry->index_offset = obstack_object_size (cpool);
22544
22545 obstack_grow (cpool, &val, sizeof (val));
22546 for (i = 0;
22547 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22548 ++i)
22549 {
22550 val = MAYBE_SWAP (iter);
22551 obstack_grow (cpool, &val, sizeof (val));
22552 }
22553 }
22554 else
22555 {
22556 struct symtab_index_entry *old_entry = *slot;
22557 entry->index_offset = old_entry->index_offset;
22558 entry = old_entry;
22559 }
22560 return entry->index_offset;
22561}
22562
22563/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22564 constant pool entries going into the obstack CPOOL. */
b89be57b 22565
9291a0cd
TT
22566static void
22567write_hash_table (struct mapped_symtab *symtab,
22568 struct obstack *output, struct obstack *cpool)
22569{
22570 offset_type i;
3876f04e 22571 htab_t symbol_hash_table;
9291a0cd
TT
22572 htab_t str_table;
22573
3876f04e 22574 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22575 str_table = create_strtab ();
3876f04e 22576
9291a0cd
TT
22577 /* We add all the index vectors to the constant pool first, to
22578 ensure alignment is ok. */
22579 for (i = 0; i < symtab->size; ++i)
22580 {
22581 if (symtab->data[i])
3876f04e 22582 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22583 }
22584
22585 /* Now write out the hash table. */
22586 for (i = 0; i < symtab->size; ++i)
22587 {
22588 offset_type str_off, vec_off;
22589
22590 if (symtab->data[i])
22591 {
22592 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22593 vec_off = symtab->data[i]->index_offset;
22594 }
22595 else
22596 {
22597 /* While 0 is a valid constant pool index, it is not valid
22598 to have 0 for both offsets. */
22599 str_off = 0;
22600 vec_off = 0;
22601 }
22602
22603 str_off = MAYBE_SWAP (str_off);
22604 vec_off = MAYBE_SWAP (vec_off);
22605
22606 obstack_grow (output, &str_off, sizeof (str_off));
22607 obstack_grow (output, &vec_off, sizeof (vec_off));
22608 }
22609
22610 htab_delete (str_table);
3876f04e 22611 htab_delete (symbol_hash_table);
9291a0cd
TT
22612}
22613
0a5429f6
DE
22614/* Struct to map psymtab to CU index in the index file. */
22615struct psymtab_cu_index_map
22616{
22617 struct partial_symtab *psymtab;
22618 unsigned int cu_index;
22619};
22620
22621static hashval_t
22622hash_psymtab_cu_index (const void *item)
22623{
22624 const struct psymtab_cu_index_map *map = item;
22625
22626 return htab_hash_pointer (map->psymtab);
22627}
22628
22629static int
22630eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22631{
22632 const struct psymtab_cu_index_map *lhs = item_lhs;
22633 const struct psymtab_cu_index_map *rhs = item_rhs;
22634
22635 return lhs->psymtab == rhs->psymtab;
22636}
22637
22638/* Helper struct for building the address table. */
22639struct addrmap_index_data
22640{
22641 struct objfile *objfile;
22642 struct obstack *addr_obstack;
22643 htab_t cu_index_htab;
22644
22645 /* Non-zero if the previous_* fields are valid.
22646 We can't write an entry until we see the next entry (since it is only then
22647 that we know the end of the entry). */
22648 int previous_valid;
22649 /* Index of the CU in the table of all CUs in the index file. */
22650 unsigned int previous_cu_index;
0963b4bd 22651 /* Start address of the CU. */
0a5429f6
DE
22652 CORE_ADDR previous_cu_start;
22653};
22654
22655/* Write an address entry to OBSTACK. */
b89be57b 22656
9291a0cd 22657static void
0a5429f6
DE
22658add_address_entry (struct objfile *objfile, struct obstack *obstack,
22659 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22660{
0a5429f6 22661 offset_type cu_index_to_write;
948f8e3d 22662 gdb_byte addr[8];
9291a0cd
TT
22663 CORE_ADDR baseaddr;
22664
22665 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22666
0a5429f6
DE
22667 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22668 obstack_grow (obstack, addr, 8);
22669 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22670 obstack_grow (obstack, addr, 8);
22671 cu_index_to_write = MAYBE_SWAP (cu_index);
22672 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22673}
22674
22675/* Worker function for traversing an addrmap to build the address table. */
22676
22677static int
22678add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22679{
22680 struct addrmap_index_data *data = datap;
22681 struct partial_symtab *pst = obj;
0a5429f6
DE
22682
22683 if (data->previous_valid)
22684 add_address_entry (data->objfile, data->addr_obstack,
22685 data->previous_cu_start, start_addr,
22686 data->previous_cu_index);
22687
22688 data->previous_cu_start = start_addr;
22689 if (pst != NULL)
22690 {
22691 struct psymtab_cu_index_map find_map, *map;
22692 find_map.psymtab = pst;
22693 map = htab_find (data->cu_index_htab, &find_map);
22694 gdb_assert (map != NULL);
22695 data->previous_cu_index = map->cu_index;
22696 data->previous_valid = 1;
22697 }
22698 else
22699 data->previous_valid = 0;
22700
22701 return 0;
22702}
22703
22704/* Write OBJFILE's address map to OBSTACK.
22705 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22706 in the index file. */
22707
22708static void
22709write_address_map (struct objfile *objfile, struct obstack *obstack,
22710 htab_t cu_index_htab)
22711{
22712 struct addrmap_index_data addrmap_index_data;
22713
22714 /* When writing the address table, we have to cope with the fact that
22715 the addrmap iterator only provides the start of a region; we have to
22716 wait until the next invocation to get the start of the next region. */
22717
22718 addrmap_index_data.objfile = objfile;
22719 addrmap_index_data.addr_obstack = obstack;
22720 addrmap_index_data.cu_index_htab = cu_index_htab;
22721 addrmap_index_data.previous_valid = 0;
22722
22723 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22724 &addrmap_index_data);
22725
22726 /* It's highly unlikely the last entry (end address = 0xff...ff)
22727 is valid, but we should still handle it.
22728 The end address is recorded as the start of the next region, but that
22729 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22730 anyway. */
22731 if (addrmap_index_data.previous_valid)
22732 add_address_entry (objfile, obstack,
22733 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22734 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22735}
22736
156942c7
DE
22737/* Return the symbol kind of PSYM. */
22738
22739static gdb_index_symbol_kind
22740symbol_kind (struct partial_symbol *psym)
22741{
22742 domain_enum domain = PSYMBOL_DOMAIN (psym);
22743 enum address_class aclass = PSYMBOL_CLASS (psym);
22744
22745 switch (domain)
22746 {
22747 case VAR_DOMAIN:
22748 switch (aclass)
22749 {
22750 case LOC_BLOCK:
22751 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22752 case LOC_TYPEDEF:
22753 return GDB_INDEX_SYMBOL_KIND_TYPE;
22754 case LOC_COMPUTED:
22755 case LOC_CONST_BYTES:
22756 case LOC_OPTIMIZED_OUT:
22757 case LOC_STATIC:
22758 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22759 case LOC_CONST:
22760 /* Note: It's currently impossible to recognize psyms as enum values
22761 short of reading the type info. For now punt. */
22762 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22763 default:
22764 /* There are other LOC_FOO values that one might want to classify
22765 as variables, but dwarf2read.c doesn't currently use them. */
22766 return GDB_INDEX_SYMBOL_KIND_OTHER;
22767 }
22768 case STRUCT_DOMAIN:
22769 return GDB_INDEX_SYMBOL_KIND_TYPE;
22770 default:
22771 return GDB_INDEX_SYMBOL_KIND_OTHER;
22772 }
22773}
22774
9291a0cd 22775/* Add a list of partial symbols to SYMTAB. */
b89be57b 22776
9291a0cd
TT
22777static void
22778write_psymbols (struct mapped_symtab *symtab,
987d643c 22779 htab_t psyms_seen,
9291a0cd
TT
22780 struct partial_symbol **psymp,
22781 int count,
987d643c
TT
22782 offset_type cu_index,
22783 int is_static)
9291a0cd
TT
22784{
22785 for (; count-- > 0; ++psymp)
22786 {
156942c7
DE
22787 struct partial_symbol *psym = *psymp;
22788 void **slot;
987d643c 22789
156942c7 22790 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22791 error (_("Ada is not currently supported by the index"));
987d643c 22792
987d643c 22793 /* Only add a given psymbol once. */
156942c7 22794 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22795 if (!*slot)
22796 {
156942c7
DE
22797 gdb_index_symbol_kind kind = symbol_kind (psym);
22798
22799 *slot = psym;
22800 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22801 is_static, kind, cu_index);
987d643c 22802 }
9291a0cd
TT
22803 }
22804}
22805
22806/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22807 exception if there is an error. */
b89be57b 22808
9291a0cd
TT
22809static void
22810write_obstack (FILE *file, struct obstack *obstack)
22811{
22812 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22813 file)
22814 != obstack_object_size (obstack))
22815 error (_("couldn't data write to file"));
22816}
22817
22818/* Unlink a file if the argument is not NULL. */
b89be57b 22819
9291a0cd
TT
22820static void
22821unlink_if_set (void *p)
22822{
22823 char **filename = p;
22824 if (*filename)
22825 unlink (*filename);
22826}
22827
1fd400ff
TT
22828/* A helper struct used when iterating over debug_types. */
22829struct signatured_type_index_data
22830{
22831 struct objfile *objfile;
22832 struct mapped_symtab *symtab;
22833 struct obstack *types_list;
987d643c 22834 htab_t psyms_seen;
1fd400ff
TT
22835 int cu_index;
22836};
22837
22838/* A helper function that writes a single signatured_type to an
22839 obstack. */
b89be57b 22840
1fd400ff
TT
22841static int
22842write_one_signatured_type (void **slot, void *d)
22843{
22844 struct signatured_type_index_data *info = d;
22845 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22846 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22847 gdb_byte val[8];
22848
22849 write_psymbols (info->symtab,
987d643c 22850 info->psyms_seen,
3e43a32a
MS
22851 info->objfile->global_psymbols.list
22852 + psymtab->globals_offset,
987d643c
TT
22853 psymtab->n_global_syms, info->cu_index,
22854 0);
1fd400ff 22855 write_psymbols (info->symtab,
987d643c 22856 info->psyms_seen,
3e43a32a
MS
22857 info->objfile->static_psymbols.list
22858 + psymtab->statics_offset,
987d643c
TT
22859 psymtab->n_static_syms, info->cu_index,
22860 1);
1fd400ff 22861
b64f50a1
JK
22862 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22863 entry->per_cu.offset.sect_off);
1fd400ff 22864 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22865 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22866 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22867 obstack_grow (info->types_list, val, 8);
22868 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22869 obstack_grow (info->types_list, val, 8);
22870
22871 ++info->cu_index;
22872
22873 return 1;
22874}
22875
95554aad
TT
22876/* Recurse into all "included" dependencies and write their symbols as
22877 if they appeared in this psymtab. */
22878
22879static void
22880recursively_write_psymbols (struct objfile *objfile,
22881 struct partial_symtab *psymtab,
22882 struct mapped_symtab *symtab,
22883 htab_t psyms_seen,
22884 offset_type cu_index)
22885{
22886 int i;
22887
22888 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22889 if (psymtab->dependencies[i]->user != NULL)
22890 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22891 symtab, psyms_seen, cu_index);
22892
22893 write_psymbols (symtab,
22894 psyms_seen,
22895 objfile->global_psymbols.list + psymtab->globals_offset,
22896 psymtab->n_global_syms, cu_index,
22897 0);
22898 write_psymbols (symtab,
22899 psyms_seen,
22900 objfile->static_psymbols.list + psymtab->statics_offset,
22901 psymtab->n_static_syms, cu_index,
22902 1);
22903}
22904
9291a0cd 22905/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22906
9291a0cd
TT
22907static void
22908write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22909{
22910 struct cleanup *cleanup;
22911 char *filename, *cleanup_filename;
1fd400ff
TT
22912 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22913 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22914 int i;
22915 FILE *out_file;
22916 struct mapped_symtab *symtab;
22917 offset_type val, size_of_contents, total_len;
22918 struct stat st;
987d643c 22919 htab_t psyms_seen;
0a5429f6
DE
22920 htab_t cu_index_htab;
22921 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22922
9291a0cd
TT
22923 if (dwarf2_per_objfile->using_index)
22924 error (_("Cannot use an index to create the index"));
22925
8b70b953
TT
22926 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22927 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22928
260b681b
DE
22929 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22930 return;
22931
4262abfb
JK
22932 if (stat (objfile_name (objfile), &st) < 0)
22933 perror_with_name (objfile_name (objfile));
9291a0cd 22934
4262abfb 22935 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22936 INDEX_SUFFIX, (char *) NULL);
22937 cleanup = make_cleanup (xfree, filename);
22938
614c279d 22939 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22940 if (!out_file)
22941 error (_("Can't open `%s' for writing"), filename);
22942
22943 cleanup_filename = filename;
22944 make_cleanup (unlink_if_set, &cleanup_filename);
22945
22946 symtab = create_mapped_symtab ();
22947 make_cleanup (cleanup_mapped_symtab, symtab);
22948
22949 obstack_init (&addr_obstack);
22950 make_cleanup_obstack_free (&addr_obstack);
22951
22952 obstack_init (&cu_list);
22953 make_cleanup_obstack_free (&cu_list);
22954
1fd400ff
TT
22955 obstack_init (&types_cu_list);
22956 make_cleanup_obstack_free (&types_cu_list);
22957
987d643c
TT
22958 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22959 NULL, xcalloc, xfree);
96408a79 22960 make_cleanup_htab_delete (psyms_seen);
987d643c 22961
0a5429f6
DE
22962 /* While we're scanning CU's create a table that maps a psymtab pointer
22963 (which is what addrmap records) to its index (which is what is recorded
22964 in the index file). This will later be needed to write the address
22965 table. */
22966 cu_index_htab = htab_create_alloc (100,
22967 hash_psymtab_cu_index,
22968 eq_psymtab_cu_index,
22969 NULL, xcalloc, xfree);
96408a79 22970 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22971 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22972 xmalloc (sizeof (struct psymtab_cu_index_map)
22973 * dwarf2_per_objfile->n_comp_units);
22974 make_cleanup (xfree, psymtab_cu_index_map);
22975
22976 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22977 work here. Also, the debug_types entries do not appear in
22978 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22979 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22980 {
3e43a32a
MS
22981 struct dwarf2_per_cu_data *per_cu
22982 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22983 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22984 gdb_byte val[8];
0a5429f6
DE
22985 struct psymtab_cu_index_map *map;
22986 void **slot;
9291a0cd 22987
92fac807
JK
22988 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22989 It may be referenced from a local scope but in such case it does not
22990 need to be present in .gdb_index. */
22991 if (psymtab == NULL)
22992 continue;
22993
95554aad
TT
22994 if (psymtab->user == NULL)
22995 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22996
0a5429f6
DE
22997 map = &psymtab_cu_index_map[i];
22998 map->psymtab = psymtab;
22999 map->cu_index = i;
23000 slot = htab_find_slot (cu_index_htab, map, INSERT);
23001 gdb_assert (slot != NULL);
23002 gdb_assert (*slot == NULL);
23003 *slot = map;
9291a0cd 23004
b64f50a1
JK
23005 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23006 per_cu->offset.sect_off);
9291a0cd 23007 obstack_grow (&cu_list, val, 8);
e254ef6a 23008 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23009 obstack_grow (&cu_list, val, 8);
23010 }
23011
0a5429f6
DE
23012 /* Dump the address map. */
23013 write_address_map (objfile, &addr_obstack, cu_index_htab);
23014
1fd400ff
TT
23015 /* Write out the .debug_type entries, if any. */
23016 if (dwarf2_per_objfile->signatured_types)
23017 {
23018 struct signatured_type_index_data sig_data;
23019
23020 sig_data.objfile = objfile;
23021 sig_data.symtab = symtab;
23022 sig_data.types_list = &types_cu_list;
987d643c 23023 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23024 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23025 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23026 write_one_signatured_type, &sig_data);
23027 }
23028
156942c7
DE
23029 /* Now that we've processed all symbols we can shrink their cu_indices
23030 lists. */
23031 uniquify_cu_indices (symtab);
23032
9291a0cd
TT
23033 obstack_init (&constant_pool);
23034 make_cleanup_obstack_free (&constant_pool);
23035 obstack_init (&symtab_obstack);
23036 make_cleanup_obstack_free (&symtab_obstack);
23037 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23038
23039 obstack_init (&contents);
23040 make_cleanup_obstack_free (&contents);
1fd400ff 23041 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23042 total_len = size_of_contents;
23043
23044 /* The version number. */
796a7ff8 23045 val = MAYBE_SWAP (8);
9291a0cd
TT
23046 obstack_grow (&contents, &val, sizeof (val));
23047
23048 /* The offset of the CU list from the start of the file. */
23049 val = MAYBE_SWAP (total_len);
23050 obstack_grow (&contents, &val, sizeof (val));
23051 total_len += obstack_object_size (&cu_list);
23052
1fd400ff
TT
23053 /* The offset of the types CU list from the start of the file. */
23054 val = MAYBE_SWAP (total_len);
23055 obstack_grow (&contents, &val, sizeof (val));
23056 total_len += obstack_object_size (&types_cu_list);
23057
9291a0cd
TT
23058 /* The offset of the address table from the start of the file. */
23059 val = MAYBE_SWAP (total_len);
23060 obstack_grow (&contents, &val, sizeof (val));
23061 total_len += obstack_object_size (&addr_obstack);
23062
23063 /* The offset of the symbol table from the start of the file. */
23064 val = MAYBE_SWAP (total_len);
23065 obstack_grow (&contents, &val, sizeof (val));
23066 total_len += obstack_object_size (&symtab_obstack);
23067
23068 /* The offset of the constant pool from the start of the file. */
23069 val = MAYBE_SWAP (total_len);
23070 obstack_grow (&contents, &val, sizeof (val));
23071 total_len += obstack_object_size (&constant_pool);
23072
23073 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23074
23075 write_obstack (out_file, &contents);
23076 write_obstack (out_file, &cu_list);
1fd400ff 23077 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23078 write_obstack (out_file, &addr_obstack);
23079 write_obstack (out_file, &symtab_obstack);
23080 write_obstack (out_file, &constant_pool);
23081
23082 fclose (out_file);
23083
23084 /* We want to keep the file, so we set cleanup_filename to NULL
23085 here. See unlink_if_set. */
23086 cleanup_filename = NULL;
23087
23088 do_cleanups (cleanup);
23089}
23090
90476074
TT
23091/* Implementation of the `save gdb-index' command.
23092
23093 Note that the file format used by this command is documented in the
23094 GDB manual. Any changes here must be documented there. */
11570e71 23095
9291a0cd
TT
23096static void
23097save_gdb_index_command (char *arg, int from_tty)
23098{
23099 struct objfile *objfile;
23100
23101 if (!arg || !*arg)
96d19272 23102 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23103
23104 ALL_OBJFILES (objfile)
23105 {
23106 struct stat st;
23107
23108 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23109 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23110 continue;
23111
23112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23113 if (dwarf2_per_objfile)
23114 {
23115 volatile struct gdb_exception except;
23116
23117 TRY_CATCH (except, RETURN_MASK_ERROR)
23118 {
23119 write_psymtabs_to_index (objfile, arg);
23120 }
23121 if (except.reason < 0)
23122 exception_fprintf (gdb_stderr, except,
23123 _("Error while writing index for `%s': "),
4262abfb 23124 objfile_name (objfile));
9291a0cd
TT
23125 }
23126 }
dce234bc
PP
23127}
23128
9291a0cd
TT
23129\f
23130
9eae7c52
TT
23131int dwarf2_always_disassemble;
23132
23133static void
23134show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23135 struct cmd_list_element *c, const char *value)
23136{
3e43a32a
MS
23137 fprintf_filtered (file,
23138 _("Whether to always disassemble "
23139 "DWARF expressions is %s.\n"),
9eae7c52
TT
23140 value);
23141}
23142
900e11f9
JK
23143static void
23144show_check_physname (struct ui_file *file, int from_tty,
23145 struct cmd_list_element *c, const char *value)
23146{
23147 fprintf_filtered (file,
23148 _("Whether to check \"physname\" is %s.\n"),
23149 value);
23150}
23151
6502dd73
DJ
23152void _initialize_dwarf2_read (void);
23153
23154void
23155_initialize_dwarf2_read (void)
23156{
96d19272
JK
23157 struct cmd_list_element *c;
23158
dce234bc 23159 dwarf2_objfile_data_key
c1bd65d0 23160 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23161
1bedd215
AC
23162 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23163Set DWARF 2 specific variables.\n\
23164Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23165 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23166 0/*allow-unknown*/, &maintenance_set_cmdlist);
23167
1bedd215
AC
23168 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23169Show DWARF 2 specific variables\n\
23170Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23171 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23172 0/*allow-unknown*/, &maintenance_show_cmdlist);
23173
23174 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
23175 &dwarf2_max_cache_age, _("\
23176Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23177Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23178A higher limit means that cached compilation units will be stored\n\
23179in memory longer, and more total memory will be used. Zero disables\n\
23180caching, which can slow down startup."),
2c5b56ce 23181 NULL,
920d2a44 23182 show_dwarf2_max_cache_age,
2c5b56ce 23183 &set_dwarf2_cmdlist,
ae038cb0 23184 &show_dwarf2_cmdlist);
d97bc12b 23185
9eae7c52
TT
23186 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23187 &dwarf2_always_disassemble, _("\
23188Set whether `info address' always disassembles DWARF expressions."), _("\
23189Show whether `info address' always disassembles DWARF expressions."), _("\
23190When enabled, DWARF expressions are always printed in an assembly-like\n\
23191syntax. When disabled, expressions will be printed in a more\n\
23192conversational style, when possible."),
23193 NULL,
23194 show_dwarf2_always_disassemble,
23195 &set_dwarf2_cmdlist,
23196 &show_dwarf2_cmdlist);
23197
73be47f5 23198 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
23199Set debugging of the dwarf2 reader."), _("\
23200Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
23201When enabled (non-zero), debugging messages are printed during dwarf2\n\
23202reading and symtab expansion. A value of 1 (one) provides basic\n\
23203information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23204 NULL,
23205 NULL,
23206 &setdebuglist, &showdebuglist);
23207
ccce17b0 23208 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
23209Set debugging of the dwarf2 DIE reader."), _("\
23210Show debugging of the dwarf2 DIE reader."), _("\
23211When enabled (non-zero), DIEs are dumped after they are read in.\n\
23212The value is the maximum depth to print."),
ccce17b0
YQ
23213 NULL,
23214 NULL,
23215 &setdebuglist, &showdebuglist);
9291a0cd 23216
900e11f9
JK
23217 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23218Set cross-checking of \"physname\" code against demangler."), _("\
23219Show cross-checking of \"physname\" code against demangler."), _("\
23220When enabled, GDB's internal \"physname\" code is checked against\n\
23221the demangler."),
23222 NULL, show_check_physname,
23223 &setdebuglist, &showdebuglist);
23224
e615022a
DE
23225 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23226 no_class, &use_deprecated_index_sections, _("\
23227Set whether to use deprecated gdb_index sections."), _("\
23228Show whether to use deprecated gdb_index sections."), _("\
23229When enabled, deprecated .gdb_index sections are used anyway.\n\
23230Normally they are ignored either because of a missing feature or\n\
23231performance issue.\n\
23232Warning: This option must be enabled before gdb reads the file."),
23233 NULL,
23234 NULL,
23235 &setlist, &showlist);
23236
96d19272 23237 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23238 _("\
fc1a9d6e 23239Save a gdb-index file.\n\
11570e71 23240Usage: save gdb-index DIRECTORY"),
96d19272
JK
23241 &save_cmdlist);
23242 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23243
23244 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23245 &dwarf2_locexpr_funcs);
23246 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23247 &dwarf2_loclist_funcs);
23248
23249 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23250 &dwarf2_block_frame_base_locexpr_funcs);
23251 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23252 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23253}
This page took 3.404222 seconds and 4 git commands to generate.