* dwarf2read.c: Remove trailing whitespace.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
4c2df51b 54
c906108c
SS
55#include <fcntl.h>
56#include "gdb_string.h"
4bdf3d34 57#include "gdb_assert.h"
c906108c 58#include <sys/types.h>
233a11ab
CS
59#ifdef HAVE_ZLIB_H
60#include <zlib.h>
61#endif
dce234bc
PP
62#ifdef HAVE_MMAP
63#include <sys/mman.h>
85d9bd0e
TT
64#ifndef MAP_FAILED
65#define MAP_FAILED ((void *) -1)
66#endif
dce234bc 67#endif
d8151005 68
107d2387 69#if 0
357e46e7 70/* .debug_info header for a compilation unit
c906108c
SS
71 Because of alignment constraints, this structure has padding and cannot
72 be mapped directly onto the beginning of the .debug_info section. */
73typedef struct comp_unit_header
74 {
75 unsigned int length; /* length of the .debug_info
76 contribution */
77 unsigned short version; /* version number -- 2 for DWARF
78 version 2 */
79 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
80 unsigned char addr_size; /* byte size of an address -- 4 */
81 }
82_COMP_UNIT_HEADER;
83#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 84#endif
c906108c 85
c906108c
SS
86/* .debug_line statement program prologue
87 Because of alignment constraints, this structure has padding and cannot
88 be mapped directly onto the beginning of the .debug_info section. */
89typedef struct statement_prologue
90 {
91 unsigned int total_length; /* byte length of the statement
92 information */
93 unsigned short version; /* version number -- 2 for DWARF
94 version 2 */
95 unsigned int prologue_length; /* # bytes between prologue &
96 stmt program */
97 unsigned char minimum_instruction_length; /* byte size of
98 smallest instr */
99 unsigned char default_is_stmt; /* initial value of is_stmt
100 register */
101 char line_base;
102 unsigned char line_range;
103 unsigned char opcode_base; /* number assigned to first special
104 opcode */
105 unsigned char *standard_opcode_lengths;
106 }
107_STATEMENT_PROLOGUE;
108
d97bc12b
DE
109/* When non-zero, dump DIEs after they are read in. */
110static int dwarf2_die_debug = 0;
111
dce234bc
PP
112static int pagesize;
113
df8a16a1
DJ
114/* When set, the file that we're processing is known to have debugging
115 info for C++ namespaces. GCC 3.3.x did not produce this information,
116 but later versions do. */
117
118static int processing_has_namespace_info;
119
6502dd73
DJ
120static const struct objfile_data *dwarf2_objfile_data_key;
121
dce234bc
PP
122struct dwarf2_section_info
123{
124 asection *asection;
125 gdb_byte *buffer;
126 bfd_size_type size;
127 int was_mmapped;
be391dca
TT
128 /* True if we have tried to read this section. */
129 int readin;
dce234bc
PP
130};
131
6502dd73
DJ
132struct dwarf2_per_objfile
133{
dce234bc
PP
134 struct dwarf2_section_info info;
135 struct dwarf2_section_info abbrev;
136 struct dwarf2_section_info line;
dce234bc
PP
137 struct dwarf2_section_info loc;
138 struct dwarf2_section_info macinfo;
139 struct dwarf2_section_info str;
140 struct dwarf2_section_info ranges;
348e048f 141 struct dwarf2_section_info types;
dce234bc
PP
142 struct dwarf2_section_info frame;
143 struct dwarf2_section_info eh_frame;
ae038cb0 144
be391dca
TT
145 /* Back link. */
146 struct objfile *objfile;
147
10b3939b
DJ
148 /* A list of all the compilation units. This is used to locate
149 the target compilation unit of a particular reference. */
ae038cb0
DJ
150 struct dwarf2_per_cu_data **all_comp_units;
151
152 /* The number of compilation units in ALL_COMP_UNITS. */
153 int n_comp_units;
154
155 /* A chain of compilation units that are currently read in, so that
156 they can be freed later. */
157 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 158
348e048f
DE
159 /* A table mapping .debug_types signatures to its signatured_type entry.
160 This is NULL if the .debug_types section hasn't been read in yet. */
161 htab_t signatured_types;
162
72dca2f5
FR
163 /* A flag indicating wether this objfile has a section loaded at a
164 VMA of 0. */
165 int has_section_at_zero;
6502dd73
DJ
166};
167
168static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
169
170/* names of the debugging sections */
171
233a11ab
CS
172/* Note that if the debugging section has been compressed, it might
173 have a name like .zdebug_info. */
174
175#define INFO_SECTION "debug_info"
176#define ABBREV_SECTION "debug_abbrev"
177#define LINE_SECTION "debug_line"
233a11ab
CS
178#define LOC_SECTION "debug_loc"
179#define MACINFO_SECTION "debug_macinfo"
180#define STR_SECTION "debug_str"
181#define RANGES_SECTION "debug_ranges"
348e048f 182#define TYPES_SECTION "debug_types"
233a11ab
CS
183#define FRAME_SECTION "debug_frame"
184#define EH_FRAME_SECTION "eh_frame"
c906108c
SS
185
186/* local data types */
187
57349743
JB
188/* We hold several abbreviation tables in memory at the same time. */
189#ifndef ABBREV_HASH_SIZE
190#define ABBREV_HASH_SIZE 121
191#endif
192
107d2387
AC
193/* The data in a compilation unit header, after target2host
194 translation, looks like this. */
c906108c 195struct comp_unit_head
a738430d 196{
c764a876 197 unsigned int length;
a738430d 198 short version;
a738430d
MK
199 unsigned char addr_size;
200 unsigned char signed_addr_p;
9cbfa09e 201 unsigned int abbrev_offset;
57349743 202
a738430d
MK
203 /* Size of file offsets; either 4 or 8. */
204 unsigned int offset_size;
57349743 205
a738430d
MK
206 /* Size of the length field; either 4 or 12. */
207 unsigned int initial_length_size;
57349743 208
a738430d
MK
209 /* Offset to the first byte of this compilation unit header in the
210 .debug_info section, for resolving relative reference dies. */
211 unsigned int offset;
57349743 212
d00adf39
DE
213 /* Offset to first die in this cu from the start of the cu.
214 This will be the first byte following the compilation unit header. */
215 unsigned int first_die_offset;
a738430d 216};
c906108c 217
e7c27a73
DJ
218/* Internal state when decoding a particular compilation unit. */
219struct dwarf2_cu
220{
221 /* The objfile containing this compilation unit. */
222 struct objfile *objfile;
223
d00adf39 224 /* The header of the compilation unit. */
e7c27a73 225 struct comp_unit_head header;
e142c38c 226
d00adf39
DE
227 /* Base address of this compilation unit. */
228 CORE_ADDR base_address;
229
230 /* Non-zero if base_address has been set. */
231 int base_known;
232
e142c38c
DJ
233 struct function_range *first_fn, *last_fn, *cached_fn;
234
235 /* The language we are debugging. */
236 enum language language;
237 const struct language_defn *language_defn;
238
b0f35d58
DL
239 const char *producer;
240
e142c38c
DJ
241 /* The generic symbol table building routines have separate lists for
242 file scope symbols and all all other scopes (local scopes). So
243 we need to select the right one to pass to add_symbol_to_list().
244 We do it by keeping a pointer to the correct list in list_in_scope.
245
246 FIXME: The original dwarf code just treated the file scope as the
247 first local scope, and all other local scopes as nested local
248 scopes, and worked fine. Check to see if we really need to
249 distinguish these in buildsym.c. */
250 struct pending **list_in_scope;
251
f3dd6933
DJ
252 /* DWARF abbreviation table associated with this compilation unit. */
253 struct abbrev_info **dwarf2_abbrevs;
254
255 /* Storage for the abbrev table. */
256 struct obstack abbrev_obstack;
72bf9492
DJ
257
258 /* Hash table holding all the loaded partial DIEs. */
259 htab_t partial_dies;
260
261 /* Storage for things with the same lifetime as this read-in compilation
262 unit, including partial DIEs. */
263 struct obstack comp_unit_obstack;
264
ae038cb0
DJ
265 /* When multiple dwarf2_cu structures are living in memory, this field
266 chains them all together, so that they can be released efficiently.
267 We will probably also want a generation counter so that most-recently-used
268 compilation units are cached... */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* Backchain to our per_cu entry if the tree has been built. */
272 struct dwarf2_per_cu_data *per_cu;
273
f792889a
DJ
274 /* Pointer to the die -> type map. Although it is stored
275 permanently in per_cu, we copy it here to avoid double
276 indirection. */
277 htab_t type_hash;
278
ae038cb0
DJ
279 /* How many compilation units ago was this CU last referenced? */
280 int last_used;
281
10b3939b 282 /* A hash table of die offsets for following references. */
51545339 283 htab_t die_hash;
10b3939b
DJ
284
285 /* Full DIEs if read in. */
286 struct die_info *dies;
287
288 /* A set of pointers to dwarf2_per_cu_data objects for compilation
289 units referenced by this one. Only set during full symbol processing;
290 partial symbol tables do not have dependencies. */
291 htab_t dependencies;
292
cb1df416
DJ
293 /* Header data from the line table, during full symbol processing. */
294 struct line_header *line_header;
295
ae038cb0
DJ
296 /* Mark used when releasing cached dies. */
297 unsigned int mark : 1;
298
299 /* This flag will be set if this compilation unit might include
300 inter-compilation-unit references. */
301 unsigned int has_form_ref_addr : 1;
302
72bf9492
DJ
303 /* This flag will be set if this compilation unit includes any
304 DW_TAG_namespace DIEs. If we know that there are explicit
305 DIEs for namespaces, we don't need to try to infer them
306 from mangled names. */
307 unsigned int has_namespace_info : 1;
e7c27a73
DJ
308};
309
10b3939b
DJ
310/* Persistent data held for a compilation unit, even when not
311 processing it. We put a pointer to this structure in the
312 read_symtab_private field of the psymtab. If we encounter
313 inter-compilation-unit references, we also maintain a sorted
314 list of all compilation units. */
315
ae038cb0
DJ
316struct dwarf2_per_cu_data
317{
348e048f 318 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 319 bytes should suffice to store the length of any compilation unit
45452591
DE
320 - if it doesn't, GDB will fall over anyway.
321 NOTE: Unlike comp_unit_head.length, this length includes
322 initial_length_size. */
c764a876 323 unsigned int offset;
348e048f 324 unsigned int length : 29;
ae038cb0
DJ
325
326 /* Flag indicating this compilation unit will be read in before
327 any of the current compilation units are processed. */
c764a876 328 unsigned int queued : 1;
ae038cb0 329
5afb4e99
DJ
330 /* This flag will be set if we need to load absolutely all DIEs
331 for this compilation unit, instead of just the ones we think
332 are interesting. It gets set if we look for a DIE in the
333 hash table and don't find it. */
334 unsigned int load_all_dies : 1;
335
348e048f
DE
336 /* Non-zero if this CU is from .debug_types.
337 Otherwise it's from .debug_info. */
338 unsigned int from_debug_types : 1;
339
17ea53c3
JK
340 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
341 of the CU cache it gets reset to NULL again. */
ae038cb0 342 struct dwarf2_cu *cu;
1c379e20
DJ
343
344 /* If full symbols for this CU have been read in, then this field
345 holds a map of DIE offsets to types. It isn't always possible
346 to reconstruct this information later, so we have to preserve
347 it. */
1c379e20 348 htab_t type_hash;
10b3939b 349
31ffec48
DJ
350 /* The partial symbol table associated with this compilation unit,
351 or NULL for partial units (which do not have an associated
352 symtab). */
10b3939b 353 struct partial_symtab *psymtab;
ae038cb0
DJ
354};
355
348e048f
DE
356/* Entry in the signatured_types hash table. */
357
358struct signatured_type
359{
360 ULONGEST signature;
361
362 /* Offset in .debug_types of the TU (type_unit) for this type. */
363 unsigned int offset;
364
365 /* Offset in .debug_types of the type defined by this TU. */
366 unsigned int type_offset;
367
368 /* The CU(/TU) of this type. */
369 struct dwarf2_per_cu_data per_cu;
370};
371
93311388
DE
372/* Struct used to pass misc. parameters to read_die_and_children, et. al.
373 which are used for both .debug_info and .debug_types dies.
374 All parameters here are unchanging for the life of the call.
375 This struct exists to abstract away the constant parameters of
376 die reading. */
377
378struct die_reader_specs
379{
380 /* The bfd of this objfile. */
381 bfd* abfd;
382
383 /* The CU of the DIE we are parsing. */
384 struct dwarf2_cu *cu;
385
386 /* Pointer to start of section buffer.
387 This is either the start of .debug_info or .debug_types. */
388 const gdb_byte *buffer;
389};
390
debd256d
JB
391/* The line number information for a compilation unit (found in the
392 .debug_line section) begins with a "statement program header",
393 which contains the following information. */
394struct line_header
395{
396 unsigned int total_length;
397 unsigned short version;
398 unsigned int header_length;
399 unsigned char minimum_instruction_length;
2dc7f7b3 400 unsigned char maximum_ops_per_instruction;
debd256d
JB
401 unsigned char default_is_stmt;
402 int line_base;
403 unsigned char line_range;
404 unsigned char opcode_base;
405
406 /* standard_opcode_lengths[i] is the number of operands for the
407 standard opcode whose value is i. This means that
408 standard_opcode_lengths[0] is unused, and the last meaningful
409 element is standard_opcode_lengths[opcode_base - 1]. */
410 unsigned char *standard_opcode_lengths;
411
412 /* The include_directories table. NOTE! These strings are not
413 allocated with xmalloc; instead, they are pointers into
414 debug_line_buffer. If you try to free them, `free' will get
415 indigestion. */
416 unsigned int num_include_dirs, include_dirs_size;
417 char **include_dirs;
418
419 /* The file_names table. NOTE! These strings are not allocated
420 with xmalloc; instead, they are pointers into debug_line_buffer.
421 Don't try to free them directly. */
422 unsigned int num_file_names, file_names_size;
423 struct file_entry
c906108c 424 {
debd256d
JB
425 char *name;
426 unsigned int dir_index;
427 unsigned int mod_time;
428 unsigned int length;
aaa75496 429 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 430 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
431 } *file_names;
432
433 /* The start and end of the statement program following this
6502dd73 434 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 435 gdb_byte *statement_program_start, *statement_program_end;
debd256d 436};
c906108c
SS
437
438/* When we construct a partial symbol table entry we only
439 need this much information. */
440struct partial_die_info
441 {
72bf9492 442 /* Offset of this DIE. */
c906108c 443 unsigned int offset;
72bf9492
DJ
444
445 /* DWARF-2 tag for this DIE. */
446 ENUM_BITFIELD(dwarf_tag) tag : 16;
447
72bf9492
DJ
448 /* Assorted flags describing the data found in this DIE. */
449 unsigned int has_children : 1;
450 unsigned int is_external : 1;
451 unsigned int is_declaration : 1;
452 unsigned int has_type : 1;
453 unsigned int has_specification : 1;
454 unsigned int has_pc_info : 1;
455
456 /* Flag set if the SCOPE field of this structure has been
457 computed. */
458 unsigned int scope_set : 1;
459
fa4028e9
JB
460 /* Flag set if the DIE has a byte_size attribute. */
461 unsigned int has_byte_size : 1;
462
72bf9492 463 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 464 sometimes a default name for unnamed DIEs. */
c906108c 465 char *name;
72bf9492
DJ
466
467 /* The scope to prepend to our children. This is generally
468 allocated on the comp_unit_obstack, so will disappear
469 when this compilation unit leaves the cache. */
470 char *scope;
471
472 /* The location description associated with this DIE, if any. */
473 struct dwarf_block *locdesc;
474
475 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
476 CORE_ADDR lowpc;
477 CORE_ADDR highpc;
72bf9492 478
93311388 479 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 480 DW_AT_sibling, if any. */
fe1b8b76 481 gdb_byte *sibling;
72bf9492
DJ
482
483 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
484 DW_AT_specification (or DW_AT_abstract_origin or
485 DW_AT_extension). */
486 unsigned int spec_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
491 };
492
493/* This data structure holds the information of an abbrev. */
494struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
c906108c
SS
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504struct attr_abbrev
505 {
9d25dd43
DE
506 ENUM_BITFIELD(dwarf_attribute) name : 16;
507 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
508 };
509
b60c80d6
DJ
510/* Attributes have a name and a value */
511struct attribute
512 {
9d25dd43 513 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
514 ENUM_BITFIELD(dwarf_form) form : 15;
515
516 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
517 field should be in u.str (existing only for DW_STRING) but it is kept
518 here for better struct attribute alignment. */
519 unsigned int string_is_canonical : 1;
520
b60c80d6
DJ
521 union
522 {
523 char *str;
524 struct dwarf_block *blk;
43bbcdc2
PH
525 ULONGEST unsnd;
526 LONGEST snd;
b60c80d6 527 CORE_ADDR addr;
348e048f 528 struct signatured_type *signatured_type;
b60c80d6
DJ
529 }
530 u;
531 };
532
c906108c
SS
533/* This data structure holds a complete die structure. */
534struct die_info
535 {
76815b17
DE
536 /* DWARF-2 tag for this DIE. */
537 ENUM_BITFIELD(dwarf_tag) tag : 16;
538
539 /* Number of attributes */
540 unsigned short num_attrs;
541
542 /* Abbrev number */
543 unsigned int abbrev;
544
93311388 545 /* Offset in .debug_info or .debug_types section. */
76815b17 546 unsigned int offset;
78ba4af6
JB
547
548 /* The dies in a compilation unit form an n-ary tree. PARENT
549 points to this die's parent; CHILD points to the first child of
550 this node; and all the children of a given node are chained
551 together via their SIBLING fields, terminated by a die whose
552 tag is zero. */
639d11d3
DC
553 struct die_info *child; /* Its first child, if any. */
554 struct die_info *sibling; /* Its next sibling, if any. */
555 struct die_info *parent; /* Its parent, if any. */
c906108c 556
b60c80d6
DJ
557 /* An array of attributes, with NUM_ATTRS elements. There may be
558 zero, but it's not common and zero-sized arrays are not
559 sufficiently portable C. */
560 struct attribute attrs[1];
c906108c
SS
561 };
562
5fb290d7
DJ
563struct function_range
564{
565 const char *name;
566 CORE_ADDR lowpc, highpc;
567 int seen_line;
568 struct function_range *next;
569};
570
c906108c
SS
571/* Get at parts of an attribute structure */
572
573#define DW_STRING(attr) ((attr)->u.str)
8285870a 574#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
575#define DW_UNSND(attr) ((attr)->u.unsnd)
576#define DW_BLOCK(attr) ((attr)->u.blk)
577#define DW_SND(attr) ((attr)->u.snd)
578#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 579#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
580
581/* Blocks are a bunch of untyped bytes. */
582struct dwarf_block
583 {
584 unsigned int size;
fe1b8b76 585 gdb_byte *data;
c906108c
SS
586 };
587
c906108c
SS
588#ifndef ATTR_ALLOC_CHUNK
589#define ATTR_ALLOC_CHUNK 4
590#endif
591
c906108c
SS
592/* Allocate fields for structs, unions and enums in this size. */
593#ifndef DW_FIELD_ALLOC_CHUNK
594#define DW_FIELD_ALLOC_CHUNK 4
595#endif
596
c906108c
SS
597/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
598 but this would require a corresponding change in unpack_field_as_long
599 and friends. */
600static int bits_per_byte = 8;
601
602/* The routines that read and process dies for a C struct or C++ class
603 pass lists of data member fields and lists of member function fields
604 in an instance of a field_info structure, as defined below. */
605struct field_info
c5aa993b
JM
606 {
607 /* List of data member and baseclasses fields. */
608 struct nextfield
609 {
610 struct nextfield *next;
611 int accessibility;
612 int virtuality;
613 struct field field;
614 }
7d0ccb61 615 *fields, *baseclasses;
c906108c 616
7d0ccb61 617 /* Number of fields (including baseclasses). */
c5aa993b 618 int nfields;
c906108c 619
c5aa993b
JM
620 /* Number of baseclasses. */
621 int nbaseclasses;
c906108c 622
c5aa993b
JM
623 /* Set if the accesibility of one of the fields is not public. */
624 int non_public_fields;
c906108c 625
c5aa993b
JM
626 /* Member function fields array, entries are allocated in the order they
627 are encountered in the object file. */
628 struct nextfnfield
629 {
630 struct nextfnfield *next;
631 struct fn_field fnfield;
632 }
633 *fnfields;
c906108c 634
c5aa993b
JM
635 /* Member function fieldlist array, contains name of possibly overloaded
636 member function, number of overloaded member functions and a pointer
637 to the head of the member function field chain. */
638 struct fnfieldlist
639 {
640 char *name;
641 int length;
642 struct nextfnfield *head;
643 }
644 *fnfieldlists;
c906108c 645
c5aa993b
JM
646 /* Number of entries in the fnfieldlists array. */
647 int nfnfields;
98751a41
JK
648
649 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
650 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
651 struct typedef_field_list
652 {
653 struct typedef_field field;
654 struct typedef_field_list *next;
655 }
656 *typedef_field_list;
657 unsigned typedef_field_list_count;
c5aa993b 658 };
c906108c 659
10b3939b
DJ
660/* One item on the queue of compilation units to read in full symbols
661 for. */
662struct dwarf2_queue_item
663{
664 struct dwarf2_per_cu_data *per_cu;
665 struct dwarf2_queue_item *next;
666};
667
668/* The current queue. */
669static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
670
ae038cb0
DJ
671/* Loaded secondary compilation units are kept in memory until they
672 have not been referenced for the processing of this many
673 compilation units. Set this to zero to disable caching. Cache
674 sizes of up to at least twenty will improve startup time for
675 typical inter-CU-reference binaries, at an obvious memory cost. */
676static int dwarf2_max_cache_age = 5;
920d2a44
AC
677static void
678show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
679 struct cmd_list_element *c, const char *value)
680{
681 fprintf_filtered (file, _("\
682The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
683 value);
684}
685
ae038cb0 686
c906108c
SS
687/* Various complaints about symbol reading that don't abort the process */
688
4d3c2250
KB
689static void
690dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 691{
4d3c2250 692 complaint (&symfile_complaints,
e2e0b3e5 693 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
694}
695
25e43795
DJ
696static void
697dwarf2_debug_line_missing_file_complaint (void)
698{
699 complaint (&symfile_complaints,
700 _(".debug_line section has line data without a file"));
701}
702
59205f5a
JB
703static void
704dwarf2_debug_line_missing_end_sequence_complaint (void)
705{
706 complaint (&symfile_complaints,
707 _(".debug_line section has line program sequence without an end"));
708}
709
4d3c2250
KB
710static void
711dwarf2_complex_location_expr_complaint (void)
2e276125 712{
e2e0b3e5 713 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
714}
715
4d3c2250
KB
716static void
717dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
718 int arg3)
2e276125 719{
4d3c2250 720 complaint (&symfile_complaints,
e2e0b3e5 721 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
722 arg2, arg3);
723}
724
725static void
726dwarf2_macros_too_long_complaint (void)
2e276125 727{
4d3c2250 728 complaint (&symfile_complaints,
e2e0b3e5 729 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
730}
731
732static void
733dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 734{
4d3c2250 735 complaint (&symfile_complaints,
e2e0b3e5 736 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
737 arg1);
738}
739
740static void
741dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 742{
4d3c2250 743 complaint (&symfile_complaints,
e2e0b3e5 744 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 745}
c906108c 746
c906108c
SS
747/* local function prototypes */
748
4efb68b1 749static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 750
aaa75496
JB
751static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
752 struct objfile *);
753
754static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
d85a05f0 755 struct die_info *,
aaa75496
JB
756 struct partial_symtab *);
757
c67a9c90 758static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 759
72bf9492
DJ
760static void scan_partial_symbols (struct partial_die_info *,
761 CORE_ADDR *, CORE_ADDR *,
5734ee8b 762 int, struct dwarf2_cu *);
c906108c 763
72bf9492
DJ
764static void add_partial_symbol (struct partial_die_info *,
765 struct dwarf2_cu *);
63d06c5c 766
72bf9492
DJ
767static void add_partial_namespace (struct partial_die_info *pdi,
768 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 769 int need_pc, struct dwarf2_cu *cu);
63d06c5c 770
5d7cb8df
JK
771static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
772 CORE_ADDR *highpc, int need_pc,
773 struct dwarf2_cu *cu);
774
72bf9492
DJ
775static void add_partial_enumeration (struct partial_die_info *enum_pdi,
776 struct dwarf2_cu *cu);
91c24f0a 777
bc30ff58
JB
778static void add_partial_subprogram (struct partial_die_info *pdi,
779 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 780 int need_pc, struct dwarf2_cu *cu);
bc30ff58 781
fe1b8b76 782static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
783 gdb_byte *buffer, gdb_byte *info_ptr,
784 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 785
a14ed312 786static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 787
a14ed312 788static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 789
e7c27a73 790static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 791
f3dd6933 792static void dwarf2_free_abbrev_table (void *);
c906108c 793
fe1b8b76 794static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 795 struct dwarf2_cu *);
72bf9492 796
57349743 797static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 798 struct dwarf2_cu *);
c906108c 799
93311388
DE
800static struct partial_die_info *load_partial_dies (bfd *,
801 gdb_byte *, gdb_byte *,
802 int, struct dwarf2_cu *);
72bf9492 803
fe1b8b76 804static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
805 struct abbrev_info *abbrev,
806 unsigned int, bfd *,
807 gdb_byte *, gdb_byte *,
808 struct dwarf2_cu *);
c906108c 809
c764a876 810static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 811 struct dwarf2_cu *);
72bf9492
DJ
812
813static void fixup_partial_die (struct partial_die_info *,
814 struct dwarf2_cu *);
815
fe1b8b76
JB
816static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
817 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 818
fe1b8b76
JB
819static gdb_byte *read_attribute_value (struct attribute *, unsigned,
820 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 821
fe1b8b76 822static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 823
fe1b8b76 824static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 825
fe1b8b76 826static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 827
fe1b8b76 828static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 829
93311388 830static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 831
fe1b8b76 832static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 833 unsigned int *);
c906108c 834
c764a876
DE
835static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
836
837static LONGEST read_checked_initial_length_and_offset
838 (bfd *, gdb_byte *, const struct comp_unit_head *,
839 unsigned int *, unsigned int *);
613e1657 840
fe1b8b76 841static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
842 unsigned int *);
843
844static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 845
fe1b8b76 846static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 847
fe1b8b76 848static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 849
fe1b8b76
JB
850static char *read_indirect_string (bfd *, gdb_byte *,
851 const struct comp_unit_head *,
852 unsigned int *);
4bdf3d34 853
fe1b8b76 854static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 855
fe1b8b76 856static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 857
fe1b8b76 858static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 859
e142c38c 860static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 861
e142c38c
DJ
862static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
863 struct dwarf2_cu *);
c906108c 864
348e048f
DE
865static struct attribute *dwarf2_attr_no_follow (struct die_info *,
866 unsigned int,
867 struct dwarf2_cu *);
868
05cf31d1
JB
869static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
870 struct dwarf2_cu *cu);
871
e142c38c 872static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 873
e142c38c 874static struct die_info *die_specification (struct die_info *die,
f2f0e013 875 struct dwarf2_cu **);
63d06c5c 876
debd256d
JB
877static void free_line_header (struct line_header *lh);
878
aaa75496
JB
879static void add_file_name (struct line_header *, char *, unsigned int,
880 unsigned int, unsigned int);
881
debd256d
JB
882static struct line_header *(dwarf_decode_line_header
883 (unsigned int offset,
e7c27a73 884 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
885
886static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 887 struct dwarf2_cu *, struct partial_symtab *);
c906108c 888
4f1520fb 889static void dwarf2_start_subfile (char *, char *, char *);
c906108c 890
a14ed312 891static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 892 struct dwarf2_cu *);
c906108c 893
a14ed312 894static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 895 struct dwarf2_cu *);
c906108c 896
2df3850c
JM
897static void dwarf2_const_value_data (struct attribute *attr,
898 struct symbol *sym,
899 int bits);
900
e7c27a73 901static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 902
b4ba55a1
JB
903static int need_gnat_info (struct dwarf2_cu *);
904
905static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
906
907static void set_descriptive_type (struct type *, struct die_info *,
908 struct dwarf2_cu *);
909
e7c27a73
DJ
910static struct type *die_containing_type (struct die_info *,
911 struct dwarf2_cu *);
c906108c 912
e7c27a73 913static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 914
f792889a 915static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 916
086ed43d 917static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 918
6e70227d 919static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
920 const char *suffix, int physname,
921 struct dwarf2_cu *cu);
63d06c5c 922
e7c27a73 923static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 924
348e048f
DE
925static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
926
e7c27a73 927static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 928
e7c27a73 929static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 930
ff013f42
JK
931static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
932 struct dwarf2_cu *, struct partial_symtab *);
933
a14ed312 934static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
935 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
936 struct partial_symtab *);
c906108c 937
fae299cd
DC
938static void get_scope_pc_bounds (struct die_info *,
939 CORE_ADDR *, CORE_ADDR *,
940 struct dwarf2_cu *);
941
801e3a5b
JB
942static void dwarf2_record_block_ranges (struct die_info *, struct block *,
943 CORE_ADDR, struct dwarf2_cu *);
944
a14ed312 945static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 946 struct dwarf2_cu *);
c906108c 947
a14ed312 948static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 949 struct type *, struct dwarf2_cu *);
c906108c 950
a14ed312 951static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 952 struct die_info *, struct type *,
e7c27a73 953 struct dwarf2_cu *);
c906108c 954
a14ed312 955static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 956 struct type *, struct dwarf2_cu *);
c906108c 957
134d01f1 958static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 959
e7c27a73 960static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 961
e7c27a73 962static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 963
5d7cb8df
JK
964static void read_module (struct die_info *die, struct dwarf2_cu *cu);
965
27aa8d6a
SW
966static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
967
f55ee35c
JK
968static struct type *read_module_type (struct die_info *die,
969 struct dwarf2_cu *cu);
970
38d518c9 971static const char *namespace_name (struct die_info *die,
e142c38c 972 int *is_anonymous, struct dwarf2_cu *);
38d518c9 973
134d01f1 974static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 975
e7c27a73 976static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 977
6e70227d 978static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
979 struct dwarf2_cu *);
980
93311388 981static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 982
93311388
DE
983static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
984 gdb_byte *info_ptr,
d97bc12b
DE
985 gdb_byte **new_info_ptr,
986 struct die_info *parent);
987
93311388
DE
988static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
989 gdb_byte *info_ptr,
fe1b8b76 990 gdb_byte **new_info_ptr,
639d11d3
DC
991 struct die_info *parent);
992
93311388
DE
993static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
994 gdb_byte *info_ptr,
fe1b8b76 995 gdb_byte **new_info_ptr,
639d11d3
DC
996 struct die_info *parent);
997
93311388
DE
998static gdb_byte *read_full_die (const struct die_reader_specs *reader,
999 struct die_info **, gdb_byte *,
1000 int *);
1001
e7c27a73 1002static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1003
71c25dea
TT
1004static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1005 struct obstack *);
1006
e142c38c 1007static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1008
e142c38c 1009static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1010 struct dwarf2_cu **);
9219021c 1011
a14ed312 1012static char *dwarf_tag_name (unsigned int);
c906108c 1013
a14ed312 1014static char *dwarf_attr_name (unsigned int);
c906108c 1015
a14ed312 1016static char *dwarf_form_name (unsigned int);
c906108c 1017
a14ed312 1018static char *dwarf_bool_name (unsigned int);
c906108c 1019
a14ed312 1020static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1021
1022#if 0
a14ed312 1023static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1024#endif
1025
f9aca02d 1026static struct die_info *sibling_die (struct die_info *);
c906108c 1027
d97bc12b
DE
1028static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1029
1030static void dump_die_for_error (struct die_info *);
1031
1032static void dump_die_1 (struct ui_file *, int level, int max_level,
1033 struct die_info *);
c906108c 1034
d97bc12b 1035/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1036
51545339 1037static void store_in_ref_table (struct die_info *,
10b3939b 1038 struct dwarf2_cu *);
c906108c 1039
93311388
DE
1040static int is_ref_attr (struct attribute *);
1041
c764a876 1042static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1043
43bbcdc2 1044static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1045
348e048f
DE
1046static struct die_info *follow_die_ref_or_sig (struct die_info *,
1047 struct attribute *,
1048 struct dwarf2_cu **);
1049
10b3939b
DJ
1050static struct die_info *follow_die_ref (struct die_info *,
1051 struct attribute *,
f2f0e013 1052 struct dwarf2_cu **);
c906108c 1053
348e048f
DE
1054static struct die_info *follow_die_sig (struct die_info *,
1055 struct attribute *,
1056 struct dwarf2_cu **);
1057
1058static void read_signatured_type_at_offset (struct objfile *objfile,
1059 unsigned int offset);
1060
1061static void read_signatured_type (struct objfile *,
1062 struct signatured_type *type_sig);
1063
c906108c
SS
1064/* memory allocation interface */
1065
7b5a2f43 1066static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1067
f3dd6933 1068static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1069
b60c80d6 1070static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1071
e142c38c 1072static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1073
e142c38c
DJ
1074static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1075 struct dwarf2_cu *);
5fb290d7 1076
2e276125 1077static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1078 char *, bfd *, struct dwarf2_cu *);
2e276125 1079
8e19ed76
PS
1080static int attr_form_is_block (struct attribute *);
1081
3690dd37
JB
1082static int attr_form_is_section_offset (struct attribute *);
1083
1084static int attr_form_is_constant (struct attribute *);
1085
93e7bd98
DJ
1086static void dwarf2_symbol_mark_computed (struct attribute *attr,
1087 struct symbol *sym,
1088 struct dwarf2_cu *cu);
4c2df51b 1089
93311388
DE
1090static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1091 struct abbrev_info *abbrev,
1092 struct dwarf2_cu *cu);
4bb7a0a7 1093
72bf9492
DJ
1094static void free_stack_comp_unit (void *);
1095
72bf9492
DJ
1096static hashval_t partial_die_hash (const void *item);
1097
1098static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1099
ae038cb0 1100static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1101 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1102
1103static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1104 (unsigned int offset, struct objfile *objfile);
ae038cb0 1105
93311388
DE
1106static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1107
ae038cb0
DJ
1108static void free_one_comp_unit (void *);
1109
1110static void free_cached_comp_units (void *);
1111
1112static void age_cached_comp_units (void);
1113
1114static void free_one_cached_comp_unit (void *);
1115
f792889a
DJ
1116static struct type *set_die_type (struct die_info *, struct type *,
1117 struct dwarf2_cu *);
1c379e20 1118
ae038cb0
DJ
1119static void create_all_comp_units (struct objfile *);
1120
93311388
DE
1121static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1122 struct objfile *);
10b3939b
DJ
1123
1124static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1125
1126static void dwarf2_add_dependence (struct dwarf2_cu *,
1127 struct dwarf2_per_cu_data *);
1128
ae038cb0
DJ
1129static void dwarf2_mark (struct dwarf2_cu *);
1130
1131static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1132
f792889a 1133static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1134
c906108c
SS
1135/* Try to locate the sections we need for DWARF 2 debugging
1136 information and return true if we have enough to do something. */
1137
1138int
6502dd73 1139dwarf2_has_info (struct objfile *objfile)
c906108c 1140{
be391dca
TT
1141 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1142 if (!dwarf2_per_objfile)
1143 {
1144 /* Initialize per-objfile state. */
1145 struct dwarf2_per_objfile *data
1146 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1147
be391dca
TT
1148 memset (data, 0, sizeof (*data));
1149 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1150 dwarf2_per_objfile = data;
6502dd73 1151
be391dca
TT
1152 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1153 dwarf2_per_objfile->objfile = objfile;
1154 }
1155 return (dwarf2_per_objfile->info.asection != NULL
1156 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1157}
1158
233a11ab
CS
1159/* When loading sections, we can either look for ".<name>", or for
1160 * ".z<name>", which indicates a compressed section. */
1161
1162static int
dce234bc 1163section_is_p (const char *section_name, const char *name)
233a11ab 1164{
dce234bc
PP
1165 return (section_name[0] == '.'
1166 && (strcmp (section_name + 1, name) == 0
1167 || (section_name[1] == 'z'
1168 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1169}
1170
c906108c
SS
1171/* This function is mapped across the sections and remembers the
1172 offset and size of each of the debugging sections we are interested
1173 in. */
1174
1175static void
72dca2f5 1176dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1177{
dce234bc 1178 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1179 {
dce234bc
PP
1180 dwarf2_per_objfile->info.asection = sectp;
1181 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1182 }
dce234bc 1183 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1184 {
dce234bc
PP
1185 dwarf2_per_objfile->abbrev.asection = sectp;
1186 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1187 }
dce234bc 1188 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1189 {
dce234bc
PP
1190 dwarf2_per_objfile->line.asection = sectp;
1191 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1192 }
dce234bc 1193 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1194 {
dce234bc
PP
1195 dwarf2_per_objfile->loc.asection = sectp;
1196 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1197 }
dce234bc 1198 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1199 {
dce234bc
PP
1200 dwarf2_per_objfile->macinfo.asection = sectp;
1201 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1202 }
dce234bc 1203 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1204 {
dce234bc
PP
1205 dwarf2_per_objfile->str.asection = sectp;
1206 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1207 }
dce234bc 1208 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1209 {
dce234bc
PP
1210 dwarf2_per_objfile->frame.asection = sectp;
1211 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1212 }
dce234bc 1213 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1214 {
3799ccc6 1215 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1216
3799ccc6
EZ
1217 if (aflag & SEC_HAS_CONTENTS)
1218 {
dce234bc
PP
1219 dwarf2_per_objfile->eh_frame.asection = sectp;
1220 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1221 }
b6af0555 1222 }
dce234bc 1223 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1224 {
dce234bc
PP
1225 dwarf2_per_objfile->ranges.asection = sectp;
1226 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1227 }
348e048f
DE
1228 else if (section_is_p (sectp->name, TYPES_SECTION))
1229 {
1230 dwarf2_per_objfile->types.asection = sectp;
1231 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1232 }
dce234bc 1233
72dca2f5
FR
1234 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1235 && bfd_section_vma (abfd, sectp) == 0)
1236 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1237}
1238
dce234bc
PP
1239/* Decompress a section that was compressed using zlib. Store the
1240 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1241
1242static void
dce234bc
PP
1243zlib_decompress_section (struct objfile *objfile, asection *sectp,
1244 gdb_byte **outbuf, bfd_size_type *outsize)
1245{
1246 bfd *abfd = objfile->obfd;
1247#ifndef HAVE_ZLIB_H
1248 error (_("Support for zlib-compressed DWARF data (from '%s') "
1249 "is disabled in this copy of GDB"),
1250 bfd_get_filename (abfd));
1251#else
1252 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1253 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1254 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1255 bfd_size_type uncompressed_size;
1256 gdb_byte *uncompressed_buffer;
1257 z_stream strm;
1258 int rc;
1259 int header_size = 12;
1260
1261 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1262 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1263 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1264 bfd_get_filename (abfd));
1265
1266 /* Read the zlib header. In this case, it should be "ZLIB" followed
1267 by the uncompressed section size, 8 bytes in big-endian order. */
1268 if (compressed_size < header_size
1269 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1270 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1271 bfd_get_filename (abfd));
1272 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1273 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1274 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1275 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1276 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1277 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1278 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1279 uncompressed_size += compressed_buffer[11];
1280
1281 /* It is possible the section consists of several compressed
1282 buffers concatenated together, so we uncompress in a loop. */
1283 strm.zalloc = NULL;
1284 strm.zfree = NULL;
1285 strm.opaque = NULL;
1286 strm.avail_in = compressed_size - header_size;
1287 strm.next_in = (Bytef*) compressed_buffer + header_size;
1288 strm.avail_out = uncompressed_size;
1289 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1290 uncompressed_size);
1291 rc = inflateInit (&strm);
1292 while (strm.avail_in > 0)
1293 {
1294 if (rc != Z_OK)
1295 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1296 bfd_get_filename (abfd), rc);
1297 strm.next_out = ((Bytef*) uncompressed_buffer
1298 + (uncompressed_size - strm.avail_out));
1299 rc = inflate (&strm, Z_FINISH);
1300 if (rc != Z_STREAM_END)
1301 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1302 bfd_get_filename (abfd), rc);
1303 rc = inflateReset (&strm);
1304 }
1305 rc = inflateEnd (&strm);
1306 if (rc != Z_OK
1307 || strm.avail_out != 0)
1308 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1309 bfd_get_filename (abfd), rc);
1310
affddf13 1311 do_cleanups (cleanup);
dce234bc
PP
1312 *outbuf = uncompressed_buffer;
1313 *outsize = uncompressed_size;
1314#endif
233a11ab
CS
1315}
1316
dce234bc
PP
1317/* Read the contents of the section SECTP from object file specified by
1318 OBJFILE, store info about the section into INFO.
1319 If the section is compressed, uncompress it before returning. */
c906108c 1320
dce234bc
PP
1321static void
1322dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1323{
dce234bc
PP
1324 bfd *abfd = objfile->obfd;
1325 asection *sectp = info->asection;
1326 gdb_byte *buf, *retbuf;
1327 unsigned char header[4];
c906108c 1328
be391dca
TT
1329 if (info->readin)
1330 return;
dce234bc
PP
1331 info->buffer = NULL;
1332 info->was_mmapped = 0;
be391dca 1333 info->readin = 1;
188dd5d6 1334
dce234bc
PP
1335 if (info->asection == NULL || info->size == 0)
1336 return;
c906108c 1337
dce234bc
PP
1338 /* Check if the file has a 4-byte header indicating compression. */
1339 if (info->size > sizeof (header)
1340 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1341 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1342 {
1343 /* Upon decompression, update the buffer and its size. */
1344 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1345 {
1346 zlib_decompress_section (objfile, sectp, &info->buffer,
1347 &info->size);
1348 return;
1349 }
1350 }
4bdf3d34 1351
dce234bc
PP
1352#ifdef HAVE_MMAP
1353 if (pagesize == 0)
1354 pagesize = getpagesize ();
2e276125 1355
dce234bc
PP
1356 /* Only try to mmap sections which are large enough: we don't want to
1357 waste space due to fragmentation. Also, only try mmap for sections
1358 without relocations. */
1359
1360 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1361 {
1362 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1363 size_t map_length = info->size + sectp->filepos - pg_offset;
1364 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1365 MAP_PRIVATE, pg_offset);
1366
1367 if (retbuf != MAP_FAILED)
1368 {
1369 info->was_mmapped = 1;
1370 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1371#if HAVE_POSIX_MADVISE
1372 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1373#endif
dce234bc
PP
1374 return;
1375 }
1376 }
1377#endif
1378
1379 /* If we get here, we are a normal, not-compressed section. */
1380 info->buffer = buf
1381 = obstack_alloc (&objfile->objfile_obstack, info->size);
1382
1383 /* When debugging .o files, we may need to apply relocations; see
1384 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1385 We never compress sections in .o files, so we only need to
1386 try this when the section is not compressed. */
ac8035ab 1387 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1388 if (retbuf != NULL)
1389 {
1390 info->buffer = retbuf;
1391 return;
1392 }
1393
1394 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1395 || bfd_bread (buf, info->size, abfd) != info->size)
1396 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1397 bfd_get_filename (abfd));
1398}
1399
1400/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1401 SECTION_NAME. */
af34e669 1402
dce234bc
PP
1403void
1404dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1405 asection **sectp, gdb_byte **bufp,
1406 bfd_size_type *sizep)
1407{
1408 struct dwarf2_per_objfile *data
1409 = objfile_data (objfile, dwarf2_objfile_data_key);
1410 struct dwarf2_section_info *info;
a3b2a86b
TT
1411
1412 /* We may see an objfile without any DWARF, in which case we just
1413 return nothing. */
1414 if (data == NULL)
1415 {
1416 *sectp = NULL;
1417 *bufp = NULL;
1418 *sizep = 0;
1419 return;
1420 }
dce234bc
PP
1421 if (section_is_p (section_name, EH_FRAME_SECTION))
1422 info = &data->eh_frame;
1423 else if (section_is_p (section_name, FRAME_SECTION))
1424 info = &data->frame;
0d53c4c4 1425 else
dce234bc
PP
1426 gdb_assert (0);
1427
1428 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1429 /* We haven't read this section in yet. Do it now. */
1430 dwarf2_read_section (objfile, info);
1431
1432 *sectp = info->asection;
1433 *bufp = info->buffer;
1434 *sizep = info->size;
1435}
1436
1437/* Build a partial symbol table. */
1438
1439void
f29dff0a 1440dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 1441{
f29dff0a 1442 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
1443 {
1444 init_psymbol_list (objfile, 1024);
1445 }
1446
d146bf1e 1447 dwarf2_build_psymtabs_hard (objfile);
c906108c 1448}
c906108c 1449
45452591
DE
1450/* Return TRUE if OFFSET is within CU_HEADER. */
1451
1452static inline int
1453offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1454{
1455 unsigned int bottom = cu_header->offset;
1456 unsigned int top = (cu_header->offset
1457 + cu_header->length
1458 + cu_header->initial_length_size);
9a619af0 1459
45452591
DE
1460 return (offset >= bottom && offset < top);
1461}
1462
93311388
DE
1463/* Read in the comp unit header information from the debug_info at info_ptr.
1464 NOTE: This leaves members offset, first_die_offset to be filled in
1465 by the caller. */
107d2387 1466
fe1b8b76 1467static gdb_byte *
107d2387 1468read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1469 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1470{
1471 int signed_addr;
891d2f0b 1472 unsigned int bytes_read;
c764a876
DE
1473
1474 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1475 cu_header->initial_length_size = bytes_read;
1476 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 1477 info_ptr += bytes_read;
107d2387
AC
1478 cu_header->version = read_2_bytes (abfd, info_ptr);
1479 info_ptr += 2;
613e1657 1480 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 1481 &bytes_read);
613e1657 1482 info_ptr += bytes_read;
107d2387
AC
1483 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1484 info_ptr += 1;
1485 signed_addr = bfd_get_sign_extend_vma (abfd);
1486 if (signed_addr < 0)
8e65ff28 1487 internal_error (__FILE__, __LINE__,
e2e0b3e5 1488 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 1489 cu_header->signed_addr_p = signed_addr;
c764a876 1490
107d2387
AC
1491 return info_ptr;
1492}
1493
fe1b8b76
JB
1494static gdb_byte *
1495partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 1496 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
1497 bfd *abfd)
1498{
fe1b8b76 1499 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1500
1501 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1502
2dc7f7b3 1503 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 1504 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
1505 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
1506 bfd_get_filename (abfd));
72bf9492 1507
dce234bc 1508 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
1509 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1510 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 1511 (long) header->abbrev_offset,
93311388 1512 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1513 bfd_get_filename (abfd));
1514
1515 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 1516 > buffer + buffer_size)
8a3fe4f8
AC
1517 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1518 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 1519 (long) header->length,
93311388 1520 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1521 bfd_get_filename (abfd));
1522
1523 return info_ptr;
1524}
1525
348e048f
DE
1526/* Read in the types comp unit header information from .debug_types entry at
1527 types_ptr. The result is a pointer to one past the end of the header. */
1528
1529static gdb_byte *
1530read_type_comp_unit_head (struct comp_unit_head *cu_header,
1531 ULONGEST *signature,
1532 gdb_byte *types_ptr, bfd *abfd)
1533{
348e048f
DE
1534 gdb_byte *initial_types_ptr = types_ptr;
1535
6e70227d 1536 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 1537 &dwarf2_per_objfile->types);
348e048f
DE
1538 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1539
1540 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1541
1542 *signature = read_8_bytes (abfd, types_ptr);
1543 types_ptr += 8;
1544 types_ptr += cu_header->offset_size;
1545 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1546
1547 return types_ptr;
1548}
1549
aaa75496
JB
1550/* Allocate a new partial symtab for file named NAME and mark this new
1551 partial symtab as being an include of PST. */
1552
1553static void
1554dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1555 struct objfile *objfile)
1556{
1557 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1558
1559 subpst->section_offsets = pst->section_offsets;
1560 subpst->textlow = 0;
1561 subpst->texthigh = 0;
1562
1563 subpst->dependencies = (struct partial_symtab **)
1564 obstack_alloc (&objfile->objfile_obstack,
1565 sizeof (struct partial_symtab *));
1566 subpst->dependencies[0] = pst;
1567 subpst->number_of_dependencies = 1;
1568
1569 subpst->globals_offset = 0;
1570 subpst->n_global_syms = 0;
1571 subpst->statics_offset = 0;
1572 subpst->n_static_syms = 0;
1573 subpst->symtab = NULL;
1574 subpst->read_symtab = pst->read_symtab;
1575 subpst->readin = 0;
1576
1577 /* No private part is necessary for include psymtabs. This property
1578 can be used to differentiate between such include psymtabs and
10b3939b 1579 the regular ones. */
58a9656e 1580 subpst->read_symtab_private = NULL;
aaa75496
JB
1581}
1582
1583/* Read the Line Number Program data and extract the list of files
1584 included by the source file represented by PST. Build an include
d85a05f0 1585 partial symtab for each of these included files. */
aaa75496
JB
1586
1587static void
1588dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 1589 struct die_info *die,
aaa75496
JB
1590 struct partial_symtab *pst)
1591{
1592 struct objfile *objfile = cu->objfile;
1593 bfd *abfd = objfile->obfd;
d85a05f0
DJ
1594 struct line_header *lh = NULL;
1595 struct attribute *attr;
aaa75496 1596
d85a05f0
DJ
1597 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1598 if (attr)
1599 {
1600 unsigned int line_offset = DW_UNSND (attr);
9a619af0 1601
d85a05f0
DJ
1602 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1603 }
aaa75496
JB
1604 if (lh == NULL)
1605 return; /* No linetable, so no includes. */
1606
1607 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1608
1609 free_line_header (lh);
1610}
1611
348e048f
DE
1612static hashval_t
1613hash_type_signature (const void *item)
1614{
1615 const struct signatured_type *type_sig = item;
9a619af0 1616
348e048f
DE
1617 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1618 return type_sig->signature;
1619}
1620
1621static int
1622eq_type_signature (const void *item_lhs, const void *item_rhs)
1623{
1624 const struct signatured_type *lhs = item_lhs;
1625 const struct signatured_type *rhs = item_rhs;
9a619af0 1626
348e048f
DE
1627 return lhs->signature == rhs->signature;
1628}
1629
1630/* Create the hash table of all entries in the .debug_types section.
1631 The result is zero if there is an error (e.g. missing .debug_types section),
1632 otherwise non-zero. */
1633
1634static int
1635create_debug_types_hash_table (struct objfile *objfile)
1636{
be391dca 1637 gdb_byte *info_ptr;
348e048f
DE
1638 htab_t types_htab;
1639
be391dca
TT
1640 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1641 info_ptr = dwarf2_per_objfile->types.buffer;
1642
348e048f
DE
1643 if (info_ptr == NULL)
1644 {
1645 dwarf2_per_objfile->signatured_types = NULL;
1646 return 0;
1647 }
1648
1649 types_htab = htab_create_alloc_ex (41,
1650 hash_type_signature,
1651 eq_type_signature,
1652 NULL,
1653 &objfile->objfile_obstack,
1654 hashtab_obstack_allocate,
1655 dummy_obstack_deallocate);
1656
1657 if (dwarf2_die_debug)
1658 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1659
1660 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1661 {
1662 unsigned int offset;
1663 unsigned int offset_size;
1664 unsigned int type_offset;
1665 unsigned int length, initial_length_size;
1666 unsigned short version;
1667 ULONGEST signature;
1668 struct signatured_type *type_sig;
1669 void **slot;
1670 gdb_byte *ptr = info_ptr;
1671
1672 offset = ptr - dwarf2_per_objfile->types.buffer;
1673
1674 /* We need to read the type's signature in order to build the hash
1675 table, but we don't need to read anything else just yet. */
1676
1677 /* Sanity check to ensure entire cu is present. */
1678 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1679 if (ptr + length + initial_length_size
1680 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1681 {
1682 complaint (&symfile_complaints,
1683 _("debug type entry runs off end of `.debug_types' section, ignored"));
1684 break;
1685 }
1686
1687 offset_size = initial_length_size == 4 ? 4 : 8;
1688 ptr += initial_length_size;
1689 version = bfd_get_16 (objfile->obfd, ptr);
1690 ptr += 2;
1691 ptr += offset_size; /* abbrev offset */
1692 ptr += 1; /* address size */
1693 signature = bfd_get_64 (objfile->obfd, ptr);
1694 ptr += 8;
1695 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1696
1697 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1698 memset (type_sig, 0, sizeof (*type_sig));
1699 type_sig->signature = signature;
1700 type_sig->offset = offset;
1701 type_sig->type_offset = type_offset;
1702
1703 slot = htab_find_slot (types_htab, type_sig, INSERT);
1704 gdb_assert (slot != NULL);
1705 *slot = type_sig;
1706
1707 if (dwarf2_die_debug)
1708 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1709 offset, phex (signature, sizeof (signature)));
1710
1711 info_ptr = info_ptr + initial_length_size + length;
1712 }
1713
1714 dwarf2_per_objfile->signatured_types = types_htab;
1715
1716 return 1;
1717}
1718
1719/* Lookup a signature based type.
1720 Returns NULL if SIG is not present in the table. */
1721
1722static struct signatured_type *
1723lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1724{
1725 struct signatured_type find_entry, *entry;
1726
1727 if (dwarf2_per_objfile->signatured_types == NULL)
1728 {
1729 complaint (&symfile_complaints,
1730 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1731 return 0;
1732 }
1733
1734 find_entry.signature = sig;
1735 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1736 return entry;
1737}
1738
d85a05f0
DJ
1739/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1740
1741static void
1742init_cu_die_reader (struct die_reader_specs *reader,
1743 struct dwarf2_cu *cu)
1744{
1745 reader->abfd = cu->objfile->obfd;
1746 reader->cu = cu;
1747 if (cu->per_cu->from_debug_types)
be391dca
TT
1748 {
1749 gdb_assert (dwarf2_per_objfile->types.readin);
1750 reader->buffer = dwarf2_per_objfile->types.buffer;
1751 }
d85a05f0 1752 else
be391dca
TT
1753 {
1754 gdb_assert (dwarf2_per_objfile->info.readin);
1755 reader->buffer = dwarf2_per_objfile->info.buffer;
1756 }
d85a05f0
DJ
1757}
1758
1759/* Find the base address of the compilation unit for range lists and
1760 location lists. It will normally be specified by DW_AT_low_pc.
1761 In DWARF-3 draft 4, the base address could be overridden by
1762 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1763 compilation units with discontinuous ranges. */
1764
1765static void
1766dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1767{
1768 struct attribute *attr;
1769
1770 cu->base_known = 0;
1771 cu->base_address = 0;
1772
1773 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1774 if (attr)
1775 {
1776 cu->base_address = DW_ADDR (attr);
1777 cu->base_known = 1;
1778 }
1779 else
1780 {
1781 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1782 if (attr)
1783 {
1784 cu->base_address = DW_ADDR (attr);
1785 cu->base_known = 1;
1786 }
1787 }
1788}
1789
348e048f
DE
1790/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1791 to combine the common parts.
93311388 1792 Process a compilation unit for a psymtab.
348e048f
DE
1793 BUFFER is a pointer to the beginning of the dwarf section buffer,
1794 either .debug_info or debug_types.
93311388
DE
1795 INFO_PTR is a pointer to the start of the CU.
1796 Returns a pointer to the next CU. */
aaa75496 1797
93311388
DE
1798static gdb_byte *
1799process_psymtab_comp_unit (struct objfile *objfile,
1800 struct dwarf2_per_cu_data *this_cu,
1801 gdb_byte *buffer, gdb_byte *info_ptr,
1802 unsigned int buffer_size)
c906108c 1803{
c906108c 1804 bfd *abfd = objfile->obfd;
93311388 1805 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 1806 struct die_info *comp_unit_die;
c906108c 1807 struct partial_symtab *pst;
5734ee8b 1808 CORE_ADDR baseaddr;
93311388
DE
1809 struct cleanup *back_to_inner;
1810 struct dwarf2_cu cu;
d85a05f0
DJ
1811 int has_children, has_pc_info;
1812 struct attribute *attr;
d85a05f0
DJ
1813 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1814 struct die_reader_specs reader_specs;
c906108c 1815
93311388
DE
1816 memset (&cu, 0, sizeof (cu));
1817 cu.objfile = objfile;
1818 obstack_init (&cu.comp_unit_obstack);
c906108c 1819
93311388 1820 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 1821
93311388
DE
1822 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1823 buffer, buffer_size,
1824 abfd);
10b3939b 1825
93311388
DE
1826 /* Complete the cu_header. */
1827 cu.header.offset = beg_of_comp_unit - buffer;
1828 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 1829
93311388 1830 cu.list_in_scope = &file_symbols;
af703f96 1831
328c9494
DJ
1832 /* If this compilation unit was already read in, free the
1833 cached copy in order to read it in again. This is
1834 necessary because we skipped some symbols when we first
1835 read in the compilation unit (see load_partial_dies).
1836 This problem could be avoided, but the benefit is
1837 unclear. */
1838 if (this_cu->cu != NULL)
1839 free_one_cached_comp_unit (this_cu->cu);
1840
1841 /* Note that this is a pointer to our stack frame, being
1842 added to a global data structure. It will be cleaned up
1843 in free_stack_comp_unit when we finish with this
1844 compilation unit. */
1845 this_cu->cu = &cu;
d85a05f0
DJ
1846 cu.per_cu = this_cu;
1847
93311388
DE
1848 /* Read the abbrevs for this compilation unit into a table. */
1849 dwarf2_read_abbrevs (abfd, &cu);
1850 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 1851
93311388 1852 /* Read the compilation unit die. */
348e048f
DE
1853 if (this_cu->from_debug_types)
1854 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
1855 init_cu_die_reader (&reader_specs, &cu);
1856 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1857 &has_children);
93311388 1858
348e048f
DE
1859 if (this_cu->from_debug_types)
1860 {
1861 /* offset,length haven't been set yet for type units. */
1862 this_cu->offset = cu.header.offset;
1863 this_cu->length = cu.header.length + cu.header.initial_length_size;
1864 }
d85a05f0 1865 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 1866 {
93311388
DE
1867 info_ptr = (beg_of_comp_unit + cu.header.length
1868 + cu.header.initial_length_size);
1869 do_cleanups (back_to_inner);
1870 return info_ptr;
1871 }
72bf9492 1872
93311388 1873 /* Set the language we're debugging. */
d85a05f0
DJ
1874 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1875 if (attr)
1876 set_cu_language (DW_UNSND (attr), &cu);
1877 else
1878 set_cu_language (language_minimal, &cu);
c906108c 1879
93311388 1880 /* Allocate a new partial symbol table structure. */
d85a05f0 1881 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 1882 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 1883 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
1884 /* TEXTLOW and TEXTHIGH are set below. */
1885 0,
1886 objfile->global_psymbols.next,
1887 objfile->static_psymbols.next);
72bf9492 1888
d85a05f0
DJ
1889 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1890 if (attr != NULL)
1891 pst->dirname = DW_STRING (attr);
72bf9492 1892
e38df1d0 1893 pst->read_symtab_private = this_cu;
72bf9492 1894
93311388 1895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 1896
93311388
DE
1897 /* Store the function that reads in the rest of the symbol table */
1898 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 1899
93311388 1900 this_cu->psymtab = pst;
c906108c 1901
d85a05f0
DJ
1902 dwarf2_find_base_address (comp_unit_die, &cu);
1903
93311388
DE
1904 /* Possibly set the default values of LOWPC and HIGHPC from
1905 `DW_AT_ranges'. */
d85a05f0
DJ
1906 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1907 &best_highpc, &cu, pst);
1908 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
1909 /* Store the contiguous range if it is not empty; it can be empty for
1910 CUs with no code. */
1911 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
1912 best_lowpc + baseaddr,
1913 best_highpc + baseaddr - 1, pst);
93311388
DE
1914
1915 /* Check if comp unit has_children.
1916 If so, read the rest of the partial symbols from this comp unit.
1917 If not, there's no more debug_info for this comp unit. */
d85a05f0 1918 if (has_children)
93311388
DE
1919 {
1920 struct partial_die_info *first_die;
1921 CORE_ADDR lowpc, highpc;
31ffec48 1922
93311388
DE
1923 lowpc = ((CORE_ADDR) -1);
1924 highpc = ((CORE_ADDR) 0);
c906108c 1925
93311388 1926 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 1927
93311388 1928 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 1929 ! has_pc_info, &cu);
57c22c6c 1930
93311388
DE
1931 /* If we didn't find a lowpc, set it to highpc to avoid
1932 complaints from `maint check'. */
1933 if (lowpc == ((CORE_ADDR) -1))
1934 lowpc = highpc;
10b3939b 1935
93311388
DE
1936 /* If the compilation unit didn't have an explicit address range,
1937 then use the information extracted from its child dies. */
d85a05f0 1938 if (! has_pc_info)
93311388 1939 {
d85a05f0
DJ
1940 best_lowpc = lowpc;
1941 best_highpc = highpc;
93311388
DE
1942 }
1943 }
d85a05f0
DJ
1944 pst->textlow = best_lowpc + baseaddr;
1945 pst->texthigh = best_highpc + baseaddr;
c906108c 1946
93311388
DE
1947 pst->n_global_syms = objfile->global_psymbols.next -
1948 (objfile->global_psymbols.list + pst->globals_offset);
1949 pst->n_static_syms = objfile->static_psymbols.next -
1950 (objfile->static_psymbols.list + pst->statics_offset);
1951 sort_pst_symbols (pst);
c906108c 1952
93311388
DE
1953 info_ptr = (beg_of_comp_unit + cu.header.length
1954 + cu.header.initial_length_size);
ae038cb0 1955
348e048f
DE
1956 if (this_cu->from_debug_types)
1957 {
1958 /* It's not clear we want to do anything with stmt lists here.
1959 Waiting to see what gcc ultimately does. */
1960 }
d85a05f0 1961 else
93311388
DE
1962 {
1963 /* Get the list of files included in the current compilation unit,
1964 and build a psymtab for each of them. */
d85a05f0 1965 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 1966 }
ae038cb0 1967
93311388 1968 do_cleanups (back_to_inner);
ae038cb0 1969
93311388
DE
1970 return info_ptr;
1971}
ff013f42 1972
348e048f
DE
1973/* Traversal function for htab_traverse_noresize.
1974 Process one .debug_types comp-unit. */
1975
1976static int
1977process_type_comp_unit (void **slot, void *info)
1978{
1979 struct signatured_type *entry = (struct signatured_type *) *slot;
1980 struct objfile *objfile = (struct objfile *) info;
1981 struct dwarf2_per_cu_data *this_cu;
1982
1983 this_cu = &entry->per_cu;
1984 this_cu->from_debug_types = 1;
1985
be391dca 1986 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
1987 process_psymtab_comp_unit (objfile, this_cu,
1988 dwarf2_per_objfile->types.buffer,
1989 dwarf2_per_objfile->types.buffer + entry->offset,
1990 dwarf2_per_objfile->types.size);
1991
1992 return 1;
1993}
1994
1995/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
1996 Build partial symbol tables for the .debug_types comp-units. */
1997
1998static void
1999build_type_psymtabs (struct objfile *objfile)
2000{
2001 if (! create_debug_types_hash_table (objfile))
2002 return;
2003
2004 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2005 process_type_comp_unit, objfile);
2006}
2007
60606b2c
TT
2008/* A cleanup function that clears objfile's psymtabs_addrmap field. */
2009
2010static void
2011psymtabs_addrmap_cleanup (void *o)
2012{
2013 struct objfile *objfile = o;
ec61707d 2014
60606b2c
TT
2015 objfile->psymtabs_addrmap = NULL;
2016}
2017
93311388
DE
2018/* Build the partial symbol table by doing a quick pass through the
2019 .debug_info and .debug_abbrev sections. */
72bf9492 2020
93311388 2021static void
c67a9c90 2022dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 2023{
93311388 2024 gdb_byte *info_ptr;
60606b2c
TT
2025 struct cleanup *back_to, *addrmap_cleanup;
2026 struct obstack temp_obstack;
93311388 2027
be391dca 2028 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 2029 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 2030
93311388
DE
2031 /* Any cached compilation units will be linked by the per-objfile
2032 read_in_chain. Make sure to free them when we're done. */
2033 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 2034
348e048f
DE
2035 build_type_psymtabs (objfile);
2036
93311388 2037 create_all_comp_units (objfile);
c906108c 2038
60606b2c
TT
2039 /* Create a temporary address map on a temporary obstack. We later
2040 copy this to the final obstack. */
2041 obstack_init (&temp_obstack);
2042 make_cleanup_obstack_free (&temp_obstack);
2043 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
2044 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 2045
93311388
DE
2046 /* Since the objects we're extracting from .debug_info vary in
2047 length, only the individual functions to extract them (like
2048 read_comp_unit_head and load_partial_die) can really know whether
2049 the buffer is large enough to hold another complete object.
c906108c 2050
93311388
DE
2051 At the moment, they don't actually check that. If .debug_info
2052 holds just one extra byte after the last compilation unit's dies,
2053 then read_comp_unit_head will happily read off the end of the
2054 buffer. read_partial_die is similarly casual. Those functions
2055 should be fixed.
c906108c 2056
93311388
DE
2057 For this loop condition, simply checking whether there's any data
2058 left at all should be sufficient. */
c906108c 2059
93311388
DE
2060 while (info_ptr < (dwarf2_per_objfile->info.buffer
2061 + dwarf2_per_objfile->info.size))
2062 {
2063 struct dwarf2_per_cu_data *this_cu;
dd373385 2064
93311388
DE
2065 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2066 objfile);
aaa75496 2067
93311388
DE
2068 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2069 dwarf2_per_objfile->info.buffer,
2070 info_ptr,
2071 dwarf2_per_objfile->info.size);
c906108c 2072 }
ff013f42
JK
2073
2074 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2075 &objfile->objfile_obstack);
60606b2c 2076 discard_cleanups (addrmap_cleanup);
ff013f42 2077
ae038cb0
DJ
2078 do_cleanups (back_to);
2079}
2080
93311388 2081/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
2082
2083static void
93311388
DE
2084load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2085 struct objfile *objfile)
ae038cb0
DJ
2086{
2087 bfd *abfd = objfile->obfd;
fe1b8b76 2088 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 2089 struct die_info *comp_unit_die;
ae038cb0 2090 struct dwarf2_cu *cu;
ae038cb0 2091 struct cleanup *back_to;
d85a05f0
DJ
2092 struct attribute *attr;
2093 int has_children;
2094 struct die_reader_specs reader_specs;
ae038cb0 2095
348e048f
DE
2096 gdb_assert (! this_cu->from_debug_types);
2097
be391dca 2098 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 2099 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
2100 beg_of_comp_unit = info_ptr;
2101
93311388 2102 cu = alloc_one_comp_unit (objfile);
ae038cb0 2103
93311388 2104 /* ??? Missing cleanup for CU? */
ae038cb0 2105
328c9494
DJ
2106 /* Link this compilation unit into the compilation unit tree. */
2107 this_cu->cu = cu;
2108 cu->per_cu = this_cu;
2109 cu->type_hash = this_cu->type_hash;
2110
93311388
DE
2111 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2112 dwarf2_per_objfile->info.buffer,
2113 dwarf2_per_objfile->info.size,
2114 abfd);
ae038cb0
DJ
2115
2116 /* Complete the cu_header. */
93311388 2117 cu->header.offset = this_cu->offset;
d00adf39 2118 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
ae038cb0
DJ
2119
2120 /* Read the abbrevs for this compilation unit into a table. */
2121 dwarf2_read_abbrevs (abfd, cu);
2122 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2123
2124 /* Read the compilation unit die. */
d85a05f0
DJ
2125 init_cu_die_reader (&reader_specs, cu);
2126 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2127 &has_children);
ae038cb0
DJ
2128
2129 /* Set the language we're debugging. */
d85a05f0
DJ
2130 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2131 if (attr)
2132 set_cu_language (DW_UNSND (attr), cu);
2133 else
2134 set_cu_language (language_minimal, cu);
ae038cb0 2135
ae038cb0
DJ
2136 /* Check if comp unit has_children.
2137 If so, read the rest of the partial symbols from this comp unit.
2138 If not, there's no more debug_info for this comp unit. */
d85a05f0 2139 if (has_children)
93311388 2140 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0
DJ
2141
2142 do_cleanups (back_to);
2143}
2144
2145/* Create a list of all compilation units in OBJFILE. We do this only
2146 if an inter-comp-unit reference is found; presumably if there is one,
2147 there will be many, and one will occur early in the .debug_info section.
2148 So there's no point in building this list incrementally. */
2149
2150static void
2151create_all_comp_units (struct objfile *objfile)
2152{
2153 int n_allocated;
2154 int n_comp_units;
2155 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
2156 gdb_byte *info_ptr;
2157
2158 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2159 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2160
2161 n_comp_units = 0;
2162 n_allocated = 10;
2163 all_comp_units = xmalloc (n_allocated
2164 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 2165
dce234bc 2166 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
ae038cb0 2167 {
c764a876 2168 unsigned int length, initial_length_size;
ae038cb0 2169 struct dwarf2_per_cu_data *this_cu;
c764a876 2170 unsigned int offset;
ae038cb0 2171
dce234bc 2172 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2173
2174 /* Read just enough information to find out where the next
2175 compilation unit is. */
c764a876
DE
2176 length = read_initial_length (objfile->obfd, info_ptr,
2177 &initial_length_size);
ae038cb0
DJ
2178
2179 /* Save the compilation unit for later lookup. */
2180 this_cu = obstack_alloc (&objfile->objfile_obstack,
2181 sizeof (struct dwarf2_per_cu_data));
2182 memset (this_cu, 0, sizeof (*this_cu));
2183 this_cu->offset = offset;
c764a876 2184 this_cu->length = length + initial_length_size;
ae038cb0
DJ
2185
2186 if (n_comp_units == n_allocated)
2187 {
2188 n_allocated *= 2;
2189 all_comp_units = xrealloc (all_comp_units,
2190 n_allocated
2191 * sizeof (struct dwarf2_per_cu_data *));
2192 }
2193 all_comp_units[n_comp_units++] = this_cu;
2194
2195 info_ptr = info_ptr + this_cu->length;
2196 }
2197
2198 dwarf2_per_objfile->all_comp_units
2199 = obstack_alloc (&objfile->objfile_obstack,
2200 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2201 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2202 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2203 xfree (all_comp_units);
2204 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
2205}
2206
5734ee8b
DJ
2207/* Process all loaded DIEs for compilation unit CU, starting at
2208 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2209 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2210 DW_AT_ranges). If NEED_PC is set, then this function will set
2211 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2212 and record the covered ranges in the addrmap. */
c906108c 2213
72bf9492
DJ
2214static void
2215scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 2216 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 2217{
72bf9492 2218 struct partial_die_info *pdi;
c906108c 2219
91c24f0a
DC
2220 /* Now, march along the PDI's, descending into ones which have
2221 interesting children but skipping the children of the other ones,
2222 until we reach the end of the compilation unit. */
c906108c 2223
72bf9492 2224 pdi = first_die;
91c24f0a 2225
72bf9492
DJ
2226 while (pdi != NULL)
2227 {
2228 fixup_partial_die (pdi, cu);
c906108c 2229
f55ee35c 2230 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
2231 children, so we need to look at them. Ditto for anonymous
2232 enums. */
933c6fe4 2233
72bf9492 2234 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 2235 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 2236 {
72bf9492 2237 switch (pdi->tag)
c906108c
SS
2238 {
2239 case DW_TAG_subprogram:
5734ee8b 2240 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c
SS
2241 break;
2242 case DW_TAG_variable:
2243 case DW_TAG_typedef:
91c24f0a 2244 case DW_TAG_union_type:
72bf9492 2245 if (!pdi->is_declaration)
63d06c5c 2246 {
72bf9492 2247 add_partial_symbol (pdi, cu);
63d06c5c
DC
2248 }
2249 break;
c906108c 2250 case DW_TAG_class_type:
680b30c7 2251 case DW_TAG_interface_type:
c906108c 2252 case DW_TAG_structure_type:
72bf9492 2253 if (!pdi->is_declaration)
c906108c 2254 {
72bf9492 2255 add_partial_symbol (pdi, cu);
c906108c
SS
2256 }
2257 break;
91c24f0a 2258 case DW_TAG_enumeration_type:
72bf9492
DJ
2259 if (!pdi->is_declaration)
2260 add_partial_enumeration (pdi, cu);
c906108c
SS
2261 break;
2262 case DW_TAG_base_type:
a02abb62 2263 case DW_TAG_subrange_type:
c906108c 2264 /* File scope base type definitions are added to the partial
c5aa993b 2265 symbol table. */
72bf9492 2266 add_partial_symbol (pdi, cu);
c906108c 2267 break;
d9fa45fe 2268 case DW_TAG_namespace:
5734ee8b 2269 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 2270 break;
5d7cb8df
JK
2271 case DW_TAG_module:
2272 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2273 break;
c906108c
SS
2274 default:
2275 break;
2276 }
2277 }
2278
72bf9492
DJ
2279 /* If the die has a sibling, skip to the sibling. */
2280
2281 pdi = pdi->die_sibling;
2282 }
2283}
2284
2285/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 2286
72bf9492 2287 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
2288 name is concatenated with "::" and the partial DIE's name. For
2289 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
2290 Enumerators are an exception; they use the scope of their parent
2291 enumeration type, i.e. the name of the enumeration type is not
2292 prepended to the enumerator.
91c24f0a 2293
72bf9492
DJ
2294 There are two complexities. One is DW_AT_specification; in this
2295 case "parent" means the parent of the target of the specification,
2296 instead of the direct parent of the DIE. The other is compilers
2297 which do not emit DW_TAG_namespace; in this case we try to guess
2298 the fully qualified name of structure types from their members'
2299 linkage names. This must be done using the DIE's children rather
2300 than the children of any DW_AT_specification target. We only need
2301 to do this for structures at the top level, i.e. if the target of
2302 any DW_AT_specification (if any; otherwise the DIE itself) does not
2303 have a parent. */
2304
2305/* Compute the scope prefix associated with PDI's parent, in
2306 compilation unit CU. The result will be allocated on CU's
2307 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2308 field. NULL is returned if no prefix is necessary. */
2309static char *
2310partial_die_parent_scope (struct partial_die_info *pdi,
2311 struct dwarf2_cu *cu)
2312{
2313 char *grandparent_scope;
2314 struct partial_die_info *parent, *real_pdi;
91c24f0a 2315
72bf9492
DJ
2316 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2317 then this means the parent of the specification DIE. */
2318
2319 real_pdi = pdi;
72bf9492 2320 while (real_pdi->has_specification)
10b3939b 2321 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
2322
2323 parent = real_pdi->die_parent;
2324 if (parent == NULL)
2325 return NULL;
2326
2327 if (parent->scope_set)
2328 return parent->scope;
2329
2330 fixup_partial_die (parent, cu);
2331
10b3939b 2332 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 2333
acebe513
UW
2334 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
2335 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
2336 Work around this problem here. */
2337 if (cu->language == language_cplus
6e70227d 2338 && parent->tag == DW_TAG_namespace
acebe513
UW
2339 && strcmp (parent->name, "::") == 0
2340 && grandparent_scope == NULL)
2341 {
2342 parent->scope = NULL;
2343 parent->scope_set = 1;
2344 return NULL;
2345 }
2346
72bf9492 2347 if (parent->tag == DW_TAG_namespace
f55ee35c 2348 || parent->tag == DW_TAG_module
72bf9492
DJ
2349 || parent->tag == DW_TAG_structure_type
2350 || parent->tag == DW_TAG_class_type
680b30c7 2351 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
2352 || parent->tag == DW_TAG_union_type
2353 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
2354 {
2355 if (grandparent_scope == NULL)
2356 parent->scope = parent->name;
2357 else
987504bb 2358 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
f55ee35c 2359 parent->name, 0, cu);
72bf9492 2360 }
ceeb3d5a 2361 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
2362 /* Enumerators should not get the name of the enumeration as a prefix. */
2363 parent->scope = grandparent_scope;
2364 else
2365 {
2366 /* FIXME drow/2004-04-01: What should we be doing with
2367 function-local names? For partial symbols, we should probably be
2368 ignoring them. */
2369 complaint (&symfile_complaints,
e2e0b3e5 2370 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
2371 parent->tag, pdi->offset);
2372 parent->scope = grandparent_scope;
c906108c
SS
2373 }
2374
72bf9492
DJ
2375 parent->scope_set = 1;
2376 return parent->scope;
2377}
2378
2379/* Return the fully scoped name associated with PDI, from compilation unit
2380 CU. The result will be allocated with malloc. */
2381static char *
2382partial_die_full_name (struct partial_die_info *pdi,
2383 struct dwarf2_cu *cu)
2384{
2385 char *parent_scope;
2386
2387 parent_scope = partial_die_parent_scope (pdi, cu);
2388 if (parent_scope == NULL)
2389 return NULL;
2390 else
f55ee35c 2391 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
2392}
2393
2394static void
72bf9492 2395add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 2396{
e7c27a73 2397 struct objfile *objfile = cu->objfile;
c906108c 2398 CORE_ADDR addr = 0;
decbce07 2399 char *actual_name = NULL;
5c4e30ca 2400 const struct partial_symbol *psym = NULL;
e142c38c 2401 CORE_ADDR baseaddr;
72bf9492 2402 int built_actual_name = 0;
e142c38c
DJ
2403
2404 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2405
94af9270
KS
2406 actual_name = partial_die_full_name (pdi, cu);
2407 if (actual_name)
2408 built_actual_name = 1;
63d06c5c 2409
72bf9492
DJ
2410 if (actual_name == NULL)
2411 actual_name = pdi->name;
2412
c906108c
SS
2413 switch (pdi->tag)
2414 {
2415 case DW_TAG_subprogram:
2cfa0c8d 2416 if (pdi->is_external || cu->language == language_ada)
c906108c 2417 {
2cfa0c8d
JB
2418 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2419 of the global scope. But in Ada, we want to be able to access
2420 nested procedures globally. So all Ada subprograms are stored
2421 in the global scope. */
38d518c9 2422 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2423 mst_text, objfile); */
38d518c9 2424 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2425 built_actual_name,
5c4e30ca
DC
2426 VAR_DOMAIN, LOC_BLOCK,
2427 &objfile->global_psymbols,
2428 0, pdi->lowpc + baseaddr,
e142c38c 2429 cu->language, objfile);
c906108c
SS
2430 }
2431 else
2432 {
38d518c9 2433 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2434 mst_file_text, objfile); */
38d518c9 2435 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2436 built_actual_name,
5c4e30ca
DC
2437 VAR_DOMAIN, LOC_BLOCK,
2438 &objfile->static_psymbols,
2439 0, pdi->lowpc + baseaddr,
e142c38c 2440 cu->language, objfile);
c906108c
SS
2441 }
2442 break;
2443 case DW_TAG_variable:
2444 if (pdi->is_external)
2445 {
2446 /* Global Variable.
2447 Don't enter into the minimal symbol tables as there is
2448 a minimal symbol table entry from the ELF symbols already.
2449 Enter into partial symbol table if it has a location
2450 descriptor or a type.
2451 If the location descriptor is missing, new_symbol will create
2452 a LOC_UNRESOLVED symbol, the address of the variable will then
2453 be determined from the minimal symbol table whenever the variable
2454 is referenced.
2455 The address for the partial symbol table entry is not
2456 used by GDB, but it comes in handy for debugging partial symbol
2457 table building. */
2458
2459 if (pdi->locdesc)
e7c27a73 2460 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 2461 if (pdi->locdesc || pdi->has_type)
38d518c9 2462 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2463 built_actual_name,
5c4e30ca
DC
2464 VAR_DOMAIN, LOC_STATIC,
2465 &objfile->global_psymbols,
2466 0, addr + baseaddr,
e142c38c 2467 cu->language, objfile);
c906108c
SS
2468 }
2469 else
2470 {
2471 /* Static Variable. Skip symbols without location descriptors. */
2472 if (pdi->locdesc == NULL)
decbce07
MS
2473 {
2474 if (built_actual_name)
2475 xfree (actual_name);
2476 return;
2477 }
e7c27a73 2478 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 2479 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 2480 mst_file_data, objfile); */
38d518c9 2481 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2482 built_actual_name,
5c4e30ca
DC
2483 VAR_DOMAIN, LOC_STATIC,
2484 &objfile->static_psymbols,
2485 0, addr + baseaddr,
e142c38c 2486 cu->language, objfile);
c906108c
SS
2487 }
2488 break;
2489 case DW_TAG_typedef:
2490 case DW_TAG_base_type:
a02abb62 2491 case DW_TAG_subrange_type:
38d518c9 2492 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2493 built_actual_name,
176620f1 2494 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 2495 &objfile->static_psymbols,
e142c38c 2496 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2497 break;
72bf9492
DJ
2498 case DW_TAG_namespace:
2499 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2500 built_actual_name,
72bf9492
DJ
2501 VAR_DOMAIN, LOC_TYPEDEF,
2502 &objfile->global_psymbols,
2503 0, (CORE_ADDR) 0, cu->language, objfile);
2504 break;
c906108c 2505 case DW_TAG_class_type:
680b30c7 2506 case DW_TAG_interface_type:
c906108c
SS
2507 case DW_TAG_structure_type:
2508 case DW_TAG_union_type:
2509 case DW_TAG_enumeration_type:
fa4028e9
JB
2510 /* Skip external references. The DWARF standard says in the section
2511 about "Structure, Union, and Class Type Entries": "An incomplete
2512 structure, union or class type is represented by a structure,
2513 union or class entry that does not have a byte size attribute
2514 and that has a DW_AT_declaration attribute." */
2515 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
2516 {
2517 if (built_actual_name)
2518 xfree (actual_name);
2519 return;
2520 }
fa4028e9 2521
63d06c5c
DC
2522 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2523 static vs. global. */
38d518c9 2524 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2525 built_actual_name,
176620f1 2526 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2527 (cu->language == language_cplus
2528 || cu->language == language_java)
63d06c5c
DC
2529 ? &objfile->global_psymbols
2530 : &objfile->static_psymbols,
e142c38c 2531 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2532
c906108c
SS
2533 break;
2534 case DW_TAG_enumerator:
38d518c9 2535 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2536 built_actual_name,
176620f1 2537 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2538 (cu->language == language_cplus
2539 || cu->language == language_java)
f6fe98ef
DJ
2540 ? &objfile->global_psymbols
2541 : &objfile->static_psymbols,
e142c38c 2542 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2543 break;
2544 default:
2545 break;
2546 }
5c4e30ca 2547
72bf9492
DJ
2548 if (built_actual_name)
2549 xfree (actual_name);
c906108c
SS
2550}
2551
5c4e30ca
DC
2552/* Read a partial die corresponding to a namespace; also, add a symbol
2553 corresponding to that namespace to the symbol table. NAMESPACE is
2554 the name of the enclosing namespace. */
91c24f0a 2555
72bf9492
DJ
2556static void
2557add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2558 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2559 int need_pc, struct dwarf2_cu *cu)
91c24f0a 2560{
72bf9492 2561 /* Add a symbol for the namespace. */
e7c27a73 2562
72bf9492 2563 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2564
2565 /* Now scan partial symbols in that namespace. */
2566
91c24f0a 2567 if (pdi->has_children)
5734ee8b 2568 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
2569}
2570
5d7cb8df
JK
2571/* Read a partial die corresponding to a Fortran module. */
2572
2573static void
2574add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2575 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2576{
f55ee35c 2577 /* Now scan partial symbols in that module. */
5d7cb8df
JK
2578
2579 if (pdi->has_children)
2580 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2581}
2582
bc30ff58
JB
2583/* Read a partial die corresponding to a subprogram and create a partial
2584 symbol for that subprogram. When the CU language allows it, this
2585 routine also defines a partial symbol for each nested subprogram
2586 that this subprogram contains.
6e70227d 2587
bc30ff58
JB
2588 DIE my also be a lexical block, in which case we simply search
2589 recursively for suprograms defined inside that lexical block.
2590 Again, this is only performed when the CU language allows this
2591 type of definitions. */
2592
2593static void
2594add_partial_subprogram (struct partial_die_info *pdi,
2595 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2596 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
2597{
2598 if (pdi->tag == DW_TAG_subprogram)
2599 {
2600 if (pdi->has_pc_info)
2601 {
2602 if (pdi->lowpc < *lowpc)
2603 *lowpc = pdi->lowpc;
2604 if (pdi->highpc > *highpc)
2605 *highpc = pdi->highpc;
5734ee8b
DJ
2606 if (need_pc)
2607 {
2608 CORE_ADDR baseaddr;
2609 struct objfile *objfile = cu->objfile;
2610
2611 baseaddr = ANOFFSET (objfile->section_offsets,
2612 SECT_OFF_TEXT (objfile));
2613 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
2614 pdi->lowpc + baseaddr,
2615 pdi->highpc - 1 + baseaddr,
5734ee8b
DJ
2616 cu->per_cu->psymtab);
2617 }
bc30ff58 2618 if (!pdi->is_declaration)
e8d05480
JB
2619 /* Ignore subprogram DIEs that do not have a name, they are
2620 illegal. Do not emit a complaint at this point, we will
2621 do so when we convert this psymtab into a symtab. */
2622 if (pdi->name)
2623 add_partial_symbol (pdi, cu);
bc30ff58
JB
2624 }
2625 }
6e70227d 2626
bc30ff58
JB
2627 if (! pdi->has_children)
2628 return;
2629
2630 if (cu->language == language_ada)
2631 {
2632 pdi = pdi->die_child;
2633 while (pdi != NULL)
2634 {
2635 fixup_partial_die (pdi, cu);
2636 if (pdi->tag == DW_TAG_subprogram
2637 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 2638 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
2639 pdi = pdi->die_sibling;
2640 }
2641 }
2642}
2643
72bf9492
DJ
2644/* See if we can figure out if the class lives in a namespace. We do
2645 this by looking for a member function; its demangled name will
2646 contain namespace info, if there is any. */
63d06c5c 2647
72bf9492
DJ
2648static void
2649guess_structure_name (struct partial_die_info *struct_pdi,
2650 struct dwarf2_cu *cu)
63d06c5c 2651{
987504bb
JJ
2652 if ((cu->language == language_cplus
2653 || cu->language == language_java)
72bf9492 2654 && cu->has_namespace_info == 0
63d06c5c
DC
2655 && struct_pdi->has_children)
2656 {
63d06c5c
DC
2657 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2658 what template types look like, because the demangler
2659 frequently doesn't give the same name as the debug info. We
2660 could fix this by only using the demangled name to get the
134d01f1 2661 prefix (but see comment in read_structure_type). */
63d06c5c 2662
72bf9492 2663 struct partial_die_info *real_pdi;
5d51ca54 2664
72bf9492
DJ
2665 /* If this DIE (this DIE's specification, if any) has a parent, then
2666 we should not do this. We'll prepend the parent's fully qualified
2667 name when we create the partial symbol. */
5d51ca54 2668
72bf9492 2669 real_pdi = struct_pdi;
72bf9492 2670 while (real_pdi->has_specification)
10b3939b 2671 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2672
72bf9492
DJ
2673 if (real_pdi->die_parent != NULL)
2674 return;
63d06c5c 2675 }
63d06c5c
DC
2676}
2677
91c24f0a
DC
2678/* Read a partial die corresponding to an enumeration type. */
2679
72bf9492
DJ
2680static void
2681add_partial_enumeration (struct partial_die_info *enum_pdi,
2682 struct dwarf2_cu *cu)
91c24f0a 2683{
72bf9492 2684 struct partial_die_info *pdi;
91c24f0a
DC
2685
2686 if (enum_pdi->name != NULL)
72bf9492
DJ
2687 add_partial_symbol (enum_pdi, cu);
2688
2689 pdi = enum_pdi->die_child;
2690 while (pdi)
91c24f0a 2691 {
72bf9492 2692 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2693 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2694 else
72bf9492
DJ
2695 add_partial_symbol (pdi, cu);
2696 pdi = pdi->die_sibling;
91c24f0a 2697 }
91c24f0a
DC
2698}
2699
4bb7a0a7
DJ
2700/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2701 Return the corresponding abbrev, or NULL if the number is zero (indicating
2702 an empty DIE). In either case *BYTES_READ will be set to the length of
2703 the initial number. */
2704
2705static struct abbrev_info *
fe1b8b76 2706peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2707 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2708{
2709 bfd *abfd = cu->objfile->obfd;
2710 unsigned int abbrev_number;
2711 struct abbrev_info *abbrev;
2712
2713 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2714
2715 if (abbrev_number == 0)
2716 return NULL;
2717
2718 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2719 if (!abbrev)
2720 {
8a3fe4f8 2721 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2722 bfd_get_filename (abfd));
2723 }
2724
2725 return abbrev;
2726}
2727
93311388
DE
2728/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2729 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
2730 DIE. Any children of the skipped DIEs will also be skipped. */
2731
fe1b8b76 2732static gdb_byte *
93311388 2733skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2734{
2735 struct abbrev_info *abbrev;
2736 unsigned int bytes_read;
2737
2738 while (1)
2739 {
2740 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2741 if (abbrev == NULL)
2742 return info_ptr + bytes_read;
2743 else
93311388 2744 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
2745 }
2746}
2747
93311388
DE
2748/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2749 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
2750 abbrev corresponding to that skipped uleb128 should be passed in
2751 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2752 children. */
2753
fe1b8b76 2754static gdb_byte *
93311388
DE
2755skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2756 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2757{
2758 unsigned int bytes_read;
2759 struct attribute attr;
2760 bfd *abfd = cu->objfile->obfd;
2761 unsigned int form, i;
2762
2763 for (i = 0; i < abbrev->num_attrs; i++)
2764 {
2765 /* The only abbrev we care about is DW_AT_sibling. */
2766 if (abbrev->attrs[i].name == DW_AT_sibling)
2767 {
2768 read_attribute (&attr, &abbrev->attrs[i],
2769 abfd, info_ptr, cu);
2770 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2771 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2772 else
93311388 2773 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
2774 }
2775
2776 /* If it isn't DW_AT_sibling, skip this attribute. */
2777 form = abbrev->attrs[i].form;
2778 skip_attribute:
2779 switch (form)
2780 {
4bb7a0a7 2781 case DW_FORM_ref_addr:
ae411497
TT
2782 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
2783 and later it is offset sized. */
2784 if (cu->header.version == 2)
2785 info_ptr += cu->header.addr_size;
2786 else
2787 info_ptr += cu->header.offset_size;
2788 break;
2789 case DW_FORM_addr:
4bb7a0a7
DJ
2790 info_ptr += cu->header.addr_size;
2791 break;
2792 case DW_FORM_data1:
2793 case DW_FORM_ref1:
2794 case DW_FORM_flag:
2795 info_ptr += 1;
2796 break;
2dc7f7b3
TT
2797 case DW_FORM_flag_present:
2798 break;
4bb7a0a7
DJ
2799 case DW_FORM_data2:
2800 case DW_FORM_ref2:
2801 info_ptr += 2;
2802 break;
2803 case DW_FORM_data4:
2804 case DW_FORM_ref4:
2805 info_ptr += 4;
2806 break;
2807 case DW_FORM_data8:
2808 case DW_FORM_ref8:
348e048f 2809 case DW_FORM_sig8:
4bb7a0a7
DJ
2810 info_ptr += 8;
2811 break;
2812 case DW_FORM_string:
2813 read_string (abfd, info_ptr, &bytes_read);
2814 info_ptr += bytes_read;
2815 break;
2dc7f7b3 2816 case DW_FORM_sec_offset:
4bb7a0a7
DJ
2817 case DW_FORM_strp:
2818 info_ptr += cu->header.offset_size;
2819 break;
2dc7f7b3 2820 case DW_FORM_exprloc:
4bb7a0a7
DJ
2821 case DW_FORM_block:
2822 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2823 info_ptr += bytes_read;
2824 break;
2825 case DW_FORM_block1:
2826 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2827 break;
2828 case DW_FORM_block2:
2829 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2830 break;
2831 case DW_FORM_block4:
2832 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2833 break;
2834 case DW_FORM_sdata:
2835 case DW_FORM_udata:
2836 case DW_FORM_ref_udata:
2837 info_ptr = skip_leb128 (abfd, info_ptr);
2838 break;
2839 case DW_FORM_indirect:
2840 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2841 info_ptr += bytes_read;
2842 /* We need to continue parsing from here, so just go back to
2843 the top. */
2844 goto skip_attribute;
2845
2846 default:
8a3fe4f8 2847 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2848 dwarf_form_name (form),
2849 bfd_get_filename (abfd));
2850 }
2851 }
2852
2853 if (abbrev->has_children)
93311388 2854 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
2855 else
2856 return info_ptr;
2857}
2858
93311388
DE
2859/* Locate ORIG_PDI's sibling.
2860 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2861 in BUFFER. */
91c24f0a 2862
fe1b8b76 2863static gdb_byte *
93311388
DE
2864locate_pdi_sibling (struct partial_die_info *orig_pdi,
2865 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 2866 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2867{
2868 /* Do we know the sibling already? */
72bf9492 2869
91c24f0a
DC
2870 if (orig_pdi->sibling)
2871 return orig_pdi->sibling;
2872
2873 /* Are there any children to deal with? */
2874
2875 if (!orig_pdi->has_children)
2876 return info_ptr;
2877
4bb7a0a7 2878 /* Skip the children the long way. */
91c24f0a 2879
93311388 2880 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
2881}
2882
c906108c
SS
2883/* Expand this partial symbol table into a full symbol table. */
2884
2885static void
fba45db2 2886dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2887{
2888 /* FIXME: This is barely more than a stub. */
2889 if (pst != NULL)
2890 {
2891 if (pst->readin)
2892 {
8a3fe4f8 2893 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2894 }
2895 else
2896 {
2897 if (info_verbose)
2898 {
a3f17187 2899 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2900 gdb_flush (gdb_stdout);
2901 }
2902
10b3939b
DJ
2903 /* Restore our global data. */
2904 dwarf2_per_objfile = objfile_data (pst->objfile,
2905 dwarf2_objfile_data_key);
2906
b2ab525c
KB
2907 /* If this psymtab is constructed from a debug-only objfile, the
2908 has_section_at_zero flag will not necessarily be correct. We
2909 can get the correct value for this flag by looking at the data
2910 associated with the (presumably stripped) associated objfile. */
2911 if (pst->objfile->separate_debug_objfile_backlink)
2912 {
2913 struct dwarf2_per_objfile *dpo_backlink
2914 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
2915 dwarf2_objfile_data_key);
9a619af0 2916
b2ab525c
KB
2917 dwarf2_per_objfile->has_section_at_zero
2918 = dpo_backlink->has_section_at_zero;
2919 }
2920
c906108c
SS
2921 psymtab_to_symtab_1 (pst);
2922
2923 /* Finish up the debug error message. */
2924 if (info_verbose)
a3f17187 2925 printf_filtered (_("done.\n"));
c906108c
SS
2926 }
2927 }
2928}
2929
10b3939b
DJ
2930/* Add PER_CU to the queue. */
2931
2932static void
03dd20cc 2933queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
2934{
2935 struct dwarf2_queue_item *item;
2936
2937 per_cu->queued = 1;
2938 item = xmalloc (sizeof (*item));
2939 item->per_cu = per_cu;
2940 item->next = NULL;
2941
2942 if (dwarf2_queue == NULL)
2943 dwarf2_queue = item;
2944 else
2945 dwarf2_queue_tail->next = item;
2946
2947 dwarf2_queue_tail = item;
2948}
2949
2950/* Process the queue. */
2951
2952static void
2953process_queue (struct objfile *objfile)
2954{
2955 struct dwarf2_queue_item *item, *next_item;
2956
03dd20cc
DJ
2957 /* The queue starts out with one item, but following a DIE reference
2958 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
2959 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2960 {
31ffec48 2961 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2962 process_full_comp_unit (item->per_cu);
2963
2964 item->per_cu->queued = 0;
2965 next_item = item->next;
2966 xfree (item);
2967 }
2968
2969 dwarf2_queue_tail = NULL;
2970}
2971
2972/* Free all allocated queue entries. This function only releases anything if
2973 an error was thrown; if the queue was processed then it would have been
2974 freed as we went along. */
2975
2976static void
2977dwarf2_release_queue (void *dummy)
2978{
2979 struct dwarf2_queue_item *item, *last;
2980
2981 item = dwarf2_queue;
2982 while (item)
2983 {
2984 /* Anything still marked queued is likely to be in an
2985 inconsistent state, so discard it. */
2986 if (item->per_cu->queued)
2987 {
2988 if (item->per_cu->cu != NULL)
2989 free_one_cached_comp_unit (item->per_cu->cu);
2990 item->per_cu->queued = 0;
2991 }
2992
2993 last = item;
2994 item = item->next;
2995 xfree (last);
2996 }
2997
2998 dwarf2_queue = dwarf2_queue_tail = NULL;
2999}
3000
3001/* Read in full symbols for PST, and anything it depends on. */
3002
c906108c 3003static void
fba45db2 3004psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 3005{
10b3939b 3006 struct dwarf2_per_cu_data *per_cu;
c906108c 3007 struct cleanup *back_to;
aaa75496
JB
3008 int i;
3009
3010 for (i = 0; i < pst->number_of_dependencies; i++)
3011 if (!pst->dependencies[i]->readin)
3012 {
3013 /* Inform about additional files that need to be read in. */
3014 if (info_verbose)
3015 {
a3f17187 3016 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
3017 fputs_filtered (" ", gdb_stdout);
3018 wrap_here ("");
3019 fputs_filtered ("and ", gdb_stdout);
3020 wrap_here ("");
3021 printf_filtered ("%s...", pst->dependencies[i]->filename);
3022 wrap_here (""); /* Flush output */
3023 gdb_flush (gdb_stdout);
3024 }
3025 psymtab_to_symtab_1 (pst->dependencies[i]);
3026 }
3027
e38df1d0 3028 per_cu = pst->read_symtab_private;
10b3939b
DJ
3029
3030 if (per_cu == NULL)
aaa75496
JB
3031 {
3032 /* It's an include file, no symbols to read for it.
3033 Everything is in the parent symtab. */
3034 pst->readin = 1;
3035 return;
3036 }
c906108c 3037
10b3939b
DJ
3038 back_to = make_cleanup (dwarf2_release_queue, NULL);
3039
03dd20cc 3040 queue_comp_unit (per_cu, pst->objfile);
10b3939b 3041
348e048f
DE
3042 if (per_cu->from_debug_types)
3043 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3044 else
3045 load_full_comp_unit (per_cu, pst->objfile);
3046
10b3939b
DJ
3047 process_queue (pst->objfile);
3048
3049 /* Age the cache, releasing compilation units that have not
3050 been used recently. */
3051 age_cached_comp_units ();
3052
3053 do_cleanups (back_to);
3054}
3055
93311388 3056/* Load the DIEs associated with PER_CU into memory. */
10b3939b 3057
93311388 3058static void
31ffec48 3059load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 3060{
31ffec48 3061 bfd *abfd = objfile->obfd;
10b3939b 3062 struct dwarf2_cu *cu;
c764a876 3063 unsigned int offset;
93311388 3064 gdb_byte *info_ptr, *beg_of_comp_unit;
10b3939b
DJ
3065 struct cleanup *back_to, *free_cu_cleanup;
3066 struct attribute *attr;
6502dd73 3067
348e048f
DE
3068 gdb_assert (! per_cu->from_debug_types);
3069
c906108c 3070 /* Set local variables from the partial symbol table info. */
10b3939b 3071 offset = per_cu->offset;
6502dd73 3072
be391dca 3073 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 3074 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 3075 beg_of_comp_unit = info_ptr;
63d06c5c 3076
93311388 3077 cu = alloc_one_comp_unit (objfile);
c906108c 3078
10b3939b
DJ
3079 /* If an error occurs while loading, release our storage. */
3080 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 3081
93311388 3082 /* Read in the comp_unit header. */
10b3939b 3083 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 3084
93311388
DE
3085 /* Complete the cu_header. */
3086 cu->header.offset = offset;
3087 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3088
3089 /* Read the abbrevs for this compilation unit. */
10b3939b
DJ
3090 dwarf2_read_abbrevs (abfd, cu);
3091 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3092
93311388 3093 /* Link this compilation unit into the compilation unit tree. */
10b3939b 3094 per_cu->cu = cu;
93311388 3095 cu->per_cu = per_cu;
f792889a 3096 cu->type_hash = per_cu->type_hash;
e142c38c 3097
93311388 3098 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
3099
3100 /* We try not to read any attributes in this function, because not
3101 all objfiles needed for references have been loaded yet, and symbol
3102 table processing isn't initialized. But we have to set the CU language,
3103 or we won't be able to build types correctly. */
3104 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3105 if (attr)
3106 set_cu_language (DW_UNSND (attr), cu);
3107 else
3108 set_cu_language (language_minimal, cu);
3109
a6c727b2
DJ
3110 /* Similarly, if we do not read the producer, we can not apply
3111 producer-specific interpretation. */
3112 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
3113 if (attr)
3114 cu->producer = DW_STRING (attr);
3115
348e048f
DE
3116 /* Link this CU into read_in_chain. */
3117 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3118 dwarf2_per_objfile->read_in_chain = per_cu;
3119
10b3939b 3120 do_cleanups (back_to);
e142c38c 3121
10b3939b
DJ
3122 /* We've successfully allocated this compilation unit. Let our caller
3123 clean it up when finished with it. */
3124 discard_cleanups (free_cu_cleanup);
10b3939b
DJ
3125}
3126
3127/* Generate full symbol information for PST and CU, whose DIEs have
3128 already been loaded into memory. */
3129
3130static void
3131process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3132{
3133 struct partial_symtab *pst = per_cu->psymtab;
3134 struct dwarf2_cu *cu = per_cu->cu;
3135 struct objfile *objfile = pst->objfile;
10b3939b
DJ
3136 CORE_ADDR lowpc, highpc;
3137 struct symtab *symtab;
3138 struct cleanup *back_to;
10b3939b
DJ
3139 CORE_ADDR baseaddr;
3140
3141 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3142
10b3939b
DJ
3143 buildsym_init ();
3144 back_to = make_cleanup (really_free_pendings, NULL);
3145
3146 cu->list_in_scope = &file_symbols;
c906108c 3147
d85a05f0 3148 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 3149
c906108c 3150 /* Do line number decoding in read_file_scope () */
10b3939b 3151 process_die (cu->dies, cu);
c906108c 3152
fae299cd
DC
3153 /* Some compilers don't define a DW_AT_high_pc attribute for the
3154 compilation unit. If the DW_AT_high_pc is missing, synthesize
3155 it, by scanning the DIE's below the compilation unit. */
10b3939b 3156 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 3157
613e1657 3158 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
3159
3160 /* Set symtab language to language from DW_AT_language.
3161 If the compilation is from a C file generated by language preprocessors,
3162 do not set the language if it was already deduced by start_subfile. */
3163 if (symtab != NULL
10b3939b 3164 && !(cu->language == language_c && symtab->language != language_c))
c906108c 3165 {
10b3939b 3166 symtab->language = cu->language;
c906108c
SS
3167 }
3168 pst->symtab = symtab;
3169 pst->readin = 1;
c906108c
SS
3170
3171 do_cleanups (back_to);
3172}
3173
3174/* Process a die and its children. */
3175
3176static void
e7c27a73 3177process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
3178{
3179 switch (die->tag)
3180 {
3181 case DW_TAG_padding:
3182 break;
3183 case DW_TAG_compile_unit:
e7c27a73 3184 read_file_scope (die, cu);
c906108c 3185 break;
348e048f
DE
3186 case DW_TAG_type_unit:
3187 read_type_unit_scope (die, cu);
3188 break;
c906108c 3189 case DW_TAG_subprogram:
c906108c 3190 case DW_TAG_inlined_subroutine:
edb3359d 3191 read_func_scope (die, cu);
c906108c
SS
3192 break;
3193 case DW_TAG_lexical_block:
14898363
L
3194 case DW_TAG_try_block:
3195 case DW_TAG_catch_block:
e7c27a73 3196 read_lexical_block_scope (die, cu);
c906108c
SS
3197 break;
3198 case DW_TAG_class_type:
680b30c7 3199 case DW_TAG_interface_type:
c906108c
SS
3200 case DW_TAG_structure_type:
3201 case DW_TAG_union_type:
134d01f1 3202 process_structure_scope (die, cu);
c906108c
SS
3203 break;
3204 case DW_TAG_enumeration_type:
134d01f1 3205 process_enumeration_scope (die, cu);
c906108c 3206 break;
134d01f1 3207
f792889a
DJ
3208 /* These dies have a type, but processing them does not create
3209 a symbol or recurse to process the children. Therefore we can
3210 read them on-demand through read_type_die. */
c906108c 3211 case DW_TAG_subroutine_type:
72019c9c 3212 case DW_TAG_set_type:
c906108c 3213 case DW_TAG_array_type:
c906108c 3214 case DW_TAG_pointer_type:
c906108c 3215 case DW_TAG_ptr_to_member_type:
c906108c 3216 case DW_TAG_reference_type:
c906108c 3217 case DW_TAG_string_type:
c906108c 3218 break;
134d01f1 3219
c906108c 3220 case DW_TAG_base_type:
a02abb62 3221 case DW_TAG_subrange_type:
cb249c71 3222 case DW_TAG_typedef:
90e7c2c5
PM
3223 case DW_TAG_const_type:
3224 case DW_TAG_volatile_type:
134d01f1
DJ
3225 /* Add a typedef symbol for the type definition, if it has a
3226 DW_AT_name. */
f792889a 3227 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 3228 break;
c906108c 3229 case DW_TAG_common_block:
e7c27a73 3230 read_common_block (die, cu);
c906108c
SS
3231 break;
3232 case DW_TAG_common_inclusion:
3233 break;
d9fa45fe 3234 case DW_TAG_namespace:
63d06c5c 3235 processing_has_namespace_info = 1;
e7c27a73 3236 read_namespace (die, cu);
d9fa45fe 3237 break;
5d7cb8df 3238 case DW_TAG_module:
f55ee35c 3239 processing_has_namespace_info = 1;
5d7cb8df
JK
3240 read_module (die, cu);
3241 break;
d9fa45fe
DC
3242 case DW_TAG_imported_declaration:
3243 case DW_TAG_imported_module:
63d06c5c 3244 processing_has_namespace_info = 1;
27aa8d6a
SW
3245 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3246 || cu->language != language_fortran))
3247 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3248 dwarf_tag_name (die->tag));
3249 read_import_statement (die, cu);
d9fa45fe 3250 break;
c906108c 3251 default:
e7c27a73 3252 new_symbol (die, NULL, cu);
c906108c
SS
3253 break;
3254 }
3255}
3256
94af9270
KS
3257/* A helper function for dwarf2_compute_name which determines whether DIE
3258 needs to have the name of the scope prepended to the name listed in the
3259 die. */
3260
3261static int
3262die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
3263{
1c809c68
TT
3264 struct attribute *attr;
3265
94af9270
KS
3266 switch (die->tag)
3267 {
3268 case DW_TAG_namespace:
3269 case DW_TAG_typedef:
3270 case DW_TAG_class_type:
3271 case DW_TAG_interface_type:
3272 case DW_TAG_structure_type:
3273 case DW_TAG_union_type:
3274 case DW_TAG_enumeration_type:
3275 case DW_TAG_enumerator:
3276 case DW_TAG_subprogram:
3277 case DW_TAG_member:
3278 return 1;
3279
3280 case DW_TAG_variable:
3281 /* We only need to prefix "globally" visible variables. These include
3282 any variable marked with DW_AT_external or any variable that
3283 lives in a namespace. [Variables in anonymous namespaces
3284 require prefixing, but they are not DW_AT_external.] */
3285
3286 if (dwarf2_attr (die, DW_AT_specification, cu))
3287 {
3288 struct dwarf2_cu *spec_cu = cu;
9a619af0 3289
94af9270
KS
3290 return die_needs_namespace (die_specification (die, &spec_cu),
3291 spec_cu);
3292 }
3293
1c809c68 3294 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
3295 if (attr == NULL && die->parent->tag != DW_TAG_namespace
3296 && die->parent->tag != DW_TAG_module)
1c809c68
TT
3297 return 0;
3298 /* A variable in a lexical block of some kind does not need a
3299 namespace, even though in C++ such variables may be external
3300 and have a mangled name. */
3301 if (die->parent->tag == DW_TAG_lexical_block
3302 || die->parent->tag == DW_TAG_try_block
1054b214
TT
3303 || die->parent->tag == DW_TAG_catch_block
3304 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
3305 return 0;
3306 return 1;
94af9270
KS
3307
3308 default:
3309 return 0;
3310 }
3311}
3312
3313/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
3314 compute the physname for the object, which include a method's
3315 formal parameters (C++/Java) and return type (Java).
3316
af6b7be1
JB
3317 For Ada, return the DIE's linkage name rather than the fully qualified
3318 name. PHYSNAME is ignored..
3319
94af9270
KS
3320 The result is allocated on the objfile_obstack and canonicalized. */
3321
3322static const char *
3323dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
3324 int physname)
3325{
3326 if (name == NULL)
3327 name = dwarf2_name (die, cu);
3328
f55ee35c
JK
3329 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
3330 compute it by typename_concat inside GDB. */
3331 if (cu->language == language_ada
3332 || (cu->language == language_fortran && physname))
3333 {
3334 /* For Ada unit, we prefer the linkage name over the name, as
3335 the former contains the exported name, which the user expects
3336 to be able to reference. Ideally, we want the user to be able
3337 to reference this entity using either natural or linkage name,
3338 but we haven't started looking at this enhancement yet. */
3339 struct attribute *attr;
3340
3341 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
3342 if (attr == NULL)
3343 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
3344 if (attr && DW_STRING (attr))
3345 return DW_STRING (attr);
3346 }
3347
94af9270
KS
3348 /* These are the only languages we know how to qualify names in. */
3349 if (name != NULL
f55ee35c
JK
3350 && (cu->language == language_cplus || cu->language == language_java
3351 || cu->language == language_fortran))
94af9270
KS
3352 {
3353 if (die_needs_namespace (die, cu))
3354 {
3355 long length;
3356 char *prefix;
3357 struct ui_file *buf;
3358
3359 prefix = determine_prefix (die, cu);
3360 buf = mem_fileopen ();
3361 if (*prefix != '\0')
3362 {
f55ee35c
JK
3363 char *prefixed_name = typename_concat (NULL, prefix, name,
3364 physname, cu);
9a619af0 3365
94af9270
KS
3366 fputs_unfiltered (prefixed_name, buf);
3367 xfree (prefixed_name);
3368 }
3369 else
3370 fputs_unfiltered (name ? name : "", buf);
3371
3372 /* For Java and C++ methods, append formal parameter type
3373 information, if PHYSNAME. */
6e70227d 3374
94af9270
KS
3375 if (physname && die->tag == DW_TAG_subprogram
3376 && (cu->language == language_cplus
3377 || cu->language == language_java))
3378 {
3379 struct type *type = read_type_die (die, cu);
3380
3381 c_type_print_args (type, buf, 0, cu->language);
3382
3383 if (cu->language == language_java)
3384 {
3385 /* For java, we must append the return type to method
3386 names. */
3387 if (die->tag == DW_TAG_subprogram)
3388 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
3389 0, 0);
3390 }
3391 else if (cu->language == language_cplus)
3392 {
3393 if (TYPE_NFIELDS (type) > 0
3394 && TYPE_FIELD_ARTIFICIAL (type, 0)
3395 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
3396 fputs_unfiltered (" const", buf);
3397 }
3398 }
3399
3400 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
3401 &length);
3402 ui_file_delete (buf);
3403
3404 if (cu->language == language_cplus)
3405 {
3406 char *cname
3407 = dwarf2_canonicalize_name (name, cu,
3408 &cu->objfile->objfile_obstack);
9a619af0 3409
94af9270
KS
3410 if (cname != NULL)
3411 name = cname;
3412 }
3413 }
3414 }
3415
3416 return name;
3417}
3418
0114d602
DJ
3419/* Return the fully qualified name of DIE, based on its DW_AT_name.
3420 If scope qualifiers are appropriate they will be added. The result
3421 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
3422 not have a name. NAME may either be from a previous call to
3423 dwarf2_name or NULL.
3424
3425 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
3426
3427static const char *
94af9270 3428dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 3429{
94af9270
KS
3430 return dwarf2_compute_name (name, die, cu, 0);
3431}
0114d602 3432
94af9270
KS
3433/* Construct a physname for the given DIE in CU. NAME may either be
3434 from a previous call to dwarf2_name or NULL. The result will be
3435 allocated on the objfile_objstack or NULL if the DIE does not have a
3436 name.
0114d602 3437
94af9270 3438 The output string will be canonicalized (if C++/Java). */
0114d602 3439
94af9270
KS
3440static const char *
3441dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
3442{
3443 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
3444}
3445
27aa8d6a
SW
3446/* Read the import statement specified by the given die and record it. */
3447
3448static void
3449read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3450{
3451 struct attribute *import_attr;
3452 struct die_info *imported_die;
de4affc9 3453 struct dwarf2_cu *imported_cu;
27aa8d6a 3454 const char *imported_name;
794684b6 3455 const char *imported_name_prefix;
13387711
SW
3456 const char *canonical_name;
3457 const char *import_alias;
3458 const char *imported_declaration = NULL;
794684b6 3459 const char *import_prefix;
13387711
SW
3460
3461 char *temp;
27aa8d6a
SW
3462
3463 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3464 if (import_attr == NULL)
3465 {
3466 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3467 dwarf_tag_name (die->tag));
3468 return;
3469 }
3470
de4affc9
CC
3471 imported_cu = cu;
3472 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3473 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
3474 if (imported_name == NULL)
3475 {
3476 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3477
3478 The import in the following code:
3479 namespace A
3480 {
3481 typedef int B;
3482 }
3483
3484 int main ()
3485 {
3486 using A::B;
3487 B b;
3488 return b;
3489 }
3490
3491 ...
3492 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3493 <52> DW_AT_decl_file : 1
3494 <53> DW_AT_decl_line : 6
3495 <54> DW_AT_import : <0x75>
3496 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3497 <59> DW_AT_name : B
3498 <5b> DW_AT_decl_file : 1
3499 <5c> DW_AT_decl_line : 2
3500 <5d> DW_AT_type : <0x6e>
3501 ...
3502 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3503 <76> DW_AT_byte_size : 4
3504 <77> DW_AT_encoding : 5 (signed)
3505
3506 imports the wrong die ( 0x75 instead of 0x58 ).
3507 This case will be ignored until the gcc bug is fixed. */
3508 return;
3509 }
3510
82856980
SW
3511 /* Figure out the local name after import. */
3512 import_alias = dwarf2_name (die, cu);
27aa8d6a 3513
794684b6
SW
3514 /* Figure out where the statement is being imported to. */
3515 import_prefix = determine_prefix (die, cu);
3516
3517 /* Figure out what the scope of the imported die is and prepend it
3518 to the name of the imported die. */
de4affc9 3519 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 3520
f55ee35c
JK
3521 if (imported_die->tag != DW_TAG_namespace
3522 && imported_die->tag != DW_TAG_module)
794684b6 3523 {
13387711
SW
3524 imported_declaration = imported_name;
3525 canonical_name = imported_name_prefix;
794684b6 3526 }
13387711 3527 else if (strlen (imported_name_prefix) > 0)
794684b6 3528 {
13387711
SW
3529 temp = alloca (strlen (imported_name_prefix)
3530 + 2 + strlen (imported_name) + 1);
3531 strcpy (temp, imported_name_prefix);
3532 strcat (temp, "::");
3533 strcat (temp, imported_name);
3534 canonical_name = temp;
794684b6 3535 }
13387711
SW
3536 else
3537 canonical_name = imported_name;
794684b6 3538
c0cc3a76
SW
3539 cp_add_using_directive (import_prefix,
3540 canonical_name,
3541 import_alias,
13387711 3542 imported_declaration,
c0cc3a76 3543 &cu->objfile->objfile_obstack);
27aa8d6a
SW
3544}
3545
5fb290d7 3546static void
e142c38c 3547initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 3548{
e142c38c 3549 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
3550}
3551
cb1df416
DJ
3552static void
3553free_cu_line_header (void *arg)
3554{
3555 struct dwarf2_cu *cu = arg;
3556
3557 free_line_header (cu->line_header);
3558 cu->line_header = NULL;
3559}
3560
c906108c 3561static void
e7c27a73 3562read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3563{
e7c27a73 3564 struct objfile *objfile = cu->objfile;
debd256d 3565 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 3566 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
3567 CORE_ADDR highpc = ((CORE_ADDR) 0);
3568 struct attribute *attr;
e1024ff1 3569 char *name = NULL;
c906108c
SS
3570 char *comp_dir = NULL;
3571 struct die_info *child_die;
3572 bfd *abfd = objfile->obfd;
debd256d 3573 struct line_header *line_header = 0;
e142c38c 3574 CORE_ADDR baseaddr;
6e70227d 3575
e142c38c 3576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3577
fae299cd 3578 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
3579
3580 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3581 from finish_block. */
2acceee2 3582 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
3583 lowpc = highpc;
3584 lowpc += baseaddr;
3585 highpc += baseaddr;
3586
39cbfefa
DJ
3587 /* Find the filename. Do not use dwarf2_name here, since the filename
3588 is not a source language identifier. */
e142c38c 3589 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3590 if (attr)
3591 {
3592 name = DW_STRING (attr);
3593 }
e1024ff1 3594
e142c38c 3595 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 3596 if (attr)
e1024ff1
DJ
3597 comp_dir = DW_STRING (attr);
3598 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 3599 {
e1024ff1
DJ
3600 comp_dir = ldirname (name);
3601 if (comp_dir != NULL)
3602 make_cleanup (xfree, comp_dir);
3603 }
3604 if (comp_dir != NULL)
3605 {
3606 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3607 directory, get rid of it. */
3608 char *cp = strchr (comp_dir, ':');
c906108c 3609
e1024ff1
DJ
3610 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3611 comp_dir = cp + 1;
c906108c
SS
3612 }
3613
e1024ff1
DJ
3614 if (name == NULL)
3615 name = "<unknown>";
3616
e142c38c 3617 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
3618 if (attr)
3619 {
e142c38c 3620 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
3621 }
3622
b0f35d58 3623 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 3624 if (attr)
b0f35d58 3625 cu->producer = DW_STRING (attr);
303b6f5d 3626
c906108c
SS
3627 /* We assume that we're processing GCC output. */
3628 processing_gcc_compilation = 2;
c906108c 3629
df8a16a1
DJ
3630 processing_has_namespace_info = 0;
3631
c906108c
SS
3632 start_symtab (name, comp_dir, lowpc);
3633 record_debugformat ("DWARF 2");
303b6f5d 3634 record_producer (cu->producer);
c906108c 3635
e142c38c 3636 initialize_cu_func_list (cu);
c906108c 3637
cb1df416
DJ
3638 /* Decode line number information if present. We do this before
3639 processing child DIEs, so that the line header table is available
3640 for DW_AT_decl_file. */
e142c38c 3641 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
3642 if (attr)
3643 {
debd256d 3644 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 3645 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
3646 if (line_header)
3647 {
cb1df416
DJ
3648 cu->line_header = line_header;
3649 make_cleanup (free_cu_line_header, cu);
aaa75496 3650 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 3651 }
5fb290d7 3652 }
debd256d 3653
cb1df416
DJ
3654 /* Process all dies in compilation unit. */
3655 if (die->child != NULL)
3656 {
3657 child_die = die->child;
3658 while (child_die && child_die->tag)
3659 {
3660 process_die (child_die, cu);
3661 child_die = sibling_die (child_die);
3662 }
3663 }
3664
2e276125
JB
3665 /* Decode macro information, if present. Dwarf 2 macro information
3666 refers to information in the line number info statement program
3667 header, so we can only read it if we've read the header
3668 successfully. */
e142c38c 3669 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 3670 if (attr && line_header)
2e276125
JB
3671 {
3672 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 3673
2e276125 3674 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 3675 comp_dir, abfd, cu);
2e276125 3676 }
debd256d 3677 do_cleanups (back_to);
5fb290d7
DJ
3678}
3679
348e048f
DE
3680/* For TUs we want to skip the first top level sibling if it's not the
3681 actual type being defined by this TU. In this case the first top
3682 level sibling is there to provide context only. */
3683
3684static void
3685read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3686{
3687 struct objfile *objfile = cu->objfile;
3688 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3689 CORE_ADDR lowpc;
3690 struct attribute *attr;
3691 char *name = NULL;
3692 char *comp_dir = NULL;
3693 struct die_info *child_die;
3694 bfd *abfd = objfile->obfd;
348e048f
DE
3695
3696 /* start_symtab needs a low pc, but we don't really have one.
3697 Do what read_file_scope would do in the absence of such info. */
3698 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3699
3700 /* Find the filename. Do not use dwarf2_name here, since the filename
3701 is not a source language identifier. */
3702 attr = dwarf2_attr (die, DW_AT_name, cu);
3703 if (attr)
3704 name = DW_STRING (attr);
3705
3706 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3707 if (attr)
3708 comp_dir = DW_STRING (attr);
3709 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3710 {
3711 comp_dir = ldirname (name);
3712 if (comp_dir != NULL)
3713 make_cleanup (xfree, comp_dir);
3714 }
3715
3716 if (name == NULL)
3717 name = "<unknown>";
3718
3719 attr = dwarf2_attr (die, DW_AT_language, cu);
3720 if (attr)
3721 set_cu_language (DW_UNSND (attr), cu);
3722
3723 /* This isn't technically needed today. It is done for symmetry
3724 with read_file_scope. */
3725 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 3726 if (attr)
348e048f
DE
3727 cu->producer = DW_STRING (attr);
3728
3729 /* We assume that we're processing GCC output. */
3730 processing_gcc_compilation = 2;
3731
3732 processing_has_namespace_info = 0;
3733
3734 start_symtab (name, comp_dir, lowpc);
3735 record_debugformat ("DWARF 2");
3736 record_producer (cu->producer);
3737
3738 /* Process the dies in the type unit. */
3739 if (die->child == NULL)
3740 {
3741 dump_die_for_error (die);
3742 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3743 bfd_get_filename (abfd));
3744 }
3745
3746 child_die = die->child;
3747
3748 while (child_die && child_die->tag)
3749 {
3750 process_die (child_die, cu);
3751
3752 child_die = sibling_die (child_die);
3753 }
3754
3755 do_cleanups (back_to);
3756}
3757
5fb290d7 3758static void
e142c38c
DJ
3759add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3760 struct dwarf2_cu *cu)
5fb290d7
DJ
3761{
3762 struct function_range *thisfn;
3763
3764 thisfn = (struct function_range *)
7b5a2f43 3765 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
3766 thisfn->name = name;
3767 thisfn->lowpc = lowpc;
3768 thisfn->highpc = highpc;
3769 thisfn->seen_line = 0;
3770 thisfn->next = NULL;
3771
e142c38c
DJ
3772 if (cu->last_fn == NULL)
3773 cu->first_fn = thisfn;
5fb290d7 3774 else
e142c38c 3775 cu->last_fn->next = thisfn;
5fb290d7 3776
e142c38c 3777 cu->last_fn = thisfn;
c906108c
SS
3778}
3779
d389af10
JK
3780/* qsort helper for inherit_abstract_dies. */
3781
3782static int
3783unsigned_int_compar (const void *ap, const void *bp)
3784{
3785 unsigned int a = *(unsigned int *) ap;
3786 unsigned int b = *(unsigned int *) bp;
3787
3788 return (a > b) - (b > a);
3789}
3790
3791/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3792 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3793 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3794
3795static void
3796inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3797{
3798 struct die_info *child_die;
3799 unsigned die_children_count;
3800 /* CU offsets which were referenced by children of the current DIE. */
3801 unsigned *offsets;
3802 unsigned *offsets_end, *offsetp;
3803 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3804 struct die_info *origin_die;
3805 /* Iterator of the ORIGIN_DIE children. */
3806 struct die_info *origin_child_die;
3807 struct cleanup *cleanups;
3808 struct attribute *attr;
3809
3810 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3811 if (!attr)
3812 return;
3813
3814 origin_die = follow_die_ref (die, attr, &cu);
edb3359d
DJ
3815 if (die->tag != origin_die->tag
3816 && !(die->tag == DW_TAG_inlined_subroutine
3817 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3818 complaint (&symfile_complaints,
3819 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3820 die->offset, origin_die->offset);
3821
3822 child_die = die->child;
3823 die_children_count = 0;
3824 while (child_die && child_die->tag)
3825 {
3826 child_die = sibling_die (child_die);
3827 die_children_count++;
3828 }
3829 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3830 cleanups = make_cleanup (xfree, offsets);
3831
3832 offsets_end = offsets;
3833 child_die = die->child;
3834 while (child_die && child_die->tag)
3835 {
c38f313d
DJ
3836 /* For each CHILD_DIE, find the corresponding child of
3837 ORIGIN_DIE. If there is more than one layer of
3838 DW_AT_abstract_origin, follow them all; there shouldn't be,
3839 but GCC versions at least through 4.4 generate this (GCC PR
3840 40573). */
3841 struct die_info *child_origin_die = child_die;
9a619af0 3842
c38f313d
DJ
3843 while (1)
3844 {
3845 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3846 if (attr == NULL)
3847 break;
3848 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3849 }
3850
d389af10
JK
3851 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3852 counterpart may exist. */
c38f313d 3853 if (child_origin_die != child_die)
d389af10 3854 {
edb3359d
DJ
3855 if (child_die->tag != child_origin_die->tag
3856 && !(child_die->tag == DW_TAG_inlined_subroutine
3857 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3858 complaint (&symfile_complaints,
3859 _("Child DIE 0x%x and its abstract origin 0x%x have "
3860 "different tags"), child_die->offset,
3861 child_origin_die->offset);
c38f313d
DJ
3862 if (child_origin_die->parent != origin_die)
3863 complaint (&symfile_complaints,
3864 _("Child DIE 0x%x and its abstract origin 0x%x have "
3865 "different parents"), child_die->offset,
3866 child_origin_die->offset);
3867 else
3868 *offsets_end++ = child_origin_die->offset;
d389af10
JK
3869 }
3870 child_die = sibling_die (child_die);
3871 }
3872 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3873 unsigned_int_compar);
3874 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3875 if (offsetp[-1] == *offsetp)
3876 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3877 "to DIE 0x%x as their abstract origin"),
3878 die->offset, *offsetp);
3879
3880 offsetp = offsets;
3881 origin_child_die = origin_die->child;
3882 while (origin_child_die && origin_child_die->tag)
3883 {
3884 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3885 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3886 offsetp++;
3887 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3888 {
3889 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3890 process_die (origin_child_die, cu);
3891 }
3892 origin_child_die = sibling_die (origin_child_die);
3893 }
3894
3895 do_cleanups (cleanups);
3896}
3897
c906108c 3898static void
e7c27a73 3899read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3900{
e7c27a73 3901 struct objfile *objfile = cu->objfile;
52f0bd74 3902 struct context_stack *new;
c906108c
SS
3903 CORE_ADDR lowpc;
3904 CORE_ADDR highpc;
3905 struct die_info *child_die;
edb3359d 3906 struct attribute *attr, *call_line, *call_file;
c906108c 3907 char *name;
e142c38c 3908 CORE_ADDR baseaddr;
801e3a5b 3909 struct block *block;
edb3359d
DJ
3910 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3911
3912 if (inlined_func)
3913 {
3914 /* If we do not have call site information, we can't show the
3915 caller of this inlined function. That's too confusing, so
3916 only use the scope for local variables. */
3917 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3918 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3919 if (call_line == NULL || call_file == NULL)
3920 {
3921 read_lexical_block_scope (die, cu);
3922 return;
3923 }
3924 }
c906108c 3925
e142c38c
DJ
3926 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3927
94af9270 3928 name = dwarf2_name (die, cu);
c906108c 3929
e8d05480
JB
3930 /* Ignore functions with missing or empty names. These are actually
3931 illegal according to the DWARF standard. */
3932 if (name == NULL)
3933 {
3934 complaint (&symfile_complaints,
3935 _("missing name for subprogram DIE at %d"), die->offset);
3936 return;
3937 }
3938
3939 /* Ignore functions with missing or invalid low and high pc attributes. */
3940 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3941 {
ae4d0c03
PM
3942 attr = dwarf2_attr (die, DW_AT_external, cu);
3943 if (!attr || !DW_UNSND (attr))
3944 complaint (&symfile_complaints,
3945 _("cannot get low and high bounds for subprogram DIE at %d"),
3946 die->offset);
e8d05480
JB
3947 return;
3948 }
c906108c
SS
3949
3950 lowpc += baseaddr;
3951 highpc += baseaddr;
3952
5fb290d7 3953 /* Record the function range for dwarf_decode_lines. */
e142c38c 3954 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 3955
c906108c 3956 new = push_context (0, lowpc);
f792889a 3957 new->name = new_symbol (die, read_type_die (die, cu), cu);
4c2df51b 3958
4cecd739
DJ
3959 /* If there is a location expression for DW_AT_frame_base, record
3960 it. */
e142c38c 3961 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 3962 if (attr)
c034e007
AC
3963 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3964 expression is being recorded directly in the function's symbol
3965 and not in a separate frame-base object. I guess this hack is
3966 to avoid adding some sort of frame-base adjunct/annex to the
3967 function's symbol :-(. The problem with doing this is that it
3968 results in a function symbol with a location expression that
3969 has nothing to do with the location of the function, ouch! The
3970 relationship should be: a function's symbol has-a frame base; a
3971 frame-base has-a location expression. */
e7c27a73 3972 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 3973
e142c38c 3974 cu->list_in_scope = &local_symbols;
c906108c 3975
639d11d3 3976 if (die->child != NULL)
c906108c 3977 {
639d11d3 3978 child_die = die->child;
c906108c
SS
3979 while (child_die && child_die->tag)
3980 {
e7c27a73 3981 process_die (child_die, cu);
c906108c
SS
3982 child_die = sibling_die (child_die);
3983 }
3984 }
3985
d389af10
JK
3986 inherit_abstract_dies (die, cu);
3987
4a811a97
UW
3988 /* If we have a DW_AT_specification, we might need to import using
3989 directives from the context of the specification DIE. See the
3990 comment in determine_prefix. */
3991 if (cu->language == language_cplus
3992 && dwarf2_attr (die, DW_AT_specification, cu))
3993 {
3994 struct dwarf2_cu *spec_cu = cu;
3995 struct die_info *spec_die = die_specification (die, &spec_cu);
3996
3997 while (spec_die)
3998 {
3999 child_die = spec_die->child;
4000 while (child_die && child_die->tag)
4001 {
4002 if (child_die->tag == DW_TAG_imported_module)
4003 process_die (child_die, spec_cu);
4004 child_die = sibling_die (child_die);
4005 }
4006
4007 /* In some cases, GCC generates specification DIEs that
4008 themselves contain DW_AT_specification attributes. */
4009 spec_die = die_specification (spec_die, &spec_cu);
4010 }
4011 }
4012
c906108c
SS
4013 new = pop_context ();
4014 /* Make a block for the local symbols within. */
801e3a5b
JB
4015 block = finish_block (new->name, &local_symbols, new->old_blocks,
4016 lowpc, highpc, objfile);
4017
df8a16a1 4018 /* For C++, set the block's scope. */
f55ee35c 4019 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 4020 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 4021 determine_prefix (die, cu),
df8a16a1
DJ
4022 processing_has_namespace_info);
4023
801e3a5b
JB
4024 /* If we have address ranges, record them. */
4025 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 4026
208d8187
JB
4027 /* In C++, we can have functions nested inside functions (e.g., when
4028 a function declares a class that has methods). This means that
4029 when we finish processing a function scope, we may need to go
4030 back to building a containing block's symbol lists. */
4031 local_symbols = new->locals;
4032 param_symbols = new->params;
27aa8d6a 4033 using_directives = new->using_directives;
208d8187 4034
921e78cf
JB
4035 /* If we've finished processing a top-level function, subsequent
4036 symbols go in the file symbol list. */
4037 if (outermost_context_p ())
e142c38c 4038 cu->list_in_scope = &file_symbols;
c906108c
SS
4039}
4040
4041/* Process all the DIES contained within a lexical block scope. Start
4042 a new scope, process the dies, and then close the scope. */
4043
4044static void
e7c27a73 4045read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4046{
e7c27a73 4047 struct objfile *objfile = cu->objfile;
52f0bd74 4048 struct context_stack *new;
c906108c
SS
4049 CORE_ADDR lowpc, highpc;
4050 struct die_info *child_die;
e142c38c
DJ
4051 CORE_ADDR baseaddr;
4052
4053 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
4054
4055 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
4056 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
4057 as multiple lexical blocks? Handling children in a sane way would
6e70227d 4058 be nasty. Might be easier to properly extend generic blocks to
af34e669 4059 describe ranges. */
d85a05f0 4060 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
4061 return;
4062 lowpc += baseaddr;
4063 highpc += baseaddr;
4064
4065 push_context (0, lowpc);
639d11d3 4066 if (die->child != NULL)
c906108c 4067 {
639d11d3 4068 child_die = die->child;
c906108c
SS
4069 while (child_die && child_die->tag)
4070 {
e7c27a73 4071 process_die (child_die, cu);
c906108c
SS
4072 child_die = sibling_die (child_die);
4073 }
4074 }
4075 new = pop_context ();
4076
8540c487 4077 if (local_symbols != NULL || using_directives != NULL)
c906108c 4078 {
801e3a5b
JB
4079 struct block *block
4080 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4081 highpc, objfile);
4082
4083 /* Note that recording ranges after traversing children, as we
4084 do here, means that recording a parent's ranges entails
4085 walking across all its children's ranges as they appear in
4086 the address map, which is quadratic behavior.
4087
4088 It would be nicer to record the parent's ranges before
4089 traversing its children, simply overriding whatever you find
4090 there. But since we don't even decide whether to create a
4091 block until after we've traversed its children, that's hard
4092 to do. */
4093 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
4094 }
4095 local_symbols = new->locals;
27aa8d6a 4096 using_directives = new->using_directives;
c906108c
SS
4097}
4098
43039443 4099/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
4100 Return 1 if the attributes are present and valid, otherwise, return 0.
4101 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
4102
4103static int
4104dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
4105 CORE_ADDR *high_return, struct dwarf2_cu *cu,
4106 struct partial_symtab *ranges_pst)
43039443
JK
4107{
4108 struct objfile *objfile = cu->objfile;
4109 struct comp_unit_head *cu_header = &cu->header;
4110 bfd *obfd = objfile->obfd;
4111 unsigned int addr_size = cu_header->addr_size;
4112 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4113 /* Base address selection entry. */
4114 CORE_ADDR base;
4115 int found_base;
4116 unsigned int dummy;
4117 gdb_byte *buffer;
4118 CORE_ADDR marker;
4119 int low_set;
4120 CORE_ADDR low = 0;
4121 CORE_ADDR high = 0;
ff013f42 4122 CORE_ADDR baseaddr;
43039443 4123
d00adf39
DE
4124 found_base = cu->base_known;
4125 base = cu->base_address;
43039443 4126
be391dca 4127 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 4128 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
4129 {
4130 complaint (&symfile_complaints,
4131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4132 offset);
4133 return 0;
4134 }
dce234bc 4135 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
4136
4137 /* Read in the largest possible address. */
4138 marker = read_address (obfd, buffer, cu, &dummy);
4139 if ((marker & mask) == mask)
4140 {
4141 /* If we found the largest possible address, then
4142 read the base address. */
4143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4144 buffer += 2 * addr_size;
4145 offset += 2 * addr_size;
4146 found_base = 1;
4147 }
4148
4149 low_set = 0;
4150
e7030f15 4151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 4152
43039443
JK
4153 while (1)
4154 {
4155 CORE_ADDR range_beginning, range_end;
4156
4157 range_beginning = read_address (obfd, buffer, cu, &dummy);
4158 buffer += addr_size;
4159 range_end = read_address (obfd, buffer, cu, &dummy);
4160 buffer += addr_size;
4161 offset += 2 * addr_size;
4162
4163 /* An end of list marker is a pair of zero addresses. */
4164 if (range_beginning == 0 && range_end == 0)
4165 /* Found the end of list entry. */
4166 break;
4167
4168 /* Each base address selection entry is a pair of 2 values.
4169 The first is the largest possible address, the second is
4170 the base address. Check for a base address here. */
4171 if ((range_beginning & mask) == mask)
4172 {
4173 /* If we found the largest possible address, then
4174 read the base address. */
4175 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4176 found_base = 1;
4177 continue;
4178 }
4179
4180 if (!found_base)
4181 {
4182 /* We have no valid base address for the ranges
4183 data. */
4184 complaint (&symfile_complaints,
4185 _("Invalid .debug_ranges data (no base address)"));
4186 return 0;
4187 }
4188
4189 range_beginning += base;
4190 range_end += base;
4191
ff013f42
JK
4192 if (ranges_pst != NULL && range_beginning < range_end)
4193 addrmap_set_empty (objfile->psymtabs_addrmap,
4194 range_beginning + baseaddr, range_end - 1 + baseaddr,
4195 ranges_pst);
4196
43039443
JK
4197 /* FIXME: This is recording everything as a low-high
4198 segment of consecutive addresses. We should have a
4199 data structure for discontiguous block ranges
4200 instead. */
4201 if (! low_set)
4202 {
4203 low = range_beginning;
4204 high = range_end;
4205 low_set = 1;
4206 }
4207 else
4208 {
4209 if (range_beginning < low)
4210 low = range_beginning;
4211 if (range_end > high)
4212 high = range_end;
4213 }
4214 }
4215
4216 if (! low_set)
4217 /* If the first entry is an end-of-list marker, the range
4218 describes an empty scope, i.e. no instructions. */
4219 return 0;
4220
4221 if (low_return)
4222 *low_return = low;
4223 if (high_return)
4224 *high_return = high;
4225 return 1;
4226}
4227
af34e669
DJ
4228/* Get low and high pc attributes from a die. Return 1 if the attributes
4229 are present and valid, otherwise, return 0. Return -1 if the range is
4230 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 4231static int
af34e669 4232dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
4233 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4234 struct partial_symtab *pst)
c906108c
SS
4235{
4236 struct attribute *attr;
af34e669
DJ
4237 CORE_ADDR low = 0;
4238 CORE_ADDR high = 0;
4239 int ret = 0;
c906108c 4240
e142c38c 4241 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 4242 if (attr)
af34e669
DJ
4243 {
4244 high = DW_ADDR (attr);
e142c38c 4245 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
4246 if (attr)
4247 low = DW_ADDR (attr);
4248 else
4249 /* Found high w/o low attribute. */
4250 return 0;
4251
4252 /* Found consecutive range of addresses. */
4253 ret = 1;
4254 }
c906108c 4255 else
af34e669 4256 {
e142c38c 4257 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
4258 if (attr != NULL)
4259 {
af34e669 4260 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 4261 .debug_ranges section. */
d85a05f0 4262 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 4263 return 0;
43039443 4264 /* Found discontinuous range of addresses. */
af34e669
DJ
4265 ret = -1;
4266 }
4267 }
c906108c
SS
4268
4269 if (high < low)
4270 return 0;
4271
4272 /* When using the GNU linker, .gnu.linkonce. sections are used to
4273 eliminate duplicate copies of functions and vtables and such.
4274 The linker will arbitrarily choose one and discard the others.
4275 The AT_*_pc values for such functions refer to local labels in
4276 these sections. If the section from that file was discarded, the
4277 labels are not in the output, so the relocs get a value of 0.
4278 If this is a discarded function, mark the pc bounds as invalid,
4279 so that GDB will ignore it. */
72dca2f5 4280 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
4281 return 0;
4282
4283 *lowpc = low;
4284 *highpc = high;
af34e669 4285 return ret;
c906108c
SS
4286}
4287
b084d499
JB
4288/* Assuming that DIE represents a subprogram DIE or a lexical block, get
4289 its low and high PC addresses. Do nothing if these addresses could not
4290 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4291 and HIGHPC to the high address if greater than HIGHPC. */
4292
4293static void
4294dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4296 struct dwarf2_cu *cu)
4297{
4298 CORE_ADDR low, high;
4299 struct die_info *child = die->child;
4300
d85a05f0 4301 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
4302 {
4303 *lowpc = min (*lowpc, low);
4304 *highpc = max (*highpc, high);
4305 }
4306
4307 /* If the language does not allow nested subprograms (either inside
4308 subprograms or lexical blocks), we're done. */
4309 if (cu->language != language_ada)
4310 return;
6e70227d 4311
b084d499
JB
4312 /* Check all the children of the given DIE. If it contains nested
4313 subprograms, then check their pc bounds. Likewise, we need to
4314 check lexical blocks as well, as they may also contain subprogram
4315 definitions. */
4316 while (child && child->tag)
4317 {
4318 if (child->tag == DW_TAG_subprogram
4319 || child->tag == DW_TAG_lexical_block)
4320 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4321 child = sibling_die (child);
4322 }
4323}
4324
fae299cd
DC
4325/* Get the low and high pc's represented by the scope DIE, and store
4326 them in *LOWPC and *HIGHPC. If the correct values can't be
4327 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4328
4329static void
4330get_scope_pc_bounds (struct die_info *die,
4331 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4332 struct dwarf2_cu *cu)
4333{
4334 CORE_ADDR best_low = (CORE_ADDR) -1;
4335 CORE_ADDR best_high = (CORE_ADDR) 0;
4336 CORE_ADDR current_low, current_high;
4337
d85a05f0 4338 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
4339 {
4340 best_low = current_low;
4341 best_high = current_high;
4342 }
4343 else
4344 {
4345 struct die_info *child = die->child;
4346
4347 while (child && child->tag)
4348 {
4349 switch (child->tag) {
4350 case DW_TAG_subprogram:
b084d499 4351 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
4352 break;
4353 case DW_TAG_namespace:
f55ee35c 4354 case DW_TAG_module:
fae299cd
DC
4355 /* FIXME: carlton/2004-01-16: Should we do this for
4356 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4357 that current GCC's always emit the DIEs corresponding
4358 to definitions of methods of classes as children of a
4359 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4360 the DIEs giving the declarations, which could be
4361 anywhere). But I don't see any reason why the
4362 standards says that they have to be there. */
4363 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4364
4365 if (current_low != ((CORE_ADDR) -1))
4366 {
4367 best_low = min (best_low, current_low);
4368 best_high = max (best_high, current_high);
4369 }
4370 break;
4371 default:
4372 /* Ignore. */
4373 break;
4374 }
4375
4376 child = sibling_die (child);
4377 }
4378 }
4379
4380 *lowpc = best_low;
4381 *highpc = best_high;
4382}
4383
801e3a5b
JB
4384/* Record the address ranges for BLOCK, offset by BASEADDR, as given
4385 in DIE. */
4386static void
4387dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4388 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4389{
4390 struct attribute *attr;
4391
4392 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4393 if (attr)
4394 {
4395 CORE_ADDR high = DW_ADDR (attr);
9a619af0 4396
801e3a5b
JB
4397 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4398 if (attr)
4399 {
4400 CORE_ADDR low = DW_ADDR (attr);
9a619af0 4401
801e3a5b
JB
4402 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4403 }
4404 }
4405
4406 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4407 if (attr)
4408 {
4409 bfd *obfd = cu->objfile->obfd;
4410
4411 /* The value of the DW_AT_ranges attribute is the offset of the
4412 address range list in the .debug_ranges section. */
4413 unsigned long offset = DW_UNSND (attr);
dce234bc 4414 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
4415
4416 /* For some target architectures, but not others, the
4417 read_address function sign-extends the addresses it returns.
4418 To recognize base address selection entries, we need a
4419 mask. */
4420 unsigned int addr_size = cu->header.addr_size;
4421 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4422
4423 /* The base address, to which the next pair is relative. Note
4424 that this 'base' is a DWARF concept: most entries in a range
4425 list are relative, to reduce the number of relocs against the
4426 debugging information. This is separate from this function's
4427 'baseaddr' argument, which GDB uses to relocate debugging
4428 information from a shared library based on the address at
4429 which the library was loaded. */
d00adf39
DE
4430 CORE_ADDR base = cu->base_address;
4431 int base_known = cu->base_known;
801e3a5b 4432
be391dca 4433 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 4434 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
4435 {
4436 complaint (&symfile_complaints,
4437 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4438 offset);
4439 return;
4440 }
4441
4442 for (;;)
4443 {
4444 unsigned int bytes_read;
4445 CORE_ADDR start, end;
4446
4447 start = read_address (obfd, buffer, cu, &bytes_read);
4448 buffer += bytes_read;
4449 end = read_address (obfd, buffer, cu, &bytes_read);
4450 buffer += bytes_read;
4451
4452 /* Did we find the end of the range list? */
4453 if (start == 0 && end == 0)
4454 break;
4455
4456 /* Did we find a base address selection entry? */
4457 else if ((start & base_select_mask) == base_select_mask)
4458 {
4459 base = end;
4460 base_known = 1;
4461 }
4462
4463 /* We found an ordinary address range. */
4464 else
4465 {
4466 if (!base_known)
4467 {
4468 complaint (&symfile_complaints,
4469 _("Invalid .debug_ranges data (no base address)"));
4470 return;
4471 }
4472
6e70227d
DE
4473 record_block_range (block,
4474 baseaddr + base + start,
801e3a5b
JB
4475 baseaddr + base + end - 1);
4476 }
4477 }
4478 }
4479}
4480
c906108c
SS
4481/* Add an aggregate field to the field list. */
4482
4483static void
107d2387 4484dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 4485 struct dwarf2_cu *cu)
6e70227d 4486{
e7c27a73 4487 struct objfile *objfile = cu->objfile;
5e2b427d 4488 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4489 struct nextfield *new_field;
4490 struct attribute *attr;
4491 struct field *fp;
4492 char *fieldname = "";
4493
4494 /* Allocate a new field list entry and link it in. */
4495 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 4496 make_cleanup (xfree, new_field);
c906108c 4497 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
4498
4499 if (die->tag == DW_TAG_inheritance)
4500 {
4501 new_field->next = fip->baseclasses;
4502 fip->baseclasses = new_field;
4503 }
4504 else
4505 {
4506 new_field->next = fip->fields;
4507 fip->fields = new_field;
4508 }
c906108c
SS
4509 fip->nfields++;
4510
4511 /* Handle accessibility and virtuality of field.
4512 The default accessibility for members is public, the default
4513 accessibility for inheritance is private. */
4514 if (die->tag != DW_TAG_inheritance)
4515 new_field->accessibility = DW_ACCESS_public;
4516 else
4517 new_field->accessibility = DW_ACCESS_private;
4518 new_field->virtuality = DW_VIRTUALITY_none;
4519
e142c38c 4520 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4521 if (attr)
4522 new_field->accessibility = DW_UNSND (attr);
4523 if (new_field->accessibility != DW_ACCESS_public)
4524 fip->non_public_fields = 1;
e142c38c 4525 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
4526 if (attr)
4527 new_field->virtuality = DW_UNSND (attr);
4528
4529 fp = &new_field->field;
a9a9bd0f 4530
e142c38c 4531 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 4532 {
a9a9bd0f 4533 /* Data member other than a C++ static data member. */
6e70227d 4534
c906108c 4535 /* Get type of field. */
e7c27a73 4536 fp->type = die_type (die, cu);
c906108c 4537
d6a843b5 4538 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 4539
c906108c 4540 /* Get bit size of field (zero if none). */
e142c38c 4541 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
4542 if (attr)
4543 {
4544 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4545 }
4546 else
4547 {
4548 FIELD_BITSIZE (*fp) = 0;
4549 }
4550
4551 /* Get bit offset of field. */
e142c38c 4552 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
4553 if (attr)
4554 {
d4b96c9a 4555 int byte_offset = 0;
c6a0999f 4556
3690dd37 4557 if (attr_form_is_section_offset (attr))
d4b96c9a 4558 dwarf2_complex_location_expr_complaint ();
3690dd37 4559 else if (attr_form_is_constant (attr))
c6a0999f 4560 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 4561 else if (attr_form_is_block (attr))
c6a0999f 4562 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
4563 else
4564 dwarf2_complex_location_expr_complaint ();
c6a0999f 4565
d6a843b5 4566 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 4567 }
e142c38c 4568 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
4569 if (attr)
4570 {
5e2b427d 4571 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
4572 {
4573 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
4574 additional bit offset from the MSB of the containing
4575 anonymous object to the MSB of the field. We don't
4576 have to do anything special since we don't need to
4577 know the size of the anonymous object. */
c906108c
SS
4578 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4579 }
4580 else
4581 {
4582 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
4583 MSB of the anonymous object, subtract off the number of
4584 bits from the MSB of the field to the MSB of the
4585 object, and then subtract off the number of bits of
4586 the field itself. The result is the bit offset of
4587 the LSB of the field. */
c906108c
SS
4588 int anonymous_size;
4589 int bit_offset = DW_UNSND (attr);
4590
e142c38c 4591 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4592 if (attr)
4593 {
4594 /* The size of the anonymous object containing
4595 the bit field is explicit, so use the
4596 indicated size (in bytes). */
4597 anonymous_size = DW_UNSND (attr);
4598 }
4599 else
4600 {
4601 /* The size of the anonymous object containing
4602 the bit field must be inferred from the type
4603 attribute of the data member containing the
4604 bit field. */
4605 anonymous_size = TYPE_LENGTH (fp->type);
4606 }
4607 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4608 - bit_offset - FIELD_BITSIZE (*fp);
4609 }
4610 }
4611
4612 /* Get name of field. */
39cbfefa
DJ
4613 fieldname = dwarf2_name (die, cu);
4614 if (fieldname == NULL)
4615 fieldname = "";
d8151005
DJ
4616
4617 /* The name is already allocated along with this objfile, so we don't
4618 need to duplicate it for the type. */
4619 fp->name = fieldname;
c906108c
SS
4620
4621 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 4622 pointer or virtual base class pointer) to private. */
e142c38c 4623 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 4624 {
d48cc9dd 4625 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
4626 new_field->accessibility = DW_ACCESS_private;
4627 fip->non_public_fields = 1;
4628 }
4629 }
a9a9bd0f 4630 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 4631 {
a9a9bd0f
DC
4632 /* C++ static member. */
4633
4634 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4635 is a declaration, but all versions of G++ as of this writing
4636 (so through at least 3.2.1) incorrectly generate
4637 DW_TAG_variable tags. */
6e70227d 4638
c906108c 4639 char *physname;
c906108c 4640
a9a9bd0f 4641 /* Get name of field. */
39cbfefa
DJ
4642 fieldname = dwarf2_name (die, cu);
4643 if (fieldname == NULL)
c906108c
SS
4644 return;
4645
2df3850c 4646 /* Get physical name. */
94af9270 4647 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 4648
d8151005
DJ
4649 /* The name is already allocated along with this objfile, so we don't
4650 need to duplicate it for the type. */
4651 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 4652 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 4653 FIELD_NAME (*fp) = fieldname;
c906108c
SS
4654 }
4655 else if (die->tag == DW_TAG_inheritance)
4656 {
4657 /* C++ base class field. */
e142c38c 4658 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 4659 if (attr)
d4b96c9a
JK
4660 {
4661 int byte_offset = 0;
4662
4663 if (attr_form_is_section_offset (attr))
4664 dwarf2_complex_location_expr_complaint ();
4665 else if (attr_form_is_constant (attr))
4666 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4667 else if (attr_form_is_block (attr))
4668 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4669 else
4670 dwarf2_complex_location_expr_complaint ();
4671
4672 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4673 }
c906108c 4674 FIELD_BITSIZE (*fp) = 0;
e7c27a73 4675 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
4676 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4677 fip->nbaseclasses++;
4678 }
4679}
4680
98751a41
JK
4681/* Add a typedef defined in the scope of the FIP's class. */
4682
4683static void
4684dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
4685 struct dwarf2_cu *cu)
6e70227d 4686{
98751a41
JK
4687 struct objfile *objfile = cu->objfile;
4688 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4689 struct typedef_field_list *new_field;
4690 struct attribute *attr;
4691 struct typedef_field *fp;
4692 char *fieldname = "";
4693
4694 /* Allocate a new field list entry and link it in. */
4695 new_field = xzalloc (sizeof (*new_field));
4696 make_cleanup (xfree, new_field);
4697
4698 gdb_assert (die->tag == DW_TAG_typedef);
4699
4700 fp = &new_field->field;
4701
4702 /* Get name of field. */
4703 fp->name = dwarf2_name (die, cu);
4704 if (fp->name == NULL)
4705 return;
4706
4707 fp->type = read_type_die (die, cu);
4708
4709 new_field->next = fip->typedef_field_list;
4710 fip->typedef_field_list = new_field;
4711 fip->typedef_field_list_count++;
4712}
4713
c906108c
SS
4714/* Create the vector of fields, and attach it to the type. */
4715
4716static void
fba45db2 4717dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4718 struct dwarf2_cu *cu)
c906108c
SS
4719{
4720 int nfields = fip->nfields;
4721
4722 /* Record the field count, allocate space for the array of fields,
4723 and create blank accessibility bitfields if necessary. */
4724 TYPE_NFIELDS (type) = nfields;
4725 TYPE_FIELDS (type) = (struct field *)
4726 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4727 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4728
b4ba55a1 4729 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
4730 {
4731 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4732
4733 TYPE_FIELD_PRIVATE_BITS (type) =
4734 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4735 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4736
4737 TYPE_FIELD_PROTECTED_BITS (type) =
4738 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4739 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4740
4741 TYPE_FIELD_IGNORE_BITS (type) =
4742 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4743 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4744 }
4745
4746 /* If the type has baseclasses, allocate and clear a bit vector for
4747 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 4748 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
4749 {
4750 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 4751 unsigned char *pointer;
c906108c
SS
4752
4753 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
4754 pointer = TYPE_ALLOC (type, num_bytes);
4755 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
4756 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4757 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4758 }
4759
4760 /* Copy the saved-up fields into the field vector. Start from the head
4761 of the list, adding to the tail of the field array, so that they end
4762 up in the same order in the array in which they were added to the list. */
4763 while (nfields-- > 0)
4764 {
7d0ccb61
DJ
4765 struct nextfield *fieldp;
4766
4767 if (fip->fields)
4768 {
4769 fieldp = fip->fields;
4770 fip->fields = fieldp->next;
4771 }
4772 else
4773 {
4774 fieldp = fip->baseclasses;
4775 fip->baseclasses = fieldp->next;
4776 }
4777
4778 TYPE_FIELD (type, nfields) = fieldp->field;
4779 switch (fieldp->accessibility)
c906108c 4780 {
c5aa993b 4781 case DW_ACCESS_private:
b4ba55a1
JB
4782 if (cu->language != language_ada)
4783 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 4784 break;
c906108c 4785
c5aa993b 4786 case DW_ACCESS_protected:
b4ba55a1
JB
4787 if (cu->language != language_ada)
4788 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 4789 break;
c906108c 4790
c5aa993b
JM
4791 case DW_ACCESS_public:
4792 break;
c906108c 4793
c5aa993b
JM
4794 default:
4795 /* Unknown accessibility. Complain and treat it as public. */
4796 {
e2e0b3e5 4797 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 4798 fieldp->accessibility);
c5aa993b
JM
4799 }
4800 break;
c906108c
SS
4801 }
4802 if (nfields < fip->nbaseclasses)
4803 {
7d0ccb61 4804 switch (fieldp->virtuality)
c906108c 4805 {
c5aa993b
JM
4806 case DW_VIRTUALITY_virtual:
4807 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
4808 if (cu->language == language_ada)
4809 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
4810 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4811 break;
c906108c
SS
4812 }
4813 }
c906108c
SS
4814 }
4815}
4816
c906108c
SS
4817/* Add a member function to the proper fieldlist. */
4818
4819static void
107d2387 4820dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 4821 struct type *type, struct dwarf2_cu *cu)
c906108c 4822{
e7c27a73 4823 struct objfile *objfile = cu->objfile;
c906108c
SS
4824 struct attribute *attr;
4825 struct fnfieldlist *flp;
4826 int i;
4827 struct fn_field *fnp;
4828 char *fieldname;
4829 char *physname;
4830 struct nextfnfield *new_fnfield;
f792889a 4831 struct type *this_type;
c906108c 4832
b4ba55a1
JB
4833 if (cu->language == language_ada)
4834 error ("unexpected member function in Ada type");
4835
2df3850c 4836 /* Get name of member function. */
39cbfefa
DJ
4837 fieldname = dwarf2_name (die, cu);
4838 if (fieldname == NULL)
2df3850c 4839 return;
c906108c 4840
2df3850c 4841 /* Get the mangled name. */
94af9270 4842 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c
SS
4843
4844 /* Look up member function name in fieldlist. */
4845 for (i = 0; i < fip->nfnfields; i++)
4846 {
27bfe10e 4847 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
4848 break;
4849 }
4850
4851 /* Create new list element if necessary. */
4852 if (i < fip->nfnfields)
4853 flp = &fip->fnfieldlists[i];
4854 else
4855 {
4856 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4857 {
4858 fip->fnfieldlists = (struct fnfieldlist *)
4859 xrealloc (fip->fnfieldlists,
4860 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4861 * sizeof (struct fnfieldlist));
c906108c 4862 if (fip->nfnfields == 0)
c13c43fd 4863 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
4864 }
4865 flp = &fip->fnfieldlists[fip->nfnfields];
4866 flp->name = fieldname;
4867 flp->length = 0;
4868 flp->head = NULL;
4869 fip->nfnfields++;
4870 }
4871
4872 /* Create a new member function field and chain it to the field list
4873 entry. */
4874 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 4875 make_cleanup (xfree, new_fnfield);
c906108c
SS
4876 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4877 new_fnfield->next = flp->head;
4878 flp->head = new_fnfield;
4879 flp->length++;
4880
4881 /* Fill in the member function field info. */
4882 fnp = &new_fnfield->fnfield;
d8151005
DJ
4883 /* The name is already allocated along with this objfile, so we don't
4884 need to duplicate it for the type. */
4885 fnp->physname = physname ? physname : "";
c906108c 4886 fnp->type = alloc_type (objfile);
f792889a
DJ
4887 this_type = read_type_die (die, cu);
4888 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 4889 {
f792889a 4890 int nparams = TYPE_NFIELDS (this_type);
c906108c 4891
f792889a 4892 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
4893 of the method itself (TYPE_CODE_METHOD). */
4894 smash_to_method_type (fnp->type, type,
f792889a
DJ
4895 TYPE_TARGET_TYPE (this_type),
4896 TYPE_FIELDS (this_type),
4897 TYPE_NFIELDS (this_type),
4898 TYPE_VARARGS (this_type));
c906108c
SS
4899
4900 /* Handle static member functions.
c5aa993b
JM
4901 Dwarf2 has no clean way to discern C++ static and non-static
4902 member functions. G++ helps GDB by marking the first
4903 parameter for non-static member functions (which is the
4904 this pointer) as artificial. We obtain this information
4905 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 4906 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
4907 fnp->voffset = VOFFSET_STATIC;
4908 }
4909 else
e2e0b3e5 4910 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 4911 physname);
c906108c
SS
4912
4913 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 4914 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 4915 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
4916
4917 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4918 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4919
4920 /* Get accessibility. */
e142c38c 4921 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4922 if (attr)
4923 {
4924 switch (DW_UNSND (attr))
4925 {
c5aa993b
JM
4926 case DW_ACCESS_private:
4927 fnp->is_private = 1;
4928 break;
4929 case DW_ACCESS_protected:
4930 fnp->is_protected = 1;
4931 break;
c906108c
SS
4932 }
4933 }
4934
b02dede2 4935 /* Check for artificial methods. */
e142c38c 4936 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
4937 if (attr && DW_UNSND (attr) != 0)
4938 fnp->is_artificial = 1;
4939
0d564a31 4940 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
4941 function. For older versions of GCC, this is an offset in the
4942 appropriate virtual table, as specified by DW_AT_containing_type.
4943 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
4944 to the object address. */
4945
e142c38c 4946 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 4947 if (attr)
8e19ed76 4948 {
aec5aa8b 4949 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 4950 {
aec5aa8b
TT
4951 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
4952 {
4953 /* Old-style GCC. */
4954 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
4955 }
4956 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
4957 || (DW_BLOCK (attr)->size > 1
4958 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
4959 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
4960 {
4961 struct dwarf_block blk;
4962 int offset;
4963
4964 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
4965 ? 1 : 2);
4966 blk.size = DW_BLOCK (attr)->size - offset;
4967 blk.data = DW_BLOCK (attr)->data + offset;
4968 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
4969 if ((fnp->voffset % cu->header.addr_size) != 0)
4970 dwarf2_complex_location_expr_complaint ();
4971 else
4972 fnp->voffset /= cu->header.addr_size;
4973 fnp->voffset += 2;
4974 }
4975 else
4976 dwarf2_complex_location_expr_complaint ();
4977
4978 if (!fnp->fcontext)
4979 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4980 }
3690dd37 4981 else if (attr_form_is_section_offset (attr))
8e19ed76 4982 {
4d3c2250 4983 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4984 }
4985 else
4986 {
4d3c2250
KB
4987 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4988 fieldname);
8e19ed76 4989 }
0d564a31 4990 }
d48cc9dd
DJ
4991 else
4992 {
4993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4994 if (attr && DW_UNSND (attr))
4995 {
4996 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4997 complaint (&symfile_complaints,
4998 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4999 fieldname, die->offset);
9655fd1a 5000 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
5001 TYPE_CPLUS_DYNAMIC (type) = 1;
5002 }
5003 }
c906108c
SS
5004}
5005
5006/* Create the vector of member function fields, and attach it to the type. */
5007
5008static void
fba45db2 5009dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 5010 struct dwarf2_cu *cu)
c906108c
SS
5011{
5012 struct fnfieldlist *flp;
5013 int total_length = 0;
5014 int i;
5015
b4ba55a1
JB
5016 if (cu->language == language_ada)
5017 error ("unexpected member functions in Ada type");
5018
c906108c
SS
5019 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5020 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
5021 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
5022
5023 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
5024 {
5025 struct nextfnfield *nfp = flp->head;
5026 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
5027 int k;
5028
5029 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
5030 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
5031 fn_flp->fn_fields = (struct fn_field *)
5032 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
5033 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 5034 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
5035
5036 total_length += flp->length;
5037 }
5038
5039 TYPE_NFN_FIELDS (type) = fip->nfnfields;
5040 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
5041}
5042
1168df01
JB
5043/* Returns non-zero if NAME is the name of a vtable member in CU's
5044 language, zero otherwise. */
5045static int
5046is_vtable_name (const char *name, struct dwarf2_cu *cu)
5047{
5048 static const char vptr[] = "_vptr";
987504bb 5049 static const char vtable[] = "vtable";
1168df01 5050
987504bb
JJ
5051 /* Look for the C++ and Java forms of the vtable. */
5052 if ((cu->language == language_java
5053 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
5054 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
5055 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
5056 return 1;
5057
5058 return 0;
5059}
5060
c0dd20ea 5061/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
5062 functions, with the ABI-specified layout. If TYPE describes
5063 such a structure, smash it into a member function type.
61049d3b
DJ
5064
5065 GCC shouldn't do this; it should just output pointer to member DIEs.
5066 This is GCC PR debug/28767. */
c0dd20ea 5067
0b92b5bb
TT
5068static void
5069quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 5070{
0b92b5bb 5071 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
5072
5073 /* Check for a structure with no name and two children. */
0b92b5bb
TT
5074 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
5075 return;
c0dd20ea
DJ
5076
5077 /* Check for __pfn and __delta members. */
0b92b5bb
TT
5078 if (TYPE_FIELD_NAME (type, 0) == NULL
5079 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
5080 || TYPE_FIELD_NAME (type, 1) == NULL
5081 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
5082 return;
c0dd20ea
DJ
5083
5084 /* Find the type of the method. */
0b92b5bb 5085 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
5086 if (pfn_type == NULL
5087 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
5088 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 5089 return;
c0dd20ea
DJ
5090
5091 /* Look for the "this" argument. */
5092 pfn_type = TYPE_TARGET_TYPE (pfn_type);
5093 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 5094 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 5095 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 5096 return;
c0dd20ea
DJ
5097
5098 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
5099 new_type = alloc_type (objfile);
5100 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
5101 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
5102 TYPE_VARARGS (pfn_type));
0b92b5bb 5103 smash_to_methodptr_type (type, new_type);
c0dd20ea 5104}
1168df01 5105
c906108c
SS
5106/* Called when we find the DIE that starts a structure or union scope
5107 (definition) to process all dies that define the members of the
5108 structure or union.
5109
5110 NOTE: we need to call struct_type regardless of whether or not the
5111 DIE has an at_name attribute, since it might be an anonymous
5112 structure or union. This gets the type entered into our set of
5113 user defined types.
5114
5115 However, if the structure is incomplete (an opaque struct/union)
5116 then suppress creating a symbol table entry for it since gdb only
5117 wants to find the one with the complete definition. Note that if
5118 it is complete, we just call new_symbol, which does it's own
5119 checking about whether the struct/union is anonymous or not (and
5120 suppresses creating a symbol table entry itself). */
5121
f792889a 5122static struct type *
134d01f1 5123read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5124{
e7c27a73 5125 struct objfile *objfile = cu->objfile;
c906108c
SS
5126 struct type *type;
5127 struct attribute *attr;
39cbfefa 5128 char *name;
d3f41bb1 5129 struct cleanup *back_to;
c906108c 5130
348e048f
DE
5131 /* If the definition of this type lives in .debug_types, read that type.
5132 Don't follow DW_AT_specification though, that will take us back up
5133 the chain and we want to go down. */
5134 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5135 if (attr)
5136 {
5137 struct dwarf2_cu *type_cu = cu;
5138 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 5139
348e048f
DE
5140 /* We could just recurse on read_structure_type, but we need to call
5141 get_die_type to ensure only one type for this DIE is created.
5142 This is important, for example, because for c++ classes we need
5143 TYPE_NAME set which is only done by new_symbol. Blech. */
5144 type = read_type_die (type_die, type_cu);
5145 return set_die_type (die, type, cu);
5146 }
5147
d3f41bb1
TT
5148 back_to = make_cleanup (null_cleanup, 0);
5149
c0dd20ea 5150 type = alloc_type (objfile);
c906108c 5151 INIT_CPLUS_SPECIFIC (type);
93311388 5152
39cbfefa
DJ
5153 name = dwarf2_name (die, cu);
5154 if (name != NULL)
c906108c 5155 {
987504bb
JJ
5156 if (cu->language == language_cplus
5157 || cu->language == language_java)
63d06c5c 5158 {
94af9270
KS
5159 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
5160 if (die->tag == DW_TAG_structure_type
5161 || die->tag == DW_TAG_class_type)
5162 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
5163 }
5164 else
5165 {
d8151005
DJ
5166 /* The name is already allocated along with this objfile, so
5167 we don't need to duplicate it for the type. */
94af9270
KS
5168 TYPE_TAG_NAME (type) = (char *) name;
5169 if (die->tag == DW_TAG_class_type)
5170 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 5171 }
c906108c
SS
5172 }
5173
5174 if (die->tag == DW_TAG_structure_type)
5175 {
5176 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5177 }
5178 else if (die->tag == DW_TAG_union_type)
5179 {
5180 TYPE_CODE (type) = TYPE_CODE_UNION;
5181 }
5182 else
5183 {
c906108c
SS
5184 TYPE_CODE (type) = TYPE_CODE_CLASS;
5185 }
5186
0cc2414c
TT
5187 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
5188 TYPE_DECLARED_CLASS (type) = 1;
5189
e142c38c 5190 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5191 if (attr)
5192 {
5193 TYPE_LENGTH (type) = DW_UNSND (attr);
5194 }
5195 else
5196 {
5197 TYPE_LENGTH (type) = 0;
5198 }
5199
876cecd0 5200 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 5201 if (die_is_declaration (die, cu))
876cecd0 5202 TYPE_STUB (type) = 1;
a6c727b2
DJ
5203 else if (attr == NULL && die->child == NULL
5204 && producer_is_realview (cu->producer))
5205 /* RealView does not output the required DW_AT_declaration
5206 on incomplete types. */
5207 TYPE_STUB (type) = 1;
dc718098 5208
c906108c
SS
5209 /* We need to add the type field to the die immediately so we don't
5210 infinitely recurse when dealing with pointers to the structure
5211 type within the structure itself. */
1c379e20 5212 set_die_type (die, type, cu);
c906108c 5213
7e314c57
JK
5214 /* set_die_type should be already done. */
5215 set_descriptive_type (type, die, cu);
5216
e142c38c 5217 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
5218 {
5219 struct field_info fi;
5220 struct die_info *child_die;
c906108c
SS
5221
5222 memset (&fi, 0, sizeof (struct field_info));
5223
639d11d3 5224 child_die = die->child;
c906108c
SS
5225
5226 while (child_die && child_die->tag)
5227 {
a9a9bd0f
DC
5228 if (child_die->tag == DW_TAG_member
5229 || child_die->tag == DW_TAG_variable)
c906108c 5230 {
a9a9bd0f
DC
5231 /* NOTE: carlton/2002-11-05: A C++ static data member
5232 should be a DW_TAG_member that is a declaration, but
5233 all versions of G++ as of this writing (so through at
5234 least 3.2.1) incorrectly generate DW_TAG_variable
5235 tags for them instead. */
e7c27a73 5236 dwarf2_add_field (&fi, child_die, cu);
c906108c 5237 }
8713b1b1 5238 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
5239 {
5240 /* C++ member function. */
e7c27a73 5241 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
5242 }
5243 else if (child_die->tag == DW_TAG_inheritance)
5244 {
5245 /* C++ base class field. */
e7c27a73 5246 dwarf2_add_field (&fi, child_die, cu);
c906108c 5247 }
98751a41
JK
5248 else if (child_die->tag == DW_TAG_typedef)
5249 dwarf2_add_typedef (&fi, child_die, cu);
c906108c
SS
5250 child_die = sibling_die (child_die);
5251 }
5252
5253 /* Attach fields and member functions to the type. */
5254 if (fi.nfields)
e7c27a73 5255 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
5256 if (fi.nfnfields)
5257 {
e7c27a73 5258 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 5259
c5aa993b 5260 /* Get the type which refers to the base class (possibly this
c906108c 5261 class itself) which contains the vtable pointer for the current
0d564a31
DJ
5262 class from the DW_AT_containing_type attribute. This use of
5263 DW_AT_containing_type is a GNU extension. */
c906108c 5264
e142c38c 5265 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 5266 {
e7c27a73 5267 struct type *t = die_containing_type (die, cu);
c906108c
SS
5268
5269 TYPE_VPTR_BASETYPE (type) = t;
5270 if (type == t)
5271 {
c906108c
SS
5272 int i;
5273
5274 /* Our own class provides vtbl ptr. */
5275 for (i = TYPE_NFIELDS (t) - 1;
5276 i >= TYPE_N_BASECLASSES (t);
5277 --i)
5278 {
5279 char *fieldname = TYPE_FIELD_NAME (t, i);
5280
1168df01 5281 if (is_vtable_name (fieldname, cu))
c906108c
SS
5282 {
5283 TYPE_VPTR_FIELDNO (type) = i;
5284 break;
5285 }
5286 }
5287
5288 /* Complain if virtual function table field not found. */
5289 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 5290 complaint (&symfile_complaints,
e2e0b3e5 5291 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
5292 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5293 "");
c906108c
SS
5294 }
5295 else
5296 {
5297 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5298 }
5299 }
f6235d4c
EZ
5300 else if (cu->producer
5301 && strncmp (cu->producer,
5302 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5303 {
5304 /* The IBM XLC compiler does not provide direct indication
5305 of the containing type, but the vtable pointer is
5306 always named __vfp. */
5307
5308 int i;
5309
5310 for (i = TYPE_NFIELDS (type) - 1;
5311 i >= TYPE_N_BASECLASSES (type);
5312 --i)
5313 {
5314 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5315 {
5316 TYPE_VPTR_FIELDNO (type) = i;
5317 TYPE_VPTR_BASETYPE (type) = type;
5318 break;
5319 }
5320 }
5321 }
c906108c 5322 }
98751a41
JK
5323
5324 /* Copy fi.typedef_field_list linked list elements content into the
5325 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
5326 if (fi.typedef_field_list)
5327 {
5328 int i = fi.typedef_field_list_count;
5329
a0d7a4ff 5330 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
5331 TYPE_TYPEDEF_FIELD_ARRAY (type)
5332 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
5333 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
5334
5335 /* Reverse the list order to keep the debug info elements order. */
5336 while (--i >= 0)
5337 {
5338 struct typedef_field *dest, *src;
6e70227d 5339
98751a41
JK
5340 dest = &TYPE_TYPEDEF_FIELD (type, i);
5341 src = &fi.typedef_field_list->field;
5342 fi.typedef_field_list = fi.typedef_field_list->next;
5343 *dest = *src;
5344 }
5345 }
c906108c 5346 }
63d06c5c 5347
0b92b5bb
TT
5348 quirk_gcc_member_function_pointer (type, cu->objfile);
5349
0114d602 5350 do_cleanups (back_to);
f792889a 5351 return type;
c906108c
SS
5352}
5353
134d01f1
DJ
5354static void
5355process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5356{
90aeadfc 5357 struct die_info *child_die = die->child;
f792889a 5358 struct type *this_type;
c906108c 5359
f792889a
DJ
5360 this_type = get_die_type (die, cu);
5361 if (this_type == NULL)
5362 this_type = read_structure_type (die, cu);
c906108c 5363
90aeadfc
DC
5364 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5365 snapshots) has been known to create a die giving a declaration
5366 for a class that has, as a child, a die giving a definition for a
5367 nested class. So we have to process our children even if the
5368 current die is a declaration. Normally, of course, a declaration
5369 won't have any children at all. */
134d01f1 5370
90aeadfc
DC
5371 while (child_die != NULL && child_die->tag)
5372 {
5373 if (child_die->tag == DW_TAG_member
5374 || child_die->tag == DW_TAG_variable
5375 || child_die->tag == DW_TAG_inheritance)
134d01f1 5376 {
90aeadfc 5377 /* Do nothing. */
134d01f1 5378 }
90aeadfc
DC
5379 else
5380 process_die (child_die, cu);
134d01f1 5381
90aeadfc 5382 child_die = sibling_die (child_die);
134d01f1
DJ
5383 }
5384
fa4028e9
JB
5385 /* Do not consider external references. According to the DWARF standard,
5386 these DIEs are identified by the fact that they have no byte_size
5387 attribute, and a declaration attribute. */
5388 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5389 || !die_is_declaration (die, cu))
f792889a 5390 new_symbol (die, this_type, cu);
134d01f1
DJ
5391}
5392
5393/* Given a DW_AT_enumeration_type die, set its type. We do not
5394 complete the type's fields yet, or create any symbols. */
c906108c 5395
f792889a 5396static struct type *
134d01f1 5397read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5398{
e7c27a73 5399 struct objfile *objfile = cu->objfile;
c906108c 5400 struct type *type;
c906108c 5401 struct attribute *attr;
0114d602 5402 const char *name;
134d01f1 5403
348e048f
DE
5404 /* If the definition of this type lives in .debug_types, read that type.
5405 Don't follow DW_AT_specification though, that will take us back up
5406 the chain and we want to go down. */
5407 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5408 if (attr)
5409 {
5410 struct dwarf2_cu *type_cu = cu;
5411 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 5412
348e048f
DE
5413 type = read_type_die (type_die, type_cu);
5414 return set_die_type (die, type, cu);
5415 }
5416
c906108c
SS
5417 type = alloc_type (objfile);
5418
5419 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 5420 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 5421 if (name != NULL)
0114d602 5422 TYPE_TAG_NAME (type) = (char *) name;
c906108c 5423
e142c38c 5424 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5425 if (attr)
5426 {
5427 TYPE_LENGTH (type) = DW_UNSND (attr);
5428 }
5429 else
5430 {
5431 TYPE_LENGTH (type) = 0;
5432 }
5433
137033e9
JB
5434 /* The enumeration DIE can be incomplete. In Ada, any type can be
5435 declared as private in the package spec, and then defined only
5436 inside the package body. Such types are known as Taft Amendment
5437 Types. When another package uses such a type, an incomplete DIE
5438 may be generated by the compiler. */
02eb380e 5439 if (die_is_declaration (die, cu))
876cecd0 5440 TYPE_STUB (type) = 1;
02eb380e 5441
f792889a 5442 return set_die_type (die, type, cu);
134d01f1
DJ
5443}
5444
5445/* Given a pointer to a die which begins an enumeration, process all
5446 the dies that define the members of the enumeration, and create the
5447 symbol for the enumeration type.
5448
5449 NOTE: We reverse the order of the element list. */
5450
5451static void
5452process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5453{
134d01f1
DJ
5454 struct die_info *child_die;
5455 struct field *fields;
134d01f1
DJ
5456 struct symbol *sym;
5457 int num_fields;
5458 int unsigned_enum = 1;
39cbfefa 5459 char *name;
f792889a 5460 struct type *this_type;
134d01f1 5461
c906108c
SS
5462 num_fields = 0;
5463 fields = NULL;
f792889a
DJ
5464 this_type = get_die_type (die, cu);
5465 if (this_type == NULL)
5466 this_type = read_enumeration_type (die, cu);
639d11d3 5467 if (die->child != NULL)
c906108c 5468 {
639d11d3 5469 child_die = die->child;
c906108c
SS
5470 while (child_die && child_die->tag)
5471 {
5472 if (child_die->tag != DW_TAG_enumerator)
5473 {
e7c27a73 5474 process_die (child_die, cu);
c906108c
SS
5475 }
5476 else
5477 {
39cbfefa
DJ
5478 name = dwarf2_name (child_die, cu);
5479 if (name)
c906108c 5480 {
f792889a 5481 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
5482 if (SYMBOL_VALUE (sym) < 0)
5483 unsigned_enum = 0;
5484
5485 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5486 {
5487 fields = (struct field *)
5488 xrealloc (fields,
5489 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 5490 * sizeof (struct field));
c906108c
SS
5491 }
5492
3567439c 5493 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 5494 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 5495 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
5496 FIELD_BITSIZE (fields[num_fields]) = 0;
5497
5498 num_fields++;
5499 }
5500 }
5501
5502 child_die = sibling_die (child_die);
5503 }
5504
5505 if (num_fields)
5506 {
f792889a
DJ
5507 TYPE_NFIELDS (this_type) = num_fields;
5508 TYPE_FIELDS (this_type) = (struct field *)
5509 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5510 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 5511 sizeof (struct field) * num_fields);
b8c9b27d 5512 xfree (fields);
c906108c
SS
5513 }
5514 if (unsigned_enum)
876cecd0 5515 TYPE_UNSIGNED (this_type) = 1;
c906108c 5516 }
134d01f1 5517
f792889a 5518 new_symbol (die, this_type, cu);
c906108c
SS
5519}
5520
5521/* Extract all information from a DW_TAG_array_type DIE and put it in
5522 the DIE's type field. For now, this only handles one dimensional
5523 arrays. */
5524
f792889a 5525static struct type *
e7c27a73 5526read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5527{
e7c27a73 5528 struct objfile *objfile = cu->objfile;
c906108c 5529 struct die_info *child_die;
7e314c57 5530 struct type *type;
c906108c
SS
5531 struct type *element_type, *range_type, *index_type;
5532 struct type **range_types = NULL;
5533 struct attribute *attr;
5534 int ndim = 0;
5535 struct cleanup *back_to;
39cbfefa 5536 char *name;
c906108c 5537
e7c27a73 5538 element_type = die_type (die, cu);
c906108c 5539
7e314c57
JK
5540 /* The die_type call above may have already set the type for this DIE. */
5541 type = get_die_type (die, cu);
5542 if (type)
5543 return type;
5544
c906108c
SS
5545 /* Irix 6.2 native cc creates array types without children for
5546 arrays with unspecified length. */
639d11d3 5547 if (die->child == NULL)
c906108c 5548 {
46bf5051 5549 index_type = objfile_type (objfile)->builtin_int;
c906108c 5550 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
5551 type = create_array_type (NULL, element_type, range_type);
5552 return set_die_type (die, type, cu);
c906108c
SS
5553 }
5554
5555 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 5556 child_die = die->child;
c906108c
SS
5557 while (child_die && child_die->tag)
5558 {
5559 if (child_die->tag == DW_TAG_subrange_type)
5560 {
f792889a 5561 struct type *child_type = read_type_die (child_die, cu);
9a619af0 5562
f792889a 5563 if (child_type != NULL)
a02abb62
JB
5564 {
5565 /* The range type was succesfully read. Save it for
5566 the array type creation. */
5567 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5568 {
5569 range_types = (struct type **)
5570 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5571 * sizeof (struct type *));
5572 if (ndim == 0)
5573 make_cleanup (free_current_contents, &range_types);
5574 }
f792889a 5575 range_types[ndim++] = child_type;
a02abb62 5576 }
c906108c
SS
5577 }
5578 child_die = sibling_die (child_die);
5579 }
5580
5581 /* Dwarf2 dimensions are output from left to right, create the
5582 necessary array types in backwards order. */
7ca2d3a3 5583
c906108c 5584 type = element_type;
7ca2d3a3
DL
5585
5586 if (read_array_order (die, cu) == DW_ORD_col_major)
5587 {
5588 int i = 0;
9a619af0 5589
7ca2d3a3
DL
5590 while (i < ndim)
5591 type = create_array_type (NULL, type, range_types[i++]);
5592 }
5593 else
5594 {
5595 while (ndim-- > 0)
5596 type = create_array_type (NULL, type, range_types[ndim]);
5597 }
c906108c 5598
f5f8a009
EZ
5599 /* Understand Dwarf2 support for vector types (like they occur on
5600 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5601 array type. This is not part of the Dwarf2/3 standard yet, but a
5602 custom vendor extension. The main difference between a regular
5603 array and the vector variant is that vectors are passed by value
5604 to functions. */
e142c38c 5605 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 5606 if (attr)
ea37ba09 5607 make_vector_type (type);
f5f8a009 5608
39cbfefa
DJ
5609 name = dwarf2_name (die, cu);
5610 if (name)
5611 TYPE_NAME (type) = name;
6e70227d 5612
7e314c57
JK
5613 /* Install the type in the die. */
5614 set_die_type (die, type, cu);
5615
5616 /* set_die_type should be already done. */
b4ba55a1
JB
5617 set_descriptive_type (type, die, cu);
5618
c906108c
SS
5619 do_cleanups (back_to);
5620
7e314c57 5621 return type;
c906108c
SS
5622}
5623
7ca2d3a3 5624static enum dwarf_array_dim_ordering
6e70227d 5625read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
5626{
5627 struct attribute *attr;
5628
5629 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5630
5631 if (attr) return DW_SND (attr);
5632
5633 /*
5634 GNU F77 is a special case, as at 08/2004 array type info is the
6e70227d 5635 opposite order to the dwarf2 specification, but data is still
7ca2d3a3
DL
5636 laid out as per normal fortran.
5637
6e70227d 5638 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7ca2d3a3
DL
5639 version checking.
5640 */
5641
905e0470
PM
5642 if (cu->language == language_fortran
5643 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
5644 {
5645 return DW_ORD_row_major;
5646 }
5647
6e70227d 5648 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
5649 {
5650 case array_column_major:
5651 return DW_ORD_col_major;
5652 case array_row_major:
5653 default:
5654 return DW_ORD_row_major;
5655 };
5656}
5657
72019c9c
GM
5658/* Extract all information from a DW_TAG_set_type DIE and put it in
5659 the DIE's type field. */
5660
f792889a 5661static struct type *
72019c9c
GM
5662read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5663{
7e314c57
JK
5664 struct type *domain_type, *set_type;
5665 struct attribute *attr;
f792889a 5666
7e314c57
JK
5667 domain_type = die_type (die, cu);
5668
5669 /* The die_type call above may have already set the type for this DIE. */
5670 set_type = get_die_type (die, cu);
5671 if (set_type)
5672 return set_type;
5673
5674 set_type = create_set_type (NULL, domain_type);
5675
5676 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
5677 if (attr)
5678 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 5679
f792889a 5680 return set_die_type (die, set_type, cu);
72019c9c 5681}
7ca2d3a3 5682
c906108c
SS
5683/* First cut: install each common block member as a global variable. */
5684
5685static void
e7c27a73 5686read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5687{
5688 struct die_info *child_die;
5689 struct attribute *attr;
5690 struct symbol *sym;
5691 CORE_ADDR base = (CORE_ADDR) 0;
5692
e142c38c 5693 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
5694 if (attr)
5695 {
8e19ed76
PS
5696 /* Support the .debug_loc offsets */
5697 if (attr_form_is_block (attr))
5698 {
e7c27a73 5699 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 5700 }
3690dd37 5701 else if (attr_form_is_section_offset (attr))
8e19ed76 5702 {
4d3c2250 5703 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5704 }
5705 else
5706 {
4d3c2250
KB
5707 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5708 "common block member");
8e19ed76 5709 }
c906108c 5710 }
639d11d3 5711 if (die->child != NULL)
c906108c 5712 {
639d11d3 5713 child_die = die->child;
c906108c
SS
5714 while (child_die && child_die->tag)
5715 {
e7c27a73 5716 sym = new_symbol (child_die, NULL, cu);
e142c38c 5717 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
5718 if (attr)
5719 {
d4b96c9a
JK
5720 CORE_ADDR byte_offset = 0;
5721
5722 if (attr_form_is_section_offset (attr))
5723 dwarf2_complex_location_expr_complaint ();
5724 else if (attr_form_is_constant (attr))
5725 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5726 else if (attr_form_is_block (attr))
5727 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5728 else
5729 dwarf2_complex_location_expr_complaint ();
5730
5731 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
5732 add_symbol_to_list (sym, &global_symbols);
5733 }
5734 child_die = sibling_die (child_die);
5735 }
5736 }
5737}
5738
0114d602 5739/* Create a type for a C++ namespace. */
d9fa45fe 5740
0114d602
DJ
5741static struct type *
5742read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 5743{
e7c27a73 5744 struct objfile *objfile = cu->objfile;
0114d602 5745 const char *previous_prefix, *name;
9219021c 5746 int is_anonymous;
0114d602
DJ
5747 struct type *type;
5748
5749 /* For extensions, reuse the type of the original namespace. */
5750 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5751 {
5752 struct die_info *ext_die;
5753 struct dwarf2_cu *ext_cu = cu;
9a619af0 5754
0114d602
DJ
5755 ext_die = dwarf2_extension (die, &ext_cu);
5756 type = read_type_die (ext_die, ext_cu);
5757 return set_die_type (die, type, cu);
5758 }
9219021c 5759
e142c38c 5760 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
5761
5762 /* Now build the name of the current namespace. */
5763
0114d602
DJ
5764 previous_prefix = determine_prefix (die, cu);
5765 if (previous_prefix[0] != '\0')
5766 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 5767 previous_prefix, name, 0, cu);
0114d602
DJ
5768
5769 /* Create the type. */
5770 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5771 objfile);
5772 TYPE_NAME (type) = (char *) name;
5773 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5774
60531b24 5775 return set_die_type (die, type, cu);
0114d602
DJ
5776}
5777
5778/* Read a C++ namespace. */
5779
5780static void
5781read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5782{
5783 struct objfile *objfile = cu->objfile;
5784 const char *name;
5785 int is_anonymous;
9219021c 5786
5c4e30ca
DC
5787 /* Add a symbol associated to this if we haven't seen the namespace
5788 before. Also, add a using directive if it's an anonymous
5789 namespace. */
9219021c 5790
f2f0e013 5791 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
5792 {
5793 struct type *type;
5794
0114d602 5795 type = read_type_die (die, cu);
e7c27a73 5796 new_symbol (die, type, cu);
5c4e30ca 5797
0114d602 5798 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 5799 if (is_anonymous)
0114d602
DJ
5800 {
5801 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 5802
c0cc3a76 5803 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 5804 NULL, &objfile->objfile_obstack);
0114d602 5805 }
5c4e30ca 5806 }
9219021c 5807
639d11d3 5808 if (die->child != NULL)
d9fa45fe 5809 {
639d11d3 5810 struct die_info *child_die = die->child;
6e70227d 5811
d9fa45fe
DC
5812 while (child_die && child_die->tag)
5813 {
e7c27a73 5814 process_die (child_die, cu);
d9fa45fe
DC
5815 child_die = sibling_die (child_die);
5816 }
5817 }
38d518c9
EZ
5818}
5819
f55ee35c
JK
5820/* Read a Fortran module as type. This DIE can be only a declaration used for
5821 imported module. Still we need that type as local Fortran "use ... only"
5822 declaration imports depend on the created type in determine_prefix. */
5823
5824static struct type *
5825read_module_type (struct die_info *die, struct dwarf2_cu *cu)
5826{
5827 struct objfile *objfile = cu->objfile;
5828 char *module_name;
5829 struct type *type;
5830
5831 module_name = dwarf2_name (die, cu);
5832 if (!module_name)
5833 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
5834 die->offset);
5835 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
5836
5837 /* determine_prefix uses TYPE_TAG_NAME. */
5838 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5839
5840 return set_die_type (die, type, cu);
5841}
5842
5d7cb8df
JK
5843/* Read a Fortran module. */
5844
5845static void
5846read_module (struct die_info *die, struct dwarf2_cu *cu)
5847{
5848 struct die_info *child_die = die->child;
5849
5d7cb8df
JK
5850 while (child_die && child_die->tag)
5851 {
5852 process_die (child_die, cu);
5853 child_die = sibling_die (child_die);
5854 }
5855}
5856
38d518c9
EZ
5857/* Return the name of the namespace represented by DIE. Set
5858 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5859 namespace. */
5860
5861static const char *
e142c38c 5862namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
5863{
5864 struct die_info *current_die;
5865 const char *name = NULL;
5866
5867 /* Loop through the extensions until we find a name. */
5868
5869 for (current_die = die;
5870 current_die != NULL;
f2f0e013 5871 current_die = dwarf2_extension (die, &cu))
38d518c9 5872 {
e142c38c 5873 name = dwarf2_name (current_die, cu);
38d518c9
EZ
5874 if (name != NULL)
5875 break;
5876 }
5877
5878 /* Is it an anonymous namespace? */
5879
5880 *is_anonymous = (name == NULL);
5881 if (*is_anonymous)
5882 name = "(anonymous namespace)";
5883
5884 return name;
d9fa45fe
DC
5885}
5886
c906108c
SS
5887/* Extract all information from a DW_TAG_pointer_type DIE and add to
5888 the user defined type vector. */
5889
f792889a 5890static struct type *
e7c27a73 5891read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5892{
5e2b427d 5893 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 5894 struct comp_unit_head *cu_header = &cu->header;
c906108c 5895 struct type *type;
8b2dbe47
KB
5896 struct attribute *attr_byte_size;
5897 struct attribute *attr_address_class;
5898 int byte_size, addr_class;
7e314c57
JK
5899 struct type *target_type;
5900
5901 target_type = die_type (die, cu);
c906108c 5902
7e314c57
JK
5903 /* The die_type call above may have already set the type for this DIE. */
5904 type = get_die_type (die, cu);
5905 if (type)
5906 return type;
5907
5908 type = lookup_pointer_type (target_type);
8b2dbe47 5909
e142c38c 5910 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
5911 if (attr_byte_size)
5912 byte_size = DW_UNSND (attr_byte_size);
c906108c 5913 else
8b2dbe47
KB
5914 byte_size = cu_header->addr_size;
5915
e142c38c 5916 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
5917 if (attr_address_class)
5918 addr_class = DW_UNSND (attr_address_class);
5919 else
5920 addr_class = DW_ADDR_none;
5921
5922 /* If the pointer size or address class is different than the
5923 default, create a type variant marked as such and set the
5924 length accordingly. */
5925 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 5926 {
5e2b427d 5927 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
5928 {
5929 int type_flags;
5930
849957d9 5931 type_flags = gdbarch_address_class_type_flags
5e2b427d 5932 (gdbarch, byte_size, addr_class);
876cecd0
TT
5933 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5934 == 0);
8b2dbe47
KB
5935 type = make_type_with_address_space (type, type_flags);
5936 }
5937 else if (TYPE_LENGTH (type) != byte_size)
5938 {
e2e0b3e5 5939 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47 5940 }
6e70227d 5941 else
9a619af0
MS
5942 {
5943 /* Should we also complain about unhandled address classes? */
5944 }
c906108c 5945 }
8b2dbe47
KB
5946
5947 TYPE_LENGTH (type) = byte_size;
f792889a 5948 return set_die_type (die, type, cu);
c906108c
SS
5949}
5950
5951/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5952 the user defined type vector. */
5953
f792889a 5954static struct type *
e7c27a73 5955read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5956{
5957 struct type *type;
5958 struct type *to_type;
5959 struct type *domain;
5960
e7c27a73
DJ
5961 to_type = die_type (die, cu);
5962 domain = die_containing_type (die, cu);
0d5de010 5963
7e314c57
JK
5964 /* The calls above may have already set the type for this DIE. */
5965 type = get_die_type (die, cu);
5966 if (type)
5967 return type;
5968
0d5de010
DJ
5969 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5970 type = lookup_methodptr_type (to_type);
5971 else
5972 type = lookup_memberptr_type (to_type, domain);
c906108c 5973
f792889a 5974 return set_die_type (die, type, cu);
c906108c
SS
5975}
5976
5977/* Extract all information from a DW_TAG_reference_type DIE and add to
5978 the user defined type vector. */
5979
f792889a 5980static struct type *
e7c27a73 5981read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5982{
e7c27a73 5983 struct comp_unit_head *cu_header = &cu->header;
7e314c57 5984 struct type *type, *target_type;
c906108c
SS
5985 struct attribute *attr;
5986
7e314c57
JK
5987 target_type = die_type (die, cu);
5988
5989 /* The die_type call above may have already set the type for this DIE. */
5990 type = get_die_type (die, cu);
5991 if (type)
5992 return type;
5993
5994 type = lookup_reference_type (target_type);
e142c38c 5995 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5996 if (attr)
5997 {
5998 TYPE_LENGTH (type) = DW_UNSND (attr);
5999 }
6000 else
6001 {
107d2387 6002 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 6003 }
f792889a 6004 return set_die_type (die, type, cu);
c906108c
SS
6005}
6006
f792889a 6007static struct type *
e7c27a73 6008read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6009{
f792889a 6010 struct type *base_type, *cv_type;
c906108c 6011
e7c27a73 6012 base_type = die_type (die, cu);
7e314c57
JK
6013
6014 /* The die_type call above may have already set the type for this DIE. */
6015 cv_type = get_die_type (die, cu);
6016 if (cv_type)
6017 return cv_type;
6018
f792889a
DJ
6019 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
6020 return set_die_type (die, cv_type, cu);
c906108c
SS
6021}
6022
f792889a 6023static struct type *
e7c27a73 6024read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6025{
f792889a 6026 struct type *base_type, *cv_type;
c906108c 6027
e7c27a73 6028 base_type = die_type (die, cu);
7e314c57
JK
6029
6030 /* The die_type call above may have already set the type for this DIE. */
6031 cv_type = get_die_type (die, cu);
6032 if (cv_type)
6033 return cv_type;
6034
f792889a
DJ
6035 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
6036 return set_die_type (die, cv_type, cu);
c906108c
SS
6037}
6038
6039/* Extract all information from a DW_TAG_string_type DIE and add to
6040 the user defined type vector. It isn't really a user defined type,
6041 but it behaves like one, with other DIE's using an AT_user_def_type
6042 attribute to reference it. */
6043
f792889a 6044static struct type *
e7c27a73 6045read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6046{
e7c27a73 6047 struct objfile *objfile = cu->objfile;
3b7538c0 6048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6049 struct type *type, *range_type, *index_type, *char_type;
6050 struct attribute *attr;
6051 unsigned int length;
6052
e142c38c 6053 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
6054 if (attr)
6055 {
6056 length = DW_UNSND (attr);
6057 }
6058 else
6059 {
b21b22e0 6060 /* check for the DW_AT_byte_size attribute */
e142c38c 6061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
6062 if (attr)
6063 {
6064 length = DW_UNSND (attr);
6065 }
6066 else
6067 {
6068 length = 1;
6069 }
c906108c 6070 }
6ccb9162 6071
46bf5051 6072 index_type = objfile_type (objfile)->builtin_int;
c906108c 6073 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
6074 char_type = language_string_char_type (cu->language_defn, gdbarch);
6075 type = create_string_type (NULL, char_type, range_type);
6ccb9162 6076
f792889a 6077 return set_die_type (die, type, cu);
c906108c
SS
6078}
6079
6080/* Handle DIES due to C code like:
6081
6082 struct foo
c5aa993b
JM
6083 {
6084 int (*funcp)(int a, long l);
6085 int b;
6086 };
c906108c
SS
6087
6088 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 6089 */
c906108c 6090
f792889a 6091static struct type *
e7c27a73 6092read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
6093{
6094 struct type *type; /* Type that this function returns */
6095 struct type *ftype; /* Function that returns above type */
6096 struct attribute *attr;
6097
e7c27a73 6098 type = die_type (die, cu);
7e314c57
JK
6099
6100 /* The die_type call above may have already set the type for this DIE. */
6101 ftype = get_die_type (die, cu);
6102 if (ftype)
6103 return ftype;
6104
0c8b41f1 6105 ftype = lookup_function_type (type);
c906108c 6106
5b8101ae 6107 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 6108 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 6109 if ((attr && (DW_UNSND (attr) != 0))
987504bb 6110 || cu->language == language_cplus
5b8101ae
PM
6111 || cu->language == language_java
6112 || cu->language == language_pascal)
876cecd0 6113 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
6114 else if (producer_is_realview (cu->producer))
6115 /* RealView does not emit DW_AT_prototyped. We can not
6116 distinguish prototyped and unprototyped functions; default to
6117 prototyped, since that is more common in modern code (and
6118 RealView warns about unprototyped functions). */
6119 TYPE_PROTOTYPED (ftype) = 1;
c906108c 6120
c055b101
CV
6121 /* Store the calling convention in the type if it's available in
6122 the subroutine die. Otherwise set the calling convention to
6123 the default value DW_CC_normal. */
6124 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
6125 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
6126
6127 /* We need to add the subroutine type to the die immediately so
6128 we don't infinitely recurse when dealing with parameters
6129 declared as the same subroutine type. */
6130 set_die_type (die, ftype, cu);
6e70227d 6131
639d11d3 6132 if (die->child != NULL)
c906108c 6133 {
8072405b 6134 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 6135 struct die_info *child_die;
8072405b 6136 int nparams, iparams;
c906108c
SS
6137
6138 /* Count the number of parameters.
6139 FIXME: GDB currently ignores vararg functions, but knows about
6140 vararg member functions. */
8072405b 6141 nparams = 0;
639d11d3 6142 child_die = die->child;
c906108c
SS
6143 while (child_die && child_die->tag)
6144 {
6145 if (child_die->tag == DW_TAG_formal_parameter)
6146 nparams++;
6147 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 6148 TYPE_VARARGS (ftype) = 1;
c906108c
SS
6149 child_die = sibling_die (child_die);
6150 }
6151
6152 /* Allocate storage for parameters and fill them in. */
6153 TYPE_NFIELDS (ftype) = nparams;
6154 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 6155 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 6156
8072405b
JK
6157 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
6158 even if we error out during the parameters reading below. */
6159 for (iparams = 0; iparams < nparams; iparams++)
6160 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
6161
6162 iparams = 0;
639d11d3 6163 child_die = die->child;
c906108c
SS
6164 while (child_die && child_die->tag)
6165 {
6166 if (child_die->tag == DW_TAG_formal_parameter)
6167 {
6168 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
6169 member functions. G++ helps GDB by marking the first
6170 parameter for non-static member functions (which is the
6171 this pointer) as artificial. We pass this information
6172 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 6173 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
6174 if (attr)
6175 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
6176 else
418835cc
KS
6177 {
6178 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
6179
6180 /* GCC/43521: In java, the formal parameter
6181 "this" is sometimes not marked with DW_AT_artificial. */
6182 if (cu->language == language_java)
6183 {
6184 const char *name = dwarf2_name (child_die, cu);
9a619af0 6185
418835cc
KS
6186 if (name && !strcmp (name, "this"))
6187 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
6188 }
6189 }
e7c27a73 6190 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
6191 iparams++;
6192 }
6193 child_die = sibling_die (child_die);
6194 }
6195 }
6196
76c10ea2 6197 return ftype;
c906108c
SS
6198}
6199
f792889a 6200static struct type *
e7c27a73 6201read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6202{
e7c27a73 6203 struct objfile *objfile = cu->objfile;
0114d602 6204 const char *name = NULL;
f792889a 6205 struct type *this_type;
c906108c 6206
94af9270 6207 name = dwarf2_full_name (NULL, die, cu);
f792889a 6208 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
6209 TYPE_FLAG_TARGET_STUB, NULL, objfile);
6210 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
6211 set_die_type (die, this_type, cu);
6212 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
6213 return this_type;
c906108c
SS
6214}
6215
6216/* Find a representation of a given base type and install
6217 it in the TYPE field of the die. */
6218
f792889a 6219static struct type *
e7c27a73 6220read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6221{
e7c27a73 6222 struct objfile *objfile = cu->objfile;
c906108c
SS
6223 struct type *type;
6224 struct attribute *attr;
6225 int encoding = 0, size = 0;
39cbfefa 6226 char *name;
6ccb9162
UW
6227 enum type_code code = TYPE_CODE_INT;
6228 int type_flags = 0;
6229 struct type *target_type = NULL;
c906108c 6230
e142c38c 6231 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
6232 if (attr)
6233 {
6234 encoding = DW_UNSND (attr);
6235 }
e142c38c 6236 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6237 if (attr)
6238 {
6239 size = DW_UNSND (attr);
6240 }
39cbfefa 6241 name = dwarf2_name (die, cu);
6ccb9162 6242 if (!name)
c906108c 6243 {
6ccb9162
UW
6244 complaint (&symfile_complaints,
6245 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 6246 }
6ccb9162
UW
6247
6248 switch (encoding)
c906108c 6249 {
6ccb9162
UW
6250 case DW_ATE_address:
6251 /* Turn DW_ATE_address into a void * pointer. */
6252 code = TYPE_CODE_PTR;
6253 type_flags |= TYPE_FLAG_UNSIGNED;
6254 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
6255 break;
6256 case DW_ATE_boolean:
6257 code = TYPE_CODE_BOOL;
6258 type_flags |= TYPE_FLAG_UNSIGNED;
6259 break;
6260 case DW_ATE_complex_float:
6261 code = TYPE_CODE_COMPLEX;
6262 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6263 break;
6264 case DW_ATE_decimal_float:
6265 code = TYPE_CODE_DECFLOAT;
6266 break;
6267 case DW_ATE_float:
6268 code = TYPE_CODE_FLT;
6269 break;
6270 case DW_ATE_signed:
6271 break;
6272 case DW_ATE_unsigned:
6273 type_flags |= TYPE_FLAG_UNSIGNED;
6274 break;
6275 case DW_ATE_signed_char:
6e70227d 6276 if (cu->language == language_ada || cu->language == language_m2
868a0084 6277 || cu->language == language_pascal)
6ccb9162
UW
6278 code = TYPE_CODE_CHAR;
6279 break;
6280 case DW_ATE_unsigned_char:
868a0084
PM
6281 if (cu->language == language_ada || cu->language == language_m2
6282 || cu->language == language_pascal)
6ccb9162
UW
6283 code = TYPE_CODE_CHAR;
6284 type_flags |= TYPE_FLAG_UNSIGNED;
6285 break;
75079b2b
TT
6286 case DW_ATE_UTF:
6287 /* We just treat this as an integer and then recognize the
6288 type by name elsewhere. */
6289 break;
6290
6ccb9162
UW
6291 default:
6292 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6293 dwarf_type_encoding_name (encoding));
6294 break;
c906108c 6295 }
6ccb9162 6296
0114d602
DJ
6297 type = init_type (code, size, type_flags, NULL, objfile);
6298 TYPE_NAME (type) = name;
6ccb9162
UW
6299 TYPE_TARGET_TYPE (type) = target_type;
6300
0114d602 6301 if (name && strcmp (name, "char") == 0)
876cecd0 6302 TYPE_NOSIGN (type) = 1;
0114d602 6303
f792889a 6304 return set_die_type (die, type, cu);
c906108c
SS
6305}
6306
a02abb62
JB
6307/* Read the given DW_AT_subrange DIE. */
6308
f792889a 6309static struct type *
a02abb62
JB
6310read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6311{
5e2b427d 6312 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
6313 struct type *base_type;
6314 struct type *range_type;
6315 struct attribute *attr;
43bbcdc2
PH
6316 LONGEST low = 0;
6317 LONGEST high = -1;
39cbfefa 6318 char *name;
43bbcdc2 6319 LONGEST negative_mask;
e77813c8 6320
a02abb62 6321 base_type = die_type (die, cu);
a02abb62 6322
7e314c57
JK
6323 /* The die_type call above may have already set the type for this DIE. */
6324 range_type = get_die_type (die, cu);
6325 if (range_type)
6326 return range_type;
6327
e142c38c 6328 if (cu->language == language_fortran)
6e70227d 6329 {
a02abb62
JB
6330 /* FORTRAN implies a lower bound of 1, if not given. */
6331 low = 1;
6332 }
6333
dd5e6932
DJ
6334 /* FIXME: For variable sized arrays either of these could be
6335 a variable rather than a constant value. We'll allow it,
6336 but we don't know how to handle it. */
e142c38c 6337 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
6338 if (attr)
6339 low = dwarf2_get_attr_constant_value (attr, 0);
6340
e142c38c 6341 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 6342 if (attr)
6e70227d 6343 {
e77813c8 6344 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
6345 {
6346 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 6347 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
6348 FIXME: GDB does not yet know how to handle dynamic
6349 arrays properly, treat them as arrays with unspecified
6350 length for now.
6351
6352 FIXME: jimb/2003-09-22: GDB does not really know
6353 how to handle arrays of unspecified length
6354 either; we just represent them as zero-length
6355 arrays. Choose an appropriate upper bound given
6356 the lower bound we've computed above. */
6357 high = low - 1;
6358 }
6359 else
6360 high = dwarf2_get_attr_constant_value (attr, 1);
6361 }
e77813c8
PM
6362 else
6363 {
6364 attr = dwarf2_attr (die, DW_AT_count, cu);
6365 if (attr)
6366 {
6367 int count = dwarf2_get_attr_constant_value (attr, 1);
6368 high = low + count - 1;
6369 }
6370 }
6371
6372 /* Dwarf-2 specifications explicitly allows to create subrange types
6373 without specifying a base type.
6374 In that case, the base type must be set to the type of
6375 the lower bound, upper bound or count, in that order, if any of these
6376 three attributes references an object that has a type.
6377 If no base type is found, the Dwarf-2 specifications say that
6378 a signed integer type of size equal to the size of an address should
6379 be used.
6380 For the following C code: `extern char gdb_int [];'
6381 GCC produces an empty range DIE.
6382 FIXME: muller/2010-05-28: Possible references to object for low bound,
6383 high bound or count are not yet handled by this code.
6384 */
6385 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
6386 {
6387 struct objfile *objfile = cu->objfile;
6388 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6389 int addr_size = gdbarch_addr_bit (gdbarch) /8;
6390 struct type *int_type = objfile_type (objfile)->builtin_int;
6391
6392 /* Test "int", "long int", and "long long int" objfile types,
6393 and select the first one having a size above or equal to the
6394 architecture address size. */
6395 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6396 base_type = int_type;
6397 else
6398 {
6399 int_type = objfile_type (objfile)->builtin_long;
6400 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6401 base_type = int_type;
6402 else
6403 {
6404 int_type = objfile_type (objfile)->builtin_long_long;
6405 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6406 base_type = int_type;
6407 }
6408 }
6409 }
a02abb62 6410
6e70227d 6411 negative_mask =
43bbcdc2
PH
6412 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6413 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6414 low |= negative_mask;
6415 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6416 high |= negative_mask;
6417
a02abb62
JB
6418 range_type = create_range_type (NULL, base_type, low, high);
6419
bbb0eef6
JK
6420 /* Mark arrays with dynamic length at least as an array of unspecified
6421 length. GDB could check the boundary but before it gets implemented at
6422 least allow accessing the array elements. */
6423 if (attr && attr->form == DW_FORM_block1)
6424 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
6425
39cbfefa
DJ
6426 name = dwarf2_name (die, cu);
6427 if (name)
6428 TYPE_NAME (range_type) = name;
6e70227d 6429
e142c38c 6430 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
6431 if (attr)
6432 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6433
7e314c57
JK
6434 set_die_type (die, range_type, cu);
6435
6436 /* set_die_type should be already done. */
b4ba55a1
JB
6437 set_descriptive_type (range_type, die, cu);
6438
7e314c57 6439 return range_type;
a02abb62 6440}
6e70227d 6441
f792889a 6442static struct type *
81a17f79
JB
6443read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6444{
6445 struct type *type;
81a17f79 6446
81a17f79
JB
6447 /* For now, we only support the C meaning of an unspecified type: void. */
6448
0114d602
DJ
6449 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6450 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 6451
f792889a 6452 return set_die_type (die, type, cu);
81a17f79 6453}
a02abb62 6454
51545339
DJ
6455/* Trivial hash function for die_info: the hash value of a DIE
6456 is its offset in .debug_info for this objfile. */
6457
6458static hashval_t
6459die_hash (const void *item)
6460{
6461 const struct die_info *die = item;
9a619af0 6462
51545339
DJ
6463 return die->offset;
6464}
6465
6466/* Trivial comparison function for die_info structures: two DIEs
6467 are equal if they have the same offset. */
6468
6469static int
6470die_eq (const void *item_lhs, const void *item_rhs)
6471{
6472 const struct die_info *die_lhs = item_lhs;
6473 const struct die_info *die_rhs = item_rhs;
9a619af0 6474
51545339
DJ
6475 return die_lhs->offset == die_rhs->offset;
6476}
6477
c906108c
SS
6478/* Read a whole compilation unit into a linked list of dies. */
6479
f9aca02d 6480static struct die_info *
93311388 6481read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 6482{
93311388
DE
6483 struct die_reader_specs reader_specs;
6484
348e048f 6485 gdb_assert (cu->die_hash == NULL);
51545339
DJ
6486 cu->die_hash
6487 = htab_create_alloc_ex (cu->header.length / 12,
6488 die_hash,
6489 die_eq,
6490 NULL,
6491 &cu->comp_unit_obstack,
6492 hashtab_obstack_allocate,
6493 dummy_obstack_deallocate);
6494
93311388
DE
6495 init_cu_die_reader (&reader_specs, cu);
6496
6497 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
639d11d3
DC
6498}
6499
d97bc12b
DE
6500/* Main entry point for reading a DIE and all children.
6501 Read the DIE and dump it if requested. */
6502
6503static struct die_info *
93311388
DE
6504read_die_and_children (const struct die_reader_specs *reader,
6505 gdb_byte *info_ptr,
d97bc12b
DE
6506 gdb_byte **new_info_ptr,
6507 struct die_info *parent)
6508{
93311388 6509 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
6510 new_info_ptr, parent);
6511
6512 if (dwarf2_die_debug)
6513 {
348e048f
DE
6514 fprintf_unfiltered (gdb_stdlog,
6515 "\nRead die from %s of %s:\n",
6516 reader->buffer == dwarf2_per_objfile->info.buffer
6517 ? ".debug_info"
6518 : reader->buffer == dwarf2_per_objfile->types.buffer
6519 ? ".debug_types"
6520 : "unknown section",
6521 reader->abfd->filename);
d97bc12b
DE
6522 dump_die (result, dwarf2_die_debug);
6523 }
6524
6525 return result;
6526}
6527
639d11d3
DC
6528/* Read a single die and all its descendents. Set the die's sibling
6529 field to NULL; set other fields in the die correctly, and set all
6530 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6531 location of the info_ptr after reading all of those dies. PARENT
6532 is the parent of the die in question. */
6533
6534static struct die_info *
93311388
DE
6535read_die_and_children_1 (const struct die_reader_specs *reader,
6536 gdb_byte *info_ptr,
d97bc12b
DE
6537 gdb_byte **new_info_ptr,
6538 struct die_info *parent)
639d11d3
DC
6539{
6540 struct die_info *die;
fe1b8b76 6541 gdb_byte *cur_ptr;
639d11d3
DC
6542 int has_children;
6543
93311388 6544 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
6545 if (die == NULL)
6546 {
6547 *new_info_ptr = cur_ptr;
6548 return NULL;
6549 }
93311388 6550 store_in_ref_table (die, reader->cu);
639d11d3
DC
6551
6552 if (has_children)
348e048f 6553 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
6554 else
6555 {
6556 die->child = NULL;
6557 *new_info_ptr = cur_ptr;
6558 }
6559
6560 die->sibling = NULL;
6561 die->parent = parent;
6562 return die;
6563}
6564
6565/* Read a die, all of its descendents, and all of its siblings; set
6566 all of the fields of all of the dies correctly. Arguments are as
6567 in read_die_and_children. */
6568
6569static struct die_info *
93311388
DE
6570read_die_and_siblings (const struct die_reader_specs *reader,
6571 gdb_byte *info_ptr,
fe1b8b76 6572 gdb_byte **new_info_ptr,
639d11d3
DC
6573 struct die_info *parent)
6574{
6575 struct die_info *first_die, *last_sibling;
fe1b8b76 6576 gdb_byte *cur_ptr;
639d11d3 6577
c906108c 6578 cur_ptr = info_ptr;
639d11d3
DC
6579 first_die = last_sibling = NULL;
6580
6581 while (1)
c906108c 6582 {
639d11d3 6583 struct die_info *die
93311388 6584 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 6585
1d325ec1 6586 if (die == NULL)
c906108c 6587 {
639d11d3
DC
6588 *new_info_ptr = cur_ptr;
6589 return first_die;
c906108c 6590 }
1d325ec1
DJ
6591
6592 if (!first_die)
6593 first_die = die;
c906108c 6594 else
1d325ec1
DJ
6595 last_sibling->sibling = die;
6596
6597 last_sibling = die;
c906108c 6598 }
c906108c
SS
6599}
6600
93311388
DE
6601/* Read the die from the .debug_info section buffer. Set DIEP to
6602 point to a newly allocated die with its information, except for its
6603 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6604 whether the die has children or not. */
6605
6606static gdb_byte *
6607read_full_die (const struct die_reader_specs *reader,
6608 struct die_info **diep, gdb_byte *info_ptr,
6609 int *has_children)
6610{
6611 unsigned int abbrev_number, bytes_read, i, offset;
6612 struct abbrev_info *abbrev;
6613 struct die_info *die;
6614 struct dwarf2_cu *cu = reader->cu;
6615 bfd *abfd = reader->abfd;
6616
6617 offset = info_ptr - reader->buffer;
6618 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6619 info_ptr += bytes_read;
6620 if (!abbrev_number)
6621 {
6622 *diep = NULL;
6623 *has_children = 0;
6624 return info_ptr;
6625 }
6626
6627 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6628 if (!abbrev)
348e048f
DE
6629 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6630 abbrev_number,
6631 bfd_get_filename (abfd));
6632
93311388
DE
6633 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6634 die->offset = offset;
6635 die->tag = abbrev->tag;
6636 die->abbrev = abbrev_number;
6637
6638 die->num_attrs = abbrev->num_attrs;
6639
6640 for (i = 0; i < abbrev->num_attrs; ++i)
6641 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6642 abfd, info_ptr, cu);
6643
6644 *diep = die;
6645 *has_children = abbrev->has_children;
6646 return info_ptr;
6647}
6648
c906108c
SS
6649/* In DWARF version 2, the description of the debugging information is
6650 stored in a separate .debug_abbrev section. Before we read any
6651 dies from a section we read in all abbreviations and install them
72bf9492
DJ
6652 in a hash table. This function also sets flags in CU describing
6653 the data found in the abbrev table. */
c906108c
SS
6654
6655static void
e7c27a73 6656dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 6657{
e7c27a73 6658 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 6659 gdb_byte *abbrev_ptr;
c906108c
SS
6660 struct abbrev_info *cur_abbrev;
6661 unsigned int abbrev_number, bytes_read, abbrev_name;
6662 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
6663 struct attr_abbrev *cur_attrs;
6664 unsigned int allocated_attrs;
c906108c 6665
57349743 6666 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
6667 obstack_init (&cu->abbrev_obstack);
6668 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6669 (ABBREV_HASH_SIZE
6670 * sizeof (struct abbrev_info *)));
6671 memset (cu->dwarf2_abbrevs, 0,
6672 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 6673
be391dca
TT
6674 dwarf2_read_section (dwarf2_per_objfile->objfile,
6675 &dwarf2_per_objfile->abbrev);
dce234bc 6676 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
6677 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6678 abbrev_ptr += bytes_read;
6679
f3dd6933
DJ
6680 allocated_attrs = ATTR_ALLOC_CHUNK;
6681 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 6682
c906108c
SS
6683 /* loop until we reach an abbrev number of 0 */
6684 while (abbrev_number)
6685 {
f3dd6933 6686 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
6687
6688 /* read in abbrev header */
6689 cur_abbrev->number = abbrev_number;
6690 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6691 abbrev_ptr += bytes_read;
6692 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6693 abbrev_ptr += 1;
6694
72bf9492
DJ
6695 if (cur_abbrev->tag == DW_TAG_namespace)
6696 cu->has_namespace_info = 1;
6697
c906108c
SS
6698 /* now read in declarations */
6699 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6700 abbrev_ptr += bytes_read;
6701 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6702 abbrev_ptr += bytes_read;
6703 while (abbrev_name)
6704 {
f3dd6933 6705 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 6706 {
f3dd6933
DJ
6707 allocated_attrs += ATTR_ALLOC_CHUNK;
6708 cur_attrs
6709 = xrealloc (cur_attrs, (allocated_attrs
6710 * sizeof (struct attr_abbrev)));
c906108c 6711 }
ae038cb0
DJ
6712
6713 /* Record whether this compilation unit might have
6714 inter-compilation-unit references. If we don't know what form
6715 this attribute will have, then it might potentially be a
6716 DW_FORM_ref_addr, so we conservatively expect inter-CU
6717 references. */
6718
6719 if (abbrev_form == DW_FORM_ref_addr
6720 || abbrev_form == DW_FORM_indirect)
6721 cu->has_form_ref_addr = 1;
6722
f3dd6933
DJ
6723 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6724 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
6725 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6726 abbrev_ptr += bytes_read;
6727 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6728 abbrev_ptr += bytes_read;
6729 }
6730
f3dd6933
DJ
6731 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6732 (cur_abbrev->num_attrs
6733 * sizeof (struct attr_abbrev)));
6734 memcpy (cur_abbrev->attrs, cur_attrs,
6735 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6736
c906108c 6737 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
6738 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6739 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
6740
6741 /* Get next abbreviation.
6742 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
6743 always properly terminated with an abbrev number of 0.
6744 Exit loop if we encounter an abbreviation which we have
6745 already read (which means we are about to read the abbreviations
6746 for the next compile unit) or if the end of the abbreviation
6747 table is reached. */
dce234bc
PP
6748 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6749 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
6750 break;
6751 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6752 abbrev_ptr += bytes_read;
e7c27a73 6753 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
6754 break;
6755 }
f3dd6933
DJ
6756
6757 xfree (cur_attrs);
c906108c
SS
6758}
6759
f3dd6933 6760/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 6761
c906108c 6762static void
f3dd6933 6763dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 6764{
f3dd6933 6765 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 6766
f3dd6933
DJ
6767 obstack_free (&cu->abbrev_obstack, NULL);
6768 cu->dwarf2_abbrevs = NULL;
c906108c
SS
6769}
6770
6771/* Lookup an abbrev_info structure in the abbrev hash table. */
6772
6773static struct abbrev_info *
e7c27a73 6774dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
6775{
6776 unsigned int hash_number;
6777 struct abbrev_info *abbrev;
6778
6779 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 6780 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
6781
6782 while (abbrev)
6783 {
6784 if (abbrev->number == number)
6785 return abbrev;
6786 else
6787 abbrev = abbrev->next;
6788 }
6789 return NULL;
6790}
6791
72bf9492
DJ
6792/* Returns nonzero if TAG represents a type that we might generate a partial
6793 symbol for. */
6794
6795static int
6796is_type_tag_for_partial (int tag)
6797{
6798 switch (tag)
6799 {
6800#if 0
6801 /* Some types that would be reasonable to generate partial symbols for,
6802 that we don't at present. */
6803 case DW_TAG_array_type:
6804 case DW_TAG_file_type:
6805 case DW_TAG_ptr_to_member_type:
6806 case DW_TAG_set_type:
6807 case DW_TAG_string_type:
6808 case DW_TAG_subroutine_type:
6809#endif
6810 case DW_TAG_base_type:
6811 case DW_TAG_class_type:
680b30c7 6812 case DW_TAG_interface_type:
72bf9492
DJ
6813 case DW_TAG_enumeration_type:
6814 case DW_TAG_structure_type:
6815 case DW_TAG_subrange_type:
6816 case DW_TAG_typedef:
6817 case DW_TAG_union_type:
6818 return 1;
6819 default:
6820 return 0;
6821 }
6822}
6823
6824/* Load all DIEs that are interesting for partial symbols into memory. */
6825
6826static struct partial_die_info *
93311388
DE
6827load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6828 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
6829{
6830 struct partial_die_info *part_die;
6831 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6832 struct abbrev_info *abbrev;
6833 unsigned int bytes_read;
5afb4e99 6834 unsigned int load_all = 0;
72bf9492
DJ
6835
6836 int nesting_level = 1;
6837
6838 parent_die = NULL;
6839 last_die = NULL;
6840
5afb4e99
DJ
6841 if (cu->per_cu && cu->per_cu->load_all_dies)
6842 load_all = 1;
6843
72bf9492
DJ
6844 cu->partial_dies
6845 = htab_create_alloc_ex (cu->header.length / 12,
6846 partial_die_hash,
6847 partial_die_eq,
6848 NULL,
6849 &cu->comp_unit_obstack,
6850 hashtab_obstack_allocate,
6851 dummy_obstack_deallocate);
6852
6853 part_die = obstack_alloc (&cu->comp_unit_obstack,
6854 sizeof (struct partial_die_info));
6855
6856 while (1)
6857 {
6858 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6859
6860 /* A NULL abbrev means the end of a series of children. */
6861 if (abbrev == NULL)
6862 {
6863 if (--nesting_level == 0)
6864 {
6865 /* PART_DIE was probably the last thing allocated on the
6866 comp_unit_obstack, so we could call obstack_free
6867 here. We don't do that because the waste is small,
6868 and will be cleaned up when we're done with this
6869 compilation unit. This way, we're also more robust
6870 against other users of the comp_unit_obstack. */
6871 return first_die;
6872 }
6873 info_ptr += bytes_read;
6874 last_die = parent_die;
6875 parent_die = parent_die->die_parent;
6876 continue;
6877 }
6878
5afb4e99
DJ
6879 /* Check whether this DIE is interesting enough to save. Normally
6880 we would not be interested in members here, but there may be
6881 later variables referencing them via DW_AT_specification (for
6882 static members). */
6883 if (!load_all
6884 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
6885 && abbrev->tag != DW_TAG_enumerator
6886 && abbrev->tag != DW_TAG_subprogram
bc30ff58 6887 && abbrev->tag != DW_TAG_lexical_block
72bf9492 6888 && abbrev->tag != DW_TAG_variable
5afb4e99 6889 && abbrev->tag != DW_TAG_namespace
f55ee35c 6890 && abbrev->tag != DW_TAG_module
5afb4e99 6891 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
6892 {
6893 /* Otherwise we skip to the next sibling, if any. */
93311388 6894 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
6895 continue;
6896 }
6897
93311388
DE
6898 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6899 buffer, info_ptr, cu);
72bf9492
DJ
6900
6901 /* This two-pass algorithm for processing partial symbols has a
6902 high cost in cache pressure. Thus, handle some simple cases
6903 here which cover the majority of C partial symbols. DIEs
6904 which neither have specification tags in them, nor could have
6905 specification tags elsewhere pointing at them, can simply be
6906 processed and discarded.
6907
6908 This segment is also optional; scan_partial_symbols and
6909 add_partial_symbol will handle these DIEs if we chain
6910 them in normally. When compilers which do not emit large
6911 quantities of duplicate debug information are more common,
6912 this code can probably be removed. */
6913
6914 /* Any complete simple types at the top level (pretty much all
6915 of them, for a language without namespaces), can be processed
6916 directly. */
6917 if (parent_die == NULL
6918 && part_die->has_specification == 0
6919 && part_die->is_declaration == 0
6920 && (part_die->tag == DW_TAG_typedef
6921 || part_die->tag == DW_TAG_base_type
6922 || part_die->tag == DW_TAG_subrange_type))
6923 {
6924 if (building_psymtab && part_die->name != NULL)
04a679b8 6925 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
6926 VAR_DOMAIN, LOC_TYPEDEF,
6927 &cu->objfile->static_psymbols,
6928 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 6929 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6930 continue;
6931 }
6932
6933 /* If we're at the second level, and we're an enumerator, and
6934 our parent has no specification (meaning possibly lives in a
6935 namespace elsewhere), then we can add the partial symbol now
6936 instead of queueing it. */
6937 if (part_die->tag == DW_TAG_enumerator
6938 && parent_die != NULL
6939 && parent_die->die_parent == NULL
6940 && parent_die->tag == DW_TAG_enumeration_type
6941 && parent_die->has_specification == 0)
6942 {
6943 if (part_die->name == NULL)
e2e0b3e5 6944 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492 6945 else if (building_psymtab)
04a679b8 6946 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 6947 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6948 (cu->language == language_cplus
6949 || cu->language == language_java)
72bf9492
DJ
6950 ? &cu->objfile->global_psymbols
6951 : &cu->objfile->static_psymbols,
6952 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6953
93311388 6954 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6955 continue;
6956 }
6957
6958 /* We'll save this DIE so link it in. */
6959 part_die->die_parent = parent_die;
6960 part_die->die_sibling = NULL;
6961 part_die->die_child = NULL;
6962
6963 if (last_die && last_die == parent_die)
6964 last_die->die_child = part_die;
6965 else if (last_die)
6966 last_die->die_sibling = part_die;
6967
6968 last_die = part_die;
6969
6970 if (first_die == NULL)
6971 first_die = part_die;
6972
6973 /* Maybe add the DIE to the hash table. Not all DIEs that we
6974 find interesting need to be in the hash table, because we
6975 also have the parent/sibling/child chains; only those that we
6976 might refer to by offset later during partial symbol reading.
6977
6978 For now this means things that might have be the target of a
6979 DW_AT_specification, DW_AT_abstract_origin, or
6980 DW_AT_extension. DW_AT_extension will refer only to
6981 namespaces; DW_AT_abstract_origin refers to functions (and
6982 many things under the function DIE, but we do not recurse
6983 into function DIEs during partial symbol reading) and
6984 possibly variables as well; DW_AT_specification refers to
6985 declarations. Declarations ought to have the DW_AT_declaration
6986 flag. It happens that GCC forgets to put it in sometimes, but
6987 only for functions, not for types.
6988
6989 Adding more things than necessary to the hash table is harmless
6990 except for the performance cost. Adding too few will result in
5afb4e99
DJ
6991 wasted time in find_partial_die, when we reread the compilation
6992 unit with load_all_dies set. */
72bf9492 6993
5afb4e99
DJ
6994 if (load_all
6995 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
6996 || abbrev->tag == DW_TAG_variable
6997 || abbrev->tag == DW_TAG_namespace
6998 || part_die->is_declaration)
6999 {
7000 void **slot;
7001
7002 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
7003 part_die->offset, INSERT);
7004 *slot = part_die;
7005 }
7006
7007 part_die = obstack_alloc (&cu->comp_unit_obstack,
7008 sizeof (struct partial_die_info));
7009
7010 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 7011 we have no reason to follow the children of structures; for other
72bf9492 7012 languages we have to, both so that we can get at method physnames
bc30ff58
JB
7013 to infer fully qualified class names, and for DW_AT_specification.
7014
7015 For Ada, we need to scan the children of subprograms and lexical
7016 blocks as well because Ada allows the definition of nested
7017 entities that could be interesting for the debugger, such as
7018 nested subprograms for instance. */
72bf9492 7019 if (last_die->has_children
5afb4e99
DJ
7020 && (load_all
7021 || last_die->tag == DW_TAG_namespace
f55ee35c 7022 || last_die->tag == DW_TAG_module
72bf9492
DJ
7023 || last_die->tag == DW_TAG_enumeration_type
7024 || (cu->language != language_c
7025 && (last_die->tag == DW_TAG_class_type
680b30c7 7026 || last_die->tag == DW_TAG_interface_type
72bf9492 7027 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
7028 || last_die->tag == DW_TAG_union_type))
7029 || (cu->language == language_ada
7030 && (last_die->tag == DW_TAG_subprogram
7031 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
7032 {
7033 nesting_level++;
7034 parent_die = last_die;
7035 continue;
7036 }
7037
7038 /* Otherwise we skip to the next sibling, if any. */
93311388 7039 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
7040
7041 /* Back to the top, do it again. */
7042 }
7043}
7044
c906108c
SS
7045/* Read a minimal amount of information into the minimal die structure. */
7046
fe1b8b76 7047static gdb_byte *
72bf9492
DJ
7048read_partial_die (struct partial_die_info *part_die,
7049 struct abbrev_info *abbrev,
7050 unsigned int abbrev_len, bfd *abfd,
93311388
DE
7051 gdb_byte *buffer, gdb_byte *info_ptr,
7052 struct dwarf2_cu *cu)
c906108c 7053{
fa238c03 7054 unsigned int i;
c906108c 7055 struct attribute attr;
c5aa993b 7056 int has_low_pc_attr = 0;
c906108c
SS
7057 int has_high_pc_attr = 0;
7058
72bf9492 7059 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 7060
93311388 7061 part_die->offset = info_ptr - buffer;
72bf9492
DJ
7062
7063 info_ptr += abbrev_len;
7064
7065 if (abbrev == NULL)
7066 return info_ptr;
7067
c906108c
SS
7068 part_die->tag = abbrev->tag;
7069 part_die->has_children = abbrev->has_children;
c906108c
SS
7070
7071 for (i = 0; i < abbrev->num_attrs; ++i)
7072 {
e7c27a73 7073 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
7074
7075 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 7076 partial symbol table. */
c906108c
SS
7077 switch (attr.name)
7078 {
7079 case DW_AT_name:
71c25dea
TT
7080 switch (part_die->tag)
7081 {
7082 case DW_TAG_compile_unit:
348e048f 7083 case DW_TAG_type_unit:
71c25dea
TT
7084 /* Compilation units have a DW_AT_name that is a filename, not
7085 a source language identifier. */
7086 case DW_TAG_enumeration_type:
7087 case DW_TAG_enumerator:
7088 /* These tags always have simple identifiers already; no need
7089 to canonicalize them. */
7090 part_die->name = DW_STRING (&attr);
7091 break;
7092 default:
7093 part_die->name
7094 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 7095 &cu->objfile->objfile_obstack);
71c25dea
TT
7096 break;
7097 }
c906108c 7098 break;
31ef98ae 7099 case DW_AT_linkage_name:
c906108c 7100 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
7101 /* Note that both forms of linkage name might appear. We
7102 assume they will be the same, and we only store the last
7103 one we see. */
94af9270
KS
7104 if (cu->language == language_ada)
7105 part_die->name = DW_STRING (&attr);
c906108c
SS
7106 break;
7107 case DW_AT_low_pc:
7108 has_low_pc_attr = 1;
7109 part_die->lowpc = DW_ADDR (&attr);
7110 break;
7111 case DW_AT_high_pc:
7112 has_high_pc_attr = 1;
7113 part_die->highpc = DW_ADDR (&attr);
7114 break;
7115 case DW_AT_location:
8e19ed76
PS
7116 /* Support the .debug_loc offsets */
7117 if (attr_form_is_block (&attr))
7118 {
7119 part_die->locdesc = DW_BLOCK (&attr);
7120 }
3690dd37 7121 else if (attr_form_is_section_offset (&attr))
8e19ed76 7122 {
4d3c2250 7123 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7124 }
7125 else
7126 {
4d3c2250
KB
7127 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7128 "partial symbol information");
8e19ed76 7129 }
c906108c 7130 break;
c906108c
SS
7131 case DW_AT_external:
7132 part_die->is_external = DW_UNSND (&attr);
7133 break;
7134 case DW_AT_declaration:
7135 part_die->is_declaration = DW_UNSND (&attr);
7136 break;
7137 case DW_AT_type:
7138 part_die->has_type = 1;
7139 break;
7140 case DW_AT_abstract_origin:
7141 case DW_AT_specification:
72bf9492
DJ
7142 case DW_AT_extension:
7143 part_die->has_specification = 1;
c764a876 7144 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
7145 break;
7146 case DW_AT_sibling:
7147 /* Ignore absolute siblings, they might point outside of
7148 the current compile unit. */
7149 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 7150 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 7151 else
93311388 7152 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 7153 break;
fa4028e9
JB
7154 case DW_AT_byte_size:
7155 part_die->has_byte_size = 1;
7156 break;
68511cec
CES
7157 case DW_AT_calling_convention:
7158 /* DWARF doesn't provide a way to identify a program's source-level
7159 entry point. DW_AT_calling_convention attributes are only meant
7160 to describe functions' calling conventions.
7161
7162 However, because it's a necessary piece of information in
7163 Fortran, and because DW_CC_program is the only piece of debugging
7164 information whose definition refers to a 'main program' at all,
7165 several compilers have begun marking Fortran main programs with
7166 DW_CC_program --- even when those functions use the standard
7167 calling conventions.
7168
7169 So until DWARF specifies a way to provide this information and
7170 compilers pick up the new representation, we'll support this
7171 practice. */
7172 if (DW_UNSND (&attr) == DW_CC_program
7173 && cu->language == language_fortran)
7174 set_main_name (part_die->name);
7175 break;
c906108c
SS
7176 default:
7177 break;
7178 }
7179 }
7180
c906108c
SS
7181 /* When using the GNU linker, .gnu.linkonce. sections are used to
7182 eliminate duplicate copies of functions and vtables and such.
7183 The linker will arbitrarily choose one and discard the others.
7184 The AT_*_pc values for such functions refer to local labels in
7185 these sections. If the section from that file was discarded, the
7186 labels are not in the output, so the relocs get a value of 0.
7187 If this is a discarded function, mark the pc bounds as invalid,
7188 so that GDB will ignore it. */
7189 if (has_low_pc_attr && has_high_pc_attr
7190 && part_die->lowpc < part_die->highpc
7191 && (part_die->lowpc != 0
72dca2f5 7192 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 7193 part_die->has_pc_info = 1;
85cbf3d3 7194
c906108c
SS
7195 return info_ptr;
7196}
7197
72bf9492
DJ
7198/* Find a cached partial DIE at OFFSET in CU. */
7199
7200static struct partial_die_info *
c764a876 7201find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
7202{
7203 struct partial_die_info *lookup_die = NULL;
7204 struct partial_die_info part_die;
7205
7206 part_die.offset = offset;
7207 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
7208
72bf9492
DJ
7209 return lookup_die;
7210}
7211
348e048f
DE
7212/* Find a partial DIE at OFFSET, which may or may not be in CU,
7213 except in the case of .debug_types DIEs which do not reference
7214 outside their CU (they do however referencing other types via
7215 DW_FORM_sig8). */
72bf9492
DJ
7216
7217static struct partial_die_info *
c764a876 7218find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 7219{
5afb4e99
DJ
7220 struct dwarf2_per_cu_data *per_cu = NULL;
7221 struct partial_die_info *pd = NULL;
72bf9492 7222
348e048f
DE
7223 if (cu->per_cu->from_debug_types)
7224 {
7225 pd = find_partial_die_in_comp_unit (offset, cu);
7226 if (pd != NULL)
7227 return pd;
7228 goto not_found;
7229 }
7230
45452591 7231 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
7232 {
7233 pd = find_partial_die_in_comp_unit (offset, cu);
7234 if (pd != NULL)
7235 return pd;
7236 }
72bf9492 7237
ae038cb0
DJ
7238 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
7239
ae038cb0
DJ
7240 if (per_cu->cu == NULL)
7241 {
93311388 7242 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
7243 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7244 dwarf2_per_objfile->read_in_chain = per_cu;
7245 }
7246
7247 per_cu->cu->last_used = 0;
5afb4e99
DJ
7248 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7249
7250 if (pd == NULL && per_cu->load_all_dies == 0)
7251 {
7252 struct cleanup *back_to;
7253 struct partial_die_info comp_unit_die;
7254 struct abbrev_info *abbrev;
7255 unsigned int bytes_read;
7256 char *info_ptr;
7257
7258 per_cu->load_all_dies = 1;
7259
7260 /* Re-read the DIEs. */
7261 back_to = make_cleanup (null_cleanup, 0);
7262 if (per_cu->cu->dwarf2_abbrevs == NULL)
7263 {
7264 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 7265 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 7266 }
dce234bc 7267 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
7268 + per_cu->cu->header.offset
7269 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
7270 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
7271 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
7272 per_cu->cu->objfile->obfd,
7273 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
7274 per_cu->cu);
7275 if (comp_unit_die.has_children)
93311388
DE
7276 load_partial_dies (per_cu->cu->objfile->obfd,
7277 dwarf2_per_objfile->info.buffer, info_ptr,
7278 0, per_cu->cu);
5afb4e99
DJ
7279 do_cleanups (back_to);
7280
7281 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7282 }
7283
348e048f
DE
7284 not_found:
7285
5afb4e99
DJ
7286 if (pd == NULL)
7287 internal_error (__FILE__, __LINE__,
c764a876 7288 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
5afb4e99
DJ
7289 offset, bfd_get_filename (cu->objfile->obfd));
7290 return pd;
72bf9492
DJ
7291}
7292
7293/* Adjust PART_DIE before generating a symbol for it. This function
7294 may set the is_external flag or change the DIE's name. */
7295
7296static void
7297fixup_partial_die (struct partial_die_info *part_die,
7298 struct dwarf2_cu *cu)
7299{
7300 /* If we found a reference attribute and the DIE has no name, try
7301 to find a name in the referred to DIE. */
7302
7303 if (part_die->name == NULL && part_die->has_specification)
7304 {
7305 struct partial_die_info *spec_die;
72bf9492 7306
10b3939b 7307 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 7308
10b3939b 7309 fixup_partial_die (spec_die, cu);
72bf9492
DJ
7310
7311 if (spec_die->name)
7312 {
7313 part_die->name = spec_die->name;
7314
7315 /* Copy DW_AT_external attribute if it is set. */
7316 if (spec_die->is_external)
7317 part_die->is_external = spec_die->is_external;
7318 }
7319 }
7320
7321 /* Set default names for some unnamed DIEs. */
7322 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
7323 || part_die->tag == DW_TAG_class_type))
7324 part_die->name = "(anonymous class)";
7325
7326 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
7327 part_die->name = "(anonymous namespace)";
7328
7329 if (part_die->tag == DW_TAG_structure_type
7330 || part_die->tag == DW_TAG_class_type
7331 || part_die->tag == DW_TAG_union_type)
7332 guess_structure_name (part_die, cu);
7333}
7334
a8329558 7335/* Read an attribute value described by an attribute form. */
c906108c 7336
fe1b8b76 7337static gdb_byte *
a8329558 7338read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 7339 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 7340 struct dwarf2_cu *cu)
c906108c 7341{
e7c27a73 7342 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7343 unsigned int bytes_read;
7344 struct dwarf_block *blk;
7345
a8329558
KW
7346 attr->form = form;
7347 switch (form)
c906108c 7348 {
c906108c 7349 case DW_FORM_ref_addr:
ae411497
TT
7350 if (cu->header.version == 2)
7351 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7352 else
7353 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7354 info_ptr += bytes_read;
7355 break;
7356 case DW_FORM_addr:
e7c27a73 7357 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 7358 info_ptr += bytes_read;
c906108c
SS
7359 break;
7360 case DW_FORM_block2:
7b5a2f43 7361 blk = dwarf_alloc_block (cu);
c906108c
SS
7362 blk->size = read_2_bytes (abfd, info_ptr);
7363 info_ptr += 2;
7364 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7365 info_ptr += blk->size;
7366 DW_BLOCK (attr) = blk;
7367 break;
7368 case DW_FORM_block4:
7b5a2f43 7369 blk = dwarf_alloc_block (cu);
c906108c
SS
7370 blk->size = read_4_bytes (abfd, info_ptr);
7371 info_ptr += 4;
7372 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7373 info_ptr += blk->size;
7374 DW_BLOCK (attr) = blk;
7375 break;
7376 case DW_FORM_data2:
7377 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7378 info_ptr += 2;
7379 break;
7380 case DW_FORM_data4:
7381 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7382 info_ptr += 4;
7383 break;
7384 case DW_FORM_data8:
7385 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7386 info_ptr += 8;
7387 break;
2dc7f7b3
TT
7388 case DW_FORM_sec_offset:
7389 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7390 info_ptr += bytes_read;
7391 break;
c906108c
SS
7392 case DW_FORM_string:
7393 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
8285870a 7394 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
7395 info_ptr += bytes_read;
7396 break;
4bdf3d34
JJ
7397 case DW_FORM_strp:
7398 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7399 &bytes_read);
8285870a 7400 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
7401 info_ptr += bytes_read;
7402 break;
2dc7f7b3 7403 case DW_FORM_exprloc:
c906108c 7404 case DW_FORM_block:
7b5a2f43 7405 blk = dwarf_alloc_block (cu);
c906108c
SS
7406 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7407 info_ptr += bytes_read;
7408 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7409 info_ptr += blk->size;
7410 DW_BLOCK (attr) = blk;
7411 break;
7412 case DW_FORM_block1:
7b5a2f43 7413 blk = dwarf_alloc_block (cu);
c906108c
SS
7414 blk->size = read_1_byte (abfd, info_ptr);
7415 info_ptr += 1;
7416 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7417 info_ptr += blk->size;
7418 DW_BLOCK (attr) = blk;
7419 break;
7420 case DW_FORM_data1:
7421 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7422 info_ptr += 1;
7423 break;
7424 case DW_FORM_flag:
7425 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7426 info_ptr += 1;
7427 break;
2dc7f7b3
TT
7428 case DW_FORM_flag_present:
7429 DW_UNSND (attr) = 1;
7430 break;
c906108c
SS
7431 case DW_FORM_sdata:
7432 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7433 info_ptr += bytes_read;
7434 break;
7435 case DW_FORM_udata:
7436 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7437 info_ptr += bytes_read;
7438 break;
7439 case DW_FORM_ref1:
10b3939b 7440 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
7441 info_ptr += 1;
7442 break;
7443 case DW_FORM_ref2:
10b3939b 7444 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
7445 info_ptr += 2;
7446 break;
7447 case DW_FORM_ref4:
10b3939b 7448 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
7449 info_ptr += 4;
7450 break;
613e1657 7451 case DW_FORM_ref8:
10b3939b 7452 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
7453 info_ptr += 8;
7454 break;
348e048f
DE
7455 case DW_FORM_sig8:
7456 /* Convert the signature to something we can record in DW_UNSND
7457 for later lookup.
7458 NOTE: This is NULL if the type wasn't found. */
7459 DW_SIGNATURED_TYPE (attr) =
7460 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7461 info_ptr += 8;
7462 break;
c906108c 7463 case DW_FORM_ref_udata:
10b3939b
DJ
7464 DW_ADDR (attr) = (cu->header.offset
7465 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
7466 info_ptr += bytes_read;
7467 break;
c906108c 7468 case DW_FORM_indirect:
a8329558
KW
7469 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7470 info_ptr += bytes_read;
e7c27a73 7471 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 7472 break;
c906108c 7473 default:
8a3fe4f8 7474 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
7475 dwarf_form_name (form),
7476 bfd_get_filename (abfd));
c906108c 7477 }
28e94949
JB
7478
7479 /* We have seen instances where the compiler tried to emit a byte
7480 size attribute of -1 which ended up being encoded as an unsigned
7481 0xffffffff. Although 0xffffffff is technically a valid size value,
7482 an object of this size seems pretty unlikely so we can relatively
7483 safely treat these cases as if the size attribute was invalid and
7484 treat them as zero by default. */
7485 if (attr->name == DW_AT_byte_size
7486 && form == DW_FORM_data4
7487 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
7488 {
7489 complaint
7490 (&symfile_complaints,
43bbcdc2
PH
7491 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7492 hex_string (DW_UNSND (attr)));
01c66ae6
JB
7493 DW_UNSND (attr) = 0;
7494 }
28e94949 7495
c906108c
SS
7496 return info_ptr;
7497}
7498
a8329558
KW
7499/* Read an attribute described by an abbreviated attribute. */
7500
fe1b8b76 7501static gdb_byte *
a8329558 7502read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 7503 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
7504{
7505 attr->name = abbrev->name;
e7c27a73 7506 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
7507}
7508
c906108c
SS
7509/* read dwarf information from a buffer */
7510
7511static unsigned int
fe1b8b76 7512read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 7513{
fe1b8b76 7514 return bfd_get_8 (abfd, buf);
c906108c
SS
7515}
7516
7517static int
fe1b8b76 7518read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 7519{
fe1b8b76 7520 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
7521}
7522
7523static unsigned int
fe1b8b76 7524read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7525{
fe1b8b76 7526 return bfd_get_16 (abfd, buf);
c906108c
SS
7527}
7528
7529static int
fe1b8b76 7530read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7531{
fe1b8b76 7532 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
7533}
7534
7535static unsigned int
fe1b8b76 7536read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7537{
fe1b8b76 7538 return bfd_get_32 (abfd, buf);
c906108c
SS
7539}
7540
7541static int
fe1b8b76 7542read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7543{
fe1b8b76 7544 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
7545}
7546
93311388 7547static ULONGEST
fe1b8b76 7548read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7549{
fe1b8b76 7550 return bfd_get_64 (abfd, buf);
c906108c
SS
7551}
7552
7553static CORE_ADDR
fe1b8b76 7554read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 7555 unsigned int *bytes_read)
c906108c 7556{
e7c27a73 7557 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7558 CORE_ADDR retval = 0;
7559
107d2387 7560 if (cu_header->signed_addr_p)
c906108c 7561 {
107d2387
AC
7562 switch (cu_header->addr_size)
7563 {
7564 case 2:
fe1b8b76 7565 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
7566 break;
7567 case 4:
fe1b8b76 7568 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
7569 break;
7570 case 8:
fe1b8b76 7571 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
7572 break;
7573 default:
8e65ff28 7574 internal_error (__FILE__, __LINE__,
e2e0b3e5 7575 _("read_address: bad switch, signed [in module %s]"),
659b0389 7576 bfd_get_filename (abfd));
107d2387
AC
7577 }
7578 }
7579 else
7580 {
7581 switch (cu_header->addr_size)
7582 {
7583 case 2:
fe1b8b76 7584 retval = bfd_get_16 (abfd, buf);
107d2387
AC
7585 break;
7586 case 4:
fe1b8b76 7587 retval = bfd_get_32 (abfd, buf);
107d2387
AC
7588 break;
7589 case 8:
fe1b8b76 7590 retval = bfd_get_64 (abfd, buf);
107d2387
AC
7591 break;
7592 default:
8e65ff28 7593 internal_error (__FILE__, __LINE__,
e2e0b3e5 7594 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 7595 bfd_get_filename (abfd));
107d2387 7596 }
c906108c 7597 }
64367e0a 7598
107d2387
AC
7599 *bytes_read = cu_header->addr_size;
7600 return retval;
c906108c
SS
7601}
7602
f7ef9339 7603/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
7604 specification allows the initial length to take up either 4 bytes
7605 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7606 bytes describe the length and all offsets will be 8 bytes in length
7607 instead of 4.
7608
f7ef9339
KB
7609 An older, non-standard 64-bit format is also handled by this
7610 function. The older format in question stores the initial length
7611 as an 8-byte quantity without an escape value. Lengths greater
7612 than 2^32 aren't very common which means that the initial 4 bytes
7613 is almost always zero. Since a length value of zero doesn't make
7614 sense for the 32-bit format, this initial zero can be considered to
7615 be an escape value which indicates the presence of the older 64-bit
7616 format. As written, the code can't detect (old format) lengths
917c78fc
MK
7617 greater than 4GB. If it becomes necessary to handle lengths
7618 somewhat larger than 4GB, we could allow other small values (such
7619 as the non-sensical values of 1, 2, and 3) to also be used as
7620 escape values indicating the presence of the old format.
f7ef9339 7621
917c78fc
MK
7622 The value returned via bytes_read should be used to increment the
7623 relevant pointer after calling read_initial_length().
c764a876 7624
613e1657
KB
7625 [ Note: read_initial_length() and read_offset() are based on the
7626 document entitled "DWARF Debugging Information Format", revision
f7ef9339 7627 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
7628 from:
7629
f7ef9339 7630 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 7631
613e1657
KB
7632 This document is only a draft and is subject to change. (So beware.)
7633
f7ef9339 7634 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
7635 determined empirically by examining 64-bit ELF files produced by
7636 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
7637
7638 - Kevin, July 16, 2002
613e1657
KB
7639 ] */
7640
7641static LONGEST
c764a876 7642read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 7643{
fe1b8b76 7644 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 7645
dd373385 7646 if (length == 0xffffffff)
613e1657 7647 {
fe1b8b76 7648 length = bfd_get_64 (abfd, buf + 4);
613e1657 7649 *bytes_read = 12;
613e1657 7650 }
dd373385 7651 else if (length == 0)
f7ef9339 7652 {
dd373385 7653 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 7654 length = bfd_get_64 (abfd, buf);
f7ef9339 7655 *bytes_read = 8;
f7ef9339 7656 }
613e1657
KB
7657 else
7658 {
7659 *bytes_read = 4;
613e1657
KB
7660 }
7661
c764a876
DE
7662 return length;
7663}
dd373385 7664
c764a876
DE
7665/* Cover function for read_initial_length.
7666 Returns the length of the object at BUF, and stores the size of the
7667 initial length in *BYTES_READ and stores the size that offsets will be in
7668 *OFFSET_SIZE.
7669 If the initial length size is not equivalent to that specified in
7670 CU_HEADER then issue a complaint.
7671 This is useful when reading non-comp-unit headers. */
dd373385 7672
c764a876
DE
7673static LONGEST
7674read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7675 const struct comp_unit_head *cu_header,
7676 unsigned int *bytes_read,
7677 unsigned int *offset_size)
7678{
7679 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7680
7681 gdb_assert (cu_header->initial_length_size == 4
7682 || cu_header->initial_length_size == 8
7683 || cu_header->initial_length_size == 12);
7684
7685 if (cu_header->initial_length_size != *bytes_read)
7686 complaint (&symfile_complaints,
7687 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 7688
c764a876 7689 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 7690 return length;
613e1657
KB
7691}
7692
7693/* Read an offset from the data stream. The size of the offset is
917c78fc 7694 given by cu_header->offset_size. */
613e1657
KB
7695
7696static LONGEST
fe1b8b76 7697read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 7698 unsigned int *bytes_read)
c764a876
DE
7699{
7700 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 7701
c764a876
DE
7702 *bytes_read = cu_header->offset_size;
7703 return offset;
7704}
7705
7706/* Read an offset from the data stream. */
7707
7708static LONGEST
7709read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
7710{
7711 LONGEST retval = 0;
7712
c764a876 7713 switch (offset_size)
613e1657
KB
7714 {
7715 case 4:
fe1b8b76 7716 retval = bfd_get_32 (abfd, buf);
613e1657
KB
7717 break;
7718 case 8:
fe1b8b76 7719 retval = bfd_get_64 (abfd, buf);
613e1657
KB
7720 break;
7721 default:
8e65ff28 7722 internal_error (__FILE__, __LINE__,
c764a876 7723 _("read_offset_1: bad switch [in module %s]"),
659b0389 7724 bfd_get_filename (abfd));
613e1657
KB
7725 }
7726
917c78fc 7727 return retval;
613e1657
KB
7728}
7729
fe1b8b76
JB
7730static gdb_byte *
7731read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
7732{
7733 /* If the size of a host char is 8 bits, we can return a pointer
7734 to the buffer, otherwise we have to copy the data to a buffer
7735 allocated on the temporary obstack. */
4bdf3d34 7736 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 7737 return buf;
c906108c
SS
7738}
7739
7740static char *
fe1b8b76 7741read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
7742{
7743 /* If the size of a host char is 8 bits, we can return a pointer
7744 to the string, otherwise we have to copy the string to a buffer
7745 allocated on the temporary obstack. */
4bdf3d34 7746 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
7747 if (*buf == '\0')
7748 {
7749 *bytes_read_ptr = 1;
7750 return NULL;
7751 }
fe1b8b76
JB
7752 *bytes_read_ptr = strlen ((char *) buf) + 1;
7753 return (char *) buf;
4bdf3d34
JJ
7754}
7755
7756static char *
fe1b8b76 7757read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
7758 const struct comp_unit_head *cu_header,
7759 unsigned int *bytes_read_ptr)
7760{
c764a876 7761 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 7762
be391dca 7763 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 7764 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 7765 {
8a3fe4f8 7766 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 7767 bfd_get_filename (abfd));
4bdf3d34 7768 return NULL;
c906108c 7769 }
dce234bc 7770 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 7771 {
8a3fe4f8 7772 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 7773 bfd_get_filename (abfd));
c906108c
SS
7774 return NULL;
7775 }
4bdf3d34 7776 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 7777 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 7778 return NULL;
dce234bc 7779 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
7780}
7781
ce5d95e1 7782static unsigned long
fe1b8b76 7783read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7784{
ce5d95e1
JB
7785 unsigned long result;
7786 unsigned int num_read;
c906108c
SS
7787 int i, shift;
7788 unsigned char byte;
7789
7790 result = 0;
7791 shift = 0;
7792 num_read = 0;
7793 i = 0;
7794 while (1)
7795 {
fe1b8b76 7796 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7797 buf++;
7798 num_read++;
ce5d95e1 7799 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
7800 if ((byte & 128) == 0)
7801 {
7802 break;
7803 }
7804 shift += 7;
7805 }
7806 *bytes_read_ptr = num_read;
7807 return result;
7808}
7809
ce5d95e1 7810static long
fe1b8b76 7811read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7812{
ce5d95e1 7813 long result;
77e0b926 7814 int i, shift, num_read;
c906108c
SS
7815 unsigned char byte;
7816
7817 result = 0;
7818 shift = 0;
c906108c
SS
7819 num_read = 0;
7820 i = 0;
7821 while (1)
7822 {
fe1b8b76 7823 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7824 buf++;
7825 num_read++;
ce5d95e1 7826 result |= ((long)(byte & 127) << shift);
c906108c
SS
7827 shift += 7;
7828 if ((byte & 128) == 0)
7829 {
7830 break;
7831 }
7832 }
77e0b926
DJ
7833 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7834 result |= -(((long)1) << shift);
c906108c
SS
7835 *bytes_read_ptr = num_read;
7836 return result;
7837}
7838
4bb7a0a7
DJ
7839/* Return a pointer to just past the end of an LEB128 number in BUF. */
7840
fe1b8b76
JB
7841static gdb_byte *
7842skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
7843{
7844 int byte;
7845
7846 while (1)
7847 {
fe1b8b76 7848 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
7849 buf++;
7850 if ((byte & 128) == 0)
7851 return buf;
7852 }
7853}
7854
c906108c 7855static void
e142c38c 7856set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
7857{
7858 switch (lang)
7859 {
7860 case DW_LANG_C89:
76bee0cc 7861 case DW_LANG_C99:
c906108c 7862 case DW_LANG_C:
e142c38c 7863 cu->language = language_c;
c906108c
SS
7864 break;
7865 case DW_LANG_C_plus_plus:
e142c38c 7866 cu->language = language_cplus;
c906108c 7867 break;
6aecb9c2
JB
7868 case DW_LANG_D:
7869 cu->language = language_d;
7870 break;
c906108c
SS
7871 case DW_LANG_Fortran77:
7872 case DW_LANG_Fortran90:
b21b22e0 7873 case DW_LANG_Fortran95:
e142c38c 7874 cu->language = language_fortran;
c906108c
SS
7875 break;
7876 case DW_LANG_Mips_Assembler:
e142c38c 7877 cu->language = language_asm;
c906108c 7878 break;
bebd888e 7879 case DW_LANG_Java:
e142c38c 7880 cu->language = language_java;
bebd888e 7881 break;
c906108c 7882 case DW_LANG_Ada83:
8aaf0b47 7883 case DW_LANG_Ada95:
bc5f45f8
JB
7884 cu->language = language_ada;
7885 break;
72019c9c
GM
7886 case DW_LANG_Modula2:
7887 cu->language = language_m2;
7888 break;
fe8e67fd
PM
7889 case DW_LANG_Pascal83:
7890 cu->language = language_pascal;
7891 break;
22566fbd
DJ
7892 case DW_LANG_ObjC:
7893 cu->language = language_objc;
7894 break;
c906108c
SS
7895 case DW_LANG_Cobol74:
7896 case DW_LANG_Cobol85:
c906108c 7897 default:
e142c38c 7898 cu->language = language_minimal;
c906108c
SS
7899 break;
7900 }
e142c38c 7901 cu->language_defn = language_def (cu->language);
c906108c
SS
7902}
7903
7904/* Return the named attribute or NULL if not there. */
7905
7906static struct attribute *
e142c38c 7907dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
7908{
7909 unsigned int i;
7910 struct attribute *spec = NULL;
7911
7912 for (i = 0; i < die->num_attrs; ++i)
7913 {
7914 if (die->attrs[i].name == name)
10b3939b 7915 return &die->attrs[i];
c906108c
SS
7916 if (die->attrs[i].name == DW_AT_specification
7917 || die->attrs[i].name == DW_AT_abstract_origin)
7918 spec = &die->attrs[i];
7919 }
c906108c 7920
10b3939b 7921 if (spec)
f2f0e013
DJ
7922 {
7923 die = follow_die_ref (die, spec, &cu);
7924 return dwarf2_attr (die, name, cu);
7925 }
c5aa993b 7926
c906108c
SS
7927 return NULL;
7928}
7929
348e048f
DE
7930/* Return the named attribute or NULL if not there,
7931 but do not follow DW_AT_specification, etc.
7932 This is for use in contexts where we're reading .debug_types dies.
7933 Following DW_AT_specification, DW_AT_abstract_origin will take us
7934 back up the chain, and we want to go down. */
7935
7936static struct attribute *
7937dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7938 struct dwarf2_cu *cu)
7939{
7940 unsigned int i;
7941
7942 for (i = 0; i < die->num_attrs; ++i)
7943 if (die->attrs[i].name == name)
7944 return &die->attrs[i];
7945
7946 return NULL;
7947}
7948
05cf31d1
JB
7949/* Return non-zero iff the attribute NAME is defined for the given DIE,
7950 and holds a non-zero value. This function should only be used for
2dc7f7b3 7951 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
7952
7953static int
7954dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7955{
7956 struct attribute *attr = dwarf2_attr (die, name, cu);
7957
7958 return (attr && DW_UNSND (attr));
7959}
7960
3ca72b44 7961static int
e142c38c 7962die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 7963{
05cf31d1
JB
7964 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7965 which value is non-zero. However, we have to be careful with
7966 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7967 (via dwarf2_flag_true_p) follows this attribute. So we may
7968 end up accidently finding a declaration attribute that belongs
7969 to a different DIE referenced by the specification attribute,
7970 even though the given DIE does not have a declaration attribute. */
7971 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7972 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
7973}
7974
63d06c5c 7975/* Return the die giving the specification for DIE, if there is
f2f0e013 7976 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
7977 containing the return value on output. If there is no
7978 specification, but there is an abstract origin, that is
7979 returned. */
63d06c5c
DC
7980
7981static struct die_info *
f2f0e013 7982die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 7983{
f2f0e013
DJ
7984 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7985 *spec_cu);
63d06c5c 7986
edb3359d
DJ
7987 if (spec_attr == NULL)
7988 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7989
63d06c5c
DC
7990 if (spec_attr == NULL)
7991 return NULL;
7992 else
f2f0e013 7993 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 7994}
c906108c 7995
debd256d
JB
7996/* Free the line_header structure *LH, and any arrays and strings it
7997 refers to. */
7998static void
7999free_line_header (struct line_header *lh)
8000{
8001 if (lh->standard_opcode_lengths)
a8bc7b56 8002 xfree (lh->standard_opcode_lengths);
debd256d
JB
8003
8004 /* Remember that all the lh->file_names[i].name pointers are
8005 pointers into debug_line_buffer, and don't need to be freed. */
8006 if (lh->file_names)
a8bc7b56 8007 xfree (lh->file_names);
debd256d
JB
8008
8009 /* Similarly for the include directory names. */
8010 if (lh->include_dirs)
a8bc7b56 8011 xfree (lh->include_dirs);
debd256d 8012
a8bc7b56 8013 xfree (lh);
debd256d
JB
8014}
8015
8016
8017/* Add an entry to LH's include directory table. */
8018static void
8019add_include_dir (struct line_header *lh, char *include_dir)
c906108c 8020{
debd256d
JB
8021 /* Grow the array if necessary. */
8022 if (lh->include_dirs_size == 0)
c5aa993b 8023 {
debd256d
JB
8024 lh->include_dirs_size = 1; /* for testing */
8025 lh->include_dirs = xmalloc (lh->include_dirs_size
8026 * sizeof (*lh->include_dirs));
8027 }
8028 else if (lh->num_include_dirs >= lh->include_dirs_size)
8029 {
8030 lh->include_dirs_size *= 2;
8031 lh->include_dirs = xrealloc (lh->include_dirs,
8032 (lh->include_dirs_size
8033 * sizeof (*lh->include_dirs)));
c5aa993b 8034 }
c906108c 8035
debd256d
JB
8036 lh->include_dirs[lh->num_include_dirs++] = include_dir;
8037}
6e70227d 8038
debd256d
JB
8039
8040/* Add an entry to LH's file name table. */
8041static void
8042add_file_name (struct line_header *lh,
8043 char *name,
8044 unsigned int dir_index,
8045 unsigned int mod_time,
8046 unsigned int length)
8047{
8048 struct file_entry *fe;
8049
8050 /* Grow the array if necessary. */
8051 if (lh->file_names_size == 0)
8052 {
8053 lh->file_names_size = 1; /* for testing */
8054 lh->file_names = xmalloc (lh->file_names_size
8055 * sizeof (*lh->file_names));
8056 }
8057 else if (lh->num_file_names >= lh->file_names_size)
8058 {
8059 lh->file_names_size *= 2;
8060 lh->file_names = xrealloc (lh->file_names,
8061 (lh->file_names_size
8062 * sizeof (*lh->file_names)));
8063 }
8064
8065 fe = &lh->file_names[lh->num_file_names++];
8066 fe->name = name;
8067 fe->dir_index = dir_index;
8068 fe->mod_time = mod_time;
8069 fe->length = length;
aaa75496 8070 fe->included_p = 0;
cb1df416 8071 fe->symtab = NULL;
debd256d 8072}
6e70227d 8073
debd256d
JB
8074
8075/* Read the statement program header starting at OFFSET in
6502dd73
DJ
8076 .debug_line, according to the endianness of ABFD. Return a pointer
8077 to a struct line_header, allocated using xmalloc.
debd256d
JB
8078
8079 NOTE: the strings in the include directory and file name tables of
8080 the returned object point into debug_line_buffer, and must not be
8081 freed. */
8082static struct line_header *
8083dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 8084 struct dwarf2_cu *cu)
debd256d
JB
8085{
8086 struct cleanup *back_to;
8087 struct line_header *lh;
fe1b8b76 8088 gdb_byte *line_ptr;
c764a876 8089 unsigned int bytes_read, offset_size;
debd256d
JB
8090 int i;
8091 char *cur_dir, *cur_file;
8092
be391dca 8093 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 8094 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 8095 {
e2e0b3e5 8096 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
8097 return 0;
8098 }
8099
a738430d
MK
8100 /* Make sure that at least there's room for the total_length field.
8101 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 8102 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 8103 {
4d3c2250 8104 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
8105 return 0;
8106 }
8107
8108 lh = xmalloc (sizeof (*lh));
8109 memset (lh, 0, sizeof (*lh));
8110 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
8111 (void *) lh);
8112
dce234bc 8113 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 8114
a738430d 8115 /* Read in the header. */
6e70227d 8116 lh->total_length =
c764a876
DE
8117 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
8118 &bytes_read, &offset_size);
debd256d 8119 line_ptr += bytes_read;
dce234bc
PP
8120 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
8121 + dwarf2_per_objfile->line.size))
debd256d 8122 {
4d3c2250 8123 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
8124 return 0;
8125 }
8126 lh->statement_program_end = line_ptr + lh->total_length;
8127 lh->version = read_2_bytes (abfd, line_ptr);
8128 line_ptr += 2;
c764a876
DE
8129 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
8130 line_ptr += offset_size;
debd256d
JB
8131 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
8132 line_ptr += 1;
2dc7f7b3
TT
8133 if (lh->version >= 4)
8134 {
8135 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
8136 line_ptr += 1;
8137 }
8138 else
8139 lh->maximum_ops_per_instruction = 1;
8140
8141 if (lh->maximum_ops_per_instruction == 0)
8142 {
8143 lh->maximum_ops_per_instruction = 1;
8144 complaint (&symfile_complaints,
8145 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
8146 }
8147
debd256d
JB
8148 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
8149 line_ptr += 1;
8150 lh->line_base = read_1_signed_byte (abfd, line_ptr);
8151 line_ptr += 1;
8152 lh->line_range = read_1_byte (abfd, line_ptr);
8153 line_ptr += 1;
8154 lh->opcode_base = read_1_byte (abfd, line_ptr);
8155 line_ptr += 1;
8156 lh->standard_opcode_lengths
fe1b8b76 8157 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
8158
8159 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
8160 for (i = 1; i < lh->opcode_base; ++i)
8161 {
8162 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
8163 line_ptr += 1;
8164 }
8165
a738430d 8166 /* Read directory table. */
debd256d
JB
8167 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
8168 {
8169 line_ptr += bytes_read;
8170 add_include_dir (lh, cur_dir);
8171 }
8172 line_ptr += bytes_read;
8173
a738430d 8174 /* Read file name table. */
debd256d
JB
8175 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
8176 {
8177 unsigned int dir_index, mod_time, length;
8178
8179 line_ptr += bytes_read;
8180 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8181 line_ptr += bytes_read;
8182 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8183 line_ptr += bytes_read;
8184 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8185 line_ptr += bytes_read;
8186
8187 add_file_name (lh, cur_file, dir_index, mod_time, length);
8188 }
8189 line_ptr += bytes_read;
6e70227d 8190 lh->statement_program_start = line_ptr;
debd256d 8191
dce234bc
PP
8192 if (line_ptr > (dwarf2_per_objfile->line.buffer
8193 + dwarf2_per_objfile->line.size))
4d3c2250 8194 complaint (&symfile_complaints,
e2e0b3e5 8195 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
8196
8197 discard_cleanups (back_to);
8198 return lh;
8199}
c906108c 8200
5fb290d7
DJ
8201/* This function exists to work around a bug in certain compilers
8202 (particularly GCC 2.95), in which the first line number marker of a
8203 function does not show up until after the prologue, right before
8204 the second line number marker. This function shifts ADDRESS down
8205 to the beginning of the function if necessary, and is called on
8206 addresses passed to record_line. */
8207
8208static CORE_ADDR
e142c38c 8209check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
8210{
8211 struct function_range *fn;
8212
8213 /* Find the function_range containing address. */
e142c38c 8214 if (!cu->first_fn)
5fb290d7
DJ
8215 return address;
8216
e142c38c
DJ
8217 if (!cu->cached_fn)
8218 cu->cached_fn = cu->first_fn;
5fb290d7 8219
e142c38c 8220 fn = cu->cached_fn;
5fb290d7
DJ
8221 while (fn)
8222 if (fn->lowpc <= address && fn->highpc > address)
8223 goto found;
8224 else
8225 fn = fn->next;
8226
e142c38c
DJ
8227 fn = cu->first_fn;
8228 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
8229 if (fn->lowpc <= address && fn->highpc > address)
8230 goto found;
8231 else
8232 fn = fn->next;
8233
8234 return address;
8235
8236 found:
8237 if (fn->seen_line)
8238 return address;
8239 if (address != fn->lowpc)
4d3c2250 8240 complaint (&symfile_complaints,
e2e0b3e5 8241 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 8242 (unsigned long) address, fn->name);
5fb290d7
DJ
8243 fn->seen_line = 1;
8244 return fn->lowpc;
8245}
8246
aaa75496
JB
8247/* Decode the Line Number Program (LNP) for the given line_header
8248 structure and CU. The actual information extracted and the type
8249 of structures created from the LNP depends on the value of PST.
8250
8251 1. If PST is NULL, then this procedure uses the data from the program
8252 to create all necessary symbol tables, and their linetables.
8253 The compilation directory of the file is passed in COMP_DIR,
8254 and must not be NULL.
6e70227d 8255
aaa75496
JB
8256 2. If PST is not NULL, this procedure reads the program to determine
8257 the list of files included by the unit represented by PST, and
8258 builds all the associated partial symbol tables. In this case,
8259 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
8260 is not used to compute the full name of the symtab, and therefore
8261 omitting it when building the partial symtab does not introduce
8262 the potential for inconsistency - a partial symtab and its associated
8263 symbtab having a different fullname -). */
debd256d 8264
c906108c 8265static void
debd256d 8266dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 8267 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 8268{
a8c50c1f 8269 gdb_byte *line_ptr, *extended_end;
fe1b8b76 8270 gdb_byte *line_end;
a8c50c1f 8271 unsigned int bytes_read, extended_len;
c906108c 8272 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
8273 CORE_ADDR baseaddr;
8274 struct objfile *objfile = cu->objfile;
fbf65064 8275 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 8276 const int decode_for_pst_p = (pst != NULL);
cb1df416 8277 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
8278
8279 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8280
debd256d
JB
8281 line_ptr = lh->statement_program_start;
8282 line_end = lh->statement_program_end;
c906108c
SS
8283
8284 /* Read the statement sequences until there's nothing left. */
8285 while (line_ptr < line_end)
8286 {
8287 /* state machine registers */
8288 CORE_ADDR address = 0;
8289 unsigned int file = 1;
8290 unsigned int line = 1;
8291 unsigned int column = 0;
debd256d 8292 int is_stmt = lh->default_is_stmt;
c906108c
SS
8293 int basic_block = 0;
8294 int end_sequence = 0;
fbf65064 8295 CORE_ADDR addr;
2dc7f7b3 8296 unsigned char op_index = 0;
c906108c 8297
aaa75496 8298 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 8299 {
aaa75496 8300 /* Start a subfile for the current file of the state machine. */
debd256d
JB
8301 /* lh->include_dirs and lh->file_names are 0-based, but the
8302 directory and file name numbers in the statement program
8303 are 1-based. */
8304 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 8305 char *dir = NULL;
a738430d 8306
debd256d
JB
8307 if (fe->dir_index)
8308 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
8309
8310 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
8311 }
8312
a738430d 8313 /* Decode the table. */
c5aa993b 8314 while (!end_sequence)
c906108c
SS
8315 {
8316 op_code = read_1_byte (abfd, line_ptr);
8317 line_ptr += 1;
59205f5a
JB
8318 if (line_ptr > line_end)
8319 {
8320 dwarf2_debug_line_missing_end_sequence_complaint ();
8321 break;
8322 }
9aa1fe7e 8323
debd256d 8324 if (op_code >= lh->opcode_base)
6e70227d 8325 {
a738430d 8326 /* Special operand. */
debd256d 8327 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
8328 address += (((op_index + (adj_opcode / lh->line_range))
8329 / lh->maximum_ops_per_instruction)
8330 * lh->minimum_instruction_length);
8331 op_index = ((op_index + (adj_opcode / lh->line_range))
8332 % lh->maximum_ops_per_instruction);
debd256d 8333 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 8334 if (lh->num_file_names < file || file == 0)
25e43795 8335 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
8336 /* For now we ignore lines not starting on an
8337 instruction boundary. */
8338 else if (op_index == 0)
25e43795
DJ
8339 {
8340 lh->file_names[file - 1].included_p = 1;
ca5f395d 8341 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8342 {
8343 if (last_subfile != current_subfile)
8344 {
8345 addr = gdbarch_addr_bits_remove (gdbarch, address);
8346 if (last_subfile)
8347 record_line (last_subfile, 0, addr);
8348 last_subfile = current_subfile;
8349 }
25e43795 8350 /* Append row to matrix using current values. */
fbf65064
UW
8351 addr = check_cu_functions (address, cu);
8352 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8353 record_line (current_subfile, line, addr);
366da635 8354 }
25e43795 8355 }
ca5f395d 8356 basic_block = 0;
9aa1fe7e
GK
8357 }
8358 else switch (op_code)
c906108c
SS
8359 {
8360 case DW_LNS_extended_op:
a8c50c1f 8361 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 8362 line_ptr += bytes_read;
a8c50c1f 8363 extended_end = line_ptr + extended_len;
c906108c
SS
8364 extended_op = read_1_byte (abfd, line_ptr);
8365 line_ptr += 1;
8366 switch (extended_op)
8367 {
8368 case DW_LNE_end_sequence:
8369 end_sequence = 1;
c906108c
SS
8370 break;
8371 case DW_LNE_set_address:
e7c27a73 8372 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 8373 op_index = 0;
107d2387
AC
8374 line_ptr += bytes_read;
8375 address += baseaddr;
c906108c
SS
8376 break;
8377 case DW_LNE_define_file:
debd256d
JB
8378 {
8379 char *cur_file;
8380 unsigned int dir_index, mod_time, length;
6e70227d 8381
debd256d
JB
8382 cur_file = read_string (abfd, line_ptr, &bytes_read);
8383 line_ptr += bytes_read;
8384 dir_index =
8385 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8386 line_ptr += bytes_read;
8387 mod_time =
8388 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8389 line_ptr += bytes_read;
8390 length =
8391 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8392 line_ptr += bytes_read;
8393 add_file_name (lh, cur_file, dir_index, mod_time, length);
8394 }
c906108c 8395 break;
d0c6ba3d
CC
8396 case DW_LNE_set_discriminator:
8397 /* The discriminator is not interesting to the debugger;
8398 just ignore it. */
8399 line_ptr = extended_end;
8400 break;
c906108c 8401 default:
4d3c2250 8402 complaint (&symfile_complaints,
e2e0b3e5 8403 _("mangled .debug_line section"));
debd256d 8404 return;
c906108c 8405 }
a8c50c1f
DJ
8406 /* Make sure that we parsed the extended op correctly. If e.g.
8407 we expected a different address size than the producer used,
8408 we may have read the wrong number of bytes. */
8409 if (line_ptr != extended_end)
8410 {
8411 complaint (&symfile_complaints,
8412 _("mangled .debug_line section"));
8413 return;
8414 }
c906108c
SS
8415 break;
8416 case DW_LNS_copy:
59205f5a 8417 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8418 dwarf2_debug_line_missing_file_complaint ();
8419 else
366da635 8420 {
25e43795 8421 lh->file_names[file - 1].included_p = 1;
ca5f395d 8422 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8423 {
8424 if (last_subfile != current_subfile)
8425 {
8426 addr = gdbarch_addr_bits_remove (gdbarch, address);
8427 if (last_subfile)
8428 record_line (last_subfile, 0, addr);
8429 last_subfile = current_subfile;
8430 }
8431 addr = check_cu_functions (address, cu);
8432 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8433 record_line (current_subfile, line, addr);
8434 }
366da635 8435 }
c906108c
SS
8436 basic_block = 0;
8437 break;
8438 case DW_LNS_advance_pc:
2dc7f7b3
TT
8439 {
8440 CORE_ADDR adjust
8441 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8442
8443 address += (((op_index + adjust)
8444 / lh->maximum_ops_per_instruction)
8445 * lh->minimum_instruction_length);
8446 op_index = ((op_index + adjust)
8447 % lh->maximum_ops_per_instruction);
8448 line_ptr += bytes_read;
8449 }
c906108c
SS
8450 break;
8451 case DW_LNS_advance_line:
8452 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8453 line_ptr += bytes_read;
8454 break;
8455 case DW_LNS_set_file:
debd256d 8456 {
a738430d
MK
8457 /* The arrays lh->include_dirs and lh->file_names are
8458 0-based, but the directory and file name numbers in
8459 the statement program are 1-based. */
debd256d 8460 struct file_entry *fe;
4f1520fb 8461 char *dir = NULL;
a738430d 8462
debd256d
JB
8463 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8464 line_ptr += bytes_read;
59205f5a 8465 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8466 dwarf2_debug_line_missing_file_complaint ();
8467 else
8468 {
8469 fe = &lh->file_names[file - 1];
8470 if (fe->dir_index)
8471 dir = lh->include_dirs[fe->dir_index - 1];
8472 if (!decode_for_pst_p)
8473 {
8474 last_subfile = current_subfile;
8475 dwarf2_start_subfile (fe->name, dir, comp_dir);
8476 }
8477 }
debd256d 8478 }
c906108c
SS
8479 break;
8480 case DW_LNS_set_column:
8481 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8482 line_ptr += bytes_read;
8483 break;
8484 case DW_LNS_negate_stmt:
8485 is_stmt = (!is_stmt);
8486 break;
8487 case DW_LNS_set_basic_block:
8488 basic_block = 1;
8489 break;
c2c6d25f
JM
8490 /* Add to the address register of the state machine the
8491 address increment value corresponding to special opcode
a738430d
MK
8492 255. I.e., this value is scaled by the minimum
8493 instruction length since special opcode 255 would have
8494 scaled the the increment. */
c906108c 8495 case DW_LNS_const_add_pc:
2dc7f7b3
TT
8496 {
8497 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
8498
8499 address += (((op_index + adjust)
8500 / lh->maximum_ops_per_instruction)
8501 * lh->minimum_instruction_length);
8502 op_index = ((op_index + adjust)
8503 % lh->maximum_ops_per_instruction);
8504 }
c906108c
SS
8505 break;
8506 case DW_LNS_fixed_advance_pc:
8507 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 8508 op_index = 0;
c906108c
SS
8509 line_ptr += 2;
8510 break;
9aa1fe7e 8511 default:
a738430d
MK
8512 {
8513 /* Unknown standard opcode, ignore it. */
9aa1fe7e 8514 int i;
a738430d 8515
debd256d 8516 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
8517 {
8518 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8519 line_ptr += bytes_read;
8520 }
8521 }
c906108c
SS
8522 }
8523 }
59205f5a
JB
8524 if (lh->num_file_names < file || file == 0)
8525 dwarf2_debug_line_missing_file_complaint ();
8526 else
8527 {
8528 lh->file_names[file - 1].included_p = 1;
8529 if (!decode_for_pst_p)
fbf65064
UW
8530 {
8531 addr = gdbarch_addr_bits_remove (gdbarch, address);
8532 record_line (current_subfile, 0, addr);
8533 }
59205f5a 8534 }
c906108c 8535 }
aaa75496
JB
8536
8537 if (decode_for_pst_p)
8538 {
8539 int file_index;
8540
8541 /* Now that we're done scanning the Line Header Program, we can
8542 create the psymtab of each included file. */
8543 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8544 if (lh->file_names[file_index].included_p == 1)
8545 {
5b5464ad
JB
8546 const struct file_entry fe = lh->file_names [file_index];
8547 char *include_name = fe.name;
8548 char *dir_name = NULL;
8549 char *pst_filename = pst->filename;
8550
8551 if (fe.dir_index)
8552 dir_name = lh->include_dirs[fe.dir_index - 1];
8553
8554 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8555 {
1754f103
MK
8556 include_name = concat (dir_name, SLASH_STRING,
8557 include_name, (char *)NULL);
5b5464ad
JB
8558 make_cleanup (xfree, include_name);
8559 }
8560
8561 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8562 {
1754f103
MK
8563 pst_filename = concat (pst->dirname, SLASH_STRING,
8564 pst_filename, (char *)NULL);
5b5464ad
JB
8565 make_cleanup (xfree, pst_filename);
8566 }
8567
8568 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
8569 dwarf2_create_include_psymtab (include_name, pst, objfile);
8570 }
8571 }
cb1df416
DJ
8572 else
8573 {
8574 /* Make sure a symtab is created for every file, even files
8575 which contain only variables (i.e. no code with associated
8576 line numbers). */
8577
8578 int i;
8579 struct file_entry *fe;
8580
8581 for (i = 0; i < lh->num_file_names; i++)
8582 {
8583 char *dir = NULL;
9a619af0 8584
cb1df416
DJ
8585 fe = &lh->file_names[i];
8586 if (fe->dir_index)
8587 dir = lh->include_dirs[fe->dir_index - 1];
8588 dwarf2_start_subfile (fe->name, dir, comp_dir);
8589
8590 /* Skip the main file; we don't need it, and it must be
8591 allocated last, so that it will show up before the
8592 non-primary symtabs in the objfile's symtab list. */
8593 if (current_subfile == first_subfile)
8594 continue;
8595
8596 if (current_subfile->symtab == NULL)
8597 current_subfile->symtab = allocate_symtab (current_subfile->name,
8598 cu->objfile);
8599 fe->symtab = current_subfile->symtab;
8600 }
8601 }
c906108c
SS
8602}
8603
8604/* Start a subfile for DWARF. FILENAME is the name of the file and
8605 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
8606 or NULL if not known. COMP_DIR is the compilation directory for the
8607 linetable's compilation unit or NULL if not known.
c906108c
SS
8608 This routine tries to keep line numbers from identical absolute and
8609 relative file names in a common subfile.
8610
8611 Using the `list' example from the GDB testsuite, which resides in
8612 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8613 of /srcdir/list0.c yields the following debugging information for list0.c:
8614
c5aa993b
JM
8615 DW_AT_name: /srcdir/list0.c
8616 DW_AT_comp_dir: /compdir
357e46e7 8617 files.files[0].name: list0.h
c5aa993b 8618 files.files[0].dir: /srcdir
357e46e7 8619 files.files[1].name: list0.c
c5aa993b 8620 files.files[1].dir: /srcdir
c906108c
SS
8621
8622 The line number information for list0.c has to end up in a single
4f1520fb
FR
8623 subfile, so that `break /srcdir/list0.c:1' works as expected.
8624 start_subfile will ensure that this happens provided that we pass the
8625 concatenation of files.files[1].dir and files.files[1].name as the
8626 subfile's name. */
c906108c
SS
8627
8628static void
4f1520fb 8629dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 8630{
4f1520fb
FR
8631 char *fullname;
8632
8633 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8634 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8635 second argument to start_subfile. To be consistent, we do the
8636 same here. In order not to lose the line information directory,
8637 we concatenate it to the filename when it makes sense.
8638 Note that the Dwarf3 standard says (speaking of filenames in line
8639 information): ``The directory index is ignored for file names
8640 that represent full path names''. Thus ignoring dirname in the
8641 `else' branch below isn't an issue. */
c906108c 8642
d5166ae1 8643 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
8644 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8645 else
8646 fullname = filename;
c906108c 8647
4f1520fb
FR
8648 start_subfile (fullname, comp_dir);
8649
8650 if (fullname != filename)
8651 xfree (fullname);
c906108c
SS
8652}
8653
4c2df51b
DJ
8654static void
8655var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 8656 struct dwarf2_cu *cu)
4c2df51b 8657{
e7c27a73
DJ
8658 struct objfile *objfile = cu->objfile;
8659 struct comp_unit_head *cu_header = &cu->header;
8660
4c2df51b
DJ
8661 /* NOTE drow/2003-01-30: There used to be a comment and some special
8662 code here to turn a symbol with DW_AT_external and a
8663 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8664 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8665 with some versions of binutils) where shared libraries could have
8666 relocations against symbols in their debug information - the
8667 minimal symbol would have the right address, but the debug info
8668 would not. It's no longer necessary, because we will explicitly
8669 apply relocations when we read in the debug information now. */
8670
8671 /* A DW_AT_location attribute with no contents indicates that a
8672 variable has been optimized away. */
8673 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8674 {
8675 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8676 return;
8677 }
8678
8679 /* Handle one degenerate form of location expression specially, to
8680 preserve GDB's previous behavior when section offsets are
8681 specified. If this is just a DW_OP_addr then mark this symbol
8682 as LOC_STATIC. */
8683
8684 if (attr_form_is_block (attr)
8685 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8686 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8687 {
891d2f0b 8688 unsigned int dummy;
4c2df51b
DJ
8689
8690 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 8691 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 8692 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
8693 fixup_symbol_section (sym, objfile);
8694 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8695 SYMBOL_SECTION (sym));
4c2df51b
DJ
8696 return;
8697 }
8698
8699 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8700 expression evaluator, and use LOC_COMPUTED only when necessary
8701 (i.e. when the value of a register or memory location is
8702 referenced, or a thread-local block, etc.). Then again, it might
8703 not be worthwhile. I'm assuming that it isn't unless performance
8704 or memory numbers show me otherwise. */
8705
e7c27a73 8706 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
8707 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8708}
8709
c906108c
SS
8710/* Given a pointer to a DWARF information entry, figure out if we need
8711 to make a symbol table entry for it, and if so, create a new entry
8712 and return a pointer to it.
8713 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 8714 used the passed type. */
c906108c
SS
8715
8716static struct symbol *
e7c27a73 8717new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 8718{
e7c27a73 8719 struct objfile *objfile = cu->objfile;
c906108c
SS
8720 struct symbol *sym = NULL;
8721 char *name;
8722 struct attribute *attr = NULL;
8723 struct attribute *attr2 = NULL;
e142c38c 8724 CORE_ADDR baseaddr;
edb3359d 8725 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
8726
8727 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8728
94af9270 8729 name = dwarf2_name (die, cu);
c906108c
SS
8730 if (name)
8731 {
94af9270
KS
8732 const char *linkagename;
8733
4a146b47 8734 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
8735 sizeof (struct symbol));
8736 OBJSTAT (objfile, n_syms++);
8737 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
8738
8739 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 8740 SYMBOL_LANGUAGE (sym) = cu->language;
94af9270
KS
8741 linkagename = dwarf2_physname (name, die, cu);
8742 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 8743
f55ee35c
JK
8744 /* Fortran does not have mangling standard and the mangling does differ
8745 between gfortran, iFort etc. */
8746 if (cu->language == language_fortran
8747 && sym->ginfo.language_specific.cplus_specific.demangled_name == NULL)
8748 sym->ginfo.language_specific.cplus_specific.demangled_name
8749 = (char *) dwarf2_full_name (name, die, cu);
8750
c906108c 8751 /* Default assumptions.
c5aa993b 8752 Use the passed type or decode it from the die. */
176620f1 8753 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 8754 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
8755 if (type != NULL)
8756 SYMBOL_TYPE (sym) = type;
8757 else
e7c27a73 8758 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
8759 attr = dwarf2_attr (die,
8760 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8761 cu);
c906108c
SS
8762 if (attr)
8763 {
8764 SYMBOL_LINE (sym) = DW_UNSND (attr);
8765 }
cb1df416 8766
edb3359d
DJ
8767 attr = dwarf2_attr (die,
8768 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8769 cu);
cb1df416
DJ
8770 if (attr)
8771 {
8772 int file_index = DW_UNSND (attr);
9a619af0 8773
cb1df416
DJ
8774 if (cu->line_header == NULL
8775 || file_index > cu->line_header->num_file_names)
8776 complaint (&symfile_complaints,
8777 _("file index out of range"));
1c3d648d 8778 else if (file_index > 0)
cb1df416
DJ
8779 {
8780 struct file_entry *fe;
9a619af0 8781
cb1df416
DJ
8782 fe = &cu->line_header->file_names[file_index - 1];
8783 SYMBOL_SYMTAB (sym) = fe->symtab;
8784 }
8785 }
8786
c906108c
SS
8787 switch (die->tag)
8788 {
8789 case DW_TAG_label:
e142c38c 8790 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
8791 if (attr)
8792 {
8793 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8794 }
8795 SYMBOL_CLASS (sym) = LOC_LABEL;
8796 break;
8797 case DW_TAG_subprogram:
8798 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8799 finish_block. */
8800 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 8801 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
8802 if ((attr2 && (DW_UNSND (attr2) != 0))
8803 || cu->language == language_ada)
c906108c 8804 {
2cfa0c8d
JB
8805 /* Subprograms marked external are stored as a global symbol.
8806 Ada subprograms, whether marked external or not, are always
8807 stored as a global symbol, because we want to be able to
8808 access them globally. For instance, we want to be able
8809 to break on a nested subprogram without having to
8810 specify the context. */
c906108c
SS
8811 add_symbol_to_list (sym, &global_symbols);
8812 }
8813 else
8814 {
e142c38c 8815 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8816 }
8817 break;
edb3359d
DJ
8818 case DW_TAG_inlined_subroutine:
8819 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8820 finish_block. */
8821 SYMBOL_CLASS (sym) = LOC_BLOCK;
8822 SYMBOL_INLINED (sym) = 1;
8823 /* Do not add the symbol to any lists. It will be found via
8824 BLOCK_FUNCTION from the blockvector. */
8825 break;
c906108c
SS
8826 case DW_TAG_variable:
8827 /* Compilation with minimal debug info may result in variables
8828 with missing type entries. Change the misleading `void' type
8829 to something sensible. */
8830 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 8831 SYMBOL_TYPE (sym)
46bf5051 8832 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 8833
e142c38c 8834 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8835 if (attr)
8836 {
e7c27a73 8837 dwarf2_const_value (attr, sym, cu);
e142c38c 8838 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
8839 if (attr2 && (DW_UNSND (attr2) != 0))
8840 add_symbol_to_list (sym, &global_symbols);
8841 else
e142c38c 8842 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8843 break;
8844 }
e142c38c 8845 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8846 if (attr)
8847 {
e7c27a73 8848 var_decode_location (attr, sym, cu);
e142c38c 8849 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8850 if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68
TT
8851 {
8852 struct pending **list_to_add;
8853
f55ee35c
JK
8854 /* Workaround gfortran PR debug/40040 - it uses
8855 DW_AT_location for variables in -fPIC libraries which may
8856 get overriden by other libraries/executable and get
8857 a different address. Resolve it by the minimal symbol
8858 which may come from inferior's executable using copy
8859 relocation. Make this workaround only for gfortran as for
8860 other compilers GDB cannot guess the minimal symbol
8861 Fortran mangling kind. */
8862 if (cu->language == language_fortran && die->parent
8863 && die->parent->tag == DW_TAG_module
8864 && cu->producer
8865 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
8866 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8867
1c809c68
TT
8868 /* A variable with DW_AT_external is never static,
8869 but it may be block-scoped. */
8870 list_to_add = (cu->list_in_scope == &file_symbols
8871 ? &global_symbols : cu->list_in_scope);
8872 add_symbol_to_list (sym, list_to_add);
8873 }
c906108c 8874 else
e142c38c 8875 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8876 }
8877 else
8878 {
8879 /* We do not know the address of this symbol.
c5aa993b
JM
8880 If it is an external symbol and we have type information
8881 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8882 The address of the variable will then be determined from
8883 the minimal symbol table whenever the variable is
8884 referenced. */
e142c38c 8885 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8886 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 8887 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 8888 {
0fe7935b
DJ
8889 struct pending **list_to_add;
8890
8891 /* A variable with DW_AT_external is never static, but it
8892 may be block-scoped. */
8893 list_to_add = (cu->list_in_scope == &file_symbols
8894 ? &global_symbols : cu->list_in_scope);
8895
c906108c 8896 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
0fe7935b 8897 add_symbol_to_list (sym, list_to_add);
c906108c 8898 }
442ddf59
JK
8899 else if (!die_is_declaration (die, cu))
8900 {
8901 /* Use the default LOC_OPTIMIZED_OUT class. */
8902 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8903 add_symbol_to_list (sym, cu->list_in_scope);
8904 }
c906108c
SS
8905 }
8906 break;
8907 case DW_TAG_formal_parameter:
edb3359d
DJ
8908 /* If we are inside a function, mark this as an argument. If
8909 not, we might be looking at an argument to an inlined function
8910 when we do not have enough information to show inlined frames;
8911 pretend it's a local variable in that case so that the user can
8912 still see it. */
8913 if (context_stack_depth > 0
8914 && context_stack[context_stack_depth - 1].name != NULL)
8915 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 8916 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8917 if (attr)
8918 {
e7c27a73 8919 var_decode_location (attr, sym, cu);
c906108c 8920 }
e142c38c 8921 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8922 if (attr)
8923 {
e7c27a73 8924 dwarf2_const_value (attr, sym, cu);
c906108c 8925 }
f346a30d
PM
8926 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
8927 if (attr && DW_UNSND (attr))
8928 {
8929 struct type *ref_type;
8930
8931 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
8932 SYMBOL_TYPE (sym) = ref_type;
8933 }
8934
e142c38c 8935 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8936 break;
8937 case DW_TAG_unspecified_parameters:
8938 /* From varargs functions; gdb doesn't seem to have any
8939 interest in this information, so just ignore it for now.
8940 (FIXME?) */
8941 break;
8942 case DW_TAG_class_type:
680b30c7 8943 case DW_TAG_interface_type:
c906108c
SS
8944 case DW_TAG_structure_type:
8945 case DW_TAG_union_type:
72019c9c 8946 case DW_TAG_set_type:
c906108c
SS
8947 case DW_TAG_enumeration_type:
8948 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8949 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 8950
63d06c5c 8951 {
987504bb 8952 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
8953 really ever be static objects: otherwise, if you try
8954 to, say, break of a class's method and you're in a file
8955 which doesn't mention that class, it won't work unless
8956 the check for all static symbols in lookup_symbol_aux
8957 saves you. See the OtherFileClass tests in
8958 gdb.c++/namespace.exp. */
8959
8960 struct pending **list_to_add;
8961
e142c38c 8962 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8963 && (cu->language == language_cplus
8964 || cu->language == language_java)
e142c38c 8965 ? &global_symbols : cu->list_in_scope);
6e70227d 8966
63d06c5c
DC
8967 add_symbol_to_list (sym, list_to_add);
8968
8969 /* The semantics of C++ state that "struct foo { ... }" also
987504bb 8970 defines a typedef for "foo". A Java class declaration also
5eeb2539 8971 defines a typedef for the class. */
987504bb 8972 if (cu->language == language_cplus
8c6860bb
JB
8973 || cu->language == language_java
8974 || cu->language == language_ada)
63d06c5c 8975 {
d8151005
DJ
8976 /* The symbol's name is already allocated along with
8977 this objfile, so we don't need to duplicate it for
8978 the type. */
63d06c5c 8979 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 8980 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
8981 }
8982 }
c906108c
SS
8983 break;
8984 case DW_TAG_typedef:
63d06c5c
DC
8985 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8986 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8987 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 8988 break;
c906108c 8989 case DW_TAG_base_type:
a02abb62 8990 case DW_TAG_subrange_type:
90e7c2c5
PM
8991 case DW_TAG_const_type:
8992 case DW_TAG_volatile_type:
c906108c 8993 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8994 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8995 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8996 break;
8997 case DW_TAG_enumerator:
e142c38c 8998 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8999 if (attr)
9000 {
e7c27a73 9001 dwarf2_const_value (attr, sym, cu);
c906108c 9002 }
63d06c5c
DC
9003 {
9004 /* NOTE: carlton/2003-11-10: See comment above in the
9005 DW_TAG_class_type, etc. block. */
9006
9007 struct pending **list_to_add;
9008
e142c38c 9009 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
9010 && (cu->language == language_cplus
9011 || cu->language == language_java)
e142c38c 9012 ? &global_symbols : cu->list_in_scope);
6e70227d 9013
63d06c5c
DC
9014 add_symbol_to_list (sym, list_to_add);
9015 }
c906108c 9016 break;
5c4e30ca
DC
9017 case DW_TAG_namespace:
9018 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
9019 add_symbol_to_list (sym, &global_symbols);
9020 break;
c906108c
SS
9021 default:
9022 /* Not a tag we recognize. Hopefully we aren't processing
9023 trash data, but since we must specifically ignore things
9024 we don't recognize, there is nothing else we should do at
9025 this point. */
e2e0b3e5 9026 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 9027 dwarf_tag_name (die->tag));
c906108c
SS
9028 break;
9029 }
df8a16a1
DJ
9030
9031 /* For the benefit of old versions of GCC, check for anonymous
9032 namespaces based on the demangled name. */
9033 if (!processing_has_namespace_info
94af9270 9034 && cu->language == language_cplus)
df8a16a1 9035 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
9036 }
9037 return (sym);
9038}
9039
9040/* Copy constant value from an attribute to a symbol. */
9041
9042static void
107d2387 9043dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 9044 struct dwarf2_cu *cu)
c906108c 9045{
e7c27a73
DJ
9046 struct objfile *objfile = cu->objfile;
9047 struct comp_unit_head *cu_header = &cu->header;
e17a4113
UW
9048 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
9049 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
c906108c
SS
9050 struct dwarf_block *blk;
9051
9052 switch (attr->form)
9053 {
9054 case DW_FORM_addr:
107d2387 9055 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
3567439c 9056 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
9057 cu_header->addr_size,
9058 TYPE_LENGTH (SYMBOL_TYPE
9059 (sym)));
6e70227d 9060 SYMBOL_VALUE_BYTES (sym) =
4a146b47 9061 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
9062 /* NOTE: cagney/2003-05-09: In-lined store_address call with
9063 it's body - store_unsigned_integer. */
9064 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
72f2769e 9065 byte_order, DW_ADDR (attr));
c906108c
SS
9066 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
9067 break;
4ac36638 9068 case DW_FORM_string:
93b5768b
PA
9069 case DW_FORM_strp:
9070 /* DW_STRING is already allocated on the obstack, point directly
9071 to it. */
9072 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
9073 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
9074 break;
c906108c
SS
9075 case DW_FORM_block1:
9076 case DW_FORM_block2:
9077 case DW_FORM_block4:
9078 case DW_FORM_block:
2dc7f7b3 9079 case DW_FORM_exprloc:
c906108c
SS
9080 blk = DW_BLOCK (attr);
9081 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
3567439c 9082 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
9083 blk->size,
9084 TYPE_LENGTH (SYMBOL_TYPE
9085 (sym)));
4e38b386 9086 SYMBOL_VALUE_BYTES (sym) =
4a146b47 9087 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
9088 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
9089 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
9090 break;
2df3850c
JM
9091
9092 /* The DW_AT_const_value attributes are supposed to carry the
9093 symbol's value "represented as it would be on the target
9094 architecture." By the time we get here, it's already been
9095 converted to host endianness, so we just need to sign- or
9096 zero-extend it as appropriate. */
9097 case DW_FORM_data1:
9098 dwarf2_const_value_data (attr, sym, 8);
9099 break;
c906108c 9100 case DW_FORM_data2:
2df3850c
JM
9101 dwarf2_const_value_data (attr, sym, 16);
9102 break;
c906108c 9103 case DW_FORM_data4:
2df3850c
JM
9104 dwarf2_const_value_data (attr, sym, 32);
9105 break;
c906108c 9106 case DW_FORM_data8:
2df3850c
JM
9107 dwarf2_const_value_data (attr, sym, 64);
9108 break;
9109
c906108c 9110 case DW_FORM_sdata:
2df3850c
JM
9111 SYMBOL_VALUE (sym) = DW_SND (attr);
9112 SYMBOL_CLASS (sym) = LOC_CONST;
9113 break;
9114
c906108c
SS
9115 case DW_FORM_udata:
9116 SYMBOL_VALUE (sym) = DW_UNSND (attr);
9117 SYMBOL_CLASS (sym) = LOC_CONST;
9118 break;
2df3850c 9119
c906108c 9120 default:
4d3c2250 9121 complaint (&symfile_complaints,
e2e0b3e5 9122 _("unsupported const value attribute form: '%s'"),
4d3c2250 9123 dwarf_form_name (attr->form));
c906108c
SS
9124 SYMBOL_VALUE (sym) = 0;
9125 SYMBOL_CLASS (sym) = LOC_CONST;
9126 break;
9127 }
9128}
9129
2df3850c
JM
9130
9131/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
9132 or zero-extend it as appropriate for the symbol's type. */
9133static void
9134dwarf2_const_value_data (struct attribute *attr,
9135 struct symbol *sym,
9136 int bits)
9137{
9138 LONGEST l = DW_UNSND (attr);
9139
9140 if (bits < sizeof (l) * 8)
9141 {
9142 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
9143 l &= ((LONGEST) 1 << bits) - 1;
9144 else
bf9198f1 9145 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
9146 }
9147
9148 SYMBOL_VALUE (sym) = l;
9149 SYMBOL_CLASS (sym) = LOC_CONST;
9150}
9151
9152
c906108c
SS
9153/* Return the type of the die in question using its DW_AT_type attribute. */
9154
9155static struct type *
e7c27a73 9156die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9157{
c906108c
SS
9158 struct attribute *type_attr;
9159 struct die_info *type_die;
c906108c 9160
e142c38c 9161 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
9162 if (!type_attr)
9163 {
9164 /* A missing DW_AT_type represents a void type. */
46bf5051 9165 return objfile_type (cu->objfile)->builtin_void;
c906108c 9166 }
348e048f
DE
9167
9168 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10b3939b 9169
33ac96f0 9170 return tag_type_to_type (type_die, cu);
c906108c
SS
9171}
9172
b4ba55a1
JB
9173/* True iff CU's producer generates GNAT Ada auxiliary information
9174 that allows to find parallel types through that information instead
9175 of having to do expensive parallel lookups by type name. */
9176
9177static int
9178need_gnat_info (struct dwarf2_cu *cu)
9179{
9180 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
9181 of GNAT produces this auxiliary information, without any indication
9182 that it is produced. Part of enhancing the FSF version of GNAT
9183 to produce that information will be to put in place an indicator
9184 that we can use in order to determine whether the descriptive type
9185 info is available or not. One suggestion that has been made is
9186 to use a new attribute, attached to the CU die. For now, assume
9187 that the descriptive type info is not available. */
9188 return 0;
9189}
9190
9191
9192/* Return the auxiliary type of the die in question using its
9193 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
9194 attribute is not present. */
9195
9196static struct type *
9197die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
9198{
b4ba55a1
JB
9199 struct attribute *type_attr;
9200 struct die_info *type_die;
9201
9202 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
9203 if (!type_attr)
9204 return NULL;
9205
9206 type_die = follow_die_ref (die, type_attr, &cu);
33ac96f0 9207 return tag_type_to_type (type_die, cu);
b4ba55a1
JB
9208}
9209
9210/* If DIE has a descriptive_type attribute, then set the TYPE's
9211 descriptive type accordingly. */
9212
9213static void
9214set_descriptive_type (struct type *type, struct die_info *die,
9215 struct dwarf2_cu *cu)
9216{
9217 struct type *descriptive_type = die_descriptive_type (die, cu);
9218
9219 if (descriptive_type)
9220 {
9221 ALLOCATE_GNAT_AUX_TYPE (type);
9222 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
9223 }
9224}
9225
c906108c
SS
9226/* Return the containing type of the die in question using its
9227 DW_AT_containing_type attribute. */
9228
9229static struct type *
e7c27a73 9230die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9231{
c906108c 9232 struct attribute *type_attr;
33ac96f0 9233 struct die_info *type_die;
c906108c 9234
e142c38c 9235 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
9236 if (!type_attr)
9237 error (_("Dwarf Error: Problem turning containing type into gdb type "
9238 "[in module %s]"), cu->objfile->name);
9239
9240 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
9241 return tag_type_to_type (type_die, cu);
c906108c
SS
9242}
9243
c906108c 9244static struct type *
e7c27a73 9245tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9246{
f792889a
DJ
9247 struct type *this_type;
9248
9249 this_type = read_type_die (die, cu);
9250 if (!this_type)
c906108c 9251 {
b00fdb78
TT
9252 char *message, *saved;
9253
9254 /* read_type_die already issued a complaint. */
9255 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
9256 cu->objfile->name,
9257 cu->header.offset,
9258 die->offset);
9259 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
9260 message, strlen (message));
9261 xfree (message);
9262
9263 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 9264 }
f792889a 9265 return this_type;
c906108c
SS
9266}
9267
f792889a 9268static struct type *
e7c27a73 9269read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9270{
f792889a
DJ
9271 struct type *this_type;
9272
9273 this_type = get_die_type (die, cu);
9274 if (this_type)
9275 return this_type;
9276
c906108c
SS
9277 switch (die->tag)
9278 {
9279 case DW_TAG_class_type:
680b30c7 9280 case DW_TAG_interface_type:
c906108c
SS
9281 case DW_TAG_structure_type:
9282 case DW_TAG_union_type:
f792889a 9283 this_type = read_structure_type (die, cu);
c906108c
SS
9284 break;
9285 case DW_TAG_enumeration_type:
f792889a 9286 this_type = read_enumeration_type (die, cu);
c906108c
SS
9287 break;
9288 case DW_TAG_subprogram:
9289 case DW_TAG_subroutine_type:
edb3359d 9290 case DW_TAG_inlined_subroutine:
f792889a 9291 this_type = read_subroutine_type (die, cu);
c906108c
SS
9292 break;
9293 case DW_TAG_array_type:
f792889a 9294 this_type = read_array_type (die, cu);
c906108c 9295 break;
72019c9c 9296 case DW_TAG_set_type:
f792889a 9297 this_type = read_set_type (die, cu);
72019c9c 9298 break;
c906108c 9299 case DW_TAG_pointer_type:
f792889a 9300 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
9301 break;
9302 case DW_TAG_ptr_to_member_type:
f792889a 9303 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
9304 break;
9305 case DW_TAG_reference_type:
f792889a 9306 this_type = read_tag_reference_type (die, cu);
c906108c
SS
9307 break;
9308 case DW_TAG_const_type:
f792889a 9309 this_type = read_tag_const_type (die, cu);
c906108c
SS
9310 break;
9311 case DW_TAG_volatile_type:
f792889a 9312 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
9313 break;
9314 case DW_TAG_string_type:
f792889a 9315 this_type = read_tag_string_type (die, cu);
c906108c
SS
9316 break;
9317 case DW_TAG_typedef:
f792889a 9318 this_type = read_typedef (die, cu);
c906108c 9319 break;
a02abb62 9320 case DW_TAG_subrange_type:
f792889a 9321 this_type = read_subrange_type (die, cu);
a02abb62 9322 break;
c906108c 9323 case DW_TAG_base_type:
f792889a 9324 this_type = read_base_type (die, cu);
c906108c 9325 break;
81a17f79 9326 case DW_TAG_unspecified_type:
f792889a 9327 this_type = read_unspecified_type (die, cu);
81a17f79 9328 break;
0114d602
DJ
9329 case DW_TAG_namespace:
9330 this_type = read_namespace_type (die, cu);
9331 break;
f55ee35c
JK
9332 case DW_TAG_module:
9333 this_type = read_module_type (die, cu);
9334 break;
c906108c 9335 default:
a1f5b845 9336 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 9337 dwarf_tag_name (die->tag));
c906108c
SS
9338 break;
9339 }
63d06c5c 9340
f792889a 9341 return this_type;
63d06c5c
DC
9342}
9343
fdde2d81 9344/* Return the name of the namespace/class that DIE is defined within,
0114d602 9345 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 9346
0114d602
DJ
9347 For example, if we're within the method foo() in the following
9348 code:
9349
9350 namespace N {
9351 class C {
9352 void foo () {
9353 }
9354 };
9355 }
9356
9357 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
9358
9359static char *
e142c38c 9360determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 9361{
0114d602
DJ
9362 struct die_info *parent, *spec_die;
9363 struct dwarf2_cu *spec_cu;
9364 struct type *parent_type;
63d06c5c 9365
f55ee35c
JK
9366 if (cu->language != language_cplus && cu->language != language_java
9367 && cu->language != language_fortran)
0114d602
DJ
9368 return "";
9369
9370 /* We have to be careful in the presence of DW_AT_specification.
9371 For example, with GCC 3.4, given the code
9372
9373 namespace N {
9374 void foo() {
9375 // Definition of N::foo.
9376 }
9377 }
9378
9379 then we'll have a tree of DIEs like this:
9380
9381 1: DW_TAG_compile_unit
9382 2: DW_TAG_namespace // N
9383 3: DW_TAG_subprogram // declaration of N::foo
9384 4: DW_TAG_subprogram // definition of N::foo
9385 DW_AT_specification // refers to die #3
9386
9387 Thus, when processing die #4, we have to pretend that we're in
9388 the context of its DW_AT_specification, namely the contex of die
9389 #3. */
9390 spec_cu = cu;
9391 spec_die = die_specification (die, &spec_cu);
9392 if (spec_die == NULL)
9393 parent = die->parent;
9394 else
63d06c5c 9395 {
0114d602
DJ
9396 parent = spec_die->parent;
9397 cu = spec_cu;
63d06c5c 9398 }
0114d602
DJ
9399
9400 if (parent == NULL)
9401 return "";
63d06c5c 9402 else
0114d602
DJ
9403 switch (parent->tag)
9404 {
63d06c5c 9405 case DW_TAG_namespace:
0114d602 9406 parent_type = read_type_die (parent, cu);
acebe513
UW
9407 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9408 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9409 Work around this problem here. */
9410 if (cu->language == language_cplus
9411 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
9412 return "";
0114d602
DJ
9413 /* We give a name to even anonymous namespaces. */
9414 return TYPE_TAG_NAME (parent_type);
63d06c5c 9415 case DW_TAG_class_type:
680b30c7 9416 case DW_TAG_interface_type:
63d06c5c 9417 case DW_TAG_structure_type:
0114d602 9418 case DW_TAG_union_type:
f55ee35c 9419 case DW_TAG_module:
0114d602
DJ
9420 parent_type = read_type_die (parent, cu);
9421 if (TYPE_TAG_NAME (parent_type) != NULL)
9422 return TYPE_TAG_NAME (parent_type);
9423 else
9424 /* An anonymous structure is only allowed non-static data
9425 members; no typedefs, no member functions, et cetera.
9426 So it does not need a prefix. */
9427 return "";
63d06c5c 9428 default:
8176b9b8 9429 return determine_prefix (parent, cu);
63d06c5c 9430 }
63d06c5c
DC
9431}
9432
987504bb
JJ
9433/* Return a newly-allocated string formed by concatenating PREFIX and
9434 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9435 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9436 perform an obconcat, otherwise allocate storage for the result. The CU argument
9437 is used to determine the language and hence, the appropriate separator. */
9438
f55ee35c 9439#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
9440
9441static char *
f55ee35c
JK
9442typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9443 int physname, struct dwarf2_cu *cu)
63d06c5c 9444{
f55ee35c 9445 const char *lead = "";
5c315b68 9446 const char *sep;
63d06c5c 9447
987504bb
JJ
9448 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9449 sep = "";
9450 else if (cu->language == language_java)
9451 sep = ".";
f55ee35c
JK
9452 else if (cu->language == language_fortran && physname)
9453 {
9454 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
9455 DW_AT_MIPS_linkage_name is preferred and used instead. */
9456
9457 lead = "__";
9458 sep = "_MOD_";
9459 }
987504bb
JJ
9460 else
9461 sep = "::";
63d06c5c 9462
6dd47d34
DE
9463 if (prefix == NULL)
9464 prefix = "";
9465 if (suffix == NULL)
9466 suffix = "";
9467
987504bb
JJ
9468 if (obs == NULL)
9469 {
9470 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 9471
f55ee35c
JK
9472 strcpy (retval, lead);
9473 strcat (retval, prefix);
6dd47d34
DE
9474 strcat (retval, sep);
9475 strcat (retval, suffix);
63d06c5c
DC
9476 return retval;
9477 }
987504bb
JJ
9478 else
9479 {
9480 /* We have an obstack. */
f55ee35c 9481 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 9482 }
63d06c5c
DC
9483}
9484
c906108c
SS
9485/* Return sibling of die, NULL if no sibling. */
9486
f9aca02d 9487static struct die_info *
fba45db2 9488sibling_die (struct die_info *die)
c906108c 9489{
639d11d3 9490 return die->sibling;
c906108c
SS
9491}
9492
71c25dea
TT
9493/* Get name of a die, return NULL if not found. */
9494
9495static char *
9496dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9497 struct obstack *obstack)
9498{
9499 if (name && cu->language == language_cplus)
9500 {
9501 char *canon_name = cp_canonicalize_string (name);
9502
9503 if (canon_name != NULL)
9504 {
9505 if (strcmp (canon_name, name) != 0)
9506 name = obsavestring (canon_name, strlen (canon_name),
9507 obstack);
9508 xfree (canon_name);
9509 }
9510 }
9511
9512 return name;
c906108c
SS
9513}
9514
9219021c
DC
9515/* Get name of a die, return NULL if not found. */
9516
9517static char *
e142c38c 9518dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
9519{
9520 struct attribute *attr;
9521
e142c38c 9522 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
9523 if (!attr || !DW_STRING (attr))
9524 return NULL;
9525
9526 switch (die->tag)
9527 {
9528 case DW_TAG_compile_unit:
9529 /* Compilation units have a DW_AT_name that is a filename, not
9530 a source language identifier. */
9531 case DW_TAG_enumeration_type:
9532 case DW_TAG_enumerator:
9533 /* These tags always have simple identifiers already; no need
9534 to canonicalize them. */
9535 return DW_STRING (attr);
907af001 9536
418835cc
KS
9537 case DW_TAG_subprogram:
9538 /* Java constructors will all be named "<init>", so return
9539 the class name when we see this special case. */
9540 if (cu->language == language_java
9541 && DW_STRING (attr) != NULL
9542 && strcmp (DW_STRING (attr), "<init>") == 0)
9543 {
9544 struct dwarf2_cu *spec_cu = cu;
9545 struct die_info *spec_die;
9546
9547 /* GCJ will output '<init>' for Java constructor names.
9548 For this special case, return the name of the parent class. */
9549
9550 /* GCJ may output suprogram DIEs with AT_specification set.
9551 If so, use the name of the specified DIE. */
9552 spec_die = die_specification (die, &spec_cu);
9553 if (spec_die != NULL)
9554 return dwarf2_name (spec_die, spec_cu);
9555
9556 do
9557 {
9558 die = die->parent;
9559 if (die->tag == DW_TAG_class_type)
9560 return dwarf2_name (die, cu);
9561 }
9562 while (die->tag != DW_TAG_compile_unit);
9563 }
907af001
UW
9564 break;
9565
9566 case DW_TAG_class_type:
9567 case DW_TAG_interface_type:
9568 case DW_TAG_structure_type:
9569 case DW_TAG_union_type:
9570 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
9571 structures or unions. These were of the form "._%d" in GCC 4.1,
9572 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
9573 and GCC 4.4. We work around this problem by ignoring these. */
9574 if (strncmp (DW_STRING (attr), "._", 2) == 0
9575 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
9576 return NULL;
9577 break;
9578
71c25dea 9579 default:
907af001
UW
9580 break;
9581 }
9582
9583 if (!DW_STRING_IS_CANONICAL (attr))
9584 {
9585 DW_STRING (attr)
9586 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9587 &cu->objfile->objfile_obstack);
9588 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 9589 }
907af001 9590 return DW_STRING (attr);
9219021c
DC
9591}
9592
9593/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
9594 is none. *EXT_CU is the CU containing DIE on input, and the CU
9595 containing the return value on output. */
9219021c
DC
9596
9597static struct die_info *
f2f0e013 9598dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
9599{
9600 struct attribute *attr;
9219021c 9601
f2f0e013 9602 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
9603 if (attr == NULL)
9604 return NULL;
9605
f2f0e013 9606 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
9607}
9608
c906108c
SS
9609/* Convert a DIE tag into its string name. */
9610
9611static char *
aa1ee363 9612dwarf_tag_name (unsigned tag)
c906108c
SS
9613{
9614 switch (tag)
9615 {
9616 case DW_TAG_padding:
9617 return "DW_TAG_padding";
9618 case DW_TAG_array_type:
9619 return "DW_TAG_array_type";
9620 case DW_TAG_class_type:
9621 return "DW_TAG_class_type";
9622 case DW_TAG_entry_point:
9623 return "DW_TAG_entry_point";
9624 case DW_TAG_enumeration_type:
9625 return "DW_TAG_enumeration_type";
9626 case DW_TAG_formal_parameter:
9627 return "DW_TAG_formal_parameter";
9628 case DW_TAG_imported_declaration:
9629 return "DW_TAG_imported_declaration";
9630 case DW_TAG_label:
9631 return "DW_TAG_label";
9632 case DW_TAG_lexical_block:
9633 return "DW_TAG_lexical_block";
9634 case DW_TAG_member:
9635 return "DW_TAG_member";
9636 case DW_TAG_pointer_type:
9637 return "DW_TAG_pointer_type";
9638 case DW_TAG_reference_type:
9639 return "DW_TAG_reference_type";
9640 case DW_TAG_compile_unit:
9641 return "DW_TAG_compile_unit";
9642 case DW_TAG_string_type:
9643 return "DW_TAG_string_type";
9644 case DW_TAG_structure_type:
9645 return "DW_TAG_structure_type";
9646 case DW_TAG_subroutine_type:
9647 return "DW_TAG_subroutine_type";
9648 case DW_TAG_typedef:
9649 return "DW_TAG_typedef";
9650 case DW_TAG_union_type:
9651 return "DW_TAG_union_type";
9652 case DW_TAG_unspecified_parameters:
9653 return "DW_TAG_unspecified_parameters";
9654 case DW_TAG_variant:
9655 return "DW_TAG_variant";
9656 case DW_TAG_common_block:
9657 return "DW_TAG_common_block";
9658 case DW_TAG_common_inclusion:
9659 return "DW_TAG_common_inclusion";
9660 case DW_TAG_inheritance:
9661 return "DW_TAG_inheritance";
9662 case DW_TAG_inlined_subroutine:
9663 return "DW_TAG_inlined_subroutine";
9664 case DW_TAG_module:
9665 return "DW_TAG_module";
9666 case DW_TAG_ptr_to_member_type:
9667 return "DW_TAG_ptr_to_member_type";
9668 case DW_TAG_set_type:
9669 return "DW_TAG_set_type";
9670 case DW_TAG_subrange_type:
9671 return "DW_TAG_subrange_type";
9672 case DW_TAG_with_stmt:
9673 return "DW_TAG_with_stmt";
9674 case DW_TAG_access_declaration:
9675 return "DW_TAG_access_declaration";
9676 case DW_TAG_base_type:
9677 return "DW_TAG_base_type";
9678 case DW_TAG_catch_block:
9679 return "DW_TAG_catch_block";
9680 case DW_TAG_const_type:
9681 return "DW_TAG_const_type";
9682 case DW_TAG_constant:
9683 return "DW_TAG_constant";
9684 case DW_TAG_enumerator:
9685 return "DW_TAG_enumerator";
9686 case DW_TAG_file_type:
9687 return "DW_TAG_file_type";
9688 case DW_TAG_friend:
9689 return "DW_TAG_friend";
9690 case DW_TAG_namelist:
9691 return "DW_TAG_namelist";
9692 case DW_TAG_namelist_item:
9693 return "DW_TAG_namelist_item";
9694 case DW_TAG_packed_type:
9695 return "DW_TAG_packed_type";
9696 case DW_TAG_subprogram:
9697 return "DW_TAG_subprogram";
9698 case DW_TAG_template_type_param:
9699 return "DW_TAG_template_type_param";
9700 case DW_TAG_template_value_param:
9701 return "DW_TAG_template_value_param";
9702 case DW_TAG_thrown_type:
9703 return "DW_TAG_thrown_type";
9704 case DW_TAG_try_block:
9705 return "DW_TAG_try_block";
9706 case DW_TAG_variant_part:
9707 return "DW_TAG_variant_part";
9708 case DW_TAG_variable:
9709 return "DW_TAG_variable";
9710 case DW_TAG_volatile_type:
9711 return "DW_TAG_volatile_type";
d9fa45fe
DC
9712 case DW_TAG_dwarf_procedure:
9713 return "DW_TAG_dwarf_procedure";
9714 case DW_TAG_restrict_type:
9715 return "DW_TAG_restrict_type";
9716 case DW_TAG_interface_type:
9717 return "DW_TAG_interface_type";
9718 case DW_TAG_namespace:
9719 return "DW_TAG_namespace";
9720 case DW_TAG_imported_module:
9721 return "DW_TAG_imported_module";
9722 case DW_TAG_unspecified_type:
9723 return "DW_TAG_unspecified_type";
9724 case DW_TAG_partial_unit:
9725 return "DW_TAG_partial_unit";
9726 case DW_TAG_imported_unit:
9727 return "DW_TAG_imported_unit";
b7619582
GF
9728 case DW_TAG_condition:
9729 return "DW_TAG_condition";
9730 case DW_TAG_shared_type:
9731 return "DW_TAG_shared_type";
348e048f
DE
9732 case DW_TAG_type_unit:
9733 return "DW_TAG_type_unit";
c906108c
SS
9734 case DW_TAG_MIPS_loop:
9735 return "DW_TAG_MIPS_loop";
b7619582
GF
9736 case DW_TAG_HP_array_descriptor:
9737 return "DW_TAG_HP_array_descriptor";
c906108c
SS
9738 case DW_TAG_format_label:
9739 return "DW_TAG_format_label";
9740 case DW_TAG_function_template:
9741 return "DW_TAG_function_template";
9742 case DW_TAG_class_template:
9743 return "DW_TAG_class_template";
b7619582
GF
9744 case DW_TAG_GNU_BINCL:
9745 return "DW_TAG_GNU_BINCL";
9746 case DW_TAG_GNU_EINCL:
9747 return "DW_TAG_GNU_EINCL";
9748 case DW_TAG_upc_shared_type:
9749 return "DW_TAG_upc_shared_type";
9750 case DW_TAG_upc_strict_type:
9751 return "DW_TAG_upc_strict_type";
9752 case DW_TAG_upc_relaxed_type:
9753 return "DW_TAG_upc_relaxed_type";
9754 case DW_TAG_PGI_kanji_type:
9755 return "DW_TAG_PGI_kanji_type";
9756 case DW_TAG_PGI_interface_block:
9757 return "DW_TAG_PGI_interface_block";
c906108c
SS
9758 default:
9759 return "DW_TAG_<unknown>";
9760 }
9761}
9762
9763/* Convert a DWARF attribute code into its string name. */
9764
9765static char *
aa1ee363 9766dwarf_attr_name (unsigned attr)
c906108c
SS
9767{
9768 switch (attr)
9769 {
9770 case DW_AT_sibling:
9771 return "DW_AT_sibling";
9772 case DW_AT_location:
9773 return "DW_AT_location";
9774 case DW_AT_name:
9775 return "DW_AT_name";
9776 case DW_AT_ordering:
9777 return "DW_AT_ordering";
9778 case DW_AT_subscr_data:
9779 return "DW_AT_subscr_data";
9780 case DW_AT_byte_size:
9781 return "DW_AT_byte_size";
9782 case DW_AT_bit_offset:
9783 return "DW_AT_bit_offset";
9784 case DW_AT_bit_size:
9785 return "DW_AT_bit_size";
9786 case DW_AT_element_list:
9787 return "DW_AT_element_list";
9788 case DW_AT_stmt_list:
9789 return "DW_AT_stmt_list";
9790 case DW_AT_low_pc:
9791 return "DW_AT_low_pc";
9792 case DW_AT_high_pc:
9793 return "DW_AT_high_pc";
9794 case DW_AT_language:
9795 return "DW_AT_language";
9796 case DW_AT_member:
9797 return "DW_AT_member";
9798 case DW_AT_discr:
9799 return "DW_AT_discr";
9800 case DW_AT_discr_value:
9801 return "DW_AT_discr_value";
9802 case DW_AT_visibility:
9803 return "DW_AT_visibility";
9804 case DW_AT_import:
9805 return "DW_AT_import";
9806 case DW_AT_string_length:
9807 return "DW_AT_string_length";
9808 case DW_AT_common_reference:
9809 return "DW_AT_common_reference";
9810 case DW_AT_comp_dir:
9811 return "DW_AT_comp_dir";
9812 case DW_AT_const_value:
9813 return "DW_AT_const_value";
9814 case DW_AT_containing_type:
9815 return "DW_AT_containing_type";
9816 case DW_AT_default_value:
9817 return "DW_AT_default_value";
9818 case DW_AT_inline:
9819 return "DW_AT_inline";
9820 case DW_AT_is_optional:
9821 return "DW_AT_is_optional";
9822 case DW_AT_lower_bound:
9823 return "DW_AT_lower_bound";
9824 case DW_AT_producer:
9825 return "DW_AT_producer";
9826 case DW_AT_prototyped:
9827 return "DW_AT_prototyped";
9828 case DW_AT_return_addr:
9829 return "DW_AT_return_addr";
9830 case DW_AT_start_scope:
9831 return "DW_AT_start_scope";
09fa0d7c
JK
9832 case DW_AT_bit_stride:
9833 return "DW_AT_bit_stride";
c906108c
SS
9834 case DW_AT_upper_bound:
9835 return "DW_AT_upper_bound";
9836 case DW_AT_abstract_origin:
9837 return "DW_AT_abstract_origin";
9838 case DW_AT_accessibility:
9839 return "DW_AT_accessibility";
9840 case DW_AT_address_class:
9841 return "DW_AT_address_class";
9842 case DW_AT_artificial:
9843 return "DW_AT_artificial";
9844 case DW_AT_base_types:
9845 return "DW_AT_base_types";
9846 case DW_AT_calling_convention:
9847 return "DW_AT_calling_convention";
9848 case DW_AT_count:
9849 return "DW_AT_count";
9850 case DW_AT_data_member_location:
9851 return "DW_AT_data_member_location";
9852 case DW_AT_decl_column:
9853 return "DW_AT_decl_column";
9854 case DW_AT_decl_file:
9855 return "DW_AT_decl_file";
9856 case DW_AT_decl_line:
9857 return "DW_AT_decl_line";
9858 case DW_AT_declaration:
9859 return "DW_AT_declaration";
9860 case DW_AT_discr_list:
9861 return "DW_AT_discr_list";
9862 case DW_AT_encoding:
9863 return "DW_AT_encoding";
9864 case DW_AT_external:
9865 return "DW_AT_external";
9866 case DW_AT_frame_base:
9867 return "DW_AT_frame_base";
9868 case DW_AT_friend:
9869 return "DW_AT_friend";
9870 case DW_AT_identifier_case:
9871 return "DW_AT_identifier_case";
9872 case DW_AT_macro_info:
9873 return "DW_AT_macro_info";
9874 case DW_AT_namelist_items:
9875 return "DW_AT_namelist_items";
9876 case DW_AT_priority:
9877 return "DW_AT_priority";
9878 case DW_AT_segment:
9879 return "DW_AT_segment";
9880 case DW_AT_specification:
9881 return "DW_AT_specification";
9882 case DW_AT_static_link:
9883 return "DW_AT_static_link";
9884 case DW_AT_type:
9885 return "DW_AT_type";
9886 case DW_AT_use_location:
9887 return "DW_AT_use_location";
9888 case DW_AT_variable_parameter:
9889 return "DW_AT_variable_parameter";
9890 case DW_AT_virtuality:
9891 return "DW_AT_virtuality";
9892 case DW_AT_vtable_elem_location:
9893 return "DW_AT_vtable_elem_location";
b7619582 9894 /* DWARF 3 values. */
d9fa45fe
DC
9895 case DW_AT_allocated:
9896 return "DW_AT_allocated";
9897 case DW_AT_associated:
9898 return "DW_AT_associated";
9899 case DW_AT_data_location:
9900 return "DW_AT_data_location";
09fa0d7c
JK
9901 case DW_AT_byte_stride:
9902 return "DW_AT_byte_stride";
d9fa45fe
DC
9903 case DW_AT_entry_pc:
9904 return "DW_AT_entry_pc";
9905 case DW_AT_use_UTF8:
9906 return "DW_AT_use_UTF8";
9907 case DW_AT_extension:
9908 return "DW_AT_extension";
9909 case DW_AT_ranges:
9910 return "DW_AT_ranges";
9911 case DW_AT_trampoline:
9912 return "DW_AT_trampoline";
9913 case DW_AT_call_column:
9914 return "DW_AT_call_column";
9915 case DW_AT_call_file:
9916 return "DW_AT_call_file";
9917 case DW_AT_call_line:
9918 return "DW_AT_call_line";
b7619582
GF
9919 case DW_AT_description:
9920 return "DW_AT_description";
9921 case DW_AT_binary_scale:
9922 return "DW_AT_binary_scale";
9923 case DW_AT_decimal_scale:
9924 return "DW_AT_decimal_scale";
9925 case DW_AT_small:
9926 return "DW_AT_small";
9927 case DW_AT_decimal_sign:
9928 return "DW_AT_decimal_sign";
9929 case DW_AT_digit_count:
9930 return "DW_AT_digit_count";
9931 case DW_AT_picture_string:
9932 return "DW_AT_picture_string";
9933 case DW_AT_mutable:
9934 return "DW_AT_mutable";
9935 case DW_AT_threads_scaled:
9936 return "DW_AT_threads_scaled";
9937 case DW_AT_explicit:
9938 return "DW_AT_explicit";
9939 case DW_AT_object_pointer:
9940 return "DW_AT_object_pointer";
9941 case DW_AT_endianity:
9942 return "DW_AT_endianity";
9943 case DW_AT_elemental:
9944 return "DW_AT_elemental";
9945 case DW_AT_pure:
9946 return "DW_AT_pure";
9947 case DW_AT_recursive:
9948 return "DW_AT_recursive";
348e048f
DE
9949 /* DWARF 4 values. */
9950 case DW_AT_signature:
9951 return "DW_AT_signature";
31ef98ae
TT
9952 case DW_AT_linkage_name:
9953 return "DW_AT_linkage_name";
b7619582 9954 /* SGI/MIPS extensions. */
c764a876 9955#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
9956 case DW_AT_MIPS_fde:
9957 return "DW_AT_MIPS_fde";
c764a876 9958#endif
c906108c
SS
9959 case DW_AT_MIPS_loop_begin:
9960 return "DW_AT_MIPS_loop_begin";
9961 case DW_AT_MIPS_tail_loop_begin:
9962 return "DW_AT_MIPS_tail_loop_begin";
9963 case DW_AT_MIPS_epilog_begin:
9964 return "DW_AT_MIPS_epilog_begin";
9965 case DW_AT_MIPS_loop_unroll_factor:
9966 return "DW_AT_MIPS_loop_unroll_factor";
9967 case DW_AT_MIPS_software_pipeline_depth:
9968 return "DW_AT_MIPS_software_pipeline_depth";
9969 case DW_AT_MIPS_linkage_name:
9970 return "DW_AT_MIPS_linkage_name";
b7619582
GF
9971 case DW_AT_MIPS_stride:
9972 return "DW_AT_MIPS_stride";
9973 case DW_AT_MIPS_abstract_name:
9974 return "DW_AT_MIPS_abstract_name";
9975 case DW_AT_MIPS_clone_origin:
9976 return "DW_AT_MIPS_clone_origin";
9977 case DW_AT_MIPS_has_inlines:
9978 return "DW_AT_MIPS_has_inlines";
b7619582 9979 /* HP extensions. */
c764a876 9980#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
9981 case DW_AT_HP_block_index:
9982 return "DW_AT_HP_block_index";
c764a876 9983#endif
b7619582
GF
9984 case DW_AT_HP_unmodifiable:
9985 return "DW_AT_HP_unmodifiable";
9986 case DW_AT_HP_actuals_stmt_list:
9987 return "DW_AT_HP_actuals_stmt_list";
9988 case DW_AT_HP_proc_per_section:
9989 return "DW_AT_HP_proc_per_section";
9990 case DW_AT_HP_raw_data_ptr:
9991 return "DW_AT_HP_raw_data_ptr";
9992 case DW_AT_HP_pass_by_reference:
9993 return "DW_AT_HP_pass_by_reference";
9994 case DW_AT_HP_opt_level:
9995 return "DW_AT_HP_opt_level";
9996 case DW_AT_HP_prof_version_id:
9997 return "DW_AT_HP_prof_version_id";
9998 case DW_AT_HP_opt_flags:
9999 return "DW_AT_HP_opt_flags";
10000 case DW_AT_HP_cold_region_low_pc:
10001 return "DW_AT_HP_cold_region_low_pc";
10002 case DW_AT_HP_cold_region_high_pc:
10003 return "DW_AT_HP_cold_region_high_pc";
10004 case DW_AT_HP_all_variables_modifiable:
10005 return "DW_AT_HP_all_variables_modifiable";
10006 case DW_AT_HP_linkage_name:
10007 return "DW_AT_HP_linkage_name";
10008 case DW_AT_HP_prof_flags:
10009 return "DW_AT_HP_prof_flags";
10010 /* GNU extensions. */
c906108c
SS
10011 case DW_AT_sf_names:
10012 return "DW_AT_sf_names";
10013 case DW_AT_src_info:
10014 return "DW_AT_src_info";
10015 case DW_AT_mac_info:
10016 return "DW_AT_mac_info";
10017 case DW_AT_src_coords:
10018 return "DW_AT_src_coords";
10019 case DW_AT_body_begin:
10020 return "DW_AT_body_begin";
10021 case DW_AT_body_end:
10022 return "DW_AT_body_end";
f5f8a009
EZ
10023 case DW_AT_GNU_vector:
10024 return "DW_AT_GNU_vector";
b7619582
GF
10025 /* VMS extensions. */
10026 case DW_AT_VMS_rtnbeg_pd_address:
10027 return "DW_AT_VMS_rtnbeg_pd_address";
10028 /* UPC extension. */
10029 case DW_AT_upc_threads_scaled:
10030 return "DW_AT_upc_threads_scaled";
10031 /* PGI (STMicroelectronics) extensions. */
10032 case DW_AT_PGI_lbase:
10033 return "DW_AT_PGI_lbase";
10034 case DW_AT_PGI_soffset:
10035 return "DW_AT_PGI_soffset";
10036 case DW_AT_PGI_lstride:
10037 return "DW_AT_PGI_lstride";
c906108c
SS
10038 default:
10039 return "DW_AT_<unknown>";
10040 }
10041}
10042
10043/* Convert a DWARF value form code into its string name. */
10044
10045static char *
aa1ee363 10046dwarf_form_name (unsigned form)
c906108c
SS
10047{
10048 switch (form)
10049 {
10050 case DW_FORM_addr:
10051 return "DW_FORM_addr";
10052 case DW_FORM_block2:
10053 return "DW_FORM_block2";
10054 case DW_FORM_block4:
10055 return "DW_FORM_block4";
10056 case DW_FORM_data2:
10057 return "DW_FORM_data2";
10058 case DW_FORM_data4:
10059 return "DW_FORM_data4";
10060 case DW_FORM_data8:
10061 return "DW_FORM_data8";
10062 case DW_FORM_string:
10063 return "DW_FORM_string";
10064 case DW_FORM_block:
10065 return "DW_FORM_block";
10066 case DW_FORM_block1:
10067 return "DW_FORM_block1";
10068 case DW_FORM_data1:
10069 return "DW_FORM_data1";
10070 case DW_FORM_flag:
10071 return "DW_FORM_flag";
10072 case DW_FORM_sdata:
10073 return "DW_FORM_sdata";
10074 case DW_FORM_strp:
10075 return "DW_FORM_strp";
10076 case DW_FORM_udata:
10077 return "DW_FORM_udata";
10078 case DW_FORM_ref_addr:
10079 return "DW_FORM_ref_addr";
10080 case DW_FORM_ref1:
10081 return "DW_FORM_ref1";
10082 case DW_FORM_ref2:
10083 return "DW_FORM_ref2";
10084 case DW_FORM_ref4:
10085 return "DW_FORM_ref4";
10086 case DW_FORM_ref8:
10087 return "DW_FORM_ref8";
10088 case DW_FORM_ref_udata:
10089 return "DW_FORM_ref_udata";
10090 case DW_FORM_indirect:
10091 return "DW_FORM_indirect";
348e048f
DE
10092 case DW_FORM_sec_offset:
10093 return "DW_FORM_sec_offset";
10094 case DW_FORM_exprloc:
10095 return "DW_FORM_exprloc";
10096 case DW_FORM_flag_present:
10097 return "DW_FORM_flag_present";
10098 case DW_FORM_sig8:
10099 return "DW_FORM_sig8";
c906108c
SS
10100 default:
10101 return "DW_FORM_<unknown>";
10102 }
10103}
10104
10105/* Convert a DWARF stack opcode into its string name. */
10106
9eae7c52
TT
10107const char *
10108dwarf_stack_op_name (unsigned op, int def)
c906108c
SS
10109{
10110 switch (op)
10111 {
10112 case DW_OP_addr:
10113 return "DW_OP_addr";
10114 case DW_OP_deref:
10115 return "DW_OP_deref";
10116 case DW_OP_const1u:
10117 return "DW_OP_const1u";
10118 case DW_OP_const1s:
10119 return "DW_OP_const1s";
10120 case DW_OP_const2u:
10121 return "DW_OP_const2u";
10122 case DW_OP_const2s:
10123 return "DW_OP_const2s";
10124 case DW_OP_const4u:
10125 return "DW_OP_const4u";
10126 case DW_OP_const4s:
10127 return "DW_OP_const4s";
10128 case DW_OP_const8u:
10129 return "DW_OP_const8u";
10130 case DW_OP_const8s:
10131 return "DW_OP_const8s";
10132 case DW_OP_constu:
10133 return "DW_OP_constu";
10134 case DW_OP_consts:
10135 return "DW_OP_consts";
10136 case DW_OP_dup:
10137 return "DW_OP_dup";
10138 case DW_OP_drop:
10139 return "DW_OP_drop";
10140 case DW_OP_over:
10141 return "DW_OP_over";
10142 case DW_OP_pick:
10143 return "DW_OP_pick";
10144 case DW_OP_swap:
10145 return "DW_OP_swap";
10146 case DW_OP_rot:
10147 return "DW_OP_rot";
10148 case DW_OP_xderef:
10149 return "DW_OP_xderef";
10150 case DW_OP_abs:
10151 return "DW_OP_abs";
10152 case DW_OP_and:
10153 return "DW_OP_and";
10154 case DW_OP_div:
10155 return "DW_OP_div";
10156 case DW_OP_minus:
10157 return "DW_OP_minus";
10158 case DW_OP_mod:
10159 return "DW_OP_mod";
10160 case DW_OP_mul:
10161 return "DW_OP_mul";
10162 case DW_OP_neg:
10163 return "DW_OP_neg";
10164 case DW_OP_not:
10165 return "DW_OP_not";
10166 case DW_OP_or:
10167 return "DW_OP_or";
10168 case DW_OP_plus:
10169 return "DW_OP_plus";
10170 case DW_OP_plus_uconst:
10171 return "DW_OP_plus_uconst";
10172 case DW_OP_shl:
10173 return "DW_OP_shl";
10174 case DW_OP_shr:
10175 return "DW_OP_shr";
10176 case DW_OP_shra:
10177 return "DW_OP_shra";
10178 case DW_OP_xor:
10179 return "DW_OP_xor";
10180 case DW_OP_bra:
10181 return "DW_OP_bra";
10182 case DW_OP_eq:
10183 return "DW_OP_eq";
10184 case DW_OP_ge:
10185 return "DW_OP_ge";
10186 case DW_OP_gt:
10187 return "DW_OP_gt";
10188 case DW_OP_le:
10189 return "DW_OP_le";
10190 case DW_OP_lt:
10191 return "DW_OP_lt";
10192 case DW_OP_ne:
10193 return "DW_OP_ne";
10194 case DW_OP_skip:
10195 return "DW_OP_skip";
10196 case DW_OP_lit0:
10197 return "DW_OP_lit0";
10198 case DW_OP_lit1:
10199 return "DW_OP_lit1";
10200 case DW_OP_lit2:
10201 return "DW_OP_lit2";
10202 case DW_OP_lit3:
10203 return "DW_OP_lit3";
10204 case DW_OP_lit4:
10205 return "DW_OP_lit4";
10206 case DW_OP_lit5:
10207 return "DW_OP_lit5";
10208 case DW_OP_lit6:
10209 return "DW_OP_lit6";
10210 case DW_OP_lit7:
10211 return "DW_OP_lit7";
10212 case DW_OP_lit8:
10213 return "DW_OP_lit8";
10214 case DW_OP_lit9:
10215 return "DW_OP_lit9";
10216 case DW_OP_lit10:
10217 return "DW_OP_lit10";
10218 case DW_OP_lit11:
10219 return "DW_OP_lit11";
10220 case DW_OP_lit12:
10221 return "DW_OP_lit12";
10222 case DW_OP_lit13:
10223 return "DW_OP_lit13";
10224 case DW_OP_lit14:
10225 return "DW_OP_lit14";
10226 case DW_OP_lit15:
10227 return "DW_OP_lit15";
10228 case DW_OP_lit16:
10229 return "DW_OP_lit16";
10230 case DW_OP_lit17:
10231 return "DW_OP_lit17";
10232 case DW_OP_lit18:
10233 return "DW_OP_lit18";
10234 case DW_OP_lit19:
10235 return "DW_OP_lit19";
10236 case DW_OP_lit20:
10237 return "DW_OP_lit20";
10238 case DW_OP_lit21:
10239 return "DW_OP_lit21";
10240 case DW_OP_lit22:
10241 return "DW_OP_lit22";
10242 case DW_OP_lit23:
10243 return "DW_OP_lit23";
10244 case DW_OP_lit24:
10245 return "DW_OP_lit24";
10246 case DW_OP_lit25:
10247 return "DW_OP_lit25";
10248 case DW_OP_lit26:
10249 return "DW_OP_lit26";
10250 case DW_OP_lit27:
10251 return "DW_OP_lit27";
10252 case DW_OP_lit28:
10253 return "DW_OP_lit28";
10254 case DW_OP_lit29:
10255 return "DW_OP_lit29";
10256 case DW_OP_lit30:
10257 return "DW_OP_lit30";
10258 case DW_OP_lit31:
10259 return "DW_OP_lit31";
10260 case DW_OP_reg0:
10261 return "DW_OP_reg0";
10262 case DW_OP_reg1:
10263 return "DW_OP_reg1";
10264 case DW_OP_reg2:
10265 return "DW_OP_reg2";
10266 case DW_OP_reg3:
10267 return "DW_OP_reg3";
10268 case DW_OP_reg4:
10269 return "DW_OP_reg4";
10270 case DW_OP_reg5:
10271 return "DW_OP_reg5";
10272 case DW_OP_reg6:
10273 return "DW_OP_reg6";
10274 case DW_OP_reg7:
10275 return "DW_OP_reg7";
10276 case DW_OP_reg8:
10277 return "DW_OP_reg8";
10278 case DW_OP_reg9:
10279 return "DW_OP_reg9";
10280 case DW_OP_reg10:
10281 return "DW_OP_reg10";
10282 case DW_OP_reg11:
10283 return "DW_OP_reg11";
10284 case DW_OP_reg12:
10285 return "DW_OP_reg12";
10286 case DW_OP_reg13:
10287 return "DW_OP_reg13";
10288 case DW_OP_reg14:
10289 return "DW_OP_reg14";
10290 case DW_OP_reg15:
10291 return "DW_OP_reg15";
10292 case DW_OP_reg16:
10293 return "DW_OP_reg16";
10294 case DW_OP_reg17:
10295 return "DW_OP_reg17";
10296 case DW_OP_reg18:
10297 return "DW_OP_reg18";
10298 case DW_OP_reg19:
10299 return "DW_OP_reg19";
10300 case DW_OP_reg20:
10301 return "DW_OP_reg20";
10302 case DW_OP_reg21:
10303 return "DW_OP_reg21";
10304 case DW_OP_reg22:
10305 return "DW_OP_reg22";
10306 case DW_OP_reg23:
10307 return "DW_OP_reg23";
10308 case DW_OP_reg24:
10309 return "DW_OP_reg24";
10310 case DW_OP_reg25:
10311 return "DW_OP_reg25";
10312 case DW_OP_reg26:
10313 return "DW_OP_reg26";
10314 case DW_OP_reg27:
10315 return "DW_OP_reg27";
10316 case DW_OP_reg28:
10317 return "DW_OP_reg28";
10318 case DW_OP_reg29:
10319 return "DW_OP_reg29";
10320 case DW_OP_reg30:
10321 return "DW_OP_reg30";
10322 case DW_OP_reg31:
10323 return "DW_OP_reg31";
10324 case DW_OP_breg0:
10325 return "DW_OP_breg0";
10326 case DW_OP_breg1:
10327 return "DW_OP_breg1";
10328 case DW_OP_breg2:
10329 return "DW_OP_breg2";
10330 case DW_OP_breg3:
10331 return "DW_OP_breg3";
10332 case DW_OP_breg4:
10333 return "DW_OP_breg4";
10334 case DW_OP_breg5:
10335 return "DW_OP_breg5";
10336 case DW_OP_breg6:
10337 return "DW_OP_breg6";
10338 case DW_OP_breg7:
10339 return "DW_OP_breg7";
10340 case DW_OP_breg8:
10341 return "DW_OP_breg8";
10342 case DW_OP_breg9:
10343 return "DW_OP_breg9";
10344 case DW_OP_breg10:
10345 return "DW_OP_breg10";
10346 case DW_OP_breg11:
10347 return "DW_OP_breg11";
10348 case DW_OP_breg12:
10349 return "DW_OP_breg12";
10350 case DW_OP_breg13:
10351 return "DW_OP_breg13";
10352 case DW_OP_breg14:
10353 return "DW_OP_breg14";
10354 case DW_OP_breg15:
10355 return "DW_OP_breg15";
10356 case DW_OP_breg16:
10357 return "DW_OP_breg16";
10358 case DW_OP_breg17:
10359 return "DW_OP_breg17";
10360 case DW_OP_breg18:
10361 return "DW_OP_breg18";
10362 case DW_OP_breg19:
10363 return "DW_OP_breg19";
10364 case DW_OP_breg20:
10365 return "DW_OP_breg20";
10366 case DW_OP_breg21:
10367 return "DW_OP_breg21";
10368 case DW_OP_breg22:
10369 return "DW_OP_breg22";
10370 case DW_OP_breg23:
10371 return "DW_OP_breg23";
10372 case DW_OP_breg24:
10373 return "DW_OP_breg24";
10374 case DW_OP_breg25:
10375 return "DW_OP_breg25";
10376 case DW_OP_breg26:
10377 return "DW_OP_breg26";
10378 case DW_OP_breg27:
10379 return "DW_OP_breg27";
10380 case DW_OP_breg28:
10381 return "DW_OP_breg28";
10382 case DW_OP_breg29:
10383 return "DW_OP_breg29";
10384 case DW_OP_breg30:
10385 return "DW_OP_breg30";
10386 case DW_OP_breg31:
10387 return "DW_OP_breg31";
10388 case DW_OP_regx:
10389 return "DW_OP_regx";
10390 case DW_OP_fbreg:
10391 return "DW_OP_fbreg";
10392 case DW_OP_bregx:
10393 return "DW_OP_bregx";
10394 case DW_OP_piece:
10395 return "DW_OP_piece";
10396 case DW_OP_deref_size:
10397 return "DW_OP_deref_size";
10398 case DW_OP_xderef_size:
10399 return "DW_OP_xderef_size";
10400 case DW_OP_nop:
10401 return "DW_OP_nop";
b7619582 10402 /* DWARF 3 extensions. */
ed348acc
EZ
10403 case DW_OP_push_object_address:
10404 return "DW_OP_push_object_address";
10405 case DW_OP_call2:
10406 return "DW_OP_call2";
10407 case DW_OP_call4:
10408 return "DW_OP_call4";
10409 case DW_OP_call_ref:
10410 return "DW_OP_call_ref";
b7619582
GF
10411 case DW_OP_form_tls_address:
10412 return "DW_OP_form_tls_address";
10413 case DW_OP_call_frame_cfa:
10414 return "DW_OP_call_frame_cfa";
10415 case DW_OP_bit_piece:
10416 return "DW_OP_bit_piece";
9eae7c52
TT
10417 /* DWARF 4 extensions. */
10418 case DW_OP_implicit_value:
10419 return "DW_OP_implicit_value";
10420 case DW_OP_stack_value:
10421 return "DW_OP_stack_value";
10422 /* GNU extensions. */
ed348acc
EZ
10423 case DW_OP_GNU_push_tls_address:
10424 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
10425 case DW_OP_GNU_uninit:
10426 return "DW_OP_GNU_uninit";
c906108c 10427 default:
9eae7c52 10428 return def ? "OP_<unknown>" : NULL;
c906108c
SS
10429 }
10430}
10431
10432static char *
fba45db2 10433dwarf_bool_name (unsigned mybool)
c906108c
SS
10434{
10435 if (mybool)
10436 return "TRUE";
10437 else
10438 return "FALSE";
10439}
10440
10441/* Convert a DWARF type code into its string name. */
10442
10443static char *
aa1ee363 10444dwarf_type_encoding_name (unsigned enc)
c906108c
SS
10445{
10446 switch (enc)
10447 {
b7619582
GF
10448 case DW_ATE_void:
10449 return "DW_ATE_void";
c906108c
SS
10450 case DW_ATE_address:
10451 return "DW_ATE_address";
10452 case DW_ATE_boolean:
10453 return "DW_ATE_boolean";
10454 case DW_ATE_complex_float:
10455 return "DW_ATE_complex_float";
10456 case DW_ATE_float:
10457 return "DW_ATE_float";
10458 case DW_ATE_signed:
10459 return "DW_ATE_signed";
10460 case DW_ATE_signed_char:
10461 return "DW_ATE_signed_char";
10462 case DW_ATE_unsigned:
10463 return "DW_ATE_unsigned";
10464 case DW_ATE_unsigned_char:
10465 return "DW_ATE_unsigned_char";
b7619582 10466 /* DWARF 3. */
d9fa45fe
DC
10467 case DW_ATE_imaginary_float:
10468 return "DW_ATE_imaginary_float";
b7619582
GF
10469 case DW_ATE_packed_decimal:
10470 return "DW_ATE_packed_decimal";
10471 case DW_ATE_numeric_string:
10472 return "DW_ATE_numeric_string";
10473 case DW_ATE_edited:
10474 return "DW_ATE_edited";
10475 case DW_ATE_signed_fixed:
10476 return "DW_ATE_signed_fixed";
10477 case DW_ATE_unsigned_fixed:
10478 return "DW_ATE_unsigned_fixed";
10479 case DW_ATE_decimal_float:
10480 return "DW_ATE_decimal_float";
75079b2b
TT
10481 /* DWARF 4. */
10482 case DW_ATE_UTF:
10483 return "DW_ATE_UTF";
b7619582
GF
10484 /* HP extensions. */
10485 case DW_ATE_HP_float80:
10486 return "DW_ATE_HP_float80";
10487 case DW_ATE_HP_complex_float80:
10488 return "DW_ATE_HP_complex_float80";
10489 case DW_ATE_HP_float128:
10490 return "DW_ATE_HP_float128";
10491 case DW_ATE_HP_complex_float128:
10492 return "DW_ATE_HP_complex_float128";
10493 case DW_ATE_HP_floathpintel:
10494 return "DW_ATE_HP_floathpintel";
10495 case DW_ATE_HP_imaginary_float80:
10496 return "DW_ATE_HP_imaginary_float80";
10497 case DW_ATE_HP_imaginary_float128:
10498 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
10499 default:
10500 return "DW_ATE_<unknown>";
10501 }
10502}
10503
10504/* Convert a DWARF call frame info operation to its string name. */
10505
10506#if 0
10507static char *
aa1ee363 10508dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
10509{
10510 switch (cfi_opc)
10511 {
10512 case DW_CFA_advance_loc:
10513 return "DW_CFA_advance_loc";
10514 case DW_CFA_offset:
10515 return "DW_CFA_offset";
10516 case DW_CFA_restore:
10517 return "DW_CFA_restore";
10518 case DW_CFA_nop:
10519 return "DW_CFA_nop";
10520 case DW_CFA_set_loc:
10521 return "DW_CFA_set_loc";
10522 case DW_CFA_advance_loc1:
10523 return "DW_CFA_advance_loc1";
10524 case DW_CFA_advance_loc2:
10525 return "DW_CFA_advance_loc2";
10526 case DW_CFA_advance_loc4:
10527 return "DW_CFA_advance_loc4";
10528 case DW_CFA_offset_extended:
10529 return "DW_CFA_offset_extended";
10530 case DW_CFA_restore_extended:
10531 return "DW_CFA_restore_extended";
10532 case DW_CFA_undefined:
10533 return "DW_CFA_undefined";
10534 case DW_CFA_same_value:
10535 return "DW_CFA_same_value";
10536 case DW_CFA_register:
10537 return "DW_CFA_register";
10538 case DW_CFA_remember_state:
10539 return "DW_CFA_remember_state";
10540 case DW_CFA_restore_state:
10541 return "DW_CFA_restore_state";
10542 case DW_CFA_def_cfa:
10543 return "DW_CFA_def_cfa";
10544 case DW_CFA_def_cfa_register:
10545 return "DW_CFA_def_cfa_register";
10546 case DW_CFA_def_cfa_offset:
10547 return "DW_CFA_def_cfa_offset";
b7619582 10548 /* DWARF 3. */
985cb1a3
JM
10549 case DW_CFA_def_cfa_expression:
10550 return "DW_CFA_def_cfa_expression";
10551 case DW_CFA_expression:
10552 return "DW_CFA_expression";
10553 case DW_CFA_offset_extended_sf:
10554 return "DW_CFA_offset_extended_sf";
10555 case DW_CFA_def_cfa_sf:
10556 return "DW_CFA_def_cfa_sf";
10557 case DW_CFA_def_cfa_offset_sf:
10558 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
10559 case DW_CFA_val_offset:
10560 return "DW_CFA_val_offset";
10561 case DW_CFA_val_offset_sf:
10562 return "DW_CFA_val_offset_sf";
10563 case DW_CFA_val_expression:
10564 return "DW_CFA_val_expression";
10565 /* SGI/MIPS specific. */
c906108c
SS
10566 case DW_CFA_MIPS_advance_loc8:
10567 return "DW_CFA_MIPS_advance_loc8";
b7619582 10568 /* GNU extensions. */
985cb1a3
JM
10569 case DW_CFA_GNU_window_save:
10570 return "DW_CFA_GNU_window_save";
10571 case DW_CFA_GNU_args_size:
10572 return "DW_CFA_GNU_args_size";
10573 case DW_CFA_GNU_negative_offset_extended:
10574 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
10575 default:
10576 return "DW_CFA_<unknown>";
10577 }
10578}
10579#endif
10580
f9aca02d 10581static void
d97bc12b 10582dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
10583{
10584 unsigned int i;
10585
d97bc12b
DE
10586 print_spaces (indent, f);
10587 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 10588 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
10589
10590 if (die->parent != NULL)
10591 {
10592 print_spaces (indent, f);
10593 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10594 die->parent->offset);
10595 }
10596
10597 print_spaces (indent, f);
10598 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 10599 dwarf_bool_name (die->child != NULL));
c906108c 10600
d97bc12b
DE
10601 print_spaces (indent, f);
10602 fprintf_unfiltered (f, " attributes:\n");
10603
c906108c
SS
10604 for (i = 0; i < die->num_attrs; ++i)
10605 {
d97bc12b
DE
10606 print_spaces (indent, f);
10607 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
10608 dwarf_attr_name (die->attrs[i].name),
10609 dwarf_form_name (die->attrs[i].form));
d97bc12b 10610
c906108c
SS
10611 switch (die->attrs[i].form)
10612 {
10613 case DW_FORM_ref_addr:
10614 case DW_FORM_addr:
d97bc12b 10615 fprintf_unfiltered (f, "address: ");
5af949e3 10616 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
10617 break;
10618 case DW_FORM_block2:
10619 case DW_FORM_block4:
10620 case DW_FORM_block:
10621 case DW_FORM_block1:
d97bc12b 10622 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 10623 break;
2dc7f7b3
TT
10624 case DW_FORM_exprloc:
10625 fprintf_unfiltered (f, "expression: size %u",
10626 DW_BLOCK (&die->attrs[i])->size);
10627 break;
10b3939b
DJ
10628 case DW_FORM_ref1:
10629 case DW_FORM_ref2:
10630 case DW_FORM_ref4:
d97bc12b 10631 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
10632 (long) (DW_ADDR (&die->attrs[i])));
10633 break;
c906108c
SS
10634 case DW_FORM_data1:
10635 case DW_FORM_data2:
10636 case DW_FORM_data4:
ce5d95e1 10637 case DW_FORM_data8:
c906108c
SS
10638 case DW_FORM_udata:
10639 case DW_FORM_sdata:
43bbcdc2
PH
10640 fprintf_unfiltered (f, "constant: %s",
10641 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 10642 break;
2dc7f7b3
TT
10643 case DW_FORM_sec_offset:
10644 fprintf_unfiltered (f, "section offset: %s",
10645 pulongest (DW_UNSND (&die->attrs[i])));
10646 break;
348e048f
DE
10647 case DW_FORM_sig8:
10648 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10649 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10650 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10651 else
10652 fprintf_unfiltered (f, "signatured type, offset: unknown");
10653 break;
c906108c 10654 case DW_FORM_string:
4bdf3d34 10655 case DW_FORM_strp:
8285870a 10656 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 10657 DW_STRING (&die->attrs[i])
8285870a
JK
10658 ? DW_STRING (&die->attrs[i]) : "",
10659 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
10660 break;
10661 case DW_FORM_flag:
10662 if (DW_UNSND (&die->attrs[i]))
d97bc12b 10663 fprintf_unfiltered (f, "flag: TRUE");
c906108c 10664 else
d97bc12b 10665 fprintf_unfiltered (f, "flag: FALSE");
c906108c 10666 break;
2dc7f7b3
TT
10667 case DW_FORM_flag_present:
10668 fprintf_unfiltered (f, "flag: TRUE");
10669 break;
a8329558
KW
10670 case DW_FORM_indirect:
10671 /* the reader will have reduced the indirect form to
10672 the "base form" so this form should not occur */
d97bc12b 10673 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
a8329558 10674 break;
c906108c 10675 default:
d97bc12b 10676 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 10677 die->attrs[i].form);
d97bc12b 10678 break;
c906108c 10679 }
d97bc12b 10680 fprintf_unfiltered (f, "\n");
c906108c
SS
10681 }
10682}
10683
f9aca02d 10684static void
d97bc12b 10685dump_die_for_error (struct die_info *die)
c906108c 10686{
d97bc12b
DE
10687 dump_die_shallow (gdb_stderr, 0, die);
10688}
10689
10690static void
10691dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10692{
10693 int indent = level * 4;
10694
10695 gdb_assert (die != NULL);
10696
10697 if (level >= max_level)
10698 return;
10699
10700 dump_die_shallow (f, indent, die);
10701
10702 if (die->child != NULL)
c906108c 10703 {
d97bc12b
DE
10704 print_spaces (indent, f);
10705 fprintf_unfiltered (f, " Children:");
10706 if (level + 1 < max_level)
10707 {
10708 fprintf_unfiltered (f, "\n");
10709 dump_die_1 (f, level + 1, max_level, die->child);
10710 }
10711 else
10712 {
10713 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10714 }
10715 }
10716
10717 if (die->sibling != NULL && level > 0)
10718 {
10719 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
10720 }
10721}
10722
d97bc12b
DE
10723/* This is called from the pdie macro in gdbinit.in.
10724 It's not static so gcc will keep a copy callable from gdb. */
10725
10726void
10727dump_die (struct die_info *die, int max_level)
10728{
10729 dump_die_1 (gdb_stdlog, 0, max_level, die);
10730}
10731
f9aca02d 10732static void
51545339 10733store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10734{
51545339 10735 void **slot;
c906108c 10736
51545339
DJ
10737 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10738
10739 *slot = die;
c906108c
SS
10740}
10741
93311388
DE
10742static int
10743is_ref_attr (struct attribute *attr)
c906108c 10744{
c906108c
SS
10745 switch (attr->form)
10746 {
10747 case DW_FORM_ref_addr:
c906108c
SS
10748 case DW_FORM_ref1:
10749 case DW_FORM_ref2:
10750 case DW_FORM_ref4:
613e1657 10751 case DW_FORM_ref8:
c906108c 10752 case DW_FORM_ref_udata:
93311388 10753 return 1;
c906108c 10754 default:
93311388 10755 return 0;
c906108c 10756 }
93311388
DE
10757}
10758
10759static unsigned int
10760dwarf2_get_ref_die_offset (struct attribute *attr)
10761{
10762 if (is_ref_attr (attr))
10763 return DW_ADDR (attr);
10764
10765 complaint (&symfile_complaints,
10766 _("unsupported die ref attribute form: '%s'"),
10767 dwarf_form_name (attr->form));
10768 return 0;
c906108c
SS
10769}
10770
43bbcdc2
PH
10771/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10772 * the value held by the attribute is not constant. */
a02abb62 10773
43bbcdc2 10774static LONGEST
a02abb62
JB
10775dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10776{
10777 if (attr->form == DW_FORM_sdata)
10778 return DW_SND (attr);
10779 else if (attr->form == DW_FORM_udata
10780 || attr->form == DW_FORM_data1
10781 || attr->form == DW_FORM_data2
10782 || attr->form == DW_FORM_data4
10783 || attr->form == DW_FORM_data8)
10784 return DW_UNSND (attr);
10785 else
10786 {
e2e0b3e5 10787 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
10788 dwarf_form_name (attr->form));
10789 return default_value;
10790 }
10791}
10792
03dd20cc 10793/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
10794 unit and add it to our queue.
10795 The result is non-zero if PER_CU was queued, otherwise the result is zero
10796 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 10797
348e048f 10798static int
03dd20cc
DJ
10799maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10800 struct dwarf2_per_cu_data *per_cu)
10801{
10802 /* Mark the dependence relation so that we don't flush PER_CU
10803 too early. */
10804 dwarf2_add_dependence (this_cu, per_cu);
10805
10806 /* If it's already on the queue, we have nothing to do. */
10807 if (per_cu->queued)
348e048f 10808 return 0;
03dd20cc
DJ
10809
10810 /* If the compilation unit is already loaded, just mark it as
10811 used. */
10812 if (per_cu->cu != NULL)
10813 {
10814 per_cu->cu->last_used = 0;
348e048f 10815 return 0;
03dd20cc
DJ
10816 }
10817
10818 /* Add it to the queue. */
10819 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
10820
10821 return 1;
10822}
10823
10824/* Follow reference or signature attribute ATTR of SRC_DIE.
10825 On entry *REF_CU is the CU of SRC_DIE.
10826 On exit *REF_CU is the CU of the result. */
10827
10828static struct die_info *
10829follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10830 struct dwarf2_cu **ref_cu)
10831{
10832 struct die_info *die;
10833
10834 if (is_ref_attr (attr))
10835 die = follow_die_ref (src_die, attr, ref_cu);
10836 else if (attr->form == DW_FORM_sig8)
10837 die = follow_die_sig (src_die, attr, ref_cu);
10838 else
10839 {
10840 dump_die_for_error (src_die);
10841 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10842 (*ref_cu)->objfile->name);
10843 }
10844
10845 return die;
03dd20cc
DJ
10846}
10847
5c631832
JK
10848/* Follow reference OFFSET.
10849 On entry *REF_CU is the CU of source DIE referencing OFFSET.
f504f079
DE
10850 On exit *REF_CU is the CU of the result. */
10851
f9aca02d 10852static struct die_info *
5c631832 10853follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 10854{
10b3939b 10855 struct die_info temp_die;
f2f0e013 10856 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 10857
348e048f
DE
10858 gdb_assert (cu->per_cu != NULL);
10859
348e048f
DE
10860 if (cu->per_cu->from_debug_types)
10861 {
10862 /* .debug_types CUs cannot reference anything outside their CU.
10863 If they need to, they have to reference a signatured type via
10864 DW_FORM_sig8. */
10865 if (! offset_in_cu_p (&cu->header, offset))
5c631832 10866 return NULL;
348e048f
DE
10867 target_cu = cu;
10868 }
10869 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
10870 {
10871 struct dwarf2_per_cu_data *per_cu;
9a619af0 10872
45452591 10873 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
10874
10875 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
10876 if (maybe_queue_comp_unit (cu, per_cu))
10877 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 10878
10b3939b
DJ
10879 target_cu = per_cu->cu;
10880 }
10881 else
10882 target_cu = cu;
c906108c 10883
f2f0e013 10884 *ref_cu = target_cu;
51545339 10885 temp_die.offset = offset;
5c631832
JK
10886 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10887}
10b3939b 10888
5c631832
JK
10889/* Follow reference attribute ATTR of SRC_DIE.
10890 On entry *REF_CU is the CU of SRC_DIE.
10891 On exit *REF_CU is the CU of the result. */
10892
10893static struct die_info *
10894follow_die_ref (struct die_info *src_die, struct attribute *attr,
10895 struct dwarf2_cu **ref_cu)
10896{
10897 unsigned int offset = dwarf2_get_ref_die_offset (attr);
10898 struct dwarf2_cu *cu = *ref_cu;
10899 struct die_info *die;
10900
10901 die = follow_die_offset (offset, ref_cu);
10902 if (!die)
10903 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10904 "at 0x%x [in module %s]"),
10905 offset, src_die->offset, cu->objfile->name);
348e048f 10906
5c631832
JK
10907 return die;
10908}
10909
10910/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
10911 value is intended for DW_OP_call*. */
10912
10913struct dwarf2_locexpr_baton
10914dwarf2_fetch_die_location_block (unsigned int offset,
10915 struct dwarf2_per_cu_data *per_cu)
10916{
10917 struct dwarf2_cu *cu = per_cu->cu;
10918 struct die_info *die;
10919 struct attribute *attr;
10920 struct dwarf2_locexpr_baton retval;
10921
10922 die = follow_die_offset (offset, &cu);
10923 if (!die)
10924 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
10925 offset, per_cu->cu->objfile->name);
10926
10927 attr = dwarf2_attr (die, DW_AT_location, cu);
10928 if (!attr)
10929 {
10930 /* DWARF: "If there is no such attribute, then there is no effect.". */
10931
10932 retval.data = NULL;
10933 retval.size = 0;
10934 }
10935 else
10936 {
10937 if (!attr_form_is_block (attr))
10938 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
10939 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
10940 offset, per_cu->cu->objfile->name);
10941
10942 retval.data = DW_BLOCK (attr)->data;
10943 retval.size = DW_BLOCK (attr)->size;
10944 }
10945 retval.per_cu = cu->per_cu;
10946 return retval;
348e048f
DE
10947}
10948
10949/* Follow the signature attribute ATTR in SRC_DIE.
10950 On entry *REF_CU is the CU of SRC_DIE.
10951 On exit *REF_CU is the CU of the result. */
10952
10953static struct die_info *
10954follow_die_sig (struct die_info *src_die, struct attribute *attr,
10955 struct dwarf2_cu **ref_cu)
10956{
10957 struct objfile *objfile = (*ref_cu)->objfile;
10958 struct die_info temp_die;
10959 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10960 struct dwarf2_cu *sig_cu;
10961 struct die_info *die;
10962
10963 /* sig_type will be NULL if the signatured type is missing from
10964 the debug info. */
10965 if (sig_type == NULL)
10966 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10967 "at 0x%x [in module %s]"),
10968 src_die->offset, objfile->name);
10969
10970 /* If necessary, add it to the queue and load its DIEs. */
10971
10972 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10973 read_signatured_type (objfile, sig_type);
10974
10975 gdb_assert (sig_type->per_cu.cu != NULL);
10976
10977 sig_cu = sig_type->per_cu.cu;
10978 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10979 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10980 if (die)
10981 {
10982 *ref_cu = sig_cu;
10983 return die;
10984 }
10985
10986 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10987 "at 0x%x [in module %s]"),
10988 sig_type->type_offset, src_die->offset, objfile->name);
10989}
10990
10991/* Given an offset of a signatured type, return its signatured_type. */
10992
10993static struct signatured_type *
10994lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10995{
10996 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10997 unsigned int length, initial_length_size;
10998 unsigned int sig_offset;
10999 struct signatured_type find_entry, *type_sig;
11000
11001 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
11002 sig_offset = (initial_length_size
11003 + 2 /*version*/
11004 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
11005 + 1 /*address_size*/);
11006 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
11007 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
11008
11009 /* This is only used to lookup previously recorded types.
11010 If we didn't find it, it's our bug. */
11011 gdb_assert (type_sig != NULL);
11012 gdb_assert (offset == type_sig->offset);
11013
11014 return type_sig;
11015}
11016
11017/* Read in signatured type at OFFSET and build its CU and die(s). */
11018
11019static void
11020read_signatured_type_at_offset (struct objfile *objfile,
11021 unsigned int offset)
11022{
11023 struct signatured_type *type_sig;
11024
be391dca
TT
11025 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
11026
348e048f
DE
11027 /* We have the section offset, but we need the signature to do the
11028 hash table lookup. */
11029 type_sig = lookup_signatured_type_at_offset (objfile, offset);
11030
11031 gdb_assert (type_sig->per_cu.cu == NULL);
11032
11033 read_signatured_type (objfile, type_sig);
11034
11035 gdb_assert (type_sig->per_cu.cu != NULL);
11036}
11037
11038/* Read in a signatured type and build its CU and DIEs. */
11039
11040static void
11041read_signatured_type (struct objfile *objfile,
11042 struct signatured_type *type_sig)
11043{
11044 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
11045 struct die_reader_specs reader_specs;
11046 struct dwarf2_cu *cu;
11047 ULONGEST signature;
11048 struct cleanup *back_to, *free_cu_cleanup;
11049 struct attribute *attr;
11050
11051 gdb_assert (type_sig->per_cu.cu == NULL);
11052
11053 cu = xmalloc (sizeof (struct dwarf2_cu));
11054 memset (cu, 0, sizeof (struct dwarf2_cu));
11055 obstack_init (&cu->comp_unit_obstack);
11056 cu->objfile = objfile;
11057 type_sig->per_cu.cu = cu;
11058 cu->per_cu = &type_sig->per_cu;
11059
11060 /* If an error occurs while loading, release our storage. */
11061 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
11062
11063 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
11064 types_ptr, objfile->obfd);
11065 gdb_assert (signature == type_sig->signature);
11066
11067 cu->die_hash
11068 = htab_create_alloc_ex (cu->header.length / 12,
11069 die_hash,
11070 die_eq,
11071 NULL,
11072 &cu->comp_unit_obstack,
11073 hashtab_obstack_allocate,
11074 dummy_obstack_deallocate);
11075
11076 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
11077 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
11078
11079 init_cu_die_reader (&reader_specs, cu);
11080
11081 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
11082 NULL /*parent*/);
11083
11084 /* We try not to read any attributes in this function, because not
11085 all objfiles needed for references have been loaded yet, and symbol
11086 table processing isn't initialized. But we have to set the CU language,
11087 or we won't be able to build types correctly. */
11088 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
11089 if (attr)
11090 set_cu_language (DW_UNSND (attr), cu);
11091 else
11092 set_cu_language (language_minimal, cu);
11093
11094 do_cleanups (back_to);
11095
11096 /* We've successfully allocated this compilation unit. Let our caller
11097 clean it up when finished with it. */
11098 discard_cleanups (free_cu_cleanup);
11099
11100 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
11101 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
11102}
11103
c906108c
SS
11104/* Decode simple location descriptions.
11105 Given a pointer to a dwarf block that defines a location, compute
11106 the location and return the value.
11107
4cecd739
DJ
11108 NOTE drow/2003-11-18: This function is called in two situations
11109 now: for the address of static or global variables (partial symbols
11110 only) and for offsets into structures which are expected to be
11111 (more or less) constant. The partial symbol case should go away,
11112 and only the constant case should remain. That will let this
11113 function complain more accurately. A few special modes are allowed
11114 without complaint for global variables (for instance, global
11115 register values and thread-local values).
c906108c
SS
11116
11117 A location description containing no operations indicates that the
4cecd739 11118 object is optimized out. The return value is 0 for that case.
6b992462
DJ
11119 FIXME drow/2003-11-16: No callers check for this case any more; soon all
11120 callers will only want a very basic result and this can become a
11121 complaint.
c906108c 11122
c906108c
SS
11123 Note that stack[0] is unused except as a default error return.
11124 Note that stack overflow is not yet handled. */
11125
11126static CORE_ADDR
e7c27a73 11127decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 11128{
e7c27a73 11129 struct objfile *objfile = cu->objfile;
c906108c
SS
11130 int i;
11131 int size = blk->size;
fe1b8b76 11132 gdb_byte *data = blk->data;
c906108c
SS
11133 CORE_ADDR stack[64];
11134 int stacki;
11135 unsigned int bytes_read, unsnd;
fe1b8b76 11136 gdb_byte op;
c906108c
SS
11137
11138 i = 0;
11139 stacki = 0;
11140 stack[stacki] = 0;
c906108c
SS
11141
11142 while (i < size)
11143 {
c906108c
SS
11144 op = data[i++];
11145 switch (op)
11146 {
f1bea926
JM
11147 case DW_OP_lit0:
11148 case DW_OP_lit1:
11149 case DW_OP_lit2:
11150 case DW_OP_lit3:
11151 case DW_OP_lit4:
11152 case DW_OP_lit5:
11153 case DW_OP_lit6:
11154 case DW_OP_lit7:
11155 case DW_OP_lit8:
11156 case DW_OP_lit9:
11157 case DW_OP_lit10:
11158 case DW_OP_lit11:
11159 case DW_OP_lit12:
11160 case DW_OP_lit13:
11161 case DW_OP_lit14:
11162 case DW_OP_lit15:
11163 case DW_OP_lit16:
11164 case DW_OP_lit17:
11165 case DW_OP_lit18:
11166 case DW_OP_lit19:
11167 case DW_OP_lit20:
11168 case DW_OP_lit21:
11169 case DW_OP_lit22:
11170 case DW_OP_lit23:
11171 case DW_OP_lit24:
11172 case DW_OP_lit25:
11173 case DW_OP_lit26:
11174 case DW_OP_lit27:
11175 case DW_OP_lit28:
11176 case DW_OP_lit29:
11177 case DW_OP_lit30:
11178 case DW_OP_lit31:
11179 stack[++stacki] = op - DW_OP_lit0;
11180 break;
11181
c906108c
SS
11182 case DW_OP_reg0:
11183 case DW_OP_reg1:
11184 case DW_OP_reg2:
11185 case DW_OP_reg3:
11186 case DW_OP_reg4:
11187 case DW_OP_reg5:
11188 case DW_OP_reg6:
11189 case DW_OP_reg7:
11190 case DW_OP_reg8:
11191 case DW_OP_reg9:
11192 case DW_OP_reg10:
11193 case DW_OP_reg11:
11194 case DW_OP_reg12:
11195 case DW_OP_reg13:
11196 case DW_OP_reg14:
11197 case DW_OP_reg15:
11198 case DW_OP_reg16:
11199 case DW_OP_reg17:
11200 case DW_OP_reg18:
11201 case DW_OP_reg19:
11202 case DW_OP_reg20:
11203 case DW_OP_reg21:
11204 case DW_OP_reg22:
11205 case DW_OP_reg23:
11206 case DW_OP_reg24:
11207 case DW_OP_reg25:
11208 case DW_OP_reg26:
11209 case DW_OP_reg27:
11210 case DW_OP_reg28:
11211 case DW_OP_reg29:
11212 case DW_OP_reg30:
11213 case DW_OP_reg31:
c906108c 11214 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
11215 if (i < size)
11216 dwarf2_complex_location_expr_complaint ();
c906108c
SS
11217 break;
11218
11219 case DW_OP_regx:
c906108c
SS
11220 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
11221 i += bytes_read;
c906108c 11222 stack[++stacki] = unsnd;
4cecd739
DJ
11223 if (i < size)
11224 dwarf2_complex_location_expr_complaint ();
c906108c
SS
11225 break;
11226
11227 case DW_OP_addr:
107d2387 11228 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 11229 cu, &bytes_read);
107d2387 11230 i += bytes_read;
c906108c
SS
11231 break;
11232
11233 case DW_OP_const1u:
11234 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
11235 i += 1;
11236 break;
11237
11238 case DW_OP_const1s:
11239 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
11240 i += 1;
11241 break;
11242
11243 case DW_OP_const2u:
11244 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
11245 i += 2;
11246 break;
11247
11248 case DW_OP_const2s:
11249 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
11250 i += 2;
11251 break;
11252
11253 case DW_OP_const4u:
11254 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
11255 i += 4;
11256 break;
11257
11258 case DW_OP_const4s:
11259 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
11260 i += 4;
11261 break;
11262
11263 case DW_OP_constu:
11264 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 11265 &bytes_read);
c906108c
SS
11266 i += bytes_read;
11267 break;
11268
11269 case DW_OP_consts:
11270 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
11271 i += bytes_read;
11272 break;
11273
f1bea926
JM
11274 case DW_OP_dup:
11275 stack[stacki + 1] = stack[stacki];
11276 stacki++;
11277 break;
11278
c906108c
SS
11279 case DW_OP_plus:
11280 stack[stacki - 1] += stack[stacki];
11281 stacki--;
11282 break;
11283
11284 case DW_OP_plus_uconst:
11285 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
11286 i += bytes_read;
11287 break;
11288
11289 case DW_OP_minus:
f1bea926 11290 stack[stacki - 1] -= stack[stacki];
c906108c
SS
11291 stacki--;
11292 break;
11293
7a292a7a 11294 case DW_OP_deref:
7a292a7a 11295 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
11296 this using GDB's address_class enum. This is valid for partial
11297 global symbols, although the variable's address will be bogus
11298 in the psymtab. */
7a292a7a 11299 if (i < size)
4d3c2250 11300 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
11301 break;
11302
9d774e44 11303 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
11304 /* The top of the stack has the offset from the beginning
11305 of the thread control block at which the variable is located. */
11306 /* Nothing should follow this operator, so the top of stack would
11307 be returned. */
4cecd739
DJ
11308 /* This is valid for partial global symbols, but the variable's
11309 address will be bogus in the psymtab. */
9d774e44 11310 if (i < size)
4d3c2250 11311 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
11312 break;
11313
42be36b3
CT
11314 case DW_OP_GNU_uninit:
11315 break;
11316
c906108c 11317 default:
e2e0b3e5 11318 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9eae7c52 11319 dwarf_stack_op_name (op, 1));
c906108c
SS
11320 return (stack[stacki]);
11321 }
11322 }
11323 return (stack[stacki]);
11324}
11325
11326/* memory allocation interface */
11327
c906108c 11328static struct dwarf_block *
7b5a2f43 11329dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
11330{
11331 struct dwarf_block *blk;
11332
11333 blk = (struct dwarf_block *)
7b5a2f43 11334 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
11335 return (blk);
11336}
11337
11338static struct abbrev_info *
f3dd6933 11339dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
11340{
11341 struct abbrev_info *abbrev;
11342
f3dd6933
DJ
11343 abbrev = (struct abbrev_info *)
11344 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
11345 memset (abbrev, 0, sizeof (struct abbrev_info));
11346 return (abbrev);
11347}
11348
11349static struct die_info *
b60c80d6 11350dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
11351{
11352 struct die_info *die;
b60c80d6
DJ
11353 size_t size = sizeof (struct die_info);
11354
11355 if (num_attrs > 1)
11356 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 11357
b60c80d6 11358 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
11359 memset (die, 0, sizeof (struct die_info));
11360 return (die);
11361}
2e276125
JB
11362
11363\f
11364/* Macro support. */
11365
11366
11367/* Return the full name of file number I in *LH's file name table.
11368 Use COMP_DIR as the name of the current directory of the
11369 compilation. The result is allocated using xmalloc; the caller is
11370 responsible for freeing it. */
11371static char *
11372file_full_name (int file, struct line_header *lh, const char *comp_dir)
11373{
6a83a1e6
EZ
11374 /* Is the file number a valid index into the line header's file name
11375 table? Remember that file numbers start with one, not zero. */
11376 if (1 <= file && file <= lh->num_file_names)
11377 {
11378 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 11379
6a83a1e6
EZ
11380 if (IS_ABSOLUTE_PATH (fe->name))
11381 return xstrdup (fe->name);
11382 else
11383 {
11384 const char *dir;
11385 int dir_len;
11386 char *full_name;
11387
11388 if (fe->dir_index)
11389 dir = lh->include_dirs[fe->dir_index - 1];
11390 else
11391 dir = comp_dir;
11392
11393 if (dir)
11394 {
11395 dir_len = strlen (dir);
11396 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
11397 strcpy (full_name, dir);
11398 full_name[dir_len] = '/';
11399 strcpy (full_name + dir_len + 1, fe->name);
11400 return full_name;
11401 }
11402 else
11403 return xstrdup (fe->name);
11404 }
11405 }
2e276125
JB
11406 else
11407 {
6a83a1e6
EZ
11408 /* The compiler produced a bogus file number. We can at least
11409 record the macro definitions made in the file, even if we
11410 won't be able to find the file by name. */
11411 char fake_name[80];
9a619af0 11412
6a83a1e6 11413 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 11414
6e70227d 11415 complaint (&symfile_complaints,
6a83a1e6
EZ
11416 _("bad file number in macro information (%d)"),
11417 file);
2e276125 11418
6a83a1e6 11419 return xstrdup (fake_name);
2e276125
JB
11420 }
11421}
11422
11423
11424static struct macro_source_file *
11425macro_start_file (int file, int line,
11426 struct macro_source_file *current_file,
11427 const char *comp_dir,
11428 struct line_header *lh, struct objfile *objfile)
11429{
11430 /* The full name of this source file. */
11431 char *full_name = file_full_name (file, lh, comp_dir);
11432
11433 /* We don't create a macro table for this compilation unit
11434 at all until we actually get a filename. */
11435 if (! pending_macros)
4a146b47 11436 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 11437 objfile->macro_cache);
2e276125
JB
11438
11439 if (! current_file)
11440 /* If we have no current file, then this must be the start_file
11441 directive for the compilation unit's main source file. */
11442 current_file = macro_set_main (pending_macros, full_name);
11443 else
11444 current_file = macro_include (current_file, line, full_name);
11445
11446 xfree (full_name);
6e70227d 11447
2e276125
JB
11448 return current_file;
11449}
11450
11451
11452/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
11453 followed by a null byte. */
11454static char *
11455copy_string (const char *buf, int len)
11456{
11457 char *s = xmalloc (len + 1);
9a619af0 11458
2e276125
JB
11459 memcpy (s, buf, len);
11460 s[len] = '\0';
2e276125
JB
11461 return s;
11462}
11463
11464
11465static const char *
11466consume_improper_spaces (const char *p, const char *body)
11467{
11468 if (*p == ' ')
11469 {
4d3c2250 11470 complaint (&symfile_complaints,
e2e0b3e5 11471 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 11472 body);
2e276125
JB
11473
11474 while (*p == ' ')
11475 p++;
11476 }
11477
11478 return p;
11479}
11480
11481
11482static void
11483parse_macro_definition (struct macro_source_file *file, int line,
11484 const char *body)
11485{
11486 const char *p;
11487
11488 /* The body string takes one of two forms. For object-like macro
11489 definitions, it should be:
11490
11491 <macro name> " " <definition>
11492
11493 For function-like macro definitions, it should be:
11494
11495 <macro name> "() " <definition>
11496 or
11497 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
11498
11499 Spaces may appear only where explicitly indicated, and in the
11500 <definition>.
11501
11502 The Dwarf 2 spec says that an object-like macro's name is always
11503 followed by a space, but versions of GCC around March 2002 omit
6e70227d 11504 the space when the macro's definition is the empty string.
2e276125
JB
11505
11506 The Dwarf 2 spec says that there should be no spaces between the
11507 formal arguments in a function-like macro's formal argument list,
11508 but versions of GCC around March 2002 include spaces after the
11509 commas. */
11510
11511
11512 /* Find the extent of the macro name. The macro name is terminated
11513 by either a space or null character (for an object-like macro) or
11514 an opening paren (for a function-like macro). */
11515 for (p = body; *p; p++)
11516 if (*p == ' ' || *p == '(')
11517 break;
11518
11519 if (*p == ' ' || *p == '\0')
11520 {
11521 /* It's an object-like macro. */
11522 int name_len = p - body;
11523 char *name = copy_string (body, name_len);
11524 const char *replacement;
11525
11526 if (*p == ' ')
11527 replacement = body + name_len + 1;
11528 else
11529 {
4d3c2250 11530 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11531 replacement = body + name_len;
11532 }
6e70227d 11533
2e276125
JB
11534 macro_define_object (file, line, name, replacement);
11535
11536 xfree (name);
11537 }
11538 else if (*p == '(')
11539 {
11540 /* It's a function-like macro. */
11541 char *name = copy_string (body, p - body);
11542 int argc = 0;
11543 int argv_size = 1;
11544 char **argv = xmalloc (argv_size * sizeof (*argv));
11545
11546 p++;
11547
11548 p = consume_improper_spaces (p, body);
11549
11550 /* Parse the formal argument list. */
11551 while (*p && *p != ')')
11552 {
11553 /* Find the extent of the current argument name. */
11554 const char *arg_start = p;
11555
11556 while (*p && *p != ',' && *p != ')' && *p != ' ')
11557 p++;
11558
11559 if (! *p || p == arg_start)
4d3c2250 11560 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11561 else
11562 {
11563 /* Make sure argv has room for the new argument. */
11564 if (argc >= argv_size)
11565 {
11566 argv_size *= 2;
11567 argv = xrealloc (argv, argv_size * sizeof (*argv));
11568 }
11569
11570 argv[argc++] = copy_string (arg_start, p - arg_start);
11571 }
11572
11573 p = consume_improper_spaces (p, body);
11574
11575 /* Consume the comma, if present. */
11576 if (*p == ',')
11577 {
11578 p++;
11579
11580 p = consume_improper_spaces (p, body);
11581 }
11582 }
11583
11584 if (*p == ')')
11585 {
11586 p++;
11587
11588 if (*p == ' ')
11589 /* Perfectly formed definition, no complaints. */
11590 macro_define_function (file, line, name,
6e70227d 11591 argc, (const char **) argv,
2e276125
JB
11592 p + 1);
11593 else if (*p == '\0')
11594 {
11595 /* Complain, but do define it. */
4d3c2250 11596 dwarf2_macro_malformed_definition_complaint (body);
2e276125 11597 macro_define_function (file, line, name,
6e70227d 11598 argc, (const char **) argv,
2e276125
JB
11599 p);
11600 }
11601 else
11602 /* Just complain. */
4d3c2250 11603 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11604 }
11605 else
11606 /* Just complain. */
4d3c2250 11607 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11608
11609 xfree (name);
11610 {
11611 int i;
11612
11613 for (i = 0; i < argc; i++)
11614 xfree (argv[i]);
11615 }
11616 xfree (argv);
11617 }
11618 else
4d3c2250 11619 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11620}
11621
11622
11623static void
11624dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11625 char *comp_dir, bfd *abfd,
e7c27a73 11626 struct dwarf2_cu *cu)
2e276125 11627{
fe1b8b76 11628 gdb_byte *mac_ptr, *mac_end;
2e276125 11629 struct macro_source_file *current_file = 0;
757a13d0
JK
11630 enum dwarf_macinfo_record_type macinfo_type;
11631 int at_commandline;
2e276125 11632
be391dca
TT
11633 dwarf2_read_section (dwarf2_per_objfile->objfile,
11634 &dwarf2_per_objfile->macinfo);
dce234bc 11635 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 11636 {
e2e0b3e5 11637 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
11638 return;
11639 }
11640
757a13d0
JK
11641 /* First pass: Find the name of the base filename.
11642 This filename is needed in order to process all macros whose definition
11643 (or undefinition) comes from the command line. These macros are defined
11644 before the first DW_MACINFO_start_file entry, and yet still need to be
11645 associated to the base file.
11646
11647 To determine the base file name, we scan the macro definitions until we
11648 reach the first DW_MACINFO_start_file entry. We then initialize
11649 CURRENT_FILE accordingly so that any macro definition found before the
11650 first DW_MACINFO_start_file can still be associated to the base file. */
11651
dce234bc
PP
11652 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11653 mac_end = dwarf2_per_objfile->macinfo.buffer
11654 + dwarf2_per_objfile->macinfo.size;
2e276125 11655
757a13d0 11656 do
2e276125 11657 {
2e276125
JB
11658 /* Do we at least have room for a macinfo type byte? */
11659 if (mac_ptr >= mac_end)
11660 {
757a13d0
JK
11661 /* Complaint is printed during the second pass as GDB will probably
11662 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11663 break;
2e276125
JB
11664 }
11665
11666 macinfo_type = read_1_byte (abfd, mac_ptr);
11667 mac_ptr++;
11668
11669 switch (macinfo_type)
11670 {
11671 /* A zero macinfo type indicates the end of the macro
11672 information. */
11673 case 0:
757a13d0
JK
11674 break;
11675
11676 case DW_MACINFO_define:
11677 case DW_MACINFO_undef:
11678 /* Only skip the data by MAC_PTR. */
11679 {
11680 unsigned int bytes_read;
11681
11682 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11683 mac_ptr += bytes_read;
11684 read_string (abfd, mac_ptr, &bytes_read);
11685 mac_ptr += bytes_read;
11686 }
11687 break;
11688
11689 case DW_MACINFO_start_file:
11690 {
11691 unsigned int bytes_read;
11692 int line, file;
11693
11694 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11695 mac_ptr += bytes_read;
11696 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11697 mac_ptr += bytes_read;
11698
11699 current_file = macro_start_file (file, line, current_file, comp_dir,
11700 lh, cu->objfile);
11701 }
11702 break;
11703
11704 case DW_MACINFO_end_file:
11705 /* No data to skip by MAC_PTR. */
11706 break;
11707
11708 case DW_MACINFO_vendor_ext:
11709 /* Only skip the data by MAC_PTR. */
11710 {
11711 unsigned int bytes_read;
11712
11713 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11714 mac_ptr += bytes_read;
11715 read_string (abfd, mac_ptr, &bytes_read);
11716 mac_ptr += bytes_read;
11717 }
11718 break;
11719
11720 default:
11721 break;
11722 }
11723 } while (macinfo_type != 0 && current_file == NULL);
11724
11725 /* Second pass: Process all entries.
11726
11727 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11728 command-line macro definitions/undefinitions. This flag is unset when we
11729 reach the first DW_MACINFO_start_file entry. */
11730
dce234bc 11731 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
11732
11733 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11734 GDB is still reading the definitions from command line. First
11735 DW_MACINFO_start_file will need to be ignored as it was already executed
11736 to create CURRENT_FILE for the main source holding also the command line
11737 definitions. On first met DW_MACINFO_start_file this flag is reset to
11738 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11739
11740 at_commandline = 1;
11741
11742 do
11743 {
11744 /* Do we at least have room for a macinfo type byte? */
11745 if (mac_ptr >= mac_end)
11746 {
11747 dwarf2_macros_too_long_complaint ();
11748 break;
11749 }
11750
11751 macinfo_type = read_1_byte (abfd, mac_ptr);
11752 mac_ptr++;
11753
11754 switch (macinfo_type)
11755 {
11756 /* A zero macinfo type indicates the end of the macro
11757 information. */
11758 case 0:
11759 break;
2e276125
JB
11760
11761 case DW_MACINFO_define:
11762 case DW_MACINFO_undef:
11763 {
891d2f0b 11764 unsigned int bytes_read;
2e276125
JB
11765 int line;
11766 char *body;
11767
11768 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11769 mac_ptr += bytes_read;
11770 body = read_string (abfd, mac_ptr, &bytes_read);
11771 mac_ptr += bytes_read;
11772
11773 if (! current_file)
757a13d0
JK
11774 {
11775 /* DWARF violation as no main source is present. */
11776 complaint (&symfile_complaints,
11777 _("debug info with no main source gives macro %s "
11778 "on line %d: %s"),
6e70227d
DE
11779 macinfo_type == DW_MACINFO_define ?
11780 _("definition") :
905e0470
PM
11781 macinfo_type == DW_MACINFO_undef ?
11782 _("undefinition") :
11783 _("something-or-other"), line, body);
757a13d0
JK
11784 break;
11785 }
11786 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
4d3c2250 11787 complaint (&symfile_complaints,
757a13d0
JK
11788 _("debug info gives %s macro %s with %s line %d: %s"),
11789 at_commandline ? _("command-line") : _("in-file"),
905e0470 11790 macinfo_type == DW_MACINFO_define ?
6e70227d 11791 _("definition") :
905e0470
PM
11792 macinfo_type == DW_MACINFO_undef ?
11793 _("undefinition") :
11794 _("something-or-other"),
757a13d0
JK
11795 line == 0 ? _("zero") : _("non-zero"), line, body);
11796
11797 if (macinfo_type == DW_MACINFO_define)
11798 parse_macro_definition (current_file, line, body);
11799 else if (macinfo_type == DW_MACINFO_undef)
11800 macro_undef (current_file, line, body);
2e276125
JB
11801 }
11802 break;
11803
11804 case DW_MACINFO_start_file:
11805 {
891d2f0b 11806 unsigned int bytes_read;
2e276125
JB
11807 int line, file;
11808
11809 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11810 mac_ptr += bytes_read;
11811 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11812 mac_ptr += bytes_read;
11813
757a13d0
JK
11814 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11815 complaint (&symfile_complaints,
11816 _("debug info gives source %d included "
11817 "from %s at %s line %d"),
11818 file, at_commandline ? _("command-line") : _("file"),
11819 line == 0 ? _("zero") : _("non-zero"), line);
11820
11821 if (at_commandline)
11822 {
11823 /* This DW_MACINFO_start_file was executed in the pass one. */
11824 at_commandline = 0;
11825 }
11826 else
11827 current_file = macro_start_file (file, line,
11828 current_file, comp_dir,
11829 lh, cu->objfile);
2e276125
JB
11830 }
11831 break;
11832
11833 case DW_MACINFO_end_file:
11834 if (! current_file)
4d3c2250 11835 complaint (&symfile_complaints,
e2e0b3e5 11836 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
11837 else
11838 {
11839 current_file = current_file->included_by;
11840 if (! current_file)
11841 {
11842 enum dwarf_macinfo_record_type next_type;
11843
11844 /* GCC circa March 2002 doesn't produce the zero
11845 type byte marking the end of the compilation
11846 unit. Complain if it's not there, but exit no
11847 matter what. */
11848
11849 /* Do we at least have room for a macinfo type byte? */
11850 if (mac_ptr >= mac_end)
11851 {
4d3c2250 11852 dwarf2_macros_too_long_complaint ();
2e276125
JB
11853 return;
11854 }
11855
11856 /* We don't increment mac_ptr here, so this is just
11857 a look-ahead. */
11858 next_type = read_1_byte (abfd, mac_ptr);
11859 if (next_type != 0)
4d3c2250 11860 complaint (&symfile_complaints,
e2e0b3e5 11861 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
11862
11863 return;
11864 }
11865 }
11866 break;
11867
11868 case DW_MACINFO_vendor_ext:
11869 {
891d2f0b 11870 unsigned int bytes_read;
2e276125
JB
11871 int constant;
11872 char *string;
11873
11874 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11875 mac_ptr += bytes_read;
11876 string = read_string (abfd, mac_ptr, &bytes_read);
11877 mac_ptr += bytes_read;
11878
11879 /* We don't recognize any vendor extensions. */
11880 }
11881 break;
11882 }
757a13d0 11883 } while (macinfo_type != 0);
2e276125 11884}
8e19ed76
PS
11885
11886/* Check if the attribute's form is a DW_FORM_block*
11887 if so return true else false. */
11888static int
11889attr_form_is_block (struct attribute *attr)
11890{
11891 return (attr == NULL ? 0 :
11892 attr->form == DW_FORM_block1
11893 || attr->form == DW_FORM_block2
11894 || attr->form == DW_FORM_block4
2dc7f7b3
TT
11895 || attr->form == DW_FORM_block
11896 || attr->form == DW_FORM_exprloc);
8e19ed76 11897}
4c2df51b 11898
c6a0999f
JB
11899/* Return non-zero if ATTR's value is a section offset --- classes
11900 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11901 You may use DW_UNSND (attr) to retrieve such offsets.
11902
11903 Section 7.5.4, "Attribute Encodings", explains that no attribute
11904 may have a value that belongs to more than one of these classes; it
11905 would be ambiguous if we did, because we use the same forms for all
11906 of them. */
3690dd37
JB
11907static int
11908attr_form_is_section_offset (struct attribute *attr)
11909{
11910 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
11911 || attr->form == DW_FORM_data8
11912 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
11913}
11914
11915
11916/* Return non-zero if ATTR's value falls in the 'constant' class, or
11917 zero otherwise. When this function returns true, you can apply
11918 dwarf2_get_attr_constant_value to it.
11919
11920 However, note that for some attributes you must check
11921 attr_form_is_section_offset before using this test. DW_FORM_data4
11922 and DW_FORM_data8 are members of both the constant class, and of
11923 the classes that contain offsets into other debug sections
11924 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11925 that, if an attribute's can be either a constant or one of the
11926 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11927 taken as section offsets, not constants. */
11928static int
11929attr_form_is_constant (struct attribute *attr)
11930{
11931 switch (attr->form)
11932 {
11933 case DW_FORM_sdata:
11934 case DW_FORM_udata:
11935 case DW_FORM_data1:
11936 case DW_FORM_data2:
11937 case DW_FORM_data4:
11938 case DW_FORM_data8:
11939 return 1;
11940 default:
11941 return 0;
11942 }
11943}
11944
4c2df51b
DJ
11945static void
11946dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 11947 struct dwarf2_cu *cu)
4c2df51b 11948{
3690dd37 11949 if (attr_form_is_section_offset (attr)
99bcc461
DJ
11950 /* ".debug_loc" may not exist at all, or the offset may be outside
11951 the section. If so, fall through to the complaint in the
11952 other branch. */
dce234bc 11953 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 11954 {
0d53c4c4 11955 struct dwarf2_loclist_baton *baton;
4c2df51b 11956
4a146b47 11957 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11958 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
11959 baton->per_cu = cu->per_cu;
11960 gdb_assert (baton->per_cu);
4c2df51b 11961
be391dca
TT
11962 dwarf2_read_section (dwarf2_per_objfile->objfile,
11963 &dwarf2_per_objfile->loc);
11964
0d53c4c4
DJ
11965 /* We don't know how long the location list is, but make sure we
11966 don't run off the edge of the section. */
dce234bc
PP
11967 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11968 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
d00adf39
DE
11969 baton->base_address = cu->base_address;
11970 if (cu->base_known == 0)
0d53c4c4 11971 complaint (&symfile_complaints,
e2e0b3e5 11972 _("Location list used without specifying the CU base address."));
4c2df51b 11973
768a979c 11974 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
11975 SYMBOL_LOCATION_BATON (sym) = baton;
11976 }
11977 else
11978 {
11979 struct dwarf2_locexpr_baton *baton;
11980
4a146b47 11981 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11982 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
11983 baton->per_cu = cu->per_cu;
11984 gdb_assert (baton->per_cu);
0d53c4c4
DJ
11985
11986 if (attr_form_is_block (attr))
11987 {
11988 /* Note that we're just copying the block's data pointer
11989 here, not the actual data. We're still pointing into the
6502dd73
DJ
11990 info_buffer for SYM's objfile; right now we never release
11991 that buffer, but when we do clean up properly this may
11992 need to change. */
0d53c4c4
DJ
11993 baton->size = DW_BLOCK (attr)->size;
11994 baton->data = DW_BLOCK (attr)->data;
11995 }
11996 else
11997 {
11998 dwarf2_invalid_attrib_class_complaint ("location description",
11999 SYMBOL_NATURAL_NAME (sym));
12000 baton->size = 0;
12001 baton->data = NULL;
12002 }
6e70227d 12003
768a979c 12004 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
12005 SYMBOL_LOCATION_BATON (sym) = baton;
12006 }
4c2df51b 12007}
6502dd73 12008
ae0d2f24
UW
12009/* Return the OBJFILE associated with the compilation unit CU. */
12010
12011struct objfile *
12012dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
12013{
12014 struct objfile *objfile = per_cu->psymtab->objfile;
12015
12016 /* Return the master objfile, so that we can report and look up the
12017 correct file containing this variable. */
12018 if (objfile->separate_debug_objfile_backlink)
12019 objfile = objfile->separate_debug_objfile_backlink;
12020
12021 return objfile;
12022}
12023
12024/* Return the address size given in the compilation unit header for CU. */
12025
12026CORE_ADDR
12027dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
12028{
12029 if (per_cu->cu)
12030 return per_cu->cu->header.addr_size;
12031 else
12032 {
12033 /* If the CU is not currently read in, we re-read its header. */
12034 struct objfile *objfile = per_cu->psymtab->objfile;
12035 struct dwarf2_per_objfile *per_objfile
12036 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 12037 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 12038 struct comp_unit_head cu_header;
9a619af0 12039
ae0d2f24
UW
12040 memset (&cu_header, 0, sizeof cu_header);
12041 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
12042 return cu_header.addr_size;
12043 }
12044}
12045
9eae7c52
TT
12046/* Return the offset size given in the compilation unit header for CU. */
12047
12048int
12049dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
12050{
12051 if (per_cu->cu)
12052 return per_cu->cu->header.offset_size;
12053 else
12054 {
12055 /* If the CU is not currently read in, we re-read its header. */
12056 struct objfile *objfile = per_cu->psymtab->objfile;
12057 struct dwarf2_per_objfile *per_objfile
12058 = objfile_data (objfile, dwarf2_objfile_data_key);
12059 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
12060 struct comp_unit_head cu_header;
12061
12062 memset (&cu_header, 0, sizeof cu_header);
12063 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
12064 return cu_header.offset_size;
12065 }
12066}
12067
348e048f
DE
12068/* Locate the .debug_info compilation unit from CU's objfile which contains
12069 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
12070
12071static struct dwarf2_per_cu_data *
c764a876 12072dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
12073 struct objfile *objfile)
12074{
12075 struct dwarf2_per_cu_data *this_cu;
12076 int low, high;
12077
ae038cb0
DJ
12078 low = 0;
12079 high = dwarf2_per_objfile->n_comp_units - 1;
12080 while (high > low)
12081 {
12082 int mid = low + (high - low) / 2;
9a619af0 12083
ae038cb0
DJ
12084 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
12085 high = mid;
12086 else
12087 low = mid + 1;
12088 }
12089 gdb_assert (low == high);
12090 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
12091 {
10b3939b 12092 if (low == 0)
8a3fe4f8
AC
12093 error (_("Dwarf Error: could not find partial DIE containing "
12094 "offset 0x%lx [in module %s]"),
10b3939b
DJ
12095 (long) offset, bfd_get_filename (objfile->obfd));
12096
ae038cb0
DJ
12097 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
12098 return dwarf2_per_objfile->all_comp_units[low-1];
12099 }
12100 else
12101 {
12102 this_cu = dwarf2_per_objfile->all_comp_units[low];
12103 if (low == dwarf2_per_objfile->n_comp_units - 1
12104 && offset >= this_cu->offset + this_cu->length)
c764a876 12105 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
12106 gdb_assert (offset < this_cu->offset + this_cu->length);
12107 return this_cu;
12108 }
12109}
12110
10b3939b
DJ
12111/* Locate the compilation unit from OBJFILE which is located at exactly
12112 OFFSET. Raises an error on failure. */
12113
ae038cb0 12114static struct dwarf2_per_cu_data *
c764a876 12115dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
12116{
12117 struct dwarf2_per_cu_data *this_cu;
9a619af0 12118
ae038cb0
DJ
12119 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
12120 if (this_cu->offset != offset)
c764a876 12121 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
12122 return this_cu;
12123}
12124
93311388
DE
12125/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
12126
12127static struct dwarf2_cu *
12128alloc_one_comp_unit (struct objfile *objfile)
12129{
12130 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
12131 cu->objfile = objfile;
12132 obstack_init (&cu->comp_unit_obstack);
12133 return cu;
12134}
12135
ae038cb0
DJ
12136/* Release one cached compilation unit, CU. We unlink it from the tree
12137 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
12138 the caller is responsible for that.
12139 NOTE: DATA is a void * because this function is also used as a
12140 cleanup routine. */
ae038cb0
DJ
12141
12142static void
12143free_one_comp_unit (void *data)
12144{
12145 struct dwarf2_cu *cu = data;
12146
12147 if (cu->per_cu != NULL)
12148 cu->per_cu->cu = NULL;
12149 cu->per_cu = NULL;
12150
12151 obstack_free (&cu->comp_unit_obstack, NULL);
12152
12153 xfree (cu);
12154}
12155
72bf9492 12156/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
12157 when we're finished with it. We can't free the pointer itself, but be
12158 sure to unlink it from the cache. Also release any associated storage
12159 and perform cache maintenance.
72bf9492
DJ
12160
12161 Only used during partial symbol parsing. */
12162
12163static void
12164free_stack_comp_unit (void *data)
12165{
12166 struct dwarf2_cu *cu = data;
12167
12168 obstack_free (&cu->comp_unit_obstack, NULL);
12169 cu->partial_dies = NULL;
ae038cb0
DJ
12170
12171 if (cu->per_cu != NULL)
12172 {
12173 /* This compilation unit is on the stack in our caller, so we
12174 should not xfree it. Just unlink it. */
12175 cu->per_cu->cu = NULL;
12176 cu->per_cu = NULL;
12177
12178 /* If we had a per-cu pointer, then we may have other compilation
12179 units loaded, so age them now. */
12180 age_cached_comp_units ();
12181 }
12182}
12183
12184/* Free all cached compilation units. */
12185
12186static void
12187free_cached_comp_units (void *data)
12188{
12189 struct dwarf2_per_cu_data *per_cu, **last_chain;
12190
12191 per_cu = dwarf2_per_objfile->read_in_chain;
12192 last_chain = &dwarf2_per_objfile->read_in_chain;
12193 while (per_cu != NULL)
12194 {
12195 struct dwarf2_per_cu_data *next_cu;
12196
12197 next_cu = per_cu->cu->read_in_chain;
12198
12199 free_one_comp_unit (per_cu->cu);
12200 *last_chain = next_cu;
12201
12202 per_cu = next_cu;
12203 }
12204}
12205
12206/* Increase the age counter on each cached compilation unit, and free
12207 any that are too old. */
12208
12209static void
12210age_cached_comp_units (void)
12211{
12212 struct dwarf2_per_cu_data *per_cu, **last_chain;
12213
12214 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
12215 per_cu = dwarf2_per_objfile->read_in_chain;
12216 while (per_cu != NULL)
12217 {
12218 per_cu->cu->last_used ++;
12219 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
12220 dwarf2_mark (per_cu->cu);
12221 per_cu = per_cu->cu->read_in_chain;
12222 }
12223
12224 per_cu = dwarf2_per_objfile->read_in_chain;
12225 last_chain = &dwarf2_per_objfile->read_in_chain;
12226 while (per_cu != NULL)
12227 {
12228 struct dwarf2_per_cu_data *next_cu;
12229
12230 next_cu = per_cu->cu->read_in_chain;
12231
12232 if (!per_cu->cu->mark)
12233 {
12234 free_one_comp_unit (per_cu->cu);
12235 *last_chain = next_cu;
12236 }
12237 else
12238 last_chain = &per_cu->cu->read_in_chain;
12239
12240 per_cu = next_cu;
12241 }
12242}
12243
12244/* Remove a single compilation unit from the cache. */
12245
12246static void
12247free_one_cached_comp_unit (void *target_cu)
12248{
12249 struct dwarf2_per_cu_data *per_cu, **last_chain;
12250
12251 per_cu = dwarf2_per_objfile->read_in_chain;
12252 last_chain = &dwarf2_per_objfile->read_in_chain;
12253 while (per_cu != NULL)
12254 {
12255 struct dwarf2_per_cu_data *next_cu;
12256
12257 next_cu = per_cu->cu->read_in_chain;
12258
12259 if (per_cu->cu == target_cu)
12260 {
12261 free_one_comp_unit (per_cu->cu);
12262 *last_chain = next_cu;
12263 break;
12264 }
12265 else
12266 last_chain = &per_cu->cu->read_in_chain;
12267
12268 per_cu = next_cu;
12269 }
12270}
12271
fe3e1990
DJ
12272/* Release all extra memory associated with OBJFILE. */
12273
12274void
12275dwarf2_free_objfile (struct objfile *objfile)
12276{
12277 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
12278
12279 if (dwarf2_per_objfile == NULL)
12280 return;
12281
12282 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
12283 free_cached_comp_units (NULL);
12284
12285 /* Everything else should be on the objfile obstack. */
12286}
12287
1c379e20
DJ
12288/* A pair of DIE offset and GDB type pointer. We store these
12289 in a hash table separate from the DIEs, and preserve them
12290 when the DIEs are flushed out of cache. */
12291
12292struct dwarf2_offset_and_type
12293{
12294 unsigned int offset;
12295 struct type *type;
12296};
12297
12298/* Hash function for a dwarf2_offset_and_type. */
12299
12300static hashval_t
12301offset_and_type_hash (const void *item)
12302{
12303 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 12304
1c379e20
DJ
12305 return ofs->offset;
12306}
12307
12308/* Equality function for a dwarf2_offset_and_type. */
12309
12310static int
12311offset_and_type_eq (const void *item_lhs, const void *item_rhs)
12312{
12313 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
12314 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 12315
1c379e20
DJ
12316 return ofs_lhs->offset == ofs_rhs->offset;
12317}
12318
12319/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
12320 table if necessary. For convenience, return TYPE.
12321
12322 The DIEs reading must have careful ordering to:
12323 * Not cause infite loops trying to read in DIEs as a prerequisite for
12324 reading current DIE.
12325 * Not trying to dereference contents of still incompletely read in types
12326 while reading in other DIEs.
12327 * Enable referencing still incompletely read in types just by a pointer to
12328 the type without accessing its fields.
12329
12330 Therefore caller should follow these rules:
12331 * Try to fetch any prerequisite types we may need to build this DIE type
12332 before building the type and calling set_die_type.
12333 * After building typer call set_die_type for current DIE as soon as
12334 possible before fetching more types to complete the current type.
12335 * Make the type as complete as possible before fetching more types. */
1c379e20 12336
f792889a 12337static struct type *
1c379e20
DJ
12338set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12339{
12340 struct dwarf2_offset_and_type **slot, ofs;
12341
b4ba55a1
JB
12342 /* For Ada types, make sure that the gnat-specific data is always
12343 initialized (if not already set). There are a few types where
12344 we should not be doing so, because the type-specific area is
12345 already used to hold some other piece of info (eg: TYPE_CODE_FLT
12346 where the type-specific area is used to store the floatformat).
12347 But this is not a problem, because the gnat-specific information
12348 is actually not needed for these types. */
12349 if (need_gnat_info (cu)
12350 && TYPE_CODE (type) != TYPE_CODE_FUNC
12351 && TYPE_CODE (type) != TYPE_CODE_FLT
12352 && !HAVE_GNAT_AUX_INFO (type))
12353 INIT_GNAT_SPECIFIC (type);
12354
f792889a
DJ
12355 if (cu->type_hash == NULL)
12356 {
12357 gdb_assert (cu->per_cu != NULL);
12358 cu->per_cu->type_hash
12359 = htab_create_alloc_ex (cu->header.length / 24,
12360 offset_and_type_hash,
12361 offset_and_type_eq,
12362 NULL,
12363 &cu->objfile->objfile_obstack,
12364 hashtab_obstack_allocate,
12365 dummy_obstack_deallocate);
12366 cu->type_hash = cu->per_cu->type_hash;
12367 }
1c379e20
DJ
12368
12369 ofs.offset = die->offset;
12370 ofs.type = type;
12371 slot = (struct dwarf2_offset_and_type **)
f792889a 12372 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
7e314c57
JK
12373 if (*slot)
12374 complaint (&symfile_complaints,
12375 _("A problem internal to GDB: DIE 0x%x has type already set"),
12376 die->offset);
1c379e20
DJ
12377 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
12378 **slot = ofs;
f792889a 12379 return type;
1c379e20
DJ
12380}
12381
f792889a
DJ
12382/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
12383 not have a saved type. */
1c379e20
DJ
12384
12385static struct type *
f792889a 12386get_die_type (struct die_info *die, struct dwarf2_cu *cu)
1c379e20
DJ
12387{
12388 struct dwarf2_offset_and_type *slot, ofs;
f792889a
DJ
12389 htab_t type_hash = cu->type_hash;
12390
12391 if (type_hash == NULL)
12392 return NULL;
1c379e20
DJ
12393
12394 ofs.offset = die->offset;
12395 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
12396 if (slot)
12397 return slot->type;
12398 else
12399 return NULL;
12400}
12401
10b3939b
DJ
12402/* Add a dependence relationship from CU to REF_PER_CU. */
12403
12404static void
12405dwarf2_add_dependence (struct dwarf2_cu *cu,
12406 struct dwarf2_per_cu_data *ref_per_cu)
12407{
12408 void **slot;
12409
12410 if (cu->dependencies == NULL)
12411 cu->dependencies
12412 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
12413 NULL, &cu->comp_unit_obstack,
12414 hashtab_obstack_allocate,
12415 dummy_obstack_deallocate);
12416
12417 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
12418 if (*slot == NULL)
12419 *slot = ref_per_cu;
12420}
1c379e20 12421
f504f079
DE
12422/* Subroutine of dwarf2_mark to pass to htab_traverse.
12423 Set the mark field in every compilation unit in the
ae038cb0
DJ
12424 cache that we must keep because we are keeping CU. */
12425
10b3939b
DJ
12426static int
12427dwarf2_mark_helper (void **slot, void *data)
12428{
12429 struct dwarf2_per_cu_data *per_cu;
12430
12431 per_cu = (struct dwarf2_per_cu_data *) *slot;
12432 if (per_cu->cu->mark)
12433 return 1;
12434 per_cu->cu->mark = 1;
12435
12436 if (per_cu->cu->dependencies != NULL)
12437 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
12438
12439 return 1;
12440}
12441
f504f079
DE
12442/* Set the mark field in CU and in every other compilation unit in the
12443 cache that we must keep because we are keeping CU. */
12444
ae038cb0
DJ
12445static void
12446dwarf2_mark (struct dwarf2_cu *cu)
12447{
12448 if (cu->mark)
12449 return;
12450 cu->mark = 1;
10b3939b
DJ
12451 if (cu->dependencies != NULL)
12452 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
12453}
12454
12455static void
12456dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
12457{
12458 while (per_cu)
12459 {
12460 per_cu->cu->mark = 0;
12461 per_cu = per_cu->cu->read_in_chain;
12462 }
72bf9492
DJ
12463}
12464
72bf9492
DJ
12465/* Trivial hash function for partial_die_info: the hash value of a DIE
12466 is its offset in .debug_info for this objfile. */
12467
12468static hashval_t
12469partial_die_hash (const void *item)
12470{
12471 const struct partial_die_info *part_die = item;
9a619af0 12472
72bf9492
DJ
12473 return part_die->offset;
12474}
12475
12476/* Trivial comparison function for partial_die_info structures: two DIEs
12477 are equal if they have the same offset. */
12478
12479static int
12480partial_die_eq (const void *item_lhs, const void *item_rhs)
12481{
12482 const struct partial_die_info *part_die_lhs = item_lhs;
12483 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 12484
72bf9492
DJ
12485 return part_die_lhs->offset == part_die_rhs->offset;
12486}
12487
ae038cb0
DJ
12488static struct cmd_list_element *set_dwarf2_cmdlist;
12489static struct cmd_list_element *show_dwarf2_cmdlist;
12490
12491static void
12492set_dwarf2_cmd (char *args, int from_tty)
12493{
12494 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
12495}
12496
12497static void
12498show_dwarf2_cmd (char *args, int from_tty)
6e70227d 12499{
ae038cb0
DJ
12500 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
12501}
12502
dce234bc
PP
12503/* If section described by INFO was mmapped, munmap it now. */
12504
12505static void
12506munmap_section_buffer (struct dwarf2_section_info *info)
12507{
12508 if (info->was_mmapped)
12509 {
12510#ifdef HAVE_MMAP
12511 intptr_t begin = (intptr_t) info->buffer;
12512 intptr_t map_begin = begin & ~(pagesize - 1);
12513 size_t map_length = info->size + begin - map_begin;
9a619af0 12514
dce234bc
PP
12515 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
12516#else
12517 /* Without HAVE_MMAP, we should never be here to begin with. */
12518 gdb_assert (0);
12519#endif
12520 }
12521}
12522
12523/* munmap debug sections for OBJFILE, if necessary. */
12524
12525static void
c1bd65d0 12526dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
12527{
12528 struct dwarf2_per_objfile *data = d;
9a619af0 12529
dce234bc
PP
12530 munmap_section_buffer (&data->info);
12531 munmap_section_buffer (&data->abbrev);
12532 munmap_section_buffer (&data->line);
12533 munmap_section_buffer (&data->str);
12534 munmap_section_buffer (&data->macinfo);
12535 munmap_section_buffer (&data->ranges);
12536 munmap_section_buffer (&data->loc);
12537 munmap_section_buffer (&data->frame);
12538 munmap_section_buffer (&data->eh_frame);
12539}
12540
9eae7c52
TT
12541int dwarf2_always_disassemble;
12542
12543static void
12544show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
12545 struct cmd_list_element *c, const char *value)
12546{
12547 fprintf_filtered (file, _("\
12548Whether to always disassemble DWARF expressions is %s.\n"),
12549 value);
12550}
12551
6502dd73
DJ
12552void _initialize_dwarf2_read (void);
12553
12554void
12555_initialize_dwarf2_read (void)
12556{
dce234bc 12557 dwarf2_objfile_data_key
c1bd65d0 12558 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 12559
1bedd215
AC
12560 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
12561Set DWARF 2 specific variables.\n\
12562Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12563 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
12564 0/*allow-unknown*/, &maintenance_set_cmdlist);
12565
1bedd215
AC
12566 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
12567Show DWARF 2 specific variables\n\
12568Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12569 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
12570 0/*allow-unknown*/, &maintenance_show_cmdlist);
12571
12572 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
12573 &dwarf2_max_cache_age, _("\
12574Set the upper bound on the age of cached dwarf2 compilation units."), _("\
12575Show the upper bound on the age of cached dwarf2 compilation units."), _("\
12576A higher limit means that cached compilation units will be stored\n\
12577in memory longer, and more total memory will be used. Zero disables\n\
12578caching, which can slow down startup."),
2c5b56ce 12579 NULL,
920d2a44 12580 show_dwarf2_max_cache_age,
2c5b56ce 12581 &set_dwarf2_cmdlist,
ae038cb0 12582 &show_dwarf2_cmdlist);
d97bc12b 12583
9eae7c52
TT
12584 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
12585 &dwarf2_always_disassemble, _("\
12586Set whether `info address' always disassembles DWARF expressions."), _("\
12587Show whether `info address' always disassembles DWARF expressions."), _("\
12588When enabled, DWARF expressions are always printed in an assembly-like\n\
12589syntax. When disabled, expressions will be printed in a more\n\
12590conversational style, when possible."),
12591 NULL,
12592 show_dwarf2_always_disassemble,
12593 &set_dwarf2_cmdlist,
12594 &show_dwarf2_cmdlist);
12595
d97bc12b
DE
12596 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12597Set debugging of the dwarf2 DIE reader."), _("\
12598Show debugging of the dwarf2 DIE reader."), _("\
12599When enabled (non-zero), DIEs are dumped after they are read in.\n\
12600The value is the maximum depth to print."),
12601 NULL,
12602 NULL,
12603 &setdebuglist, &showdebuglist);
6502dd73 12604}
This page took 1.87214 seconds and 4 git commands to generate.