Code cleanup: Split dwarf2_ranges_read to a callback
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
325fac50 76#include <algorithm>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
73be47f5
DE
81/* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
b4f54984
DE
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84static unsigned int dwarf_read_debug = 0;
45cfd468 85
d97bc12b 86/* When non-zero, dump DIEs after they are read in. */
b4f54984 87static unsigned int dwarf_die_debug = 0;
d97bc12b 88
27e0867f
DE
89/* When non-zero, dump line number entries as they are read in. */
90static unsigned int dwarf_line_debug = 0;
91
900e11f9
JK
92/* When non-zero, cross-check physname against demangler. */
93static int check_physname = 0;
94
481860b3 95/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 96static int use_deprecated_index_sections = 0;
481860b3 97
6502dd73
DJ
98static const struct objfile_data *dwarf2_objfile_data_key;
99
f1e6e072
TT
100/* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102static int dwarf2_locexpr_index;
103static int dwarf2_loclist_index;
104static int dwarf2_locexpr_block_index;
105static int dwarf2_loclist_block_index;
106
73869dc2
DE
107/* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
dce234bc
PP
123struct dwarf2_section_info
124{
73869dc2
DE
125 union
126 {
e5aa3347 127 /* If this is a real section, the bfd section. */
049412e3 128 asection *section;
73869dc2 129 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 130 section. */
73869dc2
DE
131 struct dwarf2_section_info *containing_section;
132 } s;
19ac8c2e 133 /* Pointer to section data, only valid if readin. */
d521ce57 134 const gdb_byte *buffer;
73869dc2 135 /* The size of the section, real or virtual. */
dce234bc 136 bfd_size_type size;
73869dc2
DE
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
be391dca 140 /* True if we have tried to read this section. */
73869dc2
DE
141 char readin;
142 /* True if this is a virtual section, False otherwise.
049412e3 143 This specifies which of s.section and s.containing_section to use. */
73869dc2 144 char is_virtual;
dce234bc
PP
145};
146
8b70b953
TT
147typedef struct dwarf2_section_info dwarf2_section_info_def;
148DEF_VEC_O (dwarf2_section_info_def);
149
9291a0cd
TT
150/* All offsets in the index are of this type. It must be
151 architecture-independent. */
152typedef uint32_t offset_type;
153
154DEF_VEC_I (offset_type);
155
156942c7
DE
156/* Ensure only legit values are used. */
157#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163/* Ensure only legit values are used. */
164#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171/* Ensure we don't use more than the alloted nuber of bits for the CU. */
172#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
9291a0cd
TT
178/* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180struct mapped_index
181{
559a7a62
JK
182 /* Index data format version. */
183 int version;
184
9291a0cd
TT
185 /* The total length of the buffer. */
186 off_t total_size;
b11b1f88 187
9291a0cd
TT
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
b11b1f88 190
9291a0cd
TT
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
b11b1f88 193
3876f04e
DE
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
b11b1f88 196
9291a0cd 197 /* Size in slots, each slot is 2 offset_types. */
3876f04e 198 offset_type symbol_table_slots;
b11b1f88 199
9291a0cd
TT
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202};
203
95554aad
TT
204typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205DEF_VEC_P (dwarf2_per_cu_ptr);
206
52059ffd
TT
207struct tu_stats
208{
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214};
215
9cdd5dbd
DE
216/* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
6502dd73
DJ
219struct dwarf2_per_objfile
220{
dce234bc
PP
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
dce234bc
PP
224 struct dwarf2_section_info loc;
225 struct dwarf2_section_info macinfo;
cf2c3c16 226 struct dwarf2_section_info macro;
dce234bc
PP
227 struct dwarf2_section_info str;
228 struct dwarf2_section_info ranges;
3019eac3 229 struct dwarf2_section_info addr;
dce234bc
PP
230 struct dwarf2_section_info frame;
231 struct dwarf2_section_info eh_frame;
9291a0cd 232 struct dwarf2_section_info gdb_index;
ae038cb0 233
8b70b953
TT
234 VEC (dwarf2_section_info_def) *types;
235
be391dca
TT
236 /* Back link. */
237 struct objfile *objfile;
238
d467dd73 239 /* Table of all the compilation units. This is used to locate
10b3939b 240 the target compilation unit of a particular reference. */
ae038cb0
DJ
241 struct dwarf2_per_cu_data **all_comp_units;
242
243 /* The number of compilation units in ALL_COMP_UNITS. */
244 int n_comp_units;
245
1fd400ff 246 /* The number of .debug_types-related CUs. */
d467dd73 247 int n_type_units;
1fd400ff 248
6aa5f3a6
DE
249 /* The number of elements allocated in all_type_units.
250 If there are skeleton-less TUs, we add them to all_type_units lazily. */
251 int n_allocated_type_units;
252
a2ce51a0
DE
253 /* The .debug_types-related CUs (TUs).
254 This is stored in malloc space because we may realloc it. */
b4dd5633 255 struct signatured_type **all_type_units;
1fd400ff 256
f4dc4d17
DE
257 /* Table of struct type_unit_group objects.
258 The hash key is the DW_AT_stmt_list value. */
259 htab_t type_unit_groups;
72dca2f5 260
348e048f
DE
261 /* A table mapping .debug_types signatures to its signatured_type entry.
262 This is NULL if the .debug_types section hasn't been read in yet. */
263 htab_t signatured_types;
264
f4dc4d17
DE
265 /* Type unit statistics, to see how well the scaling improvements
266 are doing. */
52059ffd 267 struct tu_stats tu_stats;
f4dc4d17
DE
268
269 /* A chain of compilation units that are currently read in, so that
270 they can be freed later. */
271 struct dwarf2_per_cu_data *read_in_chain;
272
3019eac3
DE
273 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
274 This is NULL if the table hasn't been allocated yet. */
275 htab_t dwo_files;
276
80626a55
DE
277 /* Non-zero if we've check for whether there is a DWP file. */
278 int dwp_checked;
279
280 /* The DWP file if there is one, or NULL. */
281 struct dwp_file *dwp_file;
282
36586728
TT
283 /* The shared '.dwz' file, if one exists. This is used when the
284 original data was compressed using 'dwz -m'. */
285 struct dwz_file *dwz_file;
286
72dca2f5
FR
287 /* A flag indicating wether this objfile has a section loaded at a
288 VMA of 0. */
289 int has_section_at_zero;
9291a0cd 290
ae2de4f8
DE
291 /* True if we are using the mapped index,
292 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
293 unsigned char using_index;
294
ae2de4f8 295 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 296 struct mapped_index *index_table;
98bfdba5 297
7b9f3c50 298 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
299 TUs typically share line table entries with a CU, so we maintain a
300 separate table of all line table entries to support the sharing.
301 Note that while there can be way more TUs than CUs, we've already
302 sorted all the TUs into "type unit groups", grouped by their
303 DW_AT_stmt_list value. Therefore the only sharing done here is with a
304 CU and its associated TU group if there is one. */
7b9f3c50
DE
305 htab_t quick_file_names_table;
306
98bfdba5
PA
307 /* Set during partial symbol reading, to prevent queueing of full
308 symbols. */
309 int reading_partial_symbols;
673bfd45 310
dee91e82 311 /* Table mapping type DIEs to their struct type *.
673bfd45 312 This is NULL if not allocated yet.
02142a6c 313 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 314 htab_t die_type_hash;
95554aad
TT
315
316 /* The CUs we recently read. */
317 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
318
319 /* Table containing line_header indexed by offset and offset_in_dwz. */
320 htab_t line_header_hash;
6502dd73
DJ
321};
322
323static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 324
251d32d9 325/* Default names of the debugging sections. */
c906108c 326
233a11ab
CS
327/* Note that if the debugging section has been compressed, it might
328 have a name like .zdebug_info. */
329
9cdd5dbd
DE
330static const struct dwarf2_debug_sections dwarf2_elf_names =
331{
251d32d9
TG
332 { ".debug_info", ".zdebug_info" },
333 { ".debug_abbrev", ".zdebug_abbrev" },
334 { ".debug_line", ".zdebug_line" },
335 { ".debug_loc", ".zdebug_loc" },
336 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 337 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
338 { ".debug_str", ".zdebug_str" },
339 { ".debug_ranges", ".zdebug_ranges" },
340 { ".debug_types", ".zdebug_types" },
3019eac3 341 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
342 { ".debug_frame", ".zdebug_frame" },
343 { ".eh_frame", NULL },
24d3216f
TT
344 { ".gdb_index", ".zgdb_index" },
345 23
251d32d9 346};
c906108c 347
80626a55 348/* List of DWO/DWP sections. */
3019eac3 349
80626a55 350static const struct dwop_section_names
3019eac3
DE
351{
352 struct dwarf2_section_names abbrev_dwo;
353 struct dwarf2_section_names info_dwo;
354 struct dwarf2_section_names line_dwo;
355 struct dwarf2_section_names loc_dwo;
09262596
DE
356 struct dwarf2_section_names macinfo_dwo;
357 struct dwarf2_section_names macro_dwo;
3019eac3
DE
358 struct dwarf2_section_names str_dwo;
359 struct dwarf2_section_names str_offsets_dwo;
360 struct dwarf2_section_names types_dwo;
80626a55
DE
361 struct dwarf2_section_names cu_index;
362 struct dwarf2_section_names tu_index;
3019eac3 363}
80626a55 364dwop_section_names =
3019eac3
DE
365{
366 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
367 { ".debug_info.dwo", ".zdebug_info.dwo" },
368 { ".debug_line.dwo", ".zdebug_line.dwo" },
369 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
370 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
371 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
372 { ".debug_str.dwo", ".zdebug_str.dwo" },
373 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
374 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
375 { ".debug_cu_index", ".zdebug_cu_index" },
376 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
377};
378
c906108c
SS
379/* local data types */
380
107d2387
AC
381/* The data in a compilation unit header, after target2host
382 translation, looks like this. */
c906108c 383struct comp_unit_head
a738430d 384{
c764a876 385 unsigned int length;
a738430d 386 short version;
a738430d
MK
387 unsigned char addr_size;
388 unsigned char signed_addr_p;
b64f50a1 389 sect_offset abbrev_offset;
57349743 390
a738430d
MK
391 /* Size of file offsets; either 4 or 8. */
392 unsigned int offset_size;
57349743 393
a738430d
MK
394 /* Size of the length field; either 4 or 12. */
395 unsigned int initial_length_size;
57349743 396
a738430d
MK
397 /* Offset to the first byte of this compilation unit header in the
398 .debug_info section, for resolving relative reference dies. */
b64f50a1 399 sect_offset offset;
57349743 400
d00adf39
DE
401 /* Offset to first die in this cu from the start of the cu.
402 This will be the first byte following the compilation unit header. */
b64f50a1 403 cu_offset first_die_offset;
a738430d 404};
c906108c 405
3da10d80
KS
406/* Type used for delaying computation of method physnames.
407 See comments for compute_delayed_physnames. */
408struct delayed_method_info
409{
410 /* The type to which the method is attached, i.e., its parent class. */
411 struct type *type;
412
413 /* The index of the method in the type's function fieldlists. */
414 int fnfield_index;
415
416 /* The index of the method in the fieldlist. */
417 int index;
418
419 /* The name of the DIE. */
420 const char *name;
421
422 /* The DIE associated with this method. */
423 struct die_info *die;
424};
425
426typedef struct delayed_method_info delayed_method_info;
427DEF_VEC_O (delayed_method_info);
428
e7c27a73
DJ
429/* Internal state when decoding a particular compilation unit. */
430struct dwarf2_cu
431{
432 /* The objfile containing this compilation unit. */
433 struct objfile *objfile;
434
d00adf39 435 /* The header of the compilation unit. */
e7c27a73 436 struct comp_unit_head header;
e142c38c 437
d00adf39
DE
438 /* Base address of this compilation unit. */
439 CORE_ADDR base_address;
440
441 /* Non-zero if base_address has been set. */
442 int base_known;
443
e142c38c
DJ
444 /* The language we are debugging. */
445 enum language language;
446 const struct language_defn *language_defn;
447
b0f35d58
DL
448 const char *producer;
449
e142c38c
DJ
450 /* The generic symbol table building routines have separate lists for
451 file scope symbols and all all other scopes (local scopes). So
452 we need to select the right one to pass to add_symbol_to_list().
453 We do it by keeping a pointer to the correct list in list_in_scope.
454
455 FIXME: The original dwarf code just treated the file scope as the
456 first local scope, and all other local scopes as nested local
457 scopes, and worked fine. Check to see if we really need to
458 distinguish these in buildsym.c. */
459 struct pending **list_in_scope;
460
433df2d4
DE
461 /* The abbrev table for this CU.
462 Normally this points to the abbrev table in the objfile.
463 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
464 struct abbrev_table *abbrev_table;
72bf9492 465
b64f50a1
JK
466 /* Hash table holding all the loaded partial DIEs
467 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
468 htab_t partial_dies;
469
470 /* Storage for things with the same lifetime as this read-in compilation
471 unit, including partial DIEs. */
472 struct obstack comp_unit_obstack;
473
ae038cb0
DJ
474 /* When multiple dwarf2_cu structures are living in memory, this field
475 chains them all together, so that they can be released efficiently.
476 We will probably also want a generation counter so that most-recently-used
477 compilation units are cached... */
478 struct dwarf2_per_cu_data *read_in_chain;
479
69d751e3 480 /* Backlink to our per_cu entry. */
ae038cb0
DJ
481 struct dwarf2_per_cu_data *per_cu;
482
483 /* How many compilation units ago was this CU last referenced? */
484 int last_used;
485
b64f50a1
JK
486 /* A hash table of DIE cu_offset for following references with
487 die_info->offset.sect_off as hash. */
51545339 488 htab_t die_hash;
10b3939b
DJ
489
490 /* Full DIEs if read in. */
491 struct die_info *dies;
492
493 /* A set of pointers to dwarf2_per_cu_data objects for compilation
494 units referenced by this one. Only set during full symbol processing;
495 partial symbol tables do not have dependencies. */
496 htab_t dependencies;
497
cb1df416
DJ
498 /* Header data from the line table, during full symbol processing. */
499 struct line_header *line_header;
500
3da10d80
KS
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 VEC (delayed_method_info) *method_list;
504
96408a79
SA
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab;
507
034e5797
DE
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
3019eac3
DE
517 struct dwo_unit *dwo_unit;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
1dbab08b 521 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
522 ULONGEST addr_base;
523
2e3cf129
DE
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
1dbab08b 526 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 527 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
534 ULONGEST ranges_base;
535
ae038cb0
DJ
536 /* Mark used when releasing cached dies. */
537 unsigned int mark : 1;
538
8be455d7
JK
539 /* This CU references .debug_loc. See the symtab->locations_valid field.
540 This test is imperfect as there may exist optimized debug code not using
541 any location list and still facing inlining issues if handled as
542 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 543 unsigned int has_loclist : 1;
ba919b58 544
1b80a9fa
JK
545 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
546 if all the producer_is_* fields are valid. This information is cached
547 because profiling CU expansion showed excessive time spent in
548 producer_is_gxx_lt_4_6. */
ba919b58
TT
549 unsigned int checked_producer : 1;
550 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 551 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 552 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
553
554 /* When set, the file that we're processing is known to have
555 debugging info for C++ namespaces. GCC 3.3.x did not produce
556 this information, but later versions do. */
557
558 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
559};
560
10b3939b
DJ
561/* Persistent data held for a compilation unit, even when not
562 processing it. We put a pointer to this structure in the
28dee7f5 563 read_symtab_private field of the psymtab. */
10b3939b 564
ae038cb0
DJ
565struct dwarf2_per_cu_data
566{
36586728 567 /* The start offset and length of this compilation unit.
45452591 568 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
569 initial_length_size.
570 If the DIE refers to a DWO file, this is always of the original die,
571 not the DWO file. */
b64f50a1 572 sect_offset offset;
36586728 573 unsigned int length;
ae038cb0
DJ
574
575 /* Flag indicating this compilation unit will be read in before
576 any of the current compilation units are processed. */
c764a876 577 unsigned int queued : 1;
ae038cb0 578
0d99eb77
DE
579 /* This flag will be set when reading partial DIEs if we need to load
580 absolutely all DIEs for this compilation unit, instead of just the ones
581 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
582 hash table and don't find it. */
583 unsigned int load_all_dies : 1;
584
0186c6a7
DE
585 /* Non-zero if this CU is from .debug_types.
586 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
587 this is non-zero. */
3019eac3
DE
588 unsigned int is_debug_types : 1;
589
36586728
TT
590 /* Non-zero if this CU is from the .dwz file. */
591 unsigned int is_dwz : 1;
592
a2ce51a0
DE
593 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
594 This flag is only valid if is_debug_types is true.
595 We can't read a CU directly from a DWO file: There are required
596 attributes in the stub. */
597 unsigned int reading_dwo_directly : 1;
598
7ee85ab1
DE
599 /* Non-zero if the TU has been read.
600 This is used to assist the "Stay in DWO Optimization" for Fission:
601 When reading a DWO, it's faster to read TUs from the DWO instead of
602 fetching them from random other DWOs (due to comdat folding).
603 If the TU has already been read, the optimization is unnecessary
604 (and unwise - we don't want to change where gdb thinks the TU lives
605 "midflight").
606 This flag is only valid if is_debug_types is true. */
607 unsigned int tu_read : 1;
608
3019eac3
DE
609 /* The section this CU/TU lives in.
610 If the DIE refers to a DWO file, this is always the original die,
611 not the DWO file. */
8a0459fd 612 struct dwarf2_section_info *section;
348e048f 613
17ea53c3 614 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
615 of the CU cache it gets reset to NULL again. This is left as NULL for
616 dummy CUs (a CU header, but nothing else). */
ae038cb0 617 struct dwarf2_cu *cu;
1c379e20 618
9cdd5dbd
DE
619 /* The corresponding objfile.
620 Normally we can get the objfile from dwarf2_per_objfile.
621 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
622 struct objfile *objfile;
623
fffbe6a8
YQ
624 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
625 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
626 union
627 {
628 /* The partial symbol table associated with this compilation unit,
95554aad 629 or NULL for unread partial units. */
9291a0cd
TT
630 struct partial_symtab *psymtab;
631
632 /* Data needed by the "quick" functions. */
633 struct dwarf2_per_cu_quick_data *quick;
634 } v;
95554aad 635
796a7ff8
DE
636 /* The CUs we import using DW_TAG_imported_unit. This is filled in
637 while reading psymtabs, used to compute the psymtab dependencies,
638 and then cleared. Then it is filled in again while reading full
639 symbols, and only deleted when the objfile is destroyed.
640
641 This is also used to work around a difference between the way gold
642 generates .gdb_index version <=7 and the way gdb does. Arguably this
643 is a gold bug. For symbols coming from TUs, gold records in the index
644 the CU that includes the TU instead of the TU itself. This breaks
645 dw2_lookup_symbol: It assumes that if the index says symbol X lives
646 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
647 will find X. Alas TUs live in their own symtab, so after expanding CU Y
648 we need to look in TU Z to find X. Fortunately, this is akin to
649 DW_TAG_imported_unit, so we just use the same mechanism: For
650 .gdb_index version <=7 this also records the TUs that the CU referred
651 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
652 indices so we only pay a price for gold generated indices.
653 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 654 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
655};
656
348e048f
DE
657/* Entry in the signatured_types hash table. */
658
659struct signatured_type
660{
42e7ad6c 661 /* The "per_cu" object of this type.
ac9ec31b 662 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
663 N.B.: This is the first member so that it's easy to convert pointers
664 between them. */
665 struct dwarf2_per_cu_data per_cu;
666
3019eac3 667 /* The type's signature. */
348e048f
DE
668 ULONGEST signature;
669
3019eac3 670 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
671 If this TU is a DWO stub and the definition lives in a DWO file
672 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
673 cu_offset type_offset_in_tu;
674
675 /* Offset in the section of the type's DIE.
676 If the definition lives in a DWO file, this is the offset in the
677 .debug_types.dwo section.
678 The value is zero until the actual value is known.
679 Zero is otherwise not a valid section offset. */
680 sect_offset type_offset_in_section;
0186c6a7
DE
681
682 /* Type units are grouped by their DW_AT_stmt_list entry so that they
683 can share them. This points to the containing symtab. */
684 struct type_unit_group *type_unit_group;
ac9ec31b
DE
685
686 /* The type.
687 The first time we encounter this type we fully read it in and install it
688 in the symbol tables. Subsequent times we only need the type. */
689 struct type *type;
a2ce51a0
DE
690
691 /* Containing DWO unit.
692 This field is valid iff per_cu.reading_dwo_directly. */
693 struct dwo_unit *dwo_unit;
348e048f
DE
694};
695
0186c6a7
DE
696typedef struct signatured_type *sig_type_ptr;
697DEF_VEC_P (sig_type_ptr);
698
094b34ac
DE
699/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
700 This includes type_unit_group and quick_file_names. */
701
702struct stmt_list_hash
703{
704 /* The DWO unit this table is from or NULL if there is none. */
705 struct dwo_unit *dwo_unit;
706
707 /* Offset in .debug_line or .debug_line.dwo. */
708 sect_offset line_offset;
709};
710
f4dc4d17
DE
711/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
712 an object of this type. */
713
714struct type_unit_group
715{
0186c6a7 716 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
717 To simplify things we create an artificial CU that "includes" all the
718 type units using this stmt_list so that the rest of the code still has
719 a "per_cu" handle on the symtab.
720 This PER_CU is recognized by having no section. */
8a0459fd 721#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
722 struct dwarf2_per_cu_data per_cu;
723
0186c6a7
DE
724 /* The TUs that share this DW_AT_stmt_list entry.
725 This is added to while parsing type units to build partial symtabs,
726 and is deleted afterwards and not used again. */
727 VEC (sig_type_ptr) *tus;
f4dc4d17 728
43f3e411 729 /* The compunit symtab.
094b34ac 730 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
731 so we create an essentially anonymous symtab as the compunit symtab. */
732 struct compunit_symtab *compunit_symtab;
f4dc4d17 733
094b34ac
DE
734 /* The data used to construct the hash key. */
735 struct stmt_list_hash hash;
f4dc4d17
DE
736
737 /* The number of symtabs from the line header.
738 The value here must match line_header.num_file_names. */
739 unsigned int num_symtabs;
740
741 /* The symbol tables for this TU (obtained from the files listed in
742 DW_AT_stmt_list).
743 WARNING: The order of entries here must match the order of entries
744 in the line header. After the first TU using this type_unit_group, the
745 line header for the subsequent TUs is recreated from this. This is done
746 because we need to use the same symtabs for each TU using the same
747 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
748 there's no guarantee the line header doesn't have duplicate entries. */
749 struct symtab **symtabs;
750};
751
73869dc2 752/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
753
754struct dwo_sections
755{
756 struct dwarf2_section_info abbrev;
3019eac3
DE
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
09262596
DE
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
3019eac3
DE
761 struct dwarf2_section_info str;
762 struct dwarf2_section_info str_offsets;
80626a55
DE
763 /* In the case of a virtual DWO file, these two are unused. */
764 struct dwarf2_section_info info;
3019eac3
DE
765 VEC (dwarf2_section_info_def) *types;
766};
767
c88ee1f0 768/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
769
770struct dwo_unit
771{
772 /* Backlink to the containing struct dwo_file. */
773 struct dwo_file *dwo_file;
774
775 /* The "id" that distinguishes this CU/TU.
776 .debug_info calls this "dwo_id", .debug_types calls this "signature".
777 Since signatures came first, we stick with it for consistency. */
778 ULONGEST signature;
779
780 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 781 struct dwarf2_section_info *section;
3019eac3 782
19ac8c2e 783 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
784 sect_offset offset;
785 unsigned int length;
786
787 /* For types, offset in the type's DIE of the type defined by this TU. */
788 cu_offset type_offset_in_tu;
789};
790
73869dc2
DE
791/* include/dwarf2.h defines the DWP section codes.
792 It defines a max value but it doesn't define a min value, which we
793 use for error checking, so provide one. */
794
795enum dwp_v2_section_ids
796{
797 DW_SECT_MIN = 1
798};
799
80626a55 800/* Data for one DWO file.
57d63ce2
DE
801
802 This includes virtual DWO files (a virtual DWO file is a DWO file as it
803 appears in a DWP file). DWP files don't really have DWO files per se -
804 comdat folding of types "loses" the DWO file they came from, and from
805 a high level view DWP files appear to contain a mass of random types.
806 However, to maintain consistency with the non-DWP case we pretend DWP
807 files contain virtual DWO files, and we assign each TU with one virtual
808 DWO file (generally based on the line and abbrev section offsets -
809 a heuristic that seems to work in practice). */
3019eac3
DE
810
811struct dwo_file
812{
0ac5b59e 813 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
814 For virtual DWO files the name is constructed from the section offsets
815 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
816 from related CU+TUs. */
0ac5b59e
DE
817 const char *dwo_name;
818
819 /* The DW_AT_comp_dir attribute. */
820 const char *comp_dir;
3019eac3 821
80626a55
DE
822 /* The bfd, when the file is open. Otherwise this is NULL.
823 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
824 bfd *dbfd;
3019eac3 825
73869dc2
DE
826 /* The sections that make up this DWO file.
827 Remember that for virtual DWO files in DWP V2, these are virtual
828 sections (for lack of a better name). */
3019eac3
DE
829 struct dwo_sections sections;
830
19c3d4c9
DE
831 /* The CU in the file.
832 We only support one because having more than one requires hacking the
833 dwo_name of each to match, which is highly unlikely to happen.
834 Doing this means all TUs can share comp_dir: We also assume that
835 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
836 struct dwo_unit *cu;
3019eac3
DE
837
838 /* Table of TUs in the file.
839 Each element is a struct dwo_unit. */
840 htab_t tus;
841};
842
80626a55
DE
843/* These sections are what may appear in a DWP file. */
844
845struct dwp_sections
846{
73869dc2 847 /* These are used by both DWP version 1 and 2. */
80626a55
DE
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info cu_index;
850 struct dwarf2_section_info tu_index;
73869dc2
DE
851
852 /* These are only used by DWP version 2 files.
853 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
854 sections are referenced by section number, and are not recorded here.
855 In DWP version 2 there is at most one copy of all these sections, each
856 section being (effectively) comprised of the concatenation of all of the
857 individual sections that exist in the version 1 format.
858 To keep the code simple we treat each of these concatenated pieces as a
859 section itself (a virtual section?). */
860 struct dwarf2_section_info abbrev;
861 struct dwarf2_section_info info;
862 struct dwarf2_section_info line;
863 struct dwarf2_section_info loc;
864 struct dwarf2_section_info macinfo;
865 struct dwarf2_section_info macro;
866 struct dwarf2_section_info str_offsets;
867 struct dwarf2_section_info types;
80626a55
DE
868};
869
73869dc2
DE
870/* These sections are what may appear in a virtual DWO file in DWP version 1.
871 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 872
73869dc2 873struct virtual_v1_dwo_sections
80626a55
DE
874{
875 struct dwarf2_section_info abbrev;
876 struct dwarf2_section_info line;
877 struct dwarf2_section_info loc;
878 struct dwarf2_section_info macinfo;
879 struct dwarf2_section_info macro;
880 struct dwarf2_section_info str_offsets;
881 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 882 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
883 struct dwarf2_section_info info_or_types;
884};
885
73869dc2
DE
886/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
887 In version 2, the sections of the DWO files are concatenated together
888 and stored in one section of that name. Thus each ELF section contains
889 several "virtual" sections. */
890
891struct virtual_v2_dwo_sections
892{
893 bfd_size_type abbrev_offset;
894 bfd_size_type abbrev_size;
895
896 bfd_size_type line_offset;
897 bfd_size_type line_size;
898
899 bfd_size_type loc_offset;
900 bfd_size_type loc_size;
901
902 bfd_size_type macinfo_offset;
903 bfd_size_type macinfo_size;
904
905 bfd_size_type macro_offset;
906 bfd_size_type macro_size;
907
908 bfd_size_type str_offsets_offset;
909 bfd_size_type str_offsets_size;
910
911 /* Each DWP hash table entry records one CU or one TU.
912 That is recorded here, and copied to dwo_unit.section. */
913 bfd_size_type info_or_types_offset;
914 bfd_size_type info_or_types_size;
915};
916
80626a55
DE
917/* Contents of DWP hash tables. */
918
919struct dwp_hash_table
920{
73869dc2 921 uint32_t version, nr_columns;
80626a55 922 uint32_t nr_units, nr_slots;
73869dc2
DE
923 const gdb_byte *hash_table, *unit_table;
924 union
925 {
926 struct
927 {
928 const gdb_byte *indices;
929 } v1;
930 struct
931 {
932 /* This is indexed by column number and gives the id of the section
933 in that column. */
934#define MAX_NR_V2_DWO_SECTIONS \
935 (1 /* .debug_info or .debug_types */ \
936 + 1 /* .debug_abbrev */ \
937 + 1 /* .debug_line */ \
938 + 1 /* .debug_loc */ \
939 + 1 /* .debug_str_offsets */ \
940 + 1 /* .debug_macro or .debug_macinfo */)
941 int section_ids[MAX_NR_V2_DWO_SECTIONS];
942 const gdb_byte *offsets;
943 const gdb_byte *sizes;
944 } v2;
945 } section_pool;
80626a55
DE
946};
947
948/* Data for one DWP file. */
949
950struct dwp_file
951{
952 /* Name of the file. */
953 const char *name;
954
73869dc2
DE
955 /* File format version. */
956 int version;
957
93417882 958 /* The bfd. */
80626a55
DE
959 bfd *dbfd;
960
961 /* Section info for this file. */
962 struct dwp_sections sections;
963
57d63ce2 964 /* Table of CUs in the file. */
80626a55
DE
965 const struct dwp_hash_table *cus;
966
967 /* Table of TUs in the file. */
968 const struct dwp_hash_table *tus;
969
19ac8c2e
DE
970 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
971 htab_t loaded_cus;
972 htab_t loaded_tus;
80626a55 973
73869dc2
DE
974 /* Table to map ELF section numbers to their sections.
975 This is only needed for the DWP V1 file format. */
80626a55
DE
976 unsigned int num_sections;
977 asection **elf_sections;
978};
979
36586728
TT
980/* This represents a '.dwz' file. */
981
982struct dwz_file
983{
984 /* A dwz file can only contain a few sections. */
985 struct dwarf2_section_info abbrev;
986 struct dwarf2_section_info info;
987 struct dwarf2_section_info str;
988 struct dwarf2_section_info line;
989 struct dwarf2_section_info macro;
2ec9a5e0 990 struct dwarf2_section_info gdb_index;
36586728
TT
991
992 /* The dwz's BFD. */
993 bfd *dwz_bfd;
994};
995
0963b4bd
MS
996/* Struct used to pass misc. parameters to read_die_and_children, et
997 al. which are used for both .debug_info and .debug_types dies.
998 All parameters here are unchanging for the life of the call. This
dee91e82 999 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1000
1001struct die_reader_specs
1002{
a32a8923 1003 /* The bfd of die_section. */
93311388
DE
1004 bfd* abfd;
1005
1006 /* The CU of the DIE we are parsing. */
1007 struct dwarf2_cu *cu;
1008
80626a55 1009 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1010 struct dwo_file *dwo_file;
1011
dee91e82 1012 /* The section the die comes from.
3019eac3 1013 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1014 struct dwarf2_section_info *die_section;
1015
1016 /* die_section->buffer. */
d521ce57 1017 const gdb_byte *buffer;
f664829e
DE
1018
1019 /* The end of the buffer. */
1020 const gdb_byte *buffer_end;
a2ce51a0
DE
1021
1022 /* The value of the DW_AT_comp_dir attribute. */
1023 const char *comp_dir;
93311388
DE
1024};
1025
fd820528 1026/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1027typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1028 const gdb_byte *info_ptr,
dee91e82
DE
1029 struct die_info *comp_unit_die,
1030 int has_children,
1031 void *data);
1032
52059ffd
TT
1033struct file_entry
1034{
1035 const char *name;
1036 unsigned int dir_index;
1037 unsigned int mod_time;
1038 unsigned int length;
83769d0b
DE
1039 /* Non-zero if referenced by the Line Number Program. */
1040 int included_p;
1041 /* The associated symbol table, if any. */
1042 struct symtab *symtab;
52059ffd
TT
1043};
1044
debd256d
JB
1045/* The line number information for a compilation unit (found in the
1046 .debug_line section) begins with a "statement program header",
1047 which contains the following information. */
1048struct line_header
1049{
527f3840
JK
1050 /* Offset of line number information in .debug_line section. */
1051 sect_offset offset;
1052
1053 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1054 unsigned offset_in_dwz : 1;
1055
debd256d
JB
1056 unsigned int total_length;
1057 unsigned short version;
1058 unsigned int header_length;
1059 unsigned char minimum_instruction_length;
2dc7f7b3 1060 unsigned char maximum_ops_per_instruction;
debd256d
JB
1061 unsigned char default_is_stmt;
1062 int line_base;
1063 unsigned char line_range;
1064 unsigned char opcode_base;
1065
1066 /* standard_opcode_lengths[i] is the number of operands for the
1067 standard opcode whose value is i. This means that
1068 standard_opcode_lengths[0] is unused, and the last meaningful
1069 element is standard_opcode_lengths[opcode_base - 1]. */
1070 unsigned char *standard_opcode_lengths;
1071
1072 /* The include_directories table. NOTE! These strings are not
1073 allocated with xmalloc; instead, they are pointers into
1074 debug_line_buffer. If you try to free them, `free' will get
1075 indigestion. */
1076 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1077 const char **include_dirs;
debd256d
JB
1078
1079 /* The file_names table. NOTE! These strings are not allocated
1080 with xmalloc; instead, they are pointers into debug_line_buffer.
1081 Don't try to free them directly. */
1082 unsigned int num_file_names, file_names_size;
52059ffd 1083 struct file_entry *file_names;
debd256d
JB
1084
1085 /* The start and end of the statement program following this
6502dd73 1086 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1087 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1088};
c906108c
SS
1089
1090/* When we construct a partial symbol table entry we only
0963b4bd 1091 need this much information. */
c906108c
SS
1092struct partial_die_info
1093 {
72bf9492 1094 /* Offset of this DIE. */
b64f50a1 1095 sect_offset offset;
72bf9492
DJ
1096
1097 /* DWARF-2 tag for this DIE. */
1098 ENUM_BITFIELD(dwarf_tag) tag : 16;
1099
72bf9492
DJ
1100 /* Assorted flags describing the data found in this DIE. */
1101 unsigned int has_children : 1;
1102 unsigned int is_external : 1;
1103 unsigned int is_declaration : 1;
1104 unsigned int has_type : 1;
1105 unsigned int has_specification : 1;
1106 unsigned int has_pc_info : 1;
481860b3 1107 unsigned int may_be_inlined : 1;
72bf9492 1108
0c1b455e
TT
1109 /* This DIE has been marked DW_AT_main_subprogram. */
1110 unsigned int main_subprogram : 1;
1111
72bf9492
DJ
1112 /* Flag set if the SCOPE field of this structure has been
1113 computed. */
1114 unsigned int scope_set : 1;
1115
fa4028e9
JB
1116 /* Flag set if the DIE has a byte_size attribute. */
1117 unsigned int has_byte_size : 1;
1118
ff908ebf
AW
1119 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1120 unsigned int has_const_value : 1;
1121
98bfdba5
PA
1122 /* Flag set if any of the DIE's children are template arguments. */
1123 unsigned int has_template_arguments : 1;
1124
abc72ce4
DE
1125 /* Flag set if fixup_partial_die has been called on this die. */
1126 unsigned int fixup_called : 1;
1127
36586728
TT
1128 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1129 unsigned int is_dwz : 1;
1130
1131 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1132 unsigned int spec_is_dwz : 1;
1133
72bf9492 1134 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1135 sometimes a default name for unnamed DIEs. */
15d034d0 1136 const char *name;
72bf9492 1137
abc72ce4
DE
1138 /* The linkage name, if present. */
1139 const char *linkage_name;
1140
72bf9492
DJ
1141 /* The scope to prepend to our children. This is generally
1142 allocated on the comp_unit_obstack, so will disappear
1143 when this compilation unit leaves the cache. */
15d034d0 1144 const char *scope;
72bf9492 1145
95554aad
TT
1146 /* Some data associated with the partial DIE. The tag determines
1147 which field is live. */
1148 union
1149 {
1150 /* The location description associated with this DIE, if any. */
1151 struct dwarf_block *locdesc;
1152 /* The offset of an import, for DW_TAG_imported_unit. */
1153 sect_offset offset;
1154 } d;
72bf9492
DJ
1155
1156 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1157 CORE_ADDR lowpc;
1158 CORE_ADDR highpc;
72bf9492 1159
93311388 1160 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1161 DW_AT_sibling, if any. */
abc72ce4
DE
1162 /* NOTE: This member isn't strictly necessary, read_partial_die could
1163 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1164 const gdb_byte *sibling;
72bf9492
DJ
1165
1166 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1167 DW_AT_specification (or DW_AT_abstract_origin or
1168 DW_AT_extension). */
b64f50a1 1169 sect_offset spec_offset;
72bf9492
DJ
1170
1171 /* Pointers to this DIE's parent, first child, and next sibling,
1172 if any. */
1173 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1174 };
1175
0963b4bd 1176/* This data structure holds the information of an abbrev. */
c906108c
SS
1177struct abbrev_info
1178 {
1179 unsigned int number; /* number identifying abbrev */
1180 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1181 unsigned short has_children; /* boolean */
1182 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1183 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1184 struct abbrev_info *next; /* next in chain */
1185 };
1186
1187struct attr_abbrev
1188 {
9d25dd43
DE
1189 ENUM_BITFIELD(dwarf_attribute) name : 16;
1190 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1191 };
1192
433df2d4
DE
1193/* Size of abbrev_table.abbrev_hash_table. */
1194#define ABBREV_HASH_SIZE 121
1195
1196/* Top level data structure to contain an abbreviation table. */
1197
1198struct abbrev_table
1199{
f4dc4d17
DE
1200 /* Where the abbrev table came from.
1201 This is used as a sanity check when the table is used. */
433df2d4
DE
1202 sect_offset offset;
1203
1204 /* Storage for the abbrev table. */
1205 struct obstack abbrev_obstack;
1206
1207 /* Hash table of abbrevs.
1208 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1209 It could be statically allocated, but the previous code didn't so we
1210 don't either. */
1211 struct abbrev_info **abbrevs;
1212};
1213
0963b4bd 1214/* Attributes have a name and a value. */
b60c80d6
DJ
1215struct attribute
1216 {
9d25dd43 1217 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1218 ENUM_BITFIELD(dwarf_form) form : 15;
1219
1220 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1221 field should be in u.str (existing only for DW_STRING) but it is kept
1222 here for better struct attribute alignment. */
1223 unsigned int string_is_canonical : 1;
1224
b60c80d6
DJ
1225 union
1226 {
15d034d0 1227 const char *str;
b60c80d6 1228 struct dwarf_block *blk;
43bbcdc2
PH
1229 ULONGEST unsnd;
1230 LONGEST snd;
b60c80d6 1231 CORE_ADDR addr;
ac9ec31b 1232 ULONGEST signature;
b60c80d6
DJ
1233 }
1234 u;
1235 };
1236
0963b4bd 1237/* This data structure holds a complete die structure. */
c906108c
SS
1238struct die_info
1239 {
76815b17
DE
1240 /* DWARF-2 tag for this DIE. */
1241 ENUM_BITFIELD(dwarf_tag) tag : 16;
1242
1243 /* Number of attributes */
98bfdba5
PA
1244 unsigned char num_attrs;
1245
1246 /* True if we're presently building the full type name for the
1247 type derived from this DIE. */
1248 unsigned char building_fullname : 1;
76815b17 1249
adde2bff
DE
1250 /* True if this die is in process. PR 16581. */
1251 unsigned char in_process : 1;
1252
76815b17
DE
1253 /* Abbrev number */
1254 unsigned int abbrev;
1255
93311388 1256 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1257 sect_offset offset;
78ba4af6
JB
1258
1259 /* The dies in a compilation unit form an n-ary tree. PARENT
1260 points to this die's parent; CHILD points to the first child of
1261 this node; and all the children of a given node are chained
4950bc1c 1262 together via their SIBLING fields. */
639d11d3
DC
1263 struct die_info *child; /* Its first child, if any. */
1264 struct die_info *sibling; /* Its next sibling, if any. */
1265 struct die_info *parent; /* Its parent, if any. */
c906108c 1266
b60c80d6
DJ
1267 /* An array of attributes, with NUM_ATTRS elements. There may be
1268 zero, but it's not common and zero-sized arrays are not
1269 sufficiently portable C. */
1270 struct attribute attrs[1];
c906108c
SS
1271 };
1272
0963b4bd 1273/* Get at parts of an attribute structure. */
c906108c
SS
1274
1275#define DW_STRING(attr) ((attr)->u.str)
8285870a 1276#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1277#define DW_UNSND(attr) ((attr)->u.unsnd)
1278#define DW_BLOCK(attr) ((attr)->u.blk)
1279#define DW_SND(attr) ((attr)->u.snd)
1280#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1281#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1282
0963b4bd 1283/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1284struct dwarf_block
1285 {
56eb65bd 1286 size_t size;
1d6edc3c
JK
1287
1288 /* Valid only if SIZE is not zero. */
d521ce57 1289 const gdb_byte *data;
c906108c
SS
1290 };
1291
c906108c
SS
1292#ifndef ATTR_ALLOC_CHUNK
1293#define ATTR_ALLOC_CHUNK 4
1294#endif
1295
c906108c
SS
1296/* Allocate fields for structs, unions and enums in this size. */
1297#ifndef DW_FIELD_ALLOC_CHUNK
1298#define DW_FIELD_ALLOC_CHUNK 4
1299#endif
1300
c906108c
SS
1301/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1302 but this would require a corresponding change in unpack_field_as_long
1303 and friends. */
1304static int bits_per_byte = 8;
1305
52059ffd
TT
1306struct nextfield
1307{
1308 struct nextfield *next;
1309 int accessibility;
1310 int virtuality;
1311 struct field field;
1312};
1313
1314struct nextfnfield
1315{
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318};
1319
1320struct fnfieldlist
1321{
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325};
1326
1327struct typedef_field_list
1328{
1329 struct typedef_field field;
1330 struct typedef_field_list *next;
1331};
1332
c906108c
SS
1333/* The routines that read and process dies for a C struct or C++ class
1334 pass lists of data member fields and lists of member function fields
1335 in an instance of a field_info structure, as defined below. */
1336struct field_info
c5aa993b 1337 {
0963b4bd 1338 /* List of data member and baseclasses fields. */
52059ffd 1339 struct nextfield *fields, *baseclasses;
c906108c 1340
7d0ccb61 1341 /* Number of fields (including baseclasses). */
c5aa993b 1342 int nfields;
c906108c 1343
c5aa993b
JM
1344 /* Number of baseclasses. */
1345 int nbaseclasses;
c906108c 1346
c5aa993b
JM
1347 /* Set if the accesibility of one of the fields is not public. */
1348 int non_public_fields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fields array, entries are allocated in the order they
1351 are encountered in the object file. */
52059ffd 1352 struct nextfnfield *fnfields;
c906108c 1353
c5aa993b
JM
1354 /* Member function fieldlist array, contains name of possibly overloaded
1355 member function, number of overloaded member functions and a pointer
1356 to the head of the member function field chain. */
52059ffd 1357 struct fnfieldlist *fnfieldlists;
c906108c 1358
c5aa993b
JM
1359 /* Number of entries in the fnfieldlists array. */
1360 int nfnfields;
98751a41
JK
1361
1362 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1363 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1364 struct typedef_field_list *typedef_field_list;
98751a41 1365 unsigned typedef_field_list_count;
c5aa993b 1366 };
c906108c 1367
10b3939b
DJ
1368/* One item on the queue of compilation units to read in full symbols
1369 for. */
1370struct dwarf2_queue_item
1371{
1372 struct dwarf2_per_cu_data *per_cu;
95554aad 1373 enum language pretend_language;
10b3939b
DJ
1374 struct dwarf2_queue_item *next;
1375};
1376
1377/* The current queue. */
1378static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1379
ae038cb0
DJ
1380/* Loaded secondary compilation units are kept in memory until they
1381 have not been referenced for the processing of this many
1382 compilation units. Set this to zero to disable caching. Cache
1383 sizes of up to at least twenty will improve startup time for
1384 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1385static int dwarf_max_cache_age = 5;
920d2a44 1386static void
b4f54984
DE
1387show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1388 struct cmd_list_element *c, const char *value)
920d2a44 1389{
3e43a32a 1390 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1391 "DWARF compilation units is %s.\n"),
920d2a44
AC
1392 value);
1393}
4390d890 1394\f
c906108c
SS
1395/* local function prototypes */
1396
a32a8923
DE
1397static const char *get_section_name (const struct dwarf2_section_info *);
1398
1399static const char *get_section_file_name (const struct dwarf2_section_info *);
1400
4efb68b1 1401static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1402
918dd910
JK
1403static void dwarf2_find_base_address (struct die_info *die,
1404 struct dwarf2_cu *cu);
1405
0018ea6f
DE
1406static struct partial_symtab *create_partial_symtab
1407 (struct dwarf2_per_cu_data *per_cu, const char *name);
1408
c67a9c90 1409static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1410
72bf9492
DJ
1411static void scan_partial_symbols (struct partial_die_info *,
1412 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1413 int, struct dwarf2_cu *);
c906108c 1414
72bf9492
DJ
1415static void add_partial_symbol (struct partial_die_info *,
1416 struct dwarf2_cu *);
63d06c5c 1417
72bf9492
DJ
1418static void add_partial_namespace (struct partial_die_info *pdi,
1419 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1420 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1421
5d7cb8df 1422static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1423 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1424 struct dwarf2_cu *cu);
1425
72bf9492
DJ
1426static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1427 struct dwarf2_cu *cu);
91c24f0a 1428
bc30ff58
JB
1429static void add_partial_subprogram (struct partial_die_info *pdi,
1430 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1431 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1432
257e7a09
YQ
1433static void dwarf2_read_symtab (struct partial_symtab *,
1434 struct objfile *);
c906108c 1435
a14ed312 1436static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1437
433df2d4
DE
1438static struct abbrev_info *abbrev_table_lookup_abbrev
1439 (const struct abbrev_table *, unsigned int);
1440
1441static struct abbrev_table *abbrev_table_read_table
1442 (struct dwarf2_section_info *, sect_offset);
1443
1444static void abbrev_table_free (struct abbrev_table *);
1445
f4dc4d17
DE
1446static void abbrev_table_free_cleanup (void *);
1447
dee91e82
DE
1448static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1449 struct dwarf2_section_info *);
c906108c 1450
f3dd6933 1451static void dwarf2_free_abbrev_table (void *);
c906108c 1452
d521ce57 1453static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1454
dee91e82 1455static struct partial_die_info *load_partial_dies
d521ce57 1456 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1457
d521ce57
TT
1458static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1459 struct partial_die_info *,
1460 struct abbrev_info *,
1461 unsigned int,
1462 const gdb_byte *);
c906108c 1463
36586728 1464static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1465 struct dwarf2_cu *);
72bf9492
DJ
1466
1467static void fixup_partial_die (struct partial_die_info *,
1468 struct dwarf2_cu *);
1469
d521ce57
TT
1470static const gdb_byte *read_attribute (const struct die_reader_specs *,
1471 struct attribute *, struct attr_abbrev *,
1472 const gdb_byte *);
a8329558 1473
a1855c1d 1474static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1479
a1855c1d 1480static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1481
a1855c1d 1482static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1483
d521ce57 1484static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1485 unsigned int *);
c906108c 1486
d521ce57 1487static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1488
1489static LONGEST read_checked_initial_length_and_offset
d521ce57 1490 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1491 unsigned int *, unsigned int *);
613e1657 1492
d521ce57
TT
1493static LONGEST read_offset (bfd *, const gdb_byte *,
1494 const struct comp_unit_head *,
c764a876
DE
1495 unsigned int *);
1496
d521ce57 1497static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1498
f4dc4d17
DE
1499static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1500 sect_offset);
1501
d521ce57 1502static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1503
d521ce57 1504static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1505
d521ce57
TT
1506static const char *read_indirect_string (bfd *, const gdb_byte *,
1507 const struct comp_unit_head *,
1508 unsigned int *);
4bdf3d34 1509
d521ce57 1510static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1511
d521ce57 1512static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1513
d521ce57 1514static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1515
d521ce57
TT
1516static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1517 const gdb_byte *,
3019eac3
DE
1518 unsigned int *);
1519
d521ce57 1520static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1521 ULONGEST str_index);
3019eac3 1522
e142c38c 1523static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1524
e142c38c
DJ
1525static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1526 struct dwarf2_cu *);
c906108c 1527
348e048f 1528static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1529 unsigned int);
348e048f 1530
7d45c7c3
KB
1531static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1532 struct dwarf2_cu *cu);
1533
05cf31d1
JB
1534static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1535 struct dwarf2_cu *cu);
1536
e142c38c 1537static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1538
e142c38c 1539static struct die_info *die_specification (struct die_info *die,
f2f0e013 1540 struct dwarf2_cu **);
63d06c5c 1541
debd256d
JB
1542static void free_line_header (struct line_header *lh);
1543
3019eac3
DE
1544static struct line_header *dwarf_decode_line_header (unsigned int offset,
1545 struct dwarf2_cu *cu);
debd256d 1546
f3f5162e 1547static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1548 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1549 CORE_ADDR, int decode_mapping);
c906108c 1550
4d663531 1551static void dwarf2_start_subfile (const char *, const char *);
c906108c 1552
43f3e411
DE
1553static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1554 const char *, const char *,
1555 CORE_ADDR);
f4dc4d17 1556
a14ed312 1557static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1558 struct dwarf2_cu *);
c906108c 1559
34eaf542
TT
1560static struct symbol *new_symbol_full (struct die_info *, struct type *,
1561 struct dwarf2_cu *, struct symbol *);
1562
ff39bb5e 1563static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1564 struct dwarf2_cu *);
c906108c 1565
ff39bb5e 1566static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1567 struct type *type,
1568 const char *name,
1569 struct obstack *obstack,
12df843f 1570 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1571 const gdb_byte **bytes,
98bfdba5 1572 struct dwarf2_locexpr_baton **baton);
2df3850c 1573
e7c27a73 1574static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1575
b4ba55a1
JB
1576static int need_gnat_info (struct dwarf2_cu *);
1577
3e43a32a
MS
1578static struct type *die_descriptive_type (struct die_info *,
1579 struct dwarf2_cu *);
b4ba55a1
JB
1580
1581static void set_descriptive_type (struct type *, struct die_info *,
1582 struct dwarf2_cu *);
1583
e7c27a73
DJ
1584static struct type *die_containing_type (struct die_info *,
1585 struct dwarf2_cu *);
c906108c 1586
ff39bb5e 1587static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1588 struct dwarf2_cu *);
c906108c 1589
f792889a 1590static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1591
673bfd45
DE
1592static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1593
0d5cff50 1594static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1595
6e70227d 1596static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1597 const char *suffix, int physname,
1598 struct dwarf2_cu *cu);
63d06c5c 1599
e7c27a73 1600static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
348e048f
DE
1602static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1603
e7c27a73 1604static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1605
e7c27a73 1606static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1607
96408a79
SA
1608static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1609
ff013f42
JK
1610static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1611 struct dwarf2_cu *, struct partial_symtab *);
1612
3a2b436a 1613/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1614 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1615enum pc_bounds_kind
1616{
e385593e 1617 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1618 PC_BOUNDS_NOT_PRESENT,
1619
e385593e
JK
1620 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1621 were present but they do not form a valid range of PC addresses. */
1622 PC_BOUNDS_INVALID,
1623
3a2b436a
JK
1624 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1625 PC_BOUNDS_RANGES,
1626
1627 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1628 PC_BOUNDS_HIGH_LOW,
1629};
1630
1631static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1632 CORE_ADDR *, CORE_ADDR *,
1633 struct dwarf2_cu *,
1634 struct partial_symtab *);
c906108c 1635
fae299cd
DC
1636static void get_scope_pc_bounds (struct die_info *,
1637 CORE_ADDR *, CORE_ADDR *,
1638 struct dwarf2_cu *);
1639
801e3a5b
JB
1640static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1641 CORE_ADDR, struct dwarf2_cu *);
1642
a14ed312 1643static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1644 struct dwarf2_cu *);
c906108c 1645
a14ed312 1646static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1647 struct type *, struct dwarf2_cu *);
c906108c 1648
a14ed312 1649static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1650 struct die_info *, struct type *,
e7c27a73 1651 struct dwarf2_cu *);
c906108c 1652
a14ed312 1653static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1654 struct type *,
1655 struct dwarf2_cu *);
c906108c 1656
134d01f1 1657static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1658
e7c27a73 1659static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1660
e7c27a73 1661static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1662
5d7cb8df
JK
1663static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1664
22cee43f
PMR
1665static struct using_direct **using_directives (enum language);
1666
27aa8d6a
SW
1667static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1668
74921315
KS
1669static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1670
f55ee35c
JK
1671static struct type *read_module_type (struct die_info *die,
1672 struct dwarf2_cu *cu);
1673
38d518c9 1674static const char *namespace_name (struct die_info *die,
e142c38c 1675 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1676
134d01f1 1677static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1678
e7c27a73 1679static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1680
6e70227d 1681static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1682 struct dwarf2_cu *);
1683
bf6af496 1684static struct die_info *read_die_and_siblings_1
d521ce57 1685 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1686 struct die_info *);
639d11d3 1687
dee91e82 1688static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1689 const gdb_byte *info_ptr,
1690 const gdb_byte **new_info_ptr,
639d11d3
DC
1691 struct die_info *parent);
1692
d521ce57
TT
1693static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *, int);
3019eac3 1696
d521ce57
TT
1697static const gdb_byte *read_full_die (const struct die_reader_specs *,
1698 struct die_info **, const gdb_byte *,
1699 int *);
93311388 1700
e7c27a73 1701static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1702
15d034d0
TT
1703static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1704 struct obstack *);
71c25dea 1705
15d034d0 1706static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1707
15d034d0 1708static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1709 struct die_info *die,
1710 struct dwarf2_cu *cu);
1711
ca69b9e6
DE
1712static const char *dwarf2_physname (const char *name, struct die_info *die,
1713 struct dwarf2_cu *cu);
1714
e142c38c 1715static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1716 struct dwarf2_cu **);
9219021c 1717
f39c6ffd 1718static const char *dwarf_tag_name (unsigned int);
c906108c 1719
f39c6ffd 1720static const char *dwarf_attr_name (unsigned int);
c906108c 1721
f39c6ffd 1722static const char *dwarf_form_name (unsigned int);
c906108c 1723
a14ed312 1724static char *dwarf_bool_name (unsigned int);
c906108c 1725
f39c6ffd 1726static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1727
f9aca02d 1728static struct die_info *sibling_die (struct die_info *);
c906108c 1729
d97bc12b
DE
1730static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1731
1732static void dump_die_for_error (struct die_info *);
1733
1734static void dump_die_1 (struct ui_file *, int level, int max_level,
1735 struct die_info *);
c906108c 1736
d97bc12b 1737/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1738
51545339 1739static void store_in_ref_table (struct die_info *,
10b3939b 1740 struct dwarf2_cu *);
c906108c 1741
ff39bb5e 1742static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1743
ff39bb5e 1744static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1745
348e048f 1746static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1747 const struct attribute *,
348e048f
DE
1748 struct dwarf2_cu **);
1749
10b3939b 1750static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1751 const struct attribute *,
f2f0e013 1752 struct dwarf2_cu **);
c906108c 1753
348e048f 1754static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1755 const struct attribute *,
348e048f
DE
1756 struct dwarf2_cu **);
1757
ac9ec31b
DE
1758static struct type *get_signatured_type (struct die_info *, ULONGEST,
1759 struct dwarf2_cu *);
1760
1761static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1762 const struct attribute *,
ac9ec31b
DE
1763 struct dwarf2_cu *);
1764
e5fe5e75 1765static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1766
52dc124a 1767static void read_signatured_type (struct signatured_type *);
348e048f 1768
63e43d3a
PMR
1769static int attr_to_dynamic_prop (const struct attribute *attr,
1770 struct die_info *die, struct dwarf2_cu *cu,
1771 struct dynamic_prop *prop);
1772
c906108c
SS
1773/* memory allocation interface */
1774
7b5a2f43 1775static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1776
b60c80d6 1777static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1778
43f3e411 1779static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1780
6e5a29e1 1781static int attr_form_is_block (const struct attribute *);
8e19ed76 1782
6e5a29e1 1783static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1784
6e5a29e1 1785static int attr_form_is_constant (const struct attribute *);
3690dd37 1786
6e5a29e1 1787static int attr_form_is_ref (const struct attribute *);
7771576e 1788
8cf6f0b1
TT
1789static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1790 struct dwarf2_loclist_baton *baton,
ff39bb5e 1791 const struct attribute *attr);
8cf6f0b1 1792
ff39bb5e 1793static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1794 struct symbol *sym,
f1e6e072
TT
1795 struct dwarf2_cu *cu,
1796 int is_block);
4c2df51b 1797
d521ce57
TT
1798static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1799 const gdb_byte *info_ptr,
1800 struct abbrev_info *abbrev);
4bb7a0a7 1801
72bf9492
DJ
1802static void free_stack_comp_unit (void *);
1803
72bf9492
DJ
1804static hashval_t partial_die_hash (const void *item);
1805
1806static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1807
ae038cb0 1808static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1809 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1810
9816fde3 1811static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1812 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1813
1814static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1815 struct die_info *comp_unit_die,
1816 enum language pretend_language);
93311388 1817
68dc6402 1818static void free_heap_comp_unit (void *);
ae038cb0
DJ
1819
1820static void free_cached_comp_units (void *);
1821
1822static void age_cached_comp_units (void);
1823
dee91e82 1824static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1825
f792889a
DJ
1826static struct type *set_die_type (struct die_info *, struct type *,
1827 struct dwarf2_cu *);
1c379e20 1828
ae038cb0
DJ
1829static void create_all_comp_units (struct objfile *);
1830
0e50663e 1831static int create_all_type_units (struct objfile *);
1fd400ff 1832
95554aad
TT
1833static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1834 enum language);
10b3939b 1835
95554aad
TT
1836static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1837 enum language);
10b3939b 1838
f4dc4d17
DE
1839static void process_full_type_unit (struct dwarf2_per_cu_data *,
1840 enum language);
1841
10b3939b
DJ
1842static void dwarf2_add_dependence (struct dwarf2_cu *,
1843 struct dwarf2_per_cu_data *);
1844
ae038cb0
DJ
1845static void dwarf2_mark (struct dwarf2_cu *);
1846
1847static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1848
b64f50a1 1849static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1850 struct dwarf2_per_cu_data *);
673bfd45 1851
f792889a 1852static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1853
9291a0cd
TT
1854static void dwarf2_release_queue (void *dummy);
1855
95554aad
TT
1856static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
a0f42c21 1859static void process_queue (void);
9291a0cd
TT
1860
1861static void find_file_and_directory (struct die_info *die,
1862 struct dwarf2_cu *cu,
15d034d0 1863 const char **name, const char **comp_dir);
9291a0cd
TT
1864
1865static char *file_full_name (int file, struct line_header *lh,
1866 const char *comp_dir);
1867
d521ce57 1868static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1869 (struct comp_unit_head *header,
1870 struct dwarf2_section_info *section,
d521ce57 1871 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1872 int is_debug_types_section);
1873
fd820528 1874static void init_cutu_and_read_dies
f4dc4d17
DE
1875 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1876 int use_existing_cu, int keep,
3019eac3
DE
1877 die_reader_func_ftype *die_reader_func, void *data);
1878
dee91e82
DE
1879static void init_cutu_and_read_dies_simple
1880 (struct dwarf2_per_cu_data *this_cu,
1881 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1882
673bfd45 1883static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1884
3019eac3
DE
1885static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1886
57d63ce2
DE
1887static struct dwo_unit *lookup_dwo_unit_in_dwp
1888 (struct dwp_file *dwp_file, const char *comp_dir,
1889 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1890
1891static struct dwp_file *get_dwp_file (void);
1892
3019eac3 1893static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1894 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1895
1896static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1897 (struct signatured_type *, const char *, const char *);
3019eac3 1898
89e63ee4
DE
1899static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1900
3019eac3
DE
1901static void free_dwo_file_cleanup (void *);
1902
95554aad
TT
1903static void process_cu_includes (void);
1904
1b80a9fa 1905static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1906
1907static void free_line_header_voidp (void *arg);
4390d890
DE
1908\f
1909/* Various complaints about symbol reading that don't abort the process. */
1910
1911static void
1912dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1913{
1914 complaint (&symfile_complaints,
1915 _("statement list doesn't fit in .debug_line section"));
1916}
1917
1918static void
1919dwarf2_debug_line_missing_file_complaint (void)
1920{
1921 complaint (&symfile_complaints,
1922 _(".debug_line section has line data without a file"));
1923}
1924
1925static void
1926dwarf2_debug_line_missing_end_sequence_complaint (void)
1927{
1928 complaint (&symfile_complaints,
1929 _(".debug_line section has line "
1930 "program sequence without an end"));
1931}
1932
1933static void
1934dwarf2_complex_location_expr_complaint (void)
1935{
1936 complaint (&symfile_complaints, _("location expression too complex"));
1937}
1938
1939static void
1940dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1941 int arg3)
1942{
1943 complaint (&symfile_complaints,
1944 _("const value length mismatch for '%s', got %d, expected %d"),
1945 arg1, arg2, arg3);
1946}
1947
1948static void
1949dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1950{
1951 complaint (&symfile_complaints,
1952 _("debug info runs off end of %s section"
1953 " [in module %s]"),
a32a8923
DE
1954 get_section_name (section),
1955 get_section_file_name (section));
4390d890 1956}
1b80a9fa 1957
4390d890
DE
1958static void
1959dwarf2_macro_malformed_definition_complaint (const char *arg1)
1960{
1961 complaint (&symfile_complaints,
1962 _("macro debug info contains a "
1963 "malformed macro definition:\n`%s'"),
1964 arg1);
1965}
1966
1967static void
1968dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1969{
1970 complaint (&symfile_complaints,
1971 _("invalid attribute class or form for '%s' in '%s'"),
1972 arg1, arg2);
1973}
527f3840
JK
1974
1975/* Hash function for line_header_hash. */
1976
1977static hashval_t
1978line_header_hash (const struct line_header *ofs)
1979{
1980 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1981}
1982
1983/* Hash function for htab_create_alloc_ex for line_header_hash. */
1984
1985static hashval_t
1986line_header_hash_voidp (const void *item)
1987{
9a3c8263 1988 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1989
1990 return line_header_hash (ofs);
1991}
1992
1993/* Equality function for line_header_hash. */
1994
1995static int
1996line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1997{
9a3c8263
SM
1998 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1999 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
2000
2001 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2002 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2003}
2004
4390d890 2005\f
9291a0cd
TT
2006#if WORDS_BIGENDIAN
2007
2008/* Convert VALUE between big- and little-endian. */
2009static offset_type
2010byte_swap (offset_type value)
2011{
2012 offset_type result;
2013
2014 result = (value & 0xff) << 24;
2015 result |= (value & 0xff00) << 8;
2016 result |= (value & 0xff0000) >> 8;
2017 result |= (value & 0xff000000) >> 24;
2018 return result;
2019}
2020
2021#define MAYBE_SWAP(V) byte_swap (V)
2022
2023#else
2024#define MAYBE_SWAP(V) (V)
2025#endif /* WORDS_BIGENDIAN */
2026
31aa7e4e
JB
2027/* Read the given attribute value as an address, taking the attribute's
2028 form into account. */
2029
2030static CORE_ADDR
2031attr_value_as_address (struct attribute *attr)
2032{
2033 CORE_ADDR addr;
2034
2035 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2036 {
2037 /* Aside from a few clearly defined exceptions, attributes that
2038 contain an address must always be in DW_FORM_addr form.
2039 Unfortunately, some compilers happen to be violating this
2040 requirement by encoding addresses using other forms, such
2041 as DW_FORM_data4 for example. For those broken compilers,
2042 we try to do our best, without any guarantee of success,
2043 to interpret the address correctly. It would also be nice
2044 to generate a complaint, but that would require us to maintain
2045 a list of legitimate cases where a non-address form is allowed,
2046 as well as update callers to pass in at least the CU's DWARF
2047 version. This is more overhead than what we're willing to
2048 expand for a pretty rare case. */
2049 addr = DW_UNSND (attr);
2050 }
2051 else
2052 addr = DW_ADDR (attr);
2053
2054 return addr;
2055}
2056
9291a0cd
TT
2057/* The suffix for an index file. */
2058#define INDEX_SUFFIX ".gdb-index"
2059
c906108c 2060/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2061 information and return true if we have enough to do something.
2062 NAMES points to the dwarf2 section names, or is NULL if the standard
2063 ELF names are used. */
c906108c
SS
2064
2065int
251d32d9
TG
2066dwarf2_has_info (struct objfile *objfile,
2067 const struct dwarf2_debug_sections *names)
c906108c 2068{
9a3c8263
SM
2069 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2070 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2071 if (!dwarf2_per_objfile)
2072 {
2073 /* Initialize per-objfile state. */
2074 struct dwarf2_per_objfile *data
8d749320 2075 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2076
be391dca
TT
2077 memset (data, 0, sizeof (*data));
2078 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2079 dwarf2_per_objfile = data;
6502dd73 2080
251d32d9
TG
2081 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2082 (void *) names);
be391dca
TT
2083 dwarf2_per_objfile->objfile = objfile;
2084 }
73869dc2 2085 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2086 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2087 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2088 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2089}
2090
2091/* Return the containing section of virtual section SECTION. */
2092
2093static struct dwarf2_section_info *
2094get_containing_section (const struct dwarf2_section_info *section)
2095{
2096 gdb_assert (section->is_virtual);
2097 return section->s.containing_section;
c906108c
SS
2098}
2099
a32a8923
DE
2100/* Return the bfd owner of SECTION. */
2101
2102static struct bfd *
2103get_section_bfd_owner (const struct dwarf2_section_info *section)
2104{
73869dc2
DE
2105 if (section->is_virtual)
2106 {
2107 section = get_containing_section (section);
2108 gdb_assert (!section->is_virtual);
2109 }
049412e3 2110 return section->s.section->owner;
a32a8923
DE
2111}
2112
2113/* Return the bfd section of SECTION.
2114 Returns NULL if the section is not present. */
2115
2116static asection *
2117get_section_bfd_section (const struct dwarf2_section_info *section)
2118{
73869dc2
DE
2119 if (section->is_virtual)
2120 {
2121 section = get_containing_section (section);
2122 gdb_assert (!section->is_virtual);
2123 }
049412e3 2124 return section->s.section;
a32a8923
DE
2125}
2126
2127/* Return the name of SECTION. */
2128
2129static const char *
2130get_section_name (const struct dwarf2_section_info *section)
2131{
2132 asection *sectp = get_section_bfd_section (section);
2133
2134 gdb_assert (sectp != NULL);
2135 return bfd_section_name (get_section_bfd_owner (section), sectp);
2136}
2137
2138/* Return the name of the file SECTION is in. */
2139
2140static const char *
2141get_section_file_name (const struct dwarf2_section_info *section)
2142{
2143 bfd *abfd = get_section_bfd_owner (section);
2144
2145 return bfd_get_filename (abfd);
2146}
2147
2148/* Return the id of SECTION.
2149 Returns 0 if SECTION doesn't exist. */
2150
2151static int
2152get_section_id (const struct dwarf2_section_info *section)
2153{
2154 asection *sectp = get_section_bfd_section (section);
2155
2156 if (sectp == NULL)
2157 return 0;
2158 return sectp->id;
2159}
2160
2161/* Return the flags of SECTION.
73869dc2 2162 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2163
2164static int
2165get_section_flags (const struct dwarf2_section_info *section)
2166{
2167 asection *sectp = get_section_bfd_section (section);
2168
2169 gdb_assert (sectp != NULL);
2170 return bfd_get_section_flags (sectp->owner, sectp);
2171}
2172
251d32d9
TG
2173/* When loading sections, we look either for uncompressed section or for
2174 compressed section names. */
233a11ab
CS
2175
2176static int
251d32d9
TG
2177section_is_p (const char *section_name,
2178 const struct dwarf2_section_names *names)
233a11ab 2179{
251d32d9
TG
2180 if (names->normal != NULL
2181 && strcmp (section_name, names->normal) == 0)
2182 return 1;
2183 if (names->compressed != NULL
2184 && strcmp (section_name, names->compressed) == 0)
2185 return 1;
2186 return 0;
233a11ab
CS
2187}
2188
c906108c
SS
2189/* This function is mapped across the sections and remembers the
2190 offset and size of each of the debugging sections we are interested
2191 in. */
2192
2193static void
251d32d9 2194dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2195{
251d32d9 2196 const struct dwarf2_debug_sections *names;
dc7650b8 2197 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2198
2199 if (vnames == NULL)
2200 names = &dwarf2_elf_names;
2201 else
2202 names = (const struct dwarf2_debug_sections *) vnames;
2203
dc7650b8
JK
2204 if ((aflag & SEC_HAS_CONTENTS) == 0)
2205 {
2206 }
2207 else if (section_is_p (sectp->name, &names->info))
c906108c 2208 {
049412e3 2209 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2210 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2211 }
251d32d9 2212 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2213 {
049412e3 2214 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2215 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2216 }
251d32d9 2217 else if (section_is_p (sectp->name, &names->line))
c906108c 2218 {
049412e3 2219 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2220 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2221 }
251d32d9 2222 else if (section_is_p (sectp->name, &names->loc))
c906108c 2223 {
049412e3 2224 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2225 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2226 }
251d32d9 2227 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2228 {
049412e3 2229 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2230 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2231 }
cf2c3c16
TT
2232 else if (section_is_p (sectp->name, &names->macro))
2233 {
049412e3 2234 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2235 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2236 }
251d32d9 2237 else if (section_is_p (sectp->name, &names->str))
c906108c 2238 {
049412e3 2239 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2240 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2241 }
3019eac3
DE
2242 else if (section_is_p (sectp->name, &names->addr))
2243 {
049412e3 2244 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2245 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2246 }
251d32d9 2247 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2248 {
049412e3 2249 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2250 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2251 }
251d32d9 2252 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2253 {
049412e3 2254 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2255 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2256 }
251d32d9 2257 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2258 {
049412e3 2259 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2260 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2261 }
251d32d9 2262 else if (section_is_p (sectp->name, &names->types))
348e048f 2263 {
8b70b953
TT
2264 struct dwarf2_section_info type_section;
2265
2266 memset (&type_section, 0, sizeof (type_section));
049412e3 2267 type_section.s.section = sectp;
8b70b953
TT
2268 type_section.size = bfd_get_section_size (sectp);
2269
2270 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2271 &type_section);
348e048f 2272 }
251d32d9 2273 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2274 {
049412e3 2275 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2276 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2277 }
dce234bc 2278
b4e1fd61 2279 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2280 && bfd_section_vma (abfd, sectp) == 0)
2281 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2282}
2283
fceca515
DE
2284/* A helper function that decides whether a section is empty,
2285 or not present. */
9e0ac564
TT
2286
2287static int
19ac8c2e 2288dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2289{
73869dc2
DE
2290 if (section->is_virtual)
2291 return section->size == 0;
049412e3 2292 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2293}
2294
3019eac3
DE
2295/* Read the contents of the section INFO.
2296 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2297 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2298 of the DWO file.
dce234bc 2299 If the section is compressed, uncompress it before returning. */
c906108c 2300
dce234bc
PP
2301static void
2302dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2303{
a32a8923 2304 asection *sectp;
3019eac3 2305 bfd *abfd;
dce234bc 2306 gdb_byte *buf, *retbuf;
c906108c 2307
be391dca
TT
2308 if (info->readin)
2309 return;
dce234bc 2310 info->buffer = NULL;
be391dca 2311 info->readin = 1;
188dd5d6 2312
9e0ac564 2313 if (dwarf2_section_empty_p (info))
dce234bc 2314 return;
c906108c 2315
a32a8923 2316 sectp = get_section_bfd_section (info);
3019eac3 2317
73869dc2
DE
2318 /* If this is a virtual section we need to read in the real one first. */
2319 if (info->is_virtual)
2320 {
2321 struct dwarf2_section_info *containing_section =
2322 get_containing_section (info);
2323
2324 gdb_assert (sectp != NULL);
2325 if ((sectp->flags & SEC_RELOC) != 0)
2326 {
2327 error (_("Dwarf Error: DWP format V2 with relocations is not"
2328 " supported in section %s [in module %s]"),
2329 get_section_name (info), get_section_file_name (info));
2330 }
2331 dwarf2_read_section (objfile, containing_section);
2332 /* Other code should have already caught virtual sections that don't
2333 fit. */
2334 gdb_assert (info->virtual_offset + info->size
2335 <= containing_section->size);
2336 /* If the real section is empty or there was a problem reading the
2337 section we shouldn't get here. */
2338 gdb_assert (containing_section->buffer != NULL);
2339 info->buffer = containing_section->buffer + info->virtual_offset;
2340 return;
2341 }
2342
4bf44c1c
TT
2343 /* If the section has relocations, we must read it ourselves.
2344 Otherwise we attach it to the BFD. */
2345 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2346 {
d521ce57 2347 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2348 return;
dce234bc 2349 }
dce234bc 2350
224c3ddb 2351 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2352 info->buffer = buf;
dce234bc
PP
2353
2354 /* When debugging .o files, we may need to apply relocations; see
2355 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2356 We never compress sections in .o files, so we only need to
2357 try this when the section is not compressed. */
ac8035ab 2358 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2359 if (retbuf != NULL)
2360 {
2361 info->buffer = retbuf;
2362 return;
2363 }
2364
a32a8923
DE
2365 abfd = get_section_bfd_owner (info);
2366 gdb_assert (abfd != NULL);
2367
dce234bc
PP
2368 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2369 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2370 {
2371 error (_("Dwarf Error: Can't read DWARF data"
2372 " in section %s [in module %s]"),
2373 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2374 }
dce234bc
PP
2375}
2376
9e0ac564
TT
2377/* A helper function that returns the size of a section in a safe way.
2378 If you are positive that the section has been read before using the
2379 size, then it is safe to refer to the dwarf2_section_info object's
2380 "size" field directly. In other cases, you must call this
2381 function, because for compressed sections the size field is not set
2382 correctly until the section has been read. */
2383
2384static bfd_size_type
2385dwarf2_section_size (struct objfile *objfile,
2386 struct dwarf2_section_info *info)
2387{
2388 if (!info->readin)
2389 dwarf2_read_section (objfile, info);
2390 return info->size;
2391}
2392
dce234bc 2393/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2394 SECTION_NAME. */
af34e669 2395
dce234bc 2396void
3017a003
TG
2397dwarf2_get_section_info (struct objfile *objfile,
2398 enum dwarf2_section_enum sect,
d521ce57 2399 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2400 bfd_size_type *sizep)
2401{
2402 struct dwarf2_per_objfile *data
9a3c8263
SM
2403 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2404 dwarf2_objfile_data_key);
dce234bc 2405 struct dwarf2_section_info *info;
a3b2a86b
TT
2406
2407 /* We may see an objfile without any DWARF, in which case we just
2408 return nothing. */
2409 if (data == NULL)
2410 {
2411 *sectp = NULL;
2412 *bufp = NULL;
2413 *sizep = 0;
2414 return;
2415 }
3017a003
TG
2416 switch (sect)
2417 {
2418 case DWARF2_DEBUG_FRAME:
2419 info = &data->frame;
2420 break;
2421 case DWARF2_EH_FRAME:
2422 info = &data->eh_frame;
2423 break;
2424 default:
2425 gdb_assert_not_reached ("unexpected section");
2426 }
dce234bc 2427
9e0ac564 2428 dwarf2_read_section (objfile, info);
dce234bc 2429
a32a8923 2430 *sectp = get_section_bfd_section (info);
dce234bc
PP
2431 *bufp = info->buffer;
2432 *sizep = info->size;
2433}
2434
36586728
TT
2435/* A helper function to find the sections for a .dwz file. */
2436
2437static void
2438locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2439{
9a3c8263 2440 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2441
2442 /* Note that we only support the standard ELF names, because .dwz
2443 is ELF-only (at the time of writing). */
2444 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2445 {
049412e3 2446 dwz_file->abbrev.s.section = sectp;
36586728
TT
2447 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2448 }
2449 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2450 {
049412e3 2451 dwz_file->info.s.section = sectp;
36586728
TT
2452 dwz_file->info.size = bfd_get_section_size (sectp);
2453 }
2454 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2455 {
049412e3 2456 dwz_file->str.s.section = sectp;
36586728
TT
2457 dwz_file->str.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2460 {
049412e3 2461 dwz_file->line.s.section = sectp;
36586728
TT
2462 dwz_file->line.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2465 {
049412e3 2466 dwz_file->macro.s.section = sectp;
36586728
TT
2467 dwz_file->macro.size = bfd_get_section_size (sectp);
2468 }
2ec9a5e0
TT
2469 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2470 {
049412e3 2471 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2472 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2473 }
36586728
TT
2474}
2475
4db1a1dc
TT
2476/* Open the separate '.dwz' debug file, if needed. Return NULL if
2477 there is no .gnu_debugaltlink section in the file. Error if there
2478 is such a section but the file cannot be found. */
36586728
TT
2479
2480static struct dwz_file *
2481dwarf2_get_dwz_file (void)
2482{
4db1a1dc 2483 char *data;
36586728
TT
2484 struct cleanup *cleanup;
2485 const char *filename;
2486 struct dwz_file *result;
acd13123 2487 bfd_size_type buildid_len_arg;
dc294be5
TT
2488 size_t buildid_len;
2489 bfd_byte *buildid;
36586728
TT
2490
2491 if (dwarf2_per_objfile->dwz_file != NULL)
2492 return dwarf2_per_objfile->dwz_file;
2493
4db1a1dc
TT
2494 bfd_set_error (bfd_error_no_error);
2495 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2496 &buildid_len_arg, &buildid);
4db1a1dc
TT
2497 if (data == NULL)
2498 {
2499 if (bfd_get_error () == bfd_error_no_error)
2500 return NULL;
2501 error (_("could not read '.gnu_debugaltlink' section: %s"),
2502 bfd_errmsg (bfd_get_error ()));
2503 }
36586728 2504 cleanup = make_cleanup (xfree, data);
dc294be5 2505 make_cleanup (xfree, buildid);
36586728 2506
acd13123
TT
2507 buildid_len = (size_t) buildid_len_arg;
2508
f9d83a0b 2509 filename = (const char *) data;
36586728
TT
2510 if (!IS_ABSOLUTE_PATH (filename))
2511 {
4262abfb 2512 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2513 char *rel;
2514
2515 make_cleanup (xfree, abs);
2516 abs = ldirname (abs);
2517 make_cleanup (xfree, abs);
2518
2519 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2520 make_cleanup (xfree, rel);
2521 filename = rel;
2522 }
2523
dc294be5
TT
2524 /* First try the file name given in the section. If that doesn't
2525 work, try to use the build-id instead. */
192b62ce 2526 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2527 if (dwz_bfd != NULL)
36586728 2528 {
192b62ce
TT
2529 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2530 dwz_bfd.release ();
36586728
TT
2531 }
2532
dc294be5
TT
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
36586728
TT
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
192b62ce 2542 result->dwz_bfd = dwz_bfd.release ();
36586728 2543
192b62ce 2544 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2545
2546 do_cleanups (cleanup);
2547
192b62ce 2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2549 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2550 return result;
2551}
9291a0cd 2552\f
7b9f3c50
DE
2553/* DWARF quick_symbols_functions support. */
2554
2555/* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560struct quick_file_names
2561{
094b34ac
DE
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
7b9f3c50
DE
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575};
2576
2577/* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580struct dwarf2_per_cu_quick_data
2581{
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
43f3e411 2589 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598};
2599
094b34ac
DE
2600/* Utility hash function for a stmt_list_hash. */
2601
2602static hashval_t
2603hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604{
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611}
2612
2613/* Utility equality function for a stmt_list_hash. */
2614
2615static int
2616eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618{
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626}
2627
7b9f3c50
DE
2628/* Hash function for a quick_file_names. */
2629
2630static hashval_t
2631hash_file_name_entry (const void *e)
2632{
9a3c8263
SM
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
7b9f3c50 2635
094b34ac 2636 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2637}
2638
2639/* Equality function for a quick_file_names. */
2640
2641static int
2642eq_file_name_entry (const void *a, const void *b)
2643{
9a3c8263
SM
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2646
094b34ac 2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2648}
2649
2650/* Delete function for a quick_file_names. */
2651
2652static void
2653delete_file_name_entry (void *e)
2654{
9a3c8263 2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667}
2668
2669/* Create a quick_file_names hash table. */
2670
2671static htab_t
2672create_quick_file_names_table (unsigned int nr_initial_entries)
2673{
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677}
9291a0cd 2678
918dd910
JK
2679/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683static void
2684load_cu (struct dwarf2_per_cu_data *per_cu)
2685{
3019eac3 2686 if (per_cu->is_debug_types)
e5fe5e75 2687 load_full_type_unit (per_cu);
918dd910 2688 else
95554aad 2689 load_full_comp_unit (per_cu, language_minimal);
918dd910 2690
cc12ce38
DE
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2dc860c0
DE
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2695}
2696
a0f42c21 2697/* Read in the symbols for PER_CU. */
2fdf6df6 2698
9291a0cd 2699static void
a0f42c21 2700dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2701{
2702 struct cleanup *back_to;
2703
f4dc4d17
DE
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
9291a0cd
TT
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
95554aad 2711 if (dwarf2_per_objfile->using_index
43f3e411 2712 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
89e63ee4
DE
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
cc12ce38 2722 && per_cu->cu != NULL
89e63ee4
DE
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
95554aad 2729 }
9291a0cd 2730
a0f42c21 2731 process_queue ();
9291a0cd
TT
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738}
2739
2740/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2fdf6df6 2743
43f3e411 2744static struct compunit_symtab *
a0f42c21 2745dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2746{
95554aad 2747 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2748 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
a0f42c21 2752 dw2_do_instantiate_symtab (per_cu);
95554aad 2753 process_cu_includes ();
9291a0cd
TT
2754 do_cleanups (back_to);
2755 }
f194fefb 2756
43f3e411 2757 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2758}
2759
8832e7e3 2760/* Return the CU/TU given its index.
f4dc4d17
DE
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
8832e7e3 2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2768
2769 ...;
2770 }
2771*/
2fdf6df6 2772
1fd400ff 2773static struct dwarf2_per_cu_data *
8832e7e3 2774dw2_get_cutu (int index)
1fd400ff
TT
2775{
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
f4dc4d17 2778 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784}
2785
8832e7e3
DE
2786/* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
f4dc4d17
DE
2789
2790static struct dwarf2_per_cu_data *
8832e7e3 2791dw2_get_cu (int index)
f4dc4d17 2792{
8832e7e3 2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2794
1fd400ff
TT
2795 return dwarf2_per_objfile->all_comp_units[index];
2796}
2797
2ec9a5e0
TT
2798/* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2fdf6df6 2800
74a0d9f6 2801static void
2ec9a5e0
TT
2802create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
9291a0cd
TT
2807{
2808 offset_type i;
9291a0cd 2809
2ec9a5e0 2810 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
74a0d9f6
JK
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
b64f50a1 2822 the_cu->offset.sect_off = offset;
9291a0cd
TT
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
8a0459fd 2825 the_cu->section = section;
9291a0cd
TT
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2830 }
9291a0cd
TT
2831}
2832
2ec9a5e0 2833/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2834 the CU objects for this objfile. */
2ec9a5e0 2835
74a0d9f6 2836static void
2ec9a5e0
TT
2837create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840{
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2847
74a0d9f6
JK
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2850
2851 if (dwz_elements == 0)
74a0d9f6 2852 return;
2ec9a5e0
TT
2853
2854 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2ec9a5e0
TT
2857}
2858
1fd400ff 2859/* Create the signatured type hash table from the index. */
673bfd45 2860
74a0d9f6 2861static void
673bfd45 2862create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2863 struct dwarf2_section_info *section,
673bfd45
DE
2864 const gdb_byte *bytes,
2865 offset_type elements)
1fd400ff
TT
2866{
2867 offset_type i;
673bfd45 2868 htab_t sig_types_hash;
1fd400ff 2869
6aa5f3a6
DE
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
8d749320
SM
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2875
673bfd45 2876 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
52dc124a
DE
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2882 void **slot;
2883
74a0d9f6
JK
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
52dc124a 2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2892 struct signatured_type);
52dc124a 2893 sig_type->signature = signature;
3019eac3
DE
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2896 sig_type->per_cu.section = section;
52dc124a
DE
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
1fd400ff
TT
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
52dc124a
DE
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
1fd400ff 2905
b4dd5633 2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2907 }
2908
673bfd45 2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2910}
2911
9291a0cd
TT
2912/* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2914
9291a0cd
TT
2915static void
2916create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917{
3e29f34a 2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
f652bce2 2943
24a55014 2944 if (lo > hi)
f652bce2 2945 {
24a55014
DE
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2948 hex_string (lo), hex_string (hi));
24a55014 2949 continue;
f652bce2 2950 }
24a55014
DE
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
24a55014 2957 continue;
f652bce2 2958 }
24a55014 2959
3e29f34a
MR
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968}
2969
59d7bcaf
JK
2970/* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2977
9291a0cd 2978static hashval_t
559a7a62 2979mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2980{
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
559a7a62
JK
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
9291a0cd
TT
2991
2992 return r;
2993}
2994
2995/* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2998
9291a0cd
TT
2999static int
3000find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002{
0cf03b49
JK
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
9291a0cd 3005 offset_type slot, step;
559a7a62 3006 int (*cmp) (const char *, const char *);
9291a0cd 3007
0cf03b49 3008 if (current_language->la_language == language_cplus
45280282
IB
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
0cf03b49
JK
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
a8719064 3014
72998fb3 3015 if (strchr (name, '(') != NULL)
0cf03b49 3016 {
72998fb3 3017 char *without_params = cp_remove_params (name);
0cf03b49 3018
72998fb3
DE
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
0cf03b49
JK
3024 }
3025 }
3026
559a7a62 3027 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3028 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3876f04e
DE
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3876f04e 3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
9291a0cd 3049
3876f04e 3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3051 if (!cmp (name, str))
9291a0cd
TT
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3055 do_cleanups (back_to);
9291a0cd
TT
3056 return 1;
3057 }
3058
3876f04e 3059 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3060 }
3061}
3062
2ec9a5e0
TT
3063/* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3073
9291a0cd 3074static int
2ec9a5e0
TT
3075read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
9291a0cd 3084{
948f8e3d 3085 const gdb_byte *addr;
2ec9a5e0 3086 offset_type version;
b3b272e1 3087 offset_type *metadata;
1fd400ff 3088 int i;
9291a0cd 3089
2ec9a5e0 3090 if (dwarf2_section_empty_p (section))
9291a0cd 3091 return 0;
82430852
JK
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
a32a8923 3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3096 return 0;
3097
2ec9a5e0 3098 dwarf2_read_section (objfile, section);
9291a0cd 3099
2ec9a5e0 3100 addr = section->buffer;
9291a0cd 3101 /* Version check. */
1fd400ff 3102 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3104 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3105 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3106 indices. */
831adc1f 3107 if (version < 4)
481860b3
GB
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3113 filename);
481860b3
GB
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
2ec9a5e0 3126 if (version < 6 && !deprecated_ok)
481860b3
GB
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
e615022a
DE
3131 warning (_("\
3132Skipping deprecated .gdb_index section in %s.\n\
3133Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134to use the section anyway."),
2ec9a5e0 3135 filename);
481860b3
GB
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
796a7ff8 3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3147
481860b3 3148 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3149 longer backward compatible. */
796a7ff8 3150 if (version > 8)
594e8718 3151 return 0;
9291a0cd 3152
559a7a62 3153 map->version = version;
2ec9a5e0 3154 map->total_size = section->size;
9291a0cd
TT
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3157
3158 i = 0;
2ec9a5e0
TT
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
1fd400ff
TT
3162 ++i;
3163
2ec9a5e0
TT
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
987d643c 3168 ++i;
1fd400ff
TT
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3876f04e
DE
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
1fd400ff 3179 ++i;
9291a0cd 3180
f9d83a0b 3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3182
2ec9a5e0
TT
3183 return 1;
3184}
3185
3186
3187/* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190static int
3191dwarf2_read_index (struct objfile *objfile)
3192{
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3196 struct dwz_file *dwz;
2ec9a5e0 3197
4262abfb 3198 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
0fefef59 3205 /* Don't use the index if it's empty. */
2ec9a5e0 3206 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3207 return 0;
3208
2ec9a5e0
TT
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
4db1a1dc
TT
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
2ec9a5e0 3213 {
2ec9a5e0
TT
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
74a0d9f6
JK
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
1fd400ff 3233
8b70b953
TT
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
74a0d9f6
JK
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
8b70b953 3248 }
9291a0cd 3249
2ec9a5e0
TT
3250 create_addrmap_from_index (objfile, &local_map);
3251
8d749320 3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3253 *map = local_map;
9291a0cd
TT
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3259
3260 return 1;
3261}
3262
3263/* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3265
9291a0cd
TT
3266static void
3267dw2_setup (struct objfile *objfile)
3268{
9a3c8263
SM
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3271 gdb_assert (dwarf2_per_objfile);
3272}
3273
dee91e82 3274/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3275
dee91e82
DE
3276static void
3277dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3278 const gdb_byte *info_ptr,
dee91e82
DE
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
9291a0cd 3282{
dee91e82
DE
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3286 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3287 struct line_header *lh;
9291a0cd 3288 struct attribute *attr;
dee91e82 3289 int i;
15d034d0 3290 const char *name, *comp_dir;
7b9f3c50
DE
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
9291a0cd 3294
0186c6a7
DE
3295 gdb_assert (! this_cu->is_debug_types);
3296
07261596
TT
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
0186c6a7 3305 lh_cu = this_cu;
7b9f3c50
DE
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
dee91e82
DE
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3311 if (attr)
3312 {
7b9f3c50
DE
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
094b34ac
DE
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
9a3c8263 3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3326 return;
7b9f3c50
DE
3327 }
3328
3019eac3 3329 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3330 }
3331 if (lh == NULL)
3332 {
094b34ac 3333 lh_cu->v.quick->no_file_data = 1;
dee91e82 3334 return;
9291a0cd
TT
3335 }
3336
8d749320 3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
9291a0cd 3342
dee91e82 3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3344
7b9f3c50 3345 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3348 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
9291a0cd 3351
7b9f3c50 3352 free_line_header (lh);
7b9f3c50 3353
094b34ac 3354 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3355}
3356
3357/* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360static struct quick_file_names *
e4a48d9d 3361dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3362{
0186c6a7
DE
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3367
dee91e82
DE
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
0186c6a7 3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
9291a0cd
TT
3379}
3380
3381/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3382 real path for a given file name from the line table. */
2fdf6df6 3383
9291a0cd 3384static const char *
7b9f3c50
DE
3385dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
9291a0cd 3387{
7b9f3c50
DE
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3390 qfn->num_file_names, const char *);
9291a0cd 3391
7b9f3c50
DE
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3394
7b9f3c50 3395 return qfn->real_names[index];
9291a0cd
TT
3396}
3397
3398static struct symtab *
3399dw2_find_last_source_symtab (struct objfile *objfile)
3400{
43f3e411 3401 struct compunit_symtab *cust;
9291a0cd 3402 int index;
ae2de4f8 3403
9291a0cd
TT
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
9291a0cd
TT
3410}
3411
7b9f3c50
DE
3412/* Traversal function for dw2_forget_cached_source_info. */
3413
3414static int
3415dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3416{
7b9f3c50 3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3418
7b9f3c50 3419 if (file_data->real_names)
9291a0cd 3420 {
7b9f3c50 3421 int i;
9291a0cd 3422
7b9f3c50 3423 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3424 {
7b9f3c50
DE
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
9291a0cd
TT
3427 }
3428 }
7b9f3c50
DE
3429
3430 return 1;
3431}
3432
3433static void
3434dw2_forget_cached_source_info (struct objfile *objfile)
3435{
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3440}
3441
f8eba3c6
TT
3442/* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445static int
3446dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3448 const char *name, const char *real_path,
f8eba3c6
TT
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451{
43f3e411 3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3453
3454 /* Don't visit already-expanded CUs. */
43f3e411 3455 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
a0f42c21 3460 dw2_instantiate_symtab (per_cu);
f8eba3c6 3461
f5b95b50 3462 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3463 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3464}
3465
3466/* Implementation of the map_symtabs_matching_filename method. */
3467
9291a0cd 3468static int
f8eba3c6 3469dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3470 const char *real_path,
f8eba3c6
TT
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
9291a0cd
TT
3473{
3474 int i;
c011a4f4 3475 const char *name_basename = lbasename (name);
9291a0cd
TT
3476
3477 dw2_setup (objfile);
ae2de4f8 3478
848e3e78
DE
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
f4dc4d17 3481
848e3e78 3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3483 {
3484 int j;
8832e7e3 3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3486 struct quick_file_names *file_data;
9291a0cd 3487
3d7bb9d9 3488 /* We only need to look at symtabs not already expanded. */
43f3e411 3489 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3490 continue;
3491
e4a48d9d 3492 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3493 if (file_data == NULL)
9291a0cd
TT
3494 continue;
3495
7b9f3c50 3496 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3497 {
7b9f3c50 3498 const char *this_name = file_data->file_names[j];
da235a7c 3499 const char *this_real_name;
9291a0cd 3500
af529f8f 3501 if (compare_filenames_for_search (this_name, name))
9291a0cd 3502 {
f5b95b50 3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3504 callback, data))
3505 return 1;
288e77a7 3506 continue;
4aac40c8 3507 }
9291a0cd 3508
c011a4f4
DE
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
da235a7c
JK
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3517 {
da235a7c
JK
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
288e77a7 3521 continue;
da235a7c 3522 }
9291a0cd 3523
da235a7c
JK
3524 if (real_path != NULL)
3525 {
af529f8f
JK
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3528 if (this_real_name != NULL
af529f8f 3529 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3530 {
f5b95b50 3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3532 callback, data))
3533 return 1;
288e77a7 3534 continue;
9291a0cd
TT
3535 }
3536 }
3537 }
3538 }
3539
9291a0cd
TT
3540 return 0;
3541}
3542
da51c347
DE
3543/* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545struct dw2_symtab_iterator
9291a0cd 3546{
da51c347
DE
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
8943b874
DE
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
da51c347 3568};
9291a0cd 3569
da51c347
DE
3570/* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3573
9291a0cd 3574static void
da51c347
DE
3575dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581{
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
8943b874 3587 iter->global_seen = 0;
da51c347
DE
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596}
3597
3598/* Return the next matching CU or NULL if there are no more. */
3599
3600static struct dwarf2_per_cu_data *
3601dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602{
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3608 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3190f0c6
DE
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
4262abfb
JK
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3630 continue;
3631 }
3632
8832e7e3 3633 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3634
da51c347 3635 /* Skip if already read in. */
43f3e411 3636 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3637 continue;
3638
8943b874
DE
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
da51c347
DE
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682}
3683
43f3e411 3684static struct compunit_symtab *
da51c347
DE
3685dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
9291a0cd 3687{
43f3e411 3688 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3689 struct mapped_index *index;
3690
9291a0cd
TT
3691 dw2_setup (objfile);
3692
156942c7
DE
3693 index = dwarf2_per_objfile->index_table;
3694
da51c347 3695 /* index is NULL if OBJF_READNOW. */
156942c7 3696 if (index)
9291a0cd 3697 {
da51c347
DE
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3702
da51c347 3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3704 {
b2e2f908 3705 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3709
b2e2f908
DE
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
da51c347
DE
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
da51c347 3717
b2e2f908
DE
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
da51c347
DE
3724
3725 /* Keep looking through other CUs. */
9291a0cd
TT
3726 }
3727 }
9291a0cd 3728
da51c347 3729 return stab_best;
9291a0cd
TT
3730}
3731
3732static void
3733dw2_print_stats (struct objfile *objfile)
3734{
e4a48d9d 3735 int i, total, count;
9291a0cd
TT
3736
3737 dw2_setup (objfile);
e4a48d9d 3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3739 count = 0;
e4a48d9d 3740 for (i = 0; i < total; ++i)
9291a0cd 3741 {
8832e7e3 3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3743
43f3e411 3744 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3745 ++count;
3746 }
e4a48d9d 3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749}
3750
779bd270
DE
3751/* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
9291a0cd
TT
3756static void
3757dw2_dump (struct objfile *objfile)
3758{
779bd270
DE
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
9291a0cd
TT
3770}
3771
3772static void
3189cb12
DE
3773dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
9291a0cd
TT
3776{
3777 /* There's nothing to relocate here. */
3778}
3779
3780static void
3781dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783{
da51c347
DE
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
9291a0cd
TT
3803}
3804
3805static void
3806dw2_expand_all_symtabs (struct objfile *objfile)
3807{
3808 int i;
3809
3810 dw2_setup (objfile);
1fd400ff
TT
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3813 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3814 {
8832e7e3 3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3816
a0f42c21 3817 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3818 }
3819}
3820
3821static void
652a8996
JK
3822dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
9291a0cd
TT
3824{
3825 int i;
3826
3827 dw2_setup (objfile);
d4637a04
DE
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3835 {
3836 int j;
8832e7e3 3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3838 struct quick_file_names *file_data;
9291a0cd 3839
3d7bb9d9 3840 /* We only need to look at symtabs not already expanded. */
43f3e411 3841 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3842 continue;
3843
e4a48d9d 3844 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3845 if (file_data == NULL)
9291a0cd
TT
3846 continue;
3847
7b9f3c50 3848 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3849 {
652a8996
JK
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3853 {
a0f42c21 3854 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3855 break;
3856 }
3857 }
3858 }
3859}
3860
9291a0cd 3861static void
ade7ed9e 3862dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3863 const char * name, domain_enum domain,
ade7ed9e 3864 int global,
40658b94
PH
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
2edb89d3
JK
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
9291a0cd 3869{
40658b94 3870 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3873}
3874
3875static void
f8eba3c6
TT
3876dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
206f2a57
DE
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3880 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3881 enum search_domain kind,
3882 void *data)
9291a0cd
TT
3883{
3884 int i;
3885 offset_type iter;
4b5246aa 3886 struct mapped_index *index;
9291a0cd
TT
3887
3888 dw2_setup (objfile);
ae2de4f8
DE
3889
3890 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
4b5246aa 3893 index = dwarf2_per_objfile->index_table;
9291a0cd 3894
7b08b9eb 3895 if (file_matcher != NULL)
24c79950 3896 {
fc4007c9
TT
3897 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3898 htab_eq_pointer,
3899 NULL, xcalloc, xfree));
3900 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3901 htab_eq_pointer,
3902 NULL, xcalloc, xfree));
24c79950 3903
848e3e78
DE
3904 /* The rule is CUs specify all the files, including those used by
3905 any TU, so there's no need to scan TUs here. */
3906
3907 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3908 {
3909 int j;
8832e7e3 3910 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3911 struct quick_file_names *file_data;
3912 void **slot;
7b08b9eb 3913
61d96d7e
DE
3914 QUIT;
3915
24c79950 3916 per_cu->v.quick->mark = 0;
3d7bb9d9 3917
24c79950 3918 /* We only need to look at symtabs not already expanded. */
43f3e411 3919 if (per_cu->v.quick->compunit_symtab)
24c79950 3920 continue;
7b08b9eb 3921
e4a48d9d 3922 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3923 if (file_data == NULL)
3924 continue;
7b08b9eb 3925
fc4007c9 3926 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 3927 continue;
fc4007c9 3928 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
3929 {
3930 per_cu->v.quick->mark = 1;
3931 continue;
3932 }
3933
3934 for (j = 0; j < file_data->num_file_names; ++j)
3935 {
da235a7c
JK
3936 const char *this_real_name;
3937
fbd9ab74 3938 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3939 {
3940 per_cu->v.quick->mark = 1;
3941 break;
3942 }
da235a7c
JK
3943
3944 /* Before we invoke realpath, which can get expensive when many
3945 files are involved, do a quick comparison of the basenames. */
3946 if (!basenames_may_differ
3947 && !file_matcher (lbasename (file_data->file_names[j]),
3948 data, 1))
3949 continue;
3950
3951 this_real_name = dw2_get_real_path (objfile, file_data, j);
3952 if (file_matcher (this_real_name, data, 0))
3953 {
3954 per_cu->v.quick->mark = 1;
3955 break;
3956 }
24c79950
TT
3957 }
3958
3959 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
3960 ? visited_found.get ()
3961 : visited_not_found.get (),
24c79950
TT
3962 file_data, INSERT);
3963 *slot = file_data;
3964 }
24c79950 3965 }
9291a0cd 3966
3876f04e 3967 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3968 {
3969 offset_type idx = 2 * iter;
3970 const char *name;
3971 offset_type *vec, vec_len, vec_idx;
8943b874 3972 int global_seen = 0;
9291a0cd 3973
61d96d7e
DE
3974 QUIT;
3975
3876f04e 3976 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3977 continue;
3978
3876f04e 3979 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3980
206f2a57 3981 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3982 continue;
3983
3984 /* The name was matched, now expand corresponding CUs that were
3985 marked. */
4b5246aa 3986 vec = (offset_type *) (index->constant_pool
3876f04e 3987 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3988 vec_len = MAYBE_SWAP (vec[0]);
3989 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3990 {
e254ef6a 3991 struct dwarf2_per_cu_data *per_cu;
156942c7 3992 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3998 /* Only check the symbol attributes if they're present.
3999 Indices prior to version 7 don't record them,
4000 and indices >= 7 may elide them for certain symbols
4001 (gold does this). */
4002 int attrs_valid =
4003 (index->version >= 7
4004 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4005
8943b874
DE
4006 /* Work around gold/15646. */
4007 if (attrs_valid)
4008 {
4009 if (!is_static && global_seen)
4010 continue;
4011 if (!is_static)
4012 global_seen = 1;
4013 }
4014
3190f0c6
DE
4015 /* Only check the symbol's kind if it has one. */
4016 if (attrs_valid)
156942c7
DE
4017 {
4018 switch (kind)
4019 {
4020 case VARIABLES_DOMAIN:
4021 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4022 continue;
4023 break;
4024 case FUNCTIONS_DOMAIN:
4025 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4026 continue;
4027 break;
4028 case TYPES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4030 continue;
4031 break;
4032 default:
4033 break;
4034 }
4035 }
4036
3190f0c6
DE
4037 /* Don't crash on bad data. */
4038 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4039 + dwarf2_per_objfile->n_type_units))
4040 {
4041 complaint (&symfile_complaints,
4042 _(".gdb_index entry has bad CU index"
4262abfb 4043 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4044 continue;
4045 }
4046
8832e7e3 4047 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4048 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4049 {
4050 int symtab_was_null =
4051 (per_cu->v.quick->compunit_symtab == NULL);
4052
4053 dw2_instantiate_symtab (per_cu);
4054
4055 if (expansion_notify != NULL
4056 && symtab_was_null
4057 && per_cu->v.quick->compunit_symtab != NULL)
4058 {
4059 expansion_notify (per_cu->v.quick->compunit_symtab,
4060 data);
4061 }
4062 }
9291a0cd
TT
4063 }
4064 }
4065}
4066
43f3e411 4067/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4068 symtab. */
4069
43f3e411
DE
4070static struct compunit_symtab *
4071recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4072 CORE_ADDR pc)
9703b513
TT
4073{
4074 int i;
4075
43f3e411
DE
4076 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4077 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4078 return cust;
9703b513 4079
43f3e411 4080 if (cust->includes == NULL)
a3ec0bb1
DE
4081 return NULL;
4082
43f3e411 4083 for (i = 0; cust->includes[i]; ++i)
9703b513 4084 {
43f3e411 4085 struct compunit_symtab *s = cust->includes[i];
9703b513 4086
43f3e411 4087 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4088 if (s != NULL)
4089 return s;
4090 }
4091
4092 return NULL;
4093}
4094
43f3e411
DE
4095static struct compunit_symtab *
4096dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4097 struct bound_minimal_symbol msymbol,
4098 CORE_ADDR pc,
4099 struct obj_section *section,
4100 int warn_if_readin)
9291a0cd
TT
4101{
4102 struct dwarf2_per_cu_data *data;
43f3e411 4103 struct compunit_symtab *result;
9291a0cd
TT
4104
4105 dw2_setup (objfile);
4106
4107 if (!objfile->psymtabs_addrmap)
4108 return NULL;
4109
9a3c8263
SM
4110 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4111 pc);
9291a0cd
TT
4112 if (!data)
4113 return NULL;
4114
43f3e411 4115 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4116 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4117 paddress (get_objfile_arch (objfile), pc));
4118
43f3e411
DE
4119 result
4120 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4121 pc);
9703b513
TT
4122 gdb_assert (result != NULL);
4123 return result;
9291a0cd
TT
4124}
4125
9291a0cd 4126static void
44b13c5a 4127dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4128 void *data, int need_fullname)
9291a0cd
TT
4129{
4130 int i;
fc4007c9
TT
4131 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4132 NULL, xcalloc, xfree));
9291a0cd
TT
4133
4134 dw2_setup (objfile);
ae2de4f8 4135
848e3e78
DE
4136 /* The rule is CUs specify all the files, including those used by
4137 any TU, so there's no need to scan TUs here.
4138 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4139
848e3e78 4140 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4141 {
8832e7e3 4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4143
43f3e411 4144 if (per_cu->v.quick->compunit_symtab)
24c79950 4145 {
fc4007c9
TT
4146 void **slot = htab_find_slot (visited.get (),
4147 per_cu->v.quick->file_names,
24c79950
TT
4148 INSERT);
4149
4150 *slot = per_cu->v.quick->file_names;
4151 }
4152 }
4153
848e3e78 4154 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4155 {
4156 int j;
8832e7e3 4157 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4158 struct quick_file_names *file_data;
24c79950 4159 void **slot;
9291a0cd 4160
3d7bb9d9 4161 /* We only need to look at symtabs not already expanded. */
43f3e411 4162 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4163 continue;
4164
e4a48d9d 4165 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4166 if (file_data == NULL)
9291a0cd
TT
4167 continue;
4168
fc4007c9 4169 slot = htab_find_slot (visited.get (), file_data, INSERT);
24c79950
TT
4170 if (*slot)
4171 {
4172 /* Already visited. */
4173 continue;
4174 }
4175 *slot = file_data;
4176
7b9f3c50 4177 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4178 {
74e2f255
DE
4179 const char *this_real_name;
4180
4181 if (need_fullname)
4182 this_real_name = dw2_get_real_path (objfile, file_data, j);
4183 else
4184 this_real_name = NULL;
7b9f3c50 4185 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4186 }
4187 }
4188}
4189
4190static int
4191dw2_has_symbols (struct objfile *objfile)
4192{
4193 return 1;
4194}
4195
4196const struct quick_symbol_functions dwarf2_gdb_index_functions =
4197{
4198 dw2_has_symbols,
4199 dw2_find_last_source_symtab,
4200 dw2_forget_cached_source_info,
f8eba3c6 4201 dw2_map_symtabs_matching_filename,
9291a0cd 4202 dw2_lookup_symbol,
9291a0cd
TT
4203 dw2_print_stats,
4204 dw2_dump,
4205 dw2_relocate,
4206 dw2_expand_symtabs_for_function,
4207 dw2_expand_all_symtabs,
652a8996 4208 dw2_expand_symtabs_with_fullname,
40658b94 4209 dw2_map_matching_symbols,
9291a0cd 4210 dw2_expand_symtabs_matching,
43f3e411 4211 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4212 dw2_map_symbol_filenames
4213};
4214
4215/* Initialize for reading DWARF for this objfile. Return 0 if this
4216 file will use psymtabs, or 1 if using the GNU index. */
4217
4218int
4219dwarf2_initialize_objfile (struct objfile *objfile)
4220{
4221 /* If we're about to read full symbols, don't bother with the
4222 indices. In this case we also don't care if some other debug
4223 format is making psymtabs, because they are all about to be
4224 expanded anyway. */
4225 if ((objfile->flags & OBJF_READNOW))
4226 {
4227 int i;
4228
4229 dwarf2_per_objfile->using_index = 1;
4230 create_all_comp_units (objfile);
0e50663e 4231 create_all_type_units (objfile);
7b9f3c50
DE
4232 dwarf2_per_objfile->quick_file_names_table =
4233 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4234
1fd400ff 4235 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4236 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4237 {
8832e7e3 4238 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4239
e254ef6a
DE
4240 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4241 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4242 }
4243
4244 /* Return 1 so that gdb sees the "quick" functions. However,
4245 these functions will be no-ops because we will have expanded
4246 all symtabs. */
4247 return 1;
4248 }
4249
4250 if (dwarf2_read_index (objfile))
4251 return 1;
4252
9291a0cd
TT
4253 return 0;
4254}
4255
4256\f
4257
dce234bc
PP
4258/* Build a partial symbol table. */
4259
4260void
f29dff0a 4261dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4262{
c9bf0622 4263
f29dff0a 4264 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4265 {
4266 init_psymbol_list (objfile, 1024);
4267 }
4268
492d29ea 4269 TRY
c9bf0622
TT
4270 {
4271 /* This isn't really ideal: all the data we allocate on the
4272 objfile's obstack is still uselessly kept around. However,
4273 freeing it seems unsafe. */
906768f9 4274 psymtab_discarder psymtabs (objfile);
c9bf0622 4275 dwarf2_build_psymtabs_hard (objfile);
906768f9 4276 psymtabs.keep ();
c9bf0622 4277 }
492d29ea
PA
4278 CATCH (except, RETURN_MASK_ERROR)
4279 {
4280 exception_print (gdb_stderr, except);
4281 }
4282 END_CATCH
c906108c 4283}
c906108c 4284
1ce1cefd
DE
4285/* Return the total length of the CU described by HEADER. */
4286
4287static unsigned int
4288get_cu_length (const struct comp_unit_head *header)
4289{
4290 return header->initial_length_size + header->length;
4291}
4292
45452591
DE
4293/* Return TRUE if OFFSET is within CU_HEADER. */
4294
4295static inline int
b64f50a1 4296offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4297{
b64f50a1 4298 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4299 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4300
b64f50a1 4301 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4302}
4303
3b80fe9b
DE
4304/* Find the base address of the compilation unit for range lists and
4305 location lists. It will normally be specified by DW_AT_low_pc.
4306 In DWARF-3 draft 4, the base address could be overridden by
4307 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4308 compilation units with discontinuous ranges. */
4309
4310static void
4311dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4312{
4313 struct attribute *attr;
4314
4315 cu->base_known = 0;
4316 cu->base_address = 0;
4317
4318 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4319 if (attr)
4320 {
31aa7e4e 4321 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4322 cu->base_known = 1;
4323 }
4324 else
4325 {
4326 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4327 if (attr)
4328 {
31aa7e4e 4329 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4330 cu->base_known = 1;
4331 }
4332 }
4333}
4334
93311388
DE
4335/* Read in the comp unit header information from the debug_info at info_ptr.
4336 NOTE: This leaves members offset, first_die_offset to be filled in
4337 by the caller. */
107d2387 4338
d521ce57 4339static const gdb_byte *
107d2387 4340read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4341 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4342{
4343 int signed_addr;
891d2f0b 4344 unsigned int bytes_read;
c764a876
DE
4345
4346 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4347 cu_header->initial_length_size = bytes_read;
4348 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4349 info_ptr += bytes_read;
107d2387
AC
4350 cu_header->version = read_2_bytes (abfd, info_ptr);
4351 info_ptr += 2;
b64f50a1
JK
4352 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4353 &bytes_read);
613e1657 4354 info_ptr += bytes_read;
107d2387
AC
4355 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4356 info_ptr += 1;
4357 signed_addr = bfd_get_sign_extend_vma (abfd);
4358 if (signed_addr < 0)
8e65ff28 4359 internal_error (__FILE__, __LINE__,
e2e0b3e5 4360 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4361 cu_header->signed_addr_p = signed_addr;
c764a876 4362
107d2387
AC
4363 return info_ptr;
4364}
4365
36586728
TT
4366/* Helper function that returns the proper abbrev section for
4367 THIS_CU. */
4368
4369static struct dwarf2_section_info *
4370get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4371{
4372 struct dwarf2_section_info *abbrev;
4373
4374 if (this_cu->is_dwz)
4375 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4376 else
4377 abbrev = &dwarf2_per_objfile->abbrev;
4378
4379 return abbrev;
4380}
4381
9ff913ba
DE
4382/* Subroutine of read_and_check_comp_unit_head and
4383 read_and_check_type_unit_head to simplify them.
4384 Perform various error checking on the header. */
4385
4386static void
4387error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4388 struct dwarf2_section_info *section,
4389 struct dwarf2_section_info *abbrev_section)
9ff913ba 4390{
a32a8923 4391 const char *filename = get_section_file_name (section);
9ff913ba
DE
4392
4393 if (header->version != 2 && header->version != 3 && header->version != 4)
4394 error (_("Dwarf Error: wrong version in compilation unit header "
4395 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4396 filename);
4397
b64f50a1 4398 if (header->abbrev_offset.sect_off
36586728 4399 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4400 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4401 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4402 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4403 filename);
4404
4405 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4406 avoid potential 32-bit overflow. */
1ce1cefd 4407 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4408 > section->size)
4409 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4410 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4411 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4412 filename);
4413}
4414
4415/* Read in a CU/TU header and perform some basic error checking.
4416 The contents of the header are stored in HEADER.
4417 The result is a pointer to the start of the first DIE. */
adabb602 4418
d521ce57 4419static const gdb_byte *
9ff913ba
DE
4420read_and_check_comp_unit_head (struct comp_unit_head *header,
4421 struct dwarf2_section_info *section,
4bdcc0c1 4422 struct dwarf2_section_info *abbrev_section,
d521ce57 4423 const gdb_byte *info_ptr,
9ff913ba 4424 int is_debug_types_section)
72bf9492 4425{
d521ce57 4426 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4427 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4428
b64f50a1 4429 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4430
72bf9492
DJ
4431 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4432
460c1c54
CC
4433 /* If we're reading a type unit, skip over the signature and
4434 type_offset fields. */
b0df02fd 4435 if (is_debug_types_section)
460c1c54
CC
4436 info_ptr += 8 /*signature*/ + header->offset_size;
4437
b64f50a1 4438 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4439
4bdcc0c1 4440 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4441
4442 return info_ptr;
4443}
4444
348e048f
DE
4445/* Read in the types comp unit header information from .debug_types entry at
4446 types_ptr. The result is a pointer to one past the end of the header. */
4447
d521ce57 4448static const gdb_byte *
9ff913ba
DE
4449read_and_check_type_unit_head (struct comp_unit_head *header,
4450 struct dwarf2_section_info *section,
4bdcc0c1 4451 struct dwarf2_section_info *abbrev_section,
d521ce57 4452 const gdb_byte *info_ptr,
dee91e82
DE
4453 ULONGEST *signature,
4454 cu_offset *type_offset_in_tu)
348e048f 4455{
d521ce57 4456 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4457 bfd *abfd = get_section_bfd_owner (section);
348e048f 4458
b64f50a1 4459 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4460
9ff913ba 4461 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4462
9ff913ba
DE
4463 /* If we're reading a type unit, skip over the signature and
4464 type_offset fields. */
4465 if (signature != NULL)
4466 *signature = read_8_bytes (abfd, info_ptr);
4467 info_ptr += 8;
dee91e82
DE
4468 if (type_offset_in_tu != NULL)
4469 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4470 header->offset_size);
9ff913ba
DE
4471 info_ptr += header->offset_size;
4472
b64f50a1 4473 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4474
4bdcc0c1 4475 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4476
4477 return info_ptr;
348e048f
DE
4478}
4479
f4dc4d17
DE
4480/* Fetch the abbreviation table offset from a comp or type unit header. */
4481
4482static sect_offset
4483read_abbrev_offset (struct dwarf2_section_info *section,
4484 sect_offset offset)
4485{
a32a8923 4486 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4487 const gdb_byte *info_ptr;
ac298888 4488 unsigned int initial_length_size, offset_size;
f4dc4d17
DE
4489 sect_offset abbrev_offset;
4490
4491 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4492 info_ptr = section->buffer + offset.sect_off;
ac298888 4493 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17
DE
4494 offset_size = initial_length_size == 4 ? 4 : 8;
4495 info_ptr += initial_length_size + 2 /*version*/;
4496 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4497 return abbrev_offset;
4498}
4499
aaa75496
JB
4500/* Allocate a new partial symtab for file named NAME and mark this new
4501 partial symtab as being an include of PST. */
4502
4503static void
d521ce57 4504dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4505 struct objfile *objfile)
4506{
4507 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4508
fbd9ab74
JK
4509 if (!IS_ABSOLUTE_PATH (subpst->filename))
4510 {
4511 /* It shares objfile->objfile_obstack. */
4512 subpst->dirname = pst->dirname;
4513 }
4514
aaa75496
JB
4515 subpst->textlow = 0;
4516 subpst->texthigh = 0;
4517
8d749320
SM
4518 subpst->dependencies
4519 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4520 subpst->dependencies[0] = pst;
4521 subpst->number_of_dependencies = 1;
4522
4523 subpst->globals_offset = 0;
4524 subpst->n_global_syms = 0;
4525 subpst->statics_offset = 0;
4526 subpst->n_static_syms = 0;
43f3e411 4527 subpst->compunit_symtab = NULL;
aaa75496
JB
4528 subpst->read_symtab = pst->read_symtab;
4529 subpst->readin = 0;
4530
4531 /* No private part is necessary for include psymtabs. This property
4532 can be used to differentiate between such include psymtabs and
10b3939b 4533 the regular ones. */
58a9656e 4534 subpst->read_symtab_private = NULL;
aaa75496
JB
4535}
4536
4537/* Read the Line Number Program data and extract the list of files
4538 included by the source file represented by PST. Build an include
d85a05f0 4539 partial symtab for each of these included files. */
aaa75496
JB
4540
4541static void
4542dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4543 struct die_info *die,
4544 struct partial_symtab *pst)
aaa75496 4545{
d85a05f0
DJ
4546 struct line_header *lh = NULL;
4547 struct attribute *attr;
aaa75496 4548
d85a05f0
DJ
4549 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4550 if (attr)
3019eac3 4551 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4552 if (lh == NULL)
4553 return; /* No linetable, so no includes. */
4554
c6da4cef 4555 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4556 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4557
4558 free_line_header (lh);
4559}
4560
348e048f 4561static hashval_t
52dc124a 4562hash_signatured_type (const void *item)
348e048f 4563{
9a3c8263
SM
4564 const struct signatured_type *sig_type
4565 = (const struct signatured_type *) item;
9a619af0 4566
348e048f 4567 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4568 return sig_type->signature;
348e048f
DE
4569}
4570
4571static int
52dc124a 4572eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4573{
9a3c8263
SM
4574 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4575 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4576
348e048f
DE
4577 return lhs->signature == rhs->signature;
4578}
4579
1fd400ff
TT
4580/* Allocate a hash table for signatured types. */
4581
4582static htab_t
673bfd45 4583allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4584{
4585 return htab_create_alloc_ex (41,
52dc124a
DE
4586 hash_signatured_type,
4587 eq_signatured_type,
1fd400ff
TT
4588 NULL,
4589 &objfile->objfile_obstack,
4590 hashtab_obstack_allocate,
4591 dummy_obstack_deallocate);
4592}
4593
d467dd73 4594/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4595
4596static int
d467dd73 4597add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4598{
9a3c8263
SM
4599 struct signatured_type *sigt = (struct signatured_type *) *slot;
4600 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4601
b4dd5633 4602 **datap = sigt;
1fd400ff
TT
4603 ++*datap;
4604
4605 return 1;
4606}
4607
78d4d2c5
JK
4608/* A helper for create_debug_types_hash_table. Read types from SECTION
4609 and fill them into TYPES_HTAB. */
c88ee1f0 4610
78d4d2c5
JK
4611static void
4612create_debug_type_hash_table (struct dwo_file *dwo_file,
4613 dwarf2_section_info *section, htab_t &types_htab)
348e048f 4614{
3019eac3 4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4616 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4617 bfd *abfd;
4618 const gdb_byte *info_ptr, *end_ptr;
348e048f 4619
4bdcc0c1
DE
4620 abbrev_section = (dwo_file != NULL
4621 ? &dwo_file->sections.abbrev
4622 : &dwarf2_per_objfile->abbrev);
4623
b4f54984 4624 if (dwarf_read_debug)
09406207
DE
4625 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4626 dwo_file ? ".dwo" : "",
a32a8923 4627 get_section_file_name (abbrev_section));
09406207 4628
78d4d2c5
JK
4629 dwarf2_read_section (objfile, section);
4630 info_ptr = section->buffer;
348e048f 4631
78d4d2c5
JK
4632 if (info_ptr == NULL)
4633 return;
348e048f 4634
78d4d2c5
JK
4635 /* We can't set abfd until now because the section may be empty or
4636 not present, in which case the bfd is unknown. */
4637 abfd = get_section_bfd_owner (section);
348e048f 4638
78d4d2c5
JK
4639 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4640 because we don't need to read any dies: the signature is in the
4641 header. */
3019eac3 4642
78d4d2c5
JK
4643 end_ptr = info_ptr + section->size;
4644 while (info_ptr < end_ptr)
4645 {
4646 sect_offset offset;
4647 cu_offset type_offset_in_tu;
4648 ULONGEST signature;
4649 struct signatured_type *sig_type;
4650 struct dwo_unit *dwo_tu;
4651 void **slot;
4652 const gdb_byte *ptr = info_ptr;
4653 struct comp_unit_head header;
4654 unsigned int length;
8b70b953 4655
78d4d2c5 4656 offset.sect_off = ptr - section->buffer;
348e048f 4657
78d4d2c5
JK
4658 /* We need to read the type's signature in order to build the hash
4659 table, but we don't need anything else just yet. */
348e048f 4660
78d4d2c5
JK
4661 ptr = read_and_check_type_unit_head (&header, section,
4662 abbrev_section, ptr,
4663 &signature, &type_offset_in_tu);
348e048f 4664
78d4d2c5 4665 length = get_cu_length (&header);
6caca83c 4666
78d4d2c5
JK
4667 /* Skip dummy type units. */
4668 if (ptr >= info_ptr + length
4669 || peek_abbrev_code (abfd, ptr) == 0)
4670 {
4671 info_ptr += length;
4672 continue;
4673 }
dee91e82 4674
78d4d2c5
JK
4675 if (types_htab == NULL)
4676 {
4677 if (dwo_file)
4678 types_htab = allocate_dwo_unit_table (objfile);
4679 else
4680 types_htab = allocate_signatured_type_table (objfile);
4681 }
8b70b953 4682
78d4d2c5
JK
4683 if (dwo_file)
4684 {
4685 sig_type = NULL;
4686 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4687 struct dwo_unit);
4688 dwo_tu->dwo_file = dwo_file;
4689 dwo_tu->signature = signature;
4690 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4691 dwo_tu->section = section;
4692 dwo_tu->offset = offset;
4693 dwo_tu->length = length;
4694 }
4695 else
4696 {
4697 /* N.B.: type_offset is not usable if this type uses a DWO file.
4698 The real type_offset is in the DWO file. */
4699 dwo_tu = NULL;
4700 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4701 struct signatured_type);
4702 sig_type->signature = signature;
4703 sig_type->type_offset_in_tu = type_offset_in_tu;
4704 sig_type->per_cu.objfile = objfile;
4705 sig_type->per_cu.is_debug_types = 1;
4706 sig_type->per_cu.section = section;
4707 sig_type->per_cu.offset = offset;
4708 sig_type->per_cu.length = length;
4709 }
4710
4711 slot = htab_find_slot (types_htab,
4712 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4713 INSERT);
4714 gdb_assert (slot != NULL);
4715 if (*slot != NULL)
4716 {
4717 sect_offset dup_offset;
0349ea22 4718
3019eac3
DE
4719 if (dwo_file)
4720 {
78d4d2c5
JK
4721 const struct dwo_unit *dup_tu
4722 = (const struct dwo_unit *) *slot;
4723
4724 dup_offset = dup_tu->offset;
3019eac3
DE
4725 }
4726 else
4727 {
78d4d2c5
JK
4728 const struct signatured_type *dup_tu
4729 = (const struct signatured_type *) *slot;
4730
4731 dup_offset = dup_tu->per_cu.offset;
3019eac3 4732 }
8b70b953 4733
78d4d2c5
JK
4734 complaint (&symfile_complaints,
4735 _("debug type entry at offset 0x%x is duplicate to"
4736 " the entry at offset 0x%x, signature %s"),
4737 offset.sect_off, dup_offset.sect_off,
4738 hex_string (signature));
4739 }
4740 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4741
78d4d2c5
JK
4742 if (dwarf_read_debug > 1)
4743 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4744 offset.sect_off,
4745 hex_string (signature));
3019eac3 4746
78d4d2c5
JK
4747 info_ptr += length;
4748 }
4749}
3019eac3 4750
78d4d2c5
JK
4751/* Create the hash table of all entries in the .debug_types
4752 (or .debug_types.dwo) section(s).
4753 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4754 otherwise it is NULL.
b3c8eb43 4755
78d4d2c5 4756 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4757
78d4d2c5 4758 Note: This function processes DWO files only, not DWP files. */
348e048f 4759
78d4d2c5
JK
4760static void
4761create_debug_types_hash_table (struct dwo_file *dwo_file,
4762 VEC (dwarf2_section_info_def) *types,
4763 htab_t &types_htab)
4764{
4765 int ix;
4766 struct dwarf2_section_info *section;
4767
4768 if (VEC_empty (dwarf2_section_info_def, types))
4769 return;
348e048f 4770
78d4d2c5
JK
4771 for (ix = 0;
4772 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4773 ++ix)
4774 create_debug_type_hash_table (dwo_file, section, types_htab);
3019eac3
DE
4775}
4776
4777/* Create the hash table of all entries in the .debug_types section,
4778 and initialize all_type_units.
4779 The result is zero if there is an error (e.g. missing .debug_types section),
4780 otherwise non-zero. */
4781
4782static int
4783create_all_type_units (struct objfile *objfile)
4784{
78d4d2c5 4785 htab_t types_htab = NULL;
b4dd5633 4786 struct signatured_type **iter;
3019eac3 4787
78d4d2c5 4788 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
4789 if (types_htab == NULL)
4790 {
4791 dwarf2_per_objfile->signatured_types = NULL;
4792 return 0;
4793 }
4794
348e048f
DE
4795 dwarf2_per_objfile->signatured_types = types_htab;
4796
6aa5f3a6
DE
4797 dwarf2_per_objfile->n_type_units
4798 = dwarf2_per_objfile->n_allocated_type_units
4799 = htab_elements (types_htab);
8d749320
SM
4800 dwarf2_per_objfile->all_type_units =
4801 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4802 iter = &dwarf2_per_objfile->all_type_units[0];
4803 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4804 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4805 == dwarf2_per_objfile->n_type_units);
1fd400ff 4806
348e048f
DE
4807 return 1;
4808}
4809
6aa5f3a6
DE
4810/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4811 If SLOT is non-NULL, it is the entry to use in the hash table.
4812 Otherwise we find one. */
4813
4814static struct signatured_type *
4815add_type_unit (ULONGEST sig, void **slot)
4816{
4817 struct objfile *objfile = dwarf2_per_objfile->objfile;
4818 int n_type_units = dwarf2_per_objfile->n_type_units;
4819 struct signatured_type *sig_type;
4820
4821 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4822 ++n_type_units;
4823 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4824 {
4825 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4826 dwarf2_per_objfile->n_allocated_type_units = 1;
4827 dwarf2_per_objfile->n_allocated_type_units *= 2;
4828 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4829 = XRESIZEVEC (struct signatured_type *,
4830 dwarf2_per_objfile->all_type_units,
4831 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4832 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4833 }
4834 dwarf2_per_objfile->n_type_units = n_type_units;
4835
4836 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4837 struct signatured_type);
4838 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4839 sig_type->signature = sig;
4840 sig_type->per_cu.is_debug_types = 1;
4841 if (dwarf2_per_objfile->using_index)
4842 {
4843 sig_type->per_cu.v.quick =
4844 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4845 struct dwarf2_per_cu_quick_data);
4846 }
4847
4848 if (slot == NULL)
4849 {
4850 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4851 sig_type, INSERT);
4852 }
4853 gdb_assert (*slot == NULL);
4854 *slot = sig_type;
4855 /* The rest of sig_type must be filled in by the caller. */
4856 return sig_type;
4857}
4858
a2ce51a0
DE
4859/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4860 Fill in SIG_ENTRY with DWO_ENTRY. */
4861
4862static void
4863fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4864 struct signatured_type *sig_entry,
4865 struct dwo_unit *dwo_entry)
4866{
7ee85ab1 4867 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4868 gdb_assert (! sig_entry->per_cu.queued);
4869 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4870 if (dwarf2_per_objfile->using_index)
4871 {
4872 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4873 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4874 }
4875 else
4876 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4877 gdb_assert (sig_entry->signature == dwo_entry->signature);
4878 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4879 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4880 gdb_assert (sig_entry->dwo_unit == NULL);
4881
4882 sig_entry->per_cu.section = dwo_entry->section;
4883 sig_entry->per_cu.offset = dwo_entry->offset;
4884 sig_entry->per_cu.length = dwo_entry->length;
4885 sig_entry->per_cu.reading_dwo_directly = 1;
4886 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4887 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4888 sig_entry->dwo_unit = dwo_entry;
4889}
4890
4891/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4892 If we haven't read the TU yet, create the signatured_type data structure
4893 for a TU to be read in directly from a DWO file, bypassing the stub.
4894 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4895 using .gdb_index, then when reading a CU we want to stay in the DWO file
4896 containing that CU. Otherwise we could end up reading several other DWO
4897 files (due to comdat folding) to process the transitive closure of all the
4898 mentioned TUs, and that can be slow. The current DWO file will have every
4899 type signature that it needs.
a2ce51a0
DE
4900 We only do this for .gdb_index because in the psymtab case we already have
4901 to read all the DWOs to build the type unit groups. */
4902
4903static struct signatured_type *
4904lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4905{
4906 struct objfile *objfile = dwarf2_per_objfile->objfile;
4907 struct dwo_file *dwo_file;
4908 struct dwo_unit find_dwo_entry, *dwo_entry;
4909 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4910 void **slot;
a2ce51a0
DE
4911
4912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4913
6aa5f3a6
DE
4914 /* If TU skeletons have been removed then we may not have read in any
4915 TUs yet. */
4916 if (dwarf2_per_objfile->signatured_types == NULL)
4917 {
4918 dwarf2_per_objfile->signatured_types
4919 = allocate_signatured_type_table (objfile);
4920 }
a2ce51a0
DE
4921
4922 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4923 Use the global signatured_types array to do our own comdat-folding
4924 of types. If this is the first time we're reading this TU, and
4925 the TU has an entry in .gdb_index, replace the recorded data from
4926 .gdb_index with this TU. */
a2ce51a0 4927
a2ce51a0 4928 find_sig_entry.signature = sig;
6aa5f3a6
DE
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 &find_sig_entry, INSERT);
9a3c8263 4931 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4932
4933 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4934 read. Don't reassign the global entry to point to this DWO if that's
4935 the case. Also note that if the TU is already being read, it may not
4936 have come from a DWO, the program may be a mix of Fission-compiled
4937 code and non-Fission-compiled code. */
4938
4939 /* Have we already tried to read this TU?
4940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4941 needn't exist in the global table yet). */
4942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4943 return sig_entry;
4944
6aa5f3a6
DE
4945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4946 dwo_unit of the TU itself. */
4947 dwo_file = cu->dwo_unit->dwo_file;
4948
a2ce51a0
DE
4949 /* Ok, this is the first time we're reading this TU. */
4950 if (dwo_file->tus == NULL)
4951 return NULL;
4952 find_dwo_entry.signature = sig;
9a3c8263 4953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4954 if (dwo_entry == NULL)
4955 return NULL;
4956
6aa5f3a6
DE
4957 /* If the global table doesn't have an entry for this TU, add one. */
4958 if (sig_entry == NULL)
4959 sig_entry = add_type_unit (sig, slot);
4960
a2ce51a0 4961 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4962 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4963 return sig_entry;
4964}
4965
a2ce51a0
DE
4966/* Subroutine of lookup_signatured_type.
4967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4968 then try the DWP file. If the TU stub (skeleton) has been removed then
4969 it won't be in .gdb_index. */
a2ce51a0
DE
4970
4971static struct signatured_type *
4972lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4973{
4974 struct objfile *objfile = dwarf2_per_objfile->objfile;
4975 struct dwp_file *dwp_file = get_dwp_file ();
4976 struct dwo_unit *dwo_entry;
4977 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4978 void **slot;
a2ce51a0
DE
4979
4980 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4981 gdb_assert (dwp_file != NULL);
4982
6aa5f3a6
DE
4983 /* If TU skeletons have been removed then we may not have read in any
4984 TUs yet. */
4985 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4986 {
6aa5f3a6
DE
4987 dwarf2_per_objfile->signatured_types
4988 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4989 }
4990
6aa5f3a6
DE
4991 find_sig_entry.signature = sig;
4992 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4993 &find_sig_entry, INSERT);
9a3c8263 4994 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
4995
4996 /* Have we already tried to read this TU?
4997 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4998 needn't exist in the global table yet). */
4999 if (sig_entry != NULL)
5000 return sig_entry;
5001
a2ce51a0
DE
5002 if (dwp_file->tus == NULL)
5003 return NULL;
57d63ce2
DE
5004 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5005 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5006 if (dwo_entry == NULL)
5007 return NULL;
5008
6aa5f3a6 5009 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5010 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5011
a2ce51a0
DE
5012 return sig_entry;
5013}
5014
380bca97 5015/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5016 Returns NULL if signature SIG is not present in the table.
5017 It is up to the caller to complain about this. */
348e048f
DE
5018
5019static struct signatured_type *
a2ce51a0 5020lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5021{
a2ce51a0
DE
5022 if (cu->dwo_unit
5023 && dwarf2_per_objfile->using_index)
5024 {
5025 /* We're in a DWO/DWP file, and we're using .gdb_index.
5026 These cases require special processing. */
5027 if (get_dwp_file () == NULL)
5028 return lookup_dwo_signatured_type (cu, sig);
5029 else
5030 return lookup_dwp_signatured_type (cu, sig);
5031 }
5032 else
5033 {
5034 struct signatured_type find_entry, *entry;
348e048f 5035
a2ce51a0
DE
5036 if (dwarf2_per_objfile->signatured_types == NULL)
5037 return NULL;
5038 find_entry.signature = sig;
9a3c8263
SM
5039 entry = ((struct signatured_type *)
5040 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5041 return entry;
5042 }
348e048f 5043}
42e7ad6c
DE
5044\f
5045/* Low level DIE reading support. */
348e048f 5046
d85a05f0
DJ
5047/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5048
5049static void
5050init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5051 struct dwarf2_cu *cu,
3019eac3
DE
5052 struct dwarf2_section_info *section,
5053 struct dwo_file *dwo_file)
d85a05f0 5054{
fceca515 5055 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5056 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5057 reader->cu = cu;
3019eac3 5058 reader->dwo_file = dwo_file;
dee91e82
DE
5059 reader->die_section = section;
5060 reader->buffer = section->buffer;
f664829e 5061 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5062 reader->comp_dir = NULL;
d85a05f0
DJ
5063}
5064
b0c7bfa9
DE
5065/* Subroutine of init_cutu_and_read_dies to simplify it.
5066 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5067 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5068 already.
5069
5070 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5071 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5072 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5073 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5074 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5075 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5076 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5077 are filled in with the info of the DIE from the DWO file.
5078 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5079 provided an abbrev table to use.
5080 The result is non-zero if a valid (non-dummy) DIE was found. */
5081
5082static int
5083read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5084 struct dwo_unit *dwo_unit,
5085 int abbrev_table_provided,
5086 struct die_info *stub_comp_unit_die,
a2ce51a0 5087 const char *stub_comp_dir,
b0c7bfa9 5088 struct die_reader_specs *result_reader,
d521ce57 5089 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5090 struct die_info **result_comp_unit_die,
5091 int *result_has_children)
5092{
5093 struct objfile *objfile = dwarf2_per_objfile->objfile;
5094 struct dwarf2_cu *cu = this_cu->cu;
5095 struct dwarf2_section_info *section;
5096 bfd *abfd;
d521ce57 5097 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5098 ULONGEST signature; /* Or dwo_id. */
5099 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5100 int i,num_extra_attrs;
5101 struct dwarf2_section_info *dwo_abbrev_section;
5102 struct attribute *attr;
5103 struct die_info *comp_unit_die;
5104
b0aeadb3
DE
5105 /* At most one of these may be provided. */
5106 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5107
b0c7bfa9
DE
5108 /* These attributes aren't processed until later:
5109 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5110 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5111 referenced later. However, these attributes are found in the stub
5112 which we won't have later. In order to not impose this complication
5113 on the rest of the code, we read them here and copy them to the
5114 DWO CU/TU die. */
b0c7bfa9
DE
5115
5116 stmt_list = NULL;
5117 low_pc = NULL;
5118 high_pc = NULL;
5119 ranges = NULL;
5120 comp_dir = NULL;
5121
5122 if (stub_comp_unit_die != NULL)
5123 {
5124 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5125 DWO file. */
5126 if (! this_cu->is_debug_types)
5127 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5128 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5129 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5130 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5131 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5132
5133 /* There should be a DW_AT_addr_base attribute here (if needed).
5134 We need the value before we can process DW_FORM_GNU_addr_index. */
5135 cu->addr_base = 0;
5136 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5137 if (attr)
5138 cu->addr_base = DW_UNSND (attr);
5139
5140 /* There should be a DW_AT_ranges_base attribute here (if needed).
5141 We need the value before we can process DW_AT_ranges. */
5142 cu->ranges_base = 0;
5143 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5144 if (attr)
5145 cu->ranges_base = DW_UNSND (attr);
5146 }
a2ce51a0
DE
5147 else if (stub_comp_dir != NULL)
5148 {
5149 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5150 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5151 comp_dir->name = DW_AT_comp_dir;
5152 comp_dir->form = DW_FORM_string;
5153 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5154 DW_STRING (comp_dir) = stub_comp_dir;
5155 }
b0c7bfa9
DE
5156
5157 /* Set up for reading the DWO CU/TU. */
5158 cu->dwo_unit = dwo_unit;
5159 section = dwo_unit->section;
5160 dwarf2_read_section (objfile, section);
a32a8923 5161 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5162 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5163 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5164 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5165
5166 if (this_cu->is_debug_types)
5167 {
5168 ULONGEST header_signature;
5169 cu_offset type_offset_in_tu;
5170 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5171
5172 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5173 dwo_abbrev_section,
5174 info_ptr,
5175 &header_signature,
5176 &type_offset_in_tu);
a2ce51a0
DE
5177 /* This is not an assert because it can be caused by bad debug info. */
5178 if (sig_type->signature != header_signature)
5179 {
5180 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5181 " TU at offset 0x%x [in module %s]"),
5182 hex_string (sig_type->signature),
5183 hex_string (header_signature),
5184 dwo_unit->offset.sect_off,
5185 bfd_get_filename (abfd));
5186 }
b0c7bfa9
DE
5187 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5188 /* For DWOs coming from DWP files, we don't know the CU length
5189 nor the type's offset in the TU until now. */
5190 dwo_unit->length = get_cu_length (&cu->header);
5191 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5192
5193 /* Establish the type offset that can be used to lookup the type.
5194 For DWO files, we don't know it until now. */
5195 sig_type->type_offset_in_section.sect_off =
5196 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5197 }
5198 else
5199 {
5200 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5201 dwo_abbrev_section,
5202 info_ptr, 0);
5203 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5204 /* For DWOs coming from DWP files, we don't know the CU length
5205 until now. */
5206 dwo_unit->length = get_cu_length (&cu->header);
5207 }
5208
02142a6c
DE
5209 /* Replace the CU's original abbrev table with the DWO's.
5210 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5211 if (abbrev_table_provided)
5212 {
5213 /* Don't free the provided abbrev table, the caller of
5214 init_cutu_and_read_dies owns it. */
5215 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5216 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5217 make_cleanup (dwarf2_free_abbrev_table, cu);
5218 }
5219 else
5220 {
5221 dwarf2_free_abbrev_table (cu);
5222 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5223 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5224 }
5225
5226 /* Read in the die, but leave space to copy over the attributes
5227 from the stub. This has the benefit of simplifying the rest of
5228 the code - all the work to maintain the illusion of a single
5229 DW_TAG_{compile,type}_unit DIE is done here. */
5230 num_extra_attrs = ((stmt_list != NULL)
5231 + (low_pc != NULL)
5232 + (high_pc != NULL)
5233 + (ranges != NULL)
5234 + (comp_dir != NULL));
5235 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5236 result_has_children, num_extra_attrs);
5237
5238 /* Copy over the attributes from the stub to the DIE we just read in. */
5239 comp_unit_die = *result_comp_unit_die;
5240 i = comp_unit_die->num_attrs;
5241 if (stmt_list != NULL)
5242 comp_unit_die->attrs[i++] = *stmt_list;
5243 if (low_pc != NULL)
5244 comp_unit_die->attrs[i++] = *low_pc;
5245 if (high_pc != NULL)
5246 comp_unit_die->attrs[i++] = *high_pc;
5247 if (ranges != NULL)
5248 comp_unit_die->attrs[i++] = *ranges;
5249 if (comp_dir != NULL)
5250 comp_unit_die->attrs[i++] = *comp_dir;
5251 comp_unit_die->num_attrs += num_extra_attrs;
5252
b4f54984 5253 if (dwarf_die_debug)
bf6af496
DE
5254 {
5255 fprintf_unfiltered (gdb_stdlog,
5256 "Read die from %s@0x%x of %s:\n",
a32a8923 5257 get_section_name (section),
bf6af496
DE
5258 (unsigned) (begin_info_ptr - section->buffer),
5259 bfd_get_filename (abfd));
b4f54984 5260 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5261 }
5262
a2ce51a0
DE
5263 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5264 TUs by skipping the stub and going directly to the entry in the DWO file.
5265 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5266 to get it via circuitous means. Blech. */
5267 if (comp_dir != NULL)
5268 result_reader->comp_dir = DW_STRING (comp_dir);
5269
b0c7bfa9
DE
5270 /* Skip dummy compilation units. */
5271 if (info_ptr >= begin_info_ptr + dwo_unit->length
5272 || peek_abbrev_code (abfd, info_ptr) == 0)
5273 return 0;
5274
5275 *result_info_ptr = info_ptr;
5276 return 1;
5277}
5278
5279/* Subroutine of init_cutu_and_read_dies to simplify it.
5280 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5281 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5282
5283static struct dwo_unit *
5284lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5285 struct die_info *comp_unit_die)
5286{
5287 struct dwarf2_cu *cu = this_cu->cu;
5288 struct attribute *attr;
5289 ULONGEST signature;
5290 struct dwo_unit *dwo_unit;
5291 const char *comp_dir, *dwo_name;
5292
a2ce51a0
DE
5293 gdb_assert (cu != NULL);
5294
b0c7bfa9 5295 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5296 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5297 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5298
5299 if (this_cu->is_debug_types)
5300 {
5301 struct signatured_type *sig_type;
5302
5303 /* Since this_cu is the first member of struct signatured_type,
5304 we can go from a pointer to one to a pointer to the other. */
5305 sig_type = (struct signatured_type *) this_cu;
5306 signature = sig_type->signature;
5307 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5308 }
5309 else
5310 {
5311 struct attribute *attr;
5312
5313 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5314 if (! attr)
5315 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5316 " [in module %s]"),
4262abfb 5317 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5318 signature = DW_UNSND (attr);
5319 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5320 signature);
5321 }
5322
b0c7bfa9
DE
5323 return dwo_unit;
5324}
5325
a2ce51a0 5326/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5327 See it for a description of the parameters.
5328 Read a TU directly from a DWO file, bypassing the stub.
5329
5330 Note: This function could be a little bit simpler if we shared cleanups
5331 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5332 to do, so we keep this function self-contained. Or we could move this
5333 into our caller, but it's complex enough already. */
a2ce51a0
DE
5334
5335static void
6aa5f3a6
DE
5336init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5337 int use_existing_cu, int keep,
a2ce51a0
DE
5338 die_reader_func_ftype *die_reader_func,
5339 void *data)
5340{
5341 struct dwarf2_cu *cu;
5342 struct signatured_type *sig_type;
6aa5f3a6 5343 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5344 struct die_reader_specs reader;
5345 const gdb_byte *info_ptr;
5346 struct die_info *comp_unit_die;
5347 int has_children;
5348
5349 /* Verify we can do the following downcast, and that we have the
5350 data we need. */
5351 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5352 sig_type = (struct signatured_type *) this_cu;
5353 gdb_assert (sig_type->dwo_unit != NULL);
5354
5355 cleanups = make_cleanup (null_cleanup, NULL);
5356
6aa5f3a6
DE
5357 if (use_existing_cu && this_cu->cu != NULL)
5358 {
5359 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5360 cu = this_cu->cu;
5361 /* There's no need to do the rereading_dwo_cu handling that
5362 init_cutu_and_read_dies does since we don't read the stub. */
5363 }
5364 else
5365 {
5366 /* If !use_existing_cu, this_cu->cu must be NULL. */
5367 gdb_assert (this_cu->cu == NULL);
8d749320 5368 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5369 init_one_comp_unit (cu, this_cu);
5370 /* If an error occurs while loading, release our storage. */
5371 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5372 }
5373
5374 /* A future optimization, if needed, would be to use an existing
5375 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5376 could share abbrev tables. */
a2ce51a0
DE
5377
5378 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5379 0 /* abbrev_table_provided */,
5380 NULL /* stub_comp_unit_die */,
5381 sig_type->dwo_unit->dwo_file->comp_dir,
5382 &reader, &info_ptr,
5383 &comp_unit_die, &has_children) == 0)
5384 {
5385 /* Dummy die. */
5386 do_cleanups (cleanups);
5387 return;
5388 }
5389
5390 /* All the "real" work is done here. */
5391 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5392
6aa5f3a6 5393 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5394 but the alternative is making the latter more complex.
5395 This function is only for the special case of using DWO files directly:
5396 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5397 if (free_cu_cleanup != NULL)
a2ce51a0 5398 {
6aa5f3a6
DE
5399 if (keep)
5400 {
5401 /* We've successfully allocated this compilation unit. Let our
5402 caller clean it up when finished with it. */
5403 discard_cleanups (free_cu_cleanup);
a2ce51a0 5404
6aa5f3a6
DE
5405 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5406 So we have to manually free the abbrev table. */
5407 dwarf2_free_abbrev_table (cu);
a2ce51a0 5408
6aa5f3a6
DE
5409 /* Link this CU into read_in_chain. */
5410 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5411 dwarf2_per_objfile->read_in_chain = this_cu;
5412 }
5413 else
5414 do_cleanups (free_cu_cleanup);
a2ce51a0 5415 }
a2ce51a0
DE
5416
5417 do_cleanups (cleanups);
5418}
5419
fd820528 5420/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5421 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5422
f4dc4d17
DE
5423 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5424 Otherwise the table specified in the comp unit header is read in and used.
5425 This is an optimization for when we already have the abbrev table.
5426
dee91e82
DE
5427 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5428 Otherwise, a new CU is allocated with xmalloc.
5429
5430 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5431 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5432
5433 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5434 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5435
70221824 5436static void
fd820528 5437init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5438 struct abbrev_table *abbrev_table,
fd820528
DE
5439 int use_existing_cu, int keep,
5440 die_reader_func_ftype *die_reader_func,
5441 void *data)
c906108c 5442{
dee91e82 5443 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5444 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5445 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5446 struct dwarf2_cu *cu;
d521ce57 5447 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5448 struct die_reader_specs reader;
d85a05f0 5449 struct die_info *comp_unit_die;
dee91e82 5450 int has_children;
d85a05f0 5451 struct attribute *attr;
365156ad 5452 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5453 struct signatured_type *sig_type = NULL;
4bdcc0c1 5454 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5455 /* Non-zero if CU currently points to a DWO file and we need to
5456 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5457 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5458 int rereading_dwo_cu = 0;
c906108c 5459
b4f54984 5460 if (dwarf_die_debug)
09406207
DE
5461 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5462 this_cu->is_debug_types ? "type" : "comp",
5463 this_cu->offset.sect_off);
5464
dee91e82
DE
5465 if (use_existing_cu)
5466 gdb_assert (keep);
23745b47 5467
a2ce51a0
DE
5468 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5469 file (instead of going through the stub), short-circuit all of this. */
5470 if (this_cu->reading_dwo_directly)
5471 {
5472 /* Narrow down the scope of possibilities to have to understand. */
5473 gdb_assert (this_cu->is_debug_types);
5474 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5475 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5476 die_reader_func, data);
a2ce51a0
DE
5477 return;
5478 }
5479
dee91e82
DE
5480 cleanups = make_cleanup (null_cleanup, NULL);
5481
5482 /* This is cheap if the section is already read in. */
5483 dwarf2_read_section (objfile, section);
5484
5485 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5486
5487 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5488
5489 if (use_existing_cu && this_cu->cu != NULL)
5490 {
5491 cu = this_cu->cu;
42e7ad6c
DE
5492 /* If this CU is from a DWO file we need to start over, we need to
5493 refetch the attributes from the skeleton CU.
5494 This could be optimized by retrieving those attributes from when we
5495 were here the first time: the previous comp_unit_die was stored in
5496 comp_unit_obstack. But there's no data yet that we need this
5497 optimization. */
5498 if (cu->dwo_unit != NULL)
5499 rereading_dwo_cu = 1;
dee91e82
DE
5500 }
5501 else
5502 {
5503 /* If !use_existing_cu, this_cu->cu must be NULL. */
5504 gdb_assert (this_cu->cu == NULL);
8d749320 5505 cu = XNEW (struct dwarf2_cu);
dee91e82 5506 init_one_comp_unit (cu, this_cu);
dee91e82 5507 /* If an error occurs while loading, release our storage. */
365156ad 5508 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5509 }
dee91e82 5510
b0c7bfa9 5511 /* Get the header. */
42e7ad6c
DE
5512 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5513 {
5514 /* We already have the header, there's no need to read it in again. */
5515 info_ptr += cu->header.first_die_offset.cu_off;
5516 }
5517 else
5518 {
3019eac3 5519 if (this_cu->is_debug_types)
dee91e82
DE
5520 {
5521 ULONGEST signature;
42e7ad6c 5522 cu_offset type_offset_in_tu;
dee91e82 5523
4bdcc0c1
DE
5524 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5525 abbrev_section, info_ptr,
42e7ad6c
DE
5526 &signature,
5527 &type_offset_in_tu);
dee91e82 5528
42e7ad6c
DE
5529 /* Since per_cu is the first member of struct signatured_type,
5530 we can go from a pointer to one to a pointer to the other. */
5531 sig_type = (struct signatured_type *) this_cu;
5532 gdb_assert (sig_type->signature == signature);
5533 gdb_assert (sig_type->type_offset_in_tu.cu_off
5534 == type_offset_in_tu.cu_off);
dee91e82
DE
5535 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5536
42e7ad6c
DE
5537 /* LENGTH has not been set yet for type units if we're
5538 using .gdb_index. */
1ce1cefd 5539 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5540
5541 /* Establish the type offset that can be used to lookup the type. */
5542 sig_type->type_offset_in_section.sect_off =
5543 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5544 }
5545 else
5546 {
4bdcc0c1
DE
5547 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5548 abbrev_section,
5549 info_ptr, 0);
dee91e82
DE
5550
5551 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5552 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5553 }
5554 }
10b3939b 5555
6caca83c 5556 /* Skip dummy compilation units. */
dee91e82 5557 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5558 || peek_abbrev_code (abfd, info_ptr) == 0)
5559 {
dee91e82 5560 do_cleanups (cleanups);
21b2bd31 5561 return;
6caca83c
CC
5562 }
5563
433df2d4
DE
5564 /* If we don't have them yet, read the abbrevs for this compilation unit.
5565 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5566 done. Note that it's important that if the CU had an abbrev table
5567 on entry we don't free it when we're done: Somewhere up the call stack
5568 it may be in use. */
f4dc4d17
DE
5569 if (abbrev_table != NULL)
5570 {
5571 gdb_assert (cu->abbrev_table == NULL);
5572 gdb_assert (cu->header.abbrev_offset.sect_off
5573 == abbrev_table->offset.sect_off);
5574 cu->abbrev_table = abbrev_table;
5575 }
5576 else if (cu->abbrev_table == NULL)
dee91e82 5577 {
4bdcc0c1 5578 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5579 make_cleanup (dwarf2_free_abbrev_table, cu);
5580 }
42e7ad6c
DE
5581 else if (rereading_dwo_cu)
5582 {
5583 dwarf2_free_abbrev_table (cu);
5584 dwarf2_read_abbrevs (cu, abbrev_section);
5585 }
af703f96 5586
dee91e82 5587 /* Read the top level CU/TU die. */
3019eac3 5588 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5589 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5590
b0c7bfa9
DE
5591 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5592 from the DWO file.
5593 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5594 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5595 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5596 if (attr)
5597 {
3019eac3 5598 struct dwo_unit *dwo_unit;
b0c7bfa9 5599 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5600
5601 if (has_children)
6a506a2d
DE
5602 {
5603 complaint (&symfile_complaints,
5604 _("compilation unit with DW_AT_GNU_dwo_name"
5605 " has children (offset 0x%x) [in module %s]"),
5606 this_cu->offset.sect_off, bfd_get_filename (abfd));
5607 }
b0c7bfa9 5608 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5609 if (dwo_unit != NULL)
3019eac3 5610 {
6a506a2d
DE
5611 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5612 abbrev_table != NULL,
a2ce51a0 5613 comp_unit_die, NULL,
6a506a2d
DE
5614 &reader, &info_ptr,
5615 &dwo_comp_unit_die, &has_children) == 0)
5616 {
5617 /* Dummy die. */
5618 do_cleanups (cleanups);
5619 return;
5620 }
5621 comp_unit_die = dwo_comp_unit_die;
5622 }
5623 else
5624 {
5625 /* Yikes, we couldn't find the rest of the DIE, we only have
5626 the stub. A complaint has already been logged. There's
5627 not much more we can do except pass on the stub DIE to
5628 die_reader_func. We don't want to throw an error on bad
5629 debug info. */
3019eac3
DE
5630 }
5631 }
5632
b0c7bfa9 5633 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5634 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5635
b0c7bfa9 5636 /* Done, clean up. */
365156ad 5637 if (free_cu_cleanup != NULL)
348e048f 5638 {
365156ad
TT
5639 if (keep)
5640 {
5641 /* We've successfully allocated this compilation unit. Let our
5642 caller clean it up when finished with it. */
5643 discard_cleanups (free_cu_cleanup);
dee91e82 5644
365156ad
TT
5645 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5646 So we have to manually free the abbrev table. */
5647 dwarf2_free_abbrev_table (cu);
dee91e82 5648
365156ad
TT
5649 /* Link this CU into read_in_chain. */
5650 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5651 dwarf2_per_objfile->read_in_chain = this_cu;
5652 }
5653 else
5654 do_cleanups (free_cu_cleanup);
348e048f 5655 }
365156ad
TT
5656
5657 do_cleanups (cleanups);
dee91e82
DE
5658}
5659
33e80786
DE
5660/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5661 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5662 to have already done the lookup to find the DWO file).
dee91e82
DE
5663
5664 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5665 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5666
5667 We fill in THIS_CU->length.
5668
5669 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5670 linker) then DIE_READER_FUNC will not get called.
5671
5672 THIS_CU->cu is always freed when done.
3019eac3
DE
5673 This is done in order to not leave THIS_CU->cu in a state where we have
5674 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5675
5676static void
5677init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5678 struct dwo_file *dwo_file,
dee91e82
DE
5679 die_reader_func_ftype *die_reader_func,
5680 void *data)
5681{
5682 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5683 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5684 bfd *abfd = get_section_bfd_owner (section);
33e80786 5685 struct dwarf2_section_info *abbrev_section;
dee91e82 5686 struct dwarf2_cu cu;
d521ce57 5687 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5688 struct die_reader_specs reader;
5689 struct cleanup *cleanups;
5690 struct die_info *comp_unit_die;
5691 int has_children;
5692
b4f54984 5693 if (dwarf_die_debug)
09406207
DE
5694 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5695 this_cu->is_debug_types ? "type" : "comp",
5696 this_cu->offset.sect_off);
5697
dee91e82
DE
5698 gdb_assert (this_cu->cu == NULL);
5699
33e80786
DE
5700 abbrev_section = (dwo_file != NULL
5701 ? &dwo_file->sections.abbrev
5702 : get_abbrev_section_for_cu (this_cu));
5703
dee91e82
DE
5704 /* This is cheap if the section is already read in. */
5705 dwarf2_read_section (objfile, section);
5706
5707 init_one_comp_unit (&cu, this_cu);
5708
5709 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5710
5711 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5712 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5713 abbrev_section, info_ptr,
3019eac3 5714 this_cu->is_debug_types);
dee91e82 5715
1ce1cefd 5716 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5717
5718 /* Skip dummy compilation units. */
5719 if (info_ptr >= begin_info_ptr + this_cu->length
5720 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5721 {
dee91e82 5722 do_cleanups (cleanups);
21b2bd31 5723 return;
93311388 5724 }
72bf9492 5725
dee91e82
DE
5726 dwarf2_read_abbrevs (&cu, abbrev_section);
5727 make_cleanup (dwarf2_free_abbrev_table, &cu);
5728
3019eac3 5729 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5730 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5731
5732 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5733
5734 do_cleanups (cleanups);
5735}
5736
3019eac3
DE
5737/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5738 does not lookup the specified DWO file.
5739 This cannot be used to read DWO files.
dee91e82
DE
5740
5741 THIS_CU->cu is always freed when done.
3019eac3
DE
5742 This is done in order to not leave THIS_CU->cu in a state where we have
5743 to care whether it refers to the "main" CU or the DWO CU.
5744 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5745
5746static void
5747init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5748 die_reader_func_ftype *die_reader_func,
5749 void *data)
5750{
33e80786 5751 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5752}
0018ea6f
DE
5753\f
5754/* Type Unit Groups.
dee91e82 5755
0018ea6f
DE
5756 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5757 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5758 so that all types coming from the same compilation (.o file) are grouped
5759 together. A future step could be to put the types in the same symtab as
5760 the CU the types ultimately came from. */
ff013f42 5761
f4dc4d17
DE
5762static hashval_t
5763hash_type_unit_group (const void *item)
5764{
9a3c8263
SM
5765 const struct type_unit_group *tu_group
5766 = (const struct type_unit_group *) item;
f4dc4d17 5767
094b34ac 5768 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5769}
348e048f
DE
5770
5771static int
f4dc4d17 5772eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5773{
9a3c8263
SM
5774 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5775 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5776
094b34ac 5777 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5778}
348e048f 5779
f4dc4d17
DE
5780/* Allocate a hash table for type unit groups. */
5781
5782static htab_t
5783allocate_type_unit_groups_table (void)
5784{
5785 return htab_create_alloc_ex (3,
5786 hash_type_unit_group,
5787 eq_type_unit_group,
5788 NULL,
5789 &dwarf2_per_objfile->objfile->objfile_obstack,
5790 hashtab_obstack_allocate,
5791 dummy_obstack_deallocate);
5792}
dee91e82 5793
f4dc4d17
DE
5794/* Type units that don't have DW_AT_stmt_list are grouped into their own
5795 partial symtabs. We combine several TUs per psymtab to not let the size
5796 of any one psymtab grow too big. */
5797#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5798#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5799
094b34ac 5800/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5801 Create the type_unit_group object used to hold one or more TUs. */
5802
5803static struct type_unit_group *
094b34ac 5804create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5805{
5806 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5807 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5808 struct type_unit_group *tu_group;
f4dc4d17
DE
5809
5810 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5811 struct type_unit_group);
094b34ac 5812 per_cu = &tu_group->per_cu;
f4dc4d17 5813 per_cu->objfile = objfile;
f4dc4d17 5814
094b34ac
DE
5815 if (dwarf2_per_objfile->using_index)
5816 {
5817 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5818 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5819 }
5820 else
5821 {
5822 unsigned int line_offset = line_offset_struct.sect_off;
5823 struct partial_symtab *pst;
5824 char *name;
5825
5826 /* Give the symtab a useful name for debug purposes. */
5827 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5828 name = xstrprintf ("<type_units_%d>",
5829 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5830 else
5831 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5832
5833 pst = create_partial_symtab (per_cu, name);
5834 pst->anonymous = 1;
f4dc4d17 5835
094b34ac
DE
5836 xfree (name);
5837 }
f4dc4d17 5838
094b34ac
DE
5839 tu_group->hash.dwo_unit = cu->dwo_unit;
5840 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5841
5842 return tu_group;
5843}
5844
094b34ac
DE
5845/* Look up the type_unit_group for type unit CU, and create it if necessary.
5846 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5847
5848static struct type_unit_group *
ff39bb5e 5849get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5850{
5851 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5852 struct type_unit_group *tu_group;
5853 void **slot;
5854 unsigned int line_offset;
5855 struct type_unit_group type_unit_group_for_lookup;
5856
5857 if (dwarf2_per_objfile->type_unit_groups == NULL)
5858 {
5859 dwarf2_per_objfile->type_unit_groups =
5860 allocate_type_unit_groups_table ();
5861 }
5862
5863 /* Do we need to create a new group, or can we use an existing one? */
5864
5865 if (stmt_list)
5866 {
5867 line_offset = DW_UNSND (stmt_list);
5868 ++tu_stats->nr_symtab_sharers;
5869 }
5870 else
5871 {
5872 /* Ugh, no stmt_list. Rare, but we have to handle it.
5873 We can do various things here like create one group per TU or
5874 spread them over multiple groups to split up the expansion work.
5875 To avoid worst case scenarios (too many groups or too large groups)
5876 we, umm, group them in bunches. */
5877 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5878 | (tu_stats->nr_stmt_less_type_units
5879 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5880 ++tu_stats->nr_stmt_less_type_units;
5881 }
5882
094b34ac
DE
5883 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5884 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5885 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5886 &type_unit_group_for_lookup, INSERT);
5887 if (*slot != NULL)
5888 {
9a3c8263 5889 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5890 gdb_assert (tu_group != NULL);
5891 }
5892 else
5893 {
5894 sect_offset line_offset_struct;
5895
5896 line_offset_struct.sect_off = line_offset;
094b34ac 5897 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5898 *slot = tu_group;
5899 ++tu_stats->nr_symtabs;
5900 }
5901
5902 return tu_group;
5903}
0018ea6f
DE
5904\f
5905/* Partial symbol tables. */
5906
5907/* Create a psymtab named NAME and assign it to PER_CU.
5908
5909 The caller must fill in the following details:
5910 dirname, textlow, texthigh. */
5911
5912static struct partial_symtab *
5913create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5914{
5915 struct objfile *objfile = per_cu->objfile;
5916 struct partial_symtab *pst;
5917
18a94d75 5918 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5919 objfile->global_psymbols.next,
5920 objfile->static_psymbols.next);
5921
5922 pst->psymtabs_addrmap_supported = 1;
5923
5924 /* This is the glue that links PST into GDB's symbol API. */
5925 pst->read_symtab_private = per_cu;
5926 pst->read_symtab = dwarf2_read_symtab;
5927 per_cu->v.psymtab = pst;
5928
5929 return pst;
5930}
5931
b93601f3
TT
5932/* The DATA object passed to process_psymtab_comp_unit_reader has this
5933 type. */
5934
5935struct process_psymtab_comp_unit_data
5936{
5937 /* True if we are reading a DW_TAG_partial_unit. */
5938
5939 int want_partial_unit;
5940
5941 /* The "pretend" language that is used if the CU doesn't declare a
5942 language. */
5943
5944 enum language pretend_language;
5945};
5946
0018ea6f
DE
5947/* die_reader_func for process_psymtab_comp_unit. */
5948
5949static void
5950process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5951 const gdb_byte *info_ptr,
0018ea6f
DE
5952 struct die_info *comp_unit_die,
5953 int has_children,
5954 void *data)
5955{
5956 struct dwarf2_cu *cu = reader->cu;
5957 struct objfile *objfile = cu->objfile;
3e29f34a 5958 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5959 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5960 CORE_ADDR baseaddr;
5961 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5962 struct partial_symtab *pst;
3a2b436a 5963 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 5964 const char *filename;
9a3c8263
SM
5965 struct process_psymtab_comp_unit_data *info
5966 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5967
b93601f3 5968 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5969 return;
5970
5971 gdb_assert (! per_cu->is_debug_types);
5972
b93601f3 5973 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5974
5975 cu->list_in_scope = &file_symbols;
5976
5977 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5978 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5979 if (filename == NULL)
0018ea6f 5980 filename = "";
0018ea6f
DE
5981
5982 pst = create_partial_symtab (per_cu, filename);
5983
5984 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5985 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5986
5987 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5988
5989 dwarf2_find_base_address (comp_unit_die, cu);
5990
5991 /* Possibly set the default values of LOWPC and HIGHPC from
5992 `DW_AT_ranges'. */
3a2b436a
JK
5993 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5994 &best_highpc, cu, pst);
5995 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
5996 /* Store the contiguous range if it is not empty; it can be empty for
5997 CUs with no code. */
5998 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5999 gdbarch_adjust_dwarf2_addr (gdbarch,
6000 best_lowpc + baseaddr),
6001 gdbarch_adjust_dwarf2_addr (gdbarch,
6002 best_highpc + baseaddr) - 1,
6003 pst);
0018ea6f
DE
6004
6005 /* Check if comp unit has_children.
6006 If so, read the rest of the partial symbols from this comp unit.
6007 If not, there's no more debug_info for this comp unit. */
6008 if (has_children)
6009 {
6010 struct partial_die_info *first_die;
6011 CORE_ADDR lowpc, highpc;
6012
6013 lowpc = ((CORE_ADDR) -1);
6014 highpc = ((CORE_ADDR) 0);
6015
6016 first_die = load_partial_dies (reader, info_ptr, 1);
6017
6018 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6019 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6020
6021 /* If we didn't find a lowpc, set it to highpc to avoid
6022 complaints from `maint check'. */
6023 if (lowpc == ((CORE_ADDR) -1))
6024 lowpc = highpc;
6025
6026 /* If the compilation unit didn't have an explicit address range,
6027 then use the information extracted from its child dies. */
e385593e 6028 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6029 {
6030 best_lowpc = lowpc;
6031 best_highpc = highpc;
6032 }
6033 }
3e29f34a
MR
6034 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6035 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6036
8763cede 6037 end_psymtab_common (objfile, pst);
0018ea6f
DE
6038
6039 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6040 {
6041 int i;
6042 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6043 struct dwarf2_per_cu_data *iter;
6044
6045 /* Fill in 'dependencies' here; we fill in 'users' in a
6046 post-pass. */
6047 pst->number_of_dependencies = len;
8d749320
SM
6048 pst->dependencies =
6049 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6050 for (i = 0;
6051 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6052 i, iter);
6053 ++i)
6054 pst->dependencies[i] = iter->v.psymtab;
6055
6056 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6057 }
6058
6059 /* Get the list of files included in the current compilation unit,
6060 and build a psymtab for each of them. */
6061 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6062
b4f54984 6063 if (dwarf_read_debug)
0018ea6f
DE
6064 {
6065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6066
6067 fprintf_unfiltered (gdb_stdlog,
6068 "Psymtab for %s unit @0x%x: %s - %s"
6069 ", %d global, %d static syms\n",
6070 per_cu->is_debug_types ? "type" : "comp",
6071 per_cu->offset.sect_off,
6072 paddress (gdbarch, pst->textlow),
6073 paddress (gdbarch, pst->texthigh),
6074 pst->n_global_syms, pst->n_static_syms);
6075 }
6076}
6077
6078/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6079 Process compilation unit THIS_CU for a psymtab. */
6080
6081static void
6082process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6083 int want_partial_unit,
6084 enum language pretend_language)
0018ea6f 6085{
b93601f3
TT
6086 struct process_psymtab_comp_unit_data info;
6087
0018ea6f
DE
6088 /* If this compilation unit was already read in, free the
6089 cached copy in order to read it in again. This is
6090 necessary because we skipped some symbols when we first
6091 read in the compilation unit (see load_partial_dies).
6092 This problem could be avoided, but the benefit is unclear. */
6093 if (this_cu->cu != NULL)
6094 free_one_cached_comp_unit (this_cu);
6095
6096 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6097 info.want_partial_unit = want_partial_unit;
6098 info.pretend_language = pretend_language;
0018ea6f
DE
6099 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6100 process_psymtab_comp_unit_reader,
b93601f3 6101 &info);
0018ea6f
DE
6102
6103 /* Age out any secondary CUs. */
6104 age_cached_comp_units ();
6105}
f4dc4d17
DE
6106
6107/* Reader function for build_type_psymtabs. */
6108
6109static void
6110build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6111 const gdb_byte *info_ptr,
f4dc4d17
DE
6112 struct die_info *type_unit_die,
6113 int has_children,
6114 void *data)
6115{
6116 struct objfile *objfile = dwarf2_per_objfile->objfile;
6117 struct dwarf2_cu *cu = reader->cu;
6118 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6119 struct signatured_type *sig_type;
f4dc4d17
DE
6120 struct type_unit_group *tu_group;
6121 struct attribute *attr;
6122 struct partial_die_info *first_die;
6123 CORE_ADDR lowpc, highpc;
6124 struct partial_symtab *pst;
6125
6126 gdb_assert (data == NULL);
0186c6a7
DE
6127 gdb_assert (per_cu->is_debug_types);
6128 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6129
6130 if (! has_children)
6131 return;
6132
6133 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6134 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6135
0186c6a7 6136 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6137
6138 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6139 cu->list_in_scope = &file_symbols;
6140 pst = create_partial_symtab (per_cu, "");
6141 pst->anonymous = 1;
6142
6143 first_die = load_partial_dies (reader, info_ptr, 1);
6144
6145 lowpc = (CORE_ADDR) -1;
6146 highpc = (CORE_ADDR) 0;
6147 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6148
8763cede 6149 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6150}
6151
73051182
DE
6152/* Struct used to sort TUs by their abbreviation table offset. */
6153
6154struct tu_abbrev_offset
6155{
6156 struct signatured_type *sig_type;
6157 sect_offset abbrev_offset;
6158};
6159
6160/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6161
6162static int
6163sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6164{
9a3c8263
SM
6165 const struct tu_abbrev_offset * const *a
6166 = (const struct tu_abbrev_offset * const*) ap;
6167 const struct tu_abbrev_offset * const *b
6168 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6169 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6170 unsigned int boff = (*b)->abbrev_offset.sect_off;
6171
6172 return (aoff > boff) - (aoff < boff);
6173}
6174
6175/* Efficiently read all the type units.
6176 This does the bulk of the work for build_type_psymtabs.
6177
6178 The efficiency is because we sort TUs by the abbrev table they use and
6179 only read each abbrev table once. In one program there are 200K TUs
6180 sharing 8K abbrev tables.
6181
6182 The main purpose of this function is to support building the
6183 dwarf2_per_objfile->type_unit_groups table.
6184 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6185 can collapse the search space by grouping them by stmt_list.
6186 The savings can be significant, in the same program from above the 200K TUs
6187 share 8K stmt_list tables.
6188
6189 FUNC is expected to call get_type_unit_group, which will create the
6190 struct type_unit_group if necessary and add it to
6191 dwarf2_per_objfile->type_unit_groups. */
6192
6193static void
6194build_type_psymtabs_1 (void)
6195{
73051182
DE
6196 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6197 struct cleanup *cleanups;
6198 struct abbrev_table *abbrev_table;
6199 sect_offset abbrev_offset;
6200 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6201 int i;
6202
6203 /* It's up to the caller to not call us multiple times. */
6204 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6205
6206 if (dwarf2_per_objfile->n_type_units == 0)
6207 return;
6208
6209 /* TUs typically share abbrev tables, and there can be way more TUs than
6210 abbrev tables. Sort by abbrev table to reduce the number of times we
6211 read each abbrev table in.
6212 Alternatives are to punt or to maintain a cache of abbrev tables.
6213 This is simpler and efficient enough for now.
6214
6215 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6216 symtab to use). Typically TUs with the same abbrev offset have the same
6217 stmt_list value too so in practice this should work well.
6218
6219 The basic algorithm here is:
6220
6221 sort TUs by abbrev table
6222 for each TU with same abbrev table:
6223 read abbrev table if first user
6224 read TU top level DIE
6225 [IWBN if DWO skeletons had DW_AT_stmt_list]
6226 call FUNC */
6227
b4f54984 6228 if (dwarf_read_debug)
73051182
DE
6229 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6230
6231 /* Sort in a separate table to maintain the order of all_type_units
6232 for .gdb_index: TU indices directly index all_type_units. */
6233 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6234 dwarf2_per_objfile->n_type_units);
6235 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6236 {
6237 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6238
6239 sorted_by_abbrev[i].sig_type = sig_type;
6240 sorted_by_abbrev[i].abbrev_offset =
6241 read_abbrev_offset (sig_type->per_cu.section,
6242 sig_type->per_cu.offset);
6243 }
6244 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6245 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6246 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6247
6248 abbrev_offset.sect_off = ~(unsigned) 0;
6249 abbrev_table = NULL;
6250 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6251
6252 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6253 {
6254 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6255
6256 /* Switch to the next abbrev table if necessary. */
6257 if (abbrev_table == NULL
6258 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6259 {
6260 if (abbrev_table != NULL)
6261 {
6262 abbrev_table_free (abbrev_table);
6263 /* Reset to NULL in case abbrev_table_read_table throws
6264 an error: abbrev_table_free_cleanup will get called. */
6265 abbrev_table = NULL;
6266 }
6267 abbrev_offset = tu->abbrev_offset;
6268 abbrev_table =
6269 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6270 abbrev_offset);
6271 ++tu_stats->nr_uniq_abbrev_tables;
6272 }
6273
6274 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6275 build_type_psymtabs_reader, NULL);
6276 }
6277
73051182 6278 do_cleanups (cleanups);
6aa5f3a6 6279}
73051182 6280
6aa5f3a6
DE
6281/* Print collected type unit statistics. */
6282
6283static void
6284print_tu_stats (void)
6285{
6286 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6287
6288 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6289 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6290 dwarf2_per_objfile->n_type_units);
6291 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6292 tu_stats->nr_uniq_abbrev_tables);
6293 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6294 tu_stats->nr_symtabs);
6295 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6296 tu_stats->nr_symtab_sharers);
6297 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6298 tu_stats->nr_stmt_less_type_units);
6299 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6300 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6301}
6302
f4dc4d17
DE
6303/* Traversal function for build_type_psymtabs. */
6304
6305static int
6306build_type_psymtab_dependencies (void **slot, void *info)
6307{
6308 struct objfile *objfile = dwarf2_per_objfile->objfile;
6309 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6310 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6311 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6312 int len = VEC_length (sig_type_ptr, tu_group->tus);
6313 struct signatured_type *iter;
f4dc4d17
DE
6314 int i;
6315
6316 gdb_assert (len > 0);
0186c6a7 6317 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6318
6319 pst->number_of_dependencies = len;
8d749320
SM
6320 pst->dependencies =
6321 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6322 for (i = 0;
0186c6a7 6323 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6324 ++i)
6325 {
0186c6a7
DE
6326 gdb_assert (iter->per_cu.is_debug_types);
6327 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6328 iter->type_unit_group = tu_group;
f4dc4d17
DE
6329 }
6330
0186c6a7 6331 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6332
6333 return 1;
6334}
6335
6336/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6337 Build partial symbol tables for the .debug_types comp-units. */
6338
6339static void
6340build_type_psymtabs (struct objfile *objfile)
6341{
0e50663e 6342 if (! create_all_type_units (objfile))
348e048f
DE
6343 return;
6344
73051182 6345 build_type_psymtabs_1 ();
6aa5f3a6 6346}
f4dc4d17 6347
6aa5f3a6
DE
6348/* Traversal function for process_skeletonless_type_unit.
6349 Read a TU in a DWO file and build partial symbols for it. */
6350
6351static int
6352process_skeletonless_type_unit (void **slot, void *info)
6353{
6354 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6355 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6356 struct signatured_type find_entry, *entry;
6357
6358 /* If this TU doesn't exist in the global table, add it and read it in. */
6359
6360 if (dwarf2_per_objfile->signatured_types == NULL)
6361 {
6362 dwarf2_per_objfile->signatured_types
6363 = allocate_signatured_type_table (objfile);
6364 }
6365
6366 find_entry.signature = dwo_unit->signature;
6367 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6368 INSERT);
6369 /* If we've already seen this type there's nothing to do. What's happening
6370 is we're doing our own version of comdat-folding here. */
6371 if (*slot != NULL)
6372 return 1;
6373
6374 /* This does the job that create_all_type_units would have done for
6375 this TU. */
6376 entry = add_type_unit (dwo_unit->signature, slot);
6377 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6378 *slot = entry;
6379
6380 /* This does the job that build_type_psymtabs_1 would have done. */
6381 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6382 build_type_psymtabs_reader, NULL);
6383
6384 return 1;
6385}
6386
6387/* Traversal function for process_skeletonless_type_units. */
6388
6389static int
6390process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6391{
6392 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6393
6394 if (dwo_file->tus != NULL)
6395 {
6396 htab_traverse_noresize (dwo_file->tus,
6397 process_skeletonless_type_unit, info);
6398 }
6399
6400 return 1;
6401}
6402
6403/* Scan all TUs of DWO files, verifying we've processed them.
6404 This is needed in case a TU was emitted without its skeleton.
6405 Note: This can't be done until we know what all the DWO files are. */
6406
6407static void
6408process_skeletonless_type_units (struct objfile *objfile)
6409{
6410 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6411 if (get_dwp_file () == NULL
6412 && dwarf2_per_objfile->dwo_files != NULL)
6413 {
6414 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6415 process_dwo_file_for_skeletonless_type_units,
6416 objfile);
6417 }
348e048f
DE
6418}
6419
60606b2c
TT
6420/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6421
6422static void
6423psymtabs_addrmap_cleanup (void *o)
6424{
9a3c8263 6425 struct objfile *objfile = (struct objfile *) o;
ec61707d 6426
60606b2c
TT
6427 objfile->psymtabs_addrmap = NULL;
6428}
6429
95554aad
TT
6430/* Compute the 'user' field for each psymtab in OBJFILE. */
6431
6432static void
6433set_partial_user (struct objfile *objfile)
6434{
6435 int i;
6436
6437 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6438 {
8832e7e3 6439 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6440 struct partial_symtab *pst = per_cu->v.psymtab;
6441 int j;
6442
36586728
TT
6443 if (pst == NULL)
6444 continue;
6445
95554aad
TT
6446 for (j = 0; j < pst->number_of_dependencies; ++j)
6447 {
6448 /* Set the 'user' field only if it is not already set. */
6449 if (pst->dependencies[j]->user == NULL)
6450 pst->dependencies[j]->user = pst;
6451 }
6452 }
6453}
6454
93311388
DE
6455/* Build the partial symbol table by doing a quick pass through the
6456 .debug_info and .debug_abbrev sections. */
72bf9492 6457
93311388 6458static void
c67a9c90 6459dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6460{
60606b2c
TT
6461 struct cleanup *back_to, *addrmap_cleanup;
6462 struct obstack temp_obstack;
21b2bd31 6463 int i;
93311388 6464
b4f54984 6465 if (dwarf_read_debug)
45cfd468
DE
6466 {
6467 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6468 objfile_name (objfile));
45cfd468
DE
6469 }
6470
98bfdba5
PA
6471 dwarf2_per_objfile->reading_partial_symbols = 1;
6472
be391dca 6473 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6474
93311388
DE
6475 /* Any cached compilation units will be linked by the per-objfile
6476 read_in_chain. Make sure to free them when we're done. */
6477 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6478
348e048f
DE
6479 build_type_psymtabs (objfile);
6480
93311388 6481 create_all_comp_units (objfile);
c906108c 6482
60606b2c
TT
6483 /* Create a temporary address map on a temporary obstack. We later
6484 copy this to the final obstack. */
6485 obstack_init (&temp_obstack);
6486 make_cleanup_obstack_free (&temp_obstack);
6487 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6488 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6489
21b2bd31 6490 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6491 {
8832e7e3 6492 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6493
b93601f3 6494 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6495 }
ff013f42 6496
6aa5f3a6
DE
6497 /* This has to wait until we read the CUs, we need the list of DWOs. */
6498 process_skeletonless_type_units (objfile);
6499
6500 /* Now that all TUs have been processed we can fill in the dependencies. */
6501 if (dwarf2_per_objfile->type_unit_groups != NULL)
6502 {
6503 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6504 build_type_psymtab_dependencies, NULL);
6505 }
6506
b4f54984 6507 if (dwarf_read_debug)
6aa5f3a6
DE
6508 print_tu_stats ();
6509
95554aad
TT
6510 set_partial_user (objfile);
6511
ff013f42
JK
6512 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6513 &objfile->objfile_obstack);
60606b2c 6514 discard_cleanups (addrmap_cleanup);
ff013f42 6515
ae038cb0 6516 do_cleanups (back_to);
45cfd468 6517
b4f54984 6518 if (dwarf_read_debug)
45cfd468 6519 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6520 objfile_name (objfile));
ae038cb0
DJ
6521}
6522
3019eac3 6523/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6524
6525static void
dee91e82 6526load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6527 const gdb_byte *info_ptr,
dee91e82
DE
6528 struct die_info *comp_unit_die,
6529 int has_children,
6530 void *data)
ae038cb0 6531{
dee91e82 6532 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6533
95554aad 6534 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6535
ae038cb0
DJ
6536 /* Check if comp unit has_children.
6537 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6538 If not, there's no more debug_info for this comp unit. */
d85a05f0 6539 if (has_children)
dee91e82
DE
6540 load_partial_dies (reader, info_ptr, 0);
6541}
98bfdba5 6542
dee91e82
DE
6543/* Load the partial DIEs for a secondary CU into memory.
6544 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6545
dee91e82
DE
6546static void
6547load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6548{
f4dc4d17
DE
6549 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6550 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6551}
6552
ae038cb0 6553static void
36586728
TT
6554read_comp_units_from_section (struct objfile *objfile,
6555 struct dwarf2_section_info *section,
6556 unsigned int is_dwz,
6557 int *n_allocated,
6558 int *n_comp_units,
6559 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6560{
d521ce57 6561 const gdb_byte *info_ptr;
a32a8923 6562 bfd *abfd = get_section_bfd_owner (section);
be391dca 6563
b4f54984 6564 if (dwarf_read_debug)
bf6af496 6565 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6566 get_section_name (section),
6567 get_section_file_name (section));
bf6af496 6568
36586728 6569 dwarf2_read_section (objfile, section);
ae038cb0 6570
36586728 6571 info_ptr = section->buffer;
6e70227d 6572
36586728 6573 while (info_ptr < section->buffer + section->size)
ae038cb0 6574 {
c764a876 6575 unsigned int length, initial_length_size;
ae038cb0 6576 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6577 sect_offset offset;
ae038cb0 6578
36586728 6579 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6580
6581 /* Read just enough information to find out where the next
6582 compilation unit is. */
36586728 6583 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6584
6585 /* Save the compilation unit for later lookup. */
8d749320 6586 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6587 memset (this_cu, 0, sizeof (*this_cu));
6588 this_cu->offset = offset;
c764a876 6589 this_cu->length = length + initial_length_size;
36586728 6590 this_cu->is_dwz = is_dwz;
9291a0cd 6591 this_cu->objfile = objfile;
8a0459fd 6592 this_cu->section = section;
ae038cb0 6593
36586728 6594 if (*n_comp_units == *n_allocated)
ae038cb0 6595 {
36586728 6596 *n_allocated *= 2;
224c3ddb
SM
6597 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6598 *all_comp_units, *n_allocated);
ae038cb0 6599 }
36586728
TT
6600 (*all_comp_units)[*n_comp_units] = this_cu;
6601 ++*n_comp_units;
ae038cb0
DJ
6602
6603 info_ptr = info_ptr + this_cu->length;
6604 }
36586728
TT
6605}
6606
6607/* Create a list of all compilation units in OBJFILE.
6608 This is only done for -readnow and building partial symtabs. */
6609
6610static void
6611create_all_comp_units (struct objfile *objfile)
6612{
6613 int n_allocated;
6614 int n_comp_units;
6615 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6616 struct dwz_file *dwz;
36586728
TT
6617
6618 n_comp_units = 0;
6619 n_allocated = 10;
8d749320 6620 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6621
6622 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6623 &n_allocated, &n_comp_units, &all_comp_units);
6624
4db1a1dc
TT
6625 dwz = dwarf2_get_dwz_file ();
6626 if (dwz != NULL)
6627 read_comp_units_from_section (objfile, &dwz->info, 1,
6628 &n_allocated, &n_comp_units,
6629 &all_comp_units);
ae038cb0 6630
8d749320
SM
6631 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6632 struct dwarf2_per_cu_data *,
6633 n_comp_units);
ae038cb0
DJ
6634 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6635 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6636 xfree (all_comp_units);
6637 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6638}
6639
5734ee8b 6640/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6641 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6642 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6643 DW_AT_ranges). See the comments of add_partial_subprogram on how
6644 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6645
72bf9492
DJ
6646static void
6647scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6648 CORE_ADDR *highpc, int set_addrmap,
6649 struct dwarf2_cu *cu)
c906108c 6650{
72bf9492 6651 struct partial_die_info *pdi;
c906108c 6652
91c24f0a
DC
6653 /* Now, march along the PDI's, descending into ones which have
6654 interesting children but skipping the children of the other ones,
6655 until we reach the end of the compilation unit. */
c906108c 6656
72bf9492 6657 pdi = first_die;
91c24f0a 6658
72bf9492
DJ
6659 while (pdi != NULL)
6660 {
6661 fixup_partial_die (pdi, cu);
c906108c 6662
f55ee35c 6663 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6664 children, so we need to look at them. Ditto for anonymous
6665 enums. */
933c6fe4 6666
72bf9492 6667 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6668 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6669 || pdi->tag == DW_TAG_imported_unit)
c906108c 6670 {
72bf9492 6671 switch (pdi->tag)
c906108c
SS
6672 {
6673 case DW_TAG_subprogram:
cdc07690 6674 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6675 break;
72929c62 6676 case DW_TAG_constant:
c906108c
SS
6677 case DW_TAG_variable:
6678 case DW_TAG_typedef:
91c24f0a 6679 case DW_TAG_union_type:
72bf9492 6680 if (!pdi->is_declaration)
63d06c5c 6681 {
72bf9492 6682 add_partial_symbol (pdi, cu);
63d06c5c
DC
6683 }
6684 break;
c906108c 6685 case DW_TAG_class_type:
680b30c7 6686 case DW_TAG_interface_type:
c906108c 6687 case DW_TAG_structure_type:
72bf9492 6688 if (!pdi->is_declaration)
c906108c 6689 {
72bf9492 6690 add_partial_symbol (pdi, cu);
c906108c 6691 }
e98c9e7c
TT
6692 if (cu->language == language_rust && pdi->has_children)
6693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6694 set_addrmap, cu);
c906108c 6695 break;
91c24f0a 6696 case DW_TAG_enumeration_type:
72bf9492
DJ
6697 if (!pdi->is_declaration)
6698 add_partial_enumeration (pdi, cu);
c906108c
SS
6699 break;
6700 case DW_TAG_base_type:
a02abb62 6701 case DW_TAG_subrange_type:
c906108c 6702 /* File scope base type definitions are added to the partial
c5aa993b 6703 symbol table. */
72bf9492 6704 add_partial_symbol (pdi, cu);
c906108c 6705 break;
d9fa45fe 6706 case DW_TAG_namespace:
cdc07690 6707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6708 break;
5d7cb8df 6709 case DW_TAG_module:
cdc07690 6710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6711 break;
95554aad
TT
6712 case DW_TAG_imported_unit:
6713 {
6714 struct dwarf2_per_cu_data *per_cu;
6715
f4dc4d17
DE
6716 /* For now we don't handle imported units in type units. */
6717 if (cu->per_cu->is_debug_types)
6718 {
6719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6720 " supported in type units [in module %s]"),
4262abfb 6721 objfile_name (cu->objfile));
f4dc4d17
DE
6722 }
6723
95554aad 6724 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6725 pdi->is_dwz,
95554aad
TT
6726 cu->objfile);
6727
6728 /* Go read the partial unit, if needed. */
6729 if (per_cu->v.psymtab == NULL)
b93601f3 6730 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6731
f4dc4d17 6732 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6733 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6734 }
6735 break;
74921315
KS
6736 case DW_TAG_imported_declaration:
6737 add_partial_symbol (pdi, cu);
6738 break;
c906108c
SS
6739 default:
6740 break;
6741 }
6742 }
6743
72bf9492
DJ
6744 /* If the die has a sibling, skip to the sibling. */
6745
6746 pdi = pdi->die_sibling;
6747 }
6748}
6749
6750/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6751
72bf9492 6752 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6753 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6754 Enumerators are an exception; they use the scope of their parent
6755 enumeration type, i.e. the name of the enumeration type is not
6756 prepended to the enumerator.
91c24f0a 6757
72bf9492
DJ
6758 There are two complexities. One is DW_AT_specification; in this
6759 case "parent" means the parent of the target of the specification,
6760 instead of the direct parent of the DIE. The other is compilers
6761 which do not emit DW_TAG_namespace; in this case we try to guess
6762 the fully qualified name of structure types from their members'
6763 linkage names. This must be done using the DIE's children rather
6764 than the children of any DW_AT_specification target. We only need
6765 to do this for structures at the top level, i.e. if the target of
6766 any DW_AT_specification (if any; otherwise the DIE itself) does not
6767 have a parent. */
6768
6769/* Compute the scope prefix associated with PDI's parent, in
6770 compilation unit CU. The result will be allocated on CU's
6771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6772 field. NULL is returned if no prefix is necessary. */
15d034d0 6773static const char *
72bf9492
DJ
6774partial_die_parent_scope (struct partial_die_info *pdi,
6775 struct dwarf2_cu *cu)
6776{
15d034d0 6777 const char *grandparent_scope;
72bf9492 6778 struct partial_die_info *parent, *real_pdi;
91c24f0a 6779
72bf9492
DJ
6780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6781 then this means the parent of the specification DIE. */
6782
6783 real_pdi = pdi;
72bf9492 6784 while (real_pdi->has_specification)
36586728
TT
6785 real_pdi = find_partial_die (real_pdi->spec_offset,
6786 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6787
6788 parent = real_pdi->die_parent;
6789 if (parent == NULL)
6790 return NULL;
6791
6792 if (parent->scope_set)
6793 return parent->scope;
6794
6795 fixup_partial_die (parent, cu);
6796
10b3939b 6797 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6798
acebe513
UW
6799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6801 Work around this problem here. */
6802 if (cu->language == language_cplus
6e70227d 6803 && parent->tag == DW_TAG_namespace
acebe513
UW
6804 && strcmp (parent->name, "::") == 0
6805 && grandparent_scope == NULL)
6806 {
6807 parent->scope = NULL;
6808 parent->scope_set = 1;
6809 return NULL;
6810 }
6811
9c6c53f7
SA
6812 if (pdi->tag == DW_TAG_enumerator)
6813 /* Enumerators should not get the name of the enumeration as a prefix. */
6814 parent->scope = grandparent_scope;
6815 else if (parent->tag == DW_TAG_namespace
f55ee35c 6816 || parent->tag == DW_TAG_module
72bf9492
DJ
6817 || parent->tag == DW_TAG_structure_type
6818 || parent->tag == DW_TAG_class_type
680b30c7 6819 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6820 || parent->tag == DW_TAG_union_type
6821 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6822 {
6823 if (grandparent_scope == NULL)
6824 parent->scope = parent->name;
6825 else
3e43a32a
MS
6826 parent->scope = typename_concat (&cu->comp_unit_obstack,
6827 grandparent_scope,
f55ee35c 6828 parent->name, 0, cu);
72bf9492 6829 }
72bf9492
DJ
6830 else
6831 {
6832 /* FIXME drow/2004-04-01: What should we be doing with
6833 function-local names? For partial symbols, we should probably be
6834 ignoring them. */
6835 complaint (&symfile_complaints,
e2e0b3e5 6836 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6837 parent->tag, pdi->offset.sect_off);
72bf9492 6838 parent->scope = grandparent_scope;
c906108c
SS
6839 }
6840
72bf9492
DJ
6841 parent->scope_set = 1;
6842 return parent->scope;
6843}
6844
6845/* Return the fully scoped name associated with PDI, from compilation unit
6846 CU. The result will be allocated with malloc. */
4568ecf9 6847
72bf9492
DJ
6848static char *
6849partial_die_full_name (struct partial_die_info *pdi,
6850 struct dwarf2_cu *cu)
6851{
15d034d0 6852 const char *parent_scope;
72bf9492 6853
98bfdba5
PA
6854 /* If this is a template instantiation, we can not work out the
6855 template arguments from partial DIEs. So, unfortunately, we have
6856 to go through the full DIEs. At least any work we do building
6857 types here will be reused if full symbols are loaded later. */
6858 if (pdi->has_template_arguments)
6859 {
6860 fixup_partial_die (pdi, cu);
6861
6862 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6863 {
6864 struct die_info *die;
6865 struct attribute attr;
6866 struct dwarf2_cu *ref_cu = cu;
6867
b64f50a1 6868 /* DW_FORM_ref_addr is using section offset. */
b4069958 6869 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6870 attr.form = DW_FORM_ref_addr;
4568ecf9 6871 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6872 die = follow_die_ref (NULL, &attr, &ref_cu);
6873
6874 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6875 }
6876 }
6877
72bf9492
DJ
6878 parent_scope = partial_die_parent_scope (pdi, cu);
6879 if (parent_scope == NULL)
6880 return NULL;
6881 else
f55ee35c 6882 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6883}
6884
6885static void
72bf9492 6886add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6887{
e7c27a73 6888 struct objfile *objfile = cu->objfile;
3e29f34a 6889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6890 CORE_ADDR addr = 0;
15d034d0 6891 const char *actual_name = NULL;
e142c38c 6892 CORE_ADDR baseaddr;
15d034d0 6893 char *built_actual_name;
e142c38c
DJ
6894
6895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6896
15d034d0
TT
6897 built_actual_name = partial_die_full_name (pdi, cu);
6898 if (built_actual_name != NULL)
6899 actual_name = built_actual_name;
63d06c5c 6900
72bf9492
DJ
6901 if (actual_name == NULL)
6902 actual_name = pdi->name;
6903
c906108c
SS
6904 switch (pdi->tag)
6905 {
6906 case DW_TAG_subprogram:
3e29f34a 6907 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6908 if (pdi->is_external || cu->language == language_ada)
c906108c 6909 {
2cfa0c8d
JB
6910 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6911 of the global scope. But in Ada, we want to be able to access
6912 nested procedures globally. So all Ada subprograms are stored
6913 in the global scope. */
f47fb265 6914 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6915 built_actual_name != NULL,
f47fb265
MS
6916 VAR_DOMAIN, LOC_BLOCK,
6917 &objfile->global_psymbols,
1762568f 6918 addr, cu->language, objfile);
c906108c
SS
6919 }
6920 else
6921 {
f47fb265 6922 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6923 built_actual_name != NULL,
f47fb265
MS
6924 VAR_DOMAIN, LOC_BLOCK,
6925 &objfile->static_psymbols,
1762568f 6926 addr, cu->language, objfile);
c906108c 6927 }
0c1b455e
TT
6928
6929 if (pdi->main_subprogram && actual_name != NULL)
6930 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 6931 break;
72929c62
JB
6932 case DW_TAG_constant:
6933 {
6934 struct psymbol_allocation_list *list;
6935
6936 if (pdi->is_external)
6937 list = &objfile->global_psymbols;
6938 else
6939 list = &objfile->static_psymbols;
f47fb265 6940 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6941 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6942 list, 0, cu->language, objfile);
72929c62
JB
6943 }
6944 break;
c906108c 6945 case DW_TAG_variable:
95554aad
TT
6946 if (pdi->d.locdesc)
6947 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6948
95554aad 6949 if (pdi->d.locdesc
caac4577
JG
6950 && addr == 0
6951 && !dwarf2_per_objfile->has_section_at_zero)
6952 {
6953 /* A global or static variable may also have been stripped
6954 out by the linker if unused, in which case its address
6955 will be nullified; do not add such variables into partial
6956 symbol table then. */
6957 }
6958 else if (pdi->is_external)
c906108c
SS
6959 {
6960 /* Global Variable.
6961 Don't enter into the minimal symbol tables as there is
6962 a minimal symbol table entry from the ELF symbols already.
6963 Enter into partial symbol table if it has a location
6964 descriptor or a type.
6965 If the location descriptor is missing, new_symbol will create
6966 a LOC_UNRESOLVED symbol, the address of the variable will then
6967 be determined from the minimal symbol table whenever the variable
6968 is referenced.
6969 The address for the partial symbol table entry is not
6970 used by GDB, but it comes in handy for debugging partial symbol
6971 table building. */
6972
95554aad 6973 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6974 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6975 built_actual_name != NULL,
f47fb265
MS
6976 VAR_DOMAIN, LOC_STATIC,
6977 &objfile->global_psymbols,
1762568f 6978 addr + baseaddr,
f47fb265 6979 cu->language, objfile);
c906108c
SS
6980 }
6981 else
6982 {
ff908ebf
AW
6983 int has_loc = pdi->d.locdesc != NULL;
6984
6985 /* Static Variable. Skip symbols whose value we cannot know (those
6986 without location descriptors or constant values). */
6987 if (!has_loc && !pdi->has_const_value)
decbce07 6988 {
15d034d0 6989 xfree (built_actual_name);
decbce07
MS
6990 return;
6991 }
ff908ebf 6992
f47fb265 6993 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6994 built_actual_name != NULL,
f47fb265
MS
6995 VAR_DOMAIN, LOC_STATIC,
6996 &objfile->static_psymbols,
ff908ebf 6997 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6998 cu->language, objfile);
c906108c
SS
6999 }
7000 break;
7001 case DW_TAG_typedef:
7002 case DW_TAG_base_type:
a02abb62 7003 case DW_TAG_subrange_type:
38d518c9 7004 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7005 built_actual_name != NULL,
176620f1 7006 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7007 &objfile->static_psymbols,
1762568f 7008 0, cu->language, objfile);
c906108c 7009 break;
74921315 7010 case DW_TAG_imported_declaration:
72bf9492
DJ
7011 case DW_TAG_namespace:
7012 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7013 built_actual_name != NULL,
72bf9492
DJ
7014 VAR_DOMAIN, LOC_TYPEDEF,
7015 &objfile->global_psymbols,
1762568f 7016 0, cu->language, objfile);
72bf9492 7017 break;
530e8392
KB
7018 case DW_TAG_module:
7019 add_psymbol_to_list (actual_name, strlen (actual_name),
7020 built_actual_name != NULL,
7021 MODULE_DOMAIN, LOC_TYPEDEF,
7022 &objfile->global_psymbols,
1762568f 7023 0, cu->language, objfile);
530e8392 7024 break;
c906108c 7025 case DW_TAG_class_type:
680b30c7 7026 case DW_TAG_interface_type:
c906108c
SS
7027 case DW_TAG_structure_type:
7028 case DW_TAG_union_type:
7029 case DW_TAG_enumeration_type:
fa4028e9
JB
7030 /* Skip external references. The DWARF standard says in the section
7031 about "Structure, Union, and Class Type Entries": "An incomplete
7032 structure, union or class type is represented by a structure,
7033 union or class entry that does not have a byte size attribute
7034 and that has a DW_AT_declaration attribute." */
7035 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7036 {
15d034d0 7037 xfree (built_actual_name);
decbce07
MS
7038 return;
7039 }
fa4028e9 7040
63d06c5c
DC
7041 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7042 static vs. global. */
38d518c9 7043 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7044 built_actual_name != NULL,
176620f1 7045 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7046 cu->language == language_cplus
63d06c5c
DC
7047 ? &objfile->global_psymbols
7048 : &objfile->static_psymbols,
1762568f 7049 0, cu->language, objfile);
c906108c 7050
c906108c
SS
7051 break;
7052 case DW_TAG_enumerator:
38d518c9 7053 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7054 built_actual_name != NULL,
176620f1 7055 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7056 cu->language == language_cplus
f6fe98ef
DJ
7057 ? &objfile->global_psymbols
7058 : &objfile->static_psymbols,
1762568f 7059 0, cu->language, objfile);
c906108c
SS
7060 break;
7061 default:
7062 break;
7063 }
5c4e30ca 7064
15d034d0 7065 xfree (built_actual_name);
c906108c
SS
7066}
7067
5c4e30ca
DC
7068/* Read a partial die corresponding to a namespace; also, add a symbol
7069 corresponding to that namespace to the symbol table. NAMESPACE is
7070 the name of the enclosing namespace. */
91c24f0a 7071
72bf9492
DJ
7072static void
7073add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7074 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7075 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7076{
72bf9492 7077 /* Add a symbol for the namespace. */
e7c27a73 7078
72bf9492 7079 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7080
7081 /* Now scan partial symbols in that namespace. */
7082
91c24f0a 7083 if (pdi->has_children)
cdc07690 7084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7085}
7086
5d7cb8df
JK
7087/* Read a partial die corresponding to a Fortran module. */
7088
7089static void
7090add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7091 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7092{
530e8392
KB
7093 /* Add a symbol for the namespace. */
7094
7095 add_partial_symbol (pdi, cu);
7096
f55ee35c 7097 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7098
7099 if (pdi->has_children)
cdc07690 7100 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7101}
7102
bc30ff58
JB
7103/* Read a partial die corresponding to a subprogram and create a partial
7104 symbol for that subprogram. When the CU language allows it, this
7105 routine also defines a partial symbol for each nested subprogram
cdc07690 7106 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7107 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7108 and highest PC values found in PDI.
6e70227d 7109
cdc07690
YQ
7110 PDI may also be a lexical block, in which case we simply search
7111 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7112 Again, this is only performed when the CU language allows this
7113 type of definitions. */
7114
7115static void
7116add_partial_subprogram (struct partial_die_info *pdi,
7117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7118 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7119{
7120 if (pdi->tag == DW_TAG_subprogram)
7121 {
7122 if (pdi->has_pc_info)
7123 {
7124 if (pdi->lowpc < *lowpc)
7125 *lowpc = pdi->lowpc;
7126 if (pdi->highpc > *highpc)
7127 *highpc = pdi->highpc;
cdc07690 7128 if (set_addrmap)
5734ee8b 7129 {
5734ee8b 7130 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7132 CORE_ADDR baseaddr;
7133 CORE_ADDR highpc;
7134 CORE_ADDR lowpc;
5734ee8b
DJ
7135
7136 baseaddr = ANOFFSET (objfile->section_offsets,
7137 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7138 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7139 pdi->lowpc + baseaddr);
7140 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->highpc + baseaddr);
7142 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7143 cu->per_cu->v.psymtab);
5734ee8b 7144 }
481860b3
GB
7145 }
7146
7147 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7148 {
bc30ff58 7149 if (!pdi->is_declaration)
e8d05480
JB
7150 /* Ignore subprogram DIEs that do not have a name, they are
7151 illegal. Do not emit a complaint at this point, we will
7152 do so when we convert this psymtab into a symtab. */
7153 if (pdi->name)
7154 add_partial_symbol (pdi, cu);
bc30ff58
JB
7155 }
7156 }
6e70227d 7157
bc30ff58
JB
7158 if (! pdi->has_children)
7159 return;
7160
7161 if (cu->language == language_ada)
7162 {
7163 pdi = pdi->die_child;
7164 while (pdi != NULL)
7165 {
7166 fixup_partial_die (pdi, cu);
7167 if (pdi->tag == DW_TAG_subprogram
7168 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7169 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7170 pdi = pdi->die_sibling;
7171 }
7172 }
7173}
7174
91c24f0a
DC
7175/* Read a partial die corresponding to an enumeration type. */
7176
72bf9492
DJ
7177static void
7178add_partial_enumeration (struct partial_die_info *enum_pdi,
7179 struct dwarf2_cu *cu)
91c24f0a 7180{
72bf9492 7181 struct partial_die_info *pdi;
91c24f0a
DC
7182
7183 if (enum_pdi->name != NULL)
72bf9492
DJ
7184 add_partial_symbol (enum_pdi, cu);
7185
7186 pdi = enum_pdi->die_child;
7187 while (pdi)
91c24f0a 7188 {
72bf9492 7189 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7190 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7191 else
72bf9492
DJ
7192 add_partial_symbol (pdi, cu);
7193 pdi = pdi->die_sibling;
91c24f0a 7194 }
91c24f0a
DC
7195}
7196
6caca83c
CC
7197/* Return the initial uleb128 in the die at INFO_PTR. */
7198
7199static unsigned int
d521ce57 7200peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7201{
7202 unsigned int bytes_read;
7203
7204 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7205}
7206
4bb7a0a7
DJ
7207/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7208 Return the corresponding abbrev, or NULL if the number is zero (indicating
7209 an empty DIE). In either case *BYTES_READ will be set to the length of
7210 the initial number. */
7211
7212static struct abbrev_info *
d521ce57 7213peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7214 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7215{
7216 bfd *abfd = cu->objfile->obfd;
7217 unsigned int abbrev_number;
7218 struct abbrev_info *abbrev;
7219
7220 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7221
7222 if (abbrev_number == 0)
7223 return NULL;
7224
433df2d4 7225 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7226 if (!abbrev)
7227 {
422b9917
DE
7228 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7229 " at offset 0x%x [in module %s]"),
7230 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7231 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7232 }
7233
7234 return abbrev;
7235}
7236
93311388
DE
7237/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7238 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7239 DIE. Any children of the skipped DIEs will also be skipped. */
7240
d521ce57
TT
7241static const gdb_byte *
7242skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7243{
dee91e82 7244 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7245 struct abbrev_info *abbrev;
7246 unsigned int bytes_read;
7247
7248 while (1)
7249 {
7250 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7251 if (abbrev == NULL)
7252 return info_ptr + bytes_read;
7253 else
dee91e82 7254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7255 }
7256}
7257
93311388
DE
7258/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7259 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7260 abbrev corresponding to that skipped uleb128 should be passed in
7261 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7262 children. */
7263
d521ce57
TT
7264static const gdb_byte *
7265skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7266 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7267{
7268 unsigned int bytes_read;
7269 struct attribute attr;
dee91e82
DE
7270 bfd *abfd = reader->abfd;
7271 struct dwarf2_cu *cu = reader->cu;
d521ce57 7272 const gdb_byte *buffer = reader->buffer;
f664829e 7273 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7274 unsigned int form, i;
7275
7276 for (i = 0; i < abbrev->num_attrs; i++)
7277 {
7278 /* The only abbrev we care about is DW_AT_sibling. */
7279 if (abbrev->attrs[i].name == DW_AT_sibling)
7280 {
dee91e82 7281 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7282 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7283 complaint (&symfile_complaints,
7284 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7285 else
b9502d3f
WN
7286 {
7287 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7288 const gdb_byte *sibling_ptr = buffer + off;
7289
7290 if (sibling_ptr < info_ptr)
7291 complaint (&symfile_complaints,
7292 _("DW_AT_sibling points backwards"));
22869d73
KS
7293 else if (sibling_ptr > reader->buffer_end)
7294 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7295 else
7296 return sibling_ptr;
7297 }
4bb7a0a7
DJ
7298 }
7299
7300 /* If it isn't DW_AT_sibling, skip this attribute. */
7301 form = abbrev->attrs[i].form;
7302 skip_attribute:
7303 switch (form)
7304 {
4bb7a0a7 7305 case DW_FORM_ref_addr:
ae411497
TT
7306 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7307 and later it is offset sized. */
7308 if (cu->header.version == 2)
7309 info_ptr += cu->header.addr_size;
7310 else
7311 info_ptr += cu->header.offset_size;
7312 break;
36586728
TT
7313 case DW_FORM_GNU_ref_alt:
7314 info_ptr += cu->header.offset_size;
7315 break;
ae411497 7316 case DW_FORM_addr:
4bb7a0a7
DJ
7317 info_ptr += cu->header.addr_size;
7318 break;
7319 case DW_FORM_data1:
7320 case DW_FORM_ref1:
7321 case DW_FORM_flag:
7322 info_ptr += 1;
7323 break;
2dc7f7b3
TT
7324 case DW_FORM_flag_present:
7325 break;
4bb7a0a7
DJ
7326 case DW_FORM_data2:
7327 case DW_FORM_ref2:
7328 info_ptr += 2;
7329 break;
7330 case DW_FORM_data4:
7331 case DW_FORM_ref4:
7332 info_ptr += 4;
7333 break;
7334 case DW_FORM_data8:
7335 case DW_FORM_ref8:
55f1336d 7336 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7337 info_ptr += 8;
7338 break;
7339 case DW_FORM_string:
9b1c24c8 7340 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7341 info_ptr += bytes_read;
7342 break;
2dc7f7b3 7343 case DW_FORM_sec_offset:
4bb7a0a7 7344 case DW_FORM_strp:
36586728 7345 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7346 info_ptr += cu->header.offset_size;
7347 break;
2dc7f7b3 7348 case DW_FORM_exprloc:
4bb7a0a7
DJ
7349 case DW_FORM_block:
7350 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7351 info_ptr += bytes_read;
7352 break;
7353 case DW_FORM_block1:
7354 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7355 break;
7356 case DW_FORM_block2:
7357 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7358 break;
7359 case DW_FORM_block4:
7360 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7361 break;
7362 case DW_FORM_sdata:
7363 case DW_FORM_udata:
7364 case DW_FORM_ref_udata:
3019eac3
DE
7365 case DW_FORM_GNU_addr_index:
7366 case DW_FORM_GNU_str_index:
d521ce57 7367 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7368 break;
7369 case DW_FORM_indirect:
7370 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7371 info_ptr += bytes_read;
7372 /* We need to continue parsing from here, so just go back to
7373 the top. */
7374 goto skip_attribute;
7375
7376 default:
3e43a32a
MS
7377 error (_("Dwarf Error: Cannot handle %s "
7378 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7379 dwarf_form_name (form),
7380 bfd_get_filename (abfd));
7381 }
7382 }
7383
7384 if (abbrev->has_children)
dee91e82 7385 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7386 else
7387 return info_ptr;
7388}
7389
93311388 7390/* Locate ORIG_PDI's sibling.
dee91e82 7391 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7392
d521ce57 7393static const gdb_byte *
dee91e82
DE
7394locate_pdi_sibling (const struct die_reader_specs *reader,
7395 struct partial_die_info *orig_pdi,
d521ce57 7396 const gdb_byte *info_ptr)
91c24f0a
DC
7397{
7398 /* Do we know the sibling already? */
72bf9492 7399
91c24f0a
DC
7400 if (orig_pdi->sibling)
7401 return orig_pdi->sibling;
7402
7403 /* Are there any children to deal with? */
7404
7405 if (!orig_pdi->has_children)
7406 return info_ptr;
7407
4bb7a0a7 7408 /* Skip the children the long way. */
91c24f0a 7409
dee91e82 7410 return skip_children (reader, info_ptr);
91c24f0a
DC
7411}
7412
257e7a09 7413/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7414 not NULL. */
c906108c
SS
7415
7416static void
257e7a09
YQ
7417dwarf2_read_symtab (struct partial_symtab *self,
7418 struct objfile *objfile)
c906108c 7419{
257e7a09 7420 if (self->readin)
c906108c 7421 {
442e4d9c 7422 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7423 self->filename);
442e4d9c
YQ
7424 }
7425 else
7426 {
7427 if (info_verbose)
c906108c 7428 {
442e4d9c 7429 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7430 self->filename);
442e4d9c 7431 gdb_flush (gdb_stdout);
c906108c 7432 }
c906108c 7433
442e4d9c 7434 /* Restore our global data. */
9a3c8263
SM
7435 dwarf2_per_objfile
7436 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7437 dwarf2_objfile_data_key);
10b3939b 7438
442e4d9c
YQ
7439 /* If this psymtab is constructed from a debug-only objfile, the
7440 has_section_at_zero flag will not necessarily be correct. We
7441 can get the correct value for this flag by looking at the data
7442 associated with the (presumably stripped) associated objfile. */
7443 if (objfile->separate_debug_objfile_backlink)
7444 {
7445 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7446 = ((struct dwarf2_per_objfile *)
7447 objfile_data (objfile->separate_debug_objfile_backlink,
7448 dwarf2_objfile_data_key));
9a619af0 7449
442e4d9c
YQ
7450 dwarf2_per_objfile->has_section_at_zero
7451 = dpo_backlink->has_section_at_zero;
7452 }
b2ab525c 7453
442e4d9c 7454 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7455
257e7a09 7456 psymtab_to_symtab_1 (self);
c906108c 7457
442e4d9c
YQ
7458 /* Finish up the debug error message. */
7459 if (info_verbose)
7460 printf_filtered (_("done.\n"));
c906108c 7461 }
95554aad
TT
7462
7463 process_cu_includes ();
c906108c 7464}
9cdd5dbd
DE
7465\f
7466/* Reading in full CUs. */
c906108c 7467
10b3939b
DJ
7468/* Add PER_CU to the queue. */
7469
7470static void
95554aad
TT
7471queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7472 enum language pretend_language)
10b3939b
DJ
7473{
7474 struct dwarf2_queue_item *item;
7475
7476 per_cu->queued = 1;
8d749320 7477 item = XNEW (struct dwarf2_queue_item);
10b3939b 7478 item->per_cu = per_cu;
95554aad 7479 item->pretend_language = pretend_language;
10b3939b
DJ
7480 item->next = NULL;
7481
7482 if (dwarf2_queue == NULL)
7483 dwarf2_queue = item;
7484 else
7485 dwarf2_queue_tail->next = item;
7486
7487 dwarf2_queue_tail = item;
7488}
7489
89e63ee4
DE
7490/* If PER_CU is not yet queued, add it to the queue.
7491 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7492 dependency.
0907af0c 7493 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7494 meaning either PER_CU is already queued or it is already loaded.
7495
7496 N.B. There is an invariant here that if a CU is queued then it is loaded.
7497 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7498
7499static int
89e63ee4 7500maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7501 struct dwarf2_per_cu_data *per_cu,
7502 enum language pretend_language)
7503{
7504 /* We may arrive here during partial symbol reading, if we need full
7505 DIEs to process an unusual case (e.g. template arguments). Do
7506 not queue PER_CU, just tell our caller to load its DIEs. */
7507 if (dwarf2_per_objfile->reading_partial_symbols)
7508 {
7509 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7510 return 1;
7511 return 0;
7512 }
7513
7514 /* Mark the dependence relation so that we don't flush PER_CU
7515 too early. */
89e63ee4
DE
7516 if (dependent_cu != NULL)
7517 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7518
7519 /* If it's already on the queue, we have nothing to do. */
7520 if (per_cu->queued)
7521 return 0;
7522
7523 /* If the compilation unit is already loaded, just mark it as
7524 used. */
7525 if (per_cu->cu != NULL)
7526 {
7527 per_cu->cu->last_used = 0;
7528 return 0;
7529 }
7530
7531 /* Add it to the queue. */
7532 queue_comp_unit (per_cu, pretend_language);
7533
7534 return 1;
7535}
7536
10b3939b
DJ
7537/* Process the queue. */
7538
7539static void
a0f42c21 7540process_queue (void)
10b3939b
DJ
7541{
7542 struct dwarf2_queue_item *item, *next_item;
7543
b4f54984 7544 if (dwarf_read_debug)
45cfd468
DE
7545 {
7546 fprintf_unfiltered (gdb_stdlog,
7547 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7548 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7549 }
7550
03dd20cc
DJ
7551 /* The queue starts out with one item, but following a DIE reference
7552 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7553 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7554 {
cc12ce38
DE
7555 if ((dwarf2_per_objfile->using_index
7556 ? !item->per_cu->v.quick->compunit_symtab
7557 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7558 /* Skip dummy CUs. */
7559 && item->per_cu->cu != NULL)
f4dc4d17
DE
7560 {
7561 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7562 unsigned int debug_print_threshold;
247f5c4f 7563 char buf[100];
f4dc4d17 7564
247f5c4f 7565 if (per_cu->is_debug_types)
f4dc4d17 7566 {
247f5c4f
DE
7567 struct signatured_type *sig_type =
7568 (struct signatured_type *) per_cu;
7569
7570 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7571 hex_string (sig_type->signature),
7572 per_cu->offset.sect_off);
7573 /* There can be 100s of TUs.
7574 Only print them in verbose mode. */
7575 debug_print_threshold = 2;
f4dc4d17 7576 }
247f5c4f 7577 else
73be47f5
DE
7578 {
7579 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7580 debug_print_threshold = 1;
7581 }
247f5c4f 7582
b4f54984 7583 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7584 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7585
7586 if (per_cu->is_debug_types)
7587 process_full_type_unit (per_cu, item->pretend_language);
7588 else
7589 process_full_comp_unit (per_cu, item->pretend_language);
7590
b4f54984 7591 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7592 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7593 }
10b3939b
DJ
7594
7595 item->per_cu->queued = 0;
7596 next_item = item->next;
7597 xfree (item);
7598 }
7599
7600 dwarf2_queue_tail = NULL;
45cfd468 7601
b4f54984 7602 if (dwarf_read_debug)
45cfd468
DE
7603 {
7604 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7605 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7606 }
10b3939b
DJ
7607}
7608
7609/* Free all allocated queue entries. This function only releases anything if
7610 an error was thrown; if the queue was processed then it would have been
7611 freed as we went along. */
7612
7613static void
7614dwarf2_release_queue (void *dummy)
7615{
7616 struct dwarf2_queue_item *item, *last;
7617
7618 item = dwarf2_queue;
7619 while (item)
7620 {
7621 /* Anything still marked queued is likely to be in an
7622 inconsistent state, so discard it. */
7623 if (item->per_cu->queued)
7624 {
7625 if (item->per_cu->cu != NULL)
dee91e82 7626 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7627 item->per_cu->queued = 0;
7628 }
7629
7630 last = item;
7631 item = item->next;
7632 xfree (last);
7633 }
7634
7635 dwarf2_queue = dwarf2_queue_tail = NULL;
7636}
7637
7638/* Read in full symbols for PST, and anything it depends on. */
7639
c906108c 7640static void
fba45db2 7641psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7642{
10b3939b 7643 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7644 int i;
7645
95554aad
TT
7646 if (pst->readin)
7647 return;
7648
aaa75496 7649 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7650 if (!pst->dependencies[i]->readin
7651 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7652 {
7653 /* Inform about additional files that need to be read in. */
7654 if (info_verbose)
7655 {
a3f17187 7656 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7657 fputs_filtered (" ", gdb_stdout);
7658 wrap_here ("");
7659 fputs_filtered ("and ", gdb_stdout);
7660 wrap_here ("");
7661 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7662 wrap_here (""); /* Flush output. */
aaa75496
JB
7663 gdb_flush (gdb_stdout);
7664 }
7665 psymtab_to_symtab_1 (pst->dependencies[i]);
7666 }
7667
9a3c8263 7668 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7669
7670 if (per_cu == NULL)
aaa75496
JB
7671 {
7672 /* It's an include file, no symbols to read for it.
7673 Everything is in the parent symtab. */
7674 pst->readin = 1;
7675 return;
7676 }
c906108c 7677
a0f42c21 7678 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7679}
7680
dee91e82
DE
7681/* Trivial hash function for die_info: the hash value of a DIE
7682 is its offset in .debug_info for this objfile. */
10b3939b 7683
dee91e82
DE
7684static hashval_t
7685die_hash (const void *item)
10b3939b 7686{
9a3c8263 7687 const struct die_info *die = (const struct die_info *) item;
6502dd73 7688
dee91e82
DE
7689 return die->offset.sect_off;
7690}
63d06c5c 7691
dee91e82
DE
7692/* Trivial comparison function for die_info structures: two DIEs
7693 are equal if they have the same offset. */
98bfdba5 7694
dee91e82
DE
7695static int
7696die_eq (const void *item_lhs, const void *item_rhs)
7697{
9a3c8263
SM
7698 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7699 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7700
dee91e82
DE
7701 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7702}
c906108c 7703
dee91e82
DE
7704/* die_reader_func for load_full_comp_unit.
7705 This is identical to read_signatured_type_reader,
7706 but is kept separate for now. */
c906108c 7707
dee91e82
DE
7708static void
7709load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7710 const gdb_byte *info_ptr,
dee91e82
DE
7711 struct die_info *comp_unit_die,
7712 int has_children,
7713 void *data)
7714{
7715 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7716 enum language *language_ptr = (enum language *) data;
6caca83c 7717
dee91e82
DE
7718 gdb_assert (cu->die_hash == NULL);
7719 cu->die_hash =
7720 htab_create_alloc_ex (cu->header.length / 12,
7721 die_hash,
7722 die_eq,
7723 NULL,
7724 &cu->comp_unit_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
e142c38c 7727
dee91e82
DE
7728 if (has_children)
7729 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7730 &info_ptr, comp_unit_die);
7731 cu->dies = comp_unit_die;
7732 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7733
7734 /* We try not to read any attributes in this function, because not
9cdd5dbd 7735 all CUs needed for references have been loaded yet, and symbol
10b3939b 7736 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7737 or we won't be able to build types correctly.
7738 Similarly, if we do not read the producer, we can not apply
7739 producer-specific interpretation. */
95554aad 7740 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7741}
10b3939b 7742
dee91e82 7743/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7744
dee91e82 7745static void
95554aad
TT
7746load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7747 enum language pretend_language)
dee91e82 7748{
3019eac3 7749 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7750
f4dc4d17
DE
7751 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7752 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7753}
7754
3da10d80
KS
7755/* Add a DIE to the delayed physname list. */
7756
7757static void
7758add_to_method_list (struct type *type, int fnfield_index, int index,
7759 const char *name, struct die_info *die,
7760 struct dwarf2_cu *cu)
7761{
7762 struct delayed_method_info mi;
7763 mi.type = type;
7764 mi.fnfield_index = fnfield_index;
7765 mi.index = index;
7766 mi.name = name;
7767 mi.die = die;
7768 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7769}
7770
7771/* A cleanup for freeing the delayed method list. */
7772
7773static void
7774free_delayed_list (void *ptr)
7775{
7776 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7777 if (cu->method_list != NULL)
7778 {
7779 VEC_free (delayed_method_info, cu->method_list);
7780 cu->method_list = NULL;
7781 }
7782}
7783
7784/* Compute the physnames of any methods on the CU's method list.
7785
7786 The computation of method physnames is delayed in order to avoid the
7787 (bad) condition that one of the method's formal parameters is of an as yet
7788 incomplete type. */
7789
7790static void
7791compute_delayed_physnames (struct dwarf2_cu *cu)
7792{
7793 int i;
7794 struct delayed_method_info *mi;
7795 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7796 {
1d06ead6 7797 const char *physname;
3da10d80
KS
7798 struct fn_fieldlist *fn_flp
7799 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7800 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7801 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7802 = physname ? physname : "";
3da10d80
KS
7803 }
7804}
7805
a766d390
DE
7806/* Go objects should be embedded in a DW_TAG_module DIE,
7807 and it's not clear if/how imported objects will appear.
7808 To keep Go support simple until that's worked out,
7809 go back through what we've read and create something usable.
7810 We could do this while processing each DIE, and feels kinda cleaner,
7811 but that way is more invasive.
7812 This is to, for example, allow the user to type "p var" or "b main"
7813 without having to specify the package name, and allow lookups
7814 of module.object to work in contexts that use the expression
7815 parser. */
7816
7817static void
7818fixup_go_packaging (struct dwarf2_cu *cu)
7819{
7820 char *package_name = NULL;
7821 struct pending *list;
7822 int i;
7823
7824 for (list = global_symbols; list != NULL; list = list->next)
7825 {
7826 for (i = 0; i < list->nsyms; ++i)
7827 {
7828 struct symbol *sym = list->symbol[i];
7829
7830 if (SYMBOL_LANGUAGE (sym) == language_go
7831 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7832 {
7833 char *this_package_name = go_symbol_package_name (sym);
7834
7835 if (this_package_name == NULL)
7836 continue;
7837 if (package_name == NULL)
7838 package_name = this_package_name;
7839 else
7840 {
7841 if (strcmp (package_name, this_package_name) != 0)
7842 complaint (&symfile_complaints,
7843 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7844 (symbol_symtab (sym) != NULL
7845 ? symtab_to_filename_for_display
7846 (symbol_symtab (sym))
4262abfb 7847 : objfile_name (cu->objfile)),
a766d390
DE
7848 this_package_name, package_name);
7849 xfree (this_package_name);
7850 }
7851 }
7852 }
7853 }
7854
7855 if (package_name != NULL)
7856 {
7857 struct objfile *objfile = cu->objfile;
34a68019 7858 const char *saved_package_name
224c3ddb
SM
7859 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7860 package_name,
7861 strlen (package_name));
19f392bc
UW
7862 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7863 saved_package_name);
a766d390
DE
7864 struct symbol *sym;
7865
7866 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7867
e623cf5d 7868 sym = allocate_symbol (objfile);
f85f34ed 7869 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7870 SYMBOL_SET_NAMES (sym, saved_package_name,
7871 strlen (saved_package_name), 0, objfile);
a766d390
DE
7872 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7873 e.g., "main" finds the "main" module and not C's main(). */
7874 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7875 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7876 SYMBOL_TYPE (sym) = type;
7877
7878 add_symbol_to_list (sym, &global_symbols);
7879
7880 xfree (package_name);
7881 }
7882}
7883
95554aad
TT
7884/* Return the symtab for PER_CU. This works properly regardless of
7885 whether we're using the index or psymtabs. */
7886
43f3e411
DE
7887static struct compunit_symtab *
7888get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7889{
7890 return (dwarf2_per_objfile->using_index
43f3e411
DE
7891 ? per_cu->v.quick->compunit_symtab
7892 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7893}
7894
7895/* A helper function for computing the list of all symbol tables
7896 included by PER_CU. */
7897
7898static void
43f3e411 7899recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7900 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7901 struct dwarf2_per_cu_data *per_cu,
43f3e411 7902 struct compunit_symtab *immediate_parent)
95554aad
TT
7903{
7904 void **slot;
7905 int ix;
43f3e411 7906 struct compunit_symtab *cust;
95554aad
TT
7907 struct dwarf2_per_cu_data *iter;
7908
7909 slot = htab_find_slot (all_children, per_cu, INSERT);
7910 if (*slot != NULL)
7911 {
7912 /* This inclusion and its children have been processed. */
7913 return;
7914 }
7915
7916 *slot = per_cu;
7917 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7918 cust = get_compunit_symtab (per_cu);
7919 if (cust != NULL)
ec94af83
DE
7920 {
7921 /* If this is a type unit only add its symbol table if we haven't
7922 seen it yet (type unit per_cu's can share symtabs). */
7923 if (per_cu->is_debug_types)
7924 {
43f3e411 7925 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7926 if (*slot == NULL)
7927 {
43f3e411
DE
7928 *slot = cust;
7929 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7930 if (cust->user == NULL)
7931 cust->user = immediate_parent;
ec94af83
DE
7932 }
7933 }
7934 else
f9125b6c 7935 {
43f3e411
DE
7936 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7937 if (cust->user == NULL)
7938 cust->user = immediate_parent;
f9125b6c 7939 }
ec94af83 7940 }
95554aad
TT
7941
7942 for (ix = 0;
796a7ff8 7943 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7944 ++ix)
ec94af83
DE
7945 {
7946 recursively_compute_inclusions (result, all_children,
43f3e411 7947 all_type_symtabs, iter, cust);
ec94af83 7948 }
95554aad
TT
7949}
7950
43f3e411 7951/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7952 PER_CU. */
7953
7954static void
43f3e411 7955compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7956{
f4dc4d17
DE
7957 gdb_assert (! per_cu->is_debug_types);
7958
796a7ff8 7959 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7960 {
7961 int ix, len;
ec94af83 7962 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7963 struct compunit_symtab *compunit_symtab_iter;
7964 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7965 htab_t all_children, all_type_symtabs;
43f3e411 7966 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7967
7968 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7969 if (cust == NULL)
95554aad
TT
7970 return;
7971
7972 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7973 NULL, xcalloc, xfree);
ec94af83
DE
7974 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
95554aad
TT
7976
7977 for (ix = 0;
796a7ff8 7978 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7979 ix, per_cu_iter);
95554aad 7980 ++ix)
ec94af83
DE
7981 {
7982 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7983 all_type_symtabs, per_cu_iter,
43f3e411 7984 cust);
ec94af83 7985 }
95554aad 7986
ec94af83 7987 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7988 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7989 cust->includes
8d749320
SM
7990 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7991 struct compunit_symtab *, len + 1);
95554aad 7992 for (ix = 0;
43f3e411
DE
7993 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7994 compunit_symtab_iter);
95554aad 7995 ++ix)
43f3e411
DE
7996 cust->includes[ix] = compunit_symtab_iter;
7997 cust->includes[len] = NULL;
95554aad 7998
43f3e411 7999 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8000 htab_delete (all_children);
ec94af83 8001 htab_delete (all_type_symtabs);
95554aad
TT
8002 }
8003}
8004
8005/* Compute the 'includes' field for the symtabs of all the CUs we just
8006 read. */
8007
8008static void
8009process_cu_includes (void)
8010{
8011 int ix;
8012 struct dwarf2_per_cu_data *iter;
8013
8014 for (ix = 0;
8015 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8016 ix, iter);
8017 ++ix)
f4dc4d17
DE
8018 {
8019 if (! iter->is_debug_types)
43f3e411 8020 compute_compunit_symtab_includes (iter);
f4dc4d17 8021 }
95554aad
TT
8022
8023 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8024}
8025
9cdd5dbd 8026/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8027 already been loaded into memory. */
8028
8029static void
95554aad
TT
8030process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8031 enum language pretend_language)
10b3939b 8032{
10b3939b 8033 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8034 struct objfile *objfile = per_cu->objfile;
3e29f34a 8035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8036 CORE_ADDR lowpc, highpc;
43f3e411 8037 struct compunit_symtab *cust;
3da10d80 8038 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8039 CORE_ADDR baseaddr;
4359dff1 8040 struct block *static_block;
3e29f34a 8041 CORE_ADDR addr;
10b3939b
DJ
8042
8043 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8044
10b3939b
DJ
8045 buildsym_init ();
8046 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8047 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8048
8049 cu->list_in_scope = &file_symbols;
c906108c 8050
95554aad
TT
8051 cu->language = pretend_language;
8052 cu->language_defn = language_def (cu->language);
8053
c906108c 8054 /* Do line number decoding in read_file_scope () */
10b3939b 8055 process_die (cu->dies, cu);
c906108c 8056
a766d390
DE
8057 /* For now fudge the Go package. */
8058 if (cu->language == language_go)
8059 fixup_go_packaging (cu);
8060
3da10d80
KS
8061 /* Now that we have processed all the DIEs in the CU, all the types
8062 should be complete, and it should now be safe to compute all of the
8063 physnames. */
8064 compute_delayed_physnames (cu);
8065 do_cleanups (delayed_list_cleanup);
8066
fae299cd
DC
8067 /* Some compilers don't define a DW_AT_high_pc attribute for the
8068 compilation unit. If the DW_AT_high_pc is missing, synthesize
8069 it, by scanning the DIE's below the compilation unit. */
10b3939b 8070 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8071
3e29f34a
MR
8072 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8073 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8074
8075 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8076 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8077 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8078 addrmap to help ensure it has an accurate map of pc values belonging to
8079 this comp unit. */
8080 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8081
43f3e411
DE
8082 cust = end_symtab_from_static_block (static_block,
8083 SECT_OFF_TEXT (objfile), 0);
c906108c 8084
43f3e411 8085 if (cust != NULL)
c906108c 8086 {
df15bd07 8087 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8088
8be455d7
JK
8089 /* Set symtab language to language from DW_AT_language. If the
8090 compilation is from a C file generated by language preprocessors, do
8091 not set the language if it was already deduced by start_subfile. */
43f3e411 8092 if (!(cu->language == language_c
40e3ad0e 8093 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8094 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8095
8096 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8097 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8098 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8099 there were bugs in prologue debug info, fixed later in GCC-4.5
8100 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8101
8102 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8103 needed, it would be wrong due to missing DW_AT_producer there.
8104
8105 Still one can confuse GDB by using non-standard GCC compilation
8106 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8107 */
ab260dad 8108 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8109 cust->locations_valid = 1;
e0d00bc7
JK
8110
8111 if (gcc_4_minor >= 5)
43f3e411 8112 cust->epilogue_unwind_valid = 1;
96408a79 8113
43f3e411 8114 cust->call_site_htab = cu->call_site_htab;
c906108c 8115 }
9291a0cd
TT
8116
8117 if (dwarf2_per_objfile->using_index)
43f3e411 8118 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8119 else
8120 {
8121 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8122 pst->compunit_symtab = cust;
9291a0cd
TT
8123 pst->readin = 1;
8124 }
c906108c 8125
95554aad
TT
8126 /* Push it for inclusion processing later. */
8127 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8128
c906108c 8129 do_cleanups (back_to);
f4dc4d17 8130}
45cfd468 8131
f4dc4d17
DE
8132/* Generate full symbol information for type unit PER_CU, whose DIEs have
8133 already been loaded into memory. */
8134
8135static void
8136process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8137 enum language pretend_language)
8138{
8139 struct dwarf2_cu *cu = per_cu->cu;
8140 struct objfile *objfile = per_cu->objfile;
43f3e411 8141 struct compunit_symtab *cust;
f4dc4d17 8142 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8143 struct signatured_type *sig_type;
8144
8145 gdb_assert (per_cu->is_debug_types);
8146 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8147
8148 buildsym_init ();
8149 back_to = make_cleanup (really_free_pendings, NULL);
8150 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8151
8152 cu->list_in_scope = &file_symbols;
8153
8154 cu->language = pretend_language;
8155 cu->language_defn = language_def (cu->language);
8156
8157 /* The symbol tables are set up in read_type_unit_scope. */
8158 process_die (cu->dies, cu);
8159
8160 /* For now fudge the Go package. */
8161 if (cu->language == language_go)
8162 fixup_go_packaging (cu);
8163
8164 /* Now that we have processed all the DIEs in the CU, all the types
8165 should be complete, and it should now be safe to compute all of the
8166 physnames. */
8167 compute_delayed_physnames (cu);
8168 do_cleanups (delayed_list_cleanup);
8169
8170 /* TUs share symbol tables.
8171 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8172 of it with end_expandable_symtab. Otherwise, complete the addition of
8173 this TU's symbols to the existing symtab. */
43f3e411 8174 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8175 {
43f3e411
DE
8176 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8177 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8178
43f3e411 8179 if (cust != NULL)
f4dc4d17
DE
8180 {
8181 /* Set symtab language to language from DW_AT_language. If the
8182 compilation is from a C file generated by language preprocessors,
8183 do not set the language if it was already deduced by
8184 start_subfile. */
43f3e411
DE
8185 if (!(cu->language == language_c
8186 && COMPUNIT_FILETABS (cust)->language != language_c))
8187 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8188 }
8189 }
8190 else
8191 {
0ab9ce85 8192 augment_type_symtab ();
43f3e411 8193 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8194 }
8195
8196 if (dwarf2_per_objfile->using_index)
43f3e411 8197 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8198 else
8199 {
8200 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8201 pst->compunit_symtab = cust;
f4dc4d17 8202 pst->readin = 1;
45cfd468 8203 }
f4dc4d17
DE
8204
8205 do_cleanups (back_to);
c906108c
SS
8206}
8207
95554aad
TT
8208/* Process an imported unit DIE. */
8209
8210static void
8211process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8212{
8213 struct attribute *attr;
8214
f4dc4d17
DE
8215 /* For now we don't handle imported units in type units. */
8216 if (cu->per_cu->is_debug_types)
8217 {
8218 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8219 " supported in type units [in module %s]"),
4262abfb 8220 objfile_name (cu->objfile));
f4dc4d17
DE
8221 }
8222
95554aad
TT
8223 attr = dwarf2_attr (die, DW_AT_import, cu);
8224 if (attr != NULL)
8225 {
8226 struct dwarf2_per_cu_data *per_cu;
95554aad 8227 sect_offset offset;
36586728 8228 int is_dwz;
95554aad
TT
8229
8230 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8231 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8232 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8233
69d751e3 8234 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8235 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8236 load_full_comp_unit (per_cu, cu->language);
8237
796a7ff8 8238 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8239 per_cu);
8240 }
8241}
8242
adde2bff
DE
8243/* Reset the in_process bit of a die. */
8244
8245static void
8246reset_die_in_process (void *arg)
8247{
9a3c8263 8248 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8249
adde2bff
DE
8250 die->in_process = 0;
8251}
8252
c906108c
SS
8253/* Process a die and its children. */
8254
8255static void
e7c27a73 8256process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8257{
adde2bff
DE
8258 struct cleanup *in_process;
8259
8260 /* We should only be processing those not already in process. */
8261 gdb_assert (!die->in_process);
8262
8263 die->in_process = 1;
8264 in_process = make_cleanup (reset_die_in_process,die);
8265
c906108c
SS
8266 switch (die->tag)
8267 {
8268 case DW_TAG_padding:
8269 break;
8270 case DW_TAG_compile_unit:
95554aad 8271 case DW_TAG_partial_unit:
e7c27a73 8272 read_file_scope (die, cu);
c906108c 8273 break;
348e048f
DE
8274 case DW_TAG_type_unit:
8275 read_type_unit_scope (die, cu);
8276 break;
c906108c 8277 case DW_TAG_subprogram:
c906108c 8278 case DW_TAG_inlined_subroutine:
edb3359d 8279 read_func_scope (die, cu);
c906108c
SS
8280 break;
8281 case DW_TAG_lexical_block:
14898363
L
8282 case DW_TAG_try_block:
8283 case DW_TAG_catch_block:
e7c27a73 8284 read_lexical_block_scope (die, cu);
c906108c 8285 break;
96408a79
SA
8286 case DW_TAG_GNU_call_site:
8287 read_call_site_scope (die, cu);
8288 break;
c906108c 8289 case DW_TAG_class_type:
680b30c7 8290 case DW_TAG_interface_type:
c906108c
SS
8291 case DW_TAG_structure_type:
8292 case DW_TAG_union_type:
134d01f1 8293 process_structure_scope (die, cu);
c906108c
SS
8294 break;
8295 case DW_TAG_enumeration_type:
134d01f1 8296 process_enumeration_scope (die, cu);
c906108c 8297 break;
134d01f1 8298
f792889a
DJ
8299 /* These dies have a type, but processing them does not create
8300 a symbol or recurse to process the children. Therefore we can
8301 read them on-demand through read_type_die. */
c906108c 8302 case DW_TAG_subroutine_type:
72019c9c 8303 case DW_TAG_set_type:
c906108c 8304 case DW_TAG_array_type:
c906108c 8305 case DW_TAG_pointer_type:
c906108c 8306 case DW_TAG_ptr_to_member_type:
c906108c 8307 case DW_TAG_reference_type:
c906108c 8308 case DW_TAG_string_type:
c906108c 8309 break;
134d01f1 8310
c906108c 8311 case DW_TAG_base_type:
a02abb62 8312 case DW_TAG_subrange_type:
cb249c71 8313 case DW_TAG_typedef:
134d01f1
DJ
8314 /* Add a typedef symbol for the type definition, if it has a
8315 DW_AT_name. */
f792889a 8316 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8317 break;
c906108c 8318 case DW_TAG_common_block:
e7c27a73 8319 read_common_block (die, cu);
c906108c
SS
8320 break;
8321 case DW_TAG_common_inclusion:
8322 break;
d9fa45fe 8323 case DW_TAG_namespace:
4d4ec4e5 8324 cu->processing_has_namespace_info = 1;
e7c27a73 8325 read_namespace (die, cu);
d9fa45fe 8326 break;
5d7cb8df 8327 case DW_TAG_module:
4d4ec4e5 8328 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8329 read_module (die, cu);
8330 break;
d9fa45fe 8331 case DW_TAG_imported_declaration:
74921315
KS
8332 cu->processing_has_namespace_info = 1;
8333 if (read_namespace_alias (die, cu))
8334 break;
8335 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8336 case DW_TAG_imported_module:
4d4ec4e5 8337 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8338 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8339 || cu->language != language_fortran))
8340 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8341 dwarf_tag_name (die->tag));
8342 read_import_statement (die, cu);
d9fa45fe 8343 break;
95554aad
TT
8344
8345 case DW_TAG_imported_unit:
8346 process_imported_unit_die (die, cu);
8347 break;
8348
c906108c 8349 default:
e7c27a73 8350 new_symbol (die, NULL, cu);
c906108c
SS
8351 break;
8352 }
adde2bff
DE
8353
8354 do_cleanups (in_process);
c906108c 8355}
ca69b9e6
DE
8356\f
8357/* DWARF name computation. */
c906108c 8358
94af9270
KS
8359/* A helper function for dwarf2_compute_name which determines whether DIE
8360 needs to have the name of the scope prepended to the name listed in the
8361 die. */
8362
8363static int
8364die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8365{
1c809c68
TT
8366 struct attribute *attr;
8367
94af9270
KS
8368 switch (die->tag)
8369 {
8370 case DW_TAG_namespace:
8371 case DW_TAG_typedef:
8372 case DW_TAG_class_type:
8373 case DW_TAG_interface_type:
8374 case DW_TAG_structure_type:
8375 case DW_TAG_union_type:
8376 case DW_TAG_enumeration_type:
8377 case DW_TAG_enumerator:
8378 case DW_TAG_subprogram:
08a76f8a 8379 case DW_TAG_inlined_subroutine:
94af9270 8380 case DW_TAG_member:
74921315 8381 case DW_TAG_imported_declaration:
94af9270
KS
8382 return 1;
8383
8384 case DW_TAG_variable:
c2b0a229 8385 case DW_TAG_constant:
94af9270
KS
8386 /* We only need to prefix "globally" visible variables. These include
8387 any variable marked with DW_AT_external or any variable that
8388 lives in a namespace. [Variables in anonymous namespaces
8389 require prefixing, but they are not DW_AT_external.] */
8390
8391 if (dwarf2_attr (die, DW_AT_specification, cu))
8392 {
8393 struct dwarf2_cu *spec_cu = cu;
9a619af0 8394
94af9270
KS
8395 return die_needs_namespace (die_specification (die, &spec_cu),
8396 spec_cu);
8397 }
8398
1c809c68 8399 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8400 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8401 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8402 return 0;
8403 /* A variable in a lexical block of some kind does not need a
8404 namespace, even though in C++ such variables may be external
8405 and have a mangled name. */
8406 if (die->parent->tag == DW_TAG_lexical_block
8407 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8408 || die->parent->tag == DW_TAG_catch_block
8409 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8410 return 0;
8411 return 1;
94af9270
KS
8412
8413 default:
8414 return 0;
8415 }
8416}
8417
8418/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8419 compute the physname for the object, which include a method's:
9c37b5ae 8420 - formal parameters (C++),
a766d390 8421 - receiver type (Go),
a766d390
DE
8422
8423 The term "physname" is a bit confusing.
8424 For C++, for example, it is the demangled name.
8425 For Go, for example, it's the mangled name.
94af9270 8426
af6b7be1
JB
8427 For Ada, return the DIE's linkage name rather than the fully qualified
8428 name. PHYSNAME is ignored..
8429
94af9270
KS
8430 The result is allocated on the objfile_obstack and canonicalized. */
8431
8432static const char *
15d034d0
TT
8433dwarf2_compute_name (const char *name,
8434 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8435 int physname)
8436{
bb5ed363
DE
8437 struct objfile *objfile = cu->objfile;
8438
94af9270
KS
8439 if (name == NULL)
8440 name = dwarf2_name (die, cu);
8441
2ee7123e
DE
8442 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8443 but otherwise compute it by typename_concat inside GDB.
8444 FIXME: Actually this is not really true, or at least not always true.
8445 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8446 Fortran names because there is no mangling standard. So new_symbol_full
8447 will set the demangled name to the result of dwarf2_full_name, and it is
8448 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8449 if (cu->language == language_ada
8450 || (cu->language == language_fortran && physname))
8451 {
8452 /* For Ada unit, we prefer the linkage name over the name, as
8453 the former contains the exported name, which the user expects
8454 to be able to reference. Ideally, we want the user to be able
8455 to reference this entity using either natural or linkage name,
8456 but we haven't started looking at this enhancement yet. */
2ee7123e 8457 const char *linkage_name;
f55ee35c 8458
2ee7123e
DE
8459 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8460 if (linkage_name == NULL)
8461 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8462 if (linkage_name != NULL)
8463 return linkage_name;
f55ee35c
JK
8464 }
8465
94af9270
KS
8466 /* These are the only languages we know how to qualify names in. */
8467 if (name != NULL
9c37b5ae 8468 && (cu->language == language_cplus
c44af4eb
TT
8469 || cu->language == language_fortran || cu->language == language_d
8470 || cu->language == language_rust))
94af9270
KS
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
0d5cff50 8475 const char *prefix;
34a68019 8476 const char *canonical_name = NULL;
94af9270 8477
d7e74731
PA
8478 string_file buf;
8479
94af9270 8480 prefix = determine_prefix (die, cu);
94af9270
KS
8481 if (*prefix != '\0')
8482 {
f55ee35c
JK
8483 char *prefixed_name = typename_concat (NULL, prefix, name,
8484 physname, cu);
9a619af0 8485
d7e74731 8486 buf.puts (prefixed_name);
94af9270
KS
8487 xfree (prefixed_name);
8488 }
8489 else
d7e74731 8490 buf.puts (name);
94af9270 8491
98bfdba5
PA
8492 /* Template parameters may be specified in the DIE's DW_AT_name, or
8493 as children with DW_TAG_template_type_param or
8494 DW_TAG_value_type_param. If the latter, add them to the name
8495 here. If the name already has template parameters, then
8496 skip this step; some versions of GCC emit both, and
8497 it is more efficient to use the pre-computed name.
8498
8499 Something to keep in mind about this process: it is very
8500 unlikely, or in some cases downright impossible, to produce
8501 something that will match the mangled name of a function.
8502 If the definition of the function has the same debug info,
8503 we should be able to match up with it anyway. But fallbacks
8504 using the minimal symbol, for instance to find a method
8505 implemented in a stripped copy of libstdc++, will not work.
8506 If we do not have debug info for the definition, we will have to
8507 match them up some other way.
8508
8509 When we do name matching there is a related problem with function
8510 templates; two instantiated function templates are allowed to
8511 differ only by their return types, which we do not add here. */
8512
8513 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8514 {
8515 struct attribute *attr;
8516 struct die_info *child;
8517 int first = 1;
8518
8519 die->building_fullname = 1;
8520
8521 for (child = die->child; child != NULL; child = child->sibling)
8522 {
8523 struct type *type;
12df843f 8524 LONGEST value;
d521ce57 8525 const gdb_byte *bytes;
98bfdba5
PA
8526 struct dwarf2_locexpr_baton *baton;
8527 struct value *v;
8528
8529 if (child->tag != DW_TAG_template_type_param
8530 && child->tag != DW_TAG_template_value_param)
8531 continue;
8532
8533 if (first)
8534 {
d7e74731 8535 buf.puts ("<");
98bfdba5
PA
8536 first = 0;
8537 }
8538 else
d7e74731 8539 buf.puts (", ");
98bfdba5
PA
8540
8541 attr = dwarf2_attr (child, DW_AT_type, cu);
8542 if (attr == NULL)
8543 {
8544 complaint (&symfile_complaints,
8545 _("template parameter missing DW_AT_type"));
d7e74731 8546 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8547 continue;
8548 }
8549 type = die_type (child, cu);
8550
8551 if (child->tag == DW_TAG_template_type_param)
8552 {
d7e74731 8553 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8554 continue;
8555 }
8556
8557 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8558 if (attr == NULL)
8559 {
8560 complaint (&symfile_complaints,
3e43a32a
MS
8561 _("template parameter missing "
8562 "DW_AT_const_value"));
d7e74731 8563 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8564 continue;
8565 }
8566
8567 dwarf2_const_value_attr (attr, type, name,
8568 &cu->comp_unit_obstack, cu,
8569 &value, &bytes, &baton);
8570
8571 if (TYPE_NOSIGN (type))
8572 /* GDB prints characters as NUMBER 'CHAR'. If that's
8573 changed, this can use value_print instead. */
d7e74731 8574 c_printchar (value, type, &buf);
98bfdba5
PA
8575 else
8576 {
8577 struct value_print_options opts;
8578
8579 if (baton != NULL)
8580 v = dwarf2_evaluate_loc_desc (type, NULL,
8581 baton->data,
8582 baton->size,
8583 baton->per_cu);
8584 else if (bytes != NULL)
8585 {
8586 v = allocate_value (type);
8587 memcpy (value_contents_writeable (v), bytes,
8588 TYPE_LENGTH (type));
8589 }
8590 else
8591 v = value_from_longest (type, value);
8592
3e43a32a
MS
8593 /* Specify decimal so that we do not depend on
8594 the radix. */
98bfdba5
PA
8595 get_formatted_print_options (&opts, 'd');
8596 opts.raw = 1;
d7e74731 8597 value_print (v, &buf, &opts);
98bfdba5
PA
8598 release_value (v);
8599 value_free (v);
8600 }
8601 }
8602
8603 die->building_fullname = 0;
8604
8605 if (!first)
8606 {
8607 /* Close the argument list, with a space if necessary
8608 (nested templates). */
d7e74731
PA
8609 if (!buf.empty () && buf.string ().back () == '>')
8610 buf.puts (" >");
98bfdba5 8611 else
d7e74731 8612 buf.puts (">");
98bfdba5
PA
8613 }
8614 }
8615
9c37b5ae 8616 /* For C++ methods, append formal parameter type
94af9270 8617 information, if PHYSNAME. */
6e70227d 8618
94af9270 8619 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8620 && cu->language == language_cplus)
94af9270
KS
8621 {
8622 struct type *type = read_type_die (die, cu);
8623
d7e74731 8624 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8625 &type_print_raw_options);
94af9270 8626
9c37b5ae 8627 if (cu->language == language_cplus)
94af9270 8628 {
60430eff
DJ
8629 /* Assume that an artificial first parameter is
8630 "this", but do not crash if it is not. RealView
8631 marks unnamed (and thus unused) parameters as
8632 artificial; there is no way to differentiate
8633 the two cases. */
94af9270
KS
8634 if (TYPE_NFIELDS (type) > 0
8635 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8636 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8637 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8638 0))))
d7e74731 8639 buf.puts (" const");
94af9270
KS
8640 }
8641 }
8642
d7e74731 8643 const std::string &intermediate_name = buf.string ();
94af9270
KS
8644
8645 if (cu->language == language_cplus)
34a68019 8646 canonical_name
322a8516 8647 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8648 &objfile->per_bfd->storage_obstack);
8649
8650 /* If we only computed INTERMEDIATE_NAME, or if
8651 INTERMEDIATE_NAME is already canonical, then we need to
8652 copy it to the appropriate obstack. */
322a8516 8653 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8654 name = ((const char *)
8655 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8656 intermediate_name.c_str (),
8657 intermediate_name.length ()));
34a68019
TT
8658 else
8659 name = canonical_name;
94af9270
KS
8660 }
8661 }
8662
8663 return name;
8664}
8665
0114d602
DJ
8666/* Return the fully qualified name of DIE, based on its DW_AT_name.
8667 If scope qualifiers are appropriate they will be added. The result
34a68019 8668 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8669 not have a name. NAME may either be from a previous call to
8670 dwarf2_name or NULL.
8671
9c37b5ae 8672 The output string will be canonicalized (if C++). */
0114d602
DJ
8673
8674static const char *
15d034d0 8675dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8676{
94af9270
KS
8677 return dwarf2_compute_name (name, die, cu, 0);
8678}
0114d602 8679
94af9270
KS
8680/* Construct a physname for the given DIE in CU. NAME may either be
8681 from a previous call to dwarf2_name or NULL. The result will be
8682 allocated on the objfile_objstack or NULL if the DIE does not have a
8683 name.
0114d602 8684
9c37b5ae 8685 The output string will be canonicalized (if C++). */
0114d602 8686
94af9270 8687static const char *
15d034d0 8688dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8689{
bb5ed363 8690 struct objfile *objfile = cu->objfile;
900e11f9
JK
8691 const char *retval, *mangled = NULL, *canon = NULL;
8692 struct cleanup *back_to;
8693 int need_copy = 1;
8694
8695 /* In this case dwarf2_compute_name is just a shortcut not building anything
8696 on its own. */
8697 if (!die_needs_namespace (die, cu))
8698 return dwarf2_compute_name (name, die, cu, 1);
8699
8700 back_to = make_cleanup (null_cleanup, NULL);
8701
7d45c7c3
KB
8702 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8703 if (mangled == NULL)
8704 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8705
e98c9e7c
TT
8706 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8707 See https://github.com/rust-lang/rust/issues/32925. */
8708 if (cu->language == language_rust && mangled != NULL
8709 && strchr (mangled, '{') != NULL)
8710 mangled = NULL;
8711
900e11f9
JK
8712 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8713 has computed. */
7d45c7c3 8714 if (mangled != NULL)
900e11f9
JK
8715 {
8716 char *demangled;
8717
900e11f9
JK
8718 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8719 type. It is easier for GDB users to search for such functions as
8720 `name(params)' than `long name(params)'. In such case the minimal
8721 symbol names do not match the full symbol names but for template
8722 functions there is never a need to look up their definition from their
8723 declaration so the only disadvantage remains the minimal symbol
8724 variant `long name(params)' does not have the proper inferior type.
8725 */
8726
a766d390
DE
8727 if (cu->language == language_go)
8728 {
8729 /* This is a lie, but we already lie to the caller new_symbol_full.
8730 new_symbol_full assumes we return the mangled name.
8731 This just undoes that lie until things are cleaned up. */
8732 demangled = NULL;
8733 }
8734 else
8735 {
8de20a37 8736 demangled = gdb_demangle (mangled,
9c37b5ae 8737 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 8738 }
900e11f9
JK
8739 if (demangled)
8740 {
8741 make_cleanup (xfree, demangled);
8742 canon = demangled;
8743 }
8744 else
8745 {
8746 canon = mangled;
8747 need_copy = 0;
8748 }
8749 }
8750
8751 if (canon == NULL || check_physname)
8752 {
8753 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8754
8755 if (canon != NULL && strcmp (physname, canon) != 0)
8756 {
8757 /* It may not mean a bug in GDB. The compiler could also
8758 compute DW_AT_linkage_name incorrectly. But in such case
8759 GDB would need to be bug-to-bug compatible. */
8760
8761 complaint (&symfile_complaints,
8762 _("Computed physname <%s> does not match demangled <%s> "
8763 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8764 physname, canon, mangled, die->offset.sect_off,
8765 objfile_name (objfile));
900e11f9
JK
8766
8767 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8768 is available here - over computed PHYSNAME. It is safer
8769 against both buggy GDB and buggy compilers. */
8770
8771 retval = canon;
8772 }
8773 else
8774 {
8775 retval = physname;
8776 need_copy = 0;
8777 }
8778 }
8779 else
8780 retval = canon;
8781
8782 if (need_copy)
224c3ddb
SM
8783 retval = ((const char *)
8784 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8785 retval, strlen (retval)));
900e11f9
JK
8786
8787 do_cleanups (back_to);
8788 return retval;
0114d602
DJ
8789}
8790
74921315
KS
8791/* Inspect DIE in CU for a namespace alias. If one exists, record
8792 a new symbol for it.
8793
8794 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8795
8796static int
8797read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8798{
8799 struct attribute *attr;
8800
8801 /* If the die does not have a name, this is not a namespace
8802 alias. */
8803 attr = dwarf2_attr (die, DW_AT_name, cu);
8804 if (attr != NULL)
8805 {
8806 int num;
8807 struct die_info *d = die;
8808 struct dwarf2_cu *imported_cu = cu;
8809
8810 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8811 keep inspecting DIEs until we hit the underlying import. */
8812#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8813 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8814 {
8815 attr = dwarf2_attr (d, DW_AT_import, cu);
8816 if (attr == NULL)
8817 break;
8818
8819 d = follow_die_ref (d, attr, &imported_cu);
8820 if (d->tag != DW_TAG_imported_declaration)
8821 break;
8822 }
8823
8824 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8825 {
8826 complaint (&symfile_complaints,
8827 _("DIE at 0x%x has too many recursively imported "
8828 "declarations"), d->offset.sect_off);
8829 return 0;
8830 }
8831
8832 if (attr != NULL)
8833 {
8834 struct type *type;
8835 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8836
8837 type = get_die_type_at_offset (offset, cu->per_cu);
8838 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8839 {
8840 /* This declaration is a global namespace alias. Add
8841 a symbol for it whose type is the aliased namespace. */
8842 new_symbol (die, type, cu);
8843 return 1;
8844 }
8845 }
8846 }
8847
8848 return 0;
8849}
8850
22cee43f
PMR
8851/* Return the using directives repository (global or local?) to use in the
8852 current context for LANGUAGE.
8853
8854 For Ada, imported declarations can materialize renamings, which *may* be
8855 global. However it is impossible (for now?) in DWARF to distinguish
8856 "external" imported declarations and "static" ones. As all imported
8857 declarations seem to be static in all other languages, make them all CU-wide
8858 global only in Ada. */
8859
8860static struct using_direct **
8861using_directives (enum language language)
8862{
8863 if (language == language_ada && context_stack_depth == 0)
8864 return &global_using_directives;
8865 else
8866 return &local_using_directives;
8867}
8868
27aa8d6a
SW
8869/* Read the import statement specified by the given die and record it. */
8870
8871static void
8872read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8873{
bb5ed363 8874 struct objfile *objfile = cu->objfile;
27aa8d6a 8875 struct attribute *import_attr;
32019081 8876 struct die_info *imported_die, *child_die;
de4affc9 8877 struct dwarf2_cu *imported_cu;
27aa8d6a 8878 const char *imported_name;
794684b6 8879 const char *imported_name_prefix;
13387711
SW
8880 const char *canonical_name;
8881 const char *import_alias;
8882 const char *imported_declaration = NULL;
794684b6 8883 const char *import_prefix;
32019081
JK
8884 VEC (const_char_ptr) *excludes = NULL;
8885 struct cleanup *cleanups;
13387711 8886
27aa8d6a
SW
8887 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8888 if (import_attr == NULL)
8889 {
8890 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8891 dwarf_tag_name (die->tag));
8892 return;
8893 }
8894
de4affc9
CC
8895 imported_cu = cu;
8896 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8897 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8898 if (imported_name == NULL)
8899 {
8900 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8901
8902 The import in the following code:
8903 namespace A
8904 {
8905 typedef int B;
8906 }
8907
8908 int main ()
8909 {
8910 using A::B;
8911 B b;
8912 return b;
8913 }
8914
8915 ...
8916 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8917 <52> DW_AT_decl_file : 1
8918 <53> DW_AT_decl_line : 6
8919 <54> DW_AT_import : <0x75>
8920 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8921 <59> DW_AT_name : B
8922 <5b> DW_AT_decl_file : 1
8923 <5c> DW_AT_decl_line : 2
8924 <5d> DW_AT_type : <0x6e>
8925 ...
8926 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8927 <76> DW_AT_byte_size : 4
8928 <77> DW_AT_encoding : 5 (signed)
8929
8930 imports the wrong die ( 0x75 instead of 0x58 ).
8931 This case will be ignored until the gcc bug is fixed. */
8932 return;
8933 }
8934
82856980
SW
8935 /* Figure out the local name after import. */
8936 import_alias = dwarf2_name (die, cu);
27aa8d6a 8937
794684b6
SW
8938 /* Figure out where the statement is being imported to. */
8939 import_prefix = determine_prefix (die, cu);
8940
8941 /* Figure out what the scope of the imported die is and prepend it
8942 to the name of the imported die. */
de4affc9 8943 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8944
f55ee35c
JK
8945 if (imported_die->tag != DW_TAG_namespace
8946 && imported_die->tag != DW_TAG_module)
794684b6 8947 {
13387711
SW
8948 imported_declaration = imported_name;
8949 canonical_name = imported_name_prefix;
794684b6 8950 }
13387711 8951 else if (strlen (imported_name_prefix) > 0)
12aaed36 8952 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8953 imported_name_prefix,
8954 (cu->language == language_d ? "." : "::"),
8955 imported_name, (char *) NULL);
13387711
SW
8956 else
8957 canonical_name = imported_name;
794684b6 8958
32019081
JK
8959 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8960
8961 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8962 for (child_die = die->child; child_die && child_die->tag;
8963 child_die = sibling_die (child_die))
8964 {
8965 /* DWARF-4: A Fortran use statement with a “rename list” may be
8966 represented by an imported module entry with an import attribute
8967 referring to the module and owned entries corresponding to those
8968 entities that are renamed as part of being imported. */
8969
8970 if (child_die->tag != DW_TAG_imported_declaration)
8971 {
8972 complaint (&symfile_complaints,
8973 _("child DW_TAG_imported_declaration expected "
8974 "- DIE at 0x%x [in module %s]"),
4262abfb 8975 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8976 continue;
8977 }
8978
8979 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8980 if (import_attr == NULL)
8981 {
8982 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8983 dwarf_tag_name (child_die->tag));
8984 continue;
8985 }
8986
8987 imported_cu = cu;
8988 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8989 &imported_cu);
8990 imported_name = dwarf2_name (imported_die, imported_cu);
8991 if (imported_name == NULL)
8992 {
8993 complaint (&symfile_complaints,
8994 _("child DW_TAG_imported_declaration has unknown "
8995 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8996 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8997 continue;
8998 }
8999
9000 VEC_safe_push (const_char_ptr, excludes, imported_name);
9001
9002 process_die (child_die, cu);
9003 }
9004
22cee43f
PMR
9005 add_using_directive (using_directives (cu->language),
9006 import_prefix,
9007 canonical_name,
9008 import_alias,
9009 imported_declaration,
9010 excludes,
9011 0,
9012 &objfile->objfile_obstack);
32019081
JK
9013
9014 do_cleanups (cleanups);
27aa8d6a
SW
9015}
9016
f4dc4d17 9017/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9018
cb1df416
DJ
9019static void
9020free_cu_line_header (void *arg)
9021{
9a3c8263 9022 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9023
9024 free_line_header (cu->line_header);
9025 cu->line_header = NULL;
9026}
9027
1b80a9fa
JK
9028/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9029 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9030 this, it was first present in GCC release 4.3.0. */
9031
9032static int
9033producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9034{
9035 if (!cu->checked_producer)
9036 check_producer (cu);
9037
9038 return cu->producer_is_gcc_lt_4_3;
9039}
9040
9291a0cd
TT
9041static void
9042find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9043 const char **name, const char **comp_dir)
9291a0cd 9044{
9291a0cd
TT
9045 /* Find the filename. Do not use dwarf2_name here, since the filename
9046 is not a source language identifier. */
7d45c7c3
KB
9047 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9048 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9049
7d45c7c3
KB
9050 if (*comp_dir == NULL
9051 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9052 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9053 {
15d034d0
TT
9054 char *d = ldirname (*name);
9055
9056 *comp_dir = d;
9057 if (d != NULL)
9058 make_cleanup (xfree, d);
9291a0cd
TT
9059 }
9060 if (*comp_dir != NULL)
9061 {
9062 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9063 directory, get rid of it. */
e6a959d6 9064 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9065
9066 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9067 *comp_dir = cp + 1;
9068 }
9069
9070 if (*name == NULL)
9071 *name = "<unknown>";
9072}
9073
f4dc4d17
DE
9074/* Handle DW_AT_stmt_list for a compilation unit.
9075 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9076 COMP_DIR is the compilation directory. LOWPC is passed to
9077 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9078
9079static void
9080handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9081 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9082{
527f3840 9083 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9084 struct attribute *attr;
527f3840
JK
9085 unsigned int line_offset;
9086 struct line_header line_header_local;
9087 hashval_t line_header_local_hash;
9088 unsigned u;
9089 void **slot;
9090 int decode_mapping;
2ab95328 9091
f4dc4d17
DE
9092 gdb_assert (! cu->per_cu->is_debug_types);
9093
2ab95328 9094 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9095 if (attr == NULL)
9096 return;
9097
9098 line_offset = DW_UNSND (attr);
9099
9100 /* The line header hash table is only created if needed (it exists to
9101 prevent redundant reading of the line table for partial_units).
9102 If we're given a partial_unit, we'll need it. If we're given a
9103 compile_unit, then use the line header hash table if it's already
9104 created, but don't create one just yet. */
9105
9106 if (dwarf2_per_objfile->line_header_hash == NULL
9107 && die->tag == DW_TAG_partial_unit)
2ab95328 9108 {
527f3840
JK
9109 dwarf2_per_objfile->line_header_hash
9110 = htab_create_alloc_ex (127, line_header_hash_voidp,
9111 line_header_eq_voidp,
9112 free_line_header_voidp,
9113 &objfile->objfile_obstack,
9114 hashtab_obstack_allocate,
9115 dummy_obstack_deallocate);
9116 }
2ab95328 9117
527f3840
JK
9118 line_header_local.offset.sect_off = line_offset;
9119 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9120 line_header_local_hash = line_header_hash (&line_header_local);
9121 if (dwarf2_per_objfile->line_header_hash != NULL)
9122 {
9123 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9124 &line_header_local,
9125 line_header_local_hash, NO_INSERT);
9126
9127 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9128 is not present in *SLOT (since if there is something in *SLOT then
9129 it will be for a partial_unit). */
9130 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9131 {
527f3840 9132 gdb_assert (*slot != NULL);
9a3c8263 9133 cu->line_header = (struct line_header *) *slot;
527f3840 9134 return;
dee91e82 9135 }
2ab95328 9136 }
527f3840
JK
9137
9138 /* dwarf_decode_line_header does not yet provide sufficient information.
9139 We always have to call also dwarf_decode_lines for it. */
9140 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9141 if (cu->line_header == NULL)
9142 return;
9143
9144 if (dwarf2_per_objfile->line_header_hash == NULL)
9145 slot = NULL;
9146 else
9147 {
9148 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9149 &line_header_local,
9150 line_header_local_hash, INSERT);
9151 gdb_assert (slot != NULL);
9152 }
9153 if (slot != NULL && *slot == NULL)
9154 {
9155 /* This newly decoded line number information unit will be owned
9156 by line_header_hash hash table. */
9157 *slot = cu->line_header;
9158 }
9159 else
9160 {
9161 /* We cannot free any current entry in (*slot) as that struct line_header
9162 may be already used by multiple CUs. Create only temporary decoded
9163 line_header for this CU - it may happen at most once for each line
9164 number information unit. And if we're not using line_header_hash
9165 then this is what we want as well. */
9166 gdb_assert (die->tag != DW_TAG_partial_unit);
9167 make_cleanup (free_cu_line_header, cu);
9168 }
9169 decode_mapping = (die->tag != DW_TAG_partial_unit);
9170 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9171 decode_mapping);
2ab95328
TT
9172}
9173
95554aad 9174/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9175
c906108c 9176static void
e7c27a73 9177read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9178{
dee91e82 9179 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9180 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9181 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9182 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9183 CORE_ADDR highpc = ((CORE_ADDR) 0);
9184 struct attribute *attr;
15d034d0
TT
9185 const char *name = NULL;
9186 const char *comp_dir = NULL;
c906108c 9187 struct die_info *child_die;
e142c38c 9188 CORE_ADDR baseaddr;
6e70227d 9189
e142c38c 9190 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9191
fae299cd 9192 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9193
9194 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9195 from finish_block. */
2acceee2 9196 if (lowpc == ((CORE_ADDR) -1))
c906108c 9197 lowpc = highpc;
3e29f34a 9198 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9199
9291a0cd 9200 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9201
95554aad 9202 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9203
f4b8a18d
KW
9204 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9205 standardised yet. As a workaround for the language detection we fall
9206 back to the DW_AT_producer string. */
9207 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9208 cu->language = language_opencl;
9209
3019eac3
DE
9210 /* Similar hack for Go. */
9211 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9212 set_cu_language (DW_LANG_Go, cu);
9213
f4dc4d17 9214 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9215
9216 /* Decode line number information if present. We do this before
9217 processing child DIEs, so that the line header table is available
9218 for DW_AT_decl_file. */
c3b7b696 9219 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9220
9221 /* Process all dies in compilation unit. */
9222 if (die->child != NULL)
9223 {
9224 child_die = die->child;
9225 while (child_die && child_die->tag)
9226 {
9227 process_die (child_die, cu);
9228 child_die = sibling_die (child_die);
9229 }
9230 }
9231
9232 /* Decode macro information, if present. Dwarf 2 macro information
9233 refers to information in the line number info statement program
9234 header, so we can only read it if we've read the header
9235 successfully. */
9236 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9237 if (attr && cu->line_header)
9238 {
9239 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9240 complaint (&symfile_complaints,
9241 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9242
43f3e411 9243 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9244 }
9245 else
9246 {
9247 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9248 if (attr && cu->line_header)
9249 {
9250 unsigned int macro_offset = DW_UNSND (attr);
9251
43f3e411 9252 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9253 }
9254 }
9255
9256 do_cleanups (back_to);
9257}
9258
f4dc4d17
DE
9259/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9260 Create the set of symtabs used by this TU, or if this TU is sharing
9261 symtabs with another TU and the symtabs have already been created
9262 then restore those symtabs in the line header.
9263 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9264
9265static void
f4dc4d17 9266setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9267{
f4dc4d17
DE
9268 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9269 struct type_unit_group *tu_group;
9270 int first_time;
9271 struct line_header *lh;
3019eac3 9272 struct attribute *attr;
f4dc4d17 9273 unsigned int i, line_offset;
0186c6a7 9274 struct signatured_type *sig_type;
3019eac3 9275
f4dc4d17 9276 gdb_assert (per_cu->is_debug_types);
0186c6a7 9277 sig_type = (struct signatured_type *) per_cu;
3019eac3 9278
f4dc4d17 9279 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9280
f4dc4d17 9281 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9282 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9283 if (sig_type->type_unit_group == NULL)
9284 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9285 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9286
9287 /* If we've already processed this stmt_list there's no real need to
9288 do it again, we could fake it and just recreate the part we need
9289 (file name,index -> symtab mapping). If data shows this optimization
9290 is useful we can do it then. */
43f3e411 9291 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9292
9293 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9294 debug info. */
9295 lh = NULL;
9296 if (attr != NULL)
3019eac3 9297 {
f4dc4d17
DE
9298 line_offset = DW_UNSND (attr);
9299 lh = dwarf_decode_line_header (line_offset, cu);
9300 }
9301 if (lh == NULL)
9302 {
9303 if (first_time)
9304 dwarf2_start_symtab (cu, "", NULL, 0);
9305 else
9306 {
9307 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9308 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9309 }
f4dc4d17 9310 return;
3019eac3
DE
9311 }
9312
f4dc4d17
DE
9313 cu->line_header = lh;
9314 make_cleanup (free_cu_line_header, cu);
3019eac3 9315
f4dc4d17
DE
9316 if (first_time)
9317 {
43f3e411 9318 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9319
1fd60fc0
DE
9320 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9321 still initializing it, and our caller (a few levels up)
9322 process_full_type_unit still needs to know if this is the first
9323 time. */
9324
f4dc4d17
DE
9325 tu_group->num_symtabs = lh->num_file_names;
9326 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9327
f4dc4d17
DE
9328 for (i = 0; i < lh->num_file_names; ++i)
9329 {
d521ce57 9330 const char *dir = NULL;
f4dc4d17 9331 struct file_entry *fe = &lh->file_names[i];
3019eac3 9332
afa6c9ab 9333 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9334 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9335 dwarf2_start_subfile (fe->name, dir);
3019eac3 9336
f4dc4d17
DE
9337 if (current_subfile->symtab == NULL)
9338 {
9339 /* NOTE: start_subfile will recognize when it's been passed
9340 a file it has already seen. So we can't assume there's a
43f3e411 9341 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9342 lh->file_names may contain dups. */
43f3e411
DE
9343 current_subfile->symtab
9344 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9345 }
9346
9347 fe->symtab = current_subfile->symtab;
9348 tu_group->symtabs[i] = fe->symtab;
9349 }
9350 }
9351 else
3019eac3 9352 {
0ab9ce85 9353 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9354
9355 for (i = 0; i < lh->num_file_names; ++i)
9356 {
9357 struct file_entry *fe = &lh->file_names[i];
9358
9359 fe->symtab = tu_group->symtabs[i];
9360 }
3019eac3
DE
9361 }
9362
f4dc4d17
DE
9363 /* The main symtab is allocated last. Type units don't have DW_AT_name
9364 so they don't have a "real" (so to speak) symtab anyway.
9365 There is later code that will assign the main symtab to all symbols
9366 that don't have one. We need to handle the case of a symbol with a
9367 missing symtab (DW_AT_decl_file) anyway. */
9368}
3019eac3 9369
f4dc4d17
DE
9370/* Process DW_TAG_type_unit.
9371 For TUs we want to skip the first top level sibling if it's not the
9372 actual type being defined by this TU. In this case the first top
9373 level sibling is there to provide context only. */
3019eac3 9374
f4dc4d17
DE
9375static void
9376read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9377{
9378 struct die_info *child_die;
3019eac3 9379
f4dc4d17
DE
9380 prepare_one_comp_unit (cu, die, language_minimal);
9381
9382 /* Initialize (or reinitialize) the machinery for building symtabs.
9383 We do this before processing child DIEs, so that the line header table
9384 is available for DW_AT_decl_file. */
9385 setup_type_unit_groups (die, cu);
9386
9387 if (die->child != NULL)
9388 {
9389 child_die = die->child;
9390 while (child_die && child_die->tag)
9391 {
9392 process_die (child_die, cu);
9393 child_die = sibling_die (child_die);
9394 }
9395 }
3019eac3
DE
9396}
9397\f
80626a55
DE
9398/* DWO/DWP files.
9399
9400 http://gcc.gnu.org/wiki/DebugFission
9401 http://gcc.gnu.org/wiki/DebugFissionDWP
9402
9403 To simplify handling of both DWO files ("object" files with the DWARF info)
9404 and DWP files (a file with the DWOs packaged up into one file), we treat
9405 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9406
9407static hashval_t
9408hash_dwo_file (const void *item)
9409{
9a3c8263 9410 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9411 hashval_t hash;
3019eac3 9412
a2ce51a0
DE
9413 hash = htab_hash_string (dwo_file->dwo_name);
9414 if (dwo_file->comp_dir != NULL)
9415 hash += htab_hash_string (dwo_file->comp_dir);
9416 return hash;
3019eac3
DE
9417}
9418
9419static int
9420eq_dwo_file (const void *item_lhs, const void *item_rhs)
9421{
9a3c8263
SM
9422 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9423 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9424
a2ce51a0
DE
9425 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9426 return 0;
9427 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9428 return lhs->comp_dir == rhs->comp_dir;
9429 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9430}
9431
9432/* Allocate a hash table for DWO files. */
9433
9434static htab_t
9435allocate_dwo_file_hash_table (void)
9436{
9437 struct objfile *objfile = dwarf2_per_objfile->objfile;
9438
9439 return htab_create_alloc_ex (41,
9440 hash_dwo_file,
9441 eq_dwo_file,
9442 NULL,
9443 &objfile->objfile_obstack,
9444 hashtab_obstack_allocate,
9445 dummy_obstack_deallocate);
9446}
9447
80626a55
DE
9448/* Lookup DWO file DWO_NAME. */
9449
9450static void **
0ac5b59e 9451lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9452{
9453 struct dwo_file find_entry;
9454 void **slot;
9455
9456 if (dwarf2_per_objfile->dwo_files == NULL)
9457 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9458
9459 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9460 find_entry.dwo_name = dwo_name;
9461 find_entry.comp_dir = comp_dir;
80626a55
DE
9462 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9463
9464 return slot;
9465}
9466
3019eac3
DE
9467static hashval_t
9468hash_dwo_unit (const void *item)
9469{
9a3c8263 9470 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9471
9472 /* This drops the top 32 bits of the id, but is ok for a hash. */
9473 return dwo_unit->signature;
9474}
9475
9476static int
9477eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9478{
9a3c8263
SM
9479 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9480 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9481
9482 /* The signature is assumed to be unique within the DWO file.
9483 So while object file CU dwo_id's always have the value zero,
9484 that's OK, assuming each object file DWO file has only one CU,
9485 and that's the rule for now. */
9486 return lhs->signature == rhs->signature;
9487}
9488
9489/* Allocate a hash table for DWO CUs,TUs.
9490 There is one of these tables for each of CUs,TUs for each DWO file. */
9491
9492static htab_t
9493allocate_dwo_unit_table (struct objfile *objfile)
9494{
9495 /* Start out with a pretty small number.
9496 Generally DWO files contain only one CU and maybe some TUs. */
9497 return htab_create_alloc_ex (3,
9498 hash_dwo_unit,
9499 eq_dwo_unit,
9500 NULL,
9501 &objfile->objfile_obstack,
9502 hashtab_obstack_allocate,
9503 dummy_obstack_deallocate);
9504}
9505
80626a55 9506/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9507
19c3d4c9 9508struct create_dwo_cu_data
3019eac3
DE
9509{
9510 struct dwo_file *dwo_file;
19c3d4c9 9511 struct dwo_unit dwo_unit;
3019eac3
DE
9512};
9513
19c3d4c9 9514/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9515
9516static void
19c3d4c9
DE
9517create_dwo_cu_reader (const struct die_reader_specs *reader,
9518 const gdb_byte *info_ptr,
9519 struct die_info *comp_unit_die,
9520 int has_children,
9521 void *datap)
3019eac3
DE
9522{
9523 struct dwarf2_cu *cu = reader->cu;
3019eac3 9524 sect_offset offset = cu->per_cu->offset;
8a0459fd 9525 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9526 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9527 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9528 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9529 struct attribute *attr;
3019eac3
DE
9530
9531 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9532 if (attr == NULL)
9533 {
19c3d4c9
DE
9534 complaint (&symfile_complaints,
9535 _("Dwarf Error: debug entry at offset 0x%x is missing"
9536 " its dwo_id [in module %s]"),
9537 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9538 return;
9539 }
9540
3019eac3
DE
9541 dwo_unit->dwo_file = dwo_file;
9542 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9543 dwo_unit->section = section;
3019eac3
DE
9544 dwo_unit->offset = offset;
9545 dwo_unit->length = cu->per_cu->length;
9546
b4f54984 9547 if (dwarf_read_debug)
4031ecc5
DE
9548 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9549 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9550}
9551
19c3d4c9
DE
9552/* Create the dwo_unit for the lone CU in DWO_FILE.
9553 Note: This function processes DWO files only, not DWP files. */
3019eac3 9554
19c3d4c9
DE
9555static struct dwo_unit *
9556create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9557{
9558 struct objfile *objfile = dwarf2_per_objfile->objfile;
9559 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9560 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9561 struct create_dwo_cu_data create_dwo_cu_data;
9562 struct dwo_unit *dwo_unit;
3019eac3
DE
9563
9564 dwarf2_read_section (objfile, section);
9565 info_ptr = section->buffer;
9566
9567 if (info_ptr == NULL)
9568 return NULL;
9569
b4f54984 9570 if (dwarf_read_debug)
19c3d4c9
DE
9571 {
9572 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9573 get_section_name (section),
9574 get_section_file_name (section));
19c3d4c9 9575 }
3019eac3 9576
19c3d4c9
DE
9577 create_dwo_cu_data.dwo_file = dwo_file;
9578 dwo_unit = NULL;
3019eac3
DE
9579
9580 end_ptr = info_ptr + section->size;
9581 while (info_ptr < end_ptr)
9582 {
9583 struct dwarf2_per_cu_data per_cu;
9584
19c3d4c9
DE
9585 memset (&create_dwo_cu_data.dwo_unit, 0,
9586 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9587 memset (&per_cu, 0, sizeof (per_cu));
9588 per_cu.objfile = objfile;
9589 per_cu.is_debug_types = 0;
9590 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9591 per_cu.section = section;
3019eac3 9592
33e80786 9593 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9594 create_dwo_cu_reader,
9595 &create_dwo_cu_data);
9596
9597 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9598 {
9599 /* If we've already found one, complain. We only support one
9600 because having more than one requires hacking the dwo_name of
9601 each to match, which is highly unlikely to happen. */
9602 if (dwo_unit != NULL)
9603 {
9604 complaint (&symfile_complaints,
9605 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9606 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9607 break;
9608 }
9609
9610 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9611 *dwo_unit = create_dwo_cu_data.dwo_unit;
9612 }
3019eac3
DE
9613
9614 info_ptr += per_cu.length;
9615 }
9616
19c3d4c9 9617 return dwo_unit;
3019eac3
DE
9618}
9619
80626a55
DE
9620/* DWP file .debug_{cu,tu}_index section format:
9621 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9622
d2415c6c
DE
9623 DWP Version 1:
9624
80626a55
DE
9625 Both index sections have the same format, and serve to map a 64-bit
9626 signature to a set of section numbers. Each section begins with a header,
9627 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9628 indexes, and a pool of 32-bit section numbers. The index sections will be
9629 aligned at 8-byte boundaries in the file.
9630
d2415c6c
DE
9631 The index section header consists of:
9632
9633 V, 32 bit version number
9634 -, 32 bits unused
9635 N, 32 bit number of compilation units or type units in the index
9636 M, 32 bit number of slots in the hash table
80626a55 9637
d2415c6c 9638 Numbers are recorded using the byte order of the application binary.
80626a55 9639
d2415c6c
DE
9640 The hash table begins at offset 16 in the section, and consists of an array
9641 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9642 order of the application binary). Unused slots in the hash table are 0.
9643 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9644
d2415c6c
DE
9645 The parallel table begins immediately after the hash table
9646 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9647 array of 32-bit indexes (using the byte order of the application binary),
9648 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9649 table contains a 32-bit index into the pool of section numbers. For unused
9650 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9651
73869dc2
DE
9652 The pool of section numbers begins immediately following the hash table
9653 (at offset 16 + 12 * M from the beginning of the section). The pool of
9654 section numbers consists of an array of 32-bit words (using the byte order
9655 of the application binary). Each item in the array is indexed starting
9656 from 0. The hash table entry provides the index of the first section
9657 number in the set. Additional section numbers in the set follow, and the
9658 set is terminated by a 0 entry (section number 0 is not used in ELF).
9659
9660 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9661 section must be the first entry in the set, and the .debug_abbrev.dwo must
9662 be the second entry. Other members of the set may follow in any order.
9663
9664 ---
9665
9666 DWP Version 2:
9667
9668 DWP Version 2 combines all the .debug_info, etc. sections into one,
9669 and the entries in the index tables are now offsets into these sections.
9670 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9671 section.
9672
9673 Index Section Contents:
9674 Header
9675 Hash Table of Signatures dwp_hash_table.hash_table
9676 Parallel Table of Indices dwp_hash_table.unit_table
9677 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9678 Table of Section Sizes dwp_hash_table.v2.sizes
9679
9680 The index section header consists of:
9681
9682 V, 32 bit version number
9683 L, 32 bit number of columns in the table of section offsets
9684 N, 32 bit number of compilation units or type units in the index
9685 M, 32 bit number of slots in the hash table
9686
9687 Numbers are recorded using the byte order of the application binary.
9688
9689 The hash table has the same format as version 1.
9690 The parallel table of indices has the same format as version 1,
9691 except that the entries are origin-1 indices into the table of sections
9692 offsets and the table of section sizes.
9693
9694 The table of offsets begins immediately following the parallel table
9695 (at offset 16 + 12 * M from the beginning of the section). The table is
9696 a two-dimensional array of 32-bit words (using the byte order of the
9697 application binary), with L columns and N+1 rows, in row-major order.
9698 Each row in the array is indexed starting from 0. The first row provides
9699 a key to the remaining rows: each column in this row provides an identifier
9700 for a debug section, and the offsets in the same column of subsequent rows
9701 refer to that section. The section identifiers are:
9702
9703 DW_SECT_INFO 1 .debug_info.dwo
9704 DW_SECT_TYPES 2 .debug_types.dwo
9705 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9706 DW_SECT_LINE 4 .debug_line.dwo
9707 DW_SECT_LOC 5 .debug_loc.dwo
9708 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9709 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9710 DW_SECT_MACRO 8 .debug_macro.dwo
9711
9712 The offsets provided by the CU and TU index sections are the base offsets
9713 for the contributions made by each CU or TU to the corresponding section
9714 in the package file. Each CU and TU header contains an abbrev_offset
9715 field, used to find the abbreviations table for that CU or TU within the
9716 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9717 be interpreted as relative to the base offset given in the index section.
9718 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9719 should be interpreted as relative to the base offset for .debug_line.dwo,
9720 and offsets into other debug sections obtained from DWARF attributes should
9721 also be interpreted as relative to the corresponding base offset.
9722
9723 The table of sizes begins immediately following the table of offsets.
9724 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9725 with L columns and N rows, in row-major order. Each row in the array is
9726 indexed starting from 1 (row 0 is shared by the two tables).
9727
9728 ---
9729
9730 Hash table lookup is handled the same in version 1 and 2:
9731
9732 We assume that N and M will not exceed 2^32 - 1.
9733 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9734
d2415c6c
DE
9735 Given a 64-bit compilation unit signature or a type signature S, an entry
9736 in the hash table is located as follows:
80626a55 9737
d2415c6c
DE
9738 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9739 the low-order k bits all set to 1.
80626a55 9740
d2415c6c 9741 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9742
d2415c6c
DE
9743 3) If the hash table entry at index H matches the signature, use that
9744 entry. If the hash table entry at index H is unused (all zeroes),
9745 terminate the search: the signature is not present in the table.
80626a55 9746
d2415c6c 9747 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9748
d2415c6c 9749 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9750 to stop at an unused slot or find the match. */
80626a55
DE
9751
9752/* Create a hash table to map DWO IDs to their CU/TU entry in
9753 .debug_{info,types}.dwo in DWP_FILE.
9754 Returns NULL if there isn't one.
9755 Note: This function processes DWP files only, not DWO files. */
9756
9757static struct dwp_hash_table *
9758create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9759{
9760 struct objfile *objfile = dwarf2_per_objfile->objfile;
9761 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9762 const gdb_byte *index_ptr, *index_end;
80626a55 9763 struct dwarf2_section_info *index;
73869dc2 9764 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9765 struct dwp_hash_table *htab;
9766
9767 if (is_debug_types)
9768 index = &dwp_file->sections.tu_index;
9769 else
9770 index = &dwp_file->sections.cu_index;
9771
9772 if (dwarf2_section_empty_p (index))
9773 return NULL;
9774 dwarf2_read_section (objfile, index);
9775
9776 index_ptr = index->buffer;
9777 index_end = index_ptr + index->size;
9778
9779 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9780 index_ptr += 4;
9781 if (version == 2)
9782 nr_columns = read_4_bytes (dbfd, index_ptr);
9783 else
9784 nr_columns = 0;
9785 index_ptr += 4;
80626a55
DE
9786 nr_units = read_4_bytes (dbfd, index_ptr);
9787 index_ptr += 4;
9788 nr_slots = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790
73869dc2 9791 if (version != 1 && version != 2)
80626a55 9792 {
21aa081e 9793 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9794 " [in module %s]"),
21aa081e 9795 pulongest (version), dwp_file->name);
80626a55
DE
9796 }
9797 if (nr_slots != (nr_slots & -nr_slots))
9798 {
21aa081e 9799 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9800 " is not power of 2 [in module %s]"),
21aa081e 9801 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9802 }
9803
9804 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9805 htab->version = version;
9806 htab->nr_columns = nr_columns;
80626a55
DE
9807 htab->nr_units = nr_units;
9808 htab->nr_slots = nr_slots;
9809 htab->hash_table = index_ptr;
9810 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9811
9812 /* Exit early if the table is empty. */
9813 if (nr_slots == 0 || nr_units == 0
9814 || (version == 2 && nr_columns == 0))
9815 {
9816 /* All must be zero. */
9817 if (nr_slots != 0 || nr_units != 0
9818 || (version == 2 && nr_columns != 0))
9819 {
9820 complaint (&symfile_complaints,
9821 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9822 " all zero [in modules %s]"),
9823 dwp_file->name);
9824 }
9825 return htab;
9826 }
9827
9828 if (version == 1)
9829 {
9830 htab->section_pool.v1.indices =
9831 htab->unit_table + sizeof (uint32_t) * nr_slots;
9832 /* It's harder to decide whether the section is too small in v1.
9833 V1 is deprecated anyway so we punt. */
9834 }
9835 else
9836 {
9837 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9838 int *ids = htab->section_pool.v2.section_ids;
9839 /* Reverse map for error checking. */
9840 int ids_seen[DW_SECT_MAX + 1];
9841 int i;
9842
9843 if (nr_columns < 2)
9844 {
9845 error (_("Dwarf Error: bad DWP hash table, too few columns"
9846 " in section table [in module %s]"),
9847 dwp_file->name);
9848 }
9849 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9850 {
9851 error (_("Dwarf Error: bad DWP hash table, too many columns"
9852 " in section table [in module %s]"),
9853 dwp_file->name);
9854 }
9855 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 for (i = 0; i < nr_columns; ++i)
9858 {
9859 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9860
9861 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9864 " in section table [in module %s]"),
9865 id, dwp_file->name);
9866 }
9867 if (ids_seen[id] != -1)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9870 " id %d in section table [in module %s]"),
9871 id, dwp_file->name);
9872 }
9873 ids_seen[id] = i;
9874 ids[i] = id;
9875 }
9876 /* Must have exactly one info or types section. */
9877 if (((ids_seen[DW_SECT_INFO] != -1)
9878 + (ids_seen[DW_SECT_TYPES] != -1))
9879 != 1)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9882 " DWO info/types section [in module %s]"),
9883 dwp_file->name);
9884 }
9885 /* Must have an abbrev section. */
9886 if (ids_seen[DW_SECT_ABBREV] == -1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9889 " section [in module %s]"),
9890 dwp_file->name);
9891 }
9892 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9893 htab->section_pool.v2.sizes =
9894 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9895 * nr_units * nr_columns);
9896 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9897 * nr_units * nr_columns))
9898 > index_end)
9899 {
9900 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 }
80626a55
DE
9905
9906 return htab;
9907}
9908
9909/* Update SECTIONS with the data from SECTP.
9910
9911 This function is like the other "locate" section routines that are
9912 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9913 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9914
9915 The result is non-zero for success, or zero if an error was found. */
9916
9917static int
73869dc2
DE
9918locate_v1_virtual_dwo_sections (asection *sectp,
9919 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9920{
9921 const struct dwop_section_names *names = &dwop_section_names;
9922
9923 if (section_is_p (sectp->name, &names->abbrev_dwo))
9924 {
9925 /* There can be only one. */
049412e3 9926 if (sections->abbrev.s.section != NULL)
80626a55 9927 return 0;
049412e3 9928 sections->abbrev.s.section = sectp;
80626a55
DE
9929 sections->abbrev.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->info_dwo)
9932 || section_is_p (sectp->name, &names->types_dwo))
9933 {
9934 /* There can be only one. */
049412e3 9935 if (sections->info_or_types.s.section != NULL)
80626a55 9936 return 0;
049412e3 9937 sections->info_or_types.s.section = sectp;
80626a55
DE
9938 sections->info_or_types.size = bfd_get_section_size (sectp);
9939 }
9940 else if (section_is_p (sectp->name, &names->line_dwo))
9941 {
9942 /* There can be only one. */
049412e3 9943 if (sections->line.s.section != NULL)
80626a55 9944 return 0;
049412e3 9945 sections->line.s.section = sectp;
80626a55
DE
9946 sections->line.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->loc_dwo))
9949 {
9950 /* There can be only one. */
049412e3 9951 if (sections->loc.s.section != NULL)
80626a55 9952 return 0;
049412e3 9953 sections->loc.s.section = sectp;
80626a55
DE
9954 sections->loc.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9957 {
9958 /* There can be only one. */
049412e3 9959 if (sections->macinfo.s.section != NULL)
80626a55 9960 return 0;
049412e3 9961 sections->macinfo.s.section = sectp;
80626a55
DE
9962 sections->macinfo.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macro_dwo))
9965 {
9966 /* There can be only one. */
049412e3 9967 if (sections->macro.s.section != NULL)
80626a55 9968 return 0;
049412e3 9969 sections->macro.s.section = sectp;
80626a55
DE
9970 sections->macro.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9973 {
9974 /* There can be only one. */
049412e3 9975 if (sections->str_offsets.s.section != NULL)
80626a55 9976 return 0;
049412e3 9977 sections->str_offsets.s.section = sectp;
80626a55
DE
9978 sections->str_offsets.size = bfd_get_section_size (sectp);
9979 }
9980 else
9981 {
9982 /* No other kind of section is valid. */
9983 return 0;
9984 }
9985
9986 return 1;
9987}
9988
73869dc2
DE
9989/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9990 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9991 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9992 This is for DWP version 1 files. */
80626a55
DE
9993
9994static struct dwo_unit *
73869dc2
DE
9995create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9996 uint32_t unit_index,
9997 const char *comp_dir,
9998 ULONGEST signature, int is_debug_types)
80626a55
DE
9999{
10000 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10001 const struct dwp_hash_table *dwp_htab =
10002 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10003 bfd *dbfd = dwp_file->dbfd;
10004 const char *kind = is_debug_types ? "TU" : "CU";
10005 struct dwo_file *dwo_file;
10006 struct dwo_unit *dwo_unit;
73869dc2 10007 struct virtual_v1_dwo_sections sections;
80626a55
DE
10008 void **dwo_file_slot;
10009 char *virtual_dwo_name;
80626a55
DE
10010 struct cleanup *cleanups;
10011 int i;
10012
73869dc2
DE
10013 gdb_assert (dwp_file->version == 1);
10014
b4f54984 10015 if (dwarf_read_debug)
80626a55 10016 {
73869dc2 10017 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10018 kind,
73869dc2 10019 pulongest (unit_index), hex_string (signature),
80626a55
DE
10020 dwp_file->name);
10021 }
10022
19ac8c2e 10023 /* Fetch the sections of this DWO unit.
80626a55
DE
10024 Put a limit on the number of sections we look for so that bad data
10025 doesn't cause us to loop forever. */
10026
73869dc2 10027#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10028 (1 /* .debug_info or .debug_types */ \
10029 + 1 /* .debug_abbrev */ \
10030 + 1 /* .debug_line */ \
10031 + 1 /* .debug_loc */ \
10032 + 1 /* .debug_str_offsets */ \
19ac8c2e 10033 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10034 + 1 /* trailing zero */)
10035
10036 memset (&sections, 0, sizeof (sections));
10037 cleanups = make_cleanup (null_cleanup, 0);
10038
73869dc2 10039 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10040 {
10041 asection *sectp;
10042 uint32_t section_nr =
10043 read_4_bytes (dbfd,
73869dc2
DE
10044 dwp_htab->section_pool.v1.indices
10045 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10046
10047 if (section_nr == 0)
10048 break;
10049 if (section_nr >= dwp_file->num_sections)
10050 {
10051 error (_("Dwarf Error: bad DWP hash table, section number too large"
10052 " [in module %s]"),
10053 dwp_file->name);
10054 }
10055
10056 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10057 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10058 {
10059 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10060 " [in module %s]"),
10061 dwp_file->name);
10062 }
10063 }
10064
10065 if (i < 2
a32a8923
DE
10066 || dwarf2_section_empty_p (&sections.info_or_types)
10067 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10068 {
10069 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10070 " [in module %s]"),
10071 dwp_file->name);
10072 }
73869dc2 10073 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079
10080 /* It's easier for the rest of the code if we fake a struct dwo_file and
10081 have dwo_unit "live" in that. At least for now.
10082
10083 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10084 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10085 file, we can combine them back into a virtual DWO file to save space
10086 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10087 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10088
2792b94d
PM
10089 virtual_dwo_name =
10090 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10091 get_section_id (&sections.abbrev),
10092 get_section_id (&sections.line),
10093 get_section_id (&sections.loc),
10094 get_section_id (&sections.str_offsets));
80626a55
DE
10095 make_cleanup (xfree, virtual_dwo_name);
10096 /* Can we use an existing virtual DWO file? */
0ac5b59e 10097 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10098 /* Create one if necessary. */
10099 if (*dwo_file_slot == NULL)
10100 {
b4f54984 10101 if (dwarf_read_debug)
80626a55
DE
10102 {
10103 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10104 virtual_dwo_name);
10105 }
10106 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10107 dwo_file->dwo_name
10108 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10109 virtual_dwo_name,
10110 strlen (virtual_dwo_name));
0ac5b59e 10111 dwo_file->comp_dir = comp_dir;
80626a55
DE
10112 dwo_file->sections.abbrev = sections.abbrev;
10113 dwo_file->sections.line = sections.line;
10114 dwo_file->sections.loc = sections.loc;
10115 dwo_file->sections.macinfo = sections.macinfo;
10116 dwo_file->sections.macro = sections.macro;
10117 dwo_file->sections.str_offsets = sections.str_offsets;
10118 /* The "str" section is global to the entire DWP file. */
10119 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10120 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10121 there's no need to record it in dwo_file.
10122 Also, we can't simply record type sections in dwo_file because
10123 we record a pointer into the vector in dwo_unit. As we collect more
10124 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10125 for it, invalidating all copies of pointers into the previous
10126 contents. */
80626a55
DE
10127 *dwo_file_slot = dwo_file;
10128 }
10129 else
10130 {
b4f54984 10131 if (dwarf_read_debug)
80626a55
DE
10132 {
10133 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10134 virtual_dwo_name);
10135 }
9a3c8263 10136 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10137 }
10138 do_cleanups (cleanups);
10139
10140 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10141 dwo_unit->dwo_file = dwo_file;
10142 dwo_unit->signature = signature;
8d749320
SM
10143 dwo_unit->section =
10144 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10145 *dwo_unit->section = sections.info_or_types;
57d63ce2 10146 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10147
10148 return dwo_unit;
10149}
10150
73869dc2
DE
10151/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10152 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10153 piece within that section used by a TU/CU, return a virtual section
10154 of just that piece. */
10155
10156static struct dwarf2_section_info
10157create_dwp_v2_section (struct dwarf2_section_info *section,
10158 bfd_size_type offset, bfd_size_type size)
10159{
10160 struct dwarf2_section_info result;
10161 asection *sectp;
10162
10163 gdb_assert (section != NULL);
10164 gdb_assert (!section->is_virtual);
10165
10166 memset (&result, 0, sizeof (result));
10167 result.s.containing_section = section;
10168 result.is_virtual = 1;
10169
10170 if (size == 0)
10171 return result;
10172
10173 sectp = get_section_bfd_section (section);
10174
10175 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10176 bounds of the real section. This is a pretty-rare event, so just
10177 flag an error (easier) instead of a warning and trying to cope. */
10178 if (sectp == NULL
10179 || offset + size > bfd_get_section_size (sectp))
10180 {
10181 bfd *abfd = sectp->owner;
10182
10183 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10184 " in section %s [in module %s]"),
10185 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10186 objfile_name (dwarf2_per_objfile->objfile));
10187 }
10188
10189 result.virtual_offset = offset;
10190 result.size = size;
10191 return result;
10192}
10193
10194/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10195 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10196 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10197 This is for DWP version 2 files. */
10198
10199static struct dwo_unit *
10200create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10201 uint32_t unit_index,
10202 const char *comp_dir,
10203 ULONGEST signature, int is_debug_types)
10204{
10205 struct objfile *objfile = dwarf2_per_objfile->objfile;
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 const char *kind = is_debug_types ? "TU" : "CU";
10210 struct dwo_file *dwo_file;
10211 struct dwo_unit *dwo_unit;
10212 struct virtual_v2_dwo_sections sections;
10213 void **dwo_file_slot;
10214 char *virtual_dwo_name;
73869dc2
DE
10215 struct cleanup *cleanups;
10216 int i;
10217
10218 gdb_assert (dwp_file->version == 2);
10219
b4f54984 10220 if (dwarf_read_debug)
73869dc2
DE
10221 {
10222 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10223 kind,
10224 pulongest (unit_index), hex_string (signature),
10225 dwp_file->name);
10226 }
10227
10228 /* Fetch the section offsets of this DWO unit. */
10229
10230 memset (&sections, 0, sizeof (sections));
10231 cleanups = make_cleanup (null_cleanup, 0);
10232
10233 for (i = 0; i < dwp_htab->nr_columns; ++i)
10234 {
10235 uint32_t offset = read_4_bytes (dbfd,
10236 dwp_htab->section_pool.v2.offsets
10237 + (((unit_index - 1) * dwp_htab->nr_columns
10238 + i)
10239 * sizeof (uint32_t)));
10240 uint32_t size = read_4_bytes (dbfd,
10241 dwp_htab->section_pool.v2.sizes
10242 + (((unit_index - 1) * dwp_htab->nr_columns
10243 + i)
10244 * sizeof (uint32_t)));
10245
10246 switch (dwp_htab->section_pool.v2.section_ids[i])
10247 {
10248 case DW_SECT_INFO:
10249 case DW_SECT_TYPES:
10250 sections.info_or_types_offset = offset;
10251 sections.info_or_types_size = size;
10252 break;
10253 case DW_SECT_ABBREV:
10254 sections.abbrev_offset = offset;
10255 sections.abbrev_size = size;
10256 break;
10257 case DW_SECT_LINE:
10258 sections.line_offset = offset;
10259 sections.line_size = size;
10260 break;
10261 case DW_SECT_LOC:
10262 sections.loc_offset = offset;
10263 sections.loc_size = size;
10264 break;
10265 case DW_SECT_STR_OFFSETS:
10266 sections.str_offsets_offset = offset;
10267 sections.str_offsets_size = size;
10268 break;
10269 case DW_SECT_MACINFO:
10270 sections.macinfo_offset = offset;
10271 sections.macinfo_size = size;
10272 break;
10273 case DW_SECT_MACRO:
10274 sections.macro_offset = offset;
10275 sections.macro_size = size;
10276 break;
10277 }
10278 }
10279
10280 /* It's easier for the rest of the code if we fake a struct dwo_file and
10281 have dwo_unit "live" in that. At least for now.
10282
10283 The DWP file can be made up of a random collection of CUs and TUs.
10284 However, for each CU + set of TUs that came from the same original DWO
10285 file, we can combine them back into a virtual DWO file to save space
10286 (fewer struct dwo_file objects to allocate). Remember that for really
10287 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10288
10289 virtual_dwo_name =
10290 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10291 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10292 (long) (sections.line_size ? sections.line_offset : 0),
10293 (long) (sections.loc_size ? sections.loc_offset : 0),
10294 (long) (sections.str_offsets_size
10295 ? sections.str_offsets_offset : 0));
10296 make_cleanup (xfree, virtual_dwo_name);
10297 /* Can we use an existing virtual DWO file? */
10298 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10299 /* Create one if necessary. */
10300 if (*dwo_file_slot == NULL)
10301 {
b4f54984 10302 if (dwarf_read_debug)
73869dc2
DE
10303 {
10304 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10305 virtual_dwo_name);
10306 }
10307 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10308 dwo_file->dwo_name
10309 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10310 virtual_dwo_name,
10311 strlen (virtual_dwo_name));
73869dc2
DE
10312 dwo_file->comp_dir = comp_dir;
10313 dwo_file->sections.abbrev =
10314 create_dwp_v2_section (&dwp_file->sections.abbrev,
10315 sections.abbrev_offset, sections.abbrev_size);
10316 dwo_file->sections.line =
10317 create_dwp_v2_section (&dwp_file->sections.line,
10318 sections.line_offset, sections.line_size);
10319 dwo_file->sections.loc =
10320 create_dwp_v2_section (&dwp_file->sections.loc,
10321 sections.loc_offset, sections.loc_size);
10322 dwo_file->sections.macinfo =
10323 create_dwp_v2_section (&dwp_file->sections.macinfo,
10324 sections.macinfo_offset, sections.macinfo_size);
10325 dwo_file->sections.macro =
10326 create_dwp_v2_section (&dwp_file->sections.macro,
10327 sections.macro_offset, sections.macro_size);
10328 dwo_file->sections.str_offsets =
10329 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10330 sections.str_offsets_offset,
10331 sections.str_offsets_size);
10332 /* The "str" section is global to the entire DWP file. */
10333 dwo_file->sections.str = dwp_file->sections.str;
10334 /* The info or types section is assigned below to dwo_unit,
10335 there's no need to record it in dwo_file.
10336 Also, we can't simply record type sections in dwo_file because
10337 we record a pointer into the vector in dwo_unit. As we collect more
10338 types we'll grow the vector and eventually have to reallocate space
10339 for it, invalidating all copies of pointers into the previous
10340 contents. */
10341 *dwo_file_slot = dwo_file;
10342 }
10343 else
10344 {
b4f54984 10345 if (dwarf_read_debug)
73869dc2
DE
10346 {
10347 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10348 virtual_dwo_name);
10349 }
9a3c8263 10350 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10351 }
10352 do_cleanups (cleanups);
10353
10354 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10355 dwo_unit->dwo_file = dwo_file;
10356 dwo_unit->signature = signature;
8d749320
SM
10357 dwo_unit->section =
10358 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10359 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10360 ? &dwp_file->sections.types
10361 : &dwp_file->sections.info,
10362 sections.info_or_types_offset,
10363 sections.info_or_types_size);
10364 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10365
10366 return dwo_unit;
10367}
10368
57d63ce2
DE
10369/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10370 Returns NULL if the signature isn't found. */
80626a55
DE
10371
10372static struct dwo_unit *
57d63ce2
DE
10373lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10374 ULONGEST signature, int is_debug_types)
80626a55 10375{
57d63ce2
DE
10376 const struct dwp_hash_table *dwp_htab =
10377 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10378 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10379 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10380 uint32_t hash = signature & mask;
10381 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10382 unsigned int i;
10383 void **slot;
870f88f7 10384 struct dwo_unit find_dwo_cu;
80626a55
DE
10385
10386 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10387 find_dwo_cu.signature = signature;
19ac8c2e
DE
10388 slot = htab_find_slot (is_debug_types
10389 ? dwp_file->loaded_tus
10390 : dwp_file->loaded_cus,
10391 &find_dwo_cu, INSERT);
80626a55
DE
10392
10393 if (*slot != NULL)
9a3c8263 10394 return (struct dwo_unit *) *slot;
80626a55
DE
10395
10396 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10397 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10398 {
10399 ULONGEST signature_in_table;
10400
10401 signature_in_table =
57d63ce2 10402 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10403 if (signature_in_table == signature)
10404 {
57d63ce2
DE
10405 uint32_t unit_index =
10406 read_4_bytes (dbfd,
10407 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10408
73869dc2
DE
10409 if (dwp_file->version == 1)
10410 {
10411 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10412 comp_dir, signature,
10413 is_debug_types);
10414 }
10415 else
10416 {
10417 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10418 comp_dir, signature,
10419 is_debug_types);
10420 }
9a3c8263 10421 return (struct dwo_unit *) *slot;
80626a55
DE
10422 }
10423 if (signature_in_table == 0)
10424 return NULL;
10425 hash = (hash + hash2) & mask;
10426 }
10427
10428 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10429 " [in module %s]"),
10430 dwp_file->name);
10431}
10432
ab5088bf 10433/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10434 Open the file specified by FILE_NAME and hand it off to BFD for
10435 preliminary analysis. Return a newly initialized bfd *, which
10436 includes a canonicalized copy of FILE_NAME.
80626a55 10437 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10438 SEARCH_CWD is true if the current directory is to be searched.
10439 It will be searched before debug-file-directory.
13aaf454
DE
10440 If successful, the file is added to the bfd include table of the
10441 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10442 If unable to find/open the file, return NULL.
3019eac3
DE
10443 NOTE: This function is derived from symfile_bfd_open. */
10444
192b62ce 10445static gdb_bfd_ref_ptr
6ac97d4c 10446try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10447{
80626a55 10448 int desc, flags;
3019eac3 10449 char *absolute_name;
9c02c129
DE
10450 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10451 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10452 to debug_file_directory. */
10453 char *search_path;
10454 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10455
6ac97d4c
DE
10456 if (search_cwd)
10457 {
10458 if (*debug_file_directory != '\0')
10459 search_path = concat (".", dirname_separator_string,
b36cec19 10460 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10461 else
10462 search_path = xstrdup (".");
10463 }
9c02c129 10464 else
6ac97d4c 10465 search_path = xstrdup (debug_file_directory);
3019eac3 10466
492c0ab7 10467 flags = OPF_RETURN_REALPATH;
80626a55
DE
10468 if (is_dwp)
10469 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10470 desc = openp (search_path, flags, file_name,
3019eac3 10471 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10472 xfree (search_path);
3019eac3
DE
10473 if (desc < 0)
10474 return NULL;
10475
192b62ce 10476 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10477 xfree (absolute_name);
9c02c129
DE
10478 if (sym_bfd == NULL)
10479 return NULL;
192b62ce 10480 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10481
192b62ce
TT
10482 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10483 return NULL;
3019eac3 10484
13aaf454
DE
10485 /* Success. Record the bfd as having been included by the objfile's bfd.
10486 This is important because things like demangled_names_hash lives in the
10487 objfile's per_bfd space and may have references to things like symbol
10488 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10489 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10490
3019eac3
DE
10491 return sym_bfd;
10492}
10493
ab5088bf 10494/* Try to open DWO file FILE_NAME.
3019eac3
DE
10495 COMP_DIR is the DW_AT_comp_dir attribute.
10496 The result is the bfd handle of the file.
10497 If there is a problem finding or opening the file, return NULL.
10498 Upon success, the canonicalized path of the file is stored in the bfd,
10499 same as symfile_bfd_open. */
10500
192b62ce 10501static gdb_bfd_ref_ptr
ab5088bf 10502open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10503{
80626a55 10504 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10505 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10506
10507 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10508
10509 if (comp_dir != NULL)
10510 {
b36cec19
PA
10511 char *path_to_try = concat (comp_dir, SLASH_STRING,
10512 file_name, (char *) NULL);
3019eac3
DE
10513
10514 /* NOTE: If comp_dir is a relative path, this will also try the
10515 search path, which seems useful. */
192b62ce
TT
10516 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10517 1 /*search_cwd*/));
3019eac3
DE
10518 xfree (path_to_try);
10519 if (abfd != NULL)
10520 return abfd;
10521 }
10522
10523 /* That didn't work, try debug-file-directory, which, despite its name,
10524 is a list of paths. */
10525
10526 if (*debug_file_directory == '\0')
10527 return NULL;
10528
6ac97d4c 10529 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10530}
10531
80626a55
DE
10532/* This function is mapped across the sections and remembers the offset and
10533 size of each of the DWO debugging sections we are interested in. */
10534
10535static void
10536dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10537{
9a3c8263 10538 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10539 const struct dwop_section_names *names = &dwop_section_names;
10540
10541 if (section_is_p (sectp->name, &names->abbrev_dwo))
10542 {
049412e3 10543 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10544 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->info_dwo))
10547 {
049412e3 10548 dwo_sections->info.s.section = sectp;
80626a55
DE
10549 dwo_sections->info.size = bfd_get_section_size (sectp);
10550 }
10551 else if (section_is_p (sectp->name, &names->line_dwo))
10552 {
049412e3 10553 dwo_sections->line.s.section = sectp;
80626a55
DE
10554 dwo_sections->line.size = bfd_get_section_size (sectp);
10555 }
10556 else if (section_is_p (sectp->name, &names->loc_dwo))
10557 {
049412e3 10558 dwo_sections->loc.s.section = sectp;
80626a55
DE
10559 dwo_sections->loc.size = bfd_get_section_size (sectp);
10560 }
10561 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10562 {
049412e3 10563 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10564 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10565 }
10566 else if (section_is_p (sectp->name, &names->macro_dwo))
10567 {
049412e3 10568 dwo_sections->macro.s.section = sectp;
80626a55
DE
10569 dwo_sections->macro.size = bfd_get_section_size (sectp);
10570 }
10571 else if (section_is_p (sectp->name, &names->str_dwo))
10572 {
049412e3 10573 dwo_sections->str.s.section = sectp;
80626a55
DE
10574 dwo_sections->str.size = bfd_get_section_size (sectp);
10575 }
10576 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10577 {
049412e3 10578 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10579 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10580 }
10581 else if (section_is_p (sectp->name, &names->types_dwo))
10582 {
10583 struct dwarf2_section_info type_section;
10584
10585 memset (&type_section, 0, sizeof (type_section));
049412e3 10586 type_section.s.section = sectp;
80626a55
DE
10587 type_section.size = bfd_get_section_size (sectp);
10588 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10589 &type_section);
10590 }
10591}
10592
ab5088bf 10593/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10594 by PER_CU. This is for the non-DWP case.
80626a55 10595 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10596
10597static struct dwo_file *
0ac5b59e
DE
10598open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10599 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10600{
10601 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10602 struct dwo_file *dwo_file;
3019eac3
DE
10603 struct cleanup *cleanups;
10604
192b62ce 10605 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10606 if (dbfd == NULL)
10607 {
b4f54984 10608 if (dwarf_read_debug)
80626a55
DE
10609 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10610 return NULL;
10611 }
10612 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10613 dwo_file->dwo_name = dwo_name;
10614 dwo_file->comp_dir = comp_dir;
192b62ce 10615 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10616
10617 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10618
192b62ce
TT
10619 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10620 &dwo_file->sections);
3019eac3 10621
19c3d4c9 10622 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3 10623
78d4d2c5
JK
10624 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10625 dwo_file->tus);
3019eac3
DE
10626
10627 discard_cleanups (cleanups);
10628
b4f54984 10629 if (dwarf_read_debug)
80626a55
DE
10630 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10631
3019eac3
DE
10632 return dwo_file;
10633}
10634
80626a55 10635/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10636 size of each of the DWP debugging sections common to version 1 and 2 that
10637 we are interested in. */
3019eac3 10638
80626a55 10639static void
73869dc2
DE
10640dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10641 void *dwp_file_ptr)
3019eac3 10642{
9a3c8263 10643 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10644 const struct dwop_section_names *names = &dwop_section_names;
10645 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10646
80626a55 10647 /* Record the ELF section number for later lookup: this is what the
73869dc2 10648 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10649 gdb_assert (elf_section_nr < dwp_file->num_sections);
10650 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10651
80626a55
DE
10652 /* Look for specific sections that we need. */
10653 if (section_is_p (sectp->name, &names->str_dwo))
10654 {
049412e3 10655 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10656 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10657 }
10658 else if (section_is_p (sectp->name, &names->cu_index))
10659 {
049412e3 10660 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10661 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->tu_index))
10664 {
049412e3 10665 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10666 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10667 }
10668}
3019eac3 10669
73869dc2
DE
10670/* This function is mapped across the sections and remembers the offset and
10671 size of each of the DWP version 2 debugging sections that we are interested
10672 in. This is split into a separate function because we don't know if we
10673 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10674
10675static void
10676dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10677{
9a3c8263 10678 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10679 const struct dwop_section_names *names = &dwop_section_names;
10680 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10681
10682 /* Record the ELF section number for later lookup: this is what the
10683 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10684 gdb_assert (elf_section_nr < dwp_file->num_sections);
10685 dwp_file->elf_sections[elf_section_nr] = sectp;
10686
10687 /* Look for specific sections that we need. */
10688 if (section_is_p (sectp->name, &names->abbrev_dwo))
10689 {
049412e3 10690 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10691 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10692 }
10693 else if (section_is_p (sectp->name, &names->info_dwo))
10694 {
049412e3 10695 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10696 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10697 }
10698 else if (section_is_p (sectp->name, &names->line_dwo))
10699 {
049412e3 10700 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10701 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10702 }
10703 else if (section_is_p (sectp->name, &names->loc_dwo))
10704 {
049412e3 10705 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10706 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10707 }
10708 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10709 {
049412e3 10710 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10711 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10712 }
10713 else if (section_is_p (sectp->name, &names->macro_dwo))
10714 {
049412e3 10715 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10716 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10717 }
10718 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10719 {
049412e3 10720 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10721 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10722 }
10723 else if (section_is_p (sectp->name, &names->types_dwo))
10724 {
049412e3 10725 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10726 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10727 }
10728}
10729
80626a55 10730/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10731
80626a55
DE
10732static hashval_t
10733hash_dwp_loaded_cutus (const void *item)
10734{
9a3c8263 10735 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10736
80626a55
DE
10737 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10738 return dwo_unit->signature;
3019eac3
DE
10739}
10740
80626a55 10741/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10742
80626a55
DE
10743static int
10744eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10745{
9a3c8263
SM
10746 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10747 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10748
80626a55
DE
10749 return dua->signature == dub->signature;
10750}
3019eac3 10751
80626a55 10752/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10753
80626a55
DE
10754static htab_t
10755allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10756{
10757 return htab_create_alloc_ex (3,
10758 hash_dwp_loaded_cutus,
10759 eq_dwp_loaded_cutus,
10760 NULL,
10761 &objfile->objfile_obstack,
10762 hashtab_obstack_allocate,
10763 dummy_obstack_deallocate);
10764}
3019eac3 10765
ab5088bf
DE
10766/* Try to open DWP file FILE_NAME.
10767 The result is the bfd handle of the file.
10768 If there is a problem finding or opening the file, return NULL.
10769 Upon success, the canonicalized path of the file is stored in the bfd,
10770 same as symfile_bfd_open. */
10771
192b62ce 10772static gdb_bfd_ref_ptr
ab5088bf
DE
10773open_dwp_file (const char *file_name)
10774{
192b62ce
TT
10775 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10776 1 /*search_cwd*/));
6ac97d4c
DE
10777 if (abfd != NULL)
10778 return abfd;
10779
10780 /* Work around upstream bug 15652.
10781 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10782 [Whether that's a "bug" is debatable, but it is getting in our way.]
10783 We have no real idea where the dwp file is, because gdb's realpath-ing
10784 of the executable's path may have discarded the needed info.
10785 [IWBN if the dwp file name was recorded in the executable, akin to
10786 .gnu_debuglink, but that doesn't exist yet.]
10787 Strip the directory from FILE_NAME and search again. */
10788 if (*debug_file_directory != '\0')
10789 {
10790 /* Don't implicitly search the current directory here.
10791 If the user wants to search "." to handle this case,
10792 it must be added to debug-file-directory. */
10793 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10794 0 /*search_cwd*/);
10795 }
10796
10797 return NULL;
ab5088bf
DE
10798}
10799
80626a55
DE
10800/* Initialize the use of the DWP file for the current objfile.
10801 By convention the name of the DWP file is ${objfile}.dwp.
10802 The result is NULL if it can't be found. */
a766d390 10803
80626a55 10804static struct dwp_file *
ab5088bf 10805open_and_init_dwp_file (void)
80626a55
DE
10806{
10807 struct objfile *objfile = dwarf2_per_objfile->objfile;
10808 struct dwp_file *dwp_file;
10809 char *dwp_name;
6c447423 10810 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10811
82bf32bc
JK
10812 /* Try to find first .dwp for the binary file before any symbolic links
10813 resolving. */
6c447423
DE
10814
10815 /* If the objfile is a debug file, find the name of the real binary
10816 file and get the name of dwp file from there. */
10817 if (objfile->separate_debug_objfile_backlink != NULL)
10818 {
10819 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10820 const char *backlink_basename = lbasename (backlink->original_name);
10821 char *debug_dirname = ldirname (objfile->original_name);
10822
10823 make_cleanup (xfree, debug_dirname);
10824 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10825 SLASH_STRING, backlink_basename);
10826 }
10827 else
10828 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10829 make_cleanup (xfree, dwp_name);
80626a55 10830
192b62ce 10831 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
82bf32bc
JK
10832 if (dbfd == NULL
10833 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10834 {
10835 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10836 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10837 make_cleanup (xfree, dwp_name);
10838 dbfd = open_dwp_file (dwp_name);
10839 }
10840
80626a55
DE
10841 if (dbfd == NULL)
10842 {
b4f54984 10843 if (dwarf_read_debug)
80626a55
DE
10844 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10845 do_cleanups (cleanups);
10846 return NULL;
3019eac3 10847 }
80626a55 10848 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
10849 dwp_file->name = bfd_get_filename (dbfd.get ());
10850 dwp_file->dbfd = dbfd.release ();
80626a55 10851 do_cleanups (cleanups);
c906108c 10852
80626a55 10853 /* +1: section 0 is unused */
192b62ce 10854 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
10855 dwp_file->elf_sections =
10856 OBSTACK_CALLOC (&objfile->objfile_obstack,
10857 dwp_file->num_sections, asection *);
10858
192b62ce
TT
10859 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10860 dwp_file);
80626a55
DE
10861
10862 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10863
10864 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10865
73869dc2
DE
10866 /* The DWP file version is stored in the hash table. Oh well. */
10867 if (dwp_file->cus->version != dwp_file->tus->version)
10868 {
10869 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10870 pretty bizarre. We use pulongest here because that's the established
4d65956b 10871 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10872 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10873 " TU version %s [in DWP file %s]"),
10874 pulongest (dwp_file->cus->version),
10875 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10876 }
10877 dwp_file->version = dwp_file->cus->version;
10878
10879 if (dwp_file->version == 2)
192b62ce
TT
10880 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10881 dwp_file);
73869dc2 10882
19ac8c2e
DE
10883 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10884 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10885
b4f54984 10886 if (dwarf_read_debug)
80626a55
DE
10887 {
10888 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10889 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10890 " %s CUs, %s TUs\n",
10891 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10892 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10893 }
10894
10895 return dwp_file;
3019eac3 10896}
c906108c 10897
ab5088bf
DE
10898/* Wrapper around open_and_init_dwp_file, only open it once. */
10899
10900static struct dwp_file *
10901get_dwp_file (void)
10902{
10903 if (! dwarf2_per_objfile->dwp_checked)
10904 {
10905 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10906 dwarf2_per_objfile->dwp_checked = 1;
10907 }
10908 return dwarf2_per_objfile->dwp_file;
10909}
10910
80626a55
DE
10911/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10912 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10913 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10914 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10915 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10916
10917 This is called, for example, when wanting to read a variable with a
10918 complex location. Therefore we don't want to do file i/o for every call.
10919 Therefore we don't want to look for a DWO file on every call.
10920 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10921 then we check if we've already seen DWO_NAME, and only THEN do we check
10922 for a DWO file.
10923
1c658ad5 10924 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10925 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10926
3019eac3 10927static struct dwo_unit *
80626a55
DE
10928lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10929 const char *dwo_name, const char *comp_dir,
10930 ULONGEST signature, int is_debug_types)
3019eac3
DE
10931{
10932 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10933 const char *kind = is_debug_types ? "TU" : "CU";
10934 void **dwo_file_slot;
3019eac3 10935 struct dwo_file *dwo_file;
80626a55 10936 struct dwp_file *dwp_file;
cb1df416 10937
6a506a2d
DE
10938 /* First see if there's a DWP file.
10939 If we have a DWP file but didn't find the DWO inside it, don't
10940 look for the original DWO file. It makes gdb behave differently
10941 depending on whether one is debugging in the build tree. */
cf2c3c16 10942
ab5088bf 10943 dwp_file = get_dwp_file ();
80626a55 10944 if (dwp_file != NULL)
cf2c3c16 10945 {
80626a55
DE
10946 const struct dwp_hash_table *dwp_htab =
10947 is_debug_types ? dwp_file->tus : dwp_file->cus;
10948
10949 if (dwp_htab != NULL)
10950 {
10951 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10952 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10953 signature, is_debug_types);
80626a55
DE
10954
10955 if (dwo_cutu != NULL)
10956 {
b4f54984 10957 if (dwarf_read_debug)
80626a55
DE
10958 {
10959 fprintf_unfiltered (gdb_stdlog,
10960 "Virtual DWO %s %s found: @%s\n",
10961 kind, hex_string (signature),
10962 host_address_to_string (dwo_cutu));
10963 }
10964 return dwo_cutu;
10965 }
10966 }
10967 }
6a506a2d 10968 else
80626a55 10969 {
6a506a2d 10970 /* No DWP file, look for the DWO file. */
80626a55 10971
6a506a2d
DE
10972 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10973 if (*dwo_file_slot == NULL)
80626a55 10974 {
6a506a2d
DE
10975 /* Read in the file and build a table of the CUs/TUs it contains. */
10976 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10977 }
6a506a2d 10978 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 10979 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 10980
6a506a2d 10981 if (dwo_file != NULL)
19c3d4c9 10982 {
6a506a2d
DE
10983 struct dwo_unit *dwo_cutu = NULL;
10984
10985 if (is_debug_types && dwo_file->tus)
10986 {
10987 struct dwo_unit find_dwo_cutu;
10988
10989 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10990 find_dwo_cutu.signature = signature;
9a3c8263
SM
10991 dwo_cutu
10992 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
10993 }
10994 else if (!is_debug_types && dwo_file->cu)
80626a55 10995 {
6a506a2d
DE
10996 if (signature == dwo_file->cu->signature)
10997 dwo_cutu = dwo_file->cu;
10998 }
10999
11000 if (dwo_cutu != NULL)
11001 {
b4f54984 11002 if (dwarf_read_debug)
6a506a2d
DE
11003 {
11004 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11005 kind, dwo_name, hex_string (signature),
11006 host_address_to_string (dwo_cutu));
11007 }
11008 return dwo_cutu;
80626a55
DE
11009 }
11010 }
2e276125 11011 }
9cdd5dbd 11012
80626a55
DE
11013 /* We didn't find it. This could mean a dwo_id mismatch, or
11014 someone deleted the DWO/DWP file, or the search path isn't set up
11015 correctly to find the file. */
11016
b4f54984 11017 if (dwarf_read_debug)
80626a55
DE
11018 {
11019 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11020 kind, dwo_name, hex_string (signature));
11021 }
3019eac3 11022
6656a72d
DE
11023 /* This is a warning and not a complaint because it can be caused by
11024 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11025 {
11026 /* Print the name of the DWP file if we looked there, helps the user
11027 better diagnose the problem. */
11028 char *dwp_text = NULL;
11029 struct cleanup *cleanups;
11030
11031 if (dwp_file != NULL)
11032 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11033 cleanups = make_cleanup (xfree, dwp_text);
11034
11035 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11036 " [in module %s]"),
11037 kind, dwo_name, hex_string (signature),
11038 dwp_text != NULL ? dwp_text : "",
11039 this_unit->is_debug_types ? "TU" : "CU",
11040 this_unit->offset.sect_off, objfile_name (objfile));
11041
11042 do_cleanups (cleanups);
11043 }
3019eac3 11044 return NULL;
5fb290d7
DJ
11045}
11046
80626a55
DE
11047/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11048 See lookup_dwo_cutu_unit for details. */
11049
11050static struct dwo_unit *
11051lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11052 const char *dwo_name, const char *comp_dir,
11053 ULONGEST signature)
11054{
11055 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11056}
11057
11058/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11059 See lookup_dwo_cutu_unit for details. */
11060
11061static struct dwo_unit *
11062lookup_dwo_type_unit (struct signatured_type *this_tu,
11063 const char *dwo_name, const char *comp_dir)
11064{
11065 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11066}
11067
89e63ee4
DE
11068/* Traversal function for queue_and_load_all_dwo_tus. */
11069
11070static int
11071queue_and_load_dwo_tu (void **slot, void *info)
11072{
11073 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11074 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11075 ULONGEST signature = dwo_unit->signature;
11076 struct signatured_type *sig_type =
11077 lookup_dwo_signatured_type (per_cu->cu, signature);
11078
11079 if (sig_type != NULL)
11080 {
11081 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11082
11083 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11084 a real dependency of PER_CU on SIG_TYPE. That is detected later
11085 while processing PER_CU. */
11086 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11087 load_full_type_unit (sig_cu);
11088 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11089 }
11090
11091 return 1;
11092}
11093
11094/* Queue all TUs contained in the DWO of PER_CU to be read in.
11095 The DWO may have the only definition of the type, though it may not be
11096 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11097 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11098
11099static void
11100queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11101{
11102 struct dwo_unit *dwo_unit;
11103 struct dwo_file *dwo_file;
11104
11105 gdb_assert (!per_cu->is_debug_types);
11106 gdb_assert (get_dwp_file () == NULL);
11107 gdb_assert (per_cu->cu != NULL);
11108
11109 dwo_unit = per_cu->cu->dwo_unit;
11110 gdb_assert (dwo_unit != NULL);
11111
11112 dwo_file = dwo_unit->dwo_file;
11113 if (dwo_file->tus != NULL)
11114 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11115}
11116
3019eac3
DE
11117/* Free all resources associated with DWO_FILE.
11118 Close the DWO file and munmap the sections.
11119 All memory should be on the objfile obstack. */
348e048f
DE
11120
11121static void
3019eac3 11122free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11123{
348e048f 11124
5c6fa7ab 11125 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11126 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11127
3019eac3
DE
11128 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11129}
348e048f 11130
3019eac3 11131/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11132
3019eac3
DE
11133static void
11134free_dwo_file_cleanup (void *arg)
11135{
11136 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11137 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11138
3019eac3
DE
11139 free_dwo_file (dwo_file, objfile);
11140}
348e048f 11141
3019eac3 11142/* Traversal function for free_dwo_files. */
2ab95328 11143
3019eac3
DE
11144static int
11145free_dwo_file_from_slot (void **slot, void *info)
11146{
11147 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11148 struct objfile *objfile = (struct objfile *) info;
348e048f 11149
3019eac3 11150 free_dwo_file (dwo_file, objfile);
348e048f 11151
3019eac3
DE
11152 return 1;
11153}
348e048f 11154
3019eac3 11155/* Free all resources associated with DWO_FILES. */
348e048f 11156
3019eac3
DE
11157static void
11158free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11159{
11160 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11161}
3019eac3
DE
11162\f
11163/* Read in various DIEs. */
348e048f 11164
d389af10
JK
11165/* qsort helper for inherit_abstract_dies. */
11166
11167static int
11168unsigned_int_compar (const void *ap, const void *bp)
11169{
11170 unsigned int a = *(unsigned int *) ap;
11171 unsigned int b = *(unsigned int *) bp;
11172
11173 return (a > b) - (b > a);
11174}
11175
11176/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11177 Inherit only the children of the DW_AT_abstract_origin DIE not being
11178 already referenced by DW_AT_abstract_origin from the children of the
11179 current DIE. */
d389af10
JK
11180
11181static void
11182inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11183{
11184 struct die_info *child_die;
11185 unsigned die_children_count;
11186 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11187 sect_offset *offsets;
11188 sect_offset *offsets_end, *offsetp;
d389af10
JK
11189 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11190 struct die_info *origin_die;
11191 /* Iterator of the ORIGIN_DIE children. */
11192 struct die_info *origin_child_die;
11193 struct cleanup *cleanups;
11194 struct attribute *attr;
cd02d79d
PA
11195 struct dwarf2_cu *origin_cu;
11196 struct pending **origin_previous_list_in_scope;
d389af10
JK
11197
11198 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11199 if (!attr)
11200 return;
11201
cd02d79d
PA
11202 /* Note that following die references may follow to a die in a
11203 different cu. */
11204
11205 origin_cu = cu;
11206 origin_die = follow_die_ref (die, attr, &origin_cu);
11207
11208 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11209 symbols in. */
11210 origin_previous_list_in_scope = origin_cu->list_in_scope;
11211 origin_cu->list_in_scope = cu->list_in_scope;
11212
edb3359d
DJ
11213 if (die->tag != origin_die->tag
11214 && !(die->tag == DW_TAG_inlined_subroutine
11215 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11216 complaint (&symfile_complaints,
11217 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11218 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11219
11220 child_die = die->child;
11221 die_children_count = 0;
11222 while (child_die && child_die->tag)
11223 {
11224 child_die = sibling_die (child_die);
11225 die_children_count++;
11226 }
8d749320 11227 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11228 cleanups = make_cleanup (xfree, offsets);
11229
11230 offsets_end = offsets;
3ea89b92
PMR
11231 for (child_die = die->child;
11232 child_die && child_die->tag;
11233 child_die = sibling_die (child_die))
11234 {
11235 struct die_info *child_origin_die;
11236 struct dwarf2_cu *child_origin_cu;
11237
11238 /* We are trying to process concrete instance entries:
11239 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11240 it's not relevant to our analysis here. i.e. detecting DIEs that are
11241 present in the abstract instance but not referenced in the concrete
11242 one. */
11243 if (child_die->tag == DW_TAG_GNU_call_site)
11244 continue;
11245
c38f313d
DJ
11246 /* For each CHILD_DIE, find the corresponding child of
11247 ORIGIN_DIE. If there is more than one layer of
11248 DW_AT_abstract_origin, follow them all; there shouldn't be,
11249 but GCC versions at least through 4.4 generate this (GCC PR
11250 40573). */
3ea89b92
PMR
11251 child_origin_die = child_die;
11252 child_origin_cu = cu;
c38f313d
DJ
11253 while (1)
11254 {
cd02d79d
PA
11255 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11256 child_origin_cu);
c38f313d
DJ
11257 if (attr == NULL)
11258 break;
cd02d79d
PA
11259 child_origin_die = follow_die_ref (child_origin_die, attr,
11260 &child_origin_cu);
c38f313d
DJ
11261 }
11262
d389af10
JK
11263 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11264 counterpart may exist. */
c38f313d 11265 if (child_origin_die != child_die)
d389af10 11266 {
edb3359d
DJ
11267 if (child_die->tag != child_origin_die->tag
11268 && !(child_die->tag == DW_TAG_inlined_subroutine
11269 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11270 complaint (&symfile_complaints,
11271 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11272 "different tags"), child_die->offset.sect_off,
11273 child_origin_die->offset.sect_off);
c38f313d
DJ
11274 if (child_origin_die->parent != origin_die)
11275 complaint (&symfile_complaints,
11276 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11277 "different parents"), child_die->offset.sect_off,
11278 child_origin_die->offset.sect_off);
c38f313d
DJ
11279 else
11280 *offsets_end++ = child_origin_die->offset;
d389af10 11281 }
d389af10
JK
11282 }
11283 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11284 unsigned_int_compar);
11285 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11286 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11287 complaint (&symfile_complaints,
11288 _("Multiple children of DIE 0x%x refer "
11289 "to DIE 0x%x as their abstract origin"),
b64f50a1 11290 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11291
11292 offsetp = offsets;
11293 origin_child_die = origin_die->child;
11294 while (origin_child_die && origin_child_die->tag)
11295 {
11296 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11297 while (offsetp < offsets_end
11298 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11299 offsetp++;
b64f50a1
JK
11300 if (offsetp >= offsets_end
11301 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11302 {
adde2bff
DE
11303 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11304 Check whether we're already processing ORIGIN_CHILD_DIE.
11305 This can happen with mutually referenced abstract_origins.
11306 PR 16581. */
11307 if (!origin_child_die->in_process)
11308 process_die (origin_child_die, origin_cu);
d389af10
JK
11309 }
11310 origin_child_die = sibling_die (origin_child_die);
11311 }
cd02d79d 11312 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11313
11314 do_cleanups (cleanups);
11315}
11316
c906108c 11317static void
e7c27a73 11318read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11319{
e7c27a73 11320 struct objfile *objfile = cu->objfile;
3e29f34a 11321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11322 struct context_stack *newobj;
c906108c
SS
11323 CORE_ADDR lowpc;
11324 CORE_ADDR highpc;
11325 struct die_info *child_die;
edb3359d 11326 struct attribute *attr, *call_line, *call_file;
15d034d0 11327 const char *name;
e142c38c 11328 CORE_ADDR baseaddr;
801e3a5b 11329 struct block *block;
edb3359d 11330 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11331 VEC (symbolp) *template_args = NULL;
11332 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11333
11334 if (inlined_func)
11335 {
11336 /* If we do not have call site information, we can't show the
11337 caller of this inlined function. That's too confusing, so
11338 only use the scope for local variables. */
11339 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11340 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11341 if (call_line == NULL || call_file == NULL)
11342 {
11343 read_lexical_block_scope (die, cu);
11344 return;
11345 }
11346 }
c906108c 11347
e142c38c
DJ
11348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11349
94af9270 11350 name = dwarf2_name (die, cu);
c906108c 11351
e8d05480
JB
11352 /* Ignore functions with missing or empty names. These are actually
11353 illegal according to the DWARF standard. */
11354 if (name == NULL)
11355 {
11356 complaint (&symfile_complaints,
b64f50a1
JK
11357 _("missing name for subprogram DIE at %d"),
11358 die->offset.sect_off);
e8d05480
JB
11359 return;
11360 }
11361
11362 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11363 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11364 <= PC_BOUNDS_INVALID)
e8d05480 11365 {
ae4d0c03
PM
11366 attr = dwarf2_attr (die, DW_AT_external, cu);
11367 if (!attr || !DW_UNSND (attr))
11368 complaint (&symfile_complaints,
3e43a32a
MS
11369 _("cannot get low and high bounds "
11370 "for subprogram DIE at %d"),
b64f50a1 11371 die->offset.sect_off);
e8d05480
JB
11372 return;
11373 }
c906108c 11374
3e29f34a
MR
11375 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11376 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11377
34eaf542
TT
11378 /* If we have any template arguments, then we must allocate a
11379 different sort of symbol. */
11380 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11381 {
11382 if (child_die->tag == DW_TAG_template_type_param
11383 || child_die->tag == DW_TAG_template_value_param)
11384 {
e623cf5d 11385 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11386 templ_func->base.is_cplus_template_function = 1;
11387 break;
11388 }
11389 }
11390
fe978cb0
PA
11391 newobj = push_context (0, lowpc);
11392 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11393 (struct symbol *) templ_func);
4c2df51b 11394
4cecd739
DJ
11395 /* If there is a location expression for DW_AT_frame_base, record
11396 it. */
e142c38c 11397 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11398 if (attr)
fe978cb0 11399 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11400
63e43d3a
PMR
11401 /* If there is a location for the static link, record it. */
11402 newobj->static_link = NULL;
11403 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11404 if (attr)
11405 {
224c3ddb
SM
11406 newobj->static_link
11407 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11408 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11409 }
11410
e142c38c 11411 cu->list_in_scope = &local_symbols;
c906108c 11412
639d11d3 11413 if (die->child != NULL)
c906108c 11414 {
639d11d3 11415 child_die = die->child;
c906108c
SS
11416 while (child_die && child_die->tag)
11417 {
34eaf542
TT
11418 if (child_die->tag == DW_TAG_template_type_param
11419 || child_die->tag == DW_TAG_template_value_param)
11420 {
11421 struct symbol *arg = new_symbol (child_die, NULL, cu);
11422
f1078f66
DJ
11423 if (arg != NULL)
11424 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11425 }
11426 else
11427 process_die (child_die, cu);
c906108c
SS
11428 child_die = sibling_die (child_die);
11429 }
11430 }
11431
d389af10
JK
11432 inherit_abstract_dies (die, cu);
11433
4a811a97
UW
11434 /* If we have a DW_AT_specification, we might need to import using
11435 directives from the context of the specification DIE. See the
11436 comment in determine_prefix. */
11437 if (cu->language == language_cplus
11438 && dwarf2_attr (die, DW_AT_specification, cu))
11439 {
11440 struct dwarf2_cu *spec_cu = cu;
11441 struct die_info *spec_die = die_specification (die, &spec_cu);
11442
11443 while (spec_die)
11444 {
11445 child_die = spec_die->child;
11446 while (child_die && child_die->tag)
11447 {
11448 if (child_die->tag == DW_TAG_imported_module)
11449 process_die (child_die, spec_cu);
11450 child_die = sibling_die (child_die);
11451 }
11452
11453 /* In some cases, GCC generates specification DIEs that
11454 themselves contain DW_AT_specification attributes. */
11455 spec_die = die_specification (spec_die, &spec_cu);
11456 }
11457 }
11458
fe978cb0 11459 newobj = pop_context ();
c906108c 11460 /* Make a block for the local symbols within. */
fe978cb0 11461 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11462 newobj->static_link, lowpc, highpc);
801e3a5b 11463
df8a16a1 11464 /* For C++, set the block's scope. */
45280282
IB
11465 if ((cu->language == language_cplus
11466 || cu->language == language_fortran
c44af4eb
TT
11467 || cu->language == language_d
11468 || cu->language == language_rust)
4d4ec4e5 11469 && cu->processing_has_namespace_info)
195a3f6c
TT
11470 block_set_scope (block, determine_prefix (die, cu),
11471 &objfile->objfile_obstack);
df8a16a1 11472
801e3a5b
JB
11473 /* If we have address ranges, record them. */
11474 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11475
fe978cb0 11476 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11477
34eaf542
TT
11478 /* Attach template arguments to function. */
11479 if (! VEC_empty (symbolp, template_args))
11480 {
11481 gdb_assert (templ_func != NULL);
11482
11483 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11484 templ_func->template_arguments
8d749320
SM
11485 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11486 templ_func->n_template_arguments);
34eaf542
TT
11487 memcpy (templ_func->template_arguments,
11488 VEC_address (symbolp, template_args),
11489 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11490 VEC_free (symbolp, template_args);
11491 }
11492
208d8187
JB
11493 /* In C++, we can have functions nested inside functions (e.g., when
11494 a function declares a class that has methods). This means that
11495 when we finish processing a function scope, we may need to go
11496 back to building a containing block's symbol lists. */
fe978cb0 11497 local_symbols = newobj->locals;
22cee43f 11498 local_using_directives = newobj->local_using_directives;
208d8187 11499
921e78cf
JB
11500 /* If we've finished processing a top-level function, subsequent
11501 symbols go in the file symbol list. */
11502 if (outermost_context_p ())
e142c38c 11503 cu->list_in_scope = &file_symbols;
c906108c
SS
11504}
11505
11506/* Process all the DIES contained within a lexical block scope. Start
11507 a new scope, process the dies, and then close the scope. */
11508
11509static void
e7c27a73 11510read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11511{
e7c27a73 11512 struct objfile *objfile = cu->objfile;
3e29f34a 11513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11514 struct context_stack *newobj;
c906108c
SS
11515 CORE_ADDR lowpc, highpc;
11516 struct die_info *child_die;
e142c38c
DJ
11517 CORE_ADDR baseaddr;
11518
11519 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11520
11521 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11522 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11523 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11524 be nasty. Might be easier to properly extend generic blocks to
af34e669 11525 describe ranges. */
e385593e
JK
11526 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11527 {
11528 case PC_BOUNDS_NOT_PRESENT:
11529 /* DW_TAG_lexical_block has no attributes, process its children as if
11530 there was no wrapping by that DW_TAG_lexical_block.
11531 GCC does no longer produces such DWARF since GCC r224161. */
11532 for (child_die = die->child;
11533 child_die != NULL && child_die->tag;
11534 child_die = sibling_die (child_die))
11535 process_die (child_die, cu);
11536 return;
11537 case PC_BOUNDS_INVALID:
11538 return;
11539 }
3e29f34a
MR
11540 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11541 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11542
11543 push_context (0, lowpc);
639d11d3 11544 if (die->child != NULL)
c906108c 11545 {
639d11d3 11546 child_die = die->child;
c906108c
SS
11547 while (child_die && child_die->tag)
11548 {
e7c27a73 11549 process_die (child_die, cu);
c906108c
SS
11550 child_die = sibling_die (child_die);
11551 }
11552 }
3ea89b92 11553 inherit_abstract_dies (die, cu);
fe978cb0 11554 newobj = pop_context ();
c906108c 11555
22cee43f 11556 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11557 {
801e3a5b 11558 struct block *block
63e43d3a 11559 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11560 newobj->start_addr, highpc);
801e3a5b
JB
11561
11562 /* Note that recording ranges after traversing children, as we
11563 do here, means that recording a parent's ranges entails
11564 walking across all its children's ranges as they appear in
11565 the address map, which is quadratic behavior.
11566
11567 It would be nicer to record the parent's ranges before
11568 traversing its children, simply overriding whatever you find
11569 there. But since we don't even decide whether to create a
11570 block until after we've traversed its children, that's hard
11571 to do. */
11572 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11573 }
fe978cb0 11574 local_symbols = newobj->locals;
22cee43f 11575 local_using_directives = newobj->local_using_directives;
c906108c
SS
11576}
11577
96408a79
SA
11578/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11579
11580static void
11581read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11582{
11583 struct objfile *objfile = cu->objfile;
11584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11585 CORE_ADDR pc, baseaddr;
11586 struct attribute *attr;
11587 struct call_site *call_site, call_site_local;
11588 void **slot;
11589 int nparams;
11590 struct die_info *child_die;
11591
11592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11593
11594 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11595 if (!attr)
11596 {
11597 complaint (&symfile_complaints,
11598 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11599 "DIE 0x%x [in module %s]"),
4262abfb 11600 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11601 return;
11602 }
31aa7e4e 11603 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11604 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11605
11606 if (cu->call_site_htab == NULL)
11607 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11608 NULL, &objfile->objfile_obstack,
11609 hashtab_obstack_allocate, NULL);
11610 call_site_local.pc = pc;
11611 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11612 if (*slot != NULL)
11613 {
11614 complaint (&symfile_complaints,
11615 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11616 "DIE 0x%x [in module %s]"),
4262abfb
JK
11617 paddress (gdbarch, pc), die->offset.sect_off,
11618 objfile_name (objfile));
96408a79
SA
11619 return;
11620 }
11621
11622 /* Count parameters at the caller. */
11623
11624 nparams = 0;
11625 for (child_die = die->child; child_die && child_die->tag;
11626 child_die = sibling_die (child_die))
11627 {
11628 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11629 {
11630 complaint (&symfile_complaints,
11631 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11633 child_die->tag, child_die->offset.sect_off,
11634 objfile_name (objfile));
96408a79
SA
11635 continue;
11636 }
11637
11638 nparams++;
11639 }
11640
224c3ddb
SM
11641 call_site
11642 = ((struct call_site *)
11643 obstack_alloc (&objfile->objfile_obstack,
11644 sizeof (*call_site)
11645 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11646 *slot = call_site;
11647 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11648 call_site->pc = pc;
11649
11650 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11651 {
11652 struct die_info *func_die;
11653
11654 /* Skip also over DW_TAG_inlined_subroutine. */
11655 for (func_die = die->parent;
11656 func_die && func_die->tag != DW_TAG_subprogram
11657 && func_die->tag != DW_TAG_subroutine_type;
11658 func_die = func_die->parent);
11659
11660 /* DW_AT_GNU_all_call_sites is a superset
11661 of DW_AT_GNU_all_tail_call_sites. */
11662 if (func_die
11663 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11664 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11665 {
11666 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11667 not complete. But keep CALL_SITE for look ups via call_site_htab,
11668 both the initial caller containing the real return address PC and
11669 the final callee containing the current PC of a chain of tail
11670 calls do not need to have the tail call list complete. But any
11671 function candidate for a virtual tail call frame searched via
11672 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11673 determined unambiguously. */
11674 }
11675 else
11676 {
11677 struct type *func_type = NULL;
11678
11679 if (func_die)
11680 func_type = get_die_type (func_die, cu);
11681 if (func_type != NULL)
11682 {
11683 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11684
11685 /* Enlist this call site to the function. */
11686 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11687 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11688 }
11689 else
11690 complaint (&symfile_complaints,
11691 _("Cannot find function owning DW_TAG_GNU_call_site "
11692 "DIE 0x%x [in module %s]"),
4262abfb 11693 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11694 }
11695 }
11696
11697 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11698 if (attr == NULL)
11699 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11700 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11701 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11702 /* Keep NULL DWARF_BLOCK. */;
11703 else if (attr_form_is_block (attr))
11704 {
11705 struct dwarf2_locexpr_baton *dlbaton;
11706
8d749320 11707 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11708 dlbaton->data = DW_BLOCK (attr)->data;
11709 dlbaton->size = DW_BLOCK (attr)->size;
11710 dlbaton->per_cu = cu->per_cu;
11711
11712 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11713 }
7771576e 11714 else if (attr_form_is_ref (attr))
96408a79 11715 {
96408a79
SA
11716 struct dwarf2_cu *target_cu = cu;
11717 struct die_info *target_die;
11718
ac9ec31b 11719 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11720 gdb_assert (target_cu->objfile == objfile);
11721 if (die_is_declaration (target_die, target_cu))
11722 {
7d45c7c3 11723 const char *target_physname;
9112db09
JK
11724
11725 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11726 target_physname = dwarf2_string_attr (target_die,
11727 DW_AT_linkage_name,
11728 target_cu);
11729 if (target_physname == NULL)
11730 target_physname = dwarf2_string_attr (target_die,
11731 DW_AT_MIPS_linkage_name,
11732 target_cu);
11733 if (target_physname == NULL)
9112db09 11734 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11735 if (target_physname == NULL)
11736 complaint (&symfile_complaints,
11737 _("DW_AT_GNU_call_site_target target DIE has invalid "
11738 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11739 die->offset.sect_off, objfile_name (objfile));
96408a79 11740 else
7d455152 11741 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11742 }
11743 else
11744 {
11745 CORE_ADDR lowpc;
11746
11747 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11748 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11749 <= PC_BOUNDS_INVALID)
96408a79
SA
11750 complaint (&symfile_complaints,
11751 _("DW_AT_GNU_call_site_target target DIE has invalid "
11752 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11753 die->offset.sect_off, objfile_name (objfile));
96408a79 11754 else
3e29f34a
MR
11755 {
11756 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11757 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11758 }
96408a79
SA
11759 }
11760 }
11761 else
11762 complaint (&symfile_complaints,
11763 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11764 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11765 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11766
11767 call_site->per_cu = cu->per_cu;
11768
11769 for (child_die = die->child;
11770 child_die && child_die->tag;
11771 child_die = sibling_die (child_die))
11772 {
96408a79 11773 struct call_site_parameter *parameter;
1788b2d3 11774 struct attribute *loc, *origin;
96408a79
SA
11775
11776 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11777 {
11778 /* Already printed the complaint above. */
11779 continue;
11780 }
11781
11782 gdb_assert (call_site->parameter_count < nparams);
11783 parameter = &call_site->parameter[call_site->parameter_count];
11784
1788b2d3
JK
11785 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11786 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11787 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11788
24c5c679 11789 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11790 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11791 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11792 {
11793 sect_offset offset;
11794
11795 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11796 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11797 if (!offset_in_cu_p (&cu->header, offset))
11798 {
11799 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11800 binding can be done only inside one CU. Such referenced DIE
11801 therefore cannot be even moved to DW_TAG_partial_unit. */
11802 complaint (&symfile_complaints,
11803 _("DW_AT_abstract_origin offset is not in CU for "
11804 "DW_TAG_GNU_call_site child DIE 0x%x "
11805 "[in module %s]"),
4262abfb 11806 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11807 continue;
11808 }
1788b2d3
JK
11809 parameter->u.param_offset.cu_off = (offset.sect_off
11810 - cu->header.offset.sect_off);
11811 }
11812 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11813 {
11814 complaint (&symfile_complaints,
11815 _("No DW_FORM_block* DW_AT_location for "
11816 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11817 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11818 continue;
11819 }
24c5c679 11820 else
96408a79 11821 {
24c5c679
JK
11822 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11823 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11824 if (parameter->u.dwarf_reg != -1)
11825 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11826 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11827 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11828 &parameter->u.fb_offset))
11829 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11830 else
11831 {
11832 complaint (&symfile_complaints,
11833 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11834 "for DW_FORM_block* DW_AT_location is supported for "
11835 "DW_TAG_GNU_call_site child DIE 0x%x "
11836 "[in module %s]"),
4262abfb 11837 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11838 continue;
11839 }
96408a79
SA
11840 }
11841
11842 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11843 if (!attr_form_is_block (attr))
11844 {
11845 complaint (&symfile_complaints,
11846 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11847 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11848 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11849 continue;
11850 }
11851 parameter->value = DW_BLOCK (attr)->data;
11852 parameter->value_size = DW_BLOCK (attr)->size;
11853
11854 /* Parameters are not pre-cleared by memset above. */
11855 parameter->data_value = NULL;
11856 parameter->data_value_size = 0;
11857 call_site->parameter_count++;
11858
11859 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11860 if (attr)
11861 {
11862 if (!attr_form_is_block (attr))
11863 complaint (&symfile_complaints,
11864 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11865 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11866 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11867 else
11868 {
11869 parameter->data_value = DW_BLOCK (attr)->data;
11870 parameter->data_value_size = DW_BLOCK (attr)->size;
11871 }
11872 }
11873 }
11874}
11875
5f46c5a5
JK
11876/* Call CALLBACK from DW_AT_ranges attribute value OFFSET.
11877 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443
JK
11878
11879static int
5f46c5a5
JK
11880dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
11881 std::function<void (CORE_ADDR range_beginning,
11882 CORE_ADDR range_end)> callback)
43039443
JK
11883{
11884 struct objfile *objfile = cu->objfile;
3e29f34a 11885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11886 struct comp_unit_head *cu_header = &cu->header;
11887 bfd *obfd = objfile->obfd;
11888 unsigned int addr_size = cu_header->addr_size;
11889 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11890 /* Base address selection entry. */
11891 CORE_ADDR base;
11892 int found_base;
11893 unsigned int dummy;
d521ce57 11894 const gdb_byte *buffer;
ff013f42 11895 CORE_ADDR baseaddr;
43039443 11896
d00adf39
DE
11897 found_base = cu->base_known;
11898 base = cu->base_address;
43039443 11899
be391dca 11900 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11901 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11902 {
11903 complaint (&symfile_complaints,
11904 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11905 offset);
11906 return 0;
11907 }
dce234bc 11908 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11909
e7030f15 11910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11911
43039443
JK
11912 while (1)
11913 {
11914 CORE_ADDR range_beginning, range_end;
11915
11916 range_beginning = read_address (obfd, buffer, cu, &dummy);
11917 buffer += addr_size;
11918 range_end = read_address (obfd, buffer, cu, &dummy);
11919 buffer += addr_size;
11920 offset += 2 * addr_size;
11921
11922 /* An end of list marker is a pair of zero addresses. */
11923 if (range_beginning == 0 && range_end == 0)
11924 /* Found the end of list entry. */
11925 break;
11926
11927 /* Each base address selection entry is a pair of 2 values.
11928 The first is the largest possible address, the second is
11929 the base address. Check for a base address here. */
11930 if ((range_beginning & mask) == mask)
11931 {
28d2bfb9
AB
11932 /* If we found the largest possible address, then we already
11933 have the base address in range_end. */
11934 base = range_end;
43039443
JK
11935 found_base = 1;
11936 continue;
11937 }
11938
11939 if (!found_base)
11940 {
11941 /* We have no valid base address for the ranges
11942 data. */
11943 complaint (&symfile_complaints,
11944 _("Invalid .debug_ranges data (no base address)"));
11945 return 0;
11946 }
11947
9277c30c
UW
11948 if (range_beginning > range_end)
11949 {
11950 /* Inverted range entries are invalid. */
11951 complaint (&symfile_complaints,
11952 _("Invalid .debug_ranges data (inverted range)"));
11953 return 0;
11954 }
11955
11956 /* Empty range entries have no effect. */
11957 if (range_beginning == range_end)
11958 continue;
11959
43039443
JK
11960 range_beginning += base;
11961 range_end += base;
11962
01093045
DE
11963 /* A not-uncommon case of bad debug info.
11964 Don't pollute the addrmap with bad data. */
11965 if (range_beginning + baseaddr == 0
11966 && !dwarf2_per_objfile->has_section_at_zero)
11967 {
11968 complaint (&symfile_complaints,
11969 _(".debug_ranges entry has start address of zero"
4262abfb 11970 " [in module %s]"), objfile_name (objfile));
01093045
DE
11971 continue;
11972 }
11973
5f46c5a5
JK
11974 callback (range_beginning, range_end);
11975 }
11976
11977 return 1;
11978}
11979
11980/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11981 Return 1 if the attributes are present and valid, otherwise, return 0.
11982 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11983
11984static int
11985dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11986 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11987 struct partial_symtab *ranges_pst)
11988{
11989 struct objfile *objfile = cu->objfile;
11990 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11991 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
11992 SECT_OFF_TEXT (objfile));
11993 int low_set = 0;
11994 CORE_ADDR low = 0;
11995 CORE_ADDR high = 0;
11996 int retval;
11997
11998 retval = dwarf2_ranges_process (offset, cu,
11999 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12000 {
9277c30c 12001 if (ranges_pst != NULL)
3e29f34a
MR
12002 {
12003 CORE_ADDR lowpc;
12004 CORE_ADDR highpc;
12005
12006 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12007 range_beginning + baseaddr);
12008 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12009 range_end + baseaddr);
12010 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12011 ranges_pst);
12012 }
ff013f42 12013
43039443
JK
12014 /* FIXME: This is recording everything as a low-high
12015 segment of consecutive addresses. We should have a
12016 data structure for discontiguous block ranges
12017 instead. */
12018 if (! low_set)
12019 {
12020 low = range_beginning;
12021 high = range_end;
12022 low_set = 1;
12023 }
12024 else
12025 {
12026 if (range_beginning < low)
12027 low = range_beginning;
12028 if (range_end > high)
12029 high = range_end;
12030 }
5f46c5a5
JK
12031 });
12032 if (!retval)
12033 return 0;
43039443
JK
12034
12035 if (! low_set)
12036 /* If the first entry is an end-of-list marker, the range
12037 describes an empty scope, i.e. no instructions. */
12038 return 0;
12039
12040 if (low_return)
12041 *low_return = low;
12042 if (high_return)
12043 *high_return = high;
12044 return 1;
12045}
12046
3a2b436a
JK
12047/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12048 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12049 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12050
3a2b436a 12051static enum pc_bounds_kind
af34e669 12052dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12053 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12054 struct partial_symtab *pst)
c906108c
SS
12055{
12056 struct attribute *attr;
91da1414 12057 struct attribute *attr_high;
af34e669
DJ
12058 CORE_ADDR low = 0;
12059 CORE_ADDR high = 0;
e385593e 12060 enum pc_bounds_kind ret;
c906108c 12061
91da1414
MW
12062 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12063 if (attr_high)
af34e669 12064 {
e142c38c 12065 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12066 if (attr)
91da1414 12067 {
31aa7e4e
JB
12068 low = attr_value_as_address (attr);
12069 high = attr_value_as_address (attr_high);
12070 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12071 high += low;
91da1414 12072 }
af34e669
DJ
12073 else
12074 /* Found high w/o low attribute. */
e385593e 12075 return PC_BOUNDS_INVALID;
af34e669
DJ
12076
12077 /* Found consecutive range of addresses. */
3a2b436a 12078 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12079 }
c906108c 12080 else
af34e669 12081 {
e142c38c 12082 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12083 if (attr != NULL)
12084 {
ab435259
DE
12085 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12086 We take advantage of the fact that DW_AT_ranges does not appear
12087 in DW_TAG_compile_unit of DWO files. */
12088 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12089 unsigned int ranges_offset = (DW_UNSND (attr)
12090 + (need_ranges_base
12091 ? cu->ranges_base
12092 : 0));
2e3cf129 12093
af34e669 12094 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12095 .debug_ranges section. */
2e3cf129 12096 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12097 return PC_BOUNDS_INVALID;
43039443 12098 /* Found discontinuous range of addresses. */
3a2b436a 12099 ret = PC_BOUNDS_RANGES;
af34e669 12100 }
e385593e
JK
12101 else
12102 return PC_BOUNDS_NOT_PRESENT;
af34e669 12103 }
c906108c 12104
9373cf26
JK
12105 /* read_partial_die has also the strict LOW < HIGH requirement. */
12106 if (high <= low)
e385593e 12107 return PC_BOUNDS_INVALID;
c906108c
SS
12108
12109 /* When using the GNU linker, .gnu.linkonce. sections are used to
12110 eliminate duplicate copies of functions and vtables and such.
12111 The linker will arbitrarily choose one and discard the others.
12112 The AT_*_pc values for such functions refer to local labels in
12113 these sections. If the section from that file was discarded, the
12114 labels are not in the output, so the relocs get a value of 0.
12115 If this is a discarded function, mark the pc bounds as invalid,
12116 so that GDB will ignore it. */
72dca2f5 12117 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12118 return PC_BOUNDS_INVALID;
c906108c
SS
12119
12120 *lowpc = low;
96408a79
SA
12121 if (highpc)
12122 *highpc = high;
af34e669 12123 return ret;
c906108c
SS
12124}
12125
b084d499
JB
12126/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12127 its low and high PC addresses. Do nothing if these addresses could not
12128 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12129 and HIGHPC to the high address if greater than HIGHPC. */
12130
12131static void
12132dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12133 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12134 struct dwarf2_cu *cu)
12135{
12136 CORE_ADDR low, high;
12137 struct die_info *child = die->child;
12138
e385593e 12139 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12140 {
325fac50
PA
12141 *lowpc = std::min (*lowpc, low);
12142 *highpc = std::max (*highpc, high);
b084d499
JB
12143 }
12144
12145 /* If the language does not allow nested subprograms (either inside
12146 subprograms or lexical blocks), we're done. */
12147 if (cu->language != language_ada)
12148 return;
6e70227d 12149
b084d499
JB
12150 /* Check all the children of the given DIE. If it contains nested
12151 subprograms, then check their pc bounds. Likewise, we need to
12152 check lexical blocks as well, as they may also contain subprogram
12153 definitions. */
12154 while (child && child->tag)
12155 {
12156 if (child->tag == DW_TAG_subprogram
12157 || child->tag == DW_TAG_lexical_block)
12158 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12159 child = sibling_die (child);
12160 }
12161}
12162
fae299cd
DC
12163/* Get the low and high pc's represented by the scope DIE, and store
12164 them in *LOWPC and *HIGHPC. If the correct values can't be
12165 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12166
12167static void
12168get_scope_pc_bounds (struct die_info *die,
12169 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12170 struct dwarf2_cu *cu)
12171{
12172 CORE_ADDR best_low = (CORE_ADDR) -1;
12173 CORE_ADDR best_high = (CORE_ADDR) 0;
12174 CORE_ADDR current_low, current_high;
12175
3a2b436a 12176 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12177 >= PC_BOUNDS_RANGES)
fae299cd
DC
12178 {
12179 best_low = current_low;
12180 best_high = current_high;
12181 }
12182 else
12183 {
12184 struct die_info *child = die->child;
12185
12186 while (child && child->tag)
12187 {
12188 switch (child->tag) {
12189 case DW_TAG_subprogram:
b084d499 12190 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12191 break;
12192 case DW_TAG_namespace:
f55ee35c 12193 case DW_TAG_module:
fae299cd
DC
12194 /* FIXME: carlton/2004-01-16: Should we do this for
12195 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12196 that current GCC's always emit the DIEs corresponding
12197 to definitions of methods of classes as children of a
12198 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12199 the DIEs giving the declarations, which could be
12200 anywhere). But I don't see any reason why the
12201 standards says that they have to be there. */
12202 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12203
12204 if (current_low != ((CORE_ADDR) -1))
12205 {
325fac50
PA
12206 best_low = std::min (best_low, current_low);
12207 best_high = std::max (best_high, current_high);
fae299cd
DC
12208 }
12209 break;
12210 default:
0963b4bd 12211 /* Ignore. */
fae299cd
DC
12212 break;
12213 }
12214
12215 child = sibling_die (child);
12216 }
12217 }
12218
12219 *lowpc = best_low;
12220 *highpc = best_high;
12221}
12222
801e3a5b
JB
12223/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12224 in DIE. */
380bca97 12225
801e3a5b
JB
12226static void
12227dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12228 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12229{
bb5ed363 12230 struct objfile *objfile = cu->objfile;
3e29f34a 12231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12232 struct attribute *attr;
91da1414 12233 struct attribute *attr_high;
801e3a5b 12234
91da1414
MW
12235 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12236 if (attr_high)
801e3a5b 12237 {
801e3a5b
JB
12238 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12239 if (attr)
12240 {
31aa7e4e
JB
12241 CORE_ADDR low = attr_value_as_address (attr);
12242 CORE_ADDR high = attr_value_as_address (attr_high);
12243
12244 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12245 high += low;
9a619af0 12246
3e29f34a
MR
12247 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12248 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12249 record_block_range (block, low, high - 1);
801e3a5b
JB
12250 }
12251 }
12252
12253 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12254 if (attr)
12255 {
bb5ed363 12256 bfd *obfd = objfile->obfd;
ab435259
DE
12257 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12258 We take advantage of the fact that DW_AT_ranges does not appear
12259 in DW_TAG_compile_unit of DWO files. */
12260 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12261
12262 /* The value of the DW_AT_ranges attribute is the offset of the
12263 address range list in the .debug_ranges section. */
ab435259
DE
12264 unsigned long offset = (DW_UNSND (attr)
12265 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12266 const gdb_byte *buffer;
801e3a5b
JB
12267
12268 /* For some target architectures, but not others, the
12269 read_address function sign-extends the addresses it returns.
12270 To recognize base address selection entries, we need a
12271 mask. */
12272 unsigned int addr_size = cu->header.addr_size;
12273 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12274
12275 /* The base address, to which the next pair is relative. Note
12276 that this 'base' is a DWARF concept: most entries in a range
12277 list are relative, to reduce the number of relocs against the
12278 debugging information. This is separate from this function's
12279 'baseaddr' argument, which GDB uses to relocate debugging
12280 information from a shared library based on the address at
12281 which the library was loaded. */
d00adf39
DE
12282 CORE_ADDR base = cu->base_address;
12283 int base_known = cu->base_known;
801e3a5b 12284
5f46c5a5
JK
12285 dwarf2_ranges_process (offset, cu,
12286 [&] (CORE_ADDR start, CORE_ADDR end)
12287 {
12288 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12289 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12290 record_block_range (block, start, end - 1);
12291 });
801e3a5b
JB
12292 }
12293}
12294
685b1105
JK
12295/* Check whether the producer field indicates either of GCC < 4.6, or the
12296 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12297
685b1105
JK
12298static void
12299check_producer (struct dwarf2_cu *cu)
60d5a603 12300{
38360086 12301 int major, minor;
60d5a603
JK
12302
12303 if (cu->producer == NULL)
12304 {
12305 /* For unknown compilers expect their behavior is DWARF version
12306 compliant.
12307
12308 GCC started to support .debug_types sections by -gdwarf-4 since
12309 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12310 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12311 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12312 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12313 }
b1ffba5a 12314 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12315 {
38360086
MW
12316 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12317 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12318 }
61012eef 12319 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12320 cu->producer_is_icc = 1;
12321 else
12322 {
12323 /* For other non-GCC compilers, expect their behavior is DWARF version
12324 compliant. */
60d5a603
JK
12325 }
12326
ba919b58 12327 cu->checked_producer = 1;
685b1105 12328}
ba919b58 12329
685b1105
JK
12330/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12331 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12332 during 4.6.0 experimental. */
12333
12334static int
12335producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12336{
12337 if (!cu->checked_producer)
12338 check_producer (cu);
12339
12340 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12341}
12342
12343/* Return the default accessibility type if it is not overriden by
12344 DW_AT_accessibility. */
12345
12346static enum dwarf_access_attribute
12347dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12348{
12349 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12350 {
12351 /* The default DWARF 2 accessibility for members is public, the default
12352 accessibility for inheritance is private. */
12353
12354 if (die->tag != DW_TAG_inheritance)
12355 return DW_ACCESS_public;
12356 else
12357 return DW_ACCESS_private;
12358 }
12359 else
12360 {
12361 /* DWARF 3+ defines the default accessibility a different way. The same
12362 rules apply now for DW_TAG_inheritance as for the members and it only
12363 depends on the container kind. */
12364
12365 if (die->parent->tag == DW_TAG_class_type)
12366 return DW_ACCESS_private;
12367 else
12368 return DW_ACCESS_public;
12369 }
12370}
12371
74ac6d43
TT
12372/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12373 offset. If the attribute was not found return 0, otherwise return
12374 1. If it was found but could not properly be handled, set *OFFSET
12375 to 0. */
12376
12377static int
12378handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12379 LONGEST *offset)
12380{
12381 struct attribute *attr;
12382
12383 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12384 if (attr != NULL)
12385 {
12386 *offset = 0;
12387
12388 /* Note that we do not check for a section offset first here.
12389 This is because DW_AT_data_member_location is new in DWARF 4,
12390 so if we see it, we can assume that a constant form is really
12391 a constant and not a section offset. */
12392 if (attr_form_is_constant (attr))
12393 *offset = dwarf2_get_attr_constant_value (attr, 0);
12394 else if (attr_form_is_section_offset (attr))
12395 dwarf2_complex_location_expr_complaint ();
12396 else if (attr_form_is_block (attr))
12397 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12398 else
12399 dwarf2_complex_location_expr_complaint ();
12400
12401 return 1;
12402 }
12403
12404 return 0;
12405}
12406
c906108c
SS
12407/* Add an aggregate field to the field list. */
12408
12409static void
107d2387 12410dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12411 struct dwarf2_cu *cu)
6e70227d 12412{
e7c27a73 12413 struct objfile *objfile = cu->objfile;
5e2b427d 12414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12415 struct nextfield *new_field;
12416 struct attribute *attr;
12417 struct field *fp;
15d034d0 12418 const char *fieldname = "";
c906108c
SS
12419
12420 /* Allocate a new field list entry and link it in. */
8d749320 12421 new_field = XNEW (struct nextfield);
b8c9b27d 12422 make_cleanup (xfree, new_field);
c906108c 12423 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12424
12425 if (die->tag == DW_TAG_inheritance)
12426 {
12427 new_field->next = fip->baseclasses;
12428 fip->baseclasses = new_field;
12429 }
12430 else
12431 {
12432 new_field->next = fip->fields;
12433 fip->fields = new_field;
12434 }
c906108c
SS
12435 fip->nfields++;
12436
e142c38c 12437 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12438 if (attr)
12439 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12440 else
12441 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12442 if (new_field->accessibility != DW_ACCESS_public)
12443 fip->non_public_fields = 1;
60d5a603 12444
e142c38c 12445 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12446 if (attr)
12447 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12448 else
12449 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12450
12451 fp = &new_field->field;
a9a9bd0f 12452
e142c38c 12453 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12454 {
74ac6d43
TT
12455 LONGEST offset;
12456
a9a9bd0f 12457 /* Data member other than a C++ static data member. */
6e70227d 12458
c906108c 12459 /* Get type of field. */
e7c27a73 12460 fp->type = die_type (die, cu);
c906108c 12461
d6a843b5 12462 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12463
c906108c 12464 /* Get bit size of field (zero if none). */
e142c38c 12465 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12466 if (attr)
12467 {
12468 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12469 }
12470 else
12471 {
12472 FIELD_BITSIZE (*fp) = 0;
12473 }
12474
12475 /* Get bit offset of field. */
74ac6d43
TT
12476 if (handle_data_member_location (die, cu, &offset))
12477 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12478 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12479 if (attr)
12480 {
5e2b427d 12481 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12482 {
12483 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12484 additional bit offset from the MSB of the containing
12485 anonymous object to the MSB of the field. We don't
12486 have to do anything special since we don't need to
12487 know the size of the anonymous object. */
f41f5e61 12488 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12489 }
12490 else
12491 {
12492 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12493 MSB of the anonymous object, subtract off the number of
12494 bits from the MSB of the field to the MSB of the
12495 object, and then subtract off the number of bits of
12496 the field itself. The result is the bit offset of
12497 the LSB of the field. */
c906108c
SS
12498 int anonymous_size;
12499 int bit_offset = DW_UNSND (attr);
12500
e142c38c 12501 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12502 if (attr)
12503 {
12504 /* The size of the anonymous object containing
12505 the bit field is explicit, so use the
12506 indicated size (in bytes). */
12507 anonymous_size = DW_UNSND (attr);
12508 }
12509 else
12510 {
12511 /* The size of the anonymous object containing
12512 the bit field must be inferred from the type
12513 attribute of the data member containing the
12514 bit field. */
12515 anonymous_size = TYPE_LENGTH (fp->type);
12516 }
f41f5e61
PA
12517 SET_FIELD_BITPOS (*fp,
12518 (FIELD_BITPOS (*fp)
12519 + anonymous_size * bits_per_byte
12520 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12521 }
12522 }
da5b30da
AA
12523 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12524 if (attr != NULL)
12525 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12526 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
12527
12528 /* Get name of field. */
39cbfefa
DJ
12529 fieldname = dwarf2_name (die, cu);
12530 if (fieldname == NULL)
12531 fieldname = "";
d8151005
DJ
12532
12533 /* The name is already allocated along with this objfile, so we don't
12534 need to duplicate it for the type. */
12535 fp->name = fieldname;
c906108c
SS
12536
12537 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12538 pointer or virtual base class pointer) to private. */
e142c38c 12539 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12540 {
d48cc9dd 12541 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12542 new_field->accessibility = DW_ACCESS_private;
12543 fip->non_public_fields = 1;
12544 }
12545 }
a9a9bd0f 12546 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12547 {
a9a9bd0f
DC
12548 /* C++ static member. */
12549
12550 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12551 is a declaration, but all versions of G++ as of this writing
12552 (so through at least 3.2.1) incorrectly generate
12553 DW_TAG_variable tags. */
6e70227d 12554
ff355380 12555 const char *physname;
c906108c 12556
a9a9bd0f 12557 /* Get name of field. */
39cbfefa
DJ
12558 fieldname = dwarf2_name (die, cu);
12559 if (fieldname == NULL)
c906108c
SS
12560 return;
12561
254e6b9e 12562 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12563 if (attr
12564 /* Only create a symbol if this is an external value.
12565 new_symbol checks this and puts the value in the global symbol
12566 table, which we want. If it is not external, new_symbol
12567 will try to put the value in cu->list_in_scope which is wrong. */
12568 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12569 {
12570 /* A static const member, not much different than an enum as far as
12571 we're concerned, except that we can support more types. */
12572 new_symbol (die, NULL, cu);
12573 }
12574
2df3850c 12575 /* Get physical name. */
ff355380 12576 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12577
d8151005
DJ
12578 /* The name is already allocated along with this objfile, so we don't
12579 need to duplicate it for the type. */
12580 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12581 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12582 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12583 }
12584 else if (die->tag == DW_TAG_inheritance)
12585 {
74ac6d43 12586 LONGEST offset;
d4b96c9a 12587
74ac6d43
TT
12588 /* C++ base class field. */
12589 if (handle_data_member_location (die, cu, &offset))
12590 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12591 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12592 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12593 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12594 fip->nbaseclasses++;
12595 }
12596}
12597
98751a41
JK
12598/* Add a typedef defined in the scope of the FIP's class. */
12599
12600static void
12601dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12602 struct dwarf2_cu *cu)
6e70227d 12603{
98751a41 12604 struct typedef_field_list *new_field;
98751a41 12605 struct typedef_field *fp;
98751a41
JK
12606
12607 /* Allocate a new field list entry and link it in. */
8d749320 12608 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12609 make_cleanup (xfree, new_field);
12610
12611 gdb_assert (die->tag == DW_TAG_typedef);
12612
12613 fp = &new_field->field;
12614
12615 /* Get name of field. */
12616 fp->name = dwarf2_name (die, cu);
12617 if (fp->name == NULL)
12618 return;
12619
12620 fp->type = read_type_die (die, cu);
12621
12622 new_field->next = fip->typedef_field_list;
12623 fip->typedef_field_list = new_field;
12624 fip->typedef_field_list_count++;
12625}
12626
c906108c
SS
12627/* Create the vector of fields, and attach it to the type. */
12628
12629static void
fba45db2 12630dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12631 struct dwarf2_cu *cu)
c906108c
SS
12632{
12633 int nfields = fip->nfields;
12634
12635 /* Record the field count, allocate space for the array of fields,
12636 and create blank accessibility bitfields if necessary. */
12637 TYPE_NFIELDS (type) = nfields;
12638 TYPE_FIELDS (type) = (struct field *)
12639 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12640 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12641
b4ba55a1 12642 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12643 {
12644 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12645
12646 TYPE_FIELD_PRIVATE_BITS (type) =
12647 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12648 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12649
12650 TYPE_FIELD_PROTECTED_BITS (type) =
12651 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12652 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12653
774b6a14
TT
12654 TYPE_FIELD_IGNORE_BITS (type) =
12655 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12656 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12657 }
12658
12659 /* If the type has baseclasses, allocate and clear a bit vector for
12660 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12661 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12662 {
12663 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12664 unsigned char *pointer;
c906108c
SS
12665
12666 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12667 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12668 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12669 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12670 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12671 }
12672
3e43a32a
MS
12673 /* Copy the saved-up fields into the field vector. Start from the head of
12674 the list, adding to the tail of the field array, so that they end up in
12675 the same order in the array in which they were added to the list. */
c906108c
SS
12676 while (nfields-- > 0)
12677 {
7d0ccb61
DJ
12678 struct nextfield *fieldp;
12679
12680 if (fip->fields)
12681 {
12682 fieldp = fip->fields;
12683 fip->fields = fieldp->next;
12684 }
12685 else
12686 {
12687 fieldp = fip->baseclasses;
12688 fip->baseclasses = fieldp->next;
12689 }
12690
12691 TYPE_FIELD (type, nfields) = fieldp->field;
12692 switch (fieldp->accessibility)
c906108c 12693 {
c5aa993b 12694 case DW_ACCESS_private:
b4ba55a1
JB
12695 if (cu->language != language_ada)
12696 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12697 break;
c906108c 12698
c5aa993b 12699 case DW_ACCESS_protected:
b4ba55a1
JB
12700 if (cu->language != language_ada)
12701 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12702 break;
c906108c 12703
c5aa993b
JM
12704 case DW_ACCESS_public:
12705 break;
c906108c 12706
c5aa993b
JM
12707 default:
12708 /* Unknown accessibility. Complain and treat it as public. */
12709 {
e2e0b3e5 12710 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12711 fieldp->accessibility);
c5aa993b
JM
12712 }
12713 break;
c906108c
SS
12714 }
12715 if (nfields < fip->nbaseclasses)
12716 {
7d0ccb61 12717 switch (fieldp->virtuality)
c906108c 12718 {
c5aa993b
JM
12719 case DW_VIRTUALITY_virtual:
12720 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12721 if (cu->language == language_ada)
a73c6dcd 12722 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12723 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12724 break;
c906108c
SS
12725 }
12726 }
c906108c
SS
12727 }
12728}
12729
7d27a96d
TT
12730/* Return true if this member function is a constructor, false
12731 otherwise. */
12732
12733static int
12734dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12735{
12736 const char *fieldname;
fe978cb0 12737 const char *type_name;
7d27a96d
TT
12738 int len;
12739
12740 if (die->parent == NULL)
12741 return 0;
12742
12743 if (die->parent->tag != DW_TAG_structure_type
12744 && die->parent->tag != DW_TAG_union_type
12745 && die->parent->tag != DW_TAG_class_type)
12746 return 0;
12747
12748 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12749 type_name = dwarf2_name (die->parent, cu);
12750 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12751 return 0;
12752
12753 len = strlen (fieldname);
fe978cb0
PA
12754 return (strncmp (fieldname, type_name, len) == 0
12755 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12756}
12757
c906108c
SS
12758/* Add a member function to the proper fieldlist. */
12759
12760static void
107d2387 12761dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12762 struct type *type, struct dwarf2_cu *cu)
c906108c 12763{
e7c27a73 12764 struct objfile *objfile = cu->objfile;
c906108c
SS
12765 struct attribute *attr;
12766 struct fnfieldlist *flp;
12767 int i;
12768 struct fn_field *fnp;
15d034d0 12769 const char *fieldname;
c906108c 12770 struct nextfnfield *new_fnfield;
f792889a 12771 struct type *this_type;
60d5a603 12772 enum dwarf_access_attribute accessibility;
c906108c 12773
b4ba55a1 12774 if (cu->language == language_ada)
a73c6dcd 12775 error (_("unexpected member function in Ada type"));
b4ba55a1 12776
2df3850c 12777 /* Get name of member function. */
39cbfefa
DJ
12778 fieldname = dwarf2_name (die, cu);
12779 if (fieldname == NULL)
2df3850c 12780 return;
c906108c 12781
c906108c
SS
12782 /* Look up member function name in fieldlist. */
12783 for (i = 0; i < fip->nfnfields; i++)
12784 {
27bfe10e 12785 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12786 break;
12787 }
12788
12789 /* Create new list element if necessary. */
12790 if (i < fip->nfnfields)
12791 flp = &fip->fnfieldlists[i];
12792 else
12793 {
12794 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12795 {
12796 fip->fnfieldlists = (struct fnfieldlist *)
12797 xrealloc (fip->fnfieldlists,
12798 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12799 * sizeof (struct fnfieldlist));
c906108c 12800 if (fip->nfnfields == 0)
c13c43fd 12801 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12802 }
12803 flp = &fip->fnfieldlists[fip->nfnfields];
12804 flp->name = fieldname;
12805 flp->length = 0;
12806 flp->head = NULL;
3da10d80 12807 i = fip->nfnfields++;
c906108c
SS
12808 }
12809
12810 /* Create a new member function field and chain it to the field list
0963b4bd 12811 entry. */
8d749320 12812 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12813 make_cleanup (xfree, new_fnfield);
c906108c
SS
12814 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12815 new_fnfield->next = flp->head;
12816 flp->head = new_fnfield;
12817 flp->length++;
12818
12819 /* Fill in the member function field info. */
12820 fnp = &new_fnfield->fnfield;
3da10d80
KS
12821
12822 /* Delay processing of the physname until later. */
9c37b5ae 12823 if (cu->language == language_cplus)
3da10d80
KS
12824 {
12825 add_to_method_list (type, i, flp->length - 1, fieldname,
12826 die, cu);
12827 }
12828 else
12829 {
1d06ead6 12830 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12831 fnp->physname = physname ? physname : "";
12832 }
12833
c906108c 12834 fnp->type = alloc_type (objfile);
f792889a
DJ
12835 this_type = read_type_die (die, cu);
12836 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12837 {
f792889a 12838 int nparams = TYPE_NFIELDS (this_type);
c906108c 12839
f792889a 12840 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12841 of the method itself (TYPE_CODE_METHOD). */
12842 smash_to_method_type (fnp->type, type,
f792889a
DJ
12843 TYPE_TARGET_TYPE (this_type),
12844 TYPE_FIELDS (this_type),
12845 TYPE_NFIELDS (this_type),
12846 TYPE_VARARGS (this_type));
c906108c
SS
12847
12848 /* Handle static member functions.
c5aa993b 12849 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12850 member functions. G++ helps GDB by marking the first
12851 parameter for non-static member functions (which is the this
12852 pointer) as artificial. We obtain this information from
12853 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12854 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12855 fnp->voffset = VOFFSET_STATIC;
12856 }
12857 else
e2e0b3e5 12858 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12859 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12860
12861 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12862 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12863 fnp->fcontext = die_containing_type (die, cu);
c906108c 12864
3e43a32a
MS
12865 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12866 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12867
12868 /* Get accessibility. */
e142c38c 12869 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12870 if (attr)
aead7601 12871 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12872 else
12873 accessibility = dwarf2_default_access_attribute (die, cu);
12874 switch (accessibility)
c906108c 12875 {
60d5a603
JK
12876 case DW_ACCESS_private:
12877 fnp->is_private = 1;
12878 break;
12879 case DW_ACCESS_protected:
12880 fnp->is_protected = 1;
12881 break;
c906108c
SS
12882 }
12883
b02dede2 12884 /* Check for artificial methods. */
e142c38c 12885 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12886 if (attr && DW_UNSND (attr) != 0)
12887 fnp->is_artificial = 1;
12888
7d27a96d
TT
12889 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12890
0d564a31 12891 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12892 function. For older versions of GCC, this is an offset in the
12893 appropriate virtual table, as specified by DW_AT_containing_type.
12894 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12895 to the object address. */
12896
e142c38c 12897 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12898 if (attr)
8e19ed76 12899 {
aec5aa8b 12900 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12901 {
aec5aa8b
TT
12902 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12903 {
12904 /* Old-style GCC. */
12905 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12906 }
12907 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12908 || (DW_BLOCK (attr)->size > 1
12909 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12910 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12911 {
aec5aa8b
TT
12912 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12913 if ((fnp->voffset % cu->header.addr_size) != 0)
12914 dwarf2_complex_location_expr_complaint ();
12915 else
12916 fnp->voffset /= cu->header.addr_size;
12917 fnp->voffset += 2;
12918 }
12919 else
12920 dwarf2_complex_location_expr_complaint ();
12921
12922 if (!fnp->fcontext)
7e993ebf
KS
12923 {
12924 /* If there is no `this' field and no DW_AT_containing_type,
12925 we cannot actually find a base class context for the
12926 vtable! */
12927 if (TYPE_NFIELDS (this_type) == 0
12928 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12929 {
12930 complaint (&symfile_complaints,
12931 _("cannot determine context for virtual member "
12932 "function \"%s\" (offset %d)"),
12933 fieldname, die->offset.sect_off);
12934 }
12935 else
12936 {
12937 fnp->fcontext
12938 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12939 }
12940 }
aec5aa8b 12941 }
3690dd37 12942 else if (attr_form_is_section_offset (attr))
8e19ed76 12943 {
4d3c2250 12944 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12945 }
12946 else
12947 {
4d3c2250
KB
12948 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12949 fieldname);
8e19ed76 12950 }
0d564a31 12951 }
d48cc9dd
DJ
12952 else
12953 {
12954 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12955 if (attr && DW_UNSND (attr))
12956 {
12957 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12958 complaint (&symfile_complaints,
3e43a32a
MS
12959 _("Member function \"%s\" (offset %d) is virtual "
12960 "but the vtable offset is not specified"),
b64f50a1 12961 fieldname, die->offset.sect_off);
9655fd1a 12962 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12963 TYPE_CPLUS_DYNAMIC (type) = 1;
12964 }
12965 }
c906108c
SS
12966}
12967
12968/* Create the vector of member function fields, and attach it to the type. */
12969
12970static void
fba45db2 12971dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12972 struct dwarf2_cu *cu)
c906108c
SS
12973{
12974 struct fnfieldlist *flp;
c906108c
SS
12975 int i;
12976
b4ba55a1 12977 if (cu->language == language_ada)
a73c6dcd 12978 error (_("unexpected member functions in Ada type"));
b4ba55a1 12979
c906108c
SS
12980 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12981 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12982 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12983
12984 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12985 {
12986 struct nextfnfield *nfp = flp->head;
12987 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12988 int k;
12989
12990 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12991 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12992 fn_flp->fn_fields = (struct fn_field *)
12993 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12994 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12995 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12996 }
12997
12998 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12999}
13000
1168df01
JB
13001/* Returns non-zero if NAME is the name of a vtable member in CU's
13002 language, zero otherwise. */
13003static int
13004is_vtable_name (const char *name, struct dwarf2_cu *cu)
13005{
13006 static const char vptr[] = "_vptr";
987504bb 13007 static const char vtable[] = "vtable";
1168df01 13008
9c37b5ae
TT
13009 /* Look for the C++ form of the vtable. */
13010 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13011 return 1;
13012
13013 return 0;
13014}
13015
c0dd20ea 13016/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13017 functions, with the ABI-specified layout. If TYPE describes
13018 such a structure, smash it into a member function type.
61049d3b
DJ
13019
13020 GCC shouldn't do this; it should just output pointer to member DIEs.
13021 This is GCC PR debug/28767. */
c0dd20ea 13022
0b92b5bb
TT
13023static void
13024quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13025{
09e2d7c7 13026 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13027
13028 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13029 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13030 return;
c0dd20ea
DJ
13031
13032 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13033 if (TYPE_FIELD_NAME (type, 0) == NULL
13034 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13035 || TYPE_FIELD_NAME (type, 1) == NULL
13036 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13037 return;
c0dd20ea
DJ
13038
13039 /* Find the type of the method. */
0b92b5bb 13040 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13041 if (pfn_type == NULL
13042 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13043 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13044 return;
c0dd20ea
DJ
13045
13046 /* Look for the "this" argument. */
13047 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13048 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13049 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13050 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13051 return;
c0dd20ea 13052
09e2d7c7 13053 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13054 new_type = alloc_type (objfile);
09e2d7c7 13055 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13056 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13057 TYPE_VARARGS (pfn_type));
0b92b5bb 13058 smash_to_methodptr_type (type, new_type);
c0dd20ea 13059}
1168df01 13060
685b1105
JK
13061/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13062 (icc). */
13063
13064static int
13065producer_is_icc (struct dwarf2_cu *cu)
13066{
13067 if (!cu->checked_producer)
13068 check_producer (cu);
13069
13070 return cu->producer_is_icc;
13071}
13072
c906108c 13073/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13074 (definition) to create a type for the structure or union. Fill in
13075 the type's name and general properties; the members will not be
83655187
DE
13076 processed until process_structure_scope. A symbol table entry for
13077 the type will also not be done until process_structure_scope (assuming
13078 the type has a name).
c906108c 13079
c767944b
DJ
13080 NOTE: we need to call these functions regardless of whether or not the
13081 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13082 structure or union. This gets the type entered into our set of
83655187 13083 user defined types. */
c906108c 13084
f792889a 13085static struct type *
134d01f1 13086read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13087{
e7c27a73 13088 struct objfile *objfile = cu->objfile;
c906108c
SS
13089 struct type *type;
13090 struct attribute *attr;
15d034d0 13091 const char *name;
c906108c 13092
348e048f
DE
13093 /* If the definition of this type lives in .debug_types, read that type.
13094 Don't follow DW_AT_specification though, that will take us back up
13095 the chain and we want to go down. */
45e58e77 13096 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13097 if (attr)
13098 {
ac9ec31b 13099 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13100
ac9ec31b 13101 /* The type's CU may not be the same as CU.
02142a6c 13102 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13103 return set_die_type (die, type, cu);
13104 }
13105
c0dd20ea 13106 type = alloc_type (objfile);
c906108c 13107 INIT_CPLUS_SPECIFIC (type);
93311388 13108
39cbfefa
DJ
13109 name = dwarf2_name (die, cu);
13110 if (name != NULL)
c906108c 13111 {
987504bb 13112 if (cu->language == language_cplus
c44af4eb
TT
13113 || cu->language == language_d
13114 || cu->language == language_rust)
63d06c5c 13115 {
15d034d0 13116 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13117
13118 /* dwarf2_full_name might have already finished building the DIE's
13119 type. If so, there is no need to continue. */
13120 if (get_die_type (die, cu) != NULL)
13121 return get_die_type (die, cu);
13122
13123 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13124 if (die->tag == DW_TAG_structure_type
13125 || die->tag == DW_TAG_class_type)
13126 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13127 }
13128 else
13129 {
d8151005
DJ
13130 /* The name is already allocated along with this objfile, so
13131 we don't need to duplicate it for the type. */
7d455152 13132 TYPE_TAG_NAME (type) = name;
94af9270
KS
13133 if (die->tag == DW_TAG_class_type)
13134 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13135 }
c906108c
SS
13136 }
13137
13138 if (die->tag == DW_TAG_structure_type)
13139 {
13140 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13141 }
13142 else if (die->tag == DW_TAG_union_type)
13143 {
13144 TYPE_CODE (type) = TYPE_CODE_UNION;
13145 }
13146 else
13147 {
4753d33b 13148 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13149 }
13150
0cc2414c
TT
13151 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13152 TYPE_DECLARED_CLASS (type) = 1;
13153
e142c38c 13154 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13155 if (attr)
13156 {
155bfbd3
JB
13157 if (attr_form_is_constant (attr))
13158 TYPE_LENGTH (type) = DW_UNSND (attr);
13159 else
13160 {
13161 /* For the moment, dynamic type sizes are not supported
13162 by GDB's struct type. The actual size is determined
13163 on-demand when resolving the type of a given object,
13164 so set the type's length to zero for now. Otherwise,
13165 we record an expression as the length, and that expression
13166 could lead to a very large value, which could eventually
13167 lead to us trying to allocate that much memory when creating
13168 a value of that type. */
13169 TYPE_LENGTH (type) = 0;
13170 }
c906108c
SS
13171 }
13172 else
13173 {
13174 TYPE_LENGTH (type) = 0;
13175 }
13176
422b1cb0 13177 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13178 {
13179 /* ICC does not output the required DW_AT_declaration
13180 on incomplete types, but gives them a size of zero. */
422b1cb0 13181 TYPE_STUB (type) = 1;
685b1105
JK
13182 }
13183 else
13184 TYPE_STUB_SUPPORTED (type) = 1;
13185
dc718098 13186 if (die_is_declaration (die, cu))
876cecd0 13187 TYPE_STUB (type) = 1;
a6c727b2
DJ
13188 else if (attr == NULL && die->child == NULL
13189 && producer_is_realview (cu->producer))
13190 /* RealView does not output the required DW_AT_declaration
13191 on incomplete types. */
13192 TYPE_STUB (type) = 1;
dc718098 13193
c906108c
SS
13194 /* We need to add the type field to the die immediately so we don't
13195 infinitely recurse when dealing with pointers to the structure
0963b4bd 13196 type within the structure itself. */
1c379e20 13197 set_die_type (die, type, cu);
c906108c 13198
7e314c57
JK
13199 /* set_die_type should be already done. */
13200 set_descriptive_type (type, die, cu);
13201
c767944b
DJ
13202 return type;
13203}
13204
13205/* Finish creating a structure or union type, including filling in
13206 its members and creating a symbol for it. */
13207
13208static void
13209process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13210{
13211 struct objfile *objfile = cu->objfile;
ca040673 13212 struct die_info *child_die;
c767944b
DJ
13213 struct type *type;
13214
13215 type = get_die_type (die, cu);
13216 if (type == NULL)
13217 type = read_structure_type (die, cu);
13218
e142c38c 13219 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13220 {
13221 struct field_info fi;
34eaf542 13222 VEC (symbolp) *template_args = NULL;
c767944b 13223 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13224
13225 memset (&fi, 0, sizeof (struct field_info));
13226
639d11d3 13227 child_die = die->child;
c906108c
SS
13228
13229 while (child_die && child_die->tag)
13230 {
a9a9bd0f
DC
13231 if (child_die->tag == DW_TAG_member
13232 || child_die->tag == DW_TAG_variable)
c906108c 13233 {
a9a9bd0f
DC
13234 /* NOTE: carlton/2002-11-05: A C++ static data member
13235 should be a DW_TAG_member that is a declaration, but
13236 all versions of G++ as of this writing (so through at
13237 least 3.2.1) incorrectly generate DW_TAG_variable
13238 tags for them instead. */
e7c27a73 13239 dwarf2_add_field (&fi, child_die, cu);
c906108c 13240 }
8713b1b1 13241 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13242 {
e98c9e7c
TT
13243 /* Rust doesn't have member functions in the C++ sense.
13244 However, it does emit ordinary functions as children
13245 of a struct DIE. */
13246 if (cu->language == language_rust)
13247 read_func_scope (child_die, cu);
13248 else
13249 {
13250 /* C++ member function. */
13251 dwarf2_add_member_fn (&fi, child_die, type, cu);
13252 }
c906108c
SS
13253 }
13254 else if (child_die->tag == DW_TAG_inheritance)
13255 {
13256 /* C++ base class field. */
e7c27a73 13257 dwarf2_add_field (&fi, child_die, cu);
c906108c 13258 }
98751a41
JK
13259 else if (child_die->tag == DW_TAG_typedef)
13260 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13261 else if (child_die->tag == DW_TAG_template_type_param
13262 || child_die->tag == DW_TAG_template_value_param)
13263 {
13264 struct symbol *arg = new_symbol (child_die, NULL, cu);
13265
f1078f66
DJ
13266 if (arg != NULL)
13267 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13268 }
13269
c906108c
SS
13270 child_die = sibling_die (child_die);
13271 }
13272
34eaf542
TT
13273 /* Attach template arguments to type. */
13274 if (! VEC_empty (symbolp, template_args))
13275 {
13276 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13277 TYPE_N_TEMPLATE_ARGUMENTS (type)
13278 = VEC_length (symbolp, template_args);
13279 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13280 = XOBNEWVEC (&objfile->objfile_obstack,
13281 struct symbol *,
13282 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13283 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13284 VEC_address (symbolp, template_args),
13285 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13286 * sizeof (struct symbol *)));
13287 VEC_free (symbolp, template_args);
13288 }
13289
c906108c
SS
13290 /* Attach fields and member functions to the type. */
13291 if (fi.nfields)
e7c27a73 13292 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13293 if (fi.nfnfields)
13294 {
e7c27a73 13295 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13296
c5aa993b 13297 /* Get the type which refers to the base class (possibly this
c906108c 13298 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13299 class from the DW_AT_containing_type attribute. This use of
13300 DW_AT_containing_type is a GNU extension. */
c906108c 13301
e142c38c 13302 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13303 {
e7c27a73 13304 struct type *t = die_containing_type (die, cu);
c906108c 13305
ae6ae975 13306 set_type_vptr_basetype (type, t);
c906108c
SS
13307 if (type == t)
13308 {
c906108c
SS
13309 int i;
13310
13311 /* Our own class provides vtbl ptr. */
13312 for (i = TYPE_NFIELDS (t) - 1;
13313 i >= TYPE_N_BASECLASSES (t);
13314 --i)
13315 {
0d5cff50 13316 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13317
1168df01 13318 if (is_vtable_name (fieldname, cu))
c906108c 13319 {
ae6ae975 13320 set_type_vptr_fieldno (type, i);
c906108c
SS
13321 break;
13322 }
13323 }
13324
13325 /* Complain if virtual function table field not found. */
13326 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13327 complaint (&symfile_complaints,
3e43a32a
MS
13328 _("virtual function table pointer "
13329 "not found when defining class '%s'"),
4d3c2250
KB
13330 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13331 "");
c906108c
SS
13332 }
13333 else
13334 {
ae6ae975 13335 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13336 }
13337 }
f6235d4c 13338 else if (cu->producer
61012eef 13339 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13340 {
13341 /* The IBM XLC compiler does not provide direct indication
13342 of the containing type, but the vtable pointer is
13343 always named __vfp. */
13344
13345 int i;
13346
13347 for (i = TYPE_NFIELDS (type) - 1;
13348 i >= TYPE_N_BASECLASSES (type);
13349 --i)
13350 {
13351 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13352 {
ae6ae975
DE
13353 set_type_vptr_fieldno (type, i);
13354 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13355 break;
13356 }
13357 }
13358 }
c906108c 13359 }
98751a41
JK
13360
13361 /* Copy fi.typedef_field_list linked list elements content into the
13362 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13363 if (fi.typedef_field_list)
13364 {
13365 int i = fi.typedef_field_list_count;
13366
a0d7a4ff 13367 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13368 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13369 = ((struct typedef_field *)
13370 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13371 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13372
13373 /* Reverse the list order to keep the debug info elements order. */
13374 while (--i >= 0)
13375 {
13376 struct typedef_field *dest, *src;
6e70227d 13377
98751a41
JK
13378 dest = &TYPE_TYPEDEF_FIELD (type, i);
13379 src = &fi.typedef_field_list->field;
13380 fi.typedef_field_list = fi.typedef_field_list->next;
13381 *dest = *src;
13382 }
13383 }
c767944b
DJ
13384
13385 do_cleanups (back_to);
c906108c 13386 }
63d06c5c 13387
bb5ed363 13388 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13389
90aeadfc
DC
13390 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13391 snapshots) has been known to create a die giving a declaration
13392 for a class that has, as a child, a die giving a definition for a
13393 nested class. So we have to process our children even if the
13394 current die is a declaration. Normally, of course, a declaration
13395 won't have any children at all. */
134d01f1 13396
ca040673
DE
13397 child_die = die->child;
13398
90aeadfc
DC
13399 while (child_die != NULL && child_die->tag)
13400 {
13401 if (child_die->tag == DW_TAG_member
13402 || child_die->tag == DW_TAG_variable
34eaf542
TT
13403 || child_die->tag == DW_TAG_inheritance
13404 || child_die->tag == DW_TAG_template_value_param
13405 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13406 {
90aeadfc 13407 /* Do nothing. */
134d01f1 13408 }
90aeadfc
DC
13409 else
13410 process_die (child_die, cu);
134d01f1 13411
90aeadfc 13412 child_die = sibling_die (child_die);
134d01f1
DJ
13413 }
13414
fa4028e9
JB
13415 /* Do not consider external references. According to the DWARF standard,
13416 these DIEs are identified by the fact that they have no byte_size
13417 attribute, and a declaration attribute. */
13418 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13419 || !die_is_declaration (die, cu))
c767944b 13420 new_symbol (die, type, cu);
134d01f1
DJ
13421}
13422
55426c9d
JB
13423/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13424 update TYPE using some information only available in DIE's children. */
13425
13426static void
13427update_enumeration_type_from_children (struct die_info *die,
13428 struct type *type,
13429 struct dwarf2_cu *cu)
13430{
13431 struct obstack obstack;
60f7655a 13432 struct die_info *child_die;
55426c9d
JB
13433 int unsigned_enum = 1;
13434 int flag_enum = 1;
13435 ULONGEST mask = 0;
13436 struct cleanup *old_chain;
13437
13438 obstack_init (&obstack);
13439 old_chain = make_cleanup_obstack_free (&obstack);
13440
60f7655a
DE
13441 for (child_die = die->child;
13442 child_die != NULL && child_die->tag;
13443 child_die = sibling_die (child_die))
55426c9d
JB
13444 {
13445 struct attribute *attr;
13446 LONGEST value;
13447 const gdb_byte *bytes;
13448 struct dwarf2_locexpr_baton *baton;
13449 const char *name;
60f7655a 13450
55426c9d
JB
13451 if (child_die->tag != DW_TAG_enumerator)
13452 continue;
13453
13454 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13455 if (attr == NULL)
13456 continue;
13457
13458 name = dwarf2_name (child_die, cu);
13459 if (name == NULL)
13460 name = "<anonymous enumerator>";
13461
13462 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13463 &value, &bytes, &baton);
13464 if (value < 0)
13465 {
13466 unsigned_enum = 0;
13467 flag_enum = 0;
13468 }
13469 else if ((mask & value) != 0)
13470 flag_enum = 0;
13471 else
13472 mask |= value;
13473
13474 /* If we already know that the enum type is neither unsigned, nor
13475 a flag type, no need to look at the rest of the enumerates. */
13476 if (!unsigned_enum && !flag_enum)
13477 break;
55426c9d
JB
13478 }
13479
13480 if (unsigned_enum)
13481 TYPE_UNSIGNED (type) = 1;
13482 if (flag_enum)
13483 TYPE_FLAG_ENUM (type) = 1;
13484
13485 do_cleanups (old_chain);
13486}
13487
134d01f1
DJ
13488/* Given a DW_AT_enumeration_type die, set its type. We do not
13489 complete the type's fields yet, or create any symbols. */
c906108c 13490
f792889a 13491static struct type *
134d01f1 13492read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13493{
e7c27a73 13494 struct objfile *objfile = cu->objfile;
c906108c 13495 struct type *type;
c906108c 13496 struct attribute *attr;
0114d602 13497 const char *name;
134d01f1 13498
348e048f
DE
13499 /* If the definition of this type lives in .debug_types, read that type.
13500 Don't follow DW_AT_specification though, that will take us back up
13501 the chain and we want to go down. */
45e58e77 13502 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13503 if (attr)
13504 {
ac9ec31b 13505 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13506
ac9ec31b 13507 /* The type's CU may not be the same as CU.
02142a6c 13508 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13509 return set_die_type (die, type, cu);
13510 }
13511
c906108c
SS
13512 type = alloc_type (objfile);
13513
13514 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13515 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13516 if (name != NULL)
7d455152 13517 TYPE_TAG_NAME (type) = name;
c906108c 13518
0626fc76
TT
13519 attr = dwarf2_attr (die, DW_AT_type, cu);
13520 if (attr != NULL)
13521 {
13522 struct type *underlying_type = die_type (die, cu);
13523
13524 TYPE_TARGET_TYPE (type) = underlying_type;
13525 }
13526
e142c38c 13527 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13528 if (attr)
13529 {
13530 TYPE_LENGTH (type) = DW_UNSND (attr);
13531 }
13532 else
13533 {
13534 TYPE_LENGTH (type) = 0;
13535 }
13536
137033e9
JB
13537 /* The enumeration DIE can be incomplete. In Ada, any type can be
13538 declared as private in the package spec, and then defined only
13539 inside the package body. Such types are known as Taft Amendment
13540 Types. When another package uses such a type, an incomplete DIE
13541 may be generated by the compiler. */
02eb380e 13542 if (die_is_declaration (die, cu))
876cecd0 13543 TYPE_STUB (type) = 1;
02eb380e 13544
0626fc76
TT
13545 /* Finish the creation of this type by using the enum's children.
13546 We must call this even when the underlying type has been provided
13547 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13548 update_enumeration_type_from_children (die, type, cu);
13549
0626fc76
TT
13550 /* If this type has an underlying type that is not a stub, then we
13551 may use its attributes. We always use the "unsigned" attribute
13552 in this situation, because ordinarily we guess whether the type
13553 is unsigned -- but the guess can be wrong and the underlying type
13554 can tell us the reality. However, we defer to a local size
13555 attribute if one exists, because this lets the compiler override
13556 the underlying type if needed. */
13557 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13558 {
13559 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13560 if (TYPE_LENGTH (type) == 0)
13561 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13562 }
13563
3d567982
TT
13564 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13565
f792889a 13566 return set_die_type (die, type, cu);
134d01f1
DJ
13567}
13568
13569/* Given a pointer to a die which begins an enumeration, process all
13570 the dies that define the members of the enumeration, and create the
13571 symbol for the enumeration type.
13572
13573 NOTE: We reverse the order of the element list. */
13574
13575static void
13576process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13577{
f792889a 13578 struct type *this_type;
134d01f1 13579
f792889a
DJ
13580 this_type = get_die_type (die, cu);
13581 if (this_type == NULL)
13582 this_type = read_enumeration_type (die, cu);
9dc481d3 13583
639d11d3 13584 if (die->child != NULL)
c906108c 13585 {
9dc481d3
DE
13586 struct die_info *child_die;
13587 struct symbol *sym;
13588 struct field *fields = NULL;
13589 int num_fields = 0;
15d034d0 13590 const char *name;
9dc481d3 13591
639d11d3 13592 child_die = die->child;
c906108c
SS
13593 while (child_die && child_die->tag)
13594 {
13595 if (child_die->tag != DW_TAG_enumerator)
13596 {
e7c27a73 13597 process_die (child_die, cu);
c906108c
SS
13598 }
13599 else
13600 {
39cbfefa
DJ
13601 name = dwarf2_name (child_die, cu);
13602 if (name)
c906108c 13603 {
f792889a 13604 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13605
13606 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13607 {
13608 fields = (struct field *)
13609 xrealloc (fields,
13610 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13611 * sizeof (struct field));
c906108c
SS
13612 }
13613
3567439c 13614 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13615 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13616 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13617 FIELD_BITSIZE (fields[num_fields]) = 0;
13618
13619 num_fields++;
13620 }
13621 }
13622
13623 child_die = sibling_die (child_die);
13624 }
13625
13626 if (num_fields)
13627 {
f792889a
DJ
13628 TYPE_NFIELDS (this_type) = num_fields;
13629 TYPE_FIELDS (this_type) = (struct field *)
13630 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13631 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13632 sizeof (struct field) * num_fields);
b8c9b27d 13633 xfree (fields);
c906108c 13634 }
c906108c 13635 }
134d01f1 13636
6c83ed52
TT
13637 /* If we are reading an enum from a .debug_types unit, and the enum
13638 is a declaration, and the enum is not the signatured type in the
13639 unit, then we do not want to add a symbol for it. Adding a
13640 symbol would in some cases obscure the true definition of the
13641 enum, giving users an incomplete type when the definition is
13642 actually available. Note that we do not want to do this for all
13643 enums which are just declarations, because C++0x allows forward
13644 enum declarations. */
3019eac3 13645 if (cu->per_cu->is_debug_types
6c83ed52
TT
13646 && die_is_declaration (die, cu))
13647 {
52dc124a 13648 struct signatured_type *sig_type;
6c83ed52 13649
c0f78cd4 13650 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13651 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13652 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13653 return;
13654 }
13655
f792889a 13656 new_symbol (die, this_type, cu);
c906108c
SS
13657}
13658
13659/* Extract all information from a DW_TAG_array_type DIE and put it in
13660 the DIE's type field. For now, this only handles one dimensional
13661 arrays. */
13662
f792889a 13663static struct type *
e7c27a73 13664read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13665{
e7c27a73 13666 struct objfile *objfile = cu->objfile;
c906108c 13667 struct die_info *child_die;
7e314c57 13668 struct type *type;
c906108c
SS
13669 struct type *element_type, *range_type, *index_type;
13670 struct type **range_types = NULL;
13671 struct attribute *attr;
13672 int ndim = 0;
13673 struct cleanup *back_to;
15d034d0 13674 const char *name;
dc53a7ad 13675 unsigned int bit_stride = 0;
c906108c 13676
e7c27a73 13677 element_type = die_type (die, cu);
c906108c 13678
7e314c57
JK
13679 /* The die_type call above may have already set the type for this DIE. */
13680 type = get_die_type (die, cu);
13681 if (type)
13682 return type;
13683
dc53a7ad
JB
13684 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13685 if (attr != NULL)
13686 bit_stride = DW_UNSND (attr) * 8;
13687
13688 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13689 if (attr != NULL)
13690 bit_stride = DW_UNSND (attr);
13691
c906108c
SS
13692 /* Irix 6.2 native cc creates array types without children for
13693 arrays with unspecified length. */
639d11d3 13694 if (die->child == NULL)
c906108c 13695 {
46bf5051 13696 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13697 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13698 type = create_array_type_with_stride (NULL, element_type, range_type,
13699 bit_stride);
f792889a 13700 return set_die_type (die, type, cu);
c906108c
SS
13701 }
13702
13703 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13704 child_die = die->child;
c906108c
SS
13705 while (child_die && child_die->tag)
13706 {
13707 if (child_die->tag == DW_TAG_subrange_type)
13708 {
f792889a 13709 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13710
f792889a 13711 if (child_type != NULL)
a02abb62 13712 {
0963b4bd
MS
13713 /* The range type was succesfully read. Save it for the
13714 array type creation. */
a02abb62
JB
13715 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13716 {
13717 range_types = (struct type **)
13718 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13719 * sizeof (struct type *));
13720 if (ndim == 0)
13721 make_cleanup (free_current_contents, &range_types);
13722 }
f792889a 13723 range_types[ndim++] = child_type;
a02abb62 13724 }
c906108c
SS
13725 }
13726 child_die = sibling_die (child_die);
13727 }
13728
13729 /* Dwarf2 dimensions are output from left to right, create the
13730 necessary array types in backwards order. */
7ca2d3a3 13731
c906108c 13732 type = element_type;
7ca2d3a3
DL
13733
13734 if (read_array_order (die, cu) == DW_ORD_col_major)
13735 {
13736 int i = 0;
9a619af0 13737
7ca2d3a3 13738 while (i < ndim)
dc53a7ad
JB
13739 type = create_array_type_with_stride (NULL, type, range_types[i++],
13740 bit_stride);
7ca2d3a3
DL
13741 }
13742 else
13743 {
13744 while (ndim-- > 0)
dc53a7ad
JB
13745 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13746 bit_stride);
7ca2d3a3 13747 }
c906108c 13748
f5f8a009
EZ
13749 /* Understand Dwarf2 support for vector types (like they occur on
13750 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13751 array type. This is not part of the Dwarf2/3 standard yet, but a
13752 custom vendor extension. The main difference between a regular
13753 array and the vector variant is that vectors are passed by value
13754 to functions. */
e142c38c 13755 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13756 if (attr)
ea37ba09 13757 make_vector_type (type);
f5f8a009 13758
dbc98a8b
KW
13759 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13760 implementation may choose to implement triple vectors using this
13761 attribute. */
13762 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13763 if (attr)
13764 {
13765 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13766 TYPE_LENGTH (type) = DW_UNSND (attr);
13767 else
3e43a32a
MS
13768 complaint (&symfile_complaints,
13769 _("DW_AT_byte_size for array type smaller "
13770 "than the total size of elements"));
dbc98a8b
KW
13771 }
13772
39cbfefa
DJ
13773 name = dwarf2_name (die, cu);
13774 if (name)
13775 TYPE_NAME (type) = name;
6e70227d 13776
0963b4bd 13777 /* Install the type in the die. */
7e314c57
JK
13778 set_die_type (die, type, cu);
13779
13780 /* set_die_type should be already done. */
b4ba55a1
JB
13781 set_descriptive_type (type, die, cu);
13782
c906108c
SS
13783 do_cleanups (back_to);
13784
7e314c57 13785 return type;
c906108c
SS
13786}
13787
7ca2d3a3 13788static enum dwarf_array_dim_ordering
6e70227d 13789read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13790{
13791 struct attribute *attr;
13792
13793 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13794
aead7601
SM
13795 if (attr)
13796 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13797
0963b4bd
MS
13798 /* GNU F77 is a special case, as at 08/2004 array type info is the
13799 opposite order to the dwarf2 specification, but data is still
13800 laid out as per normal fortran.
7ca2d3a3 13801
0963b4bd
MS
13802 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13803 version checking. */
7ca2d3a3 13804
905e0470
PM
13805 if (cu->language == language_fortran
13806 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13807 {
13808 return DW_ORD_row_major;
13809 }
13810
6e70227d 13811 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13812 {
13813 case array_column_major:
13814 return DW_ORD_col_major;
13815 case array_row_major:
13816 default:
13817 return DW_ORD_row_major;
13818 };
13819}
13820
72019c9c 13821/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13822 the DIE's type field. */
72019c9c 13823
f792889a 13824static struct type *
72019c9c
GM
13825read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13826{
7e314c57
JK
13827 struct type *domain_type, *set_type;
13828 struct attribute *attr;
f792889a 13829
7e314c57
JK
13830 domain_type = die_type (die, cu);
13831
13832 /* The die_type call above may have already set the type for this DIE. */
13833 set_type = get_die_type (die, cu);
13834 if (set_type)
13835 return set_type;
13836
13837 set_type = create_set_type (NULL, domain_type);
13838
13839 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13840 if (attr)
13841 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13842
f792889a 13843 return set_die_type (die, set_type, cu);
72019c9c 13844}
7ca2d3a3 13845
0971de02
TT
13846/* A helper for read_common_block that creates a locexpr baton.
13847 SYM is the symbol which we are marking as computed.
13848 COMMON_DIE is the DIE for the common block.
13849 COMMON_LOC is the location expression attribute for the common
13850 block itself.
13851 MEMBER_LOC is the location expression attribute for the particular
13852 member of the common block that we are processing.
13853 CU is the CU from which the above come. */
13854
13855static void
13856mark_common_block_symbol_computed (struct symbol *sym,
13857 struct die_info *common_die,
13858 struct attribute *common_loc,
13859 struct attribute *member_loc,
13860 struct dwarf2_cu *cu)
13861{
13862 struct objfile *objfile = dwarf2_per_objfile->objfile;
13863 struct dwarf2_locexpr_baton *baton;
13864 gdb_byte *ptr;
13865 unsigned int cu_off;
13866 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13867 LONGEST offset = 0;
13868
13869 gdb_assert (common_loc && member_loc);
13870 gdb_assert (attr_form_is_block (common_loc));
13871 gdb_assert (attr_form_is_block (member_loc)
13872 || attr_form_is_constant (member_loc));
13873
8d749320 13874 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13875 baton->per_cu = cu->per_cu;
13876 gdb_assert (baton->per_cu);
13877
13878 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13879
13880 if (attr_form_is_constant (member_loc))
13881 {
13882 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13883 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13884 }
13885 else
13886 baton->size += DW_BLOCK (member_loc)->size;
13887
224c3ddb 13888 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13889 baton->data = ptr;
13890
13891 *ptr++ = DW_OP_call4;
13892 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13893 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13894 ptr += 4;
13895
13896 if (attr_form_is_constant (member_loc))
13897 {
13898 *ptr++ = DW_OP_addr;
13899 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13900 ptr += cu->header.addr_size;
13901 }
13902 else
13903 {
13904 /* We have to copy the data here, because DW_OP_call4 will only
13905 use a DW_AT_location attribute. */
13906 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13907 ptr += DW_BLOCK (member_loc)->size;
13908 }
13909
13910 *ptr++ = DW_OP_plus;
13911 gdb_assert (ptr - baton->data == baton->size);
13912
0971de02 13913 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13914 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13915}
13916
4357ac6c
TT
13917/* Create appropriate locally-scoped variables for all the
13918 DW_TAG_common_block entries. Also create a struct common_block
13919 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13920 is used to sepate the common blocks name namespace from regular
13921 variable names. */
c906108c
SS
13922
13923static void
e7c27a73 13924read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13925{
0971de02
TT
13926 struct attribute *attr;
13927
13928 attr = dwarf2_attr (die, DW_AT_location, cu);
13929 if (attr)
13930 {
13931 /* Support the .debug_loc offsets. */
13932 if (attr_form_is_block (attr))
13933 {
13934 /* Ok. */
13935 }
13936 else if (attr_form_is_section_offset (attr))
13937 {
13938 dwarf2_complex_location_expr_complaint ();
13939 attr = NULL;
13940 }
13941 else
13942 {
13943 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13944 "common block member");
13945 attr = NULL;
13946 }
13947 }
13948
639d11d3 13949 if (die->child != NULL)
c906108c 13950 {
4357ac6c
TT
13951 struct objfile *objfile = cu->objfile;
13952 struct die_info *child_die;
13953 size_t n_entries = 0, size;
13954 struct common_block *common_block;
13955 struct symbol *sym;
74ac6d43 13956
4357ac6c
TT
13957 for (child_die = die->child;
13958 child_die && child_die->tag;
13959 child_die = sibling_die (child_die))
13960 ++n_entries;
13961
13962 size = (sizeof (struct common_block)
13963 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
13964 common_block
13965 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
13966 size);
4357ac6c
TT
13967 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13968 common_block->n_entries = 0;
13969
13970 for (child_die = die->child;
13971 child_die && child_die->tag;
13972 child_die = sibling_die (child_die))
13973 {
13974 /* Create the symbol in the DW_TAG_common_block block in the current
13975 symbol scope. */
e7c27a73 13976 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13977 if (sym != NULL)
13978 {
13979 struct attribute *member_loc;
13980
13981 common_block->contents[common_block->n_entries++] = sym;
13982
13983 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13984 cu);
13985 if (member_loc)
13986 {
13987 /* GDB has handled this for a long time, but it is
13988 not specified by DWARF. It seems to have been
13989 emitted by gfortran at least as recently as:
13990 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13991 complaint (&symfile_complaints,
13992 _("Variable in common block has "
13993 "DW_AT_data_member_location "
13994 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13995 child_die->offset.sect_off,
13996 objfile_name (cu->objfile));
0971de02
TT
13997
13998 if (attr_form_is_section_offset (member_loc))
13999 dwarf2_complex_location_expr_complaint ();
14000 else if (attr_form_is_constant (member_loc)
14001 || attr_form_is_block (member_loc))
14002 {
14003 if (attr)
14004 mark_common_block_symbol_computed (sym, die, attr,
14005 member_loc, cu);
14006 }
14007 else
14008 dwarf2_complex_location_expr_complaint ();
14009 }
14010 }
c906108c 14011 }
4357ac6c
TT
14012
14013 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14014 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14015 }
14016}
14017
0114d602 14018/* Create a type for a C++ namespace. */
d9fa45fe 14019
0114d602
DJ
14020static struct type *
14021read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14022{
e7c27a73 14023 struct objfile *objfile = cu->objfile;
0114d602 14024 const char *previous_prefix, *name;
9219021c 14025 int is_anonymous;
0114d602
DJ
14026 struct type *type;
14027
14028 /* For extensions, reuse the type of the original namespace. */
14029 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14030 {
14031 struct die_info *ext_die;
14032 struct dwarf2_cu *ext_cu = cu;
9a619af0 14033
0114d602
DJ
14034 ext_die = dwarf2_extension (die, &ext_cu);
14035 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14036
14037 /* EXT_CU may not be the same as CU.
02142a6c 14038 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14039 return set_die_type (die, type, cu);
14040 }
9219021c 14041
e142c38c 14042 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14043
14044 /* Now build the name of the current namespace. */
14045
0114d602
DJ
14046 previous_prefix = determine_prefix (die, cu);
14047 if (previous_prefix[0] != '\0')
14048 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14049 previous_prefix, name, 0, cu);
0114d602
DJ
14050
14051 /* Create the type. */
19f392bc 14052 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14053 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14054
60531b24 14055 return set_die_type (die, type, cu);
0114d602
DJ
14056}
14057
22cee43f 14058/* Read a namespace scope. */
0114d602
DJ
14059
14060static void
14061read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14062{
14063 struct objfile *objfile = cu->objfile;
0114d602 14064 int is_anonymous;
9219021c 14065
5c4e30ca
DC
14066 /* Add a symbol associated to this if we haven't seen the namespace
14067 before. Also, add a using directive if it's an anonymous
14068 namespace. */
9219021c 14069
f2f0e013 14070 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14071 {
14072 struct type *type;
14073
0114d602 14074 type = read_type_die (die, cu);
e7c27a73 14075 new_symbol (die, type, cu);
5c4e30ca 14076
e8e80198 14077 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14078 if (is_anonymous)
0114d602
DJ
14079 {
14080 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14081
22cee43f
PMR
14082 add_using_directive (using_directives (cu->language),
14083 previous_prefix, TYPE_NAME (type), NULL,
14084 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14085 }
5c4e30ca 14086 }
9219021c 14087
639d11d3 14088 if (die->child != NULL)
d9fa45fe 14089 {
639d11d3 14090 struct die_info *child_die = die->child;
6e70227d 14091
d9fa45fe
DC
14092 while (child_die && child_die->tag)
14093 {
e7c27a73 14094 process_die (child_die, cu);
d9fa45fe
DC
14095 child_die = sibling_die (child_die);
14096 }
14097 }
38d518c9
EZ
14098}
14099
f55ee35c
JK
14100/* Read a Fortran module as type. This DIE can be only a declaration used for
14101 imported module. Still we need that type as local Fortran "use ... only"
14102 declaration imports depend on the created type in determine_prefix. */
14103
14104static struct type *
14105read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14106{
14107 struct objfile *objfile = cu->objfile;
15d034d0 14108 const char *module_name;
f55ee35c
JK
14109 struct type *type;
14110
14111 module_name = dwarf2_name (die, cu);
14112 if (!module_name)
3e43a32a
MS
14113 complaint (&symfile_complaints,
14114 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14115 die->offset.sect_off);
19f392bc 14116 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14117
14118 /* determine_prefix uses TYPE_TAG_NAME. */
14119 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14120
14121 return set_die_type (die, type, cu);
14122}
14123
5d7cb8df
JK
14124/* Read a Fortran module. */
14125
14126static void
14127read_module (struct die_info *die, struct dwarf2_cu *cu)
14128{
14129 struct die_info *child_die = die->child;
530e8392
KB
14130 struct type *type;
14131
14132 type = read_type_die (die, cu);
14133 new_symbol (die, type, cu);
5d7cb8df 14134
5d7cb8df
JK
14135 while (child_die && child_die->tag)
14136 {
14137 process_die (child_die, cu);
14138 child_die = sibling_die (child_die);
14139 }
14140}
14141
38d518c9
EZ
14142/* Return the name of the namespace represented by DIE. Set
14143 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14144 namespace. */
14145
14146static const char *
e142c38c 14147namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14148{
14149 struct die_info *current_die;
14150 const char *name = NULL;
14151
14152 /* Loop through the extensions until we find a name. */
14153
14154 for (current_die = die;
14155 current_die != NULL;
f2f0e013 14156 current_die = dwarf2_extension (die, &cu))
38d518c9 14157 {
96553a0c
DE
14158 /* We don't use dwarf2_name here so that we can detect the absence
14159 of a name -> anonymous namespace. */
7d45c7c3 14160 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14161
38d518c9
EZ
14162 if (name != NULL)
14163 break;
14164 }
14165
14166 /* Is it an anonymous namespace? */
14167
14168 *is_anonymous = (name == NULL);
14169 if (*is_anonymous)
2b1dbab0 14170 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14171
14172 return name;
d9fa45fe
DC
14173}
14174
c906108c
SS
14175/* Extract all information from a DW_TAG_pointer_type DIE and add to
14176 the user defined type vector. */
14177
f792889a 14178static struct type *
e7c27a73 14179read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14180{
5e2b427d 14181 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14182 struct comp_unit_head *cu_header = &cu->header;
c906108c 14183 struct type *type;
8b2dbe47
KB
14184 struct attribute *attr_byte_size;
14185 struct attribute *attr_address_class;
14186 int byte_size, addr_class;
7e314c57
JK
14187 struct type *target_type;
14188
14189 target_type = die_type (die, cu);
c906108c 14190
7e314c57
JK
14191 /* The die_type call above may have already set the type for this DIE. */
14192 type = get_die_type (die, cu);
14193 if (type)
14194 return type;
14195
14196 type = lookup_pointer_type (target_type);
8b2dbe47 14197
e142c38c 14198 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14199 if (attr_byte_size)
14200 byte_size = DW_UNSND (attr_byte_size);
c906108c 14201 else
8b2dbe47
KB
14202 byte_size = cu_header->addr_size;
14203
e142c38c 14204 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14205 if (attr_address_class)
14206 addr_class = DW_UNSND (attr_address_class);
14207 else
14208 addr_class = DW_ADDR_none;
14209
14210 /* If the pointer size or address class is different than the
14211 default, create a type variant marked as such and set the
14212 length accordingly. */
14213 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14214 {
5e2b427d 14215 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14216 {
14217 int type_flags;
14218
849957d9 14219 type_flags = gdbarch_address_class_type_flags
5e2b427d 14220 (gdbarch, byte_size, addr_class);
876cecd0
TT
14221 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14222 == 0);
8b2dbe47
KB
14223 type = make_type_with_address_space (type, type_flags);
14224 }
14225 else if (TYPE_LENGTH (type) != byte_size)
14226 {
3e43a32a
MS
14227 complaint (&symfile_complaints,
14228 _("invalid pointer size %d"), byte_size);
8b2dbe47 14229 }
6e70227d 14230 else
9a619af0
MS
14231 {
14232 /* Should we also complain about unhandled address classes? */
14233 }
c906108c 14234 }
8b2dbe47
KB
14235
14236 TYPE_LENGTH (type) = byte_size;
f792889a 14237 return set_die_type (die, type, cu);
c906108c
SS
14238}
14239
14240/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14241 the user defined type vector. */
14242
f792889a 14243static struct type *
e7c27a73 14244read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14245{
14246 struct type *type;
14247 struct type *to_type;
14248 struct type *domain;
14249
e7c27a73
DJ
14250 to_type = die_type (die, cu);
14251 domain = die_containing_type (die, cu);
0d5de010 14252
7e314c57
JK
14253 /* The calls above may have already set the type for this DIE. */
14254 type = get_die_type (die, cu);
14255 if (type)
14256 return type;
14257
0d5de010
DJ
14258 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14259 type = lookup_methodptr_type (to_type);
7078baeb
TT
14260 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14261 {
14262 struct type *new_type = alloc_type (cu->objfile);
14263
14264 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14265 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14266 TYPE_VARARGS (to_type));
14267 type = lookup_methodptr_type (new_type);
14268 }
0d5de010
DJ
14269 else
14270 type = lookup_memberptr_type (to_type, domain);
c906108c 14271
f792889a 14272 return set_die_type (die, type, cu);
c906108c
SS
14273}
14274
14275/* Extract all information from a DW_TAG_reference_type DIE and add to
14276 the user defined type vector. */
14277
f792889a 14278static struct type *
e7c27a73 14279read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14280{
e7c27a73 14281 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14282 struct type *type, *target_type;
c906108c
SS
14283 struct attribute *attr;
14284
7e314c57
JK
14285 target_type = die_type (die, cu);
14286
14287 /* The die_type call above may have already set the type for this DIE. */
14288 type = get_die_type (die, cu);
14289 if (type)
14290 return type;
14291
14292 type = lookup_reference_type (target_type);
e142c38c 14293 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14294 if (attr)
14295 {
14296 TYPE_LENGTH (type) = DW_UNSND (attr);
14297 }
14298 else
14299 {
107d2387 14300 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14301 }
f792889a 14302 return set_die_type (die, type, cu);
c906108c
SS
14303}
14304
cf363f18
MW
14305/* Add the given cv-qualifiers to the element type of the array. GCC
14306 outputs DWARF type qualifiers that apply to an array, not the
14307 element type. But GDB relies on the array element type to carry
14308 the cv-qualifiers. This mimics section 6.7.3 of the C99
14309 specification. */
14310
14311static struct type *
14312add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14313 struct type *base_type, int cnst, int voltl)
14314{
14315 struct type *el_type, *inner_array;
14316
14317 base_type = copy_type (base_type);
14318 inner_array = base_type;
14319
14320 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14321 {
14322 TYPE_TARGET_TYPE (inner_array) =
14323 copy_type (TYPE_TARGET_TYPE (inner_array));
14324 inner_array = TYPE_TARGET_TYPE (inner_array);
14325 }
14326
14327 el_type = TYPE_TARGET_TYPE (inner_array);
14328 cnst |= TYPE_CONST (el_type);
14329 voltl |= TYPE_VOLATILE (el_type);
14330 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14331
14332 return set_die_type (die, base_type, cu);
14333}
14334
f792889a 14335static struct type *
e7c27a73 14336read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14337{
f792889a 14338 struct type *base_type, *cv_type;
c906108c 14339
e7c27a73 14340 base_type = die_type (die, cu);
7e314c57
JK
14341
14342 /* The die_type call above may have already set the type for this DIE. */
14343 cv_type = get_die_type (die, cu);
14344 if (cv_type)
14345 return cv_type;
14346
2f608a3a
KW
14347 /* In case the const qualifier is applied to an array type, the element type
14348 is so qualified, not the array type (section 6.7.3 of C99). */
14349 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14350 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14351
f792889a
DJ
14352 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14353 return set_die_type (die, cv_type, cu);
c906108c
SS
14354}
14355
f792889a 14356static struct type *
e7c27a73 14357read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14358{
f792889a 14359 struct type *base_type, *cv_type;
c906108c 14360
e7c27a73 14361 base_type = die_type (die, cu);
7e314c57
JK
14362
14363 /* The die_type call above may have already set the type for this DIE. */
14364 cv_type = get_die_type (die, cu);
14365 if (cv_type)
14366 return cv_type;
14367
cf363f18
MW
14368 /* In case the volatile qualifier is applied to an array type, the
14369 element type is so qualified, not the array type (section 6.7.3
14370 of C99). */
14371 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14372 return add_array_cv_type (die, cu, base_type, 0, 1);
14373
f792889a
DJ
14374 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14375 return set_die_type (die, cv_type, cu);
c906108c
SS
14376}
14377
06d66ee9
TT
14378/* Handle DW_TAG_restrict_type. */
14379
14380static struct type *
14381read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14382{
14383 struct type *base_type, *cv_type;
14384
14385 base_type = die_type (die, cu);
14386
14387 /* The die_type call above may have already set the type for this DIE. */
14388 cv_type = get_die_type (die, cu);
14389 if (cv_type)
14390 return cv_type;
14391
14392 cv_type = make_restrict_type (base_type);
14393 return set_die_type (die, cv_type, cu);
14394}
14395
a2c2acaf
MW
14396/* Handle DW_TAG_atomic_type. */
14397
14398static struct type *
14399read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14400{
14401 struct type *base_type, *cv_type;
14402
14403 base_type = die_type (die, cu);
14404
14405 /* The die_type call above may have already set the type for this DIE. */
14406 cv_type = get_die_type (die, cu);
14407 if (cv_type)
14408 return cv_type;
14409
14410 cv_type = make_atomic_type (base_type);
14411 return set_die_type (die, cv_type, cu);
14412}
14413
c906108c
SS
14414/* Extract all information from a DW_TAG_string_type DIE and add to
14415 the user defined type vector. It isn't really a user defined type,
14416 but it behaves like one, with other DIE's using an AT_user_def_type
14417 attribute to reference it. */
14418
f792889a 14419static struct type *
e7c27a73 14420read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14421{
e7c27a73 14422 struct objfile *objfile = cu->objfile;
3b7538c0 14423 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14424 struct type *type, *range_type, *index_type, *char_type;
14425 struct attribute *attr;
14426 unsigned int length;
14427
e142c38c 14428 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14429 if (attr)
14430 {
14431 length = DW_UNSND (attr);
14432 }
14433 else
14434 {
0963b4bd 14435 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14436 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14437 if (attr)
14438 {
14439 length = DW_UNSND (attr);
14440 }
14441 else
14442 {
14443 length = 1;
14444 }
c906108c 14445 }
6ccb9162 14446
46bf5051 14447 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14448 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14449 char_type = language_string_char_type (cu->language_defn, gdbarch);
14450 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14451
f792889a 14452 return set_die_type (die, type, cu);
c906108c
SS
14453}
14454
4d804846
JB
14455/* Assuming that DIE corresponds to a function, returns nonzero
14456 if the function is prototyped. */
14457
14458static int
14459prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14460{
14461 struct attribute *attr;
14462
14463 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14464 if (attr && (DW_UNSND (attr) != 0))
14465 return 1;
14466
14467 /* The DWARF standard implies that the DW_AT_prototyped attribute
14468 is only meaninful for C, but the concept also extends to other
14469 languages that allow unprototyped functions (Eg: Objective C).
14470 For all other languages, assume that functions are always
14471 prototyped. */
14472 if (cu->language != language_c
14473 && cu->language != language_objc
14474 && cu->language != language_opencl)
14475 return 1;
14476
14477 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14478 prototyped and unprototyped functions; default to prototyped,
14479 since that is more common in modern code (and RealView warns
14480 about unprototyped functions). */
14481 if (producer_is_realview (cu->producer))
14482 return 1;
14483
14484 return 0;
14485}
14486
c906108c
SS
14487/* Handle DIES due to C code like:
14488
14489 struct foo
c5aa993b
JM
14490 {
14491 int (*funcp)(int a, long l);
14492 int b;
14493 };
c906108c 14494
0963b4bd 14495 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14496
f792889a 14497static struct type *
e7c27a73 14498read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14499{
bb5ed363 14500 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14501 struct type *type; /* Type that this function returns. */
14502 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14503 struct attribute *attr;
14504
e7c27a73 14505 type = die_type (die, cu);
7e314c57
JK
14506
14507 /* The die_type call above may have already set the type for this DIE. */
14508 ftype = get_die_type (die, cu);
14509 if (ftype)
14510 return ftype;
14511
0c8b41f1 14512 ftype = lookup_function_type (type);
c906108c 14513
4d804846 14514 if (prototyped_function_p (die, cu))
a6c727b2 14515 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14516
c055b101
CV
14517 /* Store the calling convention in the type if it's available in
14518 the subroutine die. Otherwise set the calling convention to
14519 the default value DW_CC_normal. */
14520 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14521 if (attr)
14522 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14523 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14524 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14525 else
14526 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14527
743649fd
MW
14528 /* Record whether the function returns normally to its caller or not
14529 if the DWARF producer set that information. */
14530 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14531 if (attr && (DW_UNSND (attr) != 0))
14532 TYPE_NO_RETURN (ftype) = 1;
14533
76c10ea2
GM
14534 /* We need to add the subroutine type to the die immediately so
14535 we don't infinitely recurse when dealing with parameters
0963b4bd 14536 declared as the same subroutine type. */
76c10ea2 14537 set_die_type (die, ftype, cu);
6e70227d 14538
639d11d3 14539 if (die->child != NULL)
c906108c 14540 {
bb5ed363 14541 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14542 struct die_info *child_die;
8072405b 14543 int nparams, iparams;
c906108c
SS
14544
14545 /* Count the number of parameters.
14546 FIXME: GDB currently ignores vararg functions, but knows about
14547 vararg member functions. */
8072405b 14548 nparams = 0;
639d11d3 14549 child_die = die->child;
c906108c
SS
14550 while (child_die && child_die->tag)
14551 {
14552 if (child_die->tag == DW_TAG_formal_parameter)
14553 nparams++;
14554 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14555 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14556 child_die = sibling_die (child_die);
14557 }
14558
14559 /* Allocate storage for parameters and fill them in. */
14560 TYPE_NFIELDS (ftype) = nparams;
14561 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14562 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14563
8072405b
JK
14564 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14565 even if we error out during the parameters reading below. */
14566 for (iparams = 0; iparams < nparams; iparams++)
14567 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14568
14569 iparams = 0;
639d11d3 14570 child_die = die->child;
c906108c
SS
14571 while (child_die && child_die->tag)
14572 {
14573 if (child_die->tag == DW_TAG_formal_parameter)
14574 {
3ce3b1ba
PA
14575 struct type *arg_type;
14576
14577 /* DWARF version 2 has no clean way to discern C++
14578 static and non-static member functions. G++ helps
14579 GDB by marking the first parameter for non-static
14580 member functions (which is the this pointer) as
14581 artificial. We pass this information to
14582 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14583
14584 DWARF version 3 added DW_AT_object_pointer, which GCC
14585 4.5 does not yet generate. */
e142c38c 14586 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14587 if (attr)
14588 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14589 else
9c37b5ae 14590 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
14591 arg_type = die_type (child_die, cu);
14592
14593 /* RealView does not mark THIS as const, which the testsuite
14594 expects. GCC marks THIS as const in method definitions,
14595 but not in the class specifications (GCC PR 43053). */
14596 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14597 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14598 {
14599 int is_this = 0;
14600 struct dwarf2_cu *arg_cu = cu;
14601 const char *name = dwarf2_name (child_die, cu);
14602
14603 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14604 if (attr)
14605 {
14606 /* If the compiler emits this, use it. */
14607 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14608 is_this = 1;
14609 }
14610 else if (name && strcmp (name, "this") == 0)
14611 /* Function definitions will have the argument names. */
14612 is_this = 1;
14613 else if (name == NULL && iparams == 0)
14614 /* Declarations may not have the names, so like
14615 elsewhere in GDB, assume an artificial first
14616 argument is "this". */
14617 is_this = 1;
14618
14619 if (is_this)
14620 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14621 arg_type, 0);
14622 }
14623
14624 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14625 iparams++;
14626 }
14627 child_die = sibling_die (child_die);
14628 }
14629 }
14630
76c10ea2 14631 return ftype;
c906108c
SS
14632}
14633
f792889a 14634static struct type *
e7c27a73 14635read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14636{
e7c27a73 14637 struct objfile *objfile = cu->objfile;
0114d602 14638 const char *name = NULL;
3c8e0968 14639 struct type *this_type, *target_type;
c906108c 14640
94af9270 14641 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
14642 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14643 TYPE_TARGET_STUB (this_type) = 1;
f792889a 14644 set_die_type (die, this_type, cu);
3c8e0968
DE
14645 target_type = die_type (die, cu);
14646 if (target_type != this_type)
14647 TYPE_TARGET_TYPE (this_type) = target_type;
14648 else
14649 {
14650 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14651 spec and cause infinite loops in GDB. */
14652 complaint (&symfile_complaints,
14653 _("Self-referential DW_TAG_typedef "
14654 "- DIE at 0x%x [in module %s]"),
4262abfb 14655 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14656 TYPE_TARGET_TYPE (this_type) = NULL;
14657 }
f792889a 14658 return this_type;
c906108c
SS
14659}
14660
9b790ce7
UW
14661/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14662 (which may be different from NAME) to the architecture back-end to allow
14663 it to guess the correct format if necessary. */
14664
14665static struct type *
14666dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14667 const char *name_hint)
14668{
14669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14670 const struct floatformat **format;
14671 struct type *type;
14672
14673 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14674 if (format)
14675 type = init_float_type (objfile, bits, name, format);
14676 else
14677 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14678
14679 return type;
14680}
14681
c906108c
SS
14682/* Find a representation of a given base type and install
14683 it in the TYPE field of the die. */
14684
f792889a 14685static struct type *
e7c27a73 14686read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14687{
e7c27a73 14688 struct objfile *objfile = cu->objfile;
c906108c
SS
14689 struct type *type;
14690 struct attribute *attr;
19f392bc 14691 int encoding = 0, bits = 0;
15d034d0 14692 const char *name;
c906108c 14693
e142c38c 14694 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14695 if (attr)
14696 {
14697 encoding = DW_UNSND (attr);
14698 }
e142c38c 14699 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14700 if (attr)
14701 {
19f392bc 14702 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 14703 }
39cbfefa 14704 name = dwarf2_name (die, cu);
6ccb9162 14705 if (!name)
c906108c 14706 {
6ccb9162
UW
14707 complaint (&symfile_complaints,
14708 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14709 }
6ccb9162
UW
14710
14711 switch (encoding)
c906108c 14712 {
6ccb9162
UW
14713 case DW_ATE_address:
14714 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
14715 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14716 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
14717 break;
14718 case DW_ATE_boolean:
19f392bc 14719 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
14720 break;
14721 case DW_ATE_complex_float:
9b790ce7 14722 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 14723 type = init_complex_type (objfile, name, type);
6ccb9162
UW
14724 break;
14725 case DW_ATE_decimal_float:
19f392bc 14726 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
14727 break;
14728 case DW_ATE_float:
9b790ce7 14729 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
14730 break;
14731 case DW_ATE_signed:
19f392bc 14732 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14733 break;
14734 case DW_ATE_unsigned:
3b2b8fea
TT
14735 if (cu->language == language_fortran
14736 && name
61012eef 14737 && startswith (name, "character("))
19f392bc
UW
14738 type = init_character_type (objfile, bits, 1, name);
14739 else
14740 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
14741 break;
14742 case DW_ATE_signed_char:
6e70227d 14743 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14744 || cu->language == language_pascal
14745 || cu->language == language_fortran)
19f392bc
UW
14746 type = init_character_type (objfile, bits, 0, name);
14747 else
14748 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14749 break;
14750 case DW_ATE_unsigned_char:
868a0084 14751 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 14752 || cu->language == language_pascal
c44af4eb
TT
14753 || cu->language == language_fortran
14754 || cu->language == language_rust)
19f392bc
UW
14755 type = init_character_type (objfile, bits, 1, name);
14756 else
14757 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 14758 break;
75079b2b
TT
14759 case DW_ATE_UTF:
14760 /* We just treat this as an integer and then recognize the
14761 type by name elsewhere. */
19f392bc 14762 type = init_integer_type (objfile, bits, 0, name);
75079b2b
TT
14763 break;
14764
6ccb9162
UW
14765 default:
14766 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14767 dwarf_type_encoding_name (encoding));
19f392bc
UW
14768 type = init_type (objfile, TYPE_CODE_ERROR,
14769 bits / TARGET_CHAR_BIT, name);
6ccb9162 14770 break;
c906108c 14771 }
6ccb9162 14772
0114d602 14773 if (name && strcmp (name, "char") == 0)
876cecd0 14774 TYPE_NOSIGN (type) = 1;
0114d602 14775
f792889a 14776 return set_die_type (die, type, cu);
c906108c
SS
14777}
14778
80180f79
SA
14779/* Parse dwarf attribute if it's a block, reference or constant and put the
14780 resulting value of the attribute into struct bound_prop.
14781 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14782
14783static int
14784attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14785 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14786{
14787 struct dwarf2_property_baton *baton;
14788 struct obstack *obstack = &cu->objfile->objfile_obstack;
14789
14790 if (attr == NULL || prop == NULL)
14791 return 0;
14792
14793 if (attr_form_is_block (attr))
14794 {
8d749320 14795 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14796 baton->referenced_type = NULL;
14797 baton->locexpr.per_cu = cu->per_cu;
14798 baton->locexpr.size = DW_BLOCK (attr)->size;
14799 baton->locexpr.data = DW_BLOCK (attr)->data;
14800 prop->data.baton = baton;
14801 prop->kind = PROP_LOCEXPR;
14802 gdb_assert (prop->data.baton != NULL);
14803 }
14804 else if (attr_form_is_ref (attr))
14805 {
14806 struct dwarf2_cu *target_cu = cu;
14807 struct die_info *target_die;
14808 struct attribute *target_attr;
14809
14810 target_die = follow_die_ref (die, attr, &target_cu);
14811 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14812 if (target_attr == NULL)
14813 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14814 target_cu);
80180f79
SA
14815 if (target_attr == NULL)
14816 return 0;
14817
df25ebbd 14818 switch (target_attr->name)
80180f79 14819 {
df25ebbd
JB
14820 case DW_AT_location:
14821 if (attr_form_is_section_offset (target_attr))
14822 {
8d749320 14823 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14824 baton->referenced_type = die_type (target_die, target_cu);
14825 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14826 prop->data.baton = baton;
14827 prop->kind = PROP_LOCLIST;
14828 gdb_assert (prop->data.baton != NULL);
14829 }
14830 else if (attr_form_is_block (target_attr))
14831 {
8d749320 14832 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14833 baton->referenced_type = die_type (target_die, target_cu);
14834 baton->locexpr.per_cu = cu->per_cu;
14835 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14836 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14837 prop->data.baton = baton;
14838 prop->kind = PROP_LOCEXPR;
14839 gdb_assert (prop->data.baton != NULL);
14840 }
14841 else
14842 {
14843 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14844 "dynamic property");
14845 return 0;
14846 }
14847 break;
14848 case DW_AT_data_member_location:
14849 {
14850 LONGEST offset;
14851
14852 if (!handle_data_member_location (target_die, target_cu,
14853 &offset))
14854 return 0;
14855
8d749320 14856 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14857 baton->referenced_type = read_type_die (target_die->parent,
14858 target_cu);
df25ebbd
JB
14859 baton->offset_info.offset = offset;
14860 baton->offset_info.type = die_type (target_die, target_cu);
14861 prop->data.baton = baton;
14862 prop->kind = PROP_ADDR_OFFSET;
14863 break;
14864 }
80180f79
SA
14865 }
14866 }
14867 else if (attr_form_is_constant (attr))
14868 {
14869 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14870 prop->kind = PROP_CONST;
14871 }
14872 else
14873 {
14874 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14875 dwarf2_name (die, cu));
14876 return 0;
14877 }
14878
14879 return 1;
14880}
14881
a02abb62
JB
14882/* Read the given DW_AT_subrange DIE. */
14883
f792889a 14884static struct type *
a02abb62
JB
14885read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14886{
4c9ad8c2 14887 struct type *base_type, *orig_base_type;
a02abb62
JB
14888 struct type *range_type;
14889 struct attribute *attr;
729efb13 14890 struct dynamic_prop low, high;
4fae6e18 14891 int low_default_is_valid;
c451ebe5 14892 int high_bound_is_count = 0;
15d034d0 14893 const char *name;
43bbcdc2 14894 LONGEST negative_mask;
e77813c8 14895
4c9ad8c2
TT
14896 orig_base_type = die_type (die, cu);
14897 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14898 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14899 creating the range type, but we use the result of check_typedef
14900 when examining properties of the type. */
14901 base_type = check_typedef (orig_base_type);
a02abb62 14902
7e314c57
JK
14903 /* The die_type call above may have already set the type for this DIE. */
14904 range_type = get_die_type (die, cu);
14905 if (range_type)
14906 return range_type;
14907
729efb13
SA
14908 low.kind = PROP_CONST;
14909 high.kind = PROP_CONST;
14910 high.data.const_val = 0;
14911
4fae6e18
JK
14912 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14913 omitting DW_AT_lower_bound. */
14914 switch (cu->language)
6e70227d 14915 {
4fae6e18
JK
14916 case language_c:
14917 case language_cplus:
729efb13 14918 low.data.const_val = 0;
4fae6e18
JK
14919 low_default_is_valid = 1;
14920 break;
14921 case language_fortran:
729efb13 14922 low.data.const_val = 1;
4fae6e18
JK
14923 low_default_is_valid = 1;
14924 break;
14925 case language_d:
4fae6e18 14926 case language_objc:
c44af4eb 14927 case language_rust:
729efb13 14928 low.data.const_val = 0;
4fae6e18
JK
14929 low_default_is_valid = (cu->header.version >= 4);
14930 break;
14931 case language_ada:
14932 case language_m2:
14933 case language_pascal:
729efb13 14934 low.data.const_val = 1;
4fae6e18
JK
14935 low_default_is_valid = (cu->header.version >= 4);
14936 break;
14937 default:
729efb13 14938 low.data.const_val = 0;
4fae6e18
JK
14939 low_default_is_valid = 0;
14940 break;
a02abb62
JB
14941 }
14942
e142c38c 14943 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14944 if (attr)
11c1ba78 14945 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14946 else if (!low_default_is_valid)
14947 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14948 "- DIE at 0x%x [in module %s]"),
4262abfb 14949 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14950
e142c38c 14951 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14952 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14953 {
14954 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14955 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14956 {
c451ebe5
SA
14957 /* If bounds are constant do the final calculation here. */
14958 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14959 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14960 else
14961 high_bound_is_count = 1;
c2ff108b 14962 }
e77813c8
PM
14963 }
14964
14965 /* Dwarf-2 specifications explicitly allows to create subrange types
14966 without specifying a base type.
14967 In that case, the base type must be set to the type of
14968 the lower bound, upper bound or count, in that order, if any of these
14969 three attributes references an object that has a type.
14970 If no base type is found, the Dwarf-2 specifications say that
14971 a signed integer type of size equal to the size of an address should
14972 be used.
14973 For the following C code: `extern char gdb_int [];'
14974 GCC produces an empty range DIE.
14975 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14976 high bound or count are not yet handled by this code. */
e77813c8
PM
14977 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14978 {
14979 struct objfile *objfile = cu->objfile;
14980 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14981 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14982 struct type *int_type = objfile_type (objfile)->builtin_int;
14983
14984 /* Test "int", "long int", and "long long int" objfile types,
14985 and select the first one having a size above or equal to the
14986 architecture address size. */
14987 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14988 base_type = int_type;
14989 else
14990 {
14991 int_type = objfile_type (objfile)->builtin_long;
14992 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14993 base_type = int_type;
14994 else
14995 {
14996 int_type = objfile_type (objfile)->builtin_long_long;
14997 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14998 base_type = int_type;
14999 }
15000 }
15001 }
a02abb62 15002
dbb9c2b1
JB
15003 /* Normally, the DWARF producers are expected to use a signed
15004 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15005 But this is unfortunately not always the case, as witnessed
15006 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15007 is used instead. To work around that ambiguity, we treat
15008 the bounds as signed, and thus sign-extend their values, when
15009 the base type is signed. */
6e70227d 15010 negative_mask =
66c6502d 15011 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15012 if (low.kind == PROP_CONST
15013 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15014 low.data.const_val |= negative_mask;
15015 if (high.kind == PROP_CONST
15016 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15017 high.data.const_val |= negative_mask;
43bbcdc2 15018
729efb13 15019 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15020
c451ebe5
SA
15021 if (high_bound_is_count)
15022 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15023
c2ff108b
JK
15024 /* Ada expects an empty array on no boundary attributes. */
15025 if (attr == NULL && cu->language != language_ada)
729efb13 15026 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15027
39cbfefa
DJ
15028 name = dwarf2_name (die, cu);
15029 if (name)
15030 TYPE_NAME (range_type) = name;
6e70227d 15031
e142c38c 15032 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15033 if (attr)
15034 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15035
7e314c57
JK
15036 set_die_type (die, range_type, cu);
15037
15038 /* set_die_type should be already done. */
b4ba55a1
JB
15039 set_descriptive_type (range_type, die, cu);
15040
7e314c57 15041 return range_type;
a02abb62 15042}
6e70227d 15043
f792889a 15044static struct type *
81a17f79
JB
15045read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15046{
15047 struct type *type;
81a17f79 15048
81a17f79
JB
15049 /* For now, we only support the C meaning of an unspecified type: void. */
15050
19f392bc 15051 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15052 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15053
f792889a 15054 return set_die_type (die, type, cu);
81a17f79 15055}
a02abb62 15056
639d11d3
DC
15057/* Read a single die and all its descendents. Set the die's sibling
15058 field to NULL; set other fields in the die correctly, and set all
15059 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15060 location of the info_ptr after reading all of those dies. PARENT
15061 is the parent of the die in question. */
15062
15063static struct die_info *
dee91e82 15064read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15065 const gdb_byte *info_ptr,
15066 const gdb_byte **new_info_ptr,
dee91e82 15067 struct die_info *parent)
639d11d3
DC
15068{
15069 struct die_info *die;
d521ce57 15070 const gdb_byte *cur_ptr;
639d11d3
DC
15071 int has_children;
15072
bf6af496 15073 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15074 if (die == NULL)
15075 {
15076 *new_info_ptr = cur_ptr;
15077 return NULL;
15078 }
93311388 15079 store_in_ref_table (die, reader->cu);
639d11d3
DC
15080
15081 if (has_children)
bf6af496 15082 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15083 else
15084 {
15085 die->child = NULL;
15086 *new_info_ptr = cur_ptr;
15087 }
15088
15089 die->sibling = NULL;
15090 die->parent = parent;
15091 return die;
15092}
15093
15094/* Read a die, all of its descendents, and all of its siblings; set
15095 all of the fields of all of the dies correctly. Arguments are as
15096 in read_die_and_children. */
15097
15098static struct die_info *
bf6af496 15099read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15100 const gdb_byte *info_ptr,
15101 const gdb_byte **new_info_ptr,
bf6af496 15102 struct die_info *parent)
639d11d3
DC
15103{
15104 struct die_info *first_die, *last_sibling;
d521ce57 15105 const gdb_byte *cur_ptr;
639d11d3 15106
c906108c 15107 cur_ptr = info_ptr;
639d11d3
DC
15108 first_die = last_sibling = NULL;
15109
15110 while (1)
c906108c 15111 {
639d11d3 15112 struct die_info *die
dee91e82 15113 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15114
1d325ec1 15115 if (die == NULL)
c906108c 15116 {
639d11d3
DC
15117 *new_info_ptr = cur_ptr;
15118 return first_die;
c906108c 15119 }
1d325ec1
DJ
15120
15121 if (!first_die)
15122 first_die = die;
c906108c 15123 else
1d325ec1
DJ
15124 last_sibling->sibling = die;
15125
15126 last_sibling = die;
c906108c 15127 }
c906108c
SS
15128}
15129
bf6af496
DE
15130/* Read a die, all of its descendents, and all of its siblings; set
15131 all of the fields of all of the dies correctly. Arguments are as
15132 in read_die_and_children.
15133 This the main entry point for reading a DIE and all its children. */
15134
15135static struct die_info *
15136read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15137 const gdb_byte *info_ptr,
15138 const gdb_byte **new_info_ptr,
bf6af496
DE
15139 struct die_info *parent)
15140{
15141 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15142 new_info_ptr, parent);
15143
b4f54984 15144 if (dwarf_die_debug)
bf6af496
DE
15145 {
15146 fprintf_unfiltered (gdb_stdlog,
15147 "Read die from %s@0x%x of %s:\n",
a32a8923 15148 get_section_name (reader->die_section),
bf6af496
DE
15149 (unsigned) (info_ptr - reader->die_section->buffer),
15150 bfd_get_filename (reader->abfd));
b4f54984 15151 dump_die (die, dwarf_die_debug);
bf6af496
DE
15152 }
15153
15154 return die;
15155}
15156
3019eac3
DE
15157/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15158 attributes.
15159 The caller is responsible for filling in the extra attributes
15160 and updating (*DIEP)->num_attrs.
15161 Set DIEP to point to a newly allocated die with its information,
15162 except for its child, sibling, and parent fields.
15163 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15164
d521ce57 15165static const gdb_byte *
3019eac3 15166read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15167 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15168 int *has_children, int num_extra_attrs)
93311388 15169{
b64f50a1
JK
15170 unsigned int abbrev_number, bytes_read, i;
15171 sect_offset offset;
93311388
DE
15172 struct abbrev_info *abbrev;
15173 struct die_info *die;
15174 struct dwarf2_cu *cu = reader->cu;
15175 bfd *abfd = reader->abfd;
15176
b64f50a1 15177 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15178 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15179 info_ptr += bytes_read;
15180 if (!abbrev_number)
15181 {
15182 *diep = NULL;
15183 *has_children = 0;
15184 return info_ptr;
15185 }
15186
433df2d4 15187 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15188 if (!abbrev)
348e048f
DE
15189 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15190 abbrev_number,
15191 bfd_get_filename (abfd));
15192
3019eac3 15193 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15194 die->offset = offset;
15195 die->tag = abbrev->tag;
15196 die->abbrev = abbrev_number;
15197
3019eac3
DE
15198 /* Make the result usable.
15199 The caller needs to update num_attrs after adding the extra
15200 attributes. */
93311388
DE
15201 die->num_attrs = abbrev->num_attrs;
15202
15203 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15204 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15205 info_ptr);
93311388
DE
15206
15207 *diep = die;
15208 *has_children = abbrev->has_children;
15209 return info_ptr;
15210}
15211
3019eac3
DE
15212/* Read a die and all its attributes.
15213 Set DIEP to point to a newly allocated die with its information,
15214 except for its child, sibling, and parent fields.
15215 Set HAS_CHILDREN to tell whether the die has children or not. */
15216
d521ce57 15217static const gdb_byte *
3019eac3 15218read_full_die (const struct die_reader_specs *reader,
d521ce57 15219 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15220 int *has_children)
15221{
d521ce57 15222 const gdb_byte *result;
bf6af496
DE
15223
15224 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15225
b4f54984 15226 if (dwarf_die_debug)
bf6af496
DE
15227 {
15228 fprintf_unfiltered (gdb_stdlog,
15229 "Read die from %s@0x%x of %s:\n",
a32a8923 15230 get_section_name (reader->die_section),
bf6af496
DE
15231 (unsigned) (info_ptr - reader->die_section->buffer),
15232 bfd_get_filename (reader->abfd));
b4f54984 15233 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15234 }
15235
15236 return result;
3019eac3 15237}
433df2d4
DE
15238\f
15239/* Abbreviation tables.
3019eac3 15240
433df2d4 15241 In DWARF version 2, the description of the debugging information is
c906108c
SS
15242 stored in a separate .debug_abbrev section. Before we read any
15243 dies from a section we read in all abbreviations and install them
433df2d4
DE
15244 in a hash table. */
15245
15246/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15247
15248static struct abbrev_info *
15249abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15250{
15251 struct abbrev_info *abbrev;
15252
8d749320 15253 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15254 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15255
433df2d4
DE
15256 return abbrev;
15257}
15258
15259/* Add an abbreviation to the table. */
c906108c
SS
15260
15261static void
433df2d4
DE
15262abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15263 unsigned int abbrev_number,
15264 struct abbrev_info *abbrev)
15265{
15266 unsigned int hash_number;
15267
15268 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15269 abbrev->next = abbrev_table->abbrevs[hash_number];
15270 abbrev_table->abbrevs[hash_number] = abbrev;
15271}
dee91e82 15272
433df2d4
DE
15273/* Look up an abbrev in the table.
15274 Returns NULL if the abbrev is not found. */
15275
15276static struct abbrev_info *
15277abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15278 unsigned int abbrev_number)
c906108c 15279{
433df2d4
DE
15280 unsigned int hash_number;
15281 struct abbrev_info *abbrev;
15282
15283 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15284 abbrev = abbrev_table->abbrevs[hash_number];
15285
15286 while (abbrev)
15287 {
15288 if (abbrev->number == abbrev_number)
15289 return abbrev;
15290 abbrev = abbrev->next;
15291 }
15292 return NULL;
15293}
15294
15295/* Read in an abbrev table. */
15296
15297static struct abbrev_table *
15298abbrev_table_read_table (struct dwarf2_section_info *section,
15299 sect_offset offset)
15300{
15301 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15302 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15303 struct abbrev_table *abbrev_table;
d521ce57 15304 const gdb_byte *abbrev_ptr;
c906108c
SS
15305 struct abbrev_info *cur_abbrev;
15306 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15307 unsigned int abbrev_form;
f3dd6933
DJ
15308 struct attr_abbrev *cur_attrs;
15309 unsigned int allocated_attrs;
c906108c 15310
70ba0933 15311 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15312 abbrev_table->offset = offset;
433df2d4 15313 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15314 abbrev_table->abbrevs =
15315 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15316 ABBREV_HASH_SIZE);
433df2d4
DE
15317 memset (abbrev_table->abbrevs, 0,
15318 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15319
433df2d4
DE
15320 dwarf2_read_section (objfile, section);
15321 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15322 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15323 abbrev_ptr += bytes_read;
15324
f3dd6933 15325 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15326 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15327
0963b4bd 15328 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15329 while (abbrev_number)
15330 {
433df2d4 15331 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15332
15333 /* read in abbrev header */
15334 cur_abbrev->number = abbrev_number;
aead7601
SM
15335 cur_abbrev->tag
15336 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15337 abbrev_ptr += bytes_read;
15338 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15339 abbrev_ptr += 1;
15340
15341 /* now read in declarations */
15342 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15343 abbrev_ptr += bytes_read;
15344 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15345 abbrev_ptr += bytes_read;
15346 while (abbrev_name)
15347 {
f3dd6933 15348 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15349 {
f3dd6933
DJ
15350 allocated_attrs += ATTR_ALLOC_CHUNK;
15351 cur_attrs
224c3ddb 15352 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15353 }
ae038cb0 15354
aead7601
SM
15355 cur_attrs[cur_abbrev->num_attrs].name
15356 = (enum dwarf_attribute) abbrev_name;
15357 cur_attrs[cur_abbrev->num_attrs++].form
15358 = (enum dwarf_form) abbrev_form;
c906108c
SS
15359 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15362 abbrev_ptr += bytes_read;
15363 }
15364
8d749320
SM
15365 cur_abbrev->attrs =
15366 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15367 cur_abbrev->num_attrs);
f3dd6933
DJ
15368 memcpy (cur_abbrev->attrs, cur_attrs,
15369 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15370
433df2d4 15371 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15372
15373 /* Get next abbreviation.
15374 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15375 always properly terminated with an abbrev number of 0.
15376 Exit loop if we encounter an abbreviation which we have
15377 already read (which means we are about to read the abbreviations
15378 for the next compile unit) or if the end of the abbreviation
15379 table is reached. */
433df2d4 15380 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15381 break;
15382 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
433df2d4 15384 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15385 break;
15386 }
f3dd6933
DJ
15387
15388 xfree (cur_attrs);
433df2d4 15389 return abbrev_table;
c906108c
SS
15390}
15391
433df2d4 15392/* Free the resources held by ABBREV_TABLE. */
c906108c 15393
c906108c 15394static void
433df2d4 15395abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15396{
433df2d4
DE
15397 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15398 xfree (abbrev_table);
c906108c
SS
15399}
15400
f4dc4d17
DE
15401/* Same as abbrev_table_free but as a cleanup.
15402 We pass in a pointer to the pointer to the table so that we can
15403 set the pointer to NULL when we're done. It also simplifies
73051182 15404 build_type_psymtabs_1. */
f4dc4d17
DE
15405
15406static void
15407abbrev_table_free_cleanup (void *table_ptr)
15408{
9a3c8263 15409 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15410
15411 if (*abbrev_table_ptr != NULL)
15412 abbrev_table_free (*abbrev_table_ptr);
15413 *abbrev_table_ptr = NULL;
15414}
15415
433df2d4
DE
15416/* Read the abbrev table for CU from ABBREV_SECTION. */
15417
15418static void
15419dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15420 struct dwarf2_section_info *abbrev_section)
c906108c 15421{
433df2d4
DE
15422 cu->abbrev_table =
15423 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15424}
c906108c 15425
433df2d4 15426/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15427
433df2d4
DE
15428static void
15429dwarf2_free_abbrev_table (void *ptr_to_cu)
15430{
9a3c8263 15431 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15432
a2ce51a0
DE
15433 if (cu->abbrev_table != NULL)
15434 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15435 /* Set this to NULL so that we SEGV if we try to read it later,
15436 and also because free_comp_unit verifies this is NULL. */
15437 cu->abbrev_table = NULL;
15438}
15439\f
72bf9492
DJ
15440/* Returns nonzero if TAG represents a type that we might generate a partial
15441 symbol for. */
15442
15443static int
15444is_type_tag_for_partial (int tag)
15445{
15446 switch (tag)
15447 {
15448#if 0
15449 /* Some types that would be reasonable to generate partial symbols for,
15450 that we don't at present. */
15451 case DW_TAG_array_type:
15452 case DW_TAG_file_type:
15453 case DW_TAG_ptr_to_member_type:
15454 case DW_TAG_set_type:
15455 case DW_TAG_string_type:
15456 case DW_TAG_subroutine_type:
15457#endif
15458 case DW_TAG_base_type:
15459 case DW_TAG_class_type:
680b30c7 15460 case DW_TAG_interface_type:
72bf9492
DJ
15461 case DW_TAG_enumeration_type:
15462 case DW_TAG_structure_type:
15463 case DW_TAG_subrange_type:
15464 case DW_TAG_typedef:
15465 case DW_TAG_union_type:
15466 return 1;
15467 default:
15468 return 0;
15469 }
15470}
15471
15472/* Load all DIEs that are interesting for partial symbols into memory. */
15473
15474static struct partial_die_info *
dee91e82 15475load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15476 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15477{
dee91e82 15478 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15479 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15480 struct partial_die_info *part_die;
15481 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15482 struct abbrev_info *abbrev;
15483 unsigned int bytes_read;
5afb4e99 15484 unsigned int load_all = 0;
72bf9492
DJ
15485 int nesting_level = 1;
15486
15487 parent_die = NULL;
15488 last_die = NULL;
15489
7adf1e79
DE
15490 gdb_assert (cu->per_cu != NULL);
15491 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15492 load_all = 1;
15493
72bf9492
DJ
15494 cu->partial_dies
15495 = htab_create_alloc_ex (cu->header.length / 12,
15496 partial_die_hash,
15497 partial_die_eq,
15498 NULL,
15499 &cu->comp_unit_obstack,
15500 hashtab_obstack_allocate,
15501 dummy_obstack_deallocate);
15502
8d749320 15503 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15504
15505 while (1)
15506 {
15507 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15508
15509 /* A NULL abbrev means the end of a series of children. */
15510 if (abbrev == NULL)
15511 {
15512 if (--nesting_level == 0)
15513 {
15514 /* PART_DIE was probably the last thing allocated on the
15515 comp_unit_obstack, so we could call obstack_free
15516 here. We don't do that because the waste is small,
15517 and will be cleaned up when we're done with this
15518 compilation unit. This way, we're also more robust
15519 against other users of the comp_unit_obstack. */
15520 return first_die;
15521 }
15522 info_ptr += bytes_read;
15523 last_die = parent_die;
15524 parent_die = parent_die->die_parent;
15525 continue;
15526 }
15527
98bfdba5
PA
15528 /* Check for template arguments. We never save these; if
15529 they're seen, we just mark the parent, and go on our way. */
15530 if (parent_die != NULL
15531 && cu->language == language_cplus
15532 && (abbrev->tag == DW_TAG_template_type_param
15533 || abbrev->tag == DW_TAG_template_value_param))
15534 {
15535 parent_die->has_template_arguments = 1;
15536
15537 if (!load_all)
15538 {
15539 /* We don't need a partial DIE for the template argument. */
dee91e82 15540 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15541 continue;
15542 }
15543 }
15544
0d99eb77 15545 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15546 Skip their other children. */
15547 if (!load_all
15548 && cu->language == language_cplus
15549 && parent_die != NULL
15550 && parent_die->tag == DW_TAG_subprogram)
15551 {
dee91e82 15552 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15553 continue;
15554 }
15555
5afb4e99
DJ
15556 /* Check whether this DIE is interesting enough to save. Normally
15557 we would not be interested in members here, but there may be
15558 later variables referencing them via DW_AT_specification (for
15559 static members). */
15560 if (!load_all
15561 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15562 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15563 && abbrev->tag != DW_TAG_enumerator
15564 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15565 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15566 && abbrev->tag != DW_TAG_variable
5afb4e99 15567 && abbrev->tag != DW_TAG_namespace
f55ee35c 15568 && abbrev->tag != DW_TAG_module
95554aad 15569 && abbrev->tag != DW_TAG_member
74921315
KS
15570 && abbrev->tag != DW_TAG_imported_unit
15571 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15572 {
15573 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15574 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15575 continue;
15576 }
15577
dee91e82
DE
15578 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15579 info_ptr);
72bf9492
DJ
15580
15581 /* This two-pass algorithm for processing partial symbols has a
15582 high cost in cache pressure. Thus, handle some simple cases
15583 here which cover the majority of C partial symbols. DIEs
15584 which neither have specification tags in them, nor could have
15585 specification tags elsewhere pointing at them, can simply be
15586 processed and discarded.
15587
15588 This segment is also optional; scan_partial_symbols and
15589 add_partial_symbol will handle these DIEs if we chain
15590 them in normally. When compilers which do not emit large
15591 quantities of duplicate debug information are more common,
15592 this code can probably be removed. */
15593
15594 /* Any complete simple types at the top level (pretty much all
15595 of them, for a language without namespaces), can be processed
15596 directly. */
15597 if (parent_die == NULL
15598 && part_die->has_specification == 0
15599 && part_die->is_declaration == 0
d8228535 15600 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15601 || part_die->tag == DW_TAG_base_type
15602 || part_die->tag == DW_TAG_subrange_type))
15603 {
15604 if (building_psymtab && part_die->name != NULL)
04a679b8 15605 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15606 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15607 &objfile->static_psymbols,
1762568f 15608 0, cu->language, objfile);
dee91e82 15609 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15610 continue;
15611 }
15612
d8228535
JK
15613 /* The exception for DW_TAG_typedef with has_children above is
15614 a workaround of GCC PR debug/47510. In the case of this complaint
15615 type_name_no_tag_or_error will error on such types later.
15616
15617 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15618 it could not find the child DIEs referenced later, this is checked
15619 above. In correct DWARF DW_TAG_typedef should have no children. */
15620
15621 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15622 complaint (&symfile_complaints,
15623 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15624 "- DIE at 0x%x [in module %s]"),
4262abfb 15625 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15626
72bf9492
DJ
15627 /* If we're at the second level, and we're an enumerator, and
15628 our parent has no specification (meaning possibly lives in a
15629 namespace elsewhere), then we can add the partial symbol now
15630 instead of queueing it. */
15631 if (part_die->tag == DW_TAG_enumerator
15632 && parent_die != NULL
15633 && parent_die->die_parent == NULL
15634 && parent_die->tag == DW_TAG_enumeration_type
15635 && parent_die->has_specification == 0)
15636 {
15637 if (part_die->name == NULL)
3e43a32a
MS
15638 complaint (&symfile_complaints,
15639 _("malformed enumerator DIE ignored"));
72bf9492 15640 else if (building_psymtab)
04a679b8 15641 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15642 VAR_DOMAIN, LOC_CONST,
9c37b5ae 15643 cu->language == language_cplus
bb5ed363
DE
15644 ? &objfile->global_psymbols
15645 : &objfile->static_psymbols,
1762568f 15646 0, cu->language, objfile);
72bf9492 15647
dee91e82 15648 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15649 continue;
15650 }
15651
15652 /* We'll save this DIE so link it in. */
15653 part_die->die_parent = parent_die;
15654 part_die->die_sibling = NULL;
15655 part_die->die_child = NULL;
15656
15657 if (last_die && last_die == parent_die)
15658 last_die->die_child = part_die;
15659 else if (last_die)
15660 last_die->die_sibling = part_die;
15661
15662 last_die = part_die;
15663
15664 if (first_die == NULL)
15665 first_die = part_die;
15666
15667 /* Maybe add the DIE to the hash table. Not all DIEs that we
15668 find interesting need to be in the hash table, because we
15669 also have the parent/sibling/child chains; only those that we
15670 might refer to by offset later during partial symbol reading.
15671
15672 For now this means things that might have be the target of a
15673 DW_AT_specification, DW_AT_abstract_origin, or
15674 DW_AT_extension. DW_AT_extension will refer only to
15675 namespaces; DW_AT_abstract_origin refers to functions (and
15676 many things under the function DIE, but we do not recurse
15677 into function DIEs during partial symbol reading) and
15678 possibly variables as well; DW_AT_specification refers to
15679 declarations. Declarations ought to have the DW_AT_declaration
15680 flag. It happens that GCC forgets to put it in sometimes, but
15681 only for functions, not for types.
15682
15683 Adding more things than necessary to the hash table is harmless
15684 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15685 wasted time in find_partial_die, when we reread the compilation
15686 unit with load_all_dies set. */
72bf9492 15687
5afb4e99 15688 if (load_all
72929c62 15689 || abbrev->tag == DW_TAG_constant
5afb4e99 15690 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15691 || abbrev->tag == DW_TAG_variable
15692 || abbrev->tag == DW_TAG_namespace
15693 || part_die->is_declaration)
15694 {
15695 void **slot;
15696
15697 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15698 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15699 *slot = part_die;
15700 }
15701
8d749320 15702 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15703
15704 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15705 we have no reason to follow the children of structures; for other
98bfdba5
PA
15706 languages we have to, so that we can get at method physnames
15707 to infer fully qualified class names, for DW_AT_specification,
15708 and for C++ template arguments. For C++, we also look one level
15709 inside functions to find template arguments (if the name of the
15710 function does not already contain the template arguments).
bc30ff58
JB
15711
15712 For Ada, we need to scan the children of subprograms and lexical
15713 blocks as well because Ada allows the definition of nested
15714 entities that could be interesting for the debugger, such as
15715 nested subprograms for instance. */
72bf9492 15716 if (last_die->has_children
5afb4e99
DJ
15717 && (load_all
15718 || last_die->tag == DW_TAG_namespace
f55ee35c 15719 || last_die->tag == DW_TAG_module
72bf9492 15720 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15721 || (cu->language == language_cplus
15722 && last_die->tag == DW_TAG_subprogram
15723 && (last_die->name == NULL
15724 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15725 || (cu->language != language_c
15726 && (last_die->tag == DW_TAG_class_type
680b30c7 15727 || last_die->tag == DW_TAG_interface_type
72bf9492 15728 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15729 || last_die->tag == DW_TAG_union_type))
15730 || (cu->language == language_ada
15731 && (last_die->tag == DW_TAG_subprogram
15732 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15733 {
15734 nesting_level++;
15735 parent_die = last_die;
15736 continue;
15737 }
15738
15739 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15740 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15741
15742 /* Back to the top, do it again. */
15743 }
15744}
15745
c906108c
SS
15746/* Read a minimal amount of information into the minimal die structure. */
15747
d521ce57 15748static const gdb_byte *
dee91e82
DE
15749read_partial_die (const struct die_reader_specs *reader,
15750 struct partial_die_info *part_die,
15751 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15752 const gdb_byte *info_ptr)
c906108c 15753{
dee91e82 15754 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15755 struct objfile *objfile = cu->objfile;
d521ce57 15756 const gdb_byte *buffer = reader->buffer;
fa238c03 15757 unsigned int i;
c906108c 15758 struct attribute attr;
c5aa993b 15759 int has_low_pc_attr = 0;
c906108c 15760 int has_high_pc_attr = 0;
91da1414 15761 int high_pc_relative = 0;
c906108c 15762
72bf9492 15763 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15764
b64f50a1 15765 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15766
15767 info_ptr += abbrev_len;
15768
15769 if (abbrev == NULL)
15770 return info_ptr;
15771
c906108c
SS
15772 part_die->tag = abbrev->tag;
15773 part_die->has_children = abbrev->has_children;
c906108c
SS
15774
15775 for (i = 0; i < abbrev->num_attrs; ++i)
15776 {
dee91e82 15777 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15778
15779 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15780 partial symbol table. */
c906108c
SS
15781 switch (attr.name)
15782 {
15783 case DW_AT_name:
71c25dea
TT
15784 switch (part_die->tag)
15785 {
15786 case DW_TAG_compile_unit:
95554aad 15787 case DW_TAG_partial_unit:
348e048f 15788 case DW_TAG_type_unit:
71c25dea
TT
15789 /* Compilation units have a DW_AT_name that is a filename, not
15790 a source language identifier. */
15791 case DW_TAG_enumeration_type:
15792 case DW_TAG_enumerator:
15793 /* These tags always have simple identifiers already; no need
15794 to canonicalize them. */
15795 part_die->name = DW_STRING (&attr);
15796 break;
15797 default:
15798 part_die->name
15799 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15800 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15801 break;
15802 }
c906108c 15803 break;
31ef98ae 15804 case DW_AT_linkage_name:
c906108c 15805 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15806 /* Note that both forms of linkage name might appear. We
15807 assume they will be the same, and we only store the last
15808 one we see. */
94af9270
KS
15809 if (cu->language == language_ada)
15810 part_die->name = DW_STRING (&attr);
abc72ce4 15811 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15812 break;
15813 case DW_AT_low_pc:
15814 has_low_pc_attr = 1;
31aa7e4e 15815 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15816 break;
15817 case DW_AT_high_pc:
15818 has_high_pc_attr = 1;
31aa7e4e
JB
15819 part_die->highpc = attr_value_as_address (&attr);
15820 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15821 high_pc_relative = 1;
c906108c
SS
15822 break;
15823 case DW_AT_location:
0963b4bd 15824 /* Support the .debug_loc offsets. */
8e19ed76
PS
15825 if (attr_form_is_block (&attr))
15826 {
95554aad 15827 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15828 }
3690dd37 15829 else if (attr_form_is_section_offset (&attr))
8e19ed76 15830 {
4d3c2250 15831 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15832 }
15833 else
15834 {
4d3c2250
KB
15835 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15836 "partial symbol information");
8e19ed76 15837 }
c906108c 15838 break;
c906108c
SS
15839 case DW_AT_external:
15840 part_die->is_external = DW_UNSND (&attr);
15841 break;
15842 case DW_AT_declaration:
15843 part_die->is_declaration = DW_UNSND (&attr);
15844 break;
15845 case DW_AT_type:
15846 part_die->has_type = 1;
15847 break;
15848 case DW_AT_abstract_origin:
15849 case DW_AT_specification:
72bf9492
DJ
15850 case DW_AT_extension:
15851 part_die->has_specification = 1;
c764a876 15852 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15853 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15854 || cu->per_cu->is_dwz);
c906108c
SS
15855 break;
15856 case DW_AT_sibling:
15857 /* Ignore absolute siblings, they might point outside of
15858 the current compile unit. */
15859 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15860 complaint (&symfile_complaints,
15861 _("ignoring absolute DW_AT_sibling"));
c906108c 15862 else
b9502d3f
WN
15863 {
15864 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15865 const gdb_byte *sibling_ptr = buffer + off;
15866
15867 if (sibling_ptr < info_ptr)
15868 complaint (&symfile_complaints,
15869 _("DW_AT_sibling points backwards"));
22869d73
KS
15870 else if (sibling_ptr > reader->buffer_end)
15871 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15872 else
15873 part_die->sibling = sibling_ptr;
15874 }
c906108c 15875 break;
fa4028e9
JB
15876 case DW_AT_byte_size:
15877 part_die->has_byte_size = 1;
15878 break;
ff908ebf
AW
15879 case DW_AT_const_value:
15880 part_die->has_const_value = 1;
15881 break;
68511cec
CES
15882 case DW_AT_calling_convention:
15883 /* DWARF doesn't provide a way to identify a program's source-level
15884 entry point. DW_AT_calling_convention attributes are only meant
15885 to describe functions' calling conventions.
15886
15887 However, because it's a necessary piece of information in
0c1b455e
TT
15888 Fortran, and before DWARF 4 DW_CC_program was the only
15889 piece of debugging information whose definition refers to
15890 a 'main program' at all, several compilers marked Fortran
15891 main programs with DW_CC_program --- even when those
15892 functions use the standard calling conventions.
15893
15894 Although DWARF now specifies a way to provide this
15895 information, we support this practice for backward
15896 compatibility. */
68511cec 15897 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
15898 && cu->language == language_fortran)
15899 part_die->main_subprogram = 1;
68511cec 15900 break;
481860b3
GB
15901 case DW_AT_inline:
15902 if (DW_UNSND (&attr) == DW_INL_inlined
15903 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15904 part_die->may_be_inlined = 1;
15905 break;
95554aad
TT
15906
15907 case DW_AT_import:
15908 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15909 {
15910 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15911 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15912 || cu->per_cu->is_dwz);
15913 }
95554aad
TT
15914 break;
15915
0c1b455e
TT
15916 case DW_AT_main_subprogram:
15917 part_die->main_subprogram = DW_UNSND (&attr);
15918 break;
15919
c906108c
SS
15920 default:
15921 break;
15922 }
15923 }
15924
91da1414
MW
15925 if (high_pc_relative)
15926 part_die->highpc += part_die->lowpc;
15927
9373cf26
JK
15928 if (has_low_pc_attr && has_high_pc_attr)
15929 {
15930 /* When using the GNU linker, .gnu.linkonce. sections are used to
15931 eliminate duplicate copies of functions and vtables and such.
15932 The linker will arbitrarily choose one and discard the others.
15933 The AT_*_pc values for such functions refer to local labels in
15934 these sections. If the section from that file was discarded, the
15935 labels are not in the output, so the relocs get a value of 0.
15936 If this is a discarded function, mark the pc bounds as invalid,
15937 so that GDB will ignore it. */
15938 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15939 {
bb5ed363 15940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15941
15942 complaint (&symfile_complaints,
15943 _("DW_AT_low_pc %s is zero "
15944 "for DIE at 0x%x [in module %s]"),
15945 paddress (gdbarch, part_die->lowpc),
4262abfb 15946 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15947 }
15948 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15949 else if (part_die->lowpc >= part_die->highpc)
15950 {
bb5ed363 15951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15952
15953 complaint (&symfile_complaints,
15954 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15955 "for DIE at 0x%x [in module %s]"),
15956 paddress (gdbarch, part_die->lowpc),
15957 paddress (gdbarch, part_die->highpc),
4262abfb 15958 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15959 }
15960 else
15961 part_die->has_pc_info = 1;
15962 }
85cbf3d3 15963
c906108c
SS
15964 return info_ptr;
15965}
15966
72bf9492
DJ
15967/* Find a cached partial DIE at OFFSET in CU. */
15968
15969static struct partial_die_info *
b64f50a1 15970find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15971{
15972 struct partial_die_info *lookup_die = NULL;
15973 struct partial_die_info part_die;
15974
15975 part_die.offset = offset;
9a3c8263
SM
15976 lookup_die = ((struct partial_die_info *)
15977 htab_find_with_hash (cu->partial_dies, &part_die,
15978 offset.sect_off));
72bf9492 15979
72bf9492
DJ
15980 return lookup_die;
15981}
15982
348e048f
DE
15983/* Find a partial DIE at OFFSET, which may or may not be in CU,
15984 except in the case of .debug_types DIEs which do not reference
15985 outside their CU (they do however referencing other types via
55f1336d 15986 DW_FORM_ref_sig8). */
72bf9492
DJ
15987
15988static struct partial_die_info *
36586728 15989find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15990{
bb5ed363 15991 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15992 struct dwarf2_per_cu_data *per_cu = NULL;
15993 struct partial_die_info *pd = NULL;
72bf9492 15994
36586728
TT
15995 if (offset_in_dwz == cu->per_cu->is_dwz
15996 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15997 {
15998 pd = find_partial_die_in_comp_unit (offset, cu);
15999 if (pd != NULL)
16000 return pd;
0d99eb77
DE
16001 /* We missed recording what we needed.
16002 Load all dies and try again. */
16003 per_cu = cu->per_cu;
5afb4e99 16004 }
0d99eb77
DE
16005 else
16006 {
16007 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16008 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16009 {
16010 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16011 " external reference to offset 0x%lx [in module %s].\n"),
16012 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16013 bfd_get_filename (objfile->obfd));
16014 }
36586728
TT
16015 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16016 objfile);
72bf9492 16017
0d99eb77
DE
16018 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16019 load_partial_comp_unit (per_cu);
ae038cb0 16020
0d99eb77
DE
16021 per_cu->cu->last_used = 0;
16022 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16023 }
5afb4e99 16024
dee91e82
DE
16025 /* If we didn't find it, and not all dies have been loaded,
16026 load them all and try again. */
16027
5afb4e99
DJ
16028 if (pd == NULL && per_cu->load_all_dies == 0)
16029 {
5afb4e99 16030 per_cu->load_all_dies = 1;
fd820528
DE
16031
16032 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16033 THIS_CU->cu may already be in use. So we can't just free it and
16034 replace its DIEs with the ones we read in. Instead, we leave those
16035 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16036 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16037 set. */
dee91e82 16038 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16039
16040 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16041 }
16042
16043 if (pd == NULL)
16044 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16045 _("could not find partial DIE 0x%x "
16046 "in cache [from module %s]\n"),
b64f50a1 16047 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16048 return pd;
72bf9492
DJ
16049}
16050
abc72ce4
DE
16051/* See if we can figure out if the class lives in a namespace. We do
16052 this by looking for a member function; its demangled name will
16053 contain namespace info, if there is any. */
16054
16055static void
16056guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16057 struct dwarf2_cu *cu)
16058{
16059 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16060 what template types look like, because the demangler
16061 frequently doesn't give the same name as the debug info. We
16062 could fix this by only using the demangled name to get the
16063 prefix (but see comment in read_structure_type). */
16064
16065 struct partial_die_info *real_pdi;
16066 struct partial_die_info *child_pdi;
16067
16068 /* If this DIE (this DIE's specification, if any) has a parent, then
16069 we should not do this. We'll prepend the parent's fully qualified
16070 name when we create the partial symbol. */
16071
16072 real_pdi = struct_pdi;
16073 while (real_pdi->has_specification)
36586728
TT
16074 real_pdi = find_partial_die (real_pdi->spec_offset,
16075 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16076
16077 if (real_pdi->die_parent != NULL)
16078 return;
16079
16080 for (child_pdi = struct_pdi->die_child;
16081 child_pdi != NULL;
16082 child_pdi = child_pdi->die_sibling)
16083 {
16084 if (child_pdi->tag == DW_TAG_subprogram
16085 && child_pdi->linkage_name != NULL)
16086 {
16087 char *actual_class_name
16088 = language_class_name_from_physname (cu->language_defn,
16089 child_pdi->linkage_name);
16090 if (actual_class_name != NULL)
16091 {
16092 struct_pdi->name
224c3ddb
SM
16093 = ((const char *)
16094 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16095 actual_class_name,
16096 strlen (actual_class_name)));
abc72ce4
DE
16097 xfree (actual_class_name);
16098 }
16099 break;
16100 }
16101 }
16102}
16103
72bf9492
DJ
16104/* Adjust PART_DIE before generating a symbol for it. This function
16105 may set the is_external flag or change the DIE's name. */
16106
16107static void
16108fixup_partial_die (struct partial_die_info *part_die,
16109 struct dwarf2_cu *cu)
16110{
abc72ce4
DE
16111 /* Once we've fixed up a die, there's no point in doing so again.
16112 This also avoids a memory leak if we were to call
16113 guess_partial_die_structure_name multiple times. */
16114 if (part_die->fixup_called)
16115 return;
16116
72bf9492
DJ
16117 /* If we found a reference attribute and the DIE has no name, try
16118 to find a name in the referred to DIE. */
16119
16120 if (part_die->name == NULL && part_die->has_specification)
16121 {
16122 struct partial_die_info *spec_die;
72bf9492 16123
36586728
TT
16124 spec_die = find_partial_die (part_die->spec_offset,
16125 part_die->spec_is_dwz, cu);
72bf9492 16126
10b3939b 16127 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16128
16129 if (spec_die->name)
16130 {
16131 part_die->name = spec_die->name;
16132
16133 /* Copy DW_AT_external attribute if it is set. */
16134 if (spec_die->is_external)
16135 part_die->is_external = spec_die->is_external;
16136 }
16137 }
16138
16139 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16140
16141 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16142 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16143
abc72ce4
DE
16144 /* If there is no parent die to provide a namespace, and there are
16145 children, see if we can determine the namespace from their linkage
122d1940 16146 name. */
abc72ce4 16147 if (cu->language == language_cplus
8b70b953 16148 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16149 && part_die->die_parent == NULL
16150 && part_die->has_children
16151 && (part_die->tag == DW_TAG_class_type
16152 || part_die->tag == DW_TAG_structure_type
16153 || part_die->tag == DW_TAG_union_type))
16154 guess_partial_die_structure_name (part_die, cu);
16155
53832f31
TT
16156 /* GCC might emit a nameless struct or union that has a linkage
16157 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16158 if (part_die->name == NULL
96408a79
SA
16159 && (part_die->tag == DW_TAG_class_type
16160 || part_die->tag == DW_TAG_interface_type
16161 || part_die->tag == DW_TAG_structure_type
16162 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16163 && part_die->linkage_name != NULL)
16164 {
16165 char *demangled;
16166
8de20a37 16167 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16168 if (demangled)
16169 {
96408a79
SA
16170 const char *base;
16171
16172 /* Strip any leading namespaces/classes, keep only the base name.
16173 DW_AT_name for named DIEs does not contain the prefixes. */
16174 base = strrchr (demangled, ':');
16175 if (base && base > demangled && base[-1] == ':')
16176 base++;
16177 else
16178 base = demangled;
16179
34a68019 16180 part_die->name
224c3ddb
SM
16181 = ((const char *)
16182 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16183 base, strlen (base)));
53832f31
TT
16184 xfree (demangled);
16185 }
16186 }
16187
abc72ce4 16188 part_die->fixup_called = 1;
72bf9492
DJ
16189}
16190
a8329558 16191/* Read an attribute value described by an attribute form. */
c906108c 16192
d521ce57 16193static const gdb_byte *
dee91e82
DE
16194read_attribute_value (const struct die_reader_specs *reader,
16195 struct attribute *attr, unsigned form,
d521ce57 16196 const gdb_byte *info_ptr)
c906108c 16197{
dee91e82 16198 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16199 struct objfile *objfile = cu->objfile;
16200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16201 bfd *abfd = reader->abfd;
e7c27a73 16202 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16203 unsigned int bytes_read;
16204 struct dwarf_block *blk;
16205
aead7601 16206 attr->form = (enum dwarf_form) form;
a8329558 16207 switch (form)
c906108c 16208 {
c906108c 16209 case DW_FORM_ref_addr:
ae411497 16210 if (cu->header.version == 2)
4568ecf9 16211 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16212 else
4568ecf9
DE
16213 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16214 &cu->header, &bytes_read);
ae411497
TT
16215 info_ptr += bytes_read;
16216 break;
36586728
TT
16217 case DW_FORM_GNU_ref_alt:
16218 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16219 info_ptr += bytes_read;
16220 break;
ae411497 16221 case DW_FORM_addr:
e7c27a73 16222 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16223 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16224 info_ptr += bytes_read;
c906108c
SS
16225 break;
16226 case DW_FORM_block2:
7b5a2f43 16227 blk = dwarf_alloc_block (cu);
c906108c
SS
16228 blk->size = read_2_bytes (abfd, info_ptr);
16229 info_ptr += 2;
16230 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16231 info_ptr += blk->size;
16232 DW_BLOCK (attr) = blk;
16233 break;
16234 case DW_FORM_block4:
7b5a2f43 16235 blk = dwarf_alloc_block (cu);
c906108c
SS
16236 blk->size = read_4_bytes (abfd, info_ptr);
16237 info_ptr += 4;
16238 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16239 info_ptr += blk->size;
16240 DW_BLOCK (attr) = blk;
16241 break;
16242 case DW_FORM_data2:
16243 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16244 info_ptr += 2;
16245 break;
16246 case DW_FORM_data4:
16247 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16248 info_ptr += 4;
16249 break;
16250 case DW_FORM_data8:
16251 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16252 info_ptr += 8;
16253 break;
2dc7f7b3
TT
16254 case DW_FORM_sec_offset:
16255 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16256 info_ptr += bytes_read;
16257 break;
c906108c 16258 case DW_FORM_string:
9b1c24c8 16259 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16260 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16261 info_ptr += bytes_read;
16262 break;
4bdf3d34 16263 case DW_FORM_strp:
36586728
TT
16264 if (!cu->per_cu->is_dwz)
16265 {
16266 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16267 &bytes_read);
16268 DW_STRING_IS_CANONICAL (attr) = 0;
16269 info_ptr += bytes_read;
16270 break;
16271 }
16272 /* FALLTHROUGH */
16273 case DW_FORM_GNU_strp_alt:
16274 {
16275 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16276 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16277 &bytes_read);
16278
16279 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16280 DW_STRING_IS_CANONICAL (attr) = 0;
16281 info_ptr += bytes_read;
16282 }
4bdf3d34 16283 break;
2dc7f7b3 16284 case DW_FORM_exprloc:
c906108c 16285 case DW_FORM_block:
7b5a2f43 16286 blk = dwarf_alloc_block (cu);
c906108c
SS
16287 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16288 info_ptr += bytes_read;
16289 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16290 info_ptr += blk->size;
16291 DW_BLOCK (attr) = blk;
16292 break;
16293 case DW_FORM_block1:
7b5a2f43 16294 blk = dwarf_alloc_block (cu);
c906108c
SS
16295 blk->size = read_1_byte (abfd, info_ptr);
16296 info_ptr += 1;
16297 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16298 info_ptr += blk->size;
16299 DW_BLOCK (attr) = blk;
16300 break;
16301 case DW_FORM_data1:
16302 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16303 info_ptr += 1;
16304 break;
16305 case DW_FORM_flag:
16306 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16307 info_ptr += 1;
16308 break;
2dc7f7b3
TT
16309 case DW_FORM_flag_present:
16310 DW_UNSND (attr) = 1;
16311 break;
c906108c
SS
16312 case DW_FORM_sdata:
16313 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16314 info_ptr += bytes_read;
16315 break;
16316 case DW_FORM_udata:
16317 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16318 info_ptr += bytes_read;
16319 break;
16320 case DW_FORM_ref1:
4568ecf9
DE
16321 DW_UNSND (attr) = (cu->header.offset.sect_off
16322 + read_1_byte (abfd, info_ptr));
c906108c
SS
16323 info_ptr += 1;
16324 break;
16325 case DW_FORM_ref2:
4568ecf9
DE
16326 DW_UNSND (attr) = (cu->header.offset.sect_off
16327 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16328 info_ptr += 2;
16329 break;
16330 case DW_FORM_ref4:
4568ecf9
DE
16331 DW_UNSND (attr) = (cu->header.offset.sect_off
16332 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16333 info_ptr += 4;
16334 break;
613e1657 16335 case DW_FORM_ref8:
4568ecf9
DE
16336 DW_UNSND (attr) = (cu->header.offset.sect_off
16337 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16338 info_ptr += 8;
16339 break;
55f1336d 16340 case DW_FORM_ref_sig8:
ac9ec31b 16341 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16342 info_ptr += 8;
16343 break;
c906108c 16344 case DW_FORM_ref_udata:
4568ecf9
DE
16345 DW_UNSND (attr) = (cu->header.offset.sect_off
16346 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16347 info_ptr += bytes_read;
16348 break;
c906108c 16349 case DW_FORM_indirect:
a8329558
KW
16350 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16351 info_ptr += bytes_read;
dee91e82 16352 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16353 break;
3019eac3
DE
16354 case DW_FORM_GNU_addr_index:
16355 if (reader->dwo_file == NULL)
16356 {
16357 /* For now flag a hard error.
16358 Later we can turn this into a complaint. */
16359 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16360 dwarf_form_name (form),
16361 bfd_get_filename (abfd));
16362 }
16363 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16364 info_ptr += bytes_read;
16365 break;
16366 case DW_FORM_GNU_str_index:
16367 if (reader->dwo_file == NULL)
16368 {
16369 /* For now flag a hard error.
16370 Later we can turn this into a complaint if warranted. */
16371 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16372 dwarf_form_name (form),
16373 bfd_get_filename (abfd));
16374 }
16375 {
16376 ULONGEST str_index =
16377 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16378
342587c4 16379 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16380 DW_STRING_IS_CANONICAL (attr) = 0;
16381 info_ptr += bytes_read;
16382 }
16383 break;
c906108c 16384 default:
8a3fe4f8 16385 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16386 dwarf_form_name (form),
16387 bfd_get_filename (abfd));
c906108c 16388 }
28e94949 16389
36586728 16390 /* Super hack. */
7771576e 16391 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16392 attr->form = DW_FORM_GNU_ref_alt;
16393
28e94949
JB
16394 /* We have seen instances where the compiler tried to emit a byte
16395 size attribute of -1 which ended up being encoded as an unsigned
16396 0xffffffff. Although 0xffffffff is technically a valid size value,
16397 an object of this size seems pretty unlikely so we can relatively
16398 safely treat these cases as if the size attribute was invalid and
16399 treat them as zero by default. */
16400 if (attr->name == DW_AT_byte_size
16401 && form == DW_FORM_data4
16402 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16403 {
16404 complaint
16405 (&symfile_complaints,
43bbcdc2
PH
16406 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16407 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16408 DW_UNSND (attr) = 0;
16409 }
28e94949 16410
c906108c
SS
16411 return info_ptr;
16412}
16413
a8329558
KW
16414/* Read an attribute described by an abbreviated attribute. */
16415
d521ce57 16416static const gdb_byte *
dee91e82
DE
16417read_attribute (const struct die_reader_specs *reader,
16418 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16419 const gdb_byte *info_ptr)
a8329558
KW
16420{
16421 attr->name = abbrev->name;
dee91e82 16422 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16423}
16424
0963b4bd 16425/* Read dwarf information from a buffer. */
c906108c
SS
16426
16427static unsigned int
a1855c1d 16428read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16429{
fe1b8b76 16430 return bfd_get_8 (abfd, buf);
c906108c
SS
16431}
16432
16433static int
a1855c1d 16434read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16435{
fe1b8b76 16436 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16437}
16438
16439static unsigned int
a1855c1d 16440read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16441{
fe1b8b76 16442 return bfd_get_16 (abfd, buf);
c906108c
SS
16443}
16444
21ae7a4d 16445static int
a1855c1d 16446read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16447{
16448 return bfd_get_signed_16 (abfd, buf);
16449}
16450
c906108c 16451static unsigned int
a1855c1d 16452read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16453{
fe1b8b76 16454 return bfd_get_32 (abfd, buf);
c906108c
SS
16455}
16456
21ae7a4d 16457static int
a1855c1d 16458read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16459{
16460 return bfd_get_signed_32 (abfd, buf);
16461}
16462
93311388 16463static ULONGEST
a1855c1d 16464read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16465{
fe1b8b76 16466 return bfd_get_64 (abfd, buf);
c906108c
SS
16467}
16468
16469static CORE_ADDR
d521ce57 16470read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16471 unsigned int *bytes_read)
c906108c 16472{
e7c27a73 16473 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16474 CORE_ADDR retval = 0;
16475
107d2387 16476 if (cu_header->signed_addr_p)
c906108c 16477 {
107d2387
AC
16478 switch (cu_header->addr_size)
16479 {
16480 case 2:
fe1b8b76 16481 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16482 break;
16483 case 4:
fe1b8b76 16484 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16485 break;
16486 case 8:
fe1b8b76 16487 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16488 break;
16489 default:
8e65ff28 16490 internal_error (__FILE__, __LINE__,
e2e0b3e5 16491 _("read_address: bad switch, signed [in module %s]"),
659b0389 16492 bfd_get_filename (abfd));
107d2387
AC
16493 }
16494 }
16495 else
16496 {
16497 switch (cu_header->addr_size)
16498 {
16499 case 2:
fe1b8b76 16500 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16501 break;
16502 case 4:
fe1b8b76 16503 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16504 break;
16505 case 8:
fe1b8b76 16506 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16507 break;
16508 default:
8e65ff28 16509 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16510 _("read_address: bad switch, "
16511 "unsigned [in module %s]"),
659b0389 16512 bfd_get_filename (abfd));
107d2387 16513 }
c906108c 16514 }
64367e0a 16515
107d2387
AC
16516 *bytes_read = cu_header->addr_size;
16517 return retval;
c906108c
SS
16518}
16519
f7ef9339 16520/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16521 specification allows the initial length to take up either 4 bytes
16522 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16523 bytes describe the length and all offsets will be 8 bytes in length
16524 instead of 4.
16525
f7ef9339
KB
16526 An older, non-standard 64-bit format is also handled by this
16527 function. The older format in question stores the initial length
16528 as an 8-byte quantity without an escape value. Lengths greater
16529 than 2^32 aren't very common which means that the initial 4 bytes
16530 is almost always zero. Since a length value of zero doesn't make
16531 sense for the 32-bit format, this initial zero can be considered to
16532 be an escape value which indicates the presence of the older 64-bit
16533 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16534 greater than 4GB. If it becomes necessary to handle lengths
16535 somewhat larger than 4GB, we could allow other small values (such
16536 as the non-sensical values of 1, 2, and 3) to also be used as
16537 escape values indicating the presence of the old format.
f7ef9339 16538
917c78fc
MK
16539 The value returned via bytes_read should be used to increment the
16540 relevant pointer after calling read_initial_length().
c764a876 16541
613e1657
KB
16542 [ Note: read_initial_length() and read_offset() are based on the
16543 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16544 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16545 from:
16546
f7ef9339 16547 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16548
613e1657
KB
16549 This document is only a draft and is subject to change. (So beware.)
16550
f7ef9339 16551 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16552 determined empirically by examining 64-bit ELF files produced by
16553 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16554
16555 - Kevin, July 16, 2002
613e1657
KB
16556 ] */
16557
16558static LONGEST
d521ce57 16559read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16560{
fe1b8b76 16561 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16562
dd373385 16563 if (length == 0xffffffff)
613e1657 16564 {
fe1b8b76 16565 length = bfd_get_64 (abfd, buf + 4);
613e1657 16566 *bytes_read = 12;
613e1657 16567 }
dd373385 16568 else if (length == 0)
f7ef9339 16569 {
dd373385 16570 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16571 length = bfd_get_64 (abfd, buf);
f7ef9339 16572 *bytes_read = 8;
f7ef9339 16573 }
613e1657
KB
16574 else
16575 {
16576 *bytes_read = 4;
613e1657
KB
16577 }
16578
c764a876
DE
16579 return length;
16580}
dd373385 16581
c764a876
DE
16582/* Cover function for read_initial_length.
16583 Returns the length of the object at BUF, and stores the size of the
16584 initial length in *BYTES_READ and stores the size that offsets will be in
16585 *OFFSET_SIZE.
16586 If the initial length size is not equivalent to that specified in
16587 CU_HEADER then issue a complaint.
16588 This is useful when reading non-comp-unit headers. */
dd373385 16589
c764a876 16590static LONGEST
d521ce57 16591read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16592 const struct comp_unit_head *cu_header,
16593 unsigned int *bytes_read,
16594 unsigned int *offset_size)
16595{
16596 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16597
16598 gdb_assert (cu_header->initial_length_size == 4
16599 || cu_header->initial_length_size == 8
16600 || cu_header->initial_length_size == 12);
16601
16602 if (cu_header->initial_length_size != *bytes_read)
16603 complaint (&symfile_complaints,
16604 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16605
c764a876 16606 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16607 return length;
613e1657
KB
16608}
16609
16610/* Read an offset from the data stream. The size of the offset is
917c78fc 16611 given by cu_header->offset_size. */
613e1657
KB
16612
16613static LONGEST
d521ce57
TT
16614read_offset (bfd *abfd, const gdb_byte *buf,
16615 const struct comp_unit_head *cu_header,
891d2f0b 16616 unsigned int *bytes_read)
c764a876
DE
16617{
16618 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16619
c764a876
DE
16620 *bytes_read = cu_header->offset_size;
16621 return offset;
16622}
16623
16624/* Read an offset from the data stream. */
16625
16626static LONGEST
d521ce57 16627read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16628{
16629 LONGEST retval = 0;
16630
c764a876 16631 switch (offset_size)
613e1657
KB
16632 {
16633 case 4:
fe1b8b76 16634 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16635 break;
16636 case 8:
fe1b8b76 16637 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16638 break;
16639 default:
8e65ff28 16640 internal_error (__FILE__, __LINE__,
c764a876 16641 _("read_offset_1: bad switch [in module %s]"),
659b0389 16642 bfd_get_filename (abfd));
613e1657
KB
16643 }
16644
917c78fc 16645 return retval;
613e1657
KB
16646}
16647
d521ce57
TT
16648static const gdb_byte *
16649read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16650{
16651 /* If the size of a host char is 8 bits, we can return a pointer
16652 to the buffer, otherwise we have to copy the data to a buffer
16653 allocated on the temporary obstack. */
4bdf3d34 16654 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16655 return buf;
c906108c
SS
16656}
16657
d521ce57
TT
16658static const char *
16659read_direct_string (bfd *abfd, const gdb_byte *buf,
16660 unsigned int *bytes_read_ptr)
c906108c
SS
16661{
16662 /* If the size of a host char is 8 bits, we can return a pointer
16663 to the string, otherwise we have to copy the string to a buffer
16664 allocated on the temporary obstack. */
4bdf3d34 16665 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16666 if (*buf == '\0')
16667 {
16668 *bytes_read_ptr = 1;
16669 return NULL;
16670 }
d521ce57
TT
16671 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16672 return (const char *) buf;
4bdf3d34
JJ
16673}
16674
d521ce57 16675static const char *
cf2c3c16 16676read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16677{
be391dca 16678 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16679 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16680 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16681 bfd_get_filename (abfd));
dce234bc 16682 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16683 error (_("DW_FORM_strp pointing outside of "
16684 ".debug_str section [in module %s]"),
16685 bfd_get_filename (abfd));
4bdf3d34 16686 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16687 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16688 return NULL;
d521ce57 16689 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16690}
16691
36586728
TT
16692/* Read a string at offset STR_OFFSET in the .debug_str section from
16693 the .dwz file DWZ. Throw an error if the offset is too large. If
16694 the string consists of a single NUL byte, return NULL; otherwise
16695 return a pointer to the string. */
16696
d521ce57 16697static const char *
36586728
TT
16698read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16699{
16700 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16701
16702 if (dwz->str.buffer == NULL)
16703 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16704 "section [in module %s]"),
16705 bfd_get_filename (dwz->dwz_bfd));
16706 if (str_offset >= dwz->str.size)
16707 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16708 ".debug_str section [in module %s]"),
16709 bfd_get_filename (dwz->dwz_bfd));
16710 gdb_assert (HOST_CHAR_BIT == 8);
16711 if (dwz->str.buffer[str_offset] == '\0')
16712 return NULL;
d521ce57 16713 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16714}
16715
d521ce57
TT
16716static const char *
16717read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16718 const struct comp_unit_head *cu_header,
16719 unsigned int *bytes_read_ptr)
16720{
16721 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16722
16723 return read_indirect_string_at_offset (abfd, str_offset);
16724}
16725
12df843f 16726static ULONGEST
d521ce57
TT
16727read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16728 unsigned int *bytes_read_ptr)
c906108c 16729{
12df843f 16730 ULONGEST result;
ce5d95e1 16731 unsigned int num_read;
870f88f7 16732 int shift;
c906108c
SS
16733 unsigned char byte;
16734
16735 result = 0;
16736 shift = 0;
16737 num_read = 0;
c906108c
SS
16738 while (1)
16739 {
fe1b8b76 16740 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16741 buf++;
16742 num_read++;
12df843f 16743 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16744 if ((byte & 128) == 0)
16745 {
16746 break;
16747 }
16748 shift += 7;
16749 }
16750 *bytes_read_ptr = num_read;
16751 return result;
16752}
16753
12df843f 16754static LONGEST
d521ce57
TT
16755read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16756 unsigned int *bytes_read_ptr)
c906108c 16757{
12df843f 16758 LONGEST result;
870f88f7 16759 int shift, num_read;
c906108c
SS
16760 unsigned char byte;
16761
16762 result = 0;
16763 shift = 0;
c906108c 16764 num_read = 0;
c906108c
SS
16765 while (1)
16766 {
fe1b8b76 16767 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16768 buf++;
16769 num_read++;
12df843f 16770 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16771 shift += 7;
16772 if ((byte & 128) == 0)
16773 {
16774 break;
16775 }
16776 }
77e0b926 16777 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16778 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16779 *bytes_read_ptr = num_read;
16780 return result;
16781}
16782
3019eac3
DE
16783/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16784 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16785 ADDR_SIZE is the size of addresses from the CU header. */
16786
16787static CORE_ADDR
16788read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16789{
16790 struct objfile *objfile = dwarf2_per_objfile->objfile;
16791 bfd *abfd = objfile->obfd;
16792 const gdb_byte *info_ptr;
16793
16794 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16795 if (dwarf2_per_objfile->addr.buffer == NULL)
16796 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16797 objfile_name (objfile));
3019eac3
DE
16798 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16799 error (_("DW_FORM_addr_index pointing outside of "
16800 ".debug_addr section [in module %s]"),
4262abfb 16801 objfile_name (objfile));
3019eac3
DE
16802 info_ptr = (dwarf2_per_objfile->addr.buffer
16803 + addr_base + addr_index * addr_size);
16804 if (addr_size == 4)
16805 return bfd_get_32 (abfd, info_ptr);
16806 else
16807 return bfd_get_64 (abfd, info_ptr);
16808}
16809
16810/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16811
16812static CORE_ADDR
16813read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16814{
16815 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16816}
16817
16818/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16819
16820static CORE_ADDR
d521ce57 16821read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16822 unsigned int *bytes_read)
16823{
16824 bfd *abfd = cu->objfile->obfd;
16825 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16826
16827 return read_addr_index (cu, addr_index);
16828}
16829
16830/* Data structure to pass results from dwarf2_read_addr_index_reader
16831 back to dwarf2_read_addr_index. */
16832
16833struct dwarf2_read_addr_index_data
16834{
16835 ULONGEST addr_base;
16836 int addr_size;
16837};
16838
16839/* die_reader_func for dwarf2_read_addr_index. */
16840
16841static void
16842dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16843 const gdb_byte *info_ptr,
3019eac3
DE
16844 struct die_info *comp_unit_die,
16845 int has_children,
16846 void *data)
16847{
16848 struct dwarf2_cu *cu = reader->cu;
16849 struct dwarf2_read_addr_index_data *aidata =
16850 (struct dwarf2_read_addr_index_data *) data;
16851
16852 aidata->addr_base = cu->addr_base;
16853 aidata->addr_size = cu->header.addr_size;
16854}
16855
16856/* Given an index in .debug_addr, fetch the value.
16857 NOTE: This can be called during dwarf expression evaluation,
16858 long after the debug information has been read, and thus per_cu->cu
16859 may no longer exist. */
16860
16861CORE_ADDR
16862dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16863 unsigned int addr_index)
16864{
16865 struct objfile *objfile = per_cu->objfile;
16866 struct dwarf2_cu *cu = per_cu->cu;
16867 ULONGEST addr_base;
16868 int addr_size;
16869
16870 /* This is intended to be called from outside this file. */
16871 dw2_setup (objfile);
16872
16873 /* We need addr_base and addr_size.
16874 If we don't have PER_CU->cu, we have to get it.
16875 Nasty, but the alternative is storing the needed info in PER_CU,
16876 which at this point doesn't seem justified: it's not clear how frequently
16877 it would get used and it would increase the size of every PER_CU.
16878 Entry points like dwarf2_per_cu_addr_size do a similar thing
16879 so we're not in uncharted territory here.
16880 Alas we need to be a bit more complicated as addr_base is contained
16881 in the DIE.
16882
16883 We don't need to read the entire CU(/TU).
16884 We just need the header and top level die.
a1b64ce1 16885
3019eac3 16886 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16887 For now we skip this optimization. */
3019eac3
DE
16888
16889 if (cu != NULL)
16890 {
16891 addr_base = cu->addr_base;
16892 addr_size = cu->header.addr_size;
16893 }
16894 else
16895 {
16896 struct dwarf2_read_addr_index_data aidata;
16897
a1b64ce1
DE
16898 /* Note: We can't use init_cutu_and_read_dies_simple here,
16899 we need addr_base. */
16900 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16901 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16902 addr_base = aidata.addr_base;
16903 addr_size = aidata.addr_size;
16904 }
16905
16906 return read_addr_index_1 (addr_index, addr_base, addr_size);
16907}
16908
57d63ce2
DE
16909/* Given a DW_FORM_GNU_str_index, fetch the string.
16910 This is only used by the Fission support. */
3019eac3 16911
d521ce57 16912static const char *
342587c4 16913read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16914{
16915 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16916 const char *objf_name = objfile_name (objfile);
3019eac3 16917 bfd *abfd = objfile->obfd;
342587c4 16918 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16919 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16920 struct dwarf2_section_info *str_offsets_section =
16921 &reader->dwo_file->sections.str_offsets;
d521ce57 16922 const gdb_byte *info_ptr;
3019eac3 16923 ULONGEST str_offset;
57d63ce2 16924 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16925
73869dc2
DE
16926 dwarf2_read_section (objfile, str_section);
16927 dwarf2_read_section (objfile, str_offsets_section);
16928 if (str_section->buffer == NULL)
57d63ce2 16929 error (_("%s used without .debug_str.dwo section"
3019eac3 16930 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16931 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16932 if (str_offsets_section->buffer == NULL)
57d63ce2 16933 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16934 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16935 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16936 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16937 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16938 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16939 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16940 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16941 + str_index * cu->header.offset_size);
16942 if (cu->header.offset_size == 4)
16943 str_offset = bfd_get_32 (abfd, info_ptr);
16944 else
16945 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16946 if (str_offset >= str_section->size)
57d63ce2 16947 error (_("Offset from %s pointing outside of"
3019eac3 16948 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16949 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16950 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16951}
16952
3019eac3
DE
16953/* Return the length of an LEB128 number in BUF. */
16954
16955static int
16956leb128_size (const gdb_byte *buf)
16957{
16958 const gdb_byte *begin = buf;
16959 gdb_byte byte;
16960
16961 while (1)
16962 {
16963 byte = *buf++;
16964 if ((byte & 128) == 0)
16965 return buf - begin;
16966 }
16967}
16968
c906108c 16969static void
e142c38c 16970set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16971{
16972 switch (lang)
16973 {
16974 case DW_LANG_C89:
76bee0cc 16975 case DW_LANG_C99:
0cfd832f 16976 case DW_LANG_C11:
c906108c 16977 case DW_LANG_C:
d1be3247 16978 case DW_LANG_UPC:
e142c38c 16979 cu->language = language_c;
c906108c 16980 break;
9c37b5ae 16981 case DW_LANG_Java:
c906108c 16982 case DW_LANG_C_plus_plus:
0cfd832f
MW
16983 case DW_LANG_C_plus_plus_11:
16984 case DW_LANG_C_plus_plus_14:
e142c38c 16985 cu->language = language_cplus;
c906108c 16986 break;
6aecb9c2
JB
16987 case DW_LANG_D:
16988 cu->language = language_d;
16989 break;
c906108c
SS
16990 case DW_LANG_Fortran77:
16991 case DW_LANG_Fortran90:
b21b22e0 16992 case DW_LANG_Fortran95:
f7de9aab
MW
16993 case DW_LANG_Fortran03:
16994 case DW_LANG_Fortran08:
e142c38c 16995 cu->language = language_fortran;
c906108c 16996 break;
a766d390
DE
16997 case DW_LANG_Go:
16998 cu->language = language_go;
16999 break;
c906108c 17000 case DW_LANG_Mips_Assembler:
e142c38c 17001 cu->language = language_asm;
c906108c
SS
17002 break;
17003 case DW_LANG_Ada83:
8aaf0b47 17004 case DW_LANG_Ada95:
bc5f45f8
JB
17005 cu->language = language_ada;
17006 break;
72019c9c
GM
17007 case DW_LANG_Modula2:
17008 cu->language = language_m2;
17009 break;
fe8e67fd
PM
17010 case DW_LANG_Pascal83:
17011 cu->language = language_pascal;
17012 break;
22566fbd
DJ
17013 case DW_LANG_ObjC:
17014 cu->language = language_objc;
17015 break;
c44af4eb
TT
17016 case DW_LANG_Rust:
17017 case DW_LANG_Rust_old:
17018 cu->language = language_rust;
17019 break;
c906108c
SS
17020 case DW_LANG_Cobol74:
17021 case DW_LANG_Cobol85:
c906108c 17022 default:
e142c38c 17023 cu->language = language_minimal;
c906108c
SS
17024 break;
17025 }
e142c38c 17026 cu->language_defn = language_def (cu->language);
c906108c
SS
17027}
17028
17029/* Return the named attribute or NULL if not there. */
17030
17031static struct attribute *
e142c38c 17032dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17033{
a48e046c 17034 for (;;)
c906108c 17035 {
a48e046c
TT
17036 unsigned int i;
17037 struct attribute *spec = NULL;
17038
17039 for (i = 0; i < die->num_attrs; ++i)
17040 {
17041 if (die->attrs[i].name == name)
17042 return &die->attrs[i];
17043 if (die->attrs[i].name == DW_AT_specification
17044 || die->attrs[i].name == DW_AT_abstract_origin)
17045 spec = &die->attrs[i];
17046 }
17047
17048 if (!spec)
17049 break;
c906108c 17050
f2f0e013 17051 die = follow_die_ref (die, spec, &cu);
f2f0e013 17052 }
c5aa993b 17053
c906108c
SS
17054 return NULL;
17055}
17056
348e048f
DE
17057/* Return the named attribute or NULL if not there,
17058 but do not follow DW_AT_specification, etc.
17059 This is for use in contexts where we're reading .debug_types dies.
17060 Following DW_AT_specification, DW_AT_abstract_origin will take us
17061 back up the chain, and we want to go down. */
17062
17063static struct attribute *
45e58e77 17064dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17065{
17066 unsigned int i;
17067
17068 for (i = 0; i < die->num_attrs; ++i)
17069 if (die->attrs[i].name == name)
17070 return &die->attrs[i];
17071
17072 return NULL;
17073}
17074
7d45c7c3
KB
17075/* Return the string associated with a string-typed attribute, or NULL if it
17076 is either not found or is of an incorrect type. */
17077
17078static const char *
17079dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17080{
17081 struct attribute *attr;
17082 const char *str = NULL;
17083
17084 attr = dwarf2_attr (die, name, cu);
17085
17086 if (attr != NULL)
17087 {
17088 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17089 || attr->form == DW_FORM_GNU_strp_alt)
17090 str = DW_STRING (attr);
17091 else
17092 complaint (&symfile_complaints,
17093 _("string type expected for attribute %s for "
17094 "DIE at 0x%x in module %s"),
17095 dwarf_attr_name (name), die->offset.sect_off,
17096 objfile_name (cu->objfile));
17097 }
17098
17099 return str;
17100}
17101
05cf31d1
JB
17102/* Return non-zero iff the attribute NAME is defined for the given DIE,
17103 and holds a non-zero value. This function should only be used for
2dc7f7b3 17104 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17105
17106static int
17107dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17108{
17109 struct attribute *attr = dwarf2_attr (die, name, cu);
17110
17111 return (attr && DW_UNSND (attr));
17112}
17113
3ca72b44 17114static int
e142c38c 17115die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17116{
05cf31d1
JB
17117 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17118 which value is non-zero. However, we have to be careful with
17119 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17120 (via dwarf2_flag_true_p) follows this attribute. So we may
17121 end up accidently finding a declaration attribute that belongs
17122 to a different DIE referenced by the specification attribute,
17123 even though the given DIE does not have a declaration attribute. */
17124 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17125 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17126}
17127
63d06c5c 17128/* Return the die giving the specification for DIE, if there is
f2f0e013 17129 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17130 containing the return value on output. If there is no
17131 specification, but there is an abstract origin, that is
17132 returned. */
63d06c5c
DC
17133
17134static struct die_info *
f2f0e013 17135die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17136{
f2f0e013
DJ
17137 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17138 *spec_cu);
63d06c5c 17139
edb3359d
DJ
17140 if (spec_attr == NULL)
17141 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17142
63d06c5c
DC
17143 if (spec_attr == NULL)
17144 return NULL;
17145 else
f2f0e013 17146 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17147}
c906108c 17148
debd256d 17149/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17150 refers to.
17151 NOTE: This is also used as a "cleanup" function. */
17152
debd256d
JB
17153static void
17154free_line_header (struct line_header *lh)
17155{
17156 if (lh->standard_opcode_lengths)
a8bc7b56 17157 xfree (lh->standard_opcode_lengths);
debd256d
JB
17158
17159 /* Remember that all the lh->file_names[i].name pointers are
17160 pointers into debug_line_buffer, and don't need to be freed. */
17161 if (lh->file_names)
a8bc7b56 17162 xfree (lh->file_names);
debd256d
JB
17163
17164 /* Similarly for the include directory names. */
17165 if (lh->include_dirs)
a8bc7b56 17166 xfree (lh->include_dirs);
debd256d 17167
a8bc7b56 17168 xfree (lh);
debd256d
JB
17169}
17170
527f3840
JK
17171/* Stub for free_line_header to match void * callback types. */
17172
17173static void
17174free_line_header_voidp (void *arg)
17175{
9a3c8263 17176 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17177
17178 free_line_header (lh);
17179}
17180
debd256d 17181/* Add an entry to LH's include directory table. */
ae2de4f8 17182
debd256d 17183static void
d521ce57 17184add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17185{
27e0867f
DE
17186 if (dwarf_line_debug >= 2)
17187 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17188 lh->num_include_dirs + 1, include_dir);
17189
debd256d
JB
17190 /* Grow the array if necessary. */
17191 if (lh->include_dirs_size == 0)
c5aa993b 17192 {
debd256d 17193 lh->include_dirs_size = 1; /* for testing */
8d749320 17194 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17195 }
17196 else if (lh->num_include_dirs >= lh->include_dirs_size)
17197 {
17198 lh->include_dirs_size *= 2;
8d749320
SM
17199 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17200 lh->include_dirs_size);
c5aa993b 17201 }
c906108c 17202
debd256d
JB
17203 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17204}
6e70227d 17205
debd256d 17206/* Add an entry to LH's file name table. */
ae2de4f8 17207
debd256d
JB
17208static void
17209add_file_name (struct line_header *lh,
d521ce57 17210 const char *name,
debd256d
JB
17211 unsigned int dir_index,
17212 unsigned int mod_time,
17213 unsigned int length)
17214{
17215 struct file_entry *fe;
17216
27e0867f
DE
17217 if (dwarf_line_debug >= 2)
17218 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17219 lh->num_file_names + 1, name);
17220
debd256d
JB
17221 /* Grow the array if necessary. */
17222 if (lh->file_names_size == 0)
17223 {
17224 lh->file_names_size = 1; /* for testing */
8d749320 17225 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17226 }
17227 else if (lh->num_file_names >= lh->file_names_size)
17228 {
17229 lh->file_names_size *= 2;
224c3ddb
SM
17230 lh->file_names
17231 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17232 }
17233
17234 fe = &lh->file_names[lh->num_file_names++];
17235 fe->name = name;
17236 fe->dir_index = dir_index;
17237 fe->mod_time = mod_time;
17238 fe->length = length;
aaa75496 17239 fe->included_p = 0;
cb1df416 17240 fe->symtab = NULL;
debd256d 17241}
6e70227d 17242
83769d0b 17243/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17244
17245static struct dwarf2_section_info *
17246get_debug_line_section (struct dwarf2_cu *cu)
17247{
17248 struct dwarf2_section_info *section;
17249
17250 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17251 DWO file. */
17252 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17253 section = &cu->dwo_unit->dwo_file->sections.line;
17254 else if (cu->per_cu->is_dwz)
17255 {
17256 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17257
17258 section = &dwz->line;
17259 }
17260 else
17261 section = &dwarf2_per_objfile->line;
17262
17263 return section;
17264}
17265
debd256d 17266/* Read the statement program header starting at OFFSET in
3019eac3 17267 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17268 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17269 Returns NULL if there is a problem reading the header, e.g., if it
17270 has a version we don't understand.
debd256d
JB
17271
17272 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17273 the returned object point into the dwarf line section buffer,
17274 and must not be freed. */
ae2de4f8 17275
debd256d 17276static struct line_header *
3019eac3 17277dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17278{
17279 struct cleanup *back_to;
17280 struct line_header *lh;
d521ce57 17281 const gdb_byte *line_ptr;
c764a876 17282 unsigned int bytes_read, offset_size;
debd256d 17283 int i;
d521ce57 17284 const char *cur_dir, *cur_file;
3019eac3
DE
17285 struct dwarf2_section_info *section;
17286 bfd *abfd;
17287
36586728 17288 section = get_debug_line_section (cu);
3019eac3
DE
17289 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17290 if (section->buffer == NULL)
debd256d 17291 {
3019eac3
DE
17292 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17293 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17294 else
17295 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17296 return 0;
17297 }
17298
fceca515
DE
17299 /* We can't do this until we know the section is non-empty.
17300 Only then do we know we have such a section. */
a32a8923 17301 abfd = get_section_bfd_owner (section);
fceca515 17302
a738430d
MK
17303 /* Make sure that at least there's room for the total_length field.
17304 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17305 if (offset + 4 >= section->size)
debd256d 17306 {
4d3c2250 17307 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17308 return 0;
17309 }
17310
8d749320 17311 lh = XNEW (struct line_header);
debd256d
JB
17312 memset (lh, 0, sizeof (*lh));
17313 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17314 (void *) lh);
17315
527f3840
JK
17316 lh->offset.sect_off = offset;
17317 lh->offset_in_dwz = cu->per_cu->is_dwz;
17318
3019eac3 17319 line_ptr = section->buffer + offset;
debd256d 17320
a738430d 17321 /* Read in the header. */
6e70227d 17322 lh->total_length =
c764a876
DE
17323 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17324 &bytes_read, &offset_size);
debd256d 17325 line_ptr += bytes_read;
3019eac3 17326 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17327 {
4d3c2250 17328 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17329 do_cleanups (back_to);
debd256d
JB
17330 return 0;
17331 }
17332 lh->statement_program_end = line_ptr + lh->total_length;
17333 lh->version = read_2_bytes (abfd, line_ptr);
17334 line_ptr += 2;
cd366ee8
DE
17335 if (lh->version > 4)
17336 {
17337 /* This is a version we don't understand. The format could have
17338 changed in ways we don't handle properly so just punt. */
17339 complaint (&symfile_complaints,
17340 _("unsupported version in .debug_line section"));
17341 return NULL;
17342 }
c764a876
DE
17343 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17344 line_ptr += offset_size;
debd256d
JB
17345 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17346 line_ptr += 1;
2dc7f7b3
TT
17347 if (lh->version >= 4)
17348 {
17349 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17350 line_ptr += 1;
17351 }
17352 else
17353 lh->maximum_ops_per_instruction = 1;
17354
17355 if (lh->maximum_ops_per_instruction == 0)
17356 {
17357 lh->maximum_ops_per_instruction = 1;
17358 complaint (&symfile_complaints,
3e43a32a
MS
17359 _("invalid maximum_ops_per_instruction "
17360 "in `.debug_line' section"));
2dc7f7b3
TT
17361 }
17362
debd256d
JB
17363 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17364 line_ptr += 1;
17365 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17366 line_ptr += 1;
17367 lh->line_range = read_1_byte (abfd, line_ptr);
17368 line_ptr += 1;
17369 lh->opcode_base = read_1_byte (abfd, line_ptr);
17370 line_ptr += 1;
8d749320 17371 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17372
17373 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17374 for (i = 1; i < lh->opcode_base; ++i)
17375 {
17376 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17377 line_ptr += 1;
17378 }
17379
a738430d 17380 /* Read directory table. */
9b1c24c8 17381 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17382 {
17383 line_ptr += bytes_read;
17384 add_include_dir (lh, cur_dir);
17385 }
17386 line_ptr += bytes_read;
17387
a738430d 17388 /* Read file name table. */
9b1c24c8 17389 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17390 {
17391 unsigned int dir_index, mod_time, length;
17392
17393 line_ptr += bytes_read;
17394 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17395 line_ptr += bytes_read;
17396 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17397 line_ptr += bytes_read;
17398 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399 line_ptr += bytes_read;
17400
17401 add_file_name (lh, cur_file, dir_index, mod_time, length);
17402 }
17403 line_ptr += bytes_read;
6e70227d 17404 lh->statement_program_start = line_ptr;
debd256d 17405
3019eac3 17406 if (line_ptr > (section->buffer + section->size))
4d3c2250 17407 complaint (&symfile_complaints,
3e43a32a
MS
17408 _("line number info header doesn't "
17409 "fit in `.debug_line' section"));
debd256d
JB
17410
17411 discard_cleanups (back_to);
17412 return lh;
17413}
c906108c 17414
c6da4cef
DE
17415/* Subroutine of dwarf_decode_lines to simplify it.
17416 Return the file name of the psymtab for included file FILE_INDEX
17417 in line header LH of PST.
17418 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17419 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17420 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17421
17422 The function creates dangling cleanup registration. */
c6da4cef 17423
d521ce57 17424static const char *
c6da4cef
DE
17425psymtab_include_file_name (const struct line_header *lh, int file_index,
17426 const struct partial_symtab *pst,
17427 const char *comp_dir)
17428{
17429 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17430 const char *include_name = fe.name;
17431 const char *include_name_to_compare = include_name;
17432 const char *dir_name = NULL;
72b9f47f
TT
17433 const char *pst_filename;
17434 char *copied_name = NULL;
c6da4cef
DE
17435 int file_is_pst;
17436
afa6c9ab 17437 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17438 dir_name = lh->include_dirs[fe.dir_index - 1];
17439
17440 if (!IS_ABSOLUTE_PATH (include_name)
17441 && (dir_name != NULL || comp_dir != NULL))
17442 {
17443 /* Avoid creating a duplicate psymtab for PST.
17444 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17445 Before we do the comparison, however, we need to account
17446 for DIR_NAME and COMP_DIR.
17447 First prepend dir_name (if non-NULL). If we still don't
17448 have an absolute path prepend comp_dir (if non-NULL).
17449 However, the directory we record in the include-file's
17450 psymtab does not contain COMP_DIR (to match the
17451 corresponding symtab(s)).
17452
17453 Example:
17454
17455 bash$ cd /tmp
17456 bash$ gcc -g ./hello.c
17457 include_name = "hello.c"
17458 dir_name = "."
17459 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17460 DW_AT_name = "./hello.c"
17461
17462 */
c6da4cef
DE
17463
17464 if (dir_name != NULL)
17465 {
d521ce57
TT
17466 char *tem = concat (dir_name, SLASH_STRING,
17467 include_name, (char *)NULL);
17468
17469 make_cleanup (xfree, tem);
17470 include_name = tem;
c6da4cef 17471 include_name_to_compare = include_name;
c6da4cef
DE
17472 }
17473 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17474 {
d521ce57
TT
17475 char *tem = concat (comp_dir, SLASH_STRING,
17476 include_name, (char *)NULL);
17477
17478 make_cleanup (xfree, tem);
17479 include_name_to_compare = tem;
c6da4cef
DE
17480 }
17481 }
17482
17483 pst_filename = pst->filename;
17484 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17485 {
72b9f47f
TT
17486 copied_name = concat (pst->dirname, SLASH_STRING,
17487 pst_filename, (char *)NULL);
17488 pst_filename = copied_name;
c6da4cef
DE
17489 }
17490
1e3fad37 17491 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17492
72b9f47f
TT
17493 if (copied_name != NULL)
17494 xfree (copied_name);
c6da4cef
DE
17495
17496 if (file_is_pst)
17497 return NULL;
17498 return include_name;
17499}
17500
d9b3de22
DE
17501/* State machine to track the state of the line number program. */
17502
17503typedef struct
17504{
17505 /* These are part of the standard DWARF line number state machine. */
17506
17507 unsigned char op_index;
17508 unsigned int file;
17509 unsigned int line;
17510 CORE_ADDR address;
17511 int is_stmt;
17512 unsigned int discriminator;
17513
17514 /* Additional bits of state we need to track. */
17515
17516 /* The last file that we called dwarf2_start_subfile for.
17517 This is only used for TLLs. */
17518 unsigned int last_file;
17519 /* The last file a line number was recorded for. */
17520 struct subfile *last_subfile;
17521
17522 /* The function to call to record a line. */
17523 record_line_ftype *record_line;
17524
17525 /* The last line number that was recorded, used to coalesce
17526 consecutive entries for the same line. This can happen, for
17527 example, when discriminators are present. PR 17276. */
17528 unsigned int last_line;
17529 int line_has_non_zero_discriminator;
17530} lnp_state_machine;
17531
17532/* There's a lot of static state to pass to dwarf_record_line.
17533 This keeps it all together. */
17534
17535typedef struct
17536{
17537 /* The gdbarch. */
17538 struct gdbarch *gdbarch;
17539
17540 /* The line number header. */
17541 struct line_header *line_header;
17542
17543 /* Non-zero if we're recording lines.
17544 Otherwise we're building partial symtabs and are just interested in
17545 finding include files mentioned by the line number program. */
17546 int record_lines_p;
17547} lnp_reader_state;
17548
c91513d8
PP
17549/* Ignore this record_line request. */
17550
17551static void
17552noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17553{
17554 return;
17555}
17556
a05a36a5
DE
17557/* Return non-zero if we should add LINE to the line number table.
17558 LINE is the line to add, LAST_LINE is the last line that was added,
17559 LAST_SUBFILE is the subfile for LAST_LINE.
17560 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17561 had a non-zero discriminator.
17562
17563 We have to be careful in the presence of discriminators.
17564 E.g., for this line:
17565
17566 for (i = 0; i < 100000; i++);
17567
17568 clang can emit four line number entries for that one line,
17569 each with a different discriminator.
17570 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17571
17572 However, we want gdb to coalesce all four entries into one.
17573 Otherwise the user could stepi into the middle of the line and
17574 gdb would get confused about whether the pc really was in the
17575 middle of the line.
17576
17577 Things are further complicated by the fact that two consecutive
17578 line number entries for the same line is a heuristic used by gcc
17579 to denote the end of the prologue. So we can't just discard duplicate
17580 entries, we have to be selective about it. The heuristic we use is
17581 that we only collapse consecutive entries for the same line if at least
17582 one of those entries has a non-zero discriminator. PR 17276.
17583
17584 Note: Addresses in the line number state machine can never go backwards
17585 within one sequence, thus this coalescing is ok. */
17586
17587static int
17588dwarf_record_line_p (unsigned int line, unsigned int last_line,
17589 int line_has_non_zero_discriminator,
17590 struct subfile *last_subfile)
17591{
17592 if (current_subfile != last_subfile)
17593 return 1;
17594 if (line != last_line)
17595 return 1;
17596 /* Same line for the same file that we've seen already.
17597 As a last check, for pr 17276, only record the line if the line
17598 has never had a non-zero discriminator. */
17599 if (!line_has_non_zero_discriminator)
17600 return 1;
17601 return 0;
17602}
17603
252a6764
DE
17604/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17605 in the line table of subfile SUBFILE. */
17606
17607static void
d9b3de22
DE
17608dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17609 unsigned int line, CORE_ADDR address,
17610 record_line_ftype p_record_line)
252a6764
DE
17611{
17612 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17613
27e0867f
DE
17614 if (dwarf_line_debug)
17615 {
17616 fprintf_unfiltered (gdb_stdlog,
17617 "Recording line %u, file %s, address %s\n",
17618 line, lbasename (subfile->name),
17619 paddress (gdbarch, address));
17620 }
17621
d5962de5 17622 (*p_record_line) (subfile, line, addr);
252a6764
DE
17623}
17624
17625/* Subroutine of dwarf_decode_lines_1 to simplify it.
17626 Mark the end of a set of line number records.
d9b3de22 17627 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17628 If SUBFILE is NULL the request is ignored. */
17629
17630static void
17631dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17632 CORE_ADDR address, record_line_ftype p_record_line)
17633{
27e0867f
DE
17634 if (subfile == NULL)
17635 return;
17636
17637 if (dwarf_line_debug)
17638 {
17639 fprintf_unfiltered (gdb_stdlog,
17640 "Finishing current line, file %s, address %s\n",
17641 lbasename (subfile->name),
17642 paddress (gdbarch, address));
17643 }
17644
d9b3de22
DE
17645 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17646}
17647
17648/* Record the line in STATE.
17649 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17650
17651static void
17652dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17653 int end_sequence)
17654{
17655 const struct line_header *lh = reader->line_header;
17656 unsigned int file, line, discriminator;
17657 int is_stmt;
17658
17659 file = state->file;
17660 line = state->line;
17661 is_stmt = state->is_stmt;
17662 discriminator = state->discriminator;
17663
17664 if (dwarf_line_debug)
17665 {
17666 fprintf_unfiltered (gdb_stdlog,
17667 "Processing actual line %u: file %u,"
17668 " address %s, is_stmt %u, discrim %u\n",
17669 line, file,
17670 paddress (reader->gdbarch, state->address),
17671 is_stmt, discriminator);
17672 }
17673
17674 if (file == 0 || file - 1 >= lh->num_file_names)
17675 dwarf2_debug_line_missing_file_complaint ();
17676 /* For now we ignore lines not starting on an instruction boundary.
17677 But not when processing end_sequence for compatibility with the
17678 previous version of the code. */
17679 else if (state->op_index == 0 || end_sequence)
17680 {
17681 lh->file_names[file - 1].included_p = 1;
17682 if (reader->record_lines_p && is_stmt)
17683 {
e815d2d2 17684 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17685 {
17686 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17687 state->address, state->record_line);
17688 }
17689
17690 if (!end_sequence)
17691 {
17692 if (dwarf_record_line_p (line, state->last_line,
17693 state->line_has_non_zero_discriminator,
17694 state->last_subfile))
17695 {
17696 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17697 line, state->address,
17698 state->record_line);
17699 }
17700 state->last_subfile = current_subfile;
17701 state->last_line = line;
17702 }
17703 }
17704 }
17705}
17706
17707/* Initialize STATE for the start of a line number program. */
17708
17709static void
17710init_lnp_state_machine (lnp_state_machine *state,
17711 const lnp_reader_state *reader)
17712{
17713 memset (state, 0, sizeof (*state));
17714
17715 /* Just starting, there is no "last file". */
17716 state->last_file = 0;
17717 state->last_subfile = NULL;
17718
17719 state->record_line = record_line;
17720
17721 state->last_line = 0;
17722 state->line_has_non_zero_discriminator = 0;
17723
17724 /* Initialize these according to the DWARF spec. */
17725 state->op_index = 0;
17726 state->file = 1;
17727 state->line = 1;
17728 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17729 was a line entry for it so that the backend has a chance to adjust it
17730 and also record it in case it needs it. This is currently used by MIPS
17731 code, cf. `mips_adjust_dwarf2_line'. */
17732 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17733 state->is_stmt = reader->line_header->default_is_stmt;
17734 state->discriminator = 0;
252a6764
DE
17735}
17736
924c2928
DE
17737/* Check address and if invalid nop-out the rest of the lines in this
17738 sequence. */
17739
17740static void
d9b3de22 17741check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17742 const gdb_byte *line_ptr,
17743 CORE_ADDR lowpc, CORE_ADDR address)
17744{
17745 /* If address < lowpc then it's not a usable value, it's outside the
17746 pc range of the CU. However, we restrict the test to only address
17747 values of zero to preserve GDB's previous behaviour which is to
17748 handle the specific case of a function being GC'd by the linker. */
17749
17750 if (address == 0 && address < lowpc)
17751 {
17752 /* This line table is for a function which has been
17753 GCd by the linker. Ignore it. PR gdb/12528 */
17754
17755 struct objfile *objfile = cu->objfile;
17756 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17757
17758 complaint (&symfile_complaints,
17759 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17760 line_offset, objfile_name (objfile));
d9b3de22
DE
17761 state->record_line = noop_record_line;
17762 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17763 until we see DW_LNE_end_sequence. */
17764 }
17765}
17766
f3f5162e 17767/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17768 Process the line number information in LH.
17769 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17770 program in order to set included_p for every referenced header. */
debd256d 17771
c906108c 17772static void
43f3e411
DE
17773dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17774 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17775{
d521ce57
TT
17776 const gdb_byte *line_ptr, *extended_end;
17777 const gdb_byte *line_end;
a8c50c1f 17778 unsigned int bytes_read, extended_len;
699ca60a 17779 unsigned char op_code, extended_op;
e142c38c
DJ
17780 CORE_ADDR baseaddr;
17781 struct objfile *objfile = cu->objfile;
f3f5162e 17782 bfd *abfd = objfile->obfd;
fbf65064 17783 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17784 /* Non-zero if we're recording line info (as opposed to building partial
17785 symtabs). */
17786 int record_lines_p = !decode_for_pst_p;
17787 /* A collection of things we need to pass to dwarf_record_line. */
17788 lnp_reader_state reader_state;
e142c38c
DJ
17789
17790 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17791
debd256d
JB
17792 line_ptr = lh->statement_program_start;
17793 line_end = lh->statement_program_end;
c906108c 17794
d9b3de22
DE
17795 reader_state.gdbarch = gdbarch;
17796 reader_state.line_header = lh;
17797 reader_state.record_lines_p = record_lines_p;
17798
c906108c
SS
17799 /* Read the statement sequences until there's nothing left. */
17800 while (line_ptr < line_end)
17801 {
d9b3de22
DE
17802 /* The DWARF line number program state machine. */
17803 lnp_state_machine state_machine;
c906108c 17804 int end_sequence = 0;
d9b3de22
DE
17805
17806 /* Reset the state machine at the start of each sequence. */
17807 init_lnp_state_machine (&state_machine, &reader_state);
17808
17809 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17810 {
aaa75496 17811 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17812 /* lh->include_dirs and lh->file_names are 0-based, but the
17813 directory and file name numbers in the statement program
17814 are 1-based. */
d9b3de22 17815 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17816 const char *dir = NULL;
a738430d 17817
afa6c9ab 17818 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17819 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17820
4d663531 17821 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17822 }
17823
a738430d 17824 /* Decode the table. */
d9b3de22 17825 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17826 {
17827 op_code = read_1_byte (abfd, line_ptr);
17828 line_ptr += 1;
9aa1fe7e 17829
debd256d 17830 if (op_code >= lh->opcode_base)
6e70227d 17831 {
8e07a239 17832 /* Special opcode. */
699ca60a 17833 unsigned char adj_opcode;
3e29f34a 17834 CORE_ADDR addr_adj;
a05a36a5 17835 int line_delta;
8e07a239 17836
debd256d 17837 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17838 addr_adj = (((state_machine.op_index
17839 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17840 / lh->maximum_ops_per_instruction)
17841 * lh->minimum_instruction_length);
d9b3de22
DE
17842 state_machine.address
17843 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17844 state_machine.op_index = ((state_machine.op_index
17845 + (adj_opcode / lh->line_range))
17846 % lh->maximum_ops_per_instruction);
a05a36a5 17847 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17848 state_machine.line += line_delta;
a05a36a5 17849 if (line_delta != 0)
d9b3de22
DE
17850 state_machine.line_has_non_zero_discriminator
17851 = state_machine.discriminator != 0;
17852
17853 dwarf_record_line (&reader_state, &state_machine, 0);
17854 state_machine.discriminator = 0;
9aa1fe7e
GK
17855 }
17856 else switch (op_code)
c906108c
SS
17857 {
17858 case DW_LNS_extended_op:
3e43a32a
MS
17859 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17860 &bytes_read);
473b7be6 17861 line_ptr += bytes_read;
a8c50c1f 17862 extended_end = line_ptr + extended_len;
c906108c
SS
17863 extended_op = read_1_byte (abfd, line_ptr);
17864 line_ptr += 1;
17865 switch (extended_op)
17866 {
17867 case DW_LNE_end_sequence:
d9b3de22 17868 state_machine.record_line = record_line;
c906108c 17869 end_sequence = 1;
c906108c
SS
17870 break;
17871 case DW_LNE_set_address:
d9b3de22
DE
17872 {
17873 CORE_ADDR address
17874 = read_address (abfd, line_ptr, cu, &bytes_read);
17875
17876 line_ptr += bytes_read;
17877 check_line_address (cu, &state_machine, line_ptr,
17878 lowpc, address);
17879 state_machine.op_index = 0;
17880 address += baseaddr;
17881 state_machine.address
17882 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17883 }
c906108c
SS
17884 break;
17885 case DW_LNE_define_file:
debd256d 17886 {
d521ce57 17887 const char *cur_file;
debd256d 17888 unsigned int dir_index, mod_time, length;
6e70227d 17889
3e43a32a
MS
17890 cur_file = read_direct_string (abfd, line_ptr,
17891 &bytes_read);
debd256d
JB
17892 line_ptr += bytes_read;
17893 dir_index =
17894 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17895 line_ptr += bytes_read;
17896 mod_time =
17897 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17898 line_ptr += bytes_read;
17899 length =
17900 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17901 line_ptr += bytes_read;
17902 add_file_name (lh, cur_file, dir_index, mod_time, length);
17903 }
c906108c 17904 break;
d0c6ba3d
CC
17905 case DW_LNE_set_discriminator:
17906 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17907 just ignore it. We still need to check its value though:
17908 if there are consecutive entries for the same
17909 (non-prologue) line we want to coalesce them.
17910 PR 17276. */
d9b3de22
DE
17911 state_machine.discriminator
17912 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17913 state_machine.line_has_non_zero_discriminator
17914 |= state_machine.discriminator != 0;
a05a36a5 17915 line_ptr += bytes_read;
d0c6ba3d 17916 break;
c906108c 17917 default:
4d3c2250 17918 complaint (&symfile_complaints,
e2e0b3e5 17919 _("mangled .debug_line section"));
debd256d 17920 return;
c906108c 17921 }
a8c50c1f
DJ
17922 /* Make sure that we parsed the extended op correctly. If e.g.
17923 we expected a different address size than the producer used,
17924 we may have read the wrong number of bytes. */
17925 if (line_ptr != extended_end)
17926 {
17927 complaint (&symfile_complaints,
17928 _("mangled .debug_line section"));
17929 return;
17930 }
c906108c
SS
17931 break;
17932 case DW_LNS_copy:
d9b3de22
DE
17933 dwarf_record_line (&reader_state, &state_machine, 0);
17934 state_machine.discriminator = 0;
c906108c
SS
17935 break;
17936 case DW_LNS_advance_pc:
2dc7f7b3
TT
17937 {
17938 CORE_ADDR adjust
17939 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17940 CORE_ADDR addr_adj;
2dc7f7b3 17941
d9b3de22 17942 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17943 / lh->maximum_ops_per_instruction)
17944 * lh->minimum_instruction_length);
d9b3de22
DE
17945 state_machine.address
17946 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17947 state_machine.op_index = ((state_machine.op_index + adjust)
17948 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17949 line_ptr += bytes_read;
17950 }
c906108c
SS
17951 break;
17952 case DW_LNS_advance_line:
a05a36a5
DE
17953 {
17954 int line_delta
17955 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17956
d9b3de22 17957 state_machine.line += line_delta;
a05a36a5 17958 if (line_delta != 0)
d9b3de22
DE
17959 state_machine.line_has_non_zero_discriminator
17960 = state_machine.discriminator != 0;
a05a36a5
DE
17961 line_ptr += bytes_read;
17962 }
c906108c
SS
17963 break;
17964 case DW_LNS_set_file:
d9b3de22
DE
17965 {
17966 /* The arrays lh->include_dirs and lh->file_names are
17967 0-based, but the directory and file name numbers in
17968 the statement program are 1-based. */
17969 struct file_entry *fe;
17970 const char *dir = NULL;
17971
17972 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17973 &bytes_read);
17974 line_ptr += bytes_read;
17975 if (state_machine.file == 0
17976 || state_machine.file - 1 >= lh->num_file_names)
17977 dwarf2_debug_line_missing_file_complaint ();
17978 else
17979 {
17980 fe = &lh->file_names[state_machine.file - 1];
17981 if (fe->dir_index && lh->include_dirs != NULL)
17982 dir = lh->include_dirs[fe->dir_index - 1];
17983 if (record_lines_p)
17984 {
17985 state_machine.last_subfile = current_subfile;
17986 state_machine.line_has_non_zero_discriminator
17987 = state_machine.discriminator != 0;
17988 dwarf2_start_subfile (fe->name, dir);
17989 }
17990 }
17991 }
c906108c
SS
17992 break;
17993 case DW_LNS_set_column:
0ad93d4f 17994 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17995 line_ptr += bytes_read;
17996 break;
17997 case DW_LNS_negate_stmt:
d9b3de22 17998 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
17999 break;
18000 case DW_LNS_set_basic_block:
c906108c 18001 break;
c2c6d25f
JM
18002 /* Add to the address register of the state machine the
18003 address increment value corresponding to special opcode
a738430d
MK
18004 255. I.e., this value is scaled by the minimum
18005 instruction length since special opcode 255 would have
b021a221 18006 scaled the increment. */
c906108c 18007 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18008 {
18009 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18010 CORE_ADDR addr_adj;
2dc7f7b3 18011
d9b3de22 18012 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18013 / lh->maximum_ops_per_instruction)
18014 * lh->minimum_instruction_length);
d9b3de22
DE
18015 state_machine.address
18016 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18017 state_machine.op_index = ((state_machine.op_index + adjust)
18018 % lh->maximum_ops_per_instruction);
2dc7f7b3 18019 }
c906108c
SS
18020 break;
18021 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18022 {
18023 CORE_ADDR addr_adj;
18024
18025 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18026 state_machine.address
18027 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18028 state_machine.op_index = 0;
3e29f34a
MR
18029 line_ptr += 2;
18030 }
c906108c 18031 break;
9aa1fe7e 18032 default:
a738430d
MK
18033 {
18034 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18035 int i;
a738430d 18036
debd256d 18037 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18038 {
18039 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18040 line_ptr += bytes_read;
18041 }
18042 }
c906108c
SS
18043 }
18044 }
d9b3de22
DE
18045
18046 if (!end_sequence)
18047 dwarf2_debug_line_missing_end_sequence_complaint ();
18048
18049 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18050 in which case we still finish recording the last line). */
18051 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18052 }
f3f5162e
DE
18053}
18054
18055/* Decode the Line Number Program (LNP) for the given line_header
18056 structure and CU. The actual information extracted and the type
18057 of structures created from the LNP depends on the value of PST.
18058
18059 1. If PST is NULL, then this procedure uses the data from the program
18060 to create all necessary symbol tables, and their linetables.
18061
18062 2. If PST is not NULL, this procedure reads the program to determine
18063 the list of files included by the unit represented by PST, and
18064 builds all the associated partial symbol tables.
18065
18066 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18067 It is used for relative paths in the line table.
18068 NOTE: When processing partial symtabs (pst != NULL),
18069 comp_dir == pst->dirname.
18070
18071 NOTE: It is important that psymtabs have the same file name (via strcmp)
18072 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18073 symtab we don't use it in the name of the psymtabs we create.
18074 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18075 A good testcase for this is mb-inline.exp.
18076
527f3840
JK
18077 LOWPC is the lowest address in CU (or 0 if not known).
18078
18079 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18080 for its PC<->lines mapping information. Otherwise only the filename
18081 table is read in. */
f3f5162e
DE
18082
18083static void
18084dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18085 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18086 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18087{
18088 struct objfile *objfile = cu->objfile;
18089 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18090
527f3840
JK
18091 if (decode_mapping)
18092 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18093
18094 if (decode_for_pst_p)
18095 {
18096 int file_index;
18097
18098 /* Now that we're done scanning the Line Header Program, we can
18099 create the psymtab of each included file. */
18100 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18101 if (lh->file_names[file_index].included_p == 1)
18102 {
d521ce57 18103 const char *include_name =
c6da4cef
DE
18104 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18105 if (include_name != NULL)
aaa75496
JB
18106 dwarf2_create_include_psymtab (include_name, pst, objfile);
18107 }
18108 }
cb1df416
DJ
18109 else
18110 {
18111 /* Make sure a symtab is created for every file, even files
18112 which contain only variables (i.e. no code with associated
18113 line numbers). */
43f3e411 18114 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18115 int i;
cb1df416
DJ
18116
18117 for (i = 0; i < lh->num_file_names; i++)
18118 {
d521ce57 18119 const char *dir = NULL;
f3f5162e 18120 struct file_entry *fe;
9a619af0 18121
cb1df416 18122 fe = &lh->file_names[i];
afa6c9ab 18123 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18124 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18125 dwarf2_start_subfile (fe->name, dir);
cb1df416 18126
cb1df416 18127 if (current_subfile->symtab == NULL)
43f3e411
DE
18128 {
18129 current_subfile->symtab
18130 = allocate_symtab (cust, current_subfile->name);
18131 }
cb1df416
DJ
18132 fe->symtab = current_subfile->symtab;
18133 }
18134 }
c906108c
SS
18135}
18136
18137/* Start a subfile for DWARF. FILENAME is the name of the file and
18138 DIRNAME the name of the source directory which contains FILENAME
4d663531 18139 or NULL if not known.
c906108c
SS
18140 This routine tries to keep line numbers from identical absolute and
18141 relative file names in a common subfile.
18142
18143 Using the `list' example from the GDB testsuite, which resides in
18144 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18145 of /srcdir/list0.c yields the following debugging information for list0.c:
18146
c5aa993b 18147 DW_AT_name: /srcdir/list0.c
4d663531 18148 DW_AT_comp_dir: /compdir
357e46e7 18149 files.files[0].name: list0.h
c5aa993b 18150 files.files[0].dir: /srcdir
357e46e7 18151 files.files[1].name: list0.c
c5aa993b 18152 files.files[1].dir: /srcdir
c906108c
SS
18153
18154 The line number information for list0.c has to end up in a single
4f1520fb
FR
18155 subfile, so that `break /srcdir/list0.c:1' works as expected.
18156 start_subfile will ensure that this happens provided that we pass the
18157 concatenation of files.files[1].dir and files.files[1].name as the
18158 subfile's name. */
c906108c
SS
18159
18160static void
4d663531 18161dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18162{
d521ce57 18163 char *copy = NULL;
4f1520fb 18164
4d663531 18165 /* In order not to lose the line information directory,
4f1520fb
FR
18166 we concatenate it to the filename when it makes sense.
18167 Note that the Dwarf3 standard says (speaking of filenames in line
18168 information): ``The directory index is ignored for file names
18169 that represent full path names''. Thus ignoring dirname in the
18170 `else' branch below isn't an issue. */
c906108c 18171
d5166ae1 18172 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18173 {
18174 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18175 filename = copy;
18176 }
c906108c 18177
4d663531 18178 start_subfile (filename);
4f1520fb 18179
d521ce57
TT
18180 if (copy != NULL)
18181 xfree (copy);
c906108c
SS
18182}
18183
f4dc4d17
DE
18184/* Start a symtab for DWARF.
18185 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18186
43f3e411 18187static struct compunit_symtab *
f4dc4d17 18188dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18189 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18190{
43f3e411
DE
18191 struct compunit_symtab *cust
18192 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18193
f4dc4d17
DE
18194 record_debugformat ("DWARF 2");
18195 record_producer (cu->producer);
18196
18197 /* We assume that we're processing GCC output. */
18198 processing_gcc_compilation = 2;
18199
4d4ec4e5 18200 cu->processing_has_namespace_info = 0;
43f3e411
DE
18201
18202 return cust;
f4dc4d17
DE
18203}
18204
4c2df51b
DJ
18205static void
18206var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18207 struct dwarf2_cu *cu)
4c2df51b 18208{
e7c27a73
DJ
18209 struct objfile *objfile = cu->objfile;
18210 struct comp_unit_head *cu_header = &cu->header;
18211
4c2df51b
DJ
18212 /* NOTE drow/2003-01-30: There used to be a comment and some special
18213 code here to turn a symbol with DW_AT_external and a
18214 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18215 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18216 with some versions of binutils) where shared libraries could have
18217 relocations against symbols in their debug information - the
18218 minimal symbol would have the right address, but the debug info
18219 would not. It's no longer necessary, because we will explicitly
18220 apply relocations when we read in the debug information now. */
18221
18222 /* A DW_AT_location attribute with no contents indicates that a
18223 variable has been optimized away. */
18224 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18225 {
f1e6e072 18226 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18227 return;
18228 }
18229
18230 /* Handle one degenerate form of location expression specially, to
18231 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18232 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18233 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18234
18235 if (attr_form_is_block (attr)
3019eac3
DE
18236 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18237 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18238 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18239 && (DW_BLOCK (attr)->size
18240 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18241 {
891d2f0b 18242 unsigned int dummy;
4c2df51b 18243
3019eac3
DE
18244 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18245 SYMBOL_VALUE_ADDRESS (sym) =
18246 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18247 else
18248 SYMBOL_VALUE_ADDRESS (sym) =
18249 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18250 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18251 fixup_symbol_section (sym, objfile);
18252 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18253 SYMBOL_SECTION (sym));
4c2df51b
DJ
18254 return;
18255 }
18256
18257 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18258 expression evaluator, and use LOC_COMPUTED only when necessary
18259 (i.e. when the value of a register or memory location is
18260 referenced, or a thread-local block, etc.). Then again, it might
18261 not be worthwhile. I'm assuming that it isn't unless performance
18262 or memory numbers show me otherwise. */
18263
f1e6e072 18264 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18265
f1e6e072 18266 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18267 cu->has_loclist = 1;
4c2df51b
DJ
18268}
18269
c906108c
SS
18270/* Given a pointer to a DWARF information entry, figure out if we need
18271 to make a symbol table entry for it, and if so, create a new entry
18272 and return a pointer to it.
18273 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18274 used the passed type.
18275 If SPACE is not NULL, use it to hold the new symbol. If it is
18276 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18277
18278static struct symbol *
34eaf542
TT
18279new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18280 struct symbol *space)
c906108c 18281{
e7c27a73 18282 struct objfile *objfile = cu->objfile;
3e29f34a 18283 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18284 struct symbol *sym = NULL;
15d034d0 18285 const char *name;
c906108c
SS
18286 struct attribute *attr = NULL;
18287 struct attribute *attr2 = NULL;
e142c38c 18288 CORE_ADDR baseaddr;
e37fd15a
SW
18289 struct pending **list_to_add = NULL;
18290
edb3359d 18291 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18292
18293 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18294
94af9270 18295 name = dwarf2_name (die, cu);
c906108c
SS
18296 if (name)
18297 {
94af9270 18298 const char *linkagename;
34eaf542 18299 int suppress_add = 0;
94af9270 18300
34eaf542
TT
18301 if (space)
18302 sym = space;
18303 else
e623cf5d 18304 sym = allocate_symbol (objfile);
c906108c 18305 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18306
18307 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18308 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18309 linkagename = dwarf2_physname (name, die, cu);
18310 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18311
f55ee35c
JK
18312 /* Fortran does not have mangling standard and the mangling does differ
18313 between gfortran, iFort etc. */
18314 if (cu->language == language_fortran
b250c185 18315 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18316 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18317 dwarf2_full_name (name, die, cu),
29df156d 18318 NULL);
f55ee35c 18319
c906108c 18320 /* Default assumptions.
c5aa993b 18321 Use the passed type or decode it from the die. */
176620f1 18322 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18323 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18324 if (type != NULL)
18325 SYMBOL_TYPE (sym) = type;
18326 else
e7c27a73 18327 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18328 attr = dwarf2_attr (die,
18329 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18330 cu);
c906108c
SS
18331 if (attr)
18332 {
18333 SYMBOL_LINE (sym) = DW_UNSND (attr);
18334 }
cb1df416 18335
edb3359d
DJ
18336 attr = dwarf2_attr (die,
18337 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18338 cu);
cb1df416
DJ
18339 if (attr)
18340 {
18341 int file_index = DW_UNSND (attr);
9a619af0 18342
cb1df416
DJ
18343 if (cu->line_header == NULL
18344 || file_index > cu->line_header->num_file_names)
18345 complaint (&symfile_complaints,
18346 _("file index out of range"));
1c3d648d 18347 else if (file_index > 0)
cb1df416
DJ
18348 {
18349 struct file_entry *fe;
9a619af0 18350
cb1df416 18351 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18352 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18353 }
18354 }
18355
c906108c
SS
18356 switch (die->tag)
18357 {
18358 case DW_TAG_label:
e142c38c 18359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18360 if (attr)
3e29f34a
MR
18361 {
18362 CORE_ADDR addr;
18363
18364 addr = attr_value_as_address (attr);
18365 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18366 SYMBOL_VALUE_ADDRESS (sym) = addr;
18367 }
0f5238ed
TT
18368 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18369 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18370 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18371 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18372 break;
18373 case DW_TAG_subprogram:
18374 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18375 finish_block. */
f1e6e072 18376 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18377 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18378 if ((attr2 && (DW_UNSND (attr2) != 0))
18379 || cu->language == language_ada)
c906108c 18380 {
2cfa0c8d
JB
18381 /* Subprograms marked external are stored as a global symbol.
18382 Ada subprograms, whether marked external or not, are always
18383 stored as a global symbol, because we want to be able to
18384 access them globally. For instance, we want to be able
18385 to break on a nested subprogram without having to
18386 specify the context. */
e37fd15a 18387 list_to_add = &global_symbols;
c906108c
SS
18388 }
18389 else
18390 {
e37fd15a 18391 list_to_add = cu->list_in_scope;
c906108c
SS
18392 }
18393 break;
edb3359d
DJ
18394 case DW_TAG_inlined_subroutine:
18395 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18396 finish_block. */
f1e6e072 18397 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18398 SYMBOL_INLINED (sym) = 1;
481860b3 18399 list_to_add = cu->list_in_scope;
edb3359d 18400 break;
34eaf542
TT
18401 case DW_TAG_template_value_param:
18402 suppress_add = 1;
18403 /* Fall through. */
72929c62 18404 case DW_TAG_constant:
c906108c 18405 case DW_TAG_variable:
254e6b9e 18406 case DW_TAG_member:
0963b4bd
MS
18407 /* Compilation with minimal debug info may result in
18408 variables with missing type entries. Change the
18409 misleading `void' type to something sensible. */
c906108c 18410 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18411 SYMBOL_TYPE (sym)
46bf5051 18412 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18413
e142c38c 18414 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18415 /* In the case of DW_TAG_member, we should only be called for
18416 static const members. */
18417 if (die->tag == DW_TAG_member)
18418 {
3863f96c
DE
18419 /* dwarf2_add_field uses die_is_declaration,
18420 so we do the same. */
254e6b9e
DE
18421 gdb_assert (die_is_declaration (die, cu));
18422 gdb_assert (attr);
18423 }
c906108c
SS
18424 if (attr)
18425 {
e7c27a73 18426 dwarf2_const_value (attr, sym, cu);
e142c38c 18427 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18428 if (!suppress_add)
34eaf542
TT
18429 {
18430 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18431 list_to_add = &global_symbols;
34eaf542 18432 else
e37fd15a 18433 list_to_add = cu->list_in_scope;
34eaf542 18434 }
c906108c
SS
18435 break;
18436 }
e142c38c 18437 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18438 if (attr)
18439 {
e7c27a73 18440 var_decode_location (attr, sym, cu);
e142c38c 18441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18442
18443 /* Fortran explicitly imports any global symbols to the local
18444 scope by DW_TAG_common_block. */
18445 if (cu->language == language_fortran && die->parent
18446 && die->parent->tag == DW_TAG_common_block)
18447 attr2 = NULL;
18448
caac4577
JG
18449 if (SYMBOL_CLASS (sym) == LOC_STATIC
18450 && SYMBOL_VALUE_ADDRESS (sym) == 0
18451 && !dwarf2_per_objfile->has_section_at_zero)
18452 {
18453 /* When a static variable is eliminated by the linker,
18454 the corresponding debug information is not stripped
18455 out, but the variable address is set to null;
18456 do not add such variables into symbol table. */
18457 }
18458 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18459 {
f55ee35c
JK
18460 /* Workaround gfortran PR debug/40040 - it uses
18461 DW_AT_location for variables in -fPIC libraries which may
18462 get overriden by other libraries/executable and get
18463 a different address. Resolve it by the minimal symbol
18464 which may come from inferior's executable using copy
18465 relocation. Make this workaround only for gfortran as for
18466 other compilers GDB cannot guess the minimal symbol
18467 Fortran mangling kind. */
18468 if (cu->language == language_fortran && die->parent
18469 && die->parent->tag == DW_TAG_module
18470 && cu->producer
28586665 18471 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18472 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18473
1c809c68
TT
18474 /* A variable with DW_AT_external is never static,
18475 but it may be block-scoped. */
18476 list_to_add = (cu->list_in_scope == &file_symbols
18477 ? &global_symbols : cu->list_in_scope);
1c809c68 18478 }
c906108c 18479 else
e37fd15a 18480 list_to_add = cu->list_in_scope;
c906108c
SS
18481 }
18482 else
18483 {
18484 /* We do not know the address of this symbol.
c5aa993b
JM
18485 If it is an external symbol and we have type information
18486 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18487 The address of the variable will then be determined from
18488 the minimal symbol table whenever the variable is
18489 referenced. */
e142c38c 18490 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18491
18492 /* Fortran explicitly imports any global symbols to the local
18493 scope by DW_TAG_common_block. */
18494 if (cu->language == language_fortran && die->parent
18495 && die->parent->tag == DW_TAG_common_block)
18496 {
18497 /* SYMBOL_CLASS doesn't matter here because
18498 read_common_block is going to reset it. */
18499 if (!suppress_add)
18500 list_to_add = cu->list_in_scope;
18501 }
18502 else if (attr2 && (DW_UNSND (attr2) != 0)
18503 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18504 {
0fe7935b
DJ
18505 /* A variable with DW_AT_external is never static, but it
18506 may be block-scoped. */
18507 list_to_add = (cu->list_in_scope == &file_symbols
18508 ? &global_symbols : cu->list_in_scope);
18509
f1e6e072 18510 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18511 }
442ddf59
JK
18512 else if (!die_is_declaration (die, cu))
18513 {
18514 /* Use the default LOC_OPTIMIZED_OUT class. */
18515 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18516 if (!suppress_add)
18517 list_to_add = cu->list_in_scope;
442ddf59 18518 }
c906108c
SS
18519 }
18520 break;
18521 case DW_TAG_formal_parameter:
edb3359d
DJ
18522 /* If we are inside a function, mark this as an argument. If
18523 not, we might be looking at an argument to an inlined function
18524 when we do not have enough information to show inlined frames;
18525 pretend it's a local variable in that case so that the user can
18526 still see it. */
18527 if (context_stack_depth > 0
18528 && context_stack[context_stack_depth - 1].name != NULL)
18529 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18530 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18531 if (attr)
18532 {
e7c27a73 18533 var_decode_location (attr, sym, cu);
c906108c 18534 }
e142c38c 18535 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18536 if (attr)
18537 {
e7c27a73 18538 dwarf2_const_value (attr, sym, cu);
c906108c 18539 }
f346a30d 18540
e37fd15a 18541 list_to_add = cu->list_in_scope;
c906108c
SS
18542 break;
18543 case DW_TAG_unspecified_parameters:
18544 /* From varargs functions; gdb doesn't seem to have any
18545 interest in this information, so just ignore it for now.
18546 (FIXME?) */
18547 break;
34eaf542
TT
18548 case DW_TAG_template_type_param:
18549 suppress_add = 1;
18550 /* Fall through. */
c906108c 18551 case DW_TAG_class_type:
680b30c7 18552 case DW_TAG_interface_type:
c906108c
SS
18553 case DW_TAG_structure_type:
18554 case DW_TAG_union_type:
72019c9c 18555 case DW_TAG_set_type:
c906108c 18556 case DW_TAG_enumeration_type:
f1e6e072 18557 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18558 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18559
63d06c5c 18560 {
9c37b5ae 18561 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
18562 really ever be static objects: otherwise, if you try
18563 to, say, break of a class's method and you're in a file
18564 which doesn't mention that class, it won't work unless
18565 the check for all static symbols in lookup_symbol_aux
18566 saves you. See the OtherFileClass tests in
18567 gdb.c++/namespace.exp. */
18568
e37fd15a 18569 if (!suppress_add)
34eaf542 18570 {
34eaf542 18571 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 18572 && cu->language == language_cplus
34eaf542 18573 ? &global_symbols : cu->list_in_scope);
63d06c5c 18574
64382290 18575 /* The semantics of C++ state that "struct foo {
9c37b5ae 18576 ... }" also defines a typedef for "foo". */
64382290 18577 if (cu->language == language_cplus
45280282 18578 || cu->language == language_ada
c44af4eb
TT
18579 || cu->language == language_d
18580 || cu->language == language_rust)
64382290
TT
18581 {
18582 /* The symbol's name is already allocated along
18583 with this objfile, so we don't need to
18584 duplicate it for the type. */
18585 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18586 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18587 }
63d06c5c
DC
18588 }
18589 }
c906108c
SS
18590 break;
18591 case DW_TAG_typedef:
f1e6e072 18592 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18593 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18594 list_to_add = cu->list_in_scope;
63d06c5c 18595 break;
c906108c 18596 case DW_TAG_base_type:
a02abb62 18597 case DW_TAG_subrange_type:
f1e6e072 18598 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18599 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18600 list_to_add = cu->list_in_scope;
c906108c
SS
18601 break;
18602 case DW_TAG_enumerator:
e142c38c 18603 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18604 if (attr)
18605 {
e7c27a73 18606 dwarf2_const_value (attr, sym, cu);
c906108c 18607 }
63d06c5c
DC
18608 {
18609 /* NOTE: carlton/2003-11-10: See comment above in the
18610 DW_TAG_class_type, etc. block. */
18611
e142c38c 18612 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 18613 && cu->language == language_cplus
e142c38c 18614 ? &global_symbols : cu->list_in_scope);
63d06c5c 18615 }
c906108c 18616 break;
74921315 18617 case DW_TAG_imported_declaration:
5c4e30ca 18618 case DW_TAG_namespace:
f1e6e072 18619 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18620 list_to_add = &global_symbols;
5c4e30ca 18621 break;
530e8392
KB
18622 case DW_TAG_module:
18623 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18624 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18625 list_to_add = &global_symbols;
18626 break;
4357ac6c 18627 case DW_TAG_common_block:
f1e6e072 18628 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18629 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18630 add_symbol_to_list (sym, cu->list_in_scope);
18631 break;
c906108c
SS
18632 default:
18633 /* Not a tag we recognize. Hopefully we aren't processing
18634 trash data, but since we must specifically ignore things
18635 we don't recognize, there is nothing else we should do at
0963b4bd 18636 this point. */
e2e0b3e5 18637 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18638 dwarf_tag_name (die->tag));
c906108c
SS
18639 break;
18640 }
df8a16a1 18641
e37fd15a
SW
18642 if (suppress_add)
18643 {
18644 sym->hash_next = objfile->template_symbols;
18645 objfile->template_symbols = sym;
18646 list_to_add = NULL;
18647 }
18648
18649 if (list_to_add != NULL)
18650 add_symbol_to_list (sym, list_to_add);
18651
df8a16a1
DJ
18652 /* For the benefit of old versions of GCC, check for anonymous
18653 namespaces based on the demangled name. */
4d4ec4e5 18654 if (!cu->processing_has_namespace_info
94af9270 18655 && cu->language == language_cplus)
a10964d1 18656 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18657 }
18658 return (sym);
18659}
18660
34eaf542
TT
18661/* A wrapper for new_symbol_full that always allocates a new symbol. */
18662
18663static struct symbol *
18664new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18665{
18666 return new_symbol_full (die, type, cu, NULL);
18667}
18668
98bfdba5
PA
18669/* Given an attr with a DW_FORM_dataN value in host byte order,
18670 zero-extend it as appropriate for the symbol's type. The DWARF
18671 standard (v4) is not entirely clear about the meaning of using
18672 DW_FORM_dataN for a constant with a signed type, where the type is
18673 wider than the data. The conclusion of a discussion on the DWARF
18674 list was that this is unspecified. We choose to always zero-extend
18675 because that is the interpretation long in use by GCC. */
c906108c 18676
98bfdba5 18677static gdb_byte *
ff39bb5e 18678dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18679 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18680{
e7c27a73 18681 struct objfile *objfile = cu->objfile;
e17a4113
UW
18682 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18683 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18684 LONGEST l = DW_UNSND (attr);
18685
18686 if (bits < sizeof (*value) * 8)
18687 {
18688 l &= ((LONGEST) 1 << bits) - 1;
18689 *value = l;
18690 }
18691 else if (bits == sizeof (*value) * 8)
18692 *value = l;
18693 else
18694 {
224c3ddb 18695 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18696 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18697 return bytes;
18698 }
18699
18700 return NULL;
18701}
18702
18703/* Read a constant value from an attribute. Either set *VALUE, or if
18704 the value does not fit in *VALUE, set *BYTES - either already
18705 allocated on the objfile obstack, or newly allocated on OBSTACK,
18706 or, set *BATON, if we translated the constant to a location
18707 expression. */
18708
18709static void
ff39bb5e 18710dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18711 const char *name, struct obstack *obstack,
18712 struct dwarf2_cu *cu,
d521ce57 18713 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18714 struct dwarf2_locexpr_baton **baton)
18715{
18716 struct objfile *objfile = cu->objfile;
18717 struct comp_unit_head *cu_header = &cu->header;
c906108c 18718 struct dwarf_block *blk;
98bfdba5
PA
18719 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18720 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18721
18722 *value = 0;
18723 *bytes = NULL;
18724 *baton = NULL;
c906108c
SS
18725
18726 switch (attr->form)
18727 {
18728 case DW_FORM_addr:
3019eac3 18729 case DW_FORM_GNU_addr_index:
ac56253d 18730 {
ac56253d
TT
18731 gdb_byte *data;
18732
98bfdba5
PA
18733 if (TYPE_LENGTH (type) != cu_header->addr_size)
18734 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18735 cu_header->addr_size,
98bfdba5 18736 TYPE_LENGTH (type));
ac56253d
TT
18737 /* Symbols of this form are reasonably rare, so we just
18738 piggyback on the existing location code rather than writing
18739 a new implementation of symbol_computed_ops. */
8d749320 18740 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18741 (*baton)->per_cu = cu->per_cu;
18742 gdb_assert ((*baton)->per_cu);
ac56253d 18743
98bfdba5 18744 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18745 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18746 (*baton)->data = data;
ac56253d
TT
18747
18748 data[0] = DW_OP_addr;
18749 store_unsigned_integer (&data[1], cu_header->addr_size,
18750 byte_order, DW_ADDR (attr));
18751 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18752 }
c906108c 18753 break;
4ac36638 18754 case DW_FORM_string:
93b5768b 18755 case DW_FORM_strp:
3019eac3 18756 case DW_FORM_GNU_str_index:
36586728 18757 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18758 /* DW_STRING is already allocated on the objfile obstack, point
18759 directly to it. */
d521ce57 18760 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18761 break;
c906108c
SS
18762 case DW_FORM_block1:
18763 case DW_FORM_block2:
18764 case DW_FORM_block4:
18765 case DW_FORM_block:
2dc7f7b3 18766 case DW_FORM_exprloc:
c906108c 18767 blk = DW_BLOCK (attr);
98bfdba5
PA
18768 if (TYPE_LENGTH (type) != blk->size)
18769 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18770 TYPE_LENGTH (type));
18771 *bytes = blk->data;
c906108c 18772 break;
2df3850c
JM
18773
18774 /* The DW_AT_const_value attributes are supposed to carry the
18775 symbol's value "represented as it would be on the target
18776 architecture." By the time we get here, it's already been
18777 converted to host endianness, so we just need to sign- or
18778 zero-extend it as appropriate. */
18779 case DW_FORM_data1:
3aef2284 18780 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18781 break;
c906108c 18782 case DW_FORM_data2:
3aef2284 18783 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18784 break;
c906108c 18785 case DW_FORM_data4:
3aef2284 18786 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18787 break;
c906108c 18788 case DW_FORM_data8:
3aef2284 18789 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18790 break;
18791
c906108c 18792 case DW_FORM_sdata:
98bfdba5 18793 *value = DW_SND (attr);
2df3850c
JM
18794 break;
18795
c906108c 18796 case DW_FORM_udata:
98bfdba5 18797 *value = DW_UNSND (attr);
c906108c 18798 break;
2df3850c 18799
c906108c 18800 default:
4d3c2250 18801 complaint (&symfile_complaints,
e2e0b3e5 18802 _("unsupported const value attribute form: '%s'"),
4d3c2250 18803 dwarf_form_name (attr->form));
98bfdba5 18804 *value = 0;
c906108c
SS
18805 break;
18806 }
18807}
18808
2df3850c 18809
98bfdba5
PA
18810/* Copy constant value from an attribute to a symbol. */
18811
2df3850c 18812static void
ff39bb5e 18813dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18814 struct dwarf2_cu *cu)
2df3850c 18815{
98bfdba5 18816 struct objfile *objfile = cu->objfile;
12df843f 18817 LONGEST value;
d521ce57 18818 const gdb_byte *bytes;
98bfdba5 18819 struct dwarf2_locexpr_baton *baton;
2df3850c 18820
98bfdba5
PA
18821 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18822 SYMBOL_PRINT_NAME (sym),
18823 &objfile->objfile_obstack, cu,
18824 &value, &bytes, &baton);
2df3850c 18825
98bfdba5
PA
18826 if (baton != NULL)
18827 {
98bfdba5 18828 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18829 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18830 }
18831 else if (bytes != NULL)
18832 {
18833 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18834 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18835 }
18836 else
18837 {
18838 SYMBOL_VALUE (sym) = value;
f1e6e072 18839 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18840 }
2df3850c
JM
18841}
18842
c906108c
SS
18843/* Return the type of the die in question using its DW_AT_type attribute. */
18844
18845static struct type *
e7c27a73 18846die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18847{
c906108c 18848 struct attribute *type_attr;
c906108c 18849
e142c38c 18850 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18851 if (!type_attr)
18852 {
18853 /* A missing DW_AT_type represents a void type. */
46bf5051 18854 return objfile_type (cu->objfile)->builtin_void;
c906108c 18855 }
348e048f 18856
673bfd45 18857 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18858}
18859
b4ba55a1
JB
18860/* True iff CU's producer generates GNAT Ada auxiliary information
18861 that allows to find parallel types through that information instead
18862 of having to do expensive parallel lookups by type name. */
18863
18864static int
18865need_gnat_info (struct dwarf2_cu *cu)
18866{
18867 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18868 of GNAT produces this auxiliary information, without any indication
18869 that it is produced. Part of enhancing the FSF version of GNAT
18870 to produce that information will be to put in place an indicator
18871 that we can use in order to determine whether the descriptive type
18872 info is available or not. One suggestion that has been made is
18873 to use a new attribute, attached to the CU die. For now, assume
18874 that the descriptive type info is not available. */
18875 return 0;
18876}
18877
b4ba55a1
JB
18878/* Return the auxiliary type of the die in question using its
18879 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18880 attribute is not present. */
18881
18882static struct type *
18883die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18884{
b4ba55a1 18885 struct attribute *type_attr;
b4ba55a1
JB
18886
18887 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18888 if (!type_attr)
18889 return NULL;
18890
673bfd45 18891 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18892}
18893
18894/* If DIE has a descriptive_type attribute, then set the TYPE's
18895 descriptive type accordingly. */
18896
18897static void
18898set_descriptive_type (struct type *type, struct die_info *die,
18899 struct dwarf2_cu *cu)
18900{
18901 struct type *descriptive_type = die_descriptive_type (die, cu);
18902
18903 if (descriptive_type)
18904 {
18905 ALLOCATE_GNAT_AUX_TYPE (type);
18906 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18907 }
18908}
18909
c906108c
SS
18910/* Return the containing type of the die in question using its
18911 DW_AT_containing_type attribute. */
18912
18913static struct type *
e7c27a73 18914die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18915{
c906108c 18916 struct attribute *type_attr;
c906108c 18917
e142c38c 18918 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18919 if (!type_attr)
18920 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18921 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18922
673bfd45 18923 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18924}
18925
ac9ec31b
DE
18926/* Return an error marker type to use for the ill formed type in DIE/CU. */
18927
18928static struct type *
18929build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18930{
18931 struct objfile *objfile = dwarf2_per_objfile->objfile;
18932 char *message, *saved;
18933
18934 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18935 objfile_name (objfile),
ac9ec31b
DE
18936 cu->header.offset.sect_off,
18937 die->offset.sect_off);
224c3ddb
SM
18938 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18939 message, strlen (message));
ac9ec31b
DE
18940 xfree (message);
18941
19f392bc 18942 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
18943}
18944
673bfd45 18945/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18946 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18947 DW_AT_containing_type.
673bfd45
DE
18948 If there is no type substitute an error marker. */
18949
c906108c 18950static struct type *
ff39bb5e 18951lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18952 struct dwarf2_cu *cu)
c906108c 18953{
bb5ed363 18954 struct objfile *objfile = cu->objfile;
f792889a
DJ
18955 struct type *this_type;
18956
ac9ec31b
DE
18957 gdb_assert (attr->name == DW_AT_type
18958 || attr->name == DW_AT_GNAT_descriptive_type
18959 || attr->name == DW_AT_containing_type);
18960
673bfd45
DE
18961 /* First see if we have it cached. */
18962
36586728
TT
18963 if (attr->form == DW_FORM_GNU_ref_alt)
18964 {
18965 struct dwarf2_per_cu_data *per_cu;
18966 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18967
18968 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18969 this_type = get_die_type_at_offset (offset, per_cu);
18970 }
7771576e 18971 else if (attr_form_is_ref (attr))
673bfd45 18972 {
b64f50a1 18973 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18974
18975 this_type = get_die_type_at_offset (offset, cu->per_cu);
18976 }
55f1336d 18977 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18978 {
ac9ec31b 18979 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18980
ac9ec31b 18981 return get_signatured_type (die, signature, cu);
673bfd45
DE
18982 }
18983 else
18984 {
ac9ec31b
DE
18985 complaint (&symfile_complaints,
18986 _("Dwarf Error: Bad type attribute %s in DIE"
18987 " at 0x%x [in module %s]"),
18988 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18989 objfile_name (objfile));
ac9ec31b 18990 return build_error_marker_type (cu, die);
673bfd45
DE
18991 }
18992
18993 /* If not cached we need to read it in. */
18994
18995 if (this_type == NULL)
18996 {
ac9ec31b 18997 struct die_info *type_die = NULL;
673bfd45
DE
18998 struct dwarf2_cu *type_cu = cu;
18999
7771576e 19000 if (attr_form_is_ref (attr))
ac9ec31b
DE
19001 type_die = follow_die_ref (die, attr, &type_cu);
19002 if (type_die == NULL)
19003 return build_error_marker_type (cu, die);
19004 /* If we find the type now, it's probably because the type came
3019eac3
DE
19005 from an inter-CU reference and the type's CU got expanded before
19006 ours. */
ac9ec31b 19007 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19008 }
19009
19010 /* If we still don't have a type use an error marker. */
19011
19012 if (this_type == NULL)
ac9ec31b 19013 return build_error_marker_type (cu, die);
673bfd45 19014
f792889a 19015 return this_type;
c906108c
SS
19016}
19017
673bfd45
DE
19018/* Return the type in DIE, CU.
19019 Returns NULL for invalid types.
19020
02142a6c 19021 This first does a lookup in die_type_hash,
673bfd45
DE
19022 and only reads the die in if necessary.
19023
19024 NOTE: This can be called when reading in partial or full symbols. */
19025
f792889a 19026static struct type *
e7c27a73 19027read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19028{
f792889a
DJ
19029 struct type *this_type;
19030
19031 this_type = get_die_type (die, cu);
19032 if (this_type)
19033 return this_type;
19034
673bfd45
DE
19035 return read_type_die_1 (die, cu);
19036}
19037
19038/* Read the type in DIE, CU.
19039 Returns NULL for invalid types. */
19040
19041static struct type *
19042read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19043{
19044 struct type *this_type = NULL;
19045
c906108c
SS
19046 switch (die->tag)
19047 {
19048 case DW_TAG_class_type:
680b30c7 19049 case DW_TAG_interface_type:
c906108c
SS
19050 case DW_TAG_structure_type:
19051 case DW_TAG_union_type:
f792889a 19052 this_type = read_structure_type (die, cu);
c906108c
SS
19053 break;
19054 case DW_TAG_enumeration_type:
f792889a 19055 this_type = read_enumeration_type (die, cu);
c906108c
SS
19056 break;
19057 case DW_TAG_subprogram:
19058 case DW_TAG_subroutine_type:
edb3359d 19059 case DW_TAG_inlined_subroutine:
f792889a 19060 this_type = read_subroutine_type (die, cu);
c906108c
SS
19061 break;
19062 case DW_TAG_array_type:
f792889a 19063 this_type = read_array_type (die, cu);
c906108c 19064 break;
72019c9c 19065 case DW_TAG_set_type:
f792889a 19066 this_type = read_set_type (die, cu);
72019c9c 19067 break;
c906108c 19068 case DW_TAG_pointer_type:
f792889a 19069 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19070 break;
19071 case DW_TAG_ptr_to_member_type:
f792889a 19072 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19073 break;
19074 case DW_TAG_reference_type:
f792889a 19075 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19076 break;
19077 case DW_TAG_const_type:
f792889a 19078 this_type = read_tag_const_type (die, cu);
c906108c
SS
19079 break;
19080 case DW_TAG_volatile_type:
f792889a 19081 this_type = read_tag_volatile_type (die, cu);
c906108c 19082 break;
06d66ee9
TT
19083 case DW_TAG_restrict_type:
19084 this_type = read_tag_restrict_type (die, cu);
19085 break;
c906108c 19086 case DW_TAG_string_type:
f792889a 19087 this_type = read_tag_string_type (die, cu);
c906108c
SS
19088 break;
19089 case DW_TAG_typedef:
f792889a 19090 this_type = read_typedef (die, cu);
c906108c 19091 break;
a02abb62 19092 case DW_TAG_subrange_type:
f792889a 19093 this_type = read_subrange_type (die, cu);
a02abb62 19094 break;
c906108c 19095 case DW_TAG_base_type:
f792889a 19096 this_type = read_base_type (die, cu);
c906108c 19097 break;
81a17f79 19098 case DW_TAG_unspecified_type:
f792889a 19099 this_type = read_unspecified_type (die, cu);
81a17f79 19100 break;
0114d602
DJ
19101 case DW_TAG_namespace:
19102 this_type = read_namespace_type (die, cu);
19103 break;
f55ee35c
JK
19104 case DW_TAG_module:
19105 this_type = read_module_type (die, cu);
19106 break;
a2c2acaf
MW
19107 case DW_TAG_atomic_type:
19108 this_type = read_tag_atomic_type (die, cu);
19109 break;
c906108c 19110 default:
3e43a32a
MS
19111 complaint (&symfile_complaints,
19112 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19113 dwarf_tag_name (die->tag));
c906108c
SS
19114 break;
19115 }
63d06c5c 19116
f792889a 19117 return this_type;
63d06c5c
DC
19118}
19119
abc72ce4
DE
19120/* See if we can figure out if the class lives in a namespace. We do
19121 this by looking for a member function; its demangled name will
19122 contain namespace info, if there is any.
19123 Return the computed name or NULL.
19124 Space for the result is allocated on the objfile's obstack.
19125 This is the full-die version of guess_partial_die_structure_name.
19126 In this case we know DIE has no useful parent. */
19127
19128static char *
19129guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19130{
19131 struct die_info *spec_die;
19132 struct dwarf2_cu *spec_cu;
19133 struct die_info *child;
19134
19135 spec_cu = cu;
19136 spec_die = die_specification (die, &spec_cu);
19137 if (spec_die != NULL)
19138 {
19139 die = spec_die;
19140 cu = spec_cu;
19141 }
19142
19143 for (child = die->child;
19144 child != NULL;
19145 child = child->sibling)
19146 {
19147 if (child->tag == DW_TAG_subprogram)
19148 {
7d45c7c3 19149 const char *linkage_name;
abc72ce4 19150
7d45c7c3
KB
19151 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19152 if (linkage_name == NULL)
19153 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19154 cu);
19155 if (linkage_name != NULL)
abc72ce4
DE
19156 {
19157 char *actual_name
19158 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19159 linkage_name);
abc72ce4
DE
19160 char *name = NULL;
19161
19162 if (actual_name != NULL)
19163 {
15d034d0 19164 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19165
19166 if (die_name != NULL
19167 && strcmp (die_name, actual_name) != 0)
19168 {
19169 /* Strip off the class name from the full name.
19170 We want the prefix. */
19171 int die_name_len = strlen (die_name);
19172 int actual_name_len = strlen (actual_name);
19173
19174 /* Test for '::' as a sanity check. */
19175 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19176 && actual_name[actual_name_len
19177 - die_name_len - 1] == ':')
224c3ddb
SM
19178 name = (char *) obstack_copy0 (
19179 &cu->objfile->per_bfd->storage_obstack,
19180 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19181 }
19182 }
19183 xfree (actual_name);
19184 return name;
19185 }
19186 }
19187 }
19188
19189 return NULL;
19190}
19191
96408a79
SA
19192/* GCC might emit a nameless typedef that has a linkage name. Determine the
19193 prefix part in such case. See
19194 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19195
19196static char *
19197anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19198{
19199 struct attribute *attr;
e6a959d6 19200 const char *base;
96408a79
SA
19201
19202 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19203 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19204 return NULL;
19205
7d45c7c3 19206 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19207 return NULL;
19208
19209 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19210 if (attr == NULL)
19211 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19212 if (attr == NULL || DW_STRING (attr) == NULL)
19213 return NULL;
19214
19215 /* dwarf2_name had to be already called. */
19216 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19217
19218 /* Strip the base name, keep any leading namespaces/classes. */
19219 base = strrchr (DW_STRING (attr), ':');
19220 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19221 return "";
19222
224c3ddb
SM
19223 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19224 DW_STRING (attr),
19225 &base[-1] - DW_STRING (attr));
96408a79
SA
19226}
19227
fdde2d81 19228/* Return the name of the namespace/class that DIE is defined within,
0114d602 19229 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19230
0114d602
DJ
19231 For example, if we're within the method foo() in the following
19232 code:
19233
19234 namespace N {
19235 class C {
19236 void foo () {
19237 }
19238 };
19239 }
19240
19241 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19242
0d5cff50 19243static const char *
e142c38c 19244determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19245{
0114d602
DJ
19246 struct die_info *parent, *spec_die;
19247 struct dwarf2_cu *spec_cu;
19248 struct type *parent_type;
96408a79 19249 char *retval;
63d06c5c 19250
9c37b5ae 19251 if (cu->language != language_cplus
c44af4eb
TT
19252 && cu->language != language_fortran && cu->language != language_d
19253 && cu->language != language_rust)
0114d602
DJ
19254 return "";
19255
96408a79
SA
19256 retval = anonymous_struct_prefix (die, cu);
19257 if (retval)
19258 return retval;
19259
0114d602
DJ
19260 /* We have to be careful in the presence of DW_AT_specification.
19261 For example, with GCC 3.4, given the code
19262
19263 namespace N {
19264 void foo() {
19265 // Definition of N::foo.
19266 }
19267 }
19268
19269 then we'll have a tree of DIEs like this:
19270
19271 1: DW_TAG_compile_unit
19272 2: DW_TAG_namespace // N
19273 3: DW_TAG_subprogram // declaration of N::foo
19274 4: DW_TAG_subprogram // definition of N::foo
19275 DW_AT_specification // refers to die #3
19276
19277 Thus, when processing die #4, we have to pretend that we're in
19278 the context of its DW_AT_specification, namely the contex of die
19279 #3. */
19280 spec_cu = cu;
19281 spec_die = die_specification (die, &spec_cu);
19282 if (spec_die == NULL)
19283 parent = die->parent;
19284 else
63d06c5c 19285 {
0114d602
DJ
19286 parent = spec_die->parent;
19287 cu = spec_cu;
63d06c5c 19288 }
0114d602
DJ
19289
19290 if (parent == NULL)
19291 return "";
98bfdba5
PA
19292 else if (parent->building_fullname)
19293 {
19294 const char *name;
19295 const char *parent_name;
19296
19297 /* It has been seen on RealView 2.2 built binaries,
19298 DW_TAG_template_type_param types actually _defined_ as
19299 children of the parent class:
19300
19301 enum E {};
19302 template class <class Enum> Class{};
19303 Class<enum E> class_e;
19304
19305 1: DW_TAG_class_type (Class)
19306 2: DW_TAG_enumeration_type (E)
19307 3: DW_TAG_enumerator (enum1:0)
19308 3: DW_TAG_enumerator (enum2:1)
19309 ...
19310 2: DW_TAG_template_type_param
19311 DW_AT_type DW_FORM_ref_udata (E)
19312
19313 Besides being broken debug info, it can put GDB into an
19314 infinite loop. Consider:
19315
19316 When we're building the full name for Class<E>, we'll start
19317 at Class, and go look over its template type parameters,
19318 finding E. We'll then try to build the full name of E, and
19319 reach here. We're now trying to build the full name of E,
19320 and look over the parent DIE for containing scope. In the
19321 broken case, if we followed the parent DIE of E, we'd again
19322 find Class, and once again go look at its template type
19323 arguments, etc., etc. Simply don't consider such parent die
19324 as source-level parent of this die (it can't be, the language
19325 doesn't allow it), and break the loop here. */
19326 name = dwarf2_name (die, cu);
19327 parent_name = dwarf2_name (parent, cu);
19328 complaint (&symfile_complaints,
19329 _("template param type '%s' defined within parent '%s'"),
19330 name ? name : "<unknown>",
19331 parent_name ? parent_name : "<unknown>");
19332 return "";
19333 }
63d06c5c 19334 else
0114d602
DJ
19335 switch (parent->tag)
19336 {
63d06c5c 19337 case DW_TAG_namespace:
0114d602 19338 parent_type = read_type_die (parent, cu);
acebe513
UW
19339 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19340 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19341 Work around this problem here. */
19342 if (cu->language == language_cplus
19343 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19344 return "";
0114d602
DJ
19345 /* We give a name to even anonymous namespaces. */
19346 return TYPE_TAG_NAME (parent_type);
63d06c5c 19347 case DW_TAG_class_type:
680b30c7 19348 case DW_TAG_interface_type:
63d06c5c 19349 case DW_TAG_structure_type:
0114d602 19350 case DW_TAG_union_type:
f55ee35c 19351 case DW_TAG_module:
0114d602
DJ
19352 parent_type = read_type_die (parent, cu);
19353 if (TYPE_TAG_NAME (parent_type) != NULL)
19354 return TYPE_TAG_NAME (parent_type);
19355 else
19356 /* An anonymous structure is only allowed non-static data
19357 members; no typedefs, no member functions, et cetera.
19358 So it does not need a prefix. */
19359 return "";
abc72ce4 19360 case DW_TAG_compile_unit:
95554aad 19361 case DW_TAG_partial_unit:
abc72ce4
DE
19362 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19363 if (cu->language == language_cplus
8b70b953 19364 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19365 && die->child != NULL
19366 && (die->tag == DW_TAG_class_type
19367 || die->tag == DW_TAG_structure_type
19368 || die->tag == DW_TAG_union_type))
19369 {
19370 char *name = guess_full_die_structure_name (die, cu);
19371 if (name != NULL)
19372 return name;
19373 }
19374 return "";
3d567982
TT
19375 case DW_TAG_enumeration_type:
19376 parent_type = read_type_die (parent, cu);
19377 if (TYPE_DECLARED_CLASS (parent_type))
19378 {
19379 if (TYPE_TAG_NAME (parent_type) != NULL)
19380 return TYPE_TAG_NAME (parent_type);
19381 return "";
19382 }
19383 /* Fall through. */
63d06c5c 19384 default:
8176b9b8 19385 return determine_prefix (parent, cu);
63d06c5c 19386 }
63d06c5c
DC
19387}
19388
3e43a32a
MS
19389/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19390 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19391 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19392 an obconcat, otherwise allocate storage for the result. The CU argument is
19393 used to determine the language and hence, the appropriate separator. */
987504bb 19394
f55ee35c 19395#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19396
19397static char *
f55ee35c
JK
19398typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19399 int physname, struct dwarf2_cu *cu)
63d06c5c 19400{
f55ee35c 19401 const char *lead = "";
5c315b68 19402 const char *sep;
63d06c5c 19403
3e43a32a
MS
19404 if (suffix == NULL || suffix[0] == '\0'
19405 || prefix == NULL || prefix[0] == '\0')
987504bb 19406 sep = "";
45280282
IB
19407 else if (cu->language == language_d)
19408 {
19409 /* For D, the 'main' function could be defined in any module, but it
19410 should never be prefixed. */
19411 if (strcmp (suffix, "D main") == 0)
19412 {
19413 prefix = "";
19414 sep = "";
19415 }
19416 else
19417 sep = ".";
19418 }
f55ee35c
JK
19419 else if (cu->language == language_fortran && physname)
19420 {
19421 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19422 DW_AT_MIPS_linkage_name is preferred and used instead. */
19423
19424 lead = "__";
19425 sep = "_MOD_";
19426 }
987504bb
JJ
19427 else
19428 sep = "::";
63d06c5c 19429
6dd47d34
DE
19430 if (prefix == NULL)
19431 prefix = "";
19432 if (suffix == NULL)
19433 suffix = "";
19434
987504bb
JJ
19435 if (obs == NULL)
19436 {
3e43a32a 19437 char *retval
224c3ddb
SM
19438 = ((char *)
19439 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19440
f55ee35c
JK
19441 strcpy (retval, lead);
19442 strcat (retval, prefix);
6dd47d34
DE
19443 strcat (retval, sep);
19444 strcat (retval, suffix);
63d06c5c
DC
19445 return retval;
19446 }
987504bb
JJ
19447 else
19448 {
19449 /* We have an obstack. */
f55ee35c 19450 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19451 }
63d06c5c
DC
19452}
19453
c906108c
SS
19454/* Return sibling of die, NULL if no sibling. */
19455
f9aca02d 19456static struct die_info *
fba45db2 19457sibling_die (struct die_info *die)
c906108c 19458{
639d11d3 19459 return die->sibling;
c906108c
SS
19460}
19461
71c25dea
TT
19462/* Get name of a die, return NULL if not found. */
19463
15d034d0
TT
19464static const char *
19465dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19466 struct obstack *obstack)
19467{
19468 if (name && cu->language == language_cplus)
19469 {
2f408ecb 19470 std::string canon_name = cp_canonicalize_string (name);
71c25dea 19471
2f408ecb 19472 if (!canon_name.empty ())
71c25dea 19473 {
2f408ecb
PA
19474 if (canon_name != name)
19475 name = (const char *) obstack_copy0 (obstack,
19476 canon_name.c_str (),
19477 canon_name.length ());
71c25dea
TT
19478 }
19479 }
19480
19481 return name;
c906108c
SS
19482}
19483
96553a0c
DE
19484/* Get name of a die, return NULL if not found.
19485 Anonymous namespaces are converted to their magic string. */
9219021c 19486
15d034d0 19487static const char *
e142c38c 19488dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19489{
19490 struct attribute *attr;
19491
e142c38c 19492 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19493 if ((!attr || !DW_STRING (attr))
96553a0c 19494 && die->tag != DW_TAG_namespace
53832f31
TT
19495 && die->tag != DW_TAG_class_type
19496 && die->tag != DW_TAG_interface_type
19497 && die->tag != DW_TAG_structure_type
19498 && die->tag != DW_TAG_union_type)
71c25dea
TT
19499 return NULL;
19500
19501 switch (die->tag)
19502 {
19503 case DW_TAG_compile_unit:
95554aad 19504 case DW_TAG_partial_unit:
71c25dea
TT
19505 /* Compilation units have a DW_AT_name that is a filename, not
19506 a source language identifier. */
19507 case DW_TAG_enumeration_type:
19508 case DW_TAG_enumerator:
19509 /* These tags always have simple identifiers already; no need
19510 to canonicalize them. */
19511 return DW_STRING (attr);
907af001 19512
96553a0c
DE
19513 case DW_TAG_namespace:
19514 if (attr != NULL && DW_STRING (attr) != NULL)
19515 return DW_STRING (attr);
19516 return CP_ANONYMOUS_NAMESPACE_STR;
19517
907af001
UW
19518 case DW_TAG_class_type:
19519 case DW_TAG_interface_type:
19520 case DW_TAG_structure_type:
19521 case DW_TAG_union_type:
19522 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19523 structures or unions. These were of the form "._%d" in GCC 4.1,
19524 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19525 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19526 if (attr && DW_STRING (attr)
61012eef
GB
19527 && (startswith (DW_STRING (attr), "._")
19528 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19529 return NULL;
53832f31
TT
19530
19531 /* GCC might emit a nameless typedef that has a linkage name. See
19532 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19533 if (!attr || DW_STRING (attr) == NULL)
19534 {
df5c6c50 19535 char *demangled = NULL;
53832f31
TT
19536
19537 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19538 if (attr == NULL)
19539 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19540
19541 if (attr == NULL || DW_STRING (attr) == NULL)
19542 return NULL;
19543
df5c6c50
JK
19544 /* Avoid demangling DW_STRING (attr) the second time on a second
19545 call for the same DIE. */
19546 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19547 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19548
19549 if (demangled)
19550 {
e6a959d6 19551 const char *base;
96408a79 19552
53832f31 19553 /* FIXME: we already did this for the partial symbol... */
34a68019 19554 DW_STRING (attr)
224c3ddb
SM
19555 = ((const char *)
19556 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19557 demangled, strlen (demangled)));
53832f31
TT
19558 DW_STRING_IS_CANONICAL (attr) = 1;
19559 xfree (demangled);
96408a79
SA
19560
19561 /* Strip any leading namespaces/classes, keep only the base name.
19562 DW_AT_name for named DIEs does not contain the prefixes. */
19563 base = strrchr (DW_STRING (attr), ':');
19564 if (base && base > DW_STRING (attr) && base[-1] == ':')
19565 return &base[1];
19566 else
19567 return DW_STRING (attr);
53832f31
TT
19568 }
19569 }
907af001
UW
19570 break;
19571
71c25dea 19572 default:
907af001
UW
19573 break;
19574 }
19575
19576 if (!DW_STRING_IS_CANONICAL (attr))
19577 {
19578 DW_STRING (attr)
19579 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19580 &cu->objfile->per_bfd->storage_obstack);
907af001 19581 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19582 }
907af001 19583 return DW_STRING (attr);
9219021c
DC
19584}
19585
19586/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19587 is none. *EXT_CU is the CU containing DIE on input, and the CU
19588 containing the return value on output. */
9219021c
DC
19589
19590static struct die_info *
f2f0e013 19591dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19592{
19593 struct attribute *attr;
9219021c 19594
f2f0e013 19595 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19596 if (attr == NULL)
19597 return NULL;
19598
f2f0e013 19599 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19600}
19601
c906108c
SS
19602/* Convert a DIE tag into its string name. */
19603
f39c6ffd 19604static const char *
aa1ee363 19605dwarf_tag_name (unsigned tag)
c906108c 19606{
f39c6ffd
TT
19607 const char *name = get_DW_TAG_name (tag);
19608
19609 if (name == NULL)
19610 return "DW_TAG_<unknown>";
19611
19612 return name;
c906108c
SS
19613}
19614
19615/* Convert a DWARF attribute code into its string name. */
19616
f39c6ffd 19617static const char *
aa1ee363 19618dwarf_attr_name (unsigned attr)
c906108c 19619{
f39c6ffd
TT
19620 const char *name;
19621
c764a876 19622#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19623 if (attr == DW_AT_MIPS_fde)
19624 return "DW_AT_MIPS_fde";
19625#else
19626 if (attr == DW_AT_HP_block_index)
19627 return "DW_AT_HP_block_index";
c764a876 19628#endif
f39c6ffd
TT
19629
19630 name = get_DW_AT_name (attr);
19631
19632 if (name == NULL)
19633 return "DW_AT_<unknown>";
19634
19635 return name;
c906108c
SS
19636}
19637
19638/* Convert a DWARF value form code into its string name. */
19639
f39c6ffd 19640static const char *
aa1ee363 19641dwarf_form_name (unsigned form)
c906108c 19642{
f39c6ffd
TT
19643 const char *name = get_DW_FORM_name (form);
19644
19645 if (name == NULL)
19646 return "DW_FORM_<unknown>";
19647
19648 return name;
c906108c
SS
19649}
19650
19651static char *
fba45db2 19652dwarf_bool_name (unsigned mybool)
c906108c
SS
19653{
19654 if (mybool)
19655 return "TRUE";
19656 else
19657 return "FALSE";
19658}
19659
19660/* Convert a DWARF type code into its string name. */
19661
f39c6ffd 19662static const char *
aa1ee363 19663dwarf_type_encoding_name (unsigned enc)
c906108c 19664{
f39c6ffd 19665 const char *name = get_DW_ATE_name (enc);
c906108c 19666
f39c6ffd
TT
19667 if (name == NULL)
19668 return "DW_ATE_<unknown>";
c906108c 19669
f39c6ffd 19670 return name;
c906108c 19671}
c906108c 19672
f9aca02d 19673static void
d97bc12b 19674dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19675{
19676 unsigned int i;
19677
d97bc12b
DE
19678 print_spaces (indent, f);
19679 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19680 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19681
19682 if (die->parent != NULL)
19683 {
19684 print_spaces (indent, f);
19685 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19686 die->parent->offset.sect_off);
d97bc12b
DE
19687 }
19688
19689 print_spaces (indent, f);
19690 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19691 dwarf_bool_name (die->child != NULL));
c906108c 19692
d97bc12b
DE
19693 print_spaces (indent, f);
19694 fprintf_unfiltered (f, " attributes:\n");
19695
c906108c
SS
19696 for (i = 0; i < die->num_attrs; ++i)
19697 {
d97bc12b
DE
19698 print_spaces (indent, f);
19699 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19700 dwarf_attr_name (die->attrs[i].name),
19701 dwarf_form_name (die->attrs[i].form));
d97bc12b 19702
c906108c
SS
19703 switch (die->attrs[i].form)
19704 {
c906108c 19705 case DW_FORM_addr:
3019eac3 19706 case DW_FORM_GNU_addr_index:
d97bc12b 19707 fprintf_unfiltered (f, "address: ");
5af949e3 19708 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19709 break;
19710 case DW_FORM_block2:
19711 case DW_FORM_block4:
19712 case DW_FORM_block:
19713 case DW_FORM_block1:
56eb65bd
SP
19714 fprintf_unfiltered (f, "block: size %s",
19715 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19716 break;
2dc7f7b3 19717 case DW_FORM_exprloc:
56eb65bd
SP
19718 fprintf_unfiltered (f, "expression: size %s",
19719 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19720 break;
4568ecf9
DE
19721 case DW_FORM_ref_addr:
19722 fprintf_unfiltered (f, "ref address: ");
19723 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19724 break;
36586728
TT
19725 case DW_FORM_GNU_ref_alt:
19726 fprintf_unfiltered (f, "alt ref address: ");
19727 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19728 break;
10b3939b
DJ
19729 case DW_FORM_ref1:
19730 case DW_FORM_ref2:
19731 case DW_FORM_ref4:
4568ecf9
DE
19732 case DW_FORM_ref8:
19733 case DW_FORM_ref_udata:
d97bc12b 19734 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19735 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19736 break;
c906108c
SS
19737 case DW_FORM_data1:
19738 case DW_FORM_data2:
19739 case DW_FORM_data4:
ce5d95e1 19740 case DW_FORM_data8:
c906108c
SS
19741 case DW_FORM_udata:
19742 case DW_FORM_sdata:
43bbcdc2
PH
19743 fprintf_unfiltered (f, "constant: %s",
19744 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19745 break;
2dc7f7b3
TT
19746 case DW_FORM_sec_offset:
19747 fprintf_unfiltered (f, "section offset: %s",
19748 pulongest (DW_UNSND (&die->attrs[i])));
19749 break;
55f1336d 19750 case DW_FORM_ref_sig8:
ac9ec31b
DE
19751 fprintf_unfiltered (f, "signature: %s",
19752 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19753 break;
c906108c 19754 case DW_FORM_string:
4bdf3d34 19755 case DW_FORM_strp:
3019eac3 19756 case DW_FORM_GNU_str_index:
36586728 19757 case DW_FORM_GNU_strp_alt:
8285870a 19758 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19759 DW_STRING (&die->attrs[i])
8285870a
JK
19760 ? DW_STRING (&die->attrs[i]) : "",
19761 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19762 break;
19763 case DW_FORM_flag:
19764 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19765 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19766 else
d97bc12b 19767 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19768 break;
2dc7f7b3
TT
19769 case DW_FORM_flag_present:
19770 fprintf_unfiltered (f, "flag: TRUE");
19771 break;
a8329558 19772 case DW_FORM_indirect:
0963b4bd
MS
19773 /* The reader will have reduced the indirect form to
19774 the "base form" so this form should not occur. */
3e43a32a
MS
19775 fprintf_unfiltered (f,
19776 "unexpected attribute form: DW_FORM_indirect");
a8329558 19777 break;
c906108c 19778 default:
d97bc12b 19779 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19780 die->attrs[i].form);
d97bc12b 19781 break;
c906108c 19782 }
d97bc12b 19783 fprintf_unfiltered (f, "\n");
c906108c
SS
19784 }
19785}
19786
f9aca02d 19787static void
d97bc12b 19788dump_die_for_error (struct die_info *die)
c906108c 19789{
d97bc12b
DE
19790 dump_die_shallow (gdb_stderr, 0, die);
19791}
19792
19793static void
19794dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19795{
19796 int indent = level * 4;
19797
19798 gdb_assert (die != NULL);
19799
19800 if (level >= max_level)
19801 return;
19802
19803 dump_die_shallow (f, indent, die);
19804
19805 if (die->child != NULL)
c906108c 19806 {
d97bc12b
DE
19807 print_spaces (indent, f);
19808 fprintf_unfiltered (f, " Children:");
19809 if (level + 1 < max_level)
19810 {
19811 fprintf_unfiltered (f, "\n");
19812 dump_die_1 (f, level + 1, max_level, die->child);
19813 }
19814 else
19815 {
3e43a32a
MS
19816 fprintf_unfiltered (f,
19817 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19818 }
19819 }
19820
19821 if (die->sibling != NULL && level > 0)
19822 {
19823 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19824 }
19825}
19826
d97bc12b
DE
19827/* This is called from the pdie macro in gdbinit.in.
19828 It's not static so gcc will keep a copy callable from gdb. */
19829
19830void
19831dump_die (struct die_info *die, int max_level)
19832{
19833 dump_die_1 (gdb_stdlog, 0, max_level, die);
19834}
19835
f9aca02d 19836static void
51545339 19837store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19838{
51545339 19839 void **slot;
c906108c 19840
b64f50a1
JK
19841 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19842 INSERT);
51545339
DJ
19843
19844 *slot = die;
c906108c
SS
19845}
19846
b64f50a1
JK
19847/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19848 required kind. */
19849
19850static sect_offset
ff39bb5e 19851dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19852{
4568ecf9 19853 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19854
7771576e 19855 if (attr_form_is_ref (attr))
b64f50a1 19856 return retval;
93311388 19857
b64f50a1 19858 retval.sect_off = 0;
93311388
DE
19859 complaint (&symfile_complaints,
19860 _("unsupported die ref attribute form: '%s'"),
19861 dwarf_form_name (attr->form));
b64f50a1 19862 return retval;
c906108c
SS
19863}
19864
43bbcdc2
PH
19865/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19866 * the value held by the attribute is not constant. */
a02abb62 19867
43bbcdc2 19868static LONGEST
ff39bb5e 19869dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19870{
19871 if (attr->form == DW_FORM_sdata)
19872 return DW_SND (attr);
19873 else if (attr->form == DW_FORM_udata
19874 || attr->form == DW_FORM_data1
19875 || attr->form == DW_FORM_data2
19876 || attr->form == DW_FORM_data4
19877 || attr->form == DW_FORM_data8)
19878 return DW_UNSND (attr);
19879 else
19880 {
3e43a32a
MS
19881 complaint (&symfile_complaints,
19882 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19883 dwarf_form_name (attr->form));
19884 return default_value;
19885 }
19886}
19887
348e048f
DE
19888/* Follow reference or signature attribute ATTR of SRC_DIE.
19889 On entry *REF_CU is the CU of SRC_DIE.
19890 On exit *REF_CU is the CU of the result. */
19891
19892static struct die_info *
ff39bb5e 19893follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19894 struct dwarf2_cu **ref_cu)
19895{
19896 struct die_info *die;
19897
7771576e 19898 if (attr_form_is_ref (attr))
348e048f 19899 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19900 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19901 die = follow_die_sig (src_die, attr, ref_cu);
19902 else
19903 {
19904 dump_die_for_error (src_die);
19905 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19906 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19907 }
19908
19909 return die;
03dd20cc
DJ
19910}
19911
5c631832 19912/* Follow reference OFFSET.
673bfd45
DE
19913 On entry *REF_CU is the CU of the source die referencing OFFSET.
19914 On exit *REF_CU is the CU of the result.
19915 Returns NULL if OFFSET is invalid. */
f504f079 19916
f9aca02d 19917static struct die_info *
36586728
TT
19918follow_die_offset (sect_offset offset, int offset_in_dwz,
19919 struct dwarf2_cu **ref_cu)
c906108c 19920{
10b3939b 19921 struct die_info temp_die;
f2f0e013 19922 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19923
348e048f
DE
19924 gdb_assert (cu->per_cu != NULL);
19925
98bfdba5
PA
19926 target_cu = cu;
19927
3019eac3 19928 if (cu->per_cu->is_debug_types)
348e048f
DE
19929 {
19930 /* .debug_types CUs cannot reference anything outside their CU.
19931 If they need to, they have to reference a signatured type via
55f1336d 19932 DW_FORM_ref_sig8. */
348e048f 19933 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19934 return NULL;
348e048f 19935 }
36586728
TT
19936 else if (offset_in_dwz != cu->per_cu->is_dwz
19937 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19938 {
19939 struct dwarf2_per_cu_data *per_cu;
9a619af0 19940
36586728
TT
19941 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19942 cu->objfile);
03dd20cc
DJ
19943
19944 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19945 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19946 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19947
10b3939b
DJ
19948 target_cu = per_cu->cu;
19949 }
98bfdba5
PA
19950 else if (cu->dies == NULL)
19951 {
19952 /* We're loading full DIEs during partial symbol reading. */
19953 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19954 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19955 }
c906108c 19956
f2f0e013 19957 *ref_cu = target_cu;
51545339 19958 temp_die.offset = offset;
9a3c8263
SM
19959 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
19960 &temp_die, offset.sect_off);
5c631832 19961}
10b3939b 19962
5c631832
JK
19963/* Follow reference attribute ATTR of SRC_DIE.
19964 On entry *REF_CU is the CU of SRC_DIE.
19965 On exit *REF_CU is the CU of the result. */
19966
19967static struct die_info *
ff39bb5e 19968follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19969 struct dwarf2_cu **ref_cu)
19970{
b64f50a1 19971 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19972 struct dwarf2_cu *cu = *ref_cu;
19973 struct die_info *die;
19974
36586728
TT
19975 die = follow_die_offset (offset,
19976 (attr->form == DW_FORM_GNU_ref_alt
19977 || cu->per_cu->is_dwz),
19978 ref_cu);
5c631832
JK
19979 if (!die)
19980 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19981 "at 0x%x [in module %s]"),
4262abfb
JK
19982 offset.sect_off, src_die->offset.sect_off,
19983 objfile_name (cu->objfile));
348e048f 19984
5c631832
JK
19985 return die;
19986}
19987
d83e736b
JK
19988/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19989 Returned value is intended for DW_OP_call*. Returned
19990 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19991
19992struct dwarf2_locexpr_baton
8b9737bf
TT
19993dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19994 struct dwarf2_per_cu_data *per_cu,
19995 CORE_ADDR (*get_frame_pc) (void *baton),
19996 void *baton)
5c631832 19997{
918dd910 19998 struct dwarf2_cu *cu;
5c631832
JK
19999 struct die_info *die;
20000 struct attribute *attr;
20001 struct dwarf2_locexpr_baton retval;
20002
8cf6f0b1
TT
20003 dw2_setup (per_cu->objfile);
20004
918dd910
JK
20005 if (per_cu->cu == NULL)
20006 load_cu (per_cu);
20007 cu = per_cu->cu;
cc12ce38
DE
20008 if (cu == NULL)
20009 {
20010 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20011 Instead just throw an error, not much else we can do. */
20012 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20013 offset.sect_off, objfile_name (per_cu->objfile));
20014 }
918dd910 20015
36586728 20016 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20017 if (!die)
20018 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20019 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20020
20021 attr = dwarf2_attr (die, DW_AT_location, cu);
20022 if (!attr)
20023 {
e103e986
JK
20024 /* DWARF: "If there is no such attribute, then there is no effect.".
20025 DATA is ignored if SIZE is 0. */
5c631832 20026
e103e986 20027 retval.data = NULL;
5c631832
JK
20028 retval.size = 0;
20029 }
8cf6f0b1
TT
20030 else if (attr_form_is_section_offset (attr))
20031 {
20032 struct dwarf2_loclist_baton loclist_baton;
20033 CORE_ADDR pc = (*get_frame_pc) (baton);
20034 size_t size;
20035
20036 fill_in_loclist_baton (cu, &loclist_baton, attr);
20037
20038 retval.data = dwarf2_find_location_expression (&loclist_baton,
20039 &size, pc);
20040 retval.size = size;
20041 }
5c631832
JK
20042 else
20043 {
20044 if (!attr_form_is_block (attr))
20045 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20046 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20047 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20048
20049 retval.data = DW_BLOCK (attr)->data;
20050 retval.size = DW_BLOCK (attr)->size;
20051 }
20052 retval.per_cu = cu->per_cu;
918dd910 20053
918dd910
JK
20054 age_cached_comp_units ();
20055
5c631832 20056 return retval;
348e048f
DE
20057}
20058
8b9737bf
TT
20059/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20060 offset. */
20061
20062struct dwarf2_locexpr_baton
20063dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20064 struct dwarf2_per_cu_data *per_cu,
20065 CORE_ADDR (*get_frame_pc) (void *baton),
20066 void *baton)
20067{
20068 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20069
20070 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20071}
20072
b6807d98
TT
20073/* Write a constant of a given type as target-ordered bytes into
20074 OBSTACK. */
20075
20076static const gdb_byte *
20077write_constant_as_bytes (struct obstack *obstack,
20078 enum bfd_endian byte_order,
20079 struct type *type,
20080 ULONGEST value,
20081 LONGEST *len)
20082{
20083 gdb_byte *result;
20084
20085 *len = TYPE_LENGTH (type);
224c3ddb 20086 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20087 store_unsigned_integer (result, *len, byte_order, value);
20088
20089 return result;
20090}
20091
20092/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20093 pointer to the constant bytes and set LEN to the length of the
20094 data. If memory is needed, allocate it on OBSTACK. If the DIE
20095 does not have a DW_AT_const_value, return NULL. */
20096
20097const gdb_byte *
20098dwarf2_fetch_constant_bytes (sect_offset offset,
20099 struct dwarf2_per_cu_data *per_cu,
20100 struct obstack *obstack,
20101 LONGEST *len)
20102{
20103 struct dwarf2_cu *cu;
20104 struct die_info *die;
20105 struct attribute *attr;
20106 const gdb_byte *result = NULL;
20107 struct type *type;
20108 LONGEST value;
20109 enum bfd_endian byte_order;
20110
20111 dw2_setup (per_cu->objfile);
20112
20113 if (per_cu->cu == NULL)
20114 load_cu (per_cu);
20115 cu = per_cu->cu;
cc12ce38
DE
20116 if (cu == NULL)
20117 {
20118 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20119 Instead just throw an error, not much else we can do. */
20120 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20121 offset.sect_off, objfile_name (per_cu->objfile));
20122 }
b6807d98
TT
20123
20124 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20125 if (!die)
20126 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20127 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20128
20129
20130 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20131 if (attr == NULL)
20132 return NULL;
20133
20134 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20135 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20136
20137 switch (attr->form)
20138 {
20139 case DW_FORM_addr:
20140 case DW_FORM_GNU_addr_index:
20141 {
20142 gdb_byte *tem;
20143
20144 *len = cu->header.addr_size;
224c3ddb 20145 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20146 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20147 result = tem;
20148 }
20149 break;
20150 case DW_FORM_string:
20151 case DW_FORM_strp:
20152 case DW_FORM_GNU_str_index:
20153 case DW_FORM_GNU_strp_alt:
20154 /* DW_STRING is already allocated on the objfile obstack, point
20155 directly to it. */
20156 result = (const gdb_byte *) DW_STRING (attr);
20157 *len = strlen (DW_STRING (attr));
20158 break;
20159 case DW_FORM_block1:
20160 case DW_FORM_block2:
20161 case DW_FORM_block4:
20162 case DW_FORM_block:
20163 case DW_FORM_exprloc:
20164 result = DW_BLOCK (attr)->data;
20165 *len = DW_BLOCK (attr)->size;
20166 break;
20167
20168 /* The DW_AT_const_value attributes are supposed to carry the
20169 symbol's value "represented as it would be on the target
20170 architecture." By the time we get here, it's already been
20171 converted to host endianness, so we just need to sign- or
20172 zero-extend it as appropriate. */
20173 case DW_FORM_data1:
20174 type = die_type (die, cu);
20175 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20176 if (result == NULL)
20177 result = write_constant_as_bytes (obstack, byte_order,
20178 type, value, len);
20179 break;
20180 case DW_FORM_data2:
20181 type = die_type (die, cu);
20182 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20183 if (result == NULL)
20184 result = write_constant_as_bytes (obstack, byte_order,
20185 type, value, len);
20186 break;
20187 case DW_FORM_data4:
20188 type = die_type (die, cu);
20189 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20190 if (result == NULL)
20191 result = write_constant_as_bytes (obstack, byte_order,
20192 type, value, len);
20193 break;
20194 case DW_FORM_data8:
20195 type = die_type (die, cu);
20196 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20197 if (result == NULL)
20198 result = write_constant_as_bytes (obstack, byte_order,
20199 type, value, len);
20200 break;
20201
20202 case DW_FORM_sdata:
20203 type = die_type (die, cu);
20204 result = write_constant_as_bytes (obstack, byte_order,
20205 type, DW_SND (attr), len);
20206 break;
20207
20208 case DW_FORM_udata:
20209 type = die_type (die, cu);
20210 result = write_constant_as_bytes (obstack, byte_order,
20211 type, DW_UNSND (attr), len);
20212 break;
20213
20214 default:
20215 complaint (&symfile_complaints,
20216 _("unsupported const value attribute form: '%s'"),
20217 dwarf_form_name (attr->form));
20218 break;
20219 }
20220
20221 return result;
20222}
20223
8a9b8146
TT
20224/* Return the type of the DIE at DIE_OFFSET in the CU named by
20225 PER_CU. */
20226
20227struct type *
b64f50a1 20228dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20229 struct dwarf2_per_cu_data *per_cu)
20230{
b64f50a1
JK
20231 sect_offset die_offset_sect;
20232
8a9b8146 20233 dw2_setup (per_cu->objfile);
b64f50a1
JK
20234
20235 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20236 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20237}
20238
ac9ec31b 20239/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20240 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20241 On exit *REF_CU is the CU of the result.
20242 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20243
20244static struct die_info *
ac9ec31b
DE
20245follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20246 struct dwarf2_cu **ref_cu)
348e048f 20247{
348e048f 20248 struct die_info temp_die;
348e048f
DE
20249 struct dwarf2_cu *sig_cu;
20250 struct die_info *die;
20251
ac9ec31b
DE
20252 /* While it might be nice to assert sig_type->type == NULL here,
20253 we can get here for DW_AT_imported_declaration where we need
20254 the DIE not the type. */
348e048f
DE
20255
20256 /* If necessary, add it to the queue and load its DIEs. */
20257
95554aad 20258 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20259 read_signatured_type (sig_type);
348e048f 20260
348e048f 20261 sig_cu = sig_type->per_cu.cu;
69d751e3 20262 gdb_assert (sig_cu != NULL);
3019eac3
DE
20263 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20264 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20265 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20266 temp_die.offset.sect_off);
348e048f
DE
20267 if (die)
20268 {
796a7ff8
DE
20269 /* For .gdb_index version 7 keep track of included TUs.
20270 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20271 if (dwarf2_per_objfile->index_table != NULL
20272 && dwarf2_per_objfile->index_table->version <= 7)
20273 {
20274 VEC_safe_push (dwarf2_per_cu_ptr,
20275 (*ref_cu)->per_cu->imported_symtabs,
20276 sig_cu->per_cu);
20277 }
20278
348e048f
DE
20279 *ref_cu = sig_cu;
20280 return die;
20281 }
20282
ac9ec31b
DE
20283 return NULL;
20284}
20285
20286/* Follow signatured type referenced by ATTR in SRC_DIE.
20287 On entry *REF_CU is the CU of SRC_DIE.
20288 On exit *REF_CU is the CU of the result.
20289 The result is the DIE of the type.
20290 If the referenced type cannot be found an error is thrown. */
20291
20292static struct die_info *
ff39bb5e 20293follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20294 struct dwarf2_cu **ref_cu)
20295{
20296 ULONGEST signature = DW_SIGNATURE (attr);
20297 struct signatured_type *sig_type;
20298 struct die_info *die;
20299
20300 gdb_assert (attr->form == DW_FORM_ref_sig8);
20301
a2ce51a0 20302 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20303 /* sig_type will be NULL if the signatured type is missing from
20304 the debug info. */
20305 if (sig_type == NULL)
20306 {
20307 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20308 " from DIE at 0x%x [in module %s]"),
20309 hex_string (signature), src_die->offset.sect_off,
4262abfb 20310 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20311 }
20312
20313 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20314 if (die == NULL)
20315 {
20316 dump_die_for_error (src_die);
20317 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20318 " from DIE at 0x%x [in module %s]"),
20319 hex_string (signature), src_die->offset.sect_off,
4262abfb 20320 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20321 }
20322
20323 return die;
20324}
20325
20326/* Get the type specified by SIGNATURE referenced in DIE/CU,
20327 reading in and processing the type unit if necessary. */
20328
20329static struct type *
20330get_signatured_type (struct die_info *die, ULONGEST signature,
20331 struct dwarf2_cu *cu)
20332{
20333 struct signatured_type *sig_type;
20334 struct dwarf2_cu *type_cu;
20335 struct die_info *type_die;
20336 struct type *type;
20337
a2ce51a0 20338 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20339 /* sig_type will be NULL if the signatured type is missing from
20340 the debug info. */
20341 if (sig_type == NULL)
20342 {
20343 complaint (&symfile_complaints,
20344 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20345 " from DIE at 0x%x [in module %s]"),
20346 hex_string (signature), die->offset.sect_off,
4262abfb 20347 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20348 return build_error_marker_type (cu, die);
20349 }
20350
20351 /* If we already know the type we're done. */
20352 if (sig_type->type != NULL)
20353 return sig_type->type;
20354
20355 type_cu = cu;
20356 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20357 if (type_die != NULL)
20358 {
20359 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20360 is created. This is important, for example, because for c++ classes
20361 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20362 type = read_type_die (type_die, type_cu);
20363 if (type == NULL)
20364 {
20365 complaint (&symfile_complaints,
20366 _("Dwarf Error: Cannot build signatured type %s"
20367 " referenced from DIE at 0x%x [in module %s]"),
20368 hex_string (signature), die->offset.sect_off,
4262abfb 20369 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20370 type = build_error_marker_type (cu, die);
20371 }
20372 }
20373 else
20374 {
20375 complaint (&symfile_complaints,
20376 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20377 " from DIE at 0x%x [in module %s]"),
20378 hex_string (signature), die->offset.sect_off,
4262abfb 20379 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20380 type = build_error_marker_type (cu, die);
20381 }
20382 sig_type->type = type;
20383
20384 return type;
20385}
20386
20387/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20388 reading in and processing the type unit if necessary. */
20389
20390static struct type *
ff39bb5e 20391get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20392 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20393{
20394 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20395 if (attr_form_is_ref (attr))
ac9ec31b
DE
20396 {
20397 struct dwarf2_cu *type_cu = cu;
20398 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20399
20400 return read_type_die (type_die, type_cu);
20401 }
20402 else if (attr->form == DW_FORM_ref_sig8)
20403 {
20404 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20405 }
20406 else
20407 {
20408 complaint (&symfile_complaints,
20409 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20410 " at 0x%x [in module %s]"),
20411 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20412 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20413 return build_error_marker_type (cu, die);
20414 }
348e048f
DE
20415}
20416
e5fe5e75 20417/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20418
20419static void
e5fe5e75 20420load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20421{
52dc124a 20422 struct signatured_type *sig_type;
348e048f 20423
f4dc4d17
DE
20424 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20425 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20426
6721b2ec
DE
20427 /* We have the per_cu, but we need the signatured_type.
20428 Fortunately this is an easy translation. */
20429 gdb_assert (per_cu->is_debug_types);
20430 sig_type = (struct signatured_type *) per_cu;
348e048f 20431
6721b2ec 20432 gdb_assert (per_cu->cu == NULL);
348e048f 20433
52dc124a 20434 read_signatured_type (sig_type);
348e048f 20435
6721b2ec 20436 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20437}
20438
dee91e82
DE
20439/* die_reader_func for read_signatured_type.
20440 This is identical to load_full_comp_unit_reader,
20441 but is kept separate for now. */
348e048f
DE
20442
20443static void
dee91e82 20444read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20445 const gdb_byte *info_ptr,
dee91e82
DE
20446 struct die_info *comp_unit_die,
20447 int has_children,
20448 void *data)
348e048f 20449{
dee91e82 20450 struct dwarf2_cu *cu = reader->cu;
348e048f 20451
dee91e82
DE
20452 gdb_assert (cu->die_hash == NULL);
20453 cu->die_hash =
20454 htab_create_alloc_ex (cu->header.length / 12,
20455 die_hash,
20456 die_eq,
20457 NULL,
20458 &cu->comp_unit_obstack,
20459 hashtab_obstack_allocate,
20460 dummy_obstack_deallocate);
348e048f 20461
dee91e82
DE
20462 if (has_children)
20463 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20464 &info_ptr, comp_unit_die);
20465 cu->dies = comp_unit_die;
20466 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20467
20468 /* We try not to read any attributes in this function, because not
9cdd5dbd 20469 all CUs needed for references have been loaded yet, and symbol
348e048f 20470 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20471 or we won't be able to build types correctly.
20472 Similarly, if we do not read the producer, we can not apply
20473 producer-specific interpretation. */
95554aad 20474 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20475}
348e048f 20476
3019eac3
DE
20477/* Read in a signatured type and build its CU and DIEs.
20478 If the type is a stub for the real type in a DWO file,
20479 read in the real type from the DWO file as well. */
dee91e82
DE
20480
20481static void
20482read_signatured_type (struct signatured_type *sig_type)
20483{
20484 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20485
3019eac3 20486 gdb_assert (per_cu->is_debug_types);
dee91e82 20487 gdb_assert (per_cu->cu == NULL);
348e048f 20488
f4dc4d17
DE
20489 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20490 read_signatured_type_reader, NULL);
7ee85ab1 20491 sig_type->per_cu.tu_read = 1;
c906108c
SS
20492}
20493
c906108c
SS
20494/* Decode simple location descriptions.
20495 Given a pointer to a dwarf block that defines a location, compute
20496 the location and return the value.
20497
4cecd739
DJ
20498 NOTE drow/2003-11-18: This function is called in two situations
20499 now: for the address of static or global variables (partial symbols
20500 only) and for offsets into structures which are expected to be
20501 (more or less) constant. The partial symbol case should go away,
20502 and only the constant case should remain. That will let this
20503 function complain more accurately. A few special modes are allowed
20504 without complaint for global variables (for instance, global
20505 register values and thread-local values).
c906108c
SS
20506
20507 A location description containing no operations indicates that the
4cecd739 20508 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20509 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20510 callers will only want a very basic result and this can become a
21ae7a4d
JK
20511 complaint.
20512
20513 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20514
20515static CORE_ADDR
e7c27a73 20516decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20517{
e7c27a73 20518 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20519 size_t i;
20520 size_t size = blk->size;
d521ce57 20521 const gdb_byte *data = blk->data;
21ae7a4d
JK
20522 CORE_ADDR stack[64];
20523 int stacki;
20524 unsigned int bytes_read, unsnd;
20525 gdb_byte op;
c906108c 20526
21ae7a4d
JK
20527 i = 0;
20528 stacki = 0;
20529 stack[stacki] = 0;
20530 stack[++stacki] = 0;
20531
20532 while (i < size)
20533 {
20534 op = data[i++];
20535 switch (op)
20536 {
20537 case DW_OP_lit0:
20538 case DW_OP_lit1:
20539 case DW_OP_lit2:
20540 case DW_OP_lit3:
20541 case DW_OP_lit4:
20542 case DW_OP_lit5:
20543 case DW_OP_lit6:
20544 case DW_OP_lit7:
20545 case DW_OP_lit8:
20546 case DW_OP_lit9:
20547 case DW_OP_lit10:
20548 case DW_OP_lit11:
20549 case DW_OP_lit12:
20550 case DW_OP_lit13:
20551 case DW_OP_lit14:
20552 case DW_OP_lit15:
20553 case DW_OP_lit16:
20554 case DW_OP_lit17:
20555 case DW_OP_lit18:
20556 case DW_OP_lit19:
20557 case DW_OP_lit20:
20558 case DW_OP_lit21:
20559 case DW_OP_lit22:
20560 case DW_OP_lit23:
20561 case DW_OP_lit24:
20562 case DW_OP_lit25:
20563 case DW_OP_lit26:
20564 case DW_OP_lit27:
20565 case DW_OP_lit28:
20566 case DW_OP_lit29:
20567 case DW_OP_lit30:
20568 case DW_OP_lit31:
20569 stack[++stacki] = op - DW_OP_lit0;
20570 break;
f1bea926 20571
21ae7a4d
JK
20572 case DW_OP_reg0:
20573 case DW_OP_reg1:
20574 case DW_OP_reg2:
20575 case DW_OP_reg3:
20576 case DW_OP_reg4:
20577 case DW_OP_reg5:
20578 case DW_OP_reg6:
20579 case DW_OP_reg7:
20580 case DW_OP_reg8:
20581 case DW_OP_reg9:
20582 case DW_OP_reg10:
20583 case DW_OP_reg11:
20584 case DW_OP_reg12:
20585 case DW_OP_reg13:
20586 case DW_OP_reg14:
20587 case DW_OP_reg15:
20588 case DW_OP_reg16:
20589 case DW_OP_reg17:
20590 case DW_OP_reg18:
20591 case DW_OP_reg19:
20592 case DW_OP_reg20:
20593 case DW_OP_reg21:
20594 case DW_OP_reg22:
20595 case DW_OP_reg23:
20596 case DW_OP_reg24:
20597 case DW_OP_reg25:
20598 case DW_OP_reg26:
20599 case DW_OP_reg27:
20600 case DW_OP_reg28:
20601 case DW_OP_reg29:
20602 case DW_OP_reg30:
20603 case DW_OP_reg31:
20604 stack[++stacki] = op - DW_OP_reg0;
20605 if (i < size)
20606 dwarf2_complex_location_expr_complaint ();
20607 break;
c906108c 20608
21ae7a4d
JK
20609 case DW_OP_regx:
20610 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20611 i += bytes_read;
20612 stack[++stacki] = unsnd;
20613 if (i < size)
20614 dwarf2_complex_location_expr_complaint ();
20615 break;
c906108c 20616
21ae7a4d
JK
20617 case DW_OP_addr:
20618 stack[++stacki] = read_address (objfile->obfd, &data[i],
20619 cu, &bytes_read);
20620 i += bytes_read;
20621 break;
d53d4ac5 20622
21ae7a4d
JK
20623 case DW_OP_const1u:
20624 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20625 i += 1;
20626 break;
20627
20628 case DW_OP_const1s:
20629 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20630 i += 1;
20631 break;
20632
20633 case DW_OP_const2u:
20634 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20635 i += 2;
20636 break;
20637
20638 case DW_OP_const2s:
20639 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20640 i += 2;
20641 break;
d53d4ac5 20642
21ae7a4d
JK
20643 case DW_OP_const4u:
20644 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20645 i += 4;
20646 break;
20647
20648 case DW_OP_const4s:
20649 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20650 i += 4;
20651 break;
20652
585861ea
JK
20653 case DW_OP_const8u:
20654 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20655 i += 8;
20656 break;
20657
21ae7a4d
JK
20658 case DW_OP_constu:
20659 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20660 &bytes_read);
20661 i += bytes_read;
20662 break;
20663
20664 case DW_OP_consts:
20665 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20666 i += bytes_read;
20667 break;
20668
20669 case DW_OP_dup:
20670 stack[stacki + 1] = stack[stacki];
20671 stacki++;
20672 break;
20673
20674 case DW_OP_plus:
20675 stack[stacki - 1] += stack[stacki];
20676 stacki--;
20677 break;
20678
20679 case DW_OP_plus_uconst:
20680 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20681 &bytes_read);
20682 i += bytes_read;
20683 break;
20684
20685 case DW_OP_minus:
20686 stack[stacki - 1] -= stack[stacki];
20687 stacki--;
20688 break;
20689
20690 case DW_OP_deref:
20691 /* If we're not the last op, then we definitely can't encode
20692 this using GDB's address_class enum. This is valid for partial
20693 global symbols, although the variable's address will be bogus
20694 in the psymtab. */
20695 if (i < size)
20696 dwarf2_complex_location_expr_complaint ();
20697 break;
20698
20699 case DW_OP_GNU_push_tls_address:
4aa4e28b 20700 case DW_OP_form_tls_address:
21ae7a4d
JK
20701 /* The top of the stack has the offset from the beginning
20702 of the thread control block at which the variable is located. */
20703 /* Nothing should follow this operator, so the top of stack would
20704 be returned. */
20705 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20706 address will be bogus in the psymtab. Make it always at least
20707 non-zero to not look as a variable garbage collected by linker
20708 which have DW_OP_addr 0. */
21ae7a4d
JK
20709 if (i < size)
20710 dwarf2_complex_location_expr_complaint ();
585861ea 20711 stack[stacki]++;
21ae7a4d
JK
20712 break;
20713
20714 case DW_OP_GNU_uninit:
20715 break;
20716
3019eac3 20717 case DW_OP_GNU_addr_index:
49f6c839 20718 case DW_OP_GNU_const_index:
3019eac3
DE
20719 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20720 &bytes_read);
20721 i += bytes_read;
20722 break;
20723
21ae7a4d
JK
20724 default:
20725 {
f39c6ffd 20726 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20727
20728 if (name)
20729 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20730 name);
20731 else
20732 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20733 op);
20734 }
20735
20736 return (stack[stacki]);
d53d4ac5 20737 }
3c6e0cb3 20738
21ae7a4d
JK
20739 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20740 outside of the allocated space. Also enforce minimum>0. */
20741 if (stacki >= ARRAY_SIZE (stack) - 1)
20742 {
20743 complaint (&symfile_complaints,
20744 _("location description stack overflow"));
20745 return 0;
20746 }
20747
20748 if (stacki <= 0)
20749 {
20750 complaint (&symfile_complaints,
20751 _("location description stack underflow"));
20752 return 0;
20753 }
20754 }
20755 return (stack[stacki]);
c906108c
SS
20756}
20757
20758/* memory allocation interface */
20759
c906108c 20760static struct dwarf_block *
7b5a2f43 20761dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20762{
8d749320 20763 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20764}
20765
c906108c 20766static struct die_info *
b60c80d6 20767dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20768{
20769 struct die_info *die;
b60c80d6
DJ
20770 size_t size = sizeof (struct die_info);
20771
20772 if (num_attrs > 1)
20773 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20774
b60c80d6 20775 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20776 memset (die, 0, sizeof (struct die_info));
20777 return (die);
20778}
2e276125
JB
20779
20780\f
20781/* Macro support. */
20782
233d95b5
JK
20783/* Return file name relative to the compilation directory of file number I in
20784 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20785 responsible for freeing it. */
233d95b5 20786
2e276125 20787static char *
233d95b5 20788file_file_name (int file, struct line_header *lh)
2e276125 20789{
6a83a1e6
EZ
20790 /* Is the file number a valid index into the line header's file name
20791 table? Remember that file numbers start with one, not zero. */
20792 if (1 <= file && file <= lh->num_file_names)
20793 {
20794 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20795
afa6c9ab
SL
20796 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20797 || lh->include_dirs == NULL)
6a83a1e6 20798 return xstrdup (fe->name);
233d95b5 20799 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 20800 fe->name, (char *) NULL);
6a83a1e6 20801 }
2e276125
JB
20802 else
20803 {
6a83a1e6
EZ
20804 /* The compiler produced a bogus file number. We can at least
20805 record the macro definitions made in the file, even if we
20806 won't be able to find the file by name. */
20807 char fake_name[80];
9a619af0 20808
8c042590
PM
20809 xsnprintf (fake_name, sizeof (fake_name),
20810 "<bad macro file number %d>", file);
2e276125 20811
6e70227d 20812 complaint (&symfile_complaints,
6a83a1e6
EZ
20813 _("bad file number in macro information (%d)"),
20814 file);
2e276125 20815
6a83a1e6 20816 return xstrdup (fake_name);
2e276125
JB
20817 }
20818}
20819
233d95b5
JK
20820/* Return the full name of file number I in *LH's file name table.
20821 Use COMP_DIR as the name of the current directory of the
20822 compilation. The result is allocated using xmalloc; the caller is
20823 responsible for freeing it. */
20824static char *
20825file_full_name (int file, struct line_header *lh, const char *comp_dir)
20826{
20827 /* Is the file number a valid index into the line header's file name
20828 table? Remember that file numbers start with one, not zero. */
20829 if (1 <= file && file <= lh->num_file_names)
20830 {
20831 char *relative = file_file_name (file, lh);
20832
20833 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20834 return relative;
b36cec19
PA
20835 return reconcat (relative, comp_dir, SLASH_STRING,
20836 relative, (char *) NULL);
233d95b5
JK
20837 }
20838 else
20839 return file_file_name (file, lh);
20840}
20841
2e276125
JB
20842
20843static struct macro_source_file *
20844macro_start_file (int file, int line,
20845 struct macro_source_file *current_file,
43f3e411 20846 struct line_header *lh)
2e276125 20847{
233d95b5
JK
20848 /* File name relative to the compilation directory of this source file. */
20849 char *file_name = file_file_name (file, lh);
2e276125 20850
2e276125 20851 if (! current_file)
abc9d0dc 20852 {
fc474241
DE
20853 /* Note: We don't create a macro table for this compilation unit
20854 at all until we actually get a filename. */
43f3e411 20855 struct macro_table *macro_table = get_macro_table ();
fc474241 20856
abc9d0dc
TT
20857 /* If we have no current file, then this must be the start_file
20858 directive for the compilation unit's main source file. */
fc474241
DE
20859 current_file = macro_set_main (macro_table, file_name);
20860 macro_define_special (macro_table);
abc9d0dc 20861 }
2e276125 20862 else
233d95b5 20863 current_file = macro_include (current_file, line, file_name);
2e276125 20864
233d95b5 20865 xfree (file_name);
6e70227d 20866
2e276125
JB
20867 return current_file;
20868}
20869
20870
20871/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20872 followed by a null byte. */
20873static char *
20874copy_string (const char *buf, int len)
20875{
224c3ddb 20876 char *s = (char *) xmalloc (len + 1);
9a619af0 20877
2e276125
JB
20878 memcpy (s, buf, len);
20879 s[len] = '\0';
2e276125
JB
20880 return s;
20881}
20882
20883
20884static const char *
20885consume_improper_spaces (const char *p, const char *body)
20886{
20887 if (*p == ' ')
20888 {
4d3c2250 20889 complaint (&symfile_complaints,
3e43a32a
MS
20890 _("macro definition contains spaces "
20891 "in formal argument list:\n`%s'"),
4d3c2250 20892 body);
2e276125
JB
20893
20894 while (*p == ' ')
20895 p++;
20896 }
20897
20898 return p;
20899}
20900
20901
20902static void
20903parse_macro_definition (struct macro_source_file *file, int line,
20904 const char *body)
20905{
20906 const char *p;
20907
20908 /* The body string takes one of two forms. For object-like macro
20909 definitions, it should be:
20910
20911 <macro name> " " <definition>
20912
20913 For function-like macro definitions, it should be:
20914
20915 <macro name> "() " <definition>
20916 or
20917 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20918
20919 Spaces may appear only where explicitly indicated, and in the
20920 <definition>.
20921
20922 The Dwarf 2 spec says that an object-like macro's name is always
20923 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20924 the space when the macro's definition is the empty string.
2e276125
JB
20925
20926 The Dwarf 2 spec says that there should be no spaces between the
20927 formal arguments in a function-like macro's formal argument list,
20928 but versions of GCC around March 2002 include spaces after the
20929 commas. */
20930
20931
20932 /* Find the extent of the macro name. The macro name is terminated
20933 by either a space or null character (for an object-like macro) or
20934 an opening paren (for a function-like macro). */
20935 for (p = body; *p; p++)
20936 if (*p == ' ' || *p == '(')
20937 break;
20938
20939 if (*p == ' ' || *p == '\0')
20940 {
20941 /* It's an object-like macro. */
20942 int name_len = p - body;
20943 char *name = copy_string (body, name_len);
20944 const char *replacement;
20945
20946 if (*p == ' ')
20947 replacement = body + name_len + 1;
20948 else
20949 {
4d3c2250 20950 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20951 replacement = body + name_len;
20952 }
6e70227d 20953
2e276125
JB
20954 macro_define_object (file, line, name, replacement);
20955
20956 xfree (name);
20957 }
20958 else if (*p == '(')
20959 {
20960 /* It's a function-like macro. */
20961 char *name = copy_string (body, p - body);
20962 int argc = 0;
20963 int argv_size = 1;
8d749320 20964 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
20965
20966 p++;
20967
20968 p = consume_improper_spaces (p, body);
20969
20970 /* Parse the formal argument list. */
20971 while (*p && *p != ')')
20972 {
20973 /* Find the extent of the current argument name. */
20974 const char *arg_start = p;
20975
20976 while (*p && *p != ',' && *p != ')' && *p != ' ')
20977 p++;
20978
20979 if (! *p || p == arg_start)
4d3c2250 20980 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20981 else
20982 {
20983 /* Make sure argv has room for the new argument. */
20984 if (argc >= argv_size)
20985 {
20986 argv_size *= 2;
224c3ddb 20987 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
20988 }
20989
20990 argv[argc++] = copy_string (arg_start, p - arg_start);
20991 }
20992
20993 p = consume_improper_spaces (p, body);
20994
20995 /* Consume the comma, if present. */
20996 if (*p == ',')
20997 {
20998 p++;
20999
21000 p = consume_improper_spaces (p, body);
21001 }
21002 }
21003
21004 if (*p == ')')
21005 {
21006 p++;
21007
21008 if (*p == ' ')
21009 /* Perfectly formed definition, no complaints. */
21010 macro_define_function (file, line, name,
6e70227d 21011 argc, (const char **) argv,
2e276125
JB
21012 p + 1);
21013 else if (*p == '\0')
21014 {
21015 /* Complain, but do define it. */
4d3c2250 21016 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21017 macro_define_function (file, line, name,
6e70227d 21018 argc, (const char **) argv,
2e276125
JB
21019 p);
21020 }
21021 else
21022 /* Just complain. */
4d3c2250 21023 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21024 }
21025 else
21026 /* Just complain. */
4d3c2250 21027 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21028
21029 xfree (name);
21030 {
21031 int i;
21032
21033 for (i = 0; i < argc; i++)
21034 xfree (argv[i]);
21035 }
21036 xfree (argv);
21037 }
21038 else
4d3c2250 21039 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21040}
21041
cf2c3c16
TT
21042/* Skip some bytes from BYTES according to the form given in FORM.
21043 Returns the new pointer. */
2e276125 21044
d521ce57
TT
21045static const gdb_byte *
21046skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21047 enum dwarf_form form,
21048 unsigned int offset_size,
21049 struct dwarf2_section_info *section)
2e276125 21050{
cf2c3c16 21051 unsigned int bytes_read;
2e276125 21052
cf2c3c16 21053 switch (form)
2e276125 21054 {
cf2c3c16
TT
21055 case DW_FORM_data1:
21056 case DW_FORM_flag:
21057 ++bytes;
21058 break;
21059
21060 case DW_FORM_data2:
21061 bytes += 2;
21062 break;
21063
21064 case DW_FORM_data4:
21065 bytes += 4;
21066 break;
21067
21068 case DW_FORM_data8:
21069 bytes += 8;
21070 break;
21071
21072 case DW_FORM_string:
21073 read_direct_string (abfd, bytes, &bytes_read);
21074 bytes += bytes_read;
21075 break;
21076
21077 case DW_FORM_sec_offset:
21078 case DW_FORM_strp:
36586728 21079 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21080 bytes += offset_size;
21081 break;
21082
21083 case DW_FORM_block:
21084 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21085 bytes += bytes_read;
21086 break;
21087
21088 case DW_FORM_block1:
21089 bytes += 1 + read_1_byte (abfd, bytes);
21090 break;
21091 case DW_FORM_block2:
21092 bytes += 2 + read_2_bytes (abfd, bytes);
21093 break;
21094 case DW_FORM_block4:
21095 bytes += 4 + read_4_bytes (abfd, bytes);
21096 break;
21097
21098 case DW_FORM_sdata:
21099 case DW_FORM_udata:
3019eac3
DE
21100 case DW_FORM_GNU_addr_index:
21101 case DW_FORM_GNU_str_index:
d521ce57 21102 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21103 if (bytes == NULL)
21104 {
21105 dwarf2_section_buffer_overflow_complaint (section);
21106 return NULL;
21107 }
cf2c3c16
TT
21108 break;
21109
21110 default:
21111 {
21112 complain:
21113 complaint (&symfile_complaints,
21114 _("invalid form 0x%x in `%s'"),
a32a8923 21115 form, get_section_name (section));
cf2c3c16
TT
21116 return NULL;
21117 }
2e276125
JB
21118 }
21119
cf2c3c16
TT
21120 return bytes;
21121}
757a13d0 21122
cf2c3c16
TT
21123/* A helper for dwarf_decode_macros that handles skipping an unknown
21124 opcode. Returns an updated pointer to the macro data buffer; or,
21125 on error, issues a complaint and returns NULL. */
757a13d0 21126
d521ce57 21127static const gdb_byte *
cf2c3c16 21128skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21129 const gdb_byte **opcode_definitions,
21130 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21131 bfd *abfd,
21132 unsigned int offset_size,
21133 struct dwarf2_section_info *section)
21134{
21135 unsigned int bytes_read, i;
21136 unsigned long arg;
d521ce57 21137 const gdb_byte *defn;
2e276125 21138
cf2c3c16 21139 if (opcode_definitions[opcode] == NULL)
2e276125 21140 {
cf2c3c16
TT
21141 complaint (&symfile_complaints,
21142 _("unrecognized DW_MACFINO opcode 0x%x"),
21143 opcode);
21144 return NULL;
21145 }
2e276125 21146
cf2c3c16
TT
21147 defn = opcode_definitions[opcode];
21148 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21149 defn += bytes_read;
2e276125 21150
cf2c3c16
TT
21151 for (i = 0; i < arg; ++i)
21152 {
aead7601
SM
21153 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21154 (enum dwarf_form) defn[i], offset_size,
f664829e 21155 section);
cf2c3c16
TT
21156 if (mac_ptr == NULL)
21157 {
21158 /* skip_form_bytes already issued the complaint. */
21159 return NULL;
21160 }
21161 }
757a13d0 21162
cf2c3c16
TT
21163 return mac_ptr;
21164}
757a13d0 21165
cf2c3c16
TT
21166/* A helper function which parses the header of a macro section.
21167 If the macro section is the extended (for now called "GNU") type,
21168 then this updates *OFFSET_SIZE. Returns a pointer to just after
21169 the header, or issues a complaint and returns NULL on error. */
757a13d0 21170
d521ce57
TT
21171static const gdb_byte *
21172dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21173 bfd *abfd,
d521ce57 21174 const gdb_byte *mac_ptr,
cf2c3c16
TT
21175 unsigned int *offset_size,
21176 int section_is_gnu)
21177{
21178 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21179
cf2c3c16
TT
21180 if (section_is_gnu)
21181 {
21182 unsigned int version, flags;
757a13d0 21183
cf2c3c16
TT
21184 version = read_2_bytes (abfd, mac_ptr);
21185 if (version != 4)
21186 {
21187 complaint (&symfile_complaints,
21188 _("unrecognized version `%d' in .debug_macro section"),
21189 version);
21190 return NULL;
21191 }
21192 mac_ptr += 2;
757a13d0 21193
cf2c3c16
TT
21194 flags = read_1_byte (abfd, mac_ptr);
21195 ++mac_ptr;
21196 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21197
cf2c3c16
TT
21198 if ((flags & 2) != 0)
21199 /* We don't need the line table offset. */
21200 mac_ptr += *offset_size;
757a13d0 21201
cf2c3c16
TT
21202 /* Vendor opcode descriptions. */
21203 if ((flags & 4) != 0)
21204 {
21205 unsigned int i, count;
757a13d0 21206
cf2c3c16
TT
21207 count = read_1_byte (abfd, mac_ptr);
21208 ++mac_ptr;
21209 for (i = 0; i < count; ++i)
21210 {
21211 unsigned int opcode, bytes_read;
21212 unsigned long arg;
21213
21214 opcode = read_1_byte (abfd, mac_ptr);
21215 ++mac_ptr;
21216 opcode_definitions[opcode] = mac_ptr;
21217 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21218 mac_ptr += bytes_read;
21219 mac_ptr += arg;
21220 }
757a13d0 21221 }
cf2c3c16 21222 }
757a13d0 21223
cf2c3c16
TT
21224 return mac_ptr;
21225}
757a13d0 21226
cf2c3c16 21227/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21228 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21229
21230static void
d521ce57
TT
21231dwarf_decode_macro_bytes (bfd *abfd,
21232 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21233 struct macro_source_file *current_file,
43f3e411 21234 struct line_header *lh,
cf2c3c16 21235 struct dwarf2_section_info *section,
36586728 21236 int section_is_gnu, int section_is_dwz,
cf2c3c16 21237 unsigned int offset_size,
8fc3fc34 21238 htab_t include_hash)
cf2c3c16 21239{
4d663531 21240 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21241 enum dwarf_macro_record_type macinfo_type;
21242 int at_commandline;
d521ce57 21243 const gdb_byte *opcode_definitions[256];
757a13d0 21244
cf2c3c16
TT
21245 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21246 &offset_size, section_is_gnu);
21247 if (mac_ptr == NULL)
21248 {
21249 /* We already issued a complaint. */
21250 return;
21251 }
757a13d0
JK
21252
21253 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21254 GDB is still reading the definitions from command line. First
21255 DW_MACINFO_start_file will need to be ignored as it was already executed
21256 to create CURRENT_FILE for the main source holding also the command line
21257 definitions. On first met DW_MACINFO_start_file this flag is reset to
21258 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21259
21260 at_commandline = 1;
21261
21262 do
21263 {
21264 /* Do we at least have room for a macinfo type byte? */
21265 if (mac_ptr >= mac_end)
21266 {
f664829e 21267 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21268 break;
21269 }
21270
aead7601 21271 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21272 mac_ptr++;
21273
cf2c3c16
TT
21274 /* Note that we rely on the fact that the corresponding GNU and
21275 DWARF constants are the same. */
757a13d0
JK
21276 switch (macinfo_type)
21277 {
21278 /* A zero macinfo type indicates the end of the macro
21279 information. */
21280 case 0:
21281 break;
2e276125 21282
cf2c3c16
TT
21283 case DW_MACRO_GNU_define:
21284 case DW_MACRO_GNU_undef:
21285 case DW_MACRO_GNU_define_indirect:
21286 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21287 case DW_MACRO_GNU_define_indirect_alt:
21288 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21289 {
891d2f0b 21290 unsigned int bytes_read;
2e276125 21291 int line;
d521ce57 21292 const char *body;
cf2c3c16 21293 int is_define;
2e276125 21294
cf2c3c16
TT
21295 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21296 mac_ptr += bytes_read;
21297
21298 if (macinfo_type == DW_MACRO_GNU_define
21299 || macinfo_type == DW_MACRO_GNU_undef)
21300 {
21301 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21302 mac_ptr += bytes_read;
21303 }
21304 else
21305 {
21306 LONGEST str_offset;
21307
21308 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21309 mac_ptr += offset_size;
2e276125 21310
36586728 21311 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21312 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21313 || section_is_dwz)
36586728
TT
21314 {
21315 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21316
21317 body = read_indirect_string_from_dwz (dwz, str_offset);
21318 }
21319 else
21320 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21321 }
21322
21323 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21324 || macinfo_type == DW_MACRO_GNU_define_indirect
21325 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21326 if (! current_file)
757a13d0
JK
21327 {
21328 /* DWARF violation as no main source is present. */
21329 complaint (&symfile_complaints,
21330 _("debug info with no main source gives macro %s "
21331 "on line %d: %s"),
cf2c3c16
TT
21332 is_define ? _("definition") : _("undefinition"),
21333 line, body);
757a13d0
JK
21334 break;
21335 }
3e43a32a
MS
21336 if ((line == 0 && !at_commandline)
21337 || (line != 0 && at_commandline))
4d3c2250 21338 complaint (&symfile_complaints,
757a13d0
JK
21339 _("debug info gives %s macro %s with %s line %d: %s"),
21340 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21341 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21342 line == 0 ? _("zero") : _("non-zero"), line, body);
21343
cf2c3c16 21344 if (is_define)
757a13d0 21345 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21346 else
21347 {
21348 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21349 || macinfo_type == DW_MACRO_GNU_undef_indirect
21350 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21351 macro_undef (current_file, line, body);
21352 }
2e276125
JB
21353 }
21354 break;
21355
cf2c3c16 21356 case DW_MACRO_GNU_start_file:
2e276125 21357 {
891d2f0b 21358 unsigned int bytes_read;
2e276125
JB
21359 int line, file;
21360
21361 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21362 mac_ptr += bytes_read;
21363 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21364 mac_ptr += bytes_read;
21365
3e43a32a
MS
21366 if ((line == 0 && !at_commandline)
21367 || (line != 0 && at_commandline))
757a13d0
JK
21368 complaint (&symfile_complaints,
21369 _("debug info gives source %d included "
21370 "from %s at %s line %d"),
21371 file, at_commandline ? _("command-line") : _("file"),
21372 line == 0 ? _("zero") : _("non-zero"), line);
21373
21374 if (at_commandline)
21375 {
cf2c3c16
TT
21376 /* This DW_MACRO_GNU_start_file was executed in the
21377 pass one. */
757a13d0
JK
21378 at_commandline = 0;
21379 }
21380 else
43f3e411 21381 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21382 }
21383 break;
21384
cf2c3c16 21385 case DW_MACRO_GNU_end_file:
2e276125 21386 if (! current_file)
4d3c2250 21387 complaint (&symfile_complaints,
3e43a32a
MS
21388 _("macro debug info has an unmatched "
21389 "`close_file' directive"));
2e276125
JB
21390 else
21391 {
21392 current_file = current_file->included_by;
21393 if (! current_file)
21394 {
cf2c3c16 21395 enum dwarf_macro_record_type next_type;
2e276125
JB
21396
21397 /* GCC circa March 2002 doesn't produce the zero
21398 type byte marking the end of the compilation
21399 unit. Complain if it's not there, but exit no
21400 matter what. */
21401
21402 /* Do we at least have room for a macinfo type byte? */
21403 if (mac_ptr >= mac_end)
21404 {
f664829e 21405 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21406 return;
21407 }
21408
21409 /* We don't increment mac_ptr here, so this is just
21410 a look-ahead. */
aead7601
SM
21411 next_type
21412 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21413 mac_ptr);
2e276125 21414 if (next_type != 0)
4d3c2250 21415 complaint (&symfile_complaints,
3e43a32a
MS
21416 _("no terminating 0-type entry for "
21417 "macros in `.debug_macinfo' section"));
2e276125
JB
21418
21419 return;
21420 }
21421 }
21422 break;
21423
cf2c3c16 21424 case DW_MACRO_GNU_transparent_include:
36586728 21425 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21426 {
21427 LONGEST offset;
8fc3fc34 21428 void **slot;
a036ba48
TT
21429 bfd *include_bfd = abfd;
21430 struct dwarf2_section_info *include_section = section;
d521ce57 21431 const gdb_byte *include_mac_end = mac_end;
a036ba48 21432 int is_dwz = section_is_dwz;
d521ce57 21433 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21434
21435 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21436 mac_ptr += offset_size;
21437
a036ba48
TT
21438 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21439 {
21440 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21441
4d663531 21442 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21443
a036ba48 21444 include_section = &dwz->macro;
a32a8923 21445 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21446 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21447 is_dwz = 1;
21448 }
21449
21450 new_mac_ptr = include_section->buffer + offset;
21451 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21452
8fc3fc34
TT
21453 if (*slot != NULL)
21454 {
21455 /* This has actually happened; see
21456 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21457 complaint (&symfile_complaints,
21458 _("recursive DW_MACRO_GNU_transparent_include in "
21459 ".debug_macro section"));
21460 }
21461 else
21462 {
d521ce57 21463 *slot = (void *) new_mac_ptr;
36586728 21464
a036ba48 21465 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21466 include_mac_end, current_file, lh,
36586728 21467 section, section_is_gnu, is_dwz,
4d663531 21468 offset_size, include_hash);
8fc3fc34 21469
d521ce57 21470 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21471 }
cf2c3c16
TT
21472 }
21473 break;
21474
2e276125 21475 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21476 if (!section_is_gnu)
21477 {
21478 unsigned int bytes_read;
2e276125 21479
ac298888
TT
21480 /* This reads the constant, but since we don't recognize
21481 any vendor extensions, we ignore it. */
21482 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21483 mac_ptr += bytes_read;
21484 read_direct_string (abfd, mac_ptr, &bytes_read);
21485 mac_ptr += bytes_read;
2e276125 21486
cf2c3c16
TT
21487 /* We don't recognize any vendor extensions. */
21488 break;
21489 }
21490 /* FALLTHROUGH */
21491
21492 default:
21493 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21494 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21495 section);
21496 if (mac_ptr == NULL)
21497 return;
21498 break;
2e276125 21499 }
757a13d0 21500 } while (macinfo_type != 0);
2e276125 21501}
8e19ed76 21502
cf2c3c16 21503static void
09262596 21504dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21505 int section_is_gnu)
cf2c3c16 21506{
bb5ed363 21507 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21508 struct line_header *lh = cu->line_header;
21509 bfd *abfd;
d521ce57 21510 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21511 struct macro_source_file *current_file = 0;
21512 enum dwarf_macro_record_type macinfo_type;
21513 unsigned int offset_size = cu->header.offset_size;
d521ce57 21514 const gdb_byte *opcode_definitions[256];
8fc3fc34 21515 struct cleanup *cleanup;
8fc3fc34 21516 void **slot;
09262596
DE
21517 struct dwarf2_section_info *section;
21518 const char *section_name;
21519
21520 if (cu->dwo_unit != NULL)
21521 {
21522 if (section_is_gnu)
21523 {
21524 section = &cu->dwo_unit->dwo_file->sections.macro;
21525 section_name = ".debug_macro.dwo";
21526 }
21527 else
21528 {
21529 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21530 section_name = ".debug_macinfo.dwo";
21531 }
21532 }
21533 else
21534 {
21535 if (section_is_gnu)
21536 {
21537 section = &dwarf2_per_objfile->macro;
21538 section_name = ".debug_macro";
21539 }
21540 else
21541 {
21542 section = &dwarf2_per_objfile->macinfo;
21543 section_name = ".debug_macinfo";
21544 }
21545 }
cf2c3c16 21546
bb5ed363 21547 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21548 if (section->buffer == NULL)
21549 {
fceca515 21550 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21551 return;
21552 }
a32a8923 21553 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21554
21555 /* First pass: Find the name of the base filename.
21556 This filename is needed in order to process all macros whose definition
21557 (or undefinition) comes from the command line. These macros are defined
21558 before the first DW_MACINFO_start_file entry, and yet still need to be
21559 associated to the base file.
21560
21561 To determine the base file name, we scan the macro definitions until we
21562 reach the first DW_MACINFO_start_file entry. We then initialize
21563 CURRENT_FILE accordingly so that any macro definition found before the
21564 first DW_MACINFO_start_file can still be associated to the base file. */
21565
21566 mac_ptr = section->buffer + offset;
21567 mac_end = section->buffer + section->size;
21568
21569 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21570 &offset_size, section_is_gnu);
21571 if (mac_ptr == NULL)
21572 {
21573 /* We already issued a complaint. */
21574 return;
21575 }
21576
21577 do
21578 {
21579 /* Do we at least have room for a macinfo type byte? */
21580 if (mac_ptr >= mac_end)
21581 {
21582 /* Complaint is printed during the second pass as GDB will probably
21583 stop the first pass earlier upon finding
21584 DW_MACINFO_start_file. */
21585 break;
21586 }
21587
aead7601 21588 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21589 mac_ptr++;
21590
21591 /* Note that we rely on the fact that the corresponding GNU and
21592 DWARF constants are the same. */
21593 switch (macinfo_type)
21594 {
21595 /* A zero macinfo type indicates the end of the macro
21596 information. */
21597 case 0:
21598 break;
21599
21600 case DW_MACRO_GNU_define:
21601 case DW_MACRO_GNU_undef:
21602 /* Only skip the data by MAC_PTR. */
21603 {
21604 unsigned int bytes_read;
21605
21606 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21607 mac_ptr += bytes_read;
21608 read_direct_string (abfd, mac_ptr, &bytes_read);
21609 mac_ptr += bytes_read;
21610 }
21611 break;
21612
21613 case DW_MACRO_GNU_start_file:
21614 {
21615 unsigned int bytes_read;
21616 int line, file;
21617
21618 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21619 mac_ptr += bytes_read;
21620 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21621 mac_ptr += bytes_read;
21622
43f3e411 21623 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21624 }
21625 break;
21626
21627 case DW_MACRO_GNU_end_file:
21628 /* No data to skip by MAC_PTR. */
21629 break;
21630
21631 case DW_MACRO_GNU_define_indirect:
21632 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21633 case DW_MACRO_GNU_define_indirect_alt:
21634 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21635 {
21636 unsigned int bytes_read;
21637
21638 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21639 mac_ptr += bytes_read;
21640 mac_ptr += offset_size;
21641 }
21642 break;
21643
21644 case DW_MACRO_GNU_transparent_include:
f7a35f02 21645 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21646 /* Note that, according to the spec, a transparent include
21647 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21648 skip this opcode. */
21649 mac_ptr += offset_size;
21650 break;
21651
21652 case DW_MACINFO_vendor_ext:
21653 /* Only skip the data by MAC_PTR. */
21654 if (!section_is_gnu)
21655 {
21656 unsigned int bytes_read;
21657
21658 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21659 mac_ptr += bytes_read;
21660 read_direct_string (abfd, mac_ptr, &bytes_read);
21661 mac_ptr += bytes_read;
21662 }
21663 /* FALLTHROUGH */
21664
21665 default:
21666 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21667 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21668 section);
21669 if (mac_ptr == NULL)
21670 return;
21671 break;
21672 }
21673 } while (macinfo_type != 0 && current_file == NULL);
21674
21675 /* Second pass: Process all entries.
21676
21677 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21678 command-line macro definitions/undefinitions. This flag is unset when we
21679 reach the first DW_MACINFO_start_file entry. */
21680
fc4007c9
TT
21681 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
21682 htab_eq_pointer,
21683 NULL, xcalloc, xfree));
8fc3fc34 21684 mac_ptr = section->buffer + offset;
fc4007c9 21685 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 21686 *slot = (void *) mac_ptr;
8fc3fc34 21687 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21688 current_file, lh, section,
fc4007c9
TT
21689 section_is_gnu, 0, offset_size,
21690 include_hash.get ());
cf2c3c16
TT
21691}
21692
8e19ed76 21693/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21694 if so return true else false. */
380bca97 21695
8e19ed76 21696static int
6e5a29e1 21697attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21698{
21699 return (attr == NULL ? 0 :
21700 attr->form == DW_FORM_block1
21701 || attr->form == DW_FORM_block2
21702 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21703 || attr->form == DW_FORM_block
21704 || attr->form == DW_FORM_exprloc);
8e19ed76 21705}
4c2df51b 21706
c6a0999f
JB
21707/* Return non-zero if ATTR's value is a section offset --- classes
21708 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21709 You may use DW_UNSND (attr) to retrieve such offsets.
21710
21711 Section 7.5.4, "Attribute Encodings", explains that no attribute
21712 may have a value that belongs to more than one of these classes; it
21713 would be ambiguous if we did, because we use the same forms for all
21714 of them. */
380bca97 21715
3690dd37 21716static int
6e5a29e1 21717attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21718{
21719 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21720 || attr->form == DW_FORM_data8
21721 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21722}
21723
3690dd37
JB
21724/* Return non-zero if ATTR's value falls in the 'constant' class, or
21725 zero otherwise. When this function returns true, you can apply
21726 dwarf2_get_attr_constant_value to it.
21727
21728 However, note that for some attributes you must check
21729 attr_form_is_section_offset before using this test. DW_FORM_data4
21730 and DW_FORM_data8 are members of both the constant class, and of
21731 the classes that contain offsets into other debug sections
21732 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21733 that, if an attribute's can be either a constant or one of the
21734 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21735 taken as section offsets, not constants. */
380bca97 21736
3690dd37 21737static int
6e5a29e1 21738attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21739{
21740 switch (attr->form)
21741 {
21742 case DW_FORM_sdata:
21743 case DW_FORM_udata:
21744 case DW_FORM_data1:
21745 case DW_FORM_data2:
21746 case DW_FORM_data4:
21747 case DW_FORM_data8:
21748 return 1;
21749 default:
21750 return 0;
21751 }
21752}
21753
7771576e
SA
21754
21755/* DW_ADDR is always stored already as sect_offset; despite for the forms
21756 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21757
21758static int
6e5a29e1 21759attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21760{
21761 switch (attr->form)
21762 {
21763 case DW_FORM_ref_addr:
21764 case DW_FORM_ref1:
21765 case DW_FORM_ref2:
21766 case DW_FORM_ref4:
21767 case DW_FORM_ref8:
21768 case DW_FORM_ref_udata:
21769 case DW_FORM_GNU_ref_alt:
21770 return 1;
21771 default:
21772 return 0;
21773 }
21774}
21775
3019eac3
DE
21776/* Return the .debug_loc section to use for CU.
21777 For DWO files use .debug_loc.dwo. */
21778
21779static struct dwarf2_section_info *
21780cu_debug_loc_section (struct dwarf2_cu *cu)
21781{
21782 if (cu->dwo_unit)
21783 return &cu->dwo_unit->dwo_file->sections.loc;
21784 return &dwarf2_per_objfile->loc;
21785}
21786
8cf6f0b1
TT
21787/* A helper function that fills in a dwarf2_loclist_baton. */
21788
21789static void
21790fill_in_loclist_baton (struct dwarf2_cu *cu,
21791 struct dwarf2_loclist_baton *baton,
ff39bb5e 21792 const struct attribute *attr)
8cf6f0b1 21793{
3019eac3
DE
21794 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21795
21796 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21797
21798 baton->per_cu = cu->per_cu;
21799 gdb_assert (baton->per_cu);
21800 /* We don't know how long the location list is, but make sure we
21801 don't run off the edge of the section. */
3019eac3
DE
21802 baton->size = section->size - DW_UNSND (attr);
21803 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21804 baton->base_address = cu->base_address;
f664829e 21805 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21806}
21807
4c2df51b 21808static void
ff39bb5e 21809dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21810 struct dwarf2_cu *cu, int is_block)
4c2df51b 21811{
bb5ed363 21812 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21813 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21814
3690dd37 21815 if (attr_form_is_section_offset (attr)
3019eac3 21816 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21817 the section. If so, fall through to the complaint in the
21818 other branch. */
3019eac3 21819 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21820 {
0d53c4c4 21821 struct dwarf2_loclist_baton *baton;
4c2df51b 21822
8d749320 21823 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21824
8cf6f0b1 21825 fill_in_loclist_baton (cu, baton, attr);
be391dca 21826
d00adf39 21827 if (cu->base_known == 0)
0d53c4c4 21828 complaint (&symfile_complaints,
3e43a32a
MS
21829 _("Location list used without "
21830 "specifying the CU base address."));
4c2df51b 21831
f1e6e072
TT
21832 SYMBOL_ACLASS_INDEX (sym) = (is_block
21833 ? dwarf2_loclist_block_index
21834 : dwarf2_loclist_index);
0d53c4c4
DJ
21835 SYMBOL_LOCATION_BATON (sym) = baton;
21836 }
21837 else
21838 {
21839 struct dwarf2_locexpr_baton *baton;
21840
8d749320 21841 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21842 baton->per_cu = cu->per_cu;
21843 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21844
21845 if (attr_form_is_block (attr))
21846 {
21847 /* Note that we're just copying the block's data pointer
21848 here, not the actual data. We're still pointing into the
6502dd73
DJ
21849 info_buffer for SYM's objfile; right now we never release
21850 that buffer, but when we do clean up properly this may
21851 need to change. */
0d53c4c4
DJ
21852 baton->size = DW_BLOCK (attr)->size;
21853 baton->data = DW_BLOCK (attr)->data;
21854 }
21855 else
21856 {
21857 dwarf2_invalid_attrib_class_complaint ("location description",
21858 SYMBOL_NATURAL_NAME (sym));
21859 baton->size = 0;
0d53c4c4 21860 }
6e70227d 21861
f1e6e072
TT
21862 SYMBOL_ACLASS_INDEX (sym) = (is_block
21863 ? dwarf2_locexpr_block_index
21864 : dwarf2_locexpr_index);
0d53c4c4
DJ
21865 SYMBOL_LOCATION_BATON (sym) = baton;
21866 }
4c2df51b 21867}
6502dd73 21868
9aa1f1e3
TT
21869/* Return the OBJFILE associated with the compilation unit CU. If CU
21870 came from a separate debuginfo file, then the master objfile is
21871 returned. */
ae0d2f24
UW
21872
21873struct objfile *
21874dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21875{
9291a0cd 21876 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21877
21878 /* Return the master objfile, so that we can report and look up the
21879 correct file containing this variable. */
21880 if (objfile->separate_debug_objfile_backlink)
21881 objfile = objfile->separate_debug_objfile_backlink;
21882
21883 return objfile;
21884}
21885
96408a79
SA
21886/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21887 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21888 CU_HEADERP first. */
21889
21890static const struct comp_unit_head *
21891per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21892 struct dwarf2_per_cu_data *per_cu)
21893{
d521ce57 21894 const gdb_byte *info_ptr;
96408a79
SA
21895
21896 if (per_cu->cu)
21897 return &per_cu->cu->header;
21898
8a0459fd 21899 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21900
21901 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21902 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21903
21904 return cu_headerp;
21905}
21906
ae0d2f24
UW
21907/* Return the address size given in the compilation unit header for CU. */
21908
98714339 21909int
ae0d2f24
UW
21910dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21911{
96408a79
SA
21912 struct comp_unit_head cu_header_local;
21913 const struct comp_unit_head *cu_headerp;
c471e790 21914
96408a79
SA
21915 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21916
21917 return cu_headerp->addr_size;
ae0d2f24
UW
21918}
21919
9eae7c52
TT
21920/* Return the offset size given in the compilation unit header for CU. */
21921
21922int
21923dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21924{
96408a79
SA
21925 struct comp_unit_head cu_header_local;
21926 const struct comp_unit_head *cu_headerp;
9c6c53f7 21927
96408a79
SA
21928 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21929
21930 return cu_headerp->offset_size;
21931}
21932
21933/* See its dwarf2loc.h declaration. */
21934
21935int
21936dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21937{
21938 struct comp_unit_head cu_header_local;
21939 const struct comp_unit_head *cu_headerp;
21940
21941 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21942
21943 if (cu_headerp->version == 2)
21944 return cu_headerp->addr_size;
21945 else
21946 return cu_headerp->offset_size;
181cebd4
JK
21947}
21948
9aa1f1e3
TT
21949/* Return the text offset of the CU. The returned offset comes from
21950 this CU's objfile. If this objfile came from a separate debuginfo
21951 file, then the offset may be different from the corresponding
21952 offset in the parent objfile. */
21953
21954CORE_ADDR
21955dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21956{
bb3fa9d0 21957 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21958
21959 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21960}
21961
348e048f
DE
21962/* Locate the .debug_info compilation unit from CU's objfile which contains
21963 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21964
21965static struct dwarf2_per_cu_data *
b64f50a1 21966dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21967 unsigned int offset_in_dwz,
ae038cb0
DJ
21968 struct objfile *objfile)
21969{
21970 struct dwarf2_per_cu_data *this_cu;
21971 int low, high;
36586728 21972 const sect_offset *cu_off;
ae038cb0 21973
ae038cb0
DJ
21974 low = 0;
21975 high = dwarf2_per_objfile->n_comp_units - 1;
21976 while (high > low)
21977 {
36586728 21978 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21979 int mid = low + (high - low) / 2;
9a619af0 21980
36586728
TT
21981 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21982 cu_off = &mid_cu->offset;
21983 if (mid_cu->is_dwz > offset_in_dwz
21984 || (mid_cu->is_dwz == offset_in_dwz
21985 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21986 high = mid;
21987 else
21988 low = mid + 1;
21989 }
21990 gdb_assert (low == high);
36586728
TT
21991 this_cu = dwarf2_per_objfile->all_comp_units[low];
21992 cu_off = &this_cu->offset;
21993 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21994 {
36586728 21995 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21996 error (_("Dwarf Error: could not find partial DIE containing "
21997 "offset 0x%lx [in module %s]"),
b64f50a1 21998 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21999
b64f50a1
JK
22000 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22001 <= offset.sect_off);
ae038cb0
DJ
22002 return dwarf2_per_objfile->all_comp_units[low-1];
22003 }
22004 else
22005 {
22006 this_cu = dwarf2_per_objfile->all_comp_units[low];
22007 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22008 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22009 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22010 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22011 return this_cu;
22012 }
22013}
22014
23745b47 22015/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22016
9816fde3 22017static void
23745b47 22018init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22019{
9816fde3 22020 memset (cu, 0, sizeof (*cu));
23745b47
DE
22021 per_cu->cu = cu;
22022 cu->per_cu = per_cu;
22023 cu->objfile = per_cu->objfile;
93311388 22024 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22025}
22026
22027/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22028
22029static void
95554aad
TT
22030prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22031 enum language pretend_language)
9816fde3
JK
22032{
22033 struct attribute *attr;
22034
22035 /* Set the language we're debugging. */
22036 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22037 if (attr)
22038 set_cu_language (DW_UNSND (attr), cu);
22039 else
9cded63f 22040 {
95554aad 22041 cu->language = pretend_language;
9cded63f
TT
22042 cu->language_defn = language_def (cu->language);
22043 }
dee91e82 22044
7d45c7c3 22045 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22046}
22047
ae038cb0
DJ
22048/* Release one cached compilation unit, CU. We unlink it from the tree
22049 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22050 the caller is responsible for that.
22051 NOTE: DATA is a void * because this function is also used as a
22052 cleanup routine. */
ae038cb0
DJ
22053
22054static void
68dc6402 22055free_heap_comp_unit (void *data)
ae038cb0 22056{
9a3c8263 22057 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22058
23745b47
DE
22059 gdb_assert (cu->per_cu != NULL);
22060 cu->per_cu->cu = NULL;
ae038cb0
DJ
22061 cu->per_cu = NULL;
22062
22063 obstack_free (&cu->comp_unit_obstack, NULL);
22064
22065 xfree (cu);
22066}
22067
72bf9492 22068/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22069 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22070 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22071
22072static void
22073free_stack_comp_unit (void *data)
22074{
9a3c8263 22075 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22076
23745b47
DE
22077 gdb_assert (cu->per_cu != NULL);
22078 cu->per_cu->cu = NULL;
22079 cu->per_cu = NULL;
22080
72bf9492
DJ
22081 obstack_free (&cu->comp_unit_obstack, NULL);
22082 cu->partial_dies = NULL;
ae038cb0
DJ
22083}
22084
22085/* Free all cached compilation units. */
22086
22087static void
22088free_cached_comp_units (void *data)
22089{
22090 struct dwarf2_per_cu_data *per_cu, **last_chain;
22091
22092 per_cu = dwarf2_per_objfile->read_in_chain;
22093 last_chain = &dwarf2_per_objfile->read_in_chain;
22094 while (per_cu != NULL)
22095 {
22096 struct dwarf2_per_cu_data *next_cu;
22097
22098 next_cu = per_cu->cu->read_in_chain;
22099
68dc6402 22100 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22101 *last_chain = next_cu;
22102
22103 per_cu = next_cu;
22104 }
22105}
22106
22107/* Increase the age counter on each cached compilation unit, and free
22108 any that are too old. */
22109
22110static void
22111age_cached_comp_units (void)
22112{
22113 struct dwarf2_per_cu_data *per_cu, **last_chain;
22114
22115 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22116 per_cu = dwarf2_per_objfile->read_in_chain;
22117 while (per_cu != NULL)
22118 {
22119 per_cu->cu->last_used ++;
b4f54984 22120 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22121 dwarf2_mark (per_cu->cu);
22122 per_cu = per_cu->cu->read_in_chain;
22123 }
22124
22125 per_cu = dwarf2_per_objfile->read_in_chain;
22126 last_chain = &dwarf2_per_objfile->read_in_chain;
22127 while (per_cu != NULL)
22128 {
22129 struct dwarf2_per_cu_data *next_cu;
22130
22131 next_cu = per_cu->cu->read_in_chain;
22132
22133 if (!per_cu->cu->mark)
22134 {
68dc6402 22135 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22136 *last_chain = next_cu;
22137 }
22138 else
22139 last_chain = &per_cu->cu->read_in_chain;
22140
22141 per_cu = next_cu;
22142 }
22143}
22144
22145/* Remove a single compilation unit from the cache. */
22146
22147static void
dee91e82 22148free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22149{
22150 struct dwarf2_per_cu_data *per_cu, **last_chain;
22151
22152 per_cu = dwarf2_per_objfile->read_in_chain;
22153 last_chain = &dwarf2_per_objfile->read_in_chain;
22154 while (per_cu != NULL)
22155 {
22156 struct dwarf2_per_cu_data *next_cu;
22157
22158 next_cu = per_cu->cu->read_in_chain;
22159
dee91e82 22160 if (per_cu == target_per_cu)
ae038cb0 22161 {
68dc6402 22162 free_heap_comp_unit (per_cu->cu);
dee91e82 22163 per_cu->cu = NULL;
ae038cb0
DJ
22164 *last_chain = next_cu;
22165 break;
22166 }
22167 else
22168 last_chain = &per_cu->cu->read_in_chain;
22169
22170 per_cu = next_cu;
22171 }
22172}
22173
fe3e1990
DJ
22174/* Release all extra memory associated with OBJFILE. */
22175
22176void
22177dwarf2_free_objfile (struct objfile *objfile)
22178{
9a3c8263
SM
22179 dwarf2_per_objfile
22180 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22181 dwarf2_objfile_data_key);
fe3e1990
DJ
22182
22183 if (dwarf2_per_objfile == NULL)
22184 return;
22185
22186 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22187 free_cached_comp_units (NULL);
22188
7b9f3c50
DE
22189 if (dwarf2_per_objfile->quick_file_names_table)
22190 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22191
527f3840
JK
22192 if (dwarf2_per_objfile->line_header_hash)
22193 htab_delete (dwarf2_per_objfile->line_header_hash);
22194
fe3e1990
DJ
22195 /* Everything else should be on the objfile obstack. */
22196}
22197
dee91e82
DE
22198/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22199 We store these in a hash table separate from the DIEs, and preserve them
22200 when the DIEs are flushed out of cache.
22201
22202 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22203 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22204 or the type may come from a DWO file. Furthermore, while it's more logical
22205 to use per_cu->section+offset, with Fission the section with the data is in
22206 the DWO file but we don't know that section at the point we need it.
22207 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22208 because we can enter the lookup routine, get_die_type_at_offset, from
22209 outside this file, and thus won't necessarily have PER_CU->cu.
22210 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22211
dee91e82 22212struct dwarf2_per_cu_offset_and_type
1c379e20 22213{
dee91e82 22214 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22215 sect_offset offset;
1c379e20
DJ
22216 struct type *type;
22217};
22218
dee91e82 22219/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22220
22221static hashval_t
dee91e82 22222per_cu_offset_and_type_hash (const void *item)
1c379e20 22223{
9a3c8263
SM
22224 const struct dwarf2_per_cu_offset_and_type *ofs
22225 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22226
dee91e82 22227 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22228}
22229
dee91e82 22230/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22231
22232static int
dee91e82 22233per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22234{
9a3c8263
SM
22235 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22236 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22237 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22238 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22239
dee91e82
DE
22240 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22241 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22242}
22243
22244/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22245 table if necessary. For convenience, return TYPE.
22246
22247 The DIEs reading must have careful ordering to:
22248 * Not cause infite loops trying to read in DIEs as a prerequisite for
22249 reading current DIE.
22250 * Not trying to dereference contents of still incompletely read in types
22251 while reading in other DIEs.
22252 * Enable referencing still incompletely read in types just by a pointer to
22253 the type without accessing its fields.
22254
22255 Therefore caller should follow these rules:
22256 * Try to fetch any prerequisite types we may need to build this DIE type
22257 before building the type and calling set_die_type.
e71ec853 22258 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22259 possible before fetching more types to complete the current type.
22260 * Make the type as complete as possible before fetching more types. */
1c379e20 22261
f792889a 22262static struct type *
1c379e20
DJ
22263set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22264{
dee91e82 22265 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22266 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22267 struct attribute *attr;
22268 struct dynamic_prop prop;
1c379e20 22269
b4ba55a1
JB
22270 /* For Ada types, make sure that the gnat-specific data is always
22271 initialized (if not already set). There are a few types where
22272 we should not be doing so, because the type-specific area is
22273 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22274 where the type-specific area is used to store the floatformat).
22275 But this is not a problem, because the gnat-specific information
22276 is actually not needed for these types. */
22277 if (need_gnat_info (cu)
22278 && TYPE_CODE (type) != TYPE_CODE_FUNC
22279 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22280 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22281 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22282 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22283 && !HAVE_GNAT_AUX_INFO (type))
22284 INIT_GNAT_SPECIFIC (type);
22285
3f2f83dd
KB
22286 /* Read DW_AT_allocated and set in type. */
22287 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22288 if (attr_form_is_block (attr))
22289 {
22290 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22291 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22292 }
22293 else if (attr != NULL)
22294 {
22295 complaint (&symfile_complaints,
22296 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22297 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22298 die->offset.sect_off);
22299 }
22300
22301 /* Read DW_AT_associated and set in type. */
22302 attr = dwarf2_attr (die, DW_AT_associated, cu);
22303 if (attr_form_is_block (attr))
22304 {
22305 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22306 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22307 }
22308 else if (attr != NULL)
22309 {
22310 complaint (&symfile_complaints,
22311 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22312 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22313 die->offset.sect_off);
22314 }
22315
3cdcd0ce
JB
22316 /* Read DW_AT_data_location and set in type. */
22317 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22318 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22319 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22320
dee91e82 22321 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22322 {
dee91e82
DE
22323 dwarf2_per_objfile->die_type_hash =
22324 htab_create_alloc_ex (127,
22325 per_cu_offset_and_type_hash,
22326 per_cu_offset_and_type_eq,
22327 NULL,
22328 &objfile->objfile_obstack,
22329 hashtab_obstack_allocate,
22330 dummy_obstack_deallocate);
f792889a 22331 }
1c379e20 22332
dee91e82 22333 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22334 ofs.offset = die->offset;
22335 ofs.type = type;
dee91e82
DE
22336 slot = (struct dwarf2_per_cu_offset_and_type **)
22337 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22338 if (*slot)
22339 complaint (&symfile_complaints,
22340 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22341 die->offset.sect_off);
8d749320
SM
22342 *slot = XOBNEW (&objfile->objfile_obstack,
22343 struct dwarf2_per_cu_offset_and_type);
1c379e20 22344 **slot = ofs;
f792889a 22345 return type;
1c379e20
DJ
22346}
22347
02142a6c
DE
22348/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22349 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22350
22351static struct type *
b64f50a1 22352get_die_type_at_offset (sect_offset offset,
673bfd45 22353 struct dwarf2_per_cu_data *per_cu)
1c379e20 22354{
dee91e82 22355 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22356
dee91e82 22357 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22358 return NULL;
1c379e20 22359
dee91e82 22360 ofs.per_cu = per_cu;
673bfd45 22361 ofs.offset = offset;
9a3c8263
SM
22362 slot = ((struct dwarf2_per_cu_offset_and_type *)
22363 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22364 if (slot)
22365 return slot->type;
22366 else
22367 return NULL;
22368}
22369
02142a6c 22370/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22371 or return NULL if DIE does not have a saved type. */
22372
22373static struct type *
22374get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22375{
22376 return get_die_type_at_offset (die->offset, cu->per_cu);
22377}
22378
10b3939b
DJ
22379/* Add a dependence relationship from CU to REF_PER_CU. */
22380
22381static void
22382dwarf2_add_dependence (struct dwarf2_cu *cu,
22383 struct dwarf2_per_cu_data *ref_per_cu)
22384{
22385 void **slot;
22386
22387 if (cu->dependencies == NULL)
22388 cu->dependencies
22389 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22390 NULL, &cu->comp_unit_obstack,
22391 hashtab_obstack_allocate,
22392 dummy_obstack_deallocate);
22393
22394 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22395 if (*slot == NULL)
22396 *slot = ref_per_cu;
22397}
1c379e20 22398
f504f079
DE
22399/* Subroutine of dwarf2_mark to pass to htab_traverse.
22400 Set the mark field in every compilation unit in the
ae038cb0
DJ
22401 cache that we must keep because we are keeping CU. */
22402
10b3939b
DJ
22403static int
22404dwarf2_mark_helper (void **slot, void *data)
22405{
22406 struct dwarf2_per_cu_data *per_cu;
22407
22408 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22409
22410 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22411 reading of the chain. As such dependencies remain valid it is not much
22412 useful to track and undo them during QUIT cleanups. */
22413 if (per_cu->cu == NULL)
22414 return 1;
22415
10b3939b
DJ
22416 if (per_cu->cu->mark)
22417 return 1;
22418 per_cu->cu->mark = 1;
22419
22420 if (per_cu->cu->dependencies != NULL)
22421 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22422
22423 return 1;
22424}
22425
f504f079
DE
22426/* Set the mark field in CU and in every other compilation unit in the
22427 cache that we must keep because we are keeping CU. */
22428
ae038cb0
DJ
22429static void
22430dwarf2_mark (struct dwarf2_cu *cu)
22431{
22432 if (cu->mark)
22433 return;
22434 cu->mark = 1;
10b3939b
DJ
22435 if (cu->dependencies != NULL)
22436 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22437}
22438
22439static void
22440dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22441{
22442 while (per_cu)
22443 {
22444 per_cu->cu->mark = 0;
22445 per_cu = per_cu->cu->read_in_chain;
22446 }
72bf9492
DJ
22447}
22448
72bf9492
DJ
22449/* Trivial hash function for partial_die_info: the hash value of a DIE
22450 is its offset in .debug_info for this objfile. */
22451
22452static hashval_t
22453partial_die_hash (const void *item)
22454{
9a3c8263
SM
22455 const struct partial_die_info *part_die
22456 = (const struct partial_die_info *) item;
9a619af0 22457
b64f50a1 22458 return part_die->offset.sect_off;
72bf9492
DJ
22459}
22460
22461/* Trivial comparison function for partial_die_info structures: two DIEs
22462 are equal if they have the same offset. */
22463
22464static int
22465partial_die_eq (const void *item_lhs, const void *item_rhs)
22466{
9a3c8263
SM
22467 const struct partial_die_info *part_die_lhs
22468 = (const struct partial_die_info *) item_lhs;
22469 const struct partial_die_info *part_die_rhs
22470 = (const struct partial_die_info *) item_rhs;
9a619af0 22471
b64f50a1 22472 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22473}
22474
b4f54984
DE
22475static struct cmd_list_element *set_dwarf_cmdlist;
22476static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22477
22478static void
b4f54984 22479set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22480{
b4f54984 22481 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22482 gdb_stdout);
ae038cb0
DJ
22483}
22484
22485static void
b4f54984 22486show_dwarf_cmd (char *args, int from_tty)
6e70227d 22487{
b4f54984 22488 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22489}
22490
4bf44c1c 22491/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22492
22493static void
c1bd65d0 22494dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22495{
9a3c8263 22496 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22497 int ix;
8b70b953 22498
626f2d1c
TT
22499 /* Make sure we don't accidentally use dwarf2_per_objfile while
22500 cleaning up. */
22501 dwarf2_per_objfile = NULL;
22502
59b0c7c1
JB
22503 for (ix = 0; ix < data->n_comp_units; ++ix)
22504 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22505
59b0c7c1 22506 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22507 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22508 data->all_type_units[ix]->per_cu.imported_symtabs);
22509 xfree (data->all_type_units);
95554aad 22510
8b70b953 22511 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22512
22513 if (data->dwo_files)
22514 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22515 if (data->dwp_file)
22516 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22517
22518 if (data->dwz_file && data->dwz_file->dwz_bfd)
22519 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22520}
22521
22522\f
ae2de4f8 22523/* The "save gdb-index" command. */
9291a0cd
TT
22524
22525/* The contents of the hash table we create when building the string
22526 table. */
22527struct strtab_entry
22528{
22529 offset_type offset;
22530 const char *str;
22531};
22532
559a7a62
JK
22533/* Hash function for a strtab_entry.
22534
22535 Function is used only during write_hash_table so no index format backward
22536 compatibility is needed. */
b89be57b 22537
9291a0cd
TT
22538static hashval_t
22539hash_strtab_entry (const void *e)
22540{
9a3c8263 22541 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22542 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22543}
22544
22545/* Equality function for a strtab_entry. */
b89be57b 22546
9291a0cd
TT
22547static int
22548eq_strtab_entry (const void *a, const void *b)
22549{
9a3c8263
SM
22550 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22551 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22552 return !strcmp (ea->str, eb->str);
22553}
22554
22555/* Create a strtab_entry hash table. */
b89be57b 22556
9291a0cd
TT
22557static htab_t
22558create_strtab (void)
22559{
22560 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22561 xfree, xcalloc, xfree);
22562}
22563
22564/* Add a string to the constant pool. Return the string's offset in
22565 host order. */
b89be57b 22566
9291a0cd
TT
22567static offset_type
22568add_string (htab_t table, struct obstack *cpool, const char *str)
22569{
22570 void **slot;
22571 struct strtab_entry entry;
22572 struct strtab_entry *result;
22573
22574 entry.str = str;
22575 slot = htab_find_slot (table, &entry, INSERT);
22576 if (*slot)
9a3c8263 22577 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22578 else
22579 {
22580 result = XNEW (struct strtab_entry);
22581 result->offset = obstack_object_size (cpool);
22582 result->str = str;
22583 obstack_grow_str0 (cpool, str);
22584 *slot = result;
22585 }
22586 return result->offset;
22587}
22588
22589/* An entry in the symbol table. */
22590struct symtab_index_entry
22591{
22592 /* The name of the symbol. */
22593 const char *name;
22594 /* The offset of the name in the constant pool. */
22595 offset_type index_offset;
22596 /* A sorted vector of the indices of all the CUs that hold an object
22597 of this name. */
22598 VEC (offset_type) *cu_indices;
22599};
22600
22601/* The symbol table. This is a power-of-2-sized hash table. */
22602struct mapped_symtab
22603{
22604 offset_type n_elements;
22605 offset_type size;
22606 struct symtab_index_entry **data;
22607};
22608
22609/* Hash function for a symtab_index_entry. */
b89be57b 22610
9291a0cd
TT
22611static hashval_t
22612hash_symtab_entry (const void *e)
22613{
9a3c8263
SM
22614 const struct symtab_index_entry *entry
22615 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22616 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22617 sizeof (offset_type) * VEC_length (offset_type,
22618 entry->cu_indices),
22619 0);
22620}
22621
22622/* Equality function for a symtab_index_entry. */
b89be57b 22623
9291a0cd
TT
22624static int
22625eq_symtab_entry (const void *a, const void *b)
22626{
9a3c8263
SM
22627 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22628 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22629 int len = VEC_length (offset_type, ea->cu_indices);
22630 if (len != VEC_length (offset_type, eb->cu_indices))
22631 return 0;
22632 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22633 VEC_address (offset_type, eb->cu_indices),
22634 sizeof (offset_type) * len);
22635}
22636
22637/* Destroy a symtab_index_entry. */
b89be57b 22638
9291a0cd
TT
22639static void
22640delete_symtab_entry (void *p)
22641{
9a3c8263 22642 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22643 VEC_free (offset_type, entry->cu_indices);
22644 xfree (entry);
22645}
22646
22647/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22648
9291a0cd 22649static htab_t
3876f04e 22650create_symbol_hash_table (void)
9291a0cd
TT
22651{
22652 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22653 delete_symtab_entry, xcalloc, xfree);
22654}
22655
22656/* Create a new mapped symtab object. */
b89be57b 22657
9291a0cd
TT
22658static struct mapped_symtab *
22659create_mapped_symtab (void)
22660{
22661 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22662 symtab->n_elements = 0;
22663 symtab->size = 1024;
22664 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22665 return symtab;
22666}
22667
22668/* Destroy a mapped_symtab. */
b89be57b 22669
9291a0cd
TT
22670static void
22671cleanup_mapped_symtab (void *p)
22672{
9a3c8263 22673 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22674 /* The contents of the array are freed when the other hash table is
22675 destroyed. */
22676 xfree (symtab->data);
22677 xfree (symtab);
22678}
22679
22680/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22681 the slot.
22682
22683 Function is used only during write_hash_table so no index format backward
22684 compatibility is needed. */
b89be57b 22685
9291a0cd
TT
22686static struct symtab_index_entry **
22687find_slot (struct mapped_symtab *symtab, const char *name)
22688{
559a7a62 22689 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22690
22691 index = hash & (symtab->size - 1);
22692 step = ((hash * 17) & (symtab->size - 1)) | 1;
22693
22694 for (;;)
22695 {
22696 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22697 return &symtab->data[index];
22698 index = (index + step) & (symtab->size - 1);
22699 }
22700}
22701
22702/* Expand SYMTAB's hash table. */
b89be57b 22703
9291a0cd
TT
22704static void
22705hash_expand (struct mapped_symtab *symtab)
22706{
22707 offset_type old_size = symtab->size;
22708 offset_type i;
22709 struct symtab_index_entry **old_entries = symtab->data;
22710
22711 symtab->size *= 2;
22712 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22713
22714 for (i = 0; i < old_size; ++i)
22715 {
22716 if (old_entries[i])
22717 {
22718 struct symtab_index_entry **slot = find_slot (symtab,
22719 old_entries[i]->name);
22720 *slot = old_entries[i];
22721 }
22722 }
22723
22724 xfree (old_entries);
22725}
22726
156942c7
DE
22727/* Add an entry to SYMTAB. NAME is the name of the symbol.
22728 CU_INDEX is the index of the CU in which the symbol appears.
22729 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22730
9291a0cd
TT
22731static void
22732add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22733 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22734 offset_type cu_index)
22735{
22736 struct symtab_index_entry **slot;
156942c7 22737 offset_type cu_index_and_attrs;
9291a0cd
TT
22738
22739 ++symtab->n_elements;
22740 if (4 * symtab->n_elements / 3 >= symtab->size)
22741 hash_expand (symtab);
22742
22743 slot = find_slot (symtab, name);
22744 if (!*slot)
22745 {
22746 *slot = XNEW (struct symtab_index_entry);
22747 (*slot)->name = name;
156942c7 22748 /* index_offset is set later. */
9291a0cd
TT
22749 (*slot)->cu_indices = NULL;
22750 }
156942c7
DE
22751
22752 cu_index_and_attrs = 0;
22753 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22754 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22755 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22756
22757 /* We don't want to record an index value twice as we want to avoid the
22758 duplication.
22759 We process all global symbols and then all static symbols
22760 (which would allow us to avoid the duplication by only having to check
22761 the last entry pushed), but a symbol could have multiple kinds in one CU.
22762 To keep things simple we don't worry about the duplication here and
22763 sort and uniqufy the list after we've processed all symbols. */
22764 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22765}
22766
22767/* qsort helper routine for uniquify_cu_indices. */
22768
22769static int
22770offset_type_compare (const void *ap, const void *bp)
22771{
22772 offset_type a = *(offset_type *) ap;
22773 offset_type b = *(offset_type *) bp;
22774
22775 return (a > b) - (b > a);
22776}
22777
22778/* Sort and remove duplicates of all symbols' cu_indices lists. */
22779
22780static void
22781uniquify_cu_indices (struct mapped_symtab *symtab)
22782{
22783 int i;
22784
22785 for (i = 0; i < symtab->size; ++i)
22786 {
22787 struct symtab_index_entry *entry = symtab->data[i];
22788
22789 if (entry
22790 && entry->cu_indices != NULL)
22791 {
22792 unsigned int next_to_insert, next_to_check;
22793 offset_type last_value;
22794
22795 qsort (VEC_address (offset_type, entry->cu_indices),
22796 VEC_length (offset_type, entry->cu_indices),
22797 sizeof (offset_type), offset_type_compare);
22798
22799 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22800 next_to_insert = 1;
22801 for (next_to_check = 1;
22802 next_to_check < VEC_length (offset_type, entry->cu_indices);
22803 ++next_to_check)
22804 {
22805 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22806 != last_value)
22807 {
22808 last_value = VEC_index (offset_type, entry->cu_indices,
22809 next_to_check);
22810 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22811 last_value);
22812 ++next_to_insert;
22813 }
22814 }
22815 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22816 }
22817 }
9291a0cd
TT
22818}
22819
22820/* Add a vector of indices to the constant pool. */
b89be57b 22821
9291a0cd 22822static offset_type
3876f04e 22823add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22824 struct symtab_index_entry *entry)
22825{
22826 void **slot;
22827
3876f04e 22828 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22829 if (!*slot)
22830 {
22831 offset_type len = VEC_length (offset_type, entry->cu_indices);
22832 offset_type val = MAYBE_SWAP (len);
22833 offset_type iter;
22834 int i;
22835
22836 *slot = entry;
22837 entry->index_offset = obstack_object_size (cpool);
22838
22839 obstack_grow (cpool, &val, sizeof (val));
22840 for (i = 0;
22841 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22842 ++i)
22843 {
22844 val = MAYBE_SWAP (iter);
22845 obstack_grow (cpool, &val, sizeof (val));
22846 }
22847 }
22848 else
22849 {
9a3c8263
SM
22850 struct symtab_index_entry *old_entry
22851 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22852 entry->index_offset = old_entry->index_offset;
22853 entry = old_entry;
22854 }
22855 return entry->index_offset;
22856}
22857
22858/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22859 constant pool entries going into the obstack CPOOL. */
b89be57b 22860
9291a0cd
TT
22861static void
22862write_hash_table (struct mapped_symtab *symtab,
22863 struct obstack *output, struct obstack *cpool)
22864{
22865 offset_type i;
3876f04e 22866 htab_t symbol_hash_table;
9291a0cd
TT
22867 htab_t str_table;
22868
3876f04e 22869 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22870 str_table = create_strtab ();
3876f04e 22871
9291a0cd
TT
22872 /* We add all the index vectors to the constant pool first, to
22873 ensure alignment is ok. */
22874 for (i = 0; i < symtab->size; ++i)
22875 {
22876 if (symtab->data[i])
3876f04e 22877 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22878 }
22879
22880 /* Now write out the hash table. */
22881 for (i = 0; i < symtab->size; ++i)
22882 {
22883 offset_type str_off, vec_off;
22884
22885 if (symtab->data[i])
22886 {
22887 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22888 vec_off = symtab->data[i]->index_offset;
22889 }
22890 else
22891 {
22892 /* While 0 is a valid constant pool index, it is not valid
22893 to have 0 for both offsets. */
22894 str_off = 0;
22895 vec_off = 0;
22896 }
22897
22898 str_off = MAYBE_SWAP (str_off);
22899 vec_off = MAYBE_SWAP (vec_off);
22900
22901 obstack_grow (output, &str_off, sizeof (str_off));
22902 obstack_grow (output, &vec_off, sizeof (vec_off));
22903 }
22904
22905 htab_delete (str_table);
3876f04e 22906 htab_delete (symbol_hash_table);
9291a0cd
TT
22907}
22908
0a5429f6
DE
22909/* Struct to map psymtab to CU index in the index file. */
22910struct psymtab_cu_index_map
22911{
22912 struct partial_symtab *psymtab;
22913 unsigned int cu_index;
22914};
22915
22916static hashval_t
22917hash_psymtab_cu_index (const void *item)
22918{
9a3c8263
SM
22919 const struct psymtab_cu_index_map *map
22920 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
22921
22922 return htab_hash_pointer (map->psymtab);
22923}
22924
22925static int
22926eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22927{
9a3c8263
SM
22928 const struct psymtab_cu_index_map *lhs
22929 = (const struct psymtab_cu_index_map *) item_lhs;
22930 const struct psymtab_cu_index_map *rhs
22931 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
22932
22933 return lhs->psymtab == rhs->psymtab;
22934}
22935
22936/* Helper struct for building the address table. */
22937struct addrmap_index_data
22938{
22939 struct objfile *objfile;
22940 struct obstack *addr_obstack;
22941 htab_t cu_index_htab;
22942
22943 /* Non-zero if the previous_* fields are valid.
22944 We can't write an entry until we see the next entry (since it is only then
22945 that we know the end of the entry). */
22946 int previous_valid;
22947 /* Index of the CU in the table of all CUs in the index file. */
22948 unsigned int previous_cu_index;
0963b4bd 22949 /* Start address of the CU. */
0a5429f6
DE
22950 CORE_ADDR previous_cu_start;
22951};
22952
22953/* Write an address entry to OBSTACK. */
b89be57b 22954
9291a0cd 22955static void
0a5429f6
DE
22956add_address_entry (struct objfile *objfile, struct obstack *obstack,
22957 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22958{
0a5429f6 22959 offset_type cu_index_to_write;
948f8e3d 22960 gdb_byte addr[8];
9291a0cd
TT
22961 CORE_ADDR baseaddr;
22962
22963 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22964
0a5429f6
DE
22965 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22966 obstack_grow (obstack, addr, 8);
22967 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22968 obstack_grow (obstack, addr, 8);
22969 cu_index_to_write = MAYBE_SWAP (cu_index);
22970 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22971}
22972
22973/* Worker function for traversing an addrmap to build the address table. */
22974
22975static int
22976add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22977{
9a3c8263
SM
22978 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
22979 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
22980
22981 if (data->previous_valid)
22982 add_address_entry (data->objfile, data->addr_obstack,
22983 data->previous_cu_start, start_addr,
22984 data->previous_cu_index);
22985
22986 data->previous_cu_start = start_addr;
22987 if (pst != NULL)
22988 {
22989 struct psymtab_cu_index_map find_map, *map;
22990 find_map.psymtab = pst;
9a3c8263
SM
22991 map = ((struct psymtab_cu_index_map *)
22992 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
22993 gdb_assert (map != NULL);
22994 data->previous_cu_index = map->cu_index;
22995 data->previous_valid = 1;
22996 }
22997 else
22998 data->previous_valid = 0;
22999
23000 return 0;
23001}
23002
23003/* Write OBJFILE's address map to OBSTACK.
23004 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23005 in the index file. */
23006
23007static void
23008write_address_map (struct objfile *objfile, struct obstack *obstack,
23009 htab_t cu_index_htab)
23010{
23011 struct addrmap_index_data addrmap_index_data;
23012
23013 /* When writing the address table, we have to cope with the fact that
23014 the addrmap iterator only provides the start of a region; we have to
23015 wait until the next invocation to get the start of the next region. */
23016
23017 addrmap_index_data.objfile = objfile;
23018 addrmap_index_data.addr_obstack = obstack;
23019 addrmap_index_data.cu_index_htab = cu_index_htab;
23020 addrmap_index_data.previous_valid = 0;
23021
23022 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23023 &addrmap_index_data);
23024
23025 /* It's highly unlikely the last entry (end address = 0xff...ff)
23026 is valid, but we should still handle it.
23027 The end address is recorded as the start of the next region, but that
23028 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23029 anyway. */
23030 if (addrmap_index_data.previous_valid)
23031 add_address_entry (objfile, obstack,
23032 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23033 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23034}
23035
156942c7
DE
23036/* Return the symbol kind of PSYM. */
23037
23038static gdb_index_symbol_kind
23039symbol_kind (struct partial_symbol *psym)
23040{
23041 domain_enum domain = PSYMBOL_DOMAIN (psym);
23042 enum address_class aclass = PSYMBOL_CLASS (psym);
23043
23044 switch (domain)
23045 {
23046 case VAR_DOMAIN:
23047 switch (aclass)
23048 {
23049 case LOC_BLOCK:
23050 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23051 case LOC_TYPEDEF:
23052 return GDB_INDEX_SYMBOL_KIND_TYPE;
23053 case LOC_COMPUTED:
23054 case LOC_CONST_BYTES:
23055 case LOC_OPTIMIZED_OUT:
23056 case LOC_STATIC:
23057 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23058 case LOC_CONST:
23059 /* Note: It's currently impossible to recognize psyms as enum values
23060 short of reading the type info. For now punt. */
23061 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23062 default:
23063 /* There are other LOC_FOO values that one might want to classify
23064 as variables, but dwarf2read.c doesn't currently use them. */
23065 return GDB_INDEX_SYMBOL_KIND_OTHER;
23066 }
23067 case STRUCT_DOMAIN:
23068 return GDB_INDEX_SYMBOL_KIND_TYPE;
23069 default:
23070 return GDB_INDEX_SYMBOL_KIND_OTHER;
23071 }
23072}
23073
9291a0cd 23074/* Add a list of partial symbols to SYMTAB. */
b89be57b 23075
9291a0cd
TT
23076static void
23077write_psymbols (struct mapped_symtab *symtab,
987d643c 23078 htab_t psyms_seen,
9291a0cd
TT
23079 struct partial_symbol **psymp,
23080 int count,
987d643c
TT
23081 offset_type cu_index,
23082 int is_static)
9291a0cd
TT
23083{
23084 for (; count-- > 0; ++psymp)
23085 {
156942c7
DE
23086 struct partial_symbol *psym = *psymp;
23087 void **slot;
987d643c 23088
156942c7 23089 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23090 error (_("Ada is not currently supported by the index"));
987d643c 23091
987d643c 23092 /* Only add a given psymbol once. */
156942c7 23093 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23094 if (!*slot)
23095 {
156942c7
DE
23096 gdb_index_symbol_kind kind = symbol_kind (psym);
23097
23098 *slot = psym;
23099 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23100 is_static, kind, cu_index);
987d643c 23101 }
9291a0cd
TT
23102 }
23103}
23104
23105/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23106 exception if there is an error. */
b89be57b 23107
9291a0cd
TT
23108static void
23109write_obstack (FILE *file, struct obstack *obstack)
23110{
23111 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23112 file)
23113 != obstack_object_size (obstack))
23114 error (_("couldn't data write to file"));
23115}
23116
1fd400ff
TT
23117/* A helper struct used when iterating over debug_types. */
23118struct signatured_type_index_data
23119{
23120 struct objfile *objfile;
23121 struct mapped_symtab *symtab;
23122 struct obstack *types_list;
987d643c 23123 htab_t psyms_seen;
1fd400ff
TT
23124 int cu_index;
23125};
23126
23127/* A helper function that writes a single signatured_type to an
23128 obstack. */
b89be57b 23129
1fd400ff
TT
23130static int
23131write_one_signatured_type (void **slot, void *d)
23132{
9a3c8263
SM
23133 struct signatured_type_index_data *info
23134 = (struct signatured_type_index_data *) d;
1fd400ff 23135 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23136 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23137 gdb_byte val[8];
23138
23139 write_psymbols (info->symtab,
987d643c 23140 info->psyms_seen,
3e43a32a
MS
23141 info->objfile->global_psymbols.list
23142 + psymtab->globals_offset,
987d643c
TT
23143 psymtab->n_global_syms, info->cu_index,
23144 0);
1fd400ff 23145 write_psymbols (info->symtab,
987d643c 23146 info->psyms_seen,
3e43a32a
MS
23147 info->objfile->static_psymbols.list
23148 + psymtab->statics_offset,
987d643c
TT
23149 psymtab->n_static_syms, info->cu_index,
23150 1);
1fd400ff 23151
b64f50a1
JK
23152 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23153 entry->per_cu.offset.sect_off);
1fd400ff 23154 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23155 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23156 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23157 obstack_grow (info->types_list, val, 8);
23158 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23159 obstack_grow (info->types_list, val, 8);
23160
23161 ++info->cu_index;
23162
23163 return 1;
23164}
23165
95554aad
TT
23166/* Recurse into all "included" dependencies and write their symbols as
23167 if they appeared in this psymtab. */
23168
23169static void
23170recursively_write_psymbols (struct objfile *objfile,
23171 struct partial_symtab *psymtab,
23172 struct mapped_symtab *symtab,
23173 htab_t psyms_seen,
23174 offset_type cu_index)
23175{
23176 int i;
23177
23178 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23179 if (psymtab->dependencies[i]->user != NULL)
23180 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23181 symtab, psyms_seen, cu_index);
23182
23183 write_psymbols (symtab,
23184 psyms_seen,
23185 objfile->global_psymbols.list + psymtab->globals_offset,
23186 psymtab->n_global_syms, cu_index,
23187 0);
23188 write_psymbols (symtab,
23189 psyms_seen,
23190 objfile->static_psymbols.list + psymtab->statics_offset,
23191 psymtab->n_static_syms, cu_index,
23192 1);
23193}
23194
9291a0cd 23195/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23196
9291a0cd
TT
23197static void
23198write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23199{
23200 struct cleanup *cleanup;
bef155c3 23201 char *filename;
1fd400ff
TT
23202 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23203 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23204 int i;
23205 FILE *out_file;
23206 struct mapped_symtab *symtab;
23207 offset_type val, size_of_contents, total_len;
23208 struct stat st;
0a5429f6 23209 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23210
9291a0cd
TT
23211 if (dwarf2_per_objfile->using_index)
23212 error (_("Cannot use an index to create the index"));
23213
8b70b953
TT
23214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23215 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23216
260b681b
DE
23217 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23218 return;
23219
4262abfb
JK
23220 if (stat (objfile_name (objfile), &st) < 0)
23221 perror_with_name (objfile_name (objfile));
9291a0cd 23222
4262abfb 23223 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23224 INDEX_SUFFIX, (char *) NULL);
23225 cleanup = make_cleanup (xfree, filename);
23226
614c279d 23227 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23228 if (!out_file)
23229 error (_("Can't open `%s' for writing"), filename);
23230
bef155c3 23231 gdb::unlinker unlink_file (filename);
9291a0cd
TT
23232
23233 symtab = create_mapped_symtab ();
23234 make_cleanup (cleanup_mapped_symtab, symtab);
23235
23236 obstack_init (&addr_obstack);
23237 make_cleanup_obstack_free (&addr_obstack);
23238
23239 obstack_init (&cu_list);
23240 make_cleanup_obstack_free (&cu_list);
23241
1fd400ff
TT
23242 obstack_init (&types_cu_list);
23243 make_cleanup_obstack_free (&types_cu_list);
23244
fc4007c9
TT
23245 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23246 htab_eq_pointer,
23247 NULL, xcalloc, xfree));
987d643c 23248
0a5429f6
DE
23249 /* While we're scanning CU's create a table that maps a psymtab pointer
23250 (which is what addrmap records) to its index (which is what is recorded
23251 in the index file). This will later be needed to write the address
23252 table. */
fc4007c9
TT
23253 htab_up cu_index_htab (htab_create_alloc (100,
23254 hash_psymtab_cu_index,
23255 eq_psymtab_cu_index,
23256 NULL, xcalloc, xfree));
8d749320
SM
23257 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23258 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23259 make_cleanup (xfree, psymtab_cu_index_map);
23260
23261 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23262 work here. Also, the debug_types entries do not appear in
23263 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23264 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23265 {
3e43a32a
MS
23266 struct dwarf2_per_cu_data *per_cu
23267 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23268 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23269 gdb_byte val[8];
0a5429f6
DE
23270 struct psymtab_cu_index_map *map;
23271 void **slot;
9291a0cd 23272
92fac807
JK
23273 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23274 It may be referenced from a local scope but in such case it does not
23275 need to be present in .gdb_index. */
23276 if (psymtab == NULL)
23277 continue;
23278
95554aad 23279 if (psymtab->user == NULL)
fc4007c9
TT
23280 recursively_write_psymbols (objfile, psymtab, symtab,
23281 psyms_seen.get (), i);
9291a0cd 23282
0a5429f6
DE
23283 map = &psymtab_cu_index_map[i];
23284 map->psymtab = psymtab;
23285 map->cu_index = i;
fc4007c9 23286 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
0a5429f6
DE
23287 gdb_assert (slot != NULL);
23288 gdb_assert (*slot == NULL);
23289 *slot = map;
9291a0cd 23290
b64f50a1
JK
23291 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23292 per_cu->offset.sect_off);
9291a0cd 23293 obstack_grow (&cu_list, val, 8);
e254ef6a 23294 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23295 obstack_grow (&cu_list, val, 8);
23296 }
23297
0a5429f6 23298 /* Dump the address map. */
fc4007c9 23299 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
0a5429f6 23300
1fd400ff
TT
23301 /* Write out the .debug_type entries, if any. */
23302 if (dwarf2_per_objfile->signatured_types)
23303 {
23304 struct signatured_type_index_data sig_data;
23305
23306 sig_data.objfile = objfile;
23307 sig_data.symtab = symtab;
23308 sig_data.types_list = &types_cu_list;
fc4007c9 23309 sig_data.psyms_seen = psyms_seen.get ();
1fd400ff
TT
23310 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23311 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23312 write_one_signatured_type, &sig_data);
23313 }
23314
156942c7
DE
23315 /* Now that we've processed all symbols we can shrink their cu_indices
23316 lists. */
23317 uniquify_cu_indices (symtab);
23318
9291a0cd
TT
23319 obstack_init (&constant_pool);
23320 make_cleanup_obstack_free (&constant_pool);
23321 obstack_init (&symtab_obstack);
23322 make_cleanup_obstack_free (&symtab_obstack);
23323 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23324
23325 obstack_init (&contents);
23326 make_cleanup_obstack_free (&contents);
1fd400ff 23327 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23328 total_len = size_of_contents;
23329
23330 /* The version number. */
796a7ff8 23331 val = MAYBE_SWAP (8);
9291a0cd
TT
23332 obstack_grow (&contents, &val, sizeof (val));
23333
23334 /* The offset of the CU list from the start of the file. */
23335 val = MAYBE_SWAP (total_len);
23336 obstack_grow (&contents, &val, sizeof (val));
23337 total_len += obstack_object_size (&cu_list);
23338
1fd400ff
TT
23339 /* The offset of the types CU list from the start of the file. */
23340 val = MAYBE_SWAP (total_len);
23341 obstack_grow (&contents, &val, sizeof (val));
23342 total_len += obstack_object_size (&types_cu_list);
23343
9291a0cd
TT
23344 /* The offset of the address table from the start of the file. */
23345 val = MAYBE_SWAP (total_len);
23346 obstack_grow (&contents, &val, sizeof (val));
23347 total_len += obstack_object_size (&addr_obstack);
23348
23349 /* The offset of the symbol table from the start of the file. */
23350 val = MAYBE_SWAP (total_len);
23351 obstack_grow (&contents, &val, sizeof (val));
23352 total_len += obstack_object_size (&symtab_obstack);
23353
23354 /* The offset of the constant pool from the start of the file. */
23355 val = MAYBE_SWAP (total_len);
23356 obstack_grow (&contents, &val, sizeof (val));
23357 total_len += obstack_object_size (&constant_pool);
23358
23359 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23360
23361 write_obstack (out_file, &contents);
23362 write_obstack (out_file, &cu_list);
1fd400ff 23363 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23364 write_obstack (out_file, &addr_obstack);
23365 write_obstack (out_file, &symtab_obstack);
23366 write_obstack (out_file, &constant_pool);
23367
23368 fclose (out_file);
23369
bef155c3
TT
23370 /* We want to keep the file. */
23371 unlink_file.keep ();
9291a0cd
TT
23372
23373 do_cleanups (cleanup);
23374}
23375
90476074
TT
23376/* Implementation of the `save gdb-index' command.
23377
23378 Note that the file format used by this command is documented in the
23379 GDB manual. Any changes here must be documented there. */
11570e71 23380
9291a0cd
TT
23381static void
23382save_gdb_index_command (char *arg, int from_tty)
23383{
23384 struct objfile *objfile;
23385
23386 if (!arg || !*arg)
96d19272 23387 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23388
23389 ALL_OBJFILES (objfile)
23390 {
23391 struct stat st;
23392
23393 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23394 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23395 continue;
23396
9a3c8263
SM
23397 dwarf2_per_objfile
23398 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23399 dwarf2_objfile_data_key);
9291a0cd
TT
23400 if (dwarf2_per_objfile)
23401 {
9291a0cd 23402
492d29ea 23403 TRY
9291a0cd
TT
23404 {
23405 write_psymtabs_to_index (objfile, arg);
23406 }
492d29ea
PA
23407 CATCH (except, RETURN_MASK_ERROR)
23408 {
23409 exception_fprintf (gdb_stderr, except,
23410 _("Error while writing index for `%s': "),
23411 objfile_name (objfile));
23412 }
23413 END_CATCH
9291a0cd
TT
23414 }
23415 }
dce234bc
PP
23416}
23417
9291a0cd
TT
23418\f
23419
b4f54984 23420int dwarf_always_disassemble;
9eae7c52
TT
23421
23422static void
b4f54984
DE
23423show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23424 struct cmd_list_element *c, const char *value)
9eae7c52 23425{
3e43a32a
MS
23426 fprintf_filtered (file,
23427 _("Whether to always disassemble "
23428 "DWARF expressions is %s.\n"),
9eae7c52
TT
23429 value);
23430}
23431
900e11f9
JK
23432static void
23433show_check_physname (struct ui_file *file, int from_tty,
23434 struct cmd_list_element *c, const char *value)
23435{
23436 fprintf_filtered (file,
23437 _("Whether to check \"physname\" is %s.\n"),
23438 value);
23439}
23440
6502dd73
DJ
23441void _initialize_dwarf2_read (void);
23442
23443void
23444_initialize_dwarf2_read (void)
23445{
96d19272
JK
23446 struct cmd_list_element *c;
23447
dce234bc 23448 dwarf2_objfile_data_key
c1bd65d0 23449 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23450
b4f54984
DE
23451 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23452Set DWARF specific variables.\n\
23453Configure DWARF variables such as the cache size"),
23454 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23455 0/*allow-unknown*/, &maintenance_set_cmdlist);
23456
b4f54984
DE
23457 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23458Show DWARF specific variables\n\
23459Show DWARF variables such as the cache size"),
23460 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23461 0/*allow-unknown*/, &maintenance_show_cmdlist);
23462
23463 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23464 &dwarf_max_cache_age, _("\
23465Set the upper bound on the age of cached DWARF compilation units."), _("\
23466Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23467A higher limit means that cached compilation units will be stored\n\
23468in memory longer, and more total memory will be used. Zero disables\n\
23469caching, which can slow down startup."),
2c5b56ce 23470 NULL,
b4f54984
DE
23471 show_dwarf_max_cache_age,
23472 &set_dwarf_cmdlist,
23473 &show_dwarf_cmdlist);
d97bc12b 23474
9eae7c52 23475 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23476 &dwarf_always_disassemble, _("\
9eae7c52
TT
23477Set whether `info address' always disassembles DWARF expressions."), _("\
23478Show whether `info address' always disassembles DWARF expressions."), _("\
23479When enabled, DWARF expressions are always printed in an assembly-like\n\
23480syntax. When disabled, expressions will be printed in a more\n\
23481conversational style, when possible."),
23482 NULL,
b4f54984
DE
23483 show_dwarf_always_disassemble,
23484 &set_dwarf_cmdlist,
23485 &show_dwarf_cmdlist);
23486
23487 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23488Set debugging of the DWARF reader."), _("\
23489Show debugging of the DWARF reader."), _("\
23490When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23491reading and symtab expansion. A value of 1 (one) provides basic\n\
23492information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23493 NULL,
23494 NULL,
23495 &setdebuglist, &showdebuglist);
23496
b4f54984
DE
23497 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23498Set debugging of the DWARF DIE reader."), _("\
23499Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23500When enabled (non-zero), DIEs are dumped after they are read in.\n\
23501The value is the maximum depth to print."),
ccce17b0
YQ
23502 NULL,
23503 NULL,
23504 &setdebuglist, &showdebuglist);
9291a0cd 23505
27e0867f
DE
23506 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23507Set debugging of the dwarf line reader."), _("\
23508Show debugging of the dwarf line reader."), _("\
23509When enabled (non-zero), line number entries are dumped as they are read in.\n\
23510A value of 1 (one) provides basic information.\n\
23511A value greater than 1 provides more verbose information."),
23512 NULL,
23513 NULL,
23514 &setdebuglist, &showdebuglist);
23515
900e11f9
JK
23516 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23517Set cross-checking of \"physname\" code against demangler."), _("\
23518Show cross-checking of \"physname\" code against demangler."), _("\
23519When enabled, GDB's internal \"physname\" code is checked against\n\
23520the demangler."),
23521 NULL, show_check_physname,
23522 &setdebuglist, &showdebuglist);
23523
e615022a
DE
23524 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23525 no_class, &use_deprecated_index_sections, _("\
23526Set whether to use deprecated gdb_index sections."), _("\
23527Show whether to use deprecated gdb_index sections."), _("\
23528When enabled, deprecated .gdb_index sections are used anyway.\n\
23529Normally they are ignored either because of a missing feature or\n\
23530performance issue.\n\
23531Warning: This option must be enabled before gdb reads the file."),
23532 NULL,
23533 NULL,
23534 &setlist, &showlist);
23535
96d19272 23536 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23537 _("\
fc1a9d6e 23538Save a gdb-index file.\n\
11570e71 23539Usage: save gdb-index DIRECTORY"),
96d19272
JK
23540 &save_cmdlist);
23541 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23542
23543 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23544 &dwarf2_locexpr_funcs);
23545 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23546 &dwarf2_loclist_funcs);
23547
23548 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23549 &dwarf2_block_frame_base_locexpr_funcs);
23550 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23551 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23552}
This page took 3.922264 seconds and 4 git commands to generate.