_bfd_elf_slurp_version_tables tidy
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
73be47f5
DE
79/* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
45cfd468 81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 82static unsigned int dwarf2_read_debug = 0;
45cfd468 83
d97bc12b 84/* When non-zero, dump DIEs after they are read in. */
ccce17b0 85static unsigned int dwarf2_die_debug = 0;
d97bc12b 86
900e11f9
JK
87/* When non-zero, cross-check physname against demangler. */
88static int check_physname = 0;
89
481860b3 90/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 91static int use_deprecated_index_sections = 0;
481860b3 92
6502dd73
DJ
93static const struct objfile_data *dwarf2_objfile_data_key;
94
f1e6e072
TT
95/* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97static int dwarf2_locexpr_index;
98static int dwarf2_loclist_index;
99static int dwarf2_locexpr_block_index;
100static int dwarf2_loclist_block_index;
101
73869dc2
DE
102/* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
dce234bc
PP
118struct dwarf2_section_info
119{
73869dc2
DE
120 union
121 {
e5aa3347 122 /* If this is a real section, the bfd section. */
73869dc2
DE
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 125 section. */
73869dc2
DE
126 struct dwarf2_section_info *containing_section;
127 } s;
19ac8c2e 128 /* Pointer to section data, only valid if readin. */
d521ce57 129 const gdb_byte *buffer;
73869dc2 130 /* The size of the section, real or virtual. */
dce234bc 131 bfd_size_type size;
73869dc2
DE
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
be391dca 135 /* True if we have tried to read this section. */
73869dc2
DE
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
dce234bc
PP
140};
141
8b70b953
TT
142typedef struct dwarf2_section_info dwarf2_section_info_def;
143DEF_VEC_O (dwarf2_section_info_def);
144
9291a0cd
TT
145/* All offsets in the index are of this type. It must be
146 architecture-independent. */
147typedef uint32_t offset_type;
148
149DEF_VEC_I (offset_type);
150
156942c7
DE
151/* Ensure only legit values are used. */
152#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158/* Ensure only legit values are used. */
159#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166/* Ensure we don't use more than the alloted nuber of bits for the CU. */
167#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
9291a0cd
TT
173/* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175struct mapped_index
176{
559a7a62
JK
177 /* Index data format version. */
178 int version;
179
9291a0cd
TT
180 /* The total length of the buffer. */
181 off_t total_size;
b11b1f88 182
9291a0cd
TT
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
b11b1f88 185
9291a0cd
TT
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
b11b1f88 188
3876f04e
DE
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
b11b1f88 191
9291a0cd 192 /* Size in slots, each slot is 2 offset_types. */
3876f04e 193 offset_type symbol_table_slots;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197};
198
95554aad
TT
199typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200DEF_VEC_P (dwarf2_per_cu_ptr);
201
9cdd5dbd
DE
202/* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
6502dd73
DJ
205struct dwarf2_per_objfile
206{
dce234bc
PP
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
dce234bc
PP
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
cf2c3c16 212 struct dwarf2_section_info macro;
dce234bc
PP
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
3019eac3 215 struct dwarf2_section_info addr;
dce234bc
PP
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
9291a0cd 218 struct dwarf2_section_info gdb_index;
ae038cb0 219
8b70b953
TT
220 VEC (dwarf2_section_info_def) *types;
221
be391dca
TT
222 /* Back link. */
223 struct objfile *objfile;
224
d467dd73 225 /* Table of all the compilation units. This is used to locate
10b3939b 226 the target compilation unit of a particular reference. */
ae038cb0
DJ
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
1fd400ff 232 /* The number of .debug_types-related CUs. */
d467dd73 233 int n_type_units;
1fd400ff 234
6aa5f3a6
DE
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
a2ce51a0
DE
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
b4dd5633 241 struct signatured_type **all_type_units;
1fd400ff 242
f4dc4d17
DE
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
72dca2f5 246
348e048f
DE
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
f4dc4d17
DE
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
6aa5f3a6 259 int nr_all_type_units_reallocs;
f4dc4d17
DE
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
3019eac3
DE
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
80626a55
DE
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
36586728
TT
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
72dca2f5
FR
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
9291a0cd 283
ae2de4f8
DE
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
286 unsigned char using_index;
287
ae2de4f8 288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 289 struct mapped_index *index_table;
98bfdba5 290
7b9f3c50 291 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
7b9f3c50
DE
298 htab_t quick_file_names_table;
299
98bfdba5
PA
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
673bfd45 303
dee91e82 304 /* Table mapping type DIEs to their struct type *.
673bfd45 305 This is NULL if not allocated yet.
02142a6c 306 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 307 htab_t die_type_hash;
95554aad
TT
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
311};
312
313static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 314
251d32d9 315/* Default names of the debugging sections. */
c906108c 316
233a11ab
CS
317/* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
9cdd5dbd
DE
320static const struct dwarf2_debug_sections dwarf2_elf_names =
321{
251d32d9
TG
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 327 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
3019eac3 331 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
24d3216f
TT
334 { ".gdb_index", ".zgdb_index" },
335 23
251d32d9 336};
c906108c 337
80626a55 338/* List of DWO/DWP sections. */
3019eac3 339
80626a55 340static const struct dwop_section_names
3019eac3
DE
341{
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
09262596
DE
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
3019eac3
DE
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
80626a55
DE
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
3019eac3 353}
80626a55 354dwop_section_names =
3019eac3
DE
355{
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
367};
368
c906108c
SS
369/* local data types */
370
107d2387
AC
371/* The data in a compilation unit header, after target2host
372 translation, looks like this. */
c906108c 373struct comp_unit_head
a738430d 374{
c764a876 375 unsigned int length;
a738430d 376 short version;
a738430d
MK
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
b64f50a1 379 sect_offset abbrev_offset;
57349743 380
a738430d
MK
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
57349743 383
a738430d
MK
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
57349743 386
a738430d
MK
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
b64f50a1 389 sect_offset offset;
57349743 390
d00adf39
DE
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
b64f50a1 393 cu_offset first_die_offset;
a738430d 394};
c906108c 395
3da10d80
KS
396/* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398struct delayed_method_info
399{
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414};
415
416typedef struct delayed_method_info delayed_method_info;
417DEF_VEC_O (delayed_method_info);
418
e7c27a73
DJ
419/* Internal state when decoding a particular compilation unit. */
420struct dwarf2_cu
421{
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
d00adf39 425 /* The header of the compilation unit. */
e7c27a73 426 struct comp_unit_head header;
e142c38c 427
d00adf39
DE
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
e142c38c
DJ
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
b0f35d58
DL
438 const char *producer;
439
e142c38c
DJ
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
433df2d4
DE
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
72bf9492 455
b64f50a1
JK
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
ae038cb0
DJ
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
69d751e3 470 /* Backlink to our per_cu entry. */
ae038cb0
DJ
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
b64f50a1
JK
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
51545339 478 htab_t die_hash;
10b3939b
DJ
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
cb1df416
DJ
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
3da10d80
KS
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
96408a79
SA
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
034e5797
DE
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
3019eac3
DE
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
1dbab08b 511 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
512 ULONGEST addr_base;
513
2e3cf129
DE
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
1dbab08b 516 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 517 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
524 ULONGEST ranges_base;
525
ae038cb0
DJ
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
8be455d7
JK
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 533 unsigned int has_loclist : 1;
ba919b58 534
1b80a9fa
JK
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
ba919b58
TT
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 541 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 542 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
549};
550
10b3939b
DJ
551/* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
28dee7f5 553 read_symtab_private field of the psymtab. */
10b3939b 554
ae038cb0
DJ
555struct dwarf2_per_cu_data
556{
36586728 557 /* The start offset and length of this compilation unit.
45452591 558 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
b64f50a1 562 sect_offset offset;
36586728 563 unsigned int length;
ae038cb0
DJ
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
c764a876 567 unsigned int queued : 1;
ae038cb0 568
0d99eb77
DE
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
0186c6a7
DE
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
3019eac3
DE
578 unsigned int is_debug_types : 1;
579
36586728
TT
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
a2ce51a0
DE
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
7ee85ab1
DE
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
3019eac3
DE
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
8a0459fd 602 struct dwarf2_section_info *section;
348e048f 603
17ea53c3
JK
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
ae038cb0 606 struct dwarf2_cu *cu;
1c379e20 607
9cdd5dbd
DE
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
611 struct objfile *objfile;
612
fffbe6a8
YQ
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
95554aad 618 or NULL for unread partial units. */
9291a0cd
TT
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
95554aad 624
796a7ff8
DE
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
644};
645
348e048f
DE
646/* Entry in the signatured_types hash table. */
647
648struct signatured_type
649{
42e7ad6c 650 /* The "per_cu" object of this type.
ac9ec31b 651 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
3019eac3 656 /* The type's signature. */
348e048f
DE
657 ULONGEST signature;
658
3019eac3 659 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
0186c6a7
DE
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
ac9ec31b
DE
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
a2ce51a0
DE
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
348e048f
DE
683};
684
0186c6a7
DE
685typedef struct signatured_type *sig_type_ptr;
686DEF_VEC_P (sig_type_ptr);
687
094b34ac
DE
688/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691struct stmt_list_hash
692{
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698};
699
f4dc4d17
DE
700/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703struct type_unit_group
704{
0186c6a7 705 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
8a0459fd 710#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
711 struct dwarf2_per_cu_data per_cu;
712
0186c6a7
DE
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
f4dc4d17 717
43f3e411 718 /* The compunit symtab.
094b34ac 719 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
f4dc4d17 722
094b34ac
DE
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
f4dc4d17
DE
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739};
740
73869dc2 741/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
742
743struct dwo_sections
744{
745 struct dwarf2_section_info abbrev;
3019eac3
DE
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
09262596
DE
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
3019eac3
DE
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
80626a55
DE
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
3019eac3
DE
754 VEC (dwarf2_section_info_def) *types;
755};
756
c88ee1f0 757/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
758
759struct dwo_unit
760{
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 770 struct dwarf2_section_info *section;
3019eac3 771
19ac8c2e 772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778};
779
73869dc2
DE
780/* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784enum dwp_v2_section_ids
785{
786 DW_SECT_MIN = 1
787};
788
80626a55 789/* Data for one DWO file.
57d63ce2
DE
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
3019eac3
DE
799
800struct dwo_file
801{
0ac5b59e 802 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
0ac5b59e
DE
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
3019eac3 810
80626a55
DE
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
3019eac3 814
73869dc2
DE
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
3019eac3
DE
818 struct dwo_sections sections;
819
19c3d4c9
DE
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
3019eac3
DE
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830};
831
80626a55
DE
832/* These sections are what may appear in a DWP file. */
833
834struct dwp_sections
835{
73869dc2 836 /* These are used by both DWP version 1 and 2. */
80626a55
DE
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
73869dc2
DE
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
80626a55
DE
857};
858
73869dc2
DE
859/* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 861
73869dc2 862struct virtual_v1_dwo_sections
80626a55
DE
863{
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 871 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
872 struct dwarf2_section_info info_or_types;
873};
874
73869dc2
DE
875/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880struct virtual_v2_dwo_sections
881{
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904};
905
80626a55
DE
906/* Contents of DWP hash tables. */
907
908struct dwp_hash_table
909{
73869dc2 910 uint32_t version, nr_columns;
80626a55 911 uint32_t nr_units, nr_slots;
73869dc2
DE
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923#define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
80626a55
DE
935};
936
937/* Data for one DWP file. */
938
939struct dwp_file
940{
941 /* Name of the file. */
942 const char *name;
943
73869dc2
DE
944 /* File format version. */
945 int version;
946
93417882 947 /* The bfd. */
80626a55
DE
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
57d63ce2 953 /* Table of CUs in the file. */
80626a55
DE
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
19ac8c2e
DE
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
80626a55 962
73869dc2
DE
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
80626a55
DE
965 unsigned int num_sections;
966 asection **elf_sections;
967};
968
36586728
TT
969/* This represents a '.dwz' file. */
970
971struct dwz_file
972{
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
2ec9a5e0 979 struct dwarf2_section_info gdb_index;
36586728
TT
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983};
984
0963b4bd
MS
985/* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
dee91e82 988 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
989
990struct die_reader_specs
991{
a32a8923 992 /* The bfd of die_section. */
93311388
DE
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
80626a55 998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
999 struct dwo_file *dwo_file;
1000
dee91e82 1001 /* The section the die comes from.
3019eac3 1002 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
d521ce57 1006 const gdb_byte *buffer;
f664829e
DE
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
a2ce51a0
DE
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
93311388
DE
1013};
1014
fd820528 1015/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1016typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1017 const gdb_byte *info_ptr,
dee91e82
DE
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
debd256d
JB
1022/* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025struct line_header
1026{
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
2dc7f7b3 1031 unsigned char maximum_ops_per_instruction;
debd256d
JB
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1048 const char **include_dirs;
debd256d
JB
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
c906108c 1055 {
d521ce57 1056 const char *name;
debd256d
JB
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
aaa75496 1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1061 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
6502dd73 1065 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1066 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1067};
c906108c
SS
1068
1069/* When we construct a partial symbol table entry we only
0963b4bd 1070 need this much information. */
c906108c
SS
1071struct partial_die_info
1072 {
72bf9492 1073 /* Offset of this DIE. */
b64f50a1 1074 sect_offset offset;
72bf9492
DJ
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
72bf9492
DJ
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
481860b3 1086 unsigned int may_be_inlined : 1;
72bf9492
DJ
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
fa4028e9
JB
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
98bfdba5
PA
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
abc72ce4
DE
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
36586728
TT
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
72bf9492 1107 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1108 sometimes a default name for unnamed DIEs. */
15d034d0 1109 const char *name;
72bf9492 1110
abc72ce4
DE
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
72bf9492
DJ
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
15d034d0 1117 const char *scope;
72bf9492 1118
95554aad
TT
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
72bf9492
DJ
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
72bf9492 1132
93311388 1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1134 DW_AT_sibling, if any. */
abc72ce4
DE
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1137 const gdb_byte *sibling;
72bf9492
DJ
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
b64f50a1 1142 sect_offset spec_offset;
72bf9492
DJ
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1147 };
1148
0963b4bd 1149/* This data structure holds the information of an abbrev. */
c906108c
SS
1150struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160struct attr_abbrev
1161 {
9d25dd43
DE
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1164 };
1165
433df2d4
DE
1166/* Size of abbrev_table.abbrev_hash_table. */
1167#define ABBREV_HASH_SIZE 121
1168
1169/* Top level data structure to contain an abbreviation table. */
1170
1171struct abbrev_table
1172{
f4dc4d17
DE
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
433df2d4
DE
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185};
1186
0963b4bd 1187/* Attributes have a name and a value. */
b60c80d6
DJ
1188struct attribute
1189 {
9d25dd43 1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
b60c80d6
DJ
1198 union
1199 {
15d034d0 1200 const char *str;
b60c80d6 1201 struct dwarf_block *blk;
43bbcdc2
PH
1202 ULONGEST unsnd;
1203 LONGEST snd;
b60c80d6 1204 CORE_ADDR addr;
ac9ec31b 1205 ULONGEST signature;
b60c80d6
DJ
1206 }
1207 u;
1208 };
1209
0963b4bd 1210/* This data structure holds a complete die structure. */
c906108c
SS
1211struct die_info
1212 {
76815b17
DE
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
98bfdba5
PA
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
76815b17 1222
adde2bff
DE
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
76815b17
DE
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
93311388 1229 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1230 sect_offset offset;
78ba4af6
JB
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
4950bc1c 1235 together via their SIBLING fields. */
639d11d3
DC
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
c906108c 1239
b60c80d6
DJ
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
c906108c
SS
1244 };
1245
0963b4bd 1246/* Get at parts of an attribute structure. */
c906108c
SS
1247
1248#define DW_STRING(attr) ((attr)->u.str)
8285870a 1249#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1250#define DW_UNSND(attr) ((attr)->u.unsnd)
1251#define DW_BLOCK(attr) ((attr)->u.blk)
1252#define DW_SND(attr) ((attr)->u.snd)
1253#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1254#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1255
0963b4bd 1256/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1257struct dwarf_block
1258 {
56eb65bd 1259 size_t size;
1d6edc3c
JK
1260
1261 /* Valid only if SIZE is not zero. */
d521ce57 1262 const gdb_byte *data;
c906108c
SS
1263 };
1264
c906108c
SS
1265#ifndef ATTR_ALLOC_CHUNK
1266#define ATTR_ALLOC_CHUNK 4
1267#endif
1268
c906108c
SS
1269/* Allocate fields for structs, unions and enums in this size. */
1270#ifndef DW_FIELD_ALLOC_CHUNK
1271#define DW_FIELD_ALLOC_CHUNK 4
1272#endif
1273
c906108c
SS
1274/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277static int bits_per_byte = 8;
1278
1279/* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282struct field_info
c5aa993b 1283 {
0963b4bd 1284 /* List of data member and baseclasses fields. */
c5aa993b
JM
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
7d0ccb61 1292 *fields, *baseclasses;
c906108c 1293
7d0ccb61 1294 /* Number of fields (including baseclasses). */
c5aa993b 1295 int nfields;
c906108c 1296
c5aa993b
JM
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
c906108c 1299
c5aa993b
JM
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
c906108c 1302
c5aa993b
JM
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
c906108c 1311
c5aa993b
JM
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
15d034d0 1317 const char *name;
c5aa993b
JM
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
c906108c 1322
c5aa993b
JM
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
98751a41
JK
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
c5aa993b 1335 };
c906108c 1336
10b3939b
DJ
1337/* One item on the queue of compilation units to read in full symbols
1338 for. */
1339struct dwarf2_queue_item
1340{
1341 struct dwarf2_per_cu_data *per_cu;
95554aad 1342 enum language pretend_language;
10b3939b
DJ
1343 struct dwarf2_queue_item *next;
1344};
1345
1346/* The current queue. */
1347static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
ae038cb0
DJ
1349/* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354static int dwarf2_max_cache_age = 5;
920d2a44
AC
1355static void
1356show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358{
3e43a32a
MS
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1361 value);
1362}
4390d890 1363\f
c906108c
SS
1364/* local function prototypes */
1365
a32a8923
DE
1366static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
4efb68b1 1370static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1371
918dd910
JK
1372static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
0018ea6f
DE
1375static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
c67a9c90 1378static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1379
72bf9492
DJ
1380static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1382 int, struct dwarf2_cu *);
c906108c 1383
72bf9492
DJ
1384static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
63d06c5c 1386
72bf9492
DJ
1387static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1389 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1390
5d7cb8df 1391static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1392 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1393 struct dwarf2_cu *cu);
1394
72bf9492
DJ
1395static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
91c24f0a 1397
bc30ff58
JB
1398static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1400 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1401
257e7a09
YQ
1402static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
c906108c 1404
a14ed312 1405static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1406
433df2d4
DE
1407static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413static void abbrev_table_free (struct abbrev_table *);
1414
f4dc4d17
DE
1415static void abbrev_table_free_cleanup (void *);
1416
dee91e82
DE
1417static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
c906108c 1419
f3dd6933 1420static void dwarf2_free_abbrev_table (void *);
c906108c 1421
d521ce57 1422static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1423
dee91e82 1424static struct partial_die_info *load_partial_dies
d521ce57 1425 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1426
d521ce57
TT
1427static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
c906108c 1432
36586728 1433static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1434 struct dwarf2_cu *);
72bf9492
DJ
1435
1436static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
d521ce57
TT
1439static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
a8329558 1442
a1855c1d 1443static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1444
a1855c1d 1445static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1446
a1855c1d 1447static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1448
a1855c1d 1449static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1450
a1855c1d 1451static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1452
d521ce57 1453static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1454 unsigned int *);
c906108c 1455
d521ce57 1456static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1457
1458static LONGEST read_checked_initial_length_and_offset
d521ce57 1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1460 unsigned int *, unsigned int *);
613e1657 1461
d521ce57
TT
1462static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
c764a876
DE
1464 unsigned int *);
1465
d521ce57 1466static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1467
f4dc4d17
DE
1468static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
d521ce57 1471static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1472
d521ce57 1473static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1474
d521ce57
TT
1475static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
4bdf3d34 1478
d521ce57 1479static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1480
d521ce57 1481static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1484
d521ce57
TT
1485static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
3019eac3
DE
1487 unsigned int *);
1488
d521ce57 1489static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1490 ULONGEST str_index);
3019eac3 1491
e142c38c 1492static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1493
e142c38c
DJ
1494static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
c906108c 1496
348e048f 1497static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1498 unsigned int);
348e048f 1499
05cf31d1
JB
1500static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
e142c38c 1503static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1504
e142c38c 1505static struct die_info *die_specification (struct die_info *die,
f2f0e013 1506 struct dwarf2_cu **);
63d06c5c 1507
debd256d
JB
1508static void free_line_header (struct line_header *lh);
1509
3019eac3
DE
1510static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
debd256d 1512
f3f5162e 1513static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696
YQ
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
c906108c 1516
4d663531 1517static void dwarf2_start_subfile (const char *, const char *);
c906108c 1518
43f3e411
DE
1519static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
f4dc4d17 1522
a14ed312 1523static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1524 struct dwarf2_cu *);
c906108c 1525
34eaf542
TT
1526static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
ff39bb5e 1529static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1530 struct dwarf2_cu *);
c906108c 1531
ff39bb5e 1532static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
12df843f 1536 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1537 const gdb_byte **bytes,
98bfdba5 1538 struct dwarf2_locexpr_baton **baton);
2df3850c 1539
e7c27a73 1540static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1541
b4ba55a1
JB
1542static int need_gnat_info (struct dwarf2_cu *);
1543
3e43a32a
MS
1544static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
b4ba55a1
JB
1546
1547static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
e7c27a73
DJ
1550static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
c906108c 1552
ff39bb5e 1553static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1554 struct dwarf2_cu *);
c906108c 1555
f792889a 1556static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1557
673bfd45
DE
1558static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
0d5cff50 1560static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1561
6e70227d 1562static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
63d06c5c 1565
e7c27a73 1566static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1567
348e048f
DE
1568static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
e7c27a73 1570static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1571
e7c27a73 1572static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1573
96408a79
SA
1574static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
ff013f42
JK
1576static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
a14ed312 1579static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
c906108c 1582
fae299cd
DC
1583static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
801e3a5b
JB
1587static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
a14ed312 1590static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1591 struct dwarf2_cu *);
c906108c 1592
a14ed312 1593static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1594 struct type *, struct dwarf2_cu *);
c906108c 1595
a14ed312 1596static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1597 struct die_info *, struct type *,
e7c27a73 1598 struct dwarf2_cu *);
c906108c 1599
a14ed312 1600static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1601 struct type *,
1602 struct dwarf2_cu *);
c906108c 1603
134d01f1 1604static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1605
e7c27a73 1606static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1607
e7c27a73 1608static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1609
5d7cb8df
JK
1610static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
27aa8d6a
SW
1612static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
74921315
KS
1614static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
f55ee35c
JK
1616static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
38d518c9 1619static const char *namespace_name (struct die_info *die,
e142c38c 1620 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1621
134d01f1 1622static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1623
e7c27a73 1624static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1625
6e70227d 1626static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1627 struct dwarf2_cu *);
1628
bf6af496 1629static struct die_info *read_die_and_siblings_1
d521ce57 1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1631 struct die_info *);
639d11d3 1632
dee91e82 1633static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
639d11d3
DC
1636 struct die_info *parent);
1637
d521ce57
TT
1638static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
3019eac3 1641
d521ce57
TT
1642static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
93311388 1645
e7c27a73 1646static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1647
15d034d0
TT
1648static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
71c25dea 1650
15d034d0 1651static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1652
15d034d0 1653static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
ca69b9e6
DE
1657static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
e142c38c 1660static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1661 struct dwarf2_cu **);
9219021c 1662
f39c6ffd 1663static const char *dwarf_tag_name (unsigned int);
c906108c 1664
f39c6ffd 1665static const char *dwarf_attr_name (unsigned int);
c906108c 1666
f39c6ffd 1667static const char *dwarf_form_name (unsigned int);
c906108c 1668
a14ed312 1669static char *dwarf_bool_name (unsigned int);
c906108c 1670
f39c6ffd 1671static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1672
f9aca02d 1673static struct die_info *sibling_die (struct die_info *);
c906108c 1674
d97bc12b
DE
1675static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677static void dump_die_for_error (struct die_info *);
1678
1679static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
c906108c 1681
d97bc12b 1682/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1683
51545339 1684static void store_in_ref_table (struct die_info *,
10b3939b 1685 struct dwarf2_cu *);
c906108c 1686
ff39bb5e 1687static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1688
ff39bb5e 1689static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1690
348e048f 1691static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1692 const struct attribute *,
348e048f
DE
1693 struct dwarf2_cu **);
1694
10b3939b 1695static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1696 const struct attribute *,
f2f0e013 1697 struct dwarf2_cu **);
c906108c 1698
348e048f 1699static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1700 const struct attribute *,
348e048f
DE
1701 struct dwarf2_cu **);
1702
ac9ec31b
DE
1703static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1707 const struct attribute *,
ac9ec31b
DE
1708 struct dwarf2_cu *);
1709
e5fe5e75 1710static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1711
52dc124a 1712static void read_signatured_type (struct signatured_type *);
348e048f 1713
c906108c
SS
1714/* memory allocation interface */
1715
7b5a2f43 1716static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1717
b60c80d6 1718static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1719
43f3e411 1720static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1721
6e5a29e1 1722static int attr_form_is_block (const struct attribute *);
8e19ed76 1723
6e5a29e1 1724static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1725
6e5a29e1 1726static int attr_form_is_constant (const struct attribute *);
3690dd37 1727
6e5a29e1 1728static int attr_form_is_ref (const struct attribute *);
7771576e 1729
8cf6f0b1
TT
1730static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
ff39bb5e 1732 const struct attribute *attr);
8cf6f0b1 1733
ff39bb5e 1734static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1735 struct symbol *sym,
f1e6e072
TT
1736 struct dwarf2_cu *cu,
1737 int is_block);
4c2df51b 1738
d521ce57
TT
1739static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
4bb7a0a7 1742
72bf9492
DJ
1743static void free_stack_comp_unit (void *);
1744
72bf9492
DJ
1745static hashval_t partial_die_hash (const void *item);
1746
1747static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
ae038cb0 1749static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1751
9816fde3 1752static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1753 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1754
1755static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
93311388 1758
68dc6402 1759static void free_heap_comp_unit (void *);
ae038cb0
DJ
1760
1761static void free_cached_comp_units (void *);
1762
1763static void age_cached_comp_units (void);
1764
dee91e82 1765static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1766
f792889a
DJ
1767static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1c379e20 1769
ae038cb0
DJ
1770static void create_all_comp_units (struct objfile *);
1771
0e50663e 1772static int create_all_type_units (struct objfile *);
1fd400ff 1773
95554aad
TT
1774static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
10b3939b 1776
95554aad
TT
1777static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
10b3939b 1779
f4dc4d17
DE
1780static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
10b3939b
DJ
1783static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
ae038cb0
DJ
1786static void dwarf2_mark (struct dwarf2_cu *);
1787
1788static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
b64f50a1 1790static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1791 struct dwarf2_per_cu_data *);
673bfd45 1792
f792889a 1793static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1794
9291a0cd
TT
1795static void dwarf2_release_queue (void *dummy);
1796
95554aad
TT
1797static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
a0f42c21 1800static void process_queue (void);
9291a0cd
TT
1801
1802static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
15d034d0 1804 const char **name, const char **comp_dir);
9291a0cd
TT
1805
1806static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
d521ce57 1809static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
d521ce57 1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1813 int is_debug_types_section);
1814
fd820528 1815static void init_cutu_and_read_dies
f4dc4d17
DE
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
3019eac3
DE
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
dee91e82
DE
1820static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1823
673bfd45 1824static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1825
3019eac3
DE
1826static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
57d63ce2
DE
1828static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1831
1832static struct dwp_file *get_dwp_file (void);
1833
3019eac3 1834static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1836
1837static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1838 (struct signatured_type *, const char *, const char *);
3019eac3 1839
89e63ee4
DE
1840static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
3019eac3
DE
1842static void free_dwo_file_cleanup (void *);
1843
95554aad
TT
1844static void process_cu_includes (void);
1845
1b80a9fa 1846static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1847\f
1848/* Various complaints about symbol reading that don't abort the process. */
1849
1850static void
1851dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852{
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855}
1856
1857static void
1858dwarf2_debug_line_missing_file_complaint (void)
1859{
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862}
1863
1864static void
1865dwarf2_debug_line_missing_end_sequence_complaint (void)
1866{
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870}
1871
1872static void
1873dwarf2_complex_location_expr_complaint (void)
1874{
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876}
1877
1878static void
1879dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881{
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885}
1886
1887static void
1888dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889{
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
a32a8923
DE
1893 get_section_name (section),
1894 get_section_file_name (section));
4390d890 1895}
1b80a9fa 1896
4390d890
DE
1897static void
1898dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899{
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904}
1905
1906static void
1907dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908{
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912}
1913\f
9291a0cd
TT
1914#if WORDS_BIGENDIAN
1915
1916/* Convert VALUE between big- and little-endian. */
1917static offset_type
1918byte_swap (offset_type value)
1919{
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927}
1928
1929#define MAYBE_SWAP(V) byte_swap (V)
1930
1931#else
1932#define MAYBE_SWAP(V) (V)
1933#endif /* WORDS_BIGENDIAN */
1934
31aa7e4e
JB
1935/* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938static CORE_ADDR
1939attr_value_as_address (struct attribute *attr)
1940{
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963}
1964
9291a0cd
TT
1965/* The suffix for an index file. */
1966#define INDEX_SUFFIX ".gdb-index"
1967
c906108c 1968/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
c906108c
SS
1972
1973int
251d32d9
TG
1974dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
c906108c 1976{
be391dca
TT
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1983
be391dca
TT
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
6502dd73 1987
251d32d9
TG
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
be391dca
TT
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
73869dc2
DE
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996}
1997
1998/* Return the containing section of virtual section SECTION. */
1999
2000static struct dwarf2_section_info *
2001get_containing_section (const struct dwarf2_section_info *section)
2002{
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
c906108c
SS
2005}
2006
a32a8923
DE
2007/* Return the bfd owner of SECTION. */
2008
2009static struct bfd *
2010get_section_bfd_owner (const struct dwarf2_section_info *section)
2011{
73869dc2
DE
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
a32a8923
DE
2018}
2019
2020/* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023static asection *
2024get_section_bfd_section (const struct dwarf2_section_info *section)
2025{
73869dc2
DE
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
a32a8923
DE
2032}
2033
2034/* Return the name of SECTION. */
2035
2036static const char *
2037get_section_name (const struct dwarf2_section_info *section)
2038{
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043}
2044
2045/* Return the name of the file SECTION is in. */
2046
2047static const char *
2048get_section_file_name (const struct dwarf2_section_info *section)
2049{
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053}
2054
2055/* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058static int
2059get_section_id (const struct dwarf2_section_info *section)
2060{
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066}
2067
2068/* Return the flags of SECTION.
73869dc2 2069 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2070
2071static int
2072get_section_flags (const struct dwarf2_section_info *section)
2073{
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078}
2079
251d32d9
TG
2080/* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
233a11ab
CS
2082
2083static int
251d32d9
TG
2084section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
233a11ab 2086{
251d32d9
TG
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
233a11ab
CS
2094}
2095
c906108c
SS
2096/* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100static void
251d32d9 2101dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2102{
251d32d9 2103 const struct dwarf2_debug_sections *names;
dc7650b8 2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
dc7650b8
JK
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
c906108c 2115 {
73869dc2 2116 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2118 }
251d32d9 2119 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2120 {
73869dc2 2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2123 }
251d32d9 2124 else if (section_is_p (sectp->name, &names->line))
c906108c 2125 {
73869dc2 2126 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->loc))
c906108c 2130 {
73869dc2 2131 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2135 {
73869dc2 2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2138 }
cf2c3c16
TT
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
73869dc2 2141 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->str))
c906108c 2145 {
73869dc2 2146 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2148 }
3019eac3
DE
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
73869dc2 2151 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
251d32d9 2154 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2155 {
73869dc2 2156 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2158 }
251d32d9 2159 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2160 {
73869dc2 2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2163 }
251d32d9 2164 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2165 {
73869dc2 2166 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2168 }
251d32d9 2169 else if (section_is_p (sectp->name, &names->types))
348e048f 2170 {
8b70b953
TT
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
73869dc2 2174 type_section.s.asection = sectp;
8b70b953
TT
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
348e048f 2179 }
251d32d9 2180 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2181 {
73869dc2 2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
dce234bc 2185
72dca2f5
FR
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2189}
2190
fceca515
DE
2191/* A helper function that decides whether a section is empty,
2192 or not present. */
9e0ac564
TT
2193
2194static int
19ac8c2e 2195dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2196{
73869dc2
DE
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2200}
2201
3019eac3
DE
2202/* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
dce234bc 2206 If the section is compressed, uncompress it before returning. */
c906108c 2207
dce234bc
PP
2208static void
2209dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2210{
a32a8923 2211 asection *sectp;
3019eac3 2212 bfd *abfd;
dce234bc 2213 gdb_byte *buf, *retbuf;
c906108c 2214
be391dca
TT
2215 if (info->readin)
2216 return;
dce234bc 2217 info->buffer = NULL;
be391dca 2218 info->readin = 1;
188dd5d6 2219
9e0ac564 2220 if (dwarf2_section_empty_p (info))
dce234bc 2221 return;
c906108c 2222
a32a8923 2223 sectp = get_section_bfd_section (info);
3019eac3 2224
73869dc2
DE
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
4bf44c1c
TT
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2253 {
d521ce57 2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2255 return;
dce234bc 2256 }
dce234bc 2257
4bf44c1c
TT
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
dce234bc
PP
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
ac8035ab 2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
a32a8923
DE
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
dce234bc
PP
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
dce234bc
PP
2282}
2283
9e0ac564
TT
2284/* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291static bfd_size_type
2292dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294{
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298}
2299
dce234bc 2300/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2301 SECTION_NAME. */
af34e669 2302
dce234bc 2303void
3017a003
TG
2304dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
d521ce57 2306 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2307 bfd_size_type *sizep)
2308{
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
a3b2a86b
TT
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
3017a003
TG
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
dce234bc 2333
9e0ac564 2334 dwarf2_read_section (objfile, info);
dce234bc 2335
a32a8923 2336 *sectp = get_section_bfd_section (info);
dce234bc
PP
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339}
2340
36586728
TT
2341/* A helper function to find the sections for a .dwz file. */
2342
2343static void
2344locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345{
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
73869dc2 2352 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
73869dc2 2357 dwz_file->info.s.asection = sectp;
36586728
TT
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
73869dc2 2362 dwz_file->str.s.asection = sectp;
36586728
TT
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
73869dc2 2367 dwz_file->line.s.asection = sectp;
36586728
TT
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
73869dc2 2372 dwz_file->macro.s.asection = sectp;
36586728
TT
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2ec9a5e0
TT
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
73869dc2 2377 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
36586728
TT
2380}
2381
4db1a1dc
TT
2382/* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
36586728
TT
2385
2386static struct dwz_file *
2387dwarf2_get_dwz_file (void)
2388{
4db1a1dc
TT
2389 bfd *dwz_bfd;
2390 char *data;
36586728
TT
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
acd13123 2394 bfd_size_type buildid_len_arg;
dc294be5
TT
2395 size_t buildid_len;
2396 bfd_byte *buildid;
36586728
TT
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
4db1a1dc
TT
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2403 &buildid_len_arg, &buildid);
4db1a1dc
TT
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
36586728 2411 cleanup = make_cleanup (xfree, data);
dc294be5 2412 make_cleanup (xfree, buildid);
36586728 2413
acd13123
TT
2414 buildid_len = (size_t) buildid_len_arg;
2415
f9d83a0b 2416 filename = (const char *) data;
36586728
TT
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
4262abfb 2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
dc294be5
TT
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
36586728 2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2434 if (dwz_bfd != NULL)
36586728 2435 {
dc294be5
TT
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
36586728
TT
2441 }
2442
dc294be5
TT
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
36586728
TT
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
13aaf454 2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2459 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2460 return result;
2461}
9291a0cd 2462\f
7b9f3c50
DE
2463/* DWARF quick_symbols_functions support. */
2464
2465/* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470struct quick_file_names
2471{
094b34ac
DE
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
7b9f3c50
DE
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485};
2486
2487/* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490struct dwarf2_per_cu_quick_data
2491{
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
43f3e411 2499 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508};
2509
094b34ac
DE
2510/* Utility hash function for a stmt_list_hash. */
2511
2512static hashval_t
2513hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514{
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521}
2522
2523/* Utility equality function for a stmt_list_hash. */
2524
2525static int
2526eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528{
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536}
2537
7b9f3c50
DE
2538/* Hash function for a quick_file_names. */
2539
2540static hashval_t
2541hash_file_name_entry (const void *e)
2542{
2543 const struct quick_file_names *file_data = e;
2544
094b34ac 2545 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2546}
2547
2548/* Equality function for a quick_file_names. */
2549
2550static int
2551eq_file_name_entry (const void *a, const void *b)
2552{
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
094b34ac 2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2557}
2558
2559/* Delete function for a quick_file_names. */
2560
2561static void
2562delete_file_name_entry (void *e)
2563{
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576}
2577
2578/* Create a quick_file_names hash table. */
2579
2580static htab_t
2581create_quick_file_names_table (unsigned int nr_initial_entries)
2582{
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586}
9291a0cd 2587
918dd910
JK
2588/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592static void
2593load_cu (struct dwarf2_per_cu_data *per_cu)
2594{
3019eac3 2595 if (per_cu->is_debug_types)
e5fe5e75 2596 load_full_type_unit (per_cu);
918dd910 2597 else
95554aad 2598 load_full_comp_unit (per_cu, language_minimal);
918dd910 2599
918dd910 2600 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2603}
2604
a0f42c21 2605/* Read in the symbols for PER_CU. */
2fdf6df6 2606
9291a0cd 2607static void
a0f42c21 2608dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2609{
2610 struct cleanup *back_to;
2611
f4dc4d17
DE
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
9291a0cd
TT
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
95554aad 2619 if (dwarf2_per_objfile->using_index
43f3e411 2620 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
89e63ee4
DE
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
95554aad 2636 }
9291a0cd 2637
a0f42c21 2638 process_queue ();
9291a0cd
TT
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645}
2646
2647/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2fdf6df6 2650
43f3e411 2651static struct compunit_symtab *
a0f42c21 2652dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2653{
95554aad 2654 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2655 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
a0f42c21 2659 dw2_do_instantiate_symtab (per_cu);
95554aad 2660 process_cu_includes ();
9291a0cd
TT
2661 do_cleanups (back_to);
2662 }
f194fefb 2663
43f3e411 2664 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2665}
2666
8832e7e3 2667/* Return the CU/TU given its index.
f4dc4d17
DE
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
8832e7e3 2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2675
2676 ...;
2677 }
2678*/
2fdf6df6 2679
1fd400ff 2680static struct dwarf2_per_cu_data *
8832e7e3 2681dw2_get_cutu (int index)
1fd400ff
TT
2682{
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
f4dc4d17 2685 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691}
2692
8832e7e3
DE
2693/* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
f4dc4d17
DE
2696
2697static struct dwarf2_per_cu_data *
8832e7e3 2698dw2_get_cu (int index)
f4dc4d17 2699{
8832e7e3 2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2701
1fd400ff
TT
2702 return dwarf2_per_objfile->all_comp_units[index];
2703}
2704
2ec9a5e0
TT
2705/* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2fdf6df6 2707
74a0d9f6 2708static void
2ec9a5e0
TT
2709create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
9291a0cd
TT
2714{
2715 offset_type i;
9291a0cd 2716
2ec9a5e0 2717 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
74a0d9f6
JK
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
b64f50a1 2729 the_cu->offset.sect_off = offset;
9291a0cd
TT
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
8a0459fd 2732 the_cu->section = section;
9291a0cd
TT
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2737 }
9291a0cd
TT
2738}
2739
2ec9a5e0 2740/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2741 the CU objects for this objfile. */
2ec9a5e0 2742
74a0d9f6 2743static void
2ec9a5e0
TT
2744create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747{
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
74a0d9f6
JK
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2758
2759 if (dwz_elements == 0)
74a0d9f6 2760 return;
2ec9a5e0
TT
2761
2762 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2ec9a5e0
TT
2765}
2766
1fd400ff 2767/* Create the signatured type hash table from the index. */
673bfd45 2768
74a0d9f6 2769static void
673bfd45 2770create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2771 struct dwarf2_section_info *section,
673bfd45
DE
2772 const gdb_byte *bytes,
2773 offset_type elements)
1fd400ff
TT
2774{
2775 offset_type i;
673bfd45 2776 htab_t sig_types_hash;
1fd400ff 2777
6aa5f3a6
DE
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
d467dd73 2781 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
1fd400ff 2784
673bfd45 2785 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
52dc124a
DE
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2791 void **slot;
2792
74a0d9f6
JK
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
52dc124a 2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2801 struct signatured_type);
52dc124a 2802 sig_type->signature = signature;
3019eac3
DE
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2805 sig_type->per_cu.section = section;
52dc124a
DE
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
1fd400ff
TT
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
52dc124a
DE
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
1fd400ff 2814
b4dd5633 2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2816 }
2817
673bfd45 2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2819}
2820
9291a0cd
TT
2821/* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2823
9291a0cd
TT
2824static void
2825create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826{
2827 const gdb_byte *iter, *end;
2828 struct obstack temp_obstack;
2829 struct addrmap *mutable_map;
2830 struct cleanup *cleanup;
2831 CORE_ADDR baseaddr;
2832
2833 obstack_init (&temp_obstack);
2834 cleanup = make_cleanup_obstack_free (&temp_obstack);
2835 mutable_map = addrmap_create_mutable (&temp_obstack);
2836
2837 iter = index->address_table;
2838 end = iter + index->address_table_size;
2839
2840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2841
2842 while (iter < end)
2843 {
2844 ULONGEST hi, lo, cu_index;
2845 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2846 iter += 8;
2847 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2850 iter += 4;
f652bce2 2851
24a55014 2852 if (lo > hi)
f652bce2 2853 {
24a55014
DE
2854 complaint (&symfile_complaints,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2856 hex_string (lo), hex_string (hi));
24a55014 2857 continue;
f652bce2 2858 }
24a55014
DE
2859
2860 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2861 {
2862 complaint (&symfile_complaints,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index);
24a55014 2865 continue;
f652bce2 2866 }
24a55014
DE
2867
2868 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
8832e7e3 2869 dw2_get_cutu (cu_index));
9291a0cd
TT
2870 }
2871
2872 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2873 &objfile->objfile_obstack);
2874 do_cleanups (cleanup);
2875}
2876
59d7bcaf
JK
2877/* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2881 SYMBOL_HASH_NEXT.
2882
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2884
9291a0cd 2885static hashval_t
559a7a62 2886mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2887{
2888 const unsigned char *str = (const unsigned char *) p;
2889 hashval_t r = 0;
2890 unsigned char c;
2891
2892 while ((c = *str++) != 0)
559a7a62
JK
2893 {
2894 if (index_version >= 5)
2895 c = tolower (c);
2896 r = r * 67 + c - 113;
2897 }
9291a0cd
TT
2898
2899 return r;
2900}
2901
2902/* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2905
9291a0cd
TT
2906static int
2907find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2908 offset_type **vec_out)
2909{
0cf03b49
JK
2910 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2911 offset_type hash;
9291a0cd 2912 offset_type slot, step;
559a7a62 2913 int (*cmp) (const char *, const char *);
9291a0cd 2914
0cf03b49
JK
2915 if (current_language->la_language == language_cplus
2916 || current_language->la_language == language_java
2917 || current_language->la_language == language_fortran)
2918 {
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2920 not contain any. */
a8719064
DE
2921 const char *paren = NULL;
2922
2923 /* Need to handle "(anonymous namespace)". */
2924 if (*name != '(')
2925 paren = strchr (name, '(');
0cf03b49
JK
2926
2927 if (paren)
2928 {
2929 char *dup;
2930
2931 dup = xmalloc (paren - name + 1);
2932 memcpy (dup, name, paren - name);
2933 dup[paren - name] = 0;
2934
2935 make_cleanup (xfree, dup);
2936 name = dup;
2937 }
2938 }
2939
559a7a62 2940 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2941 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2942 simulate our NAME being searched is also lowercased. */
2943 hash = mapped_index_string_hash ((index->version == 4
2944 && case_sensitivity == case_sensitive_off
2945 ? 5 : index->version),
2946 name);
2947
3876f04e
DE
2948 slot = hash & (index->symbol_table_slots - 1);
2949 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2950 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2951
2952 for (;;)
2953 {
2954 /* Convert a slot number to an offset into the table. */
2955 offset_type i = 2 * slot;
2956 const char *str;
3876f04e 2957 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2958 {
2959 do_cleanups (back_to);
2960 return 0;
2961 }
9291a0cd 2962
3876f04e 2963 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2964 if (!cmp (name, str))
9291a0cd
TT
2965 {
2966 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2967 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2968 do_cleanups (back_to);
9291a0cd
TT
2969 return 1;
2970 }
2971
3876f04e 2972 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2973 }
2974}
2975
2ec9a5e0
TT
2976/* A helper function that reads the .gdb_index from SECTION and fills
2977 in MAP. FILENAME is the name of the file containing the section;
2978 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2979 ok to use deprecated sections.
2980
2981 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2982 out parameters that are filled in with information about the CU and
2983 TU lists in the section.
2984
2985 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2986
9291a0cd 2987static int
2ec9a5e0
TT
2988read_index_from_section (struct objfile *objfile,
2989 const char *filename,
2990 int deprecated_ok,
2991 struct dwarf2_section_info *section,
2992 struct mapped_index *map,
2993 const gdb_byte **cu_list,
2994 offset_type *cu_list_elements,
2995 const gdb_byte **types_list,
2996 offset_type *types_list_elements)
9291a0cd 2997{
948f8e3d 2998 const gdb_byte *addr;
2ec9a5e0 2999 offset_type version;
b3b272e1 3000 offset_type *metadata;
1fd400ff 3001 int i;
9291a0cd 3002
2ec9a5e0 3003 if (dwarf2_section_empty_p (section))
9291a0cd 3004 return 0;
82430852
JK
3005
3006 /* Older elfutils strip versions could keep the section in the main
3007 executable while splitting it for the separate debug info file. */
a32a8923 3008 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3009 return 0;
3010
2ec9a5e0 3011 dwarf2_read_section (objfile, section);
9291a0cd 3012
2ec9a5e0 3013 addr = section->buffer;
9291a0cd 3014 /* Version check. */
1fd400ff 3015 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3016 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3017 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3018 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3019 indices. */
831adc1f 3020 if (version < 4)
481860b3
GB
3021 {
3022 static int warning_printed = 0;
3023 if (!warning_printed)
3024 {
3025 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3026 filename);
481860b3
GB
3027 warning_printed = 1;
3028 }
3029 return 0;
3030 }
3031 /* Index version 4 uses a different hash function than index version
3032 5 and later.
3033
3034 Versions earlier than 6 did not emit psymbols for inlined
3035 functions. Using these files will cause GDB not to be able to
3036 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3037 indices unless the user has done
3038 "set use-deprecated-index-sections on". */
2ec9a5e0 3039 if (version < 6 && !deprecated_ok)
481860b3
GB
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
e615022a
DE
3044 warning (_("\
3045Skipping deprecated .gdb_index section in %s.\n\
3046Do \"set use-deprecated-index-sections on\" before the file is read\n\
3047to use the section anyway."),
2ec9a5e0 3048 filename);
481860b3
GB
3049 warning_printed = 1;
3050 }
3051 return 0;
3052 }
796a7ff8 3053 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3054 of the TU (for symbols coming from TUs),
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3056 Plus gold-generated indices can have duplicate entries for global symbols,
3057 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3058 These are just performance bugs, and we can't distinguish gdb-generated
3059 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3060
481860b3 3061 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3062 longer backward compatible. */
796a7ff8 3063 if (version > 8)
594e8718 3064 return 0;
9291a0cd 3065
559a7a62 3066 map->version = version;
2ec9a5e0 3067 map->total_size = section->size;
9291a0cd
TT
3068
3069 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3070
3071 i = 0;
2ec9a5e0
TT
3072 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3073 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3074 / 8);
1fd400ff
TT
3075 ++i;
3076
2ec9a5e0
TT
3077 *types_list = addr + MAYBE_SWAP (metadata[i]);
3078 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3079 - MAYBE_SWAP (metadata[i]))
3080 / 8);
987d643c 3081 ++i;
1fd400ff
TT
3082
3083 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3084 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3085 - MAYBE_SWAP (metadata[i]));
3086 ++i;
3087
3876f04e
DE
3088 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3089 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3090 - MAYBE_SWAP (metadata[i]))
3091 / (2 * sizeof (offset_type)));
1fd400ff 3092 ++i;
9291a0cd 3093
f9d83a0b 3094 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3095
2ec9a5e0
TT
3096 return 1;
3097}
3098
3099
3100/* Read the index file. If everything went ok, initialize the "quick"
3101 elements of all the CUs and return 1. Otherwise, return 0. */
3102
3103static int
3104dwarf2_read_index (struct objfile *objfile)
3105{
3106 struct mapped_index local_map, *map;
3107 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3108 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3109 struct dwz_file *dwz;
2ec9a5e0 3110
4262abfb 3111 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3112 use_deprecated_index_sections,
3113 &dwarf2_per_objfile->gdb_index, &local_map,
3114 &cu_list, &cu_list_elements,
3115 &types_list, &types_list_elements))
3116 return 0;
3117
0fefef59 3118 /* Don't use the index if it's empty. */
2ec9a5e0 3119 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3120 return 0;
3121
2ec9a5e0
TT
3122 /* If there is a .dwz file, read it so we can get its CU list as
3123 well. */
4db1a1dc
TT
3124 dwz = dwarf2_get_dwz_file ();
3125 if (dwz != NULL)
2ec9a5e0 3126 {
2ec9a5e0
TT
3127 struct mapped_index dwz_map;
3128 const gdb_byte *dwz_types_ignore;
3129 offset_type dwz_types_elements_ignore;
3130
3131 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3132 1,
3133 &dwz->gdb_index, &dwz_map,
3134 &dwz_list, &dwz_list_elements,
3135 &dwz_types_ignore,
3136 &dwz_types_elements_ignore))
3137 {
3138 warning (_("could not read '.gdb_index' section from %s; skipping"),
3139 bfd_get_filename (dwz->dwz_bfd));
3140 return 0;
3141 }
3142 }
3143
74a0d9f6
JK
3144 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3145 dwz_list_elements);
1fd400ff 3146
8b70b953
TT
3147 if (types_list_elements)
3148 {
3149 struct dwarf2_section_info *section;
3150
3151 /* We can only handle a single .debug_types when we have an
3152 index. */
3153 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3154 return 0;
3155
3156 section = VEC_index (dwarf2_section_info_def,
3157 dwarf2_per_objfile->types, 0);
3158
74a0d9f6
JK
3159 create_signatured_type_table_from_index (objfile, section, types_list,
3160 types_list_elements);
8b70b953 3161 }
9291a0cd 3162
2ec9a5e0
TT
3163 create_addrmap_from_index (objfile, &local_map);
3164
3165 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3166 *map = local_map;
9291a0cd
TT
3167
3168 dwarf2_per_objfile->index_table = map;
3169 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3170 dwarf2_per_objfile->quick_file_names_table =
3171 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3172
3173 return 1;
3174}
3175
3176/* A helper for the "quick" functions which sets the global
3177 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3178
9291a0cd
TT
3179static void
3180dw2_setup (struct objfile *objfile)
3181{
3182 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3183 gdb_assert (dwarf2_per_objfile);
3184}
3185
dee91e82 3186/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3187
dee91e82
DE
3188static void
3189dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3190 const gdb_byte *info_ptr,
dee91e82
DE
3191 struct die_info *comp_unit_die,
3192 int has_children,
3193 void *data)
9291a0cd 3194{
dee91e82
DE
3195 struct dwarf2_cu *cu = reader->cu;
3196 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3197 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3198 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3199 struct line_header *lh;
9291a0cd 3200 struct attribute *attr;
dee91e82 3201 int i;
15d034d0 3202 const char *name, *comp_dir;
7b9f3c50
DE
3203 void **slot;
3204 struct quick_file_names *qfn;
3205 unsigned int line_offset;
9291a0cd 3206
0186c6a7
DE
3207 gdb_assert (! this_cu->is_debug_types);
3208
07261596
TT
3209 /* Our callers never want to match partial units -- instead they
3210 will match the enclosing full CU. */
3211 if (comp_unit_die->tag == DW_TAG_partial_unit)
3212 {
3213 this_cu->v.quick->no_file_data = 1;
3214 return;
3215 }
3216
0186c6a7 3217 lh_cu = this_cu;
7b9f3c50
DE
3218 lh = NULL;
3219 slot = NULL;
3220 line_offset = 0;
dee91e82
DE
3221
3222 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3223 if (attr)
3224 {
7b9f3c50
DE
3225 struct quick_file_names find_entry;
3226
3227 line_offset = DW_UNSND (attr);
3228
3229 /* We may have already read in this line header (TU line header sharing).
3230 If we have we're done. */
094b34ac
DE
3231 find_entry.hash.dwo_unit = cu->dwo_unit;
3232 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3233 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3234 &find_entry, INSERT);
3235 if (*slot != NULL)
3236 {
094b34ac 3237 lh_cu->v.quick->file_names = *slot;
dee91e82 3238 return;
7b9f3c50
DE
3239 }
3240
3019eac3 3241 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3242 }
3243 if (lh == NULL)
3244 {
094b34ac 3245 lh_cu->v.quick->no_file_data = 1;
dee91e82 3246 return;
9291a0cd
TT
3247 }
3248
7b9f3c50 3249 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3250 qfn->hash.dwo_unit = cu->dwo_unit;
3251 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3252 gdb_assert (slot != NULL);
3253 *slot = qfn;
9291a0cd 3254
dee91e82 3255 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3256
7b9f3c50
DE
3257 qfn->num_file_names = lh->num_file_names;
3258 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3259 lh->num_file_names * sizeof (char *));
9291a0cd 3260 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3261 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3262 qfn->real_names = NULL;
9291a0cd 3263
7b9f3c50 3264 free_line_header (lh);
7b9f3c50 3265
094b34ac 3266 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3267}
3268
3269/* A helper for the "quick" functions which attempts to read the line
3270 table for THIS_CU. */
3271
3272static struct quick_file_names *
e4a48d9d 3273dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3274{
0186c6a7
DE
3275 /* This should never be called for TUs. */
3276 gdb_assert (! this_cu->is_debug_types);
3277 /* Nor type unit groups. */
3278 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3279
dee91e82
DE
3280 if (this_cu->v.quick->file_names != NULL)
3281 return this_cu->v.quick->file_names;
3282 /* If we know there is no line data, no point in looking again. */
3283 if (this_cu->v.quick->no_file_data)
3284 return NULL;
3285
0186c6a7 3286 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3287
3288 if (this_cu->v.quick->no_file_data)
3289 return NULL;
3290 return this_cu->v.quick->file_names;
9291a0cd
TT
3291}
3292
3293/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3294 real path for a given file name from the line table. */
2fdf6df6 3295
9291a0cd 3296static const char *
7b9f3c50
DE
3297dw2_get_real_path (struct objfile *objfile,
3298 struct quick_file_names *qfn, int index)
9291a0cd 3299{
7b9f3c50
DE
3300 if (qfn->real_names == NULL)
3301 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3302 qfn->num_file_names, const char *);
9291a0cd 3303
7b9f3c50
DE
3304 if (qfn->real_names[index] == NULL)
3305 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3306
7b9f3c50 3307 return qfn->real_names[index];
9291a0cd
TT
3308}
3309
3310static struct symtab *
3311dw2_find_last_source_symtab (struct objfile *objfile)
3312{
43f3e411 3313 struct compunit_symtab *cust;
9291a0cd 3314 int index;
ae2de4f8 3315
9291a0cd
TT
3316 dw2_setup (objfile);
3317 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3318 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3319 if (cust == NULL)
3320 return NULL;
3321 return compunit_primary_filetab (cust);
9291a0cd
TT
3322}
3323
7b9f3c50
DE
3324/* Traversal function for dw2_forget_cached_source_info. */
3325
3326static int
3327dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3328{
7b9f3c50 3329 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3330
7b9f3c50 3331 if (file_data->real_names)
9291a0cd 3332 {
7b9f3c50 3333 int i;
9291a0cd 3334
7b9f3c50 3335 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3336 {
7b9f3c50
DE
3337 xfree ((void*) file_data->real_names[i]);
3338 file_data->real_names[i] = NULL;
9291a0cd
TT
3339 }
3340 }
7b9f3c50
DE
3341
3342 return 1;
3343}
3344
3345static void
3346dw2_forget_cached_source_info (struct objfile *objfile)
3347{
3348 dw2_setup (objfile);
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3351 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3352}
3353
f8eba3c6
TT
3354/* Helper function for dw2_map_symtabs_matching_filename that expands
3355 the symtabs and calls the iterator. */
3356
3357static int
3358dw2_map_expand_apply (struct objfile *objfile,
3359 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3360 const char *name, const char *real_path,
f8eba3c6
TT
3361 int (*callback) (struct symtab *, void *),
3362 void *data)
3363{
43f3e411 3364 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3365
3366 /* Don't visit already-expanded CUs. */
43f3e411 3367 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3368 return 0;
3369
3370 /* This may expand more than one symtab, and we want to iterate over
3371 all of them. */
a0f42c21 3372 dw2_instantiate_symtab (per_cu);
f8eba3c6 3373
f5b95b50 3374 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3375 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3376}
3377
3378/* Implementation of the map_symtabs_matching_filename method. */
3379
9291a0cd 3380static int
f8eba3c6 3381dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3382 const char *real_path,
f8eba3c6
TT
3383 int (*callback) (struct symtab *, void *),
3384 void *data)
9291a0cd
TT
3385{
3386 int i;
c011a4f4 3387 const char *name_basename = lbasename (name);
9291a0cd
TT
3388
3389 dw2_setup (objfile);
ae2de4f8 3390
848e3e78
DE
3391 /* The rule is CUs specify all the files, including those used by
3392 any TU, so there's no need to scan TUs here. */
f4dc4d17 3393
848e3e78 3394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3395 {
3396 int j;
8832e7e3 3397 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3398 struct quick_file_names *file_data;
9291a0cd 3399
3d7bb9d9 3400 /* We only need to look at symtabs not already expanded. */
43f3e411 3401 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3402 continue;
3403
e4a48d9d 3404 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3405 if (file_data == NULL)
9291a0cd
TT
3406 continue;
3407
7b9f3c50 3408 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3409 {
7b9f3c50 3410 const char *this_name = file_data->file_names[j];
da235a7c 3411 const char *this_real_name;
9291a0cd 3412
af529f8f 3413 if (compare_filenames_for_search (this_name, name))
9291a0cd 3414 {
f5b95b50 3415 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3416 callback, data))
3417 return 1;
288e77a7 3418 continue;
4aac40c8 3419 }
9291a0cd 3420
c011a4f4
DE
3421 /* Before we invoke realpath, which can get expensive when many
3422 files are involved, do a quick comparison of the basenames. */
3423 if (! basenames_may_differ
3424 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3425 continue;
3426
da235a7c
JK
3427 this_real_name = dw2_get_real_path (objfile, file_data, j);
3428 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3429 {
da235a7c
JK
3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3431 callback, data))
3432 return 1;
288e77a7 3433 continue;
da235a7c 3434 }
9291a0cd 3435
da235a7c
JK
3436 if (real_path != NULL)
3437 {
af529f8f
JK
3438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3439 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3440 if (this_real_name != NULL
af529f8f 3441 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3442 {
f5b95b50 3443 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3444 callback, data))
3445 return 1;
288e77a7 3446 continue;
9291a0cd
TT
3447 }
3448 }
3449 }
3450 }
3451
9291a0cd
TT
3452 return 0;
3453}
3454
da51c347
DE
3455/* Struct used to manage iterating over all CUs looking for a symbol. */
3456
3457struct dw2_symtab_iterator
9291a0cd 3458{
da51c347
DE
3459 /* The internalized form of .gdb_index. */
3460 struct mapped_index *index;
3461 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3462 int want_specific_block;
3463 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3464 Unused if !WANT_SPECIFIC_BLOCK. */
3465 int block_index;
3466 /* The kind of symbol we're looking for. */
3467 domain_enum domain;
3468 /* The list of CUs from the index entry of the symbol,
3469 or NULL if not found. */
3470 offset_type *vec;
3471 /* The next element in VEC to look at. */
3472 int next;
3473 /* The number of elements in VEC, or zero if there is no match. */
3474 int length;
8943b874
DE
3475 /* Have we seen a global version of the symbol?
3476 If so we can ignore all further global instances.
3477 This is to work around gold/15646, inefficient gold-generated
3478 indices. */
3479 int global_seen;
da51c347 3480};
9291a0cd 3481
da51c347
DE
3482/* Initialize the index symtab iterator ITER.
3483 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3484 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3485
9291a0cd 3486static void
da51c347
DE
3487dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3488 struct mapped_index *index,
3489 int want_specific_block,
3490 int block_index,
3491 domain_enum domain,
3492 const char *name)
3493{
3494 iter->index = index;
3495 iter->want_specific_block = want_specific_block;
3496 iter->block_index = block_index;
3497 iter->domain = domain;
3498 iter->next = 0;
8943b874 3499 iter->global_seen = 0;
da51c347
DE
3500
3501 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3502 iter->length = MAYBE_SWAP (*iter->vec);
3503 else
3504 {
3505 iter->vec = NULL;
3506 iter->length = 0;
3507 }
3508}
3509
3510/* Return the next matching CU or NULL if there are no more. */
3511
3512static struct dwarf2_per_cu_data *
3513dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3514{
3515 for ( ; iter->next < iter->length; ++iter->next)
3516 {
3517 offset_type cu_index_and_attrs =
3518 MAYBE_SWAP (iter->vec[iter->next + 1]);
3519 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3520 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3521 int want_static = iter->block_index != GLOBAL_BLOCK;
3522 /* This value is only valid for index versions >= 7. */
3523 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3524 gdb_index_symbol_kind symbol_kind =
3525 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3526 /* Only check the symbol attributes if they're present.
3527 Indices prior to version 7 don't record them,
3528 and indices >= 7 may elide them for certain symbols
3529 (gold does this). */
3530 int attrs_valid =
3531 (iter->index->version >= 7
3532 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3533
3190f0c6
DE
3534 /* Don't crash on bad data. */
3535 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3536 + dwarf2_per_objfile->n_type_units))
3537 {
3538 complaint (&symfile_complaints,
3539 _(".gdb_index entry has bad CU index"
4262abfb
JK
3540 " [in module %s]"),
3541 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3542 continue;
3543 }
3544
8832e7e3 3545 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3546
da51c347 3547 /* Skip if already read in. */
43f3e411 3548 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3549 continue;
3550
8943b874
DE
3551 /* Check static vs global. */
3552 if (attrs_valid)
3553 {
3554 if (iter->want_specific_block
3555 && want_static != is_static)
3556 continue;
3557 /* Work around gold/15646. */
3558 if (!is_static && iter->global_seen)
3559 continue;
3560 if (!is_static)
3561 iter->global_seen = 1;
3562 }
da51c347
DE
3563
3564 /* Only check the symbol's kind if it has one. */
3565 if (attrs_valid)
3566 {
3567 switch (iter->domain)
3568 {
3569 case VAR_DOMAIN:
3570 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3571 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3572 /* Some types are also in VAR_DOMAIN. */
3573 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3574 continue;
3575 break;
3576 case STRUCT_DOMAIN:
3577 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3578 continue;
3579 break;
3580 case LABEL_DOMAIN:
3581 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3582 continue;
3583 break;
3584 default:
3585 break;
3586 }
3587 }
3588
3589 ++iter->next;
3590 return per_cu;
3591 }
3592
3593 return NULL;
3594}
3595
43f3e411 3596static struct compunit_symtab *
da51c347
DE
3597dw2_lookup_symbol (struct objfile *objfile, int block_index,
3598 const char *name, domain_enum domain)
9291a0cd 3599{
43f3e411 3600 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3601 struct mapped_index *index;
3602
9291a0cd
TT
3603 dw2_setup (objfile);
3604
156942c7
DE
3605 index = dwarf2_per_objfile->index_table;
3606
da51c347 3607 /* index is NULL if OBJF_READNOW. */
156942c7 3608 if (index)
9291a0cd 3609 {
da51c347
DE
3610 struct dw2_symtab_iterator iter;
3611 struct dwarf2_per_cu_data *per_cu;
3612
3613 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3614
da51c347 3615 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3616 {
da51c347 3617 struct symbol *sym = NULL;
43f3e411
DE
3618 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3619 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347
DE
3621
3622 /* Some caution must be observed with overloaded functions
3623 and methods, since the index will not contain any overload
3624 information (but NAME might contain it). */
f194fefb 3625 sym = block_lookup_symbol (block, name, domain);
1fd400ff 3626
da51c347
DE
3627 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3628 {
3629 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3630 return stab;
3631
3632 stab_best = stab;
9291a0cd 3633 }
da51c347
DE
3634
3635 /* Keep looking through other CUs. */
9291a0cd
TT
3636 }
3637 }
9291a0cd 3638
da51c347 3639 return stab_best;
9291a0cd
TT
3640}
3641
3642static void
3643dw2_print_stats (struct objfile *objfile)
3644{
e4a48d9d 3645 int i, total, count;
9291a0cd
TT
3646
3647 dw2_setup (objfile);
e4a48d9d 3648 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3649 count = 0;
e4a48d9d 3650 for (i = 0; i < total; ++i)
9291a0cd 3651 {
8832e7e3 3652 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3653
43f3e411 3654 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3655 ++count;
3656 }
e4a48d9d 3657 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3658 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3659}
3660
779bd270
DE
3661/* This dumps minimal information about the index.
3662 It is called via "mt print objfiles".
3663 One use is to verify .gdb_index has been loaded by the
3664 gdb.dwarf2/gdb-index.exp testcase. */
3665
9291a0cd
TT
3666static void
3667dw2_dump (struct objfile *objfile)
3668{
779bd270
DE
3669 dw2_setup (objfile);
3670 gdb_assert (dwarf2_per_objfile->using_index);
3671 printf_filtered (".gdb_index:");
3672 if (dwarf2_per_objfile->index_table != NULL)
3673 {
3674 printf_filtered (" version %d\n",
3675 dwarf2_per_objfile->index_table->version);
3676 }
3677 else
3678 printf_filtered (" faked for \"readnow\"\n");
3679 printf_filtered ("\n");
9291a0cd
TT
3680}
3681
3682static void
3189cb12
DE
3683dw2_relocate (struct objfile *objfile,
3684 const struct section_offsets *new_offsets,
3685 const struct section_offsets *delta)
9291a0cd
TT
3686{
3687 /* There's nothing to relocate here. */
3688}
3689
3690static void
3691dw2_expand_symtabs_for_function (struct objfile *objfile,
3692 const char *func_name)
3693{
da51c347
DE
3694 struct mapped_index *index;
3695
3696 dw2_setup (objfile);
3697
3698 index = dwarf2_per_objfile->index_table;
3699
3700 /* index is NULL if OBJF_READNOW. */
3701 if (index)
3702 {
3703 struct dw2_symtab_iterator iter;
3704 struct dwarf2_per_cu_data *per_cu;
3705
3706 /* Note: It doesn't matter what we pass for block_index here. */
3707 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3708 func_name);
3709
3710 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3711 dw2_instantiate_symtab (per_cu);
3712 }
9291a0cd
TT
3713}
3714
3715static void
3716dw2_expand_all_symtabs (struct objfile *objfile)
3717{
3718 int i;
3719
3720 dw2_setup (objfile);
1fd400ff
TT
3721
3722 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3723 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3724 {
8832e7e3 3725 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3726
a0f42c21 3727 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3728 }
3729}
3730
3731static void
652a8996
JK
3732dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3733 const char *fullname)
9291a0cd
TT
3734{
3735 int i;
3736
3737 dw2_setup (objfile);
d4637a04
DE
3738
3739 /* We don't need to consider type units here.
3740 This is only called for examining code, e.g. expand_line_sal.
3741 There can be an order of magnitude (or more) more type units
3742 than comp units, and we avoid them if we can. */
3743
3744 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3745 {
3746 int j;
8832e7e3 3747 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3748 struct quick_file_names *file_data;
9291a0cd 3749
3d7bb9d9 3750 /* We only need to look at symtabs not already expanded. */
43f3e411 3751 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3752 continue;
3753
e4a48d9d 3754 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3755 if (file_data == NULL)
9291a0cd
TT
3756 continue;
3757
7b9f3c50 3758 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3759 {
652a8996
JK
3760 const char *this_fullname = file_data->file_names[j];
3761
3762 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3763 {
a0f42c21 3764 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3765 break;
3766 }
3767 }
3768 }
3769}
3770
9291a0cd 3771static void
ade7ed9e
DE
3772dw2_map_matching_symbols (struct objfile *objfile,
3773 const char * name, domain_enum namespace,
3774 int global,
40658b94
PH
3775 int (*callback) (struct block *,
3776 struct symbol *, void *),
2edb89d3
JK
3777 void *data, symbol_compare_ftype *match,
3778 symbol_compare_ftype *ordered_compare)
9291a0cd 3779{
40658b94 3780 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3781 current language is Ada for a non-Ada objfile using GNU index. As Ada
3782 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3783}
3784
3785static void
f8eba3c6
TT
3786dw2_expand_symtabs_matching
3787 (struct objfile *objfile,
206f2a57
DE
3788 expand_symtabs_file_matcher_ftype *file_matcher,
3789 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3790 enum search_domain kind,
3791 void *data)
9291a0cd
TT
3792{
3793 int i;
3794 offset_type iter;
4b5246aa 3795 struct mapped_index *index;
9291a0cd
TT
3796
3797 dw2_setup (objfile);
ae2de4f8
DE
3798
3799 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3800 if (!dwarf2_per_objfile->index_table)
3801 return;
4b5246aa 3802 index = dwarf2_per_objfile->index_table;
9291a0cd 3803
7b08b9eb 3804 if (file_matcher != NULL)
24c79950
TT
3805 {
3806 struct cleanup *cleanup;
3807 htab_t visited_found, visited_not_found;
3808
3809 visited_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 cleanup = make_cleanup_htab_delete (visited_found);
3813 visited_not_found = htab_create_alloc (10,
3814 htab_hash_pointer, htab_eq_pointer,
3815 NULL, xcalloc, xfree);
3816 make_cleanup_htab_delete (visited_not_found);
3817
848e3e78
DE
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3822 {
3823 int j;
8832e7e3 3824 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3825 struct quick_file_names *file_data;
3826 void **slot;
7b08b9eb 3827
24c79950 3828 per_cu->v.quick->mark = 0;
3d7bb9d9 3829
24c79950 3830 /* We only need to look at symtabs not already expanded. */
43f3e411 3831 if (per_cu->v.quick->compunit_symtab)
24c79950 3832 continue;
7b08b9eb 3833
e4a48d9d 3834 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3835 if (file_data == NULL)
3836 continue;
7b08b9eb 3837
24c79950
TT
3838 if (htab_find (visited_not_found, file_data) != NULL)
3839 continue;
3840 else if (htab_find (visited_found, file_data) != NULL)
3841 {
3842 per_cu->v.quick->mark = 1;
3843 continue;
3844 }
3845
3846 for (j = 0; j < file_data->num_file_names; ++j)
3847 {
da235a7c
JK
3848 const char *this_real_name;
3849
fbd9ab74 3850 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3851 {
3852 per_cu->v.quick->mark = 1;
3853 break;
3854 }
da235a7c
JK
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (!basenames_may_differ
3859 && !file_matcher (lbasename (file_data->file_names[j]),
3860 data, 1))
3861 continue;
3862
3863 this_real_name = dw2_get_real_path (objfile, file_data, j);
3864 if (file_matcher (this_real_name, data, 0))
3865 {
3866 per_cu->v.quick->mark = 1;
3867 break;
3868 }
24c79950
TT
3869 }
3870
3871 slot = htab_find_slot (per_cu->v.quick->mark
3872 ? visited_found
3873 : visited_not_found,
3874 file_data, INSERT);
3875 *slot = file_data;
3876 }
3877
3878 do_cleanups (cleanup);
3879 }
9291a0cd 3880
3876f04e 3881 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3882 {
3883 offset_type idx = 2 * iter;
3884 const char *name;
3885 offset_type *vec, vec_len, vec_idx;
8943b874 3886 int global_seen = 0;
9291a0cd 3887
3876f04e 3888 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3889 continue;
3890
3876f04e 3891 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3892
206f2a57 3893 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3894 continue;
3895
3896 /* The name was matched, now expand corresponding CUs that were
3897 marked. */
4b5246aa 3898 vec = (offset_type *) (index->constant_pool
3876f04e 3899 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3900 vec_len = MAYBE_SWAP (vec[0]);
3901 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3902 {
e254ef6a 3903 struct dwarf2_per_cu_data *per_cu;
156942c7 3904 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3905 /* This value is only valid for index versions >= 7. */
3906 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3907 gdb_index_symbol_kind symbol_kind =
3908 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3909 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3910 /* Only check the symbol attributes if they're present.
3911 Indices prior to version 7 don't record them,
3912 and indices >= 7 may elide them for certain symbols
3913 (gold does this). */
3914 int attrs_valid =
3915 (index->version >= 7
3916 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3917
8943b874
DE
3918 /* Work around gold/15646. */
3919 if (attrs_valid)
3920 {
3921 if (!is_static && global_seen)
3922 continue;
3923 if (!is_static)
3924 global_seen = 1;
3925 }
3926
3190f0c6
DE
3927 /* Only check the symbol's kind if it has one. */
3928 if (attrs_valid)
156942c7
DE
3929 {
3930 switch (kind)
3931 {
3932 case VARIABLES_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3934 continue;
3935 break;
3936 case FUNCTIONS_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3938 continue;
3939 break;
3940 case TYPES_DOMAIN:
3941 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3942 continue;
3943 break;
3944 default:
3945 break;
3946 }
3947 }
3948
3190f0c6
DE
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3951 + dwarf2_per_objfile->n_type_units))
3952 {
3953 complaint (&symfile_complaints,
3954 _(".gdb_index entry has bad CU index"
4262abfb 3955 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3956 continue;
3957 }
3958
8832e7e3 3959 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3960 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3961 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3962 }
3963 }
3964}
3965
43f3e411 3966/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
3967 symtab. */
3968
43f3e411
DE
3969static struct compunit_symtab *
3970recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3971 CORE_ADDR pc)
9703b513
TT
3972{
3973 int i;
3974
43f3e411
DE
3975 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3976 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3977 return cust;
9703b513 3978
43f3e411 3979 if (cust->includes == NULL)
a3ec0bb1
DE
3980 return NULL;
3981
43f3e411 3982 for (i = 0; cust->includes[i]; ++i)
9703b513 3983 {
43f3e411 3984 struct compunit_symtab *s = cust->includes[i];
9703b513 3985
43f3e411 3986 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
3987 if (s != NULL)
3988 return s;
3989 }
3990
3991 return NULL;
3992}
3993
43f3e411
DE
3994static struct compunit_symtab *
3995dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3996 struct bound_minimal_symbol msymbol,
3997 CORE_ADDR pc,
3998 struct obj_section *section,
3999 int warn_if_readin)
9291a0cd
TT
4000{
4001 struct dwarf2_per_cu_data *data;
43f3e411 4002 struct compunit_symtab *result;
9291a0cd
TT
4003
4004 dw2_setup (objfile);
4005
4006 if (!objfile->psymtabs_addrmap)
4007 return NULL;
4008
4009 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4010 if (!data)
4011 return NULL;
4012
43f3e411 4013 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4014 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4015 paddress (get_objfile_arch (objfile), pc));
4016
43f3e411
DE
4017 result
4018 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4019 pc);
9703b513
TT
4020 gdb_assert (result != NULL);
4021 return result;
9291a0cd
TT
4022}
4023
9291a0cd 4024static void
44b13c5a 4025dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4026 void *data, int need_fullname)
9291a0cd
TT
4027{
4028 int i;
24c79950
TT
4029 struct cleanup *cleanup;
4030 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4031 NULL, xcalloc, xfree);
9291a0cd 4032
24c79950 4033 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4034 dw2_setup (objfile);
ae2de4f8 4035
848e3e78
DE
4036 /* The rule is CUs specify all the files, including those used by
4037 any TU, so there's no need to scan TUs here.
4038 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4039
848e3e78 4040 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4041 {
8832e7e3 4042 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4043
43f3e411 4044 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4045 {
4046 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4047 INSERT);
4048
4049 *slot = per_cu->v.quick->file_names;
4050 }
4051 }
4052
848e3e78 4053 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4054 {
4055 int j;
8832e7e3 4056 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4057 struct quick_file_names *file_data;
24c79950 4058 void **slot;
9291a0cd 4059
3d7bb9d9 4060 /* We only need to look at symtabs not already expanded. */
43f3e411 4061 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4062 continue;
4063
e4a48d9d 4064 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4065 if (file_data == NULL)
9291a0cd
TT
4066 continue;
4067
24c79950
TT
4068 slot = htab_find_slot (visited, file_data, INSERT);
4069 if (*slot)
4070 {
4071 /* Already visited. */
4072 continue;
4073 }
4074 *slot = file_data;
4075
7b9f3c50 4076 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4077 {
74e2f255
DE
4078 const char *this_real_name;
4079
4080 if (need_fullname)
4081 this_real_name = dw2_get_real_path (objfile, file_data, j);
4082 else
4083 this_real_name = NULL;
7b9f3c50 4084 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4085 }
4086 }
24c79950
TT
4087
4088 do_cleanups (cleanup);
9291a0cd
TT
4089}
4090
4091static int
4092dw2_has_symbols (struct objfile *objfile)
4093{
4094 return 1;
4095}
4096
4097const struct quick_symbol_functions dwarf2_gdb_index_functions =
4098{
4099 dw2_has_symbols,
4100 dw2_find_last_source_symtab,
4101 dw2_forget_cached_source_info,
f8eba3c6 4102 dw2_map_symtabs_matching_filename,
9291a0cd 4103 dw2_lookup_symbol,
9291a0cd
TT
4104 dw2_print_stats,
4105 dw2_dump,
4106 dw2_relocate,
4107 dw2_expand_symtabs_for_function,
4108 dw2_expand_all_symtabs,
652a8996 4109 dw2_expand_symtabs_with_fullname,
40658b94 4110 dw2_map_matching_symbols,
9291a0cd 4111 dw2_expand_symtabs_matching,
43f3e411 4112 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4113 dw2_map_symbol_filenames
4114};
4115
4116/* Initialize for reading DWARF for this objfile. Return 0 if this
4117 file will use psymtabs, or 1 if using the GNU index. */
4118
4119int
4120dwarf2_initialize_objfile (struct objfile *objfile)
4121{
4122 /* If we're about to read full symbols, don't bother with the
4123 indices. In this case we also don't care if some other debug
4124 format is making psymtabs, because they are all about to be
4125 expanded anyway. */
4126 if ((objfile->flags & OBJF_READNOW))
4127 {
4128 int i;
4129
4130 dwarf2_per_objfile->using_index = 1;
4131 create_all_comp_units (objfile);
0e50663e 4132 create_all_type_units (objfile);
7b9f3c50
DE
4133 dwarf2_per_objfile->quick_file_names_table =
4134 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4135
1fd400ff 4136 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4137 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4138 {
8832e7e3 4139 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4140
e254ef6a
DE
4141 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4142 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4143 }
4144
4145 /* Return 1 so that gdb sees the "quick" functions. However,
4146 these functions will be no-ops because we will have expanded
4147 all symtabs. */
4148 return 1;
4149 }
4150
4151 if (dwarf2_read_index (objfile))
4152 return 1;
4153
9291a0cd
TT
4154 return 0;
4155}
4156
4157\f
4158
dce234bc
PP
4159/* Build a partial symbol table. */
4160
4161void
f29dff0a 4162dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4163{
c9bf0622
TT
4164 volatile struct gdb_exception except;
4165
f29dff0a 4166 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4167 {
4168 init_psymbol_list (objfile, 1024);
4169 }
4170
c9bf0622
TT
4171 TRY_CATCH (except, RETURN_MASK_ERROR)
4172 {
4173 /* This isn't really ideal: all the data we allocate on the
4174 objfile's obstack is still uselessly kept around. However,
4175 freeing it seems unsafe. */
4176 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4177
4178 dwarf2_build_psymtabs_hard (objfile);
4179 discard_cleanups (cleanups);
4180 }
4181 if (except.reason < 0)
4182 exception_print (gdb_stderr, except);
c906108c 4183}
c906108c 4184
1ce1cefd
DE
4185/* Return the total length of the CU described by HEADER. */
4186
4187static unsigned int
4188get_cu_length (const struct comp_unit_head *header)
4189{
4190 return header->initial_length_size + header->length;
4191}
4192
45452591
DE
4193/* Return TRUE if OFFSET is within CU_HEADER. */
4194
4195static inline int
b64f50a1 4196offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4197{
b64f50a1 4198 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4199 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4200
b64f50a1 4201 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4202}
4203
3b80fe9b
DE
4204/* Find the base address of the compilation unit for range lists and
4205 location lists. It will normally be specified by DW_AT_low_pc.
4206 In DWARF-3 draft 4, the base address could be overridden by
4207 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4208 compilation units with discontinuous ranges. */
4209
4210static void
4211dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4212{
4213 struct attribute *attr;
4214
4215 cu->base_known = 0;
4216 cu->base_address = 0;
4217
4218 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4219 if (attr)
4220 {
31aa7e4e 4221 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4222 cu->base_known = 1;
4223 }
4224 else
4225 {
4226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4227 if (attr)
4228 {
31aa7e4e 4229 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4230 cu->base_known = 1;
4231 }
4232 }
4233}
4234
93311388
DE
4235/* Read in the comp unit header information from the debug_info at info_ptr.
4236 NOTE: This leaves members offset, first_die_offset to be filled in
4237 by the caller. */
107d2387 4238
d521ce57 4239static const gdb_byte *
107d2387 4240read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4241 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4242{
4243 int signed_addr;
891d2f0b 4244 unsigned int bytes_read;
c764a876
DE
4245
4246 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4247 cu_header->initial_length_size = bytes_read;
4248 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4249 info_ptr += bytes_read;
107d2387
AC
4250 cu_header->version = read_2_bytes (abfd, info_ptr);
4251 info_ptr += 2;
b64f50a1
JK
4252 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4253 &bytes_read);
613e1657 4254 info_ptr += bytes_read;
107d2387
AC
4255 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4256 info_ptr += 1;
4257 signed_addr = bfd_get_sign_extend_vma (abfd);
4258 if (signed_addr < 0)
8e65ff28 4259 internal_error (__FILE__, __LINE__,
e2e0b3e5 4260 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4261 cu_header->signed_addr_p = signed_addr;
c764a876 4262
107d2387
AC
4263 return info_ptr;
4264}
4265
36586728
TT
4266/* Helper function that returns the proper abbrev section for
4267 THIS_CU. */
4268
4269static struct dwarf2_section_info *
4270get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4271{
4272 struct dwarf2_section_info *abbrev;
4273
4274 if (this_cu->is_dwz)
4275 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4276 else
4277 abbrev = &dwarf2_per_objfile->abbrev;
4278
4279 return abbrev;
4280}
4281
9ff913ba
DE
4282/* Subroutine of read_and_check_comp_unit_head and
4283 read_and_check_type_unit_head to simplify them.
4284 Perform various error checking on the header. */
4285
4286static void
4287error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4288 struct dwarf2_section_info *section,
4289 struct dwarf2_section_info *abbrev_section)
9ff913ba 4290{
a32a8923
DE
4291 bfd *abfd = get_section_bfd_owner (section);
4292 const char *filename = get_section_file_name (section);
9ff913ba
DE
4293
4294 if (header->version != 2 && header->version != 3 && header->version != 4)
4295 error (_("Dwarf Error: wrong version in compilation unit header "
4296 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4297 filename);
4298
b64f50a1 4299 if (header->abbrev_offset.sect_off
36586728 4300 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4301 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4302 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4303 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4304 filename);
4305
4306 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4307 avoid potential 32-bit overflow. */
1ce1cefd 4308 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4309 > section->size)
4310 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4311 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4312 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4313 filename);
4314}
4315
4316/* Read in a CU/TU header and perform some basic error checking.
4317 The contents of the header are stored in HEADER.
4318 The result is a pointer to the start of the first DIE. */
adabb602 4319
d521ce57 4320static const gdb_byte *
9ff913ba
DE
4321read_and_check_comp_unit_head (struct comp_unit_head *header,
4322 struct dwarf2_section_info *section,
4bdcc0c1 4323 struct dwarf2_section_info *abbrev_section,
d521ce57 4324 const gdb_byte *info_ptr,
9ff913ba 4325 int is_debug_types_section)
72bf9492 4326{
d521ce57 4327 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4328 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4329
b64f50a1 4330 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4331
72bf9492
DJ
4332 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4333
460c1c54
CC
4334 /* If we're reading a type unit, skip over the signature and
4335 type_offset fields. */
b0df02fd 4336 if (is_debug_types_section)
460c1c54
CC
4337 info_ptr += 8 /*signature*/ + header->offset_size;
4338
b64f50a1 4339 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4340
4bdcc0c1 4341 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4342
4343 return info_ptr;
4344}
4345
348e048f
DE
4346/* Read in the types comp unit header information from .debug_types entry at
4347 types_ptr. The result is a pointer to one past the end of the header. */
4348
d521ce57 4349static const gdb_byte *
9ff913ba
DE
4350read_and_check_type_unit_head (struct comp_unit_head *header,
4351 struct dwarf2_section_info *section,
4bdcc0c1 4352 struct dwarf2_section_info *abbrev_section,
d521ce57 4353 const gdb_byte *info_ptr,
dee91e82
DE
4354 ULONGEST *signature,
4355 cu_offset *type_offset_in_tu)
348e048f 4356{
d521ce57 4357 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4358 bfd *abfd = get_section_bfd_owner (section);
348e048f 4359
b64f50a1 4360 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4361
9ff913ba 4362 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4363
9ff913ba
DE
4364 /* If we're reading a type unit, skip over the signature and
4365 type_offset fields. */
4366 if (signature != NULL)
4367 *signature = read_8_bytes (abfd, info_ptr);
4368 info_ptr += 8;
dee91e82
DE
4369 if (type_offset_in_tu != NULL)
4370 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4371 header->offset_size);
9ff913ba
DE
4372 info_ptr += header->offset_size;
4373
b64f50a1 4374 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4375
4bdcc0c1 4376 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4377
4378 return info_ptr;
348e048f
DE
4379}
4380
f4dc4d17
DE
4381/* Fetch the abbreviation table offset from a comp or type unit header. */
4382
4383static sect_offset
4384read_abbrev_offset (struct dwarf2_section_info *section,
4385 sect_offset offset)
4386{
a32a8923 4387 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4388 const gdb_byte *info_ptr;
f4dc4d17
DE
4389 unsigned int length, initial_length_size, offset_size;
4390 sect_offset abbrev_offset;
4391
4392 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4393 info_ptr = section->buffer + offset.sect_off;
4394 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4395 offset_size = initial_length_size == 4 ? 4 : 8;
4396 info_ptr += initial_length_size + 2 /*version*/;
4397 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4398 return abbrev_offset;
4399}
4400
aaa75496
JB
4401/* Allocate a new partial symtab for file named NAME and mark this new
4402 partial symtab as being an include of PST. */
4403
4404static void
d521ce57 4405dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4406 struct objfile *objfile)
4407{
4408 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4409
fbd9ab74
JK
4410 if (!IS_ABSOLUTE_PATH (subpst->filename))
4411 {
4412 /* It shares objfile->objfile_obstack. */
4413 subpst->dirname = pst->dirname;
4414 }
4415
aaa75496
JB
4416 subpst->section_offsets = pst->section_offsets;
4417 subpst->textlow = 0;
4418 subpst->texthigh = 0;
4419
4420 subpst->dependencies = (struct partial_symtab **)
4421 obstack_alloc (&objfile->objfile_obstack,
4422 sizeof (struct partial_symtab *));
4423 subpst->dependencies[0] = pst;
4424 subpst->number_of_dependencies = 1;
4425
4426 subpst->globals_offset = 0;
4427 subpst->n_global_syms = 0;
4428 subpst->statics_offset = 0;
4429 subpst->n_static_syms = 0;
43f3e411 4430 subpst->compunit_symtab = NULL;
aaa75496
JB
4431 subpst->read_symtab = pst->read_symtab;
4432 subpst->readin = 0;
4433
4434 /* No private part is necessary for include psymtabs. This property
4435 can be used to differentiate between such include psymtabs and
10b3939b 4436 the regular ones. */
58a9656e 4437 subpst->read_symtab_private = NULL;
aaa75496
JB
4438}
4439
4440/* Read the Line Number Program data and extract the list of files
4441 included by the source file represented by PST. Build an include
d85a05f0 4442 partial symtab for each of these included files. */
aaa75496
JB
4443
4444static void
4445dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4446 struct die_info *die,
4447 struct partial_symtab *pst)
aaa75496 4448{
d85a05f0
DJ
4449 struct line_header *lh = NULL;
4450 struct attribute *attr;
aaa75496 4451
d85a05f0
DJ
4452 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4453 if (attr)
3019eac3 4454 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4455 if (lh == NULL)
4456 return; /* No linetable, so no includes. */
4457
c6da4cef 4458 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
c3b7b696 4459 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
aaa75496
JB
4460
4461 free_line_header (lh);
4462}
4463
348e048f 4464static hashval_t
52dc124a 4465hash_signatured_type (const void *item)
348e048f 4466{
52dc124a 4467 const struct signatured_type *sig_type = item;
9a619af0 4468
348e048f 4469 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4470 return sig_type->signature;
348e048f
DE
4471}
4472
4473static int
52dc124a 4474eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4475{
4476 const struct signatured_type *lhs = item_lhs;
4477 const struct signatured_type *rhs = item_rhs;
9a619af0 4478
348e048f
DE
4479 return lhs->signature == rhs->signature;
4480}
4481
1fd400ff
TT
4482/* Allocate a hash table for signatured types. */
4483
4484static htab_t
673bfd45 4485allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4486{
4487 return htab_create_alloc_ex (41,
52dc124a
DE
4488 hash_signatured_type,
4489 eq_signatured_type,
1fd400ff
TT
4490 NULL,
4491 &objfile->objfile_obstack,
4492 hashtab_obstack_allocate,
4493 dummy_obstack_deallocate);
4494}
4495
d467dd73 4496/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4497
4498static int
d467dd73 4499add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4500{
4501 struct signatured_type *sigt = *slot;
b4dd5633 4502 struct signatured_type ***datap = datum;
1fd400ff 4503
b4dd5633 4504 **datap = sigt;
1fd400ff
TT
4505 ++*datap;
4506
4507 return 1;
4508}
4509
c88ee1f0
DE
4510/* Create the hash table of all entries in the .debug_types
4511 (or .debug_types.dwo) section(s).
4512 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4513 otherwise it is NULL.
4514
4515 The result is a pointer to the hash table or NULL if there are no types.
4516
4517 Note: This function processes DWO files only, not DWP files. */
348e048f 4518
3019eac3
DE
4519static htab_t
4520create_debug_types_hash_table (struct dwo_file *dwo_file,
4521 VEC (dwarf2_section_info_def) *types)
348e048f 4522{
3019eac3 4523 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4524 htab_t types_htab = NULL;
8b70b953
TT
4525 int ix;
4526 struct dwarf2_section_info *section;
4bdcc0c1 4527 struct dwarf2_section_info *abbrev_section;
348e048f 4528
3019eac3
DE
4529 if (VEC_empty (dwarf2_section_info_def, types))
4530 return NULL;
348e048f 4531
4bdcc0c1
DE
4532 abbrev_section = (dwo_file != NULL
4533 ? &dwo_file->sections.abbrev
4534 : &dwarf2_per_objfile->abbrev);
4535
09406207
DE
4536 if (dwarf2_read_debug)
4537 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4538 dwo_file ? ".dwo" : "",
a32a8923 4539 get_section_file_name (abbrev_section));
09406207 4540
8b70b953 4541 for (ix = 0;
3019eac3 4542 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4543 ++ix)
4544 {
3019eac3 4545 bfd *abfd;
d521ce57 4546 const gdb_byte *info_ptr, *end_ptr;
348e048f 4547
8b70b953
TT
4548 dwarf2_read_section (objfile, section);
4549 info_ptr = section->buffer;
348e048f 4550
8b70b953
TT
4551 if (info_ptr == NULL)
4552 continue;
348e048f 4553
3019eac3 4554 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4555 not present, in which case the bfd is unknown. */
4556 abfd = get_section_bfd_owner (section);
3019eac3 4557
dee91e82
DE
4558 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4559 because we don't need to read any dies: the signature is in the
4560 header. */
8b70b953
TT
4561
4562 end_ptr = info_ptr + section->size;
4563 while (info_ptr < end_ptr)
4564 {
b64f50a1 4565 sect_offset offset;
3019eac3 4566 cu_offset type_offset_in_tu;
8b70b953 4567 ULONGEST signature;
52dc124a 4568 struct signatured_type *sig_type;
3019eac3 4569 struct dwo_unit *dwo_tu;
8b70b953 4570 void **slot;
d521ce57 4571 const gdb_byte *ptr = info_ptr;
9ff913ba 4572 struct comp_unit_head header;
dee91e82 4573 unsigned int length;
348e048f 4574
b64f50a1 4575 offset.sect_off = ptr - section->buffer;
348e048f 4576
8b70b953 4577 /* We need to read the type's signature in order to build the hash
9ff913ba 4578 table, but we don't need anything else just yet. */
348e048f 4579
4bdcc0c1
DE
4580 ptr = read_and_check_type_unit_head (&header, section,
4581 abbrev_section, ptr,
3019eac3 4582 &signature, &type_offset_in_tu);
6caca83c 4583
1ce1cefd 4584 length = get_cu_length (&header);
dee91e82 4585
6caca83c 4586 /* Skip dummy type units. */
dee91e82
DE
4587 if (ptr >= info_ptr + length
4588 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4589 {
1ce1cefd 4590 info_ptr += length;
6caca83c
CC
4591 continue;
4592 }
8b70b953 4593
0349ea22
DE
4594 if (types_htab == NULL)
4595 {
4596 if (dwo_file)
4597 types_htab = allocate_dwo_unit_table (objfile);
4598 else
4599 types_htab = allocate_signatured_type_table (objfile);
4600 }
4601
3019eac3
DE
4602 if (dwo_file)
4603 {
4604 sig_type = NULL;
4605 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4606 struct dwo_unit);
4607 dwo_tu->dwo_file = dwo_file;
4608 dwo_tu->signature = signature;
4609 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4610 dwo_tu->section = section;
3019eac3
DE
4611 dwo_tu->offset = offset;
4612 dwo_tu->length = length;
4613 }
4614 else
4615 {
4616 /* N.B.: type_offset is not usable if this type uses a DWO file.
4617 The real type_offset is in the DWO file. */
4618 dwo_tu = NULL;
4619 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4620 struct signatured_type);
4621 sig_type->signature = signature;
4622 sig_type->type_offset_in_tu = type_offset_in_tu;
4623 sig_type->per_cu.objfile = objfile;
4624 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4625 sig_type->per_cu.section = section;
3019eac3
DE
4626 sig_type->per_cu.offset = offset;
4627 sig_type->per_cu.length = length;
4628 }
8b70b953 4629
3019eac3
DE
4630 slot = htab_find_slot (types_htab,
4631 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4632 INSERT);
8b70b953
TT
4633 gdb_assert (slot != NULL);
4634 if (*slot != NULL)
4635 {
3019eac3
DE
4636 sect_offset dup_offset;
4637
4638 if (dwo_file)
4639 {
4640 const struct dwo_unit *dup_tu = *slot;
4641
4642 dup_offset = dup_tu->offset;
4643 }
4644 else
4645 {
4646 const struct signatured_type *dup_tu = *slot;
4647
4648 dup_offset = dup_tu->per_cu.offset;
4649 }
b3c8eb43 4650
8b70b953 4651 complaint (&symfile_complaints,
c88ee1f0 4652 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4653 " the entry at offset 0x%x, signature %s"),
3019eac3 4654 offset.sect_off, dup_offset.sect_off,
4031ecc5 4655 hex_string (signature));
8b70b953 4656 }
3019eac3 4657 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4658
73be47f5 4659 if (dwarf2_read_debug > 1)
4031ecc5 4660 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4661 offset.sect_off,
4031ecc5 4662 hex_string (signature));
348e048f 4663
dee91e82 4664 info_ptr += length;
8b70b953 4665 }
348e048f
DE
4666 }
4667
3019eac3
DE
4668 return types_htab;
4669}
4670
4671/* Create the hash table of all entries in the .debug_types section,
4672 and initialize all_type_units.
4673 The result is zero if there is an error (e.g. missing .debug_types section),
4674 otherwise non-zero. */
4675
4676static int
4677create_all_type_units (struct objfile *objfile)
4678{
4679 htab_t types_htab;
b4dd5633 4680 struct signatured_type **iter;
3019eac3
DE
4681
4682 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4683 if (types_htab == NULL)
4684 {
4685 dwarf2_per_objfile->signatured_types = NULL;
4686 return 0;
4687 }
4688
348e048f
DE
4689 dwarf2_per_objfile->signatured_types = types_htab;
4690
6aa5f3a6
DE
4691 dwarf2_per_objfile->n_type_units
4692 = dwarf2_per_objfile->n_allocated_type_units
4693 = htab_elements (types_htab);
d467dd73 4694 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4695 = xmalloc (dwarf2_per_objfile->n_type_units
4696 * sizeof (struct signatured_type *));
d467dd73
DE
4697 iter = &dwarf2_per_objfile->all_type_units[0];
4698 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4699 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4700 == dwarf2_per_objfile->n_type_units);
1fd400ff 4701
348e048f
DE
4702 return 1;
4703}
4704
6aa5f3a6
DE
4705/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4706 If SLOT is non-NULL, it is the entry to use in the hash table.
4707 Otherwise we find one. */
4708
4709static struct signatured_type *
4710add_type_unit (ULONGEST sig, void **slot)
4711{
4712 struct objfile *objfile = dwarf2_per_objfile->objfile;
4713 int n_type_units = dwarf2_per_objfile->n_type_units;
4714 struct signatured_type *sig_type;
4715
4716 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4717 ++n_type_units;
4718 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4719 {
4720 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4721 dwarf2_per_objfile->n_allocated_type_units = 1;
4722 dwarf2_per_objfile->n_allocated_type_units *= 2;
4723 dwarf2_per_objfile->all_type_units
4724 = xrealloc (dwarf2_per_objfile->all_type_units,
4725 dwarf2_per_objfile->n_allocated_type_units
4726 * sizeof (struct signatured_type *));
4727 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4728 }
4729 dwarf2_per_objfile->n_type_units = n_type_units;
4730
4731 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct signatured_type);
4733 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4734 sig_type->signature = sig;
4735 sig_type->per_cu.is_debug_types = 1;
4736 if (dwarf2_per_objfile->using_index)
4737 {
4738 sig_type->per_cu.v.quick =
4739 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4740 struct dwarf2_per_cu_quick_data);
4741 }
4742
4743 if (slot == NULL)
4744 {
4745 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4746 sig_type, INSERT);
4747 }
4748 gdb_assert (*slot == NULL);
4749 *slot = sig_type;
4750 /* The rest of sig_type must be filled in by the caller. */
4751 return sig_type;
4752}
4753
a2ce51a0
DE
4754/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4755 Fill in SIG_ENTRY with DWO_ENTRY. */
4756
4757static void
4758fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4759 struct signatured_type *sig_entry,
4760 struct dwo_unit *dwo_entry)
4761{
7ee85ab1 4762 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4763 gdb_assert (! sig_entry->per_cu.queued);
4764 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4765 if (dwarf2_per_objfile->using_index)
4766 {
4767 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4768 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4769 }
4770 else
4771 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4772 gdb_assert (sig_entry->signature == dwo_entry->signature);
4773 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4774 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4775 gdb_assert (sig_entry->dwo_unit == NULL);
4776
4777 sig_entry->per_cu.section = dwo_entry->section;
4778 sig_entry->per_cu.offset = dwo_entry->offset;
4779 sig_entry->per_cu.length = dwo_entry->length;
4780 sig_entry->per_cu.reading_dwo_directly = 1;
4781 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4782 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4783 sig_entry->dwo_unit = dwo_entry;
4784}
4785
4786/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4787 If we haven't read the TU yet, create the signatured_type data structure
4788 for a TU to be read in directly from a DWO file, bypassing the stub.
4789 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4790 using .gdb_index, then when reading a CU we want to stay in the DWO file
4791 containing that CU. Otherwise we could end up reading several other DWO
4792 files (due to comdat folding) to process the transitive closure of all the
4793 mentioned TUs, and that can be slow. The current DWO file will have every
4794 type signature that it needs.
a2ce51a0
DE
4795 We only do this for .gdb_index because in the psymtab case we already have
4796 to read all the DWOs to build the type unit groups. */
4797
4798static struct signatured_type *
4799lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4800{
4801 struct objfile *objfile = dwarf2_per_objfile->objfile;
4802 struct dwo_file *dwo_file;
4803 struct dwo_unit find_dwo_entry, *dwo_entry;
4804 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4805 void **slot;
a2ce51a0
DE
4806
4807 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4808
6aa5f3a6
DE
4809 /* If TU skeletons have been removed then we may not have read in any
4810 TUs yet. */
4811 if (dwarf2_per_objfile->signatured_types == NULL)
4812 {
4813 dwarf2_per_objfile->signatured_types
4814 = allocate_signatured_type_table (objfile);
4815 }
a2ce51a0
DE
4816
4817 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4818 Use the global signatured_types array to do our own comdat-folding
4819 of types. If this is the first time we're reading this TU, and
4820 the TU has an entry in .gdb_index, replace the recorded data from
4821 .gdb_index with this TU. */
a2ce51a0 4822
a2ce51a0 4823 find_sig_entry.signature = sig;
6aa5f3a6
DE
4824 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4825 &find_sig_entry, INSERT);
4826 sig_entry = *slot;
7ee85ab1
DE
4827
4828 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4829 read. Don't reassign the global entry to point to this DWO if that's
4830 the case. Also note that if the TU is already being read, it may not
4831 have come from a DWO, the program may be a mix of Fission-compiled
4832 code and non-Fission-compiled code. */
4833
4834 /* Have we already tried to read this TU?
4835 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4836 needn't exist in the global table yet). */
4837 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4838 return sig_entry;
4839
6aa5f3a6
DE
4840 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4841 dwo_unit of the TU itself. */
4842 dwo_file = cu->dwo_unit->dwo_file;
4843
a2ce51a0
DE
4844 /* Ok, this is the first time we're reading this TU. */
4845 if (dwo_file->tus == NULL)
4846 return NULL;
4847 find_dwo_entry.signature = sig;
4848 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4849 if (dwo_entry == NULL)
4850 return NULL;
4851
6aa5f3a6
DE
4852 /* If the global table doesn't have an entry for this TU, add one. */
4853 if (sig_entry == NULL)
4854 sig_entry = add_type_unit (sig, slot);
4855
a2ce51a0 4856 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4857 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4858 return sig_entry;
4859}
4860
a2ce51a0
DE
4861/* Subroutine of lookup_signatured_type.
4862 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4863 then try the DWP file. If the TU stub (skeleton) has been removed then
4864 it won't be in .gdb_index. */
a2ce51a0
DE
4865
4866static struct signatured_type *
4867lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4868{
4869 struct objfile *objfile = dwarf2_per_objfile->objfile;
4870 struct dwp_file *dwp_file = get_dwp_file ();
4871 struct dwo_unit *dwo_entry;
4872 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4873 void **slot;
a2ce51a0
DE
4874
4875 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4876 gdb_assert (dwp_file != NULL);
4877
6aa5f3a6
DE
4878 /* If TU skeletons have been removed then we may not have read in any
4879 TUs yet. */
4880 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4881 {
6aa5f3a6
DE
4882 dwarf2_per_objfile->signatured_types
4883 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4884 }
4885
6aa5f3a6
DE
4886 find_sig_entry.signature = sig;
4887 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4888 &find_sig_entry, INSERT);
4889 sig_entry = *slot;
4890
4891 /* Have we already tried to read this TU?
4892 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4893 needn't exist in the global table yet). */
4894 if (sig_entry != NULL)
4895 return sig_entry;
4896
a2ce51a0
DE
4897 if (dwp_file->tus == NULL)
4898 return NULL;
57d63ce2
DE
4899 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4900 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4901 if (dwo_entry == NULL)
4902 return NULL;
4903
6aa5f3a6 4904 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4905 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4906
a2ce51a0
DE
4907 return sig_entry;
4908}
4909
380bca97 4910/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4911 Returns NULL if signature SIG is not present in the table.
4912 It is up to the caller to complain about this. */
348e048f
DE
4913
4914static struct signatured_type *
a2ce51a0 4915lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4916{
a2ce51a0
DE
4917 if (cu->dwo_unit
4918 && dwarf2_per_objfile->using_index)
4919 {
4920 /* We're in a DWO/DWP file, and we're using .gdb_index.
4921 These cases require special processing. */
4922 if (get_dwp_file () == NULL)
4923 return lookup_dwo_signatured_type (cu, sig);
4924 else
4925 return lookup_dwp_signatured_type (cu, sig);
4926 }
4927 else
4928 {
4929 struct signatured_type find_entry, *entry;
348e048f 4930
a2ce51a0
DE
4931 if (dwarf2_per_objfile->signatured_types == NULL)
4932 return NULL;
4933 find_entry.signature = sig;
4934 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4935 return entry;
4936 }
348e048f 4937}
42e7ad6c
DE
4938\f
4939/* Low level DIE reading support. */
348e048f 4940
d85a05f0
DJ
4941/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4942
4943static void
4944init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4945 struct dwarf2_cu *cu,
3019eac3
DE
4946 struct dwarf2_section_info *section,
4947 struct dwo_file *dwo_file)
d85a05f0 4948{
fceca515 4949 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4950 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4951 reader->cu = cu;
3019eac3 4952 reader->dwo_file = dwo_file;
dee91e82
DE
4953 reader->die_section = section;
4954 reader->buffer = section->buffer;
f664829e 4955 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4956 reader->comp_dir = NULL;
d85a05f0
DJ
4957}
4958
b0c7bfa9
DE
4959/* Subroutine of init_cutu_and_read_dies to simplify it.
4960 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4961 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4962 already.
4963
4964 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4965 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4966 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4967 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4968 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4969 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4970 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4971 are filled in with the info of the DIE from the DWO file.
4972 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4973 provided an abbrev table to use.
4974 The result is non-zero if a valid (non-dummy) DIE was found. */
4975
4976static int
4977read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4978 struct dwo_unit *dwo_unit,
4979 int abbrev_table_provided,
4980 struct die_info *stub_comp_unit_die,
a2ce51a0 4981 const char *stub_comp_dir,
b0c7bfa9 4982 struct die_reader_specs *result_reader,
d521ce57 4983 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4984 struct die_info **result_comp_unit_die,
4985 int *result_has_children)
4986{
4987 struct objfile *objfile = dwarf2_per_objfile->objfile;
4988 struct dwarf2_cu *cu = this_cu->cu;
4989 struct dwarf2_section_info *section;
4990 bfd *abfd;
d521ce57 4991 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4992 ULONGEST signature; /* Or dwo_id. */
4993 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4994 int i,num_extra_attrs;
4995 struct dwarf2_section_info *dwo_abbrev_section;
4996 struct attribute *attr;
4997 struct die_info *comp_unit_die;
4998
b0aeadb3
DE
4999 /* At most one of these may be provided. */
5000 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5001
b0c7bfa9
DE
5002 /* These attributes aren't processed until later:
5003 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5004 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5005 referenced later. However, these attributes are found in the stub
5006 which we won't have later. In order to not impose this complication
5007 on the rest of the code, we read them here and copy them to the
5008 DWO CU/TU die. */
b0c7bfa9
DE
5009
5010 stmt_list = NULL;
5011 low_pc = NULL;
5012 high_pc = NULL;
5013 ranges = NULL;
5014 comp_dir = NULL;
5015
5016 if (stub_comp_unit_die != NULL)
5017 {
5018 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5019 DWO file. */
5020 if (! this_cu->is_debug_types)
5021 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5022 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5023 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5024 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5025 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5026
5027 /* There should be a DW_AT_addr_base attribute here (if needed).
5028 We need the value before we can process DW_FORM_GNU_addr_index. */
5029 cu->addr_base = 0;
5030 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5031 if (attr)
5032 cu->addr_base = DW_UNSND (attr);
5033
5034 /* There should be a DW_AT_ranges_base attribute here (if needed).
5035 We need the value before we can process DW_AT_ranges. */
5036 cu->ranges_base = 0;
5037 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5038 if (attr)
5039 cu->ranges_base = DW_UNSND (attr);
5040 }
a2ce51a0
DE
5041 else if (stub_comp_dir != NULL)
5042 {
5043 /* Reconstruct the comp_dir attribute to simplify the code below. */
5044 comp_dir = (struct attribute *)
5045 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5046 comp_dir->name = DW_AT_comp_dir;
5047 comp_dir->form = DW_FORM_string;
5048 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5049 DW_STRING (comp_dir) = stub_comp_dir;
5050 }
b0c7bfa9
DE
5051
5052 /* Set up for reading the DWO CU/TU. */
5053 cu->dwo_unit = dwo_unit;
5054 section = dwo_unit->section;
5055 dwarf2_read_section (objfile, section);
a32a8923 5056 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5057 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5058 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5059 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5060
5061 if (this_cu->is_debug_types)
5062 {
5063 ULONGEST header_signature;
5064 cu_offset type_offset_in_tu;
5065 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5066
5067 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5068 dwo_abbrev_section,
5069 info_ptr,
5070 &header_signature,
5071 &type_offset_in_tu);
a2ce51a0
DE
5072 /* This is not an assert because it can be caused by bad debug info. */
5073 if (sig_type->signature != header_signature)
5074 {
5075 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5076 " TU at offset 0x%x [in module %s]"),
5077 hex_string (sig_type->signature),
5078 hex_string (header_signature),
5079 dwo_unit->offset.sect_off,
5080 bfd_get_filename (abfd));
5081 }
b0c7bfa9
DE
5082 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5083 /* For DWOs coming from DWP files, we don't know the CU length
5084 nor the type's offset in the TU until now. */
5085 dwo_unit->length = get_cu_length (&cu->header);
5086 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5087
5088 /* Establish the type offset that can be used to lookup the type.
5089 For DWO files, we don't know it until now. */
5090 sig_type->type_offset_in_section.sect_off =
5091 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5092 }
5093 else
5094 {
5095 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5096 dwo_abbrev_section,
5097 info_ptr, 0);
5098 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5099 /* For DWOs coming from DWP files, we don't know the CU length
5100 until now. */
5101 dwo_unit->length = get_cu_length (&cu->header);
5102 }
5103
02142a6c
DE
5104 /* Replace the CU's original abbrev table with the DWO's.
5105 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5106 if (abbrev_table_provided)
5107 {
5108 /* Don't free the provided abbrev table, the caller of
5109 init_cutu_and_read_dies owns it. */
5110 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5111 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5112 make_cleanup (dwarf2_free_abbrev_table, cu);
5113 }
5114 else
5115 {
5116 dwarf2_free_abbrev_table (cu);
5117 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5118 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5119 }
5120
5121 /* Read in the die, but leave space to copy over the attributes
5122 from the stub. This has the benefit of simplifying the rest of
5123 the code - all the work to maintain the illusion of a single
5124 DW_TAG_{compile,type}_unit DIE is done here. */
5125 num_extra_attrs = ((stmt_list != NULL)
5126 + (low_pc != NULL)
5127 + (high_pc != NULL)
5128 + (ranges != NULL)
5129 + (comp_dir != NULL));
5130 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5131 result_has_children, num_extra_attrs);
5132
5133 /* Copy over the attributes from the stub to the DIE we just read in. */
5134 comp_unit_die = *result_comp_unit_die;
5135 i = comp_unit_die->num_attrs;
5136 if (stmt_list != NULL)
5137 comp_unit_die->attrs[i++] = *stmt_list;
5138 if (low_pc != NULL)
5139 comp_unit_die->attrs[i++] = *low_pc;
5140 if (high_pc != NULL)
5141 comp_unit_die->attrs[i++] = *high_pc;
5142 if (ranges != NULL)
5143 comp_unit_die->attrs[i++] = *ranges;
5144 if (comp_dir != NULL)
5145 comp_unit_die->attrs[i++] = *comp_dir;
5146 comp_unit_die->num_attrs += num_extra_attrs;
5147
bf6af496
DE
5148 if (dwarf2_die_debug)
5149 {
5150 fprintf_unfiltered (gdb_stdlog,
5151 "Read die from %s@0x%x of %s:\n",
a32a8923 5152 get_section_name (section),
bf6af496
DE
5153 (unsigned) (begin_info_ptr - section->buffer),
5154 bfd_get_filename (abfd));
5155 dump_die (comp_unit_die, dwarf2_die_debug);
5156 }
5157
a2ce51a0
DE
5158 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5159 TUs by skipping the stub and going directly to the entry in the DWO file.
5160 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5161 to get it via circuitous means. Blech. */
5162 if (comp_dir != NULL)
5163 result_reader->comp_dir = DW_STRING (comp_dir);
5164
b0c7bfa9
DE
5165 /* Skip dummy compilation units. */
5166 if (info_ptr >= begin_info_ptr + dwo_unit->length
5167 || peek_abbrev_code (abfd, info_ptr) == 0)
5168 return 0;
5169
5170 *result_info_ptr = info_ptr;
5171 return 1;
5172}
5173
5174/* Subroutine of init_cutu_and_read_dies to simplify it.
5175 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5176 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5177
5178static struct dwo_unit *
5179lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5180 struct die_info *comp_unit_die)
5181{
5182 struct dwarf2_cu *cu = this_cu->cu;
5183 struct attribute *attr;
5184 ULONGEST signature;
5185 struct dwo_unit *dwo_unit;
5186 const char *comp_dir, *dwo_name;
5187
a2ce51a0
DE
5188 gdb_assert (cu != NULL);
5189
b0c7bfa9
DE
5190 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5192 gdb_assert (attr != NULL);
5193 dwo_name = DW_STRING (attr);
5194 comp_dir = NULL;
5195 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5196 if (attr)
5197 comp_dir = DW_STRING (attr);
5198
5199 if (this_cu->is_debug_types)
5200 {
5201 struct signatured_type *sig_type;
5202
5203 /* Since this_cu is the first member of struct signatured_type,
5204 we can go from a pointer to one to a pointer to the other. */
5205 sig_type = (struct signatured_type *) this_cu;
5206 signature = sig_type->signature;
5207 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5208 }
5209 else
5210 {
5211 struct attribute *attr;
5212
5213 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5214 if (! attr)
5215 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5216 " [in module %s]"),
4262abfb 5217 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5218 signature = DW_UNSND (attr);
5219 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5220 signature);
5221 }
5222
b0c7bfa9
DE
5223 return dwo_unit;
5224}
5225
a2ce51a0 5226/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5227 See it for a description of the parameters.
5228 Read a TU directly from a DWO file, bypassing the stub.
5229
5230 Note: This function could be a little bit simpler if we shared cleanups
5231 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5232 to do, so we keep this function self-contained. Or we could move this
5233 into our caller, but it's complex enough already. */
a2ce51a0
DE
5234
5235static void
6aa5f3a6
DE
5236init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5237 int use_existing_cu, int keep,
a2ce51a0
DE
5238 die_reader_func_ftype *die_reader_func,
5239 void *data)
5240{
5241 struct dwarf2_cu *cu;
5242 struct signatured_type *sig_type;
6aa5f3a6 5243 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5244 struct die_reader_specs reader;
5245 const gdb_byte *info_ptr;
5246 struct die_info *comp_unit_die;
5247 int has_children;
5248
5249 /* Verify we can do the following downcast, and that we have the
5250 data we need. */
5251 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5252 sig_type = (struct signatured_type *) this_cu;
5253 gdb_assert (sig_type->dwo_unit != NULL);
5254
5255 cleanups = make_cleanup (null_cleanup, NULL);
5256
6aa5f3a6
DE
5257 if (use_existing_cu && this_cu->cu != NULL)
5258 {
5259 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5260 cu = this_cu->cu;
5261 /* There's no need to do the rereading_dwo_cu handling that
5262 init_cutu_and_read_dies does since we don't read the stub. */
5263 }
5264 else
5265 {
5266 /* If !use_existing_cu, this_cu->cu must be NULL. */
5267 gdb_assert (this_cu->cu == NULL);
5268 cu = xmalloc (sizeof (*cu));
5269 init_one_comp_unit (cu, this_cu);
5270 /* If an error occurs while loading, release our storage. */
5271 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5272 }
5273
5274 /* A future optimization, if needed, would be to use an existing
5275 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5276 could share abbrev tables. */
a2ce51a0
DE
5277
5278 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5279 0 /* abbrev_table_provided */,
5280 NULL /* stub_comp_unit_die */,
5281 sig_type->dwo_unit->dwo_file->comp_dir,
5282 &reader, &info_ptr,
5283 &comp_unit_die, &has_children) == 0)
5284 {
5285 /* Dummy die. */
5286 do_cleanups (cleanups);
5287 return;
5288 }
5289
5290 /* All the "real" work is done here. */
5291 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5292
6aa5f3a6 5293 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5294 but the alternative is making the latter more complex.
5295 This function is only for the special case of using DWO files directly:
5296 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5297 if (free_cu_cleanup != NULL)
a2ce51a0 5298 {
6aa5f3a6
DE
5299 if (keep)
5300 {
5301 /* We've successfully allocated this compilation unit. Let our
5302 caller clean it up when finished with it. */
5303 discard_cleanups (free_cu_cleanup);
a2ce51a0 5304
6aa5f3a6
DE
5305 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5306 So we have to manually free the abbrev table. */
5307 dwarf2_free_abbrev_table (cu);
a2ce51a0 5308
6aa5f3a6
DE
5309 /* Link this CU into read_in_chain. */
5310 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5311 dwarf2_per_objfile->read_in_chain = this_cu;
5312 }
5313 else
5314 do_cleanups (free_cu_cleanup);
a2ce51a0 5315 }
a2ce51a0
DE
5316
5317 do_cleanups (cleanups);
5318}
5319
fd820528 5320/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5321 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5322
f4dc4d17
DE
5323 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5324 Otherwise the table specified in the comp unit header is read in and used.
5325 This is an optimization for when we already have the abbrev table.
5326
dee91e82
DE
5327 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5328 Otherwise, a new CU is allocated with xmalloc.
5329
5330 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5331 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5332
5333 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5334 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5335
70221824 5336static void
fd820528 5337init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5338 struct abbrev_table *abbrev_table,
fd820528
DE
5339 int use_existing_cu, int keep,
5340 die_reader_func_ftype *die_reader_func,
5341 void *data)
c906108c 5342{
dee91e82 5343 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5344 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5345 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5346 struct dwarf2_cu *cu;
d521ce57 5347 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5348 struct die_reader_specs reader;
d85a05f0 5349 struct die_info *comp_unit_die;
dee91e82 5350 int has_children;
d85a05f0 5351 struct attribute *attr;
365156ad 5352 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5353 struct signatured_type *sig_type = NULL;
4bdcc0c1 5354 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5355 /* Non-zero if CU currently points to a DWO file and we need to
5356 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5357 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5358 int rereading_dwo_cu = 0;
c906108c 5359
09406207
DE
5360 if (dwarf2_die_debug)
5361 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5362 this_cu->is_debug_types ? "type" : "comp",
5363 this_cu->offset.sect_off);
5364
dee91e82
DE
5365 if (use_existing_cu)
5366 gdb_assert (keep);
23745b47 5367
a2ce51a0
DE
5368 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5369 file (instead of going through the stub), short-circuit all of this. */
5370 if (this_cu->reading_dwo_directly)
5371 {
5372 /* Narrow down the scope of possibilities to have to understand. */
5373 gdb_assert (this_cu->is_debug_types);
5374 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5375 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5376 die_reader_func, data);
a2ce51a0
DE
5377 return;
5378 }
5379
dee91e82
DE
5380 cleanups = make_cleanup (null_cleanup, NULL);
5381
5382 /* This is cheap if the section is already read in. */
5383 dwarf2_read_section (objfile, section);
5384
5385 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5386
5387 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5388
5389 if (use_existing_cu && this_cu->cu != NULL)
5390 {
5391 cu = this_cu->cu;
42e7ad6c
DE
5392 /* If this CU is from a DWO file we need to start over, we need to
5393 refetch the attributes from the skeleton CU.
5394 This could be optimized by retrieving those attributes from when we
5395 were here the first time: the previous comp_unit_die was stored in
5396 comp_unit_obstack. But there's no data yet that we need this
5397 optimization. */
5398 if (cu->dwo_unit != NULL)
5399 rereading_dwo_cu = 1;
dee91e82
DE
5400 }
5401 else
5402 {
5403 /* If !use_existing_cu, this_cu->cu must be NULL. */
5404 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5405 cu = xmalloc (sizeof (*cu));
5406 init_one_comp_unit (cu, this_cu);
dee91e82 5407 /* If an error occurs while loading, release our storage. */
365156ad 5408 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5409 }
dee91e82 5410
b0c7bfa9 5411 /* Get the header. */
42e7ad6c
DE
5412 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5413 {
5414 /* We already have the header, there's no need to read it in again. */
5415 info_ptr += cu->header.first_die_offset.cu_off;
5416 }
5417 else
5418 {
3019eac3 5419 if (this_cu->is_debug_types)
dee91e82
DE
5420 {
5421 ULONGEST signature;
42e7ad6c 5422 cu_offset type_offset_in_tu;
dee91e82 5423
4bdcc0c1
DE
5424 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5425 abbrev_section, info_ptr,
42e7ad6c
DE
5426 &signature,
5427 &type_offset_in_tu);
dee91e82 5428
42e7ad6c
DE
5429 /* Since per_cu is the first member of struct signatured_type,
5430 we can go from a pointer to one to a pointer to the other. */
5431 sig_type = (struct signatured_type *) this_cu;
5432 gdb_assert (sig_type->signature == signature);
5433 gdb_assert (sig_type->type_offset_in_tu.cu_off
5434 == type_offset_in_tu.cu_off);
dee91e82
DE
5435 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5436
42e7ad6c
DE
5437 /* LENGTH has not been set yet for type units if we're
5438 using .gdb_index. */
1ce1cefd 5439 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5440
5441 /* Establish the type offset that can be used to lookup the type. */
5442 sig_type->type_offset_in_section.sect_off =
5443 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5444 }
5445 else
5446 {
4bdcc0c1
DE
5447 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5448 abbrev_section,
5449 info_ptr, 0);
dee91e82
DE
5450
5451 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5452 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5453 }
5454 }
10b3939b 5455
6caca83c 5456 /* Skip dummy compilation units. */
dee91e82 5457 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5458 || peek_abbrev_code (abfd, info_ptr) == 0)
5459 {
dee91e82 5460 do_cleanups (cleanups);
21b2bd31 5461 return;
6caca83c
CC
5462 }
5463
433df2d4
DE
5464 /* If we don't have them yet, read the abbrevs for this compilation unit.
5465 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5466 done. Note that it's important that if the CU had an abbrev table
5467 on entry we don't free it when we're done: Somewhere up the call stack
5468 it may be in use. */
f4dc4d17
DE
5469 if (abbrev_table != NULL)
5470 {
5471 gdb_assert (cu->abbrev_table == NULL);
5472 gdb_assert (cu->header.abbrev_offset.sect_off
5473 == abbrev_table->offset.sect_off);
5474 cu->abbrev_table = abbrev_table;
5475 }
5476 else if (cu->abbrev_table == NULL)
dee91e82 5477 {
4bdcc0c1 5478 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5479 make_cleanup (dwarf2_free_abbrev_table, cu);
5480 }
42e7ad6c
DE
5481 else if (rereading_dwo_cu)
5482 {
5483 dwarf2_free_abbrev_table (cu);
5484 dwarf2_read_abbrevs (cu, abbrev_section);
5485 }
af703f96 5486
dee91e82 5487 /* Read the top level CU/TU die. */
3019eac3 5488 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5489 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5490
b0c7bfa9
DE
5491 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5492 from the DWO file.
5493 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5494 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5495 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5496 if (attr)
5497 {
3019eac3 5498 struct dwo_unit *dwo_unit;
b0c7bfa9 5499 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5500
5501 if (has_children)
6a506a2d
DE
5502 {
5503 complaint (&symfile_complaints,
5504 _("compilation unit with DW_AT_GNU_dwo_name"
5505 " has children (offset 0x%x) [in module %s]"),
5506 this_cu->offset.sect_off, bfd_get_filename (abfd));
5507 }
b0c7bfa9 5508 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5509 if (dwo_unit != NULL)
3019eac3 5510 {
6a506a2d
DE
5511 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5512 abbrev_table != NULL,
a2ce51a0 5513 comp_unit_die, NULL,
6a506a2d
DE
5514 &reader, &info_ptr,
5515 &dwo_comp_unit_die, &has_children) == 0)
5516 {
5517 /* Dummy die. */
5518 do_cleanups (cleanups);
5519 return;
5520 }
5521 comp_unit_die = dwo_comp_unit_die;
5522 }
5523 else
5524 {
5525 /* Yikes, we couldn't find the rest of the DIE, we only have
5526 the stub. A complaint has already been logged. There's
5527 not much more we can do except pass on the stub DIE to
5528 die_reader_func. We don't want to throw an error on bad
5529 debug info. */
3019eac3
DE
5530 }
5531 }
5532
b0c7bfa9 5533 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5534 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5535
b0c7bfa9 5536 /* Done, clean up. */
365156ad 5537 if (free_cu_cleanup != NULL)
348e048f 5538 {
365156ad
TT
5539 if (keep)
5540 {
5541 /* We've successfully allocated this compilation unit. Let our
5542 caller clean it up when finished with it. */
5543 discard_cleanups (free_cu_cleanup);
dee91e82 5544
365156ad
TT
5545 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5546 So we have to manually free the abbrev table. */
5547 dwarf2_free_abbrev_table (cu);
dee91e82 5548
365156ad
TT
5549 /* Link this CU into read_in_chain. */
5550 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5551 dwarf2_per_objfile->read_in_chain = this_cu;
5552 }
5553 else
5554 do_cleanups (free_cu_cleanup);
348e048f 5555 }
365156ad
TT
5556
5557 do_cleanups (cleanups);
dee91e82
DE
5558}
5559
33e80786
DE
5560/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5561 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5562 to have already done the lookup to find the DWO file).
dee91e82
DE
5563
5564 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5565 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5566
5567 We fill in THIS_CU->length.
5568
5569 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5570 linker) then DIE_READER_FUNC will not get called.
5571
5572 THIS_CU->cu is always freed when done.
3019eac3
DE
5573 This is done in order to not leave THIS_CU->cu in a state where we have
5574 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5575
5576static void
5577init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5578 struct dwo_file *dwo_file,
dee91e82
DE
5579 die_reader_func_ftype *die_reader_func,
5580 void *data)
5581{
5582 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5583 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5584 bfd *abfd = get_section_bfd_owner (section);
33e80786 5585 struct dwarf2_section_info *abbrev_section;
dee91e82 5586 struct dwarf2_cu cu;
d521ce57 5587 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5588 struct die_reader_specs reader;
5589 struct cleanup *cleanups;
5590 struct die_info *comp_unit_die;
5591 int has_children;
5592
09406207
DE
5593 if (dwarf2_die_debug)
5594 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5595 this_cu->is_debug_types ? "type" : "comp",
5596 this_cu->offset.sect_off);
5597
dee91e82
DE
5598 gdb_assert (this_cu->cu == NULL);
5599
33e80786
DE
5600 abbrev_section = (dwo_file != NULL
5601 ? &dwo_file->sections.abbrev
5602 : get_abbrev_section_for_cu (this_cu));
5603
dee91e82
DE
5604 /* This is cheap if the section is already read in. */
5605 dwarf2_read_section (objfile, section);
5606
5607 init_one_comp_unit (&cu, this_cu);
5608
5609 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5610
5611 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5612 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5613 abbrev_section, info_ptr,
3019eac3 5614 this_cu->is_debug_types);
dee91e82 5615
1ce1cefd 5616 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5617
5618 /* Skip dummy compilation units. */
5619 if (info_ptr >= begin_info_ptr + this_cu->length
5620 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5621 {
dee91e82 5622 do_cleanups (cleanups);
21b2bd31 5623 return;
93311388 5624 }
72bf9492 5625
dee91e82
DE
5626 dwarf2_read_abbrevs (&cu, abbrev_section);
5627 make_cleanup (dwarf2_free_abbrev_table, &cu);
5628
3019eac3 5629 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5630 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5631
5632 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5633
5634 do_cleanups (cleanups);
5635}
5636
3019eac3
DE
5637/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5638 does not lookup the specified DWO file.
5639 This cannot be used to read DWO files.
dee91e82
DE
5640
5641 THIS_CU->cu is always freed when done.
3019eac3
DE
5642 This is done in order to not leave THIS_CU->cu in a state where we have
5643 to care whether it refers to the "main" CU or the DWO CU.
5644 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5645
5646static void
5647init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5648 die_reader_func_ftype *die_reader_func,
5649 void *data)
5650{
33e80786 5651 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5652}
0018ea6f
DE
5653\f
5654/* Type Unit Groups.
dee91e82 5655
0018ea6f
DE
5656 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5657 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5658 so that all types coming from the same compilation (.o file) are grouped
5659 together. A future step could be to put the types in the same symtab as
5660 the CU the types ultimately came from. */
ff013f42 5661
f4dc4d17
DE
5662static hashval_t
5663hash_type_unit_group (const void *item)
5664{
094b34ac 5665 const struct type_unit_group *tu_group = item;
f4dc4d17 5666
094b34ac 5667 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5668}
348e048f
DE
5669
5670static int
f4dc4d17 5671eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5672{
f4dc4d17
DE
5673 const struct type_unit_group *lhs = item_lhs;
5674 const struct type_unit_group *rhs = item_rhs;
348e048f 5675
094b34ac 5676 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5677}
348e048f 5678
f4dc4d17
DE
5679/* Allocate a hash table for type unit groups. */
5680
5681static htab_t
5682allocate_type_unit_groups_table (void)
5683{
5684 return htab_create_alloc_ex (3,
5685 hash_type_unit_group,
5686 eq_type_unit_group,
5687 NULL,
5688 &dwarf2_per_objfile->objfile->objfile_obstack,
5689 hashtab_obstack_allocate,
5690 dummy_obstack_deallocate);
5691}
dee91e82 5692
f4dc4d17
DE
5693/* Type units that don't have DW_AT_stmt_list are grouped into their own
5694 partial symtabs. We combine several TUs per psymtab to not let the size
5695 of any one psymtab grow too big. */
5696#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5697#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5698
094b34ac 5699/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5700 Create the type_unit_group object used to hold one or more TUs. */
5701
5702static struct type_unit_group *
094b34ac 5703create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5704{
5705 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5706 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5707 struct type_unit_group *tu_group;
f4dc4d17
DE
5708
5709 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5710 struct type_unit_group);
094b34ac 5711 per_cu = &tu_group->per_cu;
f4dc4d17 5712 per_cu->objfile = objfile;
f4dc4d17 5713
094b34ac
DE
5714 if (dwarf2_per_objfile->using_index)
5715 {
5716 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5717 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5718 }
5719 else
5720 {
5721 unsigned int line_offset = line_offset_struct.sect_off;
5722 struct partial_symtab *pst;
5723 char *name;
5724
5725 /* Give the symtab a useful name for debug purposes. */
5726 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5727 name = xstrprintf ("<type_units_%d>",
5728 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5729 else
5730 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5731
5732 pst = create_partial_symtab (per_cu, name);
5733 pst->anonymous = 1;
f4dc4d17 5734
094b34ac
DE
5735 xfree (name);
5736 }
f4dc4d17 5737
094b34ac
DE
5738 tu_group->hash.dwo_unit = cu->dwo_unit;
5739 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5740
5741 return tu_group;
5742}
5743
094b34ac
DE
5744/* Look up the type_unit_group for type unit CU, and create it if necessary.
5745 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5746
5747static struct type_unit_group *
ff39bb5e 5748get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5749{
5750 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5751 struct type_unit_group *tu_group;
5752 void **slot;
5753 unsigned int line_offset;
5754 struct type_unit_group type_unit_group_for_lookup;
5755
5756 if (dwarf2_per_objfile->type_unit_groups == NULL)
5757 {
5758 dwarf2_per_objfile->type_unit_groups =
5759 allocate_type_unit_groups_table ();
5760 }
5761
5762 /* Do we need to create a new group, or can we use an existing one? */
5763
5764 if (stmt_list)
5765 {
5766 line_offset = DW_UNSND (stmt_list);
5767 ++tu_stats->nr_symtab_sharers;
5768 }
5769 else
5770 {
5771 /* Ugh, no stmt_list. Rare, but we have to handle it.
5772 We can do various things here like create one group per TU or
5773 spread them over multiple groups to split up the expansion work.
5774 To avoid worst case scenarios (too many groups or too large groups)
5775 we, umm, group them in bunches. */
5776 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5777 | (tu_stats->nr_stmt_less_type_units
5778 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5779 ++tu_stats->nr_stmt_less_type_units;
5780 }
5781
094b34ac
DE
5782 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5783 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5784 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5785 &type_unit_group_for_lookup, INSERT);
5786 if (*slot != NULL)
5787 {
5788 tu_group = *slot;
5789 gdb_assert (tu_group != NULL);
5790 }
5791 else
5792 {
5793 sect_offset line_offset_struct;
5794
5795 line_offset_struct.sect_off = line_offset;
094b34ac 5796 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5797 *slot = tu_group;
5798 ++tu_stats->nr_symtabs;
5799 }
5800
5801 return tu_group;
5802}
0018ea6f
DE
5803\f
5804/* Partial symbol tables. */
5805
5806/* Create a psymtab named NAME and assign it to PER_CU.
5807
5808 The caller must fill in the following details:
5809 dirname, textlow, texthigh. */
5810
5811static struct partial_symtab *
5812create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5813{
5814 struct objfile *objfile = per_cu->objfile;
5815 struct partial_symtab *pst;
5816
5817 pst = start_psymtab_common (objfile, objfile->section_offsets,
5818 name, 0,
5819 objfile->global_psymbols.next,
5820 objfile->static_psymbols.next);
5821
5822 pst->psymtabs_addrmap_supported = 1;
5823
5824 /* This is the glue that links PST into GDB's symbol API. */
5825 pst->read_symtab_private = per_cu;
5826 pst->read_symtab = dwarf2_read_symtab;
5827 per_cu->v.psymtab = pst;
5828
5829 return pst;
5830}
5831
b93601f3
TT
5832/* The DATA object passed to process_psymtab_comp_unit_reader has this
5833 type. */
5834
5835struct process_psymtab_comp_unit_data
5836{
5837 /* True if we are reading a DW_TAG_partial_unit. */
5838
5839 int want_partial_unit;
5840
5841 /* The "pretend" language that is used if the CU doesn't declare a
5842 language. */
5843
5844 enum language pretend_language;
5845};
5846
0018ea6f
DE
5847/* die_reader_func for process_psymtab_comp_unit. */
5848
5849static void
5850process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5851 const gdb_byte *info_ptr,
0018ea6f
DE
5852 struct die_info *comp_unit_die,
5853 int has_children,
5854 void *data)
5855{
5856 struct dwarf2_cu *cu = reader->cu;
5857 struct objfile *objfile = cu->objfile;
5858 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5859 struct attribute *attr;
5860 CORE_ADDR baseaddr;
5861 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5862 struct partial_symtab *pst;
5863 int has_pc_info;
5864 const char *filename;
b93601f3 5865 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5866
b93601f3 5867 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5868 return;
5869
5870 gdb_assert (! per_cu->is_debug_types);
5871
b93601f3 5872 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5873
5874 cu->list_in_scope = &file_symbols;
5875
5876 /* Allocate a new partial symbol table structure. */
5877 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5878 if (attr == NULL || !DW_STRING (attr))
5879 filename = "";
5880 else
5881 filename = DW_STRING (attr);
5882
5883 pst = create_partial_symtab (per_cu, filename);
5884
5885 /* This must be done before calling dwarf2_build_include_psymtabs. */
5886 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5887 if (attr != NULL)
5888 pst->dirname = DW_STRING (attr);
5889
5890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5891
5892 dwarf2_find_base_address (comp_unit_die, cu);
5893
5894 /* Possibly set the default values of LOWPC and HIGHPC from
5895 `DW_AT_ranges'. */
5896 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5897 &best_highpc, cu, pst);
5898 if (has_pc_info == 1 && best_lowpc < best_highpc)
5899 /* Store the contiguous range if it is not empty; it can be empty for
5900 CUs with no code. */
5901 addrmap_set_empty (objfile->psymtabs_addrmap,
5902 best_lowpc + baseaddr,
5903 best_highpc + baseaddr - 1, pst);
5904
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5908 if (has_children)
5909 {
5910 struct partial_die_info *first_die;
5911 CORE_ADDR lowpc, highpc;
5912
5913 lowpc = ((CORE_ADDR) -1);
5914 highpc = ((CORE_ADDR) 0);
5915
5916 first_die = load_partial_dies (reader, info_ptr, 1);
5917
5918 scan_partial_symbols (first_die, &lowpc, &highpc,
5919 ! has_pc_info, cu);
5920
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc == ((CORE_ADDR) -1))
5924 lowpc = highpc;
5925
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5928 if (! has_pc_info)
5929 {
5930 best_lowpc = lowpc;
5931 best_highpc = highpc;
5932 }
5933 }
5934 pst->textlow = best_lowpc + baseaddr;
5935 pst->texthigh = best_highpc + baseaddr;
5936
5937 pst->n_global_syms = objfile->global_psymbols.next -
5938 (objfile->global_psymbols.list + pst->globals_offset);
5939 pst->n_static_syms = objfile->static_psymbols.next -
5940 (objfile->static_psymbols.list + pst->statics_offset);
5941 sort_pst_symbols (objfile, pst);
5942
5943 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5944 {
5945 int i;
5946 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5947 struct dwarf2_per_cu_data *iter;
5948
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5950 post-pass. */
5951 pst->number_of_dependencies = len;
5952 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5953 len * sizeof (struct symtab *));
5954 for (i = 0;
5955 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5956 i, iter);
5957 ++i)
5958 pst->dependencies[i] = iter->v.psymtab;
5959
5960 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5961 }
5962
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5966
5967 if (dwarf2_read_debug)
5968 {
5969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5970
5971 fprintf_unfiltered (gdb_stdlog,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu->is_debug_types ? "type" : "comp",
5975 per_cu->offset.sect_off,
5976 paddress (gdbarch, pst->textlow),
5977 paddress (gdbarch, pst->texthigh),
5978 pst->n_global_syms, pst->n_static_syms);
5979 }
5980}
5981
5982/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5984
5985static void
5986process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
5987 int want_partial_unit,
5988 enum language pretend_language)
0018ea6f 5989{
b93601f3
TT
5990 struct process_psymtab_comp_unit_data info;
5991
0018ea6f
DE
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu->cu != NULL)
5998 free_one_cached_comp_unit (this_cu);
5999
6000 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6001 info.want_partial_unit = want_partial_unit;
6002 info.pretend_language = pretend_language;
0018ea6f
DE
6003 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6004 process_psymtab_comp_unit_reader,
b93601f3 6005 &info);
0018ea6f
DE
6006
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6009}
f4dc4d17
DE
6010
6011/* Reader function for build_type_psymtabs. */
6012
6013static void
6014build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6015 const gdb_byte *info_ptr,
f4dc4d17
DE
6016 struct die_info *type_unit_die,
6017 int has_children,
6018 void *data)
6019{
6020 struct objfile *objfile = dwarf2_per_objfile->objfile;
6021 struct dwarf2_cu *cu = reader->cu;
6022 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6023 struct signatured_type *sig_type;
f4dc4d17
DE
6024 struct type_unit_group *tu_group;
6025 struct attribute *attr;
6026 struct partial_die_info *first_die;
6027 CORE_ADDR lowpc, highpc;
6028 struct partial_symtab *pst;
6029
6030 gdb_assert (data == NULL);
0186c6a7
DE
6031 gdb_assert (per_cu->is_debug_types);
6032 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6033
6034 if (! has_children)
6035 return;
6036
6037 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6038 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6039
0186c6a7 6040 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6041
6042 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6043 cu->list_in_scope = &file_symbols;
6044 pst = create_partial_symtab (per_cu, "");
6045 pst->anonymous = 1;
6046
6047 first_die = load_partial_dies (reader, info_ptr, 1);
6048
6049 lowpc = (CORE_ADDR) -1;
6050 highpc = (CORE_ADDR) 0;
6051 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6052
6053 pst->n_global_syms = objfile->global_psymbols.next -
6054 (objfile->global_psymbols.list + pst->globals_offset);
6055 pst->n_static_syms = objfile->static_psymbols.next -
6056 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6057 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6058}
6059
73051182
DE
6060/* Struct used to sort TUs by their abbreviation table offset. */
6061
6062struct tu_abbrev_offset
6063{
6064 struct signatured_type *sig_type;
6065 sect_offset abbrev_offset;
6066};
6067
6068/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6069
6070static int
6071sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6072{
6073 const struct tu_abbrev_offset * const *a = ap;
6074 const struct tu_abbrev_offset * const *b = bp;
6075 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6076 unsigned int boff = (*b)->abbrev_offset.sect_off;
6077
6078 return (aoff > boff) - (aoff < boff);
6079}
6080
6081/* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6083
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6087
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6094
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6098
6099static void
6100build_type_psymtabs_1 (void)
6101{
6102 struct objfile *objfile = dwarf2_per_objfile->objfile;
6103 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6104 struct cleanup *cleanups;
6105 struct abbrev_table *abbrev_table;
6106 sect_offset abbrev_offset;
6107 struct tu_abbrev_offset *sorted_by_abbrev;
6108 struct type_unit_group **iter;
6109 int i;
6110
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6113
6114 if (dwarf2_per_objfile->n_type_units == 0)
6115 return;
6116
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6122
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6126
6127 The basic algorithm here is:
6128
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6134 call FUNC */
6135
6136 if (dwarf2_read_debug)
6137 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6138
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6142 dwarf2_per_objfile->n_type_units);
6143 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6144 {
6145 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6146
6147 sorted_by_abbrev[i].sig_type = sig_type;
6148 sorted_by_abbrev[i].abbrev_offset =
6149 read_abbrev_offset (sig_type->per_cu.section,
6150 sig_type->per_cu.offset);
6151 }
6152 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6153 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6154 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6155
6156 abbrev_offset.sect_off = ~(unsigned) 0;
6157 abbrev_table = NULL;
6158 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6159
6160 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6161 {
6162 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6163
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table == NULL
6166 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6167 {
6168 if (abbrev_table != NULL)
6169 {
6170 abbrev_table_free (abbrev_table);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table = NULL;
6174 }
6175 abbrev_offset = tu->abbrev_offset;
6176 abbrev_table =
6177 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6178 abbrev_offset);
6179 ++tu_stats->nr_uniq_abbrev_tables;
6180 }
6181
6182 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6183 build_type_psymtabs_reader, NULL);
6184 }
6185
73051182 6186 do_cleanups (cleanups);
6aa5f3a6 6187}
73051182 6188
6aa5f3a6
DE
6189/* Print collected type unit statistics. */
6190
6191static void
6192print_tu_stats (void)
6193{
6194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6195
6196 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6198 dwarf2_per_objfile->n_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6200 tu_stats->nr_uniq_abbrev_tables);
6201 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6202 tu_stats->nr_symtabs);
6203 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6204 tu_stats->nr_symtab_sharers);
6205 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6206 tu_stats->nr_stmt_less_type_units);
6207 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6208 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6209}
6210
f4dc4d17
DE
6211/* Traversal function for build_type_psymtabs. */
6212
6213static int
6214build_type_psymtab_dependencies (void **slot, void *info)
6215{
6216 struct objfile *objfile = dwarf2_per_objfile->objfile;
6217 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6218 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6219 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6220 int len = VEC_length (sig_type_ptr, tu_group->tus);
6221 struct signatured_type *iter;
f4dc4d17
DE
6222 int i;
6223
6224 gdb_assert (len > 0);
0186c6a7 6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6226
6227 pst->number_of_dependencies = len;
6228 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6229 len * sizeof (struct psymtab *));
6230 for (i = 0;
0186c6a7 6231 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6232 ++i)
6233 {
0186c6a7
DE
6234 gdb_assert (iter->per_cu.is_debug_types);
6235 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6236 iter->type_unit_group = tu_group;
f4dc4d17
DE
6237 }
6238
0186c6a7 6239 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6240
6241 return 1;
6242}
6243
6244/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6246
6247static void
6248build_type_psymtabs (struct objfile *objfile)
6249{
0e50663e 6250 if (! create_all_type_units (objfile))
348e048f
DE
6251 return;
6252
73051182 6253 build_type_psymtabs_1 ();
6aa5f3a6 6254}
f4dc4d17 6255
6aa5f3a6
DE
6256/* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6258
6259static int
6260process_skeletonless_type_unit (void **slot, void *info)
6261{
6262 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6263 struct objfile *objfile = info;
6264 struct signatured_type find_entry, *entry;
6265
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6267
6268 if (dwarf2_per_objfile->signatured_types == NULL)
6269 {
6270 dwarf2_per_objfile->signatured_types
6271 = allocate_signatured_type_table (objfile);
6272 }
6273
6274 find_entry.signature = dwo_unit->signature;
6275 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6276 INSERT);
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6279 if (*slot != NULL)
6280 return 1;
6281
6282 /* This does the job that create_all_type_units would have done for
6283 this TU. */
6284 entry = add_type_unit (dwo_unit->signature, slot);
6285 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6286 *slot = entry;
6287
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6290 build_type_psymtabs_reader, NULL);
6291
6292 return 1;
6293}
6294
6295/* Traversal function for process_skeletonless_type_units. */
6296
6297static int
6298process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6299{
6300 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6301
6302 if (dwo_file->tus != NULL)
6303 {
6304 htab_traverse_noresize (dwo_file->tus,
6305 process_skeletonless_type_unit, info);
6306 }
6307
6308 return 1;
6309}
6310
6311/* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6314
6315static void
6316process_skeletonless_type_units (struct objfile *objfile)
6317{
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile->dwo_files != NULL)
6321 {
6322 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6323 process_dwo_file_for_skeletonless_type_units,
6324 objfile);
6325 }
348e048f
DE
6326}
6327
60606b2c
TT
6328/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6329
6330static void
6331psymtabs_addrmap_cleanup (void *o)
6332{
6333 struct objfile *objfile = o;
ec61707d 6334
60606b2c
TT
6335 objfile->psymtabs_addrmap = NULL;
6336}
6337
95554aad
TT
6338/* Compute the 'user' field for each psymtab in OBJFILE. */
6339
6340static void
6341set_partial_user (struct objfile *objfile)
6342{
6343 int i;
6344
6345 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6346 {
8832e7e3 6347 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6348 struct partial_symtab *pst = per_cu->v.psymtab;
6349 int j;
6350
36586728
TT
6351 if (pst == NULL)
6352 continue;
6353
95554aad
TT
6354 for (j = 0; j < pst->number_of_dependencies; ++j)
6355 {
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst->dependencies[j]->user == NULL)
6358 pst->dependencies[j]->user = pst;
6359 }
6360 }
6361}
6362
93311388
DE
6363/* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
72bf9492 6365
93311388 6366static void
c67a9c90 6367dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6368{
60606b2c
TT
6369 struct cleanup *back_to, *addrmap_cleanup;
6370 struct obstack temp_obstack;
21b2bd31 6371 int i;
93311388 6372
45cfd468
DE
6373 if (dwarf2_read_debug)
6374 {
6375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6376 objfile_name (objfile));
45cfd468
DE
6377 }
6378
98bfdba5
PA
6379 dwarf2_per_objfile->reading_partial_symbols = 1;
6380
be391dca 6381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6382
93311388
DE
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6386
348e048f
DE
6387 build_type_psymtabs (objfile);
6388
93311388 6389 create_all_comp_units (objfile);
c906108c 6390
60606b2c
TT
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack);
6394 make_cleanup_obstack_free (&temp_obstack);
6395 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6396 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6397
21b2bd31 6398 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6399 {
8832e7e3 6400 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6401
b93601f3 6402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6403 }
ff013f42 6404
6aa5f3a6
DE
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile);
6407
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile->type_unit_groups != NULL)
6410 {
6411 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6412 build_type_psymtab_dependencies, NULL);
6413 }
6414
6415 if (dwarf2_read_debug)
6416 print_tu_stats ();
6417
95554aad
TT
6418 set_partial_user (objfile);
6419
ff013f42
JK
6420 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6421 &objfile->objfile_obstack);
60606b2c 6422 discard_cleanups (addrmap_cleanup);
ff013f42 6423
ae038cb0 6424 do_cleanups (back_to);
45cfd468
DE
6425
6426 if (dwarf2_read_debug)
6427 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6428 objfile_name (objfile));
ae038cb0
DJ
6429}
6430
3019eac3 6431/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6432
6433static void
dee91e82 6434load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6435 const gdb_byte *info_ptr,
dee91e82
DE
6436 struct die_info *comp_unit_die,
6437 int has_children,
6438 void *data)
ae038cb0 6439{
dee91e82 6440 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6441
95554aad 6442 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6443
ae038cb0
DJ
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6446 If not, there's no more debug_info for this comp unit. */
d85a05f0 6447 if (has_children)
dee91e82
DE
6448 load_partial_dies (reader, info_ptr, 0);
6449}
98bfdba5 6450
dee91e82
DE
6451/* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6453
dee91e82
DE
6454static void
6455load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6456{
f4dc4d17
DE
6457 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6458 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6459}
6460
ae038cb0 6461static void
36586728
TT
6462read_comp_units_from_section (struct objfile *objfile,
6463 struct dwarf2_section_info *section,
6464 unsigned int is_dwz,
6465 int *n_allocated,
6466 int *n_comp_units,
6467 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6468{
d521ce57 6469 const gdb_byte *info_ptr;
a32a8923 6470 bfd *abfd = get_section_bfd_owner (section);
be391dca 6471
bf6af496
DE
6472 if (dwarf2_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6474 get_section_name (section),
6475 get_section_file_name (section));
bf6af496 6476
36586728 6477 dwarf2_read_section (objfile, section);
ae038cb0 6478
36586728 6479 info_ptr = section->buffer;
6e70227d 6480
36586728 6481 while (info_ptr < section->buffer + section->size)
ae038cb0 6482 {
c764a876 6483 unsigned int length, initial_length_size;
ae038cb0 6484 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6485 sect_offset offset;
ae038cb0 6486
36586728 6487 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6488
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
36586728 6491 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6492
6493 /* Save the compilation unit for later lookup. */
6494 this_cu = obstack_alloc (&objfile->objfile_obstack,
6495 sizeof (struct dwarf2_per_cu_data));
6496 memset (this_cu, 0, sizeof (*this_cu));
6497 this_cu->offset = offset;
c764a876 6498 this_cu->length = length + initial_length_size;
36586728 6499 this_cu->is_dwz = is_dwz;
9291a0cd 6500 this_cu->objfile = objfile;
8a0459fd 6501 this_cu->section = section;
ae038cb0 6502
36586728 6503 if (*n_comp_units == *n_allocated)
ae038cb0 6504 {
36586728
TT
6505 *n_allocated *= 2;
6506 *all_comp_units = xrealloc (*all_comp_units,
6507 *n_allocated
6508 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6509 }
36586728
TT
6510 (*all_comp_units)[*n_comp_units] = this_cu;
6511 ++*n_comp_units;
ae038cb0
DJ
6512
6513 info_ptr = info_ptr + this_cu->length;
6514 }
36586728
TT
6515}
6516
6517/* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6519
6520static void
6521create_all_comp_units (struct objfile *objfile)
6522{
6523 int n_allocated;
6524 int n_comp_units;
6525 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6526 struct dwz_file *dwz;
36586728
TT
6527
6528 n_comp_units = 0;
6529 n_allocated = 10;
6530 all_comp_units = xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data *));
6532
6533 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6534 &n_allocated, &n_comp_units, &all_comp_units);
6535
4db1a1dc
TT
6536 dwz = dwarf2_get_dwz_file ();
6537 if (dwz != NULL)
6538 read_comp_units_from_section (objfile, &dwz->info, 1,
6539 &n_allocated, &n_comp_units,
6540 &all_comp_units);
ae038cb0
DJ
6541
6542 dwarf2_per_objfile->all_comp_units
6543 = obstack_alloc (&objfile->objfile_obstack,
6544 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6545 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6546 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6547 xfree (all_comp_units);
6548 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6549}
6550
5734ee8b 6551/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6556
72bf9492
DJ
6557static void
6558scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6559 CORE_ADDR *highpc, int set_addrmap,
6560 struct dwarf2_cu *cu)
c906108c 6561{
72bf9492 6562 struct partial_die_info *pdi;
c906108c 6563
91c24f0a
DC
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
c906108c 6567
72bf9492 6568 pdi = first_die;
91c24f0a 6569
72bf9492
DJ
6570 while (pdi != NULL)
6571 {
6572 fixup_partial_die (pdi, cu);
c906108c 6573
f55ee35c 6574 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6575 children, so we need to look at them. Ditto for anonymous
6576 enums. */
933c6fe4 6577
72bf9492 6578 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6579 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6580 || pdi->tag == DW_TAG_imported_unit)
c906108c 6581 {
72bf9492 6582 switch (pdi->tag)
c906108c
SS
6583 {
6584 case DW_TAG_subprogram:
cdc07690 6585 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6586 break;
72929c62 6587 case DW_TAG_constant:
c906108c
SS
6588 case DW_TAG_variable:
6589 case DW_TAG_typedef:
91c24f0a 6590 case DW_TAG_union_type:
72bf9492 6591 if (!pdi->is_declaration)
63d06c5c 6592 {
72bf9492 6593 add_partial_symbol (pdi, cu);
63d06c5c
DC
6594 }
6595 break;
c906108c 6596 case DW_TAG_class_type:
680b30c7 6597 case DW_TAG_interface_type:
c906108c 6598 case DW_TAG_structure_type:
72bf9492 6599 if (!pdi->is_declaration)
c906108c 6600 {
72bf9492 6601 add_partial_symbol (pdi, cu);
c906108c
SS
6602 }
6603 break;
91c24f0a 6604 case DW_TAG_enumeration_type:
72bf9492
DJ
6605 if (!pdi->is_declaration)
6606 add_partial_enumeration (pdi, cu);
c906108c
SS
6607 break;
6608 case DW_TAG_base_type:
a02abb62 6609 case DW_TAG_subrange_type:
c906108c 6610 /* File scope base type definitions are added to the partial
c5aa993b 6611 symbol table. */
72bf9492 6612 add_partial_symbol (pdi, cu);
c906108c 6613 break;
d9fa45fe 6614 case DW_TAG_namespace:
cdc07690 6615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6616 break;
5d7cb8df 6617 case DW_TAG_module:
cdc07690 6618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6619 break;
95554aad
TT
6620 case DW_TAG_imported_unit:
6621 {
6622 struct dwarf2_per_cu_data *per_cu;
6623
f4dc4d17
DE
6624 /* For now we don't handle imported units in type units. */
6625 if (cu->per_cu->is_debug_types)
6626 {
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
4262abfb 6629 objfile_name (cu->objfile));
f4dc4d17
DE
6630 }
6631
95554aad 6632 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6633 pdi->is_dwz,
95554aad
TT
6634 cu->objfile);
6635
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu->v.psymtab == NULL)
b93601f3 6638 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6639
f4dc4d17 6640 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6641 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6642 }
6643 break;
74921315
KS
6644 case DW_TAG_imported_declaration:
6645 add_partial_symbol (pdi, cu);
6646 break;
c906108c
SS
6647 default:
6648 break;
6649 }
6650 }
6651
72bf9492
DJ
6652 /* If the die has a sibling, skip to the sibling. */
6653
6654 pdi = pdi->die_sibling;
6655 }
6656}
6657
6658/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6659
72bf9492 6660 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
91c24f0a 6666
72bf9492
DJ
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6676 have a parent. */
6677
6678/* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
15d034d0 6682static const char *
72bf9492
DJ
6683partial_die_parent_scope (struct partial_die_info *pdi,
6684 struct dwarf2_cu *cu)
6685{
15d034d0 6686 const char *grandparent_scope;
72bf9492 6687 struct partial_die_info *parent, *real_pdi;
91c24f0a 6688
72bf9492
DJ
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6691
6692 real_pdi = pdi;
72bf9492 6693 while (real_pdi->has_specification)
36586728
TT
6694 real_pdi = find_partial_die (real_pdi->spec_offset,
6695 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6696
6697 parent = real_pdi->die_parent;
6698 if (parent == NULL)
6699 return NULL;
6700
6701 if (parent->scope_set)
6702 return parent->scope;
6703
6704 fixup_partial_die (parent, cu);
6705
10b3939b 6706 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6707
acebe513
UW
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu->language == language_cplus
6e70227d 6712 && parent->tag == DW_TAG_namespace
acebe513
UW
6713 && strcmp (parent->name, "::") == 0
6714 && grandparent_scope == NULL)
6715 {
6716 parent->scope = NULL;
6717 parent->scope_set = 1;
6718 return NULL;
6719 }
6720
9c6c53f7
SA
6721 if (pdi->tag == DW_TAG_enumerator)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent->scope = grandparent_scope;
6724 else if (parent->tag == DW_TAG_namespace
f55ee35c 6725 || parent->tag == DW_TAG_module
72bf9492
DJ
6726 || parent->tag == DW_TAG_structure_type
6727 || parent->tag == DW_TAG_class_type
680b30c7 6728 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6729 || parent->tag == DW_TAG_union_type
6730 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6731 {
6732 if (grandparent_scope == NULL)
6733 parent->scope = parent->name;
6734 else
3e43a32a
MS
6735 parent->scope = typename_concat (&cu->comp_unit_obstack,
6736 grandparent_scope,
f55ee35c 6737 parent->name, 0, cu);
72bf9492 6738 }
72bf9492
DJ
6739 else
6740 {
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6743 ignoring them. */
6744 complaint (&symfile_complaints,
e2e0b3e5 6745 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6746 parent->tag, pdi->offset.sect_off);
72bf9492 6747 parent->scope = grandparent_scope;
c906108c
SS
6748 }
6749
72bf9492
DJ
6750 parent->scope_set = 1;
6751 return parent->scope;
6752}
6753
6754/* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
4568ecf9 6756
72bf9492
DJ
6757static char *
6758partial_die_full_name (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760{
15d034d0 6761 const char *parent_scope;
72bf9492 6762
98bfdba5
PA
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi->has_template_arguments)
6768 {
6769 fixup_partial_die (pdi, cu);
6770
6771 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6772 {
6773 struct die_info *die;
6774 struct attribute attr;
6775 struct dwarf2_cu *ref_cu = cu;
6776
b64f50a1 6777 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6778 attr.name = 0;
6779 attr.form = DW_FORM_ref_addr;
4568ecf9 6780 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6781 die = follow_die_ref (NULL, &attr, &ref_cu);
6782
6783 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6784 }
6785 }
6786
72bf9492
DJ
6787 parent_scope = partial_die_parent_scope (pdi, cu);
6788 if (parent_scope == NULL)
6789 return NULL;
6790 else
f55ee35c 6791 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6792}
6793
6794static void
72bf9492 6795add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6796{
e7c27a73 6797 struct objfile *objfile = cu->objfile;
c906108c 6798 CORE_ADDR addr = 0;
15d034d0 6799 const char *actual_name = NULL;
e142c38c 6800 CORE_ADDR baseaddr;
15d034d0 6801 char *built_actual_name;
e142c38c
DJ
6802
6803 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6804
15d034d0
TT
6805 built_actual_name = partial_die_full_name (pdi, cu);
6806 if (built_actual_name != NULL)
6807 actual_name = built_actual_name;
63d06c5c 6808
72bf9492
DJ
6809 if (actual_name == NULL)
6810 actual_name = pdi->name;
6811
c906108c
SS
6812 switch (pdi->tag)
6813 {
6814 case DW_TAG_subprogram:
2cfa0c8d 6815 if (pdi->is_external || cu->language == language_ada)
c906108c 6816 {
2cfa0c8d
JB
6817 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6818 of the global scope. But in Ada, we want to be able to access
6819 nested procedures globally. So all Ada subprograms are stored
6820 in the global scope. */
f47fb265 6821 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6822 mst_text, objfile); */
f47fb265 6823 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6824 built_actual_name != NULL,
f47fb265
MS
6825 VAR_DOMAIN, LOC_BLOCK,
6826 &objfile->global_psymbols,
6827 0, pdi->lowpc + baseaddr,
6828 cu->language, objfile);
c906108c
SS
6829 }
6830 else
6831 {
f47fb265 6832 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6833 mst_file_text, objfile); */
f47fb265 6834 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6835 built_actual_name != NULL,
f47fb265
MS
6836 VAR_DOMAIN, LOC_BLOCK,
6837 &objfile->static_psymbols,
6838 0, pdi->lowpc + baseaddr,
6839 cu->language, objfile);
c906108c
SS
6840 }
6841 break;
72929c62
JB
6842 case DW_TAG_constant:
6843 {
6844 struct psymbol_allocation_list *list;
6845
6846 if (pdi->is_external)
6847 list = &objfile->global_psymbols;
6848 else
6849 list = &objfile->static_psymbols;
f47fb265 6850 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6851 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6852 list, 0, 0, cu->language, objfile);
72929c62
JB
6853 }
6854 break;
c906108c 6855 case DW_TAG_variable:
95554aad
TT
6856 if (pdi->d.locdesc)
6857 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6858
95554aad 6859 if (pdi->d.locdesc
caac4577
JG
6860 && addr == 0
6861 && !dwarf2_per_objfile->has_section_at_zero)
6862 {
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6867 }
6868 else if (pdi->is_external)
c906108c
SS
6869 {
6870 /* Global Variable.
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6878 is referenced.
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6881 table building. */
6882
95554aad 6883 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6884 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6885 built_actual_name != NULL,
f47fb265
MS
6886 VAR_DOMAIN, LOC_STATIC,
6887 &objfile->global_psymbols,
6888 0, addr + baseaddr,
6889 cu->language, objfile);
c906108c
SS
6890 }
6891 else
6892 {
0963b4bd 6893 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6894 if (pdi->d.locdesc == NULL)
decbce07 6895 {
15d034d0 6896 xfree (built_actual_name);
decbce07
MS
6897 return;
6898 }
f47fb265 6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6900 mst_file_data, objfile); */
f47fb265 6901 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6902 built_actual_name != NULL,
f47fb265
MS
6903 VAR_DOMAIN, LOC_STATIC,
6904 &objfile->static_psymbols,
6905 0, addr + baseaddr,
6906 cu->language, objfile);
c906108c
SS
6907 }
6908 break;
6909 case DW_TAG_typedef:
6910 case DW_TAG_base_type:
a02abb62 6911 case DW_TAG_subrange_type:
38d518c9 6912 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6913 built_actual_name != NULL,
176620f1 6914 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6915 &objfile->static_psymbols,
e142c38c 6916 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6917 break;
74921315 6918 case DW_TAG_imported_declaration:
72bf9492
DJ
6919 case DW_TAG_namespace:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6921 built_actual_name != NULL,
72bf9492
DJ
6922 VAR_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
530e8392
KB
6926 case DW_TAG_module:
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 MODULE_DOMAIN, LOC_TYPEDEF,
6930 &objfile->global_psymbols,
6931 0, (CORE_ADDR) 0, cu->language, objfile);
6932 break;
c906108c 6933 case DW_TAG_class_type:
680b30c7 6934 case DW_TAG_interface_type:
c906108c
SS
6935 case DW_TAG_structure_type:
6936 case DW_TAG_union_type:
6937 case DW_TAG_enumeration_type:
fa4028e9
JB
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6944 {
15d034d0 6945 xfree (built_actual_name);
decbce07
MS
6946 return;
6947 }
fa4028e9 6948
63d06c5c
DC
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
38d518c9 6951 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6952 built_actual_name != NULL,
176620f1 6953 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6954 (cu->language == language_cplus
6955 || cu->language == language_java)
63d06c5c
DC
6956 ? &objfile->global_psymbols
6957 : &objfile->static_psymbols,
e142c38c 6958 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6959
c906108c
SS
6960 break;
6961 case DW_TAG_enumerator:
38d518c9 6962 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6963 built_actual_name != NULL,
176620f1 6964 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6965 (cu->language == language_cplus
6966 || cu->language == language_java)
f6fe98ef
DJ
6967 ? &objfile->global_psymbols
6968 : &objfile->static_psymbols,
e142c38c 6969 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6970 break;
6971 default:
6972 break;
6973 }
5c4e30ca 6974
15d034d0 6975 xfree (built_actual_name);
c906108c
SS
6976}
6977
5c4e30ca
DC
6978/* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
91c24f0a 6981
72bf9492
DJ
6982static void
6983add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6984 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 6985 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 6986{
72bf9492 6987 /* Add a symbol for the namespace. */
e7c27a73 6988
72bf9492 6989 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6990
6991 /* Now scan partial symbols in that namespace. */
6992
91c24f0a 6993 if (pdi->has_children)
cdc07690 6994 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
6995}
6996
5d7cb8df
JK
6997/* Read a partial die corresponding to a Fortran module. */
6998
6999static void
7000add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7001 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7002{
530e8392
KB
7003 /* Add a symbol for the namespace. */
7004
7005 add_partial_symbol (pdi, cu);
7006
f55ee35c 7007 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7008
7009 if (pdi->has_children)
cdc07690 7010 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7011}
7012
bc30ff58
JB
7013/* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
cdc07690 7016 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
6e70227d 7019
cdc07690
YQ
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7024
7025static void
7026add_partial_subprogram (struct partial_die_info *pdi,
7027 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7028 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7029{
7030 if (pdi->tag == DW_TAG_subprogram)
7031 {
7032 if (pdi->has_pc_info)
7033 {
7034 if (pdi->lowpc < *lowpc)
7035 *lowpc = pdi->lowpc;
7036 if (pdi->highpc > *highpc)
7037 *highpc = pdi->highpc;
cdc07690 7038 if (set_addrmap)
5734ee8b
DJ
7039 {
7040 CORE_ADDR baseaddr;
7041 struct objfile *objfile = cu->objfile;
7042
7043 baseaddr = ANOFFSET (objfile->section_offsets,
7044 SECT_OFF_TEXT (objfile));
7045 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
7046 pdi->lowpc + baseaddr,
7047 pdi->highpc - 1 + baseaddr,
9291a0cd 7048 cu->per_cu->v.psymtab);
5734ee8b 7049 }
481860b3
GB
7050 }
7051
7052 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7053 {
bc30ff58 7054 if (!pdi->is_declaration)
e8d05480
JB
7055 /* Ignore subprogram DIEs that do not have a name, they are
7056 illegal. Do not emit a complaint at this point, we will
7057 do so when we convert this psymtab into a symtab. */
7058 if (pdi->name)
7059 add_partial_symbol (pdi, cu);
bc30ff58
JB
7060 }
7061 }
6e70227d 7062
bc30ff58
JB
7063 if (! pdi->has_children)
7064 return;
7065
7066 if (cu->language == language_ada)
7067 {
7068 pdi = pdi->die_child;
7069 while (pdi != NULL)
7070 {
7071 fixup_partial_die (pdi, cu);
7072 if (pdi->tag == DW_TAG_subprogram
7073 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7074 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7075 pdi = pdi->die_sibling;
7076 }
7077 }
7078}
7079
91c24f0a
DC
7080/* Read a partial die corresponding to an enumeration type. */
7081
72bf9492
DJ
7082static void
7083add_partial_enumeration (struct partial_die_info *enum_pdi,
7084 struct dwarf2_cu *cu)
91c24f0a 7085{
72bf9492 7086 struct partial_die_info *pdi;
91c24f0a
DC
7087
7088 if (enum_pdi->name != NULL)
72bf9492
DJ
7089 add_partial_symbol (enum_pdi, cu);
7090
7091 pdi = enum_pdi->die_child;
7092 while (pdi)
91c24f0a 7093 {
72bf9492 7094 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7095 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7096 else
72bf9492
DJ
7097 add_partial_symbol (pdi, cu);
7098 pdi = pdi->die_sibling;
91c24f0a 7099 }
91c24f0a
DC
7100}
7101
6caca83c
CC
7102/* Return the initial uleb128 in the die at INFO_PTR. */
7103
7104static unsigned int
d521ce57 7105peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7106{
7107 unsigned int bytes_read;
7108
7109 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7110}
7111
4bb7a0a7
DJ
7112/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7113 Return the corresponding abbrev, or NULL if the number is zero (indicating
7114 an empty DIE). In either case *BYTES_READ will be set to the length of
7115 the initial number. */
7116
7117static struct abbrev_info *
d521ce57 7118peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7119 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7120{
7121 bfd *abfd = cu->objfile->obfd;
7122 unsigned int abbrev_number;
7123 struct abbrev_info *abbrev;
7124
7125 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7126
7127 if (abbrev_number == 0)
7128 return NULL;
7129
433df2d4 7130 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7131 if (!abbrev)
7132 {
3e43a32a
MS
7133 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7134 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7135 }
7136
7137 return abbrev;
7138}
7139
93311388
DE
7140/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7141 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7142 DIE. Any children of the skipped DIEs will also be skipped. */
7143
d521ce57
TT
7144static const gdb_byte *
7145skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7146{
dee91e82 7147 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7148 struct abbrev_info *abbrev;
7149 unsigned int bytes_read;
7150
7151 while (1)
7152 {
7153 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7154 if (abbrev == NULL)
7155 return info_ptr + bytes_read;
7156 else
dee91e82 7157 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7158 }
7159}
7160
93311388
DE
7161/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7162 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7163 abbrev corresponding to that skipped uleb128 should be passed in
7164 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7165 children. */
7166
d521ce57
TT
7167static const gdb_byte *
7168skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7169 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7170{
7171 unsigned int bytes_read;
7172 struct attribute attr;
dee91e82
DE
7173 bfd *abfd = reader->abfd;
7174 struct dwarf2_cu *cu = reader->cu;
d521ce57 7175 const gdb_byte *buffer = reader->buffer;
f664829e 7176 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7177 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7178 unsigned int form, i;
7179
7180 for (i = 0; i < abbrev->num_attrs; i++)
7181 {
7182 /* The only abbrev we care about is DW_AT_sibling. */
7183 if (abbrev->attrs[i].name == DW_AT_sibling)
7184 {
dee91e82 7185 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7186 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7187 complaint (&symfile_complaints,
7188 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7189 else
b9502d3f
WN
7190 {
7191 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7192 const gdb_byte *sibling_ptr = buffer + off;
7193
7194 if (sibling_ptr < info_ptr)
7195 complaint (&symfile_complaints,
7196 _("DW_AT_sibling points backwards"));
22869d73
KS
7197 else if (sibling_ptr > reader->buffer_end)
7198 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7199 else
7200 return sibling_ptr;
7201 }
4bb7a0a7
DJ
7202 }
7203
7204 /* If it isn't DW_AT_sibling, skip this attribute. */
7205 form = abbrev->attrs[i].form;
7206 skip_attribute:
7207 switch (form)
7208 {
4bb7a0a7 7209 case DW_FORM_ref_addr:
ae411497
TT
7210 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7211 and later it is offset sized. */
7212 if (cu->header.version == 2)
7213 info_ptr += cu->header.addr_size;
7214 else
7215 info_ptr += cu->header.offset_size;
7216 break;
36586728
TT
7217 case DW_FORM_GNU_ref_alt:
7218 info_ptr += cu->header.offset_size;
7219 break;
ae411497 7220 case DW_FORM_addr:
4bb7a0a7
DJ
7221 info_ptr += cu->header.addr_size;
7222 break;
7223 case DW_FORM_data1:
7224 case DW_FORM_ref1:
7225 case DW_FORM_flag:
7226 info_ptr += 1;
7227 break;
2dc7f7b3
TT
7228 case DW_FORM_flag_present:
7229 break;
4bb7a0a7
DJ
7230 case DW_FORM_data2:
7231 case DW_FORM_ref2:
7232 info_ptr += 2;
7233 break;
7234 case DW_FORM_data4:
7235 case DW_FORM_ref4:
7236 info_ptr += 4;
7237 break;
7238 case DW_FORM_data8:
7239 case DW_FORM_ref8:
55f1336d 7240 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7241 info_ptr += 8;
7242 break;
7243 case DW_FORM_string:
9b1c24c8 7244 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7245 info_ptr += bytes_read;
7246 break;
2dc7f7b3 7247 case DW_FORM_sec_offset:
4bb7a0a7 7248 case DW_FORM_strp:
36586728 7249 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7250 info_ptr += cu->header.offset_size;
7251 break;
2dc7f7b3 7252 case DW_FORM_exprloc:
4bb7a0a7
DJ
7253 case DW_FORM_block:
7254 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7255 info_ptr += bytes_read;
7256 break;
7257 case DW_FORM_block1:
7258 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7259 break;
7260 case DW_FORM_block2:
7261 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7262 break;
7263 case DW_FORM_block4:
7264 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7265 break;
7266 case DW_FORM_sdata:
7267 case DW_FORM_udata:
7268 case DW_FORM_ref_udata:
3019eac3
DE
7269 case DW_FORM_GNU_addr_index:
7270 case DW_FORM_GNU_str_index:
d521ce57 7271 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7272 break;
7273 case DW_FORM_indirect:
7274 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7275 info_ptr += bytes_read;
7276 /* We need to continue parsing from here, so just go back to
7277 the top. */
7278 goto skip_attribute;
7279
7280 default:
3e43a32a
MS
7281 error (_("Dwarf Error: Cannot handle %s "
7282 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7283 dwarf_form_name (form),
7284 bfd_get_filename (abfd));
7285 }
7286 }
7287
7288 if (abbrev->has_children)
dee91e82 7289 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7290 else
7291 return info_ptr;
7292}
7293
93311388 7294/* Locate ORIG_PDI's sibling.
dee91e82 7295 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7296
d521ce57 7297static const gdb_byte *
dee91e82
DE
7298locate_pdi_sibling (const struct die_reader_specs *reader,
7299 struct partial_die_info *orig_pdi,
d521ce57 7300 const gdb_byte *info_ptr)
91c24f0a
DC
7301{
7302 /* Do we know the sibling already? */
72bf9492 7303
91c24f0a
DC
7304 if (orig_pdi->sibling)
7305 return orig_pdi->sibling;
7306
7307 /* Are there any children to deal with? */
7308
7309 if (!orig_pdi->has_children)
7310 return info_ptr;
7311
4bb7a0a7 7312 /* Skip the children the long way. */
91c24f0a 7313
dee91e82 7314 return skip_children (reader, info_ptr);
91c24f0a
DC
7315}
7316
257e7a09 7317/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7318 not NULL. */
c906108c
SS
7319
7320static void
257e7a09
YQ
7321dwarf2_read_symtab (struct partial_symtab *self,
7322 struct objfile *objfile)
c906108c 7323{
257e7a09 7324 if (self->readin)
c906108c 7325 {
442e4d9c 7326 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7327 self->filename);
442e4d9c
YQ
7328 }
7329 else
7330 {
7331 if (info_verbose)
c906108c 7332 {
442e4d9c 7333 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7334 self->filename);
442e4d9c 7335 gdb_flush (gdb_stdout);
c906108c 7336 }
c906108c 7337
442e4d9c
YQ
7338 /* Restore our global data. */
7339 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7340
442e4d9c
YQ
7341 /* If this psymtab is constructed from a debug-only objfile, the
7342 has_section_at_zero flag will not necessarily be correct. We
7343 can get the correct value for this flag by looking at the data
7344 associated with the (presumably stripped) associated objfile. */
7345 if (objfile->separate_debug_objfile_backlink)
7346 {
7347 struct dwarf2_per_objfile *dpo_backlink
7348 = objfile_data (objfile->separate_debug_objfile_backlink,
7349 dwarf2_objfile_data_key);
9a619af0 7350
442e4d9c
YQ
7351 dwarf2_per_objfile->has_section_at_zero
7352 = dpo_backlink->has_section_at_zero;
7353 }
b2ab525c 7354
442e4d9c 7355 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7356
257e7a09 7357 psymtab_to_symtab_1 (self);
c906108c 7358
442e4d9c
YQ
7359 /* Finish up the debug error message. */
7360 if (info_verbose)
7361 printf_filtered (_("done.\n"));
c906108c 7362 }
95554aad
TT
7363
7364 process_cu_includes ();
c906108c 7365}
9cdd5dbd
DE
7366\f
7367/* Reading in full CUs. */
c906108c 7368
10b3939b
DJ
7369/* Add PER_CU to the queue. */
7370
7371static void
95554aad
TT
7372queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7373 enum language pretend_language)
10b3939b
DJ
7374{
7375 struct dwarf2_queue_item *item;
7376
7377 per_cu->queued = 1;
7378 item = xmalloc (sizeof (*item));
7379 item->per_cu = per_cu;
95554aad 7380 item->pretend_language = pretend_language;
10b3939b
DJ
7381 item->next = NULL;
7382
7383 if (dwarf2_queue == NULL)
7384 dwarf2_queue = item;
7385 else
7386 dwarf2_queue_tail->next = item;
7387
7388 dwarf2_queue_tail = item;
7389}
7390
89e63ee4
DE
7391/* If PER_CU is not yet queued, add it to the queue.
7392 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7393 dependency.
0907af0c 7394 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7395 meaning either PER_CU is already queued or it is already loaded.
7396
7397 N.B. There is an invariant here that if a CU is queued then it is loaded.
7398 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7399
7400static int
89e63ee4 7401maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7402 struct dwarf2_per_cu_data *per_cu,
7403 enum language pretend_language)
7404{
7405 /* We may arrive here during partial symbol reading, if we need full
7406 DIEs to process an unusual case (e.g. template arguments). Do
7407 not queue PER_CU, just tell our caller to load its DIEs. */
7408 if (dwarf2_per_objfile->reading_partial_symbols)
7409 {
7410 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7411 return 1;
7412 return 0;
7413 }
7414
7415 /* Mark the dependence relation so that we don't flush PER_CU
7416 too early. */
89e63ee4
DE
7417 if (dependent_cu != NULL)
7418 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7419
7420 /* If it's already on the queue, we have nothing to do. */
7421 if (per_cu->queued)
7422 return 0;
7423
7424 /* If the compilation unit is already loaded, just mark it as
7425 used. */
7426 if (per_cu->cu != NULL)
7427 {
7428 per_cu->cu->last_used = 0;
7429 return 0;
7430 }
7431
7432 /* Add it to the queue. */
7433 queue_comp_unit (per_cu, pretend_language);
7434
7435 return 1;
7436}
7437
10b3939b
DJ
7438/* Process the queue. */
7439
7440static void
a0f42c21 7441process_queue (void)
10b3939b
DJ
7442{
7443 struct dwarf2_queue_item *item, *next_item;
7444
45cfd468
DE
7445 if (dwarf2_read_debug)
7446 {
7447 fprintf_unfiltered (gdb_stdlog,
7448 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7449 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7450 }
7451
03dd20cc
DJ
7452 /* The queue starts out with one item, but following a DIE reference
7453 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7454 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7455 {
9291a0cd 7456 if (dwarf2_per_objfile->using_index
43f3e411 7457 ? !item->per_cu->v.quick->compunit_symtab
9291a0cd 7458 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7459 {
7460 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7461 unsigned int debug_print_threshold;
247f5c4f 7462 char buf[100];
f4dc4d17 7463
247f5c4f 7464 if (per_cu->is_debug_types)
f4dc4d17 7465 {
247f5c4f
DE
7466 struct signatured_type *sig_type =
7467 (struct signatured_type *) per_cu;
7468
7469 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7470 hex_string (sig_type->signature),
7471 per_cu->offset.sect_off);
7472 /* There can be 100s of TUs.
7473 Only print them in verbose mode. */
7474 debug_print_threshold = 2;
f4dc4d17 7475 }
247f5c4f 7476 else
73be47f5
DE
7477 {
7478 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7479 debug_print_threshold = 1;
7480 }
247f5c4f 7481
73be47f5 7482 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7483 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7484
7485 if (per_cu->is_debug_types)
7486 process_full_type_unit (per_cu, item->pretend_language);
7487 else
7488 process_full_comp_unit (per_cu, item->pretend_language);
7489
73be47f5 7490 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7491 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7492 }
10b3939b
DJ
7493
7494 item->per_cu->queued = 0;
7495 next_item = item->next;
7496 xfree (item);
7497 }
7498
7499 dwarf2_queue_tail = NULL;
45cfd468
DE
7500
7501 if (dwarf2_read_debug)
7502 {
7503 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7504 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7505 }
10b3939b
DJ
7506}
7507
7508/* Free all allocated queue entries. This function only releases anything if
7509 an error was thrown; if the queue was processed then it would have been
7510 freed as we went along. */
7511
7512static void
7513dwarf2_release_queue (void *dummy)
7514{
7515 struct dwarf2_queue_item *item, *last;
7516
7517 item = dwarf2_queue;
7518 while (item)
7519 {
7520 /* Anything still marked queued is likely to be in an
7521 inconsistent state, so discard it. */
7522 if (item->per_cu->queued)
7523 {
7524 if (item->per_cu->cu != NULL)
dee91e82 7525 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7526 item->per_cu->queued = 0;
7527 }
7528
7529 last = item;
7530 item = item->next;
7531 xfree (last);
7532 }
7533
7534 dwarf2_queue = dwarf2_queue_tail = NULL;
7535}
7536
7537/* Read in full symbols for PST, and anything it depends on. */
7538
c906108c 7539static void
fba45db2 7540psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7541{
10b3939b 7542 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7543 int i;
7544
95554aad
TT
7545 if (pst->readin)
7546 return;
7547
aaa75496 7548 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7549 if (!pst->dependencies[i]->readin
7550 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7551 {
7552 /* Inform about additional files that need to be read in. */
7553 if (info_verbose)
7554 {
a3f17187 7555 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7556 fputs_filtered (" ", gdb_stdout);
7557 wrap_here ("");
7558 fputs_filtered ("and ", gdb_stdout);
7559 wrap_here ("");
7560 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7561 wrap_here (""); /* Flush output. */
aaa75496
JB
7562 gdb_flush (gdb_stdout);
7563 }
7564 psymtab_to_symtab_1 (pst->dependencies[i]);
7565 }
7566
e38df1d0 7567 per_cu = pst->read_symtab_private;
10b3939b
DJ
7568
7569 if (per_cu == NULL)
aaa75496
JB
7570 {
7571 /* It's an include file, no symbols to read for it.
7572 Everything is in the parent symtab. */
7573 pst->readin = 1;
7574 return;
7575 }
c906108c 7576
a0f42c21 7577 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7578}
7579
dee91e82
DE
7580/* Trivial hash function for die_info: the hash value of a DIE
7581 is its offset in .debug_info for this objfile. */
10b3939b 7582
dee91e82
DE
7583static hashval_t
7584die_hash (const void *item)
10b3939b 7585{
dee91e82 7586 const struct die_info *die = item;
6502dd73 7587
dee91e82
DE
7588 return die->offset.sect_off;
7589}
63d06c5c 7590
dee91e82
DE
7591/* Trivial comparison function for die_info structures: two DIEs
7592 are equal if they have the same offset. */
98bfdba5 7593
dee91e82
DE
7594static int
7595die_eq (const void *item_lhs, const void *item_rhs)
7596{
7597 const struct die_info *die_lhs = item_lhs;
7598 const struct die_info *die_rhs = item_rhs;
c906108c 7599
dee91e82
DE
7600 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7601}
c906108c 7602
dee91e82
DE
7603/* die_reader_func for load_full_comp_unit.
7604 This is identical to read_signatured_type_reader,
7605 but is kept separate for now. */
c906108c 7606
dee91e82
DE
7607static void
7608load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7609 const gdb_byte *info_ptr,
dee91e82
DE
7610 struct die_info *comp_unit_die,
7611 int has_children,
7612 void *data)
7613{
7614 struct dwarf2_cu *cu = reader->cu;
95554aad 7615 enum language *language_ptr = data;
6caca83c 7616
dee91e82
DE
7617 gdb_assert (cu->die_hash == NULL);
7618 cu->die_hash =
7619 htab_create_alloc_ex (cu->header.length / 12,
7620 die_hash,
7621 die_eq,
7622 NULL,
7623 &cu->comp_unit_obstack,
7624 hashtab_obstack_allocate,
7625 dummy_obstack_deallocate);
e142c38c 7626
dee91e82
DE
7627 if (has_children)
7628 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7629 &info_ptr, comp_unit_die);
7630 cu->dies = comp_unit_die;
7631 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7632
7633 /* We try not to read any attributes in this function, because not
9cdd5dbd 7634 all CUs needed for references have been loaded yet, and symbol
10b3939b 7635 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7636 or we won't be able to build types correctly.
7637 Similarly, if we do not read the producer, we can not apply
7638 producer-specific interpretation. */
95554aad 7639 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7640}
10b3939b 7641
dee91e82 7642/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7643
dee91e82 7644static void
95554aad
TT
7645load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7646 enum language pretend_language)
dee91e82 7647{
3019eac3 7648 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7649
f4dc4d17
DE
7650 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7651 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7652}
7653
3da10d80
KS
7654/* Add a DIE to the delayed physname list. */
7655
7656static void
7657add_to_method_list (struct type *type, int fnfield_index, int index,
7658 const char *name, struct die_info *die,
7659 struct dwarf2_cu *cu)
7660{
7661 struct delayed_method_info mi;
7662 mi.type = type;
7663 mi.fnfield_index = fnfield_index;
7664 mi.index = index;
7665 mi.name = name;
7666 mi.die = die;
7667 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7668}
7669
7670/* A cleanup for freeing the delayed method list. */
7671
7672static void
7673free_delayed_list (void *ptr)
7674{
7675 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7676 if (cu->method_list != NULL)
7677 {
7678 VEC_free (delayed_method_info, cu->method_list);
7679 cu->method_list = NULL;
7680 }
7681}
7682
7683/* Compute the physnames of any methods on the CU's method list.
7684
7685 The computation of method physnames is delayed in order to avoid the
7686 (bad) condition that one of the method's formal parameters is of an as yet
7687 incomplete type. */
7688
7689static void
7690compute_delayed_physnames (struct dwarf2_cu *cu)
7691{
7692 int i;
7693 struct delayed_method_info *mi;
7694 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7695 {
1d06ead6 7696 const char *physname;
3da10d80
KS
7697 struct fn_fieldlist *fn_flp
7698 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7699 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7700 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7701 }
7702}
7703
a766d390
DE
7704/* Go objects should be embedded in a DW_TAG_module DIE,
7705 and it's not clear if/how imported objects will appear.
7706 To keep Go support simple until that's worked out,
7707 go back through what we've read and create something usable.
7708 We could do this while processing each DIE, and feels kinda cleaner,
7709 but that way is more invasive.
7710 This is to, for example, allow the user to type "p var" or "b main"
7711 without having to specify the package name, and allow lookups
7712 of module.object to work in contexts that use the expression
7713 parser. */
7714
7715static void
7716fixup_go_packaging (struct dwarf2_cu *cu)
7717{
7718 char *package_name = NULL;
7719 struct pending *list;
7720 int i;
7721
7722 for (list = global_symbols; list != NULL; list = list->next)
7723 {
7724 for (i = 0; i < list->nsyms; ++i)
7725 {
7726 struct symbol *sym = list->symbol[i];
7727
7728 if (SYMBOL_LANGUAGE (sym) == language_go
7729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7730 {
7731 char *this_package_name = go_symbol_package_name (sym);
7732
7733 if (this_package_name == NULL)
7734 continue;
7735 if (package_name == NULL)
7736 package_name = this_package_name;
7737 else
7738 {
7739 if (strcmp (package_name, this_package_name) != 0)
7740 complaint (&symfile_complaints,
7741 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7742 (SYMBOL_SYMTAB (sym)
05cba821 7743 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7744 : objfile_name (cu->objfile)),
a766d390
DE
7745 this_package_name, package_name);
7746 xfree (this_package_name);
7747 }
7748 }
7749 }
7750 }
7751
7752 if (package_name != NULL)
7753 {
7754 struct objfile *objfile = cu->objfile;
34a68019
TT
7755 const char *saved_package_name
7756 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7757 package_name,
7758 strlen (package_name));
a766d390 7759 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7760 saved_package_name, objfile);
a766d390
DE
7761 struct symbol *sym;
7762
7763 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7764
e623cf5d 7765 sym = allocate_symbol (objfile);
f85f34ed 7766 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7767 SYMBOL_SET_NAMES (sym, saved_package_name,
7768 strlen (saved_package_name), 0, objfile);
a766d390
DE
7769 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7770 e.g., "main" finds the "main" module and not C's main(). */
7771 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7772 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7773 SYMBOL_TYPE (sym) = type;
7774
7775 add_symbol_to_list (sym, &global_symbols);
7776
7777 xfree (package_name);
7778 }
7779}
7780
95554aad
TT
7781/* Return the symtab for PER_CU. This works properly regardless of
7782 whether we're using the index or psymtabs. */
7783
43f3e411
DE
7784static struct compunit_symtab *
7785get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7786{
7787 return (dwarf2_per_objfile->using_index
43f3e411
DE
7788 ? per_cu->v.quick->compunit_symtab
7789 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7790}
7791
7792/* A helper function for computing the list of all symbol tables
7793 included by PER_CU. */
7794
7795static void
43f3e411 7796recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7797 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7798 struct dwarf2_per_cu_data *per_cu,
43f3e411 7799 struct compunit_symtab *immediate_parent)
95554aad
TT
7800{
7801 void **slot;
7802 int ix;
43f3e411 7803 struct compunit_symtab *cust;
95554aad
TT
7804 struct dwarf2_per_cu_data *iter;
7805
7806 slot = htab_find_slot (all_children, per_cu, INSERT);
7807 if (*slot != NULL)
7808 {
7809 /* This inclusion and its children have been processed. */
7810 return;
7811 }
7812
7813 *slot = per_cu;
7814 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7815 cust = get_compunit_symtab (per_cu);
7816 if (cust != NULL)
ec94af83
DE
7817 {
7818 /* If this is a type unit only add its symbol table if we haven't
7819 seen it yet (type unit per_cu's can share symtabs). */
7820 if (per_cu->is_debug_types)
7821 {
43f3e411 7822 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7823 if (*slot == NULL)
7824 {
43f3e411
DE
7825 *slot = cust;
7826 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7827 if (cust->user == NULL)
7828 cust->user = immediate_parent;
ec94af83
DE
7829 }
7830 }
7831 else
f9125b6c 7832 {
43f3e411
DE
7833 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7834 if (cust->user == NULL)
7835 cust->user = immediate_parent;
f9125b6c 7836 }
ec94af83 7837 }
95554aad
TT
7838
7839 for (ix = 0;
796a7ff8 7840 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7841 ++ix)
ec94af83
DE
7842 {
7843 recursively_compute_inclusions (result, all_children,
43f3e411 7844 all_type_symtabs, iter, cust);
ec94af83 7845 }
95554aad
TT
7846}
7847
43f3e411 7848/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7849 PER_CU. */
7850
7851static void
43f3e411 7852compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7853{
f4dc4d17
DE
7854 gdb_assert (! per_cu->is_debug_types);
7855
796a7ff8 7856 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7857 {
7858 int ix, len;
ec94af83 7859 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7860 struct compunit_symtab *compunit_symtab_iter;
7861 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7862 htab_t all_children, all_type_symtabs;
43f3e411 7863 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7864
7865 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7866 if (cust == NULL)
95554aad
TT
7867 return;
7868
7869 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7870 NULL, xcalloc, xfree);
ec94af83
DE
7871 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7872 NULL, xcalloc, xfree);
95554aad
TT
7873
7874 for (ix = 0;
796a7ff8 7875 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7876 ix, per_cu_iter);
95554aad 7877 ++ix)
ec94af83
DE
7878 {
7879 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7880 all_type_symtabs, per_cu_iter,
43f3e411 7881 cust);
ec94af83 7882 }
95554aad 7883
ec94af83 7884 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7885 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7886 cust->includes
95554aad
TT
7887 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7888 (len + 1) * sizeof (struct symtab *));
7889 for (ix = 0;
43f3e411
DE
7890 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7891 compunit_symtab_iter);
95554aad 7892 ++ix)
43f3e411
DE
7893 cust->includes[ix] = compunit_symtab_iter;
7894 cust->includes[len] = NULL;
95554aad 7895
43f3e411 7896 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7897 htab_delete (all_children);
ec94af83 7898 htab_delete (all_type_symtabs);
95554aad
TT
7899 }
7900}
7901
7902/* Compute the 'includes' field for the symtabs of all the CUs we just
7903 read. */
7904
7905static void
7906process_cu_includes (void)
7907{
7908 int ix;
7909 struct dwarf2_per_cu_data *iter;
7910
7911 for (ix = 0;
7912 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7913 ix, iter);
7914 ++ix)
f4dc4d17
DE
7915 {
7916 if (! iter->is_debug_types)
43f3e411 7917 compute_compunit_symtab_includes (iter);
f4dc4d17 7918 }
95554aad
TT
7919
7920 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7921}
7922
9cdd5dbd 7923/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7924 already been loaded into memory. */
7925
7926static void
95554aad
TT
7927process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7928 enum language pretend_language)
10b3939b 7929{
10b3939b 7930 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7931 struct objfile *objfile = per_cu->objfile;
10b3939b 7932 CORE_ADDR lowpc, highpc;
43f3e411 7933 struct compunit_symtab *cust;
3da10d80 7934 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7935 CORE_ADDR baseaddr;
4359dff1 7936 struct block *static_block;
10b3939b
DJ
7937
7938 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7939
10b3939b
DJ
7940 buildsym_init ();
7941 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7942 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7943
7944 cu->list_in_scope = &file_symbols;
c906108c 7945
95554aad
TT
7946 cu->language = pretend_language;
7947 cu->language_defn = language_def (cu->language);
7948
c906108c 7949 /* Do line number decoding in read_file_scope () */
10b3939b 7950 process_die (cu->dies, cu);
c906108c 7951
a766d390
DE
7952 /* For now fudge the Go package. */
7953 if (cu->language == language_go)
7954 fixup_go_packaging (cu);
7955
3da10d80
KS
7956 /* Now that we have processed all the DIEs in the CU, all the types
7957 should be complete, and it should now be safe to compute all of the
7958 physnames. */
7959 compute_delayed_physnames (cu);
7960 do_cleanups (delayed_list_cleanup);
7961
fae299cd
DC
7962 /* Some compilers don't define a DW_AT_high_pc attribute for the
7963 compilation unit. If the DW_AT_high_pc is missing, synthesize
7964 it, by scanning the DIE's below the compilation unit. */
10b3939b 7965 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7966
36586728 7967 static_block
4d663531 7968 = end_symtab_get_static_block (highpc + baseaddr, 0, 1);
4359dff1
JK
7969
7970 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7971 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7972 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7973 addrmap to help ensure it has an accurate map of pc values belonging to
7974 this comp unit. */
7975 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7976
43f3e411
DE
7977 cust = end_symtab_from_static_block (static_block,
7978 SECT_OFF_TEXT (objfile), 0);
c906108c 7979
43f3e411 7980 if (cust != NULL)
c906108c 7981 {
df15bd07 7982 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7983
8be455d7
JK
7984 /* Set symtab language to language from DW_AT_language. If the
7985 compilation is from a C file generated by language preprocessors, do
7986 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
7987 if (!(cu->language == language_c
7988 && COMPUNIT_FILETABS (cust)->language != language_c))
7989 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
7990
7991 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7992 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7993 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7994 there were bugs in prologue debug info, fixed later in GCC-4.5
7995 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7996
7997 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7998 needed, it would be wrong due to missing DW_AT_producer there.
7999
8000 Still one can confuse GDB by using non-standard GCC compilation
8001 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8002 */
ab260dad 8003 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8004 cust->locations_valid = 1;
e0d00bc7
JK
8005
8006 if (gcc_4_minor >= 5)
43f3e411 8007 cust->epilogue_unwind_valid = 1;
96408a79 8008
43f3e411 8009 cust->call_site_htab = cu->call_site_htab;
c906108c 8010 }
9291a0cd
TT
8011
8012 if (dwarf2_per_objfile->using_index)
43f3e411 8013 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8014 else
8015 {
8016 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8017 pst->compunit_symtab = cust;
9291a0cd
TT
8018 pst->readin = 1;
8019 }
c906108c 8020
95554aad
TT
8021 /* Push it for inclusion processing later. */
8022 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8023
c906108c 8024 do_cleanups (back_to);
f4dc4d17 8025}
45cfd468 8026
f4dc4d17
DE
8027/* Generate full symbol information for type unit PER_CU, whose DIEs have
8028 already been loaded into memory. */
8029
8030static void
8031process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8032 enum language pretend_language)
8033{
8034 struct dwarf2_cu *cu = per_cu->cu;
8035 struct objfile *objfile = per_cu->objfile;
43f3e411 8036 struct compunit_symtab *cust;
f4dc4d17 8037 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8038 struct signatured_type *sig_type;
8039
8040 gdb_assert (per_cu->is_debug_types);
8041 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8042
8043 buildsym_init ();
8044 back_to = make_cleanup (really_free_pendings, NULL);
8045 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8046
8047 cu->list_in_scope = &file_symbols;
8048
8049 cu->language = pretend_language;
8050 cu->language_defn = language_def (cu->language);
8051
8052 /* The symbol tables are set up in read_type_unit_scope. */
8053 process_die (cu->dies, cu);
8054
8055 /* For now fudge the Go package. */
8056 if (cu->language == language_go)
8057 fixup_go_packaging (cu);
8058
8059 /* Now that we have processed all the DIEs in the CU, all the types
8060 should be complete, and it should now be safe to compute all of the
8061 physnames. */
8062 compute_delayed_physnames (cu);
8063 do_cleanups (delayed_list_cleanup);
8064
8065 /* TUs share symbol tables.
8066 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8067 of it with end_expandable_symtab. Otherwise, complete the addition of
8068 this TU's symbols to the existing symtab. */
43f3e411 8069 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8070 {
43f3e411
DE
8071 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8072 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8073
43f3e411 8074 if (cust != NULL)
f4dc4d17
DE
8075 {
8076 /* Set symtab language to language from DW_AT_language. If the
8077 compilation is from a C file generated by language preprocessors,
8078 do not set the language if it was already deduced by
8079 start_subfile. */
43f3e411
DE
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_c))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8083 }
8084 }
8085 else
8086 {
43f3e411
DE
8087 augment_type_symtab (sig_type->type_unit_group->compunit_symtab);
8088 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8089 }
8090
8091 if (dwarf2_per_objfile->using_index)
43f3e411 8092 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8093 else
8094 {
8095 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8096 pst->compunit_symtab = cust;
f4dc4d17 8097 pst->readin = 1;
45cfd468 8098 }
f4dc4d17
DE
8099
8100 do_cleanups (back_to);
c906108c
SS
8101}
8102
95554aad
TT
8103/* Process an imported unit DIE. */
8104
8105static void
8106process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8107{
8108 struct attribute *attr;
8109
f4dc4d17
DE
8110 /* For now we don't handle imported units in type units. */
8111 if (cu->per_cu->is_debug_types)
8112 {
8113 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8114 " supported in type units [in module %s]"),
4262abfb 8115 objfile_name (cu->objfile));
f4dc4d17
DE
8116 }
8117
95554aad
TT
8118 attr = dwarf2_attr (die, DW_AT_import, cu);
8119 if (attr != NULL)
8120 {
8121 struct dwarf2_per_cu_data *per_cu;
8122 struct symtab *imported_symtab;
8123 sect_offset offset;
36586728 8124 int is_dwz;
95554aad
TT
8125
8126 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8127 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8128 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8129
69d751e3 8130 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8131 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8132 load_full_comp_unit (per_cu, cu->language);
8133
796a7ff8 8134 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8135 per_cu);
8136 }
8137}
8138
adde2bff
DE
8139/* Reset the in_process bit of a die. */
8140
8141static void
8142reset_die_in_process (void *arg)
8143{
8144 struct die_info *die = arg;
8c3cb9fa 8145
adde2bff
DE
8146 die->in_process = 0;
8147}
8148
c906108c
SS
8149/* Process a die and its children. */
8150
8151static void
e7c27a73 8152process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8153{
adde2bff
DE
8154 struct cleanup *in_process;
8155
8156 /* We should only be processing those not already in process. */
8157 gdb_assert (!die->in_process);
8158
8159 die->in_process = 1;
8160 in_process = make_cleanup (reset_die_in_process,die);
8161
c906108c
SS
8162 switch (die->tag)
8163 {
8164 case DW_TAG_padding:
8165 break;
8166 case DW_TAG_compile_unit:
95554aad 8167 case DW_TAG_partial_unit:
e7c27a73 8168 read_file_scope (die, cu);
c906108c 8169 break;
348e048f
DE
8170 case DW_TAG_type_unit:
8171 read_type_unit_scope (die, cu);
8172 break;
c906108c 8173 case DW_TAG_subprogram:
c906108c 8174 case DW_TAG_inlined_subroutine:
edb3359d 8175 read_func_scope (die, cu);
c906108c
SS
8176 break;
8177 case DW_TAG_lexical_block:
14898363
L
8178 case DW_TAG_try_block:
8179 case DW_TAG_catch_block:
e7c27a73 8180 read_lexical_block_scope (die, cu);
c906108c 8181 break;
96408a79
SA
8182 case DW_TAG_GNU_call_site:
8183 read_call_site_scope (die, cu);
8184 break;
c906108c 8185 case DW_TAG_class_type:
680b30c7 8186 case DW_TAG_interface_type:
c906108c
SS
8187 case DW_TAG_structure_type:
8188 case DW_TAG_union_type:
134d01f1 8189 process_structure_scope (die, cu);
c906108c
SS
8190 break;
8191 case DW_TAG_enumeration_type:
134d01f1 8192 process_enumeration_scope (die, cu);
c906108c 8193 break;
134d01f1 8194
f792889a
DJ
8195 /* These dies have a type, but processing them does not create
8196 a symbol or recurse to process the children. Therefore we can
8197 read them on-demand through read_type_die. */
c906108c 8198 case DW_TAG_subroutine_type:
72019c9c 8199 case DW_TAG_set_type:
c906108c 8200 case DW_TAG_array_type:
c906108c 8201 case DW_TAG_pointer_type:
c906108c 8202 case DW_TAG_ptr_to_member_type:
c906108c 8203 case DW_TAG_reference_type:
c906108c 8204 case DW_TAG_string_type:
c906108c 8205 break;
134d01f1 8206
c906108c 8207 case DW_TAG_base_type:
a02abb62 8208 case DW_TAG_subrange_type:
cb249c71 8209 case DW_TAG_typedef:
134d01f1
DJ
8210 /* Add a typedef symbol for the type definition, if it has a
8211 DW_AT_name. */
f792889a 8212 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8213 break;
c906108c 8214 case DW_TAG_common_block:
e7c27a73 8215 read_common_block (die, cu);
c906108c
SS
8216 break;
8217 case DW_TAG_common_inclusion:
8218 break;
d9fa45fe 8219 case DW_TAG_namespace:
4d4ec4e5 8220 cu->processing_has_namespace_info = 1;
e7c27a73 8221 read_namespace (die, cu);
d9fa45fe 8222 break;
5d7cb8df 8223 case DW_TAG_module:
4d4ec4e5 8224 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8225 read_module (die, cu);
8226 break;
d9fa45fe 8227 case DW_TAG_imported_declaration:
74921315
KS
8228 cu->processing_has_namespace_info = 1;
8229 if (read_namespace_alias (die, cu))
8230 break;
8231 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8232 case DW_TAG_imported_module:
4d4ec4e5 8233 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8234 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8235 || cu->language != language_fortran))
8236 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8237 dwarf_tag_name (die->tag));
8238 read_import_statement (die, cu);
d9fa45fe 8239 break;
95554aad
TT
8240
8241 case DW_TAG_imported_unit:
8242 process_imported_unit_die (die, cu);
8243 break;
8244
c906108c 8245 default:
e7c27a73 8246 new_symbol (die, NULL, cu);
c906108c
SS
8247 break;
8248 }
adde2bff
DE
8249
8250 do_cleanups (in_process);
c906108c 8251}
ca69b9e6
DE
8252\f
8253/* DWARF name computation. */
c906108c 8254
94af9270
KS
8255/* A helper function for dwarf2_compute_name which determines whether DIE
8256 needs to have the name of the scope prepended to the name listed in the
8257 die. */
8258
8259static int
8260die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8261{
1c809c68
TT
8262 struct attribute *attr;
8263
94af9270
KS
8264 switch (die->tag)
8265 {
8266 case DW_TAG_namespace:
8267 case DW_TAG_typedef:
8268 case DW_TAG_class_type:
8269 case DW_TAG_interface_type:
8270 case DW_TAG_structure_type:
8271 case DW_TAG_union_type:
8272 case DW_TAG_enumeration_type:
8273 case DW_TAG_enumerator:
8274 case DW_TAG_subprogram:
8275 case DW_TAG_member:
74921315 8276 case DW_TAG_imported_declaration:
94af9270
KS
8277 return 1;
8278
8279 case DW_TAG_variable:
c2b0a229 8280 case DW_TAG_constant:
94af9270
KS
8281 /* We only need to prefix "globally" visible variables. These include
8282 any variable marked with DW_AT_external or any variable that
8283 lives in a namespace. [Variables in anonymous namespaces
8284 require prefixing, but they are not DW_AT_external.] */
8285
8286 if (dwarf2_attr (die, DW_AT_specification, cu))
8287 {
8288 struct dwarf2_cu *spec_cu = cu;
9a619af0 8289
94af9270
KS
8290 return die_needs_namespace (die_specification (die, &spec_cu),
8291 spec_cu);
8292 }
8293
1c809c68 8294 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8295 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8296 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8297 return 0;
8298 /* A variable in a lexical block of some kind does not need a
8299 namespace, even though in C++ such variables may be external
8300 and have a mangled name. */
8301 if (die->parent->tag == DW_TAG_lexical_block
8302 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8303 || die->parent->tag == DW_TAG_catch_block
8304 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8305 return 0;
8306 return 1;
94af9270
KS
8307
8308 default:
8309 return 0;
8310 }
8311}
8312
98bfdba5
PA
8313/* Retrieve the last character from a mem_file. */
8314
8315static void
8316do_ui_file_peek_last (void *object, const char *buffer, long length)
8317{
8318 char *last_char_p = (char *) object;
8319
8320 if (length > 0)
8321 *last_char_p = buffer[length - 1];
8322}
8323
94af9270 8324/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8325 compute the physname for the object, which include a method's:
8326 - formal parameters (C++/Java),
8327 - receiver type (Go),
8328 - return type (Java).
8329
8330 The term "physname" is a bit confusing.
8331 For C++, for example, it is the demangled name.
8332 For Go, for example, it's the mangled name.
94af9270 8333
af6b7be1
JB
8334 For Ada, return the DIE's linkage name rather than the fully qualified
8335 name. PHYSNAME is ignored..
8336
94af9270
KS
8337 The result is allocated on the objfile_obstack and canonicalized. */
8338
8339static const char *
15d034d0
TT
8340dwarf2_compute_name (const char *name,
8341 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8342 int physname)
8343{
bb5ed363
DE
8344 struct objfile *objfile = cu->objfile;
8345
94af9270
KS
8346 if (name == NULL)
8347 name = dwarf2_name (die, cu);
8348
f55ee35c
JK
8349 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8350 compute it by typename_concat inside GDB. */
8351 if (cu->language == language_ada
8352 || (cu->language == language_fortran && physname))
8353 {
8354 /* For Ada unit, we prefer the linkage name over the name, as
8355 the former contains the exported name, which the user expects
8356 to be able to reference. Ideally, we want the user to be able
8357 to reference this entity using either natural or linkage name,
8358 but we haven't started looking at this enhancement yet. */
8359 struct attribute *attr;
8360
8361 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8362 if (attr == NULL)
8363 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8364 if (attr && DW_STRING (attr))
8365 return DW_STRING (attr);
8366 }
8367
94af9270
KS
8368 /* These are the only languages we know how to qualify names in. */
8369 if (name != NULL
f55ee35c
JK
8370 && (cu->language == language_cplus || cu->language == language_java
8371 || cu->language == language_fortran))
94af9270
KS
8372 {
8373 if (die_needs_namespace (die, cu))
8374 {
8375 long length;
0d5cff50 8376 const char *prefix;
94af9270 8377 struct ui_file *buf;
34a68019
TT
8378 char *intermediate_name;
8379 const char *canonical_name = NULL;
94af9270
KS
8380
8381 prefix = determine_prefix (die, cu);
8382 buf = mem_fileopen ();
8383 if (*prefix != '\0')
8384 {
f55ee35c
JK
8385 char *prefixed_name = typename_concat (NULL, prefix, name,
8386 physname, cu);
9a619af0 8387
94af9270
KS
8388 fputs_unfiltered (prefixed_name, buf);
8389 xfree (prefixed_name);
8390 }
8391 else
62d5b8da 8392 fputs_unfiltered (name, buf);
94af9270 8393
98bfdba5
PA
8394 /* Template parameters may be specified in the DIE's DW_AT_name, or
8395 as children with DW_TAG_template_type_param or
8396 DW_TAG_value_type_param. If the latter, add them to the name
8397 here. If the name already has template parameters, then
8398 skip this step; some versions of GCC emit both, and
8399 it is more efficient to use the pre-computed name.
8400
8401 Something to keep in mind about this process: it is very
8402 unlikely, or in some cases downright impossible, to produce
8403 something that will match the mangled name of a function.
8404 If the definition of the function has the same debug info,
8405 we should be able to match up with it anyway. But fallbacks
8406 using the minimal symbol, for instance to find a method
8407 implemented in a stripped copy of libstdc++, will not work.
8408 If we do not have debug info for the definition, we will have to
8409 match them up some other way.
8410
8411 When we do name matching there is a related problem with function
8412 templates; two instantiated function templates are allowed to
8413 differ only by their return types, which we do not add here. */
8414
8415 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8416 {
8417 struct attribute *attr;
8418 struct die_info *child;
8419 int first = 1;
8420
8421 die->building_fullname = 1;
8422
8423 for (child = die->child; child != NULL; child = child->sibling)
8424 {
8425 struct type *type;
12df843f 8426 LONGEST value;
d521ce57 8427 const gdb_byte *bytes;
98bfdba5
PA
8428 struct dwarf2_locexpr_baton *baton;
8429 struct value *v;
8430
8431 if (child->tag != DW_TAG_template_type_param
8432 && child->tag != DW_TAG_template_value_param)
8433 continue;
8434
8435 if (first)
8436 {
8437 fputs_unfiltered ("<", buf);
8438 first = 0;
8439 }
8440 else
8441 fputs_unfiltered (", ", buf);
8442
8443 attr = dwarf2_attr (child, DW_AT_type, cu);
8444 if (attr == NULL)
8445 {
8446 complaint (&symfile_complaints,
8447 _("template parameter missing DW_AT_type"));
8448 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8449 continue;
8450 }
8451 type = die_type (child, cu);
8452
8453 if (child->tag == DW_TAG_template_type_param)
8454 {
79d43c61 8455 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8456 continue;
8457 }
8458
8459 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8460 if (attr == NULL)
8461 {
8462 complaint (&symfile_complaints,
3e43a32a
MS
8463 _("template parameter missing "
8464 "DW_AT_const_value"));
98bfdba5
PA
8465 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8466 continue;
8467 }
8468
8469 dwarf2_const_value_attr (attr, type, name,
8470 &cu->comp_unit_obstack, cu,
8471 &value, &bytes, &baton);
8472
8473 if (TYPE_NOSIGN (type))
8474 /* GDB prints characters as NUMBER 'CHAR'. If that's
8475 changed, this can use value_print instead. */
8476 c_printchar (value, type, buf);
8477 else
8478 {
8479 struct value_print_options opts;
8480
8481 if (baton != NULL)
8482 v = dwarf2_evaluate_loc_desc (type, NULL,
8483 baton->data,
8484 baton->size,
8485 baton->per_cu);
8486 else if (bytes != NULL)
8487 {
8488 v = allocate_value (type);
8489 memcpy (value_contents_writeable (v), bytes,
8490 TYPE_LENGTH (type));
8491 }
8492 else
8493 v = value_from_longest (type, value);
8494
3e43a32a
MS
8495 /* Specify decimal so that we do not depend on
8496 the radix. */
98bfdba5
PA
8497 get_formatted_print_options (&opts, 'd');
8498 opts.raw = 1;
8499 value_print (v, buf, &opts);
8500 release_value (v);
8501 value_free (v);
8502 }
8503 }
8504
8505 die->building_fullname = 0;
8506
8507 if (!first)
8508 {
8509 /* Close the argument list, with a space if necessary
8510 (nested templates). */
8511 char last_char = '\0';
8512 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8513 if (last_char == '>')
8514 fputs_unfiltered (" >", buf);
8515 else
8516 fputs_unfiltered (">", buf);
8517 }
8518 }
8519
94af9270
KS
8520 /* For Java and C++ methods, append formal parameter type
8521 information, if PHYSNAME. */
6e70227d 8522
94af9270
KS
8523 if (physname && die->tag == DW_TAG_subprogram
8524 && (cu->language == language_cplus
8525 || cu->language == language_java))
8526 {
8527 struct type *type = read_type_die (die, cu);
8528
79d43c61
TT
8529 c_type_print_args (type, buf, 1, cu->language,
8530 &type_print_raw_options);
94af9270
KS
8531
8532 if (cu->language == language_java)
8533 {
8534 /* For java, we must append the return type to method
0963b4bd 8535 names. */
94af9270
KS
8536 if (die->tag == DW_TAG_subprogram)
8537 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8538 0, 0, &type_print_raw_options);
94af9270
KS
8539 }
8540 else if (cu->language == language_cplus)
8541 {
60430eff
DJ
8542 /* Assume that an artificial first parameter is
8543 "this", but do not crash if it is not. RealView
8544 marks unnamed (and thus unused) parameters as
8545 artificial; there is no way to differentiate
8546 the two cases. */
94af9270
KS
8547 if (TYPE_NFIELDS (type) > 0
8548 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8549 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8550 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8551 0))))
94af9270
KS
8552 fputs_unfiltered (" const", buf);
8553 }
8554 }
8555
34a68019 8556 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8557 ui_file_delete (buf);
8558
8559 if (cu->language == language_cplus)
34a68019
TT
8560 canonical_name
8561 = dwarf2_canonicalize_name (intermediate_name, cu,
8562 &objfile->per_bfd->storage_obstack);
8563
8564 /* If we only computed INTERMEDIATE_NAME, or if
8565 INTERMEDIATE_NAME is already canonical, then we need to
8566 copy it to the appropriate obstack. */
8567 if (canonical_name == NULL || canonical_name == intermediate_name)
8568 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8569 intermediate_name,
8570 strlen (intermediate_name));
8571 else
8572 name = canonical_name;
9a619af0 8573
34a68019 8574 xfree (intermediate_name);
94af9270
KS
8575 }
8576 }
8577
8578 return name;
8579}
8580
0114d602
DJ
8581/* Return the fully qualified name of DIE, based on its DW_AT_name.
8582 If scope qualifiers are appropriate they will be added. The result
34a68019 8583 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8584 not have a name. NAME may either be from a previous call to
8585 dwarf2_name or NULL.
8586
0963b4bd 8587 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8588
8589static const char *
15d034d0 8590dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8591{
94af9270
KS
8592 return dwarf2_compute_name (name, die, cu, 0);
8593}
0114d602 8594
94af9270
KS
8595/* Construct a physname for the given DIE in CU. NAME may either be
8596 from a previous call to dwarf2_name or NULL. The result will be
8597 allocated on the objfile_objstack or NULL if the DIE does not have a
8598 name.
0114d602 8599
94af9270 8600 The output string will be canonicalized (if C++/Java). */
0114d602 8601
94af9270 8602static const char *
15d034d0 8603dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8604{
bb5ed363 8605 struct objfile *objfile = cu->objfile;
900e11f9
JK
8606 struct attribute *attr;
8607 const char *retval, *mangled = NULL, *canon = NULL;
8608 struct cleanup *back_to;
8609 int need_copy = 1;
8610
8611 /* In this case dwarf2_compute_name is just a shortcut not building anything
8612 on its own. */
8613 if (!die_needs_namespace (die, cu))
8614 return dwarf2_compute_name (name, die, cu, 1);
8615
8616 back_to = make_cleanup (null_cleanup, NULL);
8617
8618 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8619 if (!attr)
8620 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8621
8622 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8623 has computed. */
8624 if (attr && DW_STRING (attr))
8625 {
8626 char *demangled;
8627
8628 mangled = DW_STRING (attr);
8629
8630 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8631 type. It is easier for GDB users to search for such functions as
8632 `name(params)' than `long name(params)'. In such case the minimal
8633 symbol names do not match the full symbol names but for template
8634 functions there is never a need to look up their definition from their
8635 declaration so the only disadvantage remains the minimal symbol
8636 variant `long name(params)' does not have the proper inferior type.
8637 */
8638
a766d390
DE
8639 if (cu->language == language_go)
8640 {
8641 /* This is a lie, but we already lie to the caller new_symbol_full.
8642 new_symbol_full assumes we return the mangled name.
8643 This just undoes that lie until things are cleaned up. */
8644 demangled = NULL;
8645 }
8646 else
8647 {
8de20a37
TT
8648 demangled = gdb_demangle (mangled,
8649 (DMGL_PARAMS | DMGL_ANSI
8650 | (cu->language == language_java
8651 ? DMGL_JAVA | DMGL_RET_POSTFIX
8652 : DMGL_RET_DROP)));
a766d390 8653 }
900e11f9
JK
8654 if (demangled)
8655 {
8656 make_cleanup (xfree, demangled);
8657 canon = demangled;
8658 }
8659 else
8660 {
8661 canon = mangled;
8662 need_copy = 0;
8663 }
8664 }
8665
8666 if (canon == NULL || check_physname)
8667 {
8668 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8669
8670 if (canon != NULL && strcmp (physname, canon) != 0)
8671 {
8672 /* It may not mean a bug in GDB. The compiler could also
8673 compute DW_AT_linkage_name incorrectly. But in such case
8674 GDB would need to be bug-to-bug compatible. */
8675
8676 complaint (&symfile_complaints,
8677 _("Computed physname <%s> does not match demangled <%s> "
8678 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8679 physname, canon, mangled, die->offset.sect_off,
8680 objfile_name (objfile));
900e11f9
JK
8681
8682 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8683 is available here - over computed PHYSNAME. It is safer
8684 against both buggy GDB and buggy compilers. */
8685
8686 retval = canon;
8687 }
8688 else
8689 {
8690 retval = physname;
8691 need_copy = 0;
8692 }
8693 }
8694 else
8695 retval = canon;
8696
8697 if (need_copy)
34a68019
TT
8698 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8699 retval, strlen (retval));
900e11f9
JK
8700
8701 do_cleanups (back_to);
8702 return retval;
0114d602
DJ
8703}
8704
74921315
KS
8705/* Inspect DIE in CU for a namespace alias. If one exists, record
8706 a new symbol for it.
8707
8708 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8709
8710static int
8711read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8712{
8713 struct attribute *attr;
8714
8715 /* If the die does not have a name, this is not a namespace
8716 alias. */
8717 attr = dwarf2_attr (die, DW_AT_name, cu);
8718 if (attr != NULL)
8719 {
8720 int num;
8721 struct die_info *d = die;
8722 struct dwarf2_cu *imported_cu = cu;
8723
8724 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8725 keep inspecting DIEs until we hit the underlying import. */
8726#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8727 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8728 {
8729 attr = dwarf2_attr (d, DW_AT_import, cu);
8730 if (attr == NULL)
8731 break;
8732
8733 d = follow_die_ref (d, attr, &imported_cu);
8734 if (d->tag != DW_TAG_imported_declaration)
8735 break;
8736 }
8737
8738 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8739 {
8740 complaint (&symfile_complaints,
8741 _("DIE at 0x%x has too many recursively imported "
8742 "declarations"), d->offset.sect_off);
8743 return 0;
8744 }
8745
8746 if (attr != NULL)
8747 {
8748 struct type *type;
8749 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8750
8751 type = get_die_type_at_offset (offset, cu->per_cu);
8752 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8753 {
8754 /* This declaration is a global namespace alias. Add
8755 a symbol for it whose type is the aliased namespace. */
8756 new_symbol (die, type, cu);
8757 return 1;
8758 }
8759 }
8760 }
8761
8762 return 0;
8763}
8764
27aa8d6a
SW
8765/* Read the import statement specified by the given die and record it. */
8766
8767static void
8768read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8769{
bb5ed363 8770 struct objfile *objfile = cu->objfile;
27aa8d6a 8771 struct attribute *import_attr;
32019081 8772 struct die_info *imported_die, *child_die;
de4affc9 8773 struct dwarf2_cu *imported_cu;
27aa8d6a 8774 const char *imported_name;
794684b6 8775 const char *imported_name_prefix;
13387711
SW
8776 const char *canonical_name;
8777 const char *import_alias;
8778 const char *imported_declaration = NULL;
794684b6 8779 const char *import_prefix;
32019081
JK
8780 VEC (const_char_ptr) *excludes = NULL;
8781 struct cleanup *cleanups;
13387711 8782
27aa8d6a
SW
8783 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8784 if (import_attr == NULL)
8785 {
8786 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8787 dwarf_tag_name (die->tag));
8788 return;
8789 }
8790
de4affc9
CC
8791 imported_cu = cu;
8792 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8793 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8794 if (imported_name == NULL)
8795 {
8796 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8797
8798 The import in the following code:
8799 namespace A
8800 {
8801 typedef int B;
8802 }
8803
8804 int main ()
8805 {
8806 using A::B;
8807 B b;
8808 return b;
8809 }
8810
8811 ...
8812 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8813 <52> DW_AT_decl_file : 1
8814 <53> DW_AT_decl_line : 6
8815 <54> DW_AT_import : <0x75>
8816 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8817 <59> DW_AT_name : B
8818 <5b> DW_AT_decl_file : 1
8819 <5c> DW_AT_decl_line : 2
8820 <5d> DW_AT_type : <0x6e>
8821 ...
8822 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8823 <76> DW_AT_byte_size : 4
8824 <77> DW_AT_encoding : 5 (signed)
8825
8826 imports the wrong die ( 0x75 instead of 0x58 ).
8827 This case will be ignored until the gcc bug is fixed. */
8828 return;
8829 }
8830
82856980
SW
8831 /* Figure out the local name after import. */
8832 import_alias = dwarf2_name (die, cu);
27aa8d6a 8833
794684b6
SW
8834 /* Figure out where the statement is being imported to. */
8835 import_prefix = determine_prefix (die, cu);
8836
8837 /* Figure out what the scope of the imported die is and prepend it
8838 to the name of the imported die. */
de4affc9 8839 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8840
f55ee35c
JK
8841 if (imported_die->tag != DW_TAG_namespace
8842 && imported_die->tag != DW_TAG_module)
794684b6 8843 {
13387711
SW
8844 imported_declaration = imported_name;
8845 canonical_name = imported_name_prefix;
794684b6 8846 }
13387711 8847 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8848 canonical_name = obconcat (&objfile->objfile_obstack,
8849 imported_name_prefix, "::", imported_name,
8850 (char *) NULL);
13387711
SW
8851 else
8852 canonical_name = imported_name;
794684b6 8853
32019081
JK
8854 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8855
8856 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8857 for (child_die = die->child; child_die && child_die->tag;
8858 child_die = sibling_die (child_die))
8859 {
8860 /* DWARF-4: A Fortran use statement with a “rename list” may be
8861 represented by an imported module entry with an import attribute
8862 referring to the module and owned entries corresponding to those
8863 entities that are renamed as part of being imported. */
8864
8865 if (child_die->tag != DW_TAG_imported_declaration)
8866 {
8867 complaint (&symfile_complaints,
8868 _("child DW_TAG_imported_declaration expected "
8869 "- DIE at 0x%x [in module %s]"),
4262abfb 8870 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8871 continue;
8872 }
8873
8874 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8875 if (import_attr == NULL)
8876 {
8877 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8878 dwarf_tag_name (child_die->tag));
8879 continue;
8880 }
8881
8882 imported_cu = cu;
8883 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8884 &imported_cu);
8885 imported_name = dwarf2_name (imported_die, imported_cu);
8886 if (imported_name == NULL)
8887 {
8888 complaint (&symfile_complaints,
8889 _("child DW_TAG_imported_declaration has unknown "
8890 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8891 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8892 continue;
8893 }
8894
8895 VEC_safe_push (const_char_ptr, excludes, imported_name);
8896
8897 process_die (child_die, cu);
8898 }
8899
c0cc3a76
SW
8900 cp_add_using_directive (import_prefix,
8901 canonical_name,
8902 import_alias,
13387711 8903 imported_declaration,
32019081 8904 excludes,
12aaed36 8905 0,
bb5ed363 8906 &objfile->objfile_obstack);
32019081
JK
8907
8908 do_cleanups (cleanups);
27aa8d6a
SW
8909}
8910
f4dc4d17 8911/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8912
cb1df416
DJ
8913static void
8914free_cu_line_header (void *arg)
8915{
8916 struct dwarf2_cu *cu = arg;
8917
8918 free_line_header (cu->line_header);
8919 cu->line_header = NULL;
8920}
8921
1b80a9fa
JK
8922/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8923 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8924 this, it was first present in GCC release 4.3.0. */
8925
8926static int
8927producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8928{
8929 if (!cu->checked_producer)
8930 check_producer (cu);
8931
8932 return cu->producer_is_gcc_lt_4_3;
8933}
8934
9291a0cd
TT
8935static void
8936find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8937 const char **name, const char **comp_dir)
9291a0cd
TT
8938{
8939 struct attribute *attr;
8940
8941 *name = NULL;
8942 *comp_dir = NULL;
8943
8944 /* Find the filename. Do not use dwarf2_name here, since the filename
8945 is not a source language identifier. */
8946 attr = dwarf2_attr (die, DW_AT_name, cu);
8947 if (attr)
8948 {
8949 *name = DW_STRING (attr);
8950 }
8951
8952 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8953 if (attr)
8954 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8955 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8956 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8957 {
15d034d0
TT
8958 char *d = ldirname (*name);
8959
8960 *comp_dir = d;
8961 if (d != NULL)
8962 make_cleanup (xfree, d);
9291a0cd
TT
8963 }
8964 if (*comp_dir != NULL)
8965 {
8966 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8967 directory, get rid of it. */
8968 char *cp = strchr (*comp_dir, ':');
8969
8970 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8971 *comp_dir = cp + 1;
8972 }
8973
8974 if (*name == NULL)
8975 *name = "<unknown>";
8976}
8977
f4dc4d17
DE
8978/* Handle DW_AT_stmt_list for a compilation unit.
8979 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
8980 COMP_DIR is the compilation directory. LOWPC is passed to
8981 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
8982
8983static void
8984handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 8985 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328
TT
8986{
8987 struct attribute *attr;
2ab95328 8988
f4dc4d17
DE
8989 gdb_assert (! cu->per_cu->is_debug_types);
8990
2ab95328
TT
8991 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8992 if (attr)
8993 {
8994 unsigned int line_offset = DW_UNSND (attr);
8995 struct line_header *line_header
3019eac3 8996 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8997
8998 if (line_header)
dee91e82
DE
8999 {
9000 cu->line_header = line_header;
9001 make_cleanup (free_cu_line_header, cu);
c3b7b696 9002 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
dee91e82 9003 }
2ab95328
TT
9004 }
9005}
9006
95554aad 9007/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9008
c906108c 9009static void
e7c27a73 9010read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9011{
dee91e82 9012 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 9013 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9014 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9015 CORE_ADDR highpc = ((CORE_ADDR) 0);
9016 struct attribute *attr;
15d034d0
TT
9017 const char *name = NULL;
9018 const char *comp_dir = NULL;
c906108c
SS
9019 struct die_info *child_die;
9020 bfd *abfd = objfile->obfd;
e142c38c 9021 CORE_ADDR baseaddr;
6e70227d 9022
e142c38c 9023 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9024
fae299cd 9025 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9026
9027 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9028 from finish_block. */
2acceee2 9029 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
9030 lowpc = highpc;
9031 lowpc += baseaddr;
9032 highpc += baseaddr;
9033
9291a0cd 9034 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9035
95554aad 9036 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9037
f4b8a18d
KW
9038 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9039 standardised yet. As a workaround for the language detection we fall
9040 back to the DW_AT_producer string. */
9041 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9042 cu->language = language_opencl;
9043
3019eac3
DE
9044 /* Similar hack for Go. */
9045 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9046 set_cu_language (DW_LANG_Go, cu);
9047
f4dc4d17 9048 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9049
9050 /* Decode line number information if present. We do this before
9051 processing child DIEs, so that the line header table is available
9052 for DW_AT_decl_file. */
c3b7b696 9053 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9054
9055 /* Process all dies in compilation unit. */
9056 if (die->child != NULL)
9057 {
9058 child_die = die->child;
9059 while (child_die && child_die->tag)
9060 {
9061 process_die (child_die, cu);
9062 child_die = sibling_die (child_die);
9063 }
9064 }
9065
9066 /* Decode macro information, if present. Dwarf 2 macro information
9067 refers to information in the line number info statement program
9068 header, so we can only read it if we've read the header
9069 successfully. */
9070 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9071 if (attr && cu->line_header)
9072 {
9073 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9074 complaint (&symfile_complaints,
9075 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9076
43f3e411 9077 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9078 }
9079 else
9080 {
9081 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9082 if (attr && cu->line_header)
9083 {
9084 unsigned int macro_offset = DW_UNSND (attr);
9085
43f3e411 9086 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9087 }
9088 }
9089
9090 do_cleanups (back_to);
9091}
9092
f4dc4d17
DE
9093/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9094 Create the set of symtabs used by this TU, or if this TU is sharing
9095 symtabs with another TU and the symtabs have already been created
9096 then restore those symtabs in the line header.
9097 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9098
9099static void
f4dc4d17 9100setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9101{
f4dc4d17
DE
9102 struct objfile *objfile = dwarf2_per_objfile->objfile;
9103 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9104 struct type_unit_group *tu_group;
9105 int first_time;
9106 struct line_header *lh;
3019eac3 9107 struct attribute *attr;
f4dc4d17 9108 unsigned int i, line_offset;
0186c6a7 9109 struct signatured_type *sig_type;
3019eac3 9110
f4dc4d17 9111 gdb_assert (per_cu->is_debug_types);
0186c6a7 9112 sig_type = (struct signatured_type *) per_cu;
3019eac3 9113
f4dc4d17 9114 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9115
f4dc4d17 9116 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9117 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9118 if (sig_type->type_unit_group == NULL)
9119 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9120 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9121
9122 /* If we've already processed this stmt_list there's no real need to
9123 do it again, we could fake it and just recreate the part we need
9124 (file name,index -> symtab mapping). If data shows this optimization
9125 is useful we can do it then. */
43f3e411 9126 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9127
9128 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9129 debug info. */
9130 lh = NULL;
9131 if (attr != NULL)
3019eac3 9132 {
f4dc4d17
DE
9133 line_offset = DW_UNSND (attr);
9134 lh = dwarf_decode_line_header (line_offset, cu);
9135 }
9136 if (lh == NULL)
9137 {
9138 if (first_time)
9139 dwarf2_start_symtab (cu, "", NULL, 0);
9140 else
9141 {
9142 gdb_assert (tu_group->symtabs == NULL);
9143 restart_symtab (0);
9144 }
43f3e411 9145 /* Note: The compunit symtab will get allocated at the end. */
f4dc4d17 9146 return;
3019eac3
DE
9147 }
9148
f4dc4d17
DE
9149 cu->line_header = lh;
9150 make_cleanup (free_cu_line_header, cu);
3019eac3 9151
f4dc4d17
DE
9152 if (first_time)
9153 {
43f3e411 9154 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9155
f4dc4d17
DE
9156 tu_group->num_symtabs = lh->num_file_names;
9157 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9158
f4dc4d17
DE
9159 for (i = 0; i < lh->num_file_names; ++i)
9160 {
d521ce57 9161 const char *dir = NULL;
f4dc4d17 9162 struct file_entry *fe = &lh->file_names[i];
3019eac3 9163
f4dc4d17
DE
9164 if (fe->dir_index)
9165 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9166 dwarf2_start_subfile (fe->name, dir);
3019eac3 9167
f4dc4d17
DE
9168 if (current_subfile->symtab == NULL)
9169 {
9170 /* NOTE: start_subfile will recognize when it's been passed
9171 a file it has already seen. So we can't assume there's a
43f3e411 9172 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9173 lh->file_names may contain dups. */
43f3e411
DE
9174 current_subfile->symtab
9175 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9176 }
9177
9178 fe->symtab = current_subfile->symtab;
9179 tu_group->symtabs[i] = fe->symtab;
9180 }
9181 }
9182 else
3019eac3 9183 {
f4dc4d17
DE
9184 restart_symtab (0);
9185
9186 for (i = 0; i < lh->num_file_names; ++i)
9187 {
9188 struct file_entry *fe = &lh->file_names[i];
9189
9190 fe->symtab = tu_group->symtabs[i];
9191 }
3019eac3
DE
9192 }
9193
f4dc4d17
DE
9194 /* The main symtab is allocated last. Type units don't have DW_AT_name
9195 so they don't have a "real" (so to speak) symtab anyway.
9196 There is later code that will assign the main symtab to all symbols
9197 that don't have one. We need to handle the case of a symbol with a
9198 missing symtab (DW_AT_decl_file) anyway. */
9199}
3019eac3 9200
f4dc4d17
DE
9201/* Process DW_TAG_type_unit.
9202 For TUs we want to skip the first top level sibling if it's not the
9203 actual type being defined by this TU. In this case the first top
9204 level sibling is there to provide context only. */
3019eac3 9205
f4dc4d17
DE
9206static void
9207read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9208{
9209 struct die_info *child_die;
3019eac3 9210
f4dc4d17
DE
9211 prepare_one_comp_unit (cu, die, language_minimal);
9212
9213 /* Initialize (or reinitialize) the machinery for building symtabs.
9214 We do this before processing child DIEs, so that the line header table
9215 is available for DW_AT_decl_file. */
9216 setup_type_unit_groups (die, cu);
9217
9218 if (die->child != NULL)
9219 {
9220 child_die = die->child;
9221 while (child_die && child_die->tag)
9222 {
9223 process_die (child_die, cu);
9224 child_die = sibling_die (child_die);
9225 }
9226 }
3019eac3
DE
9227}
9228\f
80626a55
DE
9229/* DWO/DWP files.
9230
9231 http://gcc.gnu.org/wiki/DebugFission
9232 http://gcc.gnu.org/wiki/DebugFissionDWP
9233
9234 To simplify handling of both DWO files ("object" files with the DWARF info)
9235 and DWP files (a file with the DWOs packaged up into one file), we treat
9236 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9237
9238static hashval_t
9239hash_dwo_file (const void *item)
9240{
9241 const struct dwo_file *dwo_file = item;
a2ce51a0 9242 hashval_t hash;
3019eac3 9243
a2ce51a0
DE
9244 hash = htab_hash_string (dwo_file->dwo_name);
9245 if (dwo_file->comp_dir != NULL)
9246 hash += htab_hash_string (dwo_file->comp_dir);
9247 return hash;
3019eac3
DE
9248}
9249
9250static int
9251eq_dwo_file (const void *item_lhs, const void *item_rhs)
9252{
9253 const struct dwo_file *lhs = item_lhs;
9254 const struct dwo_file *rhs = item_rhs;
9255
a2ce51a0
DE
9256 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9257 return 0;
9258 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9259 return lhs->comp_dir == rhs->comp_dir;
9260 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9261}
9262
9263/* Allocate a hash table for DWO files. */
9264
9265static htab_t
9266allocate_dwo_file_hash_table (void)
9267{
9268 struct objfile *objfile = dwarf2_per_objfile->objfile;
9269
9270 return htab_create_alloc_ex (41,
9271 hash_dwo_file,
9272 eq_dwo_file,
9273 NULL,
9274 &objfile->objfile_obstack,
9275 hashtab_obstack_allocate,
9276 dummy_obstack_deallocate);
9277}
9278
80626a55
DE
9279/* Lookup DWO file DWO_NAME. */
9280
9281static void **
0ac5b59e 9282lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9283{
9284 struct dwo_file find_entry;
9285 void **slot;
9286
9287 if (dwarf2_per_objfile->dwo_files == NULL)
9288 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9289
9290 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9291 find_entry.dwo_name = dwo_name;
9292 find_entry.comp_dir = comp_dir;
80626a55
DE
9293 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9294
9295 return slot;
9296}
9297
3019eac3
DE
9298static hashval_t
9299hash_dwo_unit (const void *item)
9300{
9301 const struct dwo_unit *dwo_unit = item;
9302
9303 /* This drops the top 32 bits of the id, but is ok for a hash. */
9304 return dwo_unit->signature;
9305}
9306
9307static int
9308eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9309{
9310 const struct dwo_unit *lhs = item_lhs;
9311 const struct dwo_unit *rhs = item_rhs;
9312
9313 /* The signature is assumed to be unique within the DWO file.
9314 So while object file CU dwo_id's always have the value zero,
9315 that's OK, assuming each object file DWO file has only one CU,
9316 and that's the rule for now. */
9317 return lhs->signature == rhs->signature;
9318}
9319
9320/* Allocate a hash table for DWO CUs,TUs.
9321 There is one of these tables for each of CUs,TUs for each DWO file. */
9322
9323static htab_t
9324allocate_dwo_unit_table (struct objfile *objfile)
9325{
9326 /* Start out with a pretty small number.
9327 Generally DWO files contain only one CU and maybe some TUs. */
9328 return htab_create_alloc_ex (3,
9329 hash_dwo_unit,
9330 eq_dwo_unit,
9331 NULL,
9332 &objfile->objfile_obstack,
9333 hashtab_obstack_allocate,
9334 dummy_obstack_deallocate);
9335}
9336
80626a55 9337/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9338
19c3d4c9 9339struct create_dwo_cu_data
3019eac3
DE
9340{
9341 struct dwo_file *dwo_file;
19c3d4c9 9342 struct dwo_unit dwo_unit;
3019eac3
DE
9343};
9344
19c3d4c9 9345/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9346
9347static void
19c3d4c9
DE
9348create_dwo_cu_reader (const struct die_reader_specs *reader,
9349 const gdb_byte *info_ptr,
9350 struct die_info *comp_unit_die,
9351 int has_children,
9352 void *datap)
3019eac3
DE
9353{
9354 struct dwarf2_cu *cu = reader->cu;
9355 struct objfile *objfile = dwarf2_per_objfile->objfile;
9356 sect_offset offset = cu->per_cu->offset;
8a0459fd 9357 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9358 struct create_dwo_cu_data *data = datap;
3019eac3 9359 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9360 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9361 struct attribute *attr;
3019eac3
DE
9362
9363 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9364 if (attr == NULL)
9365 {
19c3d4c9
DE
9366 complaint (&symfile_complaints,
9367 _("Dwarf Error: debug entry at offset 0x%x is missing"
9368 " its dwo_id [in module %s]"),
9369 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9370 return;
9371 }
9372
3019eac3
DE
9373 dwo_unit->dwo_file = dwo_file;
9374 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9375 dwo_unit->section = section;
3019eac3
DE
9376 dwo_unit->offset = offset;
9377 dwo_unit->length = cu->per_cu->length;
9378
09406207 9379 if (dwarf2_read_debug)
4031ecc5
DE
9380 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9381 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9382}
9383
19c3d4c9
DE
9384/* Create the dwo_unit for the lone CU in DWO_FILE.
9385 Note: This function processes DWO files only, not DWP files. */
3019eac3 9386
19c3d4c9
DE
9387static struct dwo_unit *
9388create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9389{
9390 struct objfile *objfile = dwarf2_per_objfile->objfile;
9391 struct dwarf2_section_info *section = &dwo_file->sections.info;
9392 bfd *abfd;
9393 htab_t cu_htab;
d521ce57 9394 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9395 struct create_dwo_cu_data create_dwo_cu_data;
9396 struct dwo_unit *dwo_unit;
3019eac3
DE
9397
9398 dwarf2_read_section (objfile, section);
9399 info_ptr = section->buffer;
9400
9401 if (info_ptr == NULL)
9402 return NULL;
9403
9404 /* We can't set abfd until now because the section may be empty or
9405 not present, in which case section->asection will be NULL. */
a32a8923 9406 abfd = get_section_bfd_owner (section);
3019eac3 9407
09406207 9408 if (dwarf2_read_debug)
19c3d4c9
DE
9409 {
9410 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9411 get_section_name (section),
9412 get_section_file_name (section));
19c3d4c9 9413 }
3019eac3 9414
19c3d4c9
DE
9415 create_dwo_cu_data.dwo_file = dwo_file;
9416 dwo_unit = NULL;
3019eac3
DE
9417
9418 end_ptr = info_ptr + section->size;
9419 while (info_ptr < end_ptr)
9420 {
9421 struct dwarf2_per_cu_data per_cu;
9422
19c3d4c9
DE
9423 memset (&create_dwo_cu_data.dwo_unit, 0,
9424 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9425 memset (&per_cu, 0, sizeof (per_cu));
9426 per_cu.objfile = objfile;
9427 per_cu.is_debug_types = 0;
9428 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9429 per_cu.section = section;
3019eac3 9430
33e80786 9431 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9432 create_dwo_cu_reader,
9433 &create_dwo_cu_data);
9434
9435 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9436 {
9437 /* If we've already found one, complain. We only support one
9438 because having more than one requires hacking the dwo_name of
9439 each to match, which is highly unlikely to happen. */
9440 if (dwo_unit != NULL)
9441 {
9442 complaint (&symfile_complaints,
9443 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9444 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9445 break;
9446 }
9447
9448 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9449 *dwo_unit = create_dwo_cu_data.dwo_unit;
9450 }
3019eac3
DE
9451
9452 info_ptr += per_cu.length;
9453 }
9454
19c3d4c9 9455 return dwo_unit;
3019eac3
DE
9456}
9457
80626a55
DE
9458/* DWP file .debug_{cu,tu}_index section format:
9459 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9460
d2415c6c
DE
9461 DWP Version 1:
9462
80626a55
DE
9463 Both index sections have the same format, and serve to map a 64-bit
9464 signature to a set of section numbers. Each section begins with a header,
9465 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9466 indexes, and a pool of 32-bit section numbers. The index sections will be
9467 aligned at 8-byte boundaries in the file.
9468
d2415c6c
DE
9469 The index section header consists of:
9470
9471 V, 32 bit version number
9472 -, 32 bits unused
9473 N, 32 bit number of compilation units or type units in the index
9474 M, 32 bit number of slots in the hash table
80626a55 9475
d2415c6c 9476 Numbers are recorded using the byte order of the application binary.
80626a55 9477
d2415c6c
DE
9478 The hash table begins at offset 16 in the section, and consists of an array
9479 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9480 order of the application binary). Unused slots in the hash table are 0.
9481 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9482
d2415c6c
DE
9483 The parallel table begins immediately after the hash table
9484 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9485 array of 32-bit indexes (using the byte order of the application binary),
9486 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9487 table contains a 32-bit index into the pool of section numbers. For unused
9488 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9489
73869dc2
DE
9490 The pool of section numbers begins immediately following the hash table
9491 (at offset 16 + 12 * M from the beginning of the section). The pool of
9492 section numbers consists of an array of 32-bit words (using the byte order
9493 of the application binary). Each item in the array is indexed starting
9494 from 0. The hash table entry provides the index of the first section
9495 number in the set. Additional section numbers in the set follow, and the
9496 set is terminated by a 0 entry (section number 0 is not used in ELF).
9497
9498 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9499 section must be the first entry in the set, and the .debug_abbrev.dwo must
9500 be the second entry. Other members of the set may follow in any order.
9501
9502 ---
9503
9504 DWP Version 2:
9505
9506 DWP Version 2 combines all the .debug_info, etc. sections into one,
9507 and the entries in the index tables are now offsets into these sections.
9508 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9509 section.
9510
9511 Index Section Contents:
9512 Header
9513 Hash Table of Signatures dwp_hash_table.hash_table
9514 Parallel Table of Indices dwp_hash_table.unit_table
9515 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9516 Table of Section Sizes dwp_hash_table.v2.sizes
9517
9518 The index section header consists of:
9519
9520 V, 32 bit version number
9521 L, 32 bit number of columns in the table of section offsets
9522 N, 32 bit number of compilation units or type units in the index
9523 M, 32 bit number of slots in the hash table
9524
9525 Numbers are recorded using the byte order of the application binary.
9526
9527 The hash table has the same format as version 1.
9528 The parallel table of indices has the same format as version 1,
9529 except that the entries are origin-1 indices into the table of sections
9530 offsets and the table of section sizes.
9531
9532 The table of offsets begins immediately following the parallel table
9533 (at offset 16 + 12 * M from the beginning of the section). The table is
9534 a two-dimensional array of 32-bit words (using the byte order of the
9535 application binary), with L columns and N+1 rows, in row-major order.
9536 Each row in the array is indexed starting from 0. The first row provides
9537 a key to the remaining rows: each column in this row provides an identifier
9538 for a debug section, and the offsets in the same column of subsequent rows
9539 refer to that section. The section identifiers are:
9540
9541 DW_SECT_INFO 1 .debug_info.dwo
9542 DW_SECT_TYPES 2 .debug_types.dwo
9543 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9544 DW_SECT_LINE 4 .debug_line.dwo
9545 DW_SECT_LOC 5 .debug_loc.dwo
9546 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9547 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9548 DW_SECT_MACRO 8 .debug_macro.dwo
9549
9550 The offsets provided by the CU and TU index sections are the base offsets
9551 for the contributions made by each CU or TU to the corresponding section
9552 in the package file. Each CU and TU header contains an abbrev_offset
9553 field, used to find the abbreviations table for that CU or TU within the
9554 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9555 be interpreted as relative to the base offset given in the index section.
9556 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9557 should be interpreted as relative to the base offset for .debug_line.dwo,
9558 and offsets into other debug sections obtained from DWARF attributes should
9559 also be interpreted as relative to the corresponding base offset.
9560
9561 The table of sizes begins immediately following the table of offsets.
9562 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9563 with L columns and N rows, in row-major order. Each row in the array is
9564 indexed starting from 1 (row 0 is shared by the two tables).
9565
9566 ---
9567
9568 Hash table lookup is handled the same in version 1 and 2:
9569
9570 We assume that N and M will not exceed 2^32 - 1.
9571 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9572
d2415c6c
DE
9573 Given a 64-bit compilation unit signature or a type signature S, an entry
9574 in the hash table is located as follows:
80626a55 9575
d2415c6c
DE
9576 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9577 the low-order k bits all set to 1.
80626a55 9578
d2415c6c 9579 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9580
d2415c6c
DE
9581 3) If the hash table entry at index H matches the signature, use that
9582 entry. If the hash table entry at index H is unused (all zeroes),
9583 terminate the search: the signature is not present in the table.
80626a55 9584
d2415c6c 9585 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9586
d2415c6c 9587 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9588 to stop at an unused slot or find the match. */
80626a55
DE
9589
9590/* Create a hash table to map DWO IDs to their CU/TU entry in
9591 .debug_{info,types}.dwo in DWP_FILE.
9592 Returns NULL if there isn't one.
9593 Note: This function processes DWP files only, not DWO files. */
9594
9595static struct dwp_hash_table *
9596create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9597{
9598 struct objfile *objfile = dwarf2_per_objfile->objfile;
9599 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9600 const gdb_byte *index_ptr, *index_end;
80626a55 9601 struct dwarf2_section_info *index;
73869dc2 9602 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9603 struct dwp_hash_table *htab;
9604
9605 if (is_debug_types)
9606 index = &dwp_file->sections.tu_index;
9607 else
9608 index = &dwp_file->sections.cu_index;
9609
9610 if (dwarf2_section_empty_p (index))
9611 return NULL;
9612 dwarf2_read_section (objfile, index);
9613
9614 index_ptr = index->buffer;
9615 index_end = index_ptr + index->size;
9616
9617 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9618 index_ptr += 4;
9619 if (version == 2)
9620 nr_columns = read_4_bytes (dbfd, index_ptr);
9621 else
9622 nr_columns = 0;
9623 index_ptr += 4;
80626a55
DE
9624 nr_units = read_4_bytes (dbfd, index_ptr);
9625 index_ptr += 4;
9626 nr_slots = read_4_bytes (dbfd, index_ptr);
9627 index_ptr += 4;
9628
73869dc2 9629 if (version != 1 && version != 2)
80626a55 9630 {
21aa081e 9631 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9632 " [in module %s]"),
21aa081e 9633 pulongest (version), dwp_file->name);
80626a55
DE
9634 }
9635 if (nr_slots != (nr_slots & -nr_slots))
9636 {
21aa081e 9637 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9638 " is not power of 2 [in module %s]"),
21aa081e 9639 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9640 }
9641
9642 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9643 htab->version = version;
9644 htab->nr_columns = nr_columns;
80626a55
DE
9645 htab->nr_units = nr_units;
9646 htab->nr_slots = nr_slots;
9647 htab->hash_table = index_ptr;
9648 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9649
9650 /* Exit early if the table is empty. */
9651 if (nr_slots == 0 || nr_units == 0
9652 || (version == 2 && nr_columns == 0))
9653 {
9654 /* All must be zero. */
9655 if (nr_slots != 0 || nr_units != 0
9656 || (version == 2 && nr_columns != 0))
9657 {
9658 complaint (&symfile_complaints,
9659 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9660 " all zero [in modules %s]"),
9661 dwp_file->name);
9662 }
9663 return htab;
9664 }
9665
9666 if (version == 1)
9667 {
9668 htab->section_pool.v1.indices =
9669 htab->unit_table + sizeof (uint32_t) * nr_slots;
9670 /* It's harder to decide whether the section is too small in v1.
9671 V1 is deprecated anyway so we punt. */
9672 }
9673 else
9674 {
9675 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9676 int *ids = htab->section_pool.v2.section_ids;
9677 /* Reverse map for error checking. */
9678 int ids_seen[DW_SECT_MAX + 1];
9679 int i;
9680
9681 if (nr_columns < 2)
9682 {
9683 error (_("Dwarf Error: bad DWP hash table, too few columns"
9684 " in section table [in module %s]"),
9685 dwp_file->name);
9686 }
9687 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9688 {
9689 error (_("Dwarf Error: bad DWP hash table, too many columns"
9690 " in section table [in module %s]"),
9691 dwp_file->name);
9692 }
9693 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9694 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9695 for (i = 0; i < nr_columns; ++i)
9696 {
9697 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9698
9699 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9700 {
9701 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9702 " in section table [in module %s]"),
9703 id, dwp_file->name);
9704 }
9705 if (ids_seen[id] != -1)
9706 {
9707 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9708 " id %d in section table [in module %s]"),
9709 id, dwp_file->name);
9710 }
9711 ids_seen[id] = i;
9712 ids[i] = id;
9713 }
9714 /* Must have exactly one info or types section. */
9715 if (((ids_seen[DW_SECT_INFO] != -1)
9716 + (ids_seen[DW_SECT_TYPES] != -1))
9717 != 1)
9718 {
9719 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9720 " DWO info/types section [in module %s]"),
9721 dwp_file->name);
9722 }
9723 /* Must have an abbrev section. */
9724 if (ids_seen[DW_SECT_ABBREV] == -1)
9725 {
9726 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9727 " section [in module %s]"),
9728 dwp_file->name);
9729 }
9730 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9731 htab->section_pool.v2.sizes =
9732 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9733 * nr_units * nr_columns);
9734 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9735 * nr_units * nr_columns))
9736 > index_end)
9737 {
9738 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9739 " [in module %s]"),
9740 dwp_file->name);
9741 }
9742 }
80626a55
DE
9743
9744 return htab;
9745}
9746
9747/* Update SECTIONS with the data from SECTP.
9748
9749 This function is like the other "locate" section routines that are
9750 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9751 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9752
9753 The result is non-zero for success, or zero if an error was found. */
9754
9755static int
73869dc2
DE
9756locate_v1_virtual_dwo_sections (asection *sectp,
9757 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9758{
9759 const struct dwop_section_names *names = &dwop_section_names;
9760
9761 if (section_is_p (sectp->name, &names->abbrev_dwo))
9762 {
9763 /* There can be only one. */
73869dc2 9764 if (sections->abbrev.s.asection != NULL)
80626a55 9765 return 0;
73869dc2 9766 sections->abbrev.s.asection = sectp;
80626a55
DE
9767 sections->abbrev.size = bfd_get_section_size (sectp);
9768 }
9769 else if (section_is_p (sectp->name, &names->info_dwo)
9770 || section_is_p (sectp->name, &names->types_dwo))
9771 {
9772 /* There can be only one. */
73869dc2 9773 if (sections->info_or_types.s.asection != NULL)
80626a55 9774 return 0;
73869dc2 9775 sections->info_or_types.s.asection = sectp;
80626a55
DE
9776 sections->info_or_types.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->line_dwo))
9779 {
9780 /* There can be only one. */
73869dc2 9781 if (sections->line.s.asection != NULL)
80626a55 9782 return 0;
73869dc2 9783 sections->line.s.asection = sectp;
80626a55
DE
9784 sections->line.size = bfd_get_section_size (sectp);
9785 }
9786 else if (section_is_p (sectp->name, &names->loc_dwo))
9787 {
9788 /* There can be only one. */
73869dc2 9789 if (sections->loc.s.asection != NULL)
80626a55 9790 return 0;
73869dc2 9791 sections->loc.s.asection = sectp;
80626a55
DE
9792 sections->loc.size = bfd_get_section_size (sectp);
9793 }
9794 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9795 {
9796 /* There can be only one. */
73869dc2 9797 if (sections->macinfo.s.asection != NULL)
80626a55 9798 return 0;
73869dc2 9799 sections->macinfo.s.asection = sectp;
80626a55
DE
9800 sections->macinfo.size = bfd_get_section_size (sectp);
9801 }
9802 else if (section_is_p (sectp->name, &names->macro_dwo))
9803 {
9804 /* There can be only one. */
73869dc2 9805 if (sections->macro.s.asection != NULL)
80626a55 9806 return 0;
73869dc2 9807 sections->macro.s.asection = sectp;
80626a55
DE
9808 sections->macro.size = bfd_get_section_size (sectp);
9809 }
9810 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9811 {
9812 /* There can be only one. */
73869dc2 9813 if (sections->str_offsets.s.asection != NULL)
80626a55 9814 return 0;
73869dc2 9815 sections->str_offsets.s.asection = sectp;
80626a55
DE
9816 sections->str_offsets.size = bfd_get_section_size (sectp);
9817 }
9818 else
9819 {
9820 /* No other kind of section is valid. */
9821 return 0;
9822 }
9823
9824 return 1;
9825}
9826
73869dc2
DE
9827/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9828 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9829 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9830 This is for DWP version 1 files. */
80626a55
DE
9831
9832static struct dwo_unit *
73869dc2
DE
9833create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9834 uint32_t unit_index,
9835 const char *comp_dir,
9836 ULONGEST signature, int is_debug_types)
80626a55
DE
9837{
9838 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9839 const struct dwp_hash_table *dwp_htab =
9840 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9841 bfd *dbfd = dwp_file->dbfd;
9842 const char *kind = is_debug_types ? "TU" : "CU";
9843 struct dwo_file *dwo_file;
9844 struct dwo_unit *dwo_unit;
73869dc2 9845 struct virtual_v1_dwo_sections sections;
80626a55
DE
9846 void **dwo_file_slot;
9847 char *virtual_dwo_name;
9848 struct dwarf2_section_info *cutu;
9849 struct cleanup *cleanups;
9850 int i;
9851
73869dc2
DE
9852 gdb_assert (dwp_file->version == 1);
9853
80626a55
DE
9854 if (dwarf2_read_debug)
9855 {
73869dc2 9856 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9857 kind,
73869dc2 9858 pulongest (unit_index), hex_string (signature),
80626a55
DE
9859 dwp_file->name);
9860 }
9861
19ac8c2e 9862 /* Fetch the sections of this DWO unit.
80626a55
DE
9863 Put a limit on the number of sections we look for so that bad data
9864 doesn't cause us to loop forever. */
9865
73869dc2 9866#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9867 (1 /* .debug_info or .debug_types */ \
9868 + 1 /* .debug_abbrev */ \
9869 + 1 /* .debug_line */ \
9870 + 1 /* .debug_loc */ \
9871 + 1 /* .debug_str_offsets */ \
19ac8c2e 9872 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9873 + 1 /* trailing zero */)
9874
9875 memset (&sections, 0, sizeof (sections));
9876 cleanups = make_cleanup (null_cleanup, 0);
9877
73869dc2 9878 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9879 {
9880 asection *sectp;
9881 uint32_t section_nr =
9882 read_4_bytes (dbfd,
73869dc2
DE
9883 dwp_htab->section_pool.v1.indices
9884 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9885
9886 if (section_nr == 0)
9887 break;
9888 if (section_nr >= dwp_file->num_sections)
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, section number too large"
9891 " [in module %s]"),
9892 dwp_file->name);
9893 }
9894
9895 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9896 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9897 {
9898 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9899 " [in module %s]"),
9900 dwp_file->name);
9901 }
9902 }
9903
9904 if (i < 2
a32a8923
DE
9905 || dwarf2_section_empty_p (&sections.info_or_types)
9906 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
73869dc2 9912 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9913 {
9914 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9915 " [in module %s]"),
9916 dwp_file->name);
9917 }
9918
9919 /* It's easier for the rest of the code if we fake a struct dwo_file and
9920 have dwo_unit "live" in that. At least for now.
9921
9922 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9923 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9924 file, we can combine them back into a virtual DWO file to save space
9925 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9926 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9927
2792b94d
PM
9928 virtual_dwo_name =
9929 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9930 get_section_id (&sections.abbrev),
9931 get_section_id (&sections.line),
9932 get_section_id (&sections.loc),
9933 get_section_id (&sections.str_offsets));
80626a55
DE
9934 make_cleanup (xfree, virtual_dwo_name);
9935 /* Can we use an existing virtual DWO file? */
0ac5b59e 9936 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9937 /* Create one if necessary. */
9938 if (*dwo_file_slot == NULL)
9939 {
9940 if (dwarf2_read_debug)
9941 {
9942 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9943 virtual_dwo_name);
9944 }
9945 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9946 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9947 virtual_dwo_name,
9948 strlen (virtual_dwo_name));
9949 dwo_file->comp_dir = comp_dir;
80626a55
DE
9950 dwo_file->sections.abbrev = sections.abbrev;
9951 dwo_file->sections.line = sections.line;
9952 dwo_file->sections.loc = sections.loc;
9953 dwo_file->sections.macinfo = sections.macinfo;
9954 dwo_file->sections.macro = sections.macro;
9955 dwo_file->sections.str_offsets = sections.str_offsets;
9956 /* The "str" section is global to the entire DWP file. */
9957 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9958 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9959 there's no need to record it in dwo_file.
9960 Also, we can't simply record type sections in dwo_file because
9961 we record a pointer into the vector in dwo_unit. As we collect more
9962 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9963 for it, invalidating all copies of pointers into the previous
9964 contents. */
80626a55
DE
9965 *dwo_file_slot = dwo_file;
9966 }
9967 else
9968 {
9969 if (dwarf2_read_debug)
9970 {
9971 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9972 virtual_dwo_name);
9973 }
9974 dwo_file = *dwo_file_slot;
9975 }
9976 do_cleanups (cleanups);
9977
9978 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9979 dwo_unit->dwo_file = dwo_file;
9980 dwo_unit->signature = signature;
8a0459fd
DE
9981 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9982 sizeof (struct dwarf2_section_info));
9983 *dwo_unit->section = sections.info_or_types;
57d63ce2 9984 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9985
9986 return dwo_unit;
9987}
9988
73869dc2
DE
9989/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9990 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9991 piece within that section used by a TU/CU, return a virtual section
9992 of just that piece. */
9993
9994static struct dwarf2_section_info
9995create_dwp_v2_section (struct dwarf2_section_info *section,
9996 bfd_size_type offset, bfd_size_type size)
9997{
9998 struct dwarf2_section_info result;
9999 asection *sectp;
10000
10001 gdb_assert (section != NULL);
10002 gdb_assert (!section->is_virtual);
10003
10004 memset (&result, 0, sizeof (result));
10005 result.s.containing_section = section;
10006 result.is_virtual = 1;
10007
10008 if (size == 0)
10009 return result;
10010
10011 sectp = get_section_bfd_section (section);
10012
10013 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10014 bounds of the real section. This is a pretty-rare event, so just
10015 flag an error (easier) instead of a warning and trying to cope. */
10016 if (sectp == NULL
10017 || offset + size > bfd_get_section_size (sectp))
10018 {
10019 bfd *abfd = sectp->owner;
10020
10021 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10022 " in section %s [in module %s]"),
10023 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10024 objfile_name (dwarf2_per_objfile->objfile));
10025 }
10026
10027 result.virtual_offset = offset;
10028 result.size = size;
10029 return result;
10030}
10031
10032/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10033 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10034 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10035 This is for DWP version 2 files. */
10036
10037static struct dwo_unit *
10038create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10039 uint32_t unit_index,
10040 const char *comp_dir,
10041 ULONGEST signature, int is_debug_types)
10042{
10043 struct objfile *objfile = dwarf2_per_objfile->objfile;
10044 const struct dwp_hash_table *dwp_htab =
10045 is_debug_types ? dwp_file->tus : dwp_file->cus;
10046 bfd *dbfd = dwp_file->dbfd;
10047 const char *kind = is_debug_types ? "TU" : "CU";
10048 struct dwo_file *dwo_file;
10049 struct dwo_unit *dwo_unit;
10050 struct virtual_v2_dwo_sections sections;
10051 void **dwo_file_slot;
10052 char *virtual_dwo_name;
10053 struct dwarf2_section_info *cutu;
10054 struct cleanup *cleanups;
10055 int i;
10056
10057 gdb_assert (dwp_file->version == 2);
10058
10059 if (dwarf2_read_debug)
10060 {
10061 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10062 kind,
10063 pulongest (unit_index), hex_string (signature),
10064 dwp_file->name);
10065 }
10066
10067 /* Fetch the section offsets of this DWO unit. */
10068
10069 memset (&sections, 0, sizeof (sections));
10070 cleanups = make_cleanup (null_cleanup, 0);
10071
10072 for (i = 0; i < dwp_htab->nr_columns; ++i)
10073 {
10074 uint32_t offset = read_4_bytes (dbfd,
10075 dwp_htab->section_pool.v2.offsets
10076 + (((unit_index - 1) * dwp_htab->nr_columns
10077 + i)
10078 * sizeof (uint32_t)));
10079 uint32_t size = read_4_bytes (dbfd,
10080 dwp_htab->section_pool.v2.sizes
10081 + (((unit_index - 1) * dwp_htab->nr_columns
10082 + i)
10083 * sizeof (uint32_t)));
10084
10085 switch (dwp_htab->section_pool.v2.section_ids[i])
10086 {
10087 case DW_SECT_INFO:
10088 case DW_SECT_TYPES:
10089 sections.info_or_types_offset = offset;
10090 sections.info_or_types_size = size;
10091 break;
10092 case DW_SECT_ABBREV:
10093 sections.abbrev_offset = offset;
10094 sections.abbrev_size = size;
10095 break;
10096 case DW_SECT_LINE:
10097 sections.line_offset = offset;
10098 sections.line_size = size;
10099 break;
10100 case DW_SECT_LOC:
10101 sections.loc_offset = offset;
10102 sections.loc_size = size;
10103 break;
10104 case DW_SECT_STR_OFFSETS:
10105 sections.str_offsets_offset = offset;
10106 sections.str_offsets_size = size;
10107 break;
10108 case DW_SECT_MACINFO:
10109 sections.macinfo_offset = offset;
10110 sections.macinfo_size = size;
10111 break;
10112 case DW_SECT_MACRO:
10113 sections.macro_offset = offset;
10114 sections.macro_size = size;
10115 break;
10116 }
10117 }
10118
10119 /* It's easier for the rest of the code if we fake a struct dwo_file and
10120 have dwo_unit "live" in that. At least for now.
10121
10122 The DWP file can be made up of a random collection of CUs and TUs.
10123 However, for each CU + set of TUs that came from the same original DWO
10124 file, we can combine them back into a virtual DWO file to save space
10125 (fewer struct dwo_file objects to allocate). Remember that for really
10126 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10127
10128 virtual_dwo_name =
10129 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10130 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10131 (long) (sections.line_size ? sections.line_offset : 0),
10132 (long) (sections.loc_size ? sections.loc_offset : 0),
10133 (long) (sections.str_offsets_size
10134 ? sections.str_offsets_offset : 0));
10135 make_cleanup (xfree, virtual_dwo_name);
10136 /* Can we use an existing virtual DWO file? */
10137 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10138 /* Create one if necessary. */
10139 if (*dwo_file_slot == NULL)
10140 {
10141 if (dwarf2_read_debug)
10142 {
10143 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10144 virtual_dwo_name);
10145 }
10146 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10147 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10148 virtual_dwo_name,
10149 strlen (virtual_dwo_name));
10150 dwo_file->comp_dir = comp_dir;
10151 dwo_file->sections.abbrev =
10152 create_dwp_v2_section (&dwp_file->sections.abbrev,
10153 sections.abbrev_offset, sections.abbrev_size);
10154 dwo_file->sections.line =
10155 create_dwp_v2_section (&dwp_file->sections.line,
10156 sections.line_offset, sections.line_size);
10157 dwo_file->sections.loc =
10158 create_dwp_v2_section (&dwp_file->sections.loc,
10159 sections.loc_offset, sections.loc_size);
10160 dwo_file->sections.macinfo =
10161 create_dwp_v2_section (&dwp_file->sections.macinfo,
10162 sections.macinfo_offset, sections.macinfo_size);
10163 dwo_file->sections.macro =
10164 create_dwp_v2_section (&dwp_file->sections.macro,
10165 sections.macro_offset, sections.macro_size);
10166 dwo_file->sections.str_offsets =
10167 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10168 sections.str_offsets_offset,
10169 sections.str_offsets_size);
10170 /* The "str" section is global to the entire DWP file. */
10171 dwo_file->sections.str = dwp_file->sections.str;
10172 /* The info or types section is assigned below to dwo_unit,
10173 there's no need to record it in dwo_file.
10174 Also, we can't simply record type sections in dwo_file because
10175 we record a pointer into the vector in dwo_unit. As we collect more
10176 types we'll grow the vector and eventually have to reallocate space
10177 for it, invalidating all copies of pointers into the previous
10178 contents. */
10179 *dwo_file_slot = dwo_file;
10180 }
10181 else
10182 {
10183 if (dwarf2_read_debug)
10184 {
10185 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10186 virtual_dwo_name);
10187 }
10188 dwo_file = *dwo_file_slot;
10189 }
10190 do_cleanups (cleanups);
10191
10192 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10193 dwo_unit->dwo_file = dwo_file;
10194 dwo_unit->signature = signature;
10195 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10196 sizeof (struct dwarf2_section_info));
10197 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10198 ? &dwp_file->sections.types
10199 : &dwp_file->sections.info,
10200 sections.info_or_types_offset,
10201 sections.info_or_types_size);
10202 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10203
10204 return dwo_unit;
10205}
10206
57d63ce2
DE
10207/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10208 Returns NULL if the signature isn't found. */
80626a55
DE
10209
10210static struct dwo_unit *
57d63ce2
DE
10211lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10212 ULONGEST signature, int is_debug_types)
80626a55 10213{
57d63ce2
DE
10214 const struct dwp_hash_table *dwp_htab =
10215 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10216 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10217 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10218 uint32_t hash = signature & mask;
10219 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10220 unsigned int i;
10221 void **slot;
10222 struct dwo_unit find_dwo_cu, *dwo_cu;
10223
10224 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10225 find_dwo_cu.signature = signature;
19ac8c2e
DE
10226 slot = htab_find_slot (is_debug_types
10227 ? dwp_file->loaded_tus
10228 : dwp_file->loaded_cus,
10229 &find_dwo_cu, INSERT);
80626a55
DE
10230
10231 if (*slot != NULL)
10232 return *slot;
10233
10234 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10235 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10236 {
10237 ULONGEST signature_in_table;
10238
10239 signature_in_table =
57d63ce2 10240 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10241 if (signature_in_table == signature)
10242 {
57d63ce2
DE
10243 uint32_t unit_index =
10244 read_4_bytes (dbfd,
10245 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10246
73869dc2
DE
10247 if (dwp_file->version == 1)
10248 {
10249 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10250 comp_dir, signature,
10251 is_debug_types);
10252 }
10253 else
10254 {
10255 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10256 comp_dir, signature,
10257 is_debug_types);
10258 }
80626a55
DE
10259 return *slot;
10260 }
10261 if (signature_in_table == 0)
10262 return NULL;
10263 hash = (hash + hash2) & mask;
10264 }
10265
10266 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10267 " [in module %s]"),
10268 dwp_file->name);
10269}
10270
ab5088bf 10271/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10272 Open the file specified by FILE_NAME and hand it off to BFD for
10273 preliminary analysis. Return a newly initialized bfd *, which
10274 includes a canonicalized copy of FILE_NAME.
80626a55 10275 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10276 SEARCH_CWD is true if the current directory is to be searched.
10277 It will be searched before debug-file-directory.
13aaf454
DE
10278 If successful, the file is added to the bfd include table of the
10279 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10280 If unable to find/open the file, return NULL.
3019eac3
DE
10281 NOTE: This function is derived from symfile_bfd_open. */
10282
10283static bfd *
6ac97d4c 10284try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10285{
10286 bfd *sym_bfd;
80626a55 10287 int desc, flags;
3019eac3 10288 char *absolute_name;
9c02c129
DE
10289 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10290 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10291 to debug_file_directory. */
10292 char *search_path;
10293 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10294
6ac97d4c
DE
10295 if (search_cwd)
10296 {
10297 if (*debug_file_directory != '\0')
10298 search_path = concat (".", dirname_separator_string,
10299 debug_file_directory, NULL);
10300 else
10301 search_path = xstrdup (".");
10302 }
9c02c129 10303 else
6ac97d4c 10304 search_path = xstrdup (debug_file_directory);
3019eac3 10305
492c0ab7 10306 flags = OPF_RETURN_REALPATH;
80626a55
DE
10307 if (is_dwp)
10308 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10309 desc = openp (search_path, flags, file_name,
3019eac3 10310 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10311 xfree (search_path);
3019eac3
DE
10312 if (desc < 0)
10313 return NULL;
10314
bb397797 10315 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10316 xfree (absolute_name);
9c02c129
DE
10317 if (sym_bfd == NULL)
10318 return NULL;
3019eac3
DE
10319 bfd_set_cacheable (sym_bfd, 1);
10320
10321 if (!bfd_check_format (sym_bfd, bfd_object))
10322 {
cbb099e8 10323 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10324 return NULL;
10325 }
10326
13aaf454
DE
10327 /* Success. Record the bfd as having been included by the objfile's bfd.
10328 This is important because things like demangled_names_hash lives in the
10329 objfile's per_bfd space and may have references to things like symbol
10330 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10331 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10332
3019eac3
DE
10333 return sym_bfd;
10334}
10335
ab5088bf 10336/* Try to open DWO file FILE_NAME.
3019eac3
DE
10337 COMP_DIR is the DW_AT_comp_dir attribute.
10338 The result is the bfd handle of the file.
10339 If there is a problem finding or opening the file, return NULL.
10340 Upon success, the canonicalized path of the file is stored in the bfd,
10341 same as symfile_bfd_open. */
10342
10343static bfd *
ab5088bf 10344open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10345{
10346 bfd *abfd;
3019eac3 10347
80626a55 10348 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10349 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10350
10351 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10352
10353 if (comp_dir != NULL)
10354 {
80626a55 10355 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10356
10357 /* NOTE: If comp_dir is a relative path, this will also try the
10358 search path, which seems useful. */
6ac97d4c 10359 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10360 xfree (path_to_try);
10361 if (abfd != NULL)
10362 return abfd;
10363 }
10364
10365 /* That didn't work, try debug-file-directory, which, despite its name,
10366 is a list of paths. */
10367
10368 if (*debug_file_directory == '\0')
10369 return NULL;
10370
6ac97d4c 10371 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10372}
10373
80626a55
DE
10374/* This function is mapped across the sections and remembers the offset and
10375 size of each of the DWO debugging sections we are interested in. */
10376
10377static void
10378dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10379{
10380 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10381 const struct dwop_section_names *names = &dwop_section_names;
10382
10383 if (section_is_p (sectp->name, &names->abbrev_dwo))
10384 {
73869dc2 10385 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10386 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10387 }
10388 else if (section_is_p (sectp->name, &names->info_dwo))
10389 {
73869dc2 10390 dwo_sections->info.s.asection = sectp;
80626a55
DE
10391 dwo_sections->info.size = bfd_get_section_size (sectp);
10392 }
10393 else if (section_is_p (sectp->name, &names->line_dwo))
10394 {
73869dc2 10395 dwo_sections->line.s.asection = sectp;
80626a55
DE
10396 dwo_sections->line.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->loc_dwo))
10399 {
73869dc2 10400 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10401 dwo_sections->loc.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10404 {
73869dc2 10405 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10406 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10407 }
10408 else if (section_is_p (sectp->name, &names->macro_dwo))
10409 {
73869dc2 10410 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10411 dwo_sections->macro.size = bfd_get_section_size (sectp);
10412 }
10413 else if (section_is_p (sectp->name, &names->str_dwo))
10414 {
73869dc2 10415 dwo_sections->str.s.asection = sectp;
80626a55
DE
10416 dwo_sections->str.size = bfd_get_section_size (sectp);
10417 }
10418 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10419 {
73869dc2 10420 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10421 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10422 }
10423 else if (section_is_p (sectp->name, &names->types_dwo))
10424 {
10425 struct dwarf2_section_info type_section;
10426
10427 memset (&type_section, 0, sizeof (type_section));
73869dc2 10428 type_section.s.asection = sectp;
80626a55
DE
10429 type_section.size = bfd_get_section_size (sectp);
10430 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10431 &type_section);
10432 }
10433}
10434
ab5088bf 10435/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10436 by PER_CU. This is for the non-DWP case.
80626a55 10437 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10438
10439static struct dwo_file *
0ac5b59e
DE
10440open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10441 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10442{
10443 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10444 struct dwo_file *dwo_file;
10445 bfd *dbfd;
3019eac3
DE
10446 struct cleanup *cleanups;
10447
ab5088bf 10448 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10449 if (dbfd == NULL)
10450 {
10451 if (dwarf2_read_debug)
10452 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10453 return NULL;
10454 }
10455 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10456 dwo_file->dwo_name = dwo_name;
10457 dwo_file->comp_dir = comp_dir;
80626a55 10458 dwo_file->dbfd = dbfd;
3019eac3
DE
10459
10460 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10461
80626a55 10462 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10463
19c3d4c9 10464 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10465
10466 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10467 dwo_file->sections.types);
10468
10469 discard_cleanups (cleanups);
10470
80626a55
DE
10471 if (dwarf2_read_debug)
10472 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10473
3019eac3
DE
10474 return dwo_file;
10475}
10476
80626a55 10477/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10478 size of each of the DWP debugging sections common to version 1 and 2 that
10479 we are interested in. */
3019eac3 10480
80626a55 10481static void
73869dc2
DE
10482dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10483 void *dwp_file_ptr)
3019eac3 10484{
80626a55
DE
10485 struct dwp_file *dwp_file = dwp_file_ptr;
10486 const struct dwop_section_names *names = &dwop_section_names;
10487 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10488
80626a55 10489 /* Record the ELF section number for later lookup: this is what the
73869dc2 10490 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10491 gdb_assert (elf_section_nr < dwp_file->num_sections);
10492 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10493
80626a55
DE
10494 /* Look for specific sections that we need. */
10495 if (section_is_p (sectp->name, &names->str_dwo))
10496 {
73869dc2 10497 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10498 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10499 }
10500 else if (section_is_p (sectp->name, &names->cu_index))
10501 {
73869dc2 10502 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10503 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10504 }
10505 else if (section_is_p (sectp->name, &names->tu_index))
10506 {
73869dc2 10507 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10508 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10509 }
10510}
3019eac3 10511
73869dc2
DE
10512/* This function is mapped across the sections and remembers the offset and
10513 size of each of the DWP version 2 debugging sections that we are interested
10514 in. This is split into a separate function because we don't know if we
10515 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10516
10517static void
10518dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10519{
10520 struct dwp_file *dwp_file = dwp_file_ptr;
10521 const struct dwop_section_names *names = &dwop_section_names;
10522 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10523
10524 /* Record the ELF section number for later lookup: this is what the
10525 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10526 gdb_assert (elf_section_nr < dwp_file->num_sections);
10527 dwp_file->elf_sections[elf_section_nr] = sectp;
10528
10529 /* Look for specific sections that we need. */
10530 if (section_is_p (sectp->name, &names->abbrev_dwo))
10531 {
10532 dwp_file->sections.abbrev.s.asection = sectp;
10533 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10534 }
10535 else if (section_is_p (sectp->name, &names->info_dwo))
10536 {
10537 dwp_file->sections.info.s.asection = sectp;
10538 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10539 }
10540 else if (section_is_p (sectp->name, &names->line_dwo))
10541 {
10542 dwp_file->sections.line.s.asection = sectp;
10543 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10544 }
10545 else if (section_is_p (sectp->name, &names->loc_dwo))
10546 {
10547 dwp_file->sections.loc.s.asection = sectp;
10548 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10551 {
10552 dwp_file->sections.macinfo.s.asection = sectp;
10553 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->macro_dwo))
10556 {
10557 dwp_file->sections.macro.s.asection = sectp;
10558 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10561 {
10562 dwp_file->sections.str_offsets.s.asection = sectp;
10563 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->types_dwo))
10566 {
10567 dwp_file->sections.types.s.asection = sectp;
10568 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10569 }
10570}
10571
80626a55 10572/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10573
80626a55
DE
10574static hashval_t
10575hash_dwp_loaded_cutus (const void *item)
10576{
10577 const struct dwo_unit *dwo_unit = item;
3019eac3 10578
80626a55
DE
10579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10580 return dwo_unit->signature;
3019eac3
DE
10581}
10582
80626a55 10583/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10584
80626a55
DE
10585static int
10586eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10587{
80626a55
DE
10588 const struct dwo_unit *dua = a;
10589 const struct dwo_unit *dub = b;
3019eac3 10590
80626a55
DE
10591 return dua->signature == dub->signature;
10592}
3019eac3 10593
80626a55 10594/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10595
80626a55
DE
10596static htab_t
10597allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10598{
10599 return htab_create_alloc_ex (3,
10600 hash_dwp_loaded_cutus,
10601 eq_dwp_loaded_cutus,
10602 NULL,
10603 &objfile->objfile_obstack,
10604 hashtab_obstack_allocate,
10605 dummy_obstack_deallocate);
10606}
3019eac3 10607
ab5088bf
DE
10608/* Try to open DWP file FILE_NAME.
10609 The result is the bfd handle of the file.
10610 If there is a problem finding or opening the file, return NULL.
10611 Upon success, the canonicalized path of the file is stored in the bfd,
10612 same as symfile_bfd_open. */
10613
10614static bfd *
10615open_dwp_file (const char *file_name)
10616{
6ac97d4c
DE
10617 bfd *abfd;
10618
10619 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10620 if (abfd != NULL)
10621 return abfd;
10622
10623 /* Work around upstream bug 15652.
10624 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10625 [Whether that's a "bug" is debatable, but it is getting in our way.]
10626 We have no real idea where the dwp file is, because gdb's realpath-ing
10627 of the executable's path may have discarded the needed info.
10628 [IWBN if the dwp file name was recorded in the executable, akin to
10629 .gnu_debuglink, but that doesn't exist yet.]
10630 Strip the directory from FILE_NAME and search again. */
10631 if (*debug_file_directory != '\0')
10632 {
10633 /* Don't implicitly search the current directory here.
10634 If the user wants to search "." to handle this case,
10635 it must be added to debug-file-directory. */
10636 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10637 0 /*search_cwd*/);
10638 }
10639
10640 return NULL;
ab5088bf
DE
10641}
10642
80626a55
DE
10643/* Initialize the use of the DWP file for the current objfile.
10644 By convention the name of the DWP file is ${objfile}.dwp.
10645 The result is NULL if it can't be found. */
a766d390 10646
80626a55 10647static struct dwp_file *
ab5088bf 10648open_and_init_dwp_file (void)
80626a55
DE
10649{
10650 struct objfile *objfile = dwarf2_per_objfile->objfile;
10651 struct dwp_file *dwp_file;
10652 char *dwp_name;
10653 bfd *dbfd;
10654 struct cleanup *cleanups;
10655
82bf32bc
JK
10656 /* Try to find first .dwp for the binary file before any symbolic links
10657 resolving. */
10658 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10659 cleanups = make_cleanup (xfree, dwp_name);
10660
ab5088bf 10661 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10662 if (dbfd == NULL
10663 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10664 {
10665 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10666 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10667 make_cleanup (xfree, dwp_name);
10668 dbfd = open_dwp_file (dwp_name);
10669 }
10670
80626a55
DE
10671 if (dbfd == NULL)
10672 {
10673 if (dwarf2_read_debug)
10674 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10675 do_cleanups (cleanups);
10676 return NULL;
3019eac3 10677 }
80626a55 10678 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10679 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10680 dwp_file->dbfd = dbfd;
10681 do_cleanups (cleanups);
c906108c 10682
80626a55
DE
10683 /* +1: section 0 is unused */
10684 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10685 dwp_file->elf_sections =
10686 OBSTACK_CALLOC (&objfile->objfile_obstack,
10687 dwp_file->num_sections, asection *);
10688
73869dc2 10689 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10690
10691 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10692
10693 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10694
73869dc2
DE
10695 /* The DWP file version is stored in the hash table. Oh well. */
10696 if (dwp_file->cus->version != dwp_file->tus->version)
10697 {
10698 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10699 pretty bizarre. We use pulongest here because that's the established
4d65956b 10700 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10701 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10702 " TU version %s [in DWP file %s]"),
10703 pulongest (dwp_file->cus->version),
10704 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10705 }
10706 dwp_file->version = dwp_file->cus->version;
10707
10708 if (dwp_file->version == 2)
10709 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10710
19ac8c2e
DE
10711 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10712 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10713
80626a55
DE
10714 if (dwarf2_read_debug)
10715 {
10716 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10717 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10718 " %s CUs, %s TUs\n",
10719 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10720 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10721 }
10722
10723 return dwp_file;
3019eac3 10724}
c906108c 10725
ab5088bf
DE
10726/* Wrapper around open_and_init_dwp_file, only open it once. */
10727
10728static struct dwp_file *
10729get_dwp_file (void)
10730{
10731 if (! dwarf2_per_objfile->dwp_checked)
10732 {
10733 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10734 dwarf2_per_objfile->dwp_checked = 1;
10735 }
10736 return dwarf2_per_objfile->dwp_file;
10737}
10738
80626a55
DE
10739/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10740 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10741 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10742 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10743 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10744
10745 This is called, for example, when wanting to read a variable with a
10746 complex location. Therefore we don't want to do file i/o for every call.
10747 Therefore we don't want to look for a DWO file on every call.
10748 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10749 then we check if we've already seen DWO_NAME, and only THEN do we check
10750 for a DWO file.
10751
1c658ad5 10752 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10753 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10754
3019eac3 10755static struct dwo_unit *
80626a55
DE
10756lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10757 const char *dwo_name, const char *comp_dir,
10758 ULONGEST signature, int is_debug_types)
3019eac3
DE
10759{
10760 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10761 const char *kind = is_debug_types ? "TU" : "CU";
10762 void **dwo_file_slot;
3019eac3 10763 struct dwo_file *dwo_file;
80626a55 10764 struct dwp_file *dwp_file;
cb1df416 10765
6a506a2d
DE
10766 /* First see if there's a DWP file.
10767 If we have a DWP file but didn't find the DWO inside it, don't
10768 look for the original DWO file. It makes gdb behave differently
10769 depending on whether one is debugging in the build tree. */
cf2c3c16 10770
ab5088bf 10771 dwp_file = get_dwp_file ();
80626a55 10772 if (dwp_file != NULL)
cf2c3c16 10773 {
80626a55
DE
10774 const struct dwp_hash_table *dwp_htab =
10775 is_debug_types ? dwp_file->tus : dwp_file->cus;
10776
10777 if (dwp_htab != NULL)
10778 {
10779 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10780 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10781 signature, is_debug_types);
80626a55
DE
10782
10783 if (dwo_cutu != NULL)
10784 {
10785 if (dwarf2_read_debug)
10786 {
10787 fprintf_unfiltered (gdb_stdlog,
10788 "Virtual DWO %s %s found: @%s\n",
10789 kind, hex_string (signature),
10790 host_address_to_string (dwo_cutu));
10791 }
10792 return dwo_cutu;
10793 }
10794 }
10795 }
6a506a2d 10796 else
80626a55 10797 {
6a506a2d 10798 /* No DWP file, look for the DWO file. */
80626a55 10799
6a506a2d
DE
10800 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10801 if (*dwo_file_slot == NULL)
80626a55 10802 {
6a506a2d
DE
10803 /* Read in the file and build a table of the CUs/TUs it contains. */
10804 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10805 }
6a506a2d
DE
10806 /* NOTE: This will be NULL if unable to open the file. */
10807 dwo_file = *dwo_file_slot;
3019eac3 10808
6a506a2d 10809 if (dwo_file != NULL)
19c3d4c9 10810 {
6a506a2d
DE
10811 struct dwo_unit *dwo_cutu = NULL;
10812
10813 if (is_debug_types && dwo_file->tus)
10814 {
10815 struct dwo_unit find_dwo_cutu;
10816
10817 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10818 find_dwo_cutu.signature = signature;
10819 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10820 }
10821 else if (!is_debug_types && dwo_file->cu)
80626a55 10822 {
6a506a2d
DE
10823 if (signature == dwo_file->cu->signature)
10824 dwo_cutu = dwo_file->cu;
10825 }
10826
10827 if (dwo_cutu != NULL)
10828 {
10829 if (dwarf2_read_debug)
10830 {
10831 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10832 kind, dwo_name, hex_string (signature),
10833 host_address_to_string (dwo_cutu));
10834 }
10835 return dwo_cutu;
80626a55
DE
10836 }
10837 }
2e276125 10838 }
9cdd5dbd 10839
80626a55
DE
10840 /* We didn't find it. This could mean a dwo_id mismatch, or
10841 someone deleted the DWO/DWP file, or the search path isn't set up
10842 correctly to find the file. */
10843
10844 if (dwarf2_read_debug)
10845 {
10846 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10847 kind, dwo_name, hex_string (signature));
10848 }
3019eac3 10849
6656a72d
DE
10850 /* This is a warning and not a complaint because it can be caused by
10851 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10852 {
10853 /* Print the name of the DWP file if we looked there, helps the user
10854 better diagnose the problem. */
10855 char *dwp_text = NULL;
10856 struct cleanup *cleanups;
10857
10858 if (dwp_file != NULL)
10859 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10860 cleanups = make_cleanup (xfree, dwp_text);
10861
10862 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10863 " [in module %s]"),
10864 kind, dwo_name, hex_string (signature),
10865 dwp_text != NULL ? dwp_text : "",
10866 this_unit->is_debug_types ? "TU" : "CU",
10867 this_unit->offset.sect_off, objfile_name (objfile));
10868
10869 do_cleanups (cleanups);
10870 }
3019eac3 10871 return NULL;
5fb290d7
DJ
10872}
10873
80626a55
DE
10874/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10875 See lookup_dwo_cutu_unit for details. */
10876
10877static struct dwo_unit *
10878lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10879 const char *dwo_name, const char *comp_dir,
10880 ULONGEST signature)
10881{
10882 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10883}
10884
10885/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10886 See lookup_dwo_cutu_unit for details. */
10887
10888static struct dwo_unit *
10889lookup_dwo_type_unit (struct signatured_type *this_tu,
10890 const char *dwo_name, const char *comp_dir)
10891{
10892 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10893}
10894
89e63ee4
DE
10895/* Traversal function for queue_and_load_all_dwo_tus. */
10896
10897static int
10898queue_and_load_dwo_tu (void **slot, void *info)
10899{
10900 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10901 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10902 ULONGEST signature = dwo_unit->signature;
10903 struct signatured_type *sig_type =
10904 lookup_dwo_signatured_type (per_cu->cu, signature);
10905
10906 if (sig_type != NULL)
10907 {
10908 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10909
10910 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10911 a real dependency of PER_CU on SIG_TYPE. That is detected later
10912 while processing PER_CU. */
10913 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10914 load_full_type_unit (sig_cu);
10915 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10916 }
10917
10918 return 1;
10919}
10920
10921/* Queue all TUs contained in the DWO of PER_CU to be read in.
10922 The DWO may have the only definition of the type, though it may not be
10923 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10924 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10925
10926static void
10927queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10928{
10929 struct dwo_unit *dwo_unit;
10930 struct dwo_file *dwo_file;
10931
10932 gdb_assert (!per_cu->is_debug_types);
10933 gdb_assert (get_dwp_file () == NULL);
10934 gdb_assert (per_cu->cu != NULL);
10935
10936 dwo_unit = per_cu->cu->dwo_unit;
10937 gdb_assert (dwo_unit != NULL);
10938
10939 dwo_file = dwo_unit->dwo_file;
10940 if (dwo_file->tus != NULL)
10941 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10942}
10943
3019eac3
DE
10944/* Free all resources associated with DWO_FILE.
10945 Close the DWO file and munmap the sections.
10946 All memory should be on the objfile obstack. */
348e048f
DE
10947
10948static void
3019eac3 10949free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10950{
3019eac3
DE
10951 int ix;
10952 struct dwarf2_section_info *section;
348e048f 10953
5c6fa7ab 10954 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10955 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10956
3019eac3
DE
10957 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10958}
348e048f 10959
3019eac3 10960/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10961
3019eac3
DE
10962static void
10963free_dwo_file_cleanup (void *arg)
10964{
10965 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10966 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10967
3019eac3
DE
10968 free_dwo_file (dwo_file, objfile);
10969}
348e048f 10970
3019eac3 10971/* Traversal function for free_dwo_files. */
2ab95328 10972
3019eac3
DE
10973static int
10974free_dwo_file_from_slot (void **slot, void *info)
10975{
10976 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10977 struct objfile *objfile = (struct objfile *) info;
348e048f 10978
3019eac3 10979 free_dwo_file (dwo_file, objfile);
348e048f 10980
3019eac3
DE
10981 return 1;
10982}
348e048f 10983
3019eac3 10984/* Free all resources associated with DWO_FILES. */
348e048f 10985
3019eac3
DE
10986static void
10987free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10988{
10989 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10990}
3019eac3
DE
10991\f
10992/* Read in various DIEs. */
348e048f 10993
d389af10
JK
10994/* qsort helper for inherit_abstract_dies. */
10995
10996static int
10997unsigned_int_compar (const void *ap, const void *bp)
10998{
10999 unsigned int a = *(unsigned int *) ap;
11000 unsigned int b = *(unsigned int *) bp;
11001
11002 return (a > b) - (b > a);
11003}
11004
11005/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11006 Inherit only the children of the DW_AT_abstract_origin DIE not being
11007 already referenced by DW_AT_abstract_origin from the children of the
11008 current DIE. */
d389af10
JK
11009
11010static void
11011inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11012{
11013 struct die_info *child_die;
11014 unsigned die_children_count;
11015 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11016 sect_offset *offsets;
11017 sect_offset *offsets_end, *offsetp;
d389af10
JK
11018 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11019 struct die_info *origin_die;
11020 /* Iterator of the ORIGIN_DIE children. */
11021 struct die_info *origin_child_die;
11022 struct cleanup *cleanups;
11023 struct attribute *attr;
cd02d79d
PA
11024 struct dwarf2_cu *origin_cu;
11025 struct pending **origin_previous_list_in_scope;
d389af10
JK
11026
11027 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11028 if (!attr)
11029 return;
11030
cd02d79d
PA
11031 /* Note that following die references may follow to a die in a
11032 different cu. */
11033
11034 origin_cu = cu;
11035 origin_die = follow_die_ref (die, attr, &origin_cu);
11036
11037 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11038 symbols in. */
11039 origin_previous_list_in_scope = origin_cu->list_in_scope;
11040 origin_cu->list_in_scope = cu->list_in_scope;
11041
edb3359d
DJ
11042 if (die->tag != origin_die->tag
11043 && !(die->tag == DW_TAG_inlined_subroutine
11044 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11045 complaint (&symfile_complaints,
11046 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11047 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11048
11049 child_die = die->child;
11050 die_children_count = 0;
11051 while (child_die && child_die->tag)
11052 {
11053 child_die = sibling_die (child_die);
11054 die_children_count++;
11055 }
11056 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11057 cleanups = make_cleanup (xfree, offsets);
11058
11059 offsets_end = offsets;
11060 child_die = die->child;
11061 while (child_die && child_die->tag)
11062 {
c38f313d
DJ
11063 /* For each CHILD_DIE, find the corresponding child of
11064 ORIGIN_DIE. If there is more than one layer of
11065 DW_AT_abstract_origin, follow them all; there shouldn't be,
11066 but GCC versions at least through 4.4 generate this (GCC PR
11067 40573). */
11068 struct die_info *child_origin_die = child_die;
cd02d79d 11069 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11070
c38f313d
DJ
11071 while (1)
11072 {
cd02d79d
PA
11073 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11074 child_origin_cu);
c38f313d
DJ
11075 if (attr == NULL)
11076 break;
cd02d79d
PA
11077 child_origin_die = follow_die_ref (child_origin_die, attr,
11078 &child_origin_cu);
c38f313d
DJ
11079 }
11080
d389af10
JK
11081 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11082 counterpart may exist. */
c38f313d 11083 if (child_origin_die != child_die)
d389af10 11084 {
edb3359d
DJ
11085 if (child_die->tag != child_origin_die->tag
11086 && !(child_die->tag == DW_TAG_inlined_subroutine
11087 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11088 complaint (&symfile_complaints,
11089 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11090 "different tags"), child_die->offset.sect_off,
11091 child_origin_die->offset.sect_off);
c38f313d
DJ
11092 if (child_origin_die->parent != origin_die)
11093 complaint (&symfile_complaints,
11094 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11095 "different parents"), child_die->offset.sect_off,
11096 child_origin_die->offset.sect_off);
c38f313d
DJ
11097 else
11098 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11099 }
11100 child_die = sibling_die (child_die);
11101 }
11102 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11103 unsigned_int_compar);
11104 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11105 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11106 complaint (&symfile_complaints,
11107 _("Multiple children of DIE 0x%x refer "
11108 "to DIE 0x%x as their abstract origin"),
b64f50a1 11109 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11110
11111 offsetp = offsets;
11112 origin_child_die = origin_die->child;
11113 while (origin_child_die && origin_child_die->tag)
11114 {
11115 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11116 while (offsetp < offsets_end
11117 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11118 offsetp++;
b64f50a1
JK
11119 if (offsetp >= offsets_end
11120 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11121 {
adde2bff
DE
11122 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11123 Check whether we're already processing ORIGIN_CHILD_DIE.
11124 This can happen with mutually referenced abstract_origins.
11125 PR 16581. */
11126 if (!origin_child_die->in_process)
11127 process_die (origin_child_die, origin_cu);
d389af10
JK
11128 }
11129 origin_child_die = sibling_die (origin_child_die);
11130 }
cd02d79d 11131 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11132
11133 do_cleanups (cleanups);
11134}
11135
c906108c 11136static void
e7c27a73 11137read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11138{
e7c27a73 11139 struct objfile *objfile = cu->objfile;
52f0bd74 11140 struct context_stack *new;
c906108c
SS
11141 CORE_ADDR lowpc;
11142 CORE_ADDR highpc;
11143 struct die_info *child_die;
edb3359d 11144 struct attribute *attr, *call_line, *call_file;
15d034d0 11145 const char *name;
e142c38c 11146 CORE_ADDR baseaddr;
801e3a5b 11147 struct block *block;
edb3359d 11148 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11149 VEC (symbolp) *template_args = NULL;
11150 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11151
11152 if (inlined_func)
11153 {
11154 /* If we do not have call site information, we can't show the
11155 caller of this inlined function. That's too confusing, so
11156 only use the scope for local variables. */
11157 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11158 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11159 if (call_line == NULL || call_file == NULL)
11160 {
11161 read_lexical_block_scope (die, cu);
11162 return;
11163 }
11164 }
c906108c 11165
e142c38c
DJ
11166 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11167
94af9270 11168 name = dwarf2_name (die, cu);
c906108c 11169
e8d05480
JB
11170 /* Ignore functions with missing or empty names. These are actually
11171 illegal according to the DWARF standard. */
11172 if (name == NULL)
11173 {
11174 complaint (&symfile_complaints,
b64f50a1
JK
11175 _("missing name for subprogram DIE at %d"),
11176 die->offset.sect_off);
e8d05480
JB
11177 return;
11178 }
11179
11180 /* Ignore functions with missing or invalid low and high pc attributes. */
11181 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11182 {
ae4d0c03
PM
11183 attr = dwarf2_attr (die, DW_AT_external, cu);
11184 if (!attr || !DW_UNSND (attr))
11185 complaint (&symfile_complaints,
3e43a32a
MS
11186 _("cannot get low and high bounds "
11187 "for subprogram DIE at %d"),
b64f50a1 11188 die->offset.sect_off);
e8d05480
JB
11189 return;
11190 }
c906108c
SS
11191
11192 lowpc += baseaddr;
11193 highpc += baseaddr;
11194
34eaf542
TT
11195 /* If we have any template arguments, then we must allocate a
11196 different sort of symbol. */
11197 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11198 {
11199 if (child_die->tag == DW_TAG_template_type_param
11200 || child_die->tag == DW_TAG_template_value_param)
11201 {
e623cf5d 11202 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11203 templ_func->base.is_cplus_template_function = 1;
11204 break;
11205 }
11206 }
11207
c906108c 11208 new = push_context (0, lowpc);
34eaf542
TT
11209 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11210 (struct symbol *) templ_func);
4c2df51b 11211
4cecd739
DJ
11212 /* If there is a location expression for DW_AT_frame_base, record
11213 it. */
e142c38c 11214 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11215 if (attr)
f1e6e072 11216 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11217
e142c38c 11218 cu->list_in_scope = &local_symbols;
c906108c 11219
639d11d3 11220 if (die->child != NULL)
c906108c 11221 {
639d11d3 11222 child_die = die->child;
c906108c
SS
11223 while (child_die && child_die->tag)
11224 {
34eaf542
TT
11225 if (child_die->tag == DW_TAG_template_type_param
11226 || child_die->tag == DW_TAG_template_value_param)
11227 {
11228 struct symbol *arg = new_symbol (child_die, NULL, cu);
11229
f1078f66
DJ
11230 if (arg != NULL)
11231 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11232 }
11233 else
11234 process_die (child_die, cu);
c906108c
SS
11235 child_die = sibling_die (child_die);
11236 }
11237 }
11238
d389af10
JK
11239 inherit_abstract_dies (die, cu);
11240
4a811a97
UW
11241 /* If we have a DW_AT_specification, we might need to import using
11242 directives from the context of the specification DIE. See the
11243 comment in determine_prefix. */
11244 if (cu->language == language_cplus
11245 && dwarf2_attr (die, DW_AT_specification, cu))
11246 {
11247 struct dwarf2_cu *spec_cu = cu;
11248 struct die_info *spec_die = die_specification (die, &spec_cu);
11249
11250 while (spec_die)
11251 {
11252 child_die = spec_die->child;
11253 while (child_die && child_die->tag)
11254 {
11255 if (child_die->tag == DW_TAG_imported_module)
11256 process_die (child_die, spec_cu);
11257 child_die = sibling_die (child_die);
11258 }
11259
11260 /* In some cases, GCC generates specification DIEs that
11261 themselves contain DW_AT_specification attributes. */
11262 spec_die = die_specification (spec_die, &spec_cu);
11263 }
11264 }
11265
c906108c
SS
11266 new = pop_context ();
11267 /* Make a block for the local symbols within. */
801e3a5b 11268 block = finish_block (new->name, &local_symbols, new->old_blocks,
4d663531 11269 lowpc, highpc);
801e3a5b 11270
df8a16a1 11271 /* For C++, set the block's scope. */
195a3f6c 11272 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11273 && cu->processing_has_namespace_info)
195a3f6c
TT
11274 block_set_scope (block, determine_prefix (die, cu),
11275 &objfile->objfile_obstack);
df8a16a1 11276
801e3a5b
JB
11277 /* If we have address ranges, record them. */
11278 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11279
34eaf542
TT
11280 /* Attach template arguments to function. */
11281 if (! VEC_empty (symbolp, template_args))
11282 {
11283 gdb_assert (templ_func != NULL);
11284
11285 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11286 templ_func->template_arguments
11287 = obstack_alloc (&objfile->objfile_obstack,
11288 (templ_func->n_template_arguments
11289 * sizeof (struct symbol *)));
11290 memcpy (templ_func->template_arguments,
11291 VEC_address (symbolp, template_args),
11292 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11293 VEC_free (symbolp, template_args);
11294 }
11295
208d8187
JB
11296 /* In C++, we can have functions nested inside functions (e.g., when
11297 a function declares a class that has methods). This means that
11298 when we finish processing a function scope, we may need to go
11299 back to building a containing block's symbol lists. */
11300 local_symbols = new->locals;
27aa8d6a 11301 using_directives = new->using_directives;
208d8187 11302
921e78cf
JB
11303 /* If we've finished processing a top-level function, subsequent
11304 symbols go in the file symbol list. */
11305 if (outermost_context_p ())
e142c38c 11306 cu->list_in_scope = &file_symbols;
c906108c
SS
11307}
11308
11309/* Process all the DIES contained within a lexical block scope. Start
11310 a new scope, process the dies, and then close the scope. */
11311
11312static void
e7c27a73 11313read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11314{
e7c27a73 11315 struct objfile *objfile = cu->objfile;
52f0bd74 11316 struct context_stack *new;
c906108c
SS
11317 CORE_ADDR lowpc, highpc;
11318 struct die_info *child_die;
e142c38c
DJ
11319 CORE_ADDR baseaddr;
11320
11321 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11322
11323 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11324 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11325 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11326 be nasty. Might be easier to properly extend generic blocks to
af34e669 11327 describe ranges. */
d85a05f0 11328 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11329 return;
11330 lowpc += baseaddr;
11331 highpc += baseaddr;
11332
11333 push_context (0, lowpc);
639d11d3 11334 if (die->child != NULL)
c906108c 11335 {
639d11d3 11336 child_die = die->child;
c906108c
SS
11337 while (child_die && child_die->tag)
11338 {
e7c27a73 11339 process_die (child_die, cu);
c906108c
SS
11340 child_die = sibling_die (child_die);
11341 }
11342 }
11343 new = pop_context ();
11344
8540c487 11345 if (local_symbols != NULL || using_directives != NULL)
c906108c 11346 {
801e3a5b
JB
11347 struct block *block
11348 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4d663531 11349 highpc);
801e3a5b
JB
11350
11351 /* Note that recording ranges after traversing children, as we
11352 do here, means that recording a parent's ranges entails
11353 walking across all its children's ranges as they appear in
11354 the address map, which is quadratic behavior.
11355
11356 It would be nicer to record the parent's ranges before
11357 traversing its children, simply overriding whatever you find
11358 there. But since we don't even decide whether to create a
11359 block until after we've traversed its children, that's hard
11360 to do. */
11361 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11362 }
11363 local_symbols = new->locals;
27aa8d6a 11364 using_directives = new->using_directives;
c906108c
SS
11365}
11366
96408a79
SA
11367/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11368
11369static void
11370read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11371{
11372 struct objfile *objfile = cu->objfile;
11373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11374 CORE_ADDR pc, baseaddr;
11375 struct attribute *attr;
11376 struct call_site *call_site, call_site_local;
11377 void **slot;
11378 int nparams;
11379 struct die_info *child_die;
11380
11381 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11382
11383 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11384 if (!attr)
11385 {
11386 complaint (&symfile_complaints,
11387 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11388 "DIE 0x%x [in module %s]"),
4262abfb 11389 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11390 return;
11391 }
31aa7e4e 11392 pc = attr_value_as_address (attr) + baseaddr;
96408a79
SA
11393
11394 if (cu->call_site_htab == NULL)
11395 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11396 NULL, &objfile->objfile_obstack,
11397 hashtab_obstack_allocate, NULL);
11398 call_site_local.pc = pc;
11399 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11400 if (*slot != NULL)
11401 {
11402 complaint (&symfile_complaints,
11403 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11404 "DIE 0x%x [in module %s]"),
4262abfb
JK
11405 paddress (gdbarch, pc), die->offset.sect_off,
11406 objfile_name (objfile));
96408a79
SA
11407 return;
11408 }
11409
11410 /* Count parameters at the caller. */
11411
11412 nparams = 0;
11413 for (child_die = die->child; child_die && child_die->tag;
11414 child_die = sibling_die (child_die))
11415 {
11416 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11417 {
11418 complaint (&symfile_complaints,
11419 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11420 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11421 child_die->tag, child_die->offset.sect_off,
11422 objfile_name (objfile));
96408a79
SA
11423 continue;
11424 }
11425
11426 nparams++;
11427 }
11428
11429 call_site = obstack_alloc (&objfile->objfile_obstack,
11430 (sizeof (*call_site)
11431 + (sizeof (*call_site->parameter)
11432 * (nparams - 1))));
11433 *slot = call_site;
11434 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11435 call_site->pc = pc;
11436
11437 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11438 {
11439 struct die_info *func_die;
11440
11441 /* Skip also over DW_TAG_inlined_subroutine. */
11442 for (func_die = die->parent;
11443 func_die && func_die->tag != DW_TAG_subprogram
11444 && func_die->tag != DW_TAG_subroutine_type;
11445 func_die = func_die->parent);
11446
11447 /* DW_AT_GNU_all_call_sites is a superset
11448 of DW_AT_GNU_all_tail_call_sites. */
11449 if (func_die
11450 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11451 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11452 {
11453 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11454 not complete. But keep CALL_SITE for look ups via call_site_htab,
11455 both the initial caller containing the real return address PC and
11456 the final callee containing the current PC of a chain of tail
11457 calls do not need to have the tail call list complete. But any
11458 function candidate for a virtual tail call frame searched via
11459 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11460 determined unambiguously. */
11461 }
11462 else
11463 {
11464 struct type *func_type = NULL;
11465
11466 if (func_die)
11467 func_type = get_die_type (func_die, cu);
11468 if (func_type != NULL)
11469 {
11470 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11471
11472 /* Enlist this call site to the function. */
11473 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11474 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11475 }
11476 else
11477 complaint (&symfile_complaints,
11478 _("Cannot find function owning DW_TAG_GNU_call_site "
11479 "DIE 0x%x [in module %s]"),
4262abfb 11480 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11481 }
11482 }
11483
11484 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11485 if (attr == NULL)
11486 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11487 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11488 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11489 /* Keep NULL DWARF_BLOCK. */;
11490 else if (attr_form_is_block (attr))
11491 {
11492 struct dwarf2_locexpr_baton *dlbaton;
11493
11494 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11495 dlbaton->data = DW_BLOCK (attr)->data;
11496 dlbaton->size = DW_BLOCK (attr)->size;
11497 dlbaton->per_cu = cu->per_cu;
11498
11499 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11500 }
7771576e 11501 else if (attr_form_is_ref (attr))
96408a79 11502 {
96408a79
SA
11503 struct dwarf2_cu *target_cu = cu;
11504 struct die_info *target_die;
11505
ac9ec31b 11506 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11507 gdb_assert (target_cu->objfile == objfile);
11508 if (die_is_declaration (target_die, target_cu))
11509 {
9112db09
JK
11510 const char *target_physname = NULL;
11511 struct attribute *target_attr;
11512
11513 /* Prefer the mangled name; otherwise compute the demangled one. */
11514 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11515 if (target_attr == NULL)
11516 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11517 target_cu);
11518 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11519 target_physname = DW_STRING (target_attr);
11520 else
11521 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11522 if (target_physname == NULL)
11523 complaint (&symfile_complaints,
11524 _("DW_AT_GNU_call_site_target target DIE has invalid "
11525 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11526 die->offset.sect_off, objfile_name (objfile));
96408a79 11527 else
7d455152 11528 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11529 }
11530 else
11531 {
11532 CORE_ADDR lowpc;
11533
11534 /* DW_AT_entry_pc should be preferred. */
11535 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11536 complaint (&symfile_complaints,
11537 _("DW_AT_GNU_call_site_target target DIE has invalid "
11538 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11539 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11540 else
11541 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11542 }
11543 }
11544 else
11545 complaint (&symfile_complaints,
11546 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11547 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11548 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11549
11550 call_site->per_cu = cu->per_cu;
11551
11552 for (child_die = die->child;
11553 child_die && child_die->tag;
11554 child_die = sibling_die (child_die))
11555 {
96408a79 11556 struct call_site_parameter *parameter;
1788b2d3 11557 struct attribute *loc, *origin;
96408a79
SA
11558
11559 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11560 {
11561 /* Already printed the complaint above. */
11562 continue;
11563 }
11564
11565 gdb_assert (call_site->parameter_count < nparams);
11566 parameter = &call_site->parameter[call_site->parameter_count];
11567
1788b2d3
JK
11568 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11569 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11570 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11571
24c5c679 11572 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11573 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11574 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11575 {
11576 sect_offset offset;
11577
11578 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11579 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11580 if (!offset_in_cu_p (&cu->header, offset))
11581 {
11582 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11583 binding can be done only inside one CU. Such referenced DIE
11584 therefore cannot be even moved to DW_TAG_partial_unit. */
11585 complaint (&symfile_complaints,
11586 _("DW_AT_abstract_origin offset is not in CU for "
11587 "DW_TAG_GNU_call_site child DIE 0x%x "
11588 "[in module %s]"),
4262abfb 11589 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11590 continue;
11591 }
1788b2d3
JK
11592 parameter->u.param_offset.cu_off = (offset.sect_off
11593 - cu->header.offset.sect_off);
11594 }
11595 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11596 {
11597 complaint (&symfile_complaints,
11598 _("No DW_FORM_block* DW_AT_location for "
11599 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11600 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11601 continue;
11602 }
24c5c679 11603 else
96408a79 11604 {
24c5c679
JK
11605 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11606 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11607 if (parameter->u.dwarf_reg != -1)
11608 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11609 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11610 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11611 &parameter->u.fb_offset))
11612 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11613 else
11614 {
11615 complaint (&symfile_complaints,
11616 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11617 "for DW_FORM_block* DW_AT_location is supported for "
11618 "DW_TAG_GNU_call_site child DIE 0x%x "
11619 "[in module %s]"),
4262abfb 11620 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11621 continue;
11622 }
96408a79
SA
11623 }
11624
11625 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11626 if (!attr_form_is_block (attr))
11627 {
11628 complaint (&symfile_complaints,
11629 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11630 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11631 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11632 continue;
11633 }
11634 parameter->value = DW_BLOCK (attr)->data;
11635 parameter->value_size = DW_BLOCK (attr)->size;
11636
11637 /* Parameters are not pre-cleared by memset above. */
11638 parameter->data_value = NULL;
11639 parameter->data_value_size = 0;
11640 call_site->parameter_count++;
11641
11642 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11643 if (attr)
11644 {
11645 if (!attr_form_is_block (attr))
11646 complaint (&symfile_complaints,
11647 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11648 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11649 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11650 else
11651 {
11652 parameter->data_value = DW_BLOCK (attr)->data;
11653 parameter->data_value_size = DW_BLOCK (attr)->size;
11654 }
11655 }
11656 }
11657}
11658
43039443 11659/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11660 Return 1 if the attributes are present and valid, otherwise, return 0.
11661 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11662
11663static int
11664dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11665 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11666 struct partial_symtab *ranges_pst)
43039443
JK
11667{
11668 struct objfile *objfile = cu->objfile;
11669 struct comp_unit_head *cu_header = &cu->header;
11670 bfd *obfd = objfile->obfd;
11671 unsigned int addr_size = cu_header->addr_size;
11672 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11673 /* Base address selection entry. */
11674 CORE_ADDR base;
11675 int found_base;
11676 unsigned int dummy;
d521ce57 11677 const gdb_byte *buffer;
43039443
JK
11678 CORE_ADDR marker;
11679 int low_set;
11680 CORE_ADDR low = 0;
11681 CORE_ADDR high = 0;
ff013f42 11682 CORE_ADDR baseaddr;
43039443 11683
d00adf39
DE
11684 found_base = cu->base_known;
11685 base = cu->base_address;
43039443 11686
be391dca 11687 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11688 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11689 {
11690 complaint (&symfile_complaints,
11691 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11692 offset);
11693 return 0;
11694 }
dce234bc 11695 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11696
11697 /* Read in the largest possible address. */
11698 marker = read_address (obfd, buffer, cu, &dummy);
11699 if ((marker & mask) == mask)
11700 {
11701 /* If we found the largest possible address, then
11702 read the base address. */
11703 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11704 buffer += 2 * addr_size;
11705 offset += 2 * addr_size;
11706 found_base = 1;
11707 }
11708
11709 low_set = 0;
11710
e7030f15 11711 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11712
43039443
JK
11713 while (1)
11714 {
11715 CORE_ADDR range_beginning, range_end;
11716
11717 range_beginning = read_address (obfd, buffer, cu, &dummy);
11718 buffer += addr_size;
11719 range_end = read_address (obfd, buffer, cu, &dummy);
11720 buffer += addr_size;
11721 offset += 2 * addr_size;
11722
11723 /* An end of list marker is a pair of zero addresses. */
11724 if (range_beginning == 0 && range_end == 0)
11725 /* Found the end of list entry. */
11726 break;
11727
11728 /* Each base address selection entry is a pair of 2 values.
11729 The first is the largest possible address, the second is
11730 the base address. Check for a base address here. */
11731 if ((range_beginning & mask) == mask)
11732 {
11733 /* If we found the largest possible address, then
11734 read the base address. */
11735 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11736 found_base = 1;
11737 continue;
11738 }
11739
11740 if (!found_base)
11741 {
11742 /* We have no valid base address for the ranges
11743 data. */
11744 complaint (&symfile_complaints,
11745 _("Invalid .debug_ranges data (no base address)"));
11746 return 0;
11747 }
11748
9277c30c
UW
11749 if (range_beginning > range_end)
11750 {
11751 /* Inverted range entries are invalid. */
11752 complaint (&symfile_complaints,
11753 _("Invalid .debug_ranges data (inverted range)"));
11754 return 0;
11755 }
11756
11757 /* Empty range entries have no effect. */
11758 if (range_beginning == range_end)
11759 continue;
11760
43039443
JK
11761 range_beginning += base;
11762 range_end += base;
11763
01093045
DE
11764 /* A not-uncommon case of bad debug info.
11765 Don't pollute the addrmap with bad data. */
11766 if (range_beginning + baseaddr == 0
11767 && !dwarf2_per_objfile->has_section_at_zero)
11768 {
11769 complaint (&symfile_complaints,
11770 _(".debug_ranges entry has start address of zero"
4262abfb 11771 " [in module %s]"), objfile_name (objfile));
01093045
DE
11772 continue;
11773 }
11774
9277c30c 11775 if (ranges_pst != NULL)
ff013f42 11776 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11777 range_beginning + baseaddr,
11778 range_end - 1 + baseaddr,
ff013f42
JK
11779 ranges_pst);
11780
43039443
JK
11781 /* FIXME: This is recording everything as a low-high
11782 segment of consecutive addresses. We should have a
11783 data structure for discontiguous block ranges
11784 instead. */
11785 if (! low_set)
11786 {
11787 low = range_beginning;
11788 high = range_end;
11789 low_set = 1;
11790 }
11791 else
11792 {
11793 if (range_beginning < low)
11794 low = range_beginning;
11795 if (range_end > high)
11796 high = range_end;
11797 }
11798 }
11799
11800 if (! low_set)
11801 /* If the first entry is an end-of-list marker, the range
11802 describes an empty scope, i.e. no instructions. */
11803 return 0;
11804
11805 if (low_return)
11806 *low_return = low;
11807 if (high_return)
11808 *high_return = high;
11809 return 1;
11810}
11811
af34e669
DJ
11812/* Get low and high pc attributes from a die. Return 1 if the attributes
11813 are present and valid, otherwise, return 0. Return -1 if the range is
11814 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11815
c906108c 11816static int
af34e669 11817dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11818 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11819 struct partial_symtab *pst)
c906108c
SS
11820{
11821 struct attribute *attr;
91da1414 11822 struct attribute *attr_high;
af34e669
DJ
11823 CORE_ADDR low = 0;
11824 CORE_ADDR high = 0;
11825 int ret = 0;
c906108c 11826
91da1414
MW
11827 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11828 if (attr_high)
af34e669 11829 {
e142c38c 11830 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11831 if (attr)
91da1414 11832 {
31aa7e4e
JB
11833 low = attr_value_as_address (attr);
11834 high = attr_value_as_address (attr_high);
11835 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11836 high += low;
91da1414 11837 }
af34e669
DJ
11838 else
11839 /* Found high w/o low attribute. */
11840 return 0;
11841
11842 /* Found consecutive range of addresses. */
11843 ret = 1;
11844 }
c906108c 11845 else
af34e669 11846 {
e142c38c 11847 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11848 if (attr != NULL)
11849 {
ab435259
DE
11850 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11851 We take advantage of the fact that DW_AT_ranges does not appear
11852 in DW_TAG_compile_unit of DWO files. */
11853 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11854 unsigned int ranges_offset = (DW_UNSND (attr)
11855 + (need_ranges_base
11856 ? cu->ranges_base
11857 : 0));
2e3cf129 11858
af34e669 11859 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11860 .debug_ranges section. */
2e3cf129 11861 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11862 return 0;
43039443 11863 /* Found discontinuous range of addresses. */
af34e669
DJ
11864 ret = -1;
11865 }
11866 }
c906108c 11867
9373cf26
JK
11868 /* read_partial_die has also the strict LOW < HIGH requirement. */
11869 if (high <= low)
c906108c
SS
11870 return 0;
11871
11872 /* When using the GNU linker, .gnu.linkonce. sections are used to
11873 eliminate duplicate copies of functions and vtables and such.
11874 The linker will arbitrarily choose one and discard the others.
11875 The AT_*_pc values for such functions refer to local labels in
11876 these sections. If the section from that file was discarded, the
11877 labels are not in the output, so the relocs get a value of 0.
11878 If this is a discarded function, mark the pc bounds as invalid,
11879 so that GDB will ignore it. */
72dca2f5 11880 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11881 return 0;
11882
11883 *lowpc = low;
96408a79
SA
11884 if (highpc)
11885 *highpc = high;
af34e669 11886 return ret;
c906108c
SS
11887}
11888
b084d499
JB
11889/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11890 its low and high PC addresses. Do nothing if these addresses could not
11891 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11892 and HIGHPC to the high address if greater than HIGHPC. */
11893
11894static void
11895dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11896 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11897 struct dwarf2_cu *cu)
11898{
11899 CORE_ADDR low, high;
11900 struct die_info *child = die->child;
11901
d85a05f0 11902 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11903 {
11904 *lowpc = min (*lowpc, low);
11905 *highpc = max (*highpc, high);
11906 }
11907
11908 /* If the language does not allow nested subprograms (either inside
11909 subprograms or lexical blocks), we're done. */
11910 if (cu->language != language_ada)
11911 return;
6e70227d 11912
b084d499
JB
11913 /* Check all the children of the given DIE. If it contains nested
11914 subprograms, then check their pc bounds. Likewise, we need to
11915 check lexical blocks as well, as they may also contain subprogram
11916 definitions. */
11917 while (child && child->tag)
11918 {
11919 if (child->tag == DW_TAG_subprogram
11920 || child->tag == DW_TAG_lexical_block)
11921 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11922 child = sibling_die (child);
11923 }
11924}
11925
fae299cd
DC
11926/* Get the low and high pc's represented by the scope DIE, and store
11927 them in *LOWPC and *HIGHPC. If the correct values can't be
11928 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11929
11930static void
11931get_scope_pc_bounds (struct die_info *die,
11932 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11933 struct dwarf2_cu *cu)
11934{
11935 CORE_ADDR best_low = (CORE_ADDR) -1;
11936 CORE_ADDR best_high = (CORE_ADDR) 0;
11937 CORE_ADDR current_low, current_high;
11938
d85a05f0 11939 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11940 {
11941 best_low = current_low;
11942 best_high = current_high;
11943 }
11944 else
11945 {
11946 struct die_info *child = die->child;
11947
11948 while (child && child->tag)
11949 {
11950 switch (child->tag) {
11951 case DW_TAG_subprogram:
b084d499 11952 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11953 break;
11954 case DW_TAG_namespace:
f55ee35c 11955 case DW_TAG_module:
fae299cd
DC
11956 /* FIXME: carlton/2004-01-16: Should we do this for
11957 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11958 that current GCC's always emit the DIEs corresponding
11959 to definitions of methods of classes as children of a
11960 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11961 the DIEs giving the declarations, which could be
11962 anywhere). But I don't see any reason why the
11963 standards says that they have to be there. */
11964 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11965
11966 if (current_low != ((CORE_ADDR) -1))
11967 {
11968 best_low = min (best_low, current_low);
11969 best_high = max (best_high, current_high);
11970 }
11971 break;
11972 default:
0963b4bd 11973 /* Ignore. */
fae299cd
DC
11974 break;
11975 }
11976
11977 child = sibling_die (child);
11978 }
11979 }
11980
11981 *lowpc = best_low;
11982 *highpc = best_high;
11983}
11984
801e3a5b
JB
11985/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11986 in DIE. */
380bca97 11987
801e3a5b
JB
11988static void
11989dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11990 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11991{
bb5ed363 11992 struct objfile *objfile = cu->objfile;
801e3a5b 11993 struct attribute *attr;
91da1414 11994 struct attribute *attr_high;
801e3a5b 11995
91da1414
MW
11996 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11997 if (attr_high)
801e3a5b 11998 {
801e3a5b
JB
11999 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12000 if (attr)
12001 {
31aa7e4e
JB
12002 CORE_ADDR low = attr_value_as_address (attr);
12003 CORE_ADDR high = attr_value_as_address (attr_high);
12004
12005 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12006 high += low;
9a619af0 12007
801e3a5b
JB
12008 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12009 }
12010 }
12011
12012 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12013 if (attr)
12014 {
bb5ed363 12015 bfd *obfd = objfile->obfd;
ab435259
DE
12016 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12017 We take advantage of the fact that DW_AT_ranges does not appear
12018 in DW_TAG_compile_unit of DWO files. */
12019 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12020
12021 /* The value of the DW_AT_ranges attribute is the offset of the
12022 address range list in the .debug_ranges section. */
ab435259
DE
12023 unsigned long offset = (DW_UNSND (attr)
12024 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12025 const gdb_byte *buffer;
801e3a5b
JB
12026
12027 /* For some target architectures, but not others, the
12028 read_address function sign-extends the addresses it returns.
12029 To recognize base address selection entries, we need a
12030 mask. */
12031 unsigned int addr_size = cu->header.addr_size;
12032 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12033
12034 /* The base address, to which the next pair is relative. Note
12035 that this 'base' is a DWARF concept: most entries in a range
12036 list are relative, to reduce the number of relocs against the
12037 debugging information. This is separate from this function's
12038 'baseaddr' argument, which GDB uses to relocate debugging
12039 information from a shared library based on the address at
12040 which the library was loaded. */
d00adf39
DE
12041 CORE_ADDR base = cu->base_address;
12042 int base_known = cu->base_known;
801e3a5b 12043
d62bfeaf 12044 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12045 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12046 {
12047 complaint (&symfile_complaints,
12048 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12049 offset);
12050 return;
12051 }
d62bfeaf 12052 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12053
12054 for (;;)
12055 {
12056 unsigned int bytes_read;
12057 CORE_ADDR start, end;
12058
12059 start = read_address (obfd, buffer, cu, &bytes_read);
12060 buffer += bytes_read;
12061 end = read_address (obfd, buffer, cu, &bytes_read);
12062 buffer += bytes_read;
12063
12064 /* Did we find the end of the range list? */
12065 if (start == 0 && end == 0)
12066 break;
12067
12068 /* Did we find a base address selection entry? */
12069 else if ((start & base_select_mask) == base_select_mask)
12070 {
12071 base = end;
12072 base_known = 1;
12073 }
12074
12075 /* We found an ordinary address range. */
12076 else
12077 {
12078 if (!base_known)
12079 {
12080 complaint (&symfile_complaints,
3e43a32a
MS
12081 _("Invalid .debug_ranges data "
12082 "(no base address)"));
801e3a5b
JB
12083 return;
12084 }
12085
9277c30c
UW
12086 if (start > end)
12087 {
12088 /* Inverted range entries are invalid. */
12089 complaint (&symfile_complaints,
12090 _("Invalid .debug_ranges data "
12091 "(inverted range)"));
12092 return;
12093 }
12094
12095 /* Empty range entries have no effect. */
12096 if (start == end)
12097 continue;
12098
01093045
DE
12099 start += base + baseaddr;
12100 end += base + baseaddr;
12101
12102 /* A not-uncommon case of bad debug info.
12103 Don't pollute the addrmap with bad data. */
12104 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12105 {
12106 complaint (&symfile_complaints,
12107 _(".debug_ranges entry has start address of zero"
4262abfb 12108 " [in module %s]"), objfile_name (objfile));
01093045
DE
12109 continue;
12110 }
12111
12112 record_block_range (block, start, end - 1);
801e3a5b
JB
12113 }
12114 }
12115 }
12116}
12117
685b1105
JK
12118/* Check whether the producer field indicates either of GCC < 4.6, or the
12119 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12120
685b1105
JK
12121static void
12122check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12123{
12124 const char *cs;
12125 int major, minor, release;
12126
12127 if (cu->producer == NULL)
12128 {
12129 /* For unknown compilers expect their behavior is DWARF version
12130 compliant.
12131
12132 GCC started to support .debug_types sections by -gdwarf-4 since
12133 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12134 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12135 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12136 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12137 }
685b1105 12138 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12139 {
685b1105
JK
12140 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12141
ba919b58
TT
12142 cs = &cu->producer[strlen ("GNU ")];
12143 while (*cs && !isdigit (*cs))
12144 cs++;
12145 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12146 {
12147 /* Not recognized as GCC. */
12148 }
12149 else
1b80a9fa
JK
12150 {
12151 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12152 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12153 }
685b1105
JK
12154 }
12155 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12156 cu->producer_is_icc = 1;
12157 else
12158 {
12159 /* For other non-GCC compilers, expect their behavior is DWARF version
12160 compliant. */
60d5a603
JK
12161 }
12162
ba919b58 12163 cu->checked_producer = 1;
685b1105 12164}
ba919b58 12165
685b1105
JK
12166/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12167 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12168 during 4.6.0 experimental. */
12169
12170static int
12171producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12172{
12173 if (!cu->checked_producer)
12174 check_producer (cu);
12175
12176 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12177}
12178
12179/* Return the default accessibility type if it is not overriden by
12180 DW_AT_accessibility. */
12181
12182static enum dwarf_access_attribute
12183dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12184{
12185 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12186 {
12187 /* The default DWARF 2 accessibility for members is public, the default
12188 accessibility for inheritance is private. */
12189
12190 if (die->tag != DW_TAG_inheritance)
12191 return DW_ACCESS_public;
12192 else
12193 return DW_ACCESS_private;
12194 }
12195 else
12196 {
12197 /* DWARF 3+ defines the default accessibility a different way. The same
12198 rules apply now for DW_TAG_inheritance as for the members and it only
12199 depends on the container kind. */
12200
12201 if (die->parent->tag == DW_TAG_class_type)
12202 return DW_ACCESS_private;
12203 else
12204 return DW_ACCESS_public;
12205 }
12206}
12207
74ac6d43
TT
12208/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12209 offset. If the attribute was not found return 0, otherwise return
12210 1. If it was found but could not properly be handled, set *OFFSET
12211 to 0. */
12212
12213static int
12214handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12215 LONGEST *offset)
12216{
12217 struct attribute *attr;
12218
12219 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12220 if (attr != NULL)
12221 {
12222 *offset = 0;
12223
12224 /* Note that we do not check for a section offset first here.
12225 This is because DW_AT_data_member_location is new in DWARF 4,
12226 so if we see it, we can assume that a constant form is really
12227 a constant and not a section offset. */
12228 if (attr_form_is_constant (attr))
12229 *offset = dwarf2_get_attr_constant_value (attr, 0);
12230 else if (attr_form_is_section_offset (attr))
12231 dwarf2_complex_location_expr_complaint ();
12232 else if (attr_form_is_block (attr))
12233 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12234 else
12235 dwarf2_complex_location_expr_complaint ();
12236
12237 return 1;
12238 }
12239
12240 return 0;
12241}
12242
c906108c
SS
12243/* Add an aggregate field to the field list. */
12244
12245static void
107d2387 12246dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12247 struct dwarf2_cu *cu)
6e70227d 12248{
e7c27a73 12249 struct objfile *objfile = cu->objfile;
5e2b427d 12250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12251 struct nextfield *new_field;
12252 struct attribute *attr;
12253 struct field *fp;
15d034d0 12254 const char *fieldname = "";
c906108c
SS
12255
12256 /* Allocate a new field list entry and link it in. */
12257 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12258 make_cleanup (xfree, new_field);
c906108c 12259 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12260
12261 if (die->tag == DW_TAG_inheritance)
12262 {
12263 new_field->next = fip->baseclasses;
12264 fip->baseclasses = new_field;
12265 }
12266 else
12267 {
12268 new_field->next = fip->fields;
12269 fip->fields = new_field;
12270 }
c906108c
SS
12271 fip->nfields++;
12272
e142c38c 12273 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12274 if (attr)
12275 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12276 else
12277 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12278 if (new_field->accessibility != DW_ACCESS_public)
12279 fip->non_public_fields = 1;
60d5a603 12280
e142c38c 12281 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12282 if (attr)
12283 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12284 else
12285 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12286
12287 fp = &new_field->field;
a9a9bd0f 12288
e142c38c 12289 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12290 {
74ac6d43
TT
12291 LONGEST offset;
12292
a9a9bd0f 12293 /* Data member other than a C++ static data member. */
6e70227d 12294
c906108c 12295 /* Get type of field. */
e7c27a73 12296 fp->type = die_type (die, cu);
c906108c 12297
d6a843b5 12298 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12299
c906108c 12300 /* Get bit size of field (zero if none). */
e142c38c 12301 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12302 if (attr)
12303 {
12304 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12305 }
12306 else
12307 {
12308 FIELD_BITSIZE (*fp) = 0;
12309 }
12310
12311 /* Get bit offset of field. */
74ac6d43
TT
12312 if (handle_data_member_location (die, cu, &offset))
12313 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12314 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12315 if (attr)
12316 {
5e2b427d 12317 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12318 {
12319 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12320 additional bit offset from the MSB of the containing
12321 anonymous object to the MSB of the field. We don't
12322 have to do anything special since we don't need to
12323 know the size of the anonymous object. */
f41f5e61 12324 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12325 }
12326 else
12327 {
12328 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12329 MSB of the anonymous object, subtract off the number of
12330 bits from the MSB of the field to the MSB of the
12331 object, and then subtract off the number of bits of
12332 the field itself. The result is the bit offset of
12333 the LSB of the field. */
c906108c
SS
12334 int anonymous_size;
12335 int bit_offset = DW_UNSND (attr);
12336
e142c38c 12337 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12338 if (attr)
12339 {
12340 /* The size of the anonymous object containing
12341 the bit field is explicit, so use the
12342 indicated size (in bytes). */
12343 anonymous_size = DW_UNSND (attr);
12344 }
12345 else
12346 {
12347 /* The size of the anonymous object containing
12348 the bit field must be inferred from the type
12349 attribute of the data member containing the
12350 bit field. */
12351 anonymous_size = TYPE_LENGTH (fp->type);
12352 }
f41f5e61
PA
12353 SET_FIELD_BITPOS (*fp,
12354 (FIELD_BITPOS (*fp)
12355 + anonymous_size * bits_per_byte
12356 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12357 }
12358 }
12359
12360 /* Get name of field. */
39cbfefa
DJ
12361 fieldname = dwarf2_name (die, cu);
12362 if (fieldname == NULL)
12363 fieldname = "";
d8151005
DJ
12364
12365 /* The name is already allocated along with this objfile, so we don't
12366 need to duplicate it for the type. */
12367 fp->name = fieldname;
c906108c
SS
12368
12369 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12370 pointer or virtual base class pointer) to private. */
e142c38c 12371 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12372 {
d48cc9dd 12373 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12374 new_field->accessibility = DW_ACCESS_private;
12375 fip->non_public_fields = 1;
12376 }
12377 }
a9a9bd0f 12378 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12379 {
a9a9bd0f
DC
12380 /* C++ static member. */
12381
12382 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12383 is a declaration, but all versions of G++ as of this writing
12384 (so through at least 3.2.1) incorrectly generate
12385 DW_TAG_variable tags. */
6e70227d 12386
ff355380 12387 const char *physname;
c906108c 12388
a9a9bd0f 12389 /* Get name of field. */
39cbfefa
DJ
12390 fieldname = dwarf2_name (die, cu);
12391 if (fieldname == NULL)
c906108c
SS
12392 return;
12393
254e6b9e 12394 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12395 if (attr
12396 /* Only create a symbol if this is an external value.
12397 new_symbol checks this and puts the value in the global symbol
12398 table, which we want. If it is not external, new_symbol
12399 will try to put the value in cu->list_in_scope which is wrong. */
12400 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12401 {
12402 /* A static const member, not much different than an enum as far as
12403 we're concerned, except that we can support more types. */
12404 new_symbol (die, NULL, cu);
12405 }
12406
2df3850c 12407 /* Get physical name. */
ff355380 12408 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12409
d8151005
DJ
12410 /* The name is already allocated along with this objfile, so we don't
12411 need to duplicate it for the type. */
12412 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12413 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12414 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12415 }
12416 else if (die->tag == DW_TAG_inheritance)
12417 {
74ac6d43 12418 LONGEST offset;
d4b96c9a 12419
74ac6d43
TT
12420 /* C++ base class field. */
12421 if (handle_data_member_location (die, cu, &offset))
12422 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12423 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12424 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12425 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12426 fip->nbaseclasses++;
12427 }
12428}
12429
98751a41
JK
12430/* Add a typedef defined in the scope of the FIP's class. */
12431
12432static void
12433dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12434 struct dwarf2_cu *cu)
6e70227d 12435{
98751a41 12436 struct objfile *objfile = cu->objfile;
98751a41
JK
12437 struct typedef_field_list *new_field;
12438 struct attribute *attr;
12439 struct typedef_field *fp;
12440 char *fieldname = "";
12441
12442 /* Allocate a new field list entry and link it in. */
12443 new_field = xzalloc (sizeof (*new_field));
12444 make_cleanup (xfree, new_field);
12445
12446 gdb_assert (die->tag == DW_TAG_typedef);
12447
12448 fp = &new_field->field;
12449
12450 /* Get name of field. */
12451 fp->name = dwarf2_name (die, cu);
12452 if (fp->name == NULL)
12453 return;
12454
12455 fp->type = read_type_die (die, cu);
12456
12457 new_field->next = fip->typedef_field_list;
12458 fip->typedef_field_list = new_field;
12459 fip->typedef_field_list_count++;
12460}
12461
c906108c
SS
12462/* Create the vector of fields, and attach it to the type. */
12463
12464static void
fba45db2 12465dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12466 struct dwarf2_cu *cu)
c906108c
SS
12467{
12468 int nfields = fip->nfields;
12469
12470 /* Record the field count, allocate space for the array of fields,
12471 and create blank accessibility bitfields if necessary. */
12472 TYPE_NFIELDS (type) = nfields;
12473 TYPE_FIELDS (type) = (struct field *)
12474 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12475 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12476
b4ba55a1 12477 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12478 {
12479 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12480
12481 TYPE_FIELD_PRIVATE_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12484
12485 TYPE_FIELD_PROTECTED_BITS (type) =
12486 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12487 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12488
774b6a14
TT
12489 TYPE_FIELD_IGNORE_BITS (type) =
12490 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12491 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12492 }
12493
12494 /* If the type has baseclasses, allocate and clear a bit vector for
12495 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12496 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12497 {
12498 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12499 unsigned char *pointer;
c906108c
SS
12500
12501 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12502 pointer = TYPE_ALLOC (type, num_bytes);
12503 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12504 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12505 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12506 }
12507
3e43a32a
MS
12508 /* Copy the saved-up fields into the field vector. Start from the head of
12509 the list, adding to the tail of the field array, so that they end up in
12510 the same order in the array in which they were added to the list. */
c906108c
SS
12511 while (nfields-- > 0)
12512 {
7d0ccb61
DJ
12513 struct nextfield *fieldp;
12514
12515 if (fip->fields)
12516 {
12517 fieldp = fip->fields;
12518 fip->fields = fieldp->next;
12519 }
12520 else
12521 {
12522 fieldp = fip->baseclasses;
12523 fip->baseclasses = fieldp->next;
12524 }
12525
12526 TYPE_FIELD (type, nfields) = fieldp->field;
12527 switch (fieldp->accessibility)
c906108c 12528 {
c5aa993b 12529 case DW_ACCESS_private:
b4ba55a1
JB
12530 if (cu->language != language_ada)
12531 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12532 break;
c906108c 12533
c5aa993b 12534 case DW_ACCESS_protected:
b4ba55a1
JB
12535 if (cu->language != language_ada)
12536 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12537 break;
c906108c 12538
c5aa993b
JM
12539 case DW_ACCESS_public:
12540 break;
c906108c 12541
c5aa993b
JM
12542 default:
12543 /* Unknown accessibility. Complain and treat it as public. */
12544 {
e2e0b3e5 12545 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12546 fieldp->accessibility);
c5aa993b
JM
12547 }
12548 break;
c906108c
SS
12549 }
12550 if (nfields < fip->nbaseclasses)
12551 {
7d0ccb61 12552 switch (fieldp->virtuality)
c906108c 12553 {
c5aa993b
JM
12554 case DW_VIRTUALITY_virtual:
12555 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12556 if (cu->language == language_ada)
a73c6dcd 12557 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12558 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12559 break;
c906108c
SS
12560 }
12561 }
c906108c
SS
12562 }
12563}
12564
7d27a96d
TT
12565/* Return true if this member function is a constructor, false
12566 otherwise. */
12567
12568static int
12569dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12570{
12571 const char *fieldname;
12572 const char *typename;
12573 int len;
12574
12575 if (die->parent == NULL)
12576 return 0;
12577
12578 if (die->parent->tag != DW_TAG_structure_type
12579 && die->parent->tag != DW_TAG_union_type
12580 && die->parent->tag != DW_TAG_class_type)
12581 return 0;
12582
12583 fieldname = dwarf2_name (die, cu);
12584 typename = dwarf2_name (die->parent, cu);
12585 if (fieldname == NULL || typename == NULL)
12586 return 0;
12587
12588 len = strlen (fieldname);
12589 return (strncmp (fieldname, typename, len) == 0
12590 && (typename[len] == '\0' || typename[len] == '<'));
12591}
12592
c906108c
SS
12593/* Add a member function to the proper fieldlist. */
12594
12595static void
107d2387 12596dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12597 struct type *type, struct dwarf2_cu *cu)
c906108c 12598{
e7c27a73 12599 struct objfile *objfile = cu->objfile;
c906108c
SS
12600 struct attribute *attr;
12601 struct fnfieldlist *flp;
12602 int i;
12603 struct fn_field *fnp;
15d034d0 12604 const char *fieldname;
c906108c 12605 struct nextfnfield *new_fnfield;
f792889a 12606 struct type *this_type;
60d5a603 12607 enum dwarf_access_attribute accessibility;
c906108c 12608
b4ba55a1 12609 if (cu->language == language_ada)
a73c6dcd 12610 error (_("unexpected member function in Ada type"));
b4ba55a1 12611
2df3850c 12612 /* Get name of member function. */
39cbfefa
DJ
12613 fieldname = dwarf2_name (die, cu);
12614 if (fieldname == NULL)
2df3850c 12615 return;
c906108c 12616
c906108c
SS
12617 /* Look up member function name in fieldlist. */
12618 for (i = 0; i < fip->nfnfields; i++)
12619 {
27bfe10e 12620 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12621 break;
12622 }
12623
12624 /* Create new list element if necessary. */
12625 if (i < fip->nfnfields)
12626 flp = &fip->fnfieldlists[i];
12627 else
12628 {
12629 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12630 {
12631 fip->fnfieldlists = (struct fnfieldlist *)
12632 xrealloc (fip->fnfieldlists,
12633 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12634 * sizeof (struct fnfieldlist));
c906108c 12635 if (fip->nfnfields == 0)
c13c43fd 12636 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12637 }
12638 flp = &fip->fnfieldlists[fip->nfnfields];
12639 flp->name = fieldname;
12640 flp->length = 0;
12641 flp->head = NULL;
3da10d80 12642 i = fip->nfnfields++;
c906108c
SS
12643 }
12644
12645 /* Create a new member function field and chain it to the field list
0963b4bd 12646 entry. */
c906108c 12647 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12648 make_cleanup (xfree, new_fnfield);
c906108c
SS
12649 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12650 new_fnfield->next = flp->head;
12651 flp->head = new_fnfield;
12652 flp->length++;
12653
12654 /* Fill in the member function field info. */
12655 fnp = &new_fnfield->fnfield;
3da10d80
KS
12656
12657 /* Delay processing of the physname until later. */
12658 if (cu->language == language_cplus || cu->language == language_java)
12659 {
12660 add_to_method_list (type, i, flp->length - 1, fieldname,
12661 die, cu);
12662 }
12663 else
12664 {
1d06ead6 12665 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12666 fnp->physname = physname ? physname : "";
12667 }
12668
c906108c 12669 fnp->type = alloc_type (objfile);
f792889a
DJ
12670 this_type = read_type_die (die, cu);
12671 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12672 {
f792889a 12673 int nparams = TYPE_NFIELDS (this_type);
c906108c 12674
f792889a 12675 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12676 of the method itself (TYPE_CODE_METHOD). */
12677 smash_to_method_type (fnp->type, type,
f792889a
DJ
12678 TYPE_TARGET_TYPE (this_type),
12679 TYPE_FIELDS (this_type),
12680 TYPE_NFIELDS (this_type),
12681 TYPE_VARARGS (this_type));
c906108c
SS
12682
12683 /* Handle static member functions.
c5aa993b 12684 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12685 member functions. G++ helps GDB by marking the first
12686 parameter for non-static member functions (which is the this
12687 pointer) as artificial. We obtain this information from
12688 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12689 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12690 fnp->voffset = VOFFSET_STATIC;
12691 }
12692 else
e2e0b3e5 12693 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12694 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12695
12696 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12697 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12698 fnp->fcontext = die_containing_type (die, cu);
c906108c 12699
3e43a32a
MS
12700 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12701 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12702
12703 /* Get accessibility. */
e142c38c 12704 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12705 if (attr)
60d5a603
JK
12706 accessibility = DW_UNSND (attr);
12707 else
12708 accessibility = dwarf2_default_access_attribute (die, cu);
12709 switch (accessibility)
c906108c 12710 {
60d5a603
JK
12711 case DW_ACCESS_private:
12712 fnp->is_private = 1;
12713 break;
12714 case DW_ACCESS_protected:
12715 fnp->is_protected = 1;
12716 break;
c906108c
SS
12717 }
12718
b02dede2 12719 /* Check for artificial methods. */
e142c38c 12720 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12721 if (attr && DW_UNSND (attr) != 0)
12722 fnp->is_artificial = 1;
12723
7d27a96d
TT
12724 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12725
0d564a31 12726 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12727 function. For older versions of GCC, this is an offset in the
12728 appropriate virtual table, as specified by DW_AT_containing_type.
12729 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12730 to the object address. */
12731
e142c38c 12732 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12733 if (attr)
8e19ed76 12734 {
aec5aa8b 12735 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12736 {
aec5aa8b
TT
12737 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12738 {
12739 /* Old-style GCC. */
12740 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12741 }
12742 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12743 || (DW_BLOCK (attr)->size > 1
12744 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12745 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12746 {
12747 struct dwarf_block blk;
12748 int offset;
12749
12750 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12751 ? 1 : 2);
12752 blk.size = DW_BLOCK (attr)->size - offset;
12753 blk.data = DW_BLOCK (attr)->data + offset;
12754 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12755 if ((fnp->voffset % cu->header.addr_size) != 0)
12756 dwarf2_complex_location_expr_complaint ();
12757 else
12758 fnp->voffset /= cu->header.addr_size;
12759 fnp->voffset += 2;
12760 }
12761 else
12762 dwarf2_complex_location_expr_complaint ();
12763
12764 if (!fnp->fcontext)
12765 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12766 }
3690dd37 12767 else if (attr_form_is_section_offset (attr))
8e19ed76 12768 {
4d3c2250 12769 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12770 }
12771 else
12772 {
4d3c2250
KB
12773 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12774 fieldname);
8e19ed76 12775 }
0d564a31 12776 }
d48cc9dd
DJ
12777 else
12778 {
12779 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12780 if (attr && DW_UNSND (attr))
12781 {
12782 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12783 complaint (&symfile_complaints,
3e43a32a
MS
12784 _("Member function \"%s\" (offset %d) is virtual "
12785 "but the vtable offset is not specified"),
b64f50a1 12786 fieldname, die->offset.sect_off);
9655fd1a 12787 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12788 TYPE_CPLUS_DYNAMIC (type) = 1;
12789 }
12790 }
c906108c
SS
12791}
12792
12793/* Create the vector of member function fields, and attach it to the type. */
12794
12795static void
fba45db2 12796dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12797 struct dwarf2_cu *cu)
c906108c
SS
12798{
12799 struct fnfieldlist *flp;
c906108c
SS
12800 int i;
12801
b4ba55a1 12802 if (cu->language == language_ada)
a73c6dcd 12803 error (_("unexpected member functions in Ada type"));
b4ba55a1 12804
c906108c
SS
12805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12806 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12807 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12808
12809 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12810 {
12811 struct nextfnfield *nfp = flp->head;
12812 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12813 int k;
12814
12815 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12816 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12817 fn_flp->fn_fields = (struct fn_field *)
12818 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12819 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12820 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12821 }
12822
12823 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12824}
12825
1168df01
JB
12826/* Returns non-zero if NAME is the name of a vtable member in CU's
12827 language, zero otherwise. */
12828static int
12829is_vtable_name (const char *name, struct dwarf2_cu *cu)
12830{
12831 static const char vptr[] = "_vptr";
987504bb 12832 static const char vtable[] = "vtable";
1168df01 12833
987504bb
JJ
12834 /* Look for the C++ and Java forms of the vtable. */
12835 if ((cu->language == language_java
12836 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12837 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12838 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12839 return 1;
12840
12841 return 0;
12842}
12843
c0dd20ea 12844/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12845 functions, with the ABI-specified layout. If TYPE describes
12846 such a structure, smash it into a member function type.
61049d3b
DJ
12847
12848 GCC shouldn't do this; it should just output pointer to member DIEs.
12849 This is GCC PR debug/28767. */
c0dd20ea 12850
0b92b5bb
TT
12851static void
12852quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12853{
0b92b5bb 12854 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12855
12856 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12857 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12858 return;
c0dd20ea
DJ
12859
12860 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12861 if (TYPE_FIELD_NAME (type, 0) == NULL
12862 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12863 || TYPE_FIELD_NAME (type, 1) == NULL
12864 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12865 return;
c0dd20ea
DJ
12866
12867 /* Find the type of the method. */
0b92b5bb 12868 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12869 if (pfn_type == NULL
12870 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12871 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12872 return;
c0dd20ea
DJ
12873
12874 /* Look for the "this" argument. */
12875 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12876 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12877 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12878 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12879 return;
c0dd20ea
DJ
12880
12881 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12882 new_type = alloc_type (objfile);
12883 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12884 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12885 TYPE_VARARGS (pfn_type));
0b92b5bb 12886 smash_to_methodptr_type (type, new_type);
c0dd20ea 12887}
1168df01 12888
685b1105
JK
12889/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12890 (icc). */
12891
12892static int
12893producer_is_icc (struct dwarf2_cu *cu)
12894{
12895 if (!cu->checked_producer)
12896 check_producer (cu);
12897
12898 return cu->producer_is_icc;
12899}
12900
c906108c 12901/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12902 (definition) to create a type for the structure or union. Fill in
12903 the type's name and general properties; the members will not be
83655187
DE
12904 processed until process_structure_scope. A symbol table entry for
12905 the type will also not be done until process_structure_scope (assuming
12906 the type has a name).
c906108c 12907
c767944b
DJ
12908 NOTE: we need to call these functions regardless of whether or not the
12909 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 12910 structure or union. This gets the type entered into our set of
83655187 12911 user defined types. */
c906108c 12912
f792889a 12913static struct type *
134d01f1 12914read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12915{
e7c27a73 12916 struct objfile *objfile = cu->objfile;
c906108c
SS
12917 struct type *type;
12918 struct attribute *attr;
15d034d0 12919 const char *name;
c906108c 12920
348e048f
DE
12921 /* If the definition of this type lives in .debug_types, read that type.
12922 Don't follow DW_AT_specification though, that will take us back up
12923 the chain and we want to go down. */
45e58e77 12924 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12925 if (attr)
12926 {
ac9ec31b 12927 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12928
ac9ec31b 12929 /* The type's CU may not be the same as CU.
02142a6c 12930 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12931 return set_die_type (die, type, cu);
12932 }
12933
c0dd20ea 12934 type = alloc_type (objfile);
c906108c 12935 INIT_CPLUS_SPECIFIC (type);
93311388 12936
39cbfefa
DJ
12937 name = dwarf2_name (die, cu);
12938 if (name != NULL)
c906108c 12939 {
987504bb
JJ
12940 if (cu->language == language_cplus
12941 || cu->language == language_java)
63d06c5c 12942 {
15d034d0 12943 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12944
12945 /* dwarf2_full_name might have already finished building the DIE's
12946 type. If so, there is no need to continue. */
12947 if (get_die_type (die, cu) != NULL)
12948 return get_die_type (die, cu);
12949
12950 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12951 if (die->tag == DW_TAG_structure_type
12952 || die->tag == DW_TAG_class_type)
12953 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12954 }
12955 else
12956 {
d8151005
DJ
12957 /* The name is already allocated along with this objfile, so
12958 we don't need to duplicate it for the type. */
7d455152 12959 TYPE_TAG_NAME (type) = name;
94af9270
KS
12960 if (die->tag == DW_TAG_class_type)
12961 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12962 }
c906108c
SS
12963 }
12964
12965 if (die->tag == DW_TAG_structure_type)
12966 {
12967 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12968 }
12969 else if (die->tag == DW_TAG_union_type)
12970 {
12971 TYPE_CODE (type) = TYPE_CODE_UNION;
12972 }
12973 else
12974 {
4753d33b 12975 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
12976 }
12977
0cc2414c
TT
12978 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12979 TYPE_DECLARED_CLASS (type) = 1;
12980
e142c38c 12981 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12982 if (attr)
12983 {
12984 TYPE_LENGTH (type) = DW_UNSND (attr);
12985 }
12986 else
12987 {
12988 TYPE_LENGTH (type) = 0;
12989 }
12990
422b1cb0 12991 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
12992 {
12993 /* ICC does not output the required DW_AT_declaration
12994 on incomplete types, but gives them a size of zero. */
422b1cb0 12995 TYPE_STUB (type) = 1;
685b1105
JK
12996 }
12997 else
12998 TYPE_STUB_SUPPORTED (type) = 1;
12999
dc718098 13000 if (die_is_declaration (die, cu))
876cecd0 13001 TYPE_STUB (type) = 1;
a6c727b2
DJ
13002 else if (attr == NULL && die->child == NULL
13003 && producer_is_realview (cu->producer))
13004 /* RealView does not output the required DW_AT_declaration
13005 on incomplete types. */
13006 TYPE_STUB (type) = 1;
dc718098 13007
c906108c
SS
13008 /* We need to add the type field to the die immediately so we don't
13009 infinitely recurse when dealing with pointers to the structure
0963b4bd 13010 type within the structure itself. */
1c379e20 13011 set_die_type (die, type, cu);
c906108c 13012
7e314c57
JK
13013 /* set_die_type should be already done. */
13014 set_descriptive_type (type, die, cu);
13015
c767944b
DJ
13016 return type;
13017}
13018
13019/* Finish creating a structure or union type, including filling in
13020 its members and creating a symbol for it. */
13021
13022static void
13023process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13024{
13025 struct objfile *objfile = cu->objfile;
ca040673 13026 struct die_info *child_die;
c767944b
DJ
13027 struct type *type;
13028
13029 type = get_die_type (die, cu);
13030 if (type == NULL)
13031 type = read_structure_type (die, cu);
13032
e142c38c 13033 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13034 {
13035 struct field_info fi;
34eaf542 13036 VEC (symbolp) *template_args = NULL;
c767944b 13037 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13038
13039 memset (&fi, 0, sizeof (struct field_info));
13040
639d11d3 13041 child_die = die->child;
c906108c
SS
13042
13043 while (child_die && child_die->tag)
13044 {
a9a9bd0f
DC
13045 if (child_die->tag == DW_TAG_member
13046 || child_die->tag == DW_TAG_variable)
c906108c 13047 {
a9a9bd0f
DC
13048 /* NOTE: carlton/2002-11-05: A C++ static data member
13049 should be a DW_TAG_member that is a declaration, but
13050 all versions of G++ as of this writing (so through at
13051 least 3.2.1) incorrectly generate DW_TAG_variable
13052 tags for them instead. */
e7c27a73 13053 dwarf2_add_field (&fi, child_die, cu);
c906108c 13054 }
8713b1b1 13055 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13056 {
0963b4bd 13057 /* C++ member function. */
e7c27a73 13058 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13059 }
13060 else if (child_die->tag == DW_TAG_inheritance)
13061 {
13062 /* C++ base class field. */
e7c27a73 13063 dwarf2_add_field (&fi, child_die, cu);
c906108c 13064 }
98751a41
JK
13065 else if (child_die->tag == DW_TAG_typedef)
13066 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13067 else if (child_die->tag == DW_TAG_template_type_param
13068 || child_die->tag == DW_TAG_template_value_param)
13069 {
13070 struct symbol *arg = new_symbol (child_die, NULL, cu);
13071
f1078f66
DJ
13072 if (arg != NULL)
13073 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13074 }
13075
c906108c
SS
13076 child_die = sibling_die (child_die);
13077 }
13078
34eaf542
TT
13079 /* Attach template arguments to type. */
13080 if (! VEC_empty (symbolp, template_args))
13081 {
13082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13083 TYPE_N_TEMPLATE_ARGUMENTS (type)
13084 = VEC_length (symbolp, template_args);
13085 TYPE_TEMPLATE_ARGUMENTS (type)
13086 = obstack_alloc (&objfile->objfile_obstack,
13087 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13088 * sizeof (struct symbol *)));
13089 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13090 VEC_address (symbolp, template_args),
13091 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13092 * sizeof (struct symbol *)));
13093 VEC_free (symbolp, template_args);
13094 }
13095
c906108c
SS
13096 /* Attach fields and member functions to the type. */
13097 if (fi.nfields)
e7c27a73 13098 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13099 if (fi.nfnfields)
13100 {
e7c27a73 13101 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13102
c5aa993b 13103 /* Get the type which refers to the base class (possibly this
c906108c 13104 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13105 class from the DW_AT_containing_type attribute. This use of
13106 DW_AT_containing_type is a GNU extension. */
c906108c 13107
e142c38c 13108 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13109 {
e7c27a73 13110 struct type *t = die_containing_type (die, cu);
c906108c
SS
13111
13112 TYPE_VPTR_BASETYPE (type) = t;
13113 if (type == t)
13114 {
c906108c
SS
13115 int i;
13116
13117 /* Our own class provides vtbl ptr. */
13118 for (i = TYPE_NFIELDS (t) - 1;
13119 i >= TYPE_N_BASECLASSES (t);
13120 --i)
13121 {
0d5cff50 13122 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13123
1168df01 13124 if (is_vtable_name (fieldname, cu))
c906108c
SS
13125 {
13126 TYPE_VPTR_FIELDNO (type) = i;
13127 break;
13128 }
13129 }
13130
13131 /* Complain if virtual function table field not found. */
13132 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13133 complaint (&symfile_complaints,
3e43a32a
MS
13134 _("virtual function table pointer "
13135 "not found when defining class '%s'"),
4d3c2250
KB
13136 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13137 "");
c906108c
SS
13138 }
13139 else
13140 {
13141 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13142 }
13143 }
f6235d4c
EZ
13144 else if (cu->producer
13145 && strncmp (cu->producer,
13146 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13147 {
13148 /* The IBM XLC compiler does not provide direct indication
13149 of the containing type, but the vtable pointer is
13150 always named __vfp. */
13151
13152 int i;
13153
13154 for (i = TYPE_NFIELDS (type) - 1;
13155 i >= TYPE_N_BASECLASSES (type);
13156 --i)
13157 {
13158 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13159 {
13160 TYPE_VPTR_FIELDNO (type) = i;
13161 TYPE_VPTR_BASETYPE (type) = type;
13162 break;
13163 }
13164 }
13165 }
c906108c 13166 }
98751a41
JK
13167
13168 /* Copy fi.typedef_field_list linked list elements content into the
13169 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13170 if (fi.typedef_field_list)
13171 {
13172 int i = fi.typedef_field_list_count;
13173
a0d7a4ff 13174 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13175 TYPE_TYPEDEF_FIELD_ARRAY (type)
13176 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13177 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13178
13179 /* Reverse the list order to keep the debug info elements order. */
13180 while (--i >= 0)
13181 {
13182 struct typedef_field *dest, *src;
6e70227d 13183
98751a41
JK
13184 dest = &TYPE_TYPEDEF_FIELD (type, i);
13185 src = &fi.typedef_field_list->field;
13186 fi.typedef_field_list = fi.typedef_field_list->next;
13187 *dest = *src;
13188 }
13189 }
c767944b
DJ
13190
13191 do_cleanups (back_to);
eb2a6f42
TT
13192
13193 if (HAVE_CPLUS_STRUCT (type))
13194 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13195 }
63d06c5c 13196
bb5ed363 13197 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13198
90aeadfc
DC
13199 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13200 snapshots) has been known to create a die giving a declaration
13201 for a class that has, as a child, a die giving a definition for a
13202 nested class. So we have to process our children even if the
13203 current die is a declaration. Normally, of course, a declaration
13204 won't have any children at all. */
134d01f1 13205
ca040673
DE
13206 child_die = die->child;
13207
90aeadfc
DC
13208 while (child_die != NULL && child_die->tag)
13209 {
13210 if (child_die->tag == DW_TAG_member
13211 || child_die->tag == DW_TAG_variable
34eaf542
TT
13212 || child_die->tag == DW_TAG_inheritance
13213 || child_die->tag == DW_TAG_template_value_param
13214 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13215 {
90aeadfc 13216 /* Do nothing. */
134d01f1 13217 }
90aeadfc
DC
13218 else
13219 process_die (child_die, cu);
134d01f1 13220
90aeadfc 13221 child_die = sibling_die (child_die);
134d01f1
DJ
13222 }
13223
fa4028e9
JB
13224 /* Do not consider external references. According to the DWARF standard,
13225 these DIEs are identified by the fact that they have no byte_size
13226 attribute, and a declaration attribute. */
13227 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13228 || !die_is_declaration (die, cu))
c767944b 13229 new_symbol (die, type, cu);
134d01f1
DJ
13230}
13231
55426c9d
JB
13232/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13233 update TYPE using some information only available in DIE's children. */
13234
13235static void
13236update_enumeration_type_from_children (struct die_info *die,
13237 struct type *type,
13238 struct dwarf2_cu *cu)
13239{
13240 struct obstack obstack;
60f7655a 13241 struct die_info *child_die;
55426c9d
JB
13242 int unsigned_enum = 1;
13243 int flag_enum = 1;
13244 ULONGEST mask = 0;
13245 struct cleanup *old_chain;
13246
13247 obstack_init (&obstack);
13248 old_chain = make_cleanup_obstack_free (&obstack);
13249
60f7655a
DE
13250 for (child_die = die->child;
13251 child_die != NULL && child_die->tag;
13252 child_die = sibling_die (child_die))
55426c9d
JB
13253 {
13254 struct attribute *attr;
13255 LONGEST value;
13256 const gdb_byte *bytes;
13257 struct dwarf2_locexpr_baton *baton;
13258 const char *name;
60f7655a 13259
55426c9d
JB
13260 if (child_die->tag != DW_TAG_enumerator)
13261 continue;
13262
13263 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13264 if (attr == NULL)
13265 continue;
13266
13267 name = dwarf2_name (child_die, cu);
13268 if (name == NULL)
13269 name = "<anonymous enumerator>";
13270
13271 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13272 &value, &bytes, &baton);
13273 if (value < 0)
13274 {
13275 unsigned_enum = 0;
13276 flag_enum = 0;
13277 }
13278 else if ((mask & value) != 0)
13279 flag_enum = 0;
13280 else
13281 mask |= value;
13282
13283 /* If we already know that the enum type is neither unsigned, nor
13284 a flag type, no need to look at the rest of the enumerates. */
13285 if (!unsigned_enum && !flag_enum)
13286 break;
55426c9d
JB
13287 }
13288
13289 if (unsigned_enum)
13290 TYPE_UNSIGNED (type) = 1;
13291 if (flag_enum)
13292 TYPE_FLAG_ENUM (type) = 1;
13293
13294 do_cleanups (old_chain);
13295}
13296
134d01f1
DJ
13297/* Given a DW_AT_enumeration_type die, set its type. We do not
13298 complete the type's fields yet, or create any symbols. */
c906108c 13299
f792889a 13300static struct type *
134d01f1 13301read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13302{
e7c27a73 13303 struct objfile *objfile = cu->objfile;
c906108c 13304 struct type *type;
c906108c 13305 struct attribute *attr;
0114d602 13306 const char *name;
134d01f1 13307
348e048f
DE
13308 /* If the definition of this type lives in .debug_types, read that type.
13309 Don't follow DW_AT_specification though, that will take us back up
13310 the chain and we want to go down. */
45e58e77 13311 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13312 if (attr)
13313 {
ac9ec31b 13314 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13315
ac9ec31b 13316 /* The type's CU may not be the same as CU.
02142a6c 13317 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13318 return set_die_type (die, type, cu);
13319 }
13320
c906108c
SS
13321 type = alloc_type (objfile);
13322
13323 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13324 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13325 if (name != NULL)
7d455152 13326 TYPE_TAG_NAME (type) = name;
c906108c 13327
0626fc76
TT
13328 attr = dwarf2_attr (die, DW_AT_type, cu);
13329 if (attr != NULL)
13330 {
13331 struct type *underlying_type = die_type (die, cu);
13332
13333 TYPE_TARGET_TYPE (type) = underlying_type;
13334 }
13335
e142c38c 13336 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13337 if (attr)
13338 {
13339 TYPE_LENGTH (type) = DW_UNSND (attr);
13340 }
13341 else
13342 {
13343 TYPE_LENGTH (type) = 0;
13344 }
13345
137033e9
JB
13346 /* The enumeration DIE can be incomplete. In Ada, any type can be
13347 declared as private in the package spec, and then defined only
13348 inside the package body. Such types are known as Taft Amendment
13349 Types. When another package uses such a type, an incomplete DIE
13350 may be generated by the compiler. */
02eb380e 13351 if (die_is_declaration (die, cu))
876cecd0 13352 TYPE_STUB (type) = 1;
02eb380e 13353
0626fc76
TT
13354 /* Finish the creation of this type by using the enum's children.
13355 We must call this even when the underlying type has been provided
13356 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13357 update_enumeration_type_from_children (die, type, cu);
13358
0626fc76
TT
13359 /* If this type has an underlying type that is not a stub, then we
13360 may use its attributes. We always use the "unsigned" attribute
13361 in this situation, because ordinarily we guess whether the type
13362 is unsigned -- but the guess can be wrong and the underlying type
13363 can tell us the reality. However, we defer to a local size
13364 attribute if one exists, because this lets the compiler override
13365 the underlying type if needed. */
13366 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13367 {
13368 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13369 if (TYPE_LENGTH (type) == 0)
13370 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13371 }
13372
3d567982
TT
13373 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13374
f792889a 13375 return set_die_type (die, type, cu);
134d01f1
DJ
13376}
13377
13378/* Given a pointer to a die which begins an enumeration, process all
13379 the dies that define the members of the enumeration, and create the
13380 symbol for the enumeration type.
13381
13382 NOTE: We reverse the order of the element list. */
13383
13384static void
13385process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13386{
f792889a 13387 struct type *this_type;
134d01f1 13388
f792889a
DJ
13389 this_type = get_die_type (die, cu);
13390 if (this_type == NULL)
13391 this_type = read_enumeration_type (die, cu);
9dc481d3 13392
639d11d3 13393 if (die->child != NULL)
c906108c 13394 {
9dc481d3
DE
13395 struct die_info *child_die;
13396 struct symbol *sym;
13397 struct field *fields = NULL;
13398 int num_fields = 0;
15d034d0 13399 const char *name;
9dc481d3 13400
639d11d3 13401 child_die = die->child;
c906108c
SS
13402 while (child_die && child_die->tag)
13403 {
13404 if (child_die->tag != DW_TAG_enumerator)
13405 {
e7c27a73 13406 process_die (child_die, cu);
c906108c
SS
13407 }
13408 else
13409 {
39cbfefa
DJ
13410 name = dwarf2_name (child_die, cu);
13411 if (name)
c906108c 13412 {
f792889a 13413 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13414
13415 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13416 {
13417 fields = (struct field *)
13418 xrealloc (fields,
13419 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13420 * sizeof (struct field));
c906108c
SS
13421 }
13422
3567439c 13423 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13424 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13425 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13426 FIELD_BITSIZE (fields[num_fields]) = 0;
13427
13428 num_fields++;
13429 }
13430 }
13431
13432 child_die = sibling_die (child_die);
13433 }
13434
13435 if (num_fields)
13436 {
f792889a
DJ
13437 TYPE_NFIELDS (this_type) = num_fields;
13438 TYPE_FIELDS (this_type) = (struct field *)
13439 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13440 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13441 sizeof (struct field) * num_fields);
b8c9b27d 13442 xfree (fields);
c906108c 13443 }
c906108c 13444 }
134d01f1 13445
6c83ed52
TT
13446 /* If we are reading an enum from a .debug_types unit, and the enum
13447 is a declaration, and the enum is not the signatured type in the
13448 unit, then we do not want to add a symbol for it. Adding a
13449 symbol would in some cases obscure the true definition of the
13450 enum, giving users an incomplete type when the definition is
13451 actually available. Note that we do not want to do this for all
13452 enums which are just declarations, because C++0x allows forward
13453 enum declarations. */
3019eac3 13454 if (cu->per_cu->is_debug_types
6c83ed52
TT
13455 && die_is_declaration (die, cu))
13456 {
52dc124a 13457 struct signatured_type *sig_type;
6c83ed52 13458
c0f78cd4 13459 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13460 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13461 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13462 return;
13463 }
13464
f792889a 13465 new_symbol (die, this_type, cu);
c906108c
SS
13466}
13467
13468/* Extract all information from a DW_TAG_array_type DIE and put it in
13469 the DIE's type field. For now, this only handles one dimensional
13470 arrays. */
13471
f792889a 13472static struct type *
e7c27a73 13473read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13474{
e7c27a73 13475 struct objfile *objfile = cu->objfile;
c906108c 13476 struct die_info *child_die;
7e314c57 13477 struct type *type;
c906108c
SS
13478 struct type *element_type, *range_type, *index_type;
13479 struct type **range_types = NULL;
13480 struct attribute *attr;
13481 int ndim = 0;
13482 struct cleanup *back_to;
15d034d0 13483 const char *name;
dc53a7ad 13484 unsigned int bit_stride = 0;
c906108c 13485
e7c27a73 13486 element_type = die_type (die, cu);
c906108c 13487
7e314c57
JK
13488 /* The die_type call above may have already set the type for this DIE. */
13489 type = get_die_type (die, cu);
13490 if (type)
13491 return type;
13492
dc53a7ad
JB
13493 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13494 if (attr != NULL)
13495 bit_stride = DW_UNSND (attr) * 8;
13496
13497 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13498 if (attr != NULL)
13499 bit_stride = DW_UNSND (attr);
13500
c906108c
SS
13501 /* Irix 6.2 native cc creates array types without children for
13502 arrays with unspecified length. */
639d11d3 13503 if (die->child == NULL)
c906108c 13504 {
46bf5051 13505 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13506 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13507 type = create_array_type_with_stride (NULL, element_type, range_type,
13508 bit_stride);
f792889a 13509 return set_die_type (die, type, cu);
c906108c
SS
13510 }
13511
13512 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13513 child_die = die->child;
c906108c
SS
13514 while (child_die && child_die->tag)
13515 {
13516 if (child_die->tag == DW_TAG_subrange_type)
13517 {
f792889a 13518 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13519
f792889a 13520 if (child_type != NULL)
a02abb62 13521 {
0963b4bd
MS
13522 /* The range type was succesfully read. Save it for the
13523 array type creation. */
a02abb62
JB
13524 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13525 {
13526 range_types = (struct type **)
13527 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13528 * sizeof (struct type *));
13529 if (ndim == 0)
13530 make_cleanup (free_current_contents, &range_types);
13531 }
f792889a 13532 range_types[ndim++] = child_type;
a02abb62 13533 }
c906108c
SS
13534 }
13535 child_die = sibling_die (child_die);
13536 }
13537
13538 /* Dwarf2 dimensions are output from left to right, create the
13539 necessary array types in backwards order. */
7ca2d3a3 13540
c906108c 13541 type = element_type;
7ca2d3a3
DL
13542
13543 if (read_array_order (die, cu) == DW_ORD_col_major)
13544 {
13545 int i = 0;
9a619af0 13546
7ca2d3a3 13547 while (i < ndim)
dc53a7ad
JB
13548 type = create_array_type_with_stride (NULL, type, range_types[i++],
13549 bit_stride);
7ca2d3a3
DL
13550 }
13551 else
13552 {
13553 while (ndim-- > 0)
dc53a7ad
JB
13554 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13555 bit_stride);
7ca2d3a3 13556 }
c906108c 13557
f5f8a009
EZ
13558 /* Understand Dwarf2 support for vector types (like they occur on
13559 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13560 array type. This is not part of the Dwarf2/3 standard yet, but a
13561 custom vendor extension. The main difference between a regular
13562 array and the vector variant is that vectors are passed by value
13563 to functions. */
e142c38c 13564 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13565 if (attr)
ea37ba09 13566 make_vector_type (type);
f5f8a009 13567
dbc98a8b
KW
13568 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13569 implementation may choose to implement triple vectors using this
13570 attribute. */
13571 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13572 if (attr)
13573 {
13574 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13575 TYPE_LENGTH (type) = DW_UNSND (attr);
13576 else
3e43a32a
MS
13577 complaint (&symfile_complaints,
13578 _("DW_AT_byte_size for array type smaller "
13579 "than the total size of elements"));
dbc98a8b
KW
13580 }
13581
39cbfefa
DJ
13582 name = dwarf2_name (die, cu);
13583 if (name)
13584 TYPE_NAME (type) = name;
6e70227d 13585
0963b4bd 13586 /* Install the type in the die. */
7e314c57
JK
13587 set_die_type (die, type, cu);
13588
13589 /* set_die_type should be already done. */
b4ba55a1
JB
13590 set_descriptive_type (type, die, cu);
13591
c906108c
SS
13592 do_cleanups (back_to);
13593
7e314c57 13594 return type;
c906108c
SS
13595}
13596
7ca2d3a3 13597static enum dwarf_array_dim_ordering
6e70227d 13598read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13599{
13600 struct attribute *attr;
13601
13602 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13603
13604 if (attr) return DW_SND (attr);
13605
0963b4bd
MS
13606 /* GNU F77 is a special case, as at 08/2004 array type info is the
13607 opposite order to the dwarf2 specification, but data is still
13608 laid out as per normal fortran.
7ca2d3a3 13609
0963b4bd
MS
13610 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13611 version checking. */
7ca2d3a3 13612
905e0470
PM
13613 if (cu->language == language_fortran
13614 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13615 {
13616 return DW_ORD_row_major;
13617 }
13618
6e70227d 13619 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13620 {
13621 case array_column_major:
13622 return DW_ORD_col_major;
13623 case array_row_major:
13624 default:
13625 return DW_ORD_row_major;
13626 };
13627}
13628
72019c9c 13629/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13630 the DIE's type field. */
72019c9c 13631
f792889a 13632static struct type *
72019c9c
GM
13633read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13634{
7e314c57
JK
13635 struct type *domain_type, *set_type;
13636 struct attribute *attr;
f792889a 13637
7e314c57
JK
13638 domain_type = die_type (die, cu);
13639
13640 /* The die_type call above may have already set the type for this DIE. */
13641 set_type = get_die_type (die, cu);
13642 if (set_type)
13643 return set_type;
13644
13645 set_type = create_set_type (NULL, domain_type);
13646
13647 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13648 if (attr)
13649 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13650
f792889a 13651 return set_die_type (die, set_type, cu);
72019c9c 13652}
7ca2d3a3 13653
0971de02
TT
13654/* A helper for read_common_block that creates a locexpr baton.
13655 SYM is the symbol which we are marking as computed.
13656 COMMON_DIE is the DIE for the common block.
13657 COMMON_LOC is the location expression attribute for the common
13658 block itself.
13659 MEMBER_LOC is the location expression attribute for the particular
13660 member of the common block that we are processing.
13661 CU is the CU from which the above come. */
13662
13663static void
13664mark_common_block_symbol_computed (struct symbol *sym,
13665 struct die_info *common_die,
13666 struct attribute *common_loc,
13667 struct attribute *member_loc,
13668 struct dwarf2_cu *cu)
13669{
13670 struct objfile *objfile = dwarf2_per_objfile->objfile;
13671 struct dwarf2_locexpr_baton *baton;
13672 gdb_byte *ptr;
13673 unsigned int cu_off;
13674 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13675 LONGEST offset = 0;
13676
13677 gdb_assert (common_loc && member_loc);
13678 gdb_assert (attr_form_is_block (common_loc));
13679 gdb_assert (attr_form_is_block (member_loc)
13680 || attr_form_is_constant (member_loc));
13681
13682 baton = obstack_alloc (&objfile->objfile_obstack,
13683 sizeof (struct dwarf2_locexpr_baton));
13684 baton->per_cu = cu->per_cu;
13685 gdb_assert (baton->per_cu);
13686
13687 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13688
13689 if (attr_form_is_constant (member_loc))
13690 {
13691 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13692 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13693 }
13694 else
13695 baton->size += DW_BLOCK (member_loc)->size;
13696
13697 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13698 baton->data = ptr;
13699
13700 *ptr++ = DW_OP_call4;
13701 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13702 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13703 ptr += 4;
13704
13705 if (attr_form_is_constant (member_loc))
13706 {
13707 *ptr++ = DW_OP_addr;
13708 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13709 ptr += cu->header.addr_size;
13710 }
13711 else
13712 {
13713 /* We have to copy the data here, because DW_OP_call4 will only
13714 use a DW_AT_location attribute. */
13715 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13716 ptr += DW_BLOCK (member_loc)->size;
13717 }
13718
13719 *ptr++ = DW_OP_plus;
13720 gdb_assert (ptr - baton->data == baton->size);
13721
0971de02 13722 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13723 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13724}
13725
4357ac6c
TT
13726/* Create appropriate locally-scoped variables for all the
13727 DW_TAG_common_block entries. Also create a struct common_block
13728 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13729 is used to sepate the common blocks name namespace from regular
13730 variable names. */
c906108c
SS
13731
13732static void
e7c27a73 13733read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13734{
0971de02
TT
13735 struct attribute *attr;
13736
13737 attr = dwarf2_attr (die, DW_AT_location, cu);
13738 if (attr)
13739 {
13740 /* Support the .debug_loc offsets. */
13741 if (attr_form_is_block (attr))
13742 {
13743 /* Ok. */
13744 }
13745 else if (attr_form_is_section_offset (attr))
13746 {
13747 dwarf2_complex_location_expr_complaint ();
13748 attr = NULL;
13749 }
13750 else
13751 {
13752 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13753 "common block member");
13754 attr = NULL;
13755 }
13756 }
13757
639d11d3 13758 if (die->child != NULL)
c906108c 13759 {
4357ac6c
TT
13760 struct objfile *objfile = cu->objfile;
13761 struct die_info *child_die;
13762 size_t n_entries = 0, size;
13763 struct common_block *common_block;
13764 struct symbol *sym;
74ac6d43 13765
4357ac6c
TT
13766 for (child_die = die->child;
13767 child_die && child_die->tag;
13768 child_die = sibling_die (child_die))
13769 ++n_entries;
13770
13771 size = (sizeof (struct common_block)
13772 + (n_entries - 1) * sizeof (struct symbol *));
13773 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13774 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13775 common_block->n_entries = 0;
13776
13777 for (child_die = die->child;
13778 child_die && child_die->tag;
13779 child_die = sibling_die (child_die))
13780 {
13781 /* Create the symbol in the DW_TAG_common_block block in the current
13782 symbol scope. */
e7c27a73 13783 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13784 if (sym != NULL)
13785 {
13786 struct attribute *member_loc;
13787
13788 common_block->contents[common_block->n_entries++] = sym;
13789
13790 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13791 cu);
13792 if (member_loc)
13793 {
13794 /* GDB has handled this for a long time, but it is
13795 not specified by DWARF. It seems to have been
13796 emitted by gfortran at least as recently as:
13797 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13798 complaint (&symfile_complaints,
13799 _("Variable in common block has "
13800 "DW_AT_data_member_location "
13801 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13802 child_die->offset.sect_off,
13803 objfile_name (cu->objfile));
0971de02
TT
13804
13805 if (attr_form_is_section_offset (member_loc))
13806 dwarf2_complex_location_expr_complaint ();
13807 else if (attr_form_is_constant (member_loc)
13808 || attr_form_is_block (member_loc))
13809 {
13810 if (attr)
13811 mark_common_block_symbol_computed (sym, die, attr,
13812 member_loc, cu);
13813 }
13814 else
13815 dwarf2_complex_location_expr_complaint ();
13816 }
13817 }
c906108c 13818 }
4357ac6c
TT
13819
13820 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13821 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13822 }
13823}
13824
0114d602 13825/* Create a type for a C++ namespace. */
d9fa45fe 13826
0114d602
DJ
13827static struct type *
13828read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13829{
e7c27a73 13830 struct objfile *objfile = cu->objfile;
0114d602 13831 const char *previous_prefix, *name;
9219021c 13832 int is_anonymous;
0114d602
DJ
13833 struct type *type;
13834
13835 /* For extensions, reuse the type of the original namespace. */
13836 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13837 {
13838 struct die_info *ext_die;
13839 struct dwarf2_cu *ext_cu = cu;
9a619af0 13840
0114d602
DJ
13841 ext_die = dwarf2_extension (die, &ext_cu);
13842 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13843
13844 /* EXT_CU may not be the same as CU.
02142a6c 13845 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13846 return set_die_type (die, type, cu);
13847 }
9219021c 13848
e142c38c 13849 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13850
13851 /* Now build the name of the current namespace. */
13852
0114d602
DJ
13853 previous_prefix = determine_prefix (die, cu);
13854 if (previous_prefix[0] != '\0')
13855 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13856 previous_prefix, name, 0, cu);
0114d602
DJ
13857
13858 /* Create the type. */
13859 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13860 objfile);
abee88f2 13861 TYPE_NAME (type) = name;
0114d602
DJ
13862 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13863
60531b24 13864 return set_die_type (die, type, cu);
0114d602
DJ
13865}
13866
13867/* Read a C++ namespace. */
13868
13869static void
13870read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13871{
13872 struct objfile *objfile = cu->objfile;
0114d602 13873 int is_anonymous;
9219021c 13874
5c4e30ca
DC
13875 /* Add a symbol associated to this if we haven't seen the namespace
13876 before. Also, add a using directive if it's an anonymous
13877 namespace. */
9219021c 13878
f2f0e013 13879 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13880 {
13881 struct type *type;
13882
0114d602 13883 type = read_type_die (die, cu);
e7c27a73 13884 new_symbol (die, type, cu);
5c4e30ca 13885
e8e80198 13886 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13887 if (is_anonymous)
0114d602
DJ
13888 {
13889 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13890
c0cc3a76 13891 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13892 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13893 }
5c4e30ca 13894 }
9219021c 13895
639d11d3 13896 if (die->child != NULL)
d9fa45fe 13897 {
639d11d3 13898 struct die_info *child_die = die->child;
6e70227d 13899
d9fa45fe
DC
13900 while (child_die && child_die->tag)
13901 {
e7c27a73 13902 process_die (child_die, cu);
d9fa45fe
DC
13903 child_die = sibling_die (child_die);
13904 }
13905 }
38d518c9
EZ
13906}
13907
f55ee35c
JK
13908/* Read a Fortran module as type. This DIE can be only a declaration used for
13909 imported module. Still we need that type as local Fortran "use ... only"
13910 declaration imports depend on the created type in determine_prefix. */
13911
13912static struct type *
13913read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13914{
13915 struct objfile *objfile = cu->objfile;
15d034d0 13916 const char *module_name;
f55ee35c
JK
13917 struct type *type;
13918
13919 module_name = dwarf2_name (die, cu);
13920 if (!module_name)
3e43a32a
MS
13921 complaint (&symfile_complaints,
13922 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13923 die->offset.sect_off);
f55ee35c
JK
13924 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13925
13926 /* determine_prefix uses TYPE_TAG_NAME. */
13927 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13928
13929 return set_die_type (die, type, cu);
13930}
13931
5d7cb8df
JK
13932/* Read a Fortran module. */
13933
13934static void
13935read_module (struct die_info *die, struct dwarf2_cu *cu)
13936{
13937 struct die_info *child_die = die->child;
530e8392
KB
13938 struct type *type;
13939
13940 type = read_type_die (die, cu);
13941 new_symbol (die, type, cu);
5d7cb8df 13942
5d7cb8df
JK
13943 while (child_die && child_die->tag)
13944 {
13945 process_die (child_die, cu);
13946 child_die = sibling_die (child_die);
13947 }
13948}
13949
38d518c9
EZ
13950/* Return the name of the namespace represented by DIE. Set
13951 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13952 namespace. */
13953
13954static const char *
e142c38c 13955namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13956{
13957 struct die_info *current_die;
13958 const char *name = NULL;
13959
13960 /* Loop through the extensions until we find a name. */
13961
13962 for (current_die = die;
13963 current_die != NULL;
f2f0e013 13964 current_die = dwarf2_extension (die, &cu))
38d518c9 13965 {
e142c38c 13966 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13967 if (name != NULL)
13968 break;
13969 }
13970
13971 /* Is it an anonymous namespace? */
13972
13973 *is_anonymous = (name == NULL);
13974 if (*is_anonymous)
2b1dbab0 13975 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13976
13977 return name;
d9fa45fe
DC
13978}
13979
c906108c
SS
13980/* Extract all information from a DW_TAG_pointer_type DIE and add to
13981 the user defined type vector. */
13982
f792889a 13983static struct type *
e7c27a73 13984read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13985{
5e2b427d 13986 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13987 struct comp_unit_head *cu_header = &cu->header;
c906108c 13988 struct type *type;
8b2dbe47
KB
13989 struct attribute *attr_byte_size;
13990 struct attribute *attr_address_class;
13991 int byte_size, addr_class;
7e314c57
JK
13992 struct type *target_type;
13993
13994 target_type = die_type (die, cu);
c906108c 13995
7e314c57
JK
13996 /* The die_type call above may have already set the type for this DIE. */
13997 type = get_die_type (die, cu);
13998 if (type)
13999 return type;
14000
14001 type = lookup_pointer_type (target_type);
8b2dbe47 14002
e142c38c 14003 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14004 if (attr_byte_size)
14005 byte_size = DW_UNSND (attr_byte_size);
c906108c 14006 else
8b2dbe47
KB
14007 byte_size = cu_header->addr_size;
14008
e142c38c 14009 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14010 if (attr_address_class)
14011 addr_class = DW_UNSND (attr_address_class);
14012 else
14013 addr_class = DW_ADDR_none;
14014
14015 /* If the pointer size or address class is different than the
14016 default, create a type variant marked as such and set the
14017 length accordingly. */
14018 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14019 {
5e2b427d 14020 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14021 {
14022 int type_flags;
14023
849957d9 14024 type_flags = gdbarch_address_class_type_flags
5e2b427d 14025 (gdbarch, byte_size, addr_class);
876cecd0
TT
14026 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14027 == 0);
8b2dbe47
KB
14028 type = make_type_with_address_space (type, type_flags);
14029 }
14030 else if (TYPE_LENGTH (type) != byte_size)
14031 {
3e43a32a
MS
14032 complaint (&symfile_complaints,
14033 _("invalid pointer size %d"), byte_size);
8b2dbe47 14034 }
6e70227d 14035 else
9a619af0
MS
14036 {
14037 /* Should we also complain about unhandled address classes? */
14038 }
c906108c 14039 }
8b2dbe47
KB
14040
14041 TYPE_LENGTH (type) = byte_size;
f792889a 14042 return set_die_type (die, type, cu);
c906108c
SS
14043}
14044
14045/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14046 the user defined type vector. */
14047
f792889a 14048static struct type *
e7c27a73 14049read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14050{
14051 struct type *type;
14052 struct type *to_type;
14053 struct type *domain;
14054
e7c27a73
DJ
14055 to_type = die_type (die, cu);
14056 domain = die_containing_type (die, cu);
0d5de010 14057
7e314c57
JK
14058 /* The calls above may have already set the type for this DIE. */
14059 type = get_die_type (die, cu);
14060 if (type)
14061 return type;
14062
0d5de010
DJ
14063 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14064 type = lookup_methodptr_type (to_type);
7078baeb
TT
14065 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14066 {
14067 struct type *new_type = alloc_type (cu->objfile);
14068
14069 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14070 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14071 TYPE_VARARGS (to_type));
14072 type = lookup_methodptr_type (new_type);
14073 }
0d5de010
DJ
14074 else
14075 type = lookup_memberptr_type (to_type, domain);
c906108c 14076
f792889a 14077 return set_die_type (die, type, cu);
c906108c
SS
14078}
14079
14080/* Extract all information from a DW_TAG_reference_type DIE and add to
14081 the user defined type vector. */
14082
f792889a 14083static struct type *
e7c27a73 14084read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14085{
e7c27a73 14086 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14087 struct type *type, *target_type;
c906108c
SS
14088 struct attribute *attr;
14089
7e314c57
JK
14090 target_type = die_type (die, cu);
14091
14092 /* The die_type call above may have already set the type for this DIE. */
14093 type = get_die_type (die, cu);
14094 if (type)
14095 return type;
14096
14097 type = lookup_reference_type (target_type);
e142c38c 14098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14099 if (attr)
14100 {
14101 TYPE_LENGTH (type) = DW_UNSND (attr);
14102 }
14103 else
14104 {
107d2387 14105 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14106 }
f792889a 14107 return set_die_type (die, type, cu);
c906108c
SS
14108}
14109
cf363f18
MW
14110/* Add the given cv-qualifiers to the element type of the array. GCC
14111 outputs DWARF type qualifiers that apply to an array, not the
14112 element type. But GDB relies on the array element type to carry
14113 the cv-qualifiers. This mimics section 6.7.3 of the C99
14114 specification. */
14115
14116static struct type *
14117add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14118 struct type *base_type, int cnst, int voltl)
14119{
14120 struct type *el_type, *inner_array;
14121
14122 base_type = copy_type (base_type);
14123 inner_array = base_type;
14124
14125 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14126 {
14127 TYPE_TARGET_TYPE (inner_array) =
14128 copy_type (TYPE_TARGET_TYPE (inner_array));
14129 inner_array = TYPE_TARGET_TYPE (inner_array);
14130 }
14131
14132 el_type = TYPE_TARGET_TYPE (inner_array);
14133 cnst |= TYPE_CONST (el_type);
14134 voltl |= TYPE_VOLATILE (el_type);
14135 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14136
14137 return set_die_type (die, base_type, cu);
14138}
14139
f792889a 14140static struct type *
e7c27a73 14141read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14142{
f792889a 14143 struct type *base_type, *cv_type;
c906108c 14144
e7c27a73 14145 base_type = die_type (die, cu);
7e314c57
JK
14146
14147 /* The die_type call above may have already set the type for this DIE. */
14148 cv_type = get_die_type (die, cu);
14149 if (cv_type)
14150 return cv_type;
14151
2f608a3a
KW
14152 /* In case the const qualifier is applied to an array type, the element type
14153 is so qualified, not the array type (section 6.7.3 of C99). */
14154 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14155 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14156
f792889a
DJ
14157 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14158 return set_die_type (die, cv_type, cu);
c906108c
SS
14159}
14160
f792889a 14161static struct type *
e7c27a73 14162read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14163{
f792889a 14164 struct type *base_type, *cv_type;
c906108c 14165
e7c27a73 14166 base_type = die_type (die, cu);
7e314c57
JK
14167
14168 /* The die_type call above may have already set the type for this DIE. */
14169 cv_type = get_die_type (die, cu);
14170 if (cv_type)
14171 return cv_type;
14172
cf363f18
MW
14173 /* In case the volatile qualifier is applied to an array type, the
14174 element type is so qualified, not the array type (section 6.7.3
14175 of C99). */
14176 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14177 return add_array_cv_type (die, cu, base_type, 0, 1);
14178
f792889a
DJ
14179 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14180 return set_die_type (die, cv_type, cu);
c906108c
SS
14181}
14182
06d66ee9
TT
14183/* Handle DW_TAG_restrict_type. */
14184
14185static struct type *
14186read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14187{
14188 struct type *base_type, *cv_type;
14189
14190 base_type = die_type (die, cu);
14191
14192 /* The die_type call above may have already set the type for this DIE. */
14193 cv_type = get_die_type (die, cu);
14194 if (cv_type)
14195 return cv_type;
14196
14197 cv_type = make_restrict_type (base_type);
14198 return set_die_type (die, cv_type, cu);
14199}
14200
c906108c
SS
14201/* Extract all information from a DW_TAG_string_type DIE and add to
14202 the user defined type vector. It isn't really a user defined type,
14203 but it behaves like one, with other DIE's using an AT_user_def_type
14204 attribute to reference it. */
14205
f792889a 14206static struct type *
e7c27a73 14207read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14208{
e7c27a73 14209 struct objfile *objfile = cu->objfile;
3b7538c0 14210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14211 struct type *type, *range_type, *index_type, *char_type;
14212 struct attribute *attr;
14213 unsigned int length;
14214
e142c38c 14215 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14216 if (attr)
14217 {
14218 length = DW_UNSND (attr);
14219 }
14220 else
14221 {
0963b4bd 14222 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14223 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14224 if (attr)
14225 {
14226 length = DW_UNSND (attr);
14227 }
14228 else
14229 {
14230 length = 1;
14231 }
c906108c 14232 }
6ccb9162 14233
46bf5051 14234 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14235 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14236 char_type = language_string_char_type (cu->language_defn, gdbarch);
14237 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14238
f792889a 14239 return set_die_type (die, type, cu);
c906108c
SS
14240}
14241
4d804846
JB
14242/* Assuming that DIE corresponds to a function, returns nonzero
14243 if the function is prototyped. */
14244
14245static int
14246prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14247{
14248 struct attribute *attr;
14249
14250 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14251 if (attr && (DW_UNSND (attr) != 0))
14252 return 1;
14253
14254 /* The DWARF standard implies that the DW_AT_prototyped attribute
14255 is only meaninful for C, but the concept also extends to other
14256 languages that allow unprototyped functions (Eg: Objective C).
14257 For all other languages, assume that functions are always
14258 prototyped. */
14259 if (cu->language != language_c
14260 && cu->language != language_objc
14261 && cu->language != language_opencl)
14262 return 1;
14263
14264 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14265 prototyped and unprototyped functions; default to prototyped,
14266 since that is more common in modern code (and RealView warns
14267 about unprototyped functions). */
14268 if (producer_is_realview (cu->producer))
14269 return 1;
14270
14271 return 0;
14272}
14273
c906108c
SS
14274/* Handle DIES due to C code like:
14275
14276 struct foo
c5aa993b
JM
14277 {
14278 int (*funcp)(int a, long l);
14279 int b;
14280 };
c906108c 14281
0963b4bd 14282 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14283
f792889a 14284static struct type *
e7c27a73 14285read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14286{
bb5ed363 14287 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14288 struct type *type; /* Type that this function returns. */
14289 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14290 struct attribute *attr;
14291
e7c27a73 14292 type = die_type (die, cu);
7e314c57
JK
14293
14294 /* The die_type call above may have already set the type for this DIE. */
14295 ftype = get_die_type (die, cu);
14296 if (ftype)
14297 return ftype;
14298
0c8b41f1 14299 ftype = lookup_function_type (type);
c906108c 14300
4d804846 14301 if (prototyped_function_p (die, cu))
a6c727b2 14302 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14303
c055b101
CV
14304 /* Store the calling convention in the type if it's available in
14305 the subroutine die. Otherwise set the calling convention to
14306 the default value DW_CC_normal. */
14307 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14308 if (attr)
14309 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14310 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14311 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14312 else
14313 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14314
14315 /* We need to add the subroutine type to the die immediately so
14316 we don't infinitely recurse when dealing with parameters
0963b4bd 14317 declared as the same subroutine type. */
76c10ea2 14318 set_die_type (die, ftype, cu);
6e70227d 14319
639d11d3 14320 if (die->child != NULL)
c906108c 14321 {
bb5ed363 14322 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14323 struct die_info *child_die;
8072405b 14324 int nparams, iparams;
c906108c
SS
14325
14326 /* Count the number of parameters.
14327 FIXME: GDB currently ignores vararg functions, but knows about
14328 vararg member functions. */
8072405b 14329 nparams = 0;
639d11d3 14330 child_die = die->child;
c906108c
SS
14331 while (child_die && child_die->tag)
14332 {
14333 if (child_die->tag == DW_TAG_formal_parameter)
14334 nparams++;
14335 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14336 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14337 child_die = sibling_die (child_die);
14338 }
14339
14340 /* Allocate storage for parameters and fill them in. */
14341 TYPE_NFIELDS (ftype) = nparams;
14342 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14343 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14344
8072405b
JK
14345 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14346 even if we error out during the parameters reading below. */
14347 for (iparams = 0; iparams < nparams; iparams++)
14348 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14349
14350 iparams = 0;
639d11d3 14351 child_die = die->child;
c906108c
SS
14352 while (child_die && child_die->tag)
14353 {
14354 if (child_die->tag == DW_TAG_formal_parameter)
14355 {
3ce3b1ba
PA
14356 struct type *arg_type;
14357
14358 /* DWARF version 2 has no clean way to discern C++
14359 static and non-static member functions. G++ helps
14360 GDB by marking the first parameter for non-static
14361 member functions (which is the this pointer) as
14362 artificial. We pass this information to
14363 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14364
14365 DWARF version 3 added DW_AT_object_pointer, which GCC
14366 4.5 does not yet generate. */
e142c38c 14367 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14368 if (attr)
14369 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14370 else
418835cc
KS
14371 {
14372 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14373
14374 /* GCC/43521: In java, the formal parameter
14375 "this" is sometimes not marked with DW_AT_artificial. */
14376 if (cu->language == language_java)
14377 {
14378 const char *name = dwarf2_name (child_die, cu);
9a619af0 14379
418835cc
KS
14380 if (name && !strcmp (name, "this"))
14381 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14382 }
14383 }
3ce3b1ba
PA
14384 arg_type = die_type (child_die, cu);
14385
14386 /* RealView does not mark THIS as const, which the testsuite
14387 expects. GCC marks THIS as const in method definitions,
14388 but not in the class specifications (GCC PR 43053). */
14389 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14390 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14391 {
14392 int is_this = 0;
14393 struct dwarf2_cu *arg_cu = cu;
14394 const char *name = dwarf2_name (child_die, cu);
14395
14396 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14397 if (attr)
14398 {
14399 /* If the compiler emits this, use it. */
14400 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14401 is_this = 1;
14402 }
14403 else if (name && strcmp (name, "this") == 0)
14404 /* Function definitions will have the argument names. */
14405 is_this = 1;
14406 else if (name == NULL && iparams == 0)
14407 /* Declarations may not have the names, so like
14408 elsewhere in GDB, assume an artificial first
14409 argument is "this". */
14410 is_this = 1;
14411
14412 if (is_this)
14413 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14414 arg_type, 0);
14415 }
14416
14417 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14418 iparams++;
14419 }
14420 child_die = sibling_die (child_die);
14421 }
14422 }
14423
76c10ea2 14424 return ftype;
c906108c
SS
14425}
14426
f792889a 14427static struct type *
e7c27a73 14428read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14429{
e7c27a73 14430 struct objfile *objfile = cu->objfile;
0114d602 14431 const char *name = NULL;
3c8e0968 14432 struct type *this_type, *target_type;
c906108c 14433
94af9270 14434 name = dwarf2_full_name (NULL, die, cu);
f792889a 14435 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14436 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14437 TYPE_NAME (this_type) = name;
f792889a 14438 set_die_type (die, this_type, cu);
3c8e0968
DE
14439 target_type = die_type (die, cu);
14440 if (target_type != this_type)
14441 TYPE_TARGET_TYPE (this_type) = target_type;
14442 else
14443 {
14444 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14445 spec and cause infinite loops in GDB. */
14446 complaint (&symfile_complaints,
14447 _("Self-referential DW_TAG_typedef "
14448 "- DIE at 0x%x [in module %s]"),
4262abfb 14449 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14450 TYPE_TARGET_TYPE (this_type) = NULL;
14451 }
f792889a 14452 return this_type;
c906108c
SS
14453}
14454
14455/* Find a representation of a given base type and install
14456 it in the TYPE field of the die. */
14457
f792889a 14458static struct type *
e7c27a73 14459read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14460{
e7c27a73 14461 struct objfile *objfile = cu->objfile;
c906108c
SS
14462 struct type *type;
14463 struct attribute *attr;
14464 int encoding = 0, size = 0;
15d034d0 14465 const char *name;
6ccb9162
UW
14466 enum type_code code = TYPE_CODE_INT;
14467 int type_flags = 0;
14468 struct type *target_type = NULL;
c906108c 14469
e142c38c 14470 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14471 if (attr)
14472 {
14473 encoding = DW_UNSND (attr);
14474 }
e142c38c 14475 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14476 if (attr)
14477 {
14478 size = DW_UNSND (attr);
14479 }
39cbfefa 14480 name = dwarf2_name (die, cu);
6ccb9162 14481 if (!name)
c906108c 14482 {
6ccb9162
UW
14483 complaint (&symfile_complaints,
14484 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14485 }
6ccb9162
UW
14486
14487 switch (encoding)
c906108c 14488 {
6ccb9162
UW
14489 case DW_ATE_address:
14490 /* Turn DW_ATE_address into a void * pointer. */
14491 code = TYPE_CODE_PTR;
14492 type_flags |= TYPE_FLAG_UNSIGNED;
14493 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14494 break;
14495 case DW_ATE_boolean:
14496 code = TYPE_CODE_BOOL;
14497 type_flags |= TYPE_FLAG_UNSIGNED;
14498 break;
14499 case DW_ATE_complex_float:
14500 code = TYPE_CODE_COMPLEX;
14501 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14502 break;
14503 case DW_ATE_decimal_float:
14504 code = TYPE_CODE_DECFLOAT;
14505 break;
14506 case DW_ATE_float:
14507 code = TYPE_CODE_FLT;
14508 break;
14509 case DW_ATE_signed:
14510 break;
14511 case DW_ATE_unsigned:
14512 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14513 if (cu->language == language_fortran
14514 && name
14515 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14516 code = TYPE_CODE_CHAR;
6ccb9162
UW
14517 break;
14518 case DW_ATE_signed_char:
6e70227d 14519 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14520 || cu->language == language_pascal
14521 || cu->language == language_fortran)
6ccb9162
UW
14522 code = TYPE_CODE_CHAR;
14523 break;
14524 case DW_ATE_unsigned_char:
868a0084 14525 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14526 || cu->language == language_pascal
14527 || cu->language == language_fortran)
6ccb9162
UW
14528 code = TYPE_CODE_CHAR;
14529 type_flags |= TYPE_FLAG_UNSIGNED;
14530 break;
75079b2b
TT
14531 case DW_ATE_UTF:
14532 /* We just treat this as an integer and then recognize the
14533 type by name elsewhere. */
14534 break;
14535
6ccb9162
UW
14536 default:
14537 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14538 dwarf_type_encoding_name (encoding));
14539 break;
c906108c 14540 }
6ccb9162 14541
0114d602
DJ
14542 type = init_type (code, size, type_flags, NULL, objfile);
14543 TYPE_NAME (type) = name;
6ccb9162
UW
14544 TYPE_TARGET_TYPE (type) = target_type;
14545
0114d602 14546 if (name && strcmp (name, "char") == 0)
876cecd0 14547 TYPE_NOSIGN (type) = 1;
0114d602 14548
f792889a 14549 return set_die_type (die, type, cu);
c906108c
SS
14550}
14551
80180f79
SA
14552/* Parse dwarf attribute if it's a block, reference or constant and put the
14553 resulting value of the attribute into struct bound_prop.
14554 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14555
14556static int
14557attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14558 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14559{
14560 struct dwarf2_property_baton *baton;
14561 struct obstack *obstack = &cu->objfile->objfile_obstack;
14562
14563 if (attr == NULL || prop == NULL)
14564 return 0;
14565
14566 if (attr_form_is_block (attr))
14567 {
14568 baton = obstack_alloc (obstack, sizeof (*baton));
14569 baton->referenced_type = NULL;
14570 baton->locexpr.per_cu = cu->per_cu;
14571 baton->locexpr.size = DW_BLOCK (attr)->size;
14572 baton->locexpr.data = DW_BLOCK (attr)->data;
14573 prop->data.baton = baton;
14574 prop->kind = PROP_LOCEXPR;
14575 gdb_assert (prop->data.baton != NULL);
14576 }
14577 else if (attr_form_is_ref (attr))
14578 {
14579 struct dwarf2_cu *target_cu = cu;
14580 struct die_info *target_die;
14581 struct attribute *target_attr;
14582
14583 target_die = follow_die_ref (die, attr, &target_cu);
14584 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14585 if (target_attr == NULL)
14586 return 0;
14587
14588 if (attr_form_is_section_offset (target_attr))
14589 {
14590 baton = obstack_alloc (obstack, sizeof (*baton));
14591 baton->referenced_type = die_type (target_die, target_cu);
14592 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14593 prop->data.baton = baton;
14594 prop->kind = PROP_LOCLIST;
14595 gdb_assert (prop->data.baton != NULL);
14596 }
14597 else if (attr_form_is_block (target_attr))
14598 {
14599 baton = obstack_alloc (obstack, sizeof (*baton));
14600 baton->referenced_type = die_type (target_die, target_cu);
14601 baton->locexpr.per_cu = cu->per_cu;
14602 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14603 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14604 prop->data.baton = baton;
14605 prop->kind = PROP_LOCEXPR;
14606 gdb_assert (prop->data.baton != NULL);
14607 }
14608 else
14609 {
14610 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14611 "dynamic property");
14612 return 0;
14613 }
14614 }
14615 else if (attr_form_is_constant (attr))
14616 {
14617 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14618 prop->kind = PROP_CONST;
14619 }
14620 else
14621 {
14622 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14623 dwarf2_name (die, cu));
14624 return 0;
14625 }
14626
14627 return 1;
14628}
14629
a02abb62
JB
14630/* Read the given DW_AT_subrange DIE. */
14631
f792889a 14632static struct type *
a02abb62
JB
14633read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14634{
4c9ad8c2 14635 struct type *base_type, *orig_base_type;
a02abb62
JB
14636 struct type *range_type;
14637 struct attribute *attr;
729efb13 14638 struct dynamic_prop low, high;
4fae6e18 14639 int low_default_is_valid;
c451ebe5 14640 int high_bound_is_count = 0;
15d034d0 14641 const char *name;
43bbcdc2 14642 LONGEST negative_mask;
e77813c8 14643
4c9ad8c2
TT
14644 orig_base_type = die_type (die, cu);
14645 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14646 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14647 creating the range type, but we use the result of check_typedef
14648 when examining properties of the type. */
14649 base_type = check_typedef (orig_base_type);
a02abb62 14650
7e314c57
JK
14651 /* The die_type call above may have already set the type for this DIE. */
14652 range_type = get_die_type (die, cu);
14653 if (range_type)
14654 return range_type;
14655
729efb13
SA
14656 low.kind = PROP_CONST;
14657 high.kind = PROP_CONST;
14658 high.data.const_val = 0;
14659
4fae6e18
JK
14660 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14661 omitting DW_AT_lower_bound. */
14662 switch (cu->language)
6e70227d 14663 {
4fae6e18
JK
14664 case language_c:
14665 case language_cplus:
729efb13 14666 low.data.const_val = 0;
4fae6e18
JK
14667 low_default_is_valid = 1;
14668 break;
14669 case language_fortran:
729efb13 14670 low.data.const_val = 1;
4fae6e18
JK
14671 low_default_is_valid = 1;
14672 break;
14673 case language_d:
14674 case language_java:
14675 case language_objc:
729efb13 14676 low.data.const_val = 0;
4fae6e18
JK
14677 low_default_is_valid = (cu->header.version >= 4);
14678 break;
14679 case language_ada:
14680 case language_m2:
14681 case language_pascal:
729efb13 14682 low.data.const_val = 1;
4fae6e18
JK
14683 low_default_is_valid = (cu->header.version >= 4);
14684 break;
14685 default:
729efb13 14686 low.data.const_val = 0;
4fae6e18
JK
14687 low_default_is_valid = 0;
14688 break;
a02abb62
JB
14689 }
14690
e142c38c 14691 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14692 if (attr)
11c1ba78 14693 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14694 else if (!low_default_is_valid)
14695 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14696 "- DIE at 0x%x [in module %s]"),
4262abfb 14697 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14698
e142c38c 14699 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14700 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14701 {
14702 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14703 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14704 {
c451ebe5
SA
14705 /* If bounds are constant do the final calculation here. */
14706 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14707 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14708 else
14709 high_bound_is_count = 1;
c2ff108b 14710 }
e77813c8
PM
14711 }
14712
14713 /* Dwarf-2 specifications explicitly allows to create subrange types
14714 without specifying a base type.
14715 In that case, the base type must be set to the type of
14716 the lower bound, upper bound or count, in that order, if any of these
14717 three attributes references an object that has a type.
14718 If no base type is found, the Dwarf-2 specifications say that
14719 a signed integer type of size equal to the size of an address should
14720 be used.
14721 For the following C code: `extern char gdb_int [];'
14722 GCC produces an empty range DIE.
14723 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14724 high bound or count are not yet handled by this code. */
e77813c8
PM
14725 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14726 {
14727 struct objfile *objfile = cu->objfile;
14728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14729 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14730 struct type *int_type = objfile_type (objfile)->builtin_int;
14731
14732 /* Test "int", "long int", and "long long int" objfile types,
14733 and select the first one having a size above or equal to the
14734 architecture address size. */
14735 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14736 base_type = int_type;
14737 else
14738 {
14739 int_type = objfile_type (objfile)->builtin_long;
14740 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14741 base_type = int_type;
14742 else
14743 {
14744 int_type = objfile_type (objfile)->builtin_long_long;
14745 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14746 base_type = int_type;
14747 }
14748 }
14749 }
a02abb62 14750
dbb9c2b1
JB
14751 /* Normally, the DWARF producers are expected to use a signed
14752 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14753 But this is unfortunately not always the case, as witnessed
14754 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14755 is used instead. To work around that ambiguity, we treat
14756 the bounds as signed, and thus sign-extend their values, when
14757 the base type is signed. */
6e70227d 14758 negative_mask =
43bbcdc2 14759 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14760 if (low.kind == PROP_CONST
14761 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14762 low.data.const_val |= negative_mask;
14763 if (high.kind == PROP_CONST
14764 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14765 high.data.const_val |= negative_mask;
43bbcdc2 14766
729efb13 14767 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14768
c451ebe5
SA
14769 if (high_bound_is_count)
14770 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14771
c2ff108b
JK
14772 /* Ada expects an empty array on no boundary attributes. */
14773 if (attr == NULL && cu->language != language_ada)
729efb13 14774 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14775
39cbfefa
DJ
14776 name = dwarf2_name (die, cu);
14777 if (name)
14778 TYPE_NAME (range_type) = name;
6e70227d 14779
e142c38c 14780 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14781 if (attr)
14782 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14783
7e314c57
JK
14784 set_die_type (die, range_type, cu);
14785
14786 /* set_die_type should be already done. */
b4ba55a1
JB
14787 set_descriptive_type (range_type, die, cu);
14788
7e314c57 14789 return range_type;
a02abb62 14790}
6e70227d 14791
f792889a 14792static struct type *
81a17f79
JB
14793read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14794{
14795 struct type *type;
81a17f79 14796
81a17f79
JB
14797 /* For now, we only support the C meaning of an unspecified type: void. */
14798
0114d602
DJ
14799 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14800 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14801
f792889a 14802 return set_die_type (die, type, cu);
81a17f79 14803}
a02abb62 14804
639d11d3
DC
14805/* Read a single die and all its descendents. Set the die's sibling
14806 field to NULL; set other fields in the die correctly, and set all
14807 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14808 location of the info_ptr after reading all of those dies. PARENT
14809 is the parent of the die in question. */
14810
14811static struct die_info *
dee91e82 14812read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14813 const gdb_byte *info_ptr,
14814 const gdb_byte **new_info_ptr,
dee91e82 14815 struct die_info *parent)
639d11d3
DC
14816{
14817 struct die_info *die;
d521ce57 14818 const gdb_byte *cur_ptr;
639d11d3
DC
14819 int has_children;
14820
bf6af496 14821 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14822 if (die == NULL)
14823 {
14824 *new_info_ptr = cur_ptr;
14825 return NULL;
14826 }
93311388 14827 store_in_ref_table (die, reader->cu);
639d11d3
DC
14828
14829 if (has_children)
bf6af496 14830 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14831 else
14832 {
14833 die->child = NULL;
14834 *new_info_ptr = cur_ptr;
14835 }
14836
14837 die->sibling = NULL;
14838 die->parent = parent;
14839 return die;
14840}
14841
14842/* Read a die, all of its descendents, and all of its siblings; set
14843 all of the fields of all of the dies correctly. Arguments are as
14844 in read_die_and_children. */
14845
14846static struct die_info *
bf6af496 14847read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14848 const gdb_byte *info_ptr,
14849 const gdb_byte **new_info_ptr,
bf6af496 14850 struct die_info *parent)
639d11d3
DC
14851{
14852 struct die_info *first_die, *last_sibling;
d521ce57 14853 const gdb_byte *cur_ptr;
639d11d3 14854
c906108c 14855 cur_ptr = info_ptr;
639d11d3
DC
14856 first_die = last_sibling = NULL;
14857
14858 while (1)
c906108c 14859 {
639d11d3 14860 struct die_info *die
dee91e82 14861 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14862
1d325ec1 14863 if (die == NULL)
c906108c 14864 {
639d11d3
DC
14865 *new_info_ptr = cur_ptr;
14866 return first_die;
c906108c 14867 }
1d325ec1
DJ
14868
14869 if (!first_die)
14870 first_die = die;
c906108c 14871 else
1d325ec1
DJ
14872 last_sibling->sibling = die;
14873
14874 last_sibling = die;
c906108c 14875 }
c906108c
SS
14876}
14877
bf6af496
DE
14878/* Read a die, all of its descendents, and all of its siblings; set
14879 all of the fields of all of the dies correctly. Arguments are as
14880 in read_die_and_children.
14881 This the main entry point for reading a DIE and all its children. */
14882
14883static struct die_info *
14884read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14885 const gdb_byte *info_ptr,
14886 const gdb_byte **new_info_ptr,
bf6af496
DE
14887 struct die_info *parent)
14888{
14889 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14890 new_info_ptr, parent);
14891
14892 if (dwarf2_die_debug)
14893 {
14894 fprintf_unfiltered (gdb_stdlog,
14895 "Read die from %s@0x%x of %s:\n",
a32a8923 14896 get_section_name (reader->die_section),
bf6af496
DE
14897 (unsigned) (info_ptr - reader->die_section->buffer),
14898 bfd_get_filename (reader->abfd));
14899 dump_die (die, dwarf2_die_debug);
14900 }
14901
14902 return die;
14903}
14904
3019eac3
DE
14905/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14906 attributes.
14907 The caller is responsible for filling in the extra attributes
14908 and updating (*DIEP)->num_attrs.
14909 Set DIEP to point to a newly allocated die with its information,
14910 except for its child, sibling, and parent fields.
14911 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14912
d521ce57 14913static const gdb_byte *
3019eac3 14914read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14915 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14916 int *has_children, int num_extra_attrs)
93311388 14917{
b64f50a1
JK
14918 unsigned int abbrev_number, bytes_read, i;
14919 sect_offset offset;
93311388
DE
14920 struct abbrev_info *abbrev;
14921 struct die_info *die;
14922 struct dwarf2_cu *cu = reader->cu;
14923 bfd *abfd = reader->abfd;
14924
b64f50a1 14925 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14926 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14927 info_ptr += bytes_read;
14928 if (!abbrev_number)
14929 {
14930 *diep = NULL;
14931 *has_children = 0;
14932 return info_ptr;
14933 }
14934
433df2d4 14935 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14936 if (!abbrev)
348e048f
DE
14937 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14938 abbrev_number,
14939 bfd_get_filename (abfd));
14940
3019eac3 14941 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14942 die->offset = offset;
14943 die->tag = abbrev->tag;
14944 die->abbrev = abbrev_number;
14945
3019eac3
DE
14946 /* Make the result usable.
14947 The caller needs to update num_attrs after adding the extra
14948 attributes. */
93311388
DE
14949 die->num_attrs = abbrev->num_attrs;
14950
14951 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14952 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14953 info_ptr);
93311388
DE
14954
14955 *diep = die;
14956 *has_children = abbrev->has_children;
14957 return info_ptr;
14958}
14959
3019eac3
DE
14960/* Read a die and all its attributes.
14961 Set DIEP to point to a newly allocated die with its information,
14962 except for its child, sibling, and parent fields.
14963 Set HAS_CHILDREN to tell whether the die has children or not. */
14964
d521ce57 14965static const gdb_byte *
3019eac3 14966read_full_die (const struct die_reader_specs *reader,
d521ce57 14967 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14968 int *has_children)
14969{
d521ce57 14970 const gdb_byte *result;
bf6af496
DE
14971
14972 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14973
14974 if (dwarf2_die_debug)
14975 {
14976 fprintf_unfiltered (gdb_stdlog,
14977 "Read die from %s@0x%x of %s:\n",
a32a8923 14978 get_section_name (reader->die_section),
bf6af496
DE
14979 (unsigned) (info_ptr - reader->die_section->buffer),
14980 bfd_get_filename (reader->abfd));
14981 dump_die (*diep, dwarf2_die_debug);
14982 }
14983
14984 return result;
3019eac3 14985}
433df2d4
DE
14986\f
14987/* Abbreviation tables.
3019eac3 14988
433df2d4 14989 In DWARF version 2, the description of the debugging information is
c906108c
SS
14990 stored in a separate .debug_abbrev section. Before we read any
14991 dies from a section we read in all abbreviations and install them
433df2d4
DE
14992 in a hash table. */
14993
14994/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14995
14996static struct abbrev_info *
14997abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14998{
14999 struct abbrev_info *abbrev;
15000
15001 abbrev = (struct abbrev_info *)
15002 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15003 memset (abbrev, 0, sizeof (struct abbrev_info));
15004 return abbrev;
15005}
15006
15007/* Add an abbreviation to the table. */
c906108c
SS
15008
15009static void
433df2d4
DE
15010abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15011 unsigned int abbrev_number,
15012 struct abbrev_info *abbrev)
15013{
15014 unsigned int hash_number;
15015
15016 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15017 abbrev->next = abbrev_table->abbrevs[hash_number];
15018 abbrev_table->abbrevs[hash_number] = abbrev;
15019}
dee91e82 15020
433df2d4
DE
15021/* Look up an abbrev in the table.
15022 Returns NULL if the abbrev is not found. */
15023
15024static struct abbrev_info *
15025abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15026 unsigned int abbrev_number)
c906108c 15027{
433df2d4
DE
15028 unsigned int hash_number;
15029 struct abbrev_info *abbrev;
15030
15031 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15032 abbrev = abbrev_table->abbrevs[hash_number];
15033
15034 while (abbrev)
15035 {
15036 if (abbrev->number == abbrev_number)
15037 return abbrev;
15038 abbrev = abbrev->next;
15039 }
15040 return NULL;
15041}
15042
15043/* Read in an abbrev table. */
15044
15045static struct abbrev_table *
15046abbrev_table_read_table (struct dwarf2_section_info *section,
15047 sect_offset offset)
15048{
15049 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15050 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15051 struct abbrev_table *abbrev_table;
d521ce57 15052 const gdb_byte *abbrev_ptr;
c906108c
SS
15053 struct abbrev_info *cur_abbrev;
15054 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15055 unsigned int abbrev_form;
f3dd6933
DJ
15056 struct attr_abbrev *cur_attrs;
15057 unsigned int allocated_attrs;
c906108c 15058
70ba0933 15059 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15060 abbrev_table->offset = offset;
433df2d4
DE
15061 obstack_init (&abbrev_table->abbrev_obstack);
15062 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15063 (ABBREV_HASH_SIZE
15064 * sizeof (struct abbrev_info *)));
15065 memset (abbrev_table->abbrevs, 0,
15066 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15067
433df2d4
DE
15068 dwarf2_read_section (objfile, section);
15069 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15070 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15071 abbrev_ptr += bytes_read;
15072
f3dd6933
DJ
15073 allocated_attrs = ATTR_ALLOC_CHUNK;
15074 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15075
0963b4bd 15076 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15077 while (abbrev_number)
15078 {
433df2d4 15079 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15080
15081 /* read in abbrev header */
15082 cur_abbrev->number = abbrev_number;
15083 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15084 abbrev_ptr += bytes_read;
15085 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15086 abbrev_ptr += 1;
15087
15088 /* now read in declarations */
15089 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15090 abbrev_ptr += bytes_read;
15091 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15092 abbrev_ptr += bytes_read;
15093 while (abbrev_name)
15094 {
f3dd6933 15095 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15096 {
f3dd6933
DJ
15097 allocated_attrs += ATTR_ALLOC_CHUNK;
15098 cur_attrs
15099 = xrealloc (cur_attrs, (allocated_attrs
15100 * sizeof (struct attr_abbrev)));
c906108c 15101 }
ae038cb0 15102
f3dd6933
DJ
15103 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15104 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15105 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15106 abbrev_ptr += bytes_read;
15107 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15108 abbrev_ptr += bytes_read;
15109 }
15110
433df2d4 15111 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15112 (cur_abbrev->num_attrs
15113 * sizeof (struct attr_abbrev)));
15114 memcpy (cur_abbrev->attrs, cur_attrs,
15115 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15116
433df2d4 15117 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15118
15119 /* Get next abbreviation.
15120 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15121 always properly terminated with an abbrev number of 0.
15122 Exit loop if we encounter an abbreviation which we have
15123 already read (which means we are about to read the abbreviations
15124 for the next compile unit) or if the end of the abbreviation
15125 table is reached. */
433df2d4 15126 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15127 break;
15128 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15129 abbrev_ptr += bytes_read;
433df2d4 15130 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15131 break;
15132 }
f3dd6933
DJ
15133
15134 xfree (cur_attrs);
433df2d4 15135 return abbrev_table;
c906108c
SS
15136}
15137
433df2d4 15138/* Free the resources held by ABBREV_TABLE. */
c906108c 15139
c906108c 15140static void
433df2d4 15141abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15142{
433df2d4
DE
15143 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15144 xfree (abbrev_table);
c906108c
SS
15145}
15146
f4dc4d17
DE
15147/* Same as abbrev_table_free but as a cleanup.
15148 We pass in a pointer to the pointer to the table so that we can
15149 set the pointer to NULL when we're done. It also simplifies
73051182 15150 build_type_psymtabs_1. */
f4dc4d17
DE
15151
15152static void
15153abbrev_table_free_cleanup (void *table_ptr)
15154{
15155 struct abbrev_table **abbrev_table_ptr = table_ptr;
15156
15157 if (*abbrev_table_ptr != NULL)
15158 abbrev_table_free (*abbrev_table_ptr);
15159 *abbrev_table_ptr = NULL;
15160}
15161
433df2d4
DE
15162/* Read the abbrev table for CU from ABBREV_SECTION. */
15163
15164static void
15165dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15166 struct dwarf2_section_info *abbrev_section)
c906108c 15167{
433df2d4
DE
15168 cu->abbrev_table =
15169 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15170}
c906108c 15171
433df2d4 15172/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15173
433df2d4
DE
15174static void
15175dwarf2_free_abbrev_table (void *ptr_to_cu)
15176{
15177 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15178
a2ce51a0
DE
15179 if (cu->abbrev_table != NULL)
15180 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15181 /* Set this to NULL so that we SEGV if we try to read it later,
15182 and also because free_comp_unit verifies this is NULL. */
15183 cu->abbrev_table = NULL;
15184}
15185\f
72bf9492
DJ
15186/* Returns nonzero if TAG represents a type that we might generate a partial
15187 symbol for. */
15188
15189static int
15190is_type_tag_for_partial (int tag)
15191{
15192 switch (tag)
15193 {
15194#if 0
15195 /* Some types that would be reasonable to generate partial symbols for,
15196 that we don't at present. */
15197 case DW_TAG_array_type:
15198 case DW_TAG_file_type:
15199 case DW_TAG_ptr_to_member_type:
15200 case DW_TAG_set_type:
15201 case DW_TAG_string_type:
15202 case DW_TAG_subroutine_type:
15203#endif
15204 case DW_TAG_base_type:
15205 case DW_TAG_class_type:
680b30c7 15206 case DW_TAG_interface_type:
72bf9492
DJ
15207 case DW_TAG_enumeration_type:
15208 case DW_TAG_structure_type:
15209 case DW_TAG_subrange_type:
15210 case DW_TAG_typedef:
15211 case DW_TAG_union_type:
15212 return 1;
15213 default:
15214 return 0;
15215 }
15216}
15217
15218/* Load all DIEs that are interesting for partial symbols into memory. */
15219
15220static struct partial_die_info *
dee91e82 15221load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15222 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15223{
dee91e82 15224 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15225 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15226 struct partial_die_info *part_die;
15227 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15228 struct abbrev_info *abbrev;
15229 unsigned int bytes_read;
5afb4e99 15230 unsigned int load_all = 0;
72bf9492
DJ
15231 int nesting_level = 1;
15232
15233 parent_die = NULL;
15234 last_die = NULL;
15235
7adf1e79
DE
15236 gdb_assert (cu->per_cu != NULL);
15237 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15238 load_all = 1;
15239
72bf9492
DJ
15240 cu->partial_dies
15241 = htab_create_alloc_ex (cu->header.length / 12,
15242 partial_die_hash,
15243 partial_die_eq,
15244 NULL,
15245 &cu->comp_unit_obstack,
15246 hashtab_obstack_allocate,
15247 dummy_obstack_deallocate);
15248
15249 part_die = obstack_alloc (&cu->comp_unit_obstack,
15250 sizeof (struct partial_die_info));
15251
15252 while (1)
15253 {
15254 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15255
15256 /* A NULL abbrev means the end of a series of children. */
15257 if (abbrev == NULL)
15258 {
15259 if (--nesting_level == 0)
15260 {
15261 /* PART_DIE was probably the last thing allocated on the
15262 comp_unit_obstack, so we could call obstack_free
15263 here. We don't do that because the waste is small,
15264 and will be cleaned up when we're done with this
15265 compilation unit. This way, we're also more robust
15266 against other users of the comp_unit_obstack. */
15267 return first_die;
15268 }
15269 info_ptr += bytes_read;
15270 last_die = parent_die;
15271 parent_die = parent_die->die_parent;
15272 continue;
15273 }
15274
98bfdba5
PA
15275 /* Check for template arguments. We never save these; if
15276 they're seen, we just mark the parent, and go on our way. */
15277 if (parent_die != NULL
15278 && cu->language == language_cplus
15279 && (abbrev->tag == DW_TAG_template_type_param
15280 || abbrev->tag == DW_TAG_template_value_param))
15281 {
15282 parent_die->has_template_arguments = 1;
15283
15284 if (!load_all)
15285 {
15286 /* We don't need a partial DIE for the template argument. */
dee91e82 15287 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15288 continue;
15289 }
15290 }
15291
0d99eb77 15292 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15293 Skip their other children. */
15294 if (!load_all
15295 && cu->language == language_cplus
15296 && parent_die != NULL
15297 && parent_die->tag == DW_TAG_subprogram)
15298 {
dee91e82 15299 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15300 continue;
15301 }
15302
5afb4e99
DJ
15303 /* Check whether this DIE is interesting enough to save. Normally
15304 we would not be interested in members here, but there may be
15305 later variables referencing them via DW_AT_specification (for
15306 static members). */
15307 if (!load_all
15308 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15309 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15310 && abbrev->tag != DW_TAG_enumerator
15311 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15312 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15313 && abbrev->tag != DW_TAG_variable
5afb4e99 15314 && abbrev->tag != DW_TAG_namespace
f55ee35c 15315 && abbrev->tag != DW_TAG_module
95554aad 15316 && abbrev->tag != DW_TAG_member
74921315
KS
15317 && abbrev->tag != DW_TAG_imported_unit
15318 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15319 {
15320 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15321 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15322 continue;
15323 }
15324
dee91e82
DE
15325 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15326 info_ptr);
72bf9492
DJ
15327
15328 /* This two-pass algorithm for processing partial symbols has a
15329 high cost in cache pressure. Thus, handle some simple cases
15330 here which cover the majority of C partial symbols. DIEs
15331 which neither have specification tags in them, nor could have
15332 specification tags elsewhere pointing at them, can simply be
15333 processed and discarded.
15334
15335 This segment is also optional; scan_partial_symbols and
15336 add_partial_symbol will handle these DIEs if we chain
15337 them in normally. When compilers which do not emit large
15338 quantities of duplicate debug information are more common,
15339 this code can probably be removed. */
15340
15341 /* Any complete simple types at the top level (pretty much all
15342 of them, for a language without namespaces), can be processed
15343 directly. */
15344 if (parent_die == NULL
15345 && part_die->has_specification == 0
15346 && part_die->is_declaration == 0
d8228535 15347 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15348 || part_die->tag == DW_TAG_base_type
15349 || part_die->tag == DW_TAG_subrange_type))
15350 {
15351 if (building_psymtab && part_die->name != NULL)
04a679b8 15352 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15353 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15354 &objfile->static_psymbols,
15355 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15356 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15357 continue;
15358 }
15359
d8228535
JK
15360 /* The exception for DW_TAG_typedef with has_children above is
15361 a workaround of GCC PR debug/47510. In the case of this complaint
15362 type_name_no_tag_or_error will error on such types later.
15363
15364 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15365 it could not find the child DIEs referenced later, this is checked
15366 above. In correct DWARF DW_TAG_typedef should have no children. */
15367
15368 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15369 complaint (&symfile_complaints,
15370 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15371 "- DIE at 0x%x [in module %s]"),
4262abfb 15372 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15373
72bf9492
DJ
15374 /* If we're at the second level, and we're an enumerator, and
15375 our parent has no specification (meaning possibly lives in a
15376 namespace elsewhere), then we can add the partial symbol now
15377 instead of queueing it. */
15378 if (part_die->tag == DW_TAG_enumerator
15379 && parent_die != NULL
15380 && parent_die->die_parent == NULL
15381 && parent_die->tag == DW_TAG_enumeration_type
15382 && parent_die->has_specification == 0)
15383 {
15384 if (part_die->name == NULL)
3e43a32a
MS
15385 complaint (&symfile_complaints,
15386 _("malformed enumerator DIE ignored"));
72bf9492 15387 else if (building_psymtab)
04a679b8 15388 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15389 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15390 (cu->language == language_cplus
15391 || cu->language == language_java)
bb5ed363
DE
15392 ? &objfile->global_psymbols
15393 : &objfile->static_psymbols,
15394 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15395
dee91e82 15396 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15397 continue;
15398 }
15399
15400 /* We'll save this DIE so link it in. */
15401 part_die->die_parent = parent_die;
15402 part_die->die_sibling = NULL;
15403 part_die->die_child = NULL;
15404
15405 if (last_die && last_die == parent_die)
15406 last_die->die_child = part_die;
15407 else if (last_die)
15408 last_die->die_sibling = part_die;
15409
15410 last_die = part_die;
15411
15412 if (first_die == NULL)
15413 first_die = part_die;
15414
15415 /* Maybe add the DIE to the hash table. Not all DIEs that we
15416 find interesting need to be in the hash table, because we
15417 also have the parent/sibling/child chains; only those that we
15418 might refer to by offset later during partial symbol reading.
15419
15420 For now this means things that might have be the target of a
15421 DW_AT_specification, DW_AT_abstract_origin, or
15422 DW_AT_extension. DW_AT_extension will refer only to
15423 namespaces; DW_AT_abstract_origin refers to functions (and
15424 many things under the function DIE, but we do not recurse
15425 into function DIEs during partial symbol reading) and
15426 possibly variables as well; DW_AT_specification refers to
15427 declarations. Declarations ought to have the DW_AT_declaration
15428 flag. It happens that GCC forgets to put it in sometimes, but
15429 only for functions, not for types.
15430
15431 Adding more things than necessary to the hash table is harmless
15432 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15433 wasted time in find_partial_die, when we reread the compilation
15434 unit with load_all_dies set. */
72bf9492 15435
5afb4e99 15436 if (load_all
72929c62 15437 || abbrev->tag == DW_TAG_constant
5afb4e99 15438 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15439 || abbrev->tag == DW_TAG_variable
15440 || abbrev->tag == DW_TAG_namespace
15441 || part_die->is_declaration)
15442 {
15443 void **slot;
15444
15445 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15446 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15447 *slot = part_die;
15448 }
15449
15450 part_die = obstack_alloc (&cu->comp_unit_obstack,
15451 sizeof (struct partial_die_info));
15452
15453 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15454 we have no reason to follow the children of structures; for other
98bfdba5
PA
15455 languages we have to, so that we can get at method physnames
15456 to infer fully qualified class names, for DW_AT_specification,
15457 and for C++ template arguments. For C++, we also look one level
15458 inside functions to find template arguments (if the name of the
15459 function does not already contain the template arguments).
bc30ff58
JB
15460
15461 For Ada, we need to scan the children of subprograms and lexical
15462 blocks as well because Ada allows the definition of nested
15463 entities that could be interesting for the debugger, such as
15464 nested subprograms for instance. */
72bf9492 15465 if (last_die->has_children
5afb4e99
DJ
15466 && (load_all
15467 || last_die->tag == DW_TAG_namespace
f55ee35c 15468 || last_die->tag == DW_TAG_module
72bf9492 15469 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15470 || (cu->language == language_cplus
15471 && last_die->tag == DW_TAG_subprogram
15472 && (last_die->name == NULL
15473 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15474 || (cu->language != language_c
15475 && (last_die->tag == DW_TAG_class_type
680b30c7 15476 || last_die->tag == DW_TAG_interface_type
72bf9492 15477 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15478 || last_die->tag == DW_TAG_union_type))
15479 || (cu->language == language_ada
15480 && (last_die->tag == DW_TAG_subprogram
15481 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15482 {
15483 nesting_level++;
15484 parent_die = last_die;
15485 continue;
15486 }
15487
15488 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15489 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15490
15491 /* Back to the top, do it again. */
15492 }
15493}
15494
c906108c
SS
15495/* Read a minimal amount of information into the minimal die structure. */
15496
d521ce57 15497static const gdb_byte *
dee91e82
DE
15498read_partial_die (const struct die_reader_specs *reader,
15499 struct partial_die_info *part_die,
15500 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15501 const gdb_byte *info_ptr)
c906108c 15502{
dee91e82 15503 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15504 struct objfile *objfile = cu->objfile;
d521ce57 15505 const gdb_byte *buffer = reader->buffer;
fa238c03 15506 unsigned int i;
c906108c 15507 struct attribute attr;
c5aa993b 15508 int has_low_pc_attr = 0;
c906108c 15509 int has_high_pc_attr = 0;
91da1414 15510 int high_pc_relative = 0;
c906108c 15511
72bf9492 15512 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15513
b64f50a1 15514 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15515
15516 info_ptr += abbrev_len;
15517
15518 if (abbrev == NULL)
15519 return info_ptr;
15520
c906108c
SS
15521 part_die->tag = abbrev->tag;
15522 part_die->has_children = abbrev->has_children;
c906108c
SS
15523
15524 for (i = 0; i < abbrev->num_attrs; ++i)
15525 {
dee91e82 15526 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15527
15528 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15529 partial symbol table. */
c906108c
SS
15530 switch (attr.name)
15531 {
15532 case DW_AT_name:
71c25dea
TT
15533 switch (part_die->tag)
15534 {
15535 case DW_TAG_compile_unit:
95554aad 15536 case DW_TAG_partial_unit:
348e048f 15537 case DW_TAG_type_unit:
71c25dea
TT
15538 /* Compilation units have a DW_AT_name that is a filename, not
15539 a source language identifier. */
15540 case DW_TAG_enumeration_type:
15541 case DW_TAG_enumerator:
15542 /* These tags always have simple identifiers already; no need
15543 to canonicalize them. */
15544 part_die->name = DW_STRING (&attr);
15545 break;
15546 default:
15547 part_die->name
15548 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15549 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15550 break;
15551 }
c906108c 15552 break;
31ef98ae 15553 case DW_AT_linkage_name:
c906108c 15554 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15555 /* Note that both forms of linkage name might appear. We
15556 assume they will be the same, and we only store the last
15557 one we see. */
94af9270
KS
15558 if (cu->language == language_ada)
15559 part_die->name = DW_STRING (&attr);
abc72ce4 15560 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15561 break;
15562 case DW_AT_low_pc:
15563 has_low_pc_attr = 1;
31aa7e4e 15564 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15565 break;
15566 case DW_AT_high_pc:
15567 has_high_pc_attr = 1;
31aa7e4e
JB
15568 part_die->highpc = attr_value_as_address (&attr);
15569 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15570 high_pc_relative = 1;
c906108c
SS
15571 break;
15572 case DW_AT_location:
0963b4bd 15573 /* Support the .debug_loc offsets. */
8e19ed76
PS
15574 if (attr_form_is_block (&attr))
15575 {
95554aad 15576 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15577 }
3690dd37 15578 else if (attr_form_is_section_offset (&attr))
8e19ed76 15579 {
4d3c2250 15580 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15581 }
15582 else
15583 {
4d3c2250
KB
15584 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15585 "partial symbol information");
8e19ed76 15586 }
c906108c 15587 break;
c906108c
SS
15588 case DW_AT_external:
15589 part_die->is_external = DW_UNSND (&attr);
15590 break;
15591 case DW_AT_declaration:
15592 part_die->is_declaration = DW_UNSND (&attr);
15593 break;
15594 case DW_AT_type:
15595 part_die->has_type = 1;
15596 break;
15597 case DW_AT_abstract_origin:
15598 case DW_AT_specification:
72bf9492
DJ
15599 case DW_AT_extension:
15600 part_die->has_specification = 1;
c764a876 15601 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15602 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15603 || cu->per_cu->is_dwz);
c906108c
SS
15604 break;
15605 case DW_AT_sibling:
15606 /* Ignore absolute siblings, they might point outside of
15607 the current compile unit. */
15608 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15609 complaint (&symfile_complaints,
15610 _("ignoring absolute DW_AT_sibling"));
c906108c 15611 else
b9502d3f
WN
15612 {
15613 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15614 const gdb_byte *sibling_ptr = buffer + off;
15615
15616 if (sibling_ptr < info_ptr)
15617 complaint (&symfile_complaints,
15618 _("DW_AT_sibling points backwards"));
22869d73
KS
15619 else if (sibling_ptr > reader->buffer_end)
15620 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15621 else
15622 part_die->sibling = sibling_ptr;
15623 }
c906108c 15624 break;
fa4028e9
JB
15625 case DW_AT_byte_size:
15626 part_die->has_byte_size = 1;
15627 break;
68511cec
CES
15628 case DW_AT_calling_convention:
15629 /* DWARF doesn't provide a way to identify a program's source-level
15630 entry point. DW_AT_calling_convention attributes are only meant
15631 to describe functions' calling conventions.
15632
15633 However, because it's a necessary piece of information in
15634 Fortran, and because DW_CC_program is the only piece of debugging
15635 information whose definition refers to a 'main program' at all,
15636 several compilers have begun marking Fortran main programs with
15637 DW_CC_program --- even when those functions use the standard
15638 calling conventions.
15639
15640 So until DWARF specifies a way to provide this information and
15641 compilers pick up the new representation, we'll support this
15642 practice. */
15643 if (DW_UNSND (&attr) == DW_CC_program
15644 && cu->language == language_fortran)
3d548a53 15645 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15646 break;
481860b3
GB
15647 case DW_AT_inline:
15648 if (DW_UNSND (&attr) == DW_INL_inlined
15649 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15650 part_die->may_be_inlined = 1;
15651 break;
95554aad
TT
15652
15653 case DW_AT_import:
15654 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15655 {
15656 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15657 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15658 || cu->per_cu->is_dwz);
15659 }
95554aad
TT
15660 break;
15661
c906108c
SS
15662 default:
15663 break;
15664 }
15665 }
15666
91da1414
MW
15667 if (high_pc_relative)
15668 part_die->highpc += part_die->lowpc;
15669
9373cf26
JK
15670 if (has_low_pc_attr && has_high_pc_attr)
15671 {
15672 /* When using the GNU linker, .gnu.linkonce. sections are used to
15673 eliminate duplicate copies of functions and vtables and such.
15674 The linker will arbitrarily choose one and discard the others.
15675 The AT_*_pc values for such functions refer to local labels in
15676 these sections. If the section from that file was discarded, the
15677 labels are not in the output, so the relocs get a value of 0.
15678 If this is a discarded function, mark the pc bounds as invalid,
15679 so that GDB will ignore it. */
15680 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15681 {
bb5ed363 15682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15683
15684 complaint (&symfile_complaints,
15685 _("DW_AT_low_pc %s is zero "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch, part_die->lowpc),
4262abfb 15688 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15689 }
15690 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15691 else if (part_die->lowpc >= part_die->highpc)
15692 {
bb5ed363 15693 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15694
15695 complaint (&symfile_complaints,
15696 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15697 "for DIE at 0x%x [in module %s]"),
15698 paddress (gdbarch, part_die->lowpc),
15699 paddress (gdbarch, part_die->highpc),
4262abfb 15700 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15701 }
15702 else
15703 part_die->has_pc_info = 1;
15704 }
85cbf3d3 15705
c906108c
SS
15706 return info_ptr;
15707}
15708
72bf9492
DJ
15709/* Find a cached partial DIE at OFFSET in CU. */
15710
15711static struct partial_die_info *
b64f50a1 15712find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15713{
15714 struct partial_die_info *lookup_die = NULL;
15715 struct partial_die_info part_die;
15716
15717 part_die.offset = offset;
b64f50a1
JK
15718 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15719 offset.sect_off);
72bf9492 15720
72bf9492
DJ
15721 return lookup_die;
15722}
15723
348e048f
DE
15724/* Find a partial DIE at OFFSET, which may or may not be in CU,
15725 except in the case of .debug_types DIEs which do not reference
15726 outside their CU (they do however referencing other types via
55f1336d 15727 DW_FORM_ref_sig8). */
72bf9492
DJ
15728
15729static struct partial_die_info *
36586728 15730find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15731{
bb5ed363 15732 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15733 struct dwarf2_per_cu_data *per_cu = NULL;
15734 struct partial_die_info *pd = NULL;
72bf9492 15735
36586728
TT
15736 if (offset_in_dwz == cu->per_cu->is_dwz
15737 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15738 {
15739 pd = find_partial_die_in_comp_unit (offset, cu);
15740 if (pd != NULL)
15741 return pd;
0d99eb77
DE
15742 /* We missed recording what we needed.
15743 Load all dies and try again. */
15744 per_cu = cu->per_cu;
5afb4e99 15745 }
0d99eb77
DE
15746 else
15747 {
15748 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15749 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15750 {
15751 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15752 " external reference to offset 0x%lx [in module %s].\n"),
15753 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15754 bfd_get_filename (objfile->obfd));
15755 }
36586728
TT
15756 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15757 objfile);
72bf9492 15758
0d99eb77
DE
15759 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15760 load_partial_comp_unit (per_cu);
ae038cb0 15761
0d99eb77
DE
15762 per_cu->cu->last_used = 0;
15763 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15764 }
5afb4e99 15765
dee91e82
DE
15766 /* If we didn't find it, and not all dies have been loaded,
15767 load them all and try again. */
15768
5afb4e99
DJ
15769 if (pd == NULL && per_cu->load_all_dies == 0)
15770 {
5afb4e99 15771 per_cu->load_all_dies = 1;
fd820528
DE
15772
15773 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15774 THIS_CU->cu may already be in use. So we can't just free it and
15775 replace its DIEs with the ones we read in. Instead, we leave those
15776 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15777 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15778 set. */
dee91e82 15779 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15780
15781 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15782 }
15783
15784 if (pd == NULL)
15785 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15786 _("could not find partial DIE 0x%x "
15787 "in cache [from module %s]\n"),
b64f50a1 15788 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15789 return pd;
72bf9492
DJ
15790}
15791
abc72ce4
DE
15792/* See if we can figure out if the class lives in a namespace. We do
15793 this by looking for a member function; its demangled name will
15794 contain namespace info, if there is any. */
15795
15796static void
15797guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15798 struct dwarf2_cu *cu)
15799{
15800 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15801 what template types look like, because the demangler
15802 frequently doesn't give the same name as the debug info. We
15803 could fix this by only using the demangled name to get the
15804 prefix (but see comment in read_structure_type). */
15805
15806 struct partial_die_info *real_pdi;
15807 struct partial_die_info *child_pdi;
15808
15809 /* If this DIE (this DIE's specification, if any) has a parent, then
15810 we should not do this. We'll prepend the parent's fully qualified
15811 name when we create the partial symbol. */
15812
15813 real_pdi = struct_pdi;
15814 while (real_pdi->has_specification)
36586728
TT
15815 real_pdi = find_partial_die (real_pdi->spec_offset,
15816 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15817
15818 if (real_pdi->die_parent != NULL)
15819 return;
15820
15821 for (child_pdi = struct_pdi->die_child;
15822 child_pdi != NULL;
15823 child_pdi = child_pdi->die_sibling)
15824 {
15825 if (child_pdi->tag == DW_TAG_subprogram
15826 && child_pdi->linkage_name != NULL)
15827 {
15828 char *actual_class_name
15829 = language_class_name_from_physname (cu->language_defn,
15830 child_pdi->linkage_name);
15831 if (actual_class_name != NULL)
15832 {
15833 struct_pdi->name
34a68019 15834 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
15835 actual_class_name,
15836 strlen (actual_class_name));
abc72ce4
DE
15837 xfree (actual_class_name);
15838 }
15839 break;
15840 }
15841 }
15842}
15843
72bf9492
DJ
15844/* Adjust PART_DIE before generating a symbol for it. This function
15845 may set the is_external flag or change the DIE's name. */
15846
15847static void
15848fixup_partial_die (struct partial_die_info *part_die,
15849 struct dwarf2_cu *cu)
15850{
abc72ce4
DE
15851 /* Once we've fixed up a die, there's no point in doing so again.
15852 This also avoids a memory leak if we were to call
15853 guess_partial_die_structure_name multiple times. */
15854 if (part_die->fixup_called)
15855 return;
15856
72bf9492
DJ
15857 /* If we found a reference attribute and the DIE has no name, try
15858 to find a name in the referred to DIE. */
15859
15860 if (part_die->name == NULL && part_die->has_specification)
15861 {
15862 struct partial_die_info *spec_die;
72bf9492 15863
36586728
TT
15864 spec_die = find_partial_die (part_die->spec_offset,
15865 part_die->spec_is_dwz, cu);
72bf9492 15866
10b3939b 15867 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15868
15869 if (spec_die->name)
15870 {
15871 part_die->name = spec_die->name;
15872
15873 /* Copy DW_AT_external attribute if it is set. */
15874 if (spec_die->is_external)
15875 part_die->is_external = spec_die->is_external;
15876 }
15877 }
15878
15879 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15880
15881 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15882 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15883
abc72ce4
DE
15884 /* If there is no parent die to provide a namespace, and there are
15885 children, see if we can determine the namespace from their linkage
122d1940 15886 name. */
abc72ce4 15887 if (cu->language == language_cplus
8b70b953 15888 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15889 && part_die->die_parent == NULL
15890 && part_die->has_children
15891 && (part_die->tag == DW_TAG_class_type
15892 || part_die->tag == DW_TAG_structure_type
15893 || part_die->tag == DW_TAG_union_type))
15894 guess_partial_die_structure_name (part_die, cu);
15895
53832f31
TT
15896 /* GCC might emit a nameless struct or union that has a linkage
15897 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15898 if (part_die->name == NULL
96408a79
SA
15899 && (part_die->tag == DW_TAG_class_type
15900 || part_die->tag == DW_TAG_interface_type
15901 || part_die->tag == DW_TAG_structure_type
15902 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15903 && part_die->linkage_name != NULL)
15904 {
15905 char *demangled;
15906
8de20a37 15907 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15908 if (demangled)
15909 {
96408a79
SA
15910 const char *base;
15911
15912 /* Strip any leading namespaces/classes, keep only the base name.
15913 DW_AT_name for named DIEs does not contain the prefixes. */
15914 base = strrchr (demangled, ':');
15915 if (base && base > demangled && base[-1] == ':')
15916 base++;
15917 else
15918 base = demangled;
15919
34a68019
TT
15920 part_die->name
15921 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15922 base, strlen (base));
53832f31
TT
15923 xfree (demangled);
15924 }
15925 }
15926
abc72ce4 15927 part_die->fixup_called = 1;
72bf9492
DJ
15928}
15929
a8329558 15930/* Read an attribute value described by an attribute form. */
c906108c 15931
d521ce57 15932static const gdb_byte *
dee91e82
DE
15933read_attribute_value (const struct die_reader_specs *reader,
15934 struct attribute *attr, unsigned form,
d521ce57 15935 const gdb_byte *info_ptr)
c906108c 15936{
dee91e82
DE
15937 struct dwarf2_cu *cu = reader->cu;
15938 bfd *abfd = reader->abfd;
e7c27a73 15939 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15940 unsigned int bytes_read;
15941 struct dwarf_block *blk;
15942
a8329558
KW
15943 attr->form = form;
15944 switch (form)
c906108c 15945 {
c906108c 15946 case DW_FORM_ref_addr:
ae411497 15947 if (cu->header.version == 2)
4568ecf9 15948 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15949 else
4568ecf9
DE
15950 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15951 &cu->header, &bytes_read);
ae411497
TT
15952 info_ptr += bytes_read;
15953 break;
36586728
TT
15954 case DW_FORM_GNU_ref_alt:
15955 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15956 info_ptr += bytes_read;
15957 break;
ae411497 15958 case DW_FORM_addr:
e7c27a73 15959 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15960 info_ptr += bytes_read;
c906108c
SS
15961 break;
15962 case DW_FORM_block2:
7b5a2f43 15963 blk = dwarf_alloc_block (cu);
c906108c
SS
15964 blk->size = read_2_bytes (abfd, info_ptr);
15965 info_ptr += 2;
15966 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15967 info_ptr += blk->size;
15968 DW_BLOCK (attr) = blk;
15969 break;
15970 case DW_FORM_block4:
7b5a2f43 15971 blk = dwarf_alloc_block (cu);
c906108c
SS
15972 blk->size = read_4_bytes (abfd, info_ptr);
15973 info_ptr += 4;
15974 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15975 info_ptr += blk->size;
15976 DW_BLOCK (attr) = blk;
15977 break;
15978 case DW_FORM_data2:
15979 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15980 info_ptr += 2;
15981 break;
15982 case DW_FORM_data4:
15983 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15984 info_ptr += 4;
15985 break;
15986 case DW_FORM_data8:
15987 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15988 info_ptr += 8;
15989 break;
2dc7f7b3
TT
15990 case DW_FORM_sec_offset:
15991 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15992 info_ptr += bytes_read;
15993 break;
c906108c 15994 case DW_FORM_string:
9b1c24c8 15995 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15996 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15997 info_ptr += bytes_read;
15998 break;
4bdf3d34 15999 case DW_FORM_strp:
36586728
TT
16000 if (!cu->per_cu->is_dwz)
16001 {
16002 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16003 &bytes_read);
16004 DW_STRING_IS_CANONICAL (attr) = 0;
16005 info_ptr += bytes_read;
16006 break;
16007 }
16008 /* FALLTHROUGH */
16009 case DW_FORM_GNU_strp_alt:
16010 {
16011 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16012 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16013 &bytes_read);
16014
16015 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16016 DW_STRING_IS_CANONICAL (attr) = 0;
16017 info_ptr += bytes_read;
16018 }
4bdf3d34 16019 break;
2dc7f7b3 16020 case DW_FORM_exprloc:
c906108c 16021 case DW_FORM_block:
7b5a2f43 16022 blk = dwarf_alloc_block (cu);
c906108c
SS
16023 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16024 info_ptr += bytes_read;
16025 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16026 info_ptr += blk->size;
16027 DW_BLOCK (attr) = blk;
16028 break;
16029 case DW_FORM_block1:
7b5a2f43 16030 blk = dwarf_alloc_block (cu);
c906108c
SS
16031 blk->size = read_1_byte (abfd, info_ptr);
16032 info_ptr += 1;
16033 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16034 info_ptr += blk->size;
16035 DW_BLOCK (attr) = blk;
16036 break;
16037 case DW_FORM_data1:
16038 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16039 info_ptr += 1;
16040 break;
16041 case DW_FORM_flag:
16042 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16043 info_ptr += 1;
16044 break;
2dc7f7b3
TT
16045 case DW_FORM_flag_present:
16046 DW_UNSND (attr) = 1;
16047 break;
c906108c
SS
16048 case DW_FORM_sdata:
16049 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16050 info_ptr += bytes_read;
16051 break;
16052 case DW_FORM_udata:
16053 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16054 info_ptr += bytes_read;
16055 break;
16056 case DW_FORM_ref1:
4568ecf9
DE
16057 DW_UNSND (attr) = (cu->header.offset.sect_off
16058 + read_1_byte (abfd, info_ptr));
c906108c
SS
16059 info_ptr += 1;
16060 break;
16061 case DW_FORM_ref2:
4568ecf9
DE
16062 DW_UNSND (attr) = (cu->header.offset.sect_off
16063 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16064 info_ptr += 2;
16065 break;
16066 case DW_FORM_ref4:
4568ecf9
DE
16067 DW_UNSND (attr) = (cu->header.offset.sect_off
16068 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16069 info_ptr += 4;
16070 break;
613e1657 16071 case DW_FORM_ref8:
4568ecf9
DE
16072 DW_UNSND (attr) = (cu->header.offset.sect_off
16073 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16074 info_ptr += 8;
16075 break;
55f1336d 16076 case DW_FORM_ref_sig8:
ac9ec31b 16077 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16078 info_ptr += 8;
16079 break;
c906108c 16080 case DW_FORM_ref_udata:
4568ecf9
DE
16081 DW_UNSND (attr) = (cu->header.offset.sect_off
16082 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16083 info_ptr += bytes_read;
16084 break;
c906108c 16085 case DW_FORM_indirect:
a8329558
KW
16086 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16087 info_ptr += bytes_read;
dee91e82 16088 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16089 break;
3019eac3
DE
16090 case DW_FORM_GNU_addr_index:
16091 if (reader->dwo_file == NULL)
16092 {
16093 /* For now flag a hard error.
16094 Later we can turn this into a complaint. */
16095 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16096 dwarf_form_name (form),
16097 bfd_get_filename (abfd));
16098 }
16099 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16100 info_ptr += bytes_read;
16101 break;
16102 case DW_FORM_GNU_str_index:
16103 if (reader->dwo_file == NULL)
16104 {
16105 /* For now flag a hard error.
16106 Later we can turn this into a complaint if warranted. */
16107 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16108 dwarf_form_name (form),
16109 bfd_get_filename (abfd));
16110 }
16111 {
16112 ULONGEST str_index =
16113 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16114
342587c4 16115 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16116 DW_STRING_IS_CANONICAL (attr) = 0;
16117 info_ptr += bytes_read;
16118 }
16119 break;
c906108c 16120 default:
8a3fe4f8 16121 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16122 dwarf_form_name (form),
16123 bfd_get_filename (abfd));
c906108c 16124 }
28e94949 16125
36586728 16126 /* Super hack. */
7771576e 16127 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16128 attr->form = DW_FORM_GNU_ref_alt;
16129
28e94949
JB
16130 /* We have seen instances where the compiler tried to emit a byte
16131 size attribute of -1 which ended up being encoded as an unsigned
16132 0xffffffff. Although 0xffffffff is technically a valid size value,
16133 an object of this size seems pretty unlikely so we can relatively
16134 safely treat these cases as if the size attribute was invalid and
16135 treat them as zero by default. */
16136 if (attr->name == DW_AT_byte_size
16137 && form == DW_FORM_data4
16138 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16139 {
16140 complaint
16141 (&symfile_complaints,
43bbcdc2
PH
16142 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16143 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16144 DW_UNSND (attr) = 0;
16145 }
28e94949 16146
c906108c
SS
16147 return info_ptr;
16148}
16149
a8329558
KW
16150/* Read an attribute described by an abbreviated attribute. */
16151
d521ce57 16152static const gdb_byte *
dee91e82
DE
16153read_attribute (const struct die_reader_specs *reader,
16154 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16155 const gdb_byte *info_ptr)
a8329558
KW
16156{
16157 attr->name = abbrev->name;
dee91e82 16158 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16159}
16160
0963b4bd 16161/* Read dwarf information from a buffer. */
c906108c
SS
16162
16163static unsigned int
a1855c1d 16164read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16165{
fe1b8b76 16166 return bfd_get_8 (abfd, buf);
c906108c
SS
16167}
16168
16169static int
a1855c1d 16170read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16171{
fe1b8b76 16172 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16173}
16174
16175static unsigned int
a1855c1d 16176read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16177{
fe1b8b76 16178 return bfd_get_16 (abfd, buf);
c906108c
SS
16179}
16180
21ae7a4d 16181static int
a1855c1d 16182read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16183{
16184 return bfd_get_signed_16 (abfd, buf);
16185}
16186
c906108c 16187static unsigned int
a1855c1d 16188read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16189{
fe1b8b76 16190 return bfd_get_32 (abfd, buf);
c906108c
SS
16191}
16192
21ae7a4d 16193static int
a1855c1d 16194read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16195{
16196 return bfd_get_signed_32 (abfd, buf);
16197}
16198
93311388 16199static ULONGEST
a1855c1d 16200read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16201{
fe1b8b76 16202 return bfd_get_64 (abfd, buf);
c906108c
SS
16203}
16204
16205static CORE_ADDR
d521ce57 16206read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16207 unsigned int *bytes_read)
c906108c 16208{
e7c27a73 16209 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16210 CORE_ADDR retval = 0;
16211
107d2387 16212 if (cu_header->signed_addr_p)
c906108c 16213 {
107d2387
AC
16214 switch (cu_header->addr_size)
16215 {
16216 case 2:
fe1b8b76 16217 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16218 break;
16219 case 4:
fe1b8b76 16220 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16221 break;
16222 case 8:
fe1b8b76 16223 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16224 break;
16225 default:
8e65ff28 16226 internal_error (__FILE__, __LINE__,
e2e0b3e5 16227 _("read_address: bad switch, signed [in module %s]"),
659b0389 16228 bfd_get_filename (abfd));
107d2387
AC
16229 }
16230 }
16231 else
16232 {
16233 switch (cu_header->addr_size)
16234 {
16235 case 2:
fe1b8b76 16236 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16237 break;
16238 case 4:
fe1b8b76 16239 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16240 break;
16241 case 8:
fe1b8b76 16242 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16243 break;
16244 default:
8e65ff28 16245 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16246 _("read_address: bad switch, "
16247 "unsigned [in module %s]"),
659b0389 16248 bfd_get_filename (abfd));
107d2387 16249 }
c906108c 16250 }
64367e0a 16251
107d2387
AC
16252 *bytes_read = cu_header->addr_size;
16253 return retval;
c906108c
SS
16254}
16255
f7ef9339 16256/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16257 specification allows the initial length to take up either 4 bytes
16258 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16259 bytes describe the length and all offsets will be 8 bytes in length
16260 instead of 4.
16261
f7ef9339
KB
16262 An older, non-standard 64-bit format is also handled by this
16263 function. The older format in question stores the initial length
16264 as an 8-byte quantity without an escape value. Lengths greater
16265 than 2^32 aren't very common which means that the initial 4 bytes
16266 is almost always zero. Since a length value of zero doesn't make
16267 sense for the 32-bit format, this initial zero can be considered to
16268 be an escape value which indicates the presence of the older 64-bit
16269 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16270 greater than 4GB. If it becomes necessary to handle lengths
16271 somewhat larger than 4GB, we could allow other small values (such
16272 as the non-sensical values of 1, 2, and 3) to also be used as
16273 escape values indicating the presence of the old format.
f7ef9339 16274
917c78fc
MK
16275 The value returned via bytes_read should be used to increment the
16276 relevant pointer after calling read_initial_length().
c764a876 16277
613e1657
KB
16278 [ Note: read_initial_length() and read_offset() are based on the
16279 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16280 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16281 from:
16282
f7ef9339 16283 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16284
613e1657
KB
16285 This document is only a draft and is subject to change. (So beware.)
16286
f7ef9339 16287 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16288 determined empirically by examining 64-bit ELF files produced by
16289 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16290
16291 - Kevin, July 16, 2002
613e1657
KB
16292 ] */
16293
16294static LONGEST
d521ce57 16295read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16296{
fe1b8b76 16297 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16298
dd373385 16299 if (length == 0xffffffff)
613e1657 16300 {
fe1b8b76 16301 length = bfd_get_64 (abfd, buf + 4);
613e1657 16302 *bytes_read = 12;
613e1657 16303 }
dd373385 16304 else if (length == 0)
f7ef9339 16305 {
dd373385 16306 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16307 length = bfd_get_64 (abfd, buf);
f7ef9339 16308 *bytes_read = 8;
f7ef9339 16309 }
613e1657
KB
16310 else
16311 {
16312 *bytes_read = 4;
613e1657
KB
16313 }
16314
c764a876
DE
16315 return length;
16316}
dd373385 16317
c764a876
DE
16318/* Cover function for read_initial_length.
16319 Returns the length of the object at BUF, and stores the size of the
16320 initial length in *BYTES_READ and stores the size that offsets will be in
16321 *OFFSET_SIZE.
16322 If the initial length size is not equivalent to that specified in
16323 CU_HEADER then issue a complaint.
16324 This is useful when reading non-comp-unit headers. */
dd373385 16325
c764a876 16326static LONGEST
d521ce57 16327read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16328 const struct comp_unit_head *cu_header,
16329 unsigned int *bytes_read,
16330 unsigned int *offset_size)
16331{
16332 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16333
16334 gdb_assert (cu_header->initial_length_size == 4
16335 || cu_header->initial_length_size == 8
16336 || cu_header->initial_length_size == 12);
16337
16338 if (cu_header->initial_length_size != *bytes_read)
16339 complaint (&symfile_complaints,
16340 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16341
c764a876 16342 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16343 return length;
613e1657
KB
16344}
16345
16346/* Read an offset from the data stream. The size of the offset is
917c78fc 16347 given by cu_header->offset_size. */
613e1657
KB
16348
16349static LONGEST
d521ce57
TT
16350read_offset (bfd *abfd, const gdb_byte *buf,
16351 const struct comp_unit_head *cu_header,
891d2f0b 16352 unsigned int *bytes_read)
c764a876
DE
16353{
16354 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16355
c764a876
DE
16356 *bytes_read = cu_header->offset_size;
16357 return offset;
16358}
16359
16360/* Read an offset from the data stream. */
16361
16362static LONGEST
d521ce57 16363read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16364{
16365 LONGEST retval = 0;
16366
c764a876 16367 switch (offset_size)
613e1657
KB
16368 {
16369 case 4:
fe1b8b76 16370 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16371 break;
16372 case 8:
fe1b8b76 16373 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16374 break;
16375 default:
8e65ff28 16376 internal_error (__FILE__, __LINE__,
c764a876 16377 _("read_offset_1: bad switch [in module %s]"),
659b0389 16378 bfd_get_filename (abfd));
613e1657
KB
16379 }
16380
917c78fc 16381 return retval;
613e1657
KB
16382}
16383
d521ce57
TT
16384static const gdb_byte *
16385read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16386{
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the buffer, otherwise we have to copy the data to a buffer
16389 allocated on the temporary obstack. */
4bdf3d34 16390 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16391 return buf;
c906108c
SS
16392}
16393
d521ce57
TT
16394static const char *
16395read_direct_string (bfd *abfd, const gdb_byte *buf,
16396 unsigned int *bytes_read_ptr)
c906108c
SS
16397{
16398 /* If the size of a host char is 8 bits, we can return a pointer
16399 to the string, otherwise we have to copy the string to a buffer
16400 allocated on the temporary obstack. */
4bdf3d34 16401 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16402 if (*buf == '\0')
16403 {
16404 *bytes_read_ptr = 1;
16405 return NULL;
16406 }
d521ce57
TT
16407 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16408 return (const char *) buf;
4bdf3d34
JJ
16409}
16410
d521ce57 16411static const char *
cf2c3c16 16412read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16413{
be391dca 16414 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16415 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16416 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16417 bfd_get_filename (abfd));
dce234bc 16418 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16419 error (_("DW_FORM_strp pointing outside of "
16420 ".debug_str section [in module %s]"),
16421 bfd_get_filename (abfd));
4bdf3d34 16422 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16423 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16424 return NULL;
d521ce57 16425 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16426}
16427
36586728
TT
16428/* Read a string at offset STR_OFFSET in the .debug_str section from
16429 the .dwz file DWZ. Throw an error if the offset is too large. If
16430 the string consists of a single NUL byte, return NULL; otherwise
16431 return a pointer to the string. */
16432
d521ce57 16433static const char *
36586728
TT
16434read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16435{
16436 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16437
16438 if (dwz->str.buffer == NULL)
16439 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16440 "section [in module %s]"),
16441 bfd_get_filename (dwz->dwz_bfd));
16442 if (str_offset >= dwz->str.size)
16443 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16444 ".debug_str section [in module %s]"),
16445 bfd_get_filename (dwz->dwz_bfd));
16446 gdb_assert (HOST_CHAR_BIT == 8);
16447 if (dwz->str.buffer[str_offset] == '\0')
16448 return NULL;
d521ce57 16449 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16450}
16451
d521ce57
TT
16452static const char *
16453read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16454 const struct comp_unit_head *cu_header,
16455 unsigned int *bytes_read_ptr)
16456{
16457 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16458
16459 return read_indirect_string_at_offset (abfd, str_offset);
16460}
16461
12df843f 16462static ULONGEST
d521ce57
TT
16463read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16464 unsigned int *bytes_read_ptr)
c906108c 16465{
12df843f 16466 ULONGEST result;
ce5d95e1 16467 unsigned int num_read;
c906108c
SS
16468 int i, shift;
16469 unsigned char byte;
16470
16471 result = 0;
16472 shift = 0;
16473 num_read = 0;
16474 i = 0;
16475 while (1)
16476 {
fe1b8b76 16477 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16478 buf++;
16479 num_read++;
12df843f 16480 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16481 if ((byte & 128) == 0)
16482 {
16483 break;
16484 }
16485 shift += 7;
16486 }
16487 *bytes_read_ptr = num_read;
16488 return result;
16489}
16490
12df843f 16491static LONGEST
d521ce57
TT
16492read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16493 unsigned int *bytes_read_ptr)
c906108c 16494{
12df843f 16495 LONGEST result;
77e0b926 16496 int i, shift, num_read;
c906108c
SS
16497 unsigned char byte;
16498
16499 result = 0;
16500 shift = 0;
c906108c
SS
16501 num_read = 0;
16502 i = 0;
16503 while (1)
16504 {
fe1b8b76 16505 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16506 buf++;
16507 num_read++;
12df843f 16508 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16509 shift += 7;
16510 if ((byte & 128) == 0)
16511 {
16512 break;
16513 }
16514 }
77e0b926 16515 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16516 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16517 *bytes_read_ptr = num_read;
16518 return result;
16519}
16520
3019eac3
DE
16521/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16522 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16523 ADDR_SIZE is the size of addresses from the CU header. */
16524
16525static CORE_ADDR
16526read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16527{
16528 struct objfile *objfile = dwarf2_per_objfile->objfile;
16529 bfd *abfd = objfile->obfd;
16530 const gdb_byte *info_ptr;
16531
16532 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16533 if (dwarf2_per_objfile->addr.buffer == NULL)
16534 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16535 objfile_name (objfile));
3019eac3
DE
16536 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16537 error (_("DW_FORM_addr_index pointing outside of "
16538 ".debug_addr section [in module %s]"),
4262abfb 16539 objfile_name (objfile));
3019eac3
DE
16540 info_ptr = (dwarf2_per_objfile->addr.buffer
16541 + addr_base + addr_index * addr_size);
16542 if (addr_size == 4)
16543 return bfd_get_32 (abfd, info_ptr);
16544 else
16545 return bfd_get_64 (abfd, info_ptr);
16546}
16547
16548/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16549
16550static CORE_ADDR
16551read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16552{
16553 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16554}
16555
16556/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16557
16558static CORE_ADDR
d521ce57 16559read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16560 unsigned int *bytes_read)
16561{
16562 bfd *abfd = cu->objfile->obfd;
16563 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16564
16565 return read_addr_index (cu, addr_index);
16566}
16567
16568/* Data structure to pass results from dwarf2_read_addr_index_reader
16569 back to dwarf2_read_addr_index. */
16570
16571struct dwarf2_read_addr_index_data
16572{
16573 ULONGEST addr_base;
16574 int addr_size;
16575};
16576
16577/* die_reader_func for dwarf2_read_addr_index. */
16578
16579static void
16580dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16581 const gdb_byte *info_ptr,
3019eac3
DE
16582 struct die_info *comp_unit_die,
16583 int has_children,
16584 void *data)
16585{
16586 struct dwarf2_cu *cu = reader->cu;
16587 struct dwarf2_read_addr_index_data *aidata =
16588 (struct dwarf2_read_addr_index_data *) data;
16589
16590 aidata->addr_base = cu->addr_base;
16591 aidata->addr_size = cu->header.addr_size;
16592}
16593
16594/* Given an index in .debug_addr, fetch the value.
16595 NOTE: This can be called during dwarf expression evaluation,
16596 long after the debug information has been read, and thus per_cu->cu
16597 may no longer exist. */
16598
16599CORE_ADDR
16600dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16601 unsigned int addr_index)
16602{
16603 struct objfile *objfile = per_cu->objfile;
16604 struct dwarf2_cu *cu = per_cu->cu;
16605 ULONGEST addr_base;
16606 int addr_size;
16607
16608 /* This is intended to be called from outside this file. */
16609 dw2_setup (objfile);
16610
16611 /* We need addr_base and addr_size.
16612 If we don't have PER_CU->cu, we have to get it.
16613 Nasty, but the alternative is storing the needed info in PER_CU,
16614 which at this point doesn't seem justified: it's not clear how frequently
16615 it would get used and it would increase the size of every PER_CU.
16616 Entry points like dwarf2_per_cu_addr_size do a similar thing
16617 so we're not in uncharted territory here.
16618 Alas we need to be a bit more complicated as addr_base is contained
16619 in the DIE.
16620
16621 We don't need to read the entire CU(/TU).
16622 We just need the header and top level die.
a1b64ce1 16623
3019eac3 16624 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16625 For now we skip this optimization. */
3019eac3
DE
16626
16627 if (cu != NULL)
16628 {
16629 addr_base = cu->addr_base;
16630 addr_size = cu->header.addr_size;
16631 }
16632 else
16633 {
16634 struct dwarf2_read_addr_index_data aidata;
16635
a1b64ce1
DE
16636 /* Note: We can't use init_cutu_and_read_dies_simple here,
16637 we need addr_base. */
16638 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16639 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16640 addr_base = aidata.addr_base;
16641 addr_size = aidata.addr_size;
16642 }
16643
16644 return read_addr_index_1 (addr_index, addr_base, addr_size);
16645}
16646
57d63ce2
DE
16647/* Given a DW_FORM_GNU_str_index, fetch the string.
16648 This is only used by the Fission support. */
3019eac3 16649
d521ce57 16650static const char *
342587c4 16651read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16652{
16653 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16654 const char *objf_name = objfile_name (objfile);
3019eac3 16655 bfd *abfd = objfile->obfd;
342587c4 16656 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16657 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16658 struct dwarf2_section_info *str_offsets_section =
16659 &reader->dwo_file->sections.str_offsets;
d521ce57 16660 const gdb_byte *info_ptr;
3019eac3 16661 ULONGEST str_offset;
57d63ce2 16662 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16663
73869dc2
DE
16664 dwarf2_read_section (objfile, str_section);
16665 dwarf2_read_section (objfile, str_offsets_section);
16666 if (str_section->buffer == NULL)
57d63ce2 16667 error (_("%s used without .debug_str.dwo section"
3019eac3 16668 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16669 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16670 if (str_offsets_section->buffer == NULL)
57d63ce2 16671 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16672 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16673 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16674 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16675 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16676 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16677 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16678 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16679 + str_index * cu->header.offset_size);
16680 if (cu->header.offset_size == 4)
16681 str_offset = bfd_get_32 (abfd, info_ptr);
16682 else
16683 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16684 if (str_offset >= str_section->size)
57d63ce2 16685 error (_("Offset from %s pointing outside of"
3019eac3 16686 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16687 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16688 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16689}
16690
3019eac3
DE
16691/* Return the length of an LEB128 number in BUF. */
16692
16693static int
16694leb128_size (const gdb_byte *buf)
16695{
16696 const gdb_byte *begin = buf;
16697 gdb_byte byte;
16698
16699 while (1)
16700 {
16701 byte = *buf++;
16702 if ((byte & 128) == 0)
16703 return buf - begin;
16704 }
16705}
16706
c906108c 16707static void
e142c38c 16708set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16709{
16710 switch (lang)
16711 {
16712 case DW_LANG_C89:
76bee0cc 16713 case DW_LANG_C99:
c906108c 16714 case DW_LANG_C:
d1be3247 16715 case DW_LANG_UPC:
e142c38c 16716 cu->language = language_c;
c906108c
SS
16717 break;
16718 case DW_LANG_C_plus_plus:
e142c38c 16719 cu->language = language_cplus;
c906108c 16720 break;
6aecb9c2
JB
16721 case DW_LANG_D:
16722 cu->language = language_d;
16723 break;
c906108c
SS
16724 case DW_LANG_Fortran77:
16725 case DW_LANG_Fortran90:
b21b22e0 16726 case DW_LANG_Fortran95:
e142c38c 16727 cu->language = language_fortran;
c906108c 16728 break;
a766d390
DE
16729 case DW_LANG_Go:
16730 cu->language = language_go;
16731 break;
c906108c 16732 case DW_LANG_Mips_Assembler:
e142c38c 16733 cu->language = language_asm;
c906108c 16734 break;
bebd888e 16735 case DW_LANG_Java:
e142c38c 16736 cu->language = language_java;
bebd888e 16737 break;
c906108c 16738 case DW_LANG_Ada83:
8aaf0b47 16739 case DW_LANG_Ada95:
bc5f45f8
JB
16740 cu->language = language_ada;
16741 break;
72019c9c
GM
16742 case DW_LANG_Modula2:
16743 cu->language = language_m2;
16744 break;
fe8e67fd
PM
16745 case DW_LANG_Pascal83:
16746 cu->language = language_pascal;
16747 break;
22566fbd
DJ
16748 case DW_LANG_ObjC:
16749 cu->language = language_objc;
16750 break;
c906108c
SS
16751 case DW_LANG_Cobol74:
16752 case DW_LANG_Cobol85:
c906108c 16753 default:
e142c38c 16754 cu->language = language_minimal;
c906108c
SS
16755 break;
16756 }
e142c38c 16757 cu->language_defn = language_def (cu->language);
c906108c
SS
16758}
16759
16760/* Return the named attribute or NULL if not there. */
16761
16762static struct attribute *
e142c38c 16763dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16764{
a48e046c 16765 for (;;)
c906108c 16766 {
a48e046c
TT
16767 unsigned int i;
16768 struct attribute *spec = NULL;
16769
16770 for (i = 0; i < die->num_attrs; ++i)
16771 {
16772 if (die->attrs[i].name == name)
16773 return &die->attrs[i];
16774 if (die->attrs[i].name == DW_AT_specification
16775 || die->attrs[i].name == DW_AT_abstract_origin)
16776 spec = &die->attrs[i];
16777 }
16778
16779 if (!spec)
16780 break;
c906108c 16781
f2f0e013 16782 die = follow_die_ref (die, spec, &cu);
f2f0e013 16783 }
c5aa993b 16784
c906108c
SS
16785 return NULL;
16786}
16787
348e048f
DE
16788/* Return the named attribute or NULL if not there,
16789 but do not follow DW_AT_specification, etc.
16790 This is for use in contexts where we're reading .debug_types dies.
16791 Following DW_AT_specification, DW_AT_abstract_origin will take us
16792 back up the chain, and we want to go down. */
16793
16794static struct attribute *
45e58e77 16795dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16796{
16797 unsigned int i;
16798
16799 for (i = 0; i < die->num_attrs; ++i)
16800 if (die->attrs[i].name == name)
16801 return &die->attrs[i];
16802
16803 return NULL;
16804}
16805
05cf31d1
JB
16806/* Return non-zero iff the attribute NAME is defined for the given DIE,
16807 and holds a non-zero value. This function should only be used for
2dc7f7b3 16808 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16809
16810static int
16811dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16812{
16813 struct attribute *attr = dwarf2_attr (die, name, cu);
16814
16815 return (attr && DW_UNSND (attr));
16816}
16817
3ca72b44 16818static int
e142c38c 16819die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16820{
05cf31d1
JB
16821 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16822 which value is non-zero. However, we have to be careful with
16823 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16824 (via dwarf2_flag_true_p) follows this attribute. So we may
16825 end up accidently finding a declaration attribute that belongs
16826 to a different DIE referenced by the specification attribute,
16827 even though the given DIE does not have a declaration attribute. */
16828 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16829 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16830}
16831
63d06c5c 16832/* Return the die giving the specification for DIE, if there is
f2f0e013 16833 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16834 containing the return value on output. If there is no
16835 specification, but there is an abstract origin, that is
16836 returned. */
63d06c5c
DC
16837
16838static struct die_info *
f2f0e013 16839die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16840{
f2f0e013
DJ
16841 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16842 *spec_cu);
63d06c5c 16843
edb3359d
DJ
16844 if (spec_attr == NULL)
16845 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16846
63d06c5c
DC
16847 if (spec_attr == NULL)
16848 return NULL;
16849 else
f2f0e013 16850 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16851}
c906108c 16852
debd256d 16853/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16854 refers to.
16855 NOTE: This is also used as a "cleanup" function. */
16856
debd256d
JB
16857static void
16858free_line_header (struct line_header *lh)
16859{
16860 if (lh->standard_opcode_lengths)
a8bc7b56 16861 xfree (lh->standard_opcode_lengths);
debd256d
JB
16862
16863 /* Remember that all the lh->file_names[i].name pointers are
16864 pointers into debug_line_buffer, and don't need to be freed. */
16865 if (lh->file_names)
a8bc7b56 16866 xfree (lh->file_names);
debd256d
JB
16867
16868 /* Similarly for the include directory names. */
16869 if (lh->include_dirs)
a8bc7b56 16870 xfree (lh->include_dirs);
debd256d 16871
a8bc7b56 16872 xfree (lh);
debd256d
JB
16873}
16874
debd256d 16875/* Add an entry to LH's include directory table. */
ae2de4f8 16876
debd256d 16877static void
d521ce57 16878add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16879{
debd256d
JB
16880 /* Grow the array if necessary. */
16881 if (lh->include_dirs_size == 0)
c5aa993b 16882 {
debd256d
JB
16883 lh->include_dirs_size = 1; /* for testing */
16884 lh->include_dirs = xmalloc (lh->include_dirs_size
16885 * sizeof (*lh->include_dirs));
16886 }
16887 else if (lh->num_include_dirs >= lh->include_dirs_size)
16888 {
16889 lh->include_dirs_size *= 2;
16890 lh->include_dirs = xrealloc (lh->include_dirs,
16891 (lh->include_dirs_size
16892 * sizeof (*lh->include_dirs)));
c5aa993b 16893 }
c906108c 16894
debd256d
JB
16895 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16896}
6e70227d 16897
debd256d 16898/* Add an entry to LH's file name table. */
ae2de4f8 16899
debd256d
JB
16900static void
16901add_file_name (struct line_header *lh,
d521ce57 16902 const char *name,
debd256d
JB
16903 unsigned int dir_index,
16904 unsigned int mod_time,
16905 unsigned int length)
16906{
16907 struct file_entry *fe;
16908
16909 /* Grow the array if necessary. */
16910 if (lh->file_names_size == 0)
16911 {
16912 lh->file_names_size = 1; /* for testing */
16913 lh->file_names = xmalloc (lh->file_names_size
16914 * sizeof (*lh->file_names));
16915 }
16916 else if (lh->num_file_names >= lh->file_names_size)
16917 {
16918 lh->file_names_size *= 2;
16919 lh->file_names = xrealloc (lh->file_names,
16920 (lh->file_names_size
16921 * sizeof (*lh->file_names)));
16922 }
16923
16924 fe = &lh->file_names[lh->num_file_names++];
16925 fe->name = name;
16926 fe->dir_index = dir_index;
16927 fe->mod_time = mod_time;
16928 fe->length = length;
aaa75496 16929 fe->included_p = 0;
cb1df416 16930 fe->symtab = NULL;
debd256d 16931}
6e70227d 16932
36586728
TT
16933/* A convenience function to find the proper .debug_line section for a
16934 CU. */
16935
16936static struct dwarf2_section_info *
16937get_debug_line_section (struct dwarf2_cu *cu)
16938{
16939 struct dwarf2_section_info *section;
16940
16941 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16942 DWO file. */
16943 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16944 section = &cu->dwo_unit->dwo_file->sections.line;
16945 else if (cu->per_cu->is_dwz)
16946 {
16947 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16948
16949 section = &dwz->line;
16950 }
16951 else
16952 section = &dwarf2_per_objfile->line;
16953
16954 return section;
16955}
16956
debd256d 16957/* Read the statement program header starting at OFFSET in
3019eac3 16958 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16959 to a struct line_header, allocated using xmalloc.
debd256d
JB
16960
16961 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16962 the returned object point into the dwarf line section buffer,
16963 and must not be freed. */
ae2de4f8 16964
debd256d 16965static struct line_header *
3019eac3 16966dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16967{
16968 struct cleanup *back_to;
16969 struct line_header *lh;
d521ce57 16970 const gdb_byte *line_ptr;
c764a876 16971 unsigned int bytes_read, offset_size;
debd256d 16972 int i;
d521ce57 16973 const char *cur_dir, *cur_file;
3019eac3
DE
16974 struct dwarf2_section_info *section;
16975 bfd *abfd;
16976
36586728 16977 section = get_debug_line_section (cu);
3019eac3
DE
16978 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16979 if (section->buffer == NULL)
debd256d 16980 {
3019eac3
DE
16981 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16982 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16983 else
16984 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16985 return 0;
16986 }
16987
fceca515
DE
16988 /* We can't do this until we know the section is non-empty.
16989 Only then do we know we have such a section. */
a32a8923 16990 abfd = get_section_bfd_owner (section);
fceca515 16991
a738430d
MK
16992 /* Make sure that at least there's room for the total_length field.
16993 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16994 if (offset + 4 >= section->size)
debd256d 16995 {
4d3c2250 16996 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16997 return 0;
16998 }
16999
17000 lh = xmalloc (sizeof (*lh));
17001 memset (lh, 0, sizeof (*lh));
17002 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17003 (void *) lh);
17004
3019eac3 17005 line_ptr = section->buffer + offset;
debd256d 17006
a738430d 17007 /* Read in the header. */
6e70227d 17008 lh->total_length =
c764a876
DE
17009 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17010 &bytes_read, &offset_size);
debd256d 17011 line_ptr += bytes_read;
3019eac3 17012 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17013 {
4d3c2250 17014 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17015 do_cleanups (back_to);
debd256d
JB
17016 return 0;
17017 }
17018 lh->statement_program_end = line_ptr + lh->total_length;
17019 lh->version = read_2_bytes (abfd, line_ptr);
17020 line_ptr += 2;
c764a876
DE
17021 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17022 line_ptr += offset_size;
debd256d
JB
17023 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17024 line_ptr += 1;
2dc7f7b3
TT
17025 if (lh->version >= 4)
17026 {
17027 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17028 line_ptr += 1;
17029 }
17030 else
17031 lh->maximum_ops_per_instruction = 1;
17032
17033 if (lh->maximum_ops_per_instruction == 0)
17034 {
17035 lh->maximum_ops_per_instruction = 1;
17036 complaint (&symfile_complaints,
3e43a32a
MS
17037 _("invalid maximum_ops_per_instruction "
17038 "in `.debug_line' section"));
2dc7f7b3
TT
17039 }
17040
debd256d
JB
17041 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17042 line_ptr += 1;
17043 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17044 line_ptr += 1;
17045 lh->line_range = read_1_byte (abfd, line_ptr);
17046 line_ptr += 1;
17047 lh->opcode_base = read_1_byte (abfd, line_ptr);
17048 line_ptr += 1;
17049 lh->standard_opcode_lengths
fe1b8b76 17050 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17051
17052 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17053 for (i = 1; i < lh->opcode_base; ++i)
17054 {
17055 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17056 line_ptr += 1;
17057 }
17058
a738430d 17059 /* Read directory table. */
9b1c24c8 17060 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17061 {
17062 line_ptr += bytes_read;
17063 add_include_dir (lh, cur_dir);
17064 }
17065 line_ptr += bytes_read;
17066
a738430d 17067 /* Read file name table. */
9b1c24c8 17068 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17069 {
17070 unsigned int dir_index, mod_time, length;
17071
17072 line_ptr += bytes_read;
17073 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17074 line_ptr += bytes_read;
17075 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17076 line_ptr += bytes_read;
17077 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17078 line_ptr += bytes_read;
17079
17080 add_file_name (lh, cur_file, dir_index, mod_time, length);
17081 }
17082 line_ptr += bytes_read;
6e70227d 17083 lh->statement_program_start = line_ptr;
debd256d 17084
3019eac3 17085 if (line_ptr > (section->buffer + section->size))
4d3c2250 17086 complaint (&symfile_complaints,
3e43a32a
MS
17087 _("line number info header doesn't "
17088 "fit in `.debug_line' section"));
debd256d
JB
17089
17090 discard_cleanups (back_to);
17091 return lh;
17092}
c906108c 17093
c6da4cef
DE
17094/* Subroutine of dwarf_decode_lines to simplify it.
17095 Return the file name of the psymtab for included file FILE_INDEX
17096 in line header LH of PST.
17097 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17098 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17099 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17100
17101 The function creates dangling cleanup registration. */
c6da4cef 17102
d521ce57 17103static const char *
c6da4cef
DE
17104psymtab_include_file_name (const struct line_header *lh, int file_index,
17105 const struct partial_symtab *pst,
17106 const char *comp_dir)
17107{
17108 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17109 const char *include_name = fe.name;
17110 const char *include_name_to_compare = include_name;
17111 const char *dir_name = NULL;
72b9f47f
TT
17112 const char *pst_filename;
17113 char *copied_name = NULL;
c6da4cef
DE
17114 int file_is_pst;
17115
17116 if (fe.dir_index)
17117 dir_name = lh->include_dirs[fe.dir_index - 1];
17118
17119 if (!IS_ABSOLUTE_PATH (include_name)
17120 && (dir_name != NULL || comp_dir != NULL))
17121 {
17122 /* Avoid creating a duplicate psymtab for PST.
17123 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17124 Before we do the comparison, however, we need to account
17125 for DIR_NAME and COMP_DIR.
17126 First prepend dir_name (if non-NULL). If we still don't
17127 have an absolute path prepend comp_dir (if non-NULL).
17128 However, the directory we record in the include-file's
17129 psymtab does not contain COMP_DIR (to match the
17130 corresponding symtab(s)).
17131
17132 Example:
17133
17134 bash$ cd /tmp
17135 bash$ gcc -g ./hello.c
17136 include_name = "hello.c"
17137 dir_name = "."
17138 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17139 DW_AT_name = "./hello.c"
17140
17141 */
c6da4cef
DE
17142
17143 if (dir_name != NULL)
17144 {
d521ce57
TT
17145 char *tem = concat (dir_name, SLASH_STRING,
17146 include_name, (char *)NULL);
17147
17148 make_cleanup (xfree, tem);
17149 include_name = tem;
c6da4cef 17150 include_name_to_compare = include_name;
c6da4cef
DE
17151 }
17152 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17153 {
d521ce57
TT
17154 char *tem = concat (comp_dir, SLASH_STRING,
17155 include_name, (char *)NULL);
17156
17157 make_cleanup (xfree, tem);
17158 include_name_to_compare = tem;
c6da4cef
DE
17159 }
17160 }
17161
17162 pst_filename = pst->filename;
17163 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17164 {
72b9f47f
TT
17165 copied_name = concat (pst->dirname, SLASH_STRING,
17166 pst_filename, (char *)NULL);
17167 pst_filename = copied_name;
c6da4cef
DE
17168 }
17169
1e3fad37 17170 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17171
72b9f47f
TT
17172 if (copied_name != NULL)
17173 xfree (copied_name);
c6da4cef
DE
17174
17175 if (file_is_pst)
17176 return NULL;
17177 return include_name;
17178}
17179
c91513d8
PP
17180/* Ignore this record_line request. */
17181
17182static void
17183noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17184{
17185 return;
17186}
17187
a05a36a5
DE
17188/* Return non-zero if we should add LINE to the line number table.
17189 LINE is the line to add, LAST_LINE is the last line that was added,
17190 LAST_SUBFILE is the subfile for LAST_LINE.
17191 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17192 had a non-zero discriminator.
17193
17194 We have to be careful in the presence of discriminators.
17195 E.g., for this line:
17196
17197 for (i = 0; i < 100000; i++);
17198
17199 clang can emit four line number entries for that one line,
17200 each with a different discriminator.
17201 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17202
17203 However, we want gdb to coalesce all four entries into one.
17204 Otherwise the user could stepi into the middle of the line and
17205 gdb would get confused about whether the pc really was in the
17206 middle of the line.
17207
17208 Things are further complicated by the fact that two consecutive
17209 line number entries for the same line is a heuristic used by gcc
17210 to denote the end of the prologue. So we can't just discard duplicate
17211 entries, we have to be selective about it. The heuristic we use is
17212 that we only collapse consecutive entries for the same line if at least
17213 one of those entries has a non-zero discriminator. PR 17276.
17214
17215 Note: Addresses in the line number state machine can never go backwards
17216 within one sequence, thus this coalescing is ok. */
17217
17218static int
17219dwarf_record_line_p (unsigned int line, unsigned int last_line,
17220 int line_has_non_zero_discriminator,
17221 struct subfile *last_subfile)
17222{
17223 if (current_subfile != last_subfile)
17224 return 1;
17225 if (line != last_line)
17226 return 1;
17227 /* Same line for the same file that we've seen already.
17228 As a last check, for pr 17276, only record the line if the line
17229 has never had a non-zero discriminator. */
17230 if (!line_has_non_zero_discriminator)
17231 return 1;
17232 return 0;
17233}
17234
252a6764
DE
17235/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17236 in the line table of subfile SUBFILE. */
17237
17238static void
17239dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17240 unsigned int line, CORE_ADDR address,
17241 record_line_ftype p_record_line)
17242{
17243 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17244
d5962de5 17245 (*p_record_line) (subfile, line, addr);
252a6764
DE
17246}
17247
17248/* Subroutine of dwarf_decode_lines_1 to simplify it.
17249 Mark the end of a set of line number records.
17250 The arguments are the same as for dwarf_record_line.
17251 If SUBFILE is NULL the request is ignored. */
17252
17253static void
17254dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17255 CORE_ADDR address, record_line_ftype p_record_line)
17256{
17257 if (subfile != NULL)
17258 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17259}
17260
f3f5162e
DE
17261/* Subroutine of dwarf_decode_lines to simplify it.
17262 Process the line number information in LH. */
debd256d 17263
c906108c 17264static void
43f3e411
DE
17265dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17266 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17267{
d521ce57
TT
17268 const gdb_byte *line_ptr, *extended_end;
17269 const gdb_byte *line_end;
a8c50c1f 17270 unsigned int bytes_read, extended_len;
699ca60a 17271 unsigned char op_code, extended_op;
e142c38c
DJ
17272 CORE_ADDR baseaddr;
17273 struct objfile *objfile = cu->objfile;
f3f5162e 17274 bfd *abfd = objfile->obfd;
fbf65064 17275 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17276 struct subfile *last_subfile = NULL;
c91513d8
PP
17277 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17278 = record_line;
e142c38c
DJ
17279
17280 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17281
debd256d
JB
17282 line_ptr = lh->statement_program_start;
17283 line_end = lh->statement_program_end;
c906108c
SS
17284
17285 /* Read the statement sequences until there's nothing left. */
17286 while (line_ptr < line_end)
17287 {
17288 /* state machine registers */
17289 CORE_ADDR address = 0;
17290 unsigned int file = 1;
17291 unsigned int line = 1;
debd256d 17292 int is_stmt = lh->default_is_stmt;
c906108c 17293 int end_sequence = 0;
2dc7f7b3 17294 unsigned char op_index = 0;
a05a36a5
DE
17295 unsigned int discriminator = 0;
17296 /* The last line number that was recorded, used to coalesce
17297 consecutive entries for the same line. This can happen, for
17298 example, when discriminators are present. PR 17276. */
17299 unsigned int last_line = 0;
17300 int line_has_non_zero_discriminator = 0;
c906108c 17301
aaa75496 17302 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17303 {
aaa75496 17304 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17305 /* lh->include_dirs and lh->file_names are 0-based, but the
17306 directory and file name numbers in the statement program
17307 are 1-based. */
17308 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17309 const char *dir = NULL;
a738430d 17310
debd256d
JB
17311 if (fe->dir_index)
17312 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17313
4d663531 17314 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17315 }
17316
a738430d 17317 /* Decode the table. */
c5aa993b 17318 while (!end_sequence)
c906108c
SS
17319 {
17320 op_code = read_1_byte (abfd, line_ptr);
17321 line_ptr += 1;
59205f5a
JB
17322 if (line_ptr > line_end)
17323 {
17324 dwarf2_debug_line_missing_end_sequence_complaint ();
17325 break;
17326 }
9aa1fe7e 17327
debd256d 17328 if (op_code >= lh->opcode_base)
6e70227d 17329 {
8e07a239 17330 /* Special opcode. */
699ca60a 17331 unsigned char adj_opcode;
a05a36a5 17332 int line_delta;
8e07a239 17333
debd256d 17334 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
17335 address += (((op_index + (adj_opcode / lh->line_range))
17336 / lh->maximum_ops_per_instruction)
17337 * lh->minimum_instruction_length);
17338 op_index = ((op_index + (adj_opcode / lh->line_range))
17339 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17340 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17341 line += line_delta;
17342 if (line_delta != 0)
17343 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17344 if (lh->num_file_names < file || file == 0)
25e43795 17345 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17346 /* For now we ignore lines not starting on an
17347 instruction boundary. */
17348 else if (op_index == 0)
25e43795
DJ
17349 {
17350 lh->file_names[file - 1].included_p = 1;
ca5f395d 17351 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17352 {
17353 if (last_subfile != current_subfile)
17354 {
252a6764
DE
17355 dwarf_finish_line (gdbarch, last_subfile,
17356 address, p_record_line);
fbf65064 17357 }
a05a36a5
DE
17358 if (dwarf_record_line_p (line, last_line,
17359 line_has_non_zero_discriminator,
17360 last_subfile))
17361 {
17362 dwarf_record_line (gdbarch, current_subfile,
17363 line, address, p_record_line);
17364 }
17365 last_subfile = current_subfile;
17366 last_line = line;
366da635 17367 }
25e43795 17368 }
a05a36a5 17369 discriminator = 0;
9aa1fe7e
GK
17370 }
17371 else switch (op_code)
c906108c
SS
17372 {
17373 case DW_LNS_extended_op:
3e43a32a
MS
17374 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17375 &bytes_read);
473b7be6 17376 line_ptr += bytes_read;
a8c50c1f 17377 extended_end = line_ptr + extended_len;
c906108c
SS
17378 extended_op = read_1_byte (abfd, line_ptr);
17379 line_ptr += 1;
17380 switch (extended_op)
17381 {
17382 case DW_LNE_end_sequence:
c91513d8 17383 p_record_line = record_line;
c906108c 17384 end_sequence = 1;
c906108c
SS
17385 break;
17386 case DW_LNE_set_address:
e7c27a73 17387 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8 17388
c3b7b696
YQ
17389 /* If address < lowpc then it's not a usable value, it's
17390 outside the pc range of the CU. However, we restrict
17391 the test to only address values of zero to preserve
17392 GDB's previous behaviour which is to handle the specific
17393 case of a function being GC'd by the linker. */
17394 if (address == 0 && address < lowpc)
c91513d8
PP
17395 {
17396 /* This line table is for a function which has been
17397 GCd by the linker. Ignore it. PR gdb/12528 */
17398
17399 long line_offset
36586728 17400 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17401
17402 complaint (&symfile_complaints,
17403 _(".debug_line address at offset 0x%lx is 0 "
17404 "[in module %s]"),
4262abfb 17405 line_offset, objfile_name (objfile));
c91513d8 17406 p_record_line = noop_record_line;
37780ee5
DE
17407 /* Note: p_record_line is left as noop_record_line
17408 until we see DW_LNE_end_sequence. */
c91513d8
PP
17409 }
17410
2dc7f7b3 17411 op_index = 0;
107d2387
AC
17412 line_ptr += bytes_read;
17413 address += baseaddr;
c906108c
SS
17414 break;
17415 case DW_LNE_define_file:
debd256d 17416 {
d521ce57 17417 const char *cur_file;
debd256d 17418 unsigned int dir_index, mod_time, length;
6e70227d 17419
3e43a32a
MS
17420 cur_file = read_direct_string (abfd, line_ptr,
17421 &bytes_read);
debd256d
JB
17422 line_ptr += bytes_read;
17423 dir_index =
17424 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17425 line_ptr += bytes_read;
17426 mod_time =
17427 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17428 line_ptr += bytes_read;
17429 length =
17430 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17431 line_ptr += bytes_read;
17432 add_file_name (lh, cur_file, dir_index, mod_time, length);
17433 }
c906108c 17434 break;
d0c6ba3d
CC
17435 case DW_LNE_set_discriminator:
17436 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17437 just ignore it. We still need to check its value though:
17438 if there are consecutive entries for the same
17439 (non-prologue) line we want to coalesce them.
17440 PR 17276. */
17441 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17442 &bytes_read);
17443 line_has_non_zero_discriminator |= discriminator != 0;
17444 line_ptr += bytes_read;
d0c6ba3d 17445 break;
c906108c 17446 default:
4d3c2250 17447 complaint (&symfile_complaints,
e2e0b3e5 17448 _("mangled .debug_line section"));
debd256d 17449 return;
c906108c 17450 }
a8c50c1f
DJ
17451 /* Make sure that we parsed the extended op correctly. If e.g.
17452 we expected a different address size than the producer used,
17453 we may have read the wrong number of bytes. */
17454 if (line_ptr != extended_end)
17455 {
17456 complaint (&symfile_complaints,
17457 _("mangled .debug_line section"));
17458 return;
17459 }
c906108c
SS
17460 break;
17461 case DW_LNS_copy:
59205f5a 17462 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17463 dwarf2_debug_line_missing_file_complaint ();
17464 else
366da635 17465 {
25e43795 17466 lh->file_names[file - 1].included_p = 1;
ca5f395d 17467 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17468 {
17469 if (last_subfile != current_subfile)
17470 {
252a6764
DE
17471 dwarf_finish_line (gdbarch, last_subfile,
17472 address, p_record_line);
fbf65064 17473 }
a05a36a5
DE
17474 if (dwarf_record_line_p (line, last_line,
17475 line_has_non_zero_discriminator,
17476 last_subfile))
17477 {
17478 dwarf_record_line (gdbarch, current_subfile,
17479 line, address, p_record_line);
17480 }
17481 last_subfile = current_subfile;
17482 last_line = line;
fbf65064 17483 }
366da635 17484 }
a05a36a5 17485 discriminator = 0;
c906108c
SS
17486 break;
17487 case DW_LNS_advance_pc:
2dc7f7b3
TT
17488 {
17489 CORE_ADDR adjust
17490 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17491
17492 address += (((op_index + adjust)
17493 / lh->maximum_ops_per_instruction)
17494 * lh->minimum_instruction_length);
17495 op_index = ((op_index + adjust)
17496 % lh->maximum_ops_per_instruction);
17497 line_ptr += bytes_read;
17498 }
c906108c
SS
17499 break;
17500 case DW_LNS_advance_line:
a05a36a5
DE
17501 {
17502 int line_delta
17503 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17504
17505 line += line_delta;
17506 if (line_delta != 0)
17507 line_has_non_zero_discriminator = discriminator != 0;
17508 line_ptr += bytes_read;
17509 }
c906108c
SS
17510 break;
17511 case DW_LNS_set_file:
debd256d 17512 {
a738430d
MK
17513 /* The arrays lh->include_dirs and lh->file_names are
17514 0-based, but the directory and file name numbers in
17515 the statement program are 1-based. */
debd256d 17516 struct file_entry *fe;
d521ce57 17517 const char *dir = NULL;
a738430d 17518
debd256d
JB
17519 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17520 line_ptr += bytes_read;
59205f5a 17521 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17522 dwarf2_debug_line_missing_file_complaint ();
17523 else
17524 {
17525 fe = &lh->file_names[file - 1];
17526 if (fe->dir_index)
17527 dir = lh->include_dirs[fe->dir_index - 1];
17528 if (!decode_for_pst_p)
17529 {
17530 last_subfile = current_subfile;
a05a36a5 17531 line_has_non_zero_discriminator = discriminator != 0;
4d663531 17532 dwarf2_start_subfile (fe->name, dir);
25e43795
DJ
17533 }
17534 }
debd256d 17535 }
c906108c
SS
17536 break;
17537 case DW_LNS_set_column:
0ad93d4f 17538 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17539 line_ptr += bytes_read;
17540 break;
17541 case DW_LNS_negate_stmt:
17542 is_stmt = (!is_stmt);
17543 break;
17544 case DW_LNS_set_basic_block:
c906108c 17545 break;
c2c6d25f
JM
17546 /* Add to the address register of the state machine the
17547 address increment value corresponding to special opcode
a738430d
MK
17548 255. I.e., this value is scaled by the minimum
17549 instruction length since special opcode 255 would have
b021a221 17550 scaled the increment. */
c906108c 17551 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17552 {
17553 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17554
17555 address += (((op_index + adjust)
17556 / lh->maximum_ops_per_instruction)
17557 * lh->minimum_instruction_length);
17558 op_index = ((op_index + adjust)
17559 % lh->maximum_ops_per_instruction);
17560 }
c906108c
SS
17561 break;
17562 case DW_LNS_fixed_advance_pc:
17563 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17564 op_index = 0;
c906108c
SS
17565 line_ptr += 2;
17566 break;
9aa1fe7e 17567 default:
a738430d
MK
17568 {
17569 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17570 int i;
a738430d 17571
debd256d 17572 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17573 {
17574 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17575 line_ptr += bytes_read;
17576 }
17577 }
c906108c
SS
17578 }
17579 }
59205f5a
JB
17580 if (lh->num_file_names < file || file == 0)
17581 dwarf2_debug_line_missing_file_complaint ();
17582 else
17583 {
17584 lh->file_names[file - 1].included_p = 1;
17585 if (!decode_for_pst_p)
fbf65064 17586 {
252a6764
DE
17587 dwarf_finish_line (gdbarch, current_subfile, address,
17588 p_record_line);
fbf65064 17589 }
59205f5a 17590 }
c906108c 17591 }
f3f5162e
DE
17592}
17593
17594/* Decode the Line Number Program (LNP) for the given line_header
17595 structure and CU. The actual information extracted and the type
17596 of structures created from the LNP depends on the value of PST.
17597
17598 1. If PST is NULL, then this procedure uses the data from the program
17599 to create all necessary symbol tables, and their linetables.
17600
17601 2. If PST is not NULL, this procedure reads the program to determine
17602 the list of files included by the unit represented by PST, and
17603 builds all the associated partial symbol tables.
17604
17605 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17606 It is used for relative paths in the line table.
17607 NOTE: When processing partial symtabs (pst != NULL),
17608 comp_dir == pst->dirname.
17609
17610 NOTE: It is important that psymtabs have the same file name (via strcmp)
17611 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17612 symtab we don't use it in the name of the psymtabs we create.
17613 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
17614 A good testcase for this is mb-inline.exp.
17615
17616 LOWPC is the lowest address in CU (or 0 if not known). */
f3f5162e
DE
17617
17618static void
17619dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696
YQ
17620 struct dwarf2_cu *cu, struct partial_symtab *pst,
17621 CORE_ADDR lowpc)
f3f5162e
DE
17622{
17623 struct objfile *objfile = cu->objfile;
17624 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17625
43f3e411 17626 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
17627
17628 if (decode_for_pst_p)
17629 {
17630 int file_index;
17631
17632 /* Now that we're done scanning the Line Header Program, we can
17633 create the psymtab of each included file. */
17634 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17635 if (lh->file_names[file_index].included_p == 1)
17636 {
d521ce57 17637 const char *include_name =
c6da4cef
DE
17638 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17639 if (include_name != NULL)
aaa75496
JB
17640 dwarf2_create_include_psymtab (include_name, pst, objfile);
17641 }
17642 }
cb1df416
DJ
17643 else
17644 {
17645 /* Make sure a symtab is created for every file, even files
17646 which contain only variables (i.e. no code with associated
17647 line numbers). */
43f3e411 17648 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 17649 int i;
cb1df416
DJ
17650
17651 for (i = 0; i < lh->num_file_names; i++)
17652 {
d521ce57 17653 const char *dir = NULL;
f3f5162e 17654 struct file_entry *fe;
9a619af0 17655
cb1df416
DJ
17656 fe = &lh->file_names[i];
17657 if (fe->dir_index)
17658 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 17659 dwarf2_start_subfile (fe->name, dir);
cb1df416 17660
cb1df416 17661 if (current_subfile->symtab == NULL)
43f3e411
DE
17662 {
17663 current_subfile->symtab
17664 = allocate_symtab (cust, current_subfile->name);
17665 }
cb1df416
DJ
17666 fe->symtab = current_subfile->symtab;
17667 }
17668 }
c906108c
SS
17669}
17670
17671/* Start a subfile for DWARF. FILENAME is the name of the file and
17672 DIRNAME the name of the source directory which contains FILENAME
4d663531 17673 or NULL if not known.
c906108c
SS
17674 This routine tries to keep line numbers from identical absolute and
17675 relative file names in a common subfile.
17676
17677 Using the `list' example from the GDB testsuite, which resides in
17678 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17679 of /srcdir/list0.c yields the following debugging information for list0.c:
17680
c5aa993b 17681 DW_AT_name: /srcdir/list0.c
4d663531 17682 DW_AT_comp_dir: /compdir
357e46e7 17683 files.files[0].name: list0.h
c5aa993b 17684 files.files[0].dir: /srcdir
357e46e7 17685 files.files[1].name: list0.c
c5aa993b 17686 files.files[1].dir: /srcdir
c906108c
SS
17687
17688 The line number information for list0.c has to end up in a single
4f1520fb
FR
17689 subfile, so that `break /srcdir/list0.c:1' works as expected.
17690 start_subfile will ensure that this happens provided that we pass the
17691 concatenation of files.files[1].dir and files.files[1].name as the
17692 subfile's name. */
c906108c
SS
17693
17694static void
4d663531 17695dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 17696{
d521ce57 17697 char *copy = NULL;
4f1520fb 17698
4d663531 17699 /* In order not to lose the line information directory,
4f1520fb
FR
17700 we concatenate it to the filename when it makes sense.
17701 Note that the Dwarf3 standard says (speaking of filenames in line
17702 information): ``The directory index is ignored for file names
17703 that represent full path names''. Thus ignoring dirname in the
17704 `else' branch below isn't an issue. */
c906108c 17705
d5166ae1 17706 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17707 {
17708 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17709 filename = copy;
17710 }
c906108c 17711
4d663531 17712 start_subfile (filename);
4f1520fb 17713
d521ce57
TT
17714 if (copy != NULL)
17715 xfree (copy);
c906108c
SS
17716}
17717
f4dc4d17
DE
17718/* Start a symtab for DWARF.
17719 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17720
43f3e411 17721static struct compunit_symtab *
f4dc4d17 17722dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17723 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 17724{
43f3e411
DE
17725 struct compunit_symtab *cust
17726 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17727
f4dc4d17
DE
17728 record_debugformat ("DWARF 2");
17729 record_producer (cu->producer);
17730
17731 /* We assume that we're processing GCC output. */
17732 processing_gcc_compilation = 2;
17733
4d4ec4e5 17734 cu->processing_has_namespace_info = 0;
43f3e411
DE
17735
17736 return cust;
f4dc4d17
DE
17737}
17738
4c2df51b
DJ
17739static void
17740var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17741 struct dwarf2_cu *cu)
4c2df51b 17742{
e7c27a73
DJ
17743 struct objfile *objfile = cu->objfile;
17744 struct comp_unit_head *cu_header = &cu->header;
17745
4c2df51b
DJ
17746 /* NOTE drow/2003-01-30: There used to be a comment and some special
17747 code here to turn a symbol with DW_AT_external and a
17748 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17749 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17750 with some versions of binutils) where shared libraries could have
17751 relocations against symbols in their debug information - the
17752 minimal symbol would have the right address, but the debug info
17753 would not. It's no longer necessary, because we will explicitly
17754 apply relocations when we read in the debug information now. */
17755
17756 /* A DW_AT_location attribute with no contents indicates that a
17757 variable has been optimized away. */
17758 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17759 {
f1e6e072 17760 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17761 return;
17762 }
17763
17764 /* Handle one degenerate form of location expression specially, to
17765 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17766 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17767 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17768
17769 if (attr_form_is_block (attr)
3019eac3
DE
17770 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17771 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17772 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17773 && (DW_BLOCK (attr)->size
17774 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17775 {
891d2f0b 17776 unsigned int dummy;
4c2df51b 17777
3019eac3
DE
17778 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17779 SYMBOL_VALUE_ADDRESS (sym) =
17780 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17781 else
17782 SYMBOL_VALUE_ADDRESS (sym) =
17783 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17784 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17785 fixup_symbol_section (sym, objfile);
17786 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17787 SYMBOL_SECTION (sym));
4c2df51b
DJ
17788 return;
17789 }
17790
17791 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17792 expression evaluator, and use LOC_COMPUTED only when necessary
17793 (i.e. when the value of a register or memory location is
17794 referenced, or a thread-local block, etc.). Then again, it might
17795 not be worthwhile. I'm assuming that it isn't unless performance
17796 or memory numbers show me otherwise. */
17797
f1e6e072 17798 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17799
f1e6e072 17800 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17801 cu->has_loclist = 1;
4c2df51b
DJ
17802}
17803
c906108c
SS
17804/* Given a pointer to a DWARF information entry, figure out if we need
17805 to make a symbol table entry for it, and if so, create a new entry
17806 and return a pointer to it.
17807 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17808 used the passed type.
17809 If SPACE is not NULL, use it to hold the new symbol. If it is
17810 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17811
17812static struct symbol *
34eaf542
TT
17813new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17814 struct symbol *space)
c906108c 17815{
e7c27a73 17816 struct objfile *objfile = cu->objfile;
c906108c 17817 struct symbol *sym = NULL;
15d034d0 17818 const char *name;
c906108c
SS
17819 struct attribute *attr = NULL;
17820 struct attribute *attr2 = NULL;
e142c38c 17821 CORE_ADDR baseaddr;
e37fd15a
SW
17822 struct pending **list_to_add = NULL;
17823
edb3359d 17824 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17825
17826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17827
94af9270 17828 name = dwarf2_name (die, cu);
c906108c
SS
17829 if (name)
17830 {
94af9270 17831 const char *linkagename;
34eaf542 17832 int suppress_add = 0;
94af9270 17833
34eaf542
TT
17834 if (space)
17835 sym = space;
17836 else
e623cf5d 17837 sym = allocate_symbol (objfile);
c906108c 17838 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17839
17840 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17841 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17842 linkagename = dwarf2_physname (name, die, cu);
17843 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17844
f55ee35c
JK
17845 /* Fortran does not have mangling standard and the mangling does differ
17846 between gfortran, iFort etc. */
17847 if (cu->language == language_fortran
b250c185 17848 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17849 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17850 dwarf2_full_name (name, die, cu),
29df156d 17851 NULL);
f55ee35c 17852
c906108c 17853 /* Default assumptions.
c5aa993b 17854 Use the passed type or decode it from the die. */
176620f1 17855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17856 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17857 if (type != NULL)
17858 SYMBOL_TYPE (sym) = type;
17859 else
e7c27a73 17860 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17861 attr = dwarf2_attr (die,
17862 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17863 cu);
c906108c
SS
17864 if (attr)
17865 {
17866 SYMBOL_LINE (sym) = DW_UNSND (attr);
17867 }
cb1df416 17868
edb3359d
DJ
17869 attr = dwarf2_attr (die,
17870 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17871 cu);
cb1df416
DJ
17872 if (attr)
17873 {
17874 int file_index = DW_UNSND (attr);
9a619af0 17875
cb1df416
DJ
17876 if (cu->line_header == NULL
17877 || file_index > cu->line_header->num_file_names)
17878 complaint (&symfile_complaints,
17879 _("file index out of range"));
1c3d648d 17880 else if (file_index > 0)
cb1df416
DJ
17881 {
17882 struct file_entry *fe;
9a619af0 17883
cb1df416
DJ
17884 fe = &cu->line_header->file_names[file_index - 1];
17885 SYMBOL_SYMTAB (sym) = fe->symtab;
17886 }
17887 }
17888
c906108c
SS
17889 switch (die->tag)
17890 {
17891 case DW_TAG_label:
e142c38c 17892 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17893 if (attr)
31aa7e4e
JB
17894 SYMBOL_VALUE_ADDRESS (sym)
17895 = attr_value_as_address (attr) + baseaddr;
0f5238ed
TT
17896 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17897 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17898 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17899 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17900 break;
17901 case DW_TAG_subprogram:
17902 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17903 finish_block. */
f1e6e072 17904 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17905 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17906 if ((attr2 && (DW_UNSND (attr2) != 0))
17907 || cu->language == language_ada)
c906108c 17908 {
2cfa0c8d
JB
17909 /* Subprograms marked external are stored as a global symbol.
17910 Ada subprograms, whether marked external or not, are always
17911 stored as a global symbol, because we want to be able to
17912 access them globally. For instance, we want to be able
17913 to break on a nested subprogram without having to
17914 specify the context. */
e37fd15a 17915 list_to_add = &global_symbols;
c906108c
SS
17916 }
17917 else
17918 {
e37fd15a 17919 list_to_add = cu->list_in_scope;
c906108c
SS
17920 }
17921 break;
edb3359d
DJ
17922 case DW_TAG_inlined_subroutine:
17923 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17924 finish_block. */
f1e6e072 17925 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17926 SYMBOL_INLINED (sym) = 1;
481860b3 17927 list_to_add = cu->list_in_scope;
edb3359d 17928 break;
34eaf542
TT
17929 case DW_TAG_template_value_param:
17930 suppress_add = 1;
17931 /* Fall through. */
72929c62 17932 case DW_TAG_constant:
c906108c 17933 case DW_TAG_variable:
254e6b9e 17934 case DW_TAG_member:
0963b4bd
MS
17935 /* Compilation with minimal debug info may result in
17936 variables with missing type entries. Change the
17937 misleading `void' type to something sensible. */
c906108c 17938 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17939 SYMBOL_TYPE (sym)
46bf5051 17940 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17941
e142c38c 17942 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17943 /* In the case of DW_TAG_member, we should only be called for
17944 static const members. */
17945 if (die->tag == DW_TAG_member)
17946 {
3863f96c
DE
17947 /* dwarf2_add_field uses die_is_declaration,
17948 so we do the same. */
254e6b9e
DE
17949 gdb_assert (die_is_declaration (die, cu));
17950 gdb_assert (attr);
17951 }
c906108c
SS
17952 if (attr)
17953 {
e7c27a73 17954 dwarf2_const_value (attr, sym, cu);
e142c38c 17955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17956 if (!suppress_add)
34eaf542
TT
17957 {
17958 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17959 list_to_add = &global_symbols;
34eaf542 17960 else
e37fd15a 17961 list_to_add = cu->list_in_scope;
34eaf542 17962 }
c906108c
SS
17963 break;
17964 }
e142c38c 17965 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17966 if (attr)
17967 {
e7c27a73 17968 var_decode_location (attr, sym, cu);
e142c38c 17969 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17970
17971 /* Fortran explicitly imports any global symbols to the local
17972 scope by DW_TAG_common_block. */
17973 if (cu->language == language_fortran && die->parent
17974 && die->parent->tag == DW_TAG_common_block)
17975 attr2 = NULL;
17976
caac4577
JG
17977 if (SYMBOL_CLASS (sym) == LOC_STATIC
17978 && SYMBOL_VALUE_ADDRESS (sym) == 0
17979 && !dwarf2_per_objfile->has_section_at_zero)
17980 {
17981 /* When a static variable is eliminated by the linker,
17982 the corresponding debug information is not stripped
17983 out, but the variable address is set to null;
17984 do not add such variables into symbol table. */
17985 }
17986 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17987 {
f55ee35c
JK
17988 /* Workaround gfortran PR debug/40040 - it uses
17989 DW_AT_location for variables in -fPIC libraries which may
17990 get overriden by other libraries/executable and get
17991 a different address. Resolve it by the minimal symbol
17992 which may come from inferior's executable using copy
17993 relocation. Make this workaround only for gfortran as for
17994 other compilers GDB cannot guess the minimal symbol
17995 Fortran mangling kind. */
17996 if (cu->language == language_fortran && die->parent
17997 && die->parent->tag == DW_TAG_module
17998 && cu->producer
17999 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 18000 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18001
1c809c68
TT
18002 /* A variable with DW_AT_external is never static,
18003 but it may be block-scoped. */
18004 list_to_add = (cu->list_in_scope == &file_symbols
18005 ? &global_symbols : cu->list_in_scope);
1c809c68 18006 }
c906108c 18007 else
e37fd15a 18008 list_to_add = cu->list_in_scope;
c906108c
SS
18009 }
18010 else
18011 {
18012 /* We do not know the address of this symbol.
c5aa993b
JM
18013 If it is an external symbol and we have type information
18014 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18015 The address of the variable will then be determined from
18016 the minimal symbol table whenever the variable is
18017 referenced. */
e142c38c 18018 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18019
18020 /* Fortran explicitly imports any global symbols to the local
18021 scope by DW_TAG_common_block. */
18022 if (cu->language == language_fortran && die->parent
18023 && die->parent->tag == DW_TAG_common_block)
18024 {
18025 /* SYMBOL_CLASS doesn't matter here because
18026 read_common_block is going to reset it. */
18027 if (!suppress_add)
18028 list_to_add = cu->list_in_scope;
18029 }
18030 else if (attr2 && (DW_UNSND (attr2) != 0)
18031 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18032 {
0fe7935b
DJ
18033 /* A variable with DW_AT_external is never static, but it
18034 may be block-scoped. */
18035 list_to_add = (cu->list_in_scope == &file_symbols
18036 ? &global_symbols : cu->list_in_scope);
18037
f1e6e072 18038 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18039 }
442ddf59
JK
18040 else if (!die_is_declaration (die, cu))
18041 {
18042 /* Use the default LOC_OPTIMIZED_OUT class. */
18043 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18044 if (!suppress_add)
18045 list_to_add = cu->list_in_scope;
442ddf59 18046 }
c906108c
SS
18047 }
18048 break;
18049 case DW_TAG_formal_parameter:
edb3359d
DJ
18050 /* If we are inside a function, mark this as an argument. If
18051 not, we might be looking at an argument to an inlined function
18052 when we do not have enough information to show inlined frames;
18053 pretend it's a local variable in that case so that the user can
18054 still see it. */
18055 if (context_stack_depth > 0
18056 && context_stack[context_stack_depth - 1].name != NULL)
18057 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18058 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18059 if (attr)
18060 {
e7c27a73 18061 var_decode_location (attr, sym, cu);
c906108c 18062 }
e142c38c 18063 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18064 if (attr)
18065 {
e7c27a73 18066 dwarf2_const_value (attr, sym, cu);
c906108c 18067 }
f346a30d 18068
e37fd15a 18069 list_to_add = cu->list_in_scope;
c906108c
SS
18070 break;
18071 case DW_TAG_unspecified_parameters:
18072 /* From varargs functions; gdb doesn't seem to have any
18073 interest in this information, so just ignore it for now.
18074 (FIXME?) */
18075 break;
34eaf542
TT
18076 case DW_TAG_template_type_param:
18077 suppress_add = 1;
18078 /* Fall through. */
c906108c 18079 case DW_TAG_class_type:
680b30c7 18080 case DW_TAG_interface_type:
c906108c
SS
18081 case DW_TAG_structure_type:
18082 case DW_TAG_union_type:
72019c9c 18083 case DW_TAG_set_type:
c906108c 18084 case DW_TAG_enumeration_type:
f1e6e072 18085 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18086 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18087
63d06c5c 18088 {
987504bb 18089 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18090 really ever be static objects: otherwise, if you try
18091 to, say, break of a class's method and you're in a file
18092 which doesn't mention that class, it won't work unless
18093 the check for all static symbols in lookup_symbol_aux
18094 saves you. See the OtherFileClass tests in
18095 gdb.c++/namespace.exp. */
18096
e37fd15a 18097 if (!suppress_add)
34eaf542 18098 {
34eaf542
TT
18099 list_to_add = (cu->list_in_scope == &file_symbols
18100 && (cu->language == language_cplus
18101 || cu->language == language_java)
18102 ? &global_symbols : cu->list_in_scope);
63d06c5c 18103
64382290
TT
18104 /* The semantics of C++ state that "struct foo {
18105 ... }" also defines a typedef for "foo". A Java
18106 class declaration also defines a typedef for the
18107 class. */
18108 if (cu->language == language_cplus
18109 || cu->language == language_java
18110 || cu->language == language_ada)
18111 {
18112 /* The symbol's name is already allocated along
18113 with this objfile, so we don't need to
18114 duplicate it for the type. */
18115 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18116 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18117 }
63d06c5c
DC
18118 }
18119 }
c906108c
SS
18120 break;
18121 case DW_TAG_typedef:
f1e6e072 18122 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18123 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18124 list_to_add = cu->list_in_scope;
63d06c5c 18125 break;
c906108c 18126 case DW_TAG_base_type:
a02abb62 18127 case DW_TAG_subrange_type:
f1e6e072 18128 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18130 list_to_add = cu->list_in_scope;
c906108c
SS
18131 break;
18132 case DW_TAG_enumerator:
e142c38c 18133 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18134 if (attr)
18135 {
e7c27a73 18136 dwarf2_const_value (attr, sym, cu);
c906108c 18137 }
63d06c5c
DC
18138 {
18139 /* NOTE: carlton/2003-11-10: See comment above in the
18140 DW_TAG_class_type, etc. block. */
18141
e142c38c 18142 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18143 && (cu->language == language_cplus
18144 || cu->language == language_java)
e142c38c 18145 ? &global_symbols : cu->list_in_scope);
63d06c5c 18146 }
c906108c 18147 break;
74921315 18148 case DW_TAG_imported_declaration:
5c4e30ca 18149 case DW_TAG_namespace:
f1e6e072 18150 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18151 list_to_add = &global_symbols;
5c4e30ca 18152 break;
530e8392
KB
18153 case DW_TAG_module:
18154 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18155 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18156 list_to_add = &global_symbols;
18157 break;
4357ac6c 18158 case DW_TAG_common_block:
f1e6e072 18159 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18160 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18161 add_symbol_to_list (sym, cu->list_in_scope);
18162 break;
c906108c
SS
18163 default:
18164 /* Not a tag we recognize. Hopefully we aren't processing
18165 trash data, but since we must specifically ignore things
18166 we don't recognize, there is nothing else we should do at
0963b4bd 18167 this point. */
e2e0b3e5 18168 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18169 dwarf_tag_name (die->tag));
c906108c
SS
18170 break;
18171 }
df8a16a1 18172
e37fd15a
SW
18173 if (suppress_add)
18174 {
18175 sym->hash_next = objfile->template_symbols;
18176 objfile->template_symbols = sym;
18177 list_to_add = NULL;
18178 }
18179
18180 if (list_to_add != NULL)
18181 add_symbol_to_list (sym, list_to_add);
18182
df8a16a1
DJ
18183 /* For the benefit of old versions of GCC, check for anonymous
18184 namespaces based on the demangled name. */
4d4ec4e5 18185 if (!cu->processing_has_namespace_info
94af9270 18186 && cu->language == language_cplus)
a10964d1 18187 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18188 }
18189 return (sym);
18190}
18191
34eaf542
TT
18192/* A wrapper for new_symbol_full that always allocates a new symbol. */
18193
18194static struct symbol *
18195new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18196{
18197 return new_symbol_full (die, type, cu, NULL);
18198}
18199
98bfdba5
PA
18200/* Given an attr with a DW_FORM_dataN value in host byte order,
18201 zero-extend it as appropriate for the symbol's type. The DWARF
18202 standard (v4) is not entirely clear about the meaning of using
18203 DW_FORM_dataN for a constant with a signed type, where the type is
18204 wider than the data. The conclusion of a discussion on the DWARF
18205 list was that this is unspecified. We choose to always zero-extend
18206 because that is the interpretation long in use by GCC. */
c906108c 18207
98bfdba5 18208static gdb_byte *
ff39bb5e 18209dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18210 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18211{
e7c27a73 18212 struct objfile *objfile = cu->objfile;
e17a4113
UW
18213 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18214 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18215 LONGEST l = DW_UNSND (attr);
18216
18217 if (bits < sizeof (*value) * 8)
18218 {
18219 l &= ((LONGEST) 1 << bits) - 1;
18220 *value = l;
18221 }
18222 else if (bits == sizeof (*value) * 8)
18223 *value = l;
18224 else
18225 {
18226 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18227 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18228 return bytes;
18229 }
18230
18231 return NULL;
18232}
18233
18234/* Read a constant value from an attribute. Either set *VALUE, or if
18235 the value does not fit in *VALUE, set *BYTES - either already
18236 allocated on the objfile obstack, or newly allocated on OBSTACK,
18237 or, set *BATON, if we translated the constant to a location
18238 expression. */
18239
18240static void
ff39bb5e 18241dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18242 const char *name, struct obstack *obstack,
18243 struct dwarf2_cu *cu,
d521ce57 18244 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18245 struct dwarf2_locexpr_baton **baton)
18246{
18247 struct objfile *objfile = cu->objfile;
18248 struct comp_unit_head *cu_header = &cu->header;
c906108c 18249 struct dwarf_block *blk;
98bfdba5
PA
18250 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18251 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18252
18253 *value = 0;
18254 *bytes = NULL;
18255 *baton = NULL;
c906108c
SS
18256
18257 switch (attr->form)
18258 {
18259 case DW_FORM_addr:
3019eac3 18260 case DW_FORM_GNU_addr_index:
ac56253d 18261 {
ac56253d
TT
18262 gdb_byte *data;
18263
98bfdba5
PA
18264 if (TYPE_LENGTH (type) != cu_header->addr_size)
18265 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18266 cu_header->addr_size,
98bfdba5 18267 TYPE_LENGTH (type));
ac56253d
TT
18268 /* Symbols of this form are reasonably rare, so we just
18269 piggyback on the existing location code rather than writing
18270 a new implementation of symbol_computed_ops. */
7919a973 18271 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18272 (*baton)->per_cu = cu->per_cu;
18273 gdb_assert ((*baton)->per_cu);
ac56253d 18274
98bfdba5 18275 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18276 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18277 (*baton)->data = data;
ac56253d
TT
18278
18279 data[0] = DW_OP_addr;
18280 store_unsigned_integer (&data[1], cu_header->addr_size,
18281 byte_order, DW_ADDR (attr));
18282 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18283 }
c906108c 18284 break;
4ac36638 18285 case DW_FORM_string:
93b5768b 18286 case DW_FORM_strp:
3019eac3 18287 case DW_FORM_GNU_str_index:
36586728 18288 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18289 /* DW_STRING is already allocated on the objfile obstack, point
18290 directly to it. */
d521ce57 18291 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18292 break;
c906108c
SS
18293 case DW_FORM_block1:
18294 case DW_FORM_block2:
18295 case DW_FORM_block4:
18296 case DW_FORM_block:
2dc7f7b3 18297 case DW_FORM_exprloc:
c906108c 18298 blk = DW_BLOCK (attr);
98bfdba5
PA
18299 if (TYPE_LENGTH (type) != blk->size)
18300 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18301 TYPE_LENGTH (type));
18302 *bytes = blk->data;
c906108c 18303 break;
2df3850c
JM
18304
18305 /* The DW_AT_const_value attributes are supposed to carry the
18306 symbol's value "represented as it would be on the target
18307 architecture." By the time we get here, it's already been
18308 converted to host endianness, so we just need to sign- or
18309 zero-extend it as appropriate. */
18310 case DW_FORM_data1:
3aef2284 18311 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18312 break;
c906108c 18313 case DW_FORM_data2:
3aef2284 18314 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18315 break;
c906108c 18316 case DW_FORM_data4:
3aef2284 18317 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18318 break;
c906108c 18319 case DW_FORM_data8:
3aef2284 18320 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18321 break;
18322
c906108c 18323 case DW_FORM_sdata:
98bfdba5 18324 *value = DW_SND (attr);
2df3850c
JM
18325 break;
18326
c906108c 18327 case DW_FORM_udata:
98bfdba5 18328 *value = DW_UNSND (attr);
c906108c 18329 break;
2df3850c 18330
c906108c 18331 default:
4d3c2250 18332 complaint (&symfile_complaints,
e2e0b3e5 18333 _("unsupported const value attribute form: '%s'"),
4d3c2250 18334 dwarf_form_name (attr->form));
98bfdba5 18335 *value = 0;
c906108c
SS
18336 break;
18337 }
18338}
18339
2df3850c 18340
98bfdba5
PA
18341/* Copy constant value from an attribute to a symbol. */
18342
2df3850c 18343static void
ff39bb5e 18344dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18345 struct dwarf2_cu *cu)
2df3850c 18346{
98bfdba5
PA
18347 struct objfile *objfile = cu->objfile;
18348 struct comp_unit_head *cu_header = &cu->header;
12df843f 18349 LONGEST value;
d521ce57 18350 const gdb_byte *bytes;
98bfdba5 18351 struct dwarf2_locexpr_baton *baton;
2df3850c 18352
98bfdba5
PA
18353 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18354 SYMBOL_PRINT_NAME (sym),
18355 &objfile->objfile_obstack, cu,
18356 &value, &bytes, &baton);
2df3850c 18357
98bfdba5
PA
18358 if (baton != NULL)
18359 {
98bfdba5 18360 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18361 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18362 }
18363 else if (bytes != NULL)
18364 {
18365 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18366 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18367 }
18368 else
18369 {
18370 SYMBOL_VALUE (sym) = value;
f1e6e072 18371 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18372 }
2df3850c
JM
18373}
18374
c906108c
SS
18375/* Return the type of the die in question using its DW_AT_type attribute. */
18376
18377static struct type *
e7c27a73 18378die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18379{
c906108c 18380 struct attribute *type_attr;
c906108c 18381
e142c38c 18382 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18383 if (!type_attr)
18384 {
18385 /* A missing DW_AT_type represents a void type. */
46bf5051 18386 return objfile_type (cu->objfile)->builtin_void;
c906108c 18387 }
348e048f 18388
673bfd45 18389 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18390}
18391
b4ba55a1
JB
18392/* True iff CU's producer generates GNAT Ada auxiliary information
18393 that allows to find parallel types through that information instead
18394 of having to do expensive parallel lookups by type name. */
18395
18396static int
18397need_gnat_info (struct dwarf2_cu *cu)
18398{
18399 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18400 of GNAT produces this auxiliary information, without any indication
18401 that it is produced. Part of enhancing the FSF version of GNAT
18402 to produce that information will be to put in place an indicator
18403 that we can use in order to determine whether the descriptive type
18404 info is available or not. One suggestion that has been made is
18405 to use a new attribute, attached to the CU die. For now, assume
18406 that the descriptive type info is not available. */
18407 return 0;
18408}
18409
b4ba55a1
JB
18410/* Return the auxiliary type of the die in question using its
18411 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18412 attribute is not present. */
18413
18414static struct type *
18415die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18416{
b4ba55a1 18417 struct attribute *type_attr;
b4ba55a1
JB
18418
18419 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18420 if (!type_attr)
18421 return NULL;
18422
673bfd45 18423 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18424}
18425
18426/* If DIE has a descriptive_type attribute, then set the TYPE's
18427 descriptive type accordingly. */
18428
18429static void
18430set_descriptive_type (struct type *type, struct die_info *die,
18431 struct dwarf2_cu *cu)
18432{
18433 struct type *descriptive_type = die_descriptive_type (die, cu);
18434
18435 if (descriptive_type)
18436 {
18437 ALLOCATE_GNAT_AUX_TYPE (type);
18438 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18439 }
18440}
18441
c906108c
SS
18442/* Return the containing type of the die in question using its
18443 DW_AT_containing_type attribute. */
18444
18445static struct type *
e7c27a73 18446die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18447{
c906108c 18448 struct attribute *type_attr;
c906108c 18449
e142c38c 18450 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18451 if (!type_attr)
18452 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18453 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18454
673bfd45 18455 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18456}
18457
ac9ec31b
DE
18458/* Return an error marker type to use for the ill formed type in DIE/CU. */
18459
18460static struct type *
18461build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18462{
18463 struct objfile *objfile = dwarf2_per_objfile->objfile;
18464 char *message, *saved;
18465
18466 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18467 objfile_name (objfile),
ac9ec31b
DE
18468 cu->header.offset.sect_off,
18469 die->offset.sect_off);
18470 saved = obstack_copy0 (&objfile->objfile_obstack,
18471 message, strlen (message));
18472 xfree (message);
18473
18474 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18475}
18476
673bfd45 18477/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18478 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18479 DW_AT_containing_type.
673bfd45
DE
18480 If there is no type substitute an error marker. */
18481
c906108c 18482static struct type *
ff39bb5e 18483lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18484 struct dwarf2_cu *cu)
c906108c 18485{
bb5ed363 18486 struct objfile *objfile = cu->objfile;
f792889a
DJ
18487 struct type *this_type;
18488
ac9ec31b
DE
18489 gdb_assert (attr->name == DW_AT_type
18490 || attr->name == DW_AT_GNAT_descriptive_type
18491 || attr->name == DW_AT_containing_type);
18492
673bfd45
DE
18493 /* First see if we have it cached. */
18494
36586728
TT
18495 if (attr->form == DW_FORM_GNU_ref_alt)
18496 {
18497 struct dwarf2_per_cu_data *per_cu;
18498 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18499
18500 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18501 this_type = get_die_type_at_offset (offset, per_cu);
18502 }
7771576e 18503 else if (attr_form_is_ref (attr))
673bfd45 18504 {
b64f50a1 18505 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18506
18507 this_type = get_die_type_at_offset (offset, cu->per_cu);
18508 }
55f1336d 18509 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18510 {
ac9ec31b 18511 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18512
ac9ec31b 18513 return get_signatured_type (die, signature, cu);
673bfd45
DE
18514 }
18515 else
18516 {
ac9ec31b
DE
18517 complaint (&symfile_complaints,
18518 _("Dwarf Error: Bad type attribute %s in DIE"
18519 " at 0x%x [in module %s]"),
18520 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18521 objfile_name (objfile));
ac9ec31b 18522 return build_error_marker_type (cu, die);
673bfd45
DE
18523 }
18524
18525 /* If not cached we need to read it in. */
18526
18527 if (this_type == NULL)
18528 {
ac9ec31b 18529 struct die_info *type_die = NULL;
673bfd45
DE
18530 struct dwarf2_cu *type_cu = cu;
18531
7771576e 18532 if (attr_form_is_ref (attr))
ac9ec31b
DE
18533 type_die = follow_die_ref (die, attr, &type_cu);
18534 if (type_die == NULL)
18535 return build_error_marker_type (cu, die);
18536 /* If we find the type now, it's probably because the type came
3019eac3
DE
18537 from an inter-CU reference and the type's CU got expanded before
18538 ours. */
ac9ec31b 18539 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18540 }
18541
18542 /* If we still don't have a type use an error marker. */
18543
18544 if (this_type == NULL)
ac9ec31b 18545 return build_error_marker_type (cu, die);
673bfd45 18546
f792889a 18547 return this_type;
c906108c
SS
18548}
18549
673bfd45
DE
18550/* Return the type in DIE, CU.
18551 Returns NULL for invalid types.
18552
02142a6c 18553 This first does a lookup in die_type_hash,
673bfd45
DE
18554 and only reads the die in if necessary.
18555
18556 NOTE: This can be called when reading in partial or full symbols. */
18557
f792889a 18558static struct type *
e7c27a73 18559read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18560{
f792889a
DJ
18561 struct type *this_type;
18562
18563 this_type = get_die_type (die, cu);
18564 if (this_type)
18565 return this_type;
18566
673bfd45
DE
18567 return read_type_die_1 (die, cu);
18568}
18569
18570/* Read the type in DIE, CU.
18571 Returns NULL for invalid types. */
18572
18573static struct type *
18574read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18575{
18576 struct type *this_type = NULL;
18577
c906108c
SS
18578 switch (die->tag)
18579 {
18580 case DW_TAG_class_type:
680b30c7 18581 case DW_TAG_interface_type:
c906108c
SS
18582 case DW_TAG_structure_type:
18583 case DW_TAG_union_type:
f792889a 18584 this_type = read_structure_type (die, cu);
c906108c
SS
18585 break;
18586 case DW_TAG_enumeration_type:
f792889a 18587 this_type = read_enumeration_type (die, cu);
c906108c
SS
18588 break;
18589 case DW_TAG_subprogram:
18590 case DW_TAG_subroutine_type:
edb3359d 18591 case DW_TAG_inlined_subroutine:
f792889a 18592 this_type = read_subroutine_type (die, cu);
c906108c
SS
18593 break;
18594 case DW_TAG_array_type:
f792889a 18595 this_type = read_array_type (die, cu);
c906108c 18596 break;
72019c9c 18597 case DW_TAG_set_type:
f792889a 18598 this_type = read_set_type (die, cu);
72019c9c 18599 break;
c906108c 18600 case DW_TAG_pointer_type:
f792889a 18601 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18602 break;
18603 case DW_TAG_ptr_to_member_type:
f792889a 18604 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18605 break;
18606 case DW_TAG_reference_type:
f792889a 18607 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18608 break;
18609 case DW_TAG_const_type:
f792889a 18610 this_type = read_tag_const_type (die, cu);
c906108c
SS
18611 break;
18612 case DW_TAG_volatile_type:
f792889a 18613 this_type = read_tag_volatile_type (die, cu);
c906108c 18614 break;
06d66ee9
TT
18615 case DW_TAG_restrict_type:
18616 this_type = read_tag_restrict_type (die, cu);
18617 break;
c906108c 18618 case DW_TAG_string_type:
f792889a 18619 this_type = read_tag_string_type (die, cu);
c906108c
SS
18620 break;
18621 case DW_TAG_typedef:
f792889a 18622 this_type = read_typedef (die, cu);
c906108c 18623 break;
a02abb62 18624 case DW_TAG_subrange_type:
f792889a 18625 this_type = read_subrange_type (die, cu);
a02abb62 18626 break;
c906108c 18627 case DW_TAG_base_type:
f792889a 18628 this_type = read_base_type (die, cu);
c906108c 18629 break;
81a17f79 18630 case DW_TAG_unspecified_type:
f792889a 18631 this_type = read_unspecified_type (die, cu);
81a17f79 18632 break;
0114d602
DJ
18633 case DW_TAG_namespace:
18634 this_type = read_namespace_type (die, cu);
18635 break;
f55ee35c
JK
18636 case DW_TAG_module:
18637 this_type = read_module_type (die, cu);
18638 break;
c906108c 18639 default:
3e43a32a
MS
18640 complaint (&symfile_complaints,
18641 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18642 dwarf_tag_name (die->tag));
c906108c
SS
18643 break;
18644 }
63d06c5c 18645
f792889a 18646 return this_type;
63d06c5c
DC
18647}
18648
abc72ce4
DE
18649/* See if we can figure out if the class lives in a namespace. We do
18650 this by looking for a member function; its demangled name will
18651 contain namespace info, if there is any.
18652 Return the computed name or NULL.
18653 Space for the result is allocated on the objfile's obstack.
18654 This is the full-die version of guess_partial_die_structure_name.
18655 In this case we know DIE has no useful parent. */
18656
18657static char *
18658guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18659{
18660 struct die_info *spec_die;
18661 struct dwarf2_cu *spec_cu;
18662 struct die_info *child;
18663
18664 spec_cu = cu;
18665 spec_die = die_specification (die, &spec_cu);
18666 if (spec_die != NULL)
18667 {
18668 die = spec_die;
18669 cu = spec_cu;
18670 }
18671
18672 for (child = die->child;
18673 child != NULL;
18674 child = child->sibling)
18675 {
18676 if (child->tag == DW_TAG_subprogram)
18677 {
18678 struct attribute *attr;
18679
18680 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18681 if (attr == NULL)
18682 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18683 if (attr != NULL)
18684 {
18685 char *actual_name
18686 = language_class_name_from_physname (cu->language_defn,
18687 DW_STRING (attr));
18688 char *name = NULL;
18689
18690 if (actual_name != NULL)
18691 {
15d034d0 18692 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18693
18694 if (die_name != NULL
18695 && strcmp (die_name, actual_name) != 0)
18696 {
18697 /* Strip off the class name from the full name.
18698 We want the prefix. */
18699 int die_name_len = strlen (die_name);
18700 int actual_name_len = strlen (actual_name);
18701
18702 /* Test for '::' as a sanity check. */
18703 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18704 && actual_name[actual_name_len
18705 - die_name_len - 1] == ':')
abc72ce4 18706 name =
34a68019 18707 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18708 actual_name,
18709 actual_name_len - die_name_len - 2);
abc72ce4
DE
18710 }
18711 }
18712 xfree (actual_name);
18713 return name;
18714 }
18715 }
18716 }
18717
18718 return NULL;
18719}
18720
96408a79
SA
18721/* GCC might emit a nameless typedef that has a linkage name. Determine the
18722 prefix part in such case. See
18723 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18724
18725static char *
18726anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18727{
18728 struct attribute *attr;
18729 char *base;
18730
18731 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18732 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18733 return NULL;
18734
18735 attr = dwarf2_attr (die, DW_AT_name, cu);
18736 if (attr != NULL && DW_STRING (attr) != NULL)
18737 return NULL;
18738
18739 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18740 if (attr == NULL)
18741 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18742 if (attr == NULL || DW_STRING (attr) == NULL)
18743 return NULL;
18744
18745 /* dwarf2_name had to be already called. */
18746 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18747
18748 /* Strip the base name, keep any leading namespaces/classes. */
18749 base = strrchr (DW_STRING (attr), ':');
18750 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18751 return "";
18752
34a68019 18753 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 18754 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18755}
18756
fdde2d81 18757/* Return the name of the namespace/class that DIE is defined within,
0114d602 18758 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18759
0114d602
DJ
18760 For example, if we're within the method foo() in the following
18761 code:
18762
18763 namespace N {
18764 class C {
18765 void foo () {
18766 }
18767 };
18768 }
18769
18770 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18771
0d5cff50 18772static const char *
e142c38c 18773determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18774{
0114d602
DJ
18775 struct die_info *parent, *spec_die;
18776 struct dwarf2_cu *spec_cu;
18777 struct type *parent_type;
96408a79 18778 char *retval;
63d06c5c 18779
f55ee35c
JK
18780 if (cu->language != language_cplus && cu->language != language_java
18781 && cu->language != language_fortran)
0114d602
DJ
18782 return "";
18783
96408a79
SA
18784 retval = anonymous_struct_prefix (die, cu);
18785 if (retval)
18786 return retval;
18787
0114d602
DJ
18788 /* We have to be careful in the presence of DW_AT_specification.
18789 For example, with GCC 3.4, given the code
18790
18791 namespace N {
18792 void foo() {
18793 // Definition of N::foo.
18794 }
18795 }
18796
18797 then we'll have a tree of DIEs like this:
18798
18799 1: DW_TAG_compile_unit
18800 2: DW_TAG_namespace // N
18801 3: DW_TAG_subprogram // declaration of N::foo
18802 4: DW_TAG_subprogram // definition of N::foo
18803 DW_AT_specification // refers to die #3
18804
18805 Thus, when processing die #4, we have to pretend that we're in
18806 the context of its DW_AT_specification, namely the contex of die
18807 #3. */
18808 spec_cu = cu;
18809 spec_die = die_specification (die, &spec_cu);
18810 if (spec_die == NULL)
18811 parent = die->parent;
18812 else
63d06c5c 18813 {
0114d602
DJ
18814 parent = spec_die->parent;
18815 cu = spec_cu;
63d06c5c 18816 }
0114d602
DJ
18817
18818 if (parent == NULL)
18819 return "";
98bfdba5
PA
18820 else if (parent->building_fullname)
18821 {
18822 const char *name;
18823 const char *parent_name;
18824
18825 /* It has been seen on RealView 2.2 built binaries,
18826 DW_TAG_template_type_param types actually _defined_ as
18827 children of the parent class:
18828
18829 enum E {};
18830 template class <class Enum> Class{};
18831 Class<enum E> class_e;
18832
18833 1: DW_TAG_class_type (Class)
18834 2: DW_TAG_enumeration_type (E)
18835 3: DW_TAG_enumerator (enum1:0)
18836 3: DW_TAG_enumerator (enum2:1)
18837 ...
18838 2: DW_TAG_template_type_param
18839 DW_AT_type DW_FORM_ref_udata (E)
18840
18841 Besides being broken debug info, it can put GDB into an
18842 infinite loop. Consider:
18843
18844 When we're building the full name for Class<E>, we'll start
18845 at Class, and go look over its template type parameters,
18846 finding E. We'll then try to build the full name of E, and
18847 reach here. We're now trying to build the full name of E,
18848 and look over the parent DIE for containing scope. In the
18849 broken case, if we followed the parent DIE of E, we'd again
18850 find Class, and once again go look at its template type
18851 arguments, etc., etc. Simply don't consider such parent die
18852 as source-level parent of this die (it can't be, the language
18853 doesn't allow it), and break the loop here. */
18854 name = dwarf2_name (die, cu);
18855 parent_name = dwarf2_name (parent, cu);
18856 complaint (&symfile_complaints,
18857 _("template param type '%s' defined within parent '%s'"),
18858 name ? name : "<unknown>",
18859 parent_name ? parent_name : "<unknown>");
18860 return "";
18861 }
63d06c5c 18862 else
0114d602
DJ
18863 switch (parent->tag)
18864 {
63d06c5c 18865 case DW_TAG_namespace:
0114d602 18866 parent_type = read_type_die (parent, cu);
acebe513
UW
18867 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18868 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18869 Work around this problem here. */
18870 if (cu->language == language_cplus
18871 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18872 return "";
0114d602
DJ
18873 /* We give a name to even anonymous namespaces. */
18874 return TYPE_TAG_NAME (parent_type);
63d06c5c 18875 case DW_TAG_class_type:
680b30c7 18876 case DW_TAG_interface_type:
63d06c5c 18877 case DW_TAG_structure_type:
0114d602 18878 case DW_TAG_union_type:
f55ee35c 18879 case DW_TAG_module:
0114d602
DJ
18880 parent_type = read_type_die (parent, cu);
18881 if (TYPE_TAG_NAME (parent_type) != NULL)
18882 return TYPE_TAG_NAME (parent_type);
18883 else
18884 /* An anonymous structure is only allowed non-static data
18885 members; no typedefs, no member functions, et cetera.
18886 So it does not need a prefix. */
18887 return "";
abc72ce4 18888 case DW_TAG_compile_unit:
95554aad 18889 case DW_TAG_partial_unit:
abc72ce4
DE
18890 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18891 if (cu->language == language_cplus
8b70b953 18892 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18893 && die->child != NULL
18894 && (die->tag == DW_TAG_class_type
18895 || die->tag == DW_TAG_structure_type
18896 || die->tag == DW_TAG_union_type))
18897 {
18898 char *name = guess_full_die_structure_name (die, cu);
18899 if (name != NULL)
18900 return name;
18901 }
18902 return "";
3d567982
TT
18903 case DW_TAG_enumeration_type:
18904 parent_type = read_type_die (parent, cu);
18905 if (TYPE_DECLARED_CLASS (parent_type))
18906 {
18907 if (TYPE_TAG_NAME (parent_type) != NULL)
18908 return TYPE_TAG_NAME (parent_type);
18909 return "";
18910 }
18911 /* Fall through. */
63d06c5c 18912 default:
8176b9b8 18913 return determine_prefix (parent, cu);
63d06c5c 18914 }
63d06c5c
DC
18915}
18916
3e43a32a
MS
18917/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18918 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18919 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18920 an obconcat, otherwise allocate storage for the result. The CU argument is
18921 used to determine the language and hence, the appropriate separator. */
987504bb 18922
f55ee35c 18923#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18924
18925static char *
f55ee35c
JK
18926typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18927 int physname, struct dwarf2_cu *cu)
63d06c5c 18928{
f55ee35c 18929 const char *lead = "";
5c315b68 18930 const char *sep;
63d06c5c 18931
3e43a32a
MS
18932 if (suffix == NULL || suffix[0] == '\0'
18933 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18934 sep = "";
18935 else if (cu->language == language_java)
18936 sep = ".";
f55ee35c
JK
18937 else if (cu->language == language_fortran && physname)
18938 {
18939 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18940 DW_AT_MIPS_linkage_name is preferred and used instead. */
18941
18942 lead = "__";
18943 sep = "_MOD_";
18944 }
987504bb
JJ
18945 else
18946 sep = "::";
63d06c5c 18947
6dd47d34
DE
18948 if (prefix == NULL)
18949 prefix = "";
18950 if (suffix == NULL)
18951 suffix = "";
18952
987504bb
JJ
18953 if (obs == NULL)
18954 {
3e43a32a
MS
18955 char *retval
18956 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18957
f55ee35c
JK
18958 strcpy (retval, lead);
18959 strcat (retval, prefix);
6dd47d34
DE
18960 strcat (retval, sep);
18961 strcat (retval, suffix);
63d06c5c
DC
18962 return retval;
18963 }
987504bb
JJ
18964 else
18965 {
18966 /* We have an obstack. */
f55ee35c 18967 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18968 }
63d06c5c
DC
18969}
18970
c906108c
SS
18971/* Return sibling of die, NULL if no sibling. */
18972
f9aca02d 18973static struct die_info *
fba45db2 18974sibling_die (struct die_info *die)
c906108c 18975{
639d11d3 18976 return die->sibling;
c906108c
SS
18977}
18978
71c25dea
TT
18979/* Get name of a die, return NULL if not found. */
18980
15d034d0
TT
18981static const char *
18982dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18983 struct obstack *obstack)
18984{
18985 if (name && cu->language == language_cplus)
18986 {
18987 char *canon_name = cp_canonicalize_string (name);
18988
18989 if (canon_name != NULL)
18990 {
18991 if (strcmp (canon_name, name) != 0)
10f0c4bb 18992 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18993 xfree (canon_name);
18994 }
18995 }
18996
18997 return name;
c906108c
SS
18998}
18999
9219021c
DC
19000/* Get name of a die, return NULL if not found. */
19001
15d034d0 19002static const char *
e142c38c 19003dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19004{
19005 struct attribute *attr;
19006
e142c38c 19007 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
19008 if ((!attr || !DW_STRING (attr))
19009 && die->tag != DW_TAG_class_type
19010 && die->tag != DW_TAG_interface_type
19011 && die->tag != DW_TAG_structure_type
19012 && die->tag != DW_TAG_union_type)
71c25dea
TT
19013 return NULL;
19014
19015 switch (die->tag)
19016 {
19017 case DW_TAG_compile_unit:
95554aad 19018 case DW_TAG_partial_unit:
71c25dea
TT
19019 /* Compilation units have a DW_AT_name that is a filename, not
19020 a source language identifier. */
19021 case DW_TAG_enumeration_type:
19022 case DW_TAG_enumerator:
19023 /* These tags always have simple identifiers already; no need
19024 to canonicalize them. */
19025 return DW_STRING (attr);
907af001 19026
418835cc
KS
19027 case DW_TAG_subprogram:
19028 /* Java constructors will all be named "<init>", so return
19029 the class name when we see this special case. */
19030 if (cu->language == language_java
19031 && DW_STRING (attr) != NULL
19032 && strcmp (DW_STRING (attr), "<init>") == 0)
19033 {
19034 struct dwarf2_cu *spec_cu = cu;
19035 struct die_info *spec_die;
19036
19037 /* GCJ will output '<init>' for Java constructor names.
19038 For this special case, return the name of the parent class. */
19039
cdc07690 19040 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19041 If so, use the name of the specified DIE. */
19042 spec_die = die_specification (die, &spec_cu);
19043 if (spec_die != NULL)
19044 return dwarf2_name (spec_die, spec_cu);
19045
19046 do
19047 {
19048 die = die->parent;
19049 if (die->tag == DW_TAG_class_type)
19050 return dwarf2_name (die, cu);
19051 }
95554aad
TT
19052 while (die->tag != DW_TAG_compile_unit
19053 && die->tag != DW_TAG_partial_unit);
418835cc 19054 }
907af001
UW
19055 break;
19056
19057 case DW_TAG_class_type:
19058 case DW_TAG_interface_type:
19059 case DW_TAG_structure_type:
19060 case DW_TAG_union_type:
19061 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19062 structures or unions. These were of the form "._%d" in GCC 4.1,
19063 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19064 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
19065 if (attr && DW_STRING (attr)
19066 && (strncmp (DW_STRING (attr), "._", 2) == 0
19067 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 19068 return NULL;
53832f31
TT
19069
19070 /* GCC might emit a nameless typedef that has a linkage name. See
19071 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19072 if (!attr || DW_STRING (attr) == NULL)
19073 {
df5c6c50 19074 char *demangled = NULL;
53832f31
TT
19075
19076 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19077 if (attr == NULL)
19078 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19079
19080 if (attr == NULL || DW_STRING (attr) == NULL)
19081 return NULL;
19082
df5c6c50
JK
19083 /* Avoid demangling DW_STRING (attr) the second time on a second
19084 call for the same DIE. */
19085 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19086 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19087
19088 if (demangled)
19089 {
96408a79
SA
19090 char *base;
19091
53832f31 19092 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19093 DW_STRING (attr)
19094 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19095 demangled, strlen (demangled));
53832f31
TT
19096 DW_STRING_IS_CANONICAL (attr) = 1;
19097 xfree (demangled);
96408a79
SA
19098
19099 /* Strip any leading namespaces/classes, keep only the base name.
19100 DW_AT_name for named DIEs does not contain the prefixes. */
19101 base = strrchr (DW_STRING (attr), ':');
19102 if (base && base > DW_STRING (attr) && base[-1] == ':')
19103 return &base[1];
19104 else
19105 return DW_STRING (attr);
53832f31
TT
19106 }
19107 }
907af001
UW
19108 break;
19109
71c25dea 19110 default:
907af001
UW
19111 break;
19112 }
19113
19114 if (!DW_STRING_IS_CANONICAL (attr))
19115 {
19116 DW_STRING (attr)
19117 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19118 &cu->objfile->per_bfd->storage_obstack);
907af001 19119 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19120 }
907af001 19121 return DW_STRING (attr);
9219021c
DC
19122}
19123
19124/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19125 is none. *EXT_CU is the CU containing DIE on input, and the CU
19126 containing the return value on output. */
9219021c
DC
19127
19128static struct die_info *
f2f0e013 19129dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19130{
19131 struct attribute *attr;
9219021c 19132
f2f0e013 19133 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19134 if (attr == NULL)
19135 return NULL;
19136
f2f0e013 19137 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19138}
19139
c906108c
SS
19140/* Convert a DIE tag into its string name. */
19141
f39c6ffd 19142static const char *
aa1ee363 19143dwarf_tag_name (unsigned tag)
c906108c 19144{
f39c6ffd
TT
19145 const char *name = get_DW_TAG_name (tag);
19146
19147 if (name == NULL)
19148 return "DW_TAG_<unknown>";
19149
19150 return name;
c906108c
SS
19151}
19152
19153/* Convert a DWARF attribute code into its string name. */
19154
f39c6ffd 19155static const char *
aa1ee363 19156dwarf_attr_name (unsigned attr)
c906108c 19157{
f39c6ffd
TT
19158 const char *name;
19159
c764a876 19160#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19161 if (attr == DW_AT_MIPS_fde)
19162 return "DW_AT_MIPS_fde";
19163#else
19164 if (attr == DW_AT_HP_block_index)
19165 return "DW_AT_HP_block_index";
c764a876 19166#endif
f39c6ffd
TT
19167
19168 name = get_DW_AT_name (attr);
19169
19170 if (name == NULL)
19171 return "DW_AT_<unknown>";
19172
19173 return name;
c906108c
SS
19174}
19175
19176/* Convert a DWARF value form code into its string name. */
19177
f39c6ffd 19178static const char *
aa1ee363 19179dwarf_form_name (unsigned form)
c906108c 19180{
f39c6ffd
TT
19181 const char *name = get_DW_FORM_name (form);
19182
19183 if (name == NULL)
19184 return "DW_FORM_<unknown>";
19185
19186 return name;
c906108c
SS
19187}
19188
19189static char *
fba45db2 19190dwarf_bool_name (unsigned mybool)
c906108c
SS
19191{
19192 if (mybool)
19193 return "TRUE";
19194 else
19195 return "FALSE";
19196}
19197
19198/* Convert a DWARF type code into its string name. */
19199
f39c6ffd 19200static const char *
aa1ee363 19201dwarf_type_encoding_name (unsigned enc)
c906108c 19202{
f39c6ffd 19203 const char *name = get_DW_ATE_name (enc);
c906108c 19204
f39c6ffd
TT
19205 if (name == NULL)
19206 return "DW_ATE_<unknown>";
c906108c 19207
f39c6ffd 19208 return name;
c906108c 19209}
c906108c 19210
f9aca02d 19211static void
d97bc12b 19212dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19213{
19214 unsigned int i;
19215
d97bc12b
DE
19216 print_spaces (indent, f);
19217 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19218 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19219
19220 if (die->parent != NULL)
19221 {
19222 print_spaces (indent, f);
19223 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19224 die->parent->offset.sect_off);
d97bc12b
DE
19225 }
19226
19227 print_spaces (indent, f);
19228 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19229 dwarf_bool_name (die->child != NULL));
c906108c 19230
d97bc12b
DE
19231 print_spaces (indent, f);
19232 fprintf_unfiltered (f, " attributes:\n");
19233
c906108c
SS
19234 for (i = 0; i < die->num_attrs; ++i)
19235 {
d97bc12b
DE
19236 print_spaces (indent, f);
19237 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19238 dwarf_attr_name (die->attrs[i].name),
19239 dwarf_form_name (die->attrs[i].form));
d97bc12b 19240
c906108c
SS
19241 switch (die->attrs[i].form)
19242 {
c906108c 19243 case DW_FORM_addr:
3019eac3 19244 case DW_FORM_GNU_addr_index:
d97bc12b 19245 fprintf_unfiltered (f, "address: ");
5af949e3 19246 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19247 break;
19248 case DW_FORM_block2:
19249 case DW_FORM_block4:
19250 case DW_FORM_block:
19251 case DW_FORM_block1:
56eb65bd
SP
19252 fprintf_unfiltered (f, "block: size %s",
19253 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19254 break;
2dc7f7b3 19255 case DW_FORM_exprloc:
56eb65bd
SP
19256 fprintf_unfiltered (f, "expression: size %s",
19257 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19258 break;
4568ecf9
DE
19259 case DW_FORM_ref_addr:
19260 fprintf_unfiltered (f, "ref address: ");
19261 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19262 break;
36586728
TT
19263 case DW_FORM_GNU_ref_alt:
19264 fprintf_unfiltered (f, "alt ref address: ");
19265 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19266 break;
10b3939b
DJ
19267 case DW_FORM_ref1:
19268 case DW_FORM_ref2:
19269 case DW_FORM_ref4:
4568ecf9
DE
19270 case DW_FORM_ref8:
19271 case DW_FORM_ref_udata:
d97bc12b 19272 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19273 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19274 break;
c906108c
SS
19275 case DW_FORM_data1:
19276 case DW_FORM_data2:
19277 case DW_FORM_data4:
ce5d95e1 19278 case DW_FORM_data8:
c906108c
SS
19279 case DW_FORM_udata:
19280 case DW_FORM_sdata:
43bbcdc2
PH
19281 fprintf_unfiltered (f, "constant: %s",
19282 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19283 break;
2dc7f7b3
TT
19284 case DW_FORM_sec_offset:
19285 fprintf_unfiltered (f, "section offset: %s",
19286 pulongest (DW_UNSND (&die->attrs[i])));
19287 break;
55f1336d 19288 case DW_FORM_ref_sig8:
ac9ec31b
DE
19289 fprintf_unfiltered (f, "signature: %s",
19290 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19291 break;
c906108c 19292 case DW_FORM_string:
4bdf3d34 19293 case DW_FORM_strp:
3019eac3 19294 case DW_FORM_GNU_str_index:
36586728 19295 case DW_FORM_GNU_strp_alt:
8285870a 19296 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19297 DW_STRING (&die->attrs[i])
8285870a
JK
19298 ? DW_STRING (&die->attrs[i]) : "",
19299 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19300 break;
19301 case DW_FORM_flag:
19302 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19303 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19304 else
d97bc12b 19305 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19306 break;
2dc7f7b3
TT
19307 case DW_FORM_flag_present:
19308 fprintf_unfiltered (f, "flag: TRUE");
19309 break;
a8329558 19310 case DW_FORM_indirect:
0963b4bd
MS
19311 /* The reader will have reduced the indirect form to
19312 the "base form" so this form should not occur. */
3e43a32a
MS
19313 fprintf_unfiltered (f,
19314 "unexpected attribute form: DW_FORM_indirect");
a8329558 19315 break;
c906108c 19316 default:
d97bc12b 19317 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19318 die->attrs[i].form);
d97bc12b 19319 break;
c906108c 19320 }
d97bc12b 19321 fprintf_unfiltered (f, "\n");
c906108c
SS
19322 }
19323}
19324
f9aca02d 19325static void
d97bc12b 19326dump_die_for_error (struct die_info *die)
c906108c 19327{
d97bc12b
DE
19328 dump_die_shallow (gdb_stderr, 0, die);
19329}
19330
19331static void
19332dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19333{
19334 int indent = level * 4;
19335
19336 gdb_assert (die != NULL);
19337
19338 if (level >= max_level)
19339 return;
19340
19341 dump_die_shallow (f, indent, die);
19342
19343 if (die->child != NULL)
c906108c 19344 {
d97bc12b
DE
19345 print_spaces (indent, f);
19346 fprintf_unfiltered (f, " Children:");
19347 if (level + 1 < max_level)
19348 {
19349 fprintf_unfiltered (f, "\n");
19350 dump_die_1 (f, level + 1, max_level, die->child);
19351 }
19352 else
19353 {
3e43a32a
MS
19354 fprintf_unfiltered (f,
19355 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19356 }
19357 }
19358
19359 if (die->sibling != NULL && level > 0)
19360 {
19361 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19362 }
19363}
19364
d97bc12b
DE
19365/* This is called from the pdie macro in gdbinit.in.
19366 It's not static so gcc will keep a copy callable from gdb. */
19367
19368void
19369dump_die (struct die_info *die, int max_level)
19370{
19371 dump_die_1 (gdb_stdlog, 0, max_level, die);
19372}
19373
f9aca02d 19374static void
51545339 19375store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19376{
51545339 19377 void **slot;
c906108c 19378
b64f50a1
JK
19379 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19380 INSERT);
51545339
DJ
19381
19382 *slot = die;
c906108c
SS
19383}
19384
b64f50a1
JK
19385/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19386 required kind. */
19387
19388static sect_offset
ff39bb5e 19389dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19390{
4568ecf9 19391 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19392
7771576e 19393 if (attr_form_is_ref (attr))
b64f50a1 19394 return retval;
93311388 19395
b64f50a1 19396 retval.sect_off = 0;
93311388
DE
19397 complaint (&symfile_complaints,
19398 _("unsupported die ref attribute form: '%s'"),
19399 dwarf_form_name (attr->form));
b64f50a1 19400 return retval;
c906108c
SS
19401}
19402
43bbcdc2
PH
19403/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19404 * the value held by the attribute is not constant. */
a02abb62 19405
43bbcdc2 19406static LONGEST
ff39bb5e 19407dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19408{
19409 if (attr->form == DW_FORM_sdata)
19410 return DW_SND (attr);
19411 else if (attr->form == DW_FORM_udata
19412 || attr->form == DW_FORM_data1
19413 || attr->form == DW_FORM_data2
19414 || attr->form == DW_FORM_data4
19415 || attr->form == DW_FORM_data8)
19416 return DW_UNSND (attr);
19417 else
19418 {
3e43a32a
MS
19419 complaint (&symfile_complaints,
19420 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19421 dwarf_form_name (attr->form));
19422 return default_value;
19423 }
19424}
19425
348e048f
DE
19426/* Follow reference or signature attribute ATTR of SRC_DIE.
19427 On entry *REF_CU is the CU of SRC_DIE.
19428 On exit *REF_CU is the CU of the result. */
19429
19430static struct die_info *
ff39bb5e 19431follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19432 struct dwarf2_cu **ref_cu)
19433{
19434 struct die_info *die;
19435
7771576e 19436 if (attr_form_is_ref (attr))
348e048f 19437 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19438 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19439 die = follow_die_sig (src_die, attr, ref_cu);
19440 else
19441 {
19442 dump_die_for_error (src_die);
19443 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19444 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19445 }
19446
19447 return die;
03dd20cc
DJ
19448}
19449
5c631832 19450/* Follow reference OFFSET.
673bfd45
DE
19451 On entry *REF_CU is the CU of the source die referencing OFFSET.
19452 On exit *REF_CU is the CU of the result.
19453 Returns NULL if OFFSET is invalid. */
f504f079 19454
f9aca02d 19455static struct die_info *
36586728
TT
19456follow_die_offset (sect_offset offset, int offset_in_dwz,
19457 struct dwarf2_cu **ref_cu)
c906108c 19458{
10b3939b 19459 struct die_info temp_die;
f2f0e013 19460 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19461
348e048f
DE
19462 gdb_assert (cu->per_cu != NULL);
19463
98bfdba5
PA
19464 target_cu = cu;
19465
3019eac3 19466 if (cu->per_cu->is_debug_types)
348e048f
DE
19467 {
19468 /* .debug_types CUs cannot reference anything outside their CU.
19469 If they need to, they have to reference a signatured type via
55f1336d 19470 DW_FORM_ref_sig8. */
348e048f 19471 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19472 return NULL;
348e048f 19473 }
36586728
TT
19474 else if (offset_in_dwz != cu->per_cu->is_dwz
19475 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19476 {
19477 struct dwarf2_per_cu_data *per_cu;
9a619af0 19478
36586728
TT
19479 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19480 cu->objfile);
03dd20cc
DJ
19481
19482 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19483 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19484 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19485
10b3939b
DJ
19486 target_cu = per_cu->cu;
19487 }
98bfdba5
PA
19488 else if (cu->dies == NULL)
19489 {
19490 /* We're loading full DIEs during partial symbol reading. */
19491 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19492 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19493 }
c906108c 19494
f2f0e013 19495 *ref_cu = target_cu;
51545339 19496 temp_die.offset = offset;
b64f50a1 19497 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19498}
10b3939b 19499
5c631832
JK
19500/* Follow reference attribute ATTR of SRC_DIE.
19501 On entry *REF_CU is the CU of SRC_DIE.
19502 On exit *REF_CU is the CU of the result. */
19503
19504static struct die_info *
ff39bb5e 19505follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19506 struct dwarf2_cu **ref_cu)
19507{
b64f50a1 19508 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19509 struct dwarf2_cu *cu = *ref_cu;
19510 struct die_info *die;
19511
36586728
TT
19512 die = follow_die_offset (offset,
19513 (attr->form == DW_FORM_GNU_ref_alt
19514 || cu->per_cu->is_dwz),
19515 ref_cu);
5c631832
JK
19516 if (!die)
19517 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19518 "at 0x%x [in module %s]"),
4262abfb
JK
19519 offset.sect_off, src_die->offset.sect_off,
19520 objfile_name (cu->objfile));
348e048f 19521
5c631832
JK
19522 return die;
19523}
19524
d83e736b
JK
19525/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19526 Returned value is intended for DW_OP_call*. Returned
19527 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19528
19529struct dwarf2_locexpr_baton
8b9737bf
TT
19530dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19531 struct dwarf2_per_cu_data *per_cu,
19532 CORE_ADDR (*get_frame_pc) (void *baton),
19533 void *baton)
5c631832 19534{
918dd910 19535 struct dwarf2_cu *cu;
5c631832
JK
19536 struct die_info *die;
19537 struct attribute *attr;
19538 struct dwarf2_locexpr_baton retval;
19539
8cf6f0b1
TT
19540 dw2_setup (per_cu->objfile);
19541
918dd910
JK
19542 if (per_cu->cu == NULL)
19543 load_cu (per_cu);
19544 cu = per_cu->cu;
19545
36586728 19546 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19547 if (!die)
19548 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19549 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19550
19551 attr = dwarf2_attr (die, DW_AT_location, cu);
19552 if (!attr)
19553 {
e103e986
JK
19554 /* DWARF: "If there is no such attribute, then there is no effect.".
19555 DATA is ignored if SIZE is 0. */
5c631832 19556
e103e986 19557 retval.data = NULL;
5c631832
JK
19558 retval.size = 0;
19559 }
8cf6f0b1
TT
19560 else if (attr_form_is_section_offset (attr))
19561 {
19562 struct dwarf2_loclist_baton loclist_baton;
19563 CORE_ADDR pc = (*get_frame_pc) (baton);
19564 size_t size;
19565
19566 fill_in_loclist_baton (cu, &loclist_baton, attr);
19567
19568 retval.data = dwarf2_find_location_expression (&loclist_baton,
19569 &size, pc);
19570 retval.size = size;
19571 }
5c631832
JK
19572 else
19573 {
19574 if (!attr_form_is_block (attr))
19575 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19576 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19577 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19578
19579 retval.data = DW_BLOCK (attr)->data;
19580 retval.size = DW_BLOCK (attr)->size;
19581 }
19582 retval.per_cu = cu->per_cu;
918dd910 19583
918dd910
JK
19584 age_cached_comp_units ();
19585
5c631832 19586 return retval;
348e048f
DE
19587}
19588
8b9737bf
TT
19589/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19590 offset. */
19591
19592struct dwarf2_locexpr_baton
19593dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19594 struct dwarf2_per_cu_data *per_cu,
19595 CORE_ADDR (*get_frame_pc) (void *baton),
19596 void *baton)
19597{
19598 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19599
19600 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19601}
19602
b6807d98
TT
19603/* Write a constant of a given type as target-ordered bytes into
19604 OBSTACK. */
19605
19606static const gdb_byte *
19607write_constant_as_bytes (struct obstack *obstack,
19608 enum bfd_endian byte_order,
19609 struct type *type,
19610 ULONGEST value,
19611 LONGEST *len)
19612{
19613 gdb_byte *result;
19614
19615 *len = TYPE_LENGTH (type);
19616 result = obstack_alloc (obstack, *len);
19617 store_unsigned_integer (result, *len, byte_order, value);
19618
19619 return result;
19620}
19621
19622/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19623 pointer to the constant bytes and set LEN to the length of the
19624 data. If memory is needed, allocate it on OBSTACK. If the DIE
19625 does not have a DW_AT_const_value, return NULL. */
19626
19627const gdb_byte *
19628dwarf2_fetch_constant_bytes (sect_offset offset,
19629 struct dwarf2_per_cu_data *per_cu,
19630 struct obstack *obstack,
19631 LONGEST *len)
19632{
19633 struct dwarf2_cu *cu;
19634 struct die_info *die;
19635 struct attribute *attr;
19636 const gdb_byte *result = NULL;
19637 struct type *type;
19638 LONGEST value;
19639 enum bfd_endian byte_order;
19640
19641 dw2_setup (per_cu->objfile);
19642
19643 if (per_cu->cu == NULL)
19644 load_cu (per_cu);
19645 cu = per_cu->cu;
19646
19647 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19648 if (!die)
19649 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19650 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19651
19652
19653 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19654 if (attr == NULL)
19655 return NULL;
19656
19657 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19658 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19659
19660 switch (attr->form)
19661 {
19662 case DW_FORM_addr:
19663 case DW_FORM_GNU_addr_index:
19664 {
19665 gdb_byte *tem;
19666
19667 *len = cu->header.addr_size;
19668 tem = obstack_alloc (obstack, *len);
19669 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19670 result = tem;
19671 }
19672 break;
19673 case DW_FORM_string:
19674 case DW_FORM_strp:
19675 case DW_FORM_GNU_str_index:
19676 case DW_FORM_GNU_strp_alt:
19677 /* DW_STRING is already allocated on the objfile obstack, point
19678 directly to it. */
19679 result = (const gdb_byte *) DW_STRING (attr);
19680 *len = strlen (DW_STRING (attr));
19681 break;
19682 case DW_FORM_block1:
19683 case DW_FORM_block2:
19684 case DW_FORM_block4:
19685 case DW_FORM_block:
19686 case DW_FORM_exprloc:
19687 result = DW_BLOCK (attr)->data;
19688 *len = DW_BLOCK (attr)->size;
19689 break;
19690
19691 /* The DW_AT_const_value attributes are supposed to carry the
19692 symbol's value "represented as it would be on the target
19693 architecture." By the time we get here, it's already been
19694 converted to host endianness, so we just need to sign- or
19695 zero-extend it as appropriate. */
19696 case DW_FORM_data1:
19697 type = die_type (die, cu);
19698 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19699 if (result == NULL)
19700 result = write_constant_as_bytes (obstack, byte_order,
19701 type, value, len);
19702 break;
19703 case DW_FORM_data2:
19704 type = die_type (die, cu);
19705 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19706 if (result == NULL)
19707 result = write_constant_as_bytes (obstack, byte_order,
19708 type, value, len);
19709 break;
19710 case DW_FORM_data4:
19711 type = die_type (die, cu);
19712 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19713 if (result == NULL)
19714 result = write_constant_as_bytes (obstack, byte_order,
19715 type, value, len);
19716 break;
19717 case DW_FORM_data8:
19718 type = die_type (die, cu);
19719 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19720 if (result == NULL)
19721 result = write_constant_as_bytes (obstack, byte_order,
19722 type, value, len);
19723 break;
19724
19725 case DW_FORM_sdata:
19726 type = die_type (die, cu);
19727 result = write_constant_as_bytes (obstack, byte_order,
19728 type, DW_SND (attr), len);
19729 break;
19730
19731 case DW_FORM_udata:
19732 type = die_type (die, cu);
19733 result = write_constant_as_bytes (obstack, byte_order,
19734 type, DW_UNSND (attr), len);
19735 break;
19736
19737 default:
19738 complaint (&symfile_complaints,
19739 _("unsupported const value attribute form: '%s'"),
19740 dwarf_form_name (attr->form));
19741 break;
19742 }
19743
19744 return result;
19745}
19746
8a9b8146
TT
19747/* Return the type of the DIE at DIE_OFFSET in the CU named by
19748 PER_CU. */
19749
19750struct type *
b64f50a1 19751dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19752 struct dwarf2_per_cu_data *per_cu)
19753{
b64f50a1
JK
19754 sect_offset die_offset_sect;
19755
8a9b8146 19756 dw2_setup (per_cu->objfile);
b64f50a1
JK
19757
19758 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19759 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19760}
19761
ac9ec31b 19762/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19763 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19764 On exit *REF_CU is the CU of the result.
19765 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19766
19767static struct die_info *
ac9ec31b
DE
19768follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19769 struct dwarf2_cu **ref_cu)
348e048f
DE
19770{
19771 struct objfile *objfile = (*ref_cu)->objfile;
19772 struct die_info temp_die;
348e048f
DE
19773 struct dwarf2_cu *sig_cu;
19774 struct die_info *die;
19775
ac9ec31b
DE
19776 /* While it might be nice to assert sig_type->type == NULL here,
19777 we can get here for DW_AT_imported_declaration where we need
19778 the DIE not the type. */
348e048f
DE
19779
19780 /* If necessary, add it to the queue and load its DIEs. */
19781
95554aad 19782 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19783 read_signatured_type (sig_type);
348e048f 19784
348e048f 19785 sig_cu = sig_type->per_cu.cu;
69d751e3 19786 gdb_assert (sig_cu != NULL);
3019eac3
DE
19787 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19788 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19789 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19790 temp_die.offset.sect_off);
348e048f
DE
19791 if (die)
19792 {
796a7ff8
DE
19793 /* For .gdb_index version 7 keep track of included TUs.
19794 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19795 if (dwarf2_per_objfile->index_table != NULL
19796 && dwarf2_per_objfile->index_table->version <= 7)
19797 {
19798 VEC_safe_push (dwarf2_per_cu_ptr,
19799 (*ref_cu)->per_cu->imported_symtabs,
19800 sig_cu->per_cu);
19801 }
19802
348e048f
DE
19803 *ref_cu = sig_cu;
19804 return die;
19805 }
19806
ac9ec31b
DE
19807 return NULL;
19808}
19809
19810/* Follow signatured type referenced by ATTR in SRC_DIE.
19811 On entry *REF_CU is the CU of SRC_DIE.
19812 On exit *REF_CU is the CU of the result.
19813 The result is the DIE of the type.
19814 If the referenced type cannot be found an error is thrown. */
19815
19816static struct die_info *
ff39bb5e 19817follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19818 struct dwarf2_cu **ref_cu)
19819{
19820 ULONGEST signature = DW_SIGNATURE (attr);
19821 struct signatured_type *sig_type;
19822 struct die_info *die;
19823
19824 gdb_assert (attr->form == DW_FORM_ref_sig8);
19825
a2ce51a0 19826 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19827 /* sig_type will be NULL if the signatured type is missing from
19828 the debug info. */
19829 if (sig_type == NULL)
19830 {
19831 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19832 " from DIE at 0x%x [in module %s]"),
19833 hex_string (signature), src_die->offset.sect_off,
4262abfb 19834 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19835 }
19836
19837 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19838 if (die == NULL)
19839 {
19840 dump_die_for_error (src_die);
19841 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19842 " from DIE at 0x%x [in module %s]"),
19843 hex_string (signature), src_die->offset.sect_off,
4262abfb 19844 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19845 }
19846
19847 return die;
19848}
19849
19850/* Get the type specified by SIGNATURE referenced in DIE/CU,
19851 reading in and processing the type unit if necessary. */
19852
19853static struct type *
19854get_signatured_type (struct die_info *die, ULONGEST signature,
19855 struct dwarf2_cu *cu)
19856{
19857 struct signatured_type *sig_type;
19858 struct dwarf2_cu *type_cu;
19859 struct die_info *type_die;
19860 struct type *type;
19861
a2ce51a0 19862 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19863 /* sig_type will be NULL if the signatured type is missing from
19864 the debug info. */
19865 if (sig_type == NULL)
19866 {
19867 complaint (&symfile_complaints,
19868 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19869 " from DIE at 0x%x [in module %s]"),
19870 hex_string (signature), die->offset.sect_off,
4262abfb 19871 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19872 return build_error_marker_type (cu, die);
19873 }
19874
19875 /* If we already know the type we're done. */
19876 if (sig_type->type != NULL)
19877 return sig_type->type;
19878
19879 type_cu = cu;
19880 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19881 if (type_die != NULL)
19882 {
19883 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19884 is created. This is important, for example, because for c++ classes
19885 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19886 type = read_type_die (type_die, type_cu);
19887 if (type == NULL)
19888 {
19889 complaint (&symfile_complaints,
19890 _("Dwarf Error: Cannot build signatured type %s"
19891 " referenced from DIE at 0x%x [in module %s]"),
19892 hex_string (signature), die->offset.sect_off,
4262abfb 19893 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19894 type = build_error_marker_type (cu, die);
19895 }
19896 }
19897 else
19898 {
19899 complaint (&symfile_complaints,
19900 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19901 " from DIE at 0x%x [in module %s]"),
19902 hex_string (signature), die->offset.sect_off,
4262abfb 19903 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19904 type = build_error_marker_type (cu, die);
19905 }
19906 sig_type->type = type;
19907
19908 return type;
19909}
19910
19911/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19912 reading in and processing the type unit if necessary. */
19913
19914static struct type *
ff39bb5e 19915get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19916 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19917{
19918 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19919 if (attr_form_is_ref (attr))
ac9ec31b
DE
19920 {
19921 struct dwarf2_cu *type_cu = cu;
19922 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19923
19924 return read_type_die (type_die, type_cu);
19925 }
19926 else if (attr->form == DW_FORM_ref_sig8)
19927 {
19928 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19929 }
19930 else
19931 {
19932 complaint (&symfile_complaints,
19933 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19934 " at 0x%x [in module %s]"),
19935 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19936 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19937 return build_error_marker_type (cu, die);
19938 }
348e048f
DE
19939}
19940
e5fe5e75 19941/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19942
19943static void
e5fe5e75 19944load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19945{
52dc124a 19946 struct signatured_type *sig_type;
348e048f 19947
f4dc4d17
DE
19948 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19949 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19950
6721b2ec
DE
19951 /* We have the per_cu, but we need the signatured_type.
19952 Fortunately this is an easy translation. */
19953 gdb_assert (per_cu->is_debug_types);
19954 sig_type = (struct signatured_type *) per_cu;
348e048f 19955
6721b2ec 19956 gdb_assert (per_cu->cu == NULL);
348e048f 19957
52dc124a 19958 read_signatured_type (sig_type);
348e048f 19959
6721b2ec 19960 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19961}
19962
dee91e82
DE
19963/* die_reader_func for read_signatured_type.
19964 This is identical to load_full_comp_unit_reader,
19965 but is kept separate for now. */
348e048f
DE
19966
19967static void
dee91e82 19968read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19969 const gdb_byte *info_ptr,
dee91e82
DE
19970 struct die_info *comp_unit_die,
19971 int has_children,
19972 void *data)
348e048f 19973{
dee91e82 19974 struct dwarf2_cu *cu = reader->cu;
348e048f 19975
dee91e82
DE
19976 gdb_assert (cu->die_hash == NULL);
19977 cu->die_hash =
19978 htab_create_alloc_ex (cu->header.length / 12,
19979 die_hash,
19980 die_eq,
19981 NULL,
19982 &cu->comp_unit_obstack,
19983 hashtab_obstack_allocate,
19984 dummy_obstack_deallocate);
348e048f 19985
dee91e82
DE
19986 if (has_children)
19987 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19988 &info_ptr, comp_unit_die);
19989 cu->dies = comp_unit_die;
19990 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19991
19992 /* We try not to read any attributes in this function, because not
9cdd5dbd 19993 all CUs needed for references have been loaded yet, and symbol
348e048f 19994 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19995 or we won't be able to build types correctly.
19996 Similarly, if we do not read the producer, we can not apply
19997 producer-specific interpretation. */
95554aad 19998 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19999}
348e048f 20000
3019eac3
DE
20001/* Read in a signatured type and build its CU and DIEs.
20002 If the type is a stub for the real type in a DWO file,
20003 read in the real type from the DWO file as well. */
dee91e82
DE
20004
20005static void
20006read_signatured_type (struct signatured_type *sig_type)
20007{
20008 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20009
3019eac3 20010 gdb_assert (per_cu->is_debug_types);
dee91e82 20011 gdb_assert (per_cu->cu == NULL);
348e048f 20012
f4dc4d17
DE
20013 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20014 read_signatured_type_reader, NULL);
7ee85ab1 20015 sig_type->per_cu.tu_read = 1;
c906108c
SS
20016}
20017
c906108c
SS
20018/* Decode simple location descriptions.
20019 Given a pointer to a dwarf block that defines a location, compute
20020 the location and return the value.
20021
4cecd739
DJ
20022 NOTE drow/2003-11-18: This function is called in two situations
20023 now: for the address of static or global variables (partial symbols
20024 only) and for offsets into structures which are expected to be
20025 (more or less) constant. The partial symbol case should go away,
20026 and only the constant case should remain. That will let this
20027 function complain more accurately. A few special modes are allowed
20028 without complaint for global variables (for instance, global
20029 register values and thread-local values).
c906108c
SS
20030
20031 A location description containing no operations indicates that the
4cecd739 20032 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20033 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20034 callers will only want a very basic result and this can become a
21ae7a4d
JK
20035 complaint.
20036
20037 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20038
20039static CORE_ADDR
e7c27a73 20040decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20041{
e7c27a73 20042 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20043 size_t i;
20044 size_t size = blk->size;
d521ce57 20045 const gdb_byte *data = blk->data;
21ae7a4d
JK
20046 CORE_ADDR stack[64];
20047 int stacki;
20048 unsigned int bytes_read, unsnd;
20049 gdb_byte op;
c906108c 20050
21ae7a4d
JK
20051 i = 0;
20052 stacki = 0;
20053 stack[stacki] = 0;
20054 stack[++stacki] = 0;
20055
20056 while (i < size)
20057 {
20058 op = data[i++];
20059 switch (op)
20060 {
20061 case DW_OP_lit0:
20062 case DW_OP_lit1:
20063 case DW_OP_lit2:
20064 case DW_OP_lit3:
20065 case DW_OP_lit4:
20066 case DW_OP_lit5:
20067 case DW_OP_lit6:
20068 case DW_OP_lit7:
20069 case DW_OP_lit8:
20070 case DW_OP_lit9:
20071 case DW_OP_lit10:
20072 case DW_OP_lit11:
20073 case DW_OP_lit12:
20074 case DW_OP_lit13:
20075 case DW_OP_lit14:
20076 case DW_OP_lit15:
20077 case DW_OP_lit16:
20078 case DW_OP_lit17:
20079 case DW_OP_lit18:
20080 case DW_OP_lit19:
20081 case DW_OP_lit20:
20082 case DW_OP_lit21:
20083 case DW_OP_lit22:
20084 case DW_OP_lit23:
20085 case DW_OP_lit24:
20086 case DW_OP_lit25:
20087 case DW_OP_lit26:
20088 case DW_OP_lit27:
20089 case DW_OP_lit28:
20090 case DW_OP_lit29:
20091 case DW_OP_lit30:
20092 case DW_OP_lit31:
20093 stack[++stacki] = op - DW_OP_lit0;
20094 break;
f1bea926 20095
21ae7a4d
JK
20096 case DW_OP_reg0:
20097 case DW_OP_reg1:
20098 case DW_OP_reg2:
20099 case DW_OP_reg3:
20100 case DW_OP_reg4:
20101 case DW_OP_reg5:
20102 case DW_OP_reg6:
20103 case DW_OP_reg7:
20104 case DW_OP_reg8:
20105 case DW_OP_reg9:
20106 case DW_OP_reg10:
20107 case DW_OP_reg11:
20108 case DW_OP_reg12:
20109 case DW_OP_reg13:
20110 case DW_OP_reg14:
20111 case DW_OP_reg15:
20112 case DW_OP_reg16:
20113 case DW_OP_reg17:
20114 case DW_OP_reg18:
20115 case DW_OP_reg19:
20116 case DW_OP_reg20:
20117 case DW_OP_reg21:
20118 case DW_OP_reg22:
20119 case DW_OP_reg23:
20120 case DW_OP_reg24:
20121 case DW_OP_reg25:
20122 case DW_OP_reg26:
20123 case DW_OP_reg27:
20124 case DW_OP_reg28:
20125 case DW_OP_reg29:
20126 case DW_OP_reg30:
20127 case DW_OP_reg31:
20128 stack[++stacki] = op - DW_OP_reg0;
20129 if (i < size)
20130 dwarf2_complex_location_expr_complaint ();
20131 break;
c906108c 20132
21ae7a4d
JK
20133 case DW_OP_regx:
20134 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20135 i += bytes_read;
20136 stack[++stacki] = unsnd;
20137 if (i < size)
20138 dwarf2_complex_location_expr_complaint ();
20139 break;
c906108c 20140
21ae7a4d
JK
20141 case DW_OP_addr:
20142 stack[++stacki] = read_address (objfile->obfd, &data[i],
20143 cu, &bytes_read);
20144 i += bytes_read;
20145 break;
d53d4ac5 20146
21ae7a4d
JK
20147 case DW_OP_const1u:
20148 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20149 i += 1;
20150 break;
20151
20152 case DW_OP_const1s:
20153 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20154 i += 1;
20155 break;
20156
20157 case DW_OP_const2u:
20158 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20159 i += 2;
20160 break;
20161
20162 case DW_OP_const2s:
20163 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20164 i += 2;
20165 break;
d53d4ac5 20166
21ae7a4d
JK
20167 case DW_OP_const4u:
20168 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20169 i += 4;
20170 break;
20171
20172 case DW_OP_const4s:
20173 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20174 i += 4;
20175 break;
20176
585861ea
JK
20177 case DW_OP_const8u:
20178 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20179 i += 8;
20180 break;
20181
21ae7a4d
JK
20182 case DW_OP_constu:
20183 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20184 &bytes_read);
20185 i += bytes_read;
20186 break;
20187
20188 case DW_OP_consts:
20189 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20190 i += bytes_read;
20191 break;
20192
20193 case DW_OP_dup:
20194 stack[stacki + 1] = stack[stacki];
20195 stacki++;
20196 break;
20197
20198 case DW_OP_plus:
20199 stack[stacki - 1] += stack[stacki];
20200 stacki--;
20201 break;
20202
20203 case DW_OP_plus_uconst:
20204 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20205 &bytes_read);
20206 i += bytes_read;
20207 break;
20208
20209 case DW_OP_minus:
20210 stack[stacki - 1] -= stack[stacki];
20211 stacki--;
20212 break;
20213
20214 case DW_OP_deref:
20215 /* If we're not the last op, then we definitely can't encode
20216 this using GDB's address_class enum. This is valid for partial
20217 global symbols, although the variable's address will be bogus
20218 in the psymtab. */
20219 if (i < size)
20220 dwarf2_complex_location_expr_complaint ();
20221 break;
20222
20223 case DW_OP_GNU_push_tls_address:
20224 /* The top of the stack has the offset from the beginning
20225 of the thread control block at which the variable is located. */
20226 /* Nothing should follow this operator, so the top of stack would
20227 be returned. */
20228 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20229 address will be bogus in the psymtab. Make it always at least
20230 non-zero to not look as a variable garbage collected by linker
20231 which have DW_OP_addr 0. */
21ae7a4d
JK
20232 if (i < size)
20233 dwarf2_complex_location_expr_complaint ();
585861ea 20234 stack[stacki]++;
21ae7a4d
JK
20235 break;
20236
20237 case DW_OP_GNU_uninit:
20238 break;
20239
3019eac3 20240 case DW_OP_GNU_addr_index:
49f6c839 20241 case DW_OP_GNU_const_index:
3019eac3
DE
20242 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20243 &bytes_read);
20244 i += bytes_read;
20245 break;
20246
21ae7a4d
JK
20247 default:
20248 {
f39c6ffd 20249 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20250
20251 if (name)
20252 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20253 name);
20254 else
20255 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20256 op);
20257 }
20258
20259 return (stack[stacki]);
d53d4ac5 20260 }
3c6e0cb3 20261
21ae7a4d
JK
20262 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20263 outside of the allocated space. Also enforce minimum>0. */
20264 if (stacki >= ARRAY_SIZE (stack) - 1)
20265 {
20266 complaint (&symfile_complaints,
20267 _("location description stack overflow"));
20268 return 0;
20269 }
20270
20271 if (stacki <= 0)
20272 {
20273 complaint (&symfile_complaints,
20274 _("location description stack underflow"));
20275 return 0;
20276 }
20277 }
20278 return (stack[stacki]);
c906108c
SS
20279}
20280
20281/* memory allocation interface */
20282
c906108c 20283static struct dwarf_block *
7b5a2f43 20284dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20285{
20286 struct dwarf_block *blk;
20287
20288 blk = (struct dwarf_block *)
7b5a2f43 20289 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20290 return (blk);
20291}
20292
c906108c 20293static struct die_info *
b60c80d6 20294dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20295{
20296 struct die_info *die;
b60c80d6
DJ
20297 size_t size = sizeof (struct die_info);
20298
20299 if (num_attrs > 1)
20300 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20301
b60c80d6 20302 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20303 memset (die, 0, sizeof (struct die_info));
20304 return (die);
20305}
2e276125
JB
20306
20307\f
20308/* Macro support. */
20309
233d95b5
JK
20310/* Return file name relative to the compilation directory of file number I in
20311 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20312 responsible for freeing it. */
233d95b5 20313
2e276125 20314static char *
233d95b5 20315file_file_name (int file, struct line_header *lh)
2e276125 20316{
6a83a1e6
EZ
20317 /* Is the file number a valid index into the line header's file name
20318 table? Remember that file numbers start with one, not zero. */
20319 if (1 <= file && file <= lh->num_file_names)
20320 {
20321 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20322
233d95b5 20323 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20324 return xstrdup (fe->name);
233d95b5
JK
20325 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20326 fe->name, NULL);
6a83a1e6 20327 }
2e276125
JB
20328 else
20329 {
6a83a1e6
EZ
20330 /* The compiler produced a bogus file number. We can at least
20331 record the macro definitions made in the file, even if we
20332 won't be able to find the file by name. */
20333 char fake_name[80];
9a619af0 20334
8c042590
PM
20335 xsnprintf (fake_name, sizeof (fake_name),
20336 "<bad macro file number %d>", file);
2e276125 20337
6e70227d 20338 complaint (&symfile_complaints,
6a83a1e6
EZ
20339 _("bad file number in macro information (%d)"),
20340 file);
2e276125 20341
6a83a1e6 20342 return xstrdup (fake_name);
2e276125
JB
20343 }
20344}
20345
233d95b5
JK
20346/* Return the full name of file number I in *LH's file name table.
20347 Use COMP_DIR as the name of the current directory of the
20348 compilation. The result is allocated using xmalloc; the caller is
20349 responsible for freeing it. */
20350static char *
20351file_full_name (int file, struct line_header *lh, const char *comp_dir)
20352{
20353 /* Is the file number a valid index into the line header's file name
20354 table? Remember that file numbers start with one, not zero. */
20355 if (1 <= file && file <= lh->num_file_names)
20356 {
20357 char *relative = file_file_name (file, lh);
20358
20359 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20360 return relative;
20361 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20362 }
20363 else
20364 return file_file_name (file, lh);
20365}
20366
2e276125
JB
20367
20368static struct macro_source_file *
20369macro_start_file (int file, int line,
20370 struct macro_source_file *current_file,
43f3e411 20371 struct line_header *lh)
2e276125 20372{
233d95b5
JK
20373 /* File name relative to the compilation directory of this source file. */
20374 char *file_name = file_file_name (file, lh);
2e276125 20375
2e276125 20376 if (! current_file)
abc9d0dc 20377 {
fc474241
DE
20378 /* Note: We don't create a macro table for this compilation unit
20379 at all until we actually get a filename. */
43f3e411 20380 struct macro_table *macro_table = get_macro_table ();
fc474241 20381
abc9d0dc
TT
20382 /* If we have no current file, then this must be the start_file
20383 directive for the compilation unit's main source file. */
fc474241
DE
20384 current_file = macro_set_main (macro_table, file_name);
20385 macro_define_special (macro_table);
abc9d0dc 20386 }
2e276125 20387 else
233d95b5 20388 current_file = macro_include (current_file, line, file_name);
2e276125 20389
233d95b5 20390 xfree (file_name);
6e70227d 20391
2e276125
JB
20392 return current_file;
20393}
20394
20395
20396/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20397 followed by a null byte. */
20398static char *
20399copy_string (const char *buf, int len)
20400{
20401 char *s = xmalloc (len + 1);
9a619af0 20402
2e276125
JB
20403 memcpy (s, buf, len);
20404 s[len] = '\0';
2e276125
JB
20405 return s;
20406}
20407
20408
20409static const char *
20410consume_improper_spaces (const char *p, const char *body)
20411{
20412 if (*p == ' ')
20413 {
4d3c2250 20414 complaint (&symfile_complaints,
3e43a32a
MS
20415 _("macro definition contains spaces "
20416 "in formal argument list:\n`%s'"),
4d3c2250 20417 body);
2e276125
JB
20418
20419 while (*p == ' ')
20420 p++;
20421 }
20422
20423 return p;
20424}
20425
20426
20427static void
20428parse_macro_definition (struct macro_source_file *file, int line,
20429 const char *body)
20430{
20431 const char *p;
20432
20433 /* The body string takes one of two forms. For object-like macro
20434 definitions, it should be:
20435
20436 <macro name> " " <definition>
20437
20438 For function-like macro definitions, it should be:
20439
20440 <macro name> "() " <definition>
20441 or
20442 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20443
20444 Spaces may appear only where explicitly indicated, and in the
20445 <definition>.
20446
20447 The Dwarf 2 spec says that an object-like macro's name is always
20448 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20449 the space when the macro's definition is the empty string.
2e276125
JB
20450
20451 The Dwarf 2 spec says that there should be no spaces between the
20452 formal arguments in a function-like macro's formal argument list,
20453 but versions of GCC around March 2002 include spaces after the
20454 commas. */
20455
20456
20457 /* Find the extent of the macro name. The macro name is terminated
20458 by either a space or null character (for an object-like macro) or
20459 an opening paren (for a function-like macro). */
20460 for (p = body; *p; p++)
20461 if (*p == ' ' || *p == '(')
20462 break;
20463
20464 if (*p == ' ' || *p == '\0')
20465 {
20466 /* It's an object-like macro. */
20467 int name_len = p - body;
20468 char *name = copy_string (body, name_len);
20469 const char *replacement;
20470
20471 if (*p == ' ')
20472 replacement = body + name_len + 1;
20473 else
20474 {
4d3c2250 20475 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20476 replacement = body + name_len;
20477 }
6e70227d 20478
2e276125
JB
20479 macro_define_object (file, line, name, replacement);
20480
20481 xfree (name);
20482 }
20483 else if (*p == '(')
20484 {
20485 /* It's a function-like macro. */
20486 char *name = copy_string (body, p - body);
20487 int argc = 0;
20488 int argv_size = 1;
20489 char **argv = xmalloc (argv_size * sizeof (*argv));
20490
20491 p++;
20492
20493 p = consume_improper_spaces (p, body);
20494
20495 /* Parse the formal argument list. */
20496 while (*p && *p != ')')
20497 {
20498 /* Find the extent of the current argument name. */
20499 const char *arg_start = p;
20500
20501 while (*p && *p != ',' && *p != ')' && *p != ' ')
20502 p++;
20503
20504 if (! *p || p == arg_start)
4d3c2250 20505 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20506 else
20507 {
20508 /* Make sure argv has room for the new argument. */
20509 if (argc >= argv_size)
20510 {
20511 argv_size *= 2;
20512 argv = xrealloc (argv, argv_size * sizeof (*argv));
20513 }
20514
20515 argv[argc++] = copy_string (arg_start, p - arg_start);
20516 }
20517
20518 p = consume_improper_spaces (p, body);
20519
20520 /* Consume the comma, if present. */
20521 if (*p == ',')
20522 {
20523 p++;
20524
20525 p = consume_improper_spaces (p, body);
20526 }
20527 }
20528
20529 if (*p == ')')
20530 {
20531 p++;
20532
20533 if (*p == ' ')
20534 /* Perfectly formed definition, no complaints. */
20535 macro_define_function (file, line, name,
6e70227d 20536 argc, (const char **) argv,
2e276125
JB
20537 p + 1);
20538 else if (*p == '\0')
20539 {
20540 /* Complain, but do define it. */
4d3c2250 20541 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20542 macro_define_function (file, line, name,
6e70227d 20543 argc, (const char **) argv,
2e276125
JB
20544 p);
20545 }
20546 else
20547 /* Just complain. */
4d3c2250 20548 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20549 }
20550 else
20551 /* Just complain. */
4d3c2250 20552 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20553
20554 xfree (name);
20555 {
20556 int i;
20557
20558 for (i = 0; i < argc; i++)
20559 xfree (argv[i]);
20560 }
20561 xfree (argv);
20562 }
20563 else
4d3c2250 20564 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20565}
20566
cf2c3c16
TT
20567/* Skip some bytes from BYTES according to the form given in FORM.
20568 Returns the new pointer. */
2e276125 20569
d521ce57
TT
20570static const gdb_byte *
20571skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20572 enum dwarf_form form,
20573 unsigned int offset_size,
20574 struct dwarf2_section_info *section)
2e276125 20575{
cf2c3c16 20576 unsigned int bytes_read;
2e276125 20577
cf2c3c16 20578 switch (form)
2e276125 20579 {
cf2c3c16
TT
20580 case DW_FORM_data1:
20581 case DW_FORM_flag:
20582 ++bytes;
20583 break;
20584
20585 case DW_FORM_data2:
20586 bytes += 2;
20587 break;
20588
20589 case DW_FORM_data4:
20590 bytes += 4;
20591 break;
20592
20593 case DW_FORM_data8:
20594 bytes += 8;
20595 break;
20596
20597 case DW_FORM_string:
20598 read_direct_string (abfd, bytes, &bytes_read);
20599 bytes += bytes_read;
20600 break;
20601
20602 case DW_FORM_sec_offset:
20603 case DW_FORM_strp:
36586728 20604 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20605 bytes += offset_size;
20606 break;
20607
20608 case DW_FORM_block:
20609 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20610 bytes += bytes_read;
20611 break;
20612
20613 case DW_FORM_block1:
20614 bytes += 1 + read_1_byte (abfd, bytes);
20615 break;
20616 case DW_FORM_block2:
20617 bytes += 2 + read_2_bytes (abfd, bytes);
20618 break;
20619 case DW_FORM_block4:
20620 bytes += 4 + read_4_bytes (abfd, bytes);
20621 break;
20622
20623 case DW_FORM_sdata:
20624 case DW_FORM_udata:
3019eac3
DE
20625 case DW_FORM_GNU_addr_index:
20626 case DW_FORM_GNU_str_index:
d521ce57 20627 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20628 if (bytes == NULL)
20629 {
20630 dwarf2_section_buffer_overflow_complaint (section);
20631 return NULL;
20632 }
cf2c3c16
TT
20633 break;
20634
20635 default:
20636 {
20637 complain:
20638 complaint (&symfile_complaints,
20639 _("invalid form 0x%x in `%s'"),
a32a8923 20640 form, get_section_name (section));
cf2c3c16
TT
20641 return NULL;
20642 }
2e276125
JB
20643 }
20644
cf2c3c16
TT
20645 return bytes;
20646}
757a13d0 20647
cf2c3c16
TT
20648/* A helper for dwarf_decode_macros that handles skipping an unknown
20649 opcode. Returns an updated pointer to the macro data buffer; or,
20650 on error, issues a complaint and returns NULL. */
757a13d0 20651
d521ce57 20652static const gdb_byte *
cf2c3c16 20653skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20654 const gdb_byte **opcode_definitions,
20655 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20656 bfd *abfd,
20657 unsigned int offset_size,
20658 struct dwarf2_section_info *section)
20659{
20660 unsigned int bytes_read, i;
20661 unsigned long arg;
d521ce57 20662 const gdb_byte *defn;
2e276125 20663
cf2c3c16 20664 if (opcode_definitions[opcode] == NULL)
2e276125 20665 {
cf2c3c16
TT
20666 complaint (&symfile_complaints,
20667 _("unrecognized DW_MACFINO opcode 0x%x"),
20668 opcode);
20669 return NULL;
20670 }
2e276125 20671
cf2c3c16
TT
20672 defn = opcode_definitions[opcode];
20673 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20674 defn += bytes_read;
2e276125 20675
cf2c3c16
TT
20676 for (i = 0; i < arg; ++i)
20677 {
f664829e
DE
20678 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20679 section);
cf2c3c16
TT
20680 if (mac_ptr == NULL)
20681 {
20682 /* skip_form_bytes already issued the complaint. */
20683 return NULL;
20684 }
20685 }
757a13d0 20686
cf2c3c16
TT
20687 return mac_ptr;
20688}
757a13d0 20689
cf2c3c16
TT
20690/* A helper function which parses the header of a macro section.
20691 If the macro section is the extended (for now called "GNU") type,
20692 then this updates *OFFSET_SIZE. Returns a pointer to just after
20693 the header, or issues a complaint and returns NULL on error. */
757a13d0 20694
d521ce57
TT
20695static const gdb_byte *
20696dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20697 bfd *abfd,
d521ce57 20698 const gdb_byte *mac_ptr,
cf2c3c16
TT
20699 unsigned int *offset_size,
20700 int section_is_gnu)
20701{
20702 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20703
cf2c3c16
TT
20704 if (section_is_gnu)
20705 {
20706 unsigned int version, flags;
757a13d0 20707
cf2c3c16
TT
20708 version = read_2_bytes (abfd, mac_ptr);
20709 if (version != 4)
20710 {
20711 complaint (&symfile_complaints,
20712 _("unrecognized version `%d' in .debug_macro section"),
20713 version);
20714 return NULL;
20715 }
20716 mac_ptr += 2;
757a13d0 20717
cf2c3c16
TT
20718 flags = read_1_byte (abfd, mac_ptr);
20719 ++mac_ptr;
20720 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20721
cf2c3c16
TT
20722 if ((flags & 2) != 0)
20723 /* We don't need the line table offset. */
20724 mac_ptr += *offset_size;
757a13d0 20725
cf2c3c16
TT
20726 /* Vendor opcode descriptions. */
20727 if ((flags & 4) != 0)
20728 {
20729 unsigned int i, count;
757a13d0 20730
cf2c3c16
TT
20731 count = read_1_byte (abfd, mac_ptr);
20732 ++mac_ptr;
20733 for (i = 0; i < count; ++i)
20734 {
20735 unsigned int opcode, bytes_read;
20736 unsigned long arg;
20737
20738 opcode = read_1_byte (abfd, mac_ptr);
20739 ++mac_ptr;
20740 opcode_definitions[opcode] = mac_ptr;
20741 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20742 mac_ptr += bytes_read;
20743 mac_ptr += arg;
20744 }
757a13d0 20745 }
cf2c3c16 20746 }
757a13d0 20747
cf2c3c16
TT
20748 return mac_ptr;
20749}
757a13d0 20750
cf2c3c16 20751/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20752 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20753
20754static void
d521ce57
TT
20755dwarf_decode_macro_bytes (bfd *abfd,
20756 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20757 struct macro_source_file *current_file,
43f3e411 20758 struct line_header *lh,
cf2c3c16 20759 struct dwarf2_section_info *section,
36586728 20760 int section_is_gnu, int section_is_dwz,
cf2c3c16 20761 unsigned int offset_size,
8fc3fc34 20762 htab_t include_hash)
cf2c3c16 20763{
4d663531 20764 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
20765 enum dwarf_macro_record_type macinfo_type;
20766 int at_commandline;
d521ce57 20767 const gdb_byte *opcode_definitions[256];
757a13d0 20768
cf2c3c16
TT
20769 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20770 &offset_size, section_is_gnu);
20771 if (mac_ptr == NULL)
20772 {
20773 /* We already issued a complaint. */
20774 return;
20775 }
757a13d0
JK
20776
20777 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20778 GDB is still reading the definitions from command line. First
20779 DW_MACINFO_start_file will need to be ignored as it was already executed
20780 to create CURRENT_FILE for the main source holding also the command line
20781 definitions. On first met DW_MACINFO_start_file this flag is reset to
20782 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20783
20784 at_commandline = 1;
20785
20786 do
20787 {
20788 /* Do we at least have room for a macinfo type byte? */
20789 if (mac_ptr >= mac_end)
20790 {
f664829e 20791 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20792 break;
20793 }
20794
20795 macinfo_type = read_1_byte (abfd, mac_ptr);
20796 mac_ptr++;
20797
cf2c3c16
TT
20798 /* Note that we rely on the fact that the corresponding GNU and
20799 DWARF constants are the same. */
757a13d0
JK
20800 switch (macinfo_type)
20801 {
20802 /* A zero macinfo type indicates the end of the macro
20803 information. */
20804 case 0:
20805 break;
2e276125 20806
cf2c3c16
TT
20807 case DW_MACRO_GNU_define:
20808 case DW_MACRO_GNU_undef:
20809 case DW_MACRO_GNU_define_indirect:
20810 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20811 case DW_MACRO_GNU_define_indirect_alt:
20812 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20813 {
891d2f0b 20814 unsigned int bytes_read;
2e276125 20815 int line;
d521ce57 20816 const char *body;
cf2c3c16 20817 int is_define;
2e276125 20818
cf2c3c16
TT
20819 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20820 mac_ptr += bytes_read;
20821
20822 if (macinfo_type == DW_MACRO_GNU_define
20823 || macinfo_type == DW_MACRO_GNU_undef)
20824 {
20825 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20826 mac_ptr += bytes_read;
20827 }
20828 else
20829 {
20830 LONGEST str_offset;
20831
20832 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20833 mac_ptr += offset_size;
2e276125 20834
36586728 20835 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20836 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20837 || section_is_dwz)
36586728
TT
20838 {
20839 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20840
20841 body = read_indirect_string_from_dwz (dwz, str_offset);
20842 }
20843 else
20844 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20845 }
20846
20847 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20848 || macinfo_type == DW_MACRO_GNU_define_indirect
20849 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20850 if (! current_file)
757a13d0
JK
20851 {
20852 /* DWARF violation as no main source is present. */
20853 complaint (&symfile_complaints,
20854 _("debug info with no main source gives macro %s "
20855 "on line %d: %s"),
cf2c3c16
TT
20856 is_define ? _("definition") : _("undefinition"),
20857 line, body);
757a13d0
JK
20858 break;
20859 }
3e43a32a
MS
20860 if ((line == 0 && !at_commandline)
20861 || (line != 0 && at_commandline))
4d3c2250 20862 complaint (&symfile_complaints,
757a13d0
JK
20863 _("debug info gives %s macro %s with %s line %d: %s"),
20864 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20865 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20866 line == 0 ? _("zero") : _("non-zero"), line, body);
20867
cf2c3c16 20868 if (is_define)
757a13d0 20869 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20870 else
20871 {
20872 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20873 || macinfo_type == DW_MACRO_GNU_undef_indirect
20874 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20875 macro_undef (current_file, line, body);
20876 }
2e276125
JB
20877 }
20878 break;
20879
cf2c3c16 20880 case DW_MACRO_GNU_start_file:
2e276125 20881 {
891d2f0b 20882 unsigned int bytes_read;
2e276125
JB
20883 int line, file;
20884
20885 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20886 mac_ptr += bytes_read;
20887 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20888 mac_ptr += bytes_read;
20889
3e43a32a
MS
20890 if ((line == 0 && !at_commandline)
20891 || (line != 0 && at_commandline))
757a13d0
JK
20892 complaint (&symfile_complaints,
20893 _("debug info gives source %d included "
20894 "from %s at %s line %d"),
20895 file, at_commandline ? _("command-line") : _("file"),
20896 line == 0 ? _("zero") : _("non-zero"), line);
20897
20898 if (at_commandline)
20899 {
cf2c3c16
TT
20900 /* This DW_MACRO_GNU_start_file was executed in the
20901 pass one. */
757a13d0
JK
20902 at_commandline = 0;
20903 }
20904 else
43f3e411 20905 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
20906 }
20907 break;
20908
cf2c3c16 20909 case DW_MACRO_GNU_end_file:
2e276125 20910 if (! current_file)
4d3c2250 20911 complaint (&symfile_complaints,
3e43a32a
MS
20912 _("macro debug info has an unmatched "
20913 "`close_file' directive"));
2e276125
JB
20914 else
20915 {
20916 current_file = current_file->included_by;
20917 if (! current_file)
20918 {
cf2c3c16 20919 enum dwarf_macro_record_type next_type;
2e276125
JB
20920
20921 /* GCC circa March 2002 doesn't produce the zero
20922 type byte marking the end of the compilation
20923 unit. Complain if it's not there, but exit no
20924 matter what. */
20925
20926 /* Do we at least have room for a macinfo type byte? */
20927 if (mac_ptr >= mac_end)
20928 {
f664829e 20929 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20930 return;
20931 }
20932
20933 /* We don't increment mac_ptr here, so this is just
20934 a look-ahead. */
20935 next_type = read_1_byte (abfd, mac_ptr);
20936 if (next_type != 0)
4d3c2250 20937 complaint (&symfile_complaints,
3e43a32a
MS
20938 _("no terminating 0-type entry for "
20939 "macros in `.debug_macinfo' section"));
2e276125
JB
20940
20941 return;
20942 }
20943 }
20944 break;
20945
cf2c3c16 20946 case DW_MACRO_GNU_transparent_include:
36586728 20947 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20948 {
20949 LONGEST offset;
8fc3fc34 20950 void **slot;
a036ba48
TT
20951 bfd *include_bfd = abfd;
20952 struct dwarf2_section_info *include_section = section;
20953 struct dwarf2_section_info alt_section;
d521ce57 20954 const gdb_byte *include_mac_end = mac_end;
a036ba48 20955 int is_dwz = section_is_dwz;
d521ce57 20956 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20957
20958 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20959 mac_ptr += offset_size;
20960
a036ba48
TT
20961 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20962 {
20963 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20964
4d663531 20965 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 20966
a036ba48 20967 include_section = &dwz->macro;
a32a8923 20968 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20969 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20970 is_dwz = 1;
20971 }
20972
20973 new_mac_ptr = include_section->buffer + offset;
20974 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20975
8fc3fc34
TT
20976 if (*slot != NULL)
20977 {
20978 /* This has actually happened; see
20979 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20980 complaint (&symfile_complaints,
20981 _("recursive DW_MACRO_GNU_transparent_include in "
20982 ".debug_macro section"));
20983 }
20984 else
20985 {
d521ce57 20986 *slot = (void *) new_mac_ptr;
36586728 20987
a036ba48 20988 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 20989 include_mac_end, current_file, lh,
36586728 20990 section, section_is_gnu, is_dwz,
4d663531 20991 offset_size, include_hash);
8fc3fc34 20992
d521ce57 20993 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20994 }
cf2c3c16
TT
20995 }
20996 break;
20997
2e276125 20998 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20999 if (!section_is_gnu)
21000 {
21001 unsigned int bytes_read;
21002 int constant;
2e276125 21003
cf2c3c16
TT
21004 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21005 mac_ptr += bytes_read;
21006 read_direct_string (abfd, mac_ptr, &bytes_read);
21007 mac_ptr += bytes_read;
2e276125 21008
cf2c3c16
TT
21009 /* We don't recognize any vendor extensions. */
21010 break;
21011 }
21012 /* FALLTHROUGH */
21013
21014 default:
21015 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21016 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21017 section);
21018 if (mac_ptr == NULL)
21019 return;
21020 break;
2e276125 21021 }
757a13d0 21022 } while (macinfo_type != 0);
2e276125 21023}
8e19ed76 21024
cf2c3c16 21025static void
09262596 21026dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21027 int section_is_gnu)
cf2c3c16 21028{
bb5ed363 21029 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21030 struct line_header *lh = cu->line_header;
21031 bfd *abfd;
d521ce57 21032 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21033 struct macro_source_file *current_file = 0;
21034 enum dwarf_macro_record_type macinfo_type;
21035 unsigned int offset_size = cu->header.offset_size;
d521ce57 21036 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21037 struct cleanup *cleanup;
21038 htab_t include_hash;
21039 void **slot;
09262596
DE
21040 struct dwarf2_section_info *section;
21041 const char *section_name;
21042
21043 if (cu->dwo_unit != NULL)
21044 {
21045 if (section_is_gnu)
21046 {
21047 section = &cu->dwo_unit->dwo_file->sections.macro;
21048 section_name = ".debug_macro.dwo";
21049 }
21050 else
21051 {
21052 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21053 section_name = ".debug_macinfo.dwo";
21054 }
21055 }
21056 else
21057 {
21058 if (section_is_gnu)
21059 {
21060 section = &dwarf2_per_objfile->macro;
21061 section_name = ".debug_macro";
21062 }
21063 else
21064 {
21065 section = &dwarf2_per_objfile->macinfo;
21066 section_name = ".debug_macinfo";
21067 }
21068 }
cf2c3c16 21069
bb5ed363 21070 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21071 if (section->buffer == NULL)
21072 {
fceca515 21073 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21074 return;
21075 }
a32a8923 21076 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21077
21078 /* First pass: Find the name of the base filename.
21079 This filename is needed in order to process all macros whose definition
21080 (or undefinition) comes from the command line. These macros are defined
21081 before the first DW_MACINFO_start_file entry, and yet still need to be
21082 associated to the base file.
21083
21084 To determine the base file name, we scan the macro definitions until we
21085 reach the first DW_MACINFO_start_file entry. We then initialize
21086 CURRENT_FILE accordingly so that any macro definition found before the
21087 first DW_MACINFO_start_file can still be associated to the base file. */
21088
21089 mac_ptr = section->buffer + offset;
21090 mac_end = section->buffer + section->size;
21091
21092 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21093 &offset_size, section_is_gnu);
21094 if (mac_ptr == NULL)
21095 {
21096 /* We already issued a complaint. */
21097 return;
21098 }
21099
21100 do
21101 {
21102 /* Do we at least have room for a macinfo type byte? */
21103 if (mac_ptr >= mac_end)
21104 {
21105 /* Complaint is printed during the second pass as GDB will probably
21106 stop the first pass earlier upon finding
21107 DW_MACINFO_start_file. */
21108 break;
21109 }
21110
21111 macinfo_type = read_1_byte (abfd, mac_ptr);
21112 mac_ptr++;
21113
21114 /* Note that we rely on the fact that the corresponding GNU and
21115 DWARF constants are the same. */
21116 switch (macinfo_type)
21117 {
21118 /* A zero macinfo type indicates the end of the macro
21119 information. */
21120 case 0:
21121 break;
21122
21123 case DW_MACRO_GNU_define:
21124 case DW_MACRO_GNU_undef:
21125 /* Only skip the data by MAC_PTR. */
21126 {
21127 unsigned int bytes_read;
21128
21129 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21130 mac_ptr += bytes_read;
21131 read_direct_string (abfd, mac_ptr, &bytes_read);
21132 mac_ptr += bytes_read;
21133 }
21134 break;
21135
21136 case DW_MACRO_GNU_start_file:
21137 {
21138 unsigned int bytes_read;
21139 int line, file;
21140
21141 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21142 mac_ptr += bytes_read;
21143 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21144 mac_ptr += bytes_read;
21145
43f3e411 21146 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21147 }
21148 break;
21149
21150 case DW_MACRO_GNU_end_file:
21151 /* No data to skip by MAC_PTR. */
21152 break;
21153
21154 case DW_MACRO_GNU_define_indirect:
21155 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21156 case DW_MACRO_GNU_define_indirect_alt:
21157 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21158 {
21159 unsigned int bytes_read;
21160
21161 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21162 mac_ptr += bytes_read;
21163 mac_ptr += offset_size;
21164 }
21165 break;
21166
21167 case DW_MACRO_GNU_transparent_include:
f7a35f02 21168 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21169 /* Note that, according to the spec, a transparent include
21170 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21171 skip this opcode. */
21172 mac_ptr += offset_size;
21173 break;
21174
21175 case DW_MACINFO_vendor_ext:
21176 /* Only skip the data by MAC_PTR. */
21177 if (!section_is_gnu)
21178 {
21179 unsigned int bytes_read;
21180
21181 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21182 mac_ptr += bytes_read;
21183 read_direct_string (abfd, mac_ptr, &bytes_read);
21184 mac_ptr += bytes_read;
21185 }
21186 /* FALLTHROUGH */
21187
21188 default:
21189 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21190 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21191 section);
21192 if (mac_ptr == NULL)
21193 return;
21194 break;
21195 }
21196 } while (macinfo_type != 0 && current_file == NULL);
21197
21198 /* Second pass: Process all entries.
21199
21200 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21201 command-line macro definitions/undefinitions. This flag is unset when we
21202 reach the first DW_MACINFO_start_file entry. */
21203
8fc3fc34
TT
21204 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21205 NULL, xcalloc, xfree);
21206 cleanup = make_cleanup_htab_delete (include_hash);
21207 mac_ptr = section->buffer + offset;
21208 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21209 *slot = (void *) mac_ptr;
8fc3fc34 21210 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21211 current_file, lh, section,
4d663531 21212 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21213 do_cleanups (cleanup);
cf2c3c16
TT
21214}
21215
8e19ed76 21216/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21217 if so return true else false. */
380bca97 21218
8e19ed76 21219static int
6e5a29e1 21220attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21221{
21222 return (attr == NULL ? 0 :
21223 attr->form == DW_FORM_block1
21224 || attr->form == DW_FORM_block2
21225 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21226 || attr->form == DW_FORM_block
21227 || attr->form == DW_FORM_exprloc);
8e19ed76 21228}
4c2df51b 21229
c6a0999f
JB
21230/* Return non-zero if ATTR's value is a section offset --- classes
21231 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21232 You may use DW_UNSND (attr) to retrieve such offsets.
21233
21234 Section 7.5.4, "Attribute Encodings", explains that no attribute
21235 may have a value that belongs to more than one of these classes; it
21236 would be ambiguous if we did, because we use the same forms for all
21237 of them. */
380bca97 21238
3690dd37 21239static int
6e5a29e1 21240attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21241{
21242 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21243 || attr->form == DW_FORM_data8
21244 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21245}
21246
3690dd37
JB
21247/* Return non-zero if ATTR's value falls in the 'constant' class, or
21248 zero otherwise. When this function returns true, you can apply
21249 dwarf2_get_attr_constant_value to it.
21250
21251 However, note that for some attributes you must check
21252 attr_form_is_section_offset before using this test. DW_FORM_data4
21253 and DW_FORM_data8 are members of both the constant class, and of
21254 the classes that contain offsets into other debug sections
21255 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21256 that, if an attribute's can be either a constant or one of the
21257 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21258 taken as section offsets, not constants. */
380bca97 21259
3690dd37 21260static int
6e5a29e1 21261attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21262{
21263 switch (attr->form)
21264 {
21265 case DW_FORM_sdata:
21266 case DW_FORM_udata:
21267 case DW_FORM_data1:
21268 case DW_FORM_data2:
21269 case DW_FORM_data4:
21270 case DW_FORM_data8:
21271 return 1;
21272 default:
21273 return 0;
21274 }
21275}
21276
7771576e
SA
21277
21278/* DW_ADDR is always stored already as sect_offset; despite for the forms
21279 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21280
21281static int
6e5a29e1 21282attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21283{
21284 switch (attr->form)
21285 {
21286 case DW_FORM_ref_addr:
21287 case DW_FORM_ref1:
21288 case DW_FORM_ref2:
21289 case DW_FORM_ref4:
21290 case DW_FORM_ref8:
21291 case DW_FORM_ref_udata:
21292 case DW_FORM_GNU_ref_alt:
21293 return 1;
21294 default:
21295 return 0;
21296 }
21297}
21298
3019eac3
DE
21299/* Return the .debug_loc section to use for CU.
21300 For DWO files use .debug_loc.dwo. */
21301
21302static struct dwarf2_section_info *
21303cu_debug_loc_section (struct dwarf2_cu *cu)
21304{
21305 if (cu->dwo_unit)
21306 return &cu->dwo_unit->dwo_file->sections.loc;
21307 return &dwarf2_per_objfile->loc;
21308}
21309
8cf6f0b1
TT
21310/* A helper function that fills in a dwarf2_loclist_baton. */
21311
21312static void
21313fill_in_loclist_baton (struct dwarf2_cu *cu,
21314 struct dwarf2_loclist_baton *baton,
ff39bb5e 21315 const struct attribute *attr)
8cf6f0b1 21316{
3019eac3
DE
21317 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21318
21319 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21320
21321 baton->per_cu = cu->per_cu;
21322 gdb_assert (baton->per_cu);
21323 /* We don't know how long the location list is, but make sure we
21324 don't run off the edge of the section. */
3019eac3
DE
21325 baton->size = section->size - DW_UNSND (attr);
21326 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21327 baton->base_address = cu->base_address;
f664829e 21328 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21329}
21330
4c2df51b 21331static void
ff39bb5e 21332dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21333 struct dwarf2_cu *cu, int is_block)
4c2df51b 21334{
bb5ed363 21335 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21336 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21337
3690dd37 21338 if (attr_form_is_section_offset (attr)
3019eac3 21339 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21340 the section. If so, fall through to the complaint in the
21341 other branch. */
3019eac3 21342 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21343 {
0d53c4c4 21344 struct dwarf2_loclist_baton *baton;
4c2df51b 21345
bb5ed363 21346 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21347 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21348
8cf6f0b1 21349 fill_in_loclist_baton (cu, baton, attr);
be391dca 21350
d00adf39 21351 if (cu->base_known == 0)
0d53c4c4 21352 complaint (&symfile_complaints,
3e43a32a
MS
21353 _("Location list used without "
21354 "specifying the CU base address."));
4c2df51b 21355
f1e6e072
TT
21356 SYMBOL_ACLASS_INDEX (sym) = (is_block
21357 ? dwarf2_loclist_block_index
21358 : dwarf2_loclist_index);
0d53c4c4
DJ
21359 SYMBOL_LOCATION_BATON (sym) = baton;
21360 }
21361 else
21362 {
21363 struct dwarf2_locexpr_baton *baton;
21364
bb5ed363 21365 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21366 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21367 baton->per_cu = cu->per_cu;
21368 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21369
21370 if (attr_form_is_block (attr))
21371 {
21372 /* Note that we're just copying the block's data pointer
21373 here, not the actual data. We're still pointing into the
6502dd73
DJ
21374 info_buffer for SYM's objfile; right now we never release
21375 that buffer, but when we do clean up properly this may
21376 need to change. */
0d53c4c4
DJ
21377 baton->size = DW_BLOCK (attr)->size;
21378 baton->data = DW_BLOCK (attr)->data;
21379 }
21380 else
21381 {
21382 dwarf2_invalid_attrib_class_complaint ("location description",
21383 SYMBOL_NATURAL_NAME (sym));
21384 baton->size = 0;
0d53c4c4 21385 }
6e70227d 21386
f1e6e072
TT
21387 SYMBOL_ACLASS_INDEX (sym) = (is_block
21388 ? dwarf2_locexpr_block_index
21389 : dwarf2_locexpr_index);
0d53c4c4
DJ
21390 SYMBOL_LOCATION_BATON (sym) = baton;
21391 }
4c2df51b 21392}
6502dd73 21393
9aa1f1e3
TT
21394/* Return the OBJFILE associated with the compilation unit CU. If CU
21395 came from a separate debuginfo file, then the master objfile is
21396 returned. */
ae0d2f24
UW
21397
21398struct objfile *
21399dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21400{
9291a0cd 21401 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21402
21403 /* Return the master objfile, so that we can report and look up the
21404 correct file containing this variable. */
21405 if (objfile->separate_debug_objfile_backlink)
21406 objfile = objfile->separate_debug_objfile_backlink;
21407
21408 return objfile;
21409}
21410
96408a79
SA
21411/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21412 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21413 CU_HEADERP first. */
21414
21415static const struct comp_unit_head *
21416per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21417 struct dwarf2_per_cu_data *per_cu)
21418{
d521ce57 21419 const gdb_byte *info_ptr;
96408a79
SA
21420
21421 if (per_cu->cu)
21422 return &per_cu->cu->header;
21423
8a0459fd 21424 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21425
21426 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21427 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21428
21429 return cu_headerp;
21430}
21431
ae0d2f24
UW
21432/* Return the address size given in the compilation unit header for CU. */
21433
98714339 21434int
ae0d2f24
UW
21435dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21436{
96408a79
SA
21437 struct comp_unit_head cu_header_local;
21438 const struct comp_unit_head *cu_headerp;
c471e790 21439
96408a79
SA
21440 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21441
21442 return cu_headerp->addr_size;
ae0d2f24
UW
21443}
21444
9eae7c52
TT
21445/* Return the offset size given in the compilation unit header for CU. */
21446
21447int
21448dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21449{
96408a79
SA
21450 struct comp_unit_head cu_header_local;
21451 const struct comp_unit_head *cu_headerp;
9c6c53f7 21452
96408a79
SA
21453 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21454
21455 return cu_headerp->offset_size;
21456}
21457
21458/* See its dwarf2loc.h declaration. */
21459
21460int
21461dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21462{
21463 struct comp_unit_head cu_header_local;
21464 const struct comp_unit_head *cu_headerp;
21465
21466 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21467
21468 if (cu_headerp->version == 2)
21469 return cu_headerp->addr_size;
21470 else
21471 return cu_headerp->offset_size;
181cebd4
JK
21472}
21473
9aa1f1e3
TT
21474/* Return the text offset of the CU. The returned offset comes from
21475 this CU's objfile. If this objfile came from a separate debuginfo
21476 file, then the offset may be different from the corresponding
21477 offset in the parent objfile. */
21478
21479CORE_ADDR
21480dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21481{
bb3fa9d0 21482 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21483
21484 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21485}
21486
348e048f
DE
21487/* Locate the .debug_info compilation unit from CU's objfile which contains
21488 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21489
21490static struct dwarf2_per_cu_data *
b64f50a1 21491dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21492 unsigned int offset_in_dwz,
ae038cb0
DJ
21493 struct objfile *objfile)
21494{
21495 struct dwarf2_per_cu_data *this_cu;
21496 int low, high;
36586728 21497 const sect_offset *cu_off;
ae038cb0 21498
ae038cb0
DJ
21499 low = 0;
21500 high = dwarf2_per_objfile->n_comp_units - 1;
21501 while (high > low)
21502 {
36586728 21503 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21504 int mid = low + (high - low) / 2;
9a619af0 21505
36586728
TT
21506 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21507 cu_off = &mid_cu->offset;
21508 if (mid_cu->is_dwz > offset_in_dwz
21509 || (mid_cu->is_dwz == offset_in_dwz
21510 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21511 high = mid;
21512 else
21513 low = mid + 1;
21514 }
21515 gdb_assert (low == high);
36586728
TT
21516 this_cu = dwarf2_per_objfile->all_comp_units[low];
21517 cu_off = &this_cu->offset;
21518 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21519 {
36586728 21520 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21521 error (_("Dwarf Error: could not find partial DIE containing "
21522 "offset 0x%lx [in module %s]"),
b64f50a1 21523 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21524
b64f50a1
JK
21525 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21526 <= offset.sect_off);
ae038cb0
DJ
21527 return dwarf2_per_objfile->all_comp_units[low-1];
21528 }
21529 else
21530 {
21531 this_cu = dwarf2_per_objfile->all_comp_units[low];
21532 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21533 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21534 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21535 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21536 return this_cu;
21537 }
21538}
21539
23745b47 21540/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21541
9816fde3 21542static void
23745b47 21543init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21544{
9816fde3 21545 memset (cu, 0, sizeof (*cu));
23745b47
DE
21546 per_cu->cu = cu;
21547 cu->per_cu = per_cu;
21548 cu->objfile = per_cu->objfile;
93311388 21549 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21550}
21551
21552/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21553
21554static void
95554aad
TT
21555prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21556 enum language pretend_language)
9816fde3
JK
21557{
21558 struct attribute *attr;
21559
21560 /* Set the language we're debugging. */
21561 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21562 if (attr)
21563 set_cu_language (DW_UNSND (attr), cu);
21564 else
9cded63f 21565 {
95554aad 21566 cu->language = pretend_language;
9cded63f
TT
21567 cu->language_defn = language_def (cu->language);
21568 }
dee91e82
DE
21569
21570 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21571 if (attr)
21572 cu->producer = DW_STRING (attr);
93311388
DE
21573}
21574
ae038cb0
DJ
21575/* Release one cached compilation unit, CU. We unlink it from the tree
21576 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21577 the caller is responsible for that.
21578 NOTE: DATA is a void * because this function is also used as a
21579 cleanup routine. */
ae038cb0
DJ
21580
21581static void
68dc6402 21582free_heap_comp_unit (void *data)
ae038cb0
DJ
21583{
21584 struct dwarf2_cu *cu = data;
21585
23745b47
DE
21586 gdb_assert (cu->per_cu != NULL);
21587 cu->per_cu->cu = NULL;
ae038cb0
DJ
21588 cu->per_cu = NULL;
21589
21590 obstack_free (&cu->comp_unit_obstack, NULL);
21591
21592 xfree (cu);
21593}
21594
72bf9492 21595/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21596 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21597 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21598
21599static void
21600free_stack_comp_unit (void *data)
21601{
21602 struct dwarf2_cu *cu = data;
21603
23745b47
DE
21604 gdb_assert (cu->per_cu != NULL);
21605 cu->per_cu->cu = NULL;
21606 cu->per_cu = NULL;
21607
72bf9492
DJ
21608 obstack_free (&cu->comp_unit_obstack, NULL);
21609 cu->partial_dies = NULL;
ae038cb0
DJ
21610}
21611
21612/* Free all cached compilation units. */
21613
21614static void
21615free_cached_comp_units (void *data)
21616{
21617 struct dwarf2_per_cu_data *per_cu, **last_chain;
21618
21619 per_cu = dwarf2_per_objfile->read_in_chain;
21620 last_chain = &dwarf2_per_objfile->read_in_chain;
21621 while (per_cu != NULL)
21622 {
21623 struct dwarf2_per_cu_data *next_cu;
21624
21625 next_cu = per_cu->cu->read_in_chain;
21626
68dc6402 21627 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21628 *last_chain = next_cu;
21629
21630 per_cu = next_cu;
21631 }
21632}
21633
21634/* Increase the age counter on each cached compilation unit, and free
21635 any that are too old. */
21636
21637static void
21638age_cached_comp_units (void)
21639{
21640 struct dwarf2_per_cu_data *per_cu, **last_chain;
21641
21642 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21643 per_cu = dwarf2_per_objfile->read_in_chain;
21644 while (per_cu != NULL)
21645 {
21646 per_cu->cu->last_used ++;
21647 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21648 dwarf2_mark (per_cu->cu);
21649 per_cu = per_cu->cu->read_in_chain;
21650 }
21651
21652 per_cu = dwarf2_per_objfile->read_in_chain;
21653 last_chain = &dwarf2_per_objfile->read_in_chain;
21654 while (per_cu != NULL)
21655 {
21656 struct dwarf2_per_cu_data *next_cu;
21657
21658 next_cu = per_cu->cu->read_in_chain;
21659
21660 if (!per_cu->cu->mark)
21661 {
68dc6402 21662 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21663 *last_chain = next_cu;
21664 }
21665 else
21666 last_chain = &per_cu->cu->read_in_chain;
21667
21668 per_cu = next_cu;
21669 }
21670}
21671
21672/* Remove a single compilation unit from the cache. */
21673
21674static void
dee91e82 21675free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21676{
21677 struct dwarf2_per_cu_data *per_cu, **last_chain;
21678
21679 per_cu = dwarf2_per_objfile->read_in_chain;
21680 last_chain = &dwarf2_per_objfile->read_in_chain;
21681 while (per_cu != NULL)
21682 {
21683 struct dwarf2_per_cu_data *next_cu;
21684
21685 next_cu = per_cu->cu->read_in_chain;
21686
dee91e82 21687 if (per_cu == target_per_cu)
ae038cb0 21688 {
68dc6402 21689 free_heap_comp_unit (per_cu->cu);
dee91e82 21690 per_cu->cu = NULL;
ae038cb0
DJ
21691 *last_chain = next_cu;
21692 break;
21693 }
21694 else
21695 last_chain = &per_cu->cu->read_in_chain;
21696
21697 per_cu = next_cu;
21698 }
21699}
21700
fe3e1990
DJ
21701/* Release all extra memory associated with OBJFILE. */
21702
21703void
21704dwarf2_free_objfile (struct objfile *objfile)
21705{
21706 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21707
21708 if (dwarf2_per_objfile == NULL)
21709 return;
21710
21711 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21712 free_cached_comp_units (NULL);
21713
7b9f3c50
DE
21714 if (dwarf2_per_objfile->quick_file_names_table)
21715 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21716
fe3e1990
DJ
21717 /* Everything else should be on the objfile obstack. */
21718}
21719
dee91e82
DE
21720/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21721 We store these in a hash table separate from the DIEs, and preserve them
21722 when the DIEs are flushed out of cache.
21723
21724 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21725 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21726 or the type may come from a DWO file. Furthermore, while it's more logical
21727 to use per_cu->section+offset, with Fission the section with the data is in
21728 the DWO file but we don't know that section at the point we need it.
21729 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21730 because we can enter the lookup routine, get_die_type_at_offset, from
21731 outside this file, and thus won't necessarily have PER_CU->cu.
21732 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21733
dee91e82 21734struct dwarf2_per_cu_offset_and_type
1c379e20 21735{
dee91e82 21736 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21737 sect_offset offset;
1c379e20
DJ
21738 struct type *type;
21739};
21740
dee91e82 21741/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21742
21743static hashval_t
dee91e82 21744per_cu_offset_and_type_hash (const void *item)
1c379e20 21745{
dee91e82 21746 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21747
dee91e82 21748 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21749}
21750
dee91e82 21751/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21752
21753static int
dee91e82 21754per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21755{
dee91e82
DE
21756 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21757 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21758
dee91e82
DE
21759 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21760 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21761}
21762
21763/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21764 table if necessary. For convenience, return TYPE.
21765
21766 The DIEs reading must have careful ordering to:
21767 * Not cause infite loops trying to read in DIEs as a prerequisite for
21768 reading current DIE.
21769 * Not trying to dereference contents of still incompletely read in types
21770 while reading in other DIEs.
21771 * Enable referencing still incompletely read in types just by a pointer to
21772 the type without accessing its fields.
21773
21774 Therefore caller should follow these rules:
21775 * Try to fetch any prerequisite types we may need to build this DIE type
21776 before building the type and calling set_die_type.
e71ec853 21777 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21778 possible before fetching more types to complete the current type.
21779 * Make the type as complete as possible before fetching more types. */
1c379e20 21780
f792889a 21781static struct type *
1c379e20
DJ
21782set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21783{
dee91e82 21784 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21785 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
21786 struct attribute *attr;
21787 struct dynamic_prop prop;
1c379e20 21788
b4ba55a1
JB
21789 /* For Ada types, make sure that the gnat-specific data is always
21790 initialized (if not already set). There are a few types where
21791 we should not be doing so, because the type-specific area is
21792 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21793 where the type-specific area is used to store the floatformat).
21794 But this is not a problem, because the gnat-specific information
21795 is actually not needed for these types. */
21796 if (need_gnat_info (cu)
21797 && TYPE_CODE (type) != TYPE_CODE_FUNC
21798 && TYPE_CODE (type) != TYPE_CODE_FLT
21799 && !HAVE_GNAT_AUX_INFO (type))
21800 INIT_GNAT_SPECIFIC (type);
21801
3cdcd0ce
JB
21802 /* Read DW_AT_data_location and set in type. */
21803 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21804 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21805 {
21806 TYPE_DATA_LOCATION (type)
21807 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21808 *TYPE_DATA_LOCATION (type) = prop;
21809 }
21810
dee91e82 21811 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21812 {
dee91e82
DE
21813 dwarf2_per_objfile->die_type_hash =
21814 htab_create_alloc_ex (127,
21815 per_cu_offset_and_type_hash,
21816 per_cu_offset_and_type_eq,
21817 NULL,
21818 &objfile->objfile_obstack,
21819 hashtab_obstack_allocate,
21820 dummy_obstack_deallocate);
f792889a 21821 }
1c379e20 21822
dee91e82 21823 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21824 ofs.offset = die->offset;
21825 ofs.type = type;
dee91e82
DE
21826 slot = (struct dwarf2_per_cu_offset_and_type **)
21827 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21828 if (*slot)
21829 complaint (&symfile_complaints,
21830 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21831 die->offset.sect_off);
673bfd45 21832 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21833 **slot = ofs;
f792889a 21834 return type;
1c379e20
DJ
21835}
21836
02142a6c
DE
21837/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21838 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21839
21840static struct type *
b64f50a1 21841get_die_type_at_offset (sect_offset offset,
673bfd45 21842 struct dwarf2_per_cu_data *per_cu)
1c379e20 21843{
dee91e82 21844 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21845
dee91e82 21846 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21847 return NULL;
1c379e20 21848
dee91e82 21849 ofs.per_cu = per_cu;
673bfd45 21850 ofs.offset = offset;
dee91e82 21851 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21852 if (slot)
21853 return slot->type;
21854 else
21855 return NULL;
21856}
21857
02142a6c 21858/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21859 or return NULL if DIE does not have a saved type. */
21860
21861static struct type *
21862get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21863{
21864 return get_die_type_at_offset (die->offset, cu->per_cu);
21865}
21866
10b3939b
DJ
21867/* Add a dependence relationship from CU to REF_PER_CU. */
21868
21869static void
21870dwarf2_add_dependence (struct dwarf2_cu *cu,
21871 struct dwarf2_per_cu_data *ref_per_cu)
21872{
21873 void **slot;
21874
21875 if (cu->dependencies == NULL)
21876 cu->dependencies
21877 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21878 NULL, &cu->comp_unit_obstack,
21879 hashtab_obstack_allocate,
21880 dummy_obstack_deallocate);
21881
21882 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21883 if (*slot == NULL)
21884 *slot = ref_per_cu;
21885}
1c379e20 21886
f504f079
DE
21887/* Subroutine of dwarf2_mark to pass to htab_traverse.
21888 Set the mark field in every compilation unit in the
ae038cb0
DJ
21889 cache that we must keep because we are keeping CU. */
21890
10b3939b
DJ
21891static int
21892dwarf2_mark_helper (void **slot, void *data)
21893{
21894 struct dwarf2_per_cu_data *per_cu;
21895
21896 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21897
21898 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21899 reading of the chain. As such dependencies remain valid it is not much
21900 useful to track and undo them during QUIT cleanups. */
21901 if (per_cu->cu == NULL)
21902 return 1;
21903
10b3939b
DJ
21904 if (per_cu->cu->mark)
21905 return 1;
21906 per_cu->cu->mark = 1;
21907
21908 if (per_cu->cu->dependencies != NULL)
21909 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21910
21911 return 1;
21912}
21913
f504f079
DE
21914/* Set the mark field in CU and in every other compilation unit in the
21915 cache that we must keep because we are keeping CU. */
21916
ae038cb0
DJ
21917static void
21918dwarf2_mark (struct dwarf2_cu *cu)
21919{
21920 if (cu->mark)
21921 return;
21922 cu->mark = 1;
10b3939b
DJ
21923 if (cu->dependencies != NULL)
21924 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21925}
21926
21927static void
21928dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21929{
21930 while (per_cu)
21931 {
21932 per_cu->cu->mark = 0;
21933 per_cu = per_cu->cu->read_in_chain;
21934 }
72bf9492
DJ
21935}
21936
72bf9492
DJ
21937/* Trivial hash function for partial_die_info: the hash value of a DIE
21938 is its offset in .debug_info for this objfile. */
21939
21940static hashval_t
21941partial_die_hash (const void *item)
21942{
21943 const struct partial_die_info *part_die = item;
9a619af0 21944
b64f50a1 21945 return part_die->offset.sect_off;
72bf9492
DJ
21946}
21947
21948/* Trivial comparison function for partial_die_info structures: two DIEs
21949 are equal if they have the same offset. */
21950
21951static int
21952partial_die_eq (const void *item_lhs, const void *item_rhs)
21953{
21954 const struct partial_die_info *part_die_lhs = item_lhs;
21955 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21956
b64f50a1 21957 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21958}
21959
ae038cb0
DJ
21960static struct cmd_list_element *set_dwarf2_cmdlist;
21961static struct cmd_list_element *show_dwarf2_cmdlist;
21962
21963static void
21964set_dwarf2_cmd (char *args, int from_tty)
21965{
635c7e8a
TT
21966 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21967 gdb_stdout);
ae038cb0
DJ
21968}
21969
21970static void
21971show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21972{
ae038cb0
DJ
21973 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21974}
21975
4bf44c1c 21976/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21977
21978static void
c1bd65d0 21979dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21980{
21981 struct dwarf2_per_objfile *data = d;
8b70b953 21982 int ix;
8b70b953 21983
626f2d1c
TT
21984 /* Make sure we don't accidentally use dwarf2_per_objfile while
21985 cleaning up. */
21986 dwarf2_per_objfile = NULL;
21987
59b0c7c1
JB
21988 for (ix = 0; ix < data->n_comp_units; ++ix)
21989 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21990
59b0c7c1 21991 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21992 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21993 data->all_type_units[ix]->per_cu.imported_symtabs);
21994 xfree (data->all_type_units);
95554aad 21995
8b70b953 21996 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21997
21998 if (data->dwo_files)
21999 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22000 if (data->dwp_file)
22001 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22002
22003 if (data->dwz_file && data->dwz_file->dwz_bfd)
22004 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22005}
22006
22007\f
ae2de4f8 22008/* The "save gdb-index" command. */
9291a0cd
TT
22009
22010/* The contents of the hash table we create when building the string
22011 table. */
22012struct strtab_entry
22013{
22014 offset_type offset;
22015 const char *str;
22016};
22017
559a7a62
JK
22018/* Hash function for a strtab_entry.
22019
22020 Function is used only during write_hash_table so no index format backward
22021 compatibility is needed. */
b89be57b 22022
9291a0cd
TT
22023static hashval_t
22024hash_strtab_entry (const void *e)
22025{
22026 const struct strtab_entry *entry = e;
559a7a62 22027 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22028}
22029
22030/* Equality function for a strtab_entry. */
b89be57b 22031
9291a0cd
TT
22032static int
22033eq_strtab_entry (const void *a, const void *b)
22034{
22035 const struct strtab_entry *ea = a;
22036 const struct strtab_entry *eb = b;
22037 return !strcmp (ea->str, eb->str);
22038}
22039
22040/* Create a strtab_entry hash table. */
b89be57b 22041
9291a0cd
TT
22042static htab_t
22043create_strtab (void)
22044{
22045 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22046 xfree, xcalloc, xfree);
22047}
22048
22049/* Add a string to the constant pool. Return the string's offset in
22050 host order. */
b89be57b 22051
9291a0cd
TT
22052static offset_type
22053add_string (htab_t table, struct obstack *cpool, const char *str)
22054{
22055 void **slot;
22056 struct strtab_entry entry;
22057 struct strtab_entry *result;
22058
22059 entry.str = str;
22060 slot = htab_find_slot (table, &entry, INSERT);
22061 if (*slot)
22062 result = *slot;
22063 else
22064 {
22065 result = XNEW (struct strtab_entry);
22066 result->offset = obstack_object_size (cpool);
22067 result->str = str;
22068 obstack_grow_str0 (cpool, str);
22069 *slot = result;
22070 }
22071 return result->offset;
22072}
22073
22074/* An entry in the symbol table. */
22075struct symtab_index_entry
22076{
22077 /* The name of the symbol. */
22078 const char *name;
22079 /* The offset of the name in the constant pool. */
22080 offset_type index_offset;
22081 /* A sorted vector of the indices of all the CUs that hold an object
22082 of this name. */
22083 VEC (offset_type) *cu_indices;
22084};
22085
22086/* The symbol table. This is a power-of-2-sized hash table. */
22087struct mapped_symtab
22088{
22089 offset_type n_elements;
22090 offset_type size;
22091 struct symtab_index_entry **data;
22092};
22093
22094/* Hash function for a symtab_index_entry. */
b89be57b 22095
9291a0cd
TT
22096static hashval_t
22097hash_symtab_entry (const void *e)
22098{
22099 const struct symtab_index_entry *entry = e;
22100 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22101 sizeof (offset_type) * VEC_length (offset_type,
22102 entry->cu_indices),
22103 0);
22104}
22105
22106/* Equality function for a symtab_index_entry. */
b89be57b 22107
9291a0cd
TT
22108static int
22109eq_symtab_entry (const void *a, const void *b)
22110{
22111 const struct symtab_index_entry *ea = a;
22112 const struct symtab_index_entry *eb = b;
22113 int len = VEC_length (offset_type, ea->cu_indices);
22114 if (len != VEC_length (offset_type, eb->cu_indices))
22115 return 0;
22116 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22117 VEC_address (offset_type, eb->cu_indices),
22118 sizeof (offset_type) * len);
22119}
22120
22121/* Destroy a symtab_index_entry. */
b89be57b 22122
9291a0cd
TT
22123static void
22124delete_symtab_entry (void *p)
22125{
22126 struct symtab_index_entry *entry = p;
22127 VEC_free (offset_type, entry->cu_indices);
22128 xfree (entry);
22129}
22130
22131/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22132
9291a0cd 22133static htab_t
3876f04e 22134create_symbol_hash_table (void)
9291a0cd
TT
22135{
22136 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22137 delete_symtab_entry, xcalloc, xfree);
22138}
22139
22140/* Create a new mapped symtab object. */
b89be57b 22141
9291a0cd
TT
22142static struct mapped_symtab *
22143create_mapped_symtab (void)
22144{
22145 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22146 symtab->n_elements = 0;
22147 symtab->size = 1024;
22148 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22149 return symtab;
22150}
22151
22152/* Destroy a mapped_symtab. */
b89be57b 22153
9291a0cd
TT
22154static void
22155cleanup_mapped_symtab (void *p)
22156{
22157 struct mapped_symtab *symtab = p;
22158 /* The contents of the array are freed when the other hash table is
22159 destroyed. */
22160 xfree (symtab->data);
22161 xfree (symtab);
22162}
22163
22164/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22165 the slot.
22166
22167 Function is used only during write_hash_table so no index format backward
22168 compatibility is needed. */
b89be57b 22169
9291a0cd
TT
22170static struct symtab_index_entry **
22171find_slot (struct mapped_symtab *symtab, const char *name)
22172{
559a7a62 22173 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22174
22175 index = hash & (symtab->size - 1);
22176 step = ((hash * 17) & (symtab->size - 1)) | 1;
22177
22178 for (;;)
22179 {
22180 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22181 return &symtab->data[index];
22182 index = (index + step) & (symtab->size - 1);
22183 }
22184}
22185
22186/* Expand SYMTAB's hash table. */
b89be57b 22187
9291a0cd
TT
22188static void
22189hash_expand (struct mapped_symtab *symtab)
22190{
22191 offset_type old_size = symtab->size;
22192 offset_type i;
22193 struct symtab_index_entry **old_entries = symtab->data;
22194
22195 symtab->size *= 2;
22196 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22197
22198 for (i = 0; i < old_size; ++i)
22199 {
22200 if (old_entries[i])
22201 {
22202 struct symtab_index_entry **slot = find_slot (symtab,
22203 old_entries[i]->name);
22204 *slot = old_entries[i];
22205 }
22206 }
22207
22208 xfree (old_entries);
22209}
22210
156942c7
DE
22211/* Add an entry to SYMTAB. NAME is the name of the symbol.
22212 CU_INDEX is the index of the CU in which the symbol appears.
22213 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22214
9291a0cd
TT
22215static void
22216add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22217 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22218 offset_type cu_index)
22219{
22220 struct symtab_index_entry **slot;
156942c7 22221 offset_type cu_index_and_attrs;
9291a0cd
TT
22222
22223 ++symtab->n_elements;
22224 if (4 * symtab->n_elements / 3 >= symtab->size)
22225 hash_expand (symtab);
22226
22227 slot = find_slot (symtab, name);
22228 if (!*slot)
22229 {
22230 *slot = XNEW (struct symtab_index_entry);
22231 (*slot)->name = name;
156942c7 22232 /* index_offset is set later. */
9291a0cd
TT
22233 (*slot)->cu_indices = NULL;
22234 }
156942c7
DE
22235
22236 cu_index_and_attrs = 0;
22237 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22238 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22239 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22240
22241 /* We don't want to record an index value twice as we want to avoid the
22242 duplication.
22243 We process all global symbols and then all static symbols
22244 (which would allow us to avoid the duplication by only having to check
22245 the last entry pushed), but a symbol could have multiple kinds in one CU.
22246 To keep things simple we don't worry about the duplication here and
22247 sort and uniqufy the list after we've processed all symbols. */
22248 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22249}
22250
22251/* qsort helper routine for uniquify_cu_indices. */
22252
22253static int
22254offset_type_compare (const void *ap, const void *bp)
22255{
22256 offset_type a = *(offset_type *) ap;
22257 offset_type b = *(offset_type *) bp;
22258
22259 return (a > b) - (b > a);
22260}
22261
22262/* Sort and remove duplicates of all symbols' cu_indices lists. */
22263
22264static void
22265uniquify_cu_indices (struct mapped_symtab *symtab)
22266{
22267 int i;
22268
22269 for (i = 0; i < symtab->size; ++i)
22270 {
22271 struct symtab_index_entry *entry = symtab->data[i];
22272
22273 if (entry
22274 && entry->cu_indices != NULL)
22275 {
22276 unsigned int next_to_insert, next_to_check;
22277 offset_type last_value;
22278
22279 qsort (VEC_address (offset_type, entry->cu_indices),
22280 VEC_length (offset_type, entry->cu_indices),
22281 sizeof (offset_type), offset_type_compare);
22282
22283 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22284 next_to_insert = 1;
22285 for (next_to_check = 1;
22286 next_to_check < VEC_length (offset_type, entry->cu_indices);
22287 ++next_to_check)
22288 {
22289 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22290 != last_value)
22291 {
22292 last_value = VEC_index (offset_type, entry->cu_indices,
22293 next_to_check);
22294 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22295 last_value);
22296 ++next_to_insert;
22297 }
22298 }
22299 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22300 }
22301 }
9291a0cd
TT
22302}
22303
22304/* Add a vector of indices to the constant pool. */
b89be57b 22305
9291a0cd 22306static offset_type
3876f04e 22307add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22308 struct symtab_index_entry *entry)
22309{
22310 void **slot;
22311
3876f04e 22312 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22313 if (!*slot)
22314 {
22315 offset_type len = VEC_length (offset_type, entry->cu_indices);
22316 offset_type val = MAYBE_SWAP (len);
22317 offset_type iter;
22318 int i;
22319
22320 *slot = entry;
22321 entry->index_offset = obstack_object_size (cpool);
22322
22323 obstack_grow (cpool, &val, sizeof (val));
22324 for (i = 0;
22325 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22326 ++i)
22327 {
22328 val = MAYBE_SWAP (iter);
22329 obstack_grow (cpool, &val, sizeof (val));
22330 }
22331 }
22332 else
22333 {
22334 struct symtab_index_entry *old_entry = *slot;
22335 entry->index_offset = old_entry->index_offset;
22336 entry = old_entry;
22337 }
22338 return entry->index_offset;
22339}
22340
22341/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22342 constant pool entries going into the obstack CPOOL. */
b89be57b 22343
9291a0cd
TT
22344static void
22345write_hash_table (struct mapped_symtab *symtab,
22346 struct obstack *output, struct obstack *cpool)
22347{
22348 offset_type i;
3876f04e 22349 htab_t symbol_hash_table;
9291a0cd
TT
22350 htab_t str_table;
22351
3876f04e 22352 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22353 str_table = create_strtab ();
3876f04e 22354
9291a0cd
TT
22355 /* We add all the index vectors to the constant pool first, to
22356 ensure alignment is ok. */
22357 for (i = 0; i < symtab->size; ++i)
22358 {
22359 if (symtab->data[i])
3876f04e 22360 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22361 }
22362
22363 /* Now write out the hash table. */
22364 for (i = 0; i < symtab->size; ++i)
22365 {
22366 offset_type str_off, vec_off;
22367
22368 if (symtab->data[i])
22369 {
22370 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22371 vec_off = symtab->data[i]->index_offset;
22372 }
22373 else
22374 {
22375 /* While 0 is a valid constant pool index, it is not valid
22376 to have 0 for both offsets. */
22377 str_off = 0;
22378 vec_off = 0;
22379 }
22380
22381 str_off = MAYBE_SWAP (str_off);
22382 vec_off = MAYBE_SWAP (vec_off);
22383
22384 obstack_grow (output, &str_off, sizeof (str_off));
22385 obstack_grow (output, &vec_off, sizeof (vec_off));
22386 }
22387
22388 htab_delete (str_table);
3876f04e 22389 htab_delete (symbol_hash_table);
9291a0cd
TT
22390}
22391
0a5429f6
DE
22392/* Struct to map psymtab to CU index in the index file. */
22393struct psymtab_cu_index_map
22394{
22395 struct partial_symtab *psymtab;
22396 unsigned int cu_index;
22397};
22398
22399static hashval_t
22400hash_psymtab_cu_index (const void *item)
22401{
22402 const struct psymtab_cu_index_map *map = item;
22403
22404 return htab_hash_pointer (map->psymtab);
22405}
22406
22407static int
22408eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22409{
22410 const struct psymtab_cu_index_map *lhs = item_lhs;
22411 const struct psymtab_cu_index_map *rhs = item_rhs;
22412
22413 return lhs->psymtab == rhs->psymtab;
22414}
22415
22416/* Helper struct for building the address table. */
22417struct addrmap_index_data
22418{
22419 struct objfile *objfile;
22420 struct obstack *addr_obstack;
22421 htab_t cu_index_htab;
22422
22423 /* Non-zero if the previous_* fields are valid.
22424 We can't write an entry until we see the next entry (since it is only then
22425 that we know the end of the entry). */
22426 int previous_valid;
22427 /* Index of the CU in the table of all CUs in the index file. */
22428 unsigned int previous_cu_index;
0963b4bd 22429 /* Start address of the CU. */
0a5429f6
DE
22430 CORE_ADDR previous_cu_start;
22431};
22432
22433/* Write an address entry to OBSTACK. */
b89be57b 22434
9291a0cd 22435static void
0a5429f6
DE
22436add_address_entry (struct objfile *objfile, struct obstack *obstack,
22437 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22438{
0a5429f6 22439 offset_type cu_index_to_write;
948f8e3d 22440 gdb_byte addr[8];
9291a0cd
TT
22441 CORE_ADDR baseaddr;
22442
22443 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22444
0a5429f6
DE
22445 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22446 obstack_grow (obstack, addr, 8);
22447 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22448 obstack_grow (obstack, addr, 8);
22449 cu_index_to_write = MAYBE_SWAP (cu_index);
22450 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22451}
22452
22453/* Worker function for traversing an addrmap to build the address table. */
22454
22455static int
22456add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22457{
22458 struct addrmap_index_data *data = datap;
22459 struct partial_symtab *pst = obj;
0a5429f6
DE
22460
22461 if (data->previous_valid)
22462 add_address_entry (data->objfile, data->addr_obstack,
22463 data->previous_cu_start, start_addr,
22464 data->previous_cu_index);
22465
22466 data->previous_cu_start = start_addr;
22467 if (pst != NULL)
22468 {
22469 struct psymtab_cu_index_map find_map, *map;
22470 find_map.psymtab = pst;
22471 map = htab_find (data->cu_index_htab, &find_map);
22472 gdb_assert (map != NULL);
22473 data->previous_cu_index = map->cu_index;
22474 data->previous_valid = 1;
22475 }
22476 else
22477 data->previous_valid = 0;
22478
22479 return 0;
22480}
22481
22482/* Write OBJFILE's address map to OBSTACK.
22483 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22484 in the index file. */
22485
22486static void
22487write_address_map (struct objfile *objfile, struct obstack *obstack,
22488 htab_t cu_index_htab)
22489{
22490 struct addrmap_index_data addrmap_index_data;
22491
22492 /* When writing the address table, we have to cope with the fact that
22493 the addrmap iterator only provides the start of a region; we have to
22494 wait until the next invocation to get the start of the next region. */
22495
22496 addrmap_index_data.objfile = objfile;
22497 addrmap_index_data.addr_obstack = obstack;
22498 addrmap_index_data.cu_index_htab = cu_index_htab;
22499 addrmap_index_data.previous_valid = 0;
22500
22501 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22502 &addrmap_index_data);
22503
22504 /* It's highly unlikely the last entry (end address = 0xff...ff)
22505 is valid, but we should still handle it.
22506 The end address is recorded as the start of the next region, but that
22507 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22508 anyway. */
22509 if (addrmap_index_data.previous_valid)
22510 add_address_entry (objfile, obstack,
22511 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22512 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22513}
22514
156942c7
DE
22515/* Return the symbol kind of PSYM. */
22516
22517static gdb_index_symbol_kind
22518symbol_kind (struct partial_symbol *psym)
22519{
22520 domain_enum domain = PSYMBOL_DOMAIN (psym);
22521 enum address_class aclass = PSYMBOL_CLASS (psym);
22522
22523 switch (domain)
22524 {
22525 case VAR_DOMAIN:
22526 switch (aclass)
22527 {
22528 case LOC_BLOCK:
22529 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22530 case LOC_TYPEDEF:
22531 return GDB_INDEX_SYMBOL_KIND_TYPE;
22532 case LOC_COMPUTED:
22533 case LOC_CONST_BYTES:
22534 case LOC_OPTIMIZED_OUT:
22535 case LOC_STATIC:
22536 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22537 case LOC_CONST:
22538 /* Note: It's currently impossible to recognize psyms as enum values
22539 short of reading the type info. For now punt. */
22540 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22541 default:
22542 /* There are other LOC_FOO values that one might want to classify
22543 as variables, but dwarf2read.c doesn't currently use them. */
22544 return GDB_INDEX_SYMBOL_KIND_OTHER;
22545 }
22546 case STRUCT_DOMAIN:
22547 return GDB_INDEX_SYMBOL_KIND_TYPE;
22548 default:
22549 return GDB_INDEX_SYMBOL_KIND_OTHER;
22550 }
22551}
22552
9291a0cd 22553/* Add a list of partial symbols to SYMTAB. */
b89be57b 22554
9291a0cd
TT
22555static void
22556write_psymbols (struct mapped_symtab *symtab,
987d643c 22557 htab_t psyms_seen,
9291a0cd
TT
22558 struct partial_symbol **psymp,
22559 int count,
987d643c
TT
22560 offset_type cu_index,
22561 int is_static)
9291a0cd
TT
22562{
22563 for (; count-- > 0; ++psymp)
22564 {
156942c7
DE
22565 struct partial_symbol *psym = *psymp;
22566 void **slot;
987d643c 22567
156942c7 22568 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22569 error (_("Ada is not currently supported by the index"));
987d643c 22570
987d643c 22571 /* Only add a given psymbol once. */
156942c7 22572 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22573 if (!*slot)
22574 {
156942c7
DE
22575 gdb_index_symbol_kind kind = symbol_kind (psym);
22576
22577 *slot = psym;
22578 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22579 is_static, kind, cu_index);
987d643c 22580 }
9291a0cd
TT
22581 }
22582}
22583
22584/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22585 exception if there is an error. */
b89be57b 22586
9291a0cd
TT
22587static void
22588write_obstack (FILE *file, struct obstack *obstack)
22589{
22590 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22591 file)
22592 != obstack_object_size (obstack))
22593 error (_("couldn't data write to file"));
22594}
22595
22596/* Unlink a file if the argument is not NULL. */
b89be57b 22597
9291a0cd
TT
22598static void
22599unlink_if_set (void *p)
22600{
22601 char **filename = p;
22602 if (*filename)
22603 unlink (*filename);
22604}
22605
1fd400ff
TT
22606/* A helper struct used when iterating over debug_types. */
22607struct signatured_type_index_data
22608{
22609 struct objfile *objfile;
22610 struct mapped_symtab *symtab;
22611 struct obstack *types_list;
987d643c 22612 htab_t psyms_seen;
1fd400ff
TT
22613 int cu_index;
22614};
22615
22616/* A helper function that writes a single signatured_type to an
22617 obstack. */
b89be57b 22618
1fd400ff
TT
22619static int
22620write_one_signatured_type (void **slot, void *d)
22621{
22622 struct signatured_type_index_data *info = d;
22623 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22624 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22625 gdb_byte val[8];
22626
22627 write_psymbols (info->symtab,
987d643c 22628 info->psyms_seen,
3e43a32a
MS
22629 info->objfile->global_psymbols.list
22630 + psymtab->globals_offset,
987d643c
TT
22631 psymtab->n_global_syms, info->cu_index,
22632 0);
1fd400ff 22633 write_psymbols (info->symtab,
987d643c 22634 info->psyms_seen,
3e43a32a
MS
22635 info->objfile->static_psymbols.list
22636 + psymtab->statics_offset,
987d643c
TT
22637 psymtab->n_static_syms, info->cu_index,
22638 1);
1fd400ff 22639
b64f50a1
JK
22640 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22641 entry->per_cu.offset.sect_off);
1fd400ff 22642 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22643 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22644 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22645 obstack_grow (info->types_list, val, 8);
22646 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22647 obstack_grow (info->types_list, val, 8);
22648
22649 ++info->cu_index;
22650
22651 return 1;
22652}
22653
95554aad
TT
22654/* Recurse into all "included" dependencies and write their symbols as
22655 if they appeared in this psymtab. */
22656
22657static void
22658recursively_write_psymbols (struct objfile *objfile,
22659 struct partial_symtab *psymtab,
22660 struct mapped_symtab *symtab,
22661 htab_t psyms_seen,
22662 offset_type cu_index)
22663{
22664 int i;
22665
22666 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22667 if (psymtab->dependencies[i]->user != NULL)
22668 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22669 symtab, psyms_seen, cu_index);
22670
22671 write_psymbols (symtab,
22672 psyms_seen,
22673 objfile->global_psymbols.list + psymtab->globals_offset,
22674 psymtab->n_global_syms, cu_index,
22675 0);
22676 write_psymbols (symtab,
22677 psyms_seen,
22678 objfile->static_psymbols.list + psymtab->statics_offset,
22679 psymtab->n_static_syms, cu_index,
22680 1);
22681}
22682
9291a0cd 22683/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22684
9291a0cd
TT
22685static void
22686write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22687{
22688 struct cleanup *cleanup;
22689 char *filename, *cleanup_filename;
1fd400ff
TT
22690 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22691 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22692 int i;
22693 FILE *out_file;
22694 struct mapped_symtab *symtab;
22695 offset_type val, size_of_contents, total_len;
22696 struct stat st;
987d643c 22697 htab_t psyms_seen;
0a5429f6
DE
22698 htab_t cu_index_htab;
22699 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22700
9291a0cd
TT
22701 if (dwarf2_per_objfile->using_index)
22702 error (_("Cannot use an index to create the index"));
22703
8b70b953
TT
22704 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22705 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22706
260b681b
DE
22707 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22708 return;
22709
4262abfb
JK
22710 if (stat (objfile_name (objfile), &st) < 0)
22711 perror_with_name (objfile_name (objfile));
9291a0cd 22712
4262abfb 22713 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22714 INDEX_SUFFIX, (char *) NULL);
22715 cleanup = make_cleanup (xfree, filename);
22716
614c279d 22717 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22718 if (!out_file)
22719 error (_("Can't open `%s' for writing"), filename);
22720
22721 cleanup_filename = filename;
22722 make_cleanup (unlink_if_set, &cleanup_filename);
22723
22724 symtab = create_mapped_symtab ();
22725 make_cleanup (cleanup_mapped_symtab, symtab);
22726
22727 obstack_init (&addr_obstack);
22728 make_cleanup_obstack_free (&addr_obstack);
22729
22730 obstack_init (&cu_list);
22731 make_cleanup_obstack_free (&cu_list);
22732
1fd400ff
TT
22733 obstack_init (&types_cu_list);
22734 make_cleanup_obstack_free (&types_cu_list);
22735
987d643c
TT
22736 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22737 NULL, xcalloc, xfree);
96408a79 22738 make_cleanup_htab_delete (psyms_seen);
987d643c 22739
0a5429f6
DE
22740 /* While we're scanning CU's create a table that maps a psymtab pointer
22741 (which is what addrmap records) to its index (which is what is recorded
22742 in the index file). This will later be needed to write the address
22743 table. */
22744 cu_index_htab = htab_create_alloc (100,
22745 hash_psymtab_cu_index,
22746 eq_psymtab_cu_index,
22747 NULL, xcalloc, xfree);
96408a79 22748 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22749 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22750 xmalloc (sizeof (struct psymtab_cu_index_map)
22751 * dwarf2_per_objfile->n_comp_units);
22752 make_cleanup (xfree, psymtab_cu_index_map);
22753
22754 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22755 work here. Also, the debug_types entries do not appear in
22756 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22757 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22758 {
3e43a32a
MS
22759 struct dwarf2_per_cu_data *per_cu
22760 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22761 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22762 gdb_byte val[8];
0a5429f6
DE
22763 struct psymtab_cu_index_map *map;
22764 void **slot;
9291a0cd 22765
92fac807
JK
22766 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22767 It may be referenced from a local scope but in such case it does not
22768 need to be present in .gdb_index. */
22769 if (psymtab == NULL)
22770 continue;
22771
95554aad
TT
22772 if (psymtab->user == NULL)
22773 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22774
0a5429f6
DE
22775 map = &psymtab_cu_index_map[i];
22776 map->psymtab = psymtab;
22777 map->cu_index = i;
22778 slot = htab_find_slot (cu_index_htab, map, INSERT);
22779 gdb_assert (slot != NULL);
22780 gdb_assert (*slot == NULL);
22781 *slot = map;
9291a0cd 22782
b64f50a1
JK
22783 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22784 per_cu->offset.sect_off);
9291a0cd 22785 obstack_grow (&cu_list, val, 8);
e254ef6a 22786 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22787 obstack_grow (&cu_list, val, 8);
22788 }
22789
0a5429f6
DE
22790 /* Dump the address map. */
22791 write_address_map (objfile, &addr_obstack, cu_index_htab);
22792
1fd400ff
TT
22793 /* Write out the .debug_type entries, if any. */
22794 if (dwarf2_per_objfile->signatured_types)
22795 {
22796 struct signatured_type_index_data sig_data;
22797
22798 sig_data.objfile = objfile;
22799 sig_data.symtab = symtab;
22800 sig_data.types_list = &types_cu_list;
987d643c 22801 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22802 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22803 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22804 write_one_signatured_type, &sig_data);
22805 }
22806
156942c7
DE
22807 /* Now that we've processed all symbols we can shrink their cu_indices
22808 lists. */
22809 uniquify_cu_indices (symtab);
22810
9291a0cd
TT
22811 obstack_init (&constant_pool);
22812 make_cleanup_obstack_free (&constant_pool);
22813 obstack_init (&symtab_obstack);
22814 make_cleanup_obstack_free (&symtab_obstack);
22815 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22816
22817 obstack_init (&contents);
22818 make_cleanup_obstack_free (&contents);
1fd400ff 22819 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22820 total_len = size_of_contents;
22821
22822 /* The version number. */
796a7ff8 22823 val = MAYBE_SWAP (8);
9291a0cd
TT
22824 obstack_grow (&contents, &val, sizeof (val));
22825
22826 /* The offset of the CU list from the start of the file. */
22827 val = MAYBE_SWAP (total_len);
22828 obstack_grow (&contents, &val, sizeof (val));
22829 total_len += obstack_object_size (&cu_list);
22830
1fd400ff
TT
22831 /* The offset of the types CU list from the start of the file. */
22832 val = MAYBE_SWAP (total_len);
22833 obstack_grow (&contents, &val, sizeof (val));
22834 total_len += obstack_object_size (&types_cu_list);
22835
9291a0cd
TT
22836 /* The offset of the address table from the start of the file. */
22837 val = MAYBE_SWAP (total_len);
22838 obstack_grow (&contents, &val, sizeof (val));
22839 total_len += obstack_object_size (&addr_obstack);
22840
22841 /* The offset of the symbol table from the start of the file. */
22842 val = MAYBE_SWAP (total_len);
22843 obstack_grow (&contents, &val, sizeof (val));
22844 total_len += obstack_object_size (&symtab_obstack);
22845
22846 /* The offset of the constant pool from the start of the file. */
22847 val = MAYBE_SWAP (total_len);
22848 obstack_grow (&contents, &val, sizeof (val));
22849 total_len += obstack_object_size (&constant_pool);
22850
22851 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22852
22853 write_obstack (out_file, &contents);
22854 write_obstack (out_file, &cu_list);
1fd400ff 22855 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22856 write_obstack (out_file, &addr_obstack);
22857 write_obstack (out_file, &symtab_obstack);
22858 write_obstack (out_file, &constant_pool);
22859
22860 fclose (out_file);
22861
22862 /* We want to keep the file, so we set cleanup_filename to NULL
22863 here. See unlink_if_set. */
22864 cleanup_filename = NULL;
22865
22866 do_cleanups (cleanup);
22867}
22868
90476074
TT
22869/* Implementation of the `save gdb-index' command.
22870
22871 Note that the file format used by this command is documented in the
22872 GDB manual. Any changes here must be documented there. */
11570e71 22873
9291a0cd
TT
22874static void
22875save_gdb_index_command (char *arg, int from_tty)
22876{
22877 struct objfile *objfile;
22878
22879 if (!arg || !*arg)
96d19272 22880 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22881
22882 ALL_OBJFILES (objfile)
22883 {
22884 struct stat st;
22885
22886 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22887 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22888 continue;
22889
22890 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22891 if (dwarf2_per_objfile)
22892 {
22893 volatile struct gdb_exception except;
22894
22895 TRY_CATCH (except, RETURN_MASK_ERROR)
22896 {
22897 write_psymtabs_to_index (objfile, arg);
22898 }
22899 if (except.reason < 0)
22900 exception_fprintf (gdb_stderr, except,
22901 _("Error while writing index for `%s': "),
4262abfb 22902 objfile_name (objfile));
9291a0cd
TT
22903 }
22904 }
dce234bc
PP
22905}
22906
9291a0cd
TT
22907\f
22908
9eae7c52
TT
22909int dwarf2_always_disassemble;
22910
22911static void
22912show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22913 struct cmd_list_element *c, const char *value)
22914{
3e43a32a
MS
22915 fprintf_filtered (file,
22916 _("Whether to always disassemble "
22917 "DWARF expressions is %s.\n"),
9eae7c52
TT
22918 value);
22919}
22920
900e11f9
JK
22921static void
22922show_check_physname (struct ui_file *file, int from_tty,
22923 struct cmd_list_element *c, const char *value)
22924{
22925 fprintf_filtered (file,
22926 _("Whether to check \"physname\" is %s.\n"),
22927 value);
22928}
22929
6502dd73
DJ
22930void _initialize_dwarf2_read (void);
22931
22932void
22933_initialize_dwarf2_read (void)
22934{
96d19272
JK
22935 struct cmd_list_element *c;
22936
dce234bc 22937 dwarf2_objfile_data_key
c1bd65d0 22938 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22939
1bedd215
AC
22940 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22941Set DWARF 2 specific variables.\n\
22942Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22943 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22944 0/*allow-unknown*/, &maintenance_set_cmdlist);
22945
1bedd215
AC
22946 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22947Show DWARF 2 specific variables\n\
22948Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22949 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22950 0/*allow-unknown*/, &maintenance_show_cmdlist);
22951
22952 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22953 &dwarf2_max_cache_age, _("\
22954Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22955Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22956A higher limit means that cached compilation units will be stored\n\
22957in memory longer, and more total memory will be used. Zero disables\n\
22958caching, which can slow down startup."),
2c5b56ce 22959 NULL,
920d2a44 22960 show_dwarf2_max_cache_age,
2c5b56ce 22961 &set_dwarf2_cmdlist,
ae038cb0 22962 &show_dwarf2_cmdlist);
d97bc12b 22963
9eae7c52
TT
22964 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22965 &dwarf2_always_disassemble, _("\
22966Set whether `info address' always disassembles DWARF expressions."), _("\
22967Show whether `info address' always disassembles DWARF expressions."), _("\
22968When enabled, DWARF expressions are always printed in an assembly-like\n\
22969syntax. When disabled, expressions will be printed in a more\n\
22970conversational style, when possible."),
22971 NULL,
22972 show_dwarf2_always_disassemble,
22973 &set_dwarf2_cmdlist,
22974 &show_dwarf2_cmdlist);
22975
73be47f5 22976 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22977Set debugging of the dwarf2 reader."), _("\
22978Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22979When enabled (non-zero), debugging messages are printed during dwarf2\n\
22980reading and symtab expansion. A value of 1 (one) provides basic\n\
22981information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22982 NULL,
22983 NULL,
22984 &setdebuglist, &showdebuglist);
22985
ccce17b0 22986 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22987Set debugging of the dwarf2 DIE reader."), _("\
22988Show debugging of the dwarf2 DIE reader."), _("\
22989When enabled (non-zero), DIEs are dumped after they are read in.\n\
22990The value is the maximum depth to print."),
ccce17b0
YQ
22991 NULL,
22992 NULL,
22993 &setdebuglist, &showdebuglist);
9291a0cd 22994
900e11f9
JK
22995 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22996Set cross-checking of \"physname\" code against demangler."), _("\
22997Show cross-checking of \"physname\" code against demangler."), _("\
22998When enabled, GDB's internal \"physname\" code is checked against\n\
22999the demangler."),
23000 NULL, show_check_physname,
23001 &setdebuglist, &showdebuglist);
23002
e615022a
DE
23003 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23004 no_class, &use_deprecated_index_sections, _("\
23005Set whether to use deprecated gdb_index sections."), _("\
23006Show whether to use deprecated gdb_index sections."), _("\
23007When enabled, deprecated .gdb_index sections are used anyway.\n\
23008Normally they are ignored either because of a missing feature or\n\
23009performance issue.\n\
23010Warning: This option must be enabled before gdb reads the file."),
23011 NULL,
23012 NULL,
23013 &setlist, &showlist);
23014
96d19272 23015 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23016 _("\
fc1a9d6e 23017Save a gdb-index file.\n\
11570e71 23018Usage: save gdb-index DIRECTORY"),
96d19272
JK
23019 &save_cmdlist);
23020 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23021
23022 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23023 &dwarf2_locexpr_funcs);
23024 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23025 &dwarf2_loclist_funcs);
23026
23027 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23028 &dwarf2_block_frame_base_locexpr_funcs);
23029 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23030 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23031}
This page took 3.443227 seconds and 4 git commands to generate.