src-release: Fix VER computation for TOOL=gdb
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
28e7fd62 3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
4c2df51b 72
c906108c
SS
73#include <fcntl.h>
74#include "gdb_string.h"
4bdf3d34 75#include "gdb_assert.h"
c906108c 76#include <sys/types.h>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
45cfd468
DE
81/* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83static int dwarf2_read_debug = 0;
84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
ccce17b0 86static unsigned int dwarf2_die_debug = 0;
d97bc12b 87
900e11f9
JK
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
481860b3 91/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 92static int use_deprecated_index_sections = 0;
481860b3 93
6502dd73
DJ
94static const struct objfile_data *dwarf2_objfile_data_key;
95
f1e6e072
TT
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
dce234bc
PP
103struct dwarf2_section_info
104{
105 asection *asection;
d521ce57 106 const gdb_byte *buffer;
dce234bc 107 bfd_size_type size;
be391dca
TT
108 /* True if we have tried to read this section. */
109 int readin;
dce234bc
PP
110};
111
8b70b953
TT
112typedef struct dwarf2_section_info dwarf2_section_info_def;
113DEF_VEC_O (dwarf2_section_info_def);
114
9291a0cd
TT
115/* All offsets in the index are of this type. It must be
116 architecture-independent. */
117typedef uint32_t offset_type;
118
119DEF_VEC_I (offset_type);
120
156942c7
DE
121/* Ensure only legit values are used. */
122#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128/* Ensure only legit values are used. */
129#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136/* Ensure we don't use more than the alloted nuber of bits for the CU. */
137#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
9291a0cd
TT
143/* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145struct mapped_index
146{
559a7a62
JK
147 /* Index data format version. */
148 int version;
149
9291a0cd
TT
150 /* The total length of the buffer. */
151 off_t total_size;
b11b1f88 152
9291a0cd
TT
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
b11b1f88 155
9291a0cd
TT
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
b11b1f88 158
3876f04e
DE
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
b11b1f88 161
9291a0cd 162 /* Size in slots, each slot is 2 offset_types. */
3876f04e 163 offset_type symbol_table_slots;
b11b1f88 164
9291a0cd
TT
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167};
168
95554aad
TT
169typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170DEF_VEC_P (dwarf2_per_cu_ptr);
171
9cdd5dbd
DE
172/* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
6502dd73
DJ
175struct dwarf2_per_objfile
176{
dce234bc
PP
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
dce234bc
PP
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
cf2c3c16 182 struct dwarf2_section_info macro;
dce234bc
PP
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
3019eac3 185 struct dwarf2_section_info addr;
dce234bc
PP
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
9291a0cd 188 struct dwarf2_section_info gdb_index;
ae038cb0 189
8b70b953
TT
190 VEC (dwarf2_section_info_def) *types;
191
be391dca
TT
192 /* Back link. */
193 struct objfile *objfile;
194
d467dd73 195 /* Table of all the compilation units. This is used to locate
10b3939b 196 the target compilation unit of a particular reference. */
ae038cb0
DJ
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
1fd400ff 202 /* The number of .debug_types-related CUs. */
d467dd73 203 int n_type_units;
1fd400ff 204
a2ce51a0
DE
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
b4dd5633 207 struct signatured_type **all_type_units;
1fd400ff 208
f4dc4d17
DE
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
72dca2f5 219
348e048f
DE
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
f4dc4d17
DE
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
3019eac3
DE
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
80626a55
DE
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
36586728
TT
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
72dca2f5
FR
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
9291a0cd 255
ae2de4f8
DE
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
258 unsigned char using_index;
259
ae2de4f8 260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 261 struct mapped_index *index_table;
98bfdba5 262
7b9f3c50 263 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
7b9f3c50
DE
270 htab_t quick_file_names_table;
271
98bfdba5
PA
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
673bfd45 275
dee91e82 276 /* Table mapping type DIEs to their struct type *.
673bfd45 277 This is NULL if not allocated yet.
02142a6c 278 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 279 htab_t die_type_hash;
95554aad
TT
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
283};
284
285static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 286
251d32d9 287/* Default names of the debugging sections. */
c906108c 288
233a11ab
CS
289/* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
9cdd5dbd
DE
292static const struct dwarf2_debug_sections dwarf2_elf_names =
293{
251d32d9
TG
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 299 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
3019eac3 303 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
24d3216f
TT
306 { ".gdb_index", ".zgdb_index" },
307 23
251d32d9 308};
c906108c 309
80626a55 310/* List of DWO/DWP sections. */
3019eac3 311
80626a55 312static const struct dwop_section_names
3019eac3
DE
313{
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
09262596
DE
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
3019eac3
DE
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
80626a55
DE
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
3019eac3 325}
80626a55 326dwop_section_names =
3019eac3
DE
327{
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
339};
340
c906108c
SS
341/* local data types */
342
107d2387
AC
343/* The data in a compilation unit header, after target2host
344 translation, looks like this. */
c906108c 345struct comp_unit_head
a738430d 346{
c764a876 347 unsigned int length;
a738430d 348 short version;
a738430d
MK
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
b64f50a1 351 sect_offset abbrev_offset;
57349743 352
a738430d
MK
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
57349743 355
a738430d
MK
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
57349743 358
a738430d
MK
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
b64f50a1 361 sect_offset offset;
57349743 362
d00adf39
DE
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
b64f50a1 365 cu_offset first_die_offset;
a738430d 366};
c906108c 367
3da10d80
KS
368/* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370struct delayed_method_info
371{
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386};
387
388typedef struct delayed_method_info delayed_method_info;
389DEF_VEC_O (delayed_method_info);
390
e7c27a73
DJ
391/* Internal state when decoding a particular compilation unit. */
392struct dwarf2_cu
393{
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
d00adf39 397 /* The header of the compilation unit. */
e7c27a73 398 struct comp_unit_head header;
e142c38c 399
d00adf39
DE
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
e142c38c
DJ
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
b0f35d58
DL
410 const char *producer;
411
e142c38c
DJ
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
433df2d4
DE
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
72bf9492 427
b64f50a1
JK
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
ae038cb0
DJ
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
b64f50a1
JK
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
51545339 450 htab_t die_hash;
10b3939b
DJ
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
cb1df416
DJ
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
3da10d80
KS
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
96408a79
SA
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
034e5797
DE
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
3019eac3
DE
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
2e3cf129
DE
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
496 ULONGEST ranges_base;
497
ae038cb0
DJ
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
8be455d7
JK
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 505 unsigned int has_loclist : 1;
ba919b58 506
1b80a9fa
JK
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
ba919b58
TT
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 513 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 514 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
521};
522
10b3939b
DJ
523/* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
28dee7f5 525 read_symtab_private field of the psymtab. */
10b3939b 526
ae038cb0
DJ
527struct dwarf2_per_cu_data
528{
36586728 529 /* The start offset and length of this compilation unit.
45452591 530 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
b64f50a1 534 sect_offset offset;
36586728 535 unsigned int length;
ae038cb0
DJ
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
c764a876 539 unsigned int queued : 1;
ae038cb0 540
0d99eb77
DE
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
0186c6a7
DE
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
3019eac3
DE
550 unsigned int is_debug_types : 1;
551
36586728
TT
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
a2ce51a0
DE
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
3019eac3
DE
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
8a0459fd 564 struct dwarf2_section_info *section;
348e048f 565
17ea53c3
JK
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
ae038cb0 568 struct dwarf2_cu *cu;
1c379e20 569
9cdd5dbd
DE
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
95554aad 580 or NULL for unread partial units. */
9291a0cd
TT
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
95554aad 586
796a7ff8
DE
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
605};
606
348e048f
DE
607/* Entry in the signatured_types hash table. */
608
609struct signatured_type
610{
42e7ad6c 611 /* The "per_cu" object of this type.
ac9ec31b 612 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
3019eac3 617 /* The type's signature. */
348e048f
DE
618 ULONGEST signature;
619
3019eac3 620 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
0186c6a7
DE
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
ac9ec31b
DE
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
a2ce51a0
DE
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
348e048f
DE
644};
645
0186c6a7
DE
646typedef struct signatured_type *sig_type_ptr;
647DEF_VEC_P (sig_type_ptr);
648
094b34ac
DE
649/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652struct stmt_list_hash
653{
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659};
660
f4dc4d17
DE
661/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664struct type_unit_group
665{
0186c6a7 666 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
8a0459fd 671#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
672 struct dwarf2_per_cu_data per_cu;
673
0186c6a7
DE
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
678
679 /* The primary symtab.
094b34ac
DE
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
682 struct symtab *primary_symtab;
683
094b34ac
DE
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
f4dc4d17
DE
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700};
701
80626a55 702/* These sections are what may appear in a DWO file. */
3019eac3
DE
703
704struct dwo_sections
705{
706 struct dwarf2_section_info abbrev;
3019eac3
DE
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
09262596
DE
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
3019eac3
DE
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
80626a55
DE
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
3019eac3
DE
715 VEC (dwarf2_section_info_def) *types;
716};
717
c88ee1f0 718/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
719
720struct dwo_unit
721{
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 731 struct dwarf2_section_info *section;
3019eac3
DE
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739};
740
80626a55
DE
741/* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
3019eac3
DE
744
745struct dwo_file
746{
0ac5b59e 747 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
0ac5b59e
DE
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
3019eac3 755
80626a55
DE
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
3019eac3
DE
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
19c3d4c9
DE
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
3019eac3
DE
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773};
774
80626a55
DE
775/* These sections are what may appear in a DWP file. */
776
777struct dwp_sections
778{
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784};
785
786/* These sections are what may appear in a virtual DWO file. */
787
788struct virtual_dwo_sections
789{
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 797 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
798 struct dwarf2_section_info info_or_types;
799};
800
801/* Contents of DWP hash tables. */
802
803struct dwp_hash_table
804{
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807};
808
809/* Data for one DWP file. */
810
811struct dwp_file
812{
813 /* Name of the file. */
814 const char *name;
815
93417882 816 /* The bfd. */
80626a55
DE
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834};
835
36586728
TT
836/* This represents a '.dwz' file. */
837
838struct dwz_file
839{
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
2ec9a5e0 846 struct dwarf2_section_info gdb_index;
36586728
TT
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850};
851
0963b4bd
MS
852/* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
dee91e82 855 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
856
857struct die_reader_specs
858{
dee91e82 859 /* die_section->asection->owner. */
93311388
DE
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
80626a55 865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
866 struct dwo_file *dwo_file;
867
dee91e82 868 /* The section the die comes from.
3019eac3 869 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
d521ce57 873 const gdb_byte *buffer;
f664829e
DE
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
a2ce51a0
DE
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
93311388
DE
880};
881
fd820528 882/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 883typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 884 const gdb_byte *info_ptr,
dee91e82
DE
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
debd256d
JB
889/* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892struct line_header
893{
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
2dc7f7b3 898 unsigned char maximum_ops_per_instruction;
debd256d
JB
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
d521ce57 915 const char **include_dirs;
debd256d
JB
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
c906108c 922 {
d521ce57 923 const char *name;
debd256d
JB
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
aaa75496 927 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 928 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
929 } *file_names;
930
931 /* The start and end of the statement program following this
6502dd73 932 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 933 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 934};
c906108c
SS
935
936/* When we construct a partial symbol table entry we only
0963b4bd 937 need this much information. */
c906108c
SS
938struct partial_die_info
939 {
72bf9492 940 /* Offset of this DIE. */
b64f50a1 941 sect_offset offset;
72bf9492
DJ
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
72bf9492
DJ
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
481860b3 953 unsigned int may_be_inlined : 1;
72bf9492
DJ
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
fa4028e9
JB
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
98bfdba5
PA
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
abc72ce4
DE
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
36586728
TT
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
72bf9492 974 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 975 sometimes a default name for unnamed DIEs. */
15d034d0 976 const char *name;
72bf9492 977
abc72ce4
DE
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
72bf9492
DJ
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
15d034d0 984 const char *scope;
72bf9492 985
95554aad
TT
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
72bf9492
DJ
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
72bf9492 999
93311388 1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1001 DW_AT_sibling, if any. */
abc72ce4
DE
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1004 const gdb_byte *sibling;
72bf9492
DJ
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
b64f50a1 1009 sect_offset spec_offset;
72bf9492
DJ
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1014 };
1015
0963b4bd 1016/* This data structure holds the information of an abbrev. */
c906108c
SS
1017struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027struct attr_abbrev
1028 {
9d25dd43
DE
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1031 };
1032
433df2d4
DE
1033/* Size of abbrev_table.abbrev_hash_table. */
1034#define ABBREV_HASH_SIZE 121
1035
1036/* Top level data structure to contain an abbreviation table. */
1037
1038struct abbrev_table
1039{
f4dc4d17
DE
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
433df2d4
DE
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052};
1053
0963b4bd 1054/* Attributes have a name and a value. */
b60c80d6
DJ
1055struct attribute
1056 {
9d25dd43 1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
b60c80d6
DJ
1065 union
1066 {
15d034d0 1067 const char *str;
b60c80d6 1068 struct dwarf_block *blk;
43bbcdc2
PH
1069 ULONGEST unsnd;
1070 LONGEST snd;
b60c80d6 1071 CORE_ADDR addr;
ac9ec31b 1072 ULONGEST signature;
b60c80d6
DJ
1073 }
1074 u;
1075 };
1076
0963b4bd 1077/* This data structure holds a complete die structure. */
c906108c
SS
1078struct die_info
1079 {
76815b17
DE
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
98bfdba5
PA
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
76815b17
DE
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
93311388 1093 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1094 sect_offset offset;
78ba4af6
JB
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
4950bc1c 1099 together via their SIBLING fields. */
639d11d3
DC
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
c906108c 1103
b60c80d6
DJ
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
c906108c
SS
1108 };
1109
0963b4bd 1110/* Get at parts of an attribute structure. */
c906108c
SS
1111
1112#define DW_STRING(attr) ((attr)->u.str)
8285870a 1113#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1114#define DW_UNSND(attr) ((attr)->u.unsnd)
1115#define DW_BLOCK(attr) ((attr)->u.blk)
1116#define DW_SND(attr) ((attr)->u.snd)
1117#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1118#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1119
0963b4bd 1120/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1121struct dwarf_block
1122 {
56eb65bd 1123 size_t size;
1d6edc3c
JK
1124
1125 /* Valid only if SIZE is not zero. */
d521ce57 1126 const gdb_byte *data;
c906108c
SS
1127 };
1128
c906108c
SS
1129#ifndef ATTR_ALLOC_CHUNK
1130#define ATTR_ALLOC_CHUNK 4
1131#endif
1132
c906108c
SS
1133/* Allocate fields for structs, unions and enums in this size. */
1134#ifndef DW_FIELD_ALLOC_CHUNK
1135#define DW_FIELD_ALLOC_CHUNK 4
1136#endif
1137
c906108c
SS
1138/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141static int bits_per_byte = 8;
1142
1143/* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146struct field_info
c5aa993b 1147 {
0963b4bd 1148 /* List of data member and baseclasses fields. */
c5aa993b
JM
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
7d0ccb61 1156 *fields, *baseclasses;
c906108c 1157
7d0ccb61 1158 /* Number of fields (including baseclasses). */
c5aa993b 1159 int nfields;
c906108c 1160
c5aa993b
JM
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
c906108c 1163
c5aa993b
JM
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
c906108c 1166
c5aa993b
JM
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
c906108c 1175
c5aa993b
JM
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
15d034d0 1181 const char *name;
c5aa993b
JM
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
c906108c 1186
c5aa993b
JM
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
98751a41
JK
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
c5aa993b 1199 };
c906108c 1200
10b3939b
DJ
1201/* One item on the queue of compilation units to read in full symbols
1202 for. */
1203struct dwarf2_queue_item
1204{
1205 struct dwarf2_per_cu_data *per_cu;
95554aad 1206 enum language pretend_language;
10b3939b
DJ
1207 struct dwarf2_queue_item *next;
1208};
1209
1210/* The current queue. */
1211static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
ae038cb0
DJ
1213/* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218static int dwarf2_max_cache_age = 5;
920d2a44
AC
1219static void
1220show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222{
3e43a32a
MS
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1225 value);
1226}
1227
ae038cb0 1228
0963b4bd 1229/* Various complaints about symbol reading that don't abort the process. */
c906108c 1230
4d3c2250
KB
1231static void
1232dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 1233{
4d3c2250 1234 complaint (&symfile_complaints,
e2e0b3e5 1235 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
1236}
1237
25e43795
DJ
1238static void
1239dwarf2_debug_line_missing_file_complaint (void)
1240{
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243}
1244
59205f5a
JB
1245static void
1246dwarf2_debug_line_missing_end_sequence_complaint (void)
1247{
1248 complaint (&symfile_complaints,
3e43a32a
MS
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
59205f5a
JB
1251}
1252
4d3c2250
KB
1253static void
1254dwarf2_complex_location_expr_complaint (void)
2e276125 1255{
e2e0b3e5 1256 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
1257}
1258
4d3c2250
KB
1259static void
1260dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
2e276125 1262{
4d3c2250 1263 complaint (&symfile_complaints,
3e43a32a
MS
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
4d3c2250
KB
1266}
1267
1268static void
f664829e 1269dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 1270{
4d3c2250 1271 complaint (&symfile_complaints,
f664829e
DE
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
4d3c2250
KB
1276}
1277
1278static void
1279dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 1280{
4d3c2250 1281 complaint (&symfile_complaints,
3e43a32a
MS
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
4d3c2250
KB
1284 arg1);
1285}
1286
1287static void
1288dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1289{
4d3c2250 1290 complaint (&symfile_complaints,
3e43a32a
MS
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
4d3c2250 1293}
c906108c 1294
c906108c
SS
1295/* local function prototypes */
1296
4efb68b1 1297static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1298
918dd910
JK
1299static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
0018ea6f
DE
1302static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
c67a9c90 1305static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1306
72bf9492
DJ
1307static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1309 int, struct dwarf2_cu *);
c906108c 1310
72bf9492
DJ
1311static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
63d06c5c 1313
72bf9492
DJ
1314static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1316 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1317
5d7cb8df
JK
1318static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
72bf9492
DJ
1322static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
91c24f0a 1324
bc30ff58
JB
1325static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1327 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1328
257e7a09
YQ
1329static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
c906108c 1331
a14ed312 1332static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1333
433df2d4
DE
1334static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340static void abbrev_table_free (struct abbrev_table *);
1341
f4dc4d17
DE
1342static void abbrev_table_free_cleanup (void *);
1343
dee91e82
DE
1344static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
c906108c 1346
f3dd6933 1347static void dwarf2_free_abbrev_table (void *);
c906108c 1348
d521ce57 1349static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1350
dee91e82 1351static struct partial_die_info *load_partial_dies
d521ce57 1352 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1353
d521ce57
TT
1354static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
c906108c 1359
36586728 1360static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1361 struct dwarf2_cu *);
72bf9492
DJ
1362
1363static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
d521ce57
TT
1366static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
a8329558 1369
a1855c1d 1370static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1371
a1855c1d 1372static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1373
a1855c1d 1374static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1375
a1855c1d 1376static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1377
a1855c1d 1378static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1379
d521ce57 1380static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1381 unsigned int *);
c906108c 1382
d521ce57 1383static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1384
1385static LONGEST read_checked_initial_length_and_offset
d521ce57 1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1387 unsigned int *, unsigned int *);
613e1657 1388
d521ce57
TT
1389static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
c764a876
DE
1391 unsigned int *);
1392
d521ce57 1393static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1394
f4dc4d17
DE
1395static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
d521ce57 1398static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1399
d521ce57 1400static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1401
d521ce57
TT
1402static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
4bdf3d34 1405
d521ce57 1406static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1407
d521ce57 1408static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1409
d521ce57 1410static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1411
d521ce57
TT
1412static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
3019eac3
DE
1414 unsigned int *);
1415
d521ce57
TT
1416static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1418
e142c38c 1419static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1420
e142c38c
DJ
1421static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
c906108c 1423
348e048f 1424static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1425 unsigned int);
348e048f 1426
05cf31d1
JB
1427static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
e142c38c 1430static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1431
e142c38c 1432static struct die_info *die_specification (struct die_info *die,
f2f0e013 1433 struct dwarf2_cu **);
63d06c5c 1434
debd256d
JB
1435static void free_line_header (struct line_header *lh);
1436
3019eac3
DE
1437static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
debd256d 1439
f3f5162e
DE
1440static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
c906108c 1443
d521ce57 1444static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1445
f4dc4d17 1446static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1447 const char *, const char *, CORE_ADDR);
f4dc4d17 1448
a14ed312 1449static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1450 struct dwarf2_cu *);
c906108c 1451
34eaf542
TT
1452static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
a14ed312 1455static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1456 struct dwarf2_cu *);
c906108c 1457
98bfdba5
PA
1458static void dwarf2_const_value_attr (struct attribute *attr,
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
12df843f 1462 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1463 const gdb_byte **bytes,
98bfdba5 1464 struct dwarf2_locexpr_baton **baton);
2df3850c 1465
e7c27a73 1466static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1467
b4ba55a1
JB
1468static int need_gnat_info (struct dwarf2_cu *);
1469
3e43a32a
MS
1470static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
b4ba55a1
JB
1472
1473static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
e7c27a73
DJ
1476static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
c906108c 1478
673bfd45
DE
1479static struct type *lookup_die_type (struct die_info *, struct attribute *,
1480 struct dwarf2_cu *);
c906108c 1481
f792889a 1482static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1483
673bfd45
DE
1484static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
0d5cff50 1486static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1487
6e70227d 1488static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
63d06c5c 1491
e7c27a73 1492static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1493
348e048f
DE
1494static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
e7c27a73 1496static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1497
e7c27a73 1498static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1499
96408a79
SA
1500static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
ff013f42
JK
1502static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
a14ed312 1505static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
c906108c 1508
fae299cd
DC
1509static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
801e3a5b
JB
1513static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
a14ed312 1516static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1517 struct dwarf2_cu *);
c906108c 1518
a14ed312 1519static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1520 struct type *, struct dwarf2_cu *);
c906108c 1521
a14ed312 1522static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1523 struct die_info *, struct type *,
e7c27a73 1524 struct dwarf2_cu *);
c906108c 1525
a14ed312 1526static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1527 struct type *,
1528 struct dwarf2_cu *);
c906108c 1529
134d01f1 1530static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1531
e7c27a73 1532static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1533
e7c27a73 1534static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1535
5d7cb8df
JK
1536static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
27aa8d6a
SW
1538static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
f55ee35c
JK
1540static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
38d518c9 1543static const char *namespace_name (struct die_info *die,
e142c38c 1544 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1545
134d01f1 1546static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1547
e7c27a73 1548static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1549
6e70227d 1550static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1551 struct dwarf2_cu *);
1552
bf6af496 1553static struct die_info *read_die_and_siblings_1
d521ce57 1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1555 struct die_info *);
639d11d3 1556
dee91e82 1557static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
639d11d3
DC
1560 struct die_info *parent);
1561
d521ce57
TT
1562static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
3019eac3 1565
d521ce57
TT
1566static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
93311388 1569
e7c27a73 1570static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1571
15d034d0
TT
1572static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
71c25dea 1574
15d034d0 1575static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1576
15d034d0 1577static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
ca69b9e6
DE
1581static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
e142c38c 1584static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1585 struct dwarf2_cu **);
9219021c 1586
f39c6ffd 1587static const char *dwarf_tag_name (unsigned int);
c906108c 1588
f39c6ffd 1589static const char *dwarf_attr_name (unsigned int);
c906108c 1590
f39c6ffd 1591static const char *dwarf_form_name (unsigned int);
c906108c 1592
a14ed312 1593static char *dwarf_bool_name (unsigned int);
c906108c 1594
f39c6ffd 1595static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1596
f9aca02d 1597static struct die_info *sibling_die (struct die_info *);
c906108c 1598
d97bc12b
DE
1599static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601static void dump_die_for_error (struct die_info *);
1602
1603static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
c906108c 1605
d97bc12b 1606/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1607
51545339 1608static void store_in_ref_table (struct die_info *,
10b3939b 1609 struct dwarf2_cu *);
c906108c 1610
93311388
DE
1611static int is_ref_attr (struct attribute *);
1612
b64f50a1 1613static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1614
43bbcdc2 1615static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1616
348e048f
DE
1617static struct die_info *follow_die_ref_or_sig (struct die_info *,
1618 struct attribute *,
1619 struct dwarf2_cu **);
1620
10b3939b
DJ
1621static struct die_info *follow_die_ref (struct die_info *,
1622 struct attribute *,
f2f0e013 1623 struct dwarf2_cu **);
c906108c 1624
348e048f
DE
1625static struct die_info *follow_die_sig (struct die_info *,
1626 struct attribute *,
1627 struct dwarf2_cu **);
1628
ac9ec31b
DE
1629static struct type *get_signatured_type (struct die_info *, ULONGEST,
1630 struct dwarf2_cu *);
1631
1632static struct type *get_DW_AT_signature_type (struct die_info *,
1633 struct attribute *,
1634 struct dwarf2_cu *);
1635
e5fe5e75 1636static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1637
52dc124a 1638static void read_signatured_type (struct signatured_type *);
348e048f 1639
f4dc4d17 1640static struct type_unit_group *get_type_unit_group
094b34ac 1641 (struct dwarf2_cu *, struct attribute *);
f4dc4d17
DE
1642
1643static void build_type_unit_groups (die_reader_func_ftype *, void *);
1644
c906108c
SS
1645/* memory allocation interface */
1646
7b5a2f43 1647static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1648
b60c80d6 1649static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1650
09262596 1651static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1652 const char *, int);
2e276125 1653
8e19ed76
PS
1654static int attr_form_is_block (struct attribute *);
1655
3690dd37
JB
1656static int attr_form_is_section_offset (struct attribute *);
1657
1658static int attr_form_is_constant (struct attribute *);
1659
8cf6f0b1
TT
1660static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
1662 struct attribute *attr);
1663
93e7bd98
DJ
1664static void dwarf2_symbol_mark_computed (struct attribute *attr,
1665 struct symbol *sym,
f1e6e072
TT
1666 struct dwarf2_cu *cu,
1667 int is_block);
4c2df51b 1668
d521ce57
TT
1669static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
4bb7a0a7 1672
72bf9492
DJ
1673static void free_stack_comp_unit (void *);
1674
72bf9492
DJ
1675static hashval_t partial_die_hash (const void *item);
1676
1677static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
ae038cb0 1679static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1681
9816fde3 1682static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1683 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1684
1685static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
93311388 1688
68dc6402 1689static void free_heap_comp_unit (void *);
ae038cb0
DJ
1690
1691static void free_cached_comp_units (void *);
1692
1693static void age_cached_comp_units (void);
1694
dee91e82 1695static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1696
f792889a
DJ
1697static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1c379e20 1699
ae038cb0
DJ
1700static void create_all_comp_units (struct objfile *);
1701
0e50663e 1702static int create_all_type_units (struct objfile *);
1fd400ff 1703
95554aad
TT
1704static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
10b3939b 1706
95554aad
TT
1707static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
10b3939b 1709
f4dc4d17
DE
1710static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
10b3939b
DJ
1713static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
ae038cb0
DJ
1716static void dwarf2_mark (struct dwarf2_cu *);
1717
1718static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
b64f50a1 1720static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1721 struct dwarf2_per_cu_data *);
673bfd45 1722
f792889a 1723static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1724
9291a0cd
TT
1725static void dwarf2_release_queue (void *dummy);
1726
95554aad
TT
1727static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
9291a0cd 1733
a0f42c21 1734static void process_queue (void);
9291a0cd
TT
1735
1736static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
15d034d0 1738 const char **name, const char **comp_dir);
9291a0cd
TT
1739
1740static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
d521ce57 1743static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
d521ce57 1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1747 int is_debug_types_section);
1748
fd820528 1749static void init_cutu_and_read_dies
f4dc4d17
DE
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
3019eac3
DE
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
dee91e82
DE
1754static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1757
673bfd45 1758static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1759
3019eac3
DE
1760static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
a2ce51a0
DE
1762static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766static struct dwp_file *get_dwp_file (void);
1767
3019eac3 1768static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1770
1771static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1772 (struct signatured_type *, const char *, const char *);
3019eac3
DE
1773
1774static void free_dwo_file_cleanup (void *);
1775
95554aad
TT
1776static void process_cu_includes (void);
1777
1b80a9fa
JK
1778static void check_producer (struct dwarf2_cu *cu);
1779
9291a0cd
TT
1780#if WORDS_BIGENDIAN
1781
1782/* Convert VALUE between big- and little-endian. */
1783static offset_type
1784byte_swap (offset_type value)
1785{
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793}
1794
1795#define MAYBE_SWAP(V) byte_swap (V)
1796
1797#else
1798#define MAYBE_SWAP(V) (V)
1799#endif /* WORDS_BIGENDIAN */
1800
1801/* The suffix for an index file. */
1802#define INDEX_SUFFIX ".gdb-index"
1803
c906108c 1804/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
c906108c
SS
1808
1809int
251d32d9
TG
1810dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
c906108c 1812{
be391dca
TT
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1819
be391dca
TT
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
6502dd73 1823
251d32d9
TG
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
be391dca
TT
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1830}
1831
251d32d9
TG
1832/* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
233a11ab
CS
1834
1835static int
251d32d9
TG
1836section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
233a11ab 1838{
251d32d9
TG
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
233a11ab
CS
1846}
1847
c906108c
SS
1848/* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852static void
251d32d9 1853dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1854{
251d32d9 1855 const struct dwarf2_debug_sections *names;
dc7650b8 1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
dc7650b8
JK
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
c906108c 1867 {
dce234bc
PP
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1870 }
251d32d9 1871 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1872 {
dce234bc
PP
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1875 }
251d32d9 1876 else if (section_is_p (sectp->name, &names->line))
c906108c 1877 {
dce234bc
PP
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1880 }
251d32d9 1881 else if (section_is_p (sectp->name, &names->loc))
c906108c 1882 {
dce234bc
PP
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1885 }
251d32d9 1886 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1887 {
dce234bc
PP
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1890 }
cf2c3c16
TT
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
251d32d9 1896 else if (section_is_p (sectp->name, &names->str))
c906108c 1897 {
dce234bc
PP
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1900 }
3019eac3
DE
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
251d32d9 1906 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1907 {
dce234bc
PP
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1910 }
251d32d9 1911 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1912 {
dc7650b8
JK
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 1915 }
251d32d9 1916 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1917 {
dce234bc
PP
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1920 }
251d32d9 1921 else if (section_is_p (sectp->name, &names->types))
348e048f 1922 {
8b70b953
TT
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
348e048f 1931 }
251d32d9 1932 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
dce234bc 1937
72dca2f5
FR
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1941}
1942
fceca515
DE
1943/* A helper function that decides whether a section is empty,
1944 or not present. */
9e0ac564
TT
1945
1946static int
1947dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948{
1949 return info->asection == NULL || info->size == 0;
1950}
1951
3019eac3
DE
1952/* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
dce234bc 1956 If the section is compressed, uncompress it before returning. */
c906108c 1957
dce234bc
PP
1958static void
1959dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1960{
dce234bc 1961 asection *sectp = info->asection;
3019eac3 1962 bfd *abfd;
dce234bc
PP
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
c906108c 1965
be391dca
TT
1966 if (info->readin)
1967 return;
dce234bc 1968 info->buffer = NULL;
be391dca 1969 info->readin = 1;
188dd5d6 1970
9e0ac564 1971 if (dwarf2_section_empty_p (info))
dce234bc 1972 return;
c906108c 1973
3019eac3
DE
1974 abfd = sectp->owner;
1975
4bf44c1c
TT
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 1979 {
d521ce57 1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 1981 return;
dce234bc 1982 }
dce234bc 1983
4bf44c1c
TT
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
dce234bc
PP
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
ac8035ab 1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002}
2003
9e0ac564
TT
2004/* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011static bfd_size_type
2012dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014{
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018}
2019
dce234bc 2020/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2021 SECTION_NAME. */
af34e669 2022
dce234bc 2023void
3017a003
TG
2024dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
d521ce57 2026 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2027 bfd_size_type *sizep)
2028{
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
a3b2a86b
TT
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
3017a003
TG
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
dce234bc 2053
9e0ac564 2054 dwarf2_read_section (objfile, info);
dce234bc
PP
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059}
2060
36586728
TT
2061/* A helper function to find the sections for a .dwz file. */
2062
2063static void
2064locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065{
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2ec9a5e0
TT
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
36586728
TT
2100}
2101
4db1a1dc
TT
2102/* Open the separate '.dwz' debug file, if needed. Return NULL if
2103 there is no .gnu_debugaltlink section in the file. Error if there
2104 is such a section but the file cannot be found. */
36586728
TT
2105
2106static struct dwz_file *
2107dwarf2_get_dwz_file (void)
2108{
4db1a1dc
TT
2109 bfd *dwz_bfd;
2110 char *data;
36586728
TT
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
4db1a1dc 2114 unsigned long buildid;
36586728
TT
2115
2116 if (dwarf2_per_objfile->dwz_file != NULL)
2117 return dwarf2_per_objfile->dwz_file;
2118
4db1a1dc
TT
2119 bfd_set_error (bfd_error_no_error);
2120 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2121 &buildid);
2122 if (data == NULL)
2123 {
2124 if (bfd_get_error () == bfd_error_no_error)
2125 return NULL;
2126 error (_("could not read '.gnu_debugaltlink' section: %s"),
2127 bfd_errmsg (bfd_get_error ()));
2128 }
36586728
TT
2129 cleanup = make_cleanup (xfree, data);
2130
f9d83a0b 2131 filename = (const char *) data;
36586728
TT
2132 if (!IS_ABSOLUTE_PATH (filename))
2133 {
2134 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2135 char *rel;
2136
2137 make_cleanup (xfree, abs);
2138 abs = ldirname (abs);
2139 make_cleanup (xfree, abs);
2140
2141 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2142 make_cleanup (xfree, rel);
2143 filename = rel;
2144 }
2145
2146 /* The format is just a NUL-terminated file name, followed by the
2147 build-id. For now, though, we ignore the build-id. */
2148 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2149 if (dwz_bfd == NULL)
2150 error (_("could not read '%s': %s"), filename,
2151 bfd_errmsg (bfd_get_error ()));
2152
2153 if (!bfd_check_format (dwz_bfd, bfd_object))
2154 {
2155 gdb_bfd_unref (dwz_bfd);
2156 error (_("file '%s' was not usable: %s"), filename,
2157 bfd_errmsg (bfd_get_error ()));
2158 }
2159
2160 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2161 struct dwz_file);
2162 result->dwz_bfd = dwz_bfd;
2163
2164 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2165
2166 do_cleanups (cleanup);
2167
8d2cc612 2168 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2169 return result;
2170}
9291a0cd 2171\f
7b9f3c50
DE
2172/* DWARF quick_symbols_functions support. */
2173
2174/* TUs can share .debug_line entries, and there can be a lot more TUs than
2175 unique line tables, so we maintain a separate table of all .debug_line
2176 derived entries to support the sharing.
2177 All the quick functions need is the list of file names. We discard the
2178 line_header when we're done and don't need to record it here. */
2179struct quick_file_names
2180{
094b34ac
DE
2181 /* The data used to construct the hash key. */
2182 struct stmt_list_hash hash;
7b9f3c50
DE
2183
2184 /* The number of entries in file_names, real_names. */
2185 unsigned int num_file_names;
2186
2187 /* The file names from the line table, after being run through
2188 file_full_name. */
2189 const char **file_names;
2190
2191 /* The file names from the line table after being run through
2192 gdb_realpath. These are computed lazily. */
2193 const char **real_names;
2194};
2195
2196/* When using the index (and thus not using psymtabs), each CU has an
2197 object of this type. This is used to hold information needed by
2198 the various "quick" methods. */
2199struct dwarf2_per_cu_quick_data
2200{
2201 /* The file table. This can be NULL if there was no file table
2202 or it's currently not read in.
2203 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2204 struct quick_file_names *file_names;
2205
2206 /* The corresponding symbol table. This is NULL if symbols for this
2207 CU have not yet been read. */
2208 struct symtab *symtab;
2209
2210 /* A temporary mark bit used when iterating over all CUs in
2211 expand_symtabs_matching. */
2212 unsigned int mark : 1;
2213
2214 /* True if we've tried to read the file table and found there isn't one.
2215 There will be no point in trying to read it again next time. */
2216 unsigned int no_file_data : 1;
2217};
2218
094b34ac
DE
2219/* Utility hash function for a stmt_list_hash. */
2220
2221static hashval_t
2222hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2223{
2224 hashval_t v = 0;
2225
2226 if (stmt_list_hash->dwo_unit != NULL)
2227 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2228 v += stmt_list_hash->line_offset.sect_off;
2229 return v;
2230}
2231
2232/* Utility equality function for a stmt_list_hash. */
2233
2234static int
2235eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2236 const struct stmt_list_hash *rhs)
2237{
2238 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2239 return 0;
2240 if (lhs->dwo_unit != NULL
2241 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2242 return 0;
2243
2244 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2245}
2246
7b9f3c50
DE
2247/* Hash function for a quick_file_names. */
2248
2249static hashval_t
2250hash_file_name_entry (const void *e)
2251{
2252 const struct quick_file_names *file_data = e;
2253
094b34ac 2254 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2255}
2256
2257/* Equality function for a quick_file_names. */
2258
2259static int
2260eq_file_name_entry (const void *a, const void *b)
2261{
2262 const struct quick_file_names *ea = a;
2263 const struct quick_file_names *eb = b;
2264
094b34ac 2265 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2266}
2267
2268/* Delete function for a quick_file_names. */
2269
2270static void
2271delete_file_name_entry (void *e)
2272{
2273 struct quick_file_names *file_data = e;
2274 int i;
2275
2276 for (i = 0; i < file_data->num_file_names; ++i)
2277 {
2278 xfree ((void*) file_data->file_names[i]);
2279 if (file_data->real_names)
2280 xfree ((void*) file_data->real_names[i]);
2281 }
2282
2283 /* The space for the struct itself lives on objfile_obstack,
2284 so we don't free it here. */
2285}
2286
2287/* Create a quick_file_names hash table. */
2288
2289static htab_t
2290create_quick_file_names_table (unsigned int nr_initial_entries)
2291{
2292 return htab_create_alloc (nr_initial_entries,
2293 hash_file_name_entry, eq_file_name_entry,
2294 delete_file_name_entry, xcalloc, xfree);
2295}
9291a0cd 2296
918dd910
JK
2297/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2298 have to be created afterwards. You should call age_cached_comp_units after
2299 processing PER_CU->CU. dw2_setup must have been already called. */
2300
2301static void
2302load_cu (struct dwarf2_per_cu_data *per_cu)
2303{
3019eac3 2304 if (per_cu->is_debug_types)
e5fe5e75 2305 load_full_type_unit (per_cu);
918dd910 2306 else
95554aad 2307 load_full_comp_unit (per_cu, language_minimal);
918dd910 2308
918dd910 2309 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2310
2311 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2312}
2313
a0f42c21 2314/* Read in the symbols for PER_CU. */
2fdf6df6 2315
9291a0cd 2316static void
a0f42c21 2317dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2318{
2319 struct cleanup *back_to;
2320
f4dc4d17
DE
2321 /* Skip type_unit_groups, reading the type units they contain
2322 is handled elsewhere. */
2323 if (IS_TYPE_UNIT_GROUP (per_cu))
2324 return;
2325
9291a0cd
TT
2326 back_to = make_cleanup (dwarf2_release_queue, NULL);
2327
95554aad
TT
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu);
2334 }
9291a0cd 2335
a0f42c21 2336 process_queue ();
9291a0cd
TT
2337
2338 /* Age the cache, releasing compilation units that have not
2339 been used recently. */
2340 age_cached_comp_units ();
2341
2342 do_cleanups (back_to);
2343}
2344
2345/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2346 the objfile from which this CU came. Returns the resulting symbol
2347 table. */
2fdf6df6 2348
9291a0cd 2349static struct symtab *
a0f42c21 2350dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2351{
95554aad 2352 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2353 if (!per_cu->v.quick->symtab)
2354 {
2355 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2356 increment_reading_symtab ();
a0f42c21 2357 dw2_do_instantiate_symtab (per_cu);
95554aad 2358 process_cu_includes ();
9291a0cd
TT
2359 do_cleanups (back_to);
2360 }
2361 return per_cu->v.quick->symtab;
2362}
2363
f4dc4d17
DE
2364/* Return the CU given its index.
2365
2366 This is intended for loops like:
2367
2368 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2369 + dwarf2_per_objfile->n_type_units); ++i)
2370 {
2371 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2372
2373 ...;
2374 }
2375*/
2fdf6df6 2376
1fd400ff
TT
2377static struct dwarf2_per_cu_data *
2378dw2_get_cu (int index)
2379{
2380 if (index >= dwarf2_per_objfile->n_comp_units)
2381 {
f4dc4d17 2382 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2383 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2384 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2385 }
2386
2387 return dwarf2_per_objfile->all_comp_units[index];
2388}
2389
2390/* Return the primary CU given its index.
2391 The difference between this function and dw2_get_cu is in the handling
2392 of type units (TUs). Here we return the type_unit_group object.
2393
2394 This is intended for loops like:
2395
2396 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2397 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2398 {
2399 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2400
2401 ...;
2402 }
2403*/
2404
2405static struct dwarf2_per_cu_data *
2406dw2_get_primary_cu (int index)
2407{
2408 if (index >= dwarf2_per_objfile->n_comp_units)
2409 {
1fd400ff 2410 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2411 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2412 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2413 }
f4dc4d17 2414
1fd400ff
TT
2415 return dwarf2_per_objfile->all_comp_units[index];
2416}
2417
2ec9a5e0
TT
2418/* A helper for create_cus_from_index that handles a given list of
2419 CUs. */
2fdf6df6 2420
74a0d9f6 2421static void
2ec9a5e0
TT
2422create_cus_from_index_list (struct objfile *objfile,
2423 const gdb_byte *cu_list, offset_type n_elements,
2424 struct dwarf2_section_info *section,
2425 int is_dwz,
2426 int base_offset)
9291a0cd
TT
2427{
2428 offset_type i;
9291a0cd 2429
2ec9a5e0 2430 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2431 {
2432 struct dwarf2_per_cu_data *the_cu;
2433 ULONGEST offset, length;
2434
74a0d9f6
JK
2435 gdb_static_assert (sizeof (ULONGEST) >= 8);
2436 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2437 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2438 cu_list += 2 * 8;
2439
2440 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2441 struct dwarf2_per_cu_data);
b64f50a1 2442 the_cu->offset.sect_off = offset;
9291a0cd
TT
2443 the_cu->length = length;
2444 the_cu->objfile = objfile;
8a0459fd 2445 the_cu->section = section;
9291a0cd
TT
2446 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2447 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2448 the_cu->is_dwz = is_dwz;
2449 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2450 }
9291a0cd
TT
2451}
2452
2ec9a5e0 2453/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2454 the CU objects for this objfile. */
2ec9a5e0 2455
74a0d9f6 2456static void
2ec9a5e0
TT
2457create_cus_from_index (struct objfile *objfile,
2458 const gdb_byte *cu_list, offset_type cu_list_elements,
2459 const gdb_byte *dwz_list, offset_type dwz_elements)
2460{
2461 struct dwz_file *dwz;
2462
2463 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2464 dwarf2_per_objfile->all_comp_units
2465 = obstack_alloc (&objfile->objfile_obstack,
2466 dwarf2_per_objfile->n_comp_units
2467 * sizeof (struct dwarf2_per_cu_data *));
2468
74a0d9f6
JK
2469 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2470 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2471
2472 if (dwz_elements == 0)
74a0d9f6 2473 return;
2ec9a5e0
TT
2474
2475 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2476 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2477 cu_list_elements / 2);
2ec9a5e0
TT
2478}
2479
1fd400ff 2480/* Create the signatured type hash table from the index. */
673bfd45 2481
74a0d9f6 2482static void
673bfd45 2483create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2484 struct dwarf2_section_info *section,
673bfd45
DE
2485 const gdb_byte *bytes,
2486 offset_type elements)
1fd400ff
TT
2487{
2488 offset_type i;
673bfd45 2489 htab_t sig_types_hash;
1fd400ff 2490
d467dd73
DE
2491 dwarf2_per_objfile->n_type_units = elements / 3;
2492 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2493 = xmalloc (dwarf2_per_objfile->n_type_units
2494 * sizeof (struct signatured_type *));
1fd400ff 2495
673bfd45 2496 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2497
2498 for (i = 0; i < elements; i += 3)
2499 {
52dc124a
DE
2500 struct signatured_type *sig_type;
2501 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2502 void **slot;
2503
74a0d9f6
JK
2504 gdb_static_assert (sizeof (ULONGEST) >= 8);
2505 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2506 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2507 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2508 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2509 bytes += 3 * 8;
2510
52dc124a 2511 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2512 struct signatured_type);
52dc124a 2513 sig_type->signature = signature;
3019eac3
DE
2514 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2515 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2516 sig_type->per_cu.section = section;
52dc124a
DE
2517 sig_type->per_cu.offset.sect_off = offset;
2518 sig_type->per_cu.objfile = objfile;
2519 sig_type->per_cu.v.quick
1fd400ff
TT
2520 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2521 struct dwarf2_per_cu_quick_data);
2522
52dc124a
DE
2523 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2524 *slot = sig_type;
1fd400ff 2525
b4dd5633 2526 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2527 }
2528
673bfd45 2529 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2530}
2531
9291a0cd
TT
2532/* Read the address map data from the mapped index, and use it to
2533 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2534
9291a0cd
TT
2535static void
2536create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2537{
2538 const gdb_byte *iter, *end;
2539 struct obstack temp_obstack;
2540 struct addrmap *mutable_map;
2541 struct cleanup *cleanup;
2542 CORE_ADDR baseaddr;
2543
2544 obstack_init (&temp_obstack);
2545 cleanup = make_cleanup_obstack_free (&temp_obstack);
2546 mutable_map = addrmap_create_mutable (&temp_obstack);
2547
2548 iter = index->address_table;
2549 end = iter + index->address_table_size;
2550
2551 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2552
2553 while (iter < end)
2554 {
2555 ULONGEST hi, lo, cu_index;
2556 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2557 iter += 8;
2558 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2559 iter += 8;
2560 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2561 iter += 4;
f652bce2
DE
2562
2563 if (cu_index < dwarf2_per_objfile->n_comp_units)
2564 {
2565 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2566 dw2_get_cu (cu_index));
2567 }
2568 else
2569 {
2570 complaint (&symfile_complaints,
2571 _(".gdb_index address table has invalid CU number %u"),
2572 (unsigned) cu_index);
2573 }
9291a0cd
TT
2574 }
2575
2576 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2577 &objfile->objfile_obstack);
2578 do_cleanups (cleanup);
2579}
2580
59d7bcaf
JK
2581/* The hash function for strings in the mapped index. This is the same as
2582 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2583 implementation. This is necessary because the hash function is tied to the
2584 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2585 SYMBOL_HASH_NEXT.
2586
2587 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2588
9291a0cd 2589static hashval_t
559a7a62 2590mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2591{
2592 const unsigned char *str = (const unsigned char *) p;
2593 hashval_t r = 0;
2594 unsigned char c;
2595
2596 while ((c = *str++) != 0)
559a7a62
JK
2597 {
2598 if (index_version >= 5)
2599 c = tolower (c);
2600 r = r * 67 + c - 113;
2601 }
9291a0cd
TT
2602
2603 return r;
2604}
2605
2606/* Find a slot in the mapped index INDEX for the object named NAME.
2607 If NAME is found, set *VEC_OUT to point to the CU vector in the
2608 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2609
9291a0cd
TT
2610static int
2611find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2612 offset_type **vec_out)
2613{
0cf03b49
JK
2614 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2615 offset_type hash;
9291a0cd 2616 offset_type slot, step;
559a7a62 2617 int (*cmp) (const char *, const char *);
9291a0cd 2618
0cf03b49
JK
2619 if (current_language->la_language == language_cplus
2620 || current_language->la_language == language_java
2621 || current_language->la_language == language_fortran)
2622 {
2623 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2624 not contain any. */
2625 const char *paren = strchr (name, '(');
2626
2627 if (paren)
2628 {
2629 char *dup;
2630
2631 dup = xmalloc (paren - name + 1);
2632 memcpy (dup, name, paren - name);
2633 dup[paren - name] = 0;
2634
2635 make_cleanup (xfree, dup);
2636 name = dup;
2637 }
2638 }
2639
559a7a62 2640 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2641 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2642 simulate our NAME being searched is also lowercased. */
2643 hash = mapped_index_string_hash ((index->version == 4
2644 && case_sensitivity == case_sensitive_off
2645 ? 5 : index->version),
2646 name);
2647
3876f04e
DE
2648 slot = hash & (index->symbol_table_slots - 1);
2649 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2650 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2651
2652 for (;;)
2653 {
2654 /* Convert a slot number to an offset into the table. */
2655 offset_type i = 2 * slot;
2656 const char *str;
3876f04e 2657 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2658 {
2659 do_cleanups (back_to);
2660 return 0;
2661 }
9291a0cd 2662
3876f04e 2663 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2664 if (!cmp (name, str))
9291a0cd
TT
2665 {
2666 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2667 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2668 do_cleanups (back_to);
9291a0cd
TT
2669 return 1;
2670 }
2671
3876f04e 2672 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2673 }
2674}
2675
2ec9a5e0
TT
2676/* A helper function that reads the .gdb_index from SECTION and fills
2677 in MAP. FILENAME is the name of the file containing the section;
2678 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2679 ok to use deprecated sections.
2680
2681 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2682 out parameters that are filled in with information about the CU and
2683 TU lists in the section.
2684
2685 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2686
9291a0cd 2687static int
2ec9a5e0
TT
2688read_index_from_section (struct objfile *objfile,
2689 const char *filename,
2690 int deprecated_ok,
2691 struct dwarf2_section_info *section,
2692 struct mapped_index *map,
2693 const gdb_byte **cu_list,
2694 offset_type *cu_list_elements,
2695 const gdb_byte **types_list,
2696 offset_type *types_list_elements)
9291a0cd 2697{
948f8e3d 2698 const gdb_byte *addr;
2ec9a5e0 2699 offset_type version;
b3b272e1 2700 offset_type *metadata;
1fd400ff 2701 int i;
9291a0cd 2702
2ec9a5e0 2703 if (dwarf2_section_empty_p (section))
9291a0cd 2704 return 0;
82430852
JK
2705
2706 /* Older elfutils strip versions could keep the section in the main
2707 executable while splitting it for the separate debug info file. */
2ec9a5e0 2708 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2709 return 0;
2710
2ec9a5e0 2711 dwarf2_read_section (objfile, section);
9291a0cd 2712
2ec9a5e0 2713 addr = section->buffer;
9291a0cd 2714 /* Version check. */
1fd400ff 2715 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2716 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2717 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2718 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2719 indices. */
831adc1f 2720 if (version < 4)
481860b3
GB
2721 {
2722 static int warning_printed = 0;
2723 if (!warning_printed)
2724 {
2725 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 2726 filename);
481860b3
GB
2727 warning_printed = 1;
2728 }
2729 return 0;
2730 }
2731 /* Index version 4 uses a different hash function than index version
2732 5 and later.
2733
2734 Versions earlier than 6 did not emit psymbols for inlined
2735 functions. Using these files will cause GDB not to be able to
2736 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
2737 indices unless the user has done
2738 "set use-deprecated-index-sections on". */
2ec9a5e0 2739 if (version < 6 && !deprecated_ok)
481860b3
GB
2740 {
2741 static int warning_printed = 0;
2742 if (!warning_printed)
2743 {
e615022a
DE
2744 warning (_("\
2745Skipping deprecated .gdb_index section in %s.\n\
2746Do \"set use-deprecated-index-sections on\" before the file is read\n\
2747to use the section anyway."),
2ec9a5e0 2748 filename);
481860b3
GB
2749 warning_printed = 1;
2750 }
2751 return 0;
2752 }
796a7ff8
DE
2753 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2754 of the TU (for symbols coming from TUs). It's just a performance bug, and
2755 we can't distinguish gdb-generated indices from gold-generated ones, so
2756 nothing to do here. */
2757
481860b3 2758 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2759 longer backward compatible. */
796a7ff8 2760 if (version > 8)
594e8718 2761 return 0;
9291a0cd 2762
559a7a62 2763 map->version = version;
2ec9a5e0 2764 map->total_size = section->size;
9291a0cd
TT
2765
2766 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2767
2768 i = 0;
2ec9a5e0
TT
2769 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2770 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2771 / 8);
1fd400ff
TT
2772 ++i;
2773
2ec9a5e0
TT
2774 *types_list = addr + MAYBE_SWAP (metadata[i]);
2775 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2776 - MAYBE_SWAP (metadata[i]))
2777 / 8);
987d643c 2778 ++i;
1fd400ff
TT
2779
2780 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2781 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2782 - MAYBE_SWAP (metadata[i]));
2783 ++i;
2784
3876f04e
DE
2785 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2786 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2787 - MAYBE_SWAP (metadata[i]))
2788 / (2 * sizeof (offset_type)));
1fd400ff 2789 ++i;
9291a0cd 2790
f9d83a0b 2791 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 2792
2ec9a5e0
TT
2793 return 1;
2794}
2795
2796
2797/* Read the index file. If everything went ok, initialize the "quick"
2798 elements of all the CUs and return 1. Otherwise, return 0. */
2799
2800static int
2801dwarf2_read_index (struct objfile *objfile)
2802{
2803 struct mapped_index local_map, *map;
2804 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2805 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 2806 struct dwz_file *dwz;
2ec9a5e0
TT
2807
2808 if (!read_index_from_section (objfile, objfile->name,
2809 use_deprecated_index_sections,
2810 &dwarf2_per_objfile->gdb_index, &local_map,
2811 &cu_list, &cu_list_elements,
2812 &types_list, &types_list_elements))
2813 return 0;
2814
0fefef59 2815 /* Don't use the index if it's empty. */
2ec9a5e0 2816 if (local_map.symbol_table_slots == 0)
0fefef59
DE
2817 return 0;
2818
2ec9a5e0
TT
2819 /* If there is a .dwz file, read it so we can get its CU list as
2820 well. */
4db1a1dc
TT
2821 dwz = dwarf2_get_dwz_file ();
2822 if (dwz != NULL)
2ec9a5e0 2823 {
2ec9a5e0
TT
2824 struct mapped_index dwz_map;
2825 const gdb_byte *dwz_types_ignore;
2826 offset_type dwz_types_elements_ignore;
2827
2828 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2829 1,
2830 &dwz->gdb_index, &dwz_map,
2831 &dwz_list, &dwz_list_elements,
2832 &dwz_types_ignore,
2833 &dwz_types_elements_ignore))
2834 {
2835 warning (_("could not read '.gdb_index' section from %s; skipping"),
2836 bfd_get_filename (dwz->dwz_bfd));
2837 return 0;
2838 }
2839 }
2840
74a0d9f6
JK
2841 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2842 dwz_list_elements);
1fd400ff 2843
8b70b953
TT
2844 if (types_list_elements)
2845 {
2846 struct dwarf2_section_info *section;
2847
2848 /* We can only handle a single .debug_types when we have an
2849 index. */
2850 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2851 return 0;
2852
2853 section = VEC_index (dwarf2_section_info_def,
2854 dwarf2_per_objfile->types, 0);
2855
74a0d9f6
JK
2856 create_signatured_type_table_from_index (objfile, section, types_list,
2857 types_list_elements);
8b70b953 2858 }
9291a0cd 2859
2ec9a5e0
TT
2860 create_addrmap_from_index (objfile, &local_map);
2861
2862 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2863 *map = local_map;
9291a0cd
TT
2864
2865 dwarf2_per_objfile->index_table = map;
2866 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2867 dwarf2_per_objfile->quick_file_names_table =
2868 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2869
2870 return 1;
2871}
2872
2873/* A helper for the "quick" functions which sets the global
2874 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2875
9291a0cd
TT
2876static void
2877dw2_setup (struct objfile *objfile)
2878{
2879 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2880 gdb_assert (dwarf2_per_objfile);
2881}
2882
dee91e82 2883/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2884
dee91e82
DE
2885static void
2886dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 2887 const gdb_byte *info_ptr,
dee91e82
DE
2888 struct die_info *comp_unit_die,
2889 int has_children,
2890 void *data)
9291a0cd 2891{
dee91e82
DE
2892 struct dwarf2_cu *cu = reader->cu;
2893 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2894 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 2895 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 2896 struct line_header *lh;
9291a0cd 2897 struct attribute *attr;
dee91e82 2898 int i;
15d034d0 2899 const char *name, *comp_dir;
7b9f3c50
DE
2900 void **slot;
2901 struct quick_file_names *qfn;
2902 unsigned int line_offset;
9291a0cd 2903
0186c6a7
DE
2904 gdb_assert (! this_cu->is_debug_types);
2905
07261596
TT
2906 /* Our callers never want to match partial units -- instead they
2907 will match the enclosing full CU. */
2908 if (comp_unit_die->tag == DW_TAG_partial_unit)
2909 {
2910 this_cu->v.quick->no_file_data = 1;
2911 return;
2912 }
2913
0186c6a7 2914 lh_cu = this_cu;
7b9f3c50
DE
2915 lh = NULL;
2916 slot = NULL;
2917 line_offset = 0;
dee91e82
DE
2918
2919 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2920 if (attr)
2921 {
7b9f3c50
DE
2922 struct quick_file_names find_entry;
2923
2924 line_offset = DW_UNSND (attr);
2925
2926 /* We may have already read in this line header (TU line header sharing).
2927 If we have we're done. */
094b34ac
DE
2928 find_entry.hash.dwo_unit = cu->dwo_unit;
2929 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2930 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2931 &find_entry, INSERT);
2932 if (*slot != NULL)
2933 {
094b34ac 2934 lh_cu->v.quick->file_names = *slot;
dee91e82 2935 return;
7b9f3c50
DE
2936 }
2937
3019eac3 2938 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2939 }
2940 if (lh == NULL)
2941 {
094b34ac 2942 lh_cu->v.quick->no_file_data = 1;
dee91e82 2943 return;
9291a0cd
TT
2944 }
2945
7b9f3c50 2946 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
2947 qfn->hash.dwo_unit = cu->dwo_unit;
2948 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2949 gdb_assert (slot != NULL);
2950 *slot = qfn;
9291a0cd 2951
dee91e82 2952 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2953
7b9f3c50
DE
2954 qfn->num_file_names = lh->num_file_names;
2955 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2956 lh->num_file_names * sizeof (char *));
9291a0cd 2957 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2958 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2959 qfn->real_names = NULL;
9291a0cd 2960
7b9f3c50 2961 free_line_header (lh);
7b9f3c50 2962
094b34ac 2963 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
2964}
2965
2966/* A helper for the "quick" functions which attempts to read the line
2967 table for THIS_CU. */
2968
2969static struct quick_file_names *
e4a48d9d 2970dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 2971{
0186c6a7
DE
2972 /* This should never be called for TUs. */
2973 gdb_assert (! this_cu->is_debug_types);
2974 /* Nor type unit groups. */
2975 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 2976
dee91e82
DE
2977 if (this_cu->v.quick->file_names != NULL)
2978 return this_cu->v.quick->file_names;
2979 /* If we know there is no line data, no point in looking again. */
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982
0186c6a7 2983 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
2984
2985 if (this_cu->v.quick->no_file_data)
2986 return NULL;
2987 return this_cu->v.quick->file_names;
9291a0cd
TT
2988}
2989
2990/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2991 real path for a given file name from the line table. */
2fdf6df6 2992
9291a0cd 2993static const char *
7b9f3c50
DE
2994dw2_get_real_path (struct objfile *objfile,
2995 struct quick_file_names *qfn, int index)
9291a0cd 2996{
7b9f3c50
DE
2997 if (qfn->real_names == NULL)
2998 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2999 qfn->num_file_names, sizeof (char *));
9291a0cd 3000
7b9f3c50
DE
3001 if (qfn->real_names[index] == NULL)
3002 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3003
7b9f3c50 3004 return qfn->real_names[index];
9291a0cd
TT
3005}
3006
3007static struct symtab *
3008dw2_find_last_source_symtab (struct objfile *objfile)
3009{
3010 int index;
ae2de4f8 3011
9291a0cd
TT
3012 dw2_setup (objfile);
3013 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3014 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3015}
3016
7b9f3c50
DE
3017/* Traversal function for dw2_forget_cached_source_info. */
3018
3019static int
3020dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3021{
7b9f3c50 3022 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3023
7b9f3c50 3024 if (file_data->real_names)
9291a0cd 3025 {
7b9f3c50 3026 int i;
9291a0cd 3027
7b9f3c50 3028 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3029 {
7b9f3c50
DE
3030 xfree ((void*) file_data->real_names[i]);
3031 file_data->real_names[i] = NULL;
9291a0cd
TT
3032 }
3033 }
7b9f3c50
DE
3034
3035 return 1;
3036}
3037
3038static void
3039dw2_forget_cached_source_info (struct objfile *objfile)
3040{
3041 dw2_setup (objfile);
3042
3043 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3044 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3045}
3046
f8eba3c6
TT
3047/* Helper function for dw2_map_symtabs_matching_filename that expands
3048 the symtabs and calls the iterator. */
3049
3050static int
3051dw2_map_expand_apply (struct objfile *objfile,
3052 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3053 const char *name, const char *real_path,
f8eba3c6
TT
3054 int (*callback) (struct symtab *, void *),
3055 void *data)
3056{
3057 struct symtab *last_made = objfile->symtabs;
3058
3059 /* Don't visit already-expanded CUs. */
3060 if (per_cu->v.quick->symtab)
3061 return 0;
3062
3063 /* This may expand more than one symtab, and we want to iterate over
3064 all of them. */
a0f42c21 3065 dw2_instantiate_symtab (per_cu);
f8eba3c6 3066
f5b95b50 3067 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3068 objfile->symtabs, last_made);
3069}
3070
3071/* Implementation of the map_symtabs_matching_filename method. */
3072
9291a0cd 3073static int
f8eba3c6 3074dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3075 const char *real_path,
f8eba3c6
TT
3076 int (*callback) (struct symtab *, void *),
3077 void *data)
9291a0cd
TT
3078{
3079 int i;
c011a4f4 3080 const char *name_basename = lbasename (name);
9291a0cd
TT
3081
3082 dw2_setup (objfile);
ae2de4f8 3083
848e3e78
DE
3084 /* The rule is CUs specify all the files, including those used by
3085 any TU, so there's no need to scan TUs here. */
f4dc4d17 3086
848e3e78 3087 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3088 {
3089 int j;
f4dc4d17 3090 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3091 struct quick_file_names *file_data;
9291a0cd 3092
3d7bb9d9 3093 /* We only need to look at symtabs not already expanded. */
e254ef6a 3094 if (per_cu->v.quick->symtab)
9291a0cd
TT
3095 continue;
3096
e4a48d9d 3097 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3098 if (file_data == NULL)
9291a0cd
TT
3099 continue;
3100
7b9f3c50 3101 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3102 {
7b9f3c50 3103 const char *this_name = file_data->file_names[j];
da235a7c 3104 const char *this_real_name;
9291a0cd 3105
af529f8f 3106 if (compare_filenames_for_search (this_name, name))
9291a0cd 3107 {
f5b95b50 3108 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3109 callback, data))
3110 return 1;
288e77a7 3111 continue;
4aac40c8 3112 }
9291a0cd 3113
c011a4f4
DE
3114 /* Before we invoke realpath, which can get expensive when many
3115 files are involved, do a quick comparison of the basenames. */
3116 if (! basenames_may_differ
3117 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3118 continue;
3119
da235a7c
JK
3120 this_real_name = dw2_get_real_path (objfile, file_data, j);
3121 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3122 {
da235a7c
JK
3123 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3124 callback, data))
3125 return 1;
288e77a7 3126 continue;
da235a7c 3127 }
9291a0cd 3128
da235a7c
JK
3129 if (real_path != NULL)
3130 {
af529f8f
JK
3131 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3132 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3133 if (this_real_name != NULL
af529f8f 3134 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3135 {
f5b95b50 3136 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3137 callback, data))
3138 return 1;
288e77a7 3139 continue;
9291a0cd
TT
3140 }
3141 }
3142 }
3143 }
3144
9291a0cd
TT
3145 return 0;
3146}
3147
da51c347
DE
3148/* Struct used to manage iterating over all CUs looking for a symbol. */
3149
3150struct dw2_symtab_iterator
9291a0cd 3151{
da51c347
DE
3152 /* The internalized form of .gdb_index. */
3153 struct mapped_index *index;
3154 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3155 int want_specific_block;
3156 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3157 Unused if !WANT_SPECIFIC_BLOCK. */
3158 int block_index;
3159 /* The kind of symbol we're looking for. */
3160 domain_enum domain;
3161 /* The list of CUs from the index entry of the symbol,
3162 or NULL if not found. */
3163 offset_type *vec;
3164 /* The next element in VEC to look at. */
3165 int next;
3166 /* The number of elements in VEC, or zero if there is no match. */
3167 int length;
3168};
9291a0cd 3169
da51c347
DE
3170/* Initialize the index symtab iterator ITER.
3171 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3172 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3173
9291a0cd 3174static void
da51c347
DE
3175dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3176 struct mapped_index *index,
3177 int want_specific_block,
3178 int block_index,
3179 domain_enum domain,
3180 const char *name)
3181{
3182 iter->index = index;
3183 iter->want_specific_block = want_specific_block;
3184 iter->block_index = block_index;
3185 iter->domain = domain;
3186 iter->next = 0;
3187
3188 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3189 iter->length = MAYBE_SWAP (*iter->vec);
3190 else
3191 {
3192 iter->vec = NULL;
3193 iter->length = 0;
3194 }
3195}
3196
3197/* Return the next matching CU or NULL if there are no more. */
3198
3199static struct dwarf2_per_cu_data *
3200dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3201{
3202 for ( ; iter->next < iter->length; ++iter->next)
3203 {
3204 offset_type cu_index_and_attrs =
3205 MAYBE_SWAP (iter->vec[iter->next + 1]);
3206 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3207 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3208 int want_static = iter->block_index != GLOBAL_BLOCK;
3209 /* This value is only valid for index versions >= 7. */
3210 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3211 gdb_index_symbol_kind symbol_kind =
3212 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3213 /* Only check the symbol attributes if they're present.
3214 Indices prior to version 7 don't record them,
3215 and indices >= 7 may elide them for certain symbols
3216 (gold does this). */
3217 int attrs_valid =
3218 (iter->index->version >= 7
3219 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3220
3190f0c6
DE
3221 /* Don't crash on bad data. */
3222 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3223 + dwarf2_per_objfile->n_type_units))
3224 {
3225 complaint (&symfile_complaints,
3226 _(".gdb_index entry has bad CU index"
3227 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3228 continue;
3229 }
3230
3231 per_cu = dw2_get_cu (cu_index);
3232
da51c347
DE
3233 /* Skip if already read in. */
3234 if (per_cu->v.quick->symtab)
3235 continue;
3236
3237 if (attrs_valid
3238 && iter->want_specific_block
3239 && want_static != is_static)
3240 continue;
3241
3242 /* Only check the symbol's kind if it has one. */
3243 if (attrs_valid)
3244 {
3245 switch (iter->domain)
3246 {
3247 case VAR_DOMAIN:
3248 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3249 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3250 /* Some types are also in VAR_DOMAIN. */
3251 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3252 continue;
3253 break;
3254 case STRUCT_DOMAIN:
3255 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3256 continue;
3257 break;
3258 case LABEL_DOMAIN:
3259 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3260 continue;
3261 break;
3262 default:
3263 break;
3264 }
3265 }
3266
3267 ++iter->next;
3268 return per_cu;
3269 }
3270
3271 return NULL;
3272}
3273
3274static struct symtab *
3275dw2_lookup_symbol (struct objfile *objfile, int block_index,
3276 const char *name, domain_enum domain)
9291a0cd 3277{
da51c347 3278 struct symtab *stab_best = NULL;
156942c7
DE
3279 struct mapped_index *index;
3280
9291a0cd
TT
3281 dw2_setup (objfile);
3282
156942c7
DE
3283 index = dwarf2_per_objfile->index_table;
3284
da51c347 3285 /* index is NULL if OBJF_READNOW. */
156942c7 3286 if (index)
9291a0cd 3287 {
da51c347
DE
3288 struct dw2_symtab_iterator iter;
3289 struct dwarf2_per_cu_data *per_cu;
3290
3291 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3292
da51c347 3293 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3294 {
da51c347
DE
3295 struct symbol *sym = NULL;
3296 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3297
3298 /* Some caution must be observed with overloaded functions
3299 and methods, since the index will not contain any overload
3300 information (but NAME might contain it). */
3301 if (stab->primary)
9291a0cd 3302 {
da51c347
DE
3303 struct blockvector *bv = BLOCKVECTOR (stab);
3304 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3305
da51c347
DE
3306 sym = lookup_block_symbol (block, name, domain);
3307 }
1fd400ff 3308
da51c347
DE
3309 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3310 {
3311 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3312 return stab;
3313
3314 stab_best = stab;
9291a0cd 3315 }
da51c347
DE
3316
3317 /* Keep looking through other CUs. */
9291a0cd
TT
3318 }
3319 }
9291a0cd 3320
da51c347 3321 return stab_best;
9291a0cd
TT
3322}
3323
3324static void
3325dw2_print_stats (struct objfile *objfile)
3326{
e4a48d9d 3327 int i, total, count;
9291a0cd
TT
3328
3329 dw2_setup (objfile);
e4a48d9d 3330 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3331 count = 0;
e4a48d9d 3332 for (i = 0; i < total; ++i)
9291a0cd 3333 {
e254ef6a 3334 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3335
e254ef6a 3336 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3337 ++count;
3338 }
e4a48d9d 3339 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3340 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3341}
3342
3343static void
3344dw2_dump (struct objfile *objfile)
3345{
3346 /* Nothing worth printing. */
3347}
3348
3349static void
3189cb12
DE
3350dw2_relocate (struct objfile *objfile,
3351 const struct section_offsets *new_offsets,
3352 const struct section_offsets *delta)
9291a0cd
TT
3353{
3354 /* There's nothing to relocate here. */
3355}
3356
3357static void
3358dw2_expand_symtabs_for_function (struct objfile *objfile,
3359 const char *func_name)
3360{
da51c347
DE
3361 struct mapped_index *index;
3362
3363 dw2_setup (objfile);
3364
3365 index = dwarf2_per_objfile->index_table;
3366
3367 /* index is NULL if OBJF_READNOW. */
3368 if (index)
3369 {
3370 struct dw2_symtab_iterator iter;
3371 struct dwarf2_per_cu_data *per_cu;
3372
3373 /* Note: It doesn't matter what we pass for block_index here. */
3374 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3375 func_name);
3376
3377 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3378 dw2_instantiate_symtab (per_cu);
3379 }
9291a0cd
TT
3380}
3381
3382static void
3383dw2_expand_all_symtabs (struct objfile *objfile)
3384{
3385 int i;
3386
3387 dw2_setup (objfile);
1fd400ff
TT
3388
3389 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3390 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3391 {
e254ef6a 3392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3393
a0f42c21 3394 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3395 }
3396}
3397
3398static void
652a8996
JK
3399dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3400 const char *fullname)
9291a0cd
TT
3401{
3402 int i;
3403
3404 dw2_setup (objfile);
d4637a04
DE
3405
3406 /* We don't need to consider type units here.
3407 This is only called for examining code, e.g. expand_line_sal.
3408 There can be an order of magnitude (or more) more type units
3409 than comp units, and we avoid them if we can. */
3410
3411 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3412 {
3413 int j;
e254ef6a 3414 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3415 struct quick_file_names *file_data;
9291a0cd 3416
3d7bb9d9 3417 /* We only need to look at symtabs not already expanded. */
e254ef6a 3418 if (per_cu->v.quick->symtab)
9291a0cd
TT
3419 continue;
3420
e4a48d9d 3421 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3422 if (file_data == NULL)
9291a0cd
TT
3423 continue;
3424
7b9f3c50 3425 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3426 {
652a8996
JK
3427 const char *this_fullname = file_data->file_names[j];
3428
3429 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3430 {
a0f42c21 3431 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3432 break;
3433 }
3434 }
3435 }
3436}
3437
356d9f9d
TT
3438/* A helper function for dw2_find_symbol_file that finds the primary
3439 file name for a given CU. This is a die_reader_func. */
3440
3441static void
3442dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
d521ce57 3443 const gdb_byte *info_ptr,
356d9f9d
TT
3444 struct die_info *comp_unit_die,
3445 int has_children,
3446 void *data)
3447{
3448 const char **result_ptr = data;
3449 struct dwarf2_cu *cu = reader->cu;
3450 struct attribute *attr;
3451
3452 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3453 if (attr == NULL)
3454 *result_ptr = NULL;
3455 else
3456 *result_ptr = DW_STRING (attr);
3457}
3458
dd786858 3459static const char *
9291a0cd
TT
3460dw2_find_symbol_file (struct objfile *objfile, const char *name)
3461{
e254ef6a 3462 struct dwarf2_per_cu_data *per_cu;
9291a0cd 3463 offset_type *vec;
356d9f9d 3464 const char *filename;
9291a0cd
TT
3465
3466 dw2_setup (objfile);
3467
ae2de4f8 3468 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 3469 if (!dwarf2_per_objfile->index_table)
96408a79
SA
3470 {
3471 struct symtab *s;
3472
d790cf0a
DE
3473 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3474 {
3475 struct blockvector *bv = BLOCKVECTOR (s);
3476 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3477 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3478
3479 if (sym)
652a8996
JK
3480 {
3481 /* Only file extension of returned filename is recognized. */
3482 return SYMBOL_SYMTAB (sym)->filename;
3483 }
d790cf0a 3484 }
96408a79
SA
3485 return NULL;
3486 }
9291a0cd
TT
3487
3488 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3489 name, &vec))
3490 return NULL;
3491
3492 /* Note that this just looks at the very first one named NAME -- but
3493 actually we are looking for a function. find_main_filename
3494 should be rewritten so that it doesn't require a custom hook. It
3495 could just use the ordinary symbol tables. */
3496 /* vec[0] is the length, which must always be >0. */
156942c7 3497 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
9291a0cd 3498
356d9f9d 3499 if (per_cu->v.quick->symtab != NULL)
652a8996
JK
3500 {
3501 /* Only file extension of returned filename is recognized. */
3502 return per_cu->v.quick->symtab->filename;
3503 }
356d9f9d 3504
a98c29a0
DE
3505 /* Initialize filename in case there's a problem reading the DWARF,
3506 dw2_get_primary_filename_reader may not get called. */
3507 filename = NULL;
f4dc4d17
DE
3508 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3509 dw2_get_primary_filename_reader, &filename);
9291a0cd 3510
652a8996 3511 /* Only file extension of returned filename is recognized. */
356d9f9d 3512 return filename;
9291a0cd
TT
3513}
3514
3515static void
40658b94
PH
3516dw2_map_matching_symbols (const char * name, domain_enum namespace,
3517 struct objfile *objfile, int global,
3518 int (*callback) (struct block *,
3519 struct symbol *, void *),
2edb89d3
JK
3520 void *data, symbol_compare_ftype *match,
3521 symbol_compare_ftype *ordered_compare)
9291a0cd 3522{
40658b94 3523 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3524 current language is Ada for a non-Ada objfile using GNU index. As Ada
3525 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3526}
3527
3528static void
f8eba3c6
TT
3529dw2_expand_symtabs_matching
3530 (struct objfile *objfile,
fbd9ab74 3531 int (*file_matcher) (const char *, void *, int basenames),
e078317b 3532 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3533 enum search_domain kind,
3534 void *data)
9291a0cd
TT
3535{
3536 int i;
3537 offset_type iter;
4b5246aa 3538 struct mapped_index *index;
9291a0cd
TT
3539
3540 dw2_setup (objfile);
ae2de4f8
DE
3541
3542 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3543 if (!dwarf2_per_objfile->index_table)
3544 return;
4b5246aa 3545 index = dwarf2_per_objfile->index_table;
9291a0cd 3546
7b08b9eb 3547 if (file_matcher != NULL)
24c79950
TT
3548 {
3549 struct cleanup *cleanup;
3550 htab_t visited_found, visited_not_found;
3551
3552 visited_found = htab_create_alloc (10,
3553 htab_hash_pointer, htab_eq_pointer,
3554 NULL, xcalloc, xfree);
3555 cleanup = make_cleanup_htab_delete (visited_found);
3556 visited_not_found = htab_create_alloc (10,
3557 htab_hash_pointer, htab_eq_pointer,
3558 NULL, xcalloc, xfree);
3559 make_cleanup_htab_delete (visited_not_found);
3560
848e3e78
DE
3561 /* The rule is CUs specify all the files, including those used by
3562 any TU, so there's no need to scan TUs here. */
3563
3564 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3565 {
3566 int j;
f4dc4d17 3567 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3568 struct quick_file_names *file_data;
3569 void **slot;
7b08b9eb 3570
24c79950 3571 per_cu->v.quick->mark = 0;
3d7bb9d9 3572
24c79950
TT
3573 /* We only need to look at symtabs not already expanded. */
3574 if (per_cu->v.quick->symtab)
3575 continue;
7b08b9eb 3576
e4a48d9d 3577 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3578 if (file_data == NULL)
3579 continue;
7b08b9eb 3580
24c79950
TT
3581 if (htab_find (visited_not_found, file_data) != NULL)
3582 continue;
3583 else if (htab_find (visited_found, file_data) != NULL)
3584 {
3585 per_cu->v.quick->mark = 1;
3586 continue;
3587 }
3588
3589 for (j = 0; j < file_data->num_file_names; ++j)
3590 {
da235a7c
JK
3591 const char *this_real_name;
3592
fbd9ab74 3593 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3594 {
3595 per_cu->v.quick->mark = 1;
3596 break;
3597 }
da235a7c
JK
3598
3599 /* Before we invoke realpath, which can get expensive when many
3600 files are involved, do a quick comparison of the basenames. */
3601 if (!basenames_may_differ
3602 && !file_matcher (lbasename (file_data->file_names[j]),
3603 data, 1))
3604 continue;
3605
3606 this_real_name = dw2_get_real_path (objfile, file_data, j);
3607 if (file_matcher (this_real_name, data, 0))
3608 {
3609 per_cu->v.quick->mark = 1;
3610 break;
3611 }
24c79950
TT
3612 }
3613
3614 slot = htab_find_slot (per_cu->v.quick->mark
3615 ? visited_found
3616 : visited_not_found,
3617 file_data, INSERT);
3618 *slot = file_data;
3619 }
3620
3621 do_cleanups (cleanup);
3622 }
9291a0cd 3623
3876f04e 3624 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3625 {
3626 offset_type idx = 2 * iter;
3627 const char *name;
3628 offset_type *vec, vec_len, vec_idx;
3629
3876f04e 3630 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3631 continue;
3632
3876f04e 3633 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3634
e078317b 3635 if (! (*name_matcher) (name, data))
9291a0cd
TT
3636 continue;
3637
3638 /* The name was matched, now expand corresponding CUs that were
3639 marked. */
4b5246aa 3640 vec = (offset_type *) (index->constant_pool
3876f04e 3641 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3642 vec_len = MAYBE_SWAP (vec[0]);
3643 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3644 {
e254ef6a 3645 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3646 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3647 gdb_index_symbol_kind symbol_kind =
3648 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3649 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3650 /* Only check the symbol attributes if they're present.
3651 Indices prior to version 7 don't record them,
3652 and indices >= 7 may elide them for certain symbols
3653 (gold does this). */
3654 int attrs_valid =
3655 (index->version >= 7
3656 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3657
3658 /* Only check the symbol's kind if it has one. */
3659 if (attrs_valid)
156942c7
DE
3660 {
3661 switch (kind)
3662 {
3663 case VARIABLES_DOMAIN:
3664 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3665 continue;
3666 break;
3667 case FUNCTIONS_DOMAIN:
3668 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3669 continue;
3670 break;
3671 case TYPES_DOMAIN:
3672 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3673 continue;
3674 break;
3675 default:
3676 break;
3677 }
3678 }
3679
3190f0c6
DE
3680 /* Don't crash on bad data. */
3681 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3682 + dwarf2_per_objfile->n_type_units))
3683 {
3684 complaint (&symfile_complaints,
3685 _(".gdb_index entry has bad CU index"
3686 " [in module %s]"), objfile->name);
3687 continue;
3688 }
3689
156942c7 3690 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3691 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3692 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3693 }
3694 }
3695}
3696
9703b513
TT
3697/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3698 symtab. */
3699
3700static struct symtab *
3701recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3702{
3703 int i;
3704
3705 if (BLOCKVECTOR (symtab) != NULL
3706 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3707 return symtab;
3708
a3ec0bb1
DE
3709 if (symtab->includes == NULL)
3710 return NULL;
3711
9703b513
TT
3712 for (i = 0; symtab->includes[i]; ++i)
3713 {
a3ec0bb1 3714 struct symtab *s = symtab->includes[i];
9703b513
TT
3715
3716 s = recursively_find_pc_sect_symtab (s, pc);
3717 if (s != NULL)
3718 return s;
3719 }
3720
3721 return NULL;
3722}
3723
9291a0cd
TT
3724static struct symtab *
3725dw2_find_pc_sect_symtab (struct objfile *objfile,
3726 struct minimal_symbol *msymbol,
3727 CORE_ADDR pc,
3728 struct obj_section *section,
3729 int warn_if_readin)
3730{
3731 struct dwarf2_per_cu_data *data;
9703b513 3732 struct symtab *result;
9291a0cd
TT
3733
3734 dw2_setup (objfile);
3735
3736 if (!objfile->psymtabs_addrmap)
3737 return NULL;
3738
3739 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3740 if (!data)
3741 return NULL;
3742
3743 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3744 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3745 paddress (get_objfile_arch (objfile), pc));
3746
9703b513
TT
3747 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3748 gdb_assert (result != NULL);
3749 return result;
9291a0cd
TT
3750}
3751
9291a0cd 3752static void
44b13c5a 3753dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3754 void *data, int need_fullname)
9291a0cd
TT
3755{
3756 int i;
24c79950
TT
3757 struct cleanup *cleanup;
3758 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3759 NULL, xcalloc, xfree);
9291a0cd 3760
24c79950 3761 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3762 dw2_setup (objfile);
ae2de4f8 3763
848e3e78
DE
3764 /* The rule is CUs specify all the files, including those used by
3765 any TU, so there's no need to scan TUs here.
3766 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 3767
848e3e78 3768 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3769 {
3770 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3771
3772 if (per_cu->v.quick->symtab)
3773 {
3774 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3775 INSERT);
3776
3777 *slot = per_cu->v.quick->file_names;
3778 }
3779 }
3780
848e3e78 3781 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3782 {
3783 int j;
f4dc4d17 3784 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3785 struct quick_file_names *file_data;
24c79950 3786 void **slot;
9291a0cd 3787
3d7bb9d9 3788 /* We only need to look at symtabs not already expanded. */
e254ef6a 3789 if (per_cu->v.quick->symtab)
9291a0cd
TT
3790 continue;
3791
e4a48d9d 3792 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3793 if (file_data == NULL)
9291a0cd
TT
3794 continue;
3795
24c79950
TT
3796 slot = htab_find_slot (visited, file_data, INSERT);
3797 if (*slot)
3798 {
3799 /* Already visited. */
3800 continue;
3801 }
3802 *slot = file_data;
3803
7b9f3c50 3804 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3805 {
74e2f255
DE
3806 const char *this_real_name;
3807
3808 if (need_fullname)
3809 this_real_name = dw2_get_real_path (objfile, file_data, j);
3810 else
3811 this_real_name = NULL;
7b9f3c50 3812 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3813 }
3814 }
24c79950
TT
3815
3816 do_cleanups (cleanup);
9291a0cd
TT
3817}
3818
3819static int
3820dw2_has_symbols (struct objfile *objfile)
3821{
3822 return 1;
3823}
3824
3825const struct quick_symbol_functions dwarf2_gdb_index_functions =
3826{
3827 dw2_has_symbols,
3828 dw2_find_last_source_symtab,
3829 dw2_forget_cached_source_info,
f8eba3c6 3830 dw2_map_symtabs_matching_filename,
9291a0cd 3831 dw2_lookup_symbol,
9291a0cd
TT
3832 dw2_print_stats,
3833 dw2_dump,
3834 dw2_relocate,
3835 dw2_expand_symtabs_for_function,
3836 dw2_expand_all_symtabs,
652a8996 3837 dw2_expand_symtabs_with_fullname,
9291a0cd 3838 dw2_find_symbol_file,
40658b94 3839 dw2_map_matching_symbols,
9291a0cd
TT
3840 dw2_expand_symtabs_matching,
3841 dw2_find_pc_sect_symtab,
9291a0cd
TT
3842 dw2_map_symbol_filenames
3843};
3844
3845/* Initialize for reading DWARF for this objfile. Return 0 if this
3846 file will use psymtabs, or 1 if using the GNU index. */
3847
3848int
3849dwarf2_initialize_objfile (struct objfile *objfile)
3850{
3851 /* If we're about to read full symbols, don't bother with the
3852 indices. In this case we also don't care if some other debug
3853 format is making psymtabs, because they are all about to be
3854 expanded anyway. */
3855 if ((objfile->flags & OBJF_READNOW))
3856 {
3857 int i;
3858
3859 dwarf2_per_objfile->using_index = 1;
3860 create_all_comp_units (objfile);
0e50663e 3861 create_all_type_units (objfile);
7b9f3c50
DE
3862 dwarf2_per_objfile->quick_file_names_table =
3863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3864
1fd400ff 3865 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3866 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3867 {
e254ef6a 3868 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3869
e254ef6a
DE
3870 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3871 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3872 }
3873
3874 /* Return 1 so that gdb sees the "quick" functions. However,
3875 these functions will be no-ops because we will have expanded
3876 all symtabs. */
3877 return 1;
3878 }
3879
3880 if (dwarf2_read_index (objfile))
3881 return 1;
3882
9291a0cd
TT
3883 return 0;
3884}
3885
3886\f
3887
dce234bc
PP
3888/* Build a partial symbol table. */
3889
3890void
f29dff0a 3891dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3892{
c9bf0622
TT
3893 volatile struct gdb_exception except;
3894
f29dff0a 3895 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3896 {
3897 init_psymbol_list (objfile, 1024);
3898 }
3899
c9bf0622
TT
3900 TRY_CATCH (except, RETURN_MASK_ERROR)
3901 {
3902 /* This isn't really ideal: all the data we allocate on the
3903 objfile's obstack is still uselessly kept around. However,
3904 freeing it seems unsafe. */
3905 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3906
3907 dwarf2_build_psymtabs_hard (objfile);
3908 discard_cleanups (cleanups);
3909 }
3910 if (except.reason < 0)
3911 exception_print (gdb_stderr, except);
c906108c 3912}
c906108c 3913
1ce1cefd
DE
3914/* Return the total length of the CU described by HEADER. */
3915
3916static unsigned int
3917get_cu_length (const struct comp_unit_head *header)
3918{
3919 return header->initial_length_size + header->length;
3920}
3921
45452591
DE
3922/* Return TRUE if OFFSET is within CU_HEADER. */
3923
3924static inline int
b64f50a1 3925offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3926{
b64f50a1 3927 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 3928 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 3929
b64f50a1 3930 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3931}
3932
3b80fe9b
DE
3933/* Find the base address of the compilation unit for range lists and
3934 location lists. It will normally be specified by DW_AT_low_pc.
3935 In DWARF-3 draft 4, the base address could be overridden by
3936 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3937 compilation units with discontinuous ranges. */
3938
3939static void
3940dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3941{
3942 struct attribute *attr;
3943
3944 cu->base_known = 0;
3945 cu->base_address = 0;
3946
3947 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3948 if (attr)
3949 {
3950 cu->base_address = DW_ADDR (attr);
3951 cu->base_known = 1;
3952 }
3953 else
3954 {
3955 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3956 if (attr)
3957 {
3958 cu->base_address = DW_ADDR (attr);
3959 cu->base_known = 1;
3960 }
3961 }
3962}
3963
93311388
DE
3964/* Read in the comp unit header information from the debug_info at info_ptr.
3965 NOTE: This leaves members offset, first_die_offset to be filled in
3966 by the caller. */
107d2387 3967
d521ce57 3968static const gdb_byte *
107d2387 3969read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 3970 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3971{
3972 int signed_addr;
891d2f0b 3973 unsigned int bytes_read;
c764a876
DE
3974
3975 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3976 cu_header->initial_length_size = bytes_read;
3977 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3978 info_ptr += bytes_read;
107d2387
AC
3979 cu_header->version = read_2_bytes (abfd, info_ptr);
3980 info_ptr += 2;
b64f50a1
JK
3981 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3982 &bytes_read);
613e1657 3983 info_ptr += bytes_read;
107d2387
AC
3984 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3985 info_ptr += 1;
3986 signed_addr = bfd_get_sign_extend_vma (abfd);
3987 if (signed_addr < 0)
8e65ff28 3988 internal_error (__FILE__, __LINE__,
e2e0b3e5 3989 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3990 cu_header->signed_addr_p = signed_addr;
c764a876 3991
107d2387
AC
3992 return info_ptr;
3993}
3994
36586728
TT
3995/* Helper function that returns the proper abbrev section for
3996 THIS_CU. */
3997
3998static struct dwarf2_section_info *
3999get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4000{
4001 struct dwarf2_section_info *abbrev;
4002
4003 if (this_cu->is_dwz)
4004 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4005 else
4006 abbrev = &dwarf2_per_objfile->abbrev;
4007
4008 return abbrev;
4009}
4010
9ff913ba
DE
4011/* Subroutine of read_and_check_comp_unit_head and
4012 read_and_check_type_unit_head to simplify them.
4013 Perform various error checking on the header. */
4014
4015static void
4016error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4017 struct dwarf2_section_info *section,
4018 struct dwarf2_section_info *abbrev_section)
9ff913ba
DE
4019{
4020 bfd *abfd = section->asection->owner;
4021 const char *filename = bfd_get_filename (abfd);
4022
4023 if (header->version != 2 && header->version != 3 && header->version != 4)
4024 error (_("Dwarf Error: wrong version in compilation unit header "
4025 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4026 filename);
4027
b64f50a1 4028 if (header->abbrev_offset.sect_off
36586728 4029 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4030 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4031 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4032 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4033 filename);
4034
4035 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4036 avoid potential 32-bit overflow. */
1ce1cefd 4037 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4038 > section->size)
4039 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4040 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4041 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4042 filename);
4043}
4044
4045/* Read in a CU/TU header and perform some basic error checking.
4046 The contents of the header are stored in HEADER.
4047 The result is a pointer to the start of the first DIE. */
adabb602 4048
d521ce57 4049static const gdb_byte *
9ff913ba
DE
4050read_and_check_comp_unit_head (struct comp_unit_head *header,
4051 struct dwarf2_section_info *section,
4bdcc0c1 4052 struct dwarf2_section_info *abbrev_section,
d521ce57 4053 const gdb_byte *info_ptr,
9ff913ba 4054 int is_debug_types_section)
72bf9492 4055{
d521ce57 4056 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4057 bfd *abfd = section->asection->owner;
72bf9492 4058
b64f50a1 4059 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4060
72bf9492
DJ
4061 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4062
460c1c54
CC
4063 /* If we're reading a type unit, skip over the signature and
4064 type_offset fields. */
b0df02fd 4065 if (is_debug_types_section)
460c1c54
CC
4066 info_ptr += 8 /*signature*/ + header->offset_size;
4067
b64f50a1 4068 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4069
4bdcc0c1 4070 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4071
4072 return info_ptr;
4073}
4074
348e048f
DE
4075/* Read in the types comp unit header information from .debug_types entry at
4076 types_ptr. The result is a pointer to one past the end of the header. */
4077
d521ce57 4078static const gdb_byte *
9ff913ba
DE
4079read_and_check_type_unit_head (struct comp_unit_head *header,
4080 struct dwarf2_section_info *section,
4bdcc0c1 4081 struct dwarf2_section_info *abbrev_section,
d521ce57 4082 const gdb_byte *info_ptr,
dee91e82
DE
4083 ULONGEST *signature,
4084 cu_offset *type_offset_in_tu)
348e048f 4085{
d521ce57 4086 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4087 bfd *abfd = section->asection->owner;
348e048f 4088
b64f50a1 4089 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4090
9ff913ba 4091 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4092
9ff913ba
DE
4093 /* If we're reading a type unit, skip over the signature and
4094 type_offset fields. */
4095 if (signature != NULL)
4096 *signature = read_8_bytes (abfd, info_ptr);
4097 info_ptr += 8;
dee91e82
DE
4098 if (type_offset_in_tu != NULL)
4099 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4100 header->offset_size);
9ff913ba
DE
4101 info_ptr += header->offset_size;
4102
b64f50a1 4103 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4104
4bdcc0c1 4105 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4106
4107 return info_ptr;
348e048f
DE
4108}
4109
f4dc4d17
DE
4110/* Fetch the abbreviation table offset from a comp or type unit header. */
4111
4112static sect_offset
4113read_abbrev_offset (struct dwarf2_section_info *section,
4114 sect_offset offset)
4115{
4116 bfd *abfd = section->asection->owner;
d521ce57 4117 const gdb_byte *info_ptr;
f4dc4d17
DE
4118 unsigned int length, initial_length_size, offset_size;
4119 sect_offset abbrev_offset;
4120
4121 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4122 info_ptr = section->buffer + offset.sect_off;
4123 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4124 offset_size = initial_length_size == 4 ? 4 : 8;
4125 info_ptr += initial_length_size + 2 /*version*/;
4126 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4127 return abbrev_offset;
4128}
4129
aaa75496
JB
4130/* Allocate a new partial symtab for file named NAME and mark this new
4131 partial symtab as being an include of PST. */
4132
4133static void
d521ce57 4134dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4135 struct objfile *objfile)
4136{
4137 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4138
fbd9ab74
JK
4139 if (!IS_ABSOLUTE_PATH (subpst->filename))
4140 {
4141 /* It shares objfile->objfile_obstack. */
4142 subpst->dirname = pst->dirname;
4143 }
4144
aaa75496
JB
4145 subpst->section_offsets = pst->section_offsets;
4146 subpst->textlow = 0;
4147 subpst->texthigh = 0;
4148
4149 subpst->dependencies = (struct partial_symtab **)
4150 obstack_alloc (&objfile->objfile_obstack,
4151 sizeof (struct partial_symtab *));
4152 subpst->dependencies[0] = pst;
4153 subpst->number_of_dependencies = 1;
4154
4155 subpst->globals_offset = 0;
4156 subpst->n_global_syms = 0;
4157 subpst->statics_offset = 0;
4158 subpst->n_static_syms = 0;
4159 subpst->symtab = NULL;
4160 subpst->read_symtab = pst->read_symtab;
4161 subpst->readin = 0;
4162
4163 /* No private part is necessary for include psymtabs. This property
4164 can be used to differentiate between such include psymtabs and
10b3939b 4165 the regular ones. */
58a9656e 4166 subpst->read_symtab_private = NULL;
aaa75496
JB
4167}
4168
4169/* Read the Line Number Program data and extract the list of files
4170 included by the source file represented by PST. Build an include
d85a05f0 4171 partial symtab for each of these included files. */
aaa75496
JB
4172
4173static void
4174dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4175 struct die_info *die,
4176 struct partial_symtab *pst)
aaa75496 4177{
d85a05f0
DJ
4178 struct line_header *lh = NULL;
4179 struct attribute *attr;
aaa75496 4180
d85a05f0
DJ
4181 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4182 if (attr)
3019eac3 4183 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4184 if (lh == NULL)
4185 return; /* No linetable, so no includes. */
4186
c6da4cef 4187 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4188 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4189
4190 free_line_header (lh);
4191}
4192
348e048f 4193static hashval_t
52dc124a 4194hash_signatured_type (const void *item)
348e048f 4195{
52dc124a 4196 const struct signatured_type *sig_type = item;
9a619af0 4197
348e048f 4198 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4199 return sig_type->signature;
348e048f
DE
4200}
4201
4202static int
52dc124a 4203eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4204{
4205 const struct signatured_type *lhs = item_lhs;
4206 const struct signatured_type *rhs = item_rhs;
9a619af0 4207
348e048f
DE
4208 return lhs->signature == rhs->signature;
4209}
4210
1fd400ff
TT
4211/* Allocate a hash table for signatured types. */
4212
4213static htab_t
673bfd45 4214allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4215{
4216 return htab_create_alloc_ex (41,
52dc124a
DE
4217 hash_signatured_type,
4218 eq_signatured_type,
1fd400ff
TT
4219 NULL,
4220 &objfile->objfile_obstack,
4221 hashtab_obstack_allocate,
4222 dummy_obstack_deallocate);
4223}
4224
d467dd73 4225/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4226
4227static int
d467dd73 4228add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4229{
4230 struct signatured_type *sigt = *slot;
b4dd5633 4231 struct signatured_type ***datap = datum;
1fd400ff 4232
b4dd5633 4233 **datap = sigt;
1fd400ff
TT
4234 ++*datap;
4235
4236 return 1;
4237}
4238
c88ee1f0
DE
4239/* Create the hash table of all entries in the .debug_types
4240 (or .debug_types.dwo) section(s).
4241 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4242 otherwise it is NULL.
4243
4244 The result is a pointer to the hash table or NULL if there are no types.
4245
4246 Note: This function processes DWO files only, not DWP files. */
348e048f 4247
3019eac3
DE
4248static htab_t
4249create_debug_types_hash_table (struct dwo_file *dwo_file,
4250 VEC (dwarf2_section_info_def) *types)
348e048f 4251{
3019eac3 4252 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4253 htab_t types_htab = NULL;
8b70b953
TT
4254 int ix;
4255 struct dwarf2_section_info *section;
4bdcc0c1 4256 struct dwarf2_section_info *abbrev_section;
348e048f 4257
3019eac3
DE
4258 if (VEC_empty (dwarf2_section_info_def, types))
4259 return NULL;
348e048f 4260
4bdcc0c1
DE
4261 abbrev_section = (dwo_file != NULL
4262 ? &dwo_file->sections.abbrev
4263 : &dwarf2_per_objfile->abbrev);
4264
09406207
DE
4265 if (dwarf2_read_debug)
4266 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4267 dwo_file ? ".dwo" : "",
4268 bfd_get_filename (abbrev_section->asection->owner));
4269
8b70b953 4270 for (ix = 0;
3019eac3 4271 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4272 ++ix)
4273 {
3019eac3 4274 bfd *abfd;
d521ce57 4275 const gdb_byte *info_ptr, *end_ptr;
36586728 4276 struct dwarf2_section_info *abbrev_section;
348e048f 4277
8b70b953
TT
4278 dwarf2_read_section (objfile, section);
4279 info_ptr = section->buffer;
348e048f 4280
8b70b953
TT
4281 if (info_ptr == NULL)
4282 continue;
348e048f 4283
3019eac3
DE
4284 /* We can't set abfd until now because the section may be empty or
4285 not present, in which case section->asection will be NULL. */
4286 abfd = section->asection->owner;
4287
36586728
TT
4288 if (dwo_file)
4289 abbrev_section = &dwo_file->sections.abbrev;
4290 else
4291 abbrev_section = &dwarf2_per_objfile->abbrev;
4292
dee91e82
DE
4293 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4294 because we don't need to read any dies: the signature is in the
4295 header. */
8b70b953
TT
4296
4297 end_ptr = info_ptr + section->size;
4298 while (info_ptr < end_ptr)
4299 {
b64f50a1 4300 sect_offset offset;
3019eac3 4301 cu_offset type_offset_in_tu;
8b70b953 4302 ULONGEST signature;
52dc124a 4303 struct signatured_type *sig_type;
3019eac3 4304 struct dwo_unit *dwo_tu;
8b70b953 4305 void **slot;
d521ce57 4306 const gdb_byte *ptr = info_ptr;
9ff913ba 4307 struct comp_unit_head header;
dee91e82 4308 unsigned int length;
348e048f 4309
b64f50a1 4310 offset.sect_off = ptr - section->buffer;
348e048f 4311
8b70b953 4312 /* We need to read the type's signature in order to build the hash
9ff913ba 4313 table, but we don't need anything else just yet. */
348e048f 4314
4bdcc0c1
DE
4315 ptr = read_and_check_type_unit_head (&header, section,
4316 abbrev_section, ptr,
3019eac3 4317 &signature, &type_offset_in_tu);
6caca83c 4318
1ce1cefd 4319 length = get_cu_length (&header);
dee91e82 4320
6caca83c 4321 /* Skip dummy type units. */
dee91e82
DE
4322 if (ptr >= info_ptr + length
4323 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4324 {
1ce1cefd 4325 info_ptr += length;
6caca83c
CC
4326 continue;
4327 }
8b70b953 4328
0349ea22
DE
4329 if (types_htab == NULL)
4330 {
4331 if (dwo_file)
4332 types_htab = allocate_dwo_unit_table (objfile);
4333 else
4334 types_htab = allocate_signatured_type_table (objfile);
4335 }
4336
3019eac3
DE
4337 if (dwo_file)
4338 {
4339 sig_type = NULL;
4340 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4341 struct dwo_unit);
4342 dwo_tu->dwo_file = dwo_file;
4343 dwo_tu->signature = signature;
4344 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4345 dwo_tu->section = section;
3019eac3
DE
4346 dwo_tu->offset = offset;
4347 dwo_tu->length = length;
4348 }
4349 else
4350 {
4351 /* N.B.: type_offset is not usable if this type uses a DWO file.
4352 The real type_offset is in the DWO file. */
4353 dwo_tu = NULL;
4354 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4355 struct signatured_type);
4356 sig_type->signature = signature;
4357 sig_type->type_offset_in_tu = type_offset_in_tu;
4358 sig_type->per_cu.objfile = objfile;
4359 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4360 sig_type->per_cu.section = section;
3019eac3
DE
4361 sig_type->per_cu.offset = offset;
4362 sig_type->per_cu.length = length;
4363 }
8b70b953 4364
3019eac3
DE
4365 slot = htab_find_slot (types_htab,
4366 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4367 INSERT);
8b70b953
TT
4368 gdb_assert (slot != NULL);
4369 if (*slot != NULL)
4370 {
3019eac3
DE
4371 sect_offset dup_offset;
4372
4373 if (dwo_file)
4374 {
4375 const struct dwo_unit *dup_tu = *slot;
4376
4377 dup_offset = dup_tu->offset;
4378 }
4379 else
4380 {
4381 const struct signatured_type *dup_tu = *slot;
4382
4383 dup_offset = dup_tu->per_cu.offset;
4384 }
b3c8eb43 4385
8b70b953 4386 complaint (&symfile_complaints,
c88ee1f0 4387 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4388 " the entry at offset 0x%x, signature %s"),
3019eac3 4389 offset.sect_off, dup_offset.sect_off,
4031ecc5 4390 hex_string (signature));
8b70b953 4391 }
3019eac3 4392 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4393
09406207 4394 if (dwarf2_read_debug)
4031ecc5 4395 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4396 offset.sect_off,
4031ecc5 4397 hex_string (signature));
348e048f 4398
dee91e82 4399 info_ptr += length;
8b70b953 4400 }
348e048f
DE
4401 }
4402
3019eac3
DE
4403 return types_htab;
4404}
4405
4406/* Create the hash table of all entries in the .debug_types section,
4407 and initialize all_type_units.
4408 The result is zero if there is an error (e.g. missing .debug_types section),
4409 otherwise non-zero. */
4410
4411static int
4412create_all_type_units (struct objfile *objfile)
4413{
4414 htab_t types_htab;
b4dd5633 4415 struct signatured_type **iter;
3019eac3
DE
4416
4417 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4418 if (types_htab == NULL)
4419 {
4420 dwarf2_per_objfile->signatured_types = NULL;
4421 return 0;
4422 }
4423
348e048f
DE
4424 dwarf2_per_objfile->signatured_types = types_htab;
4425
d467dd73
DE
4426 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4427 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4428 = xmalloc (dwarf2_per_objfile->n_type_units
4429 * sizeof (struct signatured_type *));
d467dd73
DE
4430 iter = &dwarf2_per_objfile->all_type_units[0];
4431 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4432 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4433 == dwarf2_per_objfile->n_type_units);
1fd400ff 4434
348e048f
DE
4435 return 1;
4436}
4437
a2ce51a0
DE
4438/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4439 Fill in SIG_ENTRY with DWO_ENTRY. */
4440
4441static void
4442fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4443 struct signatured_type *sig_entry,
4444 struct dwo_unit *dwo_entry)
4445{
4446 sig_entry->per_cu.section = dwo_entry->section;
4447 sig_entry->per_cu.offset = dwo_entry->offset;
4448 sig_entry->per_cu.length = dwo_entry->length;
4449 sig_entry->per_cu.reading_dwo_directly = 1;
4450 sig_entry->per_cu.objfile = objfile;
4451 gdb_assert (! sig_entry->per_cu.queued);
4452 gdb_assert (sig_entry->per_cu.cu == NULL);
4453 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4454 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4455 gdb_assert (sig_entry->signature == dwo_entry->signature);
4456 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4457 gdb_assert (sig_entry->type_unit_group == NULL);
4458 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4459 sig_entry->dwo_unit = dwo_entry;
4460}
4461
4462/* Subroutine of lookup_signatured_type.
4463 Create the signatured_type data structure for a TU to be read in
4464 directly from a DWO file, bypassing the stub.
4465 We do this for the case where there is no DWP file and we're using
4466 .gdb_index: When reading a CU we want to stay in the DWO file containing
4467 that CU. Otherwise we could end up reading several other DWO files (due
4468 to comdat folding) to process the transitive closure of all the mentioned
4469 TUs, and that can be slow. The current DWO file will have every type
4470 signature that it needs.
4471 We only do this for .gdb_index because in the psymtab case we already have
4472 to read all the DWOs to build the type unit groups. */
4473
4474static struct signatured_type *
4475lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4476{
4477 struct objfile *objfile = dwarf2_per_objfile->objfile;
4478 struct dwo_file *dwo_file;
4479 struct dwo_unit find_dwo_entry, *dwo_entry;
4480 struct signatured_type find_sig_entry, *sig_entry;
4481
4482 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4483
4484 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4485 dwo_unit of the TU itself. */
4486 dwo_file = cu->dwo_unit->dwo_file;
4487
4488 /* We only ever need to read in one copy of a signatured type.
4489 Just use the global signatured_types array. If this is the first time
4490 we're reading this type, replace the recorded data from .gdb_index with
4491 this TU. */
4492
4493 if (dwarf2_per_objfile->signatured_types == NULL)
4494 return NULL;
4495 find_sig_entry.signature = sig;
4496 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4497 if (sig_entry == NULL)
4498 return NULL;
4499 /* Have we already tried to read this TU? */
4500 if (sig_entry->dwo_unit != NULL)
4501 return sig_entry;
4502
4503 /* Ok, this is the first time we're reading this TU. */
4504 if (dwo_file->tus == NULL)
4505 return NULL;
4506 find_dwo_entry.signature = sig;
4507 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4508 if (dwo_entry == NULL)
4509 return NULL;
4510
4511 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4512 return sig_entry;
4513}
4514
4515/* Subroutine of lookup_dwp_signatured_type.
4516 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4517
4518static struct signatured_type *
4519add_type_unit (ULONGEST sig)
4520{
4521 struct objfile *objfile = dwarf2_per_objfile->objfile;
4522 int n_type_units = dwarf2_per_objfile->n_type_units;
4523 struct signatured_type *sig_type;
4524 void **slot;
4525
4526 ++n_type_units;
4527 dwarf2_per_objfile->all_type_units =
4528 xrealloc (dwarf2_per_objfile->all_type_units,
4529 n_type_units * sizeof (struct signatured_type *));
4530 dwarf2_per_objfile->n_type_units = n_type_units;
4531 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4532 struct signatured_type);
4533 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4534 sig_type->signature = sig;
4535 sig_type->per_cu.is_debug_types = 1;
4536 sig_type->per_cu.v.quick =
4537 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4538 struct dwarf2_per_cu_quick_data);
4539 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4540 sig_type, INSERT);
4541 gdb_assert (*slot == NULL);
4542 *slot = sig_type;
4543 /* The rest of sig_type must be filled in by the caller. */
4544 return sig_type;
4545}
4546
4547/* Subroutine of lookup_signatured_type.
4548 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4549 then try the DWP file.
4550 Normally this "can't happen", but if there's a bug in signature
4551 generation and/or the DWP file is built incorrectly, it can happen.
4552 Using the type directly from the DWP file means we don't have the stub
4553 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4554 not critical. [Eventually the stub may go away for type units anyway.] */
4555
4556static struct signatured_type *
4557lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4558{
4559 struct objfile *objfile = dwarf2_per_objfile->objfile;
4560 struct dwp_file *dwp_file = get_dwp_file ();
4561 struct dwo_unit *dwo_entry;
4562 struct signatured_type find_sig_entry, *sig_entry;
4563
4564 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4565 gdb_assert (dwp_file != NULL);
4566
4567 if (dwarf2_per_objfile->signatured_types != NULL)
4568 {
4569 find_sig_entry.signature = sig;
4570 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4571 &find_sig_entry);
4572 if (sig_entry != NULL)
4573 return sig_entry;
4574 }
4575
4576 /* This is the "shouldn't happen" case.
4577 Try the DWP file and hope for the best. */
4578 if (dwp_file->tus == NULL)
4579 return NULL;
4580 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4581 sig, 1 /* is_debug_types */);
4582 if (dwo_entry == NULL)
4583 return NULL;
4584
4585 sig_entry = add_type_unit (sig);
4586 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4587
4588 /* The caller will signal a complaint if we return NULL.
4589 Here we don't return NULL but we still want to complain. */
4590 complaint (&symfile_complaints,
4591 _("Bad type signature %s referenced by %s at 0x%x,"
4592 " coping by using copy in DWP [in module %s]"),
4593 hex_string (sig),
4594 cu->per_cu->is_debug_types ? "TU" : "CU",
4595 cu->per_cu->offset.sect_off,
4596 objfile->name);
4597
4598 return sig_entry;
4599}
4600
380bca97 4601/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4602 Returns NULL if signature SIG is not present in the table.
4603 It is up to the caller to complain about this. */
348e048f
DE
4604
4605static struct signatured_type *
a2ce51a0 4606lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4607{
a2ce51a0
DE
4608 if (cu->dwo_unit
4609 && dwarf2_per_objfile->using_index)
4610 {
4611 /* We're in a DWO/DWP file, and we're using .gdb_index.
4612 These cases require special processing. */
4613 if (get_dwp_file () == NULL)
4614 return lookup_dwo_signatured_type (cu, sig);
4615 else
4616 return lookup_dwp_signatured_type (cu, sig);
4617 }
4618 else
4619 {
4620 struct signatured_type find_entry, *entry;
348e048f 4621
a2ce51a0
DE
4622 if (dwarf2_per_objfile->signatured_types == NULL)
4623 return NULL;
4624 find_entry.signature = sig;
4625 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4626 return entry;
4627 }
348e048f 4628}
42e7ad6c
DE
4629\f
4630/* Low level DIE reading support. */
348e048f 4631
d85a05f0
DJ
4632/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4633
4634static void
4635init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4636 struct dwarf2_cu *cu,
3019eac3
DE
4637 struct dwarf2_section_info *section,
4638 struct dwo_file *dwo_file)
d85a05f0 4639{
fceca515 4640 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 4641 reader->abfd = section->asection->owner;
d85a05f0 4642 reader->cu = cu;
3019eac3 4643 reader->dwo_file = dwo_file;
dee91e82
DE
4644 reader->die_section = section;
4645 reader->buffer = section->buffer;
f664829e 4646 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4647 reader->comp_dir = NULL;
d85a05f0
DJ
4648}
4649
b0c7bfa9
DE
4650/* Subroutine of init_cutu_and_read_dies to simplify it.
4651 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4652 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4653 already.
4654
4655 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4656 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4657 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4658 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4659 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4660 COMP_DIR must be non-NULL.
b0c7bfa9
DE
4661 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4662 are filled in with the info of the DIE from the DWO file.
4663 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4664 provided an abbrev table to use.
4665 The result is non-zero if a valid (non-dummy) DIE was found. */
4666
4667static int
4668read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4669 struct dwo_unit *dwo_unit,
4670 int abbrev_table_provided,
4671 struct die_info *stub_comp_unit_die,
a2ce51a0 4672 const char *stub_comp_dir,
b0c7bfa9 4673 struct die_reader_specs *result_reader,
d521ce57 4674 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4675 struct die_info **result_comp_unit_die,
4676 int *result_has_children)
4677{
4678 struct objfile *objfile = dwarf2_per_objfile->objfile;
4679 struct dwarf2_cu *cu = this_cu->cu;
4680 struct dwarf2_section_info *section;
4681 bfd *abfd;
d521ce57 4682 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4683 const char *comp_dir_string;
4684 ULONGEST signature; /* Or dwo_id. */
4685 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4686 int i,num_extra_attrs;
4687 struct dwarf2_section_info *dwo_abbrev_section;
4688 struct attribute *attr;
a2ce51a0 4689 struct attribute comp_dir_attr;
b0c7bfa9
DE
4690 struct die_info *comp_unit_die;
4691
a2ce51a0
DE
4692 /* Both can't be provided. */
4693 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4694
b0c7bfa9
DE
4695 /* These attributes aren't processed until later:
4696 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4697 However, the attribute is found in the stub which we won't have later.
4698 In order to not impose this complication on the rest of the code,
4699 we read them here and copy them to the DWO CU/TU die. */
4700
4701 stmt_list = NULL;
4702 low_pc = NULL;
4703 high_pc = NULL;
4704 ranges = NULL;
4705 comp_dir = NULL;
4706
4707 if (stub_comp_unit_die != NULL)
4708 {
4709 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4710 DWO file. */
4711 if (! this_cu->is_debug_types)
4712 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4713 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4714 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4715 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4716 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4717
4718 /* There should be a DW_AT_addr_base attribute here (if needed).
4719 We need the value before we can process DW_FORM_GNU_addr_index. */
4720 cu->addr_base = 0;
4721 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4722 if (attr)
4723 cu->addr_base = DW_UNSND (attr);
4724
4725 /* There should be a DW_AT_ranges_base attribute here (if needed).
4726 We need the value before we can process DW_AT_ranges. */
4727 cu->ranges_base = 0;
4728 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4729 if (attr)
4730 cu->ranges_base = DW_UNSND (attr);
4731 }
a2ce51a0
DE
4732 else if (stub_comp_dir != NULL)
4733 {
4734 /* Reconstruct the comp_dir attribute to simplify the code below. */
4735 comp_dir = (struct attribute *)
4736 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4737 comp_dir->name = DW_AT_comp_dir;
4738 comp_dir->form = DW_FORM_string;
4739 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4740 DW_STRING (comp_dir) = stub_comp_dir;
4741 }
b0c7bfa9
DE
4742
4743 /* Set up for reading the DWO CU/TU. */
4744 cu->dwo_unit = dwo_unit;
4745 section = dwo_unit->section;
4746 dwarf2_read_section (objfile, section);
4747 abfd = section->asection->owner;
4748 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4749 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4750 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4751
4752 if (this_cu->is_debug_types)
4753 {
4754 ULONGEST header_signature;
4755 cu_offset type_offset_in_tu;
4756 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4757
4758 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4759 dwo_abbrev_section,
4760 info_ptr,
4761 &header_signature,
4762 &type_offset_in_tu);
a2ce51a0
DE
4763 /* This is not an assert because it can be caused by bad debug info. */
4764 if (sig_type->signature != header_signature)
4765 {
4766 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4767 " TU at offset 0x%x [in module %s]"),
4768 hex_string (sig_type->signature),
4769 hex_string (header_signature),
4770 dwo_unit->offset.sect_off,
4771 bfd_get_filename (abfd));
4772 }
b0c7bfa9
DE
4773 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4774 /* For DWOs coming from DWP files, we don't know the CU length
4775 nor the type's offset in the TU until now. */
4776 dwo_unit->length = get_cu_length (&cu->header);
4777 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4778
4779 /* Establish the type offset that can be used to lookup the type.
4780 For DWO files, we don't know it until now. */
4781 sig_type->type_offset_in_section.sect_off =
4782 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4783 }
4784 else
4785 {
4786 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4787 dwo_abbrev_section,
4788 info_ptr, 0);
4789 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4790 /* For DWOs coming from DWP files, we don't know the CU length
4791 until now. */
4792 dwo_unit->length = get_cu_length (&cu->header);
4793 }
4794
02142a6c
DE
4795 /* Replace the CU's original abbrev table with the DWO's.
4796 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
4797 if (abbrev_table_provided)
4798 {
4799 /* Don't free the provided abbrev table, the caller of
4800 init_cutu_and_read_dies owns it. */
4801 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4802 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
4803 make_cleanup (dwarf2_free_abbrev_table, cu);
4804 }
4805 else
4806 {
4807 dwarf2_free_abbrev_table (cu);
4808 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4809 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
4810 }
4811
4812 /* Read in the die, but leave space to copy over the attributes
4813 from the stub. This has the benefit of simplifying the rest of
4814 the code - all the work to maintain the illusion of a single
4815 DW_TAG_{compile,type}_unit DIE is done here. */
4816 num_extra_attrs = ((stmt_list != NULL)
4817 + (low_pc != NULL)
4818 + (high_pc != NULL)
4819 + (ranges != NULL)
4820 + (comp_dir != NULL));
4821 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4822 result_has_children, num_extra_attrs);
4823
4824 /* Copy over the attributes from the stub to the DIE we just read in. */
4825 comp_unit_die = *result_comp_unit_die;
4826 i = comp_unit_die->num_attrs;
4827 if (stmt_list != NULL)
4828 comp_unit_die->attrs[i++] = *stmt_list;
4829 if (low_pc != NULL)
4830 comp_unit_die->attrs[i++] = *low_pc;
4831 if (high_pc != NULL)
4832 comp_unit_die->attrs[i++] = *high_pc;
4833 if (ranges != NULL)
4834 comp_unit_die->attrs[i++] = *ranges;
4835 if (comp_dir != NULL)
4836 comp_unit_die->attrs[i++] = *comp_dir;
4837 comp_unit_die->num_attrs += num_extra_attrs;
4838
bf6af496
DE
4839 if (dwarf2_die_debug)
4840 {
4841 fprintf_unfiltered (gdb_stdlog,
4842 "Read die from %s@0x%x of %s:\n",
4843 bfd_section_name (abfd, section->asection),
4844 (unsigned) (begin_info_ptr - section->buffer),
4845 bfd_get_filename (abfd));
4846 dump_die (comp_unit_die, dwarf2_die_debug);
4847 }
4848
a2ce51a0
DE
4849 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4850 TUs by skipping the stub and going directly to the entry in the DWO file.
4851 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4852 to get it via circuitous means. Blech. */
4853 if (comp_dir != NULL)
4854 result_reader->comp_dir = DW_STRING (comp_dir);
4855
b0c7bfa9
DE
4856 /* Skip dummy compilation units. */
4857 if (info_ptr >= begin_info_ptr + dwo_unit->length
4858 || peek_abbrev_code (abfd, info_ptr) == 0)
4859 return 0;
4860
4861 *result_info_ptr = info_ptr;
4862 return 1;
4863}
4864
4865/* Subroutine of init_cutu_and_read_dies to simplify it.
4866 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 4867 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
4868
4869static struct dwo_unit *
4870lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4871 struct die_info *comp_unit_die)
4872{
4873 struct dwarf2_cu *cu = this_cu->cu;
4874 struct attribute *attr;
4875 ULONGEST signature;
4876 struct dwo_unit *dwo_unit;
4877 const char *comp_dir, *dwo_name;
4878
a2ce51a0
DE
4879 gdb_assert (cu != NULL);
4880
b0c7bfa9
DE
4881 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4882 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4883 gdb_assert (attr != NULL);
4884 dwo_name = DW_STRING (attr);
4885 comp_dir = NULL;
4886 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4887 if (attr)
4888 comp_dir = DW_STRING (attr);
4889
4890 if (this_cu->is_debug_types)
4891 {
4892 struct signatured_type *sig_type;
4893
4894 /* Since this_cu is the first member of struct signatured_type,
4895 we can go from a pointer to one to a pointer to the other. */
4896 sig_type = (struct signatured_type *) this_cu;
4897 signature = sig_type->signature;
4898 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4899 }
4900 else
4901 {
4902 struct attribute *attr;
4903
4904 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4905 if (! attr)
4906 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4907 " [in module %s]"),
4908 dwo_name, this_cu->objfile->name);
4909 signature = DW_UNSND (attr);
4910 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4911 signature);
4912 }
4913
b0c7bfa9
DE
4914 return dwo_unit;
4915}
4916
a2ce51a0
DE
4917/* Subroutine of init_cutu_and_read_dies to simplify it.
4918 Read a TU directly from a DWO file, bypassing the stub. */
4919
4920static void
4921init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4922 die_reader_func_ftype *die_reader_func,
4923 void *data)
4924{
4925 struct dwarf2_cu *cu;
4926 struct signatured_type *sig_type;
4927 struct cleanup *cleanups, *free_cu_cleanup;
4928 struct die_reader_specs reader;
4929 const gdb_byte *info_ptr;
4930 struct die_info *comp_unit_die;
4931 int has_children;
4932
4933 /* Verify we can do the following downcast, and that we have the
4934 data we need. */
4935 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4936 sig_type = (struct signatured_type *) this_cu;
4937 gdb_assert (sig_type->dwo_unit != NULL);
4938
4939 cleanups = make_cleanup (null_cleanup, NULL);
4940
4941 gdb_assert (this_cu->cu == NULL);
4942 cu = xmalloc (sizeof (*cu));
4943 init_one_comp_unit (cu, this_cu);
4944 /* If an error occurs while loading, release our storage. */
4945 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4946
4947 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4948 0 /* abbrev_table_provided */,
4949 NULL /* stub_comp_unit_die */,
4950 sig_type->dwo_unit->dwo_file->comp_dir,
4951 &reader, &info_ptr,
4952 &comp_unit_die, &has_children) == 0)
4953 {
4954 /* Dummy die. */
4955 do_cleanups (cleanups);
4956 return;
4957 }
4958
4959 /* All the "real" work is done here. */
4960 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4961
4962 /* This duplicates some code in init_cutu_and_read_dies,
4963 but the alternative is making the latter more complex.
4964 This function is only for the special case of using DWO files directly:
4965 no point in overly complicating the general case just to handle this. */
4966 if (keep)
4967 {
4968 /* We've successfully allocated this compilation unit. Let our
4969 caller clean it up when finished with it. */
4970 discard_cleanups (free_cu_cleanup);
4971
4972 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4973 So we have to manually free the abbrev table. */
4974 dwarf2_free_abbrev_table (cu);
4975
4976 /* Link this CU into read_in_chain. */
4977 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4978 dwarf2_per_objfile->read_in_chain = this_cu;
4979 }
4980 else
4981 do_cleanups (free_cu_cleanup);
4982
4983 do_cleanups (cleanups);
4984}
4985
fd820528 4986/* Initialize a CU (or TU) and read its DIEs.
3019eac3 4987 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 4988
f4dc4d17
DE
4989 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4990 Otherwise the table specified in the comp unit header is read in and used.
4991 This is an optimization for when we already have the abbrev table.
4992
dee91e82
DE
4993 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4994 Otherwise, a new CU is allocated with xmalloc.
4995
4996 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4997 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4998
4999 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5000 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5001
70221824 5002static void
fd820528 5003init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5004 struct abbrev_table *abbrev_table,
fd820528
DE
5005 int use_existing_cu, int keep,
5006 die_reader_func_ftype *die_reader_func,
5007 void *data)
c906108c 5008{
dee91e82 5009 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5010 struct dwarf2_section_info *section = this_cu->section;
3019eac3 5011 bfd *abfd = section->asection->owner;
dee91e82 5012 struct dwarf2_cu *cu;
d521ce57 5013 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5014 struct die_reader_specs reader;
d85a05f0 5015 struct die_info *comp_unit_die;
dee91e82 5016 int has_children;
d85a05f0 5017 struct attribute *attr;
dee91e82
DE
5018 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5019 struct signatured_type *sig_type = NULL;
4bdcc0c1 5020 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5021 /* Non-zero if CU currently points to a DWO file and we need to
5022 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5023 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5024 int rereading_dwo_cu = 0;
c906108c 5025
09406207
DE
5026 if (dwarf2_die_debug)
5027 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5028 this_cu->is_debug_types ? "type" : "comp",
5029 this_cu->offset.sect_off);
5030
dee91e82
DE
5031 if (use_existing_cu)
5032 gdb_assert (keep);
23745b47 5033
a2ce51a0
DE
5034 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5035 file (instead of going through the stub), short-circuit all of this. */
5036 if (this_cu->reading_dwo_directly)
5037 {
5038 /* Narrow down the scope of possibilities to have to understand. */
5039 gdb_assert (this_cu->is_debug_types);
5040 gdb_assert (abbrev_table == NULL);
5041 gdb_assert (!use_existing_cu);
5042 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5043 return;
5044 }
5045
dee91e82
DE
5046 cleanups = make_cleanup (null_cleanup, NULL);
5047
5048 /* This is cheap if the section is already read in. */
5049 dwarf2_read_section (objfile, section);
5050
5051 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5052
5053 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5054
5055 if (use_existing_cu && this_cu->cu != NULL)
5056 {
5057 cu = this_cu->cu;
42e7ad6c
DE
5058
5059 /* If this CU is from a DWO file we need to start over, we need to
5060 refetch the attributes from the skeleton CU.
5061 This could be optimized by retrieving those attributes from when we
5062 were here the first time: the previous comp_unit_die was stored in
5063 comp_unit_obstack. But there's no data yet that we need this
5064 optimization. */
5065 if (cu->dwo_unit != NULL)
5066 rereading_dwo_cu = 1;
dee91e82
DE
5067 }
5068 else
5069 {
5070 /* If !use_existing_cu, this_cu->cu must be NULL. */
5071 gdb_assert (this_cu->cu == NULL);
5072
5073 cu = xmalloc (sizeof (*cu));
5074 init_one_comp_unit (cu, this_cu);
5075
5076 /* If an error occurs while loading, release our storage. */
5077 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5078 }
dee91e82 5079
b0c7bfa9 5080 /* Get the header. */
42e7ad6c
DE
5081 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5082 {
5083 /* We already have the header, there's no need to read it in again. */
5084 info_ptr += cu->header.first_die_offset.cu_off;
5085 }
5086 else
5087 {
3019eac3 5088 if (this_cu->is_debug_types)
dee91e82
DE
5089 {
5090 ULONGEST signature;
42e7ad6c 5091 cu_offset type_offset_in_tu;
dee91e82 5092
4bdcc0c1
DE
5093 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5094 abbrev_section, info_ptr,
42e7ad6c
DE
5095 &signature,
5096 &type_offset_in_tu);
dee91e82 5097
42e7ad6c
DE
5098 /* Since per_cu is the first member of struct signatured_type,
5099 we can go from a pointer to one to a pointer to the other. */
5100 sig_type = (struct signatured_type *) this_cu;
5101 gdb_assert (sig_type->signature == signature);
5102 gdb_assert (sig_type->type_offset_in_tu.cu_off
5103 == type_offset_in_tu.cu_off);
dee91e82
DE
5104 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5105
42e7ad6c
DE
5106 /* LENGTH has not been set yet for type units if we're
5107 using .gdb_index. */
1ce1cefd 5108 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5109
5110 /* Establish the type offset that can be used to lookup the type. */
5111 sig_type->type_offset_in_section.sect_off =
5112 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5113 }
5114 else
5115 {
4bdcc0c1
DE
5116 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5117 abbrev_section,
5118 info_ptr, 0);
dee91e82
DE
5119
5120 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5121 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5122 }
5123 }
10b3939b 5124
6caca83c 5125 /* Skip dummy compilation units. */
dee91e82 5126 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5127 || peek_abbrev_code (abfd, info_ptr) == 0)
5128 {
dee91e82 5129 do_cleanups (cleanups);
21b2bd31 5130 return;
6caca83c
CC
5131 }
5132
433df2d4
DE
5133 /* If we don't have them yet, read the abbrevs for this compilation unit.
5134 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5135 done. Note that it's important that if the CU had an abbrev table
5136 on entry we don't free it when we're done: Somewhere up the call stack
5137 it may be in use. */
f4dc4d17
DE
5138 if (abbrev_table != NULL)
5139 {
5140 gdb_assert (cu->abbrev_table == NULL);
5141 gdb_assert (cu->header.abbrev_offset.sect_off
5142 == abbrev_table->offset.sect_off);
5143 cu->abbrev_table = abbrev_table;
5144 }
5145 else if (cu->abbrev_table == NULL)
dee91e82 5146 {
4bdcc0c1 5147 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5148 make_cleanup (dwarf2_free_abbrev_table, cu);
5149 }
42e7ad6c
DE
5150 else if (rereading_dwo_cu)
5151 {
5152 dwarf2_free_abbrev_table (cu);
5153 dwarf2_read_abbrevs (cu, abbrev_section);
5154 }
af703f96 5155
dee91e82 5156 /* Read the top level CU/TU die. */
3019eac3 5157 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5158 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5159
b0c7bfa9
DE
5160 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5161 from the DWO file.
5162 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5163 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5165 if (attr)
5166 {
3019eac3 5167 struct dwo_unit *dwo_unit;
b0c7bfa9 5168 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5169
5170 if (has_children)
6a506a2d
DE
5171 {
5172 complaint (&symfile_complaints,
5173 _("compilation unit with DW_AT_GNU_dwo_name"
5174 " has children (offset 0x%x) [in module %s]"),
5175 this_cu->offset.sect_off, bfd_get_filename (abfd));
5176 }
b0c7bfa9 5177 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5178 if (dwo_unit != NULL)
3019eac3 5179 {
6a506a2d
DE
5180 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5181 abbrev_table != NULL,
a2ce51a0 5182 comp_unit_die, NULL,
6a506a2d
DE
5183 &reader, &info_ptr,
5184 &dwo_comp_unit_die, &has_children) == 0)
5185 {
5186 /* Dummy die. */
5187 do_cleanups (cleanups);
5188 return;
5189 }
5190 comp_unit_die = dwo_comp_unit_die;
5191 }
5192 else
5193 {
5194 /* Yikes, we couldn't find the rest of the DIE, we only have
5195 the stub. A complaint has already been logged. There's
5196 not much more we can do except pass on the stub DIE to
5197 die_reader_func. We don't want to throw an error on bad
5198 debug info. */
3019eac3
DE
5199 }
5200 }
5201
b0c7bfa9 5202 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5203 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5204
b0c7bfa9 5205 /* Done, clean up. */
dee91e82 5206 if (free_cu_cleanup != NULL)
348e048f 5207 {
dee91e82
DE
5208 if (keep)
5209 {
5210 /* We've successfully allocated this compilation unit. Let our
5211 caller clean it up when finished with it. */
5212 discard_cleanups (free_cu_cleanup);
5213
5214 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5215 So we have to manually free the abbrev table. */
5216 dwarf2_free_abbrev_table (cu);
5217
5218 /* Link this CU into read_in_chain. */
5219 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5220 dwarf2_per_objfile->read_in_chain = this_cu;
5221 }
5222 else
5223 do_cleanups (free_cu_cleanup);
348e048f 5224 }
dee91e82
DE
5225
5226 do_cleanups (cleanups);
5227}
5228
3019eac3
DE
5229/* Read CU/TU THIS_CU in section SECTION,
5230 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
5231 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5232 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
5233
5234 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5235 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5236
5237 We fill in THIS_CU->length.
5238
5239 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5240 linker) then DIE_READER_FUNC will not get called.
5241
5242 THIS_CU->cu is always freed when done.
3019eac3
DE
5243 This is done in order to not leave THIS_CU->cu in a state where we have
5244 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5245
5246static void
5247init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5248 struct dwarf2_section_info *abbrev_section,
3019eac3 5249 struct dwo_file *dwo_file,
dee91e82
DE
5250 die_reader_func_ftype *die_reader_func,
5251 void *data)
5252{
5253 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5254 struct dwarf2_section_info *section = this_cu->section;
3019eac3 5255 bfd *abfd = section->asection->owner;
dee91e82 5256 struct dwarf2_cu cu;
d521ce57 5257 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5258 struct die_reader_specs reader;
5259 struct cleanup *cleanups;
5260 struct die_info *comp_unit_die;
5261 int has_children;
5262
09406207
DE
5263 if (dwarf2_die_debug)
5264 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5265 this_cu->is_debug_types ? "type" : "comp",
5266 this_cu->offset.sect_off);
5267
dee91e82
DE
5268 gdb_assert (this_cu->cu == NULL);
5269
dee91e82
DE
5270 /* This is cheap if the section is already read in. */
5271 dwarf2_read_section (objfile, section);
5272
5273 init_one_comp_unit (&cu, this_cu);
5274
5275 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5276
5277 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5278 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5279 abbrev_section, info_ptr,
3019eac3 5280 this_cu->is_debug_types);
dee91e82 5281
1ce1cefd 5282 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5283
5284 /* Skip dummy compilation units. */
5285 if (info_ptr >= begin_info_ptr + this_cu->length
5286 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5287 {
dee91e82 5288 do_cleanups (cleanups);
21b2bd31 5289 return;
93311388 5290 }
72bf9492 5291
dee91e82
DE
5292 dwarf2_read_abbrevs (&cu, abbrev_section);
5293 make_cleanup (dwarf2_free_abbrev_table, &cu);
5294
3019eac3 5295 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5296 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5297
5298 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5299
5300 do_cleanups (cleanups);
5301}
5302
3019eac3
DE
5303/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5304 does not lookup the specified DWO file.
5305 This cannot be used to read DWO files.
dee91e82
DE
5306
5307 THIS_CU->cu is always freed when done.
3019eac3
DE
5308 This is done in order to not leave THIS_CU->cu in a state where we have
5309 to care whether it refers to the "main" CU or the DWO CU.
5310 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5311
5312static void
5313init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5314 die_reader_func_ftype *die_reader_func,
5315 void *data)
5316{
5317 init_cutu_and_read_dies_no_follow (this_cu,
36586728 5318 get_abbrev_section_for_cu (this_cu),
3019eac3 5319 NULL,
dee91e82
DE
5320 die_reader_func, data);
5321}
0018ea6f
DE
5322\f
5323/* Type Unit Groups.
dee91e82 5324
0018ea6f
DE
5325 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5326 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5327 so that all types coming from the same compilation (.o file) are grouped
5328 together. A future step could be to put the types in the same symtab as
5329 the CU the types ultimately came from. */
ff013f42 5330
f4dc4d17
DE
5331static hashval_t
5332hash_type_unit_group (const void *item)
5333{
094b34ac 5334 const struct type_unit_group *tu_group = item;
f4dc4d17 5335
094b34ac 5336 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5337}
348e048f
DE
5338
5339static int
f4dc4d17 5340eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5341{
f4dc4d17
DE
5342 const struct type_unit_group *lhs = item_lhs;
5343 const struct type_unit_group *rhs = item_rhs;
348e048f 5344
094b34ac 5345 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5346}
348e048f 5347
f4dc4d17
DE
5348/* Allocate a hash table for type unit groups. */
5349
5350static htab_t
5351allocate_type_unit_groups_table (void)
5352{
5353 return htab_create_alloc_ex (3,
5354 hash_type_unit_group,
5355 eq_type_unit_group,
5356 NULL,
5357 &dwarf2_per_objfile->objfile->objfile_obstack,
5358 hashtab_obstack_allocate,
5359 dummy_obstack_deallocate);
5360}
dee91e82 5361
f4dc4d17
DE
5362/* Type units that don't have DW_AT_stmt_list are grouped into their own
5363 partial symtabs. We combine several TUs per psymtab to not let the size
5364 of any one psymtab grow too big. */
5365#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5366#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5367
094b34ac 5368/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5369 Create the type_unit_group object used to hold one or more TUs. */
5370
5371static struct type_unit_group *
094b34ac 5372create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5373{
5374 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5375 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5376 struct type_unit_group *tu_group;
f4dc4d17
DE
5377
5378 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5379 struct type_unit_group);
094b34ac 5380 per_cu = &tu_group->per_cu;
f4dc4d17 5381 per_cu->objfile = objfile;
f4dc4d17 5382
094b34ac
DE
5383 if (dwarf2_per_objfile->using_index)
5384 {
5385 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5386 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5387 }
5388 else
5389 {
5390 unsigned int line_offset = line_offset_struct.sect_off;
5391 struct partial_symtab *pst;
5392 char *name;
5393
5394 /* Give the symtab a useful name for debug purposes. */
5395 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5396 name = xstrprintf ("<type_units_%d>",
5397 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5398 else
5399 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5400
5401 pst = create_partial_symtab (per_cu, name);
5402 pst->anonymous = 1;
f4dc4d17 5403
094b34ac
DE
5404 xfree (name);
5405 }
f4dc4d17 5406
094b34ac
DE
5407 tu_group->hash.dwo_unit = cu->dwo_unit;
5408 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5409
5410 return tu_group;
5411}
5412
094b34ac
DE
5413/* Look up the type_unit_group for type unit CU, and create it if necessary.
5414 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5415
5416static struct type_unit_group *
094b34ac 5417get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
f4dc4d17
DE
5418{
5419 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5420 struct type_unit_group *tu_group;
5421 void **slot;
5422 unsigned int line_offset;
5423 struct type_unit_group type_unit_group_for_lookup;
5424
5425 if (dwarf2_per_objfile->type_unit_groups == NULL)
5426 {
5427 dwarf2_per_objfile->type_unit_groups =
5428 allocate_type_unit_groups_table ();
5429 }
5430
5431 /* Do we need to create a new group, or can we use an existing one? */
5432
5433 if (stmt_list)
5434 {
5435 line_offset = DW_UNSND (stmt_list);
5436 ++tu_stats->nr_symtab_sharers;
5437 }
5438 else
5439 {
5440 /* Ugh, no stmt_list. Rare, but we have to handle it.
5441 We can do various things here like create one group per TU or
5442 spread them over multiple groups to split up the expansion work.
5443 To avoid worst case scenarios (too many groups or too large groups)
5444 we, umm, group them in bunches. */
5445 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5446 | (tu_stats->nr_stmt_less_type_units
5447 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5448 ++tu_stats->nr_stmt_less_type_units;
5449 }
5450
094b34ac
DE
5451 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5452 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5453 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5454 &type_unit_group_for_lookup, INSERT);
5455 if (*slot != NULL)
5456 {
5457 tu_group = *slot;
5458 gdb_assert (tu_group != NULL);
5459 }
5460 else
5461 {
5462 sect_offset line_offset_struct;
5463
5464 line_offset_struct.sect_off = line_offset;
094b34ac 5465 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5466 *slot = tu_group;
5467 ++tu_stats->nr_symtabs;
5468 }
5469
5470 return tu_group;
5471}
5472
5473/* Struct used to sort TUs by their abbreviation table offset. */
5474
5475struct tu_abbrev_offset
5476{
5477 struct signatured_type *sig_type;
5478 sect_offset abbrev_offset;
5479};
5480
5481/* Helper routine for build_type_unit_groups, passed to qsort. */
5482
5483static int
5484sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5485{
5486 const struct tu_abbrev_offset * const *a = ap;
5487 const struct tu_abbrev_offset * const *b = bp;
5488 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5489 unsigned int boff = (*b)->abbrev_offset.sect_off;
5490
5491 return (aoff > boff) - (aoff < boff);
5492}
5493
5494/* A helper function to add a type_unit_group to a table. */
5495
5496static int
5497add_type_unit_group_to_table (void **slot, void *datum)
5498{
5499 struct type_unit_group *tu_group = *slot;
5500 struct type_unit_group ***datap = datum;
5501
5502 **datap = tu_group;
5503 ++*datap;
5504
5505 return 1;
5506}
5507
5508/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5509 each one passing FUNC,DATA.
5510
5511 The efficiency is because we sort TUs by the abbrev table they use and
5512 only read each abbrev table once. In one program there are 200K TUs
5513 sharing 8K abbrev tables.
5514
5515 The main purpose of this function is to support building the
5516 dwarf2_per_objfile->type_unit_groups table.
5517 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5518 can collapse the search space by grouping them by stmt_list.
5519 The savings can be significant, in the same program from above the 200K TUs
5520 share 8K stmt_list tables.
5521
5522 FUNC is expected to call get_type_unit_group, which will create the
5523 struct type_unit_group if necessary and add it to
5524 dwarf2_per_objfile->type_unit_groups. */
5525
5526static void
5527build_type_unit_groups (die_reader_func_ftype *func, void *data)
5528{
5529 struct objfile *objfile = dwarf2_per_objfile->objfile;
5530 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5531 struct cleanup *cleanups;
5532 struct abbrev_table *abbrev_table;
5533 sect_offset abbrev_offset;
5534 struct tu_abbrev_offset *sorted_by_abbrev;
5535 struct type_unit_group **iter;
5536 int i;
5537
5538 /* It's up to the caller to not call us multiple times. */
5539 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5540
5541 if (dwarf2_per_objfile->n_type_units == 0)
5542 return;
5543
5544 /* TUs typically share abbrev tables, and there can be way more TUs than
5545 abbrev tables. Sort by abbrev table to reduce the number of times we
5546 read each abbrev table in.
5547 Alternatives are to punt or to maintain a cache of abbrev tables.
5548 This is simpler and efficient enough for now.
5549
5550 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5551 symtab to use). Typically TUs with the same abbrev offset have the same
5552 stmt_list value too so in practice this should work well.
5553
5554 The basic algorithm here is:
5555
5556 sort TUs by abbrev table
5557 for each TU with same abbrev table:
5558 read abbrev table if first user
5559 read TU top level DIE
5560 [IWBN if DWO skeletons had DW_AT_stmt_list]
5561 call FUNC */
5562
5563 if (dwarf2_read_debug)
5564 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5565
5566 /* Sort in a separate table to maintain the order of all_type_units
5567 for .gdb_index: TU indices directly index all_type_units. */
5568 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5569 dwarf2_per_objfile->n_type_units);
5570 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5571 {
5572 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5573
5574 sorted_by_abbrev[i].sig_type = sig_type;
5575 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5576 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5577 sig_type->per_cu.offset);
5578 }
5579 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5580 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5581 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5582
094b34ac
DE
5583 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5584 called any number of times, so we don't reset tu_stats here. */
5585
f4dc4d17
DE
5586 abbrev_offset.sect_off = ~(unsigned) 0;
5587 abbrev_table = NULL;
5588 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5589
5590 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5591 {
5592 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5593
5594 /* Switch to the next abbrev table if necessary. */
5595 if (abbrev_table == NULL
5596 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5597 {
5598 if (abbrev_table != NULL)
5599 {
5600 abbrev_table_free (abbrev_table);
5601 /* Reset to NULL in case abbrev_table_read_table throws
5602 an error: abbrev_table_free_cleanup will get called. */
5603 abbrev_table = NULL;
5604 }
5605 abbrev_offset = tu->abbrev_offset;
5606 abbrev_table =
5607 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5608 abbrev_offset);
5609 ++tu_stats->nr_uniq_abbrev_tables;
5610 }
5611
5612 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5613 func, data);
5614 }
5615
a2ce51a0
DE
5616 /* type_unit_groups can be NULL if there is an error in the debug info.
5617 Just create an empty table so the rest of gdb doesn't have to watch
5618 for this error case. */
5619 if (dwarf2_per_objfile->type_unit_groups == NULL)
5620 {
5621 dwarf2_per_objfile->type_unit_groups =
5622 allocate_type_unit_groups_table ();
5623 dwarf2_per_objfile->n_type_unit_groups = 0;
5624 }
5625
f4dc4d17
DE
5626 /* Create a vector of pointers to primary type units to make it easy to
5627 iterate over them and CUs. See dw2_get_primary_cu. */
5628 dwarf2_per_objfile->n_type_unit_groups =
5629 htab_elements (dwarf2_per_objfile->type_unit_groups);
5630 dwarf2_per_objfile->all_type_unit_groups =
5631 obstack_alloc (&objfile->objfile_obstack,
5632 dwarf2_per_objfile->n_type_unit_groups
5633 * sizeof (struct type_unit_group *));
5634 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5635 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5636 add_type_unit_group_to_table, &iter);
5637 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5638 == dwarf2_per_objfile->n_type_unit_groups);
5639
5640 do_cleanups (cleanups);
5641
5642 if (dwarf2_read_debug)
5643 {
5644 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5645 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5646 dwarf2_per_objfile->n_type_units);
5647 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5648 tu_stats->nr_uniq_abbrev_tables);
5649 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5650 tu_stats->nr_symtabs);
5651 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5652 tu_stats->nr_symtab_sharers);
5653 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5654 tu_stats->nr_stmt_less_type_units);
5655 }
5656}
0018ea6f
DE
5657\f
5658/* Partial symbol tables. */
5659
5660/* Create a psymtab named NAME and assign it to PER_CU.
5661
5662 The caller must fill in the following details:
5663 dirname, textlow, texthigh. */
5664
5665static struct partial_symtab *
5666create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5667{
5668 struct objfile *objfile = per_cu->objfile;
5669 struct partial_symtab *pst;
5670
5671 pst = start_psymtab_common (objfile, objfile->section_offsets,
5672 name, 0,
5673 objfile->global_psymbols.next,
5674 objfile->static_psymbols.next);
5675
5676 pst->psymtabs_addrmap_supported = 1;
5677
5678 /* This is the glue that links PST into GDB's symbol API. */
5679 pst->read_symtab_private = per_cu;
5680 pst->read_symtab = dwarf2_read_symtab;
5681 per_cu->v.psymtab = pst;
5682
5683 return pst;
5684}
5685
5686/* die_reader_func for process_psymtab_comp_unit. */
5687
5688static void
5689process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5690 const gdb_byte *info_ptr,
0018ea6f
DE
5691 struct die_info *comp_unit_die,
5692 int has_children,
5693 void *data)
5694{
5695 struct dwarf2_cu *cu = reader->cu;
5696 struct objfile *objfile = cu->objfile;
5697 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5698 struct attribute *attr;
5699 CORE_ADDR baseaddr;
5700 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5701 struct partial_symtab *pst;
5702 int has_pc_info;
5703 const char *filename;
5704 int *want_partial_unit_ptr = data;
5705
5706 if (comp_unit_die->tag == DW_TAG_partial_unit
5707 && (want_partial_unit_ptr == NULL
5708 || !*want_partial_unit_ptr))
5709 return;
5710
5711 gdb_assert (! per_cu->is_debug_types);
5712
5713 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5714
5715 cu->list_in_scope = &file_symbols;
5716
5717 /* Allocate a new partial symbol table structure. */
5718 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5719 if (attr == NULL || !DW_STRING (attr))
5720 filename = "";
5721 else
5722 filename = DW_STRING (attr);
5723
5724 pst = create_partial_symtab (per_cu, filename);
5725
5726 /* This must be done before calling dwarf2_build_include_psymtabs. */
5727 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5728 if (attr != NULL)
5729 pst->dirname = DW_STRING (attr);
5730
5731 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5732
5733 dwarf2_find_base_address (comp_unit_die, cu);
5734
5735 /* Possibly set the default values of LOWPC and HIGHPC from
5736 `DW_AT_ranges'. */
5737 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5738 &best_highpc, cu, pst);
5739 if (has_pc_info == 1 && best_lowpc < best_highpc)
5740 /* Store the contiguous range if it is not empty; it can be empty for
5741 CUs with no code. */
5742 addrmap_set_empty (objfile->psymtabs_addrmap,
5743 best_lowpc + baseaddr,
5744 best_highpc + baseaddr - 1, pst);
5745
5746 /* Check if comp unit has_children.
5747 If so, read the rest of the partial symbols from this comp unit.
5748 If not, there's no more debug_info for this comp unit. */
5749 if (has_children)
5750 {
5751 struct partial_die_info *first_die;
5752 CORE_ADDR lowpc, highpc;
5753
5754 lowpc = ((CORE_ADDR) -1);
5755 highpc = ((CORE_ADDR) 0);
5756
5757 first_die = load_partial_dies (reader, info_ptr, 1);
5758
5759 scan_partial_symbols (first_die, &lowpc, &highpc,
5760 ! has_pc_info, cu);
5761
5762 /* If we didn't find a lowpc, set it to highpc to avoid
5763 complaints from `maint check'. */
5764 if (lowpc == ((CORE_ADDR) -1))
5765 lowpc = highpc;
5766
5767 /* If the compilation unit didn't have an explicit address range,
5768 then use the information extracted from its child dies. */
5769 if (! has_pc_info)
5770 {
5771 best_lowpc = lowpc;
5772 best_highpc = highpc;
5773 }
5774 }
5775 pst->textlow = best_lowpc + baseaddr;
5776 pst->texthigh = best_highpc + baseaddr;
5777
5778 pst->n_global_syms = objfile->global_psymbols.next -
5779 (objfile->global_psymbols.list + pst->globals_offset);
5780 pst->n_static_syms = objfile->static_psymbols.next -
5781 (objfile->static_psymbols.list + pst->statics_offset);
5782 sort_pst_symbols (objfile, pst);
5783
5784 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5785 {
5786 int i;
5787 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5788 struct dwarf2_per_cu_data *iter;
5789
5790 /* Fill in 'dependencies' here; we fill in 'users' in a
5791 post-pass. */
5792 pst->number_of_dependencies = len;
5793 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5794 len * sizeof (struct symtab *));
5795 for (i = 0;
5796 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5797 i, iter);
5798 ++i)
5799 pst->dependencies[i] = iter->v.psymtab;
5800
5801 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5802 }
5803
5804 /* Get the list of files included in the current compilation unit,
5805 and build a psymtab for each of them. */
5806 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5807
5808 if (dwarf2_read_debug)
5809 {
5810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5811
5812 fprintf_unfiltered (gdb_stdlog,
5813 "Psymtab for %s unit @0x%x: %s - %s"
5814 ", %d global, %d static syms\n",
5815 per_cu->is_debug_types ? "type" : "comp",
5816 per_cu->offset.sect_off,
5817 paddress (gdbarch, pst->textlow),
5818 paddress (gdbarch, pst->texthigh),
5819 pst->n_global_syms, pst->n_static_syms);
5820 }
5821}
5822
5823/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5824 Process compilation unit THIS_CU for a psymtab. */
5825
5826static void
5827process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5828 int want_partial_unit)
5829{
5830 /* If this compilation unit was already read in, free the
5831 cached copy in order to read it in again. This is
5832 necessary because we skipped some symbols when we first
5833 read in the compilation unit (see load_partial_dies).
5834 This problem could be avoided, but the benefit is unclear. */
5835 if (this_cu->cu != NULL)
5836 free_one_cached_comp_unit (this_cu);
5837
5838 gdb_assert (! this_cu->is_debug_types);
5839 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5840 process_psymtab_comp_unit_reader,
5841 &want_partial_unit);
5842
5843 /* Age out any secondary CUs. */
5844 age_cached_comp_units ();
5845}
f4dc4d17
DE
5846
5847/* Reader function for build_type_psymtabs. */
5848
5849static void
5850build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 5851 const gdb_byte *info_ptr,
f4dc4d17
DE
5852 struct die_info *type_unit_die,
5853 int has_children,
5854 void *data)
5855{
5856 struct objfile *objfile = dwarf2_per_objfile->objfile;
5857 struct dwarf2_cu *cu = reader->cu;
5858 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 5859 struct signatured_type *sig_type;
f4dc4d17
DE
5860 struct type_unit_group *tu_group;
5861 struct attribute *attr;
5862 struct partial_die_info *first_die;
5863 CORE_ADDR lowpc, highpc;
5864 struct partial_symtab *pst;
5865
5866 gdb_assert (data == NULL);
0186c6a7
DE
5867 gdb_assert (per_cu->is_debug_types);
5868 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
5869
5870 if (! has_children)
5871 return;
5872
5873 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 5874 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 5875
0186c6a7 5876 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
5877
5878 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5879 cu->list_in_scope = &file_symbols;
5880 pst = create_partial_symtab (per_cu, "");
5881 pst->anonymous = 1;
5882
5883 first_die = load_partial_dies (reader, info_ptr, 1);
5884
5885 lowpc = (CORE_ADDR) -1;
5886 highpc = (CORE_ADDR) 0;
5887 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5888
5889 pst->n_global_syms = objfile->global_psymbols.next -
5890 (objfile->global_psymbols.list + pst->globals_offset);
5891 pst->n_static_syms = objfile->static_psymbols.next -
5892 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 5893 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
5894}
5895
5896/* Traversal function for build_type_psymtabs. */
5897
5898static int
5899build_type_psymtab_dependencies (void **slot, void *info)
5900{
5901 struct objfile *objfile = dwarf2_per_objfile->objfile;
5902 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 5903 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 5904 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
5905 int len = VEC_length (sig_type_ptr, tu_group->tus);
5906 struct signatured_type *iter;
f4dc4d17
DE
5907 int i;
5908
5909 gdb_assert (len > 0);
0186c6a7 5910 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
5911
5912 pst->number_of_dependencies = len;
5913 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5914 len * sizeof (struct psymtab *));
5915 for (i = 0;
0186c6a7 5916 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
5917 ++i)
5918 {
0186c6a7
DE
5919 gdb_assert (iter->per_cu.is_debug_types);
5920 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 5921 iter->type_unit_group = tu_group;
f4dc4d17
DE
5922 }
5923
0186c6a7 5924 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
5925
5926 return 1;
5927}
5928
5929/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5930 Build partial symbol tables for the .debug_types comp-units. */
5931
5932static void
5933build_type_psymtabs (struct objfile *objfile)
5934{
0e50663e 5935 if (! create_all_type_units (objfile))
348e048f
DE
5936 return;
5937
f4dc4d17
DE
5938 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5939
5940 /* Now that all TUs have been processed we can fill in the dependencies. */
5941 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5942 build_type_psymtab_dependencies, NULL);
348e048f
DE
5943}
5944
60606b2c
TT
5945/* A cleanup function that clears objfile's psymtabs_addrmap field. */
5946
5947static void
5948psymtabs_addrmap_cleanup (void *o)
5949{
5950 struct objfile *objfile = o;
ec61707d 5951
60606b2c
TT
5952 objfile->psymtabs_addrmap = NULL;
5953}
5954
95554aad
TT
5955/* Compute the 'user' field for each psymtab in OBJFILE. */
5956
5957static void
5958set_partial_user (struct objfile *objfile)
5959{
5960 int i;
5961
5962 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5963 {
5964 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5965 struct partial_symtab *pst = per_cu->v.psymtab;
5966 int j;
5967
36586728
TT
5968 if (pst == NULL)
5969 continue;
5970
95554aad
TT
5971 for (j = 0; j < pst->number_of_dependencies; ++j)
5972 {
5973 /* Set the 'user' field only if it is not already set. */
5974 if (pst->dependencies[j]->user == NULL)
5975 pst->dependencies[j]->user = pst;
5976 }
5977 }
5978}
5979
93311388
DE
5980/* Build the partial symbol table by doing a quick pass through the
5981 .debug_info and .debug_abbrev sections. */
72bf9492 5982
93311388 5983static void
c67a9c90 5984dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 5985{
60606b2c
TT
5986 struct cleanup *back_to, *addrmap_cleanup;
5987 struct obstack temp_obstack;
21b2bd31 5988 int i;
93311388 5989
45cfd468
DE
5990 if (dwarf2_read_debug)
5991 {
5992 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5993 objfile->name);
5994 }
5995
98bfdba5
PA
5996 dwarf2_per_objfile->reading_partial_symbols = 1;
5997
be391dca 5998 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 5999
93311388
DE
6000 /* Any cached compilation units will be linked by the per-objfile
6001 read_in_chain. Make sure to free them when we're done. */
6002 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6003
348e048f
DE
6004 build_type_psymtabs (objfile);
6005
93311388 6006 create_all_comp_units (objfile);
c906108c 6007
60606b2c
TT
6008 /* Create a temporary address map on a temporary obstack. We later
6009 copy this to the final obstack. */
6010 obstack_init (&temp_obstack);
6011 make_cleanup_obstack_free (&temp_obstack);
6012 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6013 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6014
21b2bd31 6015 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6016 {
21b2bd31 6017 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6018
95554aad 6019 process_psymtab_comp_unit (per_cu, 0);
c906108c 6020 }
ff013f42 6021
95554aad
TT
6022 set_partial_user (objfile);
6023
ff013f42
JK
6024 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6025 &objfile->objfile_obstack);
60606b2c 6026 discard_cleanups (addrmap_cleanup);
ff013f42 6027
ae038cb0 6028 do_cleanups (back_to);
45cfd468
DE
6029
6030 if (dwarf2_read_debug)
6031 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6032 objfile->name);
ae038cb0
DJ
6033}
6034
3019eac3 6035/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6036
6037static void
dee91e82 6038load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6039 const gdb_byte *info_ptr,
dee91e82
DE
6040 struct die_info *comp_unit_die,
6041 int has_children,
6042 void *data)
ae038cb0 6043{
dee91e82 6044 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6045
95554aad 6046 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6047
ae038cb0
DJ
6048 /* Check if comp unit has_children.
6049 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6050 If not, there's no more debug_info for this comp unit. */
d85a05f0 6051 if (has_children)
dee91e82
DE
6052 load_partial_dies (reader, info_ptr, 0);
6053}
98bfdba5 6054
dee91e82
DE
6055/* Load the partial DIEs for a secondary CU into memory.
6056 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6057
dee91e82
DE
6058static void
6059load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6060{
f4dc4d17
DE
6061 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6062 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6063}
6064
ae038cb0 6065static void
36586728
TT
6066read_comp_units_from_section (struct objfile *objfile,
6067 struct dwarf2_section_info *section,
6068 unsigned int is_dwz,
6069 int *n_allocated,
6070 int *n_comp_units,
6071 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6072{
d521ce57 6073 const gdb_byte *info_ptr;
36586728 6074 bfd *abfd = section->asection->owner;
be391dca 6075
bf6af496
DE
6076 if (dwarf2_read_debug)
6077 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6078 section->asection->name, bfd_get_filename (abfd));
6079
36586728 6080 dwarf2_read_section (objfile, section);
ae038cb0 6081
36586728 6082 info_ptr = section->buffer;
6e70227d 6083
36586728 6084 while (info_ptr < section->buffer + section->size)
ae038cb0 6085 {
c764a876 6086 unsigned int length, initial_length_size;
ae038cb0 6087 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6088 sect_offset offset;
ae038cb0 6089
36586728 6090 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6091
6092 /* Read just enough information to find out where the next
6093 compilation unit is. */
36586728 6094 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6095
6096 /* Save the compilation unit for later lookup. */
6097 this_cu = obstack_alloc (&objfile->objfile_obstack,
6098 sizeof (struct dwarf2_per_cu_data));
6099 memset (this_cu, 0, sizeof (*this_cu));
6100 this_cu->offset = offset;
c764a876 6101 this_cu->length = length + initial_length_size;
36586728 6102 this_cu->is_dwz = is_dwz;
9291a0cd 6103 this_cu->objfile = objfile;
8a0459fd 6104 this_cu->section = section;
ae038cb0 6105
36586728 6106 if (*n_comp_units == *n_allocated)
ae038cb0 6107 {
36586728
TT
6108 *n_allocated *= 2;
6109 *all_comp_units = xrealloc (*all_comp_units,
6110 *n_allocated
6111 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6112 }
36586728
TT
6113 (*all_comp_units)[*n_comp_units] = this_cu;
6114 ++*n_comp_units;
ae038cb0
DJ
6115
6116 info_ptr = info_ptr + this_cu->length;
6117 }
36586728
TT
6118}
6119
6120/* Create a list of all compilation units in OBJFILE.
6121 This is only done for -readnow and building partial symtabs. */
6122
6123static void
6124create_all_comp_units (struct objfile *objfile)
6125{
6126 int n_allocated;
6127 int n_comp_units;
6128 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6129 struct dwz_file *dwz;
36586728
TT
6130
6131 n_comp_units = 0;
6132 n_allocated = 10;
6133 all_comp_units = xmalloc (n_allocated
6134 * sizeof (struct dwarf2_per_cu_data *));
6135
6136 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6137 &n_allocated, &n_comp_units, &all_comp_units);
6138
4db1a1dc
TT
6139 dwz = dwarf2_get_dwz_file ();
6140 if (dwz != NULL)
6141 read_comp_units_from_section (objfile, &dwz->info, 1,
6142 &n_allocated, &n_comp_units,
6143 &all_comp_units);
ae038cb0
DJ
6144
6145 dwarf2_per_objfile->all_comp_units
6146 = obstack_alloc (&objfile->objfile_obstack,
6147 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6148 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6149 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6150 xfree (all_comp_units);
6151 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6152}
6153
5734ee8b
DJ
6154/* Process all loaded DIEs for compilation unit CU, starting at
6155 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6156 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6157 DW_AT_ranges). If NEED_PC is set, then this function will set
6158 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6159 and record the covered ranges in the addrmap. */
c906108c 6160
72bf9492
DJ
6161static void
6162scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6163 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6164{
72bf9492 6165 struct partial_die_info *pdi;
c906108c 6166
91c24f0a
DC
6167 /* Now, march along the PDI's, descending into ones which have
6168 interesting children but skipping the children of the other ones,
6169 until we reach the end of the compilation unit. */
c906108c 6170
72bf9492 6171 pdi = first_die;
91c24f0a 6172
72bf9492
DJ
6173 while (pdi != NULL)
6174 {
6175 fixup_partial_die (pdi, cu);
c906108c 6176
f55ee35c 6177 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6178 children, so we need to look at them. Ditto for anonymous
6179 enums. */
933c6fe4 6180
72bf9492 6181 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6182 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6183 || pdi->tag == DW_TAG_imported_unit)
c906108c 6184 {
72bf9492 6185 switch (pdi->tag)
c906108c
SS
6186 {
6187 case DW_TAG_subprogram:
5734ee8b 6188 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6189 break;
72929c62 6190 case DW_TAG_constant:
c906108c
SS
6191 case DW_TAG_variable:
6192 case DW_TAG_typedef:
91c24f0a 6193 case DW_TAG_union_type:
72bf9492 6194 if (!pdi->is_declaration)
63d06c5c 6195 {
72bf9492 6196 add_partial_symbol (pdi, cu);
63d06c5c
DC
6197 }
6198 break;
c906108c 6199 case DW_TAG_class_type:
680b30c7 6200 case DW_TAG_interface_type:
c906108c 6201 case DW_TAG_structure_type:
72bf9492 6202 if (!pdi->is_declaration)
c906108c 6203 {
72bf9492 6204 add_partial_symbol (pdi, cu);
c906108c
SS
6205 }
6206 break;
91c24f0a 6207 case DW_TAG_enumeration_type:
72bf9492
DJ
6208 if (!pdi->is_declaration)
6209 add_partial_enumeration (pdi, cu);
c906108c
SS
6210 break;
6211 case DW_TAG_base_type:
a02abb62 6212 case DW_TAG_subrange_type:
c906108c 6213 /* File scope base type definitions are added to the partial
c5aa993b 6214 symbol table. */
72bf9492 6215 add_partial_symbol (pdi, cu);
c906108c 6216 break;
d9fa45fe 6217 case DW_TAG_namespace:
5734ee8b 6218 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6219 break;
5d7cb8df
JK
6220 case DW_TAG_module:
6221 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6222 break;
95554aad
TT
6223 case DW_TAG_imported_unit:
6224 {
6225 struct dwarf2_per_cu_data *per_cu;
6226
f4dc4d17
DE
6227 /* For now we don't handle imported units in type units. */
6228 if (cu->per_cu->is_debug_types)
6229 {
6230 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6231 " supported in type units [in module %s]"),
6232 cu->objfile->name);
6233 }
6234
95554aad 6235 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6236 pdi->is_dwz,
95554aad
TT
6237 cu->objfile);
6238
6239 /* Go read the partial unit, if needed. */
6240 if (per_cu->v.psymtab == NULL)
6241 process_psymtab_comp_unit (per_cu, 1);
6242
f4dc4d17 6243 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6244 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6245 }
6246 break;
c906108c
SS
6247 default:
6248 break;
6249 }
6250 }
6251
72bf9492
DJ
6252 /* If the die has a sibling, skip to the sibling. */
6253
6254 pdi = pdi->die_sibling;
6255 }
6256}
6257
6258/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6259
72bf9492 6260 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6261 name is concatenated with "::" and the partial DIE's name. For
6262 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6263 Enumerators are an exception; they use the scope of their parent
6264 enumeration type, i.e. the name of the enumeration type is not
6265 prepended to the enumerator.
91c24f0a 6266
72bf9492
DJ
6267 There are two complexities. One is DW_AT_specification; in this
6268 case "parent" means the parent of the target of the specification,
6269 instead of the direct parent of the DIE. The other is compilers
6270 which do not emit DW_TAG_namespace; in this case we try to guess
6271 the fully qualified name of structure types from their members'
6272 linkage names. This must be done using the DIE's children rather
6273 than the children of any DW_AT_specification target. We only need
6274 to do this for structures at the top level, i.e. if the target of
6275 any DW_AT_specification (if any; otherwise the DIE itself) does not
6276 have a parent. */
6277
6278/* Compute the scope prefix associated with PDI's parent, in
6279 compilation unit CU. The result will be allocated on CU's
6280 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6281 field. NULL is returned if no prefix is necessary. */
15d034d0 6282static const char *
72bf9492
DJ
6283partial_die_parent_scope (struct partial_die_info *pdi,
6284 struct dwarf2_cu *cu)
6285{
15d034d0 6286 const char *grandparent_scope;
72bf9492 6287 struct partial_die_info *parent, *real_pdi;
91c24f0a 6288
72bf9492
DJ
6289 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6290 then this means the parent of the specification DIE. */
6291
6292 real_pdi = pdi;
72bf9492 6293 while (real_pdi->has_specification)
36586728
TT
6294 real_pdi = find_partial_die (real_pdi->spec_offset,
6295 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6296
6297 parent = real_pdi->die_parent;
6298 if (parent == NULL)
6299 return NULL;
6300
6301 if (parent->scope_set)
6302 return parent->scope;
6303
6304 fixup_partial_die (parent, cu);
6305
10b3939b 6306 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6307
acebe513
UW
6308 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6309 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6310 Work around this problem here. */
6311 if (cu->language == language_cplus
6e70227d 6312 && parent->tag == DW_TAG_namespace
acebe513
UW
6313 && strcmp (parent->name, "::") == 0
6314 && grandparent_scope == NULL)
6315 {
6316 parent->scope = NULL;
6317 parent->scope_set = 1;
6318 return NULL;
6319 }
6320
9c6c53f7
SA
6321 if (pdi->tag == DW_TAG_enumerator)
6322 /* Enumerators should not get the name of the enumeration as a prefix. */
6323 parent->scope = grandparent_scope;
6324 else if (parent->tag == DW_TAG_namespace
f55ee35c 6325 || parent->tag == DW_TAG_module
72bf9492
DJ
6326 || parent->tag == DW_TAG_structure_type
6327 || parent->tag == DW_TAG_class_type
680b30c7 6328 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6329 || parent->tag == DW_TAG_union_type
6330 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6331 {
6332 if (grandparent_scope == NULL)
6333 parent->scope = parent->name;
6334 else
3e43a32a
MS
6335 parent->scope = typename_concat (&cu->comp_unit_obstack,
6336 grandparent_scope,
f55ee35c 6337 parent->name, 0, cu);
72bf9492 6338 }
72bf9492
DJ
6339 else
6340 {
6341 /* FIXME drow/2004-04-01: What should we be doing with
6342 function-local names? For partial symbols, we should probably be
6343 ignoring them. */
6344 complaint (&symfile_complaints,
e2e0b3e5 6345 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6346 parent->tag, pdi->offset.sect_off);
72bf9492 6347 parent->scope = grandparent_scope;
c906108c
SS
6348 }
6349
72bf9492
DJ
6350 parent->scope_set = 1;
6351 return parent->scope;
6352}
6353
6354/* Return the fully scoped name associated with PDI, from compilation unit
6355 CU. The result will be allocated with malloc. */
4568ecf9 6356
72bf9492
DJ
6357static char *
6358partial_die_full_name (struct partial_die_info *pdi,
6359 struct dwarf2_cu *cu)
6360{
15d034d0 6361 const char *parent_scope;
72bf9492 6362
98bfdba5
PA
6363 /* If this is a template instantiation, we can not work out the
6364 template arguments from partial DIEs. So, unfortunately, we have
6365 to go through the full DIEs. At least any work we do building
6366 types here will be reused if full symbols are loaded later. */
6367 if (pdi->has_template_arguments)
6368 {
6369 fixup_partial_die (pdi, cu);
6370
6371 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6372 {
6373 struct die_info *die;
6374 struct attribute attr;
6375 struct dwarf2_cu *ref_cu = cu;
6376
b64f50a1 6377 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6378 attr.name = 0;
6379 attr.form = DW_FORM_ref_addr;
4568ecf9 6380 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6381 die = follow_die_ref (NULL, &attr, &ref_cu);
6382
6383 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6384 }
6385 }
6386
72bf9492
DJ
6387 parent_scope = partial_die_parent_scope (pdi, cu);
6388 if (parent_scope == NULL)
6389 return NULL;
6390 else
f55ee35c 6391 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6392}
6393
6394static void
72bf9492 6395add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6396{
e7c27a73 6397 struct objfile *objfile = cu->objfile;
c906108c 6398 CORE_ADDR addr = 0;
15d034d0 6399 const char *actual_name = NULL;
e142c38c 6400 CORE_ADDR baseaddr;
15d034d0 6401 char *built_actual_name;
e142c38c
DJ
6402
6403 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6404
15d034d0
TT
6405 built_actual_name = partial_die_full_name (pdi, cu);
6406 if (built_actual_name != NULL)
6407 actual_name = built_actual_name;
63d06c5c 6408
72bf9492
DJ
6409 if (actual_name == NULL)
6410 actual_name = pdi->name;
6411
c906108c
SS
6412 switch (pdi->tag)
6413 {
6414 case DW_TAG_subprogram:
2cfa0c8d 6415 if (pdi->is_external || cu->language == language_ada)
c906108c 6416 {
2cfa0c8d
JB
6417 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6418 of the global scope. But in Ada, we want to be able to access
6419 nested procedures globally. So all Ada subprograms are stored
6420 in the global scope. */
f47fb265 6421 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6422 mst_text, objfile); */
f47fb265 6423 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6424 built_actual_name != NULL,
f47fb265
MS
6425 VAR_DOMAIN, LOC_BLOCK,
6426 &objfile->global_psymbols,
6427 0, pdi->lowpc + baseaddr,
6428 cu->language, objfile);
c906108c
SS
6429 }
6430 else
6431 {
f47fb265 6432 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6433 mst_file_text, objfile); */
f47fb265 6434 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6435 built_actual_name != NULL,
f47fb265
MS
6436 VAR_DOMAIN, LOC_BLOCK,
6437 &objfile->static_psymbols,
6438 0, pdi->lowpc + baseaddr,
6439 cu->language, objfile);
c906108c
SS
6440 }
6441 break;
72929c62
JB
6442 case DW_TAG_constant:
6443 {
6444 struct psymbol_allocation_list *list;
6445
6446 if (pdi->is_external)
6447 list = &objfile->global_psymbols;
6448 else
6449 list = &objfile->static_psymbols;
f47fb265 6450 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6451 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6452 list, 0, 0, cu->language, objfile);
72929c62
JB
6453 }
6454 break;
c906108c 6455 case DW_TAG_variable:
95554aad
TT
6456 if (pdi->d.locdesc)
6457 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6458
95554aad 6459 if (pdi->d.locdesc
caac4577
JG
6460 && addr == 0
6461 && !dwarf2_per_objfile->has_section_at_zero)
6462 {
6463 /* A global or static variable may also have been stripped
6464 out by the linker if unused, in which case its address
6465 will be nullified; do not add such variables into partial
6466 symbol table then. */
6467 }
6468 else if (pdi->is_external)
c906108c
SS
6469 {
6470 /* Global Variable.
6471 Don't enter into the minimal symbol tables as there is
6472 a minimal symbol table entry from the ELF symbols already.
6473 Enter into partial symbol table if it has a location
6474 descriptor or a type.
6475 If the location descriptor is missing, new_symbol will create
6476 a LOC_UNRESOLVED symbol, the address of the variable will then
6477 be determined from the minimal symbol table whenever the variable
6478 is referenced.
6479 The address for the partial symbol table entry is not
6480 used by GDB, but it comes in handy for debugging partial symbol
6481 table building. */
6482
95554aad 6483 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6484 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6485 built_actual_name != NULL,
f47fb265
MS
6486 VAR_DOMAIN, LOC_STATIC,
6487 &objfile->global_psymbols,
6488 0, addr + baseaddr,
6489 cu->language, objfile);
c906108c
SS
6490 }
6491 else
6492 {
0963b4bd 6493 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6494 if (pdi->d.locdesc == NULL)
decbce07 6495 {
15d034d0 6496 xfree (built_actual_name);
decbce07
MS
6497 return;
6498 }
f47fb265 6499 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6500 mst_file_data, objfile); */
f47fb265 6501 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6502 built_actual_name != NULL,
f47fb265
MS
6503 VAR_DOMAIN, LOC_STATIC,
6504 &objfile->static_psymbols,
6505 0, addr + baseaddr,
6506 cu->language, objfile);
c906108c
SS
6507 }
6508 break;
6509 case DW_TAG_typedef:
6510 case DW_TAG_base_type:
a02abb62 6511 case DW_TAG_subrange_type:
38d518c9 6512 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6513 built_actual_name != NULL,
176620f1 6514 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6515 &objfile->static_psymbols,
e142c38c 6516 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6517 break;
72bf9492
DJ
6518 case DW_TAG_namespace:
6519 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6520 built_actual_name != NULL,
72bf9492
DJ
6521 VAR_DOMAIN, LOC_TYPEDEF,
6522 &objfile->global_psymbols,
6523 0, (CORE_ADDR) 0, cu->language, objfile);
6524 break;
c906108c 6525 case DW_TAG_class_type:
680b30c7 6526 case DW_TAG_interface_type:
c906108c
SS
6527 case DW_TAG_structure_type:
6528 case DW_TAG_union_type:
6529 case DW_TAG_enumeration_type:
fa4028e9
JB
6530 /* Skip external references. The DWARF standard says in the section
6531 about "Structure, Union, and Class Type Entries": "An incomplete
6532 structure, union or class type is represented by a structure,
6533 union or class entry that does not have a byte size attribute
6534 and that has a DW_AT_declaration attribute." */
6535 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6536 {
15d034d0 6537 xfree (built_actual_name);
decbce07
MS
6538 return;
6539 }
fa4028e9 6540
63d06c5c
DC
6541 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6542 static vs. global. */
38d518c9 6543 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6544 built_actual_name != NULL,
176620f1 6545 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6546 (cu->language == language_cplus
6547 || cu->language == language_java)
63d06c5c
DC
6548 ? &objfile->global_psymbols
6549 : &objfile->static_psymbols,
e142c38c 6550 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6551
c906108c
SS
6552 break;
6553 case DW_TAG_enumerator:
38d518c9 6554 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6555 built_actual_name != NULL,
176620f1 6556 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6557 (cu->language == language_cplus
6558 || cu->language == language_java)
f6fe98ef
DJ
6559 ? &objfile->global_psymbols
6560 : &objfile->static_psymbols,
e142c38c 6561 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6562 break;
6563 default:
6564 break;
6565 }
5c4e30ca 6566
15d034d0 6567 xfree (built_actual_name);
c906108c
SS
6568}
6569
5c4e30ca
DC
6570/* Read a partial die corresponding to a namespace; also, add a symbol
6571 corresponding to that namespace to the symbol table. NAMESPACE is
6572 the name of the enclosing namespace. */
91c24f0a 6573
72bf9492
DJ
6574static void
6575add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6576 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6577 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6578{
72bf9492 6579 /* Add a symbol for the namespace. */
e7c27a73 6580
72bf9492 6581 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6582
6583 /* Now scan partial symbols in that namespace. */
6584
91c24f0a 6585 if (pdi->has_children)
5734ee8b 6586 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6587}
6588
5d7cb8df
JK
6589/* Read a partial die corresponding to a Fortran module. */
6590
6591static void
6592add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6593 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6594{
f55ee35c 6595 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6596
6597 if (pdi->has_children)
6598 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6599}
6600
bc30ff58
JB
6601/* Read a partial die corresponding to a subprogram and create a partial
6602 symbol for that subprogram. When the CU language allows it, this
6603 routine also defines a partial symbol for each nested subprogram
6604 that this subprogram contains.
6e70227d 6605
bc30ff58
JB
6606 DIE my also be a lexical block, in which case we simply search
6607 recursively for suprograms defined inside that lexical block.
6608 Again, this is only performed when the CU language allows this
6609 type of definitions. */
6610
6611static void
6612add_partial_subprogram (struct partial_die_info *pdi,
6613 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6614 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6615{
6616 if (pdi->tag == DW_TAG_subprogram)
6617 {
6618 if (pdi->has_pc_info)
6619 {
6620 if (pdi->lowpc < *lowpc)
6621 *lowpc = pdi->lowpc;
6622 if (pdi->highpc > *highpc)
6623 *highpc = pdi->highpc;
5734ee8b
DJ
6624 if (need_pc)
6625 {
6626 CORE_ADDR baseaddr;
6627 struct objfile *objfile = cu->objfile;
6628
6629 baseaddr = ANOFFSET (objfile->section_offsets,
6630 SECT_OFF_TEXT (objfile));
6631 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6632 pdi->lowpc + baseaddr,
6633 pdi->highpc - 1 + baseaddr,
9291a0cd 6634 cu->per_cu->v.psymtab);
5734ee8b 6635 }
481860b3
GB
6636 }
6637
6638 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6639 {
bc30ff58 6640 if (!pdi->is_declaration)
e8d05480
JB
6641 /* Ignore subprogram DIEs that do not have a name, they are
6642 illegal. Do not emit a complaint at this point, we will
6643 do so when we convert this psymtab into a symtab. */
6644 if (pdi->name)
6645 add_partial_symbol (pdi, cu);
bc30ff58
JB
6646 }
6647 }
6e70227d 6648
bc30ff58
JB
6649 if (! pdi->has_children)
6650 return;
6651
6652 if (cu->language == language_ada)
6653 {
6654 pdi = pdi->die_child;
6655 while (pdi != NULL)
6656 {
6657 fixup_partial_die (pdi, cu);
6658 if (pdi->tag == DW_TAG_subprogram
6659 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6660 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6661 pdi = pdi->die_sibling;
6662 }
6663 }
6664}
6665
91c24f0a
DC
6666/* Read a partial die corresponding to an enumeration type. */
6667
72bf9492
DJ
6668static void
6669add_partial_enumeration (struct partial_die_info *enum_pdi,
6670 struct dwarf2_cu *cu)
91c24f0a 6671{
72bf9492 6672 struct partial_die_info *pdi;
91c24f0a
DC
6673
6674 if (enum_pdi->name != NULL)
72bf9492
DJ
6675 add_partial_symbol (enum_pdi, cu);
6676
6677 pdi = enum_pdi->die_child;
6678 while (pdi)
91c24f0a 6679 {
72bf9492 6680 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6681 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6682 else
72bf9492
DJ
6683 add_partial_symbol (pdi, cu);
6684 pdi = pdi->die_sibling;
91c24f0a 6685 }
91c24f0a
DC
6686}
6687
6caca83c
CC
6688/* Return the initial uleb128 in the die at INFO_PTR. */
6689
6690static unsigned int
d521ce57 6691peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6692{
6693 unsigned int bytes_read;
6694
6695 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6696}
6697
4bb7a0a7
DJ
6698/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6699 Return the corresponding abbrev, or NULL if the number is zero (indicating
6700 an empty DIE). In either case *BYTES_READ will be set to the length of
6701 the initial number. */
6702
6703static struct abbrev_info *
d521ce57 6704peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6705 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6706{
6707 bfd *abfd = cu->objfile->obfd;
6708 unsigned int abbrev_number;
6709 struct abbrev_info *abbrev;
6710
6711 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6712
6713 if (abbrev_number == 0)
6714 return NULL;
6715
433df2d4 6716 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6717 if (!abbrev)
6718 {
3e43a32a
MS
6719 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6720 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6721 }
6722
6723 return abbrev;
6724}
6725
93311388
DE
6726/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6727 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6728 DIE. Any children of the skipped DIEs will also be skipped. */
6729
d521ce57
TT
6730static const gdb_byte *
6731skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 6732{
dee91e82 6733 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6734 struct abbrev_info *abbrev;
6735 unsigned int bytes_read;
6736
6737 while (1)
6738 {
6739 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6740 if (abbrev == NULL)
6741 return info_ptr + bytes_read;
6742 else
dee91e82 6743 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6744 }
6745}
6746
93311388
DE
6747/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6748 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6749 abbrev corresponding to that skipped uleb128 should be passed in
6750 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6751 children. */
6752
d521ce57
TT
6753static const gdb_byte *
6754skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 6755 struct abbrev_info *abbrev)
4bb7a0a7
DJ
6756{
6757 unsigned int bytes_read;
6758 struct attribute attr;
dee91e82
DE
6759 bfd *abfd = reader->abfd;
6760 struct dwarf2_cu *cu = reader->cu;
d521ce57 6761 const gdb_byte *buffer = reader->buffer;
f664829e 6762 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 6763 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
6764 unsigned int form, i;
6765
6766 for (i = 0; i < abbrev->num_attrs; i++)
6767 {
6768 /* The only abbrev we care about is DW_AT_sibling. */
6769 if (abbrev->attrs[i].name == DW_AT_sibling)
6770 {
dee91e82 6771 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 6772 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
6773 complaint (&symfile_complaints,
6774 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 6775 else
b64f50a1 6776 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
6777 }
6778
6779 /* If it isn't DW_AT_sibling, skip this attribute. */
6780 form = abbrev->attrs[i].form;
6781 skip_attribute:
6782 switch (form)
6783 {
4bb7a0a7 6784 case DW_FORM_ref_addr:
ae411497
TT
6785 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6786 and later it is offset sized. */
6787 if (cu->header.version == 2)
6788 info_ptr += cu->header.addr_size;
6789 else
6790 info_ptr += cu->header.offset_size;
6791 break;
36586728
TT
6792 case DW_FORM_GNU_ref_alt:
6793 info_ptr += cu->header.offset_size;
6794 break;
ae411497 6795 case DW_FORM_addr:
4bb7a0a7
DJ
6796 info_ptr += cu->header.addr_size;
6797 break;
6798 case DW_FORM_data1:
6799 case DW_FORM_ref1:
6800 case DW_FORM_flag:
6801 info_ptr += 1;
6802 break;
2dc7f7b3
TT
6803 case DW_FORM_flag_present:
6804 break;
4bb7a0a7
DJ
6805 case DW_FORM_data2:
6806 case DW_FORM_ref2:
6807 info_ptr += 2;
6808 break;
6809 case DW_FORM_data4:
6810 case DW_FORM_ref4:
6811 info_ptr += 4;
6812 break;
6813 case DW_FORM_data8:
6814 case DW_FORM_ref8:
55f1336d 6815 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
6816 info_ptr += 8;
6817 break;
6818 case DW_FORM_string:
9b1c24c8 6819 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
6820 info_ptr += bytes_read;
6821 break;
2dc7f7b3 6822 case DW_FORM_sec_offset:
4bb7a0a7 6823 case DW_FORM_strp:
36586728 6824 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
6825 info_ptr += cu->header.offset_size;
6826 break;
2dc7f7b3 6827 case DW_FORM_exprloc:
4bb7a0a7
DJ
6828 case DW_FORM_block:
6829 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6830 info_ptr += bytes_read;
6831 break;
6832 case DW_FORM_block1:
6833 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6834 break;
6835 case DW_FORM_block2:
6836 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6837 break;
6838 case DW_FORM_block4:
6839 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6840 break;
6841 case DW_FORM_sdata:
6842 case DW_FORM_udata:
6843 case DW_FORM_ref_udata:
3019eac3
DE
6844 case DW_FORM_GNU_addr_index:
6845 case DW_FORM_GNU_str_index:
d521ce57 6846 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
6847 break;
6848 case DW_FORM_indirect:
6849 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6850 info_ptr += bytes_read;
6851 /* We need to continue parsing from here, so just go back to
6852 the top. */
6853 goto skip_attribute;
6854
6855 default:
3e43a32a
MS
6856 error (_("Dwarf Error: Cannot handle %s "
6857 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
6858 dwarf_form_name (form),
6859 bfd_get_filename (abfd));
6860 }
6861 }
6862
6863 if (abbrev->has_children)
dee91e82 6864 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
6865 else
6866 return info_ptr;
6867}
6868
93311388 6869/* Locate ORIG_PDI's sibling.
dee91e82 6870 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 6871
d521ce57 6872static const gdb_byte *
dee91e82
DE
6873locate_pdi_sibling (const struct die_reader_specs *reader,
6874 struct partial_die_info *orig_pdi,
d521ce57 6875 const gdb_byte *info_ptr)
91c24f0a
DC
6876{
6877 /* Do we know the sibling already? */
72bf9492 6878
91c24f0a
DC
6879 if (orig_pdi->sibling)
6880 return orig_pdi->sibling;
6881
6882 /* Are there any children to deal with? */
6883
6884 if (!orig_pdi->has_children)
6885 return info_ptr;
6886
4bb7a0a7 6887 /* Skip the children the long way. */
91c24f0a 6888
dee91e82 6889 return skip_children (reader, info_ptr);
91c24f0a
DC
6890}
6891
257e7a09 6892/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 6893 not NULL. */
c906108c
SS
6894
6895static void
257e7a09
YQ
6896dwarf2_read_symtab (struct partial_symtab *self,
6897 struct objfile *objfile)
c906108c 6898{
257e7a09 6899 if (self->readin)
c906108c 6900 {
442e4d9c 6901 warning (_("bug: psymtab for %s is already read in."),
257e7a09 6902 self->filename);
442e4d9c
YQ
6903 }
6904 else
6905 {
6906 if (info_verbose)
c906108c 6907 {
442e4d9c 6908 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 6909 self->filename);
442e4d9c 6910 gdb_flush (gdb_stdout);
c906108c 6911 }
c906108c 6912
442e4d9c
YQ
6913 /* Restore our global data. */
6914 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 6915
442e4d9c
YQ
6916 /* If this psymtab is constructed from a debug-only objfile, the
6917 has_section_at_zero flag will not necessarily be correct. We
6918 can get the correct value for this flag by looking at the data
6919 associated with the (presumably stripped) associated objfile. */
6920 if (objfile->separate_debug_objfile_backlink)
6921 {
6922 struct dwarf2_per_objfile *dpo_backlink
6923 = objfile_data (objfile->separate_debug_objfile_backlink,
6924 dwarf2_objfile_data_key);
9a619af0 6925
442e4d9c
YQ
6926 dwarf2_per_objfile->has_section_at_zero
6927 = dpo_backlink->has_section_at_zero;
6928 }
b2ab525c 6929
442e4d9c 6930 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 6931
257e7a09 6932 psymtab_to_symtab_1 (self);
c906108c 6933
442e4d9c
YQ
6934 /* Finish up the debug error message. */
6935 if (info_verbose)
6936 printf_filtered (_("done.\n"));
c906108c 6937 }
95554aad
TT
6938
6939 process_cu_includes ();
c906108c 6940}
9cdd5dbd
DE
6941\f
6942/* Reading in full CUs. */
c906108c 6943
10b3939b
DJ
6944/* Add PER_CU to the queue. */
6945
6946static void
95554aad
TT
6947queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6948 enum language pretend_language)
10b3939b
DJ
6949{
6950 struct dwarf2_queue_item *item;
6951
6952 per_cu->queued = 1;
6953 item = xmalloc (sizeof (*item));
6954 item->per_cu = per_cu;
95554aad 6955 item->pretend_language = pretend_language;
10b3939b
DJ
6956 item->next = NULL;
6957
6958 if (dwarf2_queue == NULL)
6959 dwarf2_queue = item;
6960 else
6961 dwarf2_queue_tail->next = item;
6962
6963 dwarf2_queue_tail = item;
6964}
6965
0907af0c
DE
6966/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6967 unit and add it to our queue.
6968 The result is non-zero if PER_CU was queued, otherwise the result is zero
6969 meaning either PER_CU is already queued or it is already loaded. */
6970
6971static int
6972maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6973 struct dwarf2_per_cu_data *per_cu,
6974 enum language pretend_language)
6975{
6976 /* We may arrive here during partial symbol reading, if we need full
6977 DIEs to process an unusual case (e.g. template arguments). Do
6978 not queue PER_CU, just tell our caller to load its DIEs. */
6979 if (dwarf2_per_objfile->reading_partial_symbols)
6980 {
6981 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6982 return 1;
6983 return 0;
6984 }
6985
6986 /* Mark the dependence relation so that we don't flush PER_CU
6987 too early. */
6988 dwarf2_add_dependence (this_cu, per_cu);
6989
6990 /* If it's already on the queue, we have nothing to do. */
6991 if (per_cu->queued)
6992 return 0;
6993
6994 /* If the compilation unit is already loaded, just mark it as
6995 used. */
6996 if (per_cu->cu != NULL)
6997 {
6998 per_cu->cu->last_used = 0;
6999 return 0;
7000 }
7001
7002 /* Add it to the queue. */
7003 queue_comp_unit (per_cu, pretend_language);
7004
7005 return 1;
7006}
7007
10b3939b
DJ
7008/* Process the queue. */
7009
7010static void
a0f42c21 7011process_queue (void)
10b3939b
DJ
7012{
7013 struct dwarf2_queue_item *item, *next_item;
7014
45cfd468
DE
7015 if (dwarf2_read_debug)
7016 {
7017 fprintf_unfiltered (gdb_stdlog,
7018 "Expanding one or more symtabs of objfile %s ...\n",
7019 dwarf2_per_objfile->objfile->name);
7020 }
7021
03dd20cc
DJ
7022 /* The queue starts out with one item, but following a DIE reference
7023 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7024 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7025 {
9291a0cd
TT
7026 if (dwarf2_per_objfile->using_index
7027 ? !item->per_cu->v.quick->symtab
7028 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7029 {
7030 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7031
7032 if (dwarf2_read_debug)
7033 {
7034 fprintf_unfiltered (gdb_stdlog,
7035 "Expanding symtab of %s at offset 0x%x\n",
7036 per_cu->is_debug_types ? "TU" : "CU",
7037 per_cu->offset.sect_off);
7038 }
7039
7040 if (per_cu->is_debug_types)
7041 process_full_type_unit (per_cu, item->pretend_language);
7042 else
7043 process_full_comp_unit (per_cu, item->pretend_language);
7044
7045 if (dwarf2_read_debug)
7046 {
7047 fprintf_unfiltered (gdb_stdlog,
7048 "Done expanding %s at offset 0x%x\n",
7049 per_cu->is_debug_types ? "TU" : "CU",
7050 per_cu->offset.sect_off);
7051 }
7052 }
10b3939b
DJ
7053
7054 item->per_cu->queued = 0;
7055 next_item = item->next;
7056 xfree (item);
7057 }
7058
7059 dwarf2_queue_tail = NULL;
45cfd468
DE
7060
7061 if (dwarf2_read_debug)
7062 {
7063 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7064 dwarf2_per_objfile->objfile->name);
7065 }
10b3939b
DJ
7066}
7067
7068/* Free all allocated queue entries. This function only releases anything if
7069 an error was thrown; if the queue was processed then it would have been
7070 freed as we went along. */
7071
7072static void
7073dwarf2_release_queue (void *dummy)
7074{
7075 struct dwarf2_queue_item *item, *last;
7076
7077 item = dwarf2_queue;
7078 while (item)
7079 {
7080 /* Anything still marked queued is likely to be in an
7081 inconsistent state, so discard it. */
7082 if (item->per_cu->queued)
7083 {
7084 if (item->per_cu->cu != NULL)
dee91e82 7085 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7086 item->per_cu->queued = 0;
7087 }
7088
7089 last = item;
7090 item = item->next;
7091 xfree (last);
7092 }
7093
7094 dwarf2_queue = dwarf2_queue_tail = NULL;
7095}
7096
7097/* Read in full symbols for PST, and anything it depends on. */
7098
c906108c 7099static void
fba45db2 7100psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7101{
10b3939b 7102 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7103 int i;
7104
95554aad
TT
7105 if (pst->readin)
7106 return;
7107
aaa75496 7108 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7109 if (!pst->dependencies[i]->readin
7110 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7111 {
7112 /* Inform about additional files that need to be read in. */
7113 if (info_verbose)
7114 {
a3f17187 7115 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7116 fputs_filtered (" ", gdb_stdout);
7117 wrap_here ("");
7118 fputs_filtered ("and ", gdb_stdout);
7119 wrap_here ("");
7120 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7121 wrap_here (""); /* Flush output. */
aaa75496
JB
7122 gdb_flush (gdb_stdout);
7123 }
7124 psymtab_to_symtab_1 (pst->dependencies[i]);
7125 }
7126
e38df1d0 7127 per_cu = pst->read_symtab_private;
10b3939b
DJ
7128
7129 if (per_cu == NULL)
aaa75496
JB
7130 {
7131 /* It's an include file, no symbols to read for it.
7132 Everything is in the parent symtab. */
7133 pst->readin = 1;
7134 return;
7135 }
c906108c 7136
a0f42c21 7137 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7138}
7139
dee91e82
DE
7140/* Trivial hash function for die_info: the hash value of a DIE
7141 is its offset in .debug_info for this objfile. */
10b3939b 7142
dee91e82
DE
7143static hashval_t
7144die_hash (const void *item)
10b3939b 7145{
dee91e82 7146 const struct die_info *die = item;
6502dd73 7147
dee91e82
DE
7148 return die->offset.sect_off;
7149}
63d06c5c 7150
dee91e82
DE
7151/* Trivial comparison function for die_info structures: two DIEs
7152 are equal if they have the same offset. */
98bfdba5 7153
dee91e82
DE
7154static int
7155die_eq (const void *item_lhs, const void *item_rhs)
7156{
7157 const struct die_info *die_lhs = item_lhs;
7158 const struct die_info *die_rhs = item_rhs;
c906108c 7159
dee91e82
DE
7160 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7161}
c906108c 7162
dee91e82
DE
7163/* die_reader_func for load_full_comp_unit.
7164 This is identical to read_signatured_type_reader,
7165 but is kept separate for now. */
c906108c 7166
dee91e82
DE
7167static void
7168load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7169 const gdb_byte *info_ptr,
dee91e82
DE
7170 struct die_info *comp_unit_die,
7171 int has_children,
7172 void *data)
7173{
7174 struct dwarf2_cu *cu = reader->cu;
95554aad 7175 enum language *language_ptr = data;
6caca83c 7176
dee91e82
DE
7177 gdb_assert (cu->die_hash == NULL);
7178 cu->die_hash =
7179 htab_create_alloc_ex (cu->header.length / 12,
7180 die_hash,
7181 die_eq,
7182 NULL,
7183 &cu->comp_unit_obstack,
7184 hashtab_obstack_allocate,
7185 dummy_obstack_deallocate);
e142c38c 7186
dee91e82
DE
7187 if (has_children)
7188 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7189 &info_ptr, comp_unit_die);
7190 cu->dies = comp_unit_die;
7191 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7192
7193 /* We try not to read any attributes in this function, because not
9cdd5dbd 7194 all CUs needed for references have been loaded yet, and symbol
10b3939b 7195 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7196 or we won't be able to build types correctly.
7197 Similarly, if we do not read the producer, we can not apply
7198 producer-specific interpretation. */
95554aad 7199 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7200}
10b3939b 7201
dee91e82 7202/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7203
dee91e82 7204static void
95554aad
TT
7205load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7206 enum language pretend_language)
dee91e82 7207{
3019eac3 7208 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7209
f4dc4d17
DE
7210 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7211 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7212}
7213
3da10d80
KS
7214/* Add a DIE to the delayed physname list. */
7215
7216static void
7217add_to_method_list (struct type *type, int fnfield_index, int index,
7218 const char *name, struct die_info *die,
7219 struct dwarf2_cu *cu)
7220{
7221 struct delayed_method_info mi;
7222 mi.type = type;
7223 mi.fnfield_index = fnfield_index;
7224 mi.index = index;
7225 mi.name = name;
7226 mi.die = die;
7227 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7228}
7229
7230/* A cleanup for freeing the delayed method list. */
7231
7232static void
7233free_delayed_list (void *ptr)
7234{
7235 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7236 if (cu->method_list != NULL)
7237 {
7238 VEC_free (delayed_method_info, cu->method_list);
7239 cu->method_list = NULL;
7240 }
7241}
7242
7243/* Compute the physnames of any methods on the CU's method list.
7244
7245 The computation of method physnames is delayed in order to avoid the
7246 (bad) condition that one of the method's formal parameters is of an as yet
7247 incomplete type. */
7248
7249static void
7250compute_delayed_physnames (struct dwarf2_cu *cu)
7251{
7252 int i;
7253 struct delayed_method_info *mi;
7254 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7255 {
1d06ead6 7256 const char *physname;
3da10d80
KS
7257 struct fn_fieldlist *fn_flp
7258 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7259 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7260 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7261 }
7262}
7263
a766d390
DE
7264/* Go objects should be embedded in a DW_TAG_module DIE,
7265 and it's not clear if/how imported objects will appear.
7266 To keep Go support simple until that's worked out,
7267 go back through what we've read and create something usable.
7268 We could do this while processing each DIE, and feels kinda cleaner,
7269 but that way is more invasive.
7270 This is to, for example, allow the user to type "p var" or "b main"
7271 without having to specify the package name, and allow lookups
7272 of module.object to work in contexts that use the expression
7273 parser. */
7274
7275static void
7276fixup_go_packaging (struct dwarf2_cu *cu)
7277{
7278 char *package_name = NULL;
7279 struct pending *list;
7280 int i;
7281
7282 for (list = global_symbols; list != NULL; list = list->next)
7283 {
7284 for (i = 0; i < list->nsyms; ++i)
7285 {
7286 struct symbol *sym = list->symbol[i];
7287
7288 if (SYMBOL_LANGUAGE (sym) == language_go
7289 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7290 {
7291 char *this_package_name = go_symbol_package_name (sym);
7292
7293 if (this_package_name == NULL)
7294 continue;
7295 if (package_name == NULL)
7296 package_name = this_package_name;
7297 else
7298 {
7299 if (strcmp (package_name, this_package_name) != 0)
7300 complaint (&symfile_complaints,
7301 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7302 (SYMBOL_SYMTAB (sym)
05cba821 7303 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
a766d390
DE
7304 : cu->objfile->name),
7305 this_package_name, package_name);
7306 xfree (this_package_name);
7307 }
7308 }
7309 }
7310 }
7311
7312 if (package_name != NULL)
7313 {
7314 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7315 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7316 package_name,
7317 strlen (package_name));
a766d390 7318 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7319 saved_package_name, objfile);
a766d390
DE
7320 struct symbol *sym;
7321
7322 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7323
e623cf5d 7324 sym = allocate_symbol (objfile);
f85f34ed 7325 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7326 SYMBOL_SET_NAMES (sym, saved_package_name,
7327 strlen (saved_package_name), 0, objfile);
a766d390
DE
7328 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7329 e.g., "main" finds the "main" module and not C's main(). */
7330 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7331 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7332 SYMBOL_TYPE (sym) = type;
7333
7334 add_symbol_to_list (sym, &global_symbols);
7335
7336 xfree (package_name);
7337 }
7338}
7339
95554aad
TT
7340/* Return the symtab for PER_CU. This works properly regardless of
7341 whether we're using the index or psymtabs. */
7342
7343static struct symtab *
7344get_symtab (struct dwarf2_per_cu_data *per_cu)
7345{
7346 return (dwarf2_per_objfile->using_index
7347 ? per_cu->v.quick->symtab
7348 : per_cu->v.psymtab->symtab);
7349}
7350
7351/* A helper function for computing the list of all symbol tables
7352 included by PER_CU. */
7353
7354static void
7355recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7356 htab_t all_children,
7357 struct dwarf2_per_cu_data *per_cu)
7358{
7359 void **slot;
7360 int ix;
7361 struct dwarf2_per_cu_data *iter;
7362
7363 slot = htab_find_slot (all_children, per_cu, INSERT);
7364 if (*slot != NULL)
7365 {
7366 /* This inclusion and its children have been processed. */
7367 return;
7368 }
7369
7370 *slot = per_cu;
7371 /* Only add a CU if it has a symbol table. */
7372 if (get_symtab (per_cu) != NULL)
7373 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7374
7375 for (ix = 0;
796a7ff8 7376 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad
TT
7377 ++ix)
7378 recursively_compute_inclusions (result, all_children, iter);
7379}
7380
7381/* Compute the symtab 'includes' fields for the symtab related to
7382 PER_CU. */
7383
7384static void
7385compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7386{
f4dc4d17
DE
7387 gdb_assert (! per_cu->is_debug_types);
7388
796a7ff8 7389 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7390 {
7391 int ix, len;
7392 struct dwarf2_per_cu_data *iter;
7393 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7394 htab_t all_children;
7395 struct symtab *symtab = get_symtab (per_cu);
7396
7397 /* If we don't have a symtab, we can just skip this case. */
7398 if (symtab == NULL)
7399 return;
7400
7401 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7402 NULL, xcalloc, xfree);
7403
7404 for (ix = 0;
796a7ff8 7405 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
95554aad
TT
7406 ix, iter);
7407 ++ix)
7408 recursively_compute_inclusions (&result_children, all_children, iter);
7409
796a7ff8
DE
7410 /* Now we have a transitive closure of all the included CUs, and
7411 for .gdb_index version 7 the included TUs, so we can convert it
7412 to a list of symtabs. */
95554aad
TT
7413 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7414 symtab->includes
7415 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7416 (len + 1) * sizeof (struct symtab *));
7417 for (ix = 0;
7418 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7419 ++ix)
7420 symtab->includes[ix] = get_symtab (iter);
7421 symtab->includes[len] = NULL;
7422
7423 VEC_free (dwarf2_per_cu_ptr, result_children);
7424 htab_delete (all_children);
7425 }
7426}
7427
7428/* Compute the 'includes' field for the symtabs of all the CUs we just
7429 read. */
7430
7431static void
7432process_cu_includes (void)
7433{
7434 int ix;
7435 struct dwarf2_per_cu_data *iter;
7436
7437 for (ix = 0;
7438 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7439 ix, iter);
7440 ++ix)
f4dc4d17
DE
7441 {
7442 if (! iter->is_debug_types)
7443 compute_symtab_includes (iter);
7444 }
95554aad
TT
7445
7446 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7447}
7448
9cdd5dbd 7449/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7450 already been loaded into memory. */
7451
7452static void
95554aad
TT
7453process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7454 enum language pretend_language)
10b3939b 7455{
10b3939b 7456 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7457 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7458 CORE_ADDR lowpc, highpc;
7459 struct symtab *symtab;
3da10d80 7460 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7461 CORE_ADDR baseaddr;
4359dff1 7462 struct block *static_block;
10b3939b
DJ
7463
7464 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7465
10b3939b
DJ
7466 buildsym_init ();
7467 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7468 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7469
7470 cu->list_in_scope = &file_symbols;
c906108c 7471
95554aad
TT
7472 cu->language = pretend_language;
7473 cu->language_defn = language_def (cu->language);
7474
c906108c 7475 /* Do line number decoding in read_file_scope () */
10b3939b 7476 process_die (cu->dies, cu);
c906108c 7477
a766d390
DE
7478 /* For now fudge the Go package. */
7479 if (cu->language == language_go)
7480 fixup_go_packaging (cu);
7481
3da10d80
KS
7482 /* Now that we have processed all the DIEs in the CU, all the types
7483 should be complete, and it should now be safe to compute all of the
7484 physnames. */
7485 compute_delayed_physnames (cu);
7486 do_cleanups (delayed_list_cleanup);
7487
fae299cd
DC
7488 /* Some compilers don't define a DW_AT_high_pc attribute for the
7489 compilation unit. If the DW_AT_high_pc is missing, synthesize
7490 it, by scanning the DIE's below the compilation unit. */
10b3939b 7491 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7492
36586728 7493 static_block
ff546935 7494 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7495
7496 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7497 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7498 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7499 addrmap to help ensure it has an accurate map of pc values belonging to
7500 this comp unit. */
7501 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7502
7503 symtab = end_symtab_from_static_block (static_block, objfile,
7504 SECT_OFF_TEXT (objfile), 0);
c906108c 7505
8be455d7 7506 if (symtab != NULL)
c906108c 7507 {
df15bd07 7508 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7509
8be455d7
JK
7510 /* Set symtab language to language from DW_AT_language. If the
7511 compilation is from a C file generated by language preprocessors, do
7512 not set the language if it was already deduced by start_subfile. */
7513 if (!(cu->language == language_c && symtab->language != language_c))
7514 symtab->language = cu->language;
7515
7516 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7517 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7518 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7519 there were bugs in prologue debug info, fixed later in GCC-4.5
7520 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7521
7522 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7523 needed, it would be wrong due to missing DW_AT_producer there.
7524
7525 Still one can confuse GDB by using non-standard GCC compilation
7526 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7527 */
ab260dad 7528 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7529 symtab->locations_valid = 1;
e0d00bc7
JK
7530
7531 if (gcc_4_minor >= 5)
7532 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7533
7534 symtab->call_site_htab = cu->call_site_htab;
c906108c 7535 }
9291a0cd
TT
7536
7537 if (dwarf2_per_objfile->using_index)
7538 per_cu->v.quick->symtab = symtab;
7539 else
7540 {
7541 struct partial_symtab *pst = per_cu->v.psymtab;
7542 pst->symtab = symtab;
7543 pst->readin = 1;
7544 }
c906108c 7545
95554aad
TT
7546 /* Push it for inclusion processing later. */
7547 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7548
c906108c 7549 do_cleanups (back_to);
f4dc4d17 7550}
45cfd468 7551
f4dc4d17
DE
7552/* Generate full symbol information for type unit PER_CU, whose DIEs have
7553 already been loaded into memory. */
7554
7555static void
7556process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7557 enum language pretend_language)
7558{
7559 struct dwarf2_cu *cu = per_cu->cu;
7560 struct objfile *objfile = per_cu->objfile;
7561 struct symtab *symtab;
7562 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7563 struct signatured_type *sig_type;
7564
7565 gdb_assert (per_cu->is_debug_types);
7566 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7567
7568 buildsym_init ();
7569 back_to = make_cleanup (really_free_pendings, NULL);
7570 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7571
7572 cu->list_in_scope = &file_symbols;
7573
7574 cu->language = pretend_language;
7575 cu->language_defn = language_def (cu->language);
7576
7577 /* The symbol tables are set up in read_type_unit_scope. */
7578 process_die (cu->dies, cu);
7579
7580 /* For now fudge the Go package. */
7581 if (cu->language == language_go)
7582 fixup_go_packaging (cu);
7583
7584 /* Now that we have processed all the DIEs in the CU, all the types
7585 should be complete, and it should now be safe to compute all of the
7586 physnames. */
7587 compute_delayed_physnames (cu);
7588 do_cleanups (delayed_list_cleanup);
7589
7590 /* TUs share symbol tables.
7591 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7592 of it with end_expandable_symtab. Otherwise, complete the addition of
7593 this TU's symbols to the existing symtab. */
0186c6a7 7594 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7595 {
f4dc4d17 7596 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7597 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7598
7599 if (symtab != NULL)
7600 {
7601 /* Set symtab language to language from DW_AT_language. If the
7602 compilation is from a C file generated by language preprocessors,
7603 do not set the language if it was already deduced by
7604 start_subfile. */
7605 if (!(cu->language == language_c && symtab->language != language_c))
7606 symtab->language = cu->language;
7607 }
7608 }
7609 else
7610 {
7611 augment_type_symtab (objfile,
0186c6a7
DE
7612 sig_type->type_unit_group->primary_symtab);
7613 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7614 }
7615
7616 if (dwarf2_per_objfile->using_index)
7617 per_cu->v.quick->symtab = symtab;
7618 else
7619 {
7620 struct partial_symtab *pst = per_cu->v.psymtab;
7621 pst->symtab = symtab;
7622 pst->readin = 1;
45cfd468 7623 }
f4dc4d17
DE
7624
7625 do_cleanups (back_to);
c906108c
SS
7626}
7627
95554aad
TT
7628/* Process an imported unit DIE. */
7629
7630static void
7631process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7632{
7633 struct attribute *attr;
7634
f4dc4d17
DE
7635 /* For now we don't handle imported units in type units. */
7636 if (cu->per_cu->is_debug_types)
7637 {
7638 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7639 " supported in type units [in module %s]"),
7640 cu->objfile->name);
7641 }
7642
95554aad
TT
7643 attr = dwarf2_attr (die, DW_AT_import, cu);
7644 if (attr != NULL)
7645 {
7646 struct dwarf2_per_cu_data *per_cu;
7647 struct symtab *imported_symtab;
7648 sect_offset offset;
36586728 7649 int is_dwz;
95554aad
TT
7650
7651 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7652 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7653 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad
TT
7654
7655 /* Queue the unit, if needed. */
7656 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7657 load_full_comp_unit (per_cu, cu->language);
7658
796a7ff8 7659 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
7660 per_cu);
7661 }
7662}
7663
c906108c
SS
7664/* Process a die and its children. */
7665
7666static void
e7c27a73 7667process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7668{
7669 switch (die->tag)
7670 {
7671 case DW_TAG_padding:
7672 break;
7673 case DW_TAG_compile_unit:
95554aad 7674 case DW_TAG_partial_unit:
e7c27a73 7675 read_file_scope (die, cu);
c906108c 7676 break;
348e048f
DE
7677 case DW_TAG_type_unit:
7678 read_type_unit_scope (die, cu);
7679 break;
c906108c 7680 case DW_TAG_subprogram:
c906108c 7681 case DW_TAG_inlined_subroutine:
edb3359d 7682 read_func_scope (die, cu);
c906108c
SS
7683 break;
7684 case DW_TAG_lexical_block:
14898363
L
7685 case DW_TAG_try_block:
7686 case DW_TAG_catch_block:
e7c27a73 7687 read_lexical_block_scope (die, cu);
c906108c 7688 break;
96408a79
SA
7689 case DW_TAG_GNU_call_site:
7690 read_call_site_scope (die, cu);
7691 break;
c906108c 7692 case DW_TAG_class_type:
680b30c7 7693 case DW_TAG_interface_type:
c906108c
SS
7694 case DW_TAG_structure_type:
7695 case DW_TAG_union_type:
134d01f1 7696 process_structure_scope (die, cu);
c906108c
SS
7697 break;
7698 case DW_TAG_enumeration_type:
134d01f1 7699 process_enumeration_scope (die, cu);
c906108c 7700 break;
134d01f1 7701
f792889a
DJ
7702 /* These dies have a type, but processing them does not create
7703 a symbol or recurse to process the children. Therefore we can
7704 read them on-demand through read_type_die. */
c906108c 7705 case DW_TAG_subroutine_type:
72019c9c 7706 case DW_TAG_set_type:
c906108c 7707 case DW_TAG_array_type:
c906108c 7708 case DW_TAG_pointer_type:
c906108c 7709 case DW_TAG_ptr_to_member_type:
c906108c 7710 case DW_TAG_reference_type:
c906108c 7711 case DW_TAG_string_type:
c906108c 7712 break;
134d01f1 7713
c906108c 7714 case DW_TAG_base_type:
a02abb62 7715 case DW_TAG_subrange_type:
cb249c71 7716 case DW_TAG_typedef:
134d01f1
DJ
7717 /* Add a typedef symbol for the type definition, if it has a
7718 DW_AT_name. */
f792889a 7719 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 7720 break;
c906108c 7721 case DW_TAG_common_block:
e7c27a73 7722 read_common_block (die, cu);
c906108c
SS
7723 break;
7724 case DW_TAG_common_inclusion:
7725 break;
d9fa45fe 7726 case DW_TAG_namespace:
4d4ec4e5 7727 cu->processing_has_namespace_info = 1;
e7c27a73 7728 read_namespace (die, cu);
d9fa45fe 7729 break;
5d7cb8df 7730 case DW_TAG_module:
4d4ec4e5 7731 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
7732 read_module (die, cu);
7733 break;
d9fa45fe
DC
7734 case DW_TAG_imported_declaration:
7735 case DW_TAG_imported_module:
4d4ec4e5 7736 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
7737 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7738 || cu->language != language_fortran))
7739 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7740 dwarf_tag_name (die->tag));
7741 read_import_statement (die, cu);
d9fa45fe 7742 break;
95554aad
TT
7743
7744 case DW_TAG_imported_unit:
7745 process_imported_unit_die (die, cu);
7746 break;
7747
c906108c 7748 default:
e7c27a73 7749 new_symbol (die, NULL, cu);
c906108c
SS
7750 break;
7751 }
7752}
ca69b9e6
DE
7753\f
7754/* DWARF name computation. */
c906108c 7755
94af9270
KS
7756/* A helper function for dwarf2_compute_name which determines whether DIE
7757 needs to have the name of the scope prepended to the name listed in the
7758 die. */
7759
7760static int
7761die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7762{
1c809c68
TT
7763 struct attribute *attr;
7764
94af9270
KS
7765 switch (die->tag)
7766 {
7767 case DW_TAG_namespace:
7768 case DW_TAG_typedef:
7769 case DW_TAG_class_type:
7770 case DW_TAG_interface_type:
7771 case DW_TAG_structure_type:
7772 case DW_TAG_union_type:
7773 case DW_TAG_enumeration_type:
7774 case DW_TAG_enumerator:
7775 case DW_TAG_subprogram:
7776 case DW_TAG_member:
7777 return 1;
7778
7779 case DW_TAG_variable:
c2b0a229 7780 case DW_TAG_constant:
94af9270
KS
7781 /* We only need to prefix "globally" visible variables. These include
7782 any variable marked with DW_AT_external or any variable that
7783 lives in a namespace. [Variables in anonymous namespaces
7784 require prefixing, but they are not DW_AT_external.] */
7785
7786 if (dwarf2_attr (die, DW_AT_specification, cu))
7787 {
7788 struct dwarf2_cu *spec_cu = cu;
9a619af0 7789
94af9270
KS
7790 return die_needs_namespace (die_specification (die, &spec_cu),
7791 spec_cu);
7792 }
7793
1c809c68 7794 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
7795 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7796 && die->parent->tag != DW_TAG_module)
1c809c68
TT
7797 return 0;
7798 /* A variable in a lexical block of some kind does not need a
7799 namespace, even though in C++ such variables may be external
7800 and have a mangled name. */
7801 if (die->parent->tag == DW_TAG_lexical_block
7802 || die->parent->tag == DW_TAG_try_block
1054b214
TT
7803 || die->parent->tag == DW_TAG_catch_block
7804 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
7805 return 0;
7806 return 1;
94af9270
KS
7807
7808 default:
7809 return 0;
7810 }
7811}
7812
98bfdba5
PA
7813/* Retrieve the last character from a mem_file. */
7814
7815static void
7816do_ui_file_peek_last (void *object, const char *buffer, long length)
7817{
7818 char *last_char_p = (char *) object;
7819
7820 if (length > 0)
7821 *last_char_p = buffer[length - 1];
7822}
7823
94af9270 7824/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
7825 compute the physname for the object, which include a method's:
7826 - formal parameters (C++/Java),
7827 - receiver type (Go),
7828 - return type (Java).
7829
7830 The term "physname" is a bit confusing.
7831 For C++, for example, it is the demangled name.
7832 For Go, for example, it's the mangled name.
94af9270 7833
af6b7be1
JB
7834 For Ada, return the DIE's linkage name rather than the fully qualified
7835 name. PHYSNAME is ignored..
7836
94af9270
KS
7837 The result is allocated on the objfile_obstack and canonicalized. */
7838
7839static const char *
15d034d0
TT
7840dwarf2_compute_name (const char *name,
7841 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
7842 int physname)
7843{
bb5ed363
DE
7844 struct objfile *objfile = cu->objfile;
7845
94af9270
KS
7846 if (name == NULL)
7847 name = dwarf2_name (die, cu);
7848
f55ee35c
JK
7849 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7850 compute it by typename_concat inside GDB. */
7851 if (cu->language == language_ada
7852 || (cu->language == language_fortran && physname))
7853 {
7854 /* For Ada unit, we prefer the linkage name over the name, as
7855 the former contains the exported name, which the user expects
7856 to be able to reference. Ideally, we want the user to be able
7857 to reference this entity using either natural or linkage name,
7858 but we haven't started looking at this enhancement yet. */
7859 struct attribute *attr;
7860
7861 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7862 if (attr == NULL)
7863 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7864 if (attr && DW_STRING (attr))
7865 return DW_STRING (attr);
7866 }
7867
94af9270
KS
7868 /* These are the only languages we know how to qualify names in. */
7869 if (name != NULL
f55ee35c
JK
7870 && (cu->language == language_cplus || cu->language == language_java
7871 || cu->language == language_fortran))
94af9270
KS
7872 {
7873 if (die_needs_namespace (die, cu))
7874 {
7875 long length;
0d5cff50 7876 const char *prefix;
94af9270
KS
7877 struct ui_file *buf;
7878
7879 prefix = determine_prefix (die, cu);
7880 buf = mem_fileopen ();
7881 if (*prefix != '\0')
7882 {
f55ee35c
JK
7883 char *prefixed_name = typename_concat (NULL, prefix, name,
7884 physname, cu);
9a619af0 7885
94af9270
KS
7886 fputs_unfiltered (prefixed_name, buf);
7887 xfree (prefixed_name);
7888 }
7889 else
62d5b8da 7890 fputs_unfiltered (name, buf);
94af9270 7891
98bfdba5
PA
7892 /* Template parameters may be specified in the DIE's DW_AT_name, or
7893 as children with DW_TAG_template_type_param or
7894 DW_TAG_value_type_param. If the latter, add them to the name
7895 here. If the name already has template parameters, then
7896 skip this step; some versions of GCC emit both, and
7897 it is more efficient to use the pre-computed name.
7898
7899 Something to keep in mind about this process: it is very
7900 unlikely, or in some cases downright impossible, to produce
7901 something that will match the mangled name of a function.
7902 If the definition of the function has the same debug info,
7903 we should be able to match up with it anyway. But fallbacks
7904 using the minimal symbol, for instance to find a method
7905 implemented in a stripped copy of libstdc++, will not work.
7906 If we do not have debug info for the definition, we will have to
7907 match them up some other way.
7908
7909 When we do name matching there is a related problem with function
7910 templates; two instantiated function templates are allowed to
7911 differ only by their return types, which we do not add here. */
7912
7913 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7914 {
7915 struct attribute *attr;
7916 struct die_info *child;
7917 int first = 1;
7918
7919 die->building_fullname = 1;
7920
7921 for (child = die->child; child != NULL; child = child->sibling)
7922 {
7923 struct type *type;
12df843f 7924 LONGEST value;
d521ce57 7925 const gdb_byte *bytes;
98bfdba5
PA
7926 struct dwarf2_locexpr_baton *baton;
7927 struct value *v;
7928
7929 if (child->tag != DW_TAG_template_type_param
7930 && child->tag != DW_TAG_template_value_param)
7931 continue;
7932
7933 if (first)
7934 {
7935 fputs_unfiltered ("<", buf);
7936 first = 0;
7937 }
7938 else
7939 fputs_unfiltered (", ", buf);
7940
7941 attr = dwarf2_attr (child, DW_AT_type, cu);
7942 if (attr == NULL)
7943 {
7944 complaint (&symfile_complaints,
7945 _("template parameter missing DW_AT_type"));
7946 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7947 continue;
7948 }
7949 type = die_type (child, cu);
7950
7951 if (child->tag == DW_TAG_template_type_param)
7952 {
79d43c61 7953 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
7954 continue;
7955 }
7956
7957 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7958 if (attr == NULL)
7959 {
7960 complaint (&symfile_complaints,
3e43a32a
MS
7961 _("template parameter missing "
7962 "DW_AT_const_value"));
98bfdba5
PA
7963 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7964 continue;
7965 }
7966
7967 dwarf2_const_value_attr (attr, type, name,
7968 &cu->comp_unit_obstack, cu,
7969 &value, &bytes, &baton);
7970
7971 if (TYPE_NOSIGN (type))
7972 /* GDB prints characters as NUMBER 'CHAR'. If that's
7973 changed, this can use value_print instead. */
7974 c_printchar (value, type, buf);
7975 else
7976 {
7977 struct value_print_options opts;
7978
7979 if (baton != NULL)
7980 v = dwarf2_evaluate_loc_desc (type, NULL,
7981 baton->data,
7982 baton->size,
7983 baton->per_cu);
7984 else if (bytes != NULL)
7985 {
7986 v = allocate_value (type);
7987 memcpy (value_contents_writeable (v), bytes,
7988 TYPE_LENGTH (type));
7989 }
7990 else
7991 v = value_from_longest (type, value);
7992
3e43a32a
MS
7993 /* Specify decimal so that we do not depend on
7994 the radix. */
98bfdba5
PA
7995 get_formatted_print_options (&opts, 'd');
7996 opts.raw = 1;
7997 value_print (v, buf, &opts);
7998 release_value (v);
7999 value_free (v);
8000 }
8001 }
8002
8003 die->building_fullname = 0;
8004
8005 if (!first)
8006 {
8007 /* Close the argument list, with a space if necessary
8008 (nested templates). */
8009 char last_char = '\0';
8010 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8011 if (last_char == '>')
8012 fputs_unfiltered (" >", buf);
8013 else
8014 fputs_unfiltered (">", buf);
8015 }
8016 }
8017
94af9270
KS
8018 /* For Java and C++ methods, append formal parameter type
8019 information, if PHYSNAME. */
6e70227d 8020
94af9270
KS
8021 if (physname && die->tag == DW_TAG_subprogram
8022 && (cu->language == language_cplus
8023 || cu->language == language_java))
8024 {
8025 struct type *type = read_type_die (die, cu);
8026
79d43c61
TT
8027 c_type_print_args (type, buf, 1, cu->language,
8028 &type_print_raw_options);
94af9270
KS
8029
8030 if (cu->language == language_java)
8031 {
8032 /* For java, we must append the return type to method
0963b4bd 8033 names. */
94af9270
KS
8034 if (die->tag == DW_TAG_subprogram)
8035 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8036 0, 0, &type_print_raw_options);
94af9270
KS
8037 }
8038 else if (cu->language == language_cplus)
8039 {
60430eff
DJ
8040 /* Assume that an artificial first parameter is
8041 "this", but do not crash if it is not. RealView
8042 marks unnamed (and thus unused) parameters as
8043 artificial; there is no way to differentiate
8044 the two cases. */
94af9270
KS
8045 if (TYPE_NFIELDS (type) > 0
8046 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8047 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8048 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8049 0))))
94af9270
KS
8050 fputs_unfiltered (" const", buf);
8051 }
8052 }
8053
bb5ed363 8054 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8055 &length);
8056 ui_file_delete (buf);
8057
8058 if (cu->language == language_cplus)
8059 {
15d034d0 8060 const char *cname
94af9270 8061 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8062 &objfile->objfile_obstack);
9a619af0 8063
94af9270
KS
8064 if (cname != NULL)
8065 name = cname;
8066 }
8067 }
8068 }
8069
8070 return name;
8071}
8072
0114d602
DJ
8073/* Return the fully qualified name of DIE, based on its DW_AT_name.
8074 If scope qualifiers are appropriate they will be added. The result
8075 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8076 not have a name. NAME may either be from a previous call to
8077 dwarf2_name or NULL.
8078
0963b4bd 8079 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8080
8081static const char *
15d034d0 8082dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8083{
94af9270
KS
8084 return dwarf2_compute_name (name, die, cu, 0);
8085}
0114d602 8086
94af9270
KS
8087/* Construct a physname for the given DIE in CU. NAME may either be
8088 from a previous call to dwarf2_name or NULL. The result will be
8089 allocated on the objfile_objstack or NULL if the DIE does not have a
8090 name.
0114d602 8091
94af9270 8092 The output string will be canonicalized (if C++/Java). */
0114d602 8093
94af9270 8094static const char *
15d034d0 8095dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8096{
bb5ed363 8097 struct objfile *objfile = cu->objfile;
900e11f9
JK
8098 struct attribute *attr;
8099 const char *retval, *mangled = NULL, *canon = NULL;
8100 struct cleanup *back_to;
8101 int need_copy = 1;
8102
8103 /* In this case dwarf2_compute_name is just a shortcut not building anything
8104 on its own. */
8105 if (!die_needs_namespace (die, cu))
8106 return dwarf2_compute_name (name, die, cu, 1);
8107
8108 back_to = make_cleanup (null_cleanup, NULL);
8109
8110 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8111 if (!attr)
8112 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8113
8114 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8115 has computed. */
8116 if (attr && DW_STRING (attr))
8117 {
8118 char *demangled;
8119
8120 mangled = DW_STRING (attr);
8121
8122 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8123 type. It is easier for GDB users to search for such functions as
8124 `name(params)' than `long name(params)'. In such case the minimal
8125 symbol names do not match the full symbol names but for template
8126 functions there is never a need to look up their definition from their
8127 declaration so the only disadvantage remains the minimal symbol
8128 variant `long name(params)' does not have the proper inferior type.
8129 */
8130
a766d390
DE
8131 if (cu->language == language_go)
8132 {
8133 /* This is a lie, but we already lie to the caller new_symbol_full.
8134 new_symbol_full assumes we return the mangled name.
8135 This just undoes that lie until things are cleaned up. */
8136 demangled = NULL;
8137 }
8138 else
8139 {
8de20a37
TT
8140 demangled = gdb_demangle (mangled,
8141 (DMGL_PARAMS | DMGL_ANSI
8142 | (cu->language == language_java
8143 ? DMGL_JAVA | DMGL_RET_POSTFIX
8144 : DMGL_RET_DROP)));
a766d390 8145 }
900e11f9
JK
8146 if (demangled)
8147 {
8148 make_cleanup (xfree, demangled);
8149 canon = demangled;
8150 }
8151 else
8152 {
8153 canon = mangled;
8154 need_copy = 0;
8155 }
8156 }
8157
8158 if (canon == NULL || check_physname)
8159 {
8160 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8161
8162 if (canon != NULL && strcmp (physname, canon) != 0)
8163 {
8164 /* It may not mean a bug in GDB. The compiler could also
8165 compute DW_AT_linkage_name incorrectly. But in such case
8166 GDB would need to be bug-to-bug compatible. */
8167
8168 complaint (&symfile_complaints,
8169 _("Computed physname <%s> does not match demangled <%s> "
8170 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 8171 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
8172
8173 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8174 is available here - over computed PHYSNAME. It is safer
8175 against both buggy GDB and buggy compilers. */
8176
8177 retval = canon;
8178 }
8179 else
8180 {
8181 retval = physname;
8182 need_copy = 0;
8183 }
8184 }
8185 else
8186 retval = canon;
8187
8188 if (need_copy)
10f0c4bb 8189 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8190
8191 do_cleanups (back_to);
8192 return retval;
0114d602
DJ
8193}
8194
27aa8d6a
SW
8195/* Read the import statement specified by the given die and record it. */
8196
8197static void
8198read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8199{
bb5ed363 8200 struct objfile *objfile = cu->objfile;
27aa8d6a 8201 struct attribute *import_attr;
32019081 8202 struct die_info *imported_die, *child_die;
de4affc9 8203 struct dwarf2_cu *imported_cu;
27aa8d6a 8204 const char *imported_name;
794684b6 8205 const char *imported_name_prefix;
13387711
SW
8206 const char *canonical_name;
8207 const char *import_alias;
8208 const char *imported_declaration = NULL;
794684b6 8209 const char *import_prefix;
32019081
JK
8210 VEC (const_char_ptr) *excludes = NULL;
8211 struct cleanup *cleanups;
13387711 8212
27aa8d6a
SW
8213 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8214 if (import_attr == NULL)
8215 {
8216 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8217 dwarf_tag_name (die->tag));
8218 return;
8219 }
8220
de4affc9
CC
8221 imported_cu = cu;
8222 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8223 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8224 if (imported_name == NULL)
8225 {
8226 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8227
8228 The import in the following code:
8229 namespace A
8230 {
8231 typedef int B;
8232 }
8233
8234 int main ()
8235 {
8236 using A::B;
8237 B b;
8238 return b;
8239 }
8240
8241 ...
8242 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8243 <52> DW_AT_decl_file : 1
8244 <53> DW_AT_decl_line : 6
8245 <54> DW_AT_import : <0x75>
8246 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8247 <59> DW_AT_name : B
8248 <5b> DW_AT_decl_file : 1
8249 <5c> DW_AT_decl_line : 2
8250 <5d> DW_AT_type : <0x6e>
8251 ...
8252 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8253 <76> DW_AT_byte_size : 4
8254 <77> DW_AT_encoding : 5 (signed)
8255
8256 imports the wrong die ( 0x75 instead of 0x58 ).
8257 This case will be ignored until the gcc bug is fixed. */
8258 return;
8259 }
8260
82856980
SW
8261 /* Figure out the local name after import. */
8262 import_alias = dwarf2_name (die, cu);
27aa8d6a 8263
794684b6
SW
8264 /* Figure out where the statement is being imported to. */
8265 import_prefix = determine_prefix (die, cu);
8266
8267 /* Figure out what the scope of the imported die is and prepend it
8268 to the name of the imported die. */
de4affc9 8269 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8270
f55ee35c
JK
8271 if (imported_die->tag != DW_TAG_namespace
8272 && imported_die->tag != DW_TAG_module)
794684b6 8273 {
13387711
SW
8274 imported_declaration = imported_name;
8275 canonical_name = imported_name_prefix;
794684b6 8276 }
13387711 8277 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8278 canonical_name = obconcat (&objfile->objfile_obstack,
8279 imported_name_prefix, "::", imported_name,
8280 (char *) NULL);
13387711
SW
8281 else
8282 canonical_name = imported_name;
794684b6 8283
32019081
JK
8284 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8285
8286 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8287 for (child_die = die->child; child_die && child_die->tag;
8288 child_die = sibling_die (child_die))
8289 {
8290 /* DWARF-4: A Fortran use statement with a “rename list” may be
8291 represented by an imported module entry with an import attribute
8292 referring to the module and owned entries corresponding to those
8293 entities that are renamed as part of being imported. */
8294
8295 if (child_die->tag != DW_TAG_imported_declaration)
8296 {
8297 complaint (&symfile_complaints,
8298 _("child DW_TAG_imported_declaration expected "
8299 "- DIE at 0x%x [in module %s]"),
b64f50a1 8300 child_die->offset.sect_off, objfile->name);
32019081
JK
8301 continue;
8302 }
8303
8304 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8305 if (import_attr == NULL)
8306 {
8307 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8308 dwarf_tag_name (child_die->tag));
8309 continue;
8310 }
8311
8312 imported_cu = cu;
8313 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8314 &imported_cu);
8315 imported_name = dwarf2_name (imported_die, imported_cu);
8316 if (imported_name == NULL)
8317 {
8318 complaint (&symfile_complaints,
8319 _("child DW_TAG_imported_declaration has unknown "
8320 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 8321 child_die->offset.sect_off, objfile->name);
32019081
JK
8322 continue;
8323 }
8324
8325 VEC_safe_push (const_char_ptr, excludes, imported_name);
8326
8327 process_die (child_die, cu);
8328 }
8329
c0cc3a76
SW
8330 cp_add_using_directive (import_prefix,
8331 canonical_name,
8332 import_alias,
13387711 8333 imported_declaration,
32019081 8334 excludes,
12aaed36 8335 0,
bb5ed363 8336 &objfile->objfile_obstack);
32019081
JK
8337
8338 do_cleanups (cleanups);
27aa8d6a
SW
8339}
8340
f4dc4d17 8341/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8342
cb1df416
DJ
8343static void
8344free_cu_line_header (void *arg)
8345{
8346 struct dwarf2_cu *cu = arg;
8347
8348 free_line_header (cu->line_header);
8349 cu->line_header = NULL;
8350}
8351
1b80a9fa
JK
8352/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8353 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8354 this, it was first present in GCC release 4.3.0. */
8355
8356static int
8357producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8358{
8359 if (!cu->checked_producer)
8360 check_producer (cu);
8361
8362 return cu->producer_is_gcc_lt_4_3;
8363}
8364
9291a0cd
TT
8365static void
8366find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8367 const char **name, const char **comp_dir)
9291a0cd
TT
8368{
8369 struct attribute *attr;
8370
8371 *name = NULL;
8372 *comp_dir = NULL;
8373
8374 /* Find the filename. Do not use dwarf2_name here, since the filename
8375 is not a source language identifier. */
8376 attr = dwarf2_attr (die, DW_AT_name, cu);
8377 if (attr)
8378 {
8379 *name = DW_STRING (attr);
8380 }
8381
8382 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8383 if (attr)
8384 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8385 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8386 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8387 {
15d034d0
TT
8388 char *d = ldirname (*name);
8389
8390 *comp_dir = d;
8391 if (d != NULL)
8392 make_cleanup (xfree, d);
9291a0cd
TT
8393 }
8394 if (*comp_dir != NULL)
8395 {
8396 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8397 directory, get rid of it. */
8398 char *cp = strchr (*comp_dir, ':');
8399
8400 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8401 *comp_dir = cp + 1;
8402 }
8403
8404 if (*name == NULL)
8405 *name = "<unknown>";
8406}
8407
f4dc4d17
DE
8408/* Handle DW_AT_stmt_list for a compilation unit.
8409 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8410 COMP_DIR is the compilation directory.
8411 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8412
8413static void
8414handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8415 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8416{
8417 struct attribute *attr;
2ab95328 8418
f4dc4d17
DE
8419 gdb_assert (! cu->per_cu->is_debug_types);
8420
2ab95328
TT
8421 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8422 if (attr)
8423 {
8424 unsigned int line_offset = DW_UNSND (attr);
8425 struct line_header *line_header
3019eac3 8426 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8427
8428 if (line_header)
dee91e82
DE
8429 {
8430 cu->line_header = line_header;
8431 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8432 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8433 }
2ab95328
TT
8434 }
8435}
8436
95554aad 8437/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8438
c906108c 8439static void
e7c27a73 8440read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8441{
dee91e82 8442 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8443 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8444 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8445 CORE_ADDR highpc = ((CORE_ADDR) 0);
8446 struct attribute *attr;
15d034d0
TT
8447 const char *name = NULL;
8448 const char *comp_dir = NULL;
c906108c
SS
8449 struct die_info *child_die;
8450 bfd *abfd = objfile->obfd;
e142c38c 8451 CORE_ADDR baseaddr;
6e70227d 8452
e142c38c 8453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8454
fae299cd 8455 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8456
8457 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8458 from finish_block. */
2acceee2 8459 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8460 lowpc = highpc;
8461 lowpc += baseaddr;
8462 highpc += baseaddr;
8463
9291a0cd 8464 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8465
95554aad 8466 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8467
f4b8a18d
KW
8468 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8469 standardised yet. As a workaround for the language detection we fall
8470 back to the DW_AT_producer string. */
8471 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8472 cu->language = language_opencl;
8473
3019eac3
DE
8474 /* Similar hack for Go. */
8475 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8476 set_cu_language (DW_LANG_Go, cu);
8477
f4dc4d17 8478 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8479
8480 /* Decode line number information if present. We do this before
8481 processing child DIEs, so that the line header table is available
8482 for DW_AT_decl_file. */
f4dc4d17 8483 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8484
8485 /* Process all dies in compilation unit. */
8486 if (die->child != NULL)
8487 {
8488 child_die = die->child;
8489 while (child_die && child_die->tag)
8490 {
8491 process_die (child_die, cu);
8492 child_die = sibling_die (child_die);
8493 }
8494 }
8495
8496 /* Decode macro information, if present. Dwarf 2 macro information
8497 refers to information in the line number info statement program
8498 header, so we can only read it if we've read the header
8499 successfully. */
8500 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8501 if (attr && cu->line_header)
8502 {
8503 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8504 complaint (&symfile_complaints,
8505 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8506
09262596 8507 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8508 }
8509 else
8510 {
8511 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8512 if (attr && cu->line_header)
8513 {
8514 unsigned int macro_offset = DW_UNSND (attr);
8515
09262596 8516 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8517 }
8518 }
8519
8520 do_cleanups (back_to);
8521}
8522
f4dc4d17
DE
8523/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8524 Create the set of symtabs used by this TU, or if this TU is sharing
8525 symtabs with another TU and the symtabs have already been created
8526 then restore those symtabs in the line header.
8527 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8528
8529static void
f4dc4d17 8530setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8531{
f4dc4d17
DE
8532 struct objfile *objfile = dwarf2_per_objfile->objfile;
8533 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8534 struct type_unit_group *tu_group;
8535 int first_time;
8536 struct line_header *lh;
3019eac3 8537 struct attribute *attr;
f4dc4d17 8538 unsigned int i, line_offset;
0186c6a7 8539 struct signatured_type *sig_type;
3019eac3 8540
f4dc4d17 8541 gdb_assert (per_cu->is_debug_types);
0186c6a7 8542 sig_type = (struct signatured_type *) per_cu;
3019eac3 8543
f4dc4d17 8544 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8545
f4dc4d17 8546 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8547 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8548 if (sig_type->type_unit_group == NULL)
8549 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8550 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8551
8552 /* If we've already processed this stmt_list there's no real need to
8553 do it again, we could fake it and just recreate the part we need
8554 (file name,index -> symtab mapping). If data shows this optimization
8555 is useful we can do it then. */
8556 first_time = tu_group->primary_symtab == NULL;
8557
8558 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8559 debug info. */
8560 lh = NULL;
8561 if (attr != NULL)
3019eac3 8562 {
f4dc4d17
DE
8563 line_offset = DW_UNSND (attr);
8564 lh = dwarf_decode_line_header (line_offset, cu);
8565 }
8566 if (lh == NULL)
8567 {
8568 if (first_time)
8569 dwarf2_start_symtab (cu, "", NULL, 0);
8570 else
8571 {
8572 gdb_assert (tu_group->symtabs == NULL);
8573 restart_symtab (0);
8574 }
8575 /* Note: The primary symtab will get allocated at the end. */
8576 return;
3019eac3
DE
8577 }
8578
f4dc4d17
DE
8579 cu->line_header = lh;
8580 make_cleanup (free_cu_line_header, cu);
3019eac3 8581
f4dc4d17
DE
8582 if (first_time)
8583 {
8584 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8585
f4dc4d17
DE
8586 tu_group->num_symtabs = lh->num_file_names;
8587 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8588
f4dc4d17
DE
8589 for (i = 0; i < lh->num_file_names; ++i)
8590 {
d521ce57 8591 const char *dir = NULL;
f4dc4d17 8592 struct file_entry *fe = &lh->file_names[i];
3019eac3 8593
f4dc4d17
DE
8594 if (fe->dir_index)
8595 dir = lh->include_dirs[fe->dir_index - 1];
8596 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8597
f4dc4d17
DE
8598 /* Note: We don't have to watch for the main subfile here, type units
8599 don't have DW_AT_name. */
3019eac3 8600
f4dc4d17
DE
8601 if (current_subfile->symtab == NULL)
8602 {
8603 /* NOTE: start_subfile will recognize when it's been passed
8604 a file it has already seen. So we can't assume there's a
8605 simple mapping from lh->file_names to subfiles,
8606 lh->file_names may contain dups. */
8607 current_subfile->symtab = allocate_symtab (current_subfile->name,
8608 objfile);
8609 }
8610
8611 fe->symtab = current_subfile->symtab;
8612 tu_group->symtabs[i] = fe->symtab;
8613 }
8614 }
8615 else
3019eac3 8616 {
f4dc4d17
DE
8617 restart_symtab (0);
8618
8619 for (i = 0; i < lh->num_file_names; ++i)
8620 {
8621 struct file_entry *fe = &lh->file_names[i];
8622
8623 fe->symtab = tu_group->symtabs[i];
8624 }
3019eac3
DE
8625 }
8626
f4dc4d17
DE
8627 /* The main symtab is allocated last. Type units don't have DW_AT_name
8628 so they don't have a "real" (so to speak) symtab anyway.
8629 There is later code that will assign the main symtab to all symbols
8630 that don't have one. We need to handle the case of a symbol with a
8631 missing symtab (DW_AT_decl_file) anyway. */
8632}
3019eac3 8633
f4dc4d17
DE
8634/* Process DW_TAG_type_unit.
8635 For TUs we want to skip the first top level sibling if it's not the
8636 actual type being defined by this TU. In this case the first top
8637 level sibling is there to provide context only. */
3019eac3 8638
f4dc4d17
DE
8639static void
8640read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8641{
8642 struct die_info *child_die;
3019eac3 8643
f4dc4d17
DE
8644 prepare_one_comp_unit (cu, die, language_minimal);
8645
8646 /* Initialize (or reinitialize) the machinery for building symtabs.
8647 We do this before processing child DIEs, so that the line header table
8648 is available for DW_AT_decl_file. */
8649 setup_type_unit_groups (die, cu);
8650
8651 if (die->child != NULL)
8652 {
8653 child_die = die->child;
8654 while (child_die && child_die->tag)
8655 {
8656 process_die (child_die, cu);
8657 child_die = sibling_die (child_die);
8658 }
8659 }
3019eac3
DE
8660}
8661\f
80626a55
DE
8662/* DWO/DWP files.
8663
8664 http://gcc.gnu.org/wiki/DebugFission
8665 http://gcc.gnu.org/wiki/DebugFissionDWP
8666
8667 To simplify handling of both DWO files ("object" files with the DWARF info)
8668 and DWP files (a file with the DWOs packaged up into one file), we treat
8669 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8670
8671static hashval_t
8672hash_dwo_file (const void *item)
8673{
8674 const struct dwo_file *dwo_file = item;
a2ce51a0 8675 hashval_t hash;
3019eac3 8676
a2ce51a0
DE
8677 hash = htab_hash_string (dwo_file->dwo_name);
8678 if (dwo_file->comp_dir != NULL)
8679 hash += htab_hash_string (dwo_file->comp_dir);
8680 return hash;
3019eac3
DE
8681}
8682
8683static int
8684eq_dwo_file (const void *item_lhs, const void *item_rhs)
8685{
8686 const struct dwo_file *lhs = item_lhs;
8687 const struct dwo_file *rhs = item_rhs;
8688
a2ce51a0
DE
8689 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8690 return 0;
8691 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8692 return lhs->comp_dir == rhs->comp_dir;
8693 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
8694}
8695
8696/* Allocate a hash table for DWO files. */
8697
8698static htab_t
8699allocate_dwo_file_hash_table (void)
8700{
8701 struct objfile *objfile = dwarf2_per_objfile->objfile;
8702
8703 return htab_create_alloc_ex (41,
8704 hash_dwo_file,
8705 eq_dwo_file,
8706 NULL,
8707 &objfile->objfile_obstack,
8708 hashtab_obstack_allocate,
8709 dummy_obstack_deallocate);
8710}
8711
80626a55
DE
8712/* Lookup DWO file DWO_NAME. */
8713
8714static void **
0ac5b59e 8715lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
8716{
8717 struct dwo_file find_entry;
8718 void **slot;
8719
8720 if (dwarf2_per_objfile->dwo_files == NULL)
8721 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8722
8723 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
8724 find_entry.dwo_name = dwo_name;
8725 find_entry.comp_dir = comp_dir;
80626a55
DE
8726 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8727
8728 return slot;
8729}
8730
3019eac3
DE
8731static hashval_t
8732hash_dwo_unit (const void *item)
8733{
8734 const struct dwo_unit *dwo_unit = item;
8735
8736 /* This drops the top 32 bits of the id, but is ok for a hash. */
8737 return dwo_unit->signature;
8738}
8739
8740static int
8741eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8742{
8743 const struct dwo_unit *lhs = item_lhs;
8744 const struct dwo_unit *rhs = item_rhs;
8745
8746 /* The signature is assumed to be unique within the DWO file.
8747 So while object file CU dwo_id's always have the value zero,
8748 that's OK, assuming each object file DWO file has only one CU,
8749 and that's the rule for now. */
8750 return lhs->signature == rhs->signature;
8751}
8752
8753/* Allocate a hash table for DWO CUs,TUs.
8754 There is one of these tables for each of CUs,TUs for each DWO file. */
8755
8756static htab_t
8757allocate_dwo_unit_table (struct objfile *objfile)
8758{
8759 /* Start out with a pretty small number.
8760 Generally DWO files contain only one CU and maybe some TUs. */
8761 return htab_create_alloc_ex (3,
8762 hash_dwo_unit,
8763 eq_dwo_unit,
8764 NULL,
8765 &objfile->objfile_obstack,
8766 hashtab_obstack_allocate,
8767 dummy_obstack_deallocate);
8768}
8769
80626a55 8770/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 8771
19c3d4c9 8772struct create_dwo_cu_data
3019eac3
DE
8773{
8774 struct dwo_file *dwo_file;
19c3d4c9 8775 struct dwo_unit dwo_unit;
3019eac3
DE
8776};
8777
19c3d4c9 8778/* die_reader_func for create_dwo_cu. */
3019eac3
DE
8779
8780static void
19c3d4c9
DE
8781create_dwo_cu_reader (const struct die_reader_specs *reader,
8782 const gdb_byte *info_ptr,
8783 struct die_info *comp_unit_die,
8784 int has_children,
8785 void *datap)
3019eac3
DE
8786{
8787 struct dwarf2_cu *cu = reader->cu;
8788 struct objfile *objfile = dwarf2_per_objfile->objfile;
8789 sect_offset offset = cu->per_cu->offset;
8a0459fd 8790 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 8791 struct create_dwo_cu_data *data = datap;
3019eac3 8792 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 8793 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 8794 struct attribute *attr;
3019eac3
DE
8795
8796 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8797 if (attr == NULL)
8798 {
19c3d4c9
DE
8799 complaint (&symfile_complaints,
8800 _("Dwarf Error: debug entry at offset 0x%x is missing"
8801 " its dwo_id [in module %s]"),
8802 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
8803 return;
8804 }
8805
3019eac3
DE
8806 dwo_unit->dwo_file = dwo_file;
8807 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 8808 dwo_unit->section = section;
3019eac3
DE
8809 dwo_unit->offset = offset;
8810 dwo_unit->length = cu->per_cu->length;
8811
09406207 8812 if (dwarf2_read_debug)
4031ecc5
DE
8813 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8814 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
8815}
8816
19c3d4c9
DE
8817/* Create the dwo_unit for the lone CU in DWO_FILE.
8818 Note: This function processes DWO files only, not DWP files. */
3019eac3 8819
19c3d4c9
DE
8820static struct dwo_unit *
8821create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
8822{
8823 struct objfile *objfile = dwarf2_per_objfile->objfile;
8824 struct dwarf2_section_info *section = &dwo_file->sections.info;
8825 bfd *abfd;
8826 htab_t cu_htab;
d521ce57 8827 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
8828 struct create_dwo_cu_data create_dwo_cu_data;
8829 struct dwo_unit *dwo_unit;
3019eac3
DE
8830
8831 dwarf2_read_section (objfile, section);
8832 info_ptr = section->buffer;
8833
8834 if (info_ptr == NULL)
8835 return NULL;
8836
8837 /* We can't set abfd until now because the section may be empty or
8838 not present, in which case section->asection will be NULL. */
8839 abfd = section->asection->owner;
8840
09406207 8841 if (dwarf2_read_debug)
19c3d4c9
DE
8842 {
8843 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8844 bfd_section_name (abfd, section->asection),
8845 bfd_get_filename (abfd));
8846 }
3019eac3 8847
19c3d4c9
DE
8848 create_dwo_cu_data.dwo_file = dwo_file;
8849 dwo_unit = NULL;
3019eac3
DE
8850
8851 end_ptr = info_ptr + section->size;
8852 while (info_ptr < end_ptr)
8853 {
8854 struct dwarf2_per_cu_data per_cu;
8855
19c3d4c9
DE
8856 memset (&create_dwo_cu_data.dwo_unit, 0,
8857 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
8858 memset (&per_cu, 0, sizeof (per_cu));
8859 per_cu.objfile = objfile;
8860 per_cu.is_debug_types = 0;
8861 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 8862 per_cu.section = section;
3019eac3
DE
8863
8864 init_cutu_and_read_dies_no_follow (&per_cu,
8865 &dwo_file->sections.abbrev,
8866 dwo_file,
19c3d4c9
DE
8867 create_dwo_cu_reader,
8868 &create_dwo_cu_data);
8869
8870 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8871 {
8872 /* If we've already found one, complain. We only support one
8873 because having more than one requires hacking the dwo_name of
8874 each to match, which is highly unlikely to happen. */
8875 if (dwo_unit != NULL)
8876 {
8877 complaint (&symfile_complaints,
8878 _("Multiple CUs in DWO file %s [in module %s]"),
8879 dwo_file->dwo_name, objfile->name);
8880 break;
8881 }
8882
8883 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8884 *dwo_unit = create_dwo_cu_data.dwo_unit;
8885 }
3019eac3
DE
8886
8887 info_ptr += per_cu.length;
8888 }
8889
19c3d4c9 8890 return dwo_unit;
3019eac3
DE
8891}
8892
80626a55
DE
8893/* DWP file .debug_{cu,tu}_index section format:
8894 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8895
d2415c6c
DE
8896 DWP Version 1:
8897
80626a55
DE
8898 Both index sections have the same format, and serve to map a 64-bit
8899 signature to a set of section numbers. Each section begins with a header,
8900 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8901 indexes, and a pool of 32-bit section numbers. The index sections will be
8902 aligned at 8-byte boundaries in the file.
8903
d2415c6c
DE
8904 The index section header consists of:
8905
8906 V, 32 bit version number
8907 -, 32 bits unused
8908 N, 32 bit number of compilation units or type units in the index
8909 M, 32 bit number of slots in the hash table
80626a55 8910
d2415c6c 8911 Numbers are recorded using the byte order of the application binary.
80626a55 8912
d2415c6c 8913 We assume that N and M will not exceed 2^32 - 1.
80626a55 8914
d2415c6c 8915 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
80626a55 8916
d2415c6c
DE
8917 The hash table begins at offset 16 in the section, and consists of an array
8918 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8919 order of the application binary). Unused slots in the hash table are 0.
8920 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 8921
d2415c6c
DE
8922 The parallel table begins immediately after the hash table
8923 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8924 array of 32-bit indexes (using the byte order of the application binary),
8925 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8926 table contains a 32-bit index into the pool of section numbers. For unused
8927 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 8928
d2415c6c
DE
8929 Given a 64-bit compilation unit signature or a type signature S, an entry
8930 in the hash table is located as follows:
80626a55 8931
d2415c6c
DE
8932 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8933 the low-order k bits all set to 1.
80626a55 8934
d2415c6c 8935 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 8936
d2415c6c
DE
8937 3) If the hash table entry at index H matches the signature, use that
8938 entry. If the hash table entry at index H is unused (all zeroes),
8939 terminate the search: the signature is not present in the table.
80626a55 8940
d2415c6c 8941 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 8942
d2415c6c
DE
8943 Because M > N and H' and M are relatively prime, the search is guaranteed
8944 to stop at an unused slot or find the match.
80626a55 8945
d2415c6c
DE
8946 The pool of section numbers begins immediately following the hash table
8947 (at offset 16 + 12 * M from the beginning of the section). The pool of
8948 section numbers consists of an array of 32-bit words (using the byte order
8949 of the application binary). Each item in the array is indexed starting
8950 from 0. The hash table entry provides the index of the first section
8951 number in the set. Additional section numbers in the set follow, and the
8952 set is terminated by a 0 entry (section number 0 is not used in ELF).
80626a55 8953
d2415c6c
DE
8954 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8955 section must be the first entry in the set, and the .debug_abbrev.dwo must
8956 be the second entry. Other members of the set may follow in any order. */
80626a55
DE
8957
8958/* Create a hash table to map DWO IDs to their CU/TU entry in
8959 .debug_{info,types}.dwo in DWP_FILE.
8960 Returns NULL if there isn't one.
8961 Note: This function processes DWP files only, not DWO files. */
8962
8963static struct dwp_hash_table *
8964create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8965{
8966 struct objfile *objfile = dwarf2_per_objfile->objfile;
8967 bfd *dbfd = dwp_file->dbfd;
948f8e3d 8968 const gdb_byte *index_ptr, *index_end;
80626a55
DE
8969 struct dwarf2_section_info *index;
8970 uint32_t version, nr_units, nr_slots;
8971 struct dwp_hash_table *htab;
8972
8973 if (is_debug_types)
8974 index = &dwp_file->sections.tu_index;
8975 else
8976 index = &dwp_file->sections.cu_index;
8977
8978 if (dwarf2_section_empty_p (index))
8979 return NULL;
8980 dwarf2_read_section (objfile, index);
8981
8982 index_ptr = index->buffer;
8983 index_end = index_ptr + index->size;
8984
8985 version = read_4_bytes (dbfd, index_ptr);
8986 index_ptr += 8; /* Skip the unused word. */
8987 nr_units = read_4_bytes (dbfd, index_ptr);
8988 index_ptr += 4;
8989 nr_slots = read_4_bytes (dbfd, index_ptr);
8990 index_ptr += 4;
8991
8992 if (version != 1)
8993 {
21aa081e 8994 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 8995 " [in module %s]"),
21aa081e 8996 pulongest (version), dwp_file->name);
80626a55
DE
8997 }
8998 if (nr_slots != (nr_slots & -nr_slots))
8999 {
21aa081e 9000 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9001 " is not power of 2 [in module %s]"),
21aa081e 9002 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9003 }
9004
9005 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9006 htab->nr_units = nr_units;
9007 htab->nr_slots = nr_slots;
9008 htab->hash_table = index_ptr;
9009 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9010 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9011
9012 return htab;
9013}
9014
9015/* Update SECTIONS with the data from SECTP.
9016
9017 This function is like the other "locate" section routines that are
9018 passed to bfd_map_over_sections, but in this context the sections to
9019 read comes from the DWP hash table, not the full ELF section table.
9020
9021 The result is non-zero for success, or zero if an error was found. */
9022
9023static int
9024locate_virtual_dwo_sections (asection *sectp,
9025 struct virtual_dwo_sections *sections)
9026{
9027 const struct dwop_section_names *names = &dwop_section_names;
9028
9029 if (section_is_p (sectp->name, &names->abbrev_dwo))
9030 {
9031 /* There can be only one. */
9032 if (sections->abbrev.asection != NULL)
9033 return 0;
9034 sections->abbrev.asection = sectp;
9035 sections->abbrev.size = bfd_get_section_size (sectp);
9036 }
9037 else if (section_is_p (sectp->name, &names->info_dwo)
9038 || section_is_p (sectp->name, &names->types_dwo))
9039 {
9040 /* There can be only one. */
9041 if (sections->info_or_types.asection != NULL)
9042 return 0;
9043 sections->info_or_types.asection = sectp;
9044 sections->info_or_types.size = bfd_get_section_size (sectp);
9045 }
9046 else if (section_is_p (sectp->name, &names->line_dwo))
9047 {
9048 /* There can be only one. */
9049 if (sections->line.asection != NULL)
9050 return 0;
9051 sections->line.asection = sectp;
9052 sections->line.size = bfd_get_section_size (sectp);
9053 }
9054 else if (section_is_p (sectp->name, &names->loc_dwo))
9055 {
9056 /* There can be only one. */
9057 if (sections->loc.asection != NULL)
9058 return 0;
9059 sections->loc.asection = sectp;
9060 sections->loc.size = bfd_get_section_size (sectp);
9061 }
9062 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9063 {
9064 /* There can be only one. */
9065 if (sections->macinfo.asection != NULL)
9066 return 0;
9067 sections->macinfo.asection = sectp;
9068 sections->macinfo.size = bfd_get_section_size (sectp);
9069 }
9070 else if (section_is_p (sectp->name, &names->macro_dwo))
9071 {
9072 /* There can be only one. */
9073 if (sections->macro.asection != NULL)
9074 return 0;
9075 sections->macro.asection = sectp;
9076 sections->macro.size = bfd_get_section_size (sectp);
9077 }
9078 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9079 {
9080 /* There can be only one. */
9081 if (sections->str_offsets.asection != NULL)
9082 return 0;
9083 sections->str_offsets.asection = sectp;
9084 sections->str_offsets.size = bfd_get_section_size (sectp);
9085 }
9086 else
9087 {
9088 /* No other kind of section is valid. */
9089 return 0;
9090 }
9091
9092 return 1;
9093}
9094
9095/* Create a dwo_unit object for the DWO with signature SIGNATURE.
9096 HTAB is the hash table from the DWP file.
0ac5b59e
DE
9097 SECTION_INDEX is the index of the DWO in HTAB.
9098 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
80626a55
DE
9099
9100static struct dwo_unit *
9101create_dwo_in_dwp (struct dwp_file *dwp_file,
9102 const struct dwp_hash_table *htab,
9103 uint32_t section_index,
0ac5b59e 9104 const char *comp_dir,
80626a55
DE
9105 ULONGEST signature, int is_debug_types)
9106{
9107 struct objfile *objfile = dwarf2_per_objfile->objfile;
9108 bfd *dbfd = dwp_file->dbfd;
9109 const char *kind = is_debug_types ? "TU" : "CU";
9110 struct dwo_file *dwo_file;
9111 struct dwo_unit *dwo_unit;
9112 struct virtual_dwo_sections sections;
9113 void **dwo_file_slot;
9114 char *virtual_dwo_name;
9115 struct dwarf2_section_info *cutu;
9116 struct cleanup *cleanups;
9117 int i;
9118
9119 if (dwarf2_read_debug)
9120 {
21aa081e 9121 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
80626a55 9122 kind,
21aa081e 9123 pulongest (section_index), hex_string (signature),
80626a55
DE
9124 dwp_file->name);
9125 }
9126
9127 /* Fetch the sections of this DWO.
9128 Put a limit on the number of sections we look for so that bad data
9129 doesn't cause us to loop forever. */
9130
9131#define MAX_NR_DWO_SECTIONS \
9132 (1 /* .debug_info or .debug_types */ \
9133 + 1 /* .debug_abbrev */ \
9134 + 1 /* .debug_line */ \
9135 + 1 /* .debug_loc */ \
9136 + 1 /* .debug_str_offsets */ \
9137 + 1 /* .debug_macro */ \
9138 + 1 /* .debug_macinfo */ \
9139 + 1 /* trailing zero */)
9140
9141 memset (&sections, 0, sizeof (sections));
9142 cleanups = make_cleanup (null_cleanup, 0);
9143
9144 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9145 {
9146 asection *sectp;
9147 uint32_t section_nr =
9148 read_4_bytes (dbfd,
9149 htab->section_pool
9150 + (section_index + i) * sizeof (uint32_t));
9151
9152 if (section_nr == 0)
9153 break;
9154 if (section_nr >= dwp_file->num_sections)
9155 {
9156 error (_("Dwarf Error: bad DWP hash table, section number too large"
9157 " [in module %s]"),
9158 dwp_file->name);
9159 }
9160
9161 sectp = dwp_file->elf_sections[section_nr];
9162 if (! locate_virtual_dwo_sections (sectp, &sections))
9163 {
9164 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9165 " [in module %s]"),
9166 dwp_file->name);
9167 }
9168 }
9169
9170 if (i < 2
9171 || sections.info_or_types.asection == NULL
9172 || sections.abbrev.asection == NULL)
9173 {
9174 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9175 " [in module %s]"),
9176 dwp_file->name);
9177 }
9178 if (i == MAX_NR_DWO_SECTIONS)
9179 {
9180 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9181 " [in module %s]"),
9182 dwp_file->name);
9183 }
9184
9185 /* It's easier for the rest of the code if we fake a struct dwo_file and
9186 have dwo_unit "live" in that. At least for now.
9187
9188 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec
DE
9189 However, for each CU + set of TUs that came from the same original DWO
9190 file, we want to combine them back into a virtual DWO file to save space
80626a55
DE
9191 (fewer struct dwo_file objects to allocated). Remember that for really
9192 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9193
2792b94d
PM
9194 virtual_dwo_name =
9195 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9196 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9197 sections.line.asection ? sections.line.asection->id : 0,
9198 sections.loc.asection ? sections.loc.asection->id : 0,
9199 (sections.str_offsets.asection
9200 ? sections.str_offsets.asection->id
9201 : 0));
80626a55
DE
9202 make_cleanup (xfree, virtual_dwo_name);
9203 /* Can we use an existing virtual DWO file? */
0ac5b59e 9204 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9205 /* Create one if necessary. */
9206 if (*dwo_file_slot == NULL)
9207 {
9208 if (dwarf2_read_debug)
9209 {
9210 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9211 virtual_dwo_name);
9212 }
9213 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9214 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9215 virtual_dwo_name,
9216 strlen (virtual_dwo_name));
9217 dwo_file->comp_dir = comp_dir;
80626a55
DE
9218 dwo_file->sections.abbrev = sections.abbrev;
9219 dwo_file->sections.line = sections.line;
9220 dwo_file->sections.loc = sections.loc;
9221 dwo_file->sections.macinfo = sections.macinfo;
9222 dwo_file->sections.macro = sections.macro;
9223 dwo_file->sections.str_offsets = sections.str_offsets;
9224 /* The "str" section is global to the entire DWP file. */
9225 dwo_file->sections.str = dwp_file->sections.str;
9226 /* The info or types section is assigned later to dwo_unit,
9227 there's no need to record it in dwo_file.
9228 Also, we can't simply record type sections in dwo_file because
9229 we record a pointer into the vector in dwo_unit. As we collect more
9230 types we'll grow the vector and eventually have to reallocate space
9231 for it, invalidating all the pointers into the current copy. */
9232 *dwo_file_slot = dwo_file;
9233 }
9234 else
9235 {
9236 if (dwarf2_read_debug)
9237 {
9238 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9239 virtual_dwo_name);
9240 }
9241 dwo_file = *dwo_file_slot;
9242 }
9243 do_cleanups (cleanups);
9244
9245 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9246 dwo_unit->dwo_file = dwo_file;
9247 dwo_unit->signature = signature;
8a0459fd
DE
9248 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9249 sizeof (struct dwarf2_section_info));
9250 *dwo_unit->section = sections.info_or_types;
80626a55
DE
9251 /* offset, length, type_offset_in_tu are set later. */
9252
9253 return dwo_unit;
9254}
9255
9256/* Lookup the DWO with SIGNATURE in DWP_FILE. */
9257
9258static struct dwo_unit *
9259lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9260 const struct dwp_hash_table *htab,
0ac5b59e 9261 const char *comp_dir,
80626a55
DE
9262 ULONGEST signature, int is_debug_types)
9263{
9264 bfd *dbfd = dwp_file->dbfd;
9265 uint32_t mask = htab->nr_slots - 1;
9266 uint32_t hash = signature & mask;
9267 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9268 unsigned int i;
9269 void **slot;
9270 struct dwo_unit find_dwo_cu, *dwo_cu;
9271
9272 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9273 find_dwo_cu.signature = signature;
9274 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9275
9276 if (*slot != NULL)
9277 return *slot;
9278
9279 /* Use a for loop so that we don't loop forever on bad debug info. */
9280 for (i = 0; i < htab->nr_slots; ++i)
9281 {
9282 ULONGEST signature_in_table;
9283
9284 signature_in_table =
9285 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9286 if (signature_in_table == signature)
9287 {
9288 uint32_t section_index =
9289 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9290
9291 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
0ac5b59e 9292 comp_dir, signature, is_debug_types);
80626a55
DE
9293 return *slot;
9294 }
9295 if (signature_in_table == 0)
9296 return NULL;
9297 hash = (hash + hash2) & mask;
9298 }
9299
9300 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9301 " [in module %s]"),
9302 dwp_file->name);
9303}
9304
ab5088bf 9305/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
9306 Open the file specified by FILE_NAME and hand it off to BFD for
9307 preliminary analysis. Return a newly initialized bfd *, which
9308 includes a canonicalized copy of FILE_NAME.
80626a55 9309 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
9310 SEARCH_CWD is true if the current directory is to be searched.
9311 It will be searched before debug-file-directory.
9312 If unable to find/open the file, return NULL.
3019eac3
DE
9313 NOTE: This function is derived from symfile_bfd_open. */
9314
9315static bfd *
6ac97d4c 9316try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
9317{
9318 bfd *sym_bfd;
80626a55 9319 int desc, flags;
3019eac3 9320 char *absolute_name;
9c02c129
DE
9321 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9322 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9323 to debug_file_directory. */
9324 char *search_path;
9325 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9326
6ac97d4c
DE
9327 if (search_cwd)
9328 {
9329 if (*debug_file_directory != '\0')
9330 search_path = concat (".", dirname_separator_string,
9331 debug_file_directory, NULL);
9332 else
9333 search_path = xstrdup (".");
9334 }
9c02c129 9335 else
6ac97d4c 9336 search_path = xstrdup (debug_file_directory);
3019eac3 9337
9c02c129 9338 flags = 0;
80626a55
DE
9339 if (is_dwp)
9340 flags |= OPF_SEARCH_IN_PATH;
9c02c129 9341 desc = openp (search_path, flags, file_name,
3019eac3 9342 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 9343 xfree (search_path);
3019eac3
DE
9344 if (desc < 0)
9345 return NULL;
9346
bb397797 9347 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 9348 xfree (absolute_name);
9c02c129
DE
9349 if (sym_bfd == NULL)
9350 return NULL;
3019eac3
DE
9351 bfd_set_cacheable (sym_bfd, 1);
9352
9353 if (!bfd_check_format (sym_bfd, bfd_object))
9354 {
cbb099e8 9355 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
9356 return NULL;
9357 }
9358
3019eac3
DE
9359 return sym_bfd;
9360}
9361
ab5088bf 9362/* Try to open DWO file FILE_NAME.
3019eac3
DE
9363 COMP_DIR is the DW_AT_comp_dir attribute.
9364 The result is the bfd handle of the file.
9365 If there is a problem finding or opening the file, return NULL.
9366 Upon success, the canonicalized path of the file is stored in the bfd,
9367 same as symfile_bfd_open. */
9368
9369static bfd *
ab5088bf 9370open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
9371{
9372 bfd *abfd;
3019eac3 9373
80626a55 9374 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 9375 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
9376
9377 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9378
9379 if (comp_dir != NULL)
9380 {
80626a55 9381 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
9382
9383 /* NOTE: If comp_dir is a relative path, this will also try the
9384 search path, which seems useful. */
6ac97d4c 9385 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
9386 xfree (path_to_try);
9387 if (abfd != NULL)
9388 return abfd;
9389 }
9390
9391 /* That didn't work, try debug-file-directory, which, despite its name,
9392 is a list of paths. */
9393
9394 if (*debug_file_directory == '\0')
9395 return NULL;
9396
6ac97d4c 9397 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
9398}
9399
80626a55
DE
9400/* This function is mapped across the sections and remembers the offset and
9401 size of each of the DWO debugging sections we are interested in. */
9402
9403static void
9404dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9405{
9406 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9407 const struct dwop_section_names *names = &dwop_section_names;
9408
9409 if (section_is_p (sectp->name, &names->abbrev_dwo))
9410 {
9411 dwo_sections->abbrev.asection = sectp;
9412 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9413 }
9414 else if (section_is_p (sectp->name, &names->info_dwo))
9415 {
9416 dwo_sections->info.asection = sectp;
9417 dwo_sections->info.size = bfd_get_section_size (sectp);
9418 }
9419 else if (section_is_p (sectp->name, &names->line_dwo))
9420 {
9421 dwo_sections->line.asection = sectp;
9422 dwo_sections->line.size = bfd_get_section_size (sectp);
9423 }
9424 else if (section_is_p (sectp->name, &names->loc_dwo))
9425 {
9426 dwo_sections->loc.asection = sectp;
9427 dwo_sections->loc.size = bfd_get_section_size (sectp);
9428 }
9429 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9430 {
9431 dwo_sections->macinfo.asection = sectp;
9432 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9433 }
9434 else if (section_is_p (sectp->name, &names->macro_dwo))
9435 {
9436 dwo_sections->macro.asection = sectp;
9437 dwo_sections->macro.size = bfd_get_section_size (sectp);
9438 }
9439 else if (section_is_p (sectp->name, &names->str_dwo))
9440 {
9441 dwo_sections->str.asection = sectp;
9442 dwo_sections->str.size = bfd_get_section_size (sectp);
9443 }
9444 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9445 {
9446 dwo_sections->str_offsets.asection = sectp;
9447 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9448 }
9449 else if (section_is_p (sectp->name, &names->types_dwo))
9450 {
9451 struct dwarf2_section_info type_section;
9452
9453 memset (&type_section, 0, sizeof (type_section));
9454 type_section.asection = sectp;
9455 type_section.size = bfd_get_section_size (sectp);
9456 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9457 &type_section);
9458 }
9459}
9460
ab5088bf 9461/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 9462 by PER_CU. This is for the non-DWP case.
80626a55 9463 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
9464
9465static struct dwo_file *
0ac5b59e
DE
9466open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9467 const char *dwo_name, const char *comp_dir)
3019eac3
DE
9468{
9469 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9470 struct dwo_file *dwo_file;
9471 bfd *dbfd;
3019eac3
DE
9472 struct cleanup *cleanups;
9473
ab5088bf 9474 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
9475 if (dbfd == NULL)
9476 {
9477 if (dwarf2_read_debug)
9478 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9479 return NULL;
9480 }
9481 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9482 dwo_file->dwo_name = dwo_name;
9483 dwo_file->comp_dir = comp_dir;
80626a55 9484 dwo_file->dbfd = dbfd;
3019eac3
DE
9485
9486 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9487
80626a55 9488 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 9489
19c3d4c9 9490 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
9491
9492 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9493 dwo_file->sections.types);
9494
9495 discard_cleanups (cleanups);
9496
80626a55
DE
9497 if (dwarf2_read_debug)
9498 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9499
3019eac3
DE
9500 return dwo_file;
9501}
9502
80626a55
DE
9503/* This function is mapped across the sections and remembers the offset and
9504 size of each of the DWP debugging sections we are interested in. */
3019eac3 9505
80626a55
DE
9506static void
9507dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
3019eac3 9508{
80626a55
DE
9509 struct dwp_file *dwp_file = dwp_file_ptr;
9510 const struct dwop_section_names *names = &dwop_section_names;
9511 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 9512
80626a55
DE
9513 /* Record the ELF section number for later lookup: this is what the
9514 .debug_cu_index,.debug_tu_index tables use. */
9515 gdb_assert (elf_section_nr < dwp_file->num_sections);
9516 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 9517
80626a55
DE
9518 /* Look for specific sections that we need. */
9519 if (section_is_p (sectp->name, &names->str_dwo))
9520 {
9521 dwp_file->sections.str.asection = sectp;
9522 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9523 }
9524 else if (section_is_p (sectp->name, &names->cu_index))
9525 {
9526 dwp_file->sections.cu_index.asection = sectp;
9527 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9528 }
9529 else if (section_is_p (sectp->name, &names->tu_index))
9530 {
9531 dwp_file->sections.tu_index.asection = sectp;
9532 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9533 }
9534}
3019eac3 9535
80626a55 9536/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 9537
80626a55
DE
9538static hashval_t
9539hash_dwp_loaded_cutus (const void *item)
9540{
9541 const struct dwo_unit *dwo_unit = item;
3019eac3 9542
80626a55
DE
9543 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9544 return dwo_unit->signature;
3019eac3
DE
9545}
9546
80626a55 9547/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 9548
80626a55
DE
9549static int
9550eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 9551{
80626a55
DE
9552 const struct dwo_unit *dua = a;
9553 const struct dwo_unit *dub = b;
3019eac3 9554
80626a55
DE
9555 return dua->signature == dub->signature;
9556}
3019eac3 9557
80626a55 9558/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 9559
80626a55
DE
9560static htab_t
9561allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9562{
9563 return htab_create_alloc_ex (3,
9564 hash_dwp_loaded_cutus,
9565 eq_dwp_loaded_cutus,
9566 NULL,
9567 &objfile->objfile_obstack,
9568 hashtab_obstack_allocate,
9569 dummy_obstack_deallocate);
9570}
3019eac3 9571
ab5088bf
DE
9572/* Try to open DWP file FILE_NAME.
9573 The result is the bfd handle of the file.
9574 If there is a problem finding or opening the file, return NULL.
9575 Upon success, the canonicalized path of the file is stored in the bfd,
9576 same as symfile_bfd_open. */
9577
9578static bfd *
9579open_dwp_file (const char *file_name)
9580{
6ac97d4c
DE
9581 bfd *abfd;
9582
9583 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9584 if (abfd != NULL)
9585 return abfd;
9586
9587 /* Work around upstream bug 15652.
9588 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9589 [Whether that's a "bug" is debatable, but it is getting in our way.]
9590 We have no real idea where the dwp file is, because gdb's realpath-ing
9591 of the executable's path may have discarded the needed info.
9592 [IWBN if the dwp file name was recorded in the executable, akin to
9593 .gnu_debuglink, but that doesn't exist yet.]
9594 Strip the directory from FILE_NAME and search again. */
9595 if (*debug_file_directory != '\0')
9596 {
9597 /* Don't implicitly search the current directory here.
9598 If the user wants to search "." to handle this case,
9599 it must be added to debug-file-directory. */
9600 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9601 0 /*search_cwd*/);
9602 }
9603
9604 return NULL;
ab5088bf
DE
9605}
9606
80626a55
DE
9607/* Initialize the use of the DWP file for the current objfile.
9608 By convention the name of the DWP file is ${objfile}.dwp.
9609 The result is NULL if it can't be found. */
a766d390 9610
80626a55 9611static struct dwp_file *
ab5088bf 9612open_and_init_dwp_file (void)
80626a55
DE
9613{
9614 struct objfile *objfile = dwarf2_per_objfile->objfile;
9615 struct dwp_file *dwp_file;
9616 char *dwp_name;
9617 bfd *dbfd;
9618 struct cleanup *cleanups;
9619
2792b94d 9620 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
80626a55
DE
9621 cleanups = make_cleanup (xfree, dwp_name);
9622
ab5088bf 9623 dbfd = open_dwp_file (dwp_name);
80626a55
DE
9624 if (dbfd == NULL)
9625 {
9626 if (dwarf2_read_debug)
9627 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9628 do_cleanups (cleanups);
9629 return NULL;
3019eac3 9630 }
80626a55 9631 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 9632 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
9633 dwp_file->dbfd = dbfd;
9634 do_cleanups (cleanups);
c906108c 9635
80626a55
DE
9636 /* +1: section 0 is unused */
9637 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9638 dwp_file->elf_sections =
9639 OBSTACK_CALLOC (&objfile->objfile_obstack,
9640 dwp_file->num_sections, asection *);
9641
9642 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9643
9644 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9645
9646 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9647
9648 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9649
80626a55
DE
9650 if (dwarf2_read_debug)
9651 {
9652 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9653 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
9654 " %s CUs, %s TUs\n",
9655 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9656 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
9657 }
9658
9659 return dwp_file;
3019eac3 9660}
c906108c 9661
ab5088bf
DE
9662/* Wrapper around open_and_init_dwp_file, only open it once. */
9663
9664static struct dwp_file *
9665get_dwp_file (void)
9666{
9667 if (! dwarf2_per_objfile->dwp_checked)
9668 {
9669 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9670 dwarf2_per_objfile->dwp_checked = 1;
9671 }
9672 return dwarf2_per_objfile->dwp_file;
9673}
9674
80626a55
DE
9675/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9676 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9677 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 9678 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
9679 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9680
9681 This is called, for example, when wanting to read a variable with a
9682 complex location. Therefore we don't want to do file i/o for every call.
9683 Therefore we don't want to look for a DWO file on every call.
9684 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9685 then we check if we've already seen DWO_NAME, and only THEN do we check
9686 for a DWO file.
9687
1c658ad5 9688 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 9689 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 9690
3019eac3 9691static struct dwo_unit *
80626a55
DE
9692lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9693 const char *dwo_name, const char *comp_dir,
9694 ULONGEST signature, int is_debug_types)
3019eac3
DE
9695{
9696 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9697 const char *kind = is_debug_types ? "TU" : "CU";
9698 void **dwo_file_slot;
3019eac3 9699 struct dwo_file *dwo_file;
80626a55 9700 struct dwp_file *dwp_file;
cb1df416 9701
6a506a2d
DE
9702 /* First see if there's a DWP file.
9703 If we have a DWP file but didn't find the DWO inside it, don't
9704 look for the original DWO file. It makes gdb behave differently
9705 depending on whether one is debugging in the build tree. */
cf2c3c16 9706
ab5088bf 9707 dwp_file = get_dwp_file ();
80626a55 9708 if (dwp_file != NULL)
cf2c3c16 9709 {
80626a55
DE
9710 const struct dwp_hash_table *dwp_htab =
9711 is_debug_types ? dwp_file->tus : dwp_file->cus;
9712
9713 if (dwp_htab != NULL)
9714 {
9715 struct dwo_unit *dwo_cutu =
0ac5b59e
DE
9716 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9717 signature, is_debug_types);
80626a55
DE
9718
9719 if (dwo_cutu != NULL)
9720 {
9721 if (dwarf2_read_debug)
9722 {
9723 fprintf_unfiltered (gdb_stdlog,
9724 "Virtual DWO %s %s found: @%s\n",
9725 kind, hex_string (signature),
9726 host_address_to_string (dwo_cutu));
9727 }
9728 return dwo_cutu;
9729 }
9730 }
9731 }
6a506a2d 9732 else
80626a55 9733 {
6a506a2d 9734 /* No DWP file, look for the DWO file. */
80626a55 9735
6a506a2d
DE
9736 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9737 if (*dwo_file_slot == NULL)
80626a55 9738 {
6a506a2d
DE
9739 /* Read in the file and build a table of the CUs/TUs it contains. */
9740 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 9741 }
6a506a2d
DE
9742 /* NOTE: This will be NULL if unable to open the file. */
9743 dwo_file = *dwo_file_slot;
3019eac3 9744
6a506a2d 9745 if (dwo_file != NULL)
19c3d4c9 9746 {
6a506a2d
DE
9747 struct dwo_unit *dwo_cutu = NULL;
9748
9749 if (is_debug_types && dwo_file->tus)
9750 {
9751 struct dwo_unit find_dwo_cutu;
9752
9753 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9754 find_dwo_cutu.signature = signature;
9755 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9756 }
9757 else if (!is_debug_types && dwo_file->cu)
80626a55 9758 {
6a506a2d
DE
9759 if (signature == dwo_file->cu->signature)
9760 dwo_cutu = dwo_file->cu;
9761 }
9762
9763 if (dwo_cutu != NULL)
9764 {
9765 if (dwarf2_read_debug)
9766 {
9767 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9768 kind, dwo_name, hex_string (signature),
9769 host_address_to_string (dwo_cutu));
9770 }
9771 return dwo_cutu;
80626a55
DE
9772 }
9773 }
2e276125 9774 }
9cdd5dbd 9775
80626a55
DE
9776 /* We didn't find it. This could mean a dwo_id mismatch, or
9777 someone deleted the DWO/DWP file, or the search path isn't set up
9778 correctly to find the file. */
9779
9780 if (dwarf2_read_debug)
9781 {
9782 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9783 kind, dwo_name, hex_string (signature));
9784 }
3019eac3
DE
9785
9786 complaint (&symfile_complaints,
a2ce51a0 9787 _("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
3019eac3 9788 " [in module %s]"),
6a506a2d 9789 kind, dwo_name, hex_string (signature),
a2ce51a0 9790 this_unit->is_debug_types ? "TU" : "CU",
6a506a2d 9791 this_unit->offset.sect_off, objfile->name);
3019eac3 9792 return NULL;
5fb290d7
DJ
9793}
9794
80626a55
DE
9795/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9796 See lookup_dwo_cutu_unit for details. */
9797
9798static struct dwo_unit *
9799lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9800 const char *dwo_name, const char *comp_dir,
9801 ULONGEST signature)
9802{
9803 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9804}
9805
9806/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9807 See lookup_dwo_cutu_unit for details. */
9808
9809static struct dwo_unit *
9810lookup_dwo_type_unit (struct signatured_type *this_tu,
9811 const char *dwo_name, const char *comp_dir)
9812{
9813 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9814}
9815
3019eac3
DE
9816/* Free all resources associated with DWO_FILE.
9817 Close the DWO file and munmap the sections.
9818 All memory should be on the objfile obstack. */
348e048f
DE
9819
9820static void
3019eac3 9821free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 9822{
3019eac3
DE
9823 int ix;
9824 struct dwarf2_section_info *section;
348e048f 9825
5c6fa7ab 9826 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 9827 gdb_bfd_unref (dwo_file->dbfd);
348e048f 9828
3019eac3
DE
9829 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9830}
348e048f 9831
3019eac3 9832/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 9833
3019eac3
DE
9834static void
9835free_dwo_file_cleanup (void *arg)
9836{
9837 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9838 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 9839
3019eac3
DE
9840 free_dwo_file (dwo_file, objfile);
9841}
348e048f 9842
3019eac3 9843/* Traversal function for free_dwo_files. */
2ab95328 9844
3019eac3
DE
9845static int
9846free_dwo_file_from_slot (void **slot, void *info)
9847{
9848 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9849 struct objfile *objfile = (struct objfile *) info;
348e048f 9850
3019eac3 9851 free_dwo_file (dwo_file, objfile);
348e048f 9852
3019eac3
DE
9853 return 1;
9854}
348e048f 9855
3019eac3 9856/* Free all resources associated with DWO_FILES. */
348e048f 9857
3019eac3
DE
9858static void
9859free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9860{
9861 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 9862}
3019eac3
DE
9863\f
9864/* Read in various DIEs. */
348e048f 9865
d389af10
JK
9866/* qsort helper for inherit_abstract_dies. */
9867
9868static int
9869unsigned_int_compar (const void *ap, const void *bp)
9870{
9871 unsigned int a = *(unsigned int *) ap;
9872 unsigned int b = *(unsigned int *) bp;
9873
9874 return (a > b) - (b > a);
9875}
9876
9877/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
9878 Inherit only the children of the DW_AT_abstract_origin DIE not being
9879 already referenced by DW_AT_abstract_origin from the children of the
9880 current DIE. */
d389af10
JK
9881
9882static void
9883inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9884{
9885 struct die_info *child_die;
9886 unsigned die_children_count;
9887 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
9888 sect_offset *offsets;
9889 sect_offset *offsets_end, *offsetp;
d389af10
JK
9890 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9891 struct die_info *origin_die;
9892 /* Iterator of the ORIGIN_DIE children. */
9893 struct die_info *origin_child_die;
9894 struct cleanup *cleanups;
9895 struct attribute *attr;
cd02d79d
PA
9896 struct dwarf2_cu *origin_cu;
9897 struct pending **origin_previous_list_in_scope;
d389af10
JK
9898
9899 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9900 if (!attr)
9901 return;
9902
cd02d79d
PA
9903 /* Note that following die references may follow to a die in a
9904 different cu. */
9905
9906 origin_cu = cu;
9907 origin_die = follow_die_ref (die, attr, &origin_cu);
9908
9909 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9910 symbols in. */
9911 origin_previous_list_in_scope = origin_cu->list_in_scope;
9912 origin_cu->list_in_scope = cu->list_in_scope;
9913
edb3359d
DJ
9914 if (die->tag != origin_die->tag
9915 && !(die->tag == DW_TAG_inlined_subroutine
9916 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9917 complaint (&symfile_complaints,
9918 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 9919 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
9920
9921 child_die = die->child;
9922 die_children_count = 0;
9923 while (child_die && child_die->tag)
9924 {
9925 child_die = sibling_die (child_die);
9926 die_children_count++;
9927 }
9928 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9929 cleanups = make_cleanup (xfree, offsets);
9930
9931 offsets_end = offsets;
9932 child_die = die->child;
9933 while (child_die && child_die->tag)
9934 {
c38f313d
DJ
9935 /* For each CHILD_DIE, find the corresponding child of
9936 ORIGIN_DIE. If there is more than one layer of
9937 DW_AT_abstract_origin, follow them all; there shouldn't be,
9938 but GCC versions at least through 4.4 generate this (GCC PR
9939 40573). */
9940 struct die_info *child_origin_die = child_die;
cd02d79d 9941 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 9942
c38f313d
DJ
9943 while (1)
9944 {
cd02d79d
PA
9945 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9946 child_origin_cu);
c38f313d
DJ
9947 if (attr == NULL)
9948 break;
cd02d79d
PA
9949 child_origin_die = follow_die_ref (child_origin_die, attr,
9950 &child_origin_cu);
c38f313d
DJ
9951 }
9952
d389af10
JK
9953 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9954 counterpart may exist. */
c38f313d 9955 if (child_origin_die != child_die)
d389af10 9956 {
edb3359d
DJ
9957 if (child_die->tag != child_origin_die->tag
9958 && !(child_die->tag == DW_TAG_inlined_subroutine
9959 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9960 complaint (&symfile_complaints,
9961 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9962 "different tags"), child_die->offset.sect_off,
9963 child_origin_die->offset.sect_off);
c38f313d
DJ
9964 if (child_origin_die->parent != origin_die)
9965 complaint (&symfile_complaints,
9966 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9967 "different parents"), child_die->offset.sect_off,
9968 child_origin_die->offset.sect_off);
c38f313d
DJ
9969 else
9970 *offsets_end++ = child_origin_die->offset;
d389af10
JK
9971 }
9972 child_die = sibling_die (child_die);
9973 }
9974 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9975 unsigned_int_compar);
9976 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 9977 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
9978 complaint (&symfile_complaints,
9979 _("Multiple children of DIE 0x%x refer "
9980 "to DIE 0x%x as their abstract origin"),
b64f50a1 9981 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
9982
9983 offsetp = offsets;
9984 origin_child_die = origin_die->child;
9985 while (origin_child_die && origin_child_die->tag)
9986 {
9987 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
9988 while (offsetp < offsets_end
9989 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 9990 offsetp++;
b64f50a1
JK
9991 if (offsetp >= offsets_end
9992 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
9993 {
9994 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 9995 process_die (origin_child_die, origin_cu);
d389af10
JK
9996 }
9997 origin_child_die = sibling_die (origin_child_die);
9998 }
cd02d79d 9999 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
10000
10001 do_cleanups (cleanups);
10002}
10003
c906108c 10004static void
e7c27a73 10005read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10006{
e7c27a73 10007 struct objfile *objfile = cu->objfile;
52f0bd74 10008 struct context_stack *new;
c906108c
SS
10009 CORE_ADDR lowpc;
10010 CORE_ADDR highpc;
10011 struct die_info *child_die;
edb3359d 10012 struct attribute *attr, *call_line, *call_file;
15d034d0 10013 const char *name;
e142c38c 10014 CORE_ADDR baseaddr;
801e3a5b 10015 struct block *block;
edb3359d 10016 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
10017 VEC (symbolp) *template_args = NULL;
10018 struct template_symbol *templ_func = NULL;
edb3359d
DJ
10019
10020 if (inlined_func)
10021 {
10022 /* If we do not have call site information, we can't show the
10023 caller of this inlined function. That's too confusing, so
10024 only use the scope for local variables. */
10025 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10026 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10027 if (call_line == NULL || call_file == NULL)
10028 {
10029 read_lexical_block_scope (die, cu);
10030 return;
10031 }
10032 }
c906108c 10033
e142c38c
DJ
10034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10035
94af9270 10036 name = dwarf2_name (die, cu);
c906108c 10037
e8d05480
JB
10038 /* Ignore functions with missing or empty names. These are actually
10039 illegal according to the DWARF standard. */
10040 if (name == NULL)
10041 {
10042 complaint (&symfile_complaints,
b64f50a1
JK
10043 _("missing name for subprogram DIE at %d"),
10044 die->offset.sect_off);
e8d05480
JB
10045 return;
10046 }
10047
10048 /* Ignore functions with missing or invalid low and high pc attributes. */
10049 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10050 {
ae4d0c03
PM
10051 attr = dwarf2_attr (die, DW_AT_external, cu);
10052 if (!attr || !DW_UNSND (attr))
10053 complaint (&symfile_complaints,
3e43a32a
MS
10054 _("cannot get low and high bounds "
10055 "for subprogram DIE at %d"),
b64f50a1 10056 die->offset.sect_off);
e8d05480
JB
10057 return;
10058 }
c906108c
SS
10059
10060 lowpc += baseaddr;
10061 highpc += baseaddr;
10062
34eaf542
TT
10063 /* If we have any template arguments, then we must allocate a
10064 different sort of symbol. */
10065 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10066 {
10067 if (child_die->tag == DW_TAG_template_type_param
10068 || child_die->tag == DW_TAG_template_value_param)
10069 {
e623cf5d 10070 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
10071 templ_func->base.is_cplus_template_function = 1;
10072 break;
10073 }
10074 }
10075
c906108c 10076 new = push_context (0, lowpc);
34eaf542
TT
10077 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10078 (struct symbol *) templ_func);
4c2df51b 10079
4cecd739
DJ
10080 /* If there is a location expression for DW_AT_frame_base, record
10081 it. */
e142c38c 10082 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 10083 if (attr)
f1e6e072 10084 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 10085
e142c38c 10086 cu->list_in_scope = &local_symbols;
c906108c 10087
639d11d3 10088 if (die->child != NULL)
c906108c 10089 {
639d11d3 10090 child_die = die->child;
c906108c
SS
10091 while (child_die && child_die->tag)
10092 {
34eaf542
TT
10093 if (child_die->tag == DW_TAG_template_type_param
10094 || child_die->tag == DW_TAG_template_value_param)
10095 {
10096 struct symbol *arg = new_symbol (child_die, NULL, cu);
10097
f1078f66
DJ
10098 if (arg != NULL)
10099 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
10100 }
10101 else
10102 process_die (child_die, cu);
c906108c
SS
10103 child_die = sibling_die (child_die);
10104 }
10105 }
10106
d389af10
JK
10107 inherit_abstract_dies (die, cu);
10108
4a811a97
UW
10109 /* If we have a DW_AT_specification, we might need to import using
10110 directives from the context of the specification DIE. See the
10111 comment in determine_prefix. */
10112 if (cu->language == language_cplus
10113 && dwarf2_attr (die, DW_AT_specification, cu))
10114 {
10115 struct dwarf2_cu *spec_cu = cu;
10116 struct die_info *spec_die = die_specification (die, &spec_cu);
10117
10118 while (spec_die)
10119 {
10120 child_die = spec_die->child;
10121 while (child_die && child_die->tag)
10122 {
10123 if (child_die->tag == DW_TAG_imported_module)
10124 process_die (child_die, spec_cu);
10125 child_die = sibling_die (child_die);
10126 }
10127
10128 /* In some cases, GCC generates specification DIEs that
10129 themselves contain DW_AT_specification attributes. */
10130 spec_die = die_specification (spec_die, &spec_cu);
10131 }
10132 }
10133
c906108c
SS
10134 new = pop_context ();
10135 /* Make a block for the local symbols within. */
801e3a5b
JB
10136 block = finish_block (new->name, &local_symbols, new->old_blocks,
10137 lowpc, highpc, objfile);
10138
df8a16a1 10139 /* For C++, set the block's scope. */
195a3f6c 10140 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 10141 && cu->processing_has_namespace_info)
195a3f6c
TT
10142 block_set_scope (block, determine_prefix (die, cu),
10143 &objfile->objfile_obstack);
df8a16a1 10144
801e3a5b
JB
10145 /* If we have address ranges, record them. */
10146 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 10147
34eaf542
TT
10148 /* Attach template arguments to function. */
10149 if (! VEC_empty (symbolp, template_args))
10150 {
10151 gdb_assert (templ_func != NULL);
10152
10153 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10154 templ_func->template_arguments
10155 = obstack_alloc (&objfile->objfile_obstack,
10156 (templ_func->n_template_arguments
10157 * sizeof (struct symbol *)));
10158 memcpy (templ_func->template_arguments,
10159 VEC_address (symbolp, template_args),
10160 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10161 VEC_free (symbolp, template_args);
10162 }
10163
208d8187
JB
10164 /* In C++, we can have functions nested inside functions (e.g., when
10165 a function declares a class that has methods). This means that
10166 when we finish processing a function scope, we may need to go
10167 back to building a containing block's symbol lists. */
10168 local_symbols = new->locals;
27aa8d6a 10169 using_directives = new->using_directives;
208d8187 10170
921e78cf
JB
10171 /* If we've finished processing a top-level function, subsequent
10172 symbols go in the file symbol list. */
10173 if (outermost_context_p ())
e142c38c 10174 cu->list_in_scope = &file_symbols;
c906108c
SS
10175}
10176
10177/* Process all the DIES contained within a lexical block scope. Start
10178 a new scope, process the dies, and then close the scope. */
10179
10180static void
e7c27a73 10181read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10182{
e7c27a73 10183 struct objfile *objfile = cu->objfile;
52f0bd74 10184 struct context_stack *new;
c906108c
SS
10185 CORE_ADDR lowpc, highpc;
10186 struct die_info *child_die;
e142c38c
DJ
10187 CORE_ADDR baseaddr;
10188
10189 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
10190
10191 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
10192 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10193 as multiple lexical blocks? Handling children in a sane way would
6e70227d 10194 be nasty. Might be easier to properly extend generic blocks to
af34e669 10195 describe ranges. */
d85a05f0 10196 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
10197 return;
10198 lowpc += baseaddr;
10199 highpc += baseaddr;
10200
10201 push_context (0, lowpc);
639d11d3 10202 if (die->child != NULL)
c906108c 10203 {
639d11d3 10204 child_die = die->child;
c906108c
SS
10205 while (child_die && child_die->tag)
10206 {
e7c27a73 10207 process_die (child_die, cu);
c906108c
SS
10208 child_die = sibling_die (child_die);
10209 }
10210 }
10211 new = pop_context ();
10212
8540c487 10213 if (local_symbols != NULL || using_directives != NULL)
c906108c 10214 {
801e3a5b
JB
10215 struct block *block
10216 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10217 highpc, objfile);
10218
10219 /* Note that recording ranges after traversing children, as we
10220 do here, means that recording a parent's ranges entails
10221 walking across all its children's ranges as they appear in
10222 the address map, which is quadratic behavior.
10223
10224 It would be nicer to record the parent's ranges before
10225 traversing its children, simply overriding whatever you find
10226 there. But since we don't even decide whether to create a
10227 block until after we've traversed its children, that's hard
10228 to do. */
10229 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
10230 }
10231 local_symbols = new->locals;
27aa8d6a 10232 using_directives = new->using_directives;
c906108c
SS
10233}
10234
96408a79
SA
10235/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10236
10237static void
10238read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10239{
10240 struct objfile *objfile = cu->objfile;
10241 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10242 CORE_ADDR pc, baseaddr;
10243 struct attribute *attr;
10244 struct call_site *call_site, call_site_local;
10245 void **slot;
10246 int nparams;
10247 struct die_info *child_die;
10248
10249 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10250
10251 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10252 if (!attr)
10253 {
10254 complaint (&symfile_complaints,
10255 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10256 "DIE 0x%x [in module %s]"),
b64f50a1 10257 die->offset.sect_off, objfile->name);
96408a79
SA
10258 return;
10259 }
10260 pc = DW_ADDR (attr) + baseaddr;
10261
10262 if (cu->call_site_htab == NULL)
10263 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10264 NULL, &objfile->objfile_obstack,
10265 hashtab_obstack_allocate, NULL);
10266 call_site_local.pc = pc;
10267 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10268 if (*slot != NULL)
10269 {
10270 complaint (&symfile_complaints,
10271 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10272 "DIE 0x%x [in module %s]"),
b64f50a1 10273 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
10274 return;
10275 }
10276
10277 /* Count parameters at the caller. */
10278
10279 nparams = 0;
10280 for (child_die = die->child; child_die && child_die->tag;
10281 child_die = sibling_die (child_die))
10282 {
10283 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10284 {
10285 complaint (&symfile_complaints,
10286 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10287 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10288 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
10289 continue;
10290 }
10291
10292 nparams++;
10293 }
10294
10295 call_site = obstack_alloc (&objfile->objfile_obstack,
10296 (sizeof (*call_site)
10297 + (sizeof (*call_site->parameter)
10298 * (nparams - 1))));
10299 *slot = call_site;
10300 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10301 call_site->pc = pc;
10302
10303 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10304 {
10305 struct die_info *func_die;
10306
10307 /* Skip also over DW_TAG_inlined_subroutine. */
10308 for (func_die = die->parent;
10309 func_die && func_die->tag != DW_TAG_subprogram
10310 && func_die->tag != DW_TAG_subroutine_type;
10311 func_die = func_die->parent);
10312
10313 /* DW_AT_GNU_all_call_sites is a superset
10314 of DW_AT_GNU_all_tail_call_sites. */
10315 if (func_die
10316 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10317 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10318 {
10319 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10320 not complete. But keep CALL_SITE for look ups via call_site_htab,
10321 both the initial caller containing the real return address PC and
10322 the final callee containing the current PC of a chain of tail
10323 calls do not need to have the tail call list complete. But any
10324 function candidate for a virtual tail call frame searched via
10325 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10326 determined unambiguously. */
10327 }
10328 else
10329 {
10330 struct type *func_type = NULL;
10331
10332 if (func_die)
10333 func_type = get_die_type (func_die, cu);
10334 if (func_type != NULL)
10335 {
10336 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10337
10338 /* Enlist this call site to the function. */
10339 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10340 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10341 }
10342 else
10343 complaint (&symfile_complaints,
10344 _("Cannot find function owning DW_TAG_GNU_call_site "
10345 "DIE 0x%x [in module %s]"),
b64f50a1 10346 die->offset.sect_off, objfile->name);
96408a79
SA
10347 }
10348 }
10349
10350 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10351 if (attr == NULL)
10352 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10353 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10354 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10355 /* Keep NULL DWARF_BLOCK. */;
10356 else if (attr_form_is_block (attr))
10357 {
10358 struct dwarf2_locexpr_baton *dlbaton;
10359
10360 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10361 dlbaton->data = DW_BLOCK (attr)->data;
10362 dlbaton->size = DW_BLOCK (attr)->size;
10363 dlbaton->per_cu = cu->per_cu;
10364
10365 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10366 }
10367 else if (is_ref_attr (attr))
10368 {
96408a79
SA
10369 struct dwarf2_cu *target_cu = cu;
10370 struct die_info *target_die;
10371
ac9ec31b 10372 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
10373 gdb_assert (target_cu->objfile == objfile);
10374 if (die_is_declaration (target_die, target_cu))
10375 {
9112db09
JK
10376 const char *target_physname = NULL;
10377 struct attribute *target_attr;
10378
10379 /* Prefer the mangled name; otherwise compute the demangled one. */
10380 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10381 if (target_attr == NULL)
10382 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10383 target_cu);
10384 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10385 target_physname = DW_STRING (target_attr);
10386 else
10387 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
10388 if (target_physname == NULL)
10389 complaint (&symfile_complaints,
10390 _("DW_AT_GNU_call_site_target target DIE has invalid "
10391 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10392 die->offset.sect_off, objfile->name);
96408a79 10393 else
7d455152 10394 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
10395 }
10396 else
10397 {
10398 CORE_ADDR lowpc;
10399
10400 /* DW_AT_entry_pc should be preferred. */
10401 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10402 complaint (&symfile_complaints,
10403 _("DW_AT_GNU_call_site_target target DIE has invalid "
10404 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10405 die->offset.sect_off, objfile->name);
96408a79
SA
10406 else
10407 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10408 }
10409 }
10410 else
10411 complaint (&symfile_complaints,
10412 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10413 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 10414 die->offset.sect_off, objfile->name);
96408a79
SA
10415
10416 call_site->per_cu = cu->per_cu;
10417
10418 for (child_die = die->child;
10419 child_die && child_die->tag;
10420 child_die = sibling_die (child_die))
10421 {
96408a79 10422 struct call_site_parameter *parameter;
1788b2d3 10423 struct attribute *loc, *origin;
96408a79
SA
10424
10425 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10426 {
10427 /* Already printed the complaint above. */
10428 continue;
10429 }
10430
10431 gdb_assert (call_site->parameter_count < nparams);
10432 parameter = &call_site->parameter[call_site->parameter_count];
10433
1788b2d3
JK
10434 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10435 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10436 register is contained in DW_AT_GNU_call_site_value. */
96408a79 10437
24c5c679 10438 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3
JK
10439 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10440 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10441 {
10442 sect_offset offset;
10443
10444 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10445 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
10446 if (!offset_in_cu_p (&cu->header, offset))
10447 {
10448 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10449 binding can be done only inside one CU. Such referenced DIE
10450 therefore cannot be even moved to DW_TAG_partial_unit. */
10451 complaint (&symfile_complaints,
10452 _("DW_AT_abstract_origin offset is not in CU for "
10453 "DW_TAG_GNU_call_site child DIE 0x%x "
10454 "[in module %s]"),
10455 child_die->offset.sect_off, objfile->name);
10456 continue;
10457 }
1788b2d3
JK
10458 parameter->u.param_offset.cu_off = (offset.sect_off
10459 - cu->header.offset.sect_off);
10460 }
10461 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
10462 {
10463 complaint (&symfile_complaints,
10464 _("No DW_FORM_block* DW_AT_location for "
10465 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10466 child_die->offset.sect_off, objfile->name);
96408a79
SA
10467 continue;
10468 }
24c5c679 10469 else
96408a79 10470 {
24c5c679
JK
10471 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10472 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10473 if (parameter->u.dwarf_reg != -1)
10474 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10475 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10476 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10477 &parameter->u.fb_offset))
10478 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10479 else
10480 {
10481 complaint (&symfile_complaints,
10482 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10483 "for DW_FORM_block* DW_AT_location is supported for "
10484 "DW_TAG_GNU_call_site child DIE 0x%x "
10485 "[in module %s]"),
10486 child_die->offset.sect_off, objfile->name);
10487 continue;
10488 }
96408a79
SA
10489 }
10490
10491 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10492 if (!attr_form_is_block (attr))
10493 {
10494 complaint (&symfile_complaints,
10495 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10496 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10497 child_die->offset.sect_off, objfile->name);
96408a79
SA
10498 continue;
10499 }
10500 parameter->value = DW_BLOCK (attr)->data;
10501 parameter->value_size = DW_BLOCK (attr)->size;
10502
10503 /* Parameters are not pre-cleared by memset above. */
10504 parameter->data_value = NULL;
10505 parameter->data_value_size = 0;
10506 call_site->parameter_count++;
10507
10508 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10509 if (attr)
10510 {
10511 if (!attr_form_is_block (attr))
10512 complaint (&symfile_complaints,
10513 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10514 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10515 child_die->offset.sect_off, objfile->name);
96408a79
SA
10516 else
10517 {
10518 parameter->data_value = DW_BLOCK (attr)->data;
10519 parameter->data_value_size = DW_BLOCK (attr)->size;
10520 }
10521 }
10522 }
10523}
10524
43039443 10525/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
10526 Return 1 if the attributes are present and valid, otherwise, return 0.
10527 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
10528
10529static int
10530dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
10531 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10532 struct partial_symtab *ranges_pst)
43039443
JK
10533{
10534 struct objfile *objfile = cu->objfile;
10535 struct comp_unit_head *cu_header = &cu->header;
10536 bfd *obfd = objfile->obfd;
10537 unsigned int addr_size = cu_header->addr_size;
10538 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10539 /* Base address selection entry. */
10540 CORE_ADDR base;
10541 int found_base;
10542 unsigned int dummy;
d521ce57 10543 const gdb_byte *buffer;
43039443
JK
10544 CORE_ADDR marker;
10545 int low_set;
10546 CORE_ADDR low = 0;
10547 CORE_ADDR high = 0;
ff013f42 10548 CORE_ADDR baseaddr;
43039443 10549
d00adf39
DE
10550 found_base = cu->base_known;
10551 base = cu->base_address;
43039443 10552
be391dca 10553 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10554 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
10555 {
10556 complaint (&symfile_complaints,
10557 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10558 offset);
10559 return 0;
10560 }
dce234bc 10561 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
10562
10563 /* Read in the largest possible address. */
10564 marker = read_address (obfd, buffer, cu, &dummy);
10565 if ((marker & mask) == mask)
10566 {
10567 /* If we found the largest possible address, then
10568 read the base address. */
10569 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10570 buffer += 2 * addr_size;
10571 offset += 2 * addr_size;
10572 found_base = 1;
10573 }
10574
10575 low_set = 0;
10576
e7030f15 10577 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 10578
43039443
JK
10579 while (1)
10580 {
10581 CORE_ADDR range_beginning, range_end;
10582
10583 range_beginning = read_address (obfd, buffer, cu, &dummy);
10584 buffer += addr_size;
10585 range_end = read_address (obfd, buffer, cu, &dummy);
10586 buffer += addr_size;
10587 offset += 2 * addr_size;
10588
10589 /* An end of list marker is a pair of zero addresses. */
10590 if (range_beginning == 0 && range_end == 0)
10591 /* Found the end of list entry. */
10592 break;
10593
10594 /* Each base address selection entry is a pair of 2 values.
10595 The first is the largest possible address, the second is
10596 the base address. Check for a base address here. */
10597 if ((range_beginning & mask) == mask)
10598 {
10599 /* If we found the largest possible address, then
10600 read the base address. */
10601 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10602 found_base = 1;
10603 continue;
10604 }
10605
10606 if (!found_base)
10607 {
10608 /* We have no valid base address for the ranges
10609 data. */
10610 complaint (&symfile_complaints,
10611 _("Invalid .debug_ranges data (no base address)"));
10612 return 0;
10613 }
10614
9277c30c
UW
10615 if (range_beginning > range_end)
10616 {
10617 /* Inverted range entries are invalid. */
10618 complaint (&symfile_complaints,
10619 _("Invalid .debug_ranges data (inverted range)"));
10620 return 0;
10621 }
10622
10623 /* Empty range entries have no effect. */
10624 if (range_beginning == range_end)
10625 continue;
10626
43039443
JK
10627 range_beginning += base;
10628 range_end += base;
10629
01093045
DE
10630 /* A not-uncommon case of bad debug info.
10631 Don't pollute the addrmap with bad data. */
10632 if (range_beginning + baseaddr == 0
10633 && !dwarf2_per_objfile->has_section_at_zero)
10634 {
10635 complaint (&symfile_complaints,
10636 _(".debug_ranges entry has start address of zero"
10637 " [in module %s]"), objfile->name);
10638 continue;
10639 }
10640
9277c30c 10641 if (ranges_pst != NULL)
ff013f42 10642 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
10643 range_beginning + baseaddr,
10644 range_end - 1 + baseaddr,
ff013f42
JK
10645 ranges_pst);
10646
43039443
JK
10647 /* FIXME: This is recording everything as a low-high
10648 segment of consecutive addresses. We should have a
10649 data structure for discontiguous block ranges
10650 instead. */
10651 if (! low_set)
10652 {
10653 low = range_beginning;
10654 high = range_end;
10655 low_set = 1;
10656 }
10657 else
10658 {
10659 if (range_beginning < low)
10660 low = range_beginning;
10661 if (range_end > high)
10662 high = range_end;
10663 }
10664 }
10665
10666 if (! low_set)
10667 /* If the first entry is an end-of-list marker, the range
10668 describes an empty scope, i.e. no instructions. */
10669 return 0;
10670
10671 if (low_return)
10672 *low_return = low;
10673 if (high_return)
10674 *high_return = high;
10675 return 1;
10676}
10677
af34e669
DJ
10678/* Get low and high pc attributes from a die. Return 1 if the attributes
10679 are present and valid, otherwise, return 0. Return -1 if the range is
10680 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 10681
c906108c 10682static int
af34e669 10683dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
10684 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10685 struct partial_symtab *pst)
c906108c
SS
10686{
10687 struct attribute *attr;
91da1414 10688 struct attribute *attr_high;
af34e669
DJ
10689 CORE_ADDR low = 0;
10690 CORE_ADDR high = 0;
10691 int ret = 0;
c906108c 10692
91da1414
MW
10693 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10694 if (attr_high)
af34e669 10695 {
e142c38c 10696 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 10697 if (attr)
91da1414
MW
10698 {
10699 low = DW_ADDR (attr);
3019eac3
DE
10700 if (attr_high->form == DW_FORM_addr
10701 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10702 high = DW_ADDR (attr_high);
10703 else
10704 high = low + DW_UNSND (attr_high);
10705 }
af34e669
DJ
10706 else
10707 /* Found high w/o low attribute. */
10708 return 0;
10709
10710 /* Found consecutive range of addresses. */
10711 ret = 1;
10712 }
c906108c 10713 else
af34e669 10714 {
e142c38c 10715 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
10716 if (attr != NULL)
10717 {
ab435259
DE
10718 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10719 We take advantage of the fact that DW_AT_ranges does not appear
10720 in DW_TAG_compile_unit of DWO files. */
10721 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10722 unsigned int ranges_offset = (DW_UNSND (attr)
10723 + (need_ranges_base
10724 ? cu->ranges_base
10725 : 0));
2e3cf129 10726
af34e669 10727 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 10728 .debug_ranges section. */
2e3cf129 10729 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 10730 return 0;
43039443 10731 /* Found discontinuous range of addresses. */
af34e669
DJ
10732 ret = -1;
10733 }
10734 }
c906108c 10735
9373cf26
JK
10736 /* read_partial_die has also the strict LOW < HIGH requirement. */
10737 if (high <= low)
c906108c
SS
10738 return 0;
10739
10740 /* When using the GNU linker, .gnu.linkonce. sections are used to
10741 eliminate duplicate copies of functions and vtables and such.
10742 The linker will arbitrarily choose one and discard the others.
10743 The AT_*_pc values for such functions refer to local labels in
10744 these sections. If the section from that file was discarded, the
10745 labels are not in the output, so the relocs get a value of 0.
10746 If this is a discarded function, mark the pc bounds as invalid,
10747 so that GDB will ignore it. */
72dca2f5 10748 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
10749 return 0;
10750
10751 *lowpc = low;
96408a79
SA
10752 if (highpc)
10753 *highpc = high;
af34e669 10754 return ret;
c906108c
SS
10755}
10756
b084d499
JB
10757/* Assuming that DIE represents a subprogram DIE or a lexical block, get
10758 its low and high PC addresses. Do nothing if these addresses could not
10759 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10760 and HIGHPC to the high address if greater than HIGHPC. */
10761
10762static void
10763dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10764 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10765 struct dwarf2_cu *cu)
10766{
10767 CORE_ADDR low, high;
10768 struct die_info *child = die->child;
10769
d85a05f0 10770 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
10771 {
10772 *lowpc = min (*lowpc, low);
10773 *highpc = max (*highpc, high);
10774 }
10775
10776 /* If the language does not allow nested subprograms (either inside
10777 subprograms or lexical blocks), we're done. */
10778 if (cu->language != language_ada)
10779 return;
6e70227d 10780
b084d499
JB
10781 /* Check all the children of the given DIE. If it contains nested
10782 subprograms, then check their pc bounds. Likewise, we need to
10783 check lexical blocks as well, as they may also contain subprogram
10784 definitions. */
10785 while (child && child->tag)
10786 {
10787 if (child->tag == DW_TAG_subprogram
10788 || child->tag == DW_TAG_lexical_block)
10789 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10790 child = sibling_die (child);
10791 }
10792}
10793
fae299cd
DC
10794/* Get the low and high pc's represented by the scope DIE, and store
10795 them in *LOWPC and *HIGHPC. If the correct values can't be
10796 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10797
10798static void
10799get_scope_pc_bounds (struct die_info *die,
10800 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10801 struct dwarf2_cu *cu)
10802{
10803 CORE_ADDR best_low = (CORE_ADDR) -1;
10804 CORE_ADDR best_high = (CORE_ADDR) 0;
10805 CORE_ADDR current_low, current_high;
10806
d85a05f0 10807 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
10808 {
10809 best_low = current_low;
10810 best_high = current_high;
10811 }
10812 else
10813 {
10814 struct die_info *child = die->child;
10815
10816 while (child && child->tag)
10817 {
10818 switch (child->tag) {
10819 case DW_TAG_subprogram:
b084d499 10820 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
10821 break;
10822 case DW_TAG_namespace:
f55ee35c 10823 case DW_TAG_module:
fae299cd
DC
10824 /* FIXME: carlton/2004-01-16: Should we do this for
10825 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10826 that current GCC's always emit the DIEs corresponding
10827 to definitions of methods of classes as children of a
10828 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10829 the DIEs giving the declarations, which could be
10830 anywhere). But I don't see any reason why the
10831 standards says that they have to be there. */
10832 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10833
10834 if (current_low != ((CORE_ADDR) -1))
10835 {
10836 best_low = min (best_low, current_low);
10837 best_high = max (best_high, current_high);
10838 }
10839 break;
10840 default:
0963b4bd 10841 /* Ignore. */
fae299cd
DC
10842 break;
10843 }
10844
10845 child = sibling_die (child);
10846 }
10847 }
10848
10849 *lowpc = best_low;
10850 *highpc = best_high;
10851}
10852
801e3a5b
JB
10853/* Record the address ranges for BLOCK, offset by BASEADDR, as given
10854 in DIE. */
380bca97 10855
801e3a5b
JB
10856static void
10857dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10858 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10859{
bb5ed363 10860 struct objfile *objfile = cu->objfile;
801e3a5b 10861 struct attribute *attr;
91da1414 10862 struct attribute *attr_high;
801e3a5b 10863
91da1414
MW
10864 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10865 if (attr_high)
801e3a5b 10866 {
801e3a5b
JB
10867 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10868 if (attr)
10869 {
10870 CORE_ADDR low = DW_ADDR (attr);
91da1414 10871 CORE_ADDR high;
3019eac3
DE
10872 if (attr_high->form == DW_FORM_addr
10873 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10874 high = DW_ADDR (attr_high);
10875 else
10876 high = low + DW_UNSND (attr_high);
9a619af0 10877
801e3a5b
JB
10878 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10879 }
10880 }
10881
10882 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10883 if (attr)
10884 {
bb5ed363 10885 bfd *obfd = objfile->obfd;
ab435259
DE
10886 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10887 We take advantage of the fact that DW_AT_ranges does not appear
10888 in DW_TAG_compile_unit of DWO files. */
10889 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
10890
10891 /* The value of the DW_AT_ranges attribute is the offset of the
10892 address range list in the .debug_ranges section. */
ab435259
DE
10893 unsigned long offset = (DW_UNSND (attr)
10894 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 10895 const gdb_byte *buffer;
801e3a5b
JB
10896
10897 /* For some target architectures, but not others, the
10898 read_address function sign-extends the addresses it returns.
10899 To recognize base address selection entries, we need a
10900 mask. */
10901 unsigned int addr_size = cu->header.addr_size;
10902 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10903
10904 /* The base address, to which the next pair is relative. Note
10905 that this 'base' is a DWARF concept: most entries in a range
10906 list are relative, to reduce the number of relocs against the
10907 debugging information. This is separate from this function's
10908 'baseaddr' argument, which GDB uses to relocate debugging
10909 information from a shared library based on the address at
10910 which the library was loaded. */
d00adf39
DE
10911 CORE_ADDR base = cu->base_address;
10912 int base_known = cu->base_known;
801e3a5b 10913
d62bfeaf 10914 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10915 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
10916 {
10917 complaint (&symfile_complaints,
10918 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10919 offset);
10920 return;
10921 }
d62bfeaf 10922 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
10923
10924 for (;;)
10925 {
10926 unsigned int bytes_read;
10927 CORE_ADDR start, end;
10928
10929 start = read_address (obfd, buffer, cu, &bytes_read);
10930 buffer += bytes_read;
10931 end = read_address (obfd, buffer, cu, &bytes_read);
10932 buffer += bytes_read;
10933
10934 /* Did we find the end of the range list? */
10935 if (start == 0 && end == 0)
10936 break;
10937
10938 /* Did we find a base address selection entry? */
10939 else if ((start & base_select_mask) == base_select_mask)
10940 {
10941 base = end;
10942 base_known = 1;
10943 }
10944
10945 /* We found an ordinary address range. */
10946 else
10947 {
10948 if (!base_known)
10949 {
10950 complaint (&symfile_complaints,
3e43a32a
MS
10951 _("Invalid .debug_ranges data "
10952 "(no base address)"));
801e3a5b
JB
10953 return;
10954 }
10955
9277c30c
UW
10956 if (start > end)
10957 {
10958 /* Inverted range entries are invalid. */
10959 complaint (&symfile_complaints,
10960 _("Invalid .debug_ranges data "
10961 "(inverted range)"));
10962 return;
10963 }
10964
10965 /* Empty range entries have no effect. */
10966 if (start == end)
10967 continue;
10968
01093045
DE
10969 start += base + baseaddr;
10970 end += base + baseaddr;
10971
10972 /* A not-uncommon case of bad debug info.
10973 Don't pollute the addrmap with bad data. */
10974 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10975 {
10976 complaint (&symfile_complaints,
10977 _(".debug_ranges entry has start address of zero"
10978 " [in module %s]"), objfile->name);
10979 continue;
10980 }
10981
10982 record_block_range (block, start, end - 1);
801e3a5b
JB
10983 }
10984 }
10985 }
10986}
10987
685b1105
JK
10988/* Check whether the producer field indicates either of GCC < 4.6, or the
10989 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 10990
685b1105
JK
10991static void
10992check_producer (struct dwarf2_cu *cu)
60d5a603
JK
10993{
10994 const char *cs;
10995 int major, minor, release;
10996
10997 if (cu->producer == NULL)
10998 {
10999 /* For unknown compilers expect their behavior is DWARF version
11000 compliant.
11001
11002 GCC started to support .debug_types sections by -gdwarf-4 since
11003 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11004 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11005 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11006 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 11007 }
685b1105 11008 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 11009 {
685b1105
JK
11010 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11011
ba919b58
TT
11012 cs = &cu->producer[strlen ("GNU ")];
11013 while (*cs && !isdigit (*cs))
11014 cs++;
11015 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11016 {
11017 /* Not recognized as GCC. */
11018 }
11019 else
1b80a9fa
JK
11020 {
11021 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11022 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11023 }
685b1105
JK
11024 }
11025 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11026 cu->producer_is_icc = 1;
11027 else
11028 {
11029 /* For other non-GCC compilers, expect their behavior is DWARF version
11030 compliant. */
60d5a603
JK
11031 }
11032
ba919b58 11033 cu->checked_producer = 1;
685b1105 11034}
ba919b58 11035
685b1105
JK
11036/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11037 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11038 during 4.6.0 experimental. */
11039
11040static int
11041producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11042{
11043 if (!cu->checked_producer)
11044 check_producer (cu);
11045
11046 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
11047}
11048
11049/* Return the default accessibility type if it is not overriden by
11050 DW_AT_accessibility. */
11051
11052static enum dwarf_access_attribute
11053dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11054{
11055 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11056 {
11057 /* The default DWARF 2 accessibility for members is public, the default
11058 accessibility for inheritance is private. */
11059
11060 if (die->tag != DW_TAG_inheritance)
11061 return DW_ACCESS_public;
11062 else
11063 return DW_ACCESS_private;
11064 }
11065 else
11066 {
11067 /* DWARF 3+ defines the default accessibility a different way. The same
11068 rules apply now for DW_TAG_inheritance as for the members and it only
11069 depends on the container kind. */
11070
11071 if (die->parent->tag == DW_TAG_class_type)
11072 return DW_ACCESS_private;
11073 else
11074 return DW_ACCESS_public;
11075 }
11076}
11077
74ac6d43
TT
11078/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11079 offset. If the attribute was not found return 0, otherwise return
11080 1. If it was found but could not properly be handled, set *OFFSET
11081 to 0. */
11082
11083static int
11084handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11085 LONGEST *offset)
11086{
11087 struct attribute *attr;
11088
11089 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11090 if (attr != NULL)
11091 {
11092 *offset = 0;
11093
11094 /* Note that we do not check for a section offset first here.
11095 This is because DW_AT_data_member_location is new in DWARF 4,
11096 so if we see it, we can assume that a constant form is really
11097 a constant and not a section offset. */
11098 if (attr_form_is_constant (attr))
11099 *offset = dwarf2_get_attr_constant_value (attr, 0);
11100 else if (attr_form_is_section_offset (attr))
11101 dwarf2_complex_location_expr_complaint ();
11102 else if (attr_form_is_block (attr))
11103 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11104 else
11105 dwarf2_complex_location_expr_complaint ();
11106
11107 return 1;
11108 }
11109
11110 return 0;
11111}
11112
c906108c
SS
11113/* Add an aggregate field to the field list. */
11114
11115static void
107d2387 11116dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 11117 struct dwarf2_cu *cu)
6e70227d 11118{
e7c27a73 11119 struct objfile *objfile = cu->objfile;
5e2b427d 11120 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
11121 struct nextfield *new_field;
11122 struct attribute *attr;
11123 struct field *fp;
15d034d0 11124 const char *fieldname = "";
c906108c
SS
11125
11126 /* Allocate a new field list entry and link it in. */
11127 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 11128 make_cleanup (xfree, new_field);
c906108c 11129 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
11130
11131 if (die->tag == DW_TAG_inheritance)
11132 {
11133 new_field->next = fip->baseclasses;
11134 fip->baseclasses = new_field;
11135 }
11136 else
11137 {
11138 new_field->next = fip->fields;
11139 fip->fields = new_field;
11140 }
c906108c
SS
11141 fip->nfields++;
11142
e142c38c 11143 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
11144 if (attr)
11145 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
11146 else
11147 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
11148 if (new_field->accessibility != DW_ACCESS_public)
11149 fip->non_public_fields = 1;
60d5a603 11150
e142c38c 11151 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
11152 if (attr)
11153 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
11154 else
11155 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
11156
11157 fp = &new_field->field;
a9a9bd0f 11158
e142c38c 11159 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 11160 {
74ac6d43
TT
11161 LONGEST offset;
11162
a9a9bd0f 11163 /* Data member other than a C++ static data member. */
6e70227d 11164
c906108c 11165 /* Get type of field. */
e7c27a73 11166 fp->type = die_type (die, cu);
c906108c 11167
d6a843b5 11168 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 11169
c906108c 11170 /* Get bit size of field (zero if none). */
e142c38c 11171 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
11172 if (attr)
11173 {
11174 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11175 }
11176 else
11177 {
11178 FIELD_BITSIZE (*fp) = 0;
11179 }
11180
11181 /* Get bit offset of field. */
74ac6d43
TT
11182 if (handle_data_member_location (die, cu, &offset))
11183 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 11184 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
11185 if (attr)
11186 {
5e2b427d 11187 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
11188 {
11189 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
11190 additional bit offset from the MSB of the containing
11191 anonymous object to the MSB of the field. We don't
11192 have to do anything special since we don't need to
11193 know the size of the anonymous object. */
f41f5e61 11194 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
11195 }
11196 else
11197 {
11198 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
11199 MSB of the anonymous object, subtract off the number of
11200 bits from the MSB of the field to the MSB of the
11201 object, and then subtract off the number of bits of
11202 the field itself. The result is the bit offset of
11203 the LSB of the field. */
c906108c
SS
11204 int anonymous_size;
11205 int bit_offset = DW_UNSND (attr);
11206
e142c38c 11207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11208 if (attr)
11209 {
11210 /* The size of the anonymous object containing
11211 the bit field is explicit, so use the
11212 indicated size (in bytes). */
11213 anonymous_size = DW_UNSND (attr);
11214 }
11215 else
11216 {
11217 /* The size of the anonymous object containing
11218 the bit field must be inferred from the type
11219 attribute of the data member containing the
11220 bit field. */
11221 anonymous_size = TYPE_LENGTH (fp->type);
11222 }
f41f5e61
PA
11223 SET_FIELD_BITPOS (*fp,
11224 (FIELD_BITPOS (*fp)
11225 + anonymous_size * bits_per_byte
11226 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
11227 }
11228 }
11229
11230 /* Get name of field. */
39cbfefa
DJ
11231 fieldname = dwarf2_name (die, cu);
11232 if (fieldname == NULL)
11233 fieldname = "";
d8151005
DJ
11234
11235 /* The name is already allocated along with this objfile, so we don't
11236 need to duplicate it for the type. */
11237 fp->name = fieldname;
c906108c
SS
11238
11239 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 11240 pointer or virtual base class pointer) to private. */
e142c38c 11241 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 11242 {
d48cc9dd 11243 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
11244 new_field->accessibility = DW_ACCESS_private;
11245 fip->non_public_fields = 1;
11246 }
11247 }
a9a9bd0f 11248 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 11249 {
a9a9bd0f
DC
11250 /* C++ static member. */
11251
11252 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11253 is a declaration, but all versions of G++ as of this writing
11254 (so through at least 3.2.1) incorrectly generate
11255 DW_TAG_variable tags. */
6e70227d 11256
ff355380 11257 const char *physname;
c906108c 11258
a9a9bd0f 11259 /* Get name of field. */
39cbfefa
DJ
11260 fieldname = dwarf2_name (die, cu);
11261 if (fieldname == NULL)
c906108c
SS
11262 return;
11263
254e6b9e 11264 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
11265 if (attr
11266 /* Only create a symbol if this is an external value.
11267 new_symbol checks this and puts the value in the global symbol
11268 table, which we want. If it is not external, new_symbol
11269 will try to put the value in cu->list_in_scope which is wrong. */
11270 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
11271 {
11272 /* A static const member, not much different than an enum as far as
11273 we're concerned, except that we can support more types. */
11274 new_symbol (die, NULL, cu);
11275 }
11276
2df3850c 11277 /* Get physical name. */
ff355380 11278 physname = dwarf2_physname (fieldname, die, cu);
c906108c 11279
d8151005
DJ
11280 /* The name is already allocated along with this objfile, so we don't
11281 need to duplicate it for the type. */
11282 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 11283 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 11284 FIELD_NAME (*fp) = fieldname;
c906108c
SS
11285 }
11286 else if (die->tag == DW_TAG_inheritance)
11287 {
74ac6d43 11288 LONGEST offset;
d4b96c9a 11289
74ac6d43
TT
11290 /* C++ base class field. */
11291 if (handle_data_member_location (die, cu, &offset))
11292 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 11293 FIELD_BITSIZE (*fp) = 0;
e7c27a73 11294 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
11295 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11296 fip->nbaseclasses++;
11297 }
11298}
11299
98751a41
JK
11300/* Add a typedef defined in the scope of the FIP's class. */
11301
11302static void
11303dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11304 struct dwarf2_cu *cu)
6e70227d 11305{
98751a41 11306 struct objfile *objfile = cu->objfile;
98751a41
JK
11307 struct typedef_field_list *new_field;
11308 struct attribute *attr;
11309 struct typedef_field *fp;
11310 char *fieldname = "";
11311
11312 /* Allocate a new field list entry and link it in. */
11313 new_field = xzalloc (sizeof (*new_field));
11314 make_cleanup (xfree, new_field);
11315
11316 gdb_assert (die->tag == DW_TAG_typedef);
11317
11318 fp = &new_field->field;
11319
11320 /* Get name of field. */
11321 fp->name = dwarf2_name (die, cu);
11322 if (fp->name == NULL)
11323 return;
11324
11325 fp->type = read_type_die (die, cu);
11326
11327 new_field->next = fip->typedef_field_list;
11328 fip->typedef_field_list = new_field;
11329 fip->typedef_field_list_count++;
11330}
11331
c906108c
SS
11332/* Create the vector of fields, and attach it to the type. */
11333
11334static void
fba45db2 11335dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11336 struct dwarf2_cu *cu)
c906108c
SS
11337{
11338 int nfields = fip->nfields;
11339
11340 /* Record the field count, allocate space for the array of fields,
11341 and create blank accessibility bitfields if necessary. */
11342 TYPE_NFIELDS (type) = nfields;
11343 TYPE_FIELDS (type) = (struct field *)
11344 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11345 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11346
b4ba55a1 11347 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
11348 {
11349 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11350
11351 TYPE_FIELD_PRIVATE_BITS (type) =
11352 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11353 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11354
11355 TYPE_FIELD_PROTECTED_BITS (type) =
11356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11357 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11358
774b6a14
TT
11359 TYPE_FIELD_IGNORE_BITS (type) =
11360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11361 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
11362 }
11363
11364 /* If the type has baseclasses, allocate and clear a bit vector for
11365 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 11366 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
11367 {
11368 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 11369 unsigned char *pointer;
c906108c
SS
11370
11371 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
11372 pointer = TYPE_ALLOC (type, num_bytes);
11373 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
11374 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11375 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11376 }
11377
3e43a32a
MS
11378 /* Copy the saved-up fields into the field vector. Start from the head of
11379 the list, adding to the tail of the field array, so that they end up in
11380 the same order in the array in which they were added to the list. */
c906108c
SS
11381 while (nfields-- > 0)
11382 {
7d0ccb61
DJ
11383 struct nextfield *fieldp;
11384
11385 if (fip->fields)
11386 {
11387 fieldp = fip->fields;
11388 fip->fields = fieldp->next;
11389 }
11390 else
11391 {
11392 fieldp = fip->baseclasses;
11393 fip->baseclasses = fieldp->next;
11394 }
11395
11396 TYPE_FIELD (type, nfields) = fieldp->field;
11397 switch (fieldp->accessibility)
c906108c 11398 {
c5aa993b 11399 case DW_ACCESS_private:
b4ba55a1
JB
11400 if (cu->language != language_ada)
11401 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 11402 break;
c906108c 11403
c5aa993b 11404 case DW_ACCESS_protected:
b4ba55a1
JB
11405 if (cu->language != language_ada)
11406 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 11407 break;
c906108c 11408
c5aa993b
JM
11409 case DW_ACCESS_public:
11410 break;
c906108c 11411
c5aa993b
JM
11412 default:
11413 /* Unknown accessibility. Complain and treat it as public. */
11414 {
e2e0b3e5 11415 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 11416 fieldp->accessibility);
c5aa993b
JM
11417 }
11418 break;
c906108c
SS
11419 }
11420 if (nfields < fip->nbaseclasses)
11421 {
7d0ccb61 11422 switch (fieldp->virtuality)
c906108c 11423 {
c5aa993b
JM
11424 case DW_VIRTUALITY_virtual:
11425 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 11426 if (cu->language == language_ada)
a73c6dcd 11427 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
11428 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11429 break;
c906108c
SS
11430 }
11431 }
c906108c
SS
11432 }
11433}
11434
7d27a96d
TT
11435/* Return true if this member function is a constructor, false
11436 otherwise. */
11437
11438static int
11439dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11440{
11441 const char *fieldname;
11442 const char *typename;
11443 int len;
11444
11445 if (die->parent == NULL)
11446 return 0;
11447
11448 if (die->parent->tag != DW_TAG_structure_type
11449 && die->parent->tag != DW_TAG_union_type
11450 && die->parent->tag != DW_TAG_class_type)
11451 return 0;
11452
11453 fieldname = dwarf2_name (die, cu);
11454 typename = dwarf2_name (die->parent, cu);
11455 if (fieldname == NULL || typename == NULL)
11456 return 0;
11457
11458 len = strlen (fieldname);
11459 return (strncmp (fieldname, typename, len) == 0
11460 && (typename[len] == '\0' || typename[len] == '<'));
11461}
11462
c906108c
SS
11463/* Add a member function to the proper fieldlist. */
11464
11465static void
107d2387 11466dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 11467 struct type *type, struct dwarf2_cu *cu)
c906108c 11468{
e7c27a73 11469 struct objfile *objfile = cu->objfile;
c906108c
SS
11470 struct attribute *attr;
11471 struct fnfieldlist *flp;
11472 int i;
11473 struct fn_field *fnp;
15d034d0 11474 const char *fieldname;
c906108c 11475 struct nextfnfield *new_fnfield;
f792889a 11476 struct type *this_type;
60d5a603 11477 enum dwarf_access_attribute accessibility;
c906108c 11478
b4ba55a1 11479 if (cu->language == language_ada)
a73c6dcd 11480 error (_("unexpected member function in Ada type"));
b4ba55a1 11481
2df3850c 11482 /* Get name of member function. */
39cbfefa
DJ
11483 fieldname = dwarf2_name (die, cu);
11484 if (fieldname == NULL)
2df3850c 11485 return;
c906108c 11486
c906108c
SS
11487 /* Look up member function name in fieldlist. */
11488 for (i = 0; i < fip->nfnfields; i++)
11489 {
27bfe10e 11490 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
11491 break;
11492 }
11493
11494 /* Create new list element if necessary. */
11495 if (i < fip->nfnfields)
11496 flp = &fip->fnfieldlists[i];
11497 else
11498 {
11499 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11500 {
11501 fip->fnfieldlists = (struct fnfieldlist *)
11502 xrealloc (fip->fnfieldlists,
11503 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11504 * sizeof (struct fnfieldlist));
c906108c 11505 if (fip->nfnfields == 0)
c13c43fd 11506 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
11507 }
11508 flp = &fip->fnfieldlists[fip->nfnfields];
11509 flp->name = fieldname;
11510 flp->length = 0;
11511 flp->head = NULL;
3da10d80 11512 i = fip->nfnfields++;
c906108c
SS
11513 }
11514
11515 /* Create a new member function field and chain it to the field list
0963b4bd 11516 entry. */
c906108c 11517 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 11518 make_cleanup (xfree, new_fnfield);
c906108c
SS
11519 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11520 new_fnfield->next = flp->head;
11521 flp->head = new_fnfield;
11522 flp->length++;
11523
11524 /* Fill in the member function field info. */
11525 fnp = &new_fnfield->fnfield;
3da10d80
KS
11526
11527 /* Delay processing of the physname until later. */
11528 if (cu->language == language_cplus || cu->language == language_java)
11529 {
11530 add_to_method_list (type, i, flp->length - 1, fieldname,
11531 die, cu);
11532 }
11533 else
11534 {
1d06ead6 11535 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
11536 fnp->physname = physname ? physname : "";
11537 }
11538
c906108c 11539 fnp->type = alloc_type (objfile);
f792889a
DJ
11540 this_type = read_type_die (die, cu);
11541 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 11542 {
f792889a 11543 int nparams = TYPE_NFIELDS (this_type);
c906108c 11544
f792889a 11545 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
11546 of the method itself (TYPE_CODE_METHOD). */
11547 smash_to_method_type (fnp->type, type,
f792889a
DJ
11548 TYPE_TARGET_TYPE (this_type),
11549 TYPE_FIELDS (this_type),
11550 TYPE_NFIELDS (this_type),
11551 TYPE_VARARGS (this_type));
c906108c
SS
11552
11553 /* Handle static member functions.
c5aa993b 11554 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
11555 member functions. G++ helps GDB by marking the first
11556 parameter for non-static member functions (which is the this
11557 pointer) as artificial. We obtain this information from
11558 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 11559 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
11560 fnp->voffset = VOFFSET_STATIC;
11561 }
11562 else
e2e0b3e5 11563 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 11564 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
11565
11566 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 11567 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 11568 fnp->fcontext = die_containing_type (die, cu);
c906108c 11569
3e43a32a
MS
11570 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11571 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
11572
11573 /* Get accessibility. */
e142c38c 11574 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 11575 if (attr)
60d5a603
JK
11576 accessibility = DW_UNSND (attr);
11577 else
11578 accessibility = dwarf2_default_access_attribute (die, cu);
11579 switch (accessibility)
c906108c 11580 {
60d5a603
JK
11581 case DW_ACCESS_private:
11582 fnp->is_private = 1;
11583 break;
11584 case DW_ACCESS_protected:
11585 fnp->is_protected = 1;
11586 break;
c906108c
SS
11587 }
11588
b02dede2 11589 /* Check for artificial methods. */
e142c38c 11590 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
11591 if (attr && DW_UNSND (attr) != 0)
11592 fnp->is_artificial = 1;
11593
7d27a96d
TT
11594 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11595
0d564a31 11596 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
11597 function. For older versions of GCC, this is an offset in the
11598 appropriate virtual table, as specified by DW_AT_containing_type.
11599 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
11600 to the object address. */
11601
e142c38c 11602 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 11603 if (attr)
8e19ed76 11604 {
aec5aa8b 11605 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 11606 {
aec5aa8b
TT
11607 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11608 {
11609 /* Old-style GCC. */
11610 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11611 }
11612 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11613 || (DW_BLOCK (attr)->size > 1
11614 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11615 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11616 {
11617 struct dwarf_block blk;
11618 int offset;
11619
11620 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11621 ? 1 : 2);
11622 blk.size = DW_BLOCK (attr)->size - offset;
11623 blk.data = DW_BLOCK (attr)->data + offset;
11624 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11625 if ((fnp->voffset % cu->header.addr_size) != 0)
11626 dwarf2_complex_location_expr_complaint ();
11627 else
11628 fnp->voffset /= cu->header.addr_size;
11629 fnp->voffset += 2;
11630 }
11631 else
11632 dwarf2_complex_location_expr_complaint ();
11633
11634 if (!fnp->fcontext)
11635 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11636 }
3690dd37 11637 else if (attr_form_is_section_offset (attr))
8e19ed76 11638 {
4d3c2250 11639 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
11640 }
11641 else
11642 {
4d3c2250
KB
11643 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11644 fieldname);
8e19ed76 11645 }
0d564a31 11646 }
d48cc9dd
DJ
11647 else
11648 {
11649 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11650 if (attr && DW_UNSND (attr))
11651 {
11652 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11653 complaint (&symfile_complaints,
3e43a32a
MS
11654 _("Member function \"%s\" (offset %d) is virtual "
11655 "but the vtable offset is not specified"),
b64f50a1 11656 fieldname, die->offset.sect_off);
9655fd1a 11657 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
11658 TYPE_CPLUS_DYNAMIC (type) = 1;
11659 }
11660 }
c906108c
SS
11661}
11662
11663/* Create the vector of member function fields, and attach it to the type. */
11664
11665static void
fba45db2 11666dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11667 struct dwarf2_cu *cu)
c906108c
SS
11668{
11669 struct fnfieldlist *flp;
c906108c
SS
11670 int i;
11671
b4ba55a1 11672 if (cu->language == language_ada)
a73c6dcd 11673 error (_("unexpected member functions in Ada type"));
b4ba55a1 11674
c906108c
SS
11675 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11676 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11677 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11678
11679 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11680 {
11681 struct nextfnfield *nfp = flp->head;
11682 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11683 int k;
11684
11685 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11686 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11687 fn_flp->fn_fields = (struct fn_field *)
11688 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11689 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 11690 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
11691 }
11692
11693 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
11694}
11695
1168df01
JB
11696/* Returns non-zero if NAME is the name of a vtable member in CU's
11697 language, zero otherwise. */
11698static int
11699is_vtable_name (const char *name, struct dwarf2_cu *cu)
11700{
11701 static const char vptr[] = "_vptr";
987504bb 11702 static const char vtable[] = "vtable";
1168df01 11703
987504bb
JJ
11704 /* Look for the C++ and Java forms of the vtable. */
11705 if ((cu->language == language_java
11706 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11707 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11708 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
11709 return 1;
11710
11711 return 0;
11712}
11713
c0dd20ea 11714/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
11715 functions, with the ABI-specified layout. If TYPE describes
11716 such a structure, smash it into a member function type.
61049d3b
DJ
11717
11718 GCC shouldn't do this; it should just output pointer to member DIEs.
11719 This is GCC PR debug/28767. */
c0dd20ea 11720
0b92b5bb
TT
11721static void
11722quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 11723{
0b92b5bb 11724 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
11725
11726 /* Check for a structure with no name and two children. */
0b92b5bb
TT
11727 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11728 return;
c0dd20ea
DJ
11729
11730 /* Check for __pfn and __delta members. */
0b92b5bb
TT
11731 if (TYPE_FIELD_NAME (type, 0) == NULL
11732 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11733 || TYPE_FIELD_NAME (type, 1) == NULL
11734 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11735 return;
c0dd20ea
DJ
11736
11737 /* Find the type of the method. */
0b92b5bb 11738 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
11739 if (pfn_type == NULL
11740 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11741 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 11742 return;
c0dd20ea
DJ
11743
11744 /* Look for the "this" argument. */
11745 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11746 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 11747 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 11748 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 11749 return;
c0dd20ea
DJ
11750
11751 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
11752 new_type = alloc_type (objfile);
11753 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
11754 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11755 TYPE_VARARGS (pfn_type));
0b92b5bb 11756 smash_to_methodptr_type (type, new_type);
c0dd20ea 11757}
1168df01 11758
685b1105
JK
11759/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11760 (icc). */
11761
11762static int
11763producer_is_icc (struct dwarf2_cu *cu)
11764{
11765 if (!cu->checked_producer)
11766 check_producer (cu);
11767
11768 return cu->producer_is_icc;
11769}
11770
c906108c 11771/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
11772 (definition) to create a type for the structure or union. Fill in
11773 the type's name and general properties; the members will not be
3d1d5ea3 11774 processed until process_structure_scope.
c906108c 11775
c767944b
DJ
11776 NOTE: we need to call these functions regardless of whether or not the
11777 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
11778 structure or union. This gets the type entered into our set of
11779 user defined types.
11780
11781 However, if the structure is incomplete (an opaque struct/union)
11782 then suppress creating a symbol table entry for it since gdb only
11783 wants to find the one with the complete definition. Note that if
11784 it is complete, we just call new_symbol, which does it's own
11785 checking about whether the struct/union is anonymous or not (and
11786 suppresses creating a symbol table entry itself). */
11787
f792889a 11788static struct type *
134d01f1 11789read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11790{
e7c27a73 11791 struct objfile *objfile = cu->objfile;
c906108c
SS
11792 struct type *type;
11793 struct attribute *attr;
15d034d0 11794 const char *name;
c906108c 11795
348e048f
DE
11796 /* If the definition of this type lives in .debug_types, read that type.
11797 Don't follow DW_AT_specification though, that will take us back up
11798 the chain and we want to go down. */
45e58e77 11799 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11800 if (attr)
11801 {
ac9ec31b 11802 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 11803
ac9ec31b 11804 /* The type's CU may not be the same as CU.
02142a6c 11805 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
11806 return set_die_type (die, type, cu);
11807 }
11808
c0dd20ea 11809 type = alloc_type (objfile);
c906108c 11810 INIT_CPLUS_SPECIFIC (type);
93311388 11811
39cbfefa
DJ
11812 name = dwarf2_name (die, cu);
11813 if (name != NULL)
c906108c 11814 {
987504bb
JJ
11815 if (cu->language == language_cplus
11816 || cu->language == language_java)
63d06c5c 11817 {
15d034d0 11818 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
11819
11820 /* dwarf2_full_name might have already finished building the DIE's
11821 type. If so, there is no need to continue. */
11822 if (get_die_type (die, cu) != NULL)
11823 return get_die_type (die, cu);
11824
11825 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
11826 if (die->tag == DW_TAG_structure_type
11827 || die->tag == DW_TAG_class_type)
11828 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
11829 }
11830 else
11831 {
d8151005
DJ
11832 /* The name is already allocated along with this objfile, so
11833 we don't need to duplicate it for the type. */
7d455152 11834 TYPE_TAG_NAME (type) = name;
94af9270
KS
11835 if (die->tag == DW_TAG_class_type)
11836 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 11837 }
c906108c
SS
11838 }
11839
11840 if (die->tag == DW_TAG_structure_type)
11841 {
11842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11843 }
11844 else if (die->tag == DW_TAG_union_type)
11845 {
11846 TYPE_CODE (type) = TYPE_CODE_UNION;
11847 }
11848 else
11849 {
c906108c
SS
11850 TYPE_CODE (type) = TYPE_CODE_CLASS;
11851 }
11852
0cc2414c
TT
11853 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11854 TYPE_DECLARED_CLASS (type) = 1;
11855
e142c38c 11856 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11857 if (attr)
11858 {
11859 TYPE_LENGTH (type) = DW_UNSND (attr);
11860 }
11861 else
11862 {
11863 TYPE_LENGTH (type) = 0;
11864 }
11865
685b1105
JK
11866 if (producer_is_icc (cu))
11867 {
11868 /* ICC does not output the required DW_AT_declaration
11869 on incomplete types, but gives them a size of zero. */
11870 }
11871 else
11872 TYPE_STUB_SUPPORTED (type) = 1;
11873
dc718098 11874 if (die_is_declaration (die, cu))
876cecd0 11875 TYPE_STUB (type) = 1;
a6c727b2
DJ
11876 else if (attr == NULL && die->child == NULL
11877 && producer_is_realview (cu->producer))
11878 /* RealView does not output the required DW_AT_declaration
11879 on incomplete types. */
11880 TYPE_STUB (type) = 1;
dc718098 11881
c906108c
SS
11882 /* We need to add the type field to the die immediately so we don't
11883 infinitely recurse when dealing with pointers to the structure
0963b4bd 11884 type within the structure itself. */
1c379e20 11885 set_die_type (die, type, cu);
c906108c 11886
7e314c57
JK
11887 /* set_die_type should be already done. */
11888 set_descriptive_type (type, die, cu);
11889
c767944b
DJ
11890 return type;
11891}
11892
11893/* Finish creating a structure or union type, including filling in
11894 its members and creating a symbol for it. */
11895
11896static void
11897process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11898{
11899 struct objfile *objfile = cu->objfile;
11900 struct die_info *child_die = die->child;
11901 struct type *type;
11902
11903 type = get_die_type (die, cu);
11904 if (type == NULL)
11905 type = read_structure_type (die, cu);
11906
e142c38c 11907 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
11908 {
11909 struct field_info fi;
11910 struct die_info *child_die;
34eaf542 11911 VEC (symbolp) *template_args = NULL;
c767944b 11912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
11913
11914 memset (&fi, 0, sizeof (struct field_info));
11915
639d11d3 11916 child_die = die->child;
c906108c
SS
11917
11918 while (child_die && child_die->tag)
11919 {
a9a9bd0f
DC
11920 if (child_die->tag == DW_TAG_member
11921 || child_die->tag == DW_TAG_variable)
c906108c 11922 {
a9a9bd0f
DC
11923 /* NOTE: carlton/2002-11-05: A C++ static data member
11924 should be a DW_TAG_member that is a declaration, but
11925 all versions of G++ as of this writing (so through at
11926 least 3.2.1) incorrectly generate DW_TAG_variable
11927 tags for them instead. */
e7c27a73 11928 dwarf2_add_field (&fi, child_die, cu);
c906108c 11929 }
8713b1b1 11930 else if (child_die->tag == DW_TAG_subprogram)
c906108c 11931 {
0963b4bd 11932 /* C++ member function. */
e7c27a73 11933 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
11934 }
11935 else if (child_die->tag == DW_TAG_inheritance)
11936 {
11937 /* C++ base class field. */
e7c27a73 11938 dwarf2_add_field (&fi, child_die, cu);
c906108c 11939 }
98751a41
JK
11940 else if (child_die->tag == DW_TAG_typedef)
11941 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
11942 else if (child_die->tag == DW_TAG_template_type_param
11943 || child_die->tag == DW_TAG_template_value_param)
11944 {
11945 struct symbol *arg = new_symbol (child_die, NULL, cu);
11946
f1078f66
DJ
11947 if (arg != NULL)
11948 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11949 }
11950
c906108c
SS
11951 child_die = sibling_die (child_die);
11952 }
11953
34eaf542
TT
11954 /* Attach template arguments to type. */
11955 if (! VEC_empty (symbolp, template_args))
11956 {
11957 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11958 TYPE_N_TEMPLATE_ARGUMENTS (type)
11959 = VEC_length (symbolp, template_args);
11960 TYPE_TEMPLATE_ARGUMENTS (type)
11961 = obstack_alloc (&objfile->objfile_obstack,
11962 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11963 * sizeof (struct symbol *)));
11964 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11965 VEC_address (symbolp, template_args),
11966 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11967 * sizeof (struct symbol *)));
11968 VEC_free (symbolp, template_args);
11969 }
11970
c906108c
SS
11971 /* Attach fields and member functions to the type. */
11972 if (fi.nfields)
e7c27a73 11973 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
11974 if (fi.nfnfields)
11975 {
e7c27a73 11976 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 11977
c5aa993b 11978 /* Get the type which refers to the base class (possibly this
c906108c 11979 class itself) which contains the vtable pointer for the current
0d564a31
DJ
11980 class from the DW_AT_containing_type attribute. This use of
11981 DW_AT_containing_type is a GNU extension. */
c906108c 11982
e142c38c 11983 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 11984 {
e7c27a73 11985 struct type *t = die_containing_type (die, cu);
c906108c
SS
11986
11987 TYPE_VPTR_BASETYPE (type) = t;
11988 if (type == t)
11989 {
c906108c
SS
11990 int i;
11991
11992 /* Our own class provides vtbl ptr. */
11993 for (i = TYPE_NFIELDS (t) - 1;
11994 i >= TYPE_N_BASECLASSES (t);
11995 --i)
11996 {
0d5cff50 11997 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 11998
1168df01 11999 if (is_vtable_name (fieldname, cu))
c906108c
SS
12000 {
12001 TYPE_VPTR_FIELDNO (type) = i;
12002 break;
12003 }
12004 }
12005
12006 /* Complain if virtual function table field not found. */
12007 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 12008 complaint (&symfile_complaints,
3e43a32a
MS
12009 _("virtual function table pointer "
12010 "not found when defining class '%s'"),
4d3c2250
KB
12011 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12012 "");
c906108c
SS
12013 }
12014 else
12015 {
12016 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12017 }
12018 }
f6235d4c
EZ
12019 else if (cu->producer
12020 && strncmp (cu->producer,
12021 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12022 {
12023 /* The IBM XLC compiler does not provide direct indication
12024 of the containing type, but the vtable pointer is
12025 always named __vfp. */
12026
12027 int i;
12028
12029 for (i = TYPE_NFIELDS (type) - 1;
12030 i >= TYPE_N_BASECLASSES (type);
12031 --i)
12032 {
12033 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12034 {
12035 TYPE_VPTR_FIELDNO (type) = i;
12036 TYPE_VPTR_BASETYPE (type) = type;
12037 break;
12038 }
12039 }
12040 }
c906108c 12041 }
98751a41
JK
12042
12043 /* Copy fi.typedef_field_list linked list elements content into the
12044 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12045 if (fi.typedef_field_list)
12046 {
12047 int i = fi.typedef_field_list_count;
12048
a0d7a4ff 12049 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
12050 TYPE_TYPEDEF_FIELD_ARRAY (type)
12051 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12052 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12053
12054 /* Reverse the list order to keep the debug info elements order. */
12055 while (--i >= 0)
12056 {
12057 struct typedef_field *dest, *src;
6e70227d 12058
98751a41
JK
12059 dest = &TYPE_TYPEDEF_FIELD (type, i);
12060 src = &fi.typedef_field_list->field;
12061 fi.typedef_field_list = fi.typedef_field_list->next;
12062 *dest = *src;
12063 }
12064 }
c767944b
DJ
12065
12066 do_cleanups (back_to);
eb2a6f42
TT
12067
12068 if (HAVE_CPLUS_STRUCT (type))
12069 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 12070 }
63d06c5c 12071
bb5ed363 12072 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 12073
90aeadfc
DC
12074 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12075 snapshots) has been known to create a die giving a declaration
12076 for a class that has, as a child, a die giving a definition for a
12077 nested class. So we have to process our children even if the
12078 current die is a declaration. Normally, of course, a declaration
12079 won't have any children at all. */
134d01f1 12080
90aeadfc
DC
12081 while (child_die != NULL && child_die->tag)
12082 {
12083 if (child_die->tag == DW_TAG_member
12084 || child_die->tag == DW_TAG_variable
34eaf542
TT
12085 || child_die->tag == DW_TAG_inheritance
12086 || child_die->tag == DW_TAG_template_value_param
12087 || child_die->tag == DW_TAG_template_type_param)
134d01f1 12088 {
90aeadfc 12089 /* Do nothing. */
134d01f1 12090 }
90aeadfc
DC
12091 else
12092 process_die (child_die, cu);
134d01f1 12093
90aeadfc 12094 child_die = sibling_die (child_die);
134d01f1
DJ
12095 }
12096
fa4028e9
JB
12097 /* Do not consider external references. According to the DWARF standard,
12098 these DIEs are identified by the fact that they have no byte_size
12099 attribute, and a declaration attribute. */
12100 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12101 || !die_is_declaration (die, cu))
c767944b 12102 new_symbol (die, type, cu);
134d01f1
DJ
12103}
12104
12105/* Given a DW_AT_enumeration_type die, set its type. We do not
12106 complete the type's fields yet, or create any symbols. */
c906108c 12107
f792889a 12108static struct type *
134d01f1 12109read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12110{
e7c27a73 12111 struct objfile *objfile = cu->objfile;
c906108c 12112 struct type *type;
c906108c 12113 struct attribute *attr;
0114d602 12114 const char *name;
134d01f1 12115
348e048f
DE
12116 /* If the definition of this type lives in .debug_types, read that type.
12117 Don't follow DW_AT_specification though, that will take us back up
12118 the chain and we want to go down. */
45e58e77 12119 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12120 if (attr)
12121 {
ac9ec31b 12122 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12123
ac9ec31b 12124 /* The type's CU may not be the same as CU.
02142a6c 12125 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12126 return set_die_type (die, type, cu);
12127 }
12128
c906108c
SS
12129 type = alloc_type (objfile);
12130
12131 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 12132 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 12133 if (name != NULL)
7d455152 12134 TYPE_TAG_NAME (type) = name;
c906108c 12135
e142c38c 12136 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12137 if (attr)
12138 {
12139 TYPE_LENGTH (type) = DW_UNSND (attr);
12140 }
12141 else
12142 {
12143 TYPE_LENGTH (type) = 0;
12144 }
12145
137033e9
JB
12146 /* The enumeration DIE can be incomplete. In Ada, any type can be
12147 declared as private in the package spec, and then defined only
12148 inside the package body. Such types are known as Taft Amendment
12149 Types. When another package uses such a type, an incomplete DIE
12150 may be generated by the compiler. */
02eb380e 12151 if (die_is_declaration (die, cu))
876cecd0 12152 TYPE_STUB (type) = 1;
02eb380e 12153
f792889a 12154 return set_die_type (die, type, cu);
134d01f1
DJ
12155}
12156
12157/* Given a pointer to a die which begins an enumeration, process all
12158 the dies that define the members of the enumeration, and create the
12159 symbol for the enumeration type.
12160
12161 NOTE: We reverse the order of the element list. */
12162
12163static void
12164process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12165{
f792889a 12166 struct type *this_type;
134d01f1 12167
f792889a
DJ
12168 this_type = get_die_type (die, cu);
12169 if (this_type == NULL)
12170 this_type = read_enumeration_type (die, cu);
9dc481d3 12171
639d11d3 12172 if (die->child != NULL)
c906108c 12173 {
9dc481d3
DE
12174 struct die_info *child_die;
12175 struct symbol *sym;
12176 struct field *fields = NULL;
12177 int num_fields = 0;
12178 int unsigned_enum = 1;
15d034d0 12179 const char *name;
cafec441
TT
12180 int flag_enum = 1;
12181 ULONGEST mask = 0;
9dc481d3 12182
639d11d3 12183 child_die = die->child;
c906108c
SS
12184 while (child_die && child_die->tag)
12185 {
12186 if (child_die->tag != DW_TAG_enumerator)
12187 {
e7c27a73 12188 process_die (child_die, cu);
c906108c
SS
12189 }
12190 else
12191 {
39cbfefa
DJ
12192 name = dwarf2_name (child_die, cu);
12193 if (name)
c906108c 12194 {
f792889a 12195 sym = new_symbol (child_die, this_type, cu);
c906108c 12196 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
12197 {
12198 unsigned_enum = 0;
12199 flag_enum = 0;
12200 }
12201 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12202 flag_enum = 0;
12203 else
12204 mask |= SYMBOL_VALUE (sym);
c906108c
SS
12205
12206 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12207 {
12208 fields = (struct field *)
12209 xrealloc (fields,
12210 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12211 * sizeof (struct field));
c906108c
SS
12212 }
12213
3567439c 12214 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 12215 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 12216 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
12217 FIELD_BITSIZE (fields[num_fields]) = 0;
12218
12219 num_fields++;
12220 }
12221 }
12222
12223 child_die = sibling_die (child_die);
12224 }
12225
12226 if (num_fields)
12227 {
f792889a
DJ
12228 TYPE_NFIELDS (this_type) = num_fields;
12229 TYPE_FIELDS (this_type) = (struct field *)
12230 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12231 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 12232 sizeof (struct field) * num_fields);
b8c9b27d 12233 xfree (fields);
c906108c
SS
12234 }
12235 if (unsigned_enum)
876cecd0 12236 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
12237 if (flag_enum)
12238 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 12239 }
134d01f1 12240
6c83ed52
TT
12241 /* If we are reading an enum from a .debug_types unit, and the enum
12242 is a declaration, and the enum is not the signatured type in the
12243 unit, then we do not want to add a symbol for it. Adding a
12244 symbol would in some cases obscure the true definition of the
12245 enum, giving users an incomplete type when the definition is
12246 actually available. Note that we do not want to do this for all
12247 enums which are just declarations, because C++0x allows forward
12248 enum declarations. */
3019eac3 12249 if (cu->per_cu->is_debug_types
6c83ed52
TT
12250 && die_is_declaration (die, cu))
12251 {
52dc124a 12252 struct signatured_type *sig_type;
6c83ed52 12253
c0f78cd4 12254 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
12255 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12256 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
12257 return;
12258 }
12259
f792889a 12260 new_symbol (die, this_type, cu);
c906108c
SS
12261}
12262
12263/* Extract all information from a DW_TAG_array_type DIE and put it in
12264 the DIE's type field. For now, this only handles one dimensional
12265 arrays. */
12266
f792889a 12267static struct type *
e7c27a73 12268read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12269{
e7c27a73 12270 struct objfile *objfile = cu->objfile;
c906108c 12271 struct die_info *child_die;
7e314c57 12272 struct type *type;
c906108c
SS
12273 struct type *element_type, *range_type, *index_type;
12274 struct type **range_types = NULL;
12275 struct attribute *attr;
12276 int ndim = 0;
12277 struct cleanup *back_to;
15d034d0 12278 const char *name;
c906108c 12279
e7c27a73 12280 element_type = die_type (die, cu);
c906108c 12281
7e314c57
JK
12282 /* The die_type call above may have already set the type for this DIE. */
12283 type = get_die_type (die, cu);
12284 if (type)
12285 return type;
12286
c906108c
SS
12287 /* Irix 6.2 native cc creates array types without children for
12288 arrays with unspecified length. */
639d11d3 12289 if (die->child == NULL)
c906108c 12290 {
46bf5051 12291 index_type = objfile_type (objfile)->builtin_int;
c906108c 12292 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
12293 type = create_array_type (NULL, element_type, range_type);
12294 return set_die_type (die, type, cu);
c906108c
SS
12295 }
12296
12297 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 12298 child_die = die->child;
c906108c
SS
12299 while (child_die && child_die->tag)
12300 {
12301 if (child_die->tag == DW_TAG_subrange_type)
12302 {
f792889a 12303 struct type *child_type = read_type_die (child_die, cu);
9a619af0 12304
f792889a 12305 if (child_type != NULL)
a02abb62 12306 {
0963b4bd
MS
12307 /* The range type was succesfully read. Save it for the
12308 array type creation. */
a02abb62
JB
12309 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12310 {
12311 range_types = (struct type **)
12312 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12313 * sizeof (struct type *));
12314 if (ndim == 0)
12315 make_cleanup (free_current_contents, &range_types);
12316 }
f792889a 12317 range_types[ndim++] = child_type;
a02abb62 12318 }
c906108c
SS
12319 }
12320 child_die = sibling_die (child_die);
12321 }
12322
12323 /* Dwarf2 dimensions are output from left to right, create the
12324 necessary array types in backwards order. */
7ca2d3a3 12325
c906108c 12326 type = element_type;
7ca2d3a3
DL
12327
12328 if (read_array_order (die, cu) == DW_ORD_col_major)
12329 {
12330 int i = 0;
9a619af0 12331
7ca2d3a3
DL
12332 while (i < ndim)
12333 type = create_array_type (NULL, type, range_types[i++]);
12334 }
12335 else
12336 {
12337 while (ndim-- > 0)
12338 type = create_array_type (NULL, type, range_types[ndim]);
12339 }
c906108c 12340
f5f8a009
EZ
12341 /* Understand Dwarf2 support for vector types (like they occur on
12342 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12343 array type. This is not part of the Dwarf2/3 standard yet, but a
12344 custom vendor extension. The main difference between a regular
12345 array and the vector variant is that vectors are passed by value
12346 to functions. */
e142c38c 12347 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 12348 if (attr)
ea37ba09 12349 make_vector_type (type);
f5f8a009 12350
dbc98a8b
KW
12351 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12352 implementation may choose to implement triple vectors using this
12353 attribute. */
12354 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12355 if (attr)
12356 {
12357 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12358 TYPE_LENGTH (type) = DW_UNSND (attr);
12359 else
3e43a32a
MS
12360 complaint (&symfile_complaints,
12361 _("DW_AT_byte_size for array type smaller "
12362 "than the total size of elements"));
dbc98a8b
KW
12363 }
12364
39cbfefa
DJ
12365 name = dwarf2_name (die, cu);
12366 if (name)
12367 TYPE_NAME (type) = name;
6e70227d 12368
0963b4bd 12369 /* Install the type in the die. */
7e314c57
JK
12370 set_die_type (die, type, cu);
12371
12372 /* set_die_type should be already done. */
b4ba55a1
JB
12373 set_descriptive_type (type, die, cu);
12374
c906108c
SS
12375 do_cleanups (back_to);
12376
7e314c57 12377 return type;
c906108c
SS
12378}
12379
7ca2d3a3 12380static enum dwarf_array_dim_ordering
6e70227d 12381read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
12382{
12383 struct attribute *attr;
12384
12385 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12386
12387 if (attr) return DW_SND (attr);
12388
0963b4bd
MS
12389 /* GNU F77 is a special case, as at 08/2004 array type info is the
12390 opposite order to the dwarf2 specification, but data is still
12391 laid out as per normal fortran.
7ca2d3a3 12392
0963b4bd
MS
12393 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12394 version checking. */
7ca2d3a3 12395
905e0470
PM
12396 if (cu->language == language_fortran
12397 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
12398 {
12399 return DW_ORD_row_major;
12400 }
12401
6e70227d 12402 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
12403 {
12404 case array_column_major:
12405 return DW_ORD_col_major;
12406 case array_row_major:
12407 default:
12408 return DW_ORD_row_major;
12409 };
12410}
12411
72019c9c 12412/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 12413 the DIE's type field. */
72019c9c 12414
f792889a 12415static struct type *
72019c9c
GM
12416read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12417{
7e314c57
JK
12418 struct type *domain_type, *set_type;
12419 struct attribute *attr;
f792889a 12420
7e314c57
JK
12421 domain_type = die_type (die, cu);
12422
12423 /* The die_type call above may have already set the type for this DIE. */
12424 set_type = get_die_type (die, cu);
12425 if (set_type)
12426 return set_type;
12427
12428 set_type = create_set_type (NULL, domain_type);
12429
12430 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
12431 if (attr)
12432 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 12433
f792889a 12434 return set_die_type (die, set_type, cu);
72019c9c 12435}
7ca2d3a3 12436
0971de02
TT
12437/* A helper for read_common_block that creates a locexpr baton.
12438 SYM is the symbol which we are marking as computed.
12439 COMMON_DIE is the DIE for the common block.
12440 COMMON_LOC is the location expression attribute for the common
12441 block itself.
12442 MEMBER_LOC is the location expression attribute for the particular
12443 member of the common block that we are processing.
12444 CU is the CU from which the above come. */
12445
12446static void
12447mark_common_block_symbol_computed (struct symbol *sym,
12448 struct die_info *common_die,
12449 struct attribute *common_loc,
12450 struct attribute *member_loc,
12451 struct dwarf2_cu *cu)
12452{
12453 struct objfile *objfile = dwarf2_per_objfile->objfile;
12454 struct dwarf2_locexpr_baton *baton;
12455 gdb_byte *ptr;
12456 unsigned int cu_off;
12457 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12458 LONGEST offset = 0;
12459
12460 gdb_assert (common_loc && member_loc);
12461 gdb_assert (attr_form_is_block (common_loc));
12462 gdb_assert (attr_form_is_block (member_loc)
12463 || attr_form_is_constant (member_loc));
12464
12465 baton = obstack_alloc (&objfile->objfile_obstack,
12466 sizeof (struct dwarf2_locexpr_baton));
12467 baton->per_cu = cu->per_cu;
12468 gdb_assert (baton->per_cu);
12469
12470 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12471
12472 if (attr_form_is_constant (member_loc))
12473 {
12474 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12475 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12476 }
12477 else
12478 baton->size += DW_BLOCK (member_loc)->size;
12479
12480 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12481 baton->data = ptr;
12482
12483 *ptr++ = DW_OP_call4;
12484 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12485 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12486 ptr += 4;
12487
12488 if (attr_form_is_constant (member_loc))
12489 {
12490 *ptr++ = DW_OP_addr;
12491 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12492 ptr += cu->header.addr_size;
12493 }
12494 else
12495 {
12496 /* We have to copy the data here, because DW_OP_call4 will only
12497 use a DW_AT_location attribute. */
12498 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12499 ptr += DW_BLOCK (member_loc)->size;
12500 }
12501
12502 *ptr++ = DW_OP_plus;
12503 gdb_assert (ptr - baton->data == baton->size);
12504
0971de02 12505 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 12506 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
12507}
12508
4357ac6c
TT
12509/* Create appropriate locally-scoped variables for all the
12510 DW_TAG_common_block entries. Also create a struct common_block
12511 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12512 is used to sepate the common blocks name namespace from regular
12513 variable names. */
c906108c
SS
12514
12515static void
e7c27a73 12516read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12517{
0971de02
TT
12518 struct attribute *attr;
12519
12520 attr = dwarf2_attr (die, DW_AT_location, cu);
12521 if (attr)
12522 {
12523 /* Support the .debug_loc offsets. */
12524 if (attr_form_is_block (attr))
12525 {
12526 /* Ok. */
12527 }
12528 else if (attr_form_is_section_offset (attr))
12529 {
12530 dwarf2_complex_location_expr_complaint ();
12531 attr = NULL;
12532 }
12533 else
12534 {
12535 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12536 "common block member");
12537 attr = NULL;
12538 }
12539 }
12540
639d11d3 12541 if (die->child != NULL)
c906108c 12542 {
4357ac6c
TT
12543 struct objfile *objfile = cu->objfile;
12544 struct die_info *child_die;
12545 size_t n_entries = 0, size;
12546 struct common_block *common_block;
12547 struct symbol *sym;
74ac6d43 12548
4357ac6c
TT
12549 for (child_die = die->child;
12550 child_die && child_die->tag;
12551 child_die = sibling_die (child_die))
12552 ++n_entries;
12553
12554 size = (sizeof (struct common_block)
12555 + (n_entries - 1) * sizeof (struct symbol *));
12556 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12557 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12558 common_block->n_entries = 0;
12559
12560 for (child_die = die->child;
12561 child_die && child_die->tag;
12562 child_die = sibling_die (child_die))
12563 {
12564 /* Create the symbol in the DW_TAG_common_block block in the current
12565 symbol scope. */
e7c27a73 12566 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
12567 if (sym != NULL)
12568 {
12569 struct attribute *member_loc;
12570
12571 common_block->contents[common_block->n_entries++] = sym;
12572
12573 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12574 cu);
12575 if (member_loc)
12576 {
12577 /* GDB has handled this for a long time, but it is
12578 not specified by DWARF. It seems to have been
12579 emitted by gfortran at least as recently as:
12580 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12581 complaint (&symfile_complaints,
12582 _("Variable in common block has "
12583 "DW_AT_data_member_location "
12584 "- DIE at 0x%x [in module %s]"),
12585 child_die->offset.sect_off, cu->objfile->name);
12586
12587 if (attr_form_is_section_offset (member_loc))
12588 dwarf2_complex_location_expr_complaint ();
12589 else if (attr_form_is_constant (member_loc)
12590 || attr_form_is_block (member_loc))
12591 {
12592 if (attr)
12593 mark_common_block_symbol_computed (sym, die, attr,
12594 member_loc, cu);
12595 }
12596 else
12597 dwarf2_complex_location_expr_complaint ();
12598 }
12599 }
c906108c 12600 }
4357ac6c
TT
12601
12602 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12603 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
12604 }
12605}
12606
0114d602 12607/* Create a type for a C++ namespace. */
d9fa45fe 12608
0114d602
DJ
12609static struct type *
12610read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 12611{
e7c27a73 12612 struct objfile *objfile = cu->objfile;
0114d602 12613 const char *previous_prefix, *name;
9219021c 12614 int is_anonymous;
0114d602
DJ
12615 struct type *type;
12616
12617 /* For extensions, reuse the type of the original namespace. */
12618 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12619 {
12620 struct die_info *ext_die;
12621 struct dwarf2_cu *ext_cu = cu;
9a619af0 12622
0114d602
DJ
12623 ext_die = dwarf2_extension (die, &ext_cu);
12624 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
12625
12626 /* EXT_CU may not be the same as CU.
02142a6c 12627 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
12628 return set_die_type (die, type, cu);
12629 }
9219021c 12630
e142c38c 12631 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
12632
12633 /* Now build the name of the current namespace. */
12634
0114d602
DJ
12635 previous_prefix = determine_prefix (die, cu);
12636 if (previous_prefix[0] != '\0')
12637 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 12638 previous_prefix, name, 0, cu);
0114d602
DJ
12639
12640 /* Create the type. */
12641 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12642 objfile);
abee88f2 12643 TYPE_NAME (type) = name;
0114d602
DJ
12644 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12645
60531b24 12646 return set_die_type (die, type, cu);
0114d602
DJ
12647}
12648
12649/* Read a C++ namespace. */
12650
12651static void
12652read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12653{
12654 struct objfile *objfile = cu->objfile;
0114d602 12655 int is_anonymous;
9219021c 12656
5c4e30ca
DC
12657 /* Add a symbol associated to this if we haven't seen the namespace
12658 before. Also, add a using directive if it's an anonymous
12659 namespace. */
9219021c 12660
f2f0e013 12661 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
12662 {
12663 struct type *type;
12664
0114d602 12665 type = read_type_die (die, cu);
e7c27a73 12666 new_symbol (die, type, cu);
5c4e30ca 12667
e8e80198 12668 namespace_name (die, &is_anonymous, cu);
5c4e30ca 12669 if (is_anonymous)
0114d602
DJ
12670 {
12671 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 12672
c0cc3a76 12673 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 12674 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 12675 }
5c4e30ca 12676 }
9219021c 12677
639d11d3 12678 if (die->child != NULL)
d9fa45fe 12679 {
639d11d3 12680 struct die_info *child_die = die->child;
6e70227d 12681
d9fa45fe
DC
12682 while (child_die && child_die->tag)
12683 {
e7c27a73 12684 process_die (child_die, cu);
d9fa45fe
DC
12685 child_die = sibling_die (child_die);
12686 }
12687 }
38d518c9
EZ
12688}
12689
f55ee35c
JK
12690/* Read a Fortran module as type. This DIE can be only a declaration used for
12691 imported module. Still we need that type as local Fortran "use ... only"
12692 declaration imports depend on the created type in determine_prefix. */
12693
12694static struct type *
12695read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12696{
12697 struct objfile *objfile = cu->objfile;
15d034d0 12698 const char *module_name;
f55ee35c
JK
12699 struct type *type;
12700
12701 module_name = dwarf2_name (die, cu);
12702 if (!module_name)
3e43a32a
MS
12703 complaint (&symfile_complaints,
12704 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 12705 die->offset.sect_off);
f55ee35c
JK
12706 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12707
12708 /* determine_prefix uses TYPE_TAG_NAME. */
12709 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12710
12711 return set_die_type (die, type, cu);
12712}
12713
5d7cb8df
JK
12714/* Read a Fortran module. */
12715
12716static void
12717read_module (struct die_info *die, struct dwarf2_cu *cu)
12718{
12719 struct die_info *child_die = die->child;
12720
5d7cb8df
JK
12721 while (child_die && child_die->tag)
12722 {
12723 process_die (child_die, cu);
12724 child_die = sibling_die (child_die);
12725 }
12726}
12727
38d518c9
EZ
12728/* Return the name of the namespace represented by DIE. Set
12729 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12730 namespace. */
12731
12732static const char *
e142c38c 12733namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
12734{
12735 struct die_info *current_die;
12736 const char *name = NULL;
12737
12738 /* Loop through the extensions until we find a name. */
12739
12740 for (current_die = die;
12741 current_die != NULL;
f2f0e013 12742 current_die = dwarf2_extension (die, &cu))
38d518c9 12743 {
e142c38c 12744 name = dwarf2_name (current_die, cu);
38d518c9
EZ
12745 if (name != NULL)
12746 break;
12747 }
12748
12749 /* Is it an anonymous namespace? */
12750
12751 *is_anonymous = (name == NULL);
12752 if (*is_anonymous)
2b1dbab0 12753 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
12754
12755 return name;
d9fa45fe
DC
12756}
12757
c906108c
SS
12758/* Extract all information from a DW_TAG_pointer_type DIE and add to
12759 the user defined type vector. */
12760
f792889a 12761static struct type *
e7c27a73 12762read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12763{
5e2b427d 12764 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 12765 struct comp_unit_head *cu_header = &cu->header;
c906108c 12766 struct type *type;
8b2dbe47
KB
12767 struct attribute *attr_byte_size;
12768 struct attribute *attr_address_class;
12769 int byte_size, addr_class;
7e314c57
JK
12770 struct type *target_type;
12771
12772 target_type = die_type (die, cu);
c906108c 12773
7e314c57
JK
12774 /* The die_type call above may have already set the type for this DIE. */
12775 type = get_die_type (die, cu);
12776 if (type)
12777 return type;
12778
12779 type = lookup_pointer_type (target_type);
8b2dbe47 12780
e142c38c 12781 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
12782 if (attr_byte_size)
12783 byte_size = DW_UNSND (attr_byte_size);
c906108c 12784 else
8b2dbe47
KB
12785 byte_size = cu_header->addr_size;
12786
e142c38c 12787 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
12788 if (attr_address_class)
12789 addr_class = DW_UNSND (attr_address_class);
12790 else
12791 addr_class = DW_ADDR_none;
12792
12793 /* If the pointer size or address class is different than the
12794 default, create a type variant marked as such and set the
12795 length accordingly. */
12796 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 12797 {
5e2b427d 12798 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
12799 {
12800 int type_flags;
12801
849957d9 12802 type_flags = gdbarch_address_class_type_flags
5e2b427d 12803 (gdbarch, byte_size, addr_class);
876cecd0
TT
12804 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12805 == 0);
8b2dbe47
KB
12806 type = make_type_with_address_space (type, type_flags);
12807 }
12808 else if (TYPE_LENGTH (type) != byte_size)
12809 {
3e43a32a
MS
12810 complaint (&symfile_complaints,
12811 _("invalid pointer size %d"), byte_size);
8b2dbe47 12812 }
6e70227d 12813 else
9a619af0
MS
12814 {
12815 /* Should we also complain about unhandled address classes? */
12816 }
c906108c 12817 }
8b2dbe47
KB
12818
12819 TYPE_LENGTH (type) = byte_size;
f792889a 12820 return set_die_type (die, type, cu);
c906108c
SS
12821}
12822
12823/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12824 the user defined type vector. */
12825
f792889a 12826static struct type *
e7c27a73 12827read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
12828{
12829 struct type *type;
12830 struct type *to_type;
12831 struct type *domain;
12832
e7c27a73
DJ
12833 to_type = die_type (die, cu);
12834 domain = die_containing_type (die, cu);
0d5de010 12835
7e314c57
JK
12836 /* The calls above may have already set the type for this DIE. */
12837 type = get_die_type (die, cu);
12838 if (type)
12839 return type;
12840
0d5de010
DJ
12841 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12842 type = lookup_methodptr_type (to_type);
7078baeb
TT
12843 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12844 {
12845 struct type *new_type = alloc_type (cu->objfile);
12846
12847 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12848 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12849 TYPE_VARARGS (to_type));
12850 type = lookup_methodptr_type (new_type);
12851 }
0d5de010
DJ
12852 else
12853 type = lookup_memberptr_type (to_type, domain);
c906108c 12854
f792889a 12855 return set_die_type (die, type, cu);
c906108c
SS
12856}
12857
12858/* Extract all information from a DW_TAG_reference_type DIE and add to
12859 the user defined type vector. */
12860
f792889a 12861static struct type *
e7c27a73 12862read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12863{
e7c27a73 12864 struct comp_unit_head *cu_header = &cu->header;
7e314c57 12865 struct type *type, *target_type;
c906108c
SS
12866 struct attribute *attr;
12867
7e314c57
JK
12868 target_type = die_type (die, cu);
12869
12870 /* The die_type call above may have already set the type for this DIE. */
12871 type = get_die_type (die, cu);
12872 if (type)
12873 return type;
12874
12875 type = lookup_reference_type (target_type);
e142c38c 12876 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12877 if (attr)
12878 {
12879 TYPE_LENGTH (type) = DW_UNSND (attr);
12880 }
12881 else
12882 {
107d2387 12883 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 12884 }
f792889a 12885 return set_die_type (die, type, cu);
c906108c
SS
12886}
12887
f792889a 12888static struct type *
e7c27a73 12889read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12890{
f792889a 12891 struct type *base_type, *cv_type;
c906108c 12892
e7c27a73 12893 base_type = die_type (die, cu);
7e314c57
JK
12894
12895 /* The die_type call above may have already set the type for this DIE. */
12896 cv_type = get_die_type (die, cu);
12897 if (cv_type)
12898 return cv_type;
12899
2f608a3a
KW
12900 /* In case the const qualifier is applied to an array type, the element type
12901 is so qualified, not the array type (section 6.7.3 of C99). */
12902 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12903 {
12904 struct type *el_type, *inner_array;
12905
12906 base_type = copy_type (base_type);
12907 inner_array = base_type;
12908
12909 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12910 {
12911 TYPE_TARGET_TYPE (inner_array) =
12912 copy_type (TYPE_TARGET_TYPE (inner_array));
12913 inner_array = TYPE_TARGET_TYPE (inner_array);
12914 }
12915
12916 el_type = TYPE_TARGET_TYPE (inner_array);
12917 TYPE_TARGET_TYPE (inner_array) =
12918 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12919
12920 return set_die_type (die, base_type, cu);
12921 }
12922
f792889a
DJ
12923 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12924 return set_die_type (die, cv_type, cu);
c906108c
SS
12925}
12926
f792889a 12927static struct type *
e7c27a73 12928read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12929{
f792889a 12930 struct type *base_type, *cv_type;
c906108c 12931
e7c27a73 12932 base_type = die_type (die, cu);
7e314c57
JK
12933
12934 /* The die_type call above may have already set the type for this DIE. */
12935 cv_type = get_die_type (die, cu);
12936 if (cv_type)
12937 return cv_type;
12938
f792889a
DJ
12939 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12940 return set_die_type (die, cv_type, cu);
c906108c
SS
12941}
12942
06d66ee9
TT
12943/* Handle DW_TAG_restrict_type. */
12944
12945static struct type *
12946read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12947{
12948 struct type *base_type, *cv_type;
12949
12950 base_type = die_type (die, cu);
12951
12952 /* The die_type call above may have already set the type for this DIE. */
12953 cv_type = get_die_type (die, cu);
12954 if (cv_type)
12955 return cv_type;
12956
12957 cv_type = make_restrict_type (base_type);
12958 return set_die_type (die, cv_type, cu);
12959}
12960
c906108c
SS
12961/* Extract all information from a DW_TAG_string_type DIE and add to
12962 the user defined type vector. It isn't really a user defined type,
12963 but it behaves like one, with other DIE's using an AT_user_def_type
12964 attribute to reference it. */
12965
f792889a 12966static struct type *
e7c27a73 12967read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12968{
e7c27a73 12969 struct objfile *objfile = cu->objfile;
3b7538c0 12970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12971 struct type *type, *range_type, *index_type, *char_type;
12972 struct attribute *attr;
12973 unsigned int length;
12974
e142c38c 12975 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
12976 if (attr)
12977 {
12978 length = DW_UNSND (attr);
12979 }
12980 else
12981 {
0963b4bd 12982 /* Check for the DW_AT_byte_size attribute. */
e142c38c 12983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
12984 if (attr)
12985 {
12986 length = DW_UNSND (attr);
12987 }
12988 else
12989 {
12990 length = 1;
12991 }
c906108c 12992 }
6ccb9162 12993
46bf5051 12994 index_type = objfile_type (objfile)->builtin_int;
c906108c 12995 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
12996 char_type = language_string_char_type (cu->language_defn, gdbarch);
12997 type = create_string_type (NULL, char_type, range_type);
6ccb9162 12998
f792889a 12999 return set_die_type (die, type, cu);
c906108c
SS
13000}
13001
4d804846
JB
13002/* Assuming that DIE corresponds to a function, returns nonzero
13003 if the function is prototyped. */
13004
13005static int
13006prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13007{
13008 struct attribute *attr;
13009
13010 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13011 if (attr && (DW_UNSND (attr) != 0))
13012 return 1;
13013
13014 /* The DWARF standard implies that the DW_AT_prototyped attribute
13015 is only meaninful for C, but the concept also extends to other
13016 languages that allow unprototyped functions (Eg: Objective C).
13017 For all other languages, assume that functions are always
13018 prototyped. */
13019 if (cu->language != language_c
13020 && cu->language != language_objc
13021 && cu->language != language_opencl)
13022 return 1;
13023
13024 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13025 prototyped and unprototyped functions; default to prototyped,
13026 since that is more common in modern code (and RealView warns
13027 about unprototyped functions). */
13028 if (producer_is_realview (cu->producer))
13029 return 1;
13030
13031 return 0;
13032}
13033
c906108c
SS
13034/* Handle DIES due to C code like:
13035
13036 struct foo
c5aa993b
JM
13037 {
13038 int (*funcp)(int a, long l);
13039 int b;
13040 };
c906108c 13041
0963b4bd 13042 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 13043
f792889a 13044static struct type *
e7c27a73 13045read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13046{
bb5ed363 13047 struct objfile *objfile = cu->objfile;
0963b4bd
MS
13048 struct type *type; /* Type that this function returns. */
13049 struct type *ftype; /* Function that returns above type. */
c906108c
SS
13050 struct attribute *attr;
13051
e7c27a73 13052 type = die_type (die, cu);
7e314c57
JK
13053
13054 /* The die_type call above may have already set the type for this DIE. */
13055 ftype = get_die_type (die, cu);
13056 if (ftype)
13057 return ftype;
13058
0c8b41f1 13059 ftype = lookup_function_type (type);
c906108c 13060
4d804846 13061 if (prototyped_function_p (die, cu))
a6c727b2 13062 TYPE_PROTOTYPED (ftype) = 1;
c906108c 13063
c055b101
CV
13064 /* Store the calling convention in the type if it's available in
13065 the subroutine die. Otherwise set the calling convention to
13066 the default value DW_CC_normal. */
13067 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
13068 if (attr)
13069 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13070 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13071 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13072 else
13073 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
13074
13075 /* We need to add the subroutine type to the die immediately so
13076 we don't infinitely recurse when dealing with parameters
0963b4bd 13077 declared as the same subroutine type. */
76c10ea2 13078 set_die_type (die, ftype, cu);
6e70227d 13079
639d11d3 13080 if (die->child != NULL)
c906108c 13081 {
bb5ed363 13082 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 13083 struct die_info *child_die;
8072405b 13084 int nparams, iparams;
c906108c
SS
13085
13086 /* Count the number of parameters.
13087 FIXME: GDB currently ignores vararg functions, but knows about
13088 vararg member functions. */
8072405b 13089 nparams = 0;
639d11d3 13090 child_die = die->child;
c906108c
SS
13091 while (child_die && child_die->tag)
13092 {
13093 if (child_die->tag == DW_TAG_formal_parameter)
13094 nparams++;
13095 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 13096 TYPE_VARARGS (ftype) = 1;
c906108c
SS
13097 child_die = sibling_die (child_die);
13098 }
13099
13100 /* Allocate storage for parameters and fill them in. */
13101 TYPE_NFIELDS (ftype) = nparams;
13102 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 13103 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 13104
8072405b
JK
13105 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13106 even if we error out during the parameters reading below. */
13107 for (iparams = 0; iparams < nparams; iparams++)
13108 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13109
13110 iparams = 0;
639d11d3 13111 child_die = die->child;
c906108c
SS
13112 while (child_die && child_die->tag)
13113 {
13114 if (child_die->tag == DW_TAG_formal_parameter)
13115 {
3ce3b1ba
PA
13116 struct type *arg_type;
13117
13118 /* DWARF version 2 has no clean way to discern C++
13119 static and non-static member functions. G++ helps
13120 GDB by marking the first parameter for non-static
13121 member functions (which is the this pointer) as
13122 artificial. We pass this information to
13123 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13124
13125 DWARF version 3 added DW_AT_object_pointer, which GCC
13126 4.5 does not yet generate. */
e142c38c 13127 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
13128 if (attr)
13129 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13130 else
418835cc
KS
13131 {
13132 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13133
13134 /* GCC/43521: In java, the formal parameter
13135 "this" is sometimes not marked with DW_AT_artificial. */
13136 if (cu->language == language_java)
13137 {
13138 const char *name = dwarf2_name (child_die, cu);
9a619af0 13139
418835cc
KS
13140 if (name && !strcmp (name, "this"))
13141 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13142 }
13143 }
3ce3b1ba
PA
13144 arg_type = die_type (child_die, cu);
13145
13146 /* RealView does not mark THIS as const, which the testsuite
13147 expects. GCC marks THIS as const in method definitions,
13148 but not in the class specifications (GCC PR 43053). */
13149 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13150 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13151 {
13152 int is_this = 0;
13153 struct dwarf2_cu *arg_cu = cu;
13154 const char *name = dwarf2_name (child_die, cu);
13155
13156 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13157 if (attr)
13158 {
13159 /* If the compiler emits this, use it. */
13160 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13161 is_this = 1;
13162 }
13163 else if (name && strcmp (name, "this") == 0)
13164 /* Function definitions will have the argument names. */
13165 is_this = 1;
13166 else if (name == NULL && iparams == 0)
13167 /* Declarations may not have the names, so like
13168 elsewhere in GDB, assume an artificial first
13169 argument is "this". */
13170 is_this = 1;
13171
13172 if (is_this)
13173 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13174 arg_type, 0);
13175 }
13176
13177 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
13178 iparams++;
13179 }
13180 child_die = sibling_die (child_die);
13181 }
13182 }
13183
76c10ea2 13184 return ftype;
c906108c
SS
13185}
13186
f792889a 13187static struct type *
e7c27a73 13188read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13189{
e7c27a73 13190 struct objfile *objfile = cu->objfile;
0114d602 13191 const char *name = NULL;
3c8e0968 13192 struct type *this_type, *target_type;
c906108c 13193
94af9270 13194 name = dwarf2_full_name (NULL, die, cu);
f792889a 13195 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 13196 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 13197 TYPE_NAME (this_type) = name;
f792889a 13198 set_die_type (die, this_type, cu);
3c8e0968
DE
13199 target_type = die_type (die, cu);
13200 if (target_type != this_type)
13201 TYPE_TARGET_TYPE (this_type) = target_type;
13202 else
13203 {
13204 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13205 spec and cause infinite loops in GDB. */
13206 complaint (&symfile_complaints,
13207 _("Self-referential DW_TAG_typedef "
13208 "- DIE at 0x%x [in module %s]"),
b64f50a1 13209 die->offset.sect_off, objfile->name);
3c8e0968
DE
13210 TYPE_TARGET_TYPE (this_type) = NULL;
13211 }
f792889a 13212 return this_type;
c906108c
SS
13213}
13214
13215/* Find a representation of a given base type and install
13216 it in the TYPE field of the die. */
13217
f792889a 13218static struct type *
e7c27a73 13219read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13220{
e7c27a73 13221 struct objfile *objfile = cu->objfile;
c906108c
SS
13222 struct type *type;
13223 struct attribute *attr;
13224 int encoding = 0, size = 0;
15d034d0 13225 const char *name;
6ccb9162
UW
13226 enum type_code code = TYPE_CODE_INT;
13227 int type_flags = 0;
13228 struct type *target_type = NULL;
c906108c 13229
e142c38c 13230 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
13231 if (attr)
13232 {
13233 encoding = DW_UNSND (attr);
13234 }
e142c38c 13235 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13236 if (attr)
13237 {
13238 size = DW_UNSND (attr);
13239 }
39cbfefa 13240 name = dwarf2_name (die, cu);
6ccb9162 13241 if (!name)
c906108c 13242 {
6ccb9162
UW
13243 complaint (&symfile_complaints,
13244 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 13245 }
6ccb9162
UW
13246
13247 switch (encoding)
c906108c 13248 {
6ccb9162
UW
13249 case DW_ATE_address:
13250 /* Turn DW_ATE_address into a void * pointer. */
13251 code = TYPE_CODE_PTR;
13252 type_flags |= TYPE_FLAG_UNSIGNED;
13253 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13254 break;
13255 case DW_ATE_boolean:
13256 code = TYPE_CODE_BOOL;
13257 type_flags |= TYPE_FLAG_UNSIGNED;
13258 break;
13259 case DW_ATE_complex_float:
13260 code = TYPE_CODE_COMPLEX;
13261 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13262 break;
13263 case DW_ATE_decimal_float:
13264 code = TYPE_CODE_DECFLOAT;
13265 break;
13266 case DW_ATE_float:
13267 code = TYPE_CODE_FLT;
13268 break;
13269 case DW_ATE_signed:
13270 break;
13271 case DW_ATE_unsigned:
13272 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
13273 if (cu->language == language_fortran
13274 && name
13275 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13276 code = TYPE_CODE_CHAR;
6ccb9162
UW
13277 break;
13278 case DW_ATE_signed_char:
6e70227d 13279 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13280 || cu->language == language_pascal
13281 || cu->language == language_fortran)
6ccb9162
UW
13282 code = TYPE_CODE_CHAR;
13283 break;
13284 case DW_ATE_unsigned_char:
868a0084 13285 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13286 || cu->language == language_pascal
13287 || cu->language == language_fortran)
6ccb9162
UW
13288 code = TYPE_CODE_CHAR;
13289 type_flags |= TYPE_FLAG_UNSIGNED;
13290 break;
75079b2b
TT
13291 case DW_ATE_UTF:
13292 /* We just treat this as an integer and then recognize the
13293 type by name elsewhere. */
13294 break;
13295
6ccb9162
UW
13296 default:
13297 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13298 dwarf_type_encoding_name (encoding));
13299 break;
c906108c 13300 }
6ccb9162 13301
0114d602
DJ
13302 type = init_type (code, size, type_flags, NULL, objfile);
13303 TYPE_NAME (type) = name;
6ccb9162
UW
13304 TYPE_TARGET_TYPE (type) = target_type;
13305
0114d602 13306 if (name && strcmp (name, "char") == 0)
876cecd0 13307 TYPE_NOSIGN (type) = 1;
0114d602 13308
f792889a 13309 return set_die_type (die, type, cu);
c906108c
SS
13310}
13311
a02abb62
JB
13312/* Read the given DW_AT_subrange DIE. */
13313
f792889a 13314static struct type *
a02abb62
JB
13315read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13316{
4c9ad8c2 13317 struct type *base_type, *orig_base_type;
a02abb62
JB
13318 struct type *range_type;
13319 struct attribute *attr;
4fae6e18
JK
13320 LONGEST low, high;
13321 int low_default_is_valid;
15d034d0 13322 const char *name;
43bbcdc2 13323 LONGEST negative_mask;
e77813c8 13324
4c9ad8c2
TT
13325 orig_base_type = die_type (die, cu);
13326 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13327 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13328 creating the range type, but we use the result of check_typedef
13329 when examining properties of the type. */
13330 base_type = check_typedef (orig_base_type);
a02abb62 13331
7e314c57
JK
13332 /* The die_type call above may have already set the type for this DIE. */
13333 range_type = get_die_type (die, cu);
13334 if (range_type)
13335 return range_type;
13336
4fae6e18
JK
13337 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13338 omitting DW_AT_lower_bound. */
13339 switch (cu->language)
6e70227d 13340 {
4fae6e18
JK
13341 case language_c:
13342 case language_cplus:
13343 low = 0;
13344 low_default_is_valid = 1;
13345 break;
13346 case language_fortran:
13347 low = 1;
13348 low_default_is_valid = 1;
13349 break;
13350 case language_d:
13351 case language_java:
13352 case language_objc:
13353 low = 0;
13354 low_default_is_valid = (cu->header.version >= 4);
13355 break;
13356 case language_ada:
13357 case language_m2:
13358 case language_pascal:
a02abb62 13359 low = 1;
4fae6e18
JK
13360 low_default_is_valid = (cu->header.version >= 4);
13361 break;
13362 default:
13363 low = 0;
13364 low_default_is_valid = 0;
13365 break;
a02abb62
JB
13366 }
13367
dd5e6932
DJ
13368 /* FIXME: For variable sized arrays either of these could be
13369 a variable rather than a constant value. We'll allow it,
13370 but we don't know how to handle it. */
e142c38c 13371 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 13372 if (attr)
4fae6e18
JK
13373 low = dwarf2_get_attr_constant_value (attr, low);
13374 else if (!low_default_is_valid)
13375 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13376 "- DIE at 0x%x [in module %s]"),
13377 die->offset.sect_off, cu->objfile->name);
a02abb62 13378
e142c38c 13379 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 13380 if (attr)
6e70227d 13381 {
d48323d8 13382 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
13383 {
13384 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 13385 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
13386 FIXME: GDB does not yet know how to handle dynamic
13387 arrays properly, treat them as arrays with unspecified
13388 length for now.
13389
13390 FIXME: jimb/2003-09-22: GDB does not really know
13391 how to handle arrays of unspecified length
13392 either; we just represent them as zero-length
13393 arrays. Choose an appropriate upper bound given
13394 the lower bound we've computed above. */
13395 high = low - 1;
13396 }
13397 else
13398 high = dwarf2_get_attr_constant_value (attr, 1);
13399 }
e77813c8
PM
13400 else
13401 {
13402 attr = dwarf2_attr (die, DW_AT_count, cu);
13403 if (attr)
13404 {
13405 int count = dwarf2_get_attr_constant_value (attr, 1);
13406 high = low + count - 1;
13407 }
c2ff108b
JK
13408 else
13409 {
13410 /* Unspecified array length. */
13411 high = low - 1;
13412 }
e77813c8
PM
13413 }
13414
13415 /* Dwarf-2 specifications explicitly allows to create subrange types
13416 without specifying a base type.
13417 In that case, the base type must be set to the type of
13418 the lower bound, upper bound or count, in that order, if any of these
13419 three attributes references an object that has a type.
13420 If no base type is found, the Dwarf-2 specifications say that
13421 a signed integer type of size equal to the size of an address should
13422 be used.
13423 For the following C code: `extern char gdb_int [];'
13424 GCC produces an empty range DIE.
13425 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 13426 high bound or count are not yet handled by this code. */
e77813c8
PM
13427 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13428 {
13429 struct objfile *objfile = cu->objfile;
13430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13431 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13432 struct type *int_type = objfile_type (objfile)->builtin_int;
13433
13434 /* Test "int", "long int", and "long long int" objfile types,
13435 and select the first one having a size above or equal to the
13436 architecture address size. */
13437 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13438 base_type = int_type;
13439 else
13440 {
13441 int_type = objfile_type (objfile)->builtin_long;
13442 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13443 base_type = int_type;
13444 else
13445 {
13446 int_type = objfile_type (objfile)->builtin_long_long;
13447 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13448 base_type = int_type;
13449 }
13450 }
13451 }
a02abb62 13452
6e70227d 13453 negative_mask =
43bbcdc2
PH
13454 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13455 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13456 low |= negative_mask;
13457 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13458 high |= negative_mask;
13459
4c9ad8c2 13460 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 13461
bbb0eef6
JK
13462 /* Mark arrays with dynamic length at least as an array of unspecified
13463 length. GDB could check the boundary but before it gets implemented at
13464 least allow accessing the array elements. */
d48323d8 13465 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
13466 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13467
c2ff108b
JK
13468 /* Ada expects an empty array on no boundary attributes. */
13469 if (attr == NULL && cu->language != language_ada)
13470 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13471
39cbfefa
DJ
13472 name = dwarf2_name (die, cu);
13473 if (name)
13474 TYPE_NAME (range_type) = name;
6e70227d 13475
e142c38c 13476 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
13477 if (attr)
13478 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13479
7e314c57
JK
13480 set_die_type (die, range_type, cu);
13481
13482 /* set_die_type should be already done. */
b4ba55a1
JB
13483 set_descriptive_type (range_type, die, cu);
13484
7e314c57 13485 return range_type;
a02abb62 13486}
6e70227d 13487
f792889a 13488static struct type *
81a17f79
JB
13489read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13490{
13491 struct type *type;
81a17f79 13492
81a17f79
JB
13493 /* For now, we only support the C meaning of an unspecified type: void. */
13494
0114d602
DJ
13495 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13496 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 13497
f792889a 13498 return set_die_type (die, type, cu);
81a17f79 13499}
a02abb62 13500
639d11d3
DC
13501/* Read a single die and all its descendents. Set the die's sibling
13502 field to NULL; set other fields in the die correctly, and set all
13503 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13504 location of the info_ptr after reading all of those dies. PARENT
13505 is the parent of the die in question. */
13506
13507static struct die_info *
dee91e82 13508read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
13509 const gdb_byte *info_ptr,
13510 const gdb_byte **new_info_ptr,
dee91e82 13511 struct die_info *parent)
639d11d3
DC
13512{
13513 struct die_info *die;
d521ce57 13514 const gdb_byte *cur_ptr;
639d11d3
DC
13515 int has_children;
13516
bf6af496 13517 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
13518 if (die == NULL)
13519 {
13520 *new_info_ptr = cur_ptr;
13521 return NULL;
13522 }
93311388 13523 store_in_ref_table (die, reader->cu);
639d11d3
DC
13524
13525 if (has_children)
bf6af496 13526 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
13527 else
13528 {
13529 die->child = NULL;
13530 *new_info_ptr = cur_ptr;
13531 }
13532
13533 die->sibling = NULL;
13534 die->parent = parent;
13535 return die;
13536}
13537
13538/* Read a die, all of its descendents, and all of its siblings; set
13539 all of the fields of all of the dies correctly. Arguments are as
13540 in read_die_and_children. */
13541
13542static struct die_info *
bf6af496 13543read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
13544 const gdb_byte *info_ptr,
13545 const gdb_byte **new_info_ptr,
bf6af496 13546 struct die_info *parent)
639d11d3
DC
13547{
13548 struct die_info *first_die, *last_sibling;
d521ce57 13549 const gdb_byte *cur_ptr;
639d11d3 13550
c906108c 13551 cur_ptr = info_ptr;
639d11d3
DC
13552 first_die = last_sibling = NULL;
13553
13554 while (1)
c906108c 13555 {
639d11d3 13556 struct die_info *die
dee91e82 13557 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 13558
1d325ec1 13559 if (die == NULL)
c906108c 13560 {
639d11d3
DC
13561 *new_info_ptr = cur_ptr;
13562 return first_die;
c906108c 13563 }
1d325ec1
DJ
13564
13565 if (!first_die)
13566 first_die = die;
c906108c 13567 else
1d325ec1
DJ
13568 last_sibling->sibling = die;
13569
13570 last_sibling = die;
c906108c 13571 }
c906108c
SS
13572}
13573
bf6af496
DE
13574/* Read a die, all of its descendents, and all of its siblings; set
13575 all of the fields of all of the dies correctly. Arguments are as
13576 in read_die_and_children.
13577 This the main entry point for reading a DIE and all its children. */
13578
13579static struct die_info *
13580read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
13581 const gdb_byte *info_ptr,
13582 const gdb_byte **new_info_ptr,
bf6af496
DE
13583 struct die_info *parent)
13584{
13585 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13586 new_info_ptr, parent);
13587
13588 if (dwarf2_die_debug)
13589 {
13590 fprintf_unfiltered (gdb_stdlog,
13591 "Read die from %s@0x%x of %s:\n",
13592 bfd_section_name (reader->abfd,
13593 reader->die_section->asection),
13594 (unsigned) (info_ptr - reader->die_section->buffer),
13595 bfd_get_filename (reader->abfd));
13596 dump_die (die, dwarf2_die_debug);
13597 }
13598
13599 return die;
13600}
13601
3019eac3
DE
13602/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13603 attributes.
13604 The caller is responsible for filling in the extra attributes
13605 and updating (*DIEP)->num_attrs.
13606 Set DIEP to point to a newly allocated die with its information,
13607 except for its child, sibling, and parent fields.
13608 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 13609
d521ce57 13610static const gdb_byte *
3019eac3 13611read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 13612 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 13613 int *has_children, int num_extra_attrs)
93311388 13614{
b64f50a1
JK
13615 unsigned int abbrev_number, bytes_read, i;
13616 sect_offset offset;
93311388
DE
13617 struct abbrev_info *abbrev;
13618 struct die_info *die;
13619 struct dwarf2_cu *cu = reader->cu;
13620 bfd *abfd = reader->abfd;
13621
b64f50a1 13622 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
13623 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13624 info_ptr += bytes_read;
13625 if (!abbrev_number)
13626 {
13627 *diep = NULL;
13628 *has_children = 0;
13629 return info_ptr;
13630 }
13631
433df2d4 13632 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 13633 if (!abbrev)
348e048f
DE
13634 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13635 abbrev_number,
13636 bfd_get_filename (abfd));
13637
3019eac3 13638 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
13639 die->offset = offset;
13640 die->tag = abbrev->tag;
13641 die->abbrev = abbrev_number;
13642
3019eac3
DE
13643 /* Make the result usable.
13644 The caller needs to update num_attrs after adding the extra
13645 attributes. */
93311388
DE
13646 die->num_attrs = abbrev->num_attrs;
13647
13648 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
13649 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13650 info_ptr);
93311388
DE
13651
13652 *diep = die;
13653 *has_children = abbrev->has_children;
13654 return info_ptr;
13655}
13656
3019eac3
DE
13657/* Read a die and all its attributes.
13658 Set DIEP to point to a newly allocated die with its information,
13659 except for its child, sibling, and parent fields.
13660 Set HAS_CHILDREN to tell whether the die has children or not. */
13661
d521ce57 13662static const gdb_byte *
3019eac3 13663read_full_die (const struct die_reader_specs *reader,
d521ce57 13664 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
13665 int *has_children)
13666{
d521ce57 13667 const gdb_byte *result;
bf6af496
DE
13668
13669 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13670
13671 if (dwarf2_die_debug)
13672 {
13673 fprintf_unfiltered (gdb_stdlog,
13674 "Read die from %s@0x%x of %s:\n",
13675 bfd_section_name (reader->abfd,
13676 reader->die_section->asection),
13677 (unsigned) (info_ptr - reader->die_section->buffer),
13678 bfd_get_filename (reader->abfd));
13679 dump_die (*diep, dwarf2_die_debug);
13680 }
13681
13682 return result;
3019eac3 13683}
433df2d4
DE
13684\f
13685/* Abbreviation tables.
3019eac3 13686
433df2d4 13687 In DWARF version 2, the description of the debugging information is
c906108c
SS
13688 stored in a separate .debug_abbrev section. Before we read any
13689 dies from a section we read in all abbreviations and install them
433df2d4
DE
13690 in a hash table. */
13691
13692/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13693
13694static struct abbrev_info *
13695abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13696{
13697 struct abbrev_info *abbrev;
13698
13699 abbrev = (struct abbrev_info *)
13700 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13701 memset (abbrev, 0, sizeof (struct abbrev_info));
13702 return abbrev;
13703}
13704
13705/* Add an abbreviation to the table. */
c906108c
SS
13706
13707static void
433df2d4
DE
13708abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13709 unsigned int abbrev_number,
13710 struct abbrev_info *abbrev)
13711{
13712 unsigned int hash_number;
13713
13714 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13715 abbrev->next = abbrev_table->abbrevs[hash_number];
13716 abbrev_table->abbrevs[hash_number] = abbrev;
13717}
dee91e82 13718
433df2d4
DE
13719/* Look up an abbrev in the table.
13720 Returns NULL if the abbrev is not found. */
13721
13722static struct abbrev_info *
13723abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13724 unsigned int abbrev_number)
c906108c 13725{
433df2d4
DE
13726 unsigned int hash_number;
13727 struct abbrev_info *abbrev;
13728
13729 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13730 abbrev = abbrev_table->abbrevs[hash_number];
13731
13732 while (abbrev)
13733 {
13734 if (abbrev->number == abbrev_number)
13735 return abbrev;
13736 abbrev = abbrev->next;
13737 }
13738 return NULL;
13739}
13740
13741/* Read in an abbrev table. */
13742
13743static struct abbrev_table *
13744abbrev_table_read_table (struct dwarf2_section_info *section,
13745 sect_offset offset)
13746{
13747 struct objfile *objfile = dwarf2_per_objfile->objfile;
13748 bfd *abfd = section->asection->owner;
13749 struct abbrev_table *abbrev_table;
d521ce57 13750 const gdb_byte *abbrev_ptr;
c906108c
SS
13751 struct abbrev_info *cur_abbrev;
13752 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 13753 unsigned int abbrev_form;
f3dd6933
DJ
13754 struct attr_abbrev *cur_attrs;
13755 unsigned int allocated_attrs;
c906108c 13756
433df2d4 13757 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 13758 abbrev_table->offset = offset;
433df2d4
DE
13759 obstack_init (&abbrev_table->abbrev_obstack);
13760 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13761 (ABBREV_HASH_SIZE
13762 * sizeof (struct abbrev_info *)));
13763 memset (abbrev_table->abbrevs, 0,
13764 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 13765
433df2d4
DE
13766 dwarf2_read_section (objfile, section);
13767 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
13768 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13769 abbrev_ptr += bytes_read;
13770
f3dd6933
DJ
13771 allocated_attrs = ATTR_ALLOC_CHUNK;
13772 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 13773
0963b4bd 13774 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
13775 while (abbrev_number)
13776 {
433df2d4 13777 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
13778
13779 /* read in abbrev header */
13780 cur_abbrev->number = abbrev_number;
13781 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13782 abbrev_ptr += bytes_read;
13783 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13784 abbrev_ptr += 1;
13785
13786 /* now read in declarations */
13787 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13788 abbrev_ptr += bytes_read;
13789 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13790 abbrev_ptr += bytes_read;
13791 while (abbrev_name)
13792 {
f3dd6933 13793 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 13794 {
f3dd6933
DJ
13795 allocated_attrs += ATTR_ALLOC_CHUNK;
13796 cur_attrs
13797 = xrealloc (cur_attrs, (allocated_attrs
13798 * sizeof (struct attr_abbrev)));
c906108c 13799 }
ae038cb0 13800
f3dd6933
DJ
13801 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13802 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
13803 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13804 abbrev_ptr += bytes_read;
13805 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13806 abbrev_ptr += bytes_read;
13807 }
13808
433df2d4 13809 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
13810 (cur_abbrev->num_attrs
13811 * sizeof (struct attr_abbrev)));
13812 memcpy (cur_abbrev->attrs, cur_attrs,
13813 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13814
433df2d4 13815 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
13816
13817 /* Get next abbreviation.
13818 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
13819 always properly terminated with an abbrev number of 0.
13820 Exit loop if we encounter an abbreviation which we have
13821 already read (which means we are about to read the abbreviations
13822 for the next compile unit) or if the end of the abbreviation
13823 table is reached. */
433df2d4 13824 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
13825 break;
13826 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13827 abbrev_ptr += bytes_read;
433df2d4 13828 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
13829 break;
13830 }
f3dd6933
DJ
13831
13832 xfree (cur_attrs);
433df2d4 13833 return abbrev_table;
c906108c
SS
13834}
13835
433df2d4 13836/* Free the resources held by ABBREV_TABLE. */
c906108c 13837
c906108c 13838static void
433df2d4 13839abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 13840{
433df2d4
DE
13841 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13842 xfree (abbrev_table);
c906108c
SS
13843}
13844
f4dc4d17
DE
13845/* Same as abbrev_table_free but as a cleanup.
13846 We pass in a pointer to the pointer to the table so that we can
13847 set the pointer to NULL when we're done. It also simplifies
13848 build_type_unit_groups. */
13849
13850static void
13851abbrev_table_free_cleanup (void *table_ptr)
13852{
13853 struct abbrev_table **abbrev_table_ptr = table_ptr;
13854
13855 if (*abbrev_table_ptr != NULL)
13856 abbrev_table_free (*abbrev_table_ptr);
13857 *abbrev_table_ptr = NULL;
13858}
13859
433df2d4
DE
13860/* Read the abbrev table for CU from ABBREV_SECTION. */
13861
13862static void
13863dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13864 struct dwarf2_section_info *abbrev_section)
c906108c 13865{
433df2d4
DE
13866 cu->abbrev_table =
13867 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13868}
c906108c 13869
433df2d4 13870/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 13871
433df2d4
DE
13872static void
13873dwarf2_free_abbrev_table (void *ptr_to_cu)
13874{
13875 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 13876
a2ce51a0
DE
13877 if (cu->abbrev_table != NULL)
13878 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
13879 /* Set this to NULL so that we SEGV if we try to read it later,
13880 and also because free_comp_unit verifies this is NULL. */
13881 cu->abbrev_table = NULL;
13882}
13883\f
72bf9492
DJ
13884/* Returns nonzero if TAG represents a type that we might generate a partial
13885 symbol for. */
13886
13887static int
13888is_type_tag_for_partial (int tag)
13889{
13890 switch (tag)
13891 {
13892#if 0
13893 /* Some types that would be reasonable to generate partial symbols for,
13894 that we don't at present. */
13895 case DW_TAG_array_type:
13896 case DW_TAG_file_type:
13897 case DW_TAG_ptr_to_member_type:
13898 case DW_TAG_set_type:
13899 case DW_TAG_string_type:
13900 case DW_TAG_subroutine_type:
13901#endif
13902 case DW_TAG_base_type:
13903 case DW_TAG_class_type:
680b30c7 13904 case DW_TAG_interface_type:
72bf9492
DJ
13905 case DW_TAG_enumeration_type:
13906 case DW_TAG_structure_type:
13907 case DW_TAG_subrange_type:
13908 case DW_TAG_typedef:
13909 case DW_TAG_union_type:
13910 return 1;
13911 default:
13912 return 0;
13913 }
13914}
13915
13916/* Load all DIEs that are interesting for partial symbols into memory. */
13917
13918static struct partial_die_info *
dee91e82 13919load_partial_dies (const struct die_reader_specs *reader,
d521ce57 13920 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 13921{
dee91e82 13922 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13923 struct objfile *objfile = cu->objfile;
72bf9492
DJ
13924 struct partial_die_info *part_die;
13925 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13926 struct abbrev_info *abbrev;
13927 unsigned int bytes_read;
5afb4e99 13928 unsigned int load_all = 0;
72bf9492
DJ
13929 int nesting_level = 1;
13930
13931 parent_die = NULL;
13932 last_die = NULL;
13933
7adf1e79
DE
13934 gdb_assert (cu->per_cu != NULL);
13935 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
13936 load_all = 1;
13937
72bf9492
DJ
13938 cu->partial_dies
13939 = htab_create_alloc_ex (cu->header.length / 12,
13940 partial_die_hash,
13941 partial_die_eq,
13942 NULL,
13943 &cu->comp_unit_obstack,
13944 hashtab_obstack_allocate,
13945 dummy_obstack_deallocate);
13946
13947 part_die = obstack_alloc (&cu->comp_unit_obstack,
13948 sizeof (struct partial_die_info));
13949
13950 while (1)
13951 {
13952 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13953
13954 /* A NULL abbrev means the end of a series of children. */
13955 if (abbrev == NULL)
13956 {
13957 if (--nesting_level == 0)
13958 {
13959 /* PART_DIE was probably the last thing allocated on the
13960 comp_unit_obstack, so we could call obstack_free
13961 here. We don't do that because the waste is small,
13962 and will be cleaned up when we're done with this
13963 compilation unit. This way, we're also more robust
13964 against other users of the comp_unit_obstack. */
13965 return first_die;
13966 }
13967 info_ptr += bytes_read;
13968 last_die = parent_die;
13969 parent_die = parent_die->die_parent;
13970 continue;
13971 }
13972
98bfdba5
PA
13973 /* Check for template arguments. We never save these; if
13974 they're seen, we just mark the parent, and go on our way. */
13975 if (parent_die != NULL
13976 && cu->language == language_cplus
13977 && (abbrev->tag == DW_TAG_template_type_param
13978 || abbrev->tag == DW_TAG_template_value_param))
13979 {
13980 parent_die->has_template_arguments = 1;
13981
13982 if (!load_all)
13983 {
13984 /* We don't need a partial DIE for the template argument. */
dee91e82 13985 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13986 continue;
13987 }
13988 }
13989
0d99eb77 13990 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
13991 Skip their other children. */
13992 if (!load_all
13993 && cu->language == language_cplus
13994 && parent_die != NULL
13995 && parent_die->tag == DW_TAG_subprogram)
13996 {
dee91e82 13997 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13998 continue;
13999 }
14000
5afb4e99
DJ
14001 /* Check whether this DIE is interesting enough to save. Normally
14002 we would not be interested in members here, but there may be
14003 later variables referencing them via DW_AT_specification (for
14004 static members). */
14005 if (!load_all
14006 && !is_type_tag_for_partial (abbrev->tag)
72929c62 14007 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
14008 && abbrev->tag != DW_TAG_enumerator
14009 && abbrev->tag != DW_TAG_subprogram
bc30ff58 14010 && abbrev->tag != DW_TAG_lexical_block
72bf9492 14011 && abbrev->tag != DW_TAG_variable
5afb4e99 14012 && abbrev->tag != DW_TAG_namespace
f55ee35c 14013 && abbrev->tag != DW_TAG_module
95554aad
TT
14014 && abbrev->tag != DW_TAG_member
14015 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
14016 {
14017 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14018 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
14019 continue;
14020 }
14021
dee91e82
DE
14022 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14023 info_ptr);
72bf9492
DJ
14024
14025 /* This two-pass algorithm for processing partial symbols has a
14026 high cost in cache pressure. Thus, handle some simple cases
14027 here which cover the majority of C partial symbols. DIEs
14028 which neither have specification tags in them, nor could have
14029 specification tags elsewhere pointing at them, can simply be
14030 processed and discarded.
14031
14032 This segment is also optional; scan_partial_symbols and
14033 add_partial_symbol will handle these DIEs if we chain
14034 them in normally. When compilers which do not emit large
14035 quantities of duplicate debug information are more common,
14036 this code can probably be removed. */
14037
14038 /* Any complete simple types at the top level (pretty much all
14039 of them, for a language without namespaces), can be processed
14040 directly. */
14041 if (parent_die == NULL
14042 && part_die->has_specification == 0
14043 && part_die->is_declaration == 0
d8228535 14044 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
14045 || part_die->tag == DW_TAG_base_type
14046 || part_die->tag == DW_TAG_subrange_type))
14047 {
14048 if (building_psymtab && part_die->name != NULL)
04a679b8 14049 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14050 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
14051 &objfile->static_psymbols,
14052 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 14053 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14054 continue;
14055 }
14056
d8228535
JK
14057 /* The exception for DW_TAG_typedef with has_children above is
14058 a workaround of GCC PR debug/47510. In the case of this complaint
14059 type_name_no_tag_or_error will error on such types later.
14060
14061 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14062 it could not find the child DIEs referenced later, this is checked
14063 above. In correct DWARF DW_TAG_typedef should have no children. */
14064
14065 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14066 complaint (&symfile_complaints,
14067 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14068 "- DIE at 0x%x [in module %s]"),
b64f50a1 14069 part_die->offset.sect_off, objfile->name);
d8228535 14070
72bf9492
DJ
14071 /* If we're at the second level, and we're an enumerator, and
14072 our parent has no specification (meaning possibly lives in a
14073 namespace elsewhere), then we can add the partial symbol now
14074 instead of queueing it. */
14075 if (part_die->tag == DW_TAG_enumerator
14076 && parent_die != NULL
14077 && parent_die->die_parent == NULL
14078 && parent_die->tag == DW_TAG_enumeration_type
14079 && parent_die->has_specification == 0)
14080 {
14081 if (part_die->name == NULL)
3e43a32a
MS
14082 complaint (&symfile_complaints,
14083 _("malformed enumerator DIE ignored"));
72bf9492 14084 else if (building_psymtab)
04a679b8 14085 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14086 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
14087 (cu->language == language_cplus
14088 || cu->language == language_java)
bb5ed363
DE
14089 ? &objfile->global_psymbols
14090 : &objfile->static_psymbols,
14091 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 14092
dee91e82 14093 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14094 continue;
14095 }
14096
14097 /* We'll save this DIE so link it in. */
14098 part_die->die_parent = parent_die;
14099 part_die->die_sibling = NULL;
14100 part_die->die_child = NULL;
14101
14102 if (last_die && last_die == parent_die)
14103 last_die->die_child = part_die;
14104 else if (last_die)
14105 last_die->die_sibling = part_die;
14106
14107 last_die = part_die;
14108
14109 if (first_die == NULL)
14110 first_die = part_die;
14111
14112 /* Maybe add the DIE to the hash table. Not all DIEs that we
14113 find interesting need to be in the hash table, because we
14114 also have the parent/sibling/child chains; only those that we
14115 might refer to by offset later during partial symbol reading.
14116
14117 For now this means things that might have be the target of a
14118 DW_AT_specification, DW_AT_abstract_origin, or
14119 DW_AT_extension. DW_AT_extension will refer only to
14120 namespaces; DW_AT_abstract_origin refers to functions (and
14121 many things under the function DIE, but we do not recurse
14122 into function DIEs during partial symbol reading) and
14123 possibly variables as well; DW_AT_specification refers to
14124 declarations. Declarations ought to have the DW_AT_declaration
14125 flag. It happens that GCC forgets to put it in sometimes, but
14126 only for functions, not for types.
14127
14128 Adding more things than necessary to the hash table is harmless
14129 except for the performance cost. Adding too few will result in
5afb4e99
DJ
14130 wasted time in find_partial_die, when we reread the compilation
14131 unit with load_all_dies set. */
72bf9492 14132
5afb4e99 14133 if (load_all
72929c62 14134 || abbrev->tag == DW_TAG_constant
5afb4e99 14135 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
14136 || abbrev->tag == DW_TAG_variable
14137 || abbrev->tag == DW_TAG_namespace
14138 || part_die->is_declaration)
14139 {
14140 void **slot;
14141
14142 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 14143 part_die->offset.sect_off, INSERT);
72bf9492
DJ
14144 *slot = part_die;
14145 }
14146
14147 part_die = obstack_alloc (&cu->comp_unit_obstack,
14148 sizeof (struct partial_die_info));
14149
14150 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 14151 we have no reason to follow the children of structures; for other
98bfdba5
PA
14152 languages we have to, so that we can get at method physnames
14153 to infer fully qualified class names, for DW_AT_specification,
14154 and for C++ template arguments. For C++, we also look one level
14155 inside functions to find template arguments (if the name of the
14156 function does not already contain the template arguments).
bc30ff58
JB
14157
14158 For Ada, we need to scan the children of subprograms and lexical
14159 blocks as well because Ada allows the definition of nested
14160 entities that could be interesting for the debugger, such as
14161 nested subprograms for instance. */
72bf9492 14162 if (last_die->has_children
5afb4e99
DJ
14163 && (load_all
14164 || last_die->tag == DW_TAG_namespace
f55ee35c 14165 || last_die->tag == DW_TAG_module
72bf9492 14166 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
14167 || (cu->language == language_cplus
14168 && last_die->tag == DW_TAG_subprogram
14169 && (last_die->name == NULL
14170 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
14171 || (cu->language != language_c
14172 && (last_die->tag == DW_TAG_class_type
680b30c7 14173 || last_die->tag == DW_TAG_interface_type
72bf9492 14174 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
14175 || last_die->tag == DW_TAG_union_type))
14176 || (cu->language == language_ada
14177 && (last_die->tag == DW_TAG_subprogram
14178 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
14179 {
14180 nesting_level++;
14181 parent_die = last_die;
14182 continue;
14183 }
14184
14185 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14186 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
14187
14188 /* Back to the top, do it again. */
14189 }
14190}
14191
c906108c
SS
14192/* Read a minimal amount of information into the minimal die structure. */
14193
d521ce57 14194static const gdb_byte *
dee91e82
DE
14195read_partial_die (const struct die_reader_specs *reader,
14196 struct partial_die_info *part_die,
14197 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 14198 const gdb_byte *info_ptr)
c906108c 14199{
dee91e82 14200 struct dwarf2_cu *cu = reader->cu;
bb5ed363 14201 struct objfile *objfile = cu->objfile;
d521ce57 14202 const gdb_byte *buffer = reader->buffer;
fa238c03 14203 unsigned int i;
c906108c 14204 struct attribute attr;
c5aa993b 14205 int has_low_pc_attr = 0;
c906108c 14206 int has_high_pc_attr = 0;
91da1414 14207 int high_pc_relative = 0;
c906108c 14208
72bf9492 14209 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 14210
b64f50a1 14211 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
14212
14213 info_ptr += abbrev_len;
14214
14215 if (abbrev == NULL)
14216 return info_ptr;
14217
c906108c
SS
14218 part_die->tag = abbrev->tag;
14219 part_die->has_children = abbrev->has_children;
c906108c
SS
14220
14221 for (i = 0; i < abbrev->num_attrs; ++i)
14222 {
dee91e82 14223 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
14224
14225 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 14226 partial symbol table. */
c906108c
SS
14227 switch (attr.name)
14228 {
14229 case DW_AT_name:
71c25dea
TT
14230 switch (part_die->tag)
14231 {
14232 case DW_TAG_compile_unit:
95554aad 14233 case DW_TAG_partial_unit:
348e048f 14234 case DW_TAG_type_unit:
71c25dea
TT
14235 /* Compilation units have a DW_AT_name that is a filename, not
14236 a source language identifier. */
14237 case DW_TAG_enumeration_type:
14238 case DW_TAG_enumerator:
14239 /* These tags always have simple identifiers already; no need
14240 to canonicalize them. */
14241 part_die->name = DW_STRING (&attr);
14242 break;
14243 default:
14244 part_die->name
14245 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 14246 &objfile->objfile_obstack);
71c25dea
TT
14247 break;
14248 }
c906108c 14249 break;
31ef98ae 14250 case DW_AT_linkage_name:
c906108c 14251 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
14252 /* Note that both forms of linkage name might appear. We
14253 assume they will be the same, and we only store the last
14254 one we see. */
94af9270
KS
14255 if (cu->language == language_ada)
14256 part_die->name = DW_STRING (&attr);
abc72ce4 14257 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
14258 break;
14259 case DW_AT_low_pc:
14260 has_low_pc_attr = 1;
14261 part_die->lowpc = DW_ADDR (&attr);
14262 break;
14263 case DW_AT_high_pc:
14264 has_high_pc_attr = 1;
3019eac3
DE
14265 if (attr.form == DW_FORM_addr
14266 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
14267 part_die->highpc = DW_ADDR (&attr);
14268 else
14269 {
14270 high_pc_relative = 1;
14271 part_die->highpc = DW_UNSND (&attr);
14272 }
c906108c
SS
14273 break;
14274 case DW_AT_location:
0963b4bd 14275 /* Support the .debug_loc offsets. */
8e19ed76
PS
14276 if (attr_form_is_block (&attr))
14277 {
95554aad 14278 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 14279 }
3690dd37 14280 else if (attr_form_is_section_offset (&attr))
8e19ed76 14281 {
4d3c2250 14282 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
14283 }
14284 else
14285 {
4d3c2250
KB
14286 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14287 "partial symbol information");
8e19ed76 14288 }
c906108c 14289 break;
c906108c
SS
14290 case DW_AT_external:
14291 part_die->is_external = DW_UNSND (&attr);
14292 break;
14293 case DW_AT_declaration:
14294 part_die->is_declaration = DW_UNSND (&attr);
14295 break;
14296 case DW_AT_type:
14297 part_die->has_type = 1;
14298 break;
14299 case DW_AT_abstract_origin:
14300 case DW_AT_specification:
72bf9492
DJ
14301 case DW_AT_extension:
14302 part_die->has_specification = 1;
c764a876 14303 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
14304 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14305 || cu->per_cu->is_dwz);
c906108c
SS
14306 break;
14307 case DW_AT_sibling:
14308 /* Ignore absolute siblings, they might point outside of
14309 the current compile unit. */
14310 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
14311 complaint (&symfile_complaints,
14312 _("ignoring absolute DW_AT_sibling"));
c906108c 14313 else
b64f50a1 14314 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 14315 break;
fa4028e9
JB
14316 case DW_AT_byte_size:
14317 part_die->has_byte_size = 1;
14318 break;
68511cec
CES
14319 case DW_AT_calling_convention:
14320 /* DWARF doesn't provide a way to identify a program's source-level
14321 entry point. DW_AT_calling_convention attributes are only meant
14322 to describe functions' calling conventions.
14323
14324 However, because it's a necessary piece of information in
14325 Fortran, and because DW_CC_program is the only piece of debugging
14326 information whose definition refers to a 'main program' at all,
14327 several compilers have begun marking Fortran main programs with
14328 DW_CC_program --- even when those functions use the standard
14329 calling conventions.
14330
14331 So until DWARF specifies a way to provide this information and
14332 compilers pick up the new representation, we'll support this
14333 practice. */
14334 if (DW_UNSND (&attr) == DW_CC_program
14335 && cu->language == language_fortran)
01f8c46d
JK
14336 {
14337 set_main_name (part_die->name);
14338
14339 /* As this DIE has a static linkage the name would be difficult
14340 to look up later. */
14341 language_of_main = language_fortran;
14342 }
68511cec 14343 break;
481860b3
GB
14344 case DW_AT_inline:
14345 if (DW_UNSND (&attr) == DW_INL_inlined
14346 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14347 part_die->may_be_inlined = 1;
14348 break;
95554aad
TT
14349
14350 case DW_AT_import:
14351 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
14352 {
14353 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14354 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14355 || cu->per_cu->is_dwz);
14356 }
95554aad
TT
14357 break;
14358
c906108c
SS
14359 default:
14360 break;
14361 }
14362 }
14363
91da1414
MW
14364 if (high_pc_relative)
14365 part_die->highpc += part_die->lowpc;
14366
9373cf26
JK
14367 if (has_low_pc_attr && has_high_pc_attr)
14368 {
14369 /* When using the GNU linker, .gnu.linkonce. sections are used to
14370 eliminate duplicate copies of functions and vtables and such.
14371 The linker will arbitrarily choose one and discard the others.
14372 The AT_*_pc values for such functions refer to local labels in
14373 these sections. If the section from that file was discarded, the
14374 labels are not in the output, so the relocs get a value of 0.
14375 If this is a discarded function, mark the pc bounds as invalid,
14376 so that GDB will ignore it. */
14377 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14378 {
bb5ed363 14379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14380
14381 complaint (&symfile_complaints,
14382 _("DW_AT_low_pc %s is zero "
14383 "for DIE at 0x%x [in module %s]"),
14384 paddress (gdbarch, part_die->lowpc),
b64f50a1 14385 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14386 }
14387 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14388 else if (part_die->lowpc >= part_die->highpc)
14389 {
bb5ed363 14390 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14391
14392 complaint (&symfile_complaints,
14393 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14394 "for DIE at 0x%x [in module %s]"),
14395 paddress (gdbarch, part_die->lowpc),
14396 paddress (gdbarch, part_die->highpc),
b64f50a1 14397 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14398 }
14399 else
14400 part_die->has_pc_info = 1;
14401 }
85cbf3d3 14402
c906108c
SS
14403 return info_ptr;
14404}
14405
72bf9492
DJ
14406/* Find a cached partial DIE at OFFSET in CU. */
14407
14408static struct partial_die_info *
b64f50a1 14409find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
14410{
14411 struct partial_die_info *lookup_die = NULL;
14412 struct partial_die_info part_die;
14413
14414 part_die.offset = offset;
b64f50a1
JK
14415 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14416 offset.sect_off);
72bf9492 14417
72bf9492
DJ
14418 return lookup_die;
14419}
14420
348e048f
DE
14421/* Find a partial DIE at OFFSET, which may or may not be in CU,
14422 except in the case of .debug_types DIEs which do not reference
14423 outside their CU (they do however referencing other types via
55f1336d 14424 DW_FORM_ref_sig8). */
72bf9492
DJ
14425
14426static struct partial_die_info *
36586728 14427find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 14428{
bb5ed363 14429 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
14430 struct dwarf2_per_cu_data *per_cu = NULL;
14431 struct partial_die_info *pd = NULL;
72bf9492 14432
36586728
TT
14433 if (offset_in_dwz == cu->per_cu->is_dwz
14434 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
14435 {
14436 pd = find_partial_die_in_comp_unit (offset, cu);
14437 if (pd != NULL)
14438 return pd;
0d99eb77
DE
14439 /* We missed recording what we needed.
14440 Load all dies and try again. */
14441 per_cu = cu->per_cu;
5afb4e99 14442 }
0d99eb77
DE
14443 else
14444 {
14445 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 14446 if (cu->per_cu->is_debug_types)
0d99eb77
DE
14447 {
14448 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14449 " external reference to offset 0x%lx [in module %s].\n"),
14450 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14451 bfd_get_filename (objfile->obfd));
14452 }
36586728
TT
14453 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14454 objfile);
72bf9492 14455
0d99eb77
DE
14456 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14457 load_partial_comp_unit (per_cu);
ae038cb0 14458
0d99eb77
DE
14459 per_cu->cu->last_used = 0;
14460 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14461 }
5afb4e99 14462
dee91e82
DE
14463 /* If we didn't find it, and not all dies have been loaded,
14464 load them all and try again. */
14465
5afb4e99
DJ
14466 if (pd == NULL && per_cu->load_all_dies == 0)
14467 {
5afb4e99 14468 per_cu->load_all_dies = 1;
fd820528
DE
14469
14470 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14471 THIS_CU->cu may already be in use. So we can't just free it and
14472 replace its DIEs with the ones we read in. Instead, we leave those
14473 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14474 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14475 set. */
dee91e82 14476 load_partial_comp_unit (per_cu);
5afb4e99
DJ
14477
14478 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14479 }
14480
14481 if (pd == NULL)
14482 internal_error (__FILE__, __LINE__,
3e43a32a
MS
14483 _("could not find partial DIE 0x%x "
14484 "in cache [from module %s]\n"),
b64f50a1 14485 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 14486 return pd;
72bf9492
DJ
14487}
14488
abc72ce4
DE
14489/* See if we can figure out if the class lives in a namespace. We do
14490 this by looking for a member function; its demangled name will
14491 contain namespace info, if there is any. */
14492
14493static void
14494guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14495 struct dwarf2_cu *cu)
14496{
14497 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14498 what template types look like, because the demangler
14499 frequently doesn't give the same name as the debug info. We
14500 could fix this by only using the demangled name to get the
14501 prefix (but see comment in read_structure_type). */
14502
14503 struct partial_die_info *real_pdi;
14504 struct partial_die_info *child_pdi;
14505
14506 /* If this DIE (this DIE's specification, if any) has a parent, then
14507 we should not do this. We'll prepend the parent's fully qualified
14508 name when we create the partial symbol. */
14509
14510 real_pdi = struct_pdi;
14511 while (real_pdi->has_specification)
36586728
TT
14512 real_pdi = find_partial_die (real_pdi->spec_offset,
14513 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
14514
14515 if (real_pdi->die_parent != NULL)
14516 return;
14517
14518 for (child_pdi = struct_pdi->die_child;
14519 child_pdi != NULL;
14520 child_pdi = child_pdi->die_sibling)
14521 {
14522 if (child_pdi->tag == DW_TAG_subprogram
14523 && child_pdi->linkage_name != NULL)
14524 {
14525 char *actual_class_name
14526 = language_class_name_from_physname (cu->language_defn,
14527 child_pdi->linkage_name);
14528 if (actual_class_name != NULL)
14529 {
14530 struct_pdi->name
10f0c4bb
TT
14531 = obstack_copy0 (&cu->objfile->objfile_obstack,
14532 actual_class_name,
14533 strlen (actual_class_name));
abc72ce4
DE
14534 xfree (actual_class_name);
14535 }
14536 break;
14537 }
14538 }
14539}
14540
72bf9492
DJ
14541/* Adjust PART_DIE before generating a symbol for it. This function
14542 may set the is_external flag or change the DIE's name. */
14543
14544static void
14545fixup_partial_die (struct partial_die_info *part_die,
14546 struct dwarf2_cu *cu)
14547{
abc72ce4
DE
14548 /* Once we've fixed up a die, there's no point in doing so again.
14549 This also avoids a memory leak if we were to call
14550 guess_partial_die_structure_name multiple times. */
14551 if (part_die->fixup_called)
14552 return;
14553
72bf9492
DJ
14554 /* If we found a reference attribute and the DIE has no name, try
14555 to find a name in the referred to DIE. */
14556
14557 if (part_die->name == NULL && part_die->has_specification)
14558 {
14559 struct partial_die_info *spec_die;
72bf9492 14560
36586728
TT
14561 spec_die = find_partial_die (part_die->spec_offset,
14562 part_die->spec_is_dwz, cu);
72bf9492 14563
10b3939b 14564 fixup_partial_die (spec_die, cu);
72bf9492
DJ
14565
14566 if (spec_die->name)
14567 {
14568 part_die->name = spec_die->name;
14569
14570 /* Copy DW_AT_external attribute if it is set. */
14571 if (spec_die->is_external)
14572 part_die->is_external = spec_die->is_external;
14573 }
14574 }
14575
14576 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
14577
14578 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 14579 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 14580
abc72ce4
DE
14581 /* If there is no parent die to provide a namespace, and there are
14582 children, see if we can determine the namespace from their linkage
122d1940 14583 name. */
abc72ce4 14584 if (cu->language == language_cplus
8b70b953 14585 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
14586 && part_die->die_parent == NULL
14587 && part_die->has_children
14588 && (part_die->tag == DW_TAG_class_type
14589 || part_die->tag == DW_TAG_structure_type
14590 || part_die->tag == DW_TAG_union_type))
14591 guess_partial_die_structure_name (part_die, cu);
14592
53832f31
TT
14593 /* GCC might emit a nameless struct or union that has a linkage
14594 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14595 if (part_die->name == NULL
96408a79
SA
14596 && (part_die->tag == DW_TAG_class_type
14597 || part_die->tag == DW_TAG_interface_type
14598 || part_die->tag == DW_TAG_structure_type
14599 || part_die->tag == DW_TAG_union_type)
53832f31
TT
14600 && part_die->linkage_name != NULL)
14601 {
14602 char *demangled;
14603
8de20a37 14604 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
14605 if (demangled)
14606 {
96408a79
SA
14607 const char *base;
14608
14609 /* Strip any leading namespaces/classes, keep only the base name.
14610 DW_AT_name for named DIEs does not contain the prefixes. */
14611 base = strrchr (demangled, ':');
14612 if (base && base > demangled && base[-1] == ':')
14613 base++;
14614 else
14615 base = demangled;
14616
10f0c4bb
TT
14617 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14618 base, strlen (base));
53832f31
TT
14619 xfree (demangled);
14620 }
14621 }
14622
abc72ce4 14623 part_die->fixup_called = 1;
72bf9492
DJ
14624}
14625
a8329558 14626/* Read an attribute value described by an attribute form. */
c906108c 14627
d521ce57 14628static const gdb_byte *
dee91e82
DE
14629read_attribute_value (const struct die_reader_specs *reader,
14630 struct attribute *attr, unsigned form,
d521ce57 14631 const gdb_byte *info_ptr)
c906108c 14632{
dee91e82
DE
14633 struct dwarf2_cu *cu = reader->cu;
14634 bfd *abfd = reader->abfd;
e7c27a73 14635 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14636 unsigned int bytes_read;
14637 struct dwarf_block *blk;
14638
a8329558
KW
14639 attr->form = form;
14640 switch (form)
c906108c 14641 {
c906108c 14642 case DW_FORM_ref_addr:
ae411497 14643 if (cu->header.version == 2)
4568ecf9 14644 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 14645 else
4568ecf9
DE
14646 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14647 &cu->header, &bytes_read);
ae411497
TT
14648 info_ptr += bytes_read;
14649 break;
36586728
TT
14650 case DW_FORM_GNU_ref_alt:
14651 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14652 info_ptr += bytes_read;
14653 break;
ae411497 14654 case DW_FORM_addr:
e7c27a73 14655 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 14656 info_ptr += bytes_read;
c906108c
SS
14657 break;
14658 case DW_FORM_block2:
7b5a2f43 14659 blk = dwarf_alloc_block (cu);
c906108c
SS
14660 blk->size = read_2_bytes (abfd, info_ptr);
14661 info_ptr += 2;
14662 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14663 info_ptr += blk->size;
14664 DW_BLOCK (attr) = blk;
14665 break;
14666 case DW_FORM_block4:
7b5a2f43 14667 blk = dwarf_alloc_block (cu);
c906108c
SS
14668 blk->size = read_4_bytes (abfd, info_ptr);
14669 info_ptr += 4;
14670 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14671 info_ptr += blk->size;
14672 DW_BLOCK (attr) = blk;
14673 break;
14674 case DW_FORM_data2:
14675 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14676 info_ptr += 2;
14677 break;
14678 case DW_FORM_data4:
14679 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14680 info_ptr += 4;
14681 break;
14682 case DW_FORM_data8:
14683 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14684 info_ptr += 8;
14685 break;
2dc7f7b3
TT
14686 case DW_FORM_sec_offset:
14687 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14688 info_ptr += bytes_read;
14689 break;
c906108c 14690 case DW_FORM_string:
9b1c24c8 14691 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 14692 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
14693 info_ptr += bytes_read;
14694 break;
4bdf3d34 14695 case DW_FORM_strp:
36586728
TT
14696 if (!cu->per_cu->is_dwz)
14697 {
14698 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14699 &bytes_read);
14700 DW_STRING_IS_CANONICAL (attr) = 0;
14701 info_ptr += bytes_read;
14702 break;
14703 }
14704 /* FALLTHROUGH */
14705 case DW_FORM_GNU_strp_alt:
14706 {
14707 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14708 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14709 &bytes_read);
14710
14711 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14712 DW_STRING_IS_CANONICAL (attr) = 0;
14713 info_ptr += bytes_read;
14714 }
4bdf3d34 14715 break;
2dc7f7b3 14716 case DW_FORM_exprloc:
c906108c 14717 case DW_FORM_block:
7b5a2f43 14718 blk = dwarf_alloc_block (cu);
c906108c
SS
14719 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14720 info_ptr += bytes_read;
14721 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14722 info_ptr += blk->size;
14723 DW_BLOCK (attr) = blk;
14724 break;
14725 case DW_FORM_block1:
7b5a2f43 14726 blk = dwarf_alloc_block (cu);
c906108c
SS
14727 blk->size = read_1_byte (abfd, info_ptr);
14728 info_ptr += 1;
14729 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14730 info_ptr += blk->size;
14731 DW_BLOCK (attr) = blk;
14732 break;
14733 case DW_FORM_data1:
14734 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14735 info_ptr += 1;
14736 break;
14737 case DW_FORM_flag:
14738 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14739 info_ptr += 1;
14740 break;
2dc7f7b3
TT
14741 case DW_FORM_flag_present:
14742 DW_UNSND (attr) = 1;
14743 break;
c906108c
SS
14744 case DW_FORM_sdata:
14745 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14746 info_ptr += bytes_read;
14747 break;
14748 case DW_FORM_udata:
14749 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14750 info_ptr += bytes_read;
14751 break;
14752 case DW_FORM_ref1:
4568ecf9
DE
14753 DW_UNSND (attr) = (cu->header.offset.sect_off
14754 + read_1_byte (abfd, info_ptr));
c906108c
SS
14755 info_ptr += 1;
14756 break;
14757 case DW_FORM_ref2:
4568ecf9
DE
14758 DW_UNSND (attr) = (cu->header.offset.sect_off
14759 + read_2_bytes (abfd, info_ptr));
c906108c
SS
14760 info_ptr += 2;
14761 break;
14762 case DW_FORM_ref4:
4568ecf9
DE
14763 DW_UNSND (attr) = (cu->header.offset.sect_off
14764 + read_4_bytes (abfd, info_ptr));
c906108c
SS
14765 info_ptr += 4;
14766 break;
613e1657 14767 case DW_FORM_ref8:
4568ecf9
DE
14768 DW_UNSND (attr) = (cu->header.offset.sect_off
14769 + read_8_bytes (abfd, info_ptr));
613e1657
KB
14770 info_ptr += 8;
14771 break;
55f1336d 14772 case DW_FORM_ref_sig8:
ac9ec31b 14773 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
14774 info_ptr += 8;
14775 break;
c906108c 14776 case DW_FORM_ref_udata:
4568ecf9
DE
14777 DW_UNSND (attr) = (cu->header.offset.sect_off
14778 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
14779 info_ptr += bytes_read;
14780 break;
c906108c 14781 case DW_FORM_indirect:
a8329558
KW
14782 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14783 info_ptr += bytes_read;
dee91e82 14784 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 14785 break;
3019eac3
DE
14786 case DW_FORM_GNU_addr_index:
14787 if (reader->dwo_file == NULL)
14788 {
14789 /* For now flag a hard error.
14790 Later we can turn this into a complaint. */
14791 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14792 dwarf_form_name (form),
14793 bfd_get_filename (abfd));
14794 }
14795 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14796 info_ptr += bytes_read;
14797 break;
14798 case DW_FORM_GNU_str_index:
14799 if (reader->dwo_file == NULL)
14800 {
14801 /* For now flag a hard error.
14802 Later we can turn this into a complaint if warranted. */
14803 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14804 dwarf_form_name (form),
14805 bfd_get_filename (abfd));
14806 }
14807 {
14808 ULONGEST str_index =
14809 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14810
14811 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14812 DW_STRING_IS_CANONICAL (attr) = 0;
14813 info_ptr += bytes_read;
14814 }
14815 break;
c906108c 14816 default:
8a3fe4f8 14817 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
14818 dwarf_form_name (form),
14819 bfd_get_filename (abfd));
c906108c 14820 }
28e94949 14821
36586728
TT
14822 /* Super hack. */
14823 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14824 attr->form = DW_FORM_GNU_ref_alt;
14825
28e94949
JB
14826 /* We have seen instances where the compiler tried to emit a byte
14827 size attribute of -1 which ended up being encoded as an unsigned
14828 0xffffffff. Although 0xffffffff is technically a valid size value,
14829 an object of this size seems pretty unlikely so we can relatively
14830 safely treat these cases as if the size attribute was invalid and
14831 treat them as zero by default. */
14832 if (attr->name == DW_AT_byte_size
14833 && form == DW_FORM_data4
14834 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
14835 {
14836 complaint
14837 (&symfile_complaints,
43bbcdc2
PH
14838 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14839 hex_string (DW_UNSND (attr)));
01c66ae6
JB
14840 DW_UNSND (attr) = 0;
14841 }
28e94949 14842
c906108c
SS
14843 return info_ptr;
14844}
14845
a8329558
KW
14846/* Read an attribute described by an abbreviated attribute. */
14847
d521ce57 14848static const gdb_byte *
dee91e82
DE
14849read_attribute (const struct die_reader_specs *reader,
14850 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 14851 const gdb_byte *info_ptr)
a8329558
KW
14852{
14853 attr->name = abbrev->name;
dee91e82 14854 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
14855}
14856
0963b4bd 14857/* Read dwarf information from a buffer. */
c906108c
SS
14858
14859static unsigned int
a1855c1d 14860read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14861{
fe1b8b76 14862 return bfd_get_8 (abfd, buf);
c906108c
SS
14863}
14864
14865static int
a1855c1d 14866read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14867{
fe1b8b76 14868 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
14869}
14870
14871static unsigned int
a1855c1d 14872read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14873{
fe1b8b76 14874 return bfd_get_16 (abfd, buf);
c906108c
SS
14875}
14876
21ae7a4d 14877static int
a1855c1d 14878read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14879{
14880 return bfd_get_signed_16 (abfd, buf);
14881}
14882
c906108c 14883static unsigned int
a1855c1d 14884read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14885{
fe1b8b76 14886 return bfd_get_32 (abfd, buf);
c906108c
SS
14887}
14888
21ae7a4d 14889static int
a1855c1d 14890read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14891{
14892 return bfd_get_signed_32 (abfd, buf);
14893}
14894
93311388 14895static ULONGEST
a1855c1d 14896read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14897{
fe1b8b76 14898 return bfd_get_64 (abfd, buf);
c906108c
SS
14899}
14900
14901static CORE_ADDR
d521ce57 14902read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 14903 unsigned int *bytes_read)
c906108c 14904{
e7c27a73 14905 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14906 CORE_ADDR retval = 0;
14907
107d2387 14908 if (cu_header->signed_addr_p)
c906108c 14909 {
107d2387
AC
14910 switch (cu_header->addr_size)
14911 {
14912 case 2:
fe1b8b76 14913 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
14914 break;
14915 case 4:
fe1b8b76 14916 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
14917 break;
14918 case 8:
fe1b8b76 14919 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
14920 break;
14921 default:
8e65ff28 14922 internal_error (__FILE__, __LINE__,
e2e0b3e5 14923 _("read_address: bad switch, signed [in module %s]"),
659b0389 14924 bfd_get_filename (abfd));
107d2387
AC
14925 }
14926 }
14927 else
14928 {
14929 switch (cu_header->addr_size)
14930 {
14931 case 2:
fe1b8b76 14932 retval = bfd_get_16 (abfd, buf);
107d2387
AC
14933 break;
14934 case 4:
fe1b8b76 14935 retval = bfd_get_32 (abfd, buf);
107d2387
AC
14936 break;
14937 case 8:
fe1b8b76 14938 retval = bfd_get_64 (abfd, buf);
107d2387
AC
14939 break;
14940 default:
8e65ff28 14941 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
14942 _("read_address: bad switch, "
14943 "unsigned [in module %s]"),
659b0389 14944 bfd_get_filename (abfd));
107d2387 14945 }
c906108c 14946 }
64367e0a 14947
107d2387
AC
14948 *bytes_read = cu_header->addr_size;
14949 return retval;
c906108c
SS
14950}
14951
f7ef9339 14952/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
14953 specification allows the initial length to take up either 4 bytes
14954 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14955 bytes describe the length and all offsets will be 8 bytes in length
14956 instead of 4.
14957
f7ef9339
KB
14958 An older, non-standard 64-bit format is also handled by this
14959 function. The older format in question stores the initial length
14960 as an 8-byte quantity without an escape value. Lengths greater
14961 than 2^32 aren't very common which means that the initial 4 bytes
14962 is almost always zero. Since a length value of zero doesn't make
14963 sense for the 32-bit format, this initial zero can be considered to
14964 be an escape value which indicates the presence of the older 64-bit
14965 format. As written, the code can't detect (old format) lengths
917c78fc
MK
14966 greater than 4GB. If it becomes necessary to handle lengths
14967 somewhat larger than 4GB, we could allow other small values (such
14968 as the non-sensical values of 1, 2, and 3) to also be used as
14969 escape values indicating the presence of the old format.
f7ef9339 14970
917c78fc
MK
14971 The value returned via bytes_read should be used to increment the
14972 relevant pointer after calling read_initial_length().
c764a876 14973
613e1657
KB
14974 [ Note: read_initial_length() and read_offset() are based on the
14975 document entitled "DWARF Debugging Information Format", revision
f7ef9339 14976 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
14977 from:
14978
f7ef9339 14979 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 14980
613e1657
KB
14981 This document is only a draft and is subject to change. (So beware.)
14982
f7ef9339 14983 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
14984 determined empirically by examining 64-bit ELF files produced by
14985 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
14986
14987 - Kevin, July 16, 2002
613e1657
KB
14988 ] */
14989
14990static LONGEST
d521ce57 14991read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 14992{
fe1b8b76 14993 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 14994
dd373385 14995 if (length == 0xffffffff)
613e1657 14996 {
fe1b8b76 14997 length = bfd_get_64 (abfd, buf + 4);
613e1657 14998 *bytes_read = 12;
613e1657 14999 }
dd373385 15000 else if (length == 0)
f7ef9339 15001 {
dd373385 15002 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 15003 length = bfd_get_64 (abfd, buf);
f7ef9339 15004 *bytes_read = 8;
f7ef9339 15005 }
613e1657
KB
15006 else
15007 {
15008 *bytes_read = 4;
613e1657
KB
15009 }
15010
c764a876
DE
15011 return length;
15012}
dd373385 15013
c764a876
DE
15014/* Cover function for read_initial_length.
15015 Returns the length of the object at BUF, and stores the size of the
15016 initial length in *BYTES_READ and stores the size that offsets will be in
15017 *OFFSET_SIZE.
15018 If the initial length size is not equivalent to that specified in
15019 CU_HEADER then issue a complaint.
15020 This is useful when reading non-comp-unit headers. */
dd373385 15021
c764a876 15022static LONGEST
d521ce57 15023read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
15024 const struct comp_unit_head *cu_header,
15025 unsigned int *bytes_read,
15026 unsigned int *offset_size)
15027{
15028 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15029
15030 gdb_assert (cu_header->initial_length_size == 4
15031 || cu_header->initial_length_size == 8
15032 || cu_header->initial_length_size == 12);
15033
15034 if (cu_header->initial_length_size != *bytes_read)
15035 complaint (&symfile_complaints,
15036 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 15037
c764a876 15038 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 15039 return length;
613e1657
KB
15040}
15041
15042/* Read an offset from the data stream. The size of the offset is
917c78fc 15043 given by cu_header->offset_size. */
613e1657
KB
15044
15045static LONGEST
d521ce57
TT
15046read_offset (bfd *abfd, const gdb_byte *buf,
15047 const struct comp_unit_head *cu_header,
891d2f0b 15048 unsigned int *bytes_read)
c764a876
DE
15049{
15050 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 15051
c764a876
DE
15052 *bytes_read = cu_header->offset_size;
15053 return offset;
15054}
15055
15056/* Read an offset from the data stream. */
15057
15058static LONGEST
d521ce57 15059read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
15060{
15061 LONGEST retval = 0;
15062
c764a876 15063 switch (offset_size)
613e1657
KB
15064 {
15065 case 4:
fe1b8b76 15066 retval = bfd_get_32 (abfd, buf);
613e1657
KB
15067 break;
15068 case 8:
fe1b8b76 15069 retval = bfd_get_64 (abfd, buf);
613e1657
KB
15070 break;
15071 default:
8e65ff28 15072 internal_error (__FILE__, __LINE__,
c764a876 15073 _("read_offset_1: bad switch [in module %s]"),
659b0389 15074 bfd_get_filename (abfd));
613e1657
KB
15075 }
15076
917c78fc 15077 return retval;
613e1657
KB
15078}
15079
d521ce57
TT
15080static const gdb_byte *
15081read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
15082{
15083 /* If the size of a host char is 8 bits, we can return a pointer
15084 to the buffer, otherwise we have to copy the data to a buffer
15085 allocated on the temporary obstack. */
4bdf3d34 15086 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 15087 return buf;
c906108c
SS
15088}
15089
d521ce57
TT
15090static const char *
15091read_direct_string (bfd *abfd, const gdb_byte *buf,
15092 unsigned int *bytes_read_ptr)
c906108c
SS
15093{
15094 /* If the size of a host char is 8 bits, we can return a pointer
15095 to the string, otherwise we have to copy the string to a buffer
15096 allocated on the temporary obstack. */
4bdf3d34 15097 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
15098 if (*buf == '\0')
15099 {
15100 *bytes_read_ptr = 1;
15101 return NULL;
15102 }
d521ce57
TT
15103 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15104 return (const char *) buf;
4bdf3d34
JJ
15105}
15106
d521ce57 15107static const char *
cf2c3c16 15108read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 15109{
be391dca 15110 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 15111 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
15112 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15113 bfd_get_filename (abfd));
dce234bc 15114 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
15115 error (_("DW_FORM_strp pointing outside of "
15116 ".debug_str section [in module %s]"),
15117 bfd_get_filename (abfd));
4bdf3d34 15118 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 15119 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 15120 return NULL;
d521ce57 15121 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
15122}
15123
36586728
TT
15124/* Read a string at offset STR_OFFSET in the .debug_str section from
15125 the .dwz file DWZ. Throw an error if the offset is too large. If
15126 the string consists of a single NUL byte, return NULL; otherwise
15127 return a pointer to the string. */
15128
d521ce57 15129static const char *
36586728
TT
15130read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15131{
15132 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15133
15134 if (dwz->str.buffer == NULL)
15135 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15136 "section [in module %s]"),
15137 bfd_get_filename (dwz->dwz_bfd));
15138 if (str_offset >= dwz->str.size)
15139 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15140 ".debug_str section [in module %s]"),
15141 bfd_get_filename (dwz->dwz_bfd));
15142 gdb_assert (HOST_CHAR_BIT == 8);
15143 if (dwz->str.buffer[str_offset] == '\0')
15144 return NULL;
d521ce57 15145 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
15146}
15147
d521ce57
TT
15148static const char *
15149read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
15150 const struct comp_unit_head *cu_header,
15151 unsigned int *bytes_read_ptr)
15152{
15153 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15154
15155 return read_indirect_string_at_offset (abfd, str_offset);
15156}
15157
12df843f 15158static ULONGEST
d521ce57
TT
15159read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15160 unsigned int *bytes_read_ptr)
c906108c 15161{
12df843f 15162 ULONGEST result;
ce5d95e1 15163 unsigned int num_read;
c906108c
SS
15164 int i, shift;
15165 unsigned char byte;
15166
15167 result = 0;
15168 shift = 0;
15169 num_read = 0;
15170 i = 0;
15171 while (1)
15172 {
fe1b8b76 15173 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15174 buf++;
15175 num_read++;
12df843f 15176 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
15177 if ((byte & 128) == 0)
15178 {
15179 break;
15180 }
15181 shift += 7;
15182 }
15183 *bytes_read_ptr = num_read;
15184 return result;
15185}
15186
12df843f 15187static LONGEST
d521ce57
TT
15188read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15189 unsigned int *bytes_read_ptr)
c906108c 15190{
12df843f 15191 LONGEST result;
77e0b926 15192 int i, shift, num_read;
c906108c
SS
15193 unsigned char byte;
15194
15195 result = 0;
15196 shift = 0;
c906108c
SS
15197 num_read = 0;
15198 i = 0;
15199 while (1)
15200 {
fe1b8b76 15201 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15202 buf++;
15203 num_read++;
12df843f 15204 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
15205 shift += 7;
15206 if ((byte & 128) == 0)
15207 {
15208 break;
15209 }
15210 }
77e0b926 15211 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 15212 result |= -(((LONGEST) 1) << shift);
c906108c
SS
15213 *bytes_read_ptr = num_read;
15214 return result;
15215}
15216
3019eac3
DE
15217/* Given index ADDR_INDEX in .debug_addr, fetch the value.
15218 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15219 ADDR_SIZE is the size of addresses from the CU header. */
15220
15221static CORE_ADDR
15222read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15223{
15224 struct objfile *objfile = dwarf2_per_objfile->objfile;
15225 bfd *abfd = objfile->obfd;
15226 const gdb_byte *info_ptr;
15227
15228 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15229 if (dwarf2_per_objfile->addr.buffer == NULL)
15230 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15231 objfile->name);
15232 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15233 error (_("DW_FORM_addr_index pointing outside of "
15234 ".debug_addr section [in module %s]"),
15235 objfile->name);
15236 info_ptr = (dwarf2_per_objfile->addr.buffer
15237 + addr_base + addr_index * addr_size);
15238 if (addr_size == 4)
15239 return bfd_get_32 (abfd, info_ptr);
15240 else
15241 return bfd_get_64 (abfd, info_ptr);
15242}
15243
15244/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15245
15246static CORE_ADDR
15247read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15248{
15249 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15250}
15251
15252/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15253
15254static CORE_ADDR
d521ce57 15255read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
15256 unsigned int *bytes_read)
15257{
15258 bfd *abfd = cu->objfile->obfd;
15259 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15260
15261 return read_addr_index (cu, addr_index);
15262}
15263
15264/* Data structure to pass results from dwarf2_read_addr_index_reader
15265 back to dwarf2_read_addr_index. */
15266
15267struct dwarf2_read_addr_index_data
15268{
15269 ULONGEST addr_base;
15270 int addr_size;
15271};
15272
15273/* die_reader_func for dwarf2_read_addr_index. */
15274
15275static void
15276dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 15277 const gdb_byte *info_ptr,
3019eac3
DE
15278 struct die_info *comp_unit_die,
15279 int has_children,
15280 void *data)
15281{
15282 struct dwarf2_cu *cu = reader->cu;
15283 struct dwarf2_read_addr_index_data *aidata =
15284 (struct dwarf2_read_addr_index_data *) data;
15285
15286 aidata->addr_base = cu->addr_base;
15287 aidata->addr_size = cu->header.addr_size;
15288}
15289
15290/* Given an index in .debug_addr, fetch the value.
15291 NOTE: This can be called during dwarf expression evaluation,
15292 long after the debug information has been read, and thus per_cu->cu
15293 may no longer exist. */
15294
15295CORE_ADDR
15296dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15297 unsigned int addr_index)
15298{
15299 struct objfile *objfile = per_cu->objfile;
15300 struct dwarf2_cu *cu = per_cu->cu;
15301 ULONGEST addr_base;
15302 int addr_size;
15303
15304 /* This is intended to be called from outside this file. */
15305 dw2_setup (objfile);
15306
15307 /* We need addr_base and addr_size.
15308 If we don't have PER_CU->cu, we have to get it.
15309 Nasty, but the alternative is storing the needed info in PER_CU,
15310 which at this point doesn't seem justified: it's not clear how frequently
15311 it would get used and it would increase the size of every PER_CU.
15312 Entry points like dwarf2_per_cu_addr_size do a similar thing
15313 so we're not in uncharted territory here.
15314 Alas we need to be a bit more complicated as addr_base is contained
15315 in the DIE.
15316
15317 We don't need to read the entire CU(/TU).
15318 We just need the header and top level die.
a1b64ce1 15319
3019eac3 15320 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 15321 For now we skip this optimization. */
3019eac3
DE
15322
15323 if (cu != NULL)
15324 {
15325 addr_base = cu->addr_base;
15326 addr_size = cu->header.addr_size;
15327 }
15328 else
15329 {
15330 struct dwarf2_read_addr_index_data aidata;
15331
a1b64ce1
DE
15332 /* Note: We can't use init_cutu_and_read_dies_simple here,
15333 we need addr_base. */
15334 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15335 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
15336 addr_base = aidata.addr_base;
15337 addr_size = aidata.addr_size;
15338 }
15339
15340 return read_addr_index_1 (addr_index, addr_base, addr_size);
15341}
15342
15343/* Given a DW_AT_str_index, fetch the string. */
15344
d521ce57 15345static const char *
3019eac3
DE
15346read_str_index (const struct die_reader_specs *reader,
15347 struct dwarf2_cu *cu, ULONGEST str_index)
15348{
15349 struct objfile *objfile = dwarf2_per_objfile->objfile;
15350 const char *dwo_name = objfile->name;
15351 bfd *abfd = objfile->obfd;
15352 struct dwo_sections *sections = &reader->dwo_file->sections;
d521ce57 15353 const gdb_byte *info_ptr;
3019eac3
DE
15354 ULONGEST str_offset;
15355
15356 dwarf2_read_section (objfile, &sections->str);
15357 dwarf2_read_section (objfile, &sections->str_offsets);
15358 if (sections->str.buffer == NULL)
15359 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15360 " in CU at offset 0x%lx [in module %s]"),
15361 (long) cu->header.offset.sect_off, dwo_name);
15362 if (sections->str_offsets.buffer == NULL)
15363 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15364 " in CU at offset 0x%lx [in module %s]"),
15365 (long) cu->header.offset.sect_off, dwo_name);
15366 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15367 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15368 " section in CU at offset 0x%lx [in module %s]"),
15369 (long) cu->header.offset.sect_off, dwo_name);
15370 info_ptr = (sections->str_offsets.buffer
15371 + str_index * cu->header.offset_size);
15372 if (cu->header.offset_size == 4)
15373 str_offset = bfd_get_32 (abfd, info_ptr);
15374 else
15375 str_offset = bfd_get_64 (abfd, info_ptr);
15376 if (str_offset >= sections->str.size)
15377 error (_("Offset from DW_FORM_str_index pointing outside of"
15378 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15379 (long) cu->header.offset.sect_off, dwo_name);
d521ce57 15380 return (const char *) (sections->str.buffer + str_offset);
3019eac3
DE
15381}
15382
3019eac3
DE
15383/* Return the length of an LEB128 number in BUF. */
15384
15385static int
15386leb128_size (const gdb_byte *buf)
15387{
15388 const gdb_byte *begin = buf;
15389 gdb_byte byte;
15390
15391 while (1)
15392 {
15393 byte = *buf++;
15394 if ((byte & 128) == 0)
15395 return buf - begin;
15396 }
15397}
15398
c906108c 15399static void
e142c38c 15400set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
15401{
15402 switch (lang)
15403 {
15404 case DW_LANG_C89:
76bee0cc 15405 case DW_LANG_C99:
c906108c 15406 case DW_LANG_C:
d1be3247 15407 case DW_LANG_UPC:
e142c38c 15408 cu->language = language_c;
c906108c
SS
15409 break;
15410 case DW_LANG_C_plus_plus:
e142c38c 15411 cu->language = language_cplus;
c906108c 15412 break;
6aecb9c2
JB
15413 case DW_LANG_D:
15414 cu->language = language_d;
15415 break;
c906108c
SS
15416 case DW_LANG_Fortran77:
15417 case DW_LANG_Fortran90:
b21b22e0 15418 case DW_LANG_Fortran95:
e142c38c 15419 cu->language = language_fortran;
c906108c 15420 break;
a766d390
DE
15421 case DW_LANG_Go:
15422 cu->language = language_go;
15423 break;
c906108c 15424 case DW_LANG_Mips_Assembler:
e142c38c 15425 cu->language = language_asm;
c906108c 15426 break;
bebd888e 15427 case DW_LANG_Java:
e142c38c 15428 cu->language = language_java;
bebd888e 15429 break;
c906108c 15430 case DW_LANG_Ada83:
8aaf0b47 15431 case DW_LANG_Ada95:
bc5f45f8
JB
15432 cu->language = language_ada;
15433 break;
72019c9c
GM
15434 case DW_LANG_Modula2:
15435 cu->language = language_m2;
15436 break;
fe8e67fd
PM
15437 case DW_LANG_Pascal83:
15438 cu->language = language_pascal;
15439 break;
22566fbd
DJ
15440 case DW_LANG_ObjC:
15441 cu->language = language_objc;
15442 break;
c906108c
SS
15443 case DW_LANG_Cobol74:
15444 case DW_LANG_Cobol85:
c906108c 15445 default:
e142c38c 15446 cu->language = language_minimal;
c906108c
SS
15447 break;
15448 }
e142c38c 15449 cu->language_defn = language_def (cu->language);
c906108c
SS
15450}
15451
15452/* Return the named attribute or NULL if not there. */
15453
15454static struct attribute *
e142c38c 15455dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 15456{
a48e046c 15457 for (;;)
c906108c 15458 {
a48e046c
TT
15459 unsigned int i;
15460 struct attribute *spec = NULL;
15461
15462 for (i = 0; i < die->num_attrs; ++i)
15463 {
15464 if (die->attrs[i].name == name)
15465 return &die->attrs[i];
15466 if (die->attrs[i].name == DW_AT_specification
15467 || die->attrs[i].name == DW_AT_abstract_origin)
15468 spec = &die->attrs[i];
15469 }
15470
15471 if (!spec)
15472 break;
c906108c 15473
f2f0e013 15474 die = follow_die_ref (die, spec, &cu);
f2f0e013 15475 }
c5aa993b 15476
c906108c
SS
15477 return NULL;
15478}
15479
348e048f
DE
15480/* Return the named attribute or NULL if not there,
15481 but do not follow DW_AT_specification, etc.
15482 This is for use in contexts where we're reading .debug_types dies.
15483 Following DW_AT_specification, DW_AT_abstract_origin will take us
15484 back up the chain, and we want to go down. */
15485
15486static struct attribute *
45e58e77 15487dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
15488{
15489 unsigned int i;
15490
15491 for (i = 0; i < die->num_attrs; ++i)
15492 if (die->attrs[i].name == name)
15493 return &die->attrs[i];
15494
15495 return NULL;
15496}
15497
05cf31d1
JB
15498/* Return non-zero iff the attribute NAME is defined for the given DIE,
15499 and holds a non-zero value. This function should only be used for
2dc7f7b3 15500 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
15501
15502static int
15503dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15504{
15505 struct attribute *attr = dwarf2_attr (die, name, cu);
15506
15507 return (attr && DW_UNSND (attr));
15508}
15509
3ca72b44 15510static int
e142c38c 15511die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 15512{
05cf31d1
JB
15513 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15514 which value is non-zero. However, we have to be careful with
15515 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15516 (via dwarf2_flag_true_p) follows this attribute. So we may
15517 end up accidently finding a declaration attribute that belongs
15518 to a different DIE referenced by the specification attribute,
15519 even though the given DIE does not have a declaration attribute. */
15520 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15521 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
15522}
15523
63d06c5c 15524/* Return the die giving the specification for DIE, if there is
f2f0e013 15525 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
15526 containing the return value on output. If there is no
15527 specification, but there is an abstract origin, that is
15528 returned. */
63d06c5c
DC
15529
15530static struct die_info *
f2f0e013 15531die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 15532{
f2f0e013
DJ
15533 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15534 *spec_cu);
63d06c5c 15535
edb3359d
DJ
15536 if (spec_attr == NULL)
15537 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15538
63d06c5c
DC
15539 if (spec_attr == NULL)
15540 return NULL;
15541 else
f2f0e013 15542 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 15543}
c906108c 15544
debd256d 15545/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
15546 refers to.
15547 NOTE: This is also used as a "cleanup" function. */
15548
debd256d
JB
15549static void
15550free_line_header (struct line_header *lh)
15551{
15552 if (lh->standard_opcode_lengths)
a8bc7b56 15553 xfree (lh->standard_opcode_lengths);
debd256d
JB
15554
15555 /* Remember that all the lh->file_names[i].name pointers are
15556 pointers into debug_line_buffer, and don't need to be freed. */
15557 if (lh->file_names)
a8bc7b56 15558 xfree (lh->file_names);
debd256d
JB
15559
15560 /* Similarly for the include directory names. */
15561 if (lh->include_dirs)
a8bc7b56 15562 xfree (lh->include_dirs);
debd256d 15563
a8bc7b56 15564 xfree (lh);
debd256d
JB
15565}
15566
debd256d 15567/* Add an entry to LH's include directory table. */
ae2de4f8 15568
debd256d 15569static void
d521ce57 15570add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 15571{
debd256d
JB
15572 /* Grow the array if necessary. */
15573 if (lh->include_dirs_size == 0)
c5aa993b 15574 {
debd256d
JB
15575 lh->include_dirs_size = 1; /* for testing */
15576 lh->include_dirs = xmalloc (lh->include_dirs_size
15577 * sizeof (*lh->include_dirs));
15578 }
15579 else if (lh->num_include_dirs >= lh->include_dirs_size)
15580 {
15581 lh->include_dirs_size *= 2;
15582 lh->include_dirs = xrealloc (lh->include_dirs,
15583 (lh->include_dirs_size
15584 * sizeof (*lh->include_dirs)));
c5aa993b 15585 }
c906108c 15586
debd256d
JB
15587 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15588}
6e70227d 15589
debd256d 15590/* Add an entry to LH's file name table. */
ae2de4f8 15591
debd256d
JB
15592static void
15593add_file_name (struct line_header *lh,
d521ce57 15594 const char *name,
debd256d
JB
15595 unsigned int dir_index,
15596 unsigned int mod_time,
15597 unsigned int length)
15598{
15599 struct file_entry *fe;
15600
15601 /* Grow the array if necessary. */
15602 if (lh->file_names_size == 0)
15603 {
15604 lh->file_names_size = 1; /* for testing */
15605 lh->file_names = xmalloc (lh->file_names_size
15606 * sizeof (*lh->file_names));
15607 }
15608 else if (lh->num_file_names >= lh->file_names_size)
15609 {
15610 lh->file_names_size *= 2;
15611 lh->file_names = xrealloc (lh->file_names,
15612 (lh->file_names_size
15613 * sizeof (*lh->file_names)));
15614 }
15615
15616 fe = &lh->file_names[lh->num_file_names++];
15617 fe->name = name;
15618 fe->dir_index = dir_index;
15619 fe->mod_time = mod_time;
15620 fe->length = length;
aaa75496 15621 fe->included_p = 0;
cb1df416 15622 fe->symtab = NULL;
debd256d 15623}
6e70227d 15624
36586728
TT
15625/* A convenience function to find the proper .debug_line section for a
15626 CU. */
15627
15628static struct dwarf2_section_info *
15629get_debug_line_section (struct dwarf2_cu *cu)
15630{
15631 struct dwarf2_section_info *section;
15632
15633 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15634 DWO file. */
15635 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15636 section = &cu->dwo_unit->dwo_file->sections.line;
15637 else if (cu->per_cu->is_dwz)
15638 {
15639 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15640
15641 section = &dwz->line;
15642 }
15643 else
15644 section = &dwarf2_per_objfile->line;
15645
15646 return section;
15647}
15648
debd256d 15649/* Read the statement program header starting at OFFSET in
3019eac3 15650 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 15651 to a struct line_header, allocated using xmalloc.
debd256d
JB
15652
15653 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
15654 the returned object point into the dwarf line section buffer,
15655 and must not be freed. */
ae2de4f8 15656
debd256d 15657static struct line_header *
3019eac3 15658dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
15659{
15660 struct cleanup *back_to;
15661 struct line_header *lh;
d521ce57 15662 const gdb_byte *line_ptr;
c764a876 15663 unsigned int bytes_read, offset_size;
debd256d 15664 int i;
d521ce57 15665 const char *cur_dir, *cur_file;
3019eac3
DE
15666 struct dwarf2_section_info *section;
15667 bfd *abfd;
15668
36586728 15669 section = get_debug_line_section (cu);
3019eac3
DE
15670 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15671 if (section->buffer == NULL)
debd256d 15672 {
3019eac3
DE
15673 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15674 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15675 else
15676 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
15677 return 0;
15678 }
15679
fceca515
DE
15680 /* We can't do this until we know the section is non-empty.
15681 Only then do we know we have such a section. */
15682 abfd = section->asection->owner;
15683
a738430d
MK
15684 /* Make sure that at least there's room for the total_length field.
15685 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 15686 if (offset + 4 >= section->size)
debd256d 15687 {
4d3c2250 15688 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15689 return 0;
15690 }
15691
15692 lh = xmalloc (sizeof (*lh));
15693 memset (lh, 0, sizeof (*lh));
15694 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15695 (void *) lh);
15696
3019eac3 15697 line_ptr = section->buffer + offset;
debd256d 15698
a738430d 15699 /* Read in the header. */
6e70227d 15700 lh->total_length =
c764a876
DE
15701 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15702 &bytes_read, &offset_size);
debd256d 15703 line_ptr += bytes_read;
3019eac3 15704 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 15705 {
4d3c2250 15706 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15707 return 0;
15708 }
15709 lh->statement_program_end = line_ptr + lh->total_length;
15710 lh->version = read_2_bytes (abfd, line_ptr);
15711 line_ptr += 2;
c764a876
DE
15712 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15713 line_ptr += offset_size;
debd256d
JB
15714 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15715 line_ptr += 1;
2dc7f7b3
TT
15716 if (lh->version >= 4)
15717 {
15718 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15719 line_ptr += 1;
15720 }
15721 else
15722 lh->maximum_ops_per_instruction = 1;
15723
15724 if (lh->maximum_ops_per_instruction == 0)
15725 {
15726 lh->maximum_ops_per_instruction = 1;
15727 complaint (&symfile_complaints,
3e43a32a
MS
15728 _("invalid maximum_ops_per_instruction "
15729 "in `.debug_line' section"));
2dc7f7b3
TT
15730 }
15731
debd256d
JB
15732 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15733 line_ptr += 1;
15734 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15735 line_ptr += 1;
15736 lh->line_range = read_1_byte (abfd, line_ptr);
15737 line_ptr += 1;
15738 lh->opcode_base = read_1_byte (abfd, line_ptr);
15739 line_ptr += 1;
15740 lh->standard_opcode_lengths
fe1b8b76 15741 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
15742
15743 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15744 for (i = 1; i < lh->opcode_base; ++i)
15745 {
15746 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15747 line_ptr += 1;
15748 }
15749
a738430d 15750 /* Read directory table. */
9b1c24c8 15751 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15752 {
15753 line_ptr += bytes_read;
15754 add_include_dir (lh, cur_dir);
15755 }
15756 line_ptr += bytes_read;
15757
a738430d 15758 /* Read file name table. */
9b1c24c8 15759 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15760 {
15761 unsigned int dir_index, mod_time, length;
15762
15763 line_ptr += bytes_read;
15764 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15765 line_ptr += bytes_read;
15766 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15767 line_ptr += bytes_read;
15768 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15769 line_ptr += bytes_read;
15770
15771 add_file_name (lh, cur_file, dir_index, mod_time, length);
15772 }
15773 line_ptr += bytes_read;
6e70227d 15774 lh->statement_program_start = line_ptr;
debd256d 15775
3019eac3 15776 if (line_ptr > (section->buffer + section->size))
4d3c2250 15777 complaint (&symfile_complaints,
3e43a32a
MS
15778 _("line number info header doesn't "
15779 "fit in `.debug_line' section"));
debd256d
JB
15780
15781 discard_cleanups (back_to);
15782 return lh;
15783}
c906108c 15784
c6da4cef
DE
15785/* Subroutine of dwarf_decode_lines to simplify it.
15786 Return the file name of the psymtab for included file FILE_INDEX
15787 in line header LH of PST.
15788 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15789 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
15790 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15791
15792 The function creates dangling cleanup registration. */
c6da4cef 15793
d521ce57 15794static const char *
c6da4cef
DE
15795psymtab_include_file_name (const struct line_header *lh, int file_index,
15796 const struct partial_symtab *pst,
15797 const char *comp_dir)
15798{
15799 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
15800 const char *include_name = fe.name;
15801 const char *include_name_to_compare = include_name;
15802 const char *dir_name = NULL;
72b9f47f
TT
15803 const char *pst_filename;
15804 char *copied_name = NULL;
c6da4cef
DE
15805 int file_is_pst;
15806
15807 if (fe.dir_index)
15808 dir_name = lh->include_dirs[fe.dir_index - 1];
15809
15810 if (!IS_ABSOLUTE_PATH (include_name)
15811 && (dir_name != NULL || comp_dir != NULL))
15812 {
15813 /* Avoid creating a duplicate psymtab for PST.
15814 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15815 Before we do the comparison, however, we need to account
15816 for DIR_NAME and COMP_DIR.
15817 First prepend dir_name (if non-NULL). If we still don't
15818 have an absolute path prepend comp_dir (if non-NULL).
15819 However, the directory we record in the include-file's
15820 psymtab does not contain COMP_DIR (to match the
15821 corresponding symtab(s)).
15822
15823 Example:
15824
15825 bash$ cd /tmp
15826 bash$ gcc -g ./hello.c
15827 include_name = "hello.c"
15828 dir_name = "."
15829 DW_AT_comp_dir = comp_dir = "/tmp"
15830 DW_AT_name = "./hello.c" */
15831
15832 if (dir_name != NULL)
15833 {
d521ce57
TT
15834 char *tem = concat (dir_name, SLASH_STRING,
15835 include_name, (char *)NULL);
15836
15837 make_cleanup (xfree, tem);
15838 include_name = tem;
c6da4cef 15839 include_name_to_compare = include_name;
c6da4cef
DE
15840 }
15841 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15842 {
d521ce57
TT
15843 char *tem = concat (comp_dir, SLASH_STRING,
15844 include_name, (char *)NULL);
15845
15846 make_cleanup (xfree, tem);
15847 include_name_to_compare = tem;
c6da4cef
DE
15848 }
15849 }
15850
15851 pst_filename = pst->filename;
15852 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15853 {
72b9f47f
TT
15854 copied_name = concat (pst->dirname, SLASH_STRING,
15855 pst_filename, (char *)NULL);
15856 pst_filename = copied_name;
c6da4cef
DE
15857 }
15858
1e3fad37 15859 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 15860
72b9f47f
TT
15861 if (copied_name != NULL)
15862 xfree (copied_name);
c6da4cef
DE
15863
15864 if (file_is_pst)
15865 return NULL;
15866 return include_name;
15867}
15868
c91513d8
PP
15869/* Ignore this record_line request. */
15870
15871static void
15872noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15873{
15874 return;
15875}
15876
f3f5162e
DE
15877/* Subroutine of dwarf_decode_lines to simplify it.
15878 Process the line number information in LH. */
debd256d 15879
c906108c 15880static void
f3f5162e
DE
15881dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15882 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 15883{
d521ce57
TT
15884 const gdb_byte *line_ptr, *extended_end;
15885 const gdb_byte *line_end;
a8c50c1f 15886 unsigned int bytes_read, extended_len;
c906108c 15887 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
15888 CORE_ADDR baseaddr;
15889 struct objfile *objfile = cu->objfile;
f3f5162e 15890 bfd *abfd = objfile->obfd;
fbf65064 15891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 15892 const int decode_for_pst_p = (pst != NULL);
f3f5162e 15893 struct subfile *last_subfile = NULL;
c91513d8
PP
15894 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15895 = record_line;
e142c38c
DJ
15896
15897 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15898
debd256d
JB
15899 line_ptr = lh->statement_program_start;
15900 line_end = lh->statement_program_end;
c906108c
SS
15901
15902 /* Read the statement sequences until there's nothing left. */
15903 while (line_ptr < line_end)
15904 {
15905 /* state machine registers */
15906 CORE_ADDR address = 0;
15907 unsigned int file = 1;
15908 unsigned int line = 1;
15909 unsigned int column = 0;
debd256d 15910 int is_stmt = lh->default_is_stmt;
c906108c
SS
15911 int basic_block = 0;
15912 int end_sequence = 0;
fbf65064 15913 CORE_ADDR addr;
2dc7f7b3 15914 unsigned char op_index = 0;
c906108c 15915
aaa75496 15916 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 15917 {
aaa75496 15918 /* Start a subfile for the current file of the state machine. */
debd256d
JB
15919 /* lh->include_dirs and lh->file_names are 0-based, but the
15920 directory and file name numbers in the statement program
15921 are 1-based. */
15922 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 15923 const char *dir = NULL;
a738430d 15924
debd256d
JB
15925 if (fe->dir_index)
15926 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
15927
15928 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
15929 }
15930
a738430d 15931 /* Decode the table. */
c5aa993b 15932 while (!end_sequence)
c906108c
SS
15933 {
15934 op_code = read_1_byte (abfd, line_ptr);
15935 line_ptr += 1;
59205f5a
JB
15936 if (line_ptr > line_end)
15937 {
15938 dwarf2_debug_line_missing_end_sequence_complaint ();
15939 break;
15940 }
9aa1fe7e 15941
debd256d 15942 if (op_code >= lh->opcode_base)
6e70227d 15943 {
a738430d 15944 /* Special operand. */
debd256d 15945 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
15946 address += (((op_index + (adj_opcode / lh->line_range))
15947 / lh->maximum_ops_per_instruction)
15948 * lh->minimum_instruction_length);
15949 op_index = ((op_index + (adj_opcode / lh->line_range))
15950 % lh->maximum_ops_per_instruction);
debd256d 15951 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 15952 if (lh->num_file_names < file || file == 0)
25e43795 15953 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
15954 /* For now we ignore lines not starting on an
15955 instruction boundary. */
15956 else if (op_index == 0)
25e43795
DJ
15957 {
15958 lh->file_names[file - 1].included_p = 1;
ca5f395d 15959 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15960 {
15961 if (last_subfile != current_subfile)
15962 {
15963 addr = gdbarch_addr_bits_remove (gdbarch, address);
15964 if (last_subfile)
c91513d8 15965 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15966 last_subfile = current_subfile;
15967 }
25e43795 15968 /* Append row to matrix using current values. */
7019d805 15969 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15970 (*p_record_line) (current_subfile, line, addr);
366da635 15971 }
25e43795 15972 }
ca5f395d 15973 basic_block = 0;
9aa1fe7e
GK
15974 }
15975 else switch (op_code)
c906108c
SS
15976 {
15977 case DW_LNS_extended_op:
3e43a32a
MS
15978 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15979 &bytes_read);
473b7be6 15980 line_ptr += bytes_read;
a8c50c1f 15981 extended_end = line_ptr + extended_len;
c906108c
SS
15982 extended_op = read_1_byte (abfd, line_ptr);
15983 line_ptr += 1;
15984 switch (extended_op)
15985 {
15986 case DW_LNE_end_sequence:
c91513d8 15987 p_record_line = record_line;
c906108c 15988 end_sequence = 1;
c906108c
SS
15989 break;
15990 case DW_LNE_set_address:
e7c27a73 15991 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
15992
15993 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15994 {
15995 /* This line table is for a function which has been
15996 GCd by the linker. Ignore it. PR gdb/12528 */
15997
15998 long line_offset
36586728 15999 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
16000
16001 complaint (&symfile_complaints,
16002 _(".debug_line address at offset 0x%lx is 0 "
16003 "[in module %s]"),
bb5ed363 16004 line_offset, objfile->name);
c91513d8
PP
16005 p_record_line = noop_record_line;
16006 }
16007
2dc7f7b3 16008 op_index = 0;
107d2387
AC
16009 line_ptr += bytes_read;
16010 address += baseaddr;
c906108c
SS
16011 break;
16012 case DW_LNE_define_file:
debd256d 16013 {
d521ce57 16014 const char *cur_file;
debd256d 16015 unsigned int dir_index, mod_time, length;
6e70227d 16016
3e43a32a
MS
16017 cur_file = read_direct_string (abfd, line_ptr,
16018 &bytes_read);
debd256d
JB
16019 line_ptr += bytes_read;
16020 dir_index =
16021 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16022 line_ptr += bytes_read;
16023 mod_time =
16024 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16025 line_ptr += bytes_read;
16026 length =
16027 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16028 line_ptr += bytes_read;
16029 add_file_name (lh, cur_file, dir_index, mod_time, length);
16030 }
c906108c 16031 break;
d0c6ba3d
CC
16032 case DW_LNE_set_discriminator:
16033 /* The discriminator is not interesting to the debugger;
16034 just ignore it. */
16035 line_ptr = extended_end;
16036 break;
c906108c 16037 default:
4d3c2250 16038 complaint (&symfile_complaints,
e2e0b3e5 16039 _("mangled .debug_line section"));
debd256d 16040 return;
c906108c 16041 }
a8c50c1f
DJ
16042 /* Make sure that we parsed the extended op correctly. If e.g.
16043 we expected a different address size than the producer used,
16044 we may have read the wrong number of bytes. */
16045 if (line_ptr != extended_end)
16046 {
16047 complaint (&symfile_complaints,
16048 _("mangled .debug_line section"));
16049 return;
16050 }
c906108c
SS
16051 break;
16052 case DW_LNS_copy:
59205f5a 16053 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16054 dwarf2_debug_line_missing_file_complaint ();
16055 else
366da635 16056 {
25e43795 16057 lh->file_names[file - 1].included_p = 1;
ca5f395d 16058 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
16059 {
16060 if (last_subfile != current_subfile)
16061 {
16062 addr = gdbarch_addr_bits_remove (gdbarch, address);
16063 if (last_subfile)
c91513d8 16064 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
16065 last_subfile = current_subfile;
16066 }
7019d805 16067 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16068 (*p_record_line) (current_subfile, line, addr);
fbf65064 16069 }
366da635 16070 }
c906108c
SS
16071 basic_block = 0;
16072 break;
16073 case DW_LNS_advance_pc:
2dc7f7b3
TT
16074 {
16075 CORE_ADDR adjust
16076 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16077
16078 address += (((op_index + adjust)
16079 / lh->maximum_ops_per_instruction)
16080 * lh->minimum_instruction_length);
16081 op_index = ((op_index + adjust)
16082 % lh->maximum_ops_per_instruction);
16083 line_ptr += bytes_read;
16084 }
c906108c
SS
16085 break;
16086 case DW_LNS_advance_line:
16087 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16088 line_ptr += bytes_read;
16089 break;
16090 case DW_LNS_set_file:
debd256d 16091 {
a738430d
MK
16092 /* The arrays lh->include_dirs and lh->file_names are
16093 0-based, but the directory and file name numbers in
16094 the statement program are 1-based. */
debd256d 16095 struct file_entry *fe;
d521ce57 16096 const char *dir = NULL;
a738430d 16097
debd256d
JB
16098 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16099 line_ptr += bytes_read;
59205f5a 16100 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16101 dwarf2_debug_line_missing_file_complaint ();
16102 else
16103 {
16104 fe = &lh->file_names[file - 1];
16105 if (fe->dir_index)
16106 dir = lh->include_dirs[fe->dir_index - 1];
16107 if (!decode_for_pst_p)
16108 {
16109 last_subfile = current_subfile;
16110 dwarf2_start_subfile (fe->name, dir, comp_dir);
16111 }
16112 }
debd256d 16113 }
c906108c
SS
16114 break;
16115 case DW_LNS_set_column:
16116 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16117 line_ptr += bytes_read;
16118 break;
16119 case DW_LNS_negate_stmt:
16120 is_stmt = (!is_stmt);
16121 break;
16122 case DW_LNS_set_basic_block:
16123 basic_block = 1;
16124 break;
c2c6d25f
JM
16125 /* Add to the address register of the state machine the
16126 address increment value corresponding to special opcode
a738430d
MK
16127 255. I.e., this value is scaled by the minimum
16128 instruction length since special opcode 255 would have
b021a221 16129 scaled the increment. */
c906108c 16130 case DW_LNS_const_add_pc:
2dc7f7b3
TT
16131 {
16132 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16133
16134 address += (((op_index + adjust)
16135 / lh->maximum_ops_per_instruction)
16136 * lh->minimum_instruction_length);
16137 op_index = ((op_index + adjust)
16138 % lh->maximum_ops_per_instruction);
16139 }
c906108c
SS
16140 break;
16141 case DW_LNS_fixed_advance_pc:
16142 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 16143 op_index = 0;
c906108c
SS
16144 line_ptr += 2;
16145 break;
9aa1fe7e 16146 default:
a738430d
MK
16147 {
16148 /* Unknown standard opcode, ignore it. */
9aa1fe7e 16149 int i;
a738430d 16150
debd256d 16151 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
16152 {
16153 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16154 line_ptr += bytes_read;
16155 }
16156 }
c906108c
SS
16157 }
16158 }
59205f5a
JB
16159 if (lh->num_file_names < file || file == 0)
16160 dwarf2_debug_line_missing_file_complaint ();
16161 else
16162 {
16163 lh->file_names[file - 1].included_p = 1;
16164 if (!decode_for_pst_p)
fbf65064
UW
16165 {
16166 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16167 (*p_record_line) (current_subfile, 0, addr);
fbf65064 16168 }
59205f5a 16169 }
c906108c 16170 }
f3f5162e
DE
16171}
16172
16173/* Decode the Line Number Program (LNP) for the given line_header
16174 structure and CU. The actual information extracted and the type
16175 of structures created from the LNP depends on the value of PST.
16176
16177 1. If PST is NULL, then this procedure uses the data from the program
16178 to create all necessary symbol tables, and their linetables.
16179
16180 2. If PST is not NULL, this procedure reads the program to determine
16181 the list of files included by the unit represented by PST, and
16182 builds all the associated partial symbol tables.
16183
16184 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16185 It is used for relative paths in the line table.
16186 NOTE: When processing partial symtabs (pst != NULL),
16187 comp_dir == pst->dirname.
16188
16189 NOTE: It is important that psymtabs have the same file name (via strcmp)
16190 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16191 symtab we don't use it in the name of the psymtabs we create.
16192 E.g. expand_line_sal requires this when finding psymtabs to expand.
16193 A good testcase for this is mb-inline.exp. */
16194
16195static void
16196dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16197 struct dwarf2_cu *cu, struct partial_symtab *pst,
16198 int want_line_info)
16199{
16200 struct objfile *objfile = cu->objfile;
16201 const int decode_for_pst_p = (pst != NULL);
16202 struct subfile *first_subfile = current_subfile;
16203
16204 if (want_line_info)
16205 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
16206
16207 if (decode_for_pst_p)
16208 {
16209 int file_index;
16210
16211 /* Now that we're done scanning the Line Header Program, we can
16212 create the psymtab of each included file. */
16213 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16214 if (lh->file_names[file_index].included_p == 1)
16215 {
d521ce57 16216 const char *include_name =
c6da4cef
DE
16217 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16218 if (include_name != NULL)
aaa75496
JB
16219 dwarf2_create_include_psymtab (include_name, pst, objfile);
16220 }
16221 }
cb1df416
DJ
16222 else
16223 {
16224 /* Make sure a symtab is created for every file, even files
16225 which contain only variables (i.e. no code with associated
16226 line numbers). */
cb1df416 16227 int i;
cb1df416
DJ
16228
16229 for (i = 0; i < lh->num_file_names; i++)
16230 {
d521ce57 16231 const char *dir = NULL;
f3f5162e 16232 struct file_entry *fe;
9a619af0 16233
cb1df416
DJ
16234 fe = &lh->file_names[i];
16235 if (fe->dir_index)
16236 dir = lh->include_dirs[fe->dir_index - 1];
16237 dwarf2_start_subfile (fe->name, dir, comp_dir);
16238
16239 /* Skip the main file; we don't need it, and it must be
16240 allocated last, so that it will show up before the
16241 non-primary symtabs in the objfile's symtab list. */
16242 if (current_subfile == first_subfile)
16243 continue;
16244
16245 if (current_subfile->symtab == NULL)
16246 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 16247 objfile);
cb1df416
DJ
16248 fe->symtab = current_subfile->symtab;
16249 }
16250 }
c906108c
SS
16251}
16252
16253/* Start a subfile for DWARF. FILENAME is the name of the file and
16254 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
16255 or NULL if not known. COMP_DIR is the compilation directory for the
16256 linetable's compilation unit or NULL if not known.
c906108c
SS
16257 This routine tries to keep line numbers from identical absolute and
16258 relative file names in a common subfile.
16259
16260 Using the `list' example from the GDB testsuite, which resides in
16261 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16262 of /srcdir/list0.c yields the following debugging information for list0.c:
16263
c5aa993b
JM
16264 DW_AT_name: /srcdir/list0.c
16265 DW_AT_comp_dir: /compdir
357e46e7 16266 files.files[0].name: list0.h
c5aa993b 16267 files.files[0].dir: /srcdir
357e46e7 16268 files.files[1].name: list0.c
c5aa993b 16269 files.files[1].dir: /srcdir
c906108c
SS
16270
16271 The line number information for list0.c has to end up in a single
4f1520fb
FR
16272 subfile, so that `break /srcdir/list0.c:1' works as expected.
16273 start_subfile will ensure that this happens provided that we pass the
16274 concatenation of files.files[1].dir and files.files[1].name as the
16275 subfile's name. */
c906108c
SS
16276
16277static void
d521ce57 16278dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 16279 const char *comp_dir)
c906108c 16280{
d521ce57 16281 char *copy = NULL;
4f1520fb
FR
16282
16283 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16284 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16285 second argument to start_subfile. To be consistent, we do the
16286 same here. In order not to lose the line information directory,
16287 we concatenate it to the filename when it makes sense.
16288 Note that the Dwarf3 standard says (speaking of filenames in line
16289 information): ``The directory index is ignored for file names
16290 that represent full path names''. Thus ignoring dirname in the
16291 `else' branch below isn't an issue. */
c906108c 16292
d5166ae1 16293 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
16294 {
16295 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16296 filename = copy;
16297 }
c906108c 16298
d521ce57 16299 start_subfile (filename, comp_dir);
4f1520fb 16300
d521ce57
TT
16301 if (copy != NULL)
16302 xfree (copy);
c906108c
SS
16303}
16304
f4dc4d17
DE
16305/* Start a symtab for DWARF.
16306 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16307
16308static void
16309dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 16310 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
16311{
16312 start_symtab (name, comp_dir, low_pc);
16313 record_debugformat ("DWARF 2");
16314 record_producer (cu->producer);
16315
16316 /* We assume that we're processing GCC output. */
16317 processing_gcc_compilation = 2;
16318
4d4ec4e5 16319 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
16320}
16321
4c2df51b
DJ
16322static void
16323var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 16324 struct dwarf2_cu *cu)
4c2df51b 16325{
e7c27a73
DJ
16326 struct objfile *objfile = cu->objfile;
16327 struct comp_unit_head *cu_header = &cu->header;
16328
4c2df51b
DJ
16329 /* NOTE drow/2003-01-30: There used to be a comment and some special
16330 code here to turn a symbol with DW_AT_external and a
16331 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16332 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16333 with some versions of binutils) where shared libraries could have
16334 relocations against symbols in their debug information - the
16335 minimal symbol would have the right address, but the debug info
16336 would not. It's no longer necessary, because we will explicitly
16337 apply relocations when we read in the debug information now. */
16338
16339 /* A DW_AT_location attribute with no contents indicates that a
16340 variable has been optimized away. */
16341 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16342 {
f1e6e072 16343 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
16344 return;
16345 }
16346
16347 /* Handle one degenerate form of location expression specially, to
16348 preserve GDB's previous behavior when section offsets are
3019eac3
DE
16349 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16350 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
16351
16352 if (attr_form_is_block (attr)
3019eac3
DE
16353 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16354 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16355 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16356 && (DW_BLOCK (attr)->size
16357 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 16358 {
891d2f0b 16359 unsigned int dummy;
4c2df51b 16360
3019eac3
DE
16361 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16362 SYMBOL_VALUE_ADDRESS (sym) =
16363 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16364 else
16365 SYMBOL_VALUE_ADDRESS (sym) =
16366 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 16367 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
16368 fixup_symbol_section (sym, objfile);
16369 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16370 SYMBOL_SECTION (sym));
4c2df51b
DJ
16371 return;
16372 }
16373
16374 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16375 expression evaluator, and use LOC_COMPUTED only when necessary
16376 (i.e. when the value of a register or memory location is
16377 referenced, or a thread-local block, etc.). Then again, it might
16378 not be worthwhile. I'm assuming that it isn't unless performance
16379 or memory numbers show me otherwise. */
16380
f1e6e072 16381 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 16382
f1e6e072 16383 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 16384 cu->has_loclist = 1;
4c2df51b
DJ
16385}
16386
c906108c
SS
16387/* Given a pointer to a DWARF information entry, figure out if we need
16388 to make a symbol table entry for it, and if so, create a new entry
16389 and return a pointer to it.
16390 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
16391 used the passed type.
16392 If SPACE is not NULL, use it to hold the new symbol. If it is
16393 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
16394
16395static struct symbol *
34eaf542
TT
16396new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16397 struct symbol *space)
c906108c 16398{
e7c27a73 16399 struct objfile *objfile = cu->objfile;
c906108c 16400 struct symbol *sym = NULL;
15d034d0 16401 const char *name;
c906108c
SS
16402 struct attribute *attr = NULL;
16403 struct attribute *attr2 = NULL;
e142c38c 16404 CORE_ADDR baseaddr;
e37fd15a
SW
16405 struct pending **list_to_add = NULL;
16406
edb3359d 16407 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
16408
16409 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 16410
94af9270 16411 name = dwarf2_name (die, cu);
c906108c
SS
16412 if (name)
16413 {
94af9270 16414 const char *linkagename;
34eaf542 16415 int suppress_add = 0;
94af9270 16416
34eaf542
TT
16417 if (space)
16418 sym = space;
16419 else
e623cf5d 16420 sym = allocate_symbol (objfile);
c906108c 16421 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
16422
16423 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 16424 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
16425 linkagename = dwarf2_physname (name, die, cu);
16426 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 16427
f55ee35c
JK
16428 /* Fortran does not have mangling standard and the mangling does differ
16429 between gfortran, iFort etc. */
16430 if (cu->language == language_fortran
b250c185 16431 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 16432 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 16433 dwarf2_full_name (name, die, cu),
29df156d 16434 NULL);
f55ee35c 16435
c906108c 16436 /* Default assumptions.
c5aa993b 16437 Use the passed type or decode it from the die. */
176620f1 16438 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 16439 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
16440 if (type != NULL)
16441 SYMBOL_TYPE (sym) = type;
16442 else
e7c27a73 16443 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
16444 attr = dwarf2_attr (die,
16445 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16446 cu);
c906108c
SS
16447 if (attr)
16448 {
16449 SYMBOL_LINE (sym) = DW_UNSND (attr);
16450 }
cb1df416 16451
edb3359d
DJ
16452 attr = dwarf2_attr (die,
16453 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16454 cu);
cb1df416
DJ
16455 if (attr)
16456 {
16457 int file_index = DW_UNSND (attr);
9a619af0 16458
cb1df416
DJ
16459 if (cu->line_header == NULL
16460 || file_index > cu->line_header->num_file_names)
16461 complaint (&symfile_complaints,
16462 _("file index out of range"));
1c3d648d 16463 else if (file_index > 0)
cb1df416
DJ
16464 {
16465 struct file_entry *fe;
9a619af0 16466
cb1df416
DJ
16467 fe = &cu->line_header->file_names[file_index - 1];
16468 SYMBOL_SYMTAB (sym) = fe->symtab;
16469 }
16470 }
16471
c906108c
SS
16472 switch (die->tag)
16473 {
16474 case DW_TAG_label:
e142c38c 16475 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
16476 if (attr)
16477 {
16478 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16479 }
0f5238ed
TT
16480 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16481 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 16482 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 16483 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
16484 break;
16485 case DW_TAG_subprogram:
16486 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16487 finish_block. */
f1e6e072 16488 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 16489 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
16490 if ((attr2 && (DW_UNSND (attr2) != 0))
16491 || cu->language == language_ada)
c906108c 16492 {
2cfa0c8d
JB
16493 /* Subprograms marked external are stored as a global symbol.
16494 Ada subprograms, whether marked external or not, are always
16495 stored as a global symbol, because we want to be able to
16496 access them globally. For instance, we want to be able
16497 to break on a nested subprogram without having to
16498 specify the context. */
e37fd15a 16499 list_to_add = &global_symbols;
c906108c
SS
16500 }
16501 else
16502 {
e37fd15a 16503 list_to_add = cu->list_in_scope;
c906108c
SS
16504 }
16505 break;
edb3359d
DJ
16506 case DW_TAG_inlined_subroutine:
16507 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16508 finish_block. */
f1e6e072 16509 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 16510 SYMBOL_INLINED (sym) = 1;
481860b3 16511 list_to_add = cu->list_in_scope;
edb3359d 16512 break;
34eaf542
TT
16513 case DW_TAG_template_value_param:
16514 suppress_add = 1;
16515 /* Fall through. */
72929c62 16516 case DW_TAG_constant:
c906108c 16517 case DW_TAG_variable:
254e6b9e 16518 case DW_TAG_member:
0963b4bd
MS
16519 /* Compilation with minimal debug info may result in
16520 variables with missing type entries. Change the
16521 misleading `void' type to something sensible. */
c906108c 16522 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 16523 SYMBOL_TYPE (sym)
46bf5051 16524 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 16525
e142c38c 16526 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
16527 /* In the case of DW_TAG_member, we should only be called for
16528 static const members. */
16529 if (die->tag == DW_TAG_member)
16530 {
3863f96c
DE
16531 /* dwarf2_add_field uses die_is_declaration,
16532 so we do the same. */
254e6b9e
DE
16533 gdb_assert (die_is_declaration (die, cu));
16534 gdb_assert (attr);
16535 }
c906108c
SS
16536 if (attr)
16537 {
e7c27a73 16538 dwarf2_const_value (attr, sym, cu);
e142c38c 16539 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 16540 if (!suppress_add)
34eaf542
TT
16541 {
16542 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 16543 list_to_add = &global_symbols;
34eaf542 16544 else
e37fd15a 16545 list_to_add = cu->list_in_scope;
34eaf542 16546 }
c906108c
SS
16547 break;
16548 }
e142c38c 16549 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16550 if (attr)
16551 {
e7c27a73 16552 var_decode_location (attr, sym, cu);
e142c38c 16553 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
16554
16555 /* Fortran explicitly imports any global symbols to the local
16556 scope by DW_TAG_common_block. */
16557 if (cu->language == language_fortran && die->parent
16558 && die->parent->tag == DW_TAG_common_block)
16559 attr2 = NULL;
16560
caac4577
JG
16561 if (SYMBOL_CLASS (sym) == LOC_STATIC
16562 && SYMBOL_VALUE_ADDRESS (sym) == 0
16563 && !dwarf2_per_objfile->has_section_at_zero)
16564 {
16565 /* When a static variable is eliminated by the linker,
16566 the corresponding debug information is not stripped
16567 out, but the variable address is set to null;
16568 do not add such variables into symbol table. */
16569 }
16570 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 16571 {
f55ee35c
JK
16572 /* Workaround gfortran PR debug/40040 - it uses
16573 DW_AT_location for variables in -fPIC libraries which may
16574 get overriden by other libraries/executable and get
16575 a different address. Resolve it by the minimal symbol
16576 which may come from inferior's executable using copy
16577 relocation. Make this workaround only for gfortran as for
16578 other compilers GDB cannot guess the minimal symbol
16579 Fortran mangling kind. */
16580 if (cu->language == language_fortran && die->parent
16581 && die->parent->tag == DW_TAG_module
16582 && cu->producer
16583 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 16584 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 16585
1c809c68
TT
16586 /* A variable with DW_AT_external is never static,
16587 but it may be block-scoped. */
16588 list_to_add = (cu->list_in_scope == &file_symbols
16589 ? &global_symbols : cu->list_in_scope);
1c809c68 16590 }
c906108c 16591 else
e37fd15a 16592 list_to_add = cu->list_in_scope;
c906108c
SS
16593 }
16594 else
16595 {
16596 /* We do not know the address of this symbol.
c5aa993b
JM
16597 If it is an external symbol and we have type information
16598 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16599 The address of the variable will then be determined from
16600 the minimal symbol table whenever the variable is
16601 referenced. */
e142c38c 16602 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
16603
16604 /* Fortran explicitly imports any global symbols to the local
16605 scope by DW_TAG_common_block. */
16606 if (cu->language == language_fortran && die->parent
16607 && die->parent->tag == DW_TAG_common_block)
16608 {
16609 /* SYMBOL_CLASS doesn't matter here because
16610 read_common_block is going to reset it. */
16611 if (!suppress_add)
16612 list_to_add = cu->list_in_scope;
16613 }
16614 else if (attr2 && (DW_UNSND (attr2) != 0)
16615 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 16616 {
0fe7935b
DJ
16617 /* A variable with DW_AT_external is never static, but it
16618 may be block-scoped. */
16619 list_to_add = (cu->list_in_scope == &file_symbols
16620 ? &global_symbols : cu->list_in_scope);
16621
f1e6e072 16622 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 16623 }
442ddf59
JK
16624 else if (!die_is_declaration (die, cu))
16625 {
16626 /* Use the default LOC_OPTIMIZED_OUT class. */
16627 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
16628 if (!suppress_add)
16629 list_to_add = cu->list_in_scope;
442ddf59 16630 }
c906108c
SS
16631 }
16632 break;
16633 case DW_TAG_formal_parameter:
edb3359d
DJ
16634 /* If we are inside a function, mark this as an argument. If
16635 not, we might be looking at an argument to an inlined function
16636 when we do not have enough information to show inlined frames;
16637 pretend it's a local variable in that case so that the user can
16638 still see it. */
16639 if (context_stack_depth > 0
16640 && context_stack[context_stack_depth - 1].name != NULL)
16641 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 16642 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16643 if (attr)
16644 {
e7c27a73 16645 var_decode_location (attr, sym, cu);
c906108c 16646 }
e142c38c 16647 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16648 if (attr)
16649 {
e7c27a73 16650 dwarf2_const_value (attr, sym, cu);
c906108c 16651 }
f346a30d 16652
e37fd15a 16653 list_to_add = cu->list_in_scope;
c906108c
SS
16654 break;
16655 case DW_TAG_unspecified_parameters:
16656 /* From varargs functions; gdb doesn't seem to have any
16657 interest in this information, so just ignore it for now.
16658 (FIXME?) */
16659 break;
34eaf542
TT
16660 case DW_TAG_template_type_param:
16661 suppress_add = 1;
16662 /* Fall through. */
c906108c 16663 case DW_TAG_class_type:
680b30c7 16664 case DW_TAG_interface_type:
c906108c
SS
16665 case DW_TAG_structure_type:
16666 case DW_TAG_union_type:
72019c9c 16667 case DW_TAG_set_type:
c906108c 16668 case DW_TAG_enumeration_type:
f1e6e072 16669 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16670 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 16671
63d06c5c 16672 {
987504bb 16673 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
16674 really ever be static objects: otherwise, if you try
16675 to, say, break of a class's method and you're in a file
16676 which doesn't mention that class, it won't work unless
16677 the check for all static symbols in lookup_symbol_aux
16678 saves you. See the OtherFileClass tests in
16679 gdb.c++/namespace.exp. */
16680
e37fd15a 16681 if (!suppress_add)
34eaf542 16682 {
34eaf542
TT
16683 list_to_add = (cu->list_in_scope == &file_symbols
16684 && (cu->language == language_cplus
16685 || cu->language == language_java)
16686 ? &global_symbols : cu->list_in_scope);
63d06c5c 16687
64382290
TT
16688 /* The semantics of C++ state that "struct foo {
16689 ... }" also defines a typedef for "foo". A Java
16690 class declaration also defines a typedef for the
16691 class. */
16692 if (cu->language == language_cplus
16693 || cu->language == language_java
16694 || cu->language == language_ada)
16695 {
16696 /* The symbol's name is already allocated along
16697 with this objfile, so we don't need to
16698 duplicate it for the type. */
16699 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16700 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16701 }
63d06c5c
DC
16702 }
16703 }
c906108c
SS
16704 break;
16705 case DW_TAG_typedef:
f1e6e072 16706 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 16707 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16708 list_to_add = cu->list_in_scope;
63d06c5c 16709 break;
c906108c 16710 case DW_TAG_base_type:
a02abb62 16711 case DW_TAG_subrange_type:
f1e6e072 16712 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16713 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16714 list_to_add = cu->list_in_scope;
c906108c
SS
16715 break;
16716 case DW_TAG_enumerator:
e142c38c 16717 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16718 if (attr)
16719 {
e7c27a73 16720 dwarf2_const_value (attr, sym, cu);
c906108c 16721 }
63d06c5c
DC
16722 {
16723 /* NOTE: carlton/2003-11-10: See comment above in the
16724 DW_TAG_class_type, etc. block. */
16725
e142c38c 16726 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
16727 && (cu->language == language_cplus
16728 || cu->language == language_java)
e142c38c 16729 ? &global_symbols : cu->list_in_scope);
63d06c5c 16730 }
c906108c 16731 break;
5c4e30ca 16732 case DW_TAG_namespace:
f1e6e072 16733 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 16734 list_to_add = &global_symbols;
5c4e30ca 16735 break;
4357ac6c 16736 case DW_TAG_common_block:
f1e6e072 16737 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
16738 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16739 add_symbol_to_list (sym, cu->list_in_scope);
16740 break;
c906108c
SS
16741 default:
16742 /* Not a tag we recognize. Hopefully we aren't processing
16743 trash data, but since we must specifically ignore things
16744 we don't recognize, there is nothing else we should do at
0963b4bd 16745 this point. */
e2e0b3e5 16746 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 16747 dwarf_tag_name (die->tag));
c906108c
SS
16748 break;
16749 }
df8a16a1 16750
e37fd15a
SW
16751 if (suppress_add)
16752 {
16753 sym->hash_next = objfile->template_symbols;
16754 objfile->template_symbols = sym;
16755 list_to_add = NULL;
16756 }
16757
16758 if (list_to_add != NULL)
16759 add_symbol_to_list (sym, list_to_add);
16760
df8a16a1
DJ
16761 /* For the benefit of old versions of GCC, check for anonymous
16762 namespaces based on the demangled name. */
4d4ec4e5 16763 if (!cu->processing_has_namespace_info
94af9270 16764 && cu->language == language_cplus)
a10964d1 16765 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
16766 }
16767 return (sym);
16768}
16769
34eaf542
TT
16770/* A wrapper for new_symbol_full that always allocates a new symbol. */
16771
16772static struct symbol *
16773new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16774{
16775 return new_symbol_full (die, type, cu, NULL);
16776}
16777
98bfdba5
PA
16778/* Given an attr with a DW_FORM_dataN value in host byte order,
16779 zero-extend it as appropriate for the symbol's type. The DWARF
16780 standard (v4) is not entirely clear about the meaning of using
16781 DW_FORM_dataN for a constant with a signed type, where the type is
16782 wider than the data. The conclusion of a discussion on the DWARF
16783 list was that this is unspecified. We choose to always zero-extend
16784 because that is the interpretation long in use by GCC. */
c906108c 16785
98bfdba5 16786static gdb_byte *
3aef2284 16787dwarf2_const_value_data (struct attribute *attr, struct obstack *obstack,
12df843f 16788 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 16789{
e7c27a73 16790 struct objfile *objfile = cu->objfile;
e17a4113
UW
16791 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16792 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
16793 LONGEST l = DW_UNSND (attr);
16794
16795 if (bits < sizeof (*value) * 8)
16796 {
16797 l &= ((LONGEST) 1 << bits) - 1;
16798 *value = l;
16799 }
16800 else if (bits == sizeof (*value) * 8)
16801 *value = l;
16802 else
16803 {
16804 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16805 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16806 return bytes;
16807 }
16808
16809 return NULL;
16810}
16811
16812/* Read a constant value from an attribute. Either set *VALUE, or if
16813 the value does not fit in *VALUE, set *BYTES - either already
16814 allocated on the objfile obstack, or newly allocated on OBSTACK,
16815 or, set *BATON, if we translated the constant to a location
16816 expression. */
16817
16818static void
16819dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16820 const char *name, struct obstack *obstack,
16821 struct dwarf2_cu *cu,
d521ce57 16822 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
16823 struct dwarf2_locexpr_baton **baton)
16824{
16825 struct objfile *objfile = cu->objfile;
16826 struct comp_unit_head *cu_header = &cu->header;
c906108c 16827 struct dwarf_block *blk;
98bfdba5
PA
16828 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16829 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16830
16831 *value = 0;
16832 *bytes = NULL;
16833 *baton = NULL;
c906108c
SS
16834
16835 switch (attr->form)
16836 {
16837 case DW_FORM_addr:
3019eac3 16838 case DW_FORM_GNU_addr_index:
ac56253d 16839 {
ac56253d
TT
16840 gdb_byte *data;
16841
98bfdba5
PA
16842 if (TYPE_LENGTH (type) != cu_header->addr_size)
16843 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 16844 cu_header->addr_size,
98bfdba5 16845 TYPE_LENGTH (type));
ac56253d
TT
16846 /* Symbols of this form are reasonably rare, so we just
16847 piggyback on the existing location code rather than writing
16848 a new implementation of symbol_computed_ops. */
7919a973 16849 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
16850 (*baton)->per_cu = cu->per_cu;
16851 gdb_assert ((*baton)->per_cu);
ac56253d 16852
98bfdba5 16853 (*baton)->size = 2 + cu_header->addr_size;
7919a973 16854 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 16855 (*baton)->data = data;
ac56253d
TT
16856
16857 data[0] = DW_OP_addr;
16858 store_unsigned_integer (&data[1], cu_header->addr_size,
16859 byte_order, DW_ADDR (attr));
16860 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 16861 }
c906108c 16862 break;
4ac36638 16863 case DW_FORM_string:
93b5768b 16864 case DW_FORM_strp:
3019eac3 16865 case DW_FORM_GNU_str_index:
36586728 16866 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
16867 /* DW_STRING is already allocated on the objfile obstack, point
16868 directly to it. */
d521ce57 16869 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 16870 break;
c906108c
SS
16871 case DW_FORM_block1:
16872 case DW_FORM_block2:
16873 case DW_FORM_block4:
16874 case DW_FORM_block:
2dc7f7b3 16875 case DW_FORM_exprloc:
c906108c 16876 blk = DW_BLOCK (attr);
98bfdba5
PA
16877 if (TYPE_LENGTH (type) != blk->size)
16878 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16879 TYPE_LENGTH (type));
16880 *bytes = blk->data;
c906108c 16881 break;
2df3850c
JM
16882
16883 /* The DW_AT_const_value attributes are supposed to carry the
16884 symbol's value "represented as it would be on the target
16885 architecture." By the time we get here, it's already been
16886 converted to host endianness, so we just need to sign- or
16887 zero-extend it as appropriate. */
16888 case DW_FORM_data1:
3aef2284 16889 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 16890 break;
c906108c 16891 case DW_FORM_data2:
3aef2284 16892 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 16893 break;
c906108c 16894 case DW_FORM_data4:
3aef2284 16895 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 16896 break;
c906108c 16897 case DW_FORM_data8:
3aef2284 16898 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
16899 break;
16900
c906108c 16901 case DW_FORM_sdata:
98bfdba5 16902 *value = DW_SND (attr);
2df3850c
JM
16903 break;
16904
c906108c 16905 case DW_FORM_udata:
98bfdba5 16906 *value = DW_UNSND (attr);
c906108c 16907 break;
2df3850c 16908
c906108c 16909 default:
4d3c2250 16910 complaint (&symfile_complaints,
e2e0b3e5 16911 _("unsupported const value attribute form: '%s'"),
4d3c2250 16912 dwarf_form_name (attr->form));
98bfdba5 16913 *value = 0;
c906108c
SS
16914 break;
16915 }
16916}
16917
2df3850c 16918
98bfdba5
PA
16919/* Copy constant value from an attribute to a symbol. */
16920
2df3850c 16921static void
98bfdba5
PA
16922dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16923 struct dwarf2_cu *cu)
2df3850c 16924{
98bfdba5
PA
16925 struct objfile *objfile = cu->objfile;
16926 struct comp_unit_head *cu_header = &cu->header;
12df843f 16927 LONGEST value;
d521ce57 16928 const gdb_byte *bytes;
98bfdba5 16929 struct dwarf2_locexpr_baton *baton;
2df3850c 16930
98bfdba5
PA
16931 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16932 SYMBOL_PRINT_NAME (sym),
16933 &objfile->objfile_obstack, cu,
16934 &value, &bytes, &baton);
2df3850c 16935
98bfdba5
PA
16936 if (baton != NULL)
16937 {
98bfdba5 16938 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16939 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
16940 }
16941 else if (bytes != NULL)
16942 {
16943 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 16944 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
16945 }
16946 else
16947 {
16948 SYMBOL_VALUE (sym) = value;
f1e6e072 16949 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 16950 }
2df3850c
JM
16951}
16952
c906108c
SS
16953/* Return the type of the die in question using its DW_AT_type attribute. */
16954
16955static struct type *
e7c27a73 16956die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16957{
c906108c 16958 struct attribute *type_attr;
c906108c 16959
e142c38c 16960 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
16961 if (!type_attr)
16962 {
16963 /* A missing DW_AT_type represents a void type. */
46bf5051 16964 return objfile_type (cu->objfile)->builtin_void;
c906108c 16965 }
348e048f 16966
673bfd45 16967 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16968}
16969
b4ba55a1
JB
16970/* True iff CU's producer generates GNAT Ada auxiliary information
16971 that allows to find parallel types through that information instead
16972 of having to do expensive parallel lookups by type name. */
16973
16974static int
16975need_gnat_info (struct dwarf2_cu *cu)
16976{
16977 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16978 of GNAT produces this auxiliary information, without any indication
16979 that it is produced. Part of enhancing the FSF version of GNAT
16980 to produce that information will be to put in place an indicator
16981 that we can use in order to determine whether the descriptive type
16982 info is available or not. One suggestion that has been made is
16983 to use a new attribute, attached to the CU die. For now, assume
16984 that the descriptive type info is not available. */
16985 return 0;
16986}
16987
b4ba55a1
JB
16988/* Return the auxiliary type of the die in question using its
16989 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16990 attribute is not present. */
16991
16992static struct type *
16993die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16994{
b4ba55a1 16995 struct attribute *type_attr;
b4ba55a1
JB
16996
16997 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16998 if (!type_attr)
16999 return NULL;
17000
673bfd45 17001 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
17002}
17003
17004/* If DIE has a descriptive_type attribute, then set the TYPE's
17005 descriptive type accordingly. */
17006
17007static void
17008set_descriptive_type (struct type *type, struct die_info *die,
17009 struct dwarf2_cu *cu)
17010{
17011 struct type *descriptive_type = die_descriptive_type (die, cu);
17012
17013 if (descriptive_type)
17014 {
17015 ALLOCATE_GNAT_AUX_TYPE (type);
17016 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17017 }
17018}
17019
c906108c
SS
17020/* Return the containing type of the die in question using its
17021 DW_AT_containing_type attribute. */
17022
17023static struct type *
e7c27a73 17024die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17025{
c906108c 17026 struct attribute *type_attr;
c906108c 17027
e142c38c 17028 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
17029 if (!type_attr)
17030 error (_("Dwarf Error: Problem turning containing type into gdb type "
17031 "[in module %s]"), cu->objfile->name);
17032
673bfd45 17033 return lookup_die_type (die, type_attr, cu);
c906108c
SS
17034}
17035
ac9ec31b
DE
17036/* Return an error marker type to use for the ill formed type in DIE/CU. */
17037
17038static struct type *
17039build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17040{
17041 struct objfile *objfile = dwarf2_per_objfile->objfile;
17042 char *message, *saved;
17043
17044 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17045 objfile->name,
17046 cu->header.offset.sect_off,
17047 die->offset.sect_off);
17048 saved = obstack_copy0 (&objfile->objfile_obstack,
17049 message, strlen (message));
17050 xfree (message);
17051
17052 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17053}
17054
673bfd45 17055/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
17056 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17057 DW_AT_containing_type.
673bfd45
DE
17058 If there is no type substitute an error marker. */
17059
c906108c 17060static struct type *
673bfd45
DE
17061lookup_die_type (struct die_info *die, struct attribute *attr,
17062 struct dwarf2_cu *cu)
c906108c 17063{
bb5ed363 17064 struct objfile *objfile = cu->objfile;
f792889a
DJ
17065 struct type *this_type;
17066
ac9ec31b
DE
17067 gdb_assert (attr->name == DW_AT_type
17068 || attr->name == DW_AT_GNAT_descriptive_type
17069 || attr->name == DW_AT_containing_type);
17070
673bfd45
DE
17071 /* First see if we have it cached. */
17072
36586728
TT
17073 if (attr->form == DW_FORM_GNU_ref_alt)
17074 {
17075 struct dwarf2_per_cu_data *per_cu;
17076 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17077
17078 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17079 this_type = get_die_type_at_offset (offset, per_cu);
17080 }
17081 else if (is_ref_attr (attr))
673bfd45 17082 {
b64f50a1 17083 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
17084
17085 this_type = get_die_type_at_offset (offset, cu->per_cu);
17086 }
55f1336d 17087 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 17088 {
ac9ec31b 17089 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 17090
ac9ec31b 17091 return get_signatured_type (die, signature, cu);
673bfd45
DE
17092 }
17093 else
17094 {
ac9ec31b
DE
17095 complaint (&symfile_complaints,
17096 _("Dwarf Error: Bad type attribute %s in DIE"
17097 " at 0x%x [in module %s]"),
17098 dwarf_attr_name (attr->name), die->offset.sect_off,
17099 objfile->name);
17100 return build_error_marker_type (cu, die);
673bfd45
DE
17101 }
17102
17103 /* If not cached we need to read it in. */
17104
17105 if (this_type == NULL)
17106 {
ac9ec31b 17107 struct die_info *type_die = NULL;
673bfd45
DE
17108 struct dwarf2_cu *type_cu = cu;
17109
ac9ec31b
DE
17110 if (is_ref_attr (attr))
17111 type_die = follow_die_ref (die, attr, &type_cu);
17112 if (type_die == NULL)
17113 return build_error_marker_type (cu, die);
17114 /* If we find the type now, it's probably because the type came
3019eac3
DE
17115 from an inter-CU reference and the type's CU got expanded before
17116 ours. */
ac9ec31b 17117 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
17118 }
17119
17120 /* If we still don't have a type use an error marker. */
17121
17122 if (this_type == NULL)
ac9ec31b 17123 return build_error_marker_type (cu, die);
673bfd45 17124
f792889a 17125 return this_type;
c906108c
SS
17126}
17127
673bfd45
DE
17128/* Return the type in DIE, CU.
17129 Returns NULL for invalid types.
17130
02142a6c 17131 This first does a lookup in die_type_hash,
673bfd45
DE
17132 and only reads the die in if necessary.
17133
17134 NOTE: This can be called when reading in partial or full symbols. */
17135
f792889a 17136static struct type *
e7c27a73 17137read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17138{
f792889a
DJ
17139 struct type *this_type;
17140
17141 this_type = get_die_type (die, cu);
17142 if (this_type)
17143 return this_type;
17144
673bfd45
DE
17145 return read_type_die_1 (die, cu);
17146}
17147
17148/* Read the type in DIE, CU.
17149 Returns NULL for invalid types. */
17150
17151static struct type *
17152read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17153{
17154 struct type *this_type = NULL;
17155
c906108c
SS
17156 switch (die->tag)
17157 {
17158 case DW_TAG_class_type:
680b30c7 17159 case DW_TAG_interface_type:
c906108c
SS
17160 case DW_TAG_structure_type:
17161 case DW_TAG_union_type:
f792889a 17162 this_type = read_structure_type (die, cu);
c906108c
SS
17163 break;
17164 case DW_TAG_enumeration_type:
f792889a 17165 this_type = read_enumeration_type (die, cu);
c906108c
SS
17166 break;
17167 case DW_TAG_subprogram:
17168 case DW_TAG_subroutine_type:
edb3359d 17169 case DW_TAG_inlined_subroutine:
f792889a 17170 this_type = read_subroutine_type (die, cu);
c906108c
SS
17171 break;
17172 case DW_TAG_array_type:
f792889a 17173 this_type = read_array_type (die, cu);
c906108c 17174 break;
72019c9c 17175 case DW_TAG_set_type:
f792889a 17176 this_type = read_set_type (die, cu);
72019c9c 17177 break;
c906108c 17178 case DW_TAG_pointer_type:
f792889a 17179 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
17180 break;
17181 case DW_TAG_ptr_to_member_type:
f792889a 17182 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
17183 break;
17184 case DW_TAG_reference_type:
f792889a 17185 this_type = read_tag_reference_type (die, cu);
c906108c
SS
17186 break;
17187 case DW_TAG_const_type:
f792889a 17188 this_type = read_tag_const_type (die, cu);
c906108c
SS
17189 break;
17190 case DW_TAG_volatile_type:
f792889a 17191 this_type = read_tag_volatile_type (die, cu);
c906108c 17192 break;
06d66ee9
TT
17193 case DW_TAG_restrict_type:
17194 this_type = read_tag_restrict_type (die, cu);
17195 break;
c906108c 17196 case DW_TAG_string_type:
f792889a 17197 this_type = read_tag_string_type (die, cu);
c906108c
SS
17198 break;
17199 case DW_TAG_typedef:
f792889a 17200 this_type = read_typedef (die, cu);
c906108c 17201 break;
a02abb62 17202 case DW_TAG_subrange_type:
f792889a 17203 this_type = read_subrange_type (die, cu);
a02abb62 17204 break;
c906108c 17205 case DW_TAG_base_type:
f792889a 17206 this_type = read_base_type (die, cu);
c906108c 17207 break;
81a17f79 17208 case DW_TAG_unspecified_type:
f792889a 17209 this_type = read_unspecified_type (die, cu);
81a17f79 17210 break;
0114d602
DJ
17211 case DW_TAG_namespace:
17212 this_type = read_namespace_type (die, cu);
17213 break;
f55ee35c
JK
17214 case DW_TAG_module:
17215 this_type = read_module_type (die, cu);
17216 break;
c906108c 17217 default:
3e43a32a
MS
17218 complaint (&symfile_complaints,
17219 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 17220 dwarf_tag_name (die->tag));
c906108c
SS
17221 break;
17222 }
63d06c5c 17223
f792889a 17224 return this_type;
63d06c5c
DC
17225}
17226
abc72ce4
DE
17227/* See if we can figure out if the class lives in a namespace. We do
17228 this by looking for a member function; its demangled name will
17229 contain namespace info, if there is any.
17230 Return the computed name or NULL.
17231 Space for the result is allocated on the objfile's obstack.
17232 This is the full-die version of guess_partial_die_structure_name.
17233 In this case we know DIE has no useful parent. */
17234
17235static char *
17236guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17237{
17238 struct die_info *spec_die;
17239 struct dwarf2_cu *spec_cu;
17240 struct die_info *child;
17241
17242 spec_cu = cu;
17243 spec_die = die_specification (die, &spec_cu);
17244 if (spec_die != NULL)
17245 {
17246 die = spec_die;
17247 cu = spec_cu;
17248 }
17249
17250 for (child = die->child;
17251 child != NULL;
17252 child = child->sibling)
17253 {
17254 if (child->tag == DW_TAG_subprogram)
17255 {
17256 struct attribute *attr;
17257
17258 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17259 if (attr == NULL)
17260 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17261 if (attr != NULL)
17262 {
17263 char *actual_name
17264 = language_class_name_from_physname (cu->language_defn,
17265 DW_STRING (attr));
17266 char *name = NULL;
17267
17268 if (actual_name != NULL)
17269 {
15d034d0 17270 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
17271
17272 if (die_name != NULL
17273 && strcmp (die_name, actual_name) != 0)
17274 {
17275 /* Strip off the class name from the full name.
17276 We want the prefix. */
17277 int die_name_len = strlen (die_name);
17278 int actual_name_len = strlen (actual_name);
17279
17280 /* Test for '::' as a sanity check. */
17281 if (actual_name_len > die_name_len + 2
3e43a32a
MS
17282 && actual_name[actual_name_len
17283 - die_name_len - 1] == ':')
abc72ce4 17284 name =
10f0c4bb
TT
17285 obstack_copy0 (&cu->objfile->objfile_obstack,
17286 actual_name,
17287 actual_name_len - die_name_len - 2);
abc72ce4
DE
17288 }
17289 }
17290 xfree (actual_name);
17291 return name;
17292 }
17293 }
17294 }
17295
17296 return NULL;
17297}
17298
96408a79
SA
17299/* GCC might emit a nameless typedef that has a linkage name. Determine the
17300 prefix part in such case. See
17301 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17302
17303static char *
17304anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17305{
17306 struct attribute *attr;
17307 char *base;
17308
17309 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17310 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17311 return NULL;
17312
17313 attr = dwarf2_attr (die, DW_AT_name, cu);
17314 if (attr != NULL && DW_STRING (attr) != NULL)
17315 return NULL;
17316
17317 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17318 if (attr == NULL)
17319 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17320 if (attr == NULL || DW_STRING (attr) == NULL)
17321 return NULL;
17322
17323 /* dwarf2_name had to be already called. */
17324 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17325
17326 /* Strip the base name, keep any leading namespaces/classes. */
17327 base = strrchr (DW_STRING (attr), ':');
17328 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17329 return "";
17330
10f0c4bb
TT
17331 return obstack_copy0 (&cu->objfile->objfile_obstack,
17332 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
17333}
17334
fdde2d81 17335/* Return the name of the namespace/class that DIE is defined within,
0114d602 17336 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 17337
0114d602
DJ
17338 For example, if we're within the method foo() in the following
17339 code:
17340
17341 namespace N {
17342 class C {
17343 void foo () {
17344 }
17345 };
17346 }
17347
17348 then determine_prefix on foo's die will return "N::C". */
fdde2d81 17349
0d5cff50 17350static const char *
e142c38c 17351determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 17352{
0114d602
DJ
17353 struct die_info *parent, *spec_die;
17354 struct dwarf2_cu *spec_cu;
17355 struct type *parent_type;
96408a79 17356 char *retval;
63d06c5c 17357
f55ee35c
JK
17358 if (cu->language != language_cplus && cu->language != language_java
17359 && cu->language != language_fortran)
0114d602
DJ
17360 return "";
17361
96408a79
SA
17362 retval = anonymous_struct_prefix (die, cu);
17363 if (retval)
17364 return retval;
17365
0114d602
DJ
17366 /* We have to be careful in the presence of DW_AT_specification.
17367 For example, with GCC 3.4, given the code
17368
17369 namespace N {
17370 void foo() {
17371 // Definition of N::foo.
17372 }
17373 }
17374
17375 then we'll have a tree of DIEs like this:
17376
17377 1: DW_TAG_compile_unit
17378 2: DW_TAG_namespace // N
17379 3: DW_TAG_subprogram // declaration of N::foo
17380 4: DW_TAG_subprogram // definition of N::foo
17381 DW_AT_specification // refers to die #3
17382
17383 Thus, when processing die #4, we have to pretend that we're in
17384 the context of its DW_AT_specification, namely the contex of die
17385 #3. */
17386 spec_cu = cu;
17387 spec_die = die_specification (die, &spec_cu);
17388 if (spec_die == NULL)
17389 parent = die->parent;
17390 else
63d06c5c 17391 {
0114d602
DJ
17392 parent = spec_die->parent;
17393 cu = spec_cu;
63d06c5c 17394 }
0114d602
DJ
17395
17396 if (parent == NULL)
17397 return "";
98bfdba5
PA
17398 else if (parent->building_fullname)
17399 {
17400 const char *name;
17401 const char *parent_name;
17402
17403 /* It has been seen on RealView 2.2 built binaries,
17404 DW_TAG_template_type_param types actually _defined_ as
17405 children of the parent class:
17406
17407 enum E {};
17408 template class <class Enum> Class{};
17409 Class<enum E> class_e;
17410
17411 1: DW_TAG_class_type (Class)
17412 2: DW_TAG_enumeration_type (E)
17413 3: DW_TAG_enumerator (enum1:0)
17414 3: DW_TAG_enumerator (enum2:1)
17415 ...
17416 2: DW_TAG_template_type_param
17417 DW_AT_type DW_FORM_ref_udata (E)
17418
17419 Besides being broken debug info, it can put GDB into an
17420 infinite loop. Consider:
17421
17422 When we're building the full name for Class<E>, we'll start
17423 at Class, and go look over its template type parameters,
17424 finding E. We'll then try to build the full name of E, and
17425 reach here. We're now trying to build the full name of E,
17426 and look over the parent DIE for containing scope. In the
17427 broken case, if we followed the parent DIE of E, we'd again
17428 find Class, and once again go look at its template type
17429 arguments, etc., etc. Simply don't consider such parent die
17430 as source-level parent of this die (it can't be, the language
17431 doesn't allow it), and break the loop here. */
17432 name = dwarf2_name (die, cu);
17433 parent_name = dwarf2_name (parent, cu);
17434 complaint (&symfile_complaints,
17435 _("template param type '%s' defined within parent '%s'"),
17436 name ? name : "<unknown>",
17437 parent_name ? parent_name : "<unknown>");
17438 return "";
17439 }
63d06c5c 17440 else
0114d602
DJ
17441 switch (parent->tag)
17442 {
63d06c5c 17443 case DW_TAG_namespace:
0114d602 17444 parent_type = read_type_die (parent, cu);
acebe513
UW
17445 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17446 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17447 Work around this problem here. */
17448 if (cu->language == language_cplus
17449 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17450 return "";
0114d602
DJ
17451 /* We give a name to even anonymous namespaces. */
17452 return TYPE_TAG_NAME (parent_type);
63d06c5c 17453 case DW_TAG_class_type:
680b30c7 17454 case DW_TAG_interface_type:
63d06c5c 17455 case DW_TAG_structure_type:
0114d602 17456 case DW_TAG_union_type:
f55ee35c 17457 case DW_TAG_module:
0114d602
DJ
17458 parent_type = read_type_die (parent, cu);
17459 if (TYPE_TAG_NAME (parent_type) != NULL)
17460 return TYPE_TAG_NAME (parent_type);
17461 else
17462 /* An anonymous structure is only allowed non-static data
17463 members; no typedefs, no member functions, et cetera.
17464 So it does not need a prefix. */
17465 return "";
abc72ce4 17466 case DW_TAG_compile_unit:
95554aad 17467 case DW_TAG_partial_unit:
abc72ce4
DE
17468 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17469 if (cu->language == language_cplus
8b70b953 17470 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
17471 && die->child != NULL
17472 && (die->tag == DW_TAG_class_type
17473 || die->tag == DW_TAG_structure_type
17474 || die->tag == DW_TAG_union_type))
17475 {
17476 char *name = guess_full_die_structure_name (die, cu);
17477 if (name != NULL)
17478 return name;
17479 }
17480 return "";
63d06c5c 17481 default:
8176b9b8 17482 return determine_prefix (parent, cu);
63d06c5c 17483 }
63d06c5c
DC
17484}
17485
3e43a32a
MS
17486/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17487 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17488 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17489 an obconcat, otherwise allocate storage for the result. The CU argument is
17490 used to determine the language and hence, the appropriate separator. */
987504bb 17491
f55ee35c 17492#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
17493
17494static char *
f55ee35c
JK
17495typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17496 int physname, struct dwarf2_cu *cu)
63d06c5c 17497{
f55ee35c 17498 const char *lead = "";
5c315b68 17499 const char *sep;
63d06c5c 17500
3e43a32a
MS
17501 if (suffix == NULL || suffix[0] == '\0'
17502 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
17503 sep = "";
17504 else if (cu->language == language_java)
17505 sep = ".";
f55ee35c
JK
17506 else if (cu->language == language_fortran && physname)
17507 {
17508 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17509 DW_AT_MIPS_linkage_name is preferred and used instead. */
17510
17511 lead = "__";
17512 sep = "_MOD_";
17513 }
987504bb
JJ
17514 else
17515 sep = "::";
63d06c5c 17516
6dd47d34
DE
17517 if (prefix == NULL)
17518 prefix = "";
17519 if (suffix == NULL)
17520 suffix = "";
17521
987504bb
JJ
17522 if (obs == NULL)
17523 {
3e43a32a
MS
17524 char *retval
17525 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 17526
f55ee35c
JK
17527 strcpy (retval, lead);
17528 strcat (retval, prefix);
6dd47d34
DE
17529 strcat (retval, sep);
17530 strcat (retval, suffix);
63d06c5c
DC
17531 return retval;
17532 }
987504bb
JJ
17533 else
17534 {
17535 /* We have an obstack. */
f55ee35c 17536 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 17537 }
63d06c5c
DC
17538}
17539
c906108c
SS
17540/* Return sibling of die, NULL if no sibling. */
17541
f9aca02d 17542static struct die_info *
fba45db2 17543sibling_die (struct die_info *die)
c906108c 17544{
639d11d3 17545 return die->sibling;
c906108c
SS
17546}
17547
71c25dea
TT
17548/* Get name of a die, return NULL if not found. */
17549
15d034d0
TT
17550static const char *
17551dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
17552 struct obstack *obstack)
17553{
17554 if (name && cu->language == language_cplus)
17555 {
17556 char *canon_name = cp_canonicalize_string (name);
17557
17558 if (canon_name != NULL)
17559 {
17560 if (strcmp (canon_name, name) != 0)
10f0c4bb 17561 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
17562 xfree (canon_name);
17563 }
17564 }
17565
17566 return name;
c906108c
SS
17567}
17568
9219021c
DC
17569/* Get name of a die, return NULL if not found. */
17570
15d034d0 17571static const char *
e142c38c 17572dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
17573{
17574 struct attribute *attr;
17575
e142c38c 17576 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
17577 if ((!attr || !DW_STRING (attr))
17578 && die->tag != DW_TAG_class_type
17579 && die->tag != DW_TAG_interface_type
17580 && die->tag != DW_TAG_structure_type
17581 && die->tag != DW_TAG_union_type)
71c25dea
TT
17582 return NULL;
17583
17584 switch (die->tag)
17585 {
17586 case DW_TAG_compile_unit:
95554aad 17587 case DW_TAG_partial_unit:
71c25dea
TT
17588 /* Compilation units have a DW_AT_name that is a filename, not
17589 a source language identifier. */
17590 case DW_TAG_enumeration_type:
17591 case DW_TAG_enumerator:
17592 /* These tags always have simple identifiers already; no need
17593 to canonicalize them. */
17594 return DW_STRING (attr);
907af001 17595
418835cc
KS
17596 case DW_TAG_subprogram:
17597 /* Java constructors will all be named "<init>", so return
17598 the class name when we see this special case. */
17599 if (cu->language == language_java
17600 && DW_STRING (attr) != NULL
17601 && strcmp (DW_STRING (attr), "<init>") == 0)
17602 {
17603 struct dwarf2_cu *spec_cu = cu;
17604 struct die_info *spec_die;
17605
17606 /* GCJ will output '<init>' for Java constructor names.
17607 For this special case, return the name of the parent class. */
17608
17609 /* GCJ may output suprogram DIEs with AT_specification set.
17610 If so, use the name of the specified DIE. */
17611 spec_die = die_specification (die, &spec_cu);
17612 if (spec_die != NULL)
17613 return dwarf2_name (spec_die, spec_cu);
17614
17615 do
17616 {
17617 die = die->parent;
17618 if (die->tag == DW_TAG_class_type)
17619 return dwarf2_name (die, cu);
17620 }
95554aad
TT
17621 while (die->tag != DW_TAG_compile_unit
17622 && die->tag != DW_TAG_partial_unit);
418835cc 17623 }
907af001
UW
17624 break;
17625
17626 case DW_TAG_class_type:
17627 case DW_TAG_interface_type:
17628 case DW_TAG_structure_type:
17629 case DW_TAG_union_type:
17630 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17631 structures or unions. These were of the form "._%d" in GCC 4.1,
17632 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17633 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
17634 if (attr && DW_STRING (attr)
17635 && (strncmp (DW_STRING (attr), "._", 2) == 0
17636 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 17637 return NULL;
53832f31
TT
17638
17639 /* GCC might emit a nameless typedef that has a linkage name. See
17640 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17641 if (!attr || DW_STRING (attr) == NULL)
17642 {
df5c6c50 17643 char *demangled = NULL;
53832f31
TT
17644
17645 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17646 if (attr == NULL)
17647 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17648
17649 if (attr == NULL || DW_STRING (attr) == NULL)
17650 return NULL;
17651
df5c6c50
JK
17652 /* Avoid demangling DW_STRING (attr) the second time on a second
17653 call for the same DIE. */
17654 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 17655 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
17656
17657 if (demangled)
17658 {
96408a79
SA
17659 char *base;
17660
53832f31 17661 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
17662 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17663 demangled, strlen (demangled));
53832f31
TT
17664 DW_STRING_IS_CANONICAL (attr) = 1;
17665 xfree (demangled);
96408a79
SA
17666
17667 /* Strip any leading namespaces/classes, keep only the base name.
17668 DW_AT_name for named DIEs does not contain the prefixes. */
17669 base = strrchr (DW_STRING (attr), ':');
17670 if (base && base > DW_STRING (attr) && base[-1] == ':')
17671 return &base[1];
17672 else
17673 return DW_STRING (attr);
53832f31
TT
17674 }
17675 }
907af001
UW
17676 break;
17677
71c25dea 17678 default:
907af001
UW
17679 break;
17680 }
17681
17682 if (!DW_STRING_IS_CANONICAL (attr))
17683 {
17684 DW_STRING (attr)
17685 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17686 &cu->objfile->objfile_obstack);
17687 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 17688 }
907af001 17689 return DW_STRING (attr);
9219021c
DC
17690}
17691
17692/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
17693 is none. *EXT_CU is the CU containing DIE on input, and the CU
17694 containing the return value on output. */
9219021c
DC
17695
17696static struct die_info *
f2f0e013 17697dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
17698{
17699 struct attribute *attr;
9219021c 17700
f2f0e013 17701 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
17702 if (attr == NULL)
17703 return NULL;
17704
f2f0e013 17705 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
17706}
17707
c906108c
SS
17708/* Convert a DIE tag into its string name. */
17709
f39c6ffd 17710static const char *
aa1ee363 17711dwarf_tag_name (unsigned tag)
c906108c 17712{
f39c6ffd
TT
17713 const char *name = get_DW_TAG_name (tag);
17714
17715 if (name == NULL)
17716 return "DW_TAG_<unknown>";
17717
17718 return name;
c906108c
SS
17719}
17720
17721/* Convert a DWARF attribute code into its string name. */
17722
f39c6ffd 17723static const char *
aa1ee363 17724dwarf_attr_name (unsigned attr)
c906108c 17725{
f39c6ffd
TT
17726 const char *name;
17727
c764a876 17728#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
17729 if (attr == DW_AT_MIPS_fde)
17730 return "DW_AT_MIPS_fde";
17731#else
17732 if (attr == DW_AT_HP_block_index)
17733 return "DW_AT_HP_block_index";
c764a876 17734#endif
f39c6ffd
TT
17735
17736 name = get_DW_AT_name (attr);
17737
17738 if (name == NULL)
17739 return "DW_AT_<unknown>";
17740
17741 return name;
c906108c
SS
17742}
17743
17744/* Convert a DWARF value form code into its string name. */
17745
f39c6ffd 17746static const char *
aa1ee363 17747dwarf_form_name (unsigned form)
c906108c 17748{
f39c6ffd
TT
17749 const char *name = get_DW_FORM_name (form);
17750
17751 if (name == NULL)
17752 return "DW_FORM_<unknown>";
17753
17754 return name;
c906108c
SS
17755}
17756
17757static char *
fba45db2 17758dwarf_bool_name (unsigned mybool)
c906108c
SS
17759{
17760 if (mybool)
17761 return "TRUE";
17762 else
17763 return "FALSE";
17764}
17765
17766/* Convert a DWARF type code into its string name. */
17767
f39c6ffd 17768static const char *
aa1ee363 17769dwarf_type_encoding_name (unsigned enc)
c906108c 17770{
f39c6ffd 17771 const char *name = get_DW_ATE_name (enc);
c906108c 17772
f39c6ffd
TT
17773 if (name == NULL)
17774 return "DW_ATE_<unknown>";
c906108c 17775
f39c6ffd 17776 return name;
c906108c 17777}
c906108c 17778
f9aca02d 17779static void
d97bc12b 17780dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
17781{
17782 unsigned int i;
17783
d97bc12b
DE
17784 print_spaces (indent, f);
17785 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 17786 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
17787
17788 if (die->parent != NULL)
17789 {
17790 print_spaces (indent, f);
17791 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 17792 die->parent->offset.sect_off);
d97bc12b
DE
17793 }
17794
17795 print_spaces (indent, f);
17796 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 17797 dwarf_bool_name (die->child != NULL));
c906108c 17798
d97bc12b
DE
17799 print_spaces (indent, f);
17800 fprintf_unfiltered (f, " attributes:\n");
17801
c906108c
SS
17802 for (i = 0; i < die->num_attrs; ++i)
17803 {
d97bc12b
DE
17804 print_spaces (indent, f);
17805 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
17806 dwarf_attr_name (die->attrs[i].name),
17807 dwarf_form_name (die->attrs[i].form));
d97bc12b 17808
c906108c
SS
17809 switch (die->attrs[i].form)
17810 {
c906108c 17811 case DW_FORM_addr:
3019eac3 17812 case DW_FORM_GNU_addr_index:
d97bc12b 17813 fprintf_unfiltered (f, "address: ");
5af949e3 17814 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
17815 break;
17816 case DW_FORM_block2:
17817 case DW_FORM_block4:
17818 case DW_FORM_block:
17819 case DW_FORM_block1:
56eb65bd
SP
17820 fprintf_unfiltered (f, "block: size %s",
17821 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 17822 break;
2dc7f7b3 17823 case DW_FORM_exprloc:
56eb65bd
SP
17824 fprintf_unfiltered (f, "expression: size %s",
17825 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 17826 break;
4568ecf9
DE
17827 case DW_FORM_ref_addr:
17828 fprintf_unfiltered (f, "ref address: ");
17829 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17830 break;
36586728
TT
17831 case DW_FORM_GNU_ref_alt:
17832 fprintf_unfiltered (f, "alt ref address: ");
17833 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17834 break;
10b3939b
DJ
17835 case DW_FORM_ref1:
17836 case DW_FORM_ref2:
17837 case DW_FORM_ref4:
4568ecf9
DE
17838 case DW_FORM_ref8:
17839 case DW_FORM_ref_udata:
d97bc12b 17840 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 17841 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 17842 break;
c906108c
SS
17843 case DW_FORM_data1:
17844 case DW_FORM_data2:
17845 case DW_FORM_data4:
ce5d95e1 17846 case DW_FORM_data8:
c906108c
SS
17847 case DW_FORM_udata:
17848 case DW_FORM_sdata:
43bbcdc2
PH
17849 fprintf_unfiltered (f, "constant: %s",
17850 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 17851 break;
2dc7f7b3
TT
17852 case DW_FORM_sec_offset:
17853 fprintf_unfiltered (f, "section offset: %s",
17854 pulongest (DW_UNSND (&die->attrs[i])));
17855 break;
55f1336d 17856 case DW_FORM_ref_sig8:
ac9ec31b
DE
17857 fprintf_unfiltered (f, "signature: %s",
17858 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 17859 break;
c906108c 17860 case DW_FORM_string:
4bdf3d34 17861 case DW_FORM_strp:
3019eac3 17862 case DW_FORM_GNU_str_index:
36586728 17863 case DW_FORM_GNU_strp_alt:
8285870a 17864 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 17865 DW_STRING (&die->attrs[i])
8285870a
JK
17866 ? DW_STRING (&die->attrs[i]) : "",
17867 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
17868 break;
17869 case DW_FORM_flag:
17870 if (DW_UNSND (&die->attrs[i]))
d97bc12b 17871 fprintf_unfiltered (f, "flag: TRUE");
c906108c 17872 else
d97bc12b 17873 fprintf_unfiltered (f, "flag: FALSE");
c906108c 17874 break;
2dc7f7b3
TT
17875 case DW_FORM_flag_present:
17876 fprintf_unfiltered (f, "flag: TRUE");
17877 break;
a8329558 17878 case DW_FORM_indirect:
0963b4bd
MS
17879 /* The reader will have reduced the indirect form to
17880 the "base form" so this form should not occur. */
3e43a32a
MS
17881 fprintf_unfiltered (f,
17882 "unexpected attribute form: DW_FORM_indirect");
a8329558 17883 break;
c906108c 17884 default:
d97bc12b 17885 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 17886 die->attrs[i].form);
d97bc12b 17887 break;
c906108c 17888 }
d97bc12b 17889 fprintf_unfiltered (f, "\n");
c906108c
SS
17890 }
17891}
17892
f9aca02d 17893static void
d97bc12b 17894dump_die_for_error (struct die_info *die)
c906108c 17895{
d97bc12b
DE
17896 dump_die_shallow (gdb_stderr, 0, die);
17897}
17898
17899static void
17900dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17901{
17902 int indent = level * 4;
17903
17904 gdb_assert (die != NULL);
17905
17906 if (level >= max_level)
17907 return;
17908
17909 dump_die_shallow (f, indent, die);
17910
17911 if (die->child != NULL)
c906108c 17912 {
d97bc12b
DE
17913 print_spaces (indent, f);
17914 fprintf_unfiltered (f, " Children:");
17915 if (level + 1 < max_level)
17916 {
17917 fprintf_unfiltered (f, "\n");
17918 dump_die_1 (f, level + 1, max_level, die->child);
17919 }
17920 else
17921 {
3e43a32a
MS
17922 fprintf_unfiltered (f,
17923 " [not printed, max nesting level reached]\n");
d97bc12b
DE
17924 }
17925 }
17926
17927 if (die->sibling != NULL && level > 0)
17928 {
17929 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
17930 }
17931}
17932
d97bc12b
DE
17933/* This is called from the pdie macro in gdbinit.in.
17934 It's not static so gcc will keep a copy callable from gdb. */
17935
17936void
17937dump_die (struct die_info *die, int max_level)
17938{
17939 dump_die_1 (gdb_stdlog, 0, max_level, die);
17940}
17941
f9aca02d 17942static void
51545339 17943store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17944{
51545339 17945 void **slot;
c906108c 17946
b64f50a1
JK
17947 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17948 INSERT);
51545339
DJ
17949
17950 *slot = die;
c906108c
SS
17951}
17952
b64f50a1
JK
17953/* DW_ADDR is always stored already as sect_offset; despite for the forms
17954 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17955
93311388
DE
17956static int
17957is_ref_attr (struct attribute *attr)
c906108c 17958{
c906108c
SS
17959 switch (attr->form)
17960 {
17961 case DW_FORM_ref_addr:
c906108c
SS
17962 case DW_FORM_ref1:
17963 case DW_FORM_ref2:
17964 case DW_FORM_ref4:
613e1657 17965 case DW_FORM_ref8:
c906108c 17966 case DW_FORM_ref_udata:
36586728 17967 case DW_FORM_GNU_ref_alt:
93311388 17968 return 1;
c906108c 17969 default:
93311388 17970 return 0;
c906108c 17971 }
93311388
DE
17972}
17973
b64f50a1
JK
17974/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17975 required kind. */
17976
17977static sect_offset
93311388
DE
17978dwarf2_get_ref_die_offset (struct attribute *attr)
17979{
4568ecf9 17980 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 17981
93311388 17982 if (is_ref_attr (attr))
b64f50a1 17983 return retval;
93311388 17984
b64f50a1 17985 retval.sect_off = 0;
93311388
DE
17986 complaint (&symfile_complaints,
17987 _("unsupported die ref attribute form: '%s'"),
17988 dwarf_form_name (attr->form));
b64f50a1 17989 return retval;
c906108c
SS
17990}
17991
43bbcdc2
PH
17992/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17993 * the value held by the attribute is not constant. */
a02abb62 17994
43bbcdc2 17995static LONGEST
a02abb62
JB
17996dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17997{
17998 if (attr->form == DW_FORM_sdata)
17999 return DW_SND (attr);
18000 else if (attr->form == DW_FORM_udata
18001 || attr->form == DW_FORM_data1
18002 || attr->form == DW_FORM_data2
18003 || attr->form == DW_FORM_data4
18004 || attr->form == DW_FORM_data8)
18005 return DW_UNSND (attr);
18006 else
18007 {
3e43a32a
MS
18008 complaint (&symfile_complaints,
18009 _("Attribute value is not a constant (%s)"),
a02abb62
JB
18010 dwarf_form_name (attr->form));
18011 return default_value;
18012 }
18013}
18014
348e048f
DE
18015/* Follow reference or signature attribute ATTR of SRC_DIE.
18016 On entry *REF_CU is the CU of SRC_DIE.
18017 On exit *REF_CU is the CU of the result. */
18018
18019static struct die_info *
18020follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
18021 struct dwarf2_cu **ref_cu)
18022{
18023 struct die_info *die;
18024
18025 if (is_ref_attr (attr))
18026 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 18027 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
18028 die = follow_die_sig (src_die, attr, ref_cu);
18029 else
18030 {
18031 dump_die_for_error (src_die);
18032 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18033 (*ref_cu)->objfile->name);
18034 }
18035
18036 return die;
03dd20cc
DJ
18037}
18038
5c631832 18039/* Follow reference OFFSET.
673bfd45
DE
18040 On entry *REF_CU is the CU of the source die referencing OFFSET.
18041 On exit *REF_CU is the CU of the result.
18042 Returns NULL if OFFSET is invalid. */
f504f079 18043
f9aca02d 18044static struct die_info *
36586728
TT
18045follow_die_offset (sect_offset offset, int offset_in_dwz,
18046 struct dwarf2_cu **ref_cu)
c906108c 18047{
10b3939b 18048 struct die_info temp_die;
f2f0e013 18049 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 18050
348e048f
DE
18051 gdb_assert (cu->per_cu != NULL);
18052
98bfdba5
PA
18053 target_cu = cu;
18054
3019eac3 18055 if (cu->per_cu->is_debug_types)
348e048f
DE
18056 {
18057 /* .debug_types CUs cannot reference anything outside their CU.
18058 If they need to, they have to reference a signatured type via
55f1336d 18059 DW_FORM_ref_sig8. */
348e048f 18060 if (! offset_in_cu_p (&cu->header, offset))
5c631832 18061 return NULL;
348e048f 18062 }
36586728
TT
18063 else if (offset_in_dwz != cu->per_cu->is_dwz
18064 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
18065 {
18066 struct dwarf2_per_cu_data *per_cu;
9a619af0 18067
36586728
TT
18068 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18069 cu->objfile);
03dd20cc
DJ
18070
18071 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
18072 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18073 load_full_comp_unit (per_cu, cu->language);
03dd20cc 18074
10b3939b
DJ
18075 target_cu = per_cu->cu;
18076 }
98bfdba5
PA
18077 else if (cu->dies == NULL)
18078 {
18079 /* We're loading full DIEs during partial symbol reading. */
18080 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 18081 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 18082 }
c906108c 18083
f2f0e013 18084 *ref_cu = target_cu;
51545339 18085 temp_die.offset = offset;
b64f50a1 18086 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 18087}
10b3939b 18088
5c631832
JK
18089/* Follow reference attribute ATTR of SRC_DIE.
18090 On entry *REF_CU is the CU of SRC_DIE.
18091 On exit *REF_CU is the CU of the result. */
18092
18093static struct die_info *
18094follow_die_ref (struct die_info *src_die, struct attribute *attr,
18095 struct dwarf2_cu **ref_cu)
18096{
b64f50a1 18097 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
18098 struct dwarf2_cu *cu = *ref_cu;
18099 struct die_info *die;
18100
36586728
TT
18101 die = follow_die_offset (offset,
18102 (attr->form == DW_FORM_GNU_ref_alt
18103 || cu->per_cu->is_dwz),
18104 ref_cu);
5c631832
JK
18105 if (!die)
18106 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18107 "at 0x%x [in module %s]"),
b64f50a1 18108 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 18109
5c631832
JK
18110 return die;
18111}
18112
d83e736b
JK
18113/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18114 Returned value is intended for DW_OP_call*. Returned
18115 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
18116
18117struct dwarf2_locexpr_baton
8b9737bf
TT
18118dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18119 struct dwarf2_per_cu_data *per_cu,
18120 CORE_ADDR (*get_frame_pc) (void *baton),
18121 void *baton)
5c631832 18122{
918dd910 18123 struct dwarf2_cu *cu;
5c631832
JK
18124 struct die_info *die;
18125 struct attribute *attr;
18126 struct dwarf2_locexpr_baton retval;
18127
8cf6f0b1
TT
18128 dw2_setup (per_cu->objfile);
18129
918dd910
JK
18130 if (per_cu->cu == NULL)
18131 load_cu (per_cu);
18132 cu = per_cu->cu;
18133
36586728 18134 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
18135 if (!die)
18136 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 18137 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18138
18139 attr = dwarf2_attr (die, DW_AT_location, cu);
18140 if (!attr)
18141 {
e103e986
JK
18142 /* DWARF: "If there is no such attribute, then there is no effect.".
18143 DATA is ignored if SIZE is 0. */
5c631832 18144
e103e986 18145 retval.data = NULL;
5c631832
JK
18146 retval.size = 0;
18147 }
8cf6f0b1
TT
18148 else if (attr_form_is_section_offset (attr))
18149 {
18150 struct dwarf2_loclist_baton loclist_baton;
18151 CORE_ADDR pc = (*get_frame_pc) (baton);
18152 size_t size;
18153
18154 fill_in_loclist_baton (cu, &loclist_baton, attr);
18155
18156 retval.data = dwarf2_find_location_expression (&loclist_baton,
18157 &size, pc);
18158 retval.size = size;
18159 }
5c631832
JK
18160 else
18161 {
18162 if (!attr_form_is_block (attr))
18163 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18164 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 18165 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18166
18167 retval.data = DW_BLOCK (attr)->data;
18168 retval.size = DW_BLOCK (attr)->size;
18169 }
18170 retval.per_cu = cu->per_cu;
918dd910 18171
918dd910
JK
18172 age_cached_comp_units ();
18173
5c631832 18174 return retval;
348e048f
DE
18175}
18176
8b9737bf
TT
18177/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18178 offset. */
18179
18180struct dwarf2_locexpr_baton
18181dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18182 struct dwarf2_per_cu_data *per_cu,
18183 CORE_ADDR (*get_frame_pc) (void *baton),
18184 void *baton)
18185{
18186 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18187
18188 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18189}
18190
b6807d98
TT
18191/* Write a constant of a given type as target-ordered bytes into
18192 OBSTACK. */
18193
18194static const gdb_byte *
18195write_constant_as_bytes (struct obstack *obstack,
18196 enum bfd_endian byte_order,
18197 struct type *type,
18198 ULONGEST value,
18199 LONGEST *len)
18200{
18201 gdb_byte *result;
18202
18203 *len = TYPE_LENGTH (type);
18204 result = obstack_alloc (obstack, *len);
18205 store_unsigned_integer (result, *len, byte_order, value);
18206
18207 return result;
18208}
18209
18210/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18211 pointer to the constant bytes and set LEN to the length of the
18212 data. If memory is needed, allocate it on OBSTACK. If the DIE
18213 does not have a DW_AT_const_value, return NULL. */
18214
18215const gdb_byte *
18216dwarf2_fetch_constant_bytes (sect_offset offset,
18217 struct dwarf2_per_cu_data *per_cu,
18218 struct obstack *obstack,
18219 LONGEST *len)
18220{
18221 struct dwarf2_cu *cu;
18222 struct die_info *die;
18223 struct attribute *attr;
18224 const gdb_byte *result = NULL;
18225 struct type *type;
18226 LONGEST value;
18227 enum bfd_endian byte_order;
18228
18229 dw2_setup (per_cu->objfile);
18230
18231 if (per_cu->cu == NULL)
18232 load_cu (per_cu);
18233 cu = per_cu->cu;
18234
18235 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18236 if (!die)
18237 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18238 offset.sect_off, per_cu->objfile->name);
18239
18240
18241 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18242 if (attr == NULL)
18243 return NULL;
18244
18245 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18246 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18247
18248 switch (attr->form)
18249 {
18250 case DW_FORM_addr:
18251 case DW_FORM_GNU_addr_index:
18252 {
18253 gdb_byte *tem;
18254
18255 *len = cu->header.addr_size;
18256 tem = obstack_alloc (obstack, *len);
18257 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18258 result = tem;
18259 }
18260 break;
18261 case DW_FORM_string:
18262 case DW_FORM_strp:
18263 case DW_FORM_GNU_str_index:
18264 case DW_FORM_GNU_strp_alt:
18265 /* DW_STRING is already allocated on the objfile obstack, point
18266 directly to it. */
18267 result = (const gdb_byte *) DW_STRING (attr);
18268 *len = strlen (DW_STRING (attr));
18269 break;
18270 case DW_FORM_block1:
18271 case DW_FORM_block2:
18272 case DW_FORM_block4:
18273 case DW_FORM_block:
18274 case DW_FORM_exprloc:
18275 result = DW_BLOCK (attr)->data;
18276 *len = DW_BLOCK (attr)->size;
18277 break;
18278
18279 /* The DW_AT_const_value attributes are supposed to carry the
18280 symbol's value "represented as it would be on the target
18281 architecture." By the time we get here, it's already been
18282 converted to host endianness, so we just need to sign- or
18283 zero-extend it as appropriate. */
18284 case DW_FORM_data1:
18285 type = die_type (die, cu);
18286 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18287 if (result == NULL)
18288 result = write_constant_as_bytes (obstack, byte_order,
18289 type, value, len);
18290 break;
18291 case DW_FORM_data2:
18292 type = die_type (die, cu);
18293 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18294 if (result == NULL)
18295 result = write_constant_as_bytes (obstack, byte_order,
18296 type, value, len);
18297 break;
18298 case DW_FORM_data4:
18299 type = die_type (die, cu);
18300 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18301 if (result == NULL)
18302 result = write_constant_as_bytes (obstack, byte_order,
18303 type, value, len);
18304 break;
18305 case DW_FORM_data8:
18306 type = die_type (die, cu);
18307 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18308 if (result == NULL)
18309 result = write_constant_as_bytes (obstack, byte_order,
18310 type, value, len);
18311 break;
18312
18313 case DW_FORM_sdata:
18314 type = die_type (die, cu);
18315 result = write_constant_as_bytes (obstack, byte_order,
18316 type, DW_SND (attr), len);
18317 break;
18318
18319 case DW_FORM_udata:
18320 type = die_type (die, cu);
18321 result = write_constant_as_bytes (obstack, byte_order,
18322 type, DW_UNSND (attr), len);
18323 break;
18324
18325 default:
18326 complaint (&symfile_complaints,
18327 _("unsupported const value attribute form: '%s'"),
18328 dwarf_form_name (attr->form));
18329 break;
18330 }
18331
18332 return result;
18333}
18334
8a9b8146
TT
18335/* Return the type of the DIE at DIE_OFFSET in the CU named by
18336 PER_CU. */
18337
18338struct type *
b64f50a1 18339dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
18340 struct dwarf2_per_cu_data *per_cu)
18341{
b64f50a1
JK
18342 sect_offset die_offset_sect;
18343
8a9b8146 18344 dw2_setup (per_cu->objfile);
b64f50a1
JK
18345
18346 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18347 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
18348}
18349
ac9ec31b 18350/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 18351 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
18352 On exit *REF_CU is the CU of the result.
18353 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
18354
18355static struct die_info *
ac9ec31b
DE
18356follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18357 struct dwarf2_cu **ref_cu)
348e048f
DE
18358{
18359 struct objfile *objfile = (*ref_cu)->objfile;
18360 struct die_info temp_die;
348e048f
DE
18361 struct dwarf2_cu *sig_cu;
18362 struct die_info *die;
18363
ac9ec31b
DE
18364 /* While it might be nice to assert sig_type->type == NULL here,
18365 we can get here for DW_AT_imported_declaration where we need
18366 the DIE not the type. */
348e048f
DE
18367
18368 /* If necessary, add it to the queue and load its DIEs. */
18369
95554aad 18370 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 18371 read_signatured_type (sig_type);
348e048f
DE
18372
18373 gdb_assert (sig_type->per_cu.cu != NULL);
18374
18375 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
18376 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18377 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
18378 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18379 temp_die.offset.sect_off);
348e048f
DE
18380 if (die)
18381 {
796a7ff8
DE
18382 /* For .gdb_index version 7 keep track of included TUs.
18383 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18384 if (dwarf2_per_objfile->index_table != NULL
18385 && dwarf2_per_objfile->index_table->version <= 7)
18386 {
18387 VEC_safe_push (dwarf2_per_cu_ptr,
18388 (*ref_cu)->per_cu->imported_symtabs,
18389 sig_cu->per_cu);
18390 }
18391
348e048f
DE
18392 *ref_cu = sig_cu;
18393 return die;
18394 }
18395
ac9ec31b
DE
18396 return NULL;
18397}
18398
18399/* Follow signatured type referenced by ATTR in SRC_DIE.
18400 On entry *REF_CU is the CU of SRC_DIE.
18401 On exit *REF_CU is the CU of the result.
18402 The result is the DIE of the type.
18403 If the referenced type cannot be found an error is thrown. */
18404
18405static struct die_info *
18406follow_die_sig (struct die_info *src_die, struct attribute *attr,
18407 struct dwarf2_cu **ref_cu)
18408{
18409 ULONGEST signature = DW_SIGNATURE (attr);
18410 struct signatured_type *sig_type;
18411 struct die_info *die;
18412
18413 gdb_assert (attr->form == DW_FORM_ref_sig8);
18414
a2ce51a0 18415 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
18416 /* sig_type will be NULL if the signatured type is missing from
18417 the debug info. */
18418 if (sig_type == NULL)
18419 {
18420 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18421 " from DIE at 0x%x [in module %s]"),
18422 hex_string (signature), src_die->offset.sect_off,
18423 (*ref_cu)->objfile->name);
18424 }
18425
18426 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18427 if (die == NULL)
18428 {
18429 dump_die_for_error (src_die);
18430 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18431 " from DIE at 0x%x [in module %s]"),
18432 hex_string (signature), src_die->offset.sect_off,
18433 (*ref_cu)->objfile->name);
18434 }
18435
18436 return die;
18437}
18438
18439/* Get the type specified by SIGNATURE referenced in DIE/CU,
18440 reading in and processing the type unit if necessary. */
18441
18442static struct type *
18443get_signatured_type (struct die_info *die, ULONGEST signature,
18444 struct dwarf2_cu *cu)
18445{
18446 struct signatured_type *sig_type;
18447 struct dwarf2_cu *type_cu;
18448 struct die_info *type_die;
18449 struct type *type;
18450
a2ce51a0 18451 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
18452 /* sig_type will be NULL if the signatured type is missing from
18453 the debug info. */
18454 if (sig_type == NULL)
18455 {
18456 complaint (&symfile_complaints,
18457 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18458 " from DIE at 0x%x [in module %s]"),
18459 hex_string (signature), die->offset.sect_off,
18460 dwarf2_per_objfile->objfile->name);
18461 return build_error_marker_type (cu, die);
18462 }
18463
18464 /* If we already know the type we're done. */
18465 if (sig_type->type != NULL)
18466 return sig_type->type;
18467
18468 type_cu = cu;
18469 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18470 if (type_die != NULL)
18471 {
18472 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18473 is created. This is important, for example, because for c++ classes
18474 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18475 type = read_type_die (type_die, type_cu);
18476 if (type == NULL)
18477 {
18478 complaint (&symfile_complaints,
18479 _("Dwarf Error: Cannot build signatured type %s"
18480 " referenced from DIE at 0x%x [in module %s]"),
18481 hex_string (signature), die->offset.sect_off,
18482 dwarf2_per_objfile->objfile->name);
18483 type = build_error_marker_type (cu, die);
18484 }
18485 }
18486 else
18487 {
18488 complaint (&symfile_complaints,
18489 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18490 " from DIE at 0x%x [in module %s]"),
18491 hex_string (signature), die->offset.sect_off,
18492 dwarf2_per_objfile->objfile->name);
18493 type = build_error_marker_type (cu, die);
18494 }
18495 sig_type->type = type;
18496
18497 return type;
18498}
18499
18500/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18501 reading in and processing the type unit if necessary. */
18502
18503static struct type *
b385a60d
PM
18504get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
18505 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
18506{
18507 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18508 if (is_ref_attr (attr))
18509 {
18510 struct dwarf2_cu *type_cu = cu;
18511 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18512
18513 return read_type_die (type_die, type_cu);
18514 }
18515 else if (attr->form == DW_FORM_ref_sig8)
18516 {
18517 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18518 }
18519 else
18520 {
18521 complaint (&symfile_complaints,
18522 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18523 " at 0x%x [in module %s]"),
18524 dwarf_form_name (attr->form), die->offset.sect_off,
18525 dwarf2_per_objfile->objfile->name);
18526 return build_error_marker_type (cu, die);
18527 }
348e048f
DE
18528}
18529
e5fe5e75 18530/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
18531
18532static void
e5fe5e75 18533load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 18534{
52dc124a 18535 struct signatured_type *sig_type;
348e048f 18536
f4dc4d17
DE
18537 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18538 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18539
6721b2ec
DE
18540 /* We have the per_cu, but we need the signatured_type.
18541 Fortunately this is an easy translation. */
18542 gdb_assert (per_cu->is_debug_types);
18543 sig_type = (struct signatured_type *) per_cu;
348e048f 18544
6721b2ec 18545 gdb_assert (per_cu->cu == NULL);
348e048f 18546
52dc124a 18547 read_signatured_type (sig_type);
348e048f 18548
6721b2ec 18549 gdb_assert (per_cu->cu != NULL);
348e048f
DE
18550}
18551
dee91e82
DE
18552/* die_reader_func for read_signatured_type.
18553 This is identical to load_full_comp_unit_reader,
18554 but is kept separate for now. */
348e048f
DE
18555
18556static void
dee91e82 18557read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 18558 const gdb_byte *info_ptr,
dee91e82
DE
18559 struct die_info *comp_unit_die,
18560 int has_children,
18561 void *data)
348e048f 18562{
dee91e82 18563 struct dwarf2_cu *cu = reader->cu;
348e048f 18564
dee91e82
DE
18565 gdb_assert (cu->die_hash == NULL);
18566 cu->die_hash =
18567 htab_create_alloc_ex (cu->header.length / 12,
18568 die_hash,
18569 die_eq,
18570 NULL,
18571 &cu->comp_unit_obstack,
18572 hashtab_obstack_allocate,
18573 dummy_obstack_deallocate);
348e048f 18574
dee91e82
DE
18575 if (has_children)
18576 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18577 &info_ptr, comp_unit_die);
18578 cu->dies = comp_unit_die;
18579 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
18580
18581 /* We try not to read any attributes in this function, because not
9cdd5dbd 18582 all CUs needed for references have been loaded yet, and symbol
348e048f 18583 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
18584 or we won't be able to build types correctly.
18585 Similarly, if we do not read the producer, we can not apply
18586 producer-specific interpretation. */
95554aad 18587 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 18588}
348e048f 18589
3019eac3
DE
18590/* Read in a signatured type and build its CU and DIEs.
18591 If the type is a stub for the real type in a DWO file,
18592 read in the real type from the DWO file as well. */
dee91e82
DE
18593
18594static void
18595read_signatured_type (struct signatured_type *sig_type)
18596{
18597 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 18598
3019eac3 18599 gdb_assert (per_cu->is_debug_types);
dee91e82 18600 gdb_assert (per_cu->cu == NULL);
348e048f 18601
f4dc4d17
DE
18602 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18603 read_signatured_type_reader, NULL);
c906108c
SS
18604}
18605
c906108c
SS
18606/* Decode simple location descriptions.
18607 Given a pointer to a dwarf block that defines a location, compute
18608 the location and return the value.
18609
4cecd739
DJ
18610 NOTE drow/2003-11-18: This function is called in two situations
18611 now: for the address of static or global variables (partial symbols
18612 only) and for offsets into structures which are expected to be
18613 (more or less) constant. The partial symbol case should go away,
18614 and only the constant case should remain. That will let this
18615 function complain more accurately. A few special modes are allowed
18616 without complaint for global variables (for instance, global
18617 register values and thread-local values).
c906108c
SS
18618
18619 A location description containing no operations indicates that the
4cecd739 18620 object is optimized out. The return value is 0 for that case.
6b992462
DJ
18621 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18622 callers will only want a very basic result and this can become a
21ae7a4d
JK
18623 complaint.
18624
18625 Note that stack[0] is unused except as a default error return. */
c906108c
SS
18626
18627static CORE_ADDR
e7c27a73 18628decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 18629{
e7c27a73 18630 struct objfile *objfile = cu->objfile;
56eb65bd
SP
18631 size_t i;
18632 size_t size = blk->size;
d521ce57 18633 const gdb_byte *data = blk->data;
21ae7a4d
JK
18634 CORE_ADDR stack[64];
18635 int stacki;
18636 unsigned int bytes_read, unsnd;
18637 gdb_byte op;
c906108c 18638
21ae7a4d
JK
18639 i = 0;
18640 stacki = 0;
18641 stack[stacki] = 0;
18642 stack[++stacki] = 0;
18643
18644 while (i < size)
18645 {
18646 op = data[i++];
18647 switch (op)
18648 {
18649 case DW_OP_lit0:
18650 case DW_OP_lit1:
18651 case DW_OP_lit2:
18652 case DW_OP_lit3:
18653 case DW_OP_lit4:
18654 case DW_OP_lit5:
18655 case DW_OP_lit6:
18656 case DW_OP_lit7:
18657 case DW_OP_lit8:
18658 case DW_OP_lit9:
18659 case DW_OP_lit10:
18660 case DW_OP_lit11:
18661 case DW_OP_lit12:
18662 case DW_OP_lit13:
18663 case DW_OP_lit14:
18664 case DW_OP_lit15:
18665 case DW_OP_lit16:
18666 case DW_OP_lit17:
18667 case DW_OP_lit18:
18668 case DW_OP_lit19:
18669 case DW_OP_lit20:
18670 case DW_OP_lit21:
18671 case DW_OP_lit22:
18672 case DW_OP_lit23:
18673 case DW_OP_lit24:
18674 case DW_OP_lit25:
18675 case DW_OP_lit26:
18676 case DW_OP_lit27:
18677 case DW_OP_lit28:
18678 case DW_OP_lit29:
18679 case DW_OP_lit30:
18680 case DW_OP_lit31:
18681 stack[++stacki] = op - DW_OP_lit0;
18682 break;
f1bea926 18683
21ae7a4d
JK
18684 case DW_OP_reg0:
18685 case DW_OP_reg1:
18686 case DW_OP_reg2:
18687 case DW_OP_reg3:
18688 case DW_OP_reg4:
18689 case DW_OP_reg5:
18690 case DW_OP_reg6:
18691 case DW_OP_reg7:
18692 case DW_OP_reg8:
18693 case DW_OP_reg9:
18694 case DW_OP_reg10:
18695 case DW_OP_reg11:
18696 case DW_OP_reg12:
18697 case DW_OP_reg13:
18698 case DW_OP_reg14:
18699 case DW_OP_reg15:
18700 case DW_OP_reg16:
18701 case DW_OP_reg17:
18702 case DW_OP_reg18:
18703 case DW_OP_reg19:
18704 case DW_OP_reg20:
18705 case DW_OP_reg21:
18706 case DW_OP_reg22:
18707 case DW_OP_reg23:
18708 case DW_OP_reg24:
18709 case DW_OP_reg25:
18710 case DW_OP_reg26:
18711 case DW_OP_reg27:
18712 case DW_OP_reg28:
18713 case DW_OP_reg29:
18714 case DW_OP_reg30:
18715 case DW_OP_reg31:
18716 stack[++stacki] = op - DW_OP_reg0;
18717 if (i < size)
18718 dwarf2_complex_location_expr_complaint ();
18719 break;
c906108c 18720
21ae7a4d
JK
18721 case DW_OP_regx:
18722 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18723 i += bytes_read;
18724 stack[++stacki] = unsnd;
18725 if (i < size)
18726 dwarf2_complex_location_expr_complaint ();
18727 break;
c906108c 18728
21ae7a4d
JK
18729 case DW_OP_addr:
18730 stack[++stacki] = read_address (objfile->obfd, &data[i],
18731 cu, &bytes_read);
18732 i += bytes_read;
18733 break;
d53d4ac5 18734
21ae7a4d
JK
18735 case DW_OP_const1u:
18736 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18737 i += 1;
18738 break;
18739
18740 case DW_OP_const1s:
18741 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18742 i += 1;
18743 break;
18744
18745 case DW_OP_const2u:
18746 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18747 i += 2;
18748 break;
18749
18750 case DW_OP_const2s:
18751 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18752 i += 2;
18753 break;
d53d4ac5 18754
21ae7a4d
JK
18755 case DW_OP_const4u:
18756 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18757 i += 4;
18758 break;
18759
18760 case DW_OP_const4s:
18761 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18762 i += 4;
18763 break;
18764
585861ea
JK
18765 case DW_OP_const8u:
18766 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18767 i += 8;
18768 break;
18769
21ae7a4d
JK
18770 case DW_OP_constu:
18771 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18772 &bytes_read);
18773 i += bytes_read;
18774 break;
18775
18776 case DW_OP_consts:
18777 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18778 i += bytes_read;
18779 break;
18780
18781 case DW_OP_dup:
18782 stack[stacki + 1] = stack[stacki];
18783 stacki++;
18784 break;
18785
18786 case DW_OP_plus:
18787 stack[stacki - 1] += stack[stacki];
18788 stacki--;
18789 break;
18790
18791 case DW_OP_plus_uconst:
18792 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18793 &bytes_read);
18794 i += bytes_read;
18795 break;
18796
18797 case DW_OP_minus:
18798 stack[stacki - 1] -= stack[stacki];
18799 stacki--;
18800 break;
18801
18802 case DW_OP_deref:
18803 /* If we're not the last op, then we definitely can't encode
18804 this using GDB's address_class enum. This is valid for partial
18805 global symbols, although the variable's address will be bogus
18806 in the psymtab. */
18807 if (i < size)
18808 dwarf2_complex_location_expr_complaint ();
18809 break;
18810
18811 case DW_OP_GNU_push_tls_address:
18812 /* The top of the stack has the offset from the beginning
18813 of the thread control block at which the variable is located. */
18814 /* Nothing should follow this operator, so the top of stack would
18815 be returned. */
18816 /* This is valid for partial global symbols, but the variable's
585861ea
JK
18817 address will be bogus in the psymtab. Make it always at least
18818 non-zero to not look as a variable garbage collected by linker
18819 which have DW_OP_addr 0. */
21ae7a4d
JK
18820 if (i < size)
18821 dwarf2_complex_location_expr_complaint ();
585861ea 18822 stack[stacki]++;
21ae7a4d
JK
18823 break;
18824
18825 case DW_OP_GNU_uninit:
18826 break;
18827
3019eac3 18828 case DW_OP_GNU_addr_index:
49f6c839 18829 case DW_OP_GNU_const_index:
3019eac3
DE
18830 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18831 &bytes_read);
18832 i += bytes_read;
18833 break;
18834
21ae7a4d
JK
18835 default:
18836 {
f39c6ffd 18837 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
18838
18839 if (name)
18840 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18841 name);
18842 else
18843 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18844 op);
18845 }
18846
18847 return (stack[stacki]);
d53d4ac5 18848 }
3c6e0cb3 18849
21ae7a4d
JK
18850 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18851 outside of the allocated space. Also enforce minimum>0. */
18852 if (stacki >= ARRAY_SIZE (stack) - 1)
18853 {
18854 complaint (&symfile_complaints,
18855 _("location description stack overflow"));
18856 return 0;
18857 }
18858
18859 if (stacki <= 0)
18860 {
18861 complaint (&symfile_complaints,
18862 _("location description stack underflow"));
18863 return 0;
18864 }
18865 }
18866 return (stack[stacki]);
c906108c
SS
18867}
18868
18869/* memory allocation interface */
18870
c906108c 18871static struct dwarf_block *
7b5a2f43 18872dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
18873{
18874 struct dwarf_block *blk;
18875
18876 blk = (struct dwarf_block *)
7b5a2f43 18877 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
18878 return (blk);
18879}
18880
c906108c 18881static struct die_info *
b60c80d6 18882dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
18883{
18884 struct die_info *die;
b60c80d6
DJ
18885 size_t size = sizeof (struct die_info);
18886
18887 if (num_attrs > 1)
18888 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 18889
b60c80d6 18890 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
18891 memset (die, 0, sizeof (struct die_info));
18892 return (die);
18893}
2e276125
JB
18894
18895\f
18896/* Macro support. */
18897
233d95b5
JK
18898/* Return file name relative to the compilation directory of file number I in
18899 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 18900 responsible for freeing it. */
233d95b5 18901
2e276125 18902static char *
233d95b5 18903file_file_name (int file, struct line_header *lh)
2e276125 18904{
6a83a1e6
EZ
18905 /* Is the file number a valid index into the line header's file name
18906 table? Remember that file numbers start with one, not zero. */
18907 if (1 <= file && file <= lh->num_file_names)
18908 {
18909 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 18910
233d95b5 18911 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 18912 return xstrdup (fe->name);
233d95b5
JK
18913 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18914 fe->name, NULL);
6a83a1e6 18915 }
2e276125
JB
18916 else
18917 {
6a83a1e6
EZ
18918 /* The compiler produced a bogus file number. We can at least
18919 record the macro definitions made in the file, even if we
18920 won't be able to find the file by name. */
18921 char fake_name[80];
9a619af0 18922
8c042590
PM
18923 xsnprintf (fake_name, sizeof (fake_name),
18924 "<bad macro file number %d>", file);
2e276125 18925
6e70227d 18926 complaint (&symfile_complaints,
6a83a1e6
EZ
18927 _("bad file number in macro information (%d)"),
18928 file);
2e276125 18929
6a83a1e6 18930 return xstrdup (fake_name);
2e276125
JB
18931 }
18932}
18933
233d95b5
JK
18934/* Return the full name of file number I in *LH's file name table.
18935 Use COMP_DIR as the name of the current directory of the
18936 compilation. The result is allocated using xmalloc; the caller is
18937 responsible for freeing it. */
18938static char *
18939file_full_name (int file, struct line_header *lh, const char *comp_dir)
18940{
18941 /* Is the file number a valid index into the line header's file name
18942 table? Remember that file numbers start with one, not zero. */
18943 if (1 <= file && file <= lh->num_file_names)
18944 {
18945 char *relative = file_file_name (file, lh);
18946
18947 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18948 return relative;
18949 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18950 }
18951 else
18952 return file_file_name (file, lh);
18953}
18954
2e276125
JB
18955
18956static struct macro_source_file *
18957macro_start_file (int file, int line,
18958 struct macro_source_file *current_file,
18959 const char *comp_dir,
18960 struct line_header *lh, struct objfile *objfile)
18961{
233d95b5
JK
18962 /* File name relative to the compilation directory of this source file. */
18963 char *file_name = file_file_name (file, lh);
2e276125
JB
18964
18965 /* We don't create a macro table for this compilation unit
18966 at all until we actually get a filename. */
18967 if (! pending_macros)
6532ff36 18968 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
233d95b5
JK
18969 objfile->per_bfd->macro_cache,
18970 comp_dir);
2e276125
JB
18971
18972 if (! current_file)
abc9d0dc
TT
18973 {
18974 /* If we have no current file, then this must be the start_file
18975 directive for the compilation unit's main source file. */
233d95b5 18976 current_file = macro_set_main (pending_macros, file_name);
abc9d0dc
TT
18977 macro_define_special (pending_macros);
18978 }
2e276125 18979 else
233d95b5 18980 current_file = macro_include (current_file, line, file_name);
2e276125 18981
233d95b5 18982 xfree (file_name);
6e70227d 18983
2e276125
JB
18984 return current_file;
18985}
18986
18987
18988/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18989 followed by a null byte. */
18990static char *
18991copy_string (const char *buf, int len)
18992{
18993 char *s = xmalloc (len + 1);
9a619af0 18994
2e276125
JB
18995 memcpy (s, buf, len);
18996 s[len] = '\0';
2e276125
JB
18997 return s;
18998}
18999
19000
19001static const char *
19002consume_improper_spaces (const char *p, const char *body)
19003{
19004 if (*p == ' ')
19005 {
4d3c2250 19006 complaint (&symfile_complaints,
3e43a32a
MS
19007 _("macro definition contains spaces "
19008 "in formal argument list:\n`%s'"),
4d3c2250 19009 body);
2e276125
JB
19010
19011 while (*p == ' ')
19012 p++;
19013 }
19014
19015 return p;
19016}
19017
19018
19019static void
19020parse_macro_definition (struct macro_source_file *file, int line,
19021 const char *body)
19022{
19023 const char *p;
19024
19025 /* The body string takes one of two forms. For object-like macro
19026 definitions, it should be:
19027
19028 <macro name> " " <definition>
19029
19030 For function-like macro definitions, it should be:
19031
19032 <macro name> "() " <definition>
19033 or
19034 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19035
19036 Spaces may appear only where explicitly indicated, and in the
19037 <definition>.
19038
19039 The Dwarf 2 spec says that an object-like macro's name is always
19040 followed by a space, but versions of GCC around March 2002 omit
6e70227d 19041 the space when the macro's definition is the empty string.
2e276125
JB
19042
19043 The Dwarf 2 spec says that there should be no spaces between the
19044 formal arguments in a function-like macro's formal argument list,
19045 but versions of GCC around March 2002 include spaces after the
19046 commas. */
19047
19048
19049 /* Find the extent of the macro name. The macro name is terminated
19050 by either a space or null character (for an object-like macro) or
19051 an opening paren (for a function-like macro). */
19052 for (p = body; *p; p++)
19053 if (*p == ' ' || *p == '(')
19054 break;
19055
19056 if (*p == ' ' || *p == '\0')
19057 {
19058 /* It's an object-like macro. */
19059 int name_len = p - body;
19060 char *name = copy_string (body, name_len);
19061 const char *replacement;
19062
19063 if (*p == ' ')
19064 replacement = body + name_len + 1;
19065 else
19066 {
4d3c2250 19067 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19068 replacement = body + name_len;
19069 }
6e70227d 19070
2e276125
JB
19071 macro_define_object (file, line, name, replacement);
19072
19073 xfree (name);
19074 }
19075 else if (*p == '(')
19076 {
19077 /* It's a function-like macro. */
19078 char *name = copy_string (body, p - body);
19079 int argc = 0;
19080 int argv_size = 1;
19081 char **argv = xmalloc (argv_size * sizeof (*argv));
19082
19083 p++;
19084
19085 p = consume_improper_spaces (p, body);
19086
19087 /* Parse the formal argument list. */
19088 while (*p && *p != ')')
19089 {
19090 /* Find the extent of the current argument name. */
19091 const char *arg_start = p;
19092
19093 while (*p && *p != ',' && *p != ')' && *p != ' ')
19094 p++;
19095
19096 if (! *p || p == arg_start)
4d3c2250 19097 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19098 else
19099 {
19100 /* Make sure argv has room for the new argument. */
19101 if (argc >= argv_size)
19102 {
19103 argv_size *= 2;
19104 argv = xrealloc (argv, argv_size * sizeof (*argv));
19105 }
19106
19107 argv[argc++] = copy_string (arg_start, p - arg_start);
19108 }
19109
19110 p = consume_improper_spaces (p, body);
19111
19112 /* Consume the comma, if present. */
19113 if (*p == ',')
19114 {
19115 p++;
19116
19117 p = consume_improper_spaces (p, body);
19118 }
19119 }
19120
19121 if (*p == ')')
19122 {
19123 p++;
19124
19125 if (*p == ' ')
19126 /* Perfectly formed definition, no complaints. */
19127 macro_define_function (file, line, name,
6e70227d 19128 argc, (const char **) argv,
2e276125
JB
19129 p + 1);
19130 else if (*p == '\0')
19131 {
19132 /* Complain, but do define it. */
4d3c2250 19133 dwarf2_macro_malformed_definition_complaint (body);
2e276125 19134 macro_define_function (file, line, name,
6e70227d 19135 argc, (const char **) argv,
2e276125
JB
19136 p);
19137 }
19138 else
19139 /* Just complain. */
4d3c2250 19140 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19141 }
19142 else
19143 /* Just complain. */
4d3c2250 19144 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19145
19146 xfree (name);
19147 {
19148 int i;
19149
19150 for (i = 0; i < argc; i++)
19151 xfree (argv[i]);
19152 }
19153 xfree (argv);
19154 }
19155 else
4d3c2250 19156 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19157}
19158
cf2c3c16
TT
19159/* Skip some bytes from BYTES according to the form given in FORM.
19160 Returns the new pointer. */
2e276125 19161
d521ce57
TT
19162static const gdb_byte *
19163skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
19164 enum dwarf_form form,
19165 unsigned int offset_size,
19166 struct dwarf2_section_info *section)
2e276125 19167{
cf2c3c16 19168 unsigned int bytes_read;
2e276125 19169
cf2c3c16 19170 switch (form)
2e276125 19171 {
cf2c3c16
TT
19172 case DW_FORM_data1:
19173 case DW_FORM_flag:
19174 ++bytes;
19175 break;
19176
19177 case DW_FORM_data2:
19178 bytes += 2;
19179 break;
19180
19181 case DW_FORM_data4:
19182 bytes += 4;
19183 break;
19184
19185 case DW_FORM_data8:
19186 bytes += 8;
19187 break;
19188
19189 case DW_FORM_string:
19190 read_direct_string (abfd, bytes, &bytes_read);
19191 bytes += bytes_read;
19192 break;
19193
19194 case DW_FORM_sec_offset:
19195 case DW_FORM_strp:
36586728 19196 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
19197 bytes += offset_size;
19198 break;
19199
19200 case DW_FORM_block:
19201 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19202 bytes += bytes_read;
19203 break;
19204
19205 case DW_FORM_block1:
19206 bytes += 1 + read_1_byte (abfd, bytes);
19207 break;
19208 case DW_FORM_block2:
19209 bytes += 2 + read_2_bytes (abfd, bytes);
19210 break;
19211 case DW_FORM_block4:
19212 bytes += 4 + read_4_bytes (abfd, bytes);
19213 break;
19214
19215 case DW_FORM_sdata:
19216 case DW_FORM_udata:
3019eac3
DE
19217 case DW_FORM_GNU_addr_index:
19218 case DW_FORM_GNU_str_index:
d521ce57 19219 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
19220 if (bytes == NULL)
19221 {
19222 dwarf2_section_buffer_overflow_complaint (section);
19223 return NULL;
19224 }
cf2c3c16
TT
19225 break;
19226
19227 default:
19228 {
19229 complain:
19230 complaint (&symfile_complaints,
19231 _("invalid form 0x%x in `%s'"),
19232 form,
19233 section->asection->name);
19234 return NULL;
19235 }
2e276125
JB
19236 }
19237
cf2c3c16
TT
19238 return bytes;
19239}
757a13d0 19240
cf2c3c16
TT
19241/* A helper for dwarf_decode_macros that handles skipping an unknown
19242 opcode. Returns an updated pointer to the macro data buffer; or,
19243 on error, issues a complaint and returns NULL. */
757a13d0 19244
d521ce57 19245static const gdb_byte *
cf2c3c16 19246skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
19247 const gdb_byte **opcode_definitions,
19248 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
19249 bfd *abfd,
19250 unsigned int offset_size,
19251 struct dwarf2_section_info *section)
19252{
19253 unsigned int bytes_read, i;
19254 unsigned long arg;
d521ce57 19255 const gdb_byte *defn;
2e276125 19256
cf2c3c16 19257 if (opcode_definitions[opcode] == NULL)
2e276125 19258 {
cf2c3c16
TT
19259 complaint (&symfile_complaints,
19260 _("unrecognized DW_MACFINO opcode 0x%x"),
19261 opcode);
19262 return NULL;
19263 }
2e276125 19264
cf2c3c16
TT
19265 defn = opcode_definitions[opcode];
19266 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19267 defn += bytes_read;
2e276125 19268
cf2c3c16
TT
19269 for (i = 0; i < arg; ++i)
19270 {
f664829e
DE
19271 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19272 section);
cf2c3c16
TT
19273 if (mac_ptr == NULL)
19274 {
19275 /* skip_form_bytes already issued the complaint. */
19276 return NULL;
19277 }
19278 }
757a13d0 19279
cf2c3c16
TT
19280 return mac_ptr;
19281}
757a13d0 19282
cf2c3c16
TT
19283/* A helper function which parses the header of a macro section.
19284 If the macro section is the extended (for now called "GNU") type,
19285 then this updates *OFFSET_SIZE. Returns a pointer to just after
19286 the header, or issues a complaint and returns NULL on error. */
757a13d0 19287
d521ce57
TT
19288static const gdb_byte *
19289dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 19290 bfd *abfd,
d521ce57 19291 const gdb_byte *mac_ptr,
cf2c3c16
TT
19292 unsigned int *offset_size,
19293 int section_is_gnu)
19294{
19295 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 19296
cf2c3c16
TT
19297 if (section_is_gnu)
19298 {
19299 unsigned int version, flags;
757a13d0 19300
cf2c3c16
TT
19301 version = read_2_bytes (abfd, mac_ptr);
19302 if (version != 4)
19303 {
19304 complaint (&symfile_complaints,
19305 _("unrecognized version `%d' in .debug_macro section"),
19306 version);
19307 return NULL;
19308 }
19309 mac_ptr += 2;
757a13d0 19310
cf2c3c16
TT
19311 flags = read_1_byte (abfd, mac_ptr);
19312 ++mac_ptr;
19313 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 19314
cf2c3c16
TT
19315 if ((flags & 2) != 0)
19316 /* We don't need the line table offset. */
19317 mac_ptr += *offset_size;
757a13d0 19318
cf2c3c16
TT
19319 /* Vendor opcode descriptions. */
19320 if ((flags & 4) != 0)
19321 {
19322 unsigned int i, count;
757a13d0 19323
cf2c3c16
TT
19324 count = read_1_byte (abfd, mac_ptr);
19325 ++mac_ptr;
19326 for (i = 0; i < count; ++i)
19327 {
19328 unsigned int opcode, bytes_read;
19329 unsigned long arg;
19330
19331 opcode = read_1_byte (abfd, mac_ptr);
19332 ++mac_ptr;
19333 opcode_definitions[opcode] = mac_ptr;
19334 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19335 mac_ptr += bytes_read;
19336 mac_ptr += arg;
19337 }
757a13d0 19338 }
cf2c3c16 19339 }
757a13d0 19340
cf2c3c16
TT
19341 return mac_ptr;
19342}
757a13d0 19343
cf2c3c16 19344/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 19345 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
19346
19347static void
d521ce57
TT
19348dwarf_decode_macro_bytes (bfd *abfd,
19349 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 19350 struct macro_source_file *current_file,
15d034d0 19351 struct line_header *lh, const char *comp_dir,
cf2c3c16 19352 struct dwarf2_section_info *section,
36586728 19353 int section_is_gnu, int section_is_dwz,
cf2c3c16 19354 unsigned int offset_size,
8fc3fc34
TT
19355 struct objfile *objfile,
19356 htab_t include_hash)
cf2c3c16
TT
19357{
19358 enum dwarf_macro_record_type macinfo_type;
19359 int at_commandline;
d521ce57 19360 const gdb_byte *opcode_definitions[256];
757a13d0 19361
cf2c3c16
TT
19362 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19363 &offset_size, section_is_gnu);
19364 if (mac_ptr == NULL)
19365 {
19366 /* We already issued a complaint. */
19367 return;
19368 }
757a13d0
JK
19369
19370 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19371 GDB is still reading the definitions from command line. First
19372 DW_MACINFO_start_file will need to be ignored as it was already executed
19373 to create CURRENT_FILE for the main source holding also the command line
19374 definitions. On first met DW_MACINFO_start_file this flag is reset to
19375 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19376
19377 at_commandline = 1;
19378
19379 do
19380 {
19381 /* Do we at least have room for a macinfo type byte? */
19382 if (mac_ptr >= mac_end)
19383 {
f664829e 19384 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
19385 break;
19386 }
19387
19388 macinfo_type = read_1_byte (abfd, mac_ptr);
19389 mac_ptr++;
19390
cf2c3c16
TT
19391 /* Note that we rely on the fact that the corresponding GNU and
19392 DWARF constants are the same. */
757a13d0
JK
19393 switch (macinfo_type)
19394 {
19395 /* A zero macinfo type indicates the end of the macro
19396 information. */
19397 case 0:
19398 break;
2e276125 19399
cf2c3c16
TT
19400 case DW_MACRO_GNU_define:
19401 case DW_MACRO_GNU_undef:
19402 case DW_MACRO_GNU_define_indirect:
19403 case DW_MACRO_GNU_undef_indirect:
36586728
TT
19404 case DW_MACRO_GNU_define_indirect_alt:
19405 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 19406 {
891d2f0b 19407 unsigned int bytes_read;
2e276125 19408 int line;
d521ce57 19409 const char *body;
cf2c3c16 19410 int is_define;
2e276125 19411
cf2c3c16
TT
19412 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19413 mac_ptr += bytes_read;
19414
19415 if (macinfo_type == DW_MACRO_GNU_define
19416 || macinfo_type == DW_MACRO_GNU_undef)
19417 {
19418 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19419 mac_ptr += bytes_read;
19420 }
19421 else
19422 {
19423 LONGEST str_offset;
19424
19425 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19426 mac_ptr += offset_size;
2e276125 19427
36586728 19428 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
19429 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19430 || section_is_dwz)
36586728
TT
19431 {
19432 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19433
19434 body = read_indirect_string_from_dwz (dwz, str_offset);
19435 }
19436 else
19437 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
19438 }
19439
19440 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
19441 || macinfo_type == DW_MACRO_GNU_define_indirect
19442 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 19443 if (! current_file)
757a13d0
JK
19444 {
19445 /* DWARF violation as no main source is present. */
19446 complaint (&symfile_complaints,
19447 _("debug info with no main source gives macro %s "
19448 "on line %d: %s"),
cf2c3c16
TT
19449 is_define ? _("definition") : _("undefinition"),
19450 line, body);
757a13d0
JK
19451 break;
19452 }
3e43a32a
MS
19453 if ((line == 0 && !at_commandline)
19454 || (line != 0 && at_commandline))
4d3c2250 19455 complaint (&symfile_complaints,
757a13d0
JK
19456 _("debug info gives %s macro %s with %s line %d: %s"),
19457 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 19458 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
19459 line == 0 ? _("zero") : _("non-zero"), line, body);
19460
cf2c3c16 19461 if (is_define)
757a13d0 19462 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
19463 else
19464 {
19465 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
19466 || macinfo_type == DW_MACRO_GNU_undef_indirect
19467 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
19468 macro_undef (current_file, line, body);
19469 }
2e276125
JB
19470 }
19471 break;
19472
cf2c3c16 19473 case DW_MACRO_GNU_start_file:
2e276125 19474 {
891d2f0b 19475 unsigned int bytes_read;
2e276125
JB
19476 int line, file;
19477
19478 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19479 mac_ptr += bytes_read;
19480 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19481 mac_ptr += bytes_read;
19482
3e43a32a
MS
19483 if ((line == 0 && !at_commandline)
19484 || (line != 0 && at_commandline))
757a13d0
JK
19485 complaint (&symfile_complaints,
19486 _("debug info gives source %d included "
19487 "from %s at %s line %d"),
19488 file, at_commandline ? _("command-line") : _("file"),
19489 line == 0 ? _("zero") : _("non-zero"), line);
19490
19491 if (at_commandline)
19492 {
cf2c3c16
TT
19493 /* This DW_MACRO_GNU_start_file was executed in the
19494 pass one. */
757a13d0
JK
19495 at_commandline = 0;
19496 }
19497 else
19498 current_file = macro_start_file (file, line,
19499 current_file, comp_dir,
cf2c3c16 19500 lh, objfile);
2e276125
JB
19501 }
19502 break;
19503
cf2c3c16 19504 case DW_MACRO_GNU_end_file:
2e276125 19505 if (! current_file)
4d3c2250 19506 complaint (&symfile_complaints,
3e43a32a
MS
19507 _("macro debug info has an unmatched "
19508 "`close_file' directive"));
2e276125
JB
19509 else
19510 {
19511 current_file = current_file->included_by;
19512 if (! current_file)
19513 {
cf2c3c16 19514 enum dwarf_macro_record_type next_type;
2e276125
JB
19515
19516 /* GCC circa March 2002 doesn't produce the zero
19517 type byte marking the end of the compilation
19518 unit. Complain if it's not there, but exit no
19519 matter what. */
19520
19521 /* Do we at least have room for a macinfo type byte? */
19522 if (mac_ptr >= mac_end)
19523 {
f664829e 19524 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
19525 return;
19526 }
19527
19528 /* We don't increment mac_ptr here, so this is just
19529 a look-ahead. */
19530 next_type = read_1_byte (abfd, mac_ptr);
19531 if (next_type != 0)
4d3c2250 19532 complaint (&symfile_complaints,
3e43a32a
MS
19533 _("no terminating 0-type entry for "
19534 "macros in `.debug_macinfo' section"));
2e276125
JB
19535
19536 return;
19537 }
19538 }
19539 break;
19540
cf2c3c16 19541 case DW_MACRO_GNU_transparent_include:
36586728 19542 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19543 {
19544 LONGEST offset;
8fc3fc34 19545 void **slot;
a036ba48
TT
19546 bfd *include_bfd = abfd;
19547 struct dwarf2_section_info *include_section = section;
19548 struct dwarf2_section_info alt_section;
d521ce57 19549 const gdb_byte *include_mac_end = mac_end;
a036ba48 19550 int is_dwz = section_is_dwz;
d521ce57 19551 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
19552
19553 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19554 mac_ptr += offset_size;
19555
a036ba48
TT
19556 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19557 {
19558 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19559
19560 dwarf2_read_section (dwarf2_per_objfile->objfile,
19561 &dwz->macro);
19562
19563 include_bfd = dwz->macro.asection->owner;
19564 include_section = &dwz->macro;
19565 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19566 is_dwz = 1;
19567 }
19568
19569 new_mac_ptr = include_section->buffer + offset;
19570 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19571
8fc3fc34
TT
19572 if (*slot != NULL)
19573 {
19574 /* This has actually happened; see
19575 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19576 complaint (&symfile_complaints,
19577 _("recursive DW_MACRO_GNU_transparent_include in "
19578 ".debug_macro section"));
19579 }
19580 else
19581 {
d521ce57 19582 *slot = (void *) new_mac_ptr;
36586728 19583
a036ba48 19584 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 19585 include_mac_end, current_file,
8fc3fc34 19586 lh, comp_dir,
36586728 19587 section, section_is_gnu, is_dwz,
8fc3fc34
TT
19588 offset_size, objfile, include_hash);
19589
d521ce57 19590 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 19591 }
cf2c3c16
TT
19592 }
19593 break;
19594
2e276125 19595 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
19596 if (!section_is_gnu)
19597 {
19598 unsigned int bytes_read;
19599 int constant;
2e276125 19600
cf2c3c16
TT
19601 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19602 mac_ptr += bytes_read;
19603 read_direct_string (abfd, mac_ptr, &bytes_read);
19604 mac_ptr += bytes_read;
2e276125 19605
cf2c3c16
TT
19606 /* We don't recognize any vendor extensions. */
19607 break;
19608 }
19609 /* FALLTHROUGH */
19610
19611 default:
19612 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19613 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19614 section);
19615 if (mac_ptr == NULL)
19616 return;
19617 break;
2e276125 19618 }
757a13d0 19619 } while (macinfo_type != 0);
2e276125 19620}
8e19ed76 19621
cf2c3c16 19622static void
09262596 19623dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 19624 const char *comp_dir, int section_is_gnu)
cf2c3c16 19625{
bb5ed363 19626 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
19627 struct line_header *lh = cu->line_header;
19628 bfd *abfd;
d521ce57 19629 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
19630 struct macro_source_file *current_file = 0;
19631 enum dwarf_macro_record_type macinfo_type;
19632 unsigned int offset_size = cu->header.offset_size;
d521ce57 19633 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
19634 struct cleanup *cleanup;
19635 htab_t include_hash;
19636 void **slot;
09262596
DE
19637 struct dwarf2_section_info *section;
19638 const char *section_name;
19639
19640 if (cu->dwo_unit != NULL)
19641 {
19642 if (section_is_gnu)
19643 {
19644 section = &cu->dwo_unit->dwo_file->sections.macro;
19645 section_name = ".debug_macro.dwo";
19646 }
19647 else
19648 {
19649 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19650 section_name = ".debug_macinfo.dwo";
19651 }
19652 }
19653 else
19654 {
19655 if (section_is_gnu)
19656 {
19657 section = &dwarf2_per_objfile->macro;
19658 section_name = ".debug_macro";
19659 }
19660 else
19661 {
19662 section = &dwarf2_per_objfile->macinfo;
19663 section_name = ".debug_macinfo";
19664 }
19665 }
cf2c3c16 19666
bb5ed363 19667 dwarf2_read_section (objfile, section);
cf2c3c16
TT
19668 if (section->buffer == NULL)
19669 {
fceca515 19670 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
19671 return;
19672 }
09262596 19673 abfd = section->asection->owner;
cf2c3c16
TT
19674
19675 /* First pass: Find the name of the base filename.
19676 This filename is needed in order to process all macros whose definition
19677 (or undefinition) comes from the command line. These macros are defined
19678 before the first DW_MACINFO_start_file entry, and yet still need to be
19679 associated to the base file.
19680
19681 To determine the base file name, we scan the macro definitions until we
19682 reach the first DW_MACINFO_start_file entry. We then initialize
19683 CURRENT_FILE accordingly so that any macro definition found before the
19684 first DW_MACINFO_start_file can still be associated to the base file. */
19685
19686 mac_ptr = section->buffer + offset;
19687 mac_end = section->buffer + section->size;
19688
19689 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19690 &offset_size, section_is_gnu);
19691 if (mac_ptr == NULL)
19692 {
19693 /* We already issued a complaint. */
19694 return;
19695 }
19696
19697 do
19698 {
19699 /* Do we at least have room for a macinfo type byte? */
19700 if (mac_ptr >= mac_end)
19701 {
19702 /* Complaint is printed during the second pass as GDB will probably
19703 stop the first pass earlier upon finding
19704 DW_MACINFO_start_file. */
19705 break;
19706 }
19707
19708 macinfo_type = read_1_byte (abfd, mac_ptr);
19709 mac_ptr++;
19710
19711 /* Note that we rely on the fact that the corresponding GNU and
19712 DWARF constants are the same. */
19713 switch (macinfo_type)
19714 {
19715 /* A zero macinfo type indicates the end of the macro
19716 information. */
19717 case 0:
19718 break;
19719
19720 case DW_MACRO_GNU_define:
19721 case DW_MACRO_GNU_undef:
19722 /* Only skip the data by MAC_PTR. */
19723 {
19724 unsigned int bytes_read;
19725
19726 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19727 mac_ptr += bytes_read;
19728 read_direct_string (abfd, mac_ptr, &bytes_read);
19729 mac_ptr += bytes_read;
19730 }
19731 break;
19732
19733 case DW_MACRO_GNU_start_file:
19734 {
19735 unsigned int bytes_read;
19736 int line, file;
19737
19738 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19739 mac_ptr += bytes_read;
19740 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19741 mac_ptr += bytes_read;
19742
19743 current_file = macro_start_file (file, line, current_file,
bb5ed363 19744 comp_dir, lh, objfile);
cf2c3c16
TT
19745 }
19746 break;
19747
19748 case DW_MACRO_GNU_end_file:
19749 /* No data to skip by MAC_PTR. */
19750 break;
19751
19752 case DW_MACRO_GNU_define_indirect:
19753 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
19754 case DW_MACRO_GNU_define_indirect_alt:
19755 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
19756 {
19757 unsigned int bytes_read;
19758
19759 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19760 mac_ptr += bytes_read;
19761 mac_ptr += offset_size;
19762 }
19763 break;
19764
19765 case DW_MACRO_GNU_transparent_include:
f7a35f02 19766 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19767 /* Note that, according to the spec, a transparent include
19768 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19769 skip this opcode. */
19770 mac_ptr += offset_size;
19771 break;
19772
19773 case DW_MACINFO_vendor_ext:
19774 /* Only skip the data by MAC_PTR. */
19775 if (!section_is_gnu)
19776 {
19777 unsigned int bytes_read;
19778
19779 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19780 mac_ptr += bytes_read;
19781 read_direct_string (abfd, mac_ptr, &bytes_read);
19782 mac_ptr += bytes_read;
19783 }
19784 /* FALLTHROUGH */
19785
19786 default:
19787 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19788 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19789 section);
19790 if (mac_ptr == NULL)
19791 return;
19792 break;
19793 }
19794 } while (macinfo_type != 0 && current_file == NULL);
19795
19796 /* Second pass: Process all entries.
19797
19798 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19799 command-line macro definitions/undefinitions. This flag is unset when we
19800 reach the first DW_MACINFO_start_file entry. */
19801
8fc3fc34
TT
19802 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19803 NULL, xcalloc, xfree);
19804 cleanup = make_cleanup_htab_delete (include_hash);
19805 mac_ptr = section->buffer + offset;
19806 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 19807 *slot = (void *) mac_ptr;
8fc3fc34 19808 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
19809 current_file, lh, comp_dir, section,
19810 section_is_gnu, 0,
8fc3fc34
TT
19811 offset_size, objfile, include_hash);
19812 do_cleanups (cleanup);
cf2c3c16
TT
19813}
19814
8e19ed76 19815/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 19816 if so return true else false. */
380bca97 19817
8e19ed76
PS
19818static int
19819attr_form_is_block (struct attribute *attr)
19820{
19821 return (attr == NULL ? 0 :
19822 attr->form == DW_FORM_block1
19823 || attr->form == DW_FORM_block2
19824 || attr->form == DW_FORM_block4
2dc7f7b3
TT
19825 || attr->form == DW_FORM_block
19826 || attr->form == DW_FORM_exprloc);
8e19ed76 19827}
4c2df51b 19828
c6a0999f
JB
19829/* Return non-zero if ATTR's value is a section offset --- classes
19830 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19831 You may use DW_UNSND (attr) to retrieve such offsets.
19832
19833 Section 7.5.4, "Attribute Encodings", explains that no attribute
19834 may have a value that belongs to more than one of these classes; it
19835 would be ambiguous if we did, because we use the same forms for all
19836 of them. */
380bca97 19837
3690dd37
JB
19838static int
19839attr_form_is_section_offset (struct attribute *attr)
19840{
19841 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
19842 || attr->form == DW_FORM_data8
19843 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
19844}
19845
3690dd37
JB
19846/* Return non-zero if ATTR's value falls in the 'constant' class, or
19847 zero otherwise. When this function returns true, you can apply
19848 dwarf2_get_attr_constant_value to it.
19849
19850 However, note that for some attributes you must check
19851 attr_form_is_section_offset before using this test. DW_FORM_data4
19852 and DW_FORM_data8 are members of both the constant class, and of
19853 the classes that contain offsets into other debug sections
19854 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19855 that, if an attribute's can be either a constant or one of the
19856 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19857 taken as section offsets, not constants. */
380bca97 19858
3690dd37
JB
19859static int
19860attr_form_is_constant (struct attribute *attr)
19861{
19862 switch (attr->form)
19863 {
19864 case DW_FORM_sdata:
19865 case DW_FORM_udata:
19866 case DW_FORM_data1:
19867 case DW_FORM_data2:
19868 case DW_FORM_data4:
19869 case DW_FORM_data8:
19870 return 1;
19871 default:
19872 return 0;
19873 }
19874}
19875
3019eac3
DE
19876/* Return the .debug_loc section to use for CU.
19877 For DWO files use .debug_loc.dwo. */
19878
19879static struct dwarf2_section_info *
19880cu_debug_loc_section (struct dwarf2_cu *cu)
19881{
19882 if (cu->dwo_unit)
19883 return &cu->dwo_unit->dwo_file->sections.loc;
19884 return &dwarf2_per_objfile->loc;
19885}
19886
8cf6f0b1
TT
19887/* A helper function that fills in a dwarf2_loclist_baton. */
19888
19889static void
19890fill_in_loclist_baton (struct dwarf2_cu *cu,
19891 struct dwarf2_loclist_baton *baton,
19892 struct attribute *attr)
19893{
3019eac3
DE
19894 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19895
19896 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
19897
19898 baton->per_cu = cu->per_cu;
19899 gdb_assert (baton->per_cu);
19900 /* We don't know how long the location list is, but make sure we
19901 don't run off the edge of the section. */
3019eac3
DE
19902 baton->size = section->size - DW_UNSND (attr);
19903 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 19904 baton->base_address = cu->base_address;
f664829e 19905 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
19906}
19907
4c2df51b
DJ
19908static void
19909dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
f1e6e072 19910 struct dwarf2_cu *cu, int is_block)
4c2df51b 19911{
bb5ed363 19912 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 19913 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 19914
3690dd37 19915 if (attr_form_is_section_offset (attr)
3019eac3 19916 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
19917 the section. If so, fall through to the complaint in the
19918 other branch. */
3019eac3 19919 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 19920 {
0d53c4c4 19921 struct dwarf2_loclist_baton *baton;
4c2df51b 19922
bb5ed363 19923 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19924 sizeof (struct dwarf2_loclist_baton));
4c2df51b 19925
8cf6f0b1 19926 fill_in_loclist_baton (cu, baton, attr);
be391dca 19927
d00adf39 19928 if (cu->base_known == 0)
0d53c4c4 19929 complaint (&symfile_complaints,
3e43a32a
MS
19930 _("Location list used without "
19931 "specifying the CU base address."));
4c2df51b 19932
f1e6e072
TT
19933 SYMBOL_ACLASS_INDEX (sym) = (is_block
19934 ? dwarf2_loclist_block_index
19935 : dwarf2_loclist_index);
0d53c4c4
DJ
19936 SYMBOL_LOCATION_BATON (sym) = baton;
19937 }
19938 else
19939 {
19940 struct dwarf2_locexpr_baton *baton;
19941
bb5ed363 19942 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19943 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
19944 baton->per_cu = cu->per_cu;
19945 gdb_assert (baton->per_cu);
0d53c4c4
DJ
19946
19947 if (attr_form_is_block (attr))
19948 {
19949 /* Note that we're just copying the block's data pointer
19950 here, not the actual data. We're still pointing into the
6502dd73
DJ
19951 info_buffer for SYM's objfile; right now we never release
19952 that buffer, but when we do clean up properly this may
19953 need to change. */
0d53c4c4
DJ
19954 baton->size = DW_BLOCK (attr)->size;
19955 baton->data = DW_BLOCK (attr)->data;
19956 }
19957 else
19958 {
19959 dwarf2_invalid_attrib_class_complaint ("location description",
19960 SYMBOL_NATURAL_NAME (sym));
19961 baton->size = 0;
0d53c4c4 19962 }
6e70227d 19963
f1e6e072
TT
19964 SYMBOL_ACLASS_INDEX (sym) = (is_block
19965 ? dwarf2_locexpr_block_index
19966 : dwarf2_locexpr_index);
0d53c4c4
DJ
19967 SYMBOL_LOCATION_BATON (sym) = baton;
19968 }
4c2df51b 19969}
6502dd73 19970
9aa1f1e3
TT
19971/* Return the OBJFILE associated with the compilation unit CU. If CU
19972 came from a separate debuginfo file, then the master objfile is
19973 returned. */
ae0d2f24
UW
19974
19975struct objfile *
19976dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19977{
9291a0cd 19978 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
19979
19980 /* Return the master objfile, so that we can report and look up the
19981 correct file containing this variable. */
19982 if (objfile->separate_debug_objfile_backlink)
19983 objfile = objfile->separate_debug_objfile_backlink;
19984
19985 return objfile;
19986}
19987
96408a79
SA
19988/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19989 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19990 CU_HEADERP first. */
19991
19992static const struct comp_unit_head *
19993per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19994 struct dwarf2_per_cu_data *per_cu)
19995{
d521ce57 19996 const gdb_byte *info_ptr;
96408a79
SA
19997
19998 if (per_cu->cu)
19999 return &per_cu->cu->header;
20000
8a0459fd 20001 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
20002
20003 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 20004 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
20005
20006 return cu_headerp;
20007}
20008
ae0d2f24
UW
20009/* Return the address size given in the compilation unit header for CU. */
20010
98714339 20011int
ae0d2f24
UW
20012dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20013{
96408a79
SA
20014 struct comp_unit_head cu_header_local;
20015 const struct comp_unit_head *cu_headerp;
c471e790 20016
96408a79
SA
20017 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20018
20019 return cu_headerp->addr_size;
ae0d2f24
UW
20020}
20021
9eae7c52
TT
20022/* Return the offset size given in the compilation unit header for CU. */
20023
20024int
20025dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20026{
96408a79
SA
20027 struct comp_unit_head cu_header_local;
20028 const struct comp_unit_head *cu_headerp;
9c6c53f7 20029
96408a79
SA
20030 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20031
20032 return cu_headerp->offset_size;
20033}
20034
20035/* See its dwarf2loc.h declaration. */
20036
20037int
20038dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20039{
20040 struct comp_unit_head cu_header_local;
20041 const struct comp_unit_head *cu_headerp;
20042
20043 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20044
20045 if (cu_headerp->version == 2)
20046 return cu_headerp->addr_size;
20047 else
20048 return cu_headerp->offset_size;
181cebd4
JK
20049}
20050
9aa1f1e3
TT
20051/* Return the text offset of the CU. The returned offset comes from
20052 this CU's objfile. If this objfile came from a separate debuginfo
20053 file, then the offset may be different from the corresponding
20054 offset in the parent objfile. */
20055
20056CORE_ADDR
20057dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20058{
bb3fa9d0 20059 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
20060
20061 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20062}
20063
348e048f
DE
20064/* Locate the .debug_info compilation unit from CU's objfile which contains
20065 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
20066
20067static struct dwarf2_per_cu_data *
b64f50a1 20068dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 20069 unsigned int offset_in_dwz,
ae038cb0
DJ
20070 struct objfile *objfile)
20071{
20072 struct dwarf2_per_cu_data *this_cu;
20073 int low, high;
36586728 20074 const sect_offset *cu_off;
ae038cb0 20075
ae038cb0
DJ
20076 low = 0;
20077 high = dwarf2_per_objfile->n_comp_units - 1;
20078 while (high > low)
20079 {
36586728 20080 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 20081 int mid = low + (high - low) / 2;
9a619af0 20082
36586728
TT
20083 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20084 cu_off = &mid_cu->offset;
20085 if (mid_cu->is_dwz > offset_in_dwz
20086 || (mid_cu->is_dwz == offset_in_dwz
20087 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
20088 high = mid;
20089 else
20090 low = mid + 1;
20091 }
20092 gdb_assert (low == high);
36586728
TT
20093 this_cu = dwarf2_per_objfile->all_comp_units[low];
20094 cu_off = &this_cu->offset;
20095 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 20096 {
36586728 20097 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
20098 error (_("Dwarf Error: could not find partial DIE containing "
20099 "offset 0x%lx [in module %s]"),
b64f50a1 20100 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 20101
b64f50a1
JK
20102 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20103 <= offset.sect_off);
ae038cb0
DJ
20104 return dwarf2_per_objfile->all_comp_units[low-1];
20105 }
20106 else
20107 {
20108 this_cu = dwarf2_per_objfile->all_comp_units[low];
20109 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
20110 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20111 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20112 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
20113 return this_cu;
20114 }
20115}
20116
23745b47 20117/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 20118
9816fde3 20119static void
23745b47 20120init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 20121{
9816fde3 20122 memset (cu, 0, sizeof (*cu));
23745b47
DE
20123 per_cu->cu = cu;
20124 cu->per_cu = per_cu;
20125 cu->objfile = per_cu->objfile;
93311388 20126 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
20127}
20128
20129/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20130
20131static void
95554aad
TT
20132prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20133 enum language pretend_language)
9816fde3
JK
20134{
20135 struct attribute *attr;
20136
20137 /* Set the language we're debugging. */
20138 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20139 if (attr)
20140 set_cu_language (DW_UNSND (attr), cu);
20141 else
9cded63f 20142 {
95554aad 20143 cu->language = pretend_language;
9cded63f
TT
20144 cu->language_defn = language_def (cu->language);
20145 }
dee91e82
DE
20146
20147 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20148 if (attr)
20149 cu->producer = DW_STRING (attr);
93311388
DE
20150}
20151
ae038cb0
DJ
20152/* Release one cached compilation unit, CU. We unlink it from the tree
20153 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
20154 the caller is responsible for that.
20155 NOTE: DATA is a void * because this function is also used as a
20156 cleanup routine. */
ae038cb0
DJ
20157
20158static void
68dc6402 20159free_heap_comp_unit (void *data)
ae038cb0
DJ
20160{
20161 struct dwarf2_cu *cu = data;
20162
23745b47
DE
20163 gdb_assert (cu->per_cu != NULL);
20164 cu->per_cu->cu = NULL;
ae038cb0
DJ
20165 cu->per_cu = NULL;
20166
20167 obstack_free (&cu->comp_unit_obstack, NULL);
20168
20169 xfree (cu);
20170}
20171
72bf9492 20172/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 20173 when we're finished with it. We can't free the pointer itself, but be
dee91e82 20174 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
20175
20176static void
20177free_stack_comp_unit (void *data)
20178{
20179 struct dwarf2_cu *cu = data;
20180
23745b47
DE
20181 gdb_assert (cu->per_cu != NULL);
20182 cu->per_cu->cu = NULL;
20183 cu->per_cu = NULL;
20184
72bf9492
DJ
20185 obstack_free (&cu->comp_unit_obstack, NULL);
20186 cu->partial_dies = NULL;
ae038cb0
DJ
20187}
20188
20189/* Free all cached compilation units. */
20190
20191static void
20192free_cached_comp_units (void *data)
20193{
20194 struct dwarf2_per_cu_data *per_cu, **last_chain;
20195
20196 per_cu = dwarf2_per_objfile->read_in_chain;
20197 last_chain = &dwarf2_per_objfile->read_in_chain;
20198 while (per_cu != NULL)
20199 {
20200 struct dwarf2_per_cu_data *next_cu;
20201
20202 next_cu = per_cu->cu->read_in_chain;
20203
68dc6402 20204 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20205 *last_chain = next_cu;
20206
20207 per_cu = next_cu;
20208 }
20209}
20210
20211/* Increase the age counter on each cached compilation unit, and free
20212 any that are too old. */
20213
20214static void
20215age_cached_comp_units (void)
20216{
20217 struct dwarf2_per_cu_data *per_cu, **last_chain;
20218
20219 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20220 per_cu = dwarf2_per_objfile->read_in_chain;
20221 while (per_cu != NULL)
20222 {
20223 per_cu->cu->last_used ++;
20224 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20225 dwarf2_mark (per_cu->cu);
20226 per_cu = per_cu->cu->read_in_chain;
20227 }
20228
20229 per_cu = dwarf2_per_objfile->read_in_chain;
20230 last_chain = &dwarf2_per_objfile->read_in_chain;
20231 while (per_cu != NULL)
20232 {
20233 struct dwarf2_per_cu_data *next_cu;
20234
20235 next_cu = per_cu->cu->read_in_chain;
20236
20237 if (!per_cu->cu->mark)
20238 {
68dc6402 20239 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20240 *last_chain = next_cu;
20241 }
20242 else
20243 last_chain = &per_cu->cu->read_in_chain;
20244
20245 per_cu = next_cu;
20246 }
20247}
20248
20249/* Remove a single compilation unit from the cache. */
20250
20251static void
dee91e82 20252free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
20253{
20254 struct dwarf2_per_cu_data *per_cu, **last_chain;
20255
20256 per_cu = dwarf2_per_objfile->read_in_chain;
20257 last_chain = &dwarf2_per_objfile->read_in_chain;
20258 while (per_cu != NULL)
20259 {
20260 struct dwarf2_per_cu_data *next_cu;
20261
20262 next_cu = per_cu->cu->read_in_chain;
20263
dee91e82 20264 if (per_cu == target_per_cu)
ae038cb0 20265 {
68dc6402 20266 free_heap_comp_unit (per_cu->cu);
dee91e82 20267 per_cu->cu = NULL;
ae038cb0
DJ
20268 *last_chain = next_cu;
20269 break;
20270 }
20271 else
20272 last_chain = &per_cu->cu->read_in_chain;
20273
20274 per_cu = next_cu;
20275 }
20276}
20277
fe3e1990
DJ
20278/* Release all extra memory associated with OBJFILE. */
20279
20280void
20281dwarf2_free_objfile (struct objfile *objfile)
20282{
20283 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20284
20285 if (dwarf2_per_objfile == NULL)
20286 return;
20287
20288 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20289 free_cached_comp_units (NULL);
20290
7b9f3c50
DE
20291 if (dwarf2_per_objfile->quick_file_names_table)
20292 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 20293
fe3e1990
DJ
20294 /* Everything else should be on the objfile obstack. */
20295}
20296
dee91e82
DE
20297/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20298 We store these in a hash table separate from the DIEs, and preserve them
20299 when the DIEs are flushed out of cache.
20300
20301 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 20302 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
20303 or the type may come from a DWO file. Furthermore, while it's more logical
20304 to use per_cu->section+offset, with Fission the section with the data is in
20305 the DWO file but we don't know that section at the point we need it.
20306 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20307 because we can enter the lookup routine, get_die_type_at_offset, from
20308 outside this file, and thus won't necessarily have PER_CU->cu.
20309 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 20310
dee91e82 20311struct dwarf2_per_cu_offset_and_type
1c379e20 20312{
dee91e82 20313 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 20314 sect_offset offset;
1c379e20
DJ
20315 struct type *type;
20316};
20317
dee91e82 20318/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20319
20320static hashval_t
dee91e82 20321per_cu_offset_and_type_hash (const void *item)
1c379e20 20322{
dee91e82 20323 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 20324
dee91e82 20325 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
20326}
20327
dee91e82 20328/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20329
20330static int
dee91e82 20331per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 20332{
dee91e82
DE
20333 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20334 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 20335
dee91e82
DE
20336 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20337 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
20338}
20339
20340/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
20341 table if necessary. For convenience, return TYPE.
20342
20343 The DIEs reading must have careful ordering to:
20344 * Not cause infite loops trying to read in DIEs as a prerequisite for
20345 reading current DIE.
20346 * Not trying to dereference contents of still incompletely read in types
20347 while reading in other DIEs.
20348 * Enable referencing still incompletely read in types just by a pointer to
20349 the type without accessing its fields.
20350
20351 Therefore caller should follow these rules:
20352 * Try to fetch any prerequisite types we may need to build this DIE type
20353 before building the type and calling set_die_type.
e71ec853 20354 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
20355 possible before fetching more types to complete the current type.
20356 * Make the type as complete as possible before fetching more types. */
1c379e20 20357
f792889a 20358static struct type *
1c379e20
DJ
20359set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20360{
dee91e82 20361 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 20362 struct objfile *objfile = cu->objfile;
1c379e20 20363
b4ba55a1
JB
20364 /* For Ada types, make sure that the gnat-specific data is always
20365 initialized (if not already set). There are a few types where
20366 we should not be doing so, because the type-specific area is
20367 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20368 where the type-specific area is used to store the floatformat).
20369 But this is not a problem, because the gnat-specific information
20370 is actually not needed for these types. */
20371 if (need_gnat_info (cu)
20372 && TYPE_CODE (type) != TYPE_CODE_FUNC
20373 && TYPE_CODE (type) != TYPE_CODE_FLT
20374 && !HAVE_GNAT_AUX_INFO (type))
20375 INIT_GNAT_SPECIFIC (type);
20376
dee91e82 20377 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20378 {
dee91e82
DE
20379 dwarf2_per_objfile->die_type_hash =
20380 htab_create_alloc_ex (127,
20381 per_cu_offset_and_type_hash,
20382 per_cu_offset_and_type_eq,
20383 NULL,
20384 &objfile->objfile_obstack,
20385 hashtab_obstack_allocate,
20386 dummy_obstack_deallocate);
f792889a 20387 }
1c379e20 20388
dee91e82 20389 ofs.per_cu = cu->per_cu;
1c379e20
DJ
20390 ofs.offset = die->offset;
20391 ofs.type = type;
dee91e82
DE
20392 slot = (struct dwarf2_per_cu_offset_and_type **)
20393 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
20394 if (*slot)
20395 complaint (&symfile_complaints,
20396 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 20397 die->offset.sect_off);
673bfd45 20398 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 20399 **slot = ofs;
f792889a 20400 return type;
1c379e20
DJ
20401}
20402
02142a6c
DE
20403/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20404 or return NULL if the die does not have a saved type. */
1c379e20
DJ
20405
20406static struct type *
b64f50a1 20407get_die_type_at_offset (sect_offset offset,
673bfd45 20408 struct dwarf2_per_cu_data *per_cu)
1c379e20 20409{
dee91e82 20410 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 20411
dee91e82 20412 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20413 return NULL;
1c379e20 20414
dee91e82 20415 ofs.per_cu = per_cu;
673bfd45 20416 ofs.offset = offset;
dee91e82 20417 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
20418 if (slot)
20419 return slot->type;
20420 else
20421 return NULL;
20422}
20423
02142a6c 20424/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
20425 or return NULL if DIE does not have a saved type. */
20426
20427static struct type *
20428get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20429{
20430 return get_die_type_at_offset (die->offset, cu->per_cu);
20431}
20432
10b3939b
DJ
20433/* Add a dependence relationship from CU to REF_PER_CU. */
20434
20435static void
20436dwarf2_add_dependence (struct dwarf2_cu *cu,
20437 struct dwarf2_per_cu_data *ref_per_cu)
20438{
20439 void **slot;
20440
20441 if (cu->dependencies == NULL)
20442 cu->dependencies
20443 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20444 NULL, &cu->comp_unit_obstack,
20445 hashtab_obstack_allocate,
20446 dummy_obstack_deallocate);
20447
20448 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20449 if (*slot == NULL)
20450 *slot = ref_per_cu;
20451}
1c379e20 20452
f504f079
DE
20453/* Subroutine of dwarf2_mark to pass to htab_traverse.
20454 Set the mark field in every compilation unit in the
ae038cb0
DJ
20455 cache that we must keep because we are keeping CU. */
20456
10b3939b
DJ
20457static int
20458dwarf2_mark_helper (void **slot, void *data)
20459{
20460 struct dwarf2_per_cu_data *per_cu;
20461
20462 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
20463
20464 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20465 reading of the chain. As such dependencies remain valid it is not much
20466 useful to track and undo them during QUIT cleanups. */
20467 if (per_cu->cu == NULL)
20468 return 1;
20469
10b3939b
DJ
20470 if (per_cu->cu->mark)
20471 return 1;
20472 per_cu->cu->mark = 1;
20473
20474 if (per_cu->cu->dependencies != NULL)
20475 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20476
20477 return 1;
20478}
20479
f504f079
DE
20480/* Set the mark field in CU and in every other compilation unit in the
20481 cache that we must keep because we are keeping CU. */
20482
ae038cb0
DJ
20483static void
20484dwarf2_mark (struct dwarf2_cu *cu)
20485{
20486 if (cu->mark)
20487 return;
20488 cu->mark = 1;
10b3939b
DJ
20489 if (cu->dependencies != NULL)
20490 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
20491}
20492
20493static void
20494dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20495{
20496 while (per_cu)
20497 {
20498 per_cu->cu->mark = 0;
20499 per_cu = per_cu->cu->read_in_chain;
20500 }
72bf9492
DJ
20501}
20502
72bf9492
DJ
20503/* Trivial hash function for partial_die_info: the hash value of a DIE
20504 is its offset in .debug_info for this objfile. */
20505
20506static hashval_t
20507partial_die_hash (const void *item)
20508{
20509 const struct partial_die_info *part_die = item;
9a619af0 20510
b64f50a1 20511 return part_die->offset.sect_off;
72bf9492
DJ
20512}
20513
20514/* Trivial comparison function for partial_die_info structures: two DIEs
20515 are equal if they have the same offset. */
20516
20517static int
20518partial_die_eq (const void *item_lhs, const void *item_rhs)
20519{
20520 const struct partial_die_info *part_die_lhs = item_lhs;
20521 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 20522
b64f50a1 20523 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
20524}
20525
ae038cb0
DJ
20526static struct cmd_list_element *set_dwarf2_cmdlist;
20527static struct cmd_list_element *show_dwarf2_cmdlist;
20528
20529static void
20530set_dwarf2_cmd (char *args, int from_tty)
20531{
20532 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20533}
20534
20535static void
20536show_dwarf2_cmd (char *args, int from_tty)
6e70227d 20537{
ae038cb0
DJ
20538 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20539}
20540
4bf44c1c 20541/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
20542
20543static void
c1bd65d0 20544dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
20545{
20546 struct dwarf2_per_objfile *data = d;
8b70b953 20547 int ix;
8b70b953 20548
626f2d1c
TT
20549 /* Make sure we don't accidentally use dwarf2_per_objfile while
20550 cleaning up. */
20551 dwarf2_per_objfile = NULL;
20552
59b0c7c1
JB
20553 for (ix = 0; ix < data->n_comp_units; ++ix)
20554 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 20555
59b0c7c1 20556 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 20557 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
20558 data->all_type_units[ix]->per_cu.imported_symtabs);
20559 xfree (data->all_type_units);
95554aad 20560
8b70b953 20561 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
20562
20563 if (data->dwo_files)
20564 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
20565 if (data->dwp_file)
20566 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
20567
20568 if (data->dwz_file && data->dwz_file->dwz_bfd)
20569 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
20570}
20571
20572\f
ae2de4f8 20573/* The "save gdb-index" command. */
9291a0cd
TT
20574
20575/* The contents of the hash table we create when building the string
20576 table. */
20577struct strtab_entry
20578{
20579 offset_type offset;
20580 const char *str;
20581};
20582
559a7a62
JK
20583/* Hash function for a strtab_entry.
20584
20585 Function is used only during write_hash_table so no index format backward
20586 compatibility is needed. */
b89be57b 20587
9291a0cd
TT
20588static hashval_t
20589hash_strtab_entry (const void *e)
20590{
20591 const struct strtab_entry *entry = e;
559a7a62 20592 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
20593}
20594
20595/* Equality function for a strtab_entry. */
b89be57b 20596
9291a0cd
TT
20597static int
20598eq_strtab_entry (const void *a, const void *b)
20599{
20600 const struct strtab_entry *ea = a;
20601 const struct strtab_entry *eb = b;
20602 return !strcmp (ea->str, eb->str);
20603}
20604
20605/* Create a strtab_entry hash table. */
b89be57b 20606
9291a0cd
TT
20607static htab_t
20608create_strtab (void)
20609{
20610 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20611 xfree, xcalloc, xfree);
20612}
20613
20614/* Add a string to the constant pool. Return the string's offset in
20615 host order. */
b89be57b 20616
9291a0cd
TT
20617static offset_type
20618add_string (htab_t table, struct obstack *cpool, const char *str)
20619{
20620 void **slot;
20621 struct strtab_entry entry;
20622 struct strtab_entry *result;
20623
20624 entry.str = str;
20625 slot = htab_find_slot (table, &entry, INSERT);
20626 if (*slot)
20627 result = *slot;
20628 else
20629 {
20630 result = XNEW (struct strtab_entry);
20631 result->offset = obstack_object_size (cpool);
20632 result->str = str;
20633 obstack_grow_str0 (cpool, str);
20634 *slot = result;
20635 }
20636 return result->offset;
20637}
20638
20639/* An entry in the symbol table. */
20640struct symtab_index_entry
20641{
20642 /* The name of the symbol. */
20643 const char *name;
20644 /* The offset of the name in the constant pool. */
20645 offset_type index_offset;
20646 /* A sorted vector of the indices of all the CUs that hold an object
20647 of this name. */
20648 VEC (offset_type) *cu_indices;
20649};
20650
20651/* The symbol table. This is a power-of-2-sized hash table. */
20652struct mapped_symtab
20653{
20654 offset_type n_elements;
20655 offset_type size;
20656 struct symtab_index_entry **data;
20657};
20658
20659/* Hash function for a symtab_index_entry. */
b89be57b 20660
9291a0cd
TT
20661static hashval_t
20662hash_symtab_entry (const void *e)
20663{
20664 const struct symtab_index_entry *entry = e;
20665 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20666 sizeof (offset_type) * VEC_length (offset_type,
20667 entry->cu_indices),
20668 0);
20669}
20670
20671/* Equality function for a symtab_index_entry. */
b89be57b 20672
9291a0cd
TT
20673static int
20674eq_symtab_entry (const void *a, const void *b)
20675{
20676 const struct symtab_index_entry *ea = a;
20677 const struct symtab_index_entry *eb = b;
20678 int len = VEC_length (offset_type, ea->cu_indices);
20679 if (len != VEC_length (offset_type, eb->cu_indices))
20680 return 0;
20681 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20682 VEC_address (offset_type, eb->cu_indices),
20683 sizeof (offset_type) * len);
20684}
20685
20686/* Destroy a symtab_index_entry. */
b89be57b 20687
9291a0cd
TT
20688static void
20689delete_symtab_entry (void *p)
20690{
20691 struct symtab_index_entry *entry = p;
20692 VEC_free (offset_type, entry->cu_indices);
20693 xfree (entry);
20694}
20695
20696/* Create a hash table holding symtab_index_entry objects. */
b89be57b 20697
9291a0cd 20698static htab_t
3876f04e 20699create_symbol_hash_table (void)
9291a0cd
TT
20700{
20701 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20702 delete_symtab_entry, xcalloc, xfree);
20703}
20704
20705/* Create a new mapped symtab object. */
b89be57b 20706
9291a0cd
TT
20707static struct mapped_symtab *
20708create_mapped_symtab (void)
20709{
20710 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20711 symtab->n_elements = 0;
20712 symtab->size = 1024;
20713 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20714 return symtab;
20715}
20716
20717/* Destroy a mapped_symtab. */
b89be57b 20718
9291a0cd
TT
20719static void
20720cleanup_mapped_symtab (void *p)
20721{
20722 struct mapped_symtab *symtab = p;
20723 /* The contents of the array are freed when the other hash table is
20724 destroyed. */
20725 xfree (symtab->data);
20726 xfree (symtab);
20727}
20728
20729/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
20730 the slot.
20731
20732 Function is used only during write_hash_table so no index format backward
20733 compatibility is needed. */
b89be57b 20734
9291a0cd
TT
20735static struct symtab_index_entry **
20736find_slot (struct mapped_symtab *symtab, const char *name)
20737{
559a7a62 20738 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
20739
20740 index = hash & (symtab->size - 1);
20741 step = ((hash * 17) & (symtab->size - 1)) | 1;
20742
20743 for (;;)
20744 {
20745 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20746 return &symtab->data[index];
20747 index = (index + step) & (symtab->size - 1);
20748 }
20749}
20750
20751/* Expand SYMTAB's hash table. */
b89be57b 20752
9291a0cd
TT
20753static void
20754hash_expand (struct mapped_symtab *symtab)
20755{
20756 offset_type old_size = symtab->size;
20757 offset_type i;
20758 struct symtab_index_entry **old_entries = symtab->data;
20759
20760 symtab->size *= 2;
20761 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20762
20763 for (i = 0; i < old_size; ++i)
20764 {
20765 if (old_entries[i])
20766 {
20767 struct symtab_index_entry **slot = find_slot (symtab,
20768 old_entries[i]->name);
20769 *slot = old_entries[i];
20770 }
20771 }
20772
20773 xfree (old_entries);
20774}
20775
156942c7
DE
20776/* Add an entry to SYMTAB. NAME is the name of the symbol.
20777 CU_INDEX is the index of the CU in which the symbol appears.
20778 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 20779
9291a0cd
TT
20780static void
20781add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 20782 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
20783 offset_type cu_index)
20784{
20785 struct symtab_index_entry **slot;
156942c7 20786 offset_type cu_index_and_attrs;
9291a0cd
TT
20787
20788 ++symtab->n_elements;
20789 if (4 * symtab->n_elements / 3 >= symtab->size)
20790 hash_expand (symtab);
20791
20792 slot = find_slot (symtab, name);
20793 if (!*slot)
20794 {
20795 *slot = XNEW (struct symtab_index_entry);
20796 (*slot)->name = name;
156942c7 20797 /* index_offset is set later. */
9291a0cd
TT
20798 (*slot)->cu_indices = NULL;
20799 }
156942c7
DE
20800
20801 cu_index_and_attrs = 0;
20802 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20803 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20804 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20805
20806 /* We don't want to record an index value twice as we want to avoid the
20807 duplication.
20808 We process all global symbols and then all static symbols
20809 (which would allow us to avoid the duplication by only having to check
20810 the last entry pushed), but a symbol could have multiple kinds in one CU.
20811 To keep things simple we don't worry about the duplication here and
20812 sort and uniqufy the list after we've processed all symbols. */
20813 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20814}
20815
20816/* qsort helper routine for uniquify_cu_indices. */
20817
20818static int
20819offset_type_compare (const void *ap, const void *bp)
20820{
20821 offset_type a = *(offset_type *) ap;
20822 offset_type b = *(offset_type *) bp;
20823
20824 return (a > b) - (b > a);
20825}
20826
20827/* Sort and remove duplicates of all symbols' cu_indices lists. */
20828
20829static void
20830uniquify_cu_indices (struct mapped_symtab *symtab)
20831{
20832 int i;
20833
20834 for (i = 0; i < symtab->size; ++i)
20835 {
20836 struct symtab_index_entry *entry = symtab->data[i];
20837
20838 if (entry
20839 && entry->cu_indices != NULL)
20840 {
20841 unsigned int next_to_insert, next_to_check;
20842 offset_type last_value;
20843
20844 qsort (VEC_address (offset_type, entry->cu_indices),
20845 VEC_length (offset_type, entry->cu_indices),
20846 sizeof (offset_type), offset_type_compare);
20847
20848 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20849 next_to_insert = 1;
20850 for (next_to_check = 1;
20851 next_to_check < VEC_length (offset_type, entry->cu_indices);
20852 ++next_to_check)
20853 {
20854 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20855 != last_value)
20856 {
20857 last_value = VEC_index (offset_type, entry->cu_indices,
20858 next_to_check);
20859 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20860 last_value);
20861 ++next_to_insert;
20862 }
20863 }
20864 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20865 }
20866 }
9291a0cd
TT
20867}
20868
20869/* Add a vector of indices to the constant pool. */
b89be57b 20870
9291a0cd 20871static offset_type
3876f04e 20872add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
20873 struct symtab_index_entry *entry)
20874{
20875 void **slot;
20876
3876f04e 20877 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
20878 if (!*slot)
20879 {
20880 offset_type len = VEC_length (offset_type, entry->cu_indices);
20881 offset_type val = MAYBE_SWAP (len);
20882 offset_type iter;
20883 int i;
20884
20885 *slot = entry;
20886 entry->index_offset = obstack_object_size (cpool);
20887
20888 obstack_grow (cpool, &val, sizeof (val));
20889 for (i = 0;
20890 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20891 ++i)
20892 {
20893 val = MAYBE_SWAP (iter);
20894 obstack_grow (cpool, &val, sizeof (val));
20895 }
20896 }
20897 else
20898 {
20899 struct symtab_index_entry *old_entry = *slot;
20900 entry->index_offset = old_entry->index_offset;
20901 entry = old_entry;
20902 }
20903 return entry->index_offset;
20904}
20905
20906/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20907 constant pool entries going into the obstack CPOOL. */
b89be57b 20908
9291a0cd
TT
20909static void
20910write_hash_table (struct mapped_symtab *symtab,
20911 struct obstack *output, struct obstack *cpool)
20912{
20913 offset_type i;
3876f04e 20914 htab_t symbol_hash_table;
9291a0cd
TT
20915 htab_t str_table;
20916
3876f04e 20917 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 20918 str_table = create_strtab ();
3876f04e 20919
9291a0cd
TT
20920 /* We add all the index vectors to the constant pool first, to
20921 ensure alignment is ok. */
20922 for (i = 0; i < symtab->size; ++i)
20923 {
20924 if (symtab->data[i])
3876f04e 20925 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
20926 }
20927
20928 /* Now write out the hash table. */
20929 for (i = 0; i < symtab->size; ++i)
20930 {
20931 offset_type str_off, vec_off;
20932
20933 if (symtab->data[i])
20934 {
20935 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20936 vec_off = symtab->data[i]->index_offset;
20937 }
20938 else
20939 {
20940 /* While 0 is a valid constant pool index, it is not valid
20941 to have 0 for both offsets. */
20942 str_off = 0;
20943 vec_off = 0;
20944 }
20945
20946 str_off = MAYBE_SWAP (str_off);
20947 vec_off = MAYBE_SWAP (vec_off);
20948
20949 obstack_grow (output, &str_off, sizeof (str_off));
20950 obstack_grow (output, &vec_off, sizeof (vec_off));
20951 }
20952
20953 htab_delete (str_table);
3876f04e 20954 htab_delete (symbol_hash_table);
9291a0cd
TT
20955}
20956
0a5429f6
DE
20957/* Struct to map psymtab to CU index in the index file. */
20958struct psymtab_cu_index_map
20959{
20960 struct partial_symtab *psymtab;
20961 unsigned int cu_index;
20962};
20963
20964static hashval_t
20965hash_psymtab_cu_index (const void *item)
20966{
20967 const struct psymtab_cu_index_map *map = item;
20968
20969 return htab_hash_pointer (map->psymtab);
20970}
20971
20972static int
20973eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20974{
20975 const struct psymtab_cu_index_map *lhs = item_lhs;
20976 const struct psymtab_cu_index_map *rhs = item_rhs;
20977
20978 return lhs->psymtab == rhs->psymtab;
20979}
20980
20981/* Helper struct for building the address table. */
20982struct addrmap_index_data
20983{
20984 struct objfile *objfile;
20985 struct obstack *addr_obstack;
20986 htab_t cu_index_htab;
20987
20988 /* Non-zero if the previous_* fields are valid.
20989 We can't write an entry until we see the next entry (since it is only then
20990 that we know the end of the entry). */
20991 int previous_valid;
20992 /* Index of the CU in the table of all CUs in the index file. */
20993 unsigned int previous_cu_index;
0963b4bd 20994 /* Start address of the CU. */
0a5429f6
DE
20995 CORE_ADDR previous_cu_start;
20996};
20997
20998/* Write an address entry to OBSTACK. */
b89be57b 20999
9291a0cd 21000static void
0a5429f6
DE
21001add_address_entry (struct objfile *objfile, struct obstack *obstack,
21002 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 21003{
0a5429f6 21004 offset_type cu_index_to_write;
948f8e3d 21005 gdb_byte addr[8];
9291a0cd
TT
21006 CORE_ADDR baseaddr;
21007
21008 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21009
0a5429f6
DE
21010 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21011 obstack_grow (obstack, addr, 8);
21012 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21013 obstack_grow (obstack, addr, 8);
21014 cu_index_to_write = MAYBE_SWAP (cu_index);
21015 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21016}
21017
21018/* Worker function for traversing an addrmap to build the address table. */
21019
21020static int
21021add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21022{
21023 struct addrmap_index_data *data = datap;
21024 struct partial_symtab *pst = obj;
0a5429f6
DE
21025
21026 if (data->previous_valid)
21027 add_address_entry (data->objfile, data->addr_obstack,
21028 data->previous_cu_start, start_addr,
21029 data->previous_cu_index);
21030
21031 data->previous_cu_start = start_addr;
21032 if (pst != NULL)
21033 {
21034 struct psymtab_cu_index_map find_map, *map;
21035 find_map.psymtab = pst;
21036 map = htab_find (data->cu_index_htab, &find_map);
21037 gdb_assert (map != NULL);
21038 data->previous_cu_index = map->cu_index;
21039 data->previous_valid = 1;
21040 }
21041 else
21042 data->previous_valid = 0;
21043
21044 return 0;
21045}
21046
21047/* Write OBJFILE's address map to OBSTACK.
21048 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21049 in the index file. */
21050
21051static void
21052write_address_map (struct objfile *objfile, struct obstack *obstack,
21053 htab_t cu_index_htab)
21054{
21055 struct addrmap_index_data addrmap_index_data;
21056
21057 /* When writing the address table, we have to cope with the fact that
21058 the addrmap iterator only provides the start of a region; we have to
21059 wait until the next invocation to get the start of the next region. */
21060
21061 addrmap_index_data.objfile = objfile;
21062 addrmap_index_data.addr_obstack = obstack;
21063 addrmap_index_data.cu_index_htab = cu_index_htab;
21064 addrmap_index_data.previous_valid = 0;
21065
21066 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21067 &addrmap_index_data);
21068
21069 /* It's highly unlikely the last entry (end address = 0xff...ff)
21070 is valid, but we should still handle it.
21071 The end address is recorded as the start of the next region, but that
21072 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21073 anyway. */
21074 if (addrmap_index_data.previous_valid)
21075 add_address_entry (objfile, obstack,
21076 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21077 addrmap_index_data.previous_cu_index);
9291a0cd
TT
21078}
21079
156942c7
DE
21080/* Return the symbol kind of PSYM. */
21081
21082static gdb_index_symbol_kind
21083symbol_kind (struct partial_symbol *psym)
21084{
21085 domain_enum domain = PSYMBOL_DOMAIN (psym);
21086 enum address_class aclass = PSYMBOL_CLASS (psym);
21087
21088 switch (domain)
21089 {
21090 case VAR_DOMAIN:
21091 switch (aclass)
21092 {
21093 case LOC_BLOCK:
21094 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21095 case LOC_TYPEDEF:
21096 return GDB_INDEX_SYMBOL_KIND_TYPE;
21097 case LOC_COMPUTED:
21098 case LOC_CONST_BYTES:
21099 case LOC_OPTIMIZED_OUT:
21100 case LOC_STATIC:
21101 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21102 case LOC_CONST:
21103 /* Note: It's currently impossible to recognize psyms as enum values
21104 short of reading the type info. For now punt. */
21105 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21106 default:
21107 /* There are other LOC_FOO values that one might want to classify
21108 as variables, but dwarf2read.c doesn't currently use them. */
21109 return GDB_INDEX_SYMBOL_KIND_OTHER;
21110 }
21111 case STRUCT_DOMAIN:
21112 return GDB_INDEX_SYMBOL_KIND_TYPE;
21113 default:
21114 return GDB_INDEX_SYMBOL_KIND_OTHER;
21115 }
21116}
21117
9291a0cd 21118/* Add a list of partial symbols to SYMTAB. */
b89be57b 21119
9291a0cd
TT
21120static void
21121write_psymbols (struct mapped_symtab *symtab,
987d643c 21122 htab_t psyms_seen,
9291a0cd
TT
21123 struct partial_symbol **psymp,
21124 int count,
987d643c
TT
21125 offset_type cu_index,
21126 int is_static)
9291a0cd
TT
21127{
21128 for (; count-- > 0; ++psymp)
21129 {
156942c7
DE
21130 struct partial_symbol *psym = *psymp;
21131 void **slot;
987d643c 21132
156942c7 21133 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 21134 error (_("Ada is not currently supported by the index"));
987d643c 21135
987d643c 21136 /* Only add a given psymbol once. */
156942c7 21137 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
21138 if (!*slot)
21139 {
156942c7
DE
21140 gdb_index_symbol_kind kind = symbol_kind (psym);
21141
21142 *slot = psym;
21143 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21144 is_static, kind, cu_index);
987d643c 21145 }
9291a0cd
TT
21146 }
21147}
21148
21149/* Write the contents of an ("unfinished") obstack to FILE. Throw an
21150 exception if there is an error. */
b89be57b 21151
9291a0cd
TT
21152static void
21153write_obstack (FILE *file, struct obstack *obstack)
21154{
21155 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21156 file)
21157 != obstack_object_size (obstack))
21158 error (_("couldn't data write to file"));
21159}
21160
21161/* Unlink a file if the argument is not NULL. */
b89be57b 21162
9291a0cd
TT
21163static void
21164unlink_if_set (void *p)
21165{
21166 char **filename = p;
21167 if (*filename)
21168 unlink (*filename);
21169}
21170
1fd400ff
TT
21171/* A helper struct used when iterating over debug_types. */
21172struct signatured_type_index_data
21173{
21174 struct objfile *objfile;
21175 struct mapped_symtab *symtab;
21176 struct obstack *types_list;
987d643c 21177 htab_t psyms_seen;
1fd400ff
TT
21178 int cu_index;
21179};
21180
21181/* A helper function that writes a single signatured_type to an
21182 obstack. */
b89be57b 21183
1fd400ff
TT
21184static int
21185write_one_signatured_type (void **slot, void *d)
21186{
21187 struct signatured_type_index_data *info = d;
21188 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 21189 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
21190 gdb_byte val[8];
21191
21192 write_psymbols (info->symtab,
987d643c 21193 info->psyms_seen,
3e43a32a
MS
21194 info->objfile->global_psymbols.list
21195 + psymtab->globals_offset,
987d643c
TT
21196 psymtab->n_global_syms, info->cu_index,
21197 0);
1fd400ff 21198 write_psymbols (info->symtab,
987d643c 21199 info->psyms_seen,
3e43a32a
MS
21200 info->objfile->static_psymbols.list
21201 + psymtab->statics_offset,
987d643c
TT
21202 psymtab->n_static_syms, info->cu_index,
21203 1);
1fd400ff 21204
b64f50a1
JK
21205 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21206 entry->per_cu.offset.sect_off);
1fd400ff 21207 obstack_grow (info->types_list, val, 8);
3019eac3
DE
21208 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21209 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
21210 obstack_grow (info->types_list, val, 8);
21211 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21212 obstack_grow (info->types_list, val, 8);
21213
21214 ++info->cu_index;
21215
21216 return 1;
21217}
21218
95554aad
TT
21219/* Recurse into all "included" dependencies and write their symbols as
21220 if they appeared in this psymtab. */
21221
21222static void
21223recursively_write_psymbols (struct objfile *objfile,
21224 struct partial_symtab *psymtab,
21225 struct mapped_symtab *symtab,
21226 htab_t psyms_seen,
21227 offset_type cu_index)
21228{
21229 int i;
21230
21231 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21232 if (psymtab->dependencies[i]->user != NULL)
21233 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21234 symtab, psyms_seen, cu_index);
21235
21236 write_psymbols (symtab,
21237 psyms_seen,
21238 objfile->global_psymbols.list + psymtab->globals_offset,
21239 psymtab->n_global_syms, cu_index,
21240 0);
21241 write_psymbols (symtab,
21242 psyms_seen,
21243 objfile->static_psymbols.list + psymtab->statics_offset,
21244 psymtab->n_static_syms, cu_index,
21245 1);
21246}
21247
9291a0cd 21248/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 21249
9291a0cd
TT
21250static void
21251write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21252{
21253 struct cleanup *cleanup;
21254 char *filename, *cleanup_filename;
1fd400ff
TT
21255 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21256 struct obstack cu_list, types_cu_list;
9291a0cd
TT
21257 int i;
21258 FILE *out_file;
21259 struct mapped_symtab *symtab;
21260 offset_type val, size_of_contents, total_len;
21261 struct stat st;
987d643c 21262 htab_t psyms_seen;
0a5429f6
DE
21263 htab_t cu_index_htab;
21264 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 21265
b4f2f049 21266 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 21267 return;
b4f2f049 21268
9291a0cd
TT
21269 if (dwarf2_per_objfile->using_index)
21270 error (_("Cannot use an index to create the index"));
21271
8b70b953
TT
21272 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21273 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21274
9291a0cd 21275 if (stat (objfile->name, &st) < 0)
7e17e088 21276 perror_with_name (objfile->name);
9291a0cd
TT
21277
21278 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21279 INDEX_SUFFIX, (char *) NULL);
21280 cleanup = make_cleanup (xfree, filename);
21281
614c279d 21282 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
21283 if (!out_file)
21284 error (_("Can't open `%s' for writing"), filename);
21285
21286 cleanup_filename = filename;
21287 make_cleanup (unlink_if_set, &cleanup_filename);
21288
21289 symtab = create_mapped_symtab ();
21290 make_cleanup (cleanup_mapped_symtab, symtab);
21291
21292 obstack_init (&addr_obstack);
21293 make_cleanup_obstack_free (&addr_obstack);
21294
21295 obstack_init (&cu_list);
21296 make_cleanup_obstack_free (&cu_list);
21297
1fd400ff
TT
21298 obstack_init (&types_cu_list);
21299 make_cleanup_obstack_free (&types_cu_list);
21300
987d643c
TT
21301 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21302 NULL, xcalloc, xfree);
96408a79 21303 make_cleanup_htab_delete (psyms_seen);
987d643c 21304
0a5429f6
DE
21305 /* While we're scanning CU's create a table that maps a psymtab pointer
21306 (which is what addrmap records) to its index (which is what is recorded
21307 in the index file). This will later be needed to write the address
21308 table. */
21309 cu_index_htab = htab_create_alloc (100,
21310 hash_psymtab_cu_index,
21311 eq_psymtab_cu_index,
21312 NULL, xcalloc, xfree);
96408a79 21313 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
21314 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21315 xmalloc (sizeof (struct psymtab_cu_index_map)
21316 * dwarf2_per_objfile->n_comp_units);
21317 make_cleanup (xfree, psymtab_cu_index_map);
21318
21319 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
21320 work here. Also, the debug_types entries do not appear in
21321 all_comp_units, but only in their own hash table. */
9291a0cd
TT
21322 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21323 {
3e43a32a
MS
21324 struct dwarf2_per_cu_data *per_cu
21325 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 21326 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 21327 gdb_byte val[8];
0a5429f6
DE
21328 struct psymtab_cu_index_map *map;
21329 void **slot;
9291a0cd 21330
92fac807
JK
21331 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21332 It may be referenced from a local scope but in such case it does not
21333 need to be present in .gdb_index. */
21334 if (psymtab == NULL)
21335 continue;
21336
95554aad
TT
21337 if (psymtab->user == NULL)
21338 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 21339
0a5429f6
DE
21340 map = &psymtab_cu_index_map[i];
21341 map->psymtab = psymtab;
21342 map->cu_index = i;
21343 slot = htab_find_slot (cu_index_htab, map, INSERT);
21344 gdb_assert (slot != NULL);
21345 gdb_assert (*slot == NULL);
21346 *slot = map;
9291a0cd 21347
b64f50a1
JK
21348 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21349 per_cu->offset.sect_off);
9291a0cd 21350 obstack_grow (&cu_list, val, 8);
e254ef6a 21351 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
21352 obstack_grow (&cu_list, val, 8);
21353 }
21354
0a5429f6
DE
21355 /* Dump the address map. */
21356 write_address_map (objfile, &addr_obstack, cu_index_htab);
21357
1fd400ff
TT
21358 /* Write out the .debug_type entries, if any. */
21359 if (dwarf2_per_objfile->signatured_types)
21360 {
21361 struct signatured_type_index_data sig_data;
21362
21363 sig_data.objfile = objfile;
21364 sig_data.symtab = symtab;
21365 sig_data.types_list = &types_cu_list;
987d643c 21366 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
21367 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21368 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21369 write_one_signatured_type, &sig_data);
21370 }
21371
156942c7
DE
21372 /* Now that we've processed all symbols we can shrink their cu_indices
21373 lists. */
21374 uniquify_cu_indices (symtab);
21375
9291a0cd
TT
21376 obstack_init (&constant_pool);
21377 make_cleanup_obstack_free (&constant_pool);
21378 obstack_init (&symtab_obstack);
21379 make_cleanup_obstack_free (&symtab_obstack);
21380 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21381
21382 obstack_init (&contents);
21383 make_cleanup_obstack_free (&contents);
1fd400ff 21384 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
21385 total_len = size_of_contents;
21386
21387 /* The version number. */
796a7ff8 21388 val = MAYBE_SWAP (8);
9291a0cd
TT
21389 obstack_grow (&contents, &val, sizeof (val));
21390
21391 /* The offset of the CU list from the start of the file. */
21392 val = MAYBE_SWAP (total_len);
21393 obstack_grow (&contents, &val, sizeof (val));
21394 total_len += obstack_object_size (&cu_list);
21395
1fd400ff
TT
21396 /* The offset of the types CU list from the start of the file. */
21397 val = MAYBE_SWAP (total_len);
21398 obstack_grow (&contents, &val, sizeof (val));
21399 total_len += obstack_object_size (&types_cu_list);
21400
9291a0cd
TT
21401 /* The offset of the address table from the start of the file. */
21402 val = MAYBE_SWAP (total_len);
21403 obstack_grow (&contents, &val, sizeof (val));
21404 total_len += obstack_object_size (&addr_obstack);
21405
21406 /* The offset of the symbol table from the start of the file. */
21407 val = MAYBE_SWAP (total_len);
21408 obstack_grow (&contents, &val, sizeof (val));
21409 total_len += obstack_object_size (&symtab_obstack);
21410
21411 /* The offset of the constant pool from the start of the file. */
21412 val = MAYBE_SWAP (total_len);
21413 obstack_grow (&contents, &val, sizeof (val));
21414 total_len += obstack_object_size (&constant_pool);
21415
21416 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21417
21418 write_obstack (out_file, &contents);
21419 write_obstack (out_file, &cu_list);
1fd400ff 21420 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
21421 write_obstack (out_file, &addr_obstack);
21422 write_obstack (out_file, &symtab_obstack);
21423 write_obstack (out_file, &constant_pool);
21424
21425 fclose (out_file);
21426
21427 /* We want to keep the file, so we set cleanup_filename to NULL
21428 here. See unlink_if_set. */
21429 cleanup_filename = NULL;
21430
21431 do_cleanups (cleanup);
21432}
21433
90476074
TT
21434/* Implementation of the `save gdb-index' command.
21435
21436 Note that the file format used by this command is documented in the
21437 GDB manual. Any changes here must be documented there. */
11570e71 21438
9291a0cd
TT
21439static void
21440save_gdb_index_command (char *arg, int from_tty)
21441{
21442 struct objfile *objfile;
21443
21444 if (!arg || !*arg)
96d19272 21445 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
21446
21447 ALL_OBJFILES (objfile)
21448 {
21449 struct stat st;
21450
21451 /* If the objfile does not correspond to an actual file, skip it. */
21452 if (stat (objfile->name, &st) < 0)
21453 continue;
21454
21455 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21456 if (dwarf2_per_objfile)
21457 {
21458 volatile struct gdb_exception except;
21459
21460 TRY_CATCH (except, RETURN_MASK_ERROR)
21461 {
21462 write_psymtabs_to_index (objfile, arg);
21463 }
21464 if (except.reason < 0)
21465 exception_fprintf (gdb_stderr, except,
21466 _("Error while writing index for `%s': "),
21467 objfile->name);
21468 }
21469 }
dce234bc
PP
21470}
21471
9291a0cd
TT
21472\f
21473
9eae7c52
TT
21474int dwarf2_always_disassemble;
21475
21476static void
21477show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21478 struct cmd_list_element *c, const char *value)
21479{
3e43a32a
MS
21480 fprintf_filtered (file,
21481 _("Whether to always disassemble "
21482 "DWARF expressions is %s.\n"),
9eae7c52
TT
21483 value);
21484}
21485
900e11f9
JK
21486static void
21487show_check_physname (struct ui_file *file, int from_tty,
21488 struct cmd_list_element *c, const char *value)
21489{
21490 fprintf_filtered (file,
21491 _("Whether to check \"physname\" is %s.\n"),
21492 value);
21493}
21494
6502dd73
DJ
21495void _initialize_dwarf2_read (void);
21496
21497void
21498_initialize_dwarf2_read (void)
21499{
96d19272
JK
21500 struct cmd_list_element *c;
21501
dce234bc 21502 dwarf2_objfile_data_key
c1bd65d0 21503 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 21504
1bedd215
AC
21505 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21506Set DWARF 2 specific variables.\n\
21507Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21508 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21509 0/*allow-unknown*/, &maintenance_set_cmdlist);
21510
1bedd215
AC
21511 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21512Show DWARF 2 specific variables\n\
21513Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21514 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21515 0/*allow-unknown*/, &maintenance_show_cmdlist);
21516
21517 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
21518 &dwarf2_max_cache_age, _("\
21519Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21520Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21521A higher limit means that cached compilation units will be stored\n\
21522in memory longer, and more total memory will be used. Zero disables\n\
21523caching, which can slow down startup."),
2c5b56ce 21524 NULL,
920d2a44 21525 show_dwarf2_max_cache_age,
2c5b56ce 21526 &set_dwarf2_cmdlist,
ae038cb0 21527 &show_dwarf2_cmdlist);
d97bc12b 21528
9eae7c52
TT
21529 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21530 &dwarf2_always_disassemble, _("\
21531Set whether `info address' always disassembles DWARF expressions."), _("\
21532Show whether `info address' always disassembles DWARF expressions."), _("\
21533When enabled, DWARF expressions are always printed in an assembly-like\n\
21534syntax. When disabled, expressions will be printed in a more\n\
21535conversational style, when possible."),
21536 NULL,
21537 show_dwarf2_always_disassemble,
21538 &set_dwarf2_cmdlist,
21539 &show_dwarf2_cmdlist);
21540
45cfd468
DE
21541 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21542Set debugging of the dwarf2 reader."), _("\
21543Show debugging of the dwarf2 reader."), _("\
21544When enabled, debugging messages are printed during dwarf2 reading\n\
21545and symtab expansion."),
21546 NULL,
21547 NULL,
21548 &setdebuglist, &showdebuglist);
21549
ccce17b0 21550 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
21551Set debugging of the dwarf2 DIE reader."), _("\
21552Show debugging of the dwarf2 DIE reader."), _("\
21553When enabled (non-zero), DIEs are dumped after they are read in.\n\
21554The value is the maximum depth to print."),
ccce17b0
YQ
21555 NULL,
21556 NULL,
21557 &setdebuglist, &showdebuglist);
9291a0cd 21558
900e11f9
JK
21559 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21560Set cross-checking of \"physname\" code against demangler."), _("\
21561Show cross-checking of \"physname\" code against demangler."), _("\
21562When enabled, GDB's internal \"physname\" code is checked against\n\
21563the demangler."),
21564 NULL, show_check_physname,
21565 &setdebuglist, &showdebuglist);
21566
e615022a
DE
21567 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21568 no_class, &use_deprecated_index_sections, _("\
21569Set whether to use deprecated gdb_index sections."), _("\
21570Show whether to use deprecated gdb_index sections."), _("\
21571When enabled, deprecated .gdb_index sections are used anyway.\n\
21572Normally they are ignored either because of a missing feature or\n\
21573performance issue.\n\
21574Warning: This option must be enabled before gdb reads the file."),
21575 NULL,
21576 NULL,
21577 &setlist, &showlist);
21578
96d19272 21579 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 21580 _("\
fc1a9d6e 21581Save a gdb-index file.\n\
11570e71 21582Usage: save gdb-index DIRECTORY"),
96d19272
JK
21583 &save_cmdlist);
21584 set_cmd_completer (c, filename_completer);
f1e6e072
TT
21585
21586 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21587 &dwarf2_locexpr_funcs);
21588 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21589 &dwarf2_loclist_funcs);
21590
21591 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21592 &dwarf2_block_frame_base_locexpr_funcs);
21593 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21594 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 21595}
This page took 2.998994 seconds and 4 git commands to generate.