2004-08-29 David Lecomber <david@streamline-computing.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
b44e9041
EZ
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004
8e65ff28 4 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support in dwarfread.c
12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
c906108c 19
c5aa993b
JM
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
c906108c 24
c5aa993b
JM
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place - Suite 330,
28 Boston, MA 02111-1307, USA. */
c906108c
SS
29
30#include "defs.h"
31#include "bfd.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbtypes.h"
c906108c
SS
34#include "objfiles.h"
35#include "elf/dwarf2.h"
36#include "buildsym.h"
37#include "demangle.h"
38#include "expression.h"
d5166ae1 39#include "filenames.h" /* for DOSish file names */
2e276125 40#include "macrotab.h"
c906108c
SS
41#include "language.h"
42#include "complaints.h"
357e46e7 43#include "bcache.h"
4c2df51b
DJ
44#include "dwarf2expr.h"
45#include "dwarf2loc.h"
9219021c 46#include "cp-support.h"
72bf9492 47#include "hashtab.h"
4c2df51b 48
c906108c
SS
49#include <fcntl.h>
50#include "gdb_string.h"
4bdf3d34 51#include "gdb_assert.h"
c906108c
SS
52#include <sys/types.h>
53
d8151005
DJ
54/* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
88496bb5
MS
68#ifndef DWARF2_REG_TO_REGNUM
69#define DWARF2_REG_TO_REGNUM(REG) (REG)
70#endif
71
107d2387 72#if 0
357e46e7 73/* .debug_info header for a compilation unit
c906108c
SS
74 Because of alignment constraints, this structure has padding and cannot
75 be mapped directly onto the beginning of the .debug_info section. */
76typedef struct comp_unit_header
77 {
78 unsigned int length; /* length of the .debug_info
79 contribution */
80 unsigned short version; /* version number -- 2 for DWARF
81 version 2 */
82 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
83 unsigned char addr_size; /* byte size of an address -- 4 */
84 }
85_COMP_UNIT_HEADER;
86#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 87#endif
c906108c
SS
88
89/* .debug_pubnames header
90 Because of alignment constraints, this structure has padding and cannot
91 be mapped directly onto the beginning of the .debug_info section. */
92typedef struct pubnames_header
93 {
94 unsigned int length; /* length of the .debug_pubnames
95 contribution */
96 unsigned char version; /* version number -- 2 for DWARF
97 version 2 */
98 unsigned int info_offset; /* offset into .debug_info section */
99 unsigned int info_size; /* byte size of .debug_info section
100 portion */
101 }
102_PUBNAMES_HEADER;
103#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
104
105/* .debug_pubnames header
106 Because of alignment constraints, this structure has padding and cannot
107 be mapped directly onto the beginning of the .debug_info section. */
108typedef struct aranges_header
109 {
110 unsigned int length; /* byte len of the .debug_aranges
111 contribution */
112 unsigned short version; /* version number -- 2 for DWARF
113 version 2 */
114 unsigned int info_offset; /* offset into .debug_info section */
115 unsigned char addr_size; /* byte size of an address */
116 unsigned char seg_size; /* byte size of segment descriptor */
117 }
118_ARANGES_HEADER;
119#define _ACTUAL_ARANGES_HEADER_SIZE 12
120
121/* .debug_line statement program prologue
122 Because of alignment constraints, this structure has padding and cannot
123 be mapped directly onto the beginning of the .debug_info section. */
124typedef struct statement_prologue
125 {
126 unsigned int total_length; /* byte length of the statement
127 information */
128 unsigned short version; /* version number -- 2 for DWARF
129 version 2 */
130 unsigned int prologue_length; /* # bytes between prologue &
131 stmt program */
132 unsigned char minimum_instruction_length; /* byte size of
133 smallest instr */
134 unsigned char default_is_stmt; /* initial value of is_stmt
135 register */
136 char line_base;
137 unsigned char line_range;
138 unsigned char opcode_base; /* number assigned to first special
139 opcode */
140 unsigned char *standard_opcode_lengths;
141 }
142_STATEMENT_PROLOGUE;
143
6502dd73
DJ
144static const struct objfile_data *dwarf2_objfile_data_key;
145
146struct dwarf2_per_objfile
147{
148 /* Sizes of debugging sections. */
149 unsigned int info_size;
150 unsigned int abbrev_size;
151 unsigned int line_size;
152 unsigned int pubnames_size;
153 unsigned int aranges_size;
154 unsigned int loc_size;
155 unsigned int macinfo_size;
156 unsigned int str_size;
157 unsigned int ranges_size;
158 unsigned int frame_size;
159 unsigned int eh_frame_size;
160
161 /* Loaded data from the sections. */
162 char *info_buffer;
163 char *abbrev_buffer;
164 char *line_buffer;
165 char *str_buffer;
166 char *macinfo_buffer;
167 char *ranges_buffer;
168 char *loc_buffer;
169};
170
171static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 172
086df311
DJ
173static asection *dwarf_info_section;
174static asection *dwarf_abbrev_section;
175static asection *dwarf_line_section;
176static asection *dwarf_pubnames_section;
177static asection *dwarf_aranges_section;
178static asection *dwarf_loc_section;
179static asection *dwarf_macinfo_section;
180static asection *dwarf_str_section;
181static asection *dwarf_ranges_section;
182asection *dwarf_frame_section;
183asection *dwarf_eh_frame_section;
184
c906108c
SS
185/* names of the debugging sections */
186
187#define INFO_SECTION ".debug_info"
188#define ABBREV_SECTION ".debug_abbrev"
189#define LINE_SECTION ".debug_line"
190#define PUBNAMES_SECTION ".debug_pubnames"
191#define ARANGES_SECTION ".debug_aranges"
192#define LOC_SECTION ".debug_loc"
193#define MACINFO_SECTION ".debug_macinfo"
194#define STR_SECTION ".debug_str"
af34e669 195#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
196#define FRAME_SECTION ".debug_frame"
197#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
198
199/* local data types */
200
57349743
JB
201/* We hold several abbreviation tables in memory at the same time. */
202#ifndef ABBREV_HASH_SIZE
203#define ABBREV_HASH_SIZE 121
204#endif
205
107d2387
AC
206/* The data in a compilation unit header, after target2host
207 translation, looks like this. */
c906108c
SS
208struct comp_unit_head
209 {
613e1657 210 unsigned long length;
c906108c
SS
211 short version;
212 unsigned int abbrev_offset;
213 unsigned char addr_size;
107d2387 214 unsigned char signed_addr_p;
613e1657
KB
215 unsigned int offset_size; /* size of file offsets; either 4 or 8 */
216 unsigned int initial_length_size; /* size of the length field; either
217 4 or 12 */
57349743
JB
218
219 /* Offset to the first byte of this compilation unit header in the
220 * .debug_info section, for resolving relative reference dies. */
221
222 unsigned int offset;
223
224 /* Pointer to this compilation unit header in the .debug_info
225 * section */
226
227 char *cu_head_ptr;
228
229 /* Pointer to the first die of this compilatio unit. This will
230 * be the first byte following the compilation unit header. */
231
232 char *first_die_ptr;
233
234 /* Pointer to the next compilation unit header in the program. */
235
236 struct comp_unit_head *next;
237
0d53c4c4 238 /* Base address of this compilation unit. */
af34e669 239
0d53c4c4
DJ
240 CORE_ADDR base_address;
241
242 /* Non-zero if base_address has been set. */
243
244 int base_known;
c906108c
SS
245 };
246
e7c27a73
DJ
247/* Internal state when decoding a particular compilation unit. */
248struct dwarf2_cu
249{
250 /* The objfile containing this compilation unit. */
251 struct objfile *objfile;
252
253 /* The header of the compilation unit.
254
255 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 256 should logically be moved to the dwarf2_cu structure. */
e7c27a73 257 struct comp_unit_head header;
e142c38c
DJ
258
259 struct function_range *first_fn, *last_fn, *cached_fn;
260
261 /* The language we are debugging. */
262 enum language language;
263 const struct language_defn *language_defn;
264
b0f35d58
DL
265 const char *producer;
266
e142c38c
DJ
267 /* The generic symbol table building routines have separate lists for
268 file scope symbols and all all other scopes (local scopes). So
269 we need to select the right one to pass to add_symbol_to_list().
270 We do it by keeping a pointer to the correct list in list_in_scope.
271
272 FIXME: The original dwarf code just treated the file scope as the
273 first local scope, and all other local scopes as nested local
274 scopes, and worked fine. Check to see if we really need to
275 distinguish these in buildsym.c. */
276 struct pending **list_in_scope;
277
278 /* Maintain an array of referenced fundamental types for the current
279 compilation unit being read. For DWARF version 1, we have to construct
280 the fundamental types on the fly, since no information about the
281 fundamental types is supplied. Each such fundamental type is created by
282 calling a language dependent routine to create the type, and then a
283 pointer to that type is then placed in the array at the index specified
284 by it's FT_<TYPENAME> value. The array has a fixed size set by the
285 FT_NUM_MEMBERS compile time constant, which is the number of predefined
286 fundamental types gdb knows how to construct. */
287 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
288
289 /* DWARF abbreviation table associated with this compilation unit. */
290 struct abbrev_info **dwarf2_abbrevs;
291
292 /* Storage for the abbrev table. */
293 struct obstack abbrev_obstack;
72bf9492
DJ
294
295 /* Hash table holding all the loaded partial DIEs. */
296 htab_t partial_dies;
297
298 /* Storage for things with the same lifetime as this read-in compilation
299 unit, including partial DIEs. */
300 struct obstack comp_unit_obstack;
301
302 /* This flag will be set if this compilation unit includes any
303 DW_TAG_namespace DIEs. If we know that there are explicit
304 DIEs for namespaces, we don't need to try to infer them
305 from mangled names. */
306 unsigned int has_namespace_info : 1;
e7c27a73
DJ
307};
308
debd256d
JB
309/* The line number information for a compilation unit (found in the
310 .debug_line section) begins with a "statement program header",
311 which contains the following information. */
312struct line_header
313{
314 unsigned int total_length;
315 unsigned short version;
316 unsigned int header_length;
317 unsigned char minimum_instruction_length;
318 unsigned char default_is_stmt;
319 int line_base;
320 unsigned char line_range;
321 unsigned char opcode_base;
322
323 /* standard_opcode_lengths[i] is the number of operands for the
324 standard opcode whose value is i. This means that
325 standard_opcode_lengths[0] is unused, and the last meaningful
326 element is standard_opcode_lengths[opcode_base - 1]. */
327 unsigned char *standard_opcode_lengths;
328
329 /* The include_directories table. NOTE! These strings are not
330 allocated with xmalloc; instead, they are pointers into
331 debug_line_buffer. If you try to free them, `free' will get
332 indigestion. */
333 unsigned int num_include_dirs, include_dirs_size;
334 char **include_dirs;
335
336 /* The file_names table. NOTE! These strings are not allocated
337 with xmalloc; instead, they are pointers into debug_line_buffer.
338 Don't try to free them directly. */
339 unsigned int num_file_names, file_names_size;
340 struct file_entry
c906108c 341 {
debd256d
JB
342 char *name;
343 unsigned int dir_index;
344 unsigned int mod_time;
345 unsigned int length;
aaa75496 346 int included_p; /* Non-zero if referenced by the Line Number Program. */
debd256d
JB
347 } *file_names;
348
349 /* The start and end of the statement program following this
6502dd73 350 header. These point into dwarf2_per_objfile->line_buffer. */
debd256d
JB
351 char *statement_program_start, *statement_program_end;
352};
c906108c
SS
353
354/* When we construct a partial symbol table entry we only
355 need this much information. */
356struct partial_die_info
357 {
72bf9492 358 /* Offset of this DIE. */
c906108c 359 unsigned int offset;
72bf9492
DJ
360
361 /* DWARF-2 tag for this DIE. */
362 ENUM_BITFIELD(dwarf_tag) tag : 16;
363
364 /* Language code associated with this DIE. This is only used
365 for the compilation unit DIE. */
366 unsigned int language : 8;
367
368 /* Assorted flags describing the data found in this DIE. */
369 unsigned int has_children : 1;
370 unsigned int is_external : 1;
371 unsigned int is_declaration : 1;
372 unsigned int has_type : 1;
373 unsigned int has_specification : 1;
aaa75496 374 unsigned int has_stmt_list : 1;
72bf9492
DJ
375 unsigned int has_pc_info : 1;
376
377 /* Flag set if the SCOPE field of this structure has been
378 computed. */
379 unsigned int scope_set : 1;
380
381 /* The name of this DIE. Normally the value of DW_AT_name, but
382 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
383 other fashion. */
c906108c 384 char *name;
57c22c6c 385 char *dirname;
72bf9492
DJ
386
387 /* The scope to prepend to our children. This is generally
388 allocated on the comp_unit_obstack, so will disappear
389 when this compilation unit leaves the cache. */
390 char *scope;
391
392 /* The location description associated with this DIE, if any. */
393 struct dwarf_block *locdesc;
394
395 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
396 CORE_ADDR lowpc;
397 CORE_ADDR highpc;
72bf9492
DJ
398
399 /* Pointer into the info_buffer pointing at the target of
400 DW_AT_sibling, if any. */
c906108c 401 char *sibling;
72bf9492
DJ
402
403 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
404 DW_AT_specification (or DW_AT_abstract_origin or
405 DW_AT_extension). */
406 unsigned int spec_offset;
407
aaa75496
JB
408 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
409 unsigned int line_offset;
410
72bf9492
DJ
411 /* Pointers to this DIE's parent, first child, and next sibling,
412 if any. */
413 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
414 };
415
416/* This data structure holds the information of an abbrev. */
417struct abbrev_info
418 {
419 unsigned int number; /* number identifying abbrev */
420 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
421 unsigned short has_children; /* boolean */
422 unsigned short num_attrs; /* number of attributes */
c906108c
SS
423 struct attr_abbrev *attrs; /* an array of attribute descriptions */
424 struct abbrev_info *next; /* next in chain */
425 };
426
427struct attr_abbrev
428 {
429 enum dwarf_attribute name;
430 enum dwarf_form form;
431 };
432
433/* This data structure holds a complete die structure. */
434struct die_info
435 {
c5aa993b 436 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
437 unsigned int abbrev; /* Abbrev number */
438 unsigned int offset; /* Offset in .debug_info section */
439 unsigned int num_attrs; /* Number of attributes */
440 struct attribute *attrs; /* An array of attributes */
441 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
442
443 /* The dies in a compilation unit form an n-ary tree. PARENT
444 points to this die's parent; CHILD points to the first child of
445 this node; and all the children of a given node are chained
446 together via their SIBLING fields, terminated by a die whose
447 tag is zero. */
639d11d3
DC
448 struct die_info *child; /* Its first child, if any. */
449 struct die_info *sibling; /* Its next sibling, if any. */
450 struct die_info *parent; /* Its parent, if any. */
78ba4af6 451
c5aa993b 452 struct type *type; /* Cached type information */
c906108c
SS
453 };
454
455/* Attributes have a name and a value */
456struct attribute
457 {
458 enum dwarf_attribute name;
459 enum dwarf_form form;
460 union
461 {
462 char *str;
463 struct dwarf_block *blk;
ce5d95e1
JB
464 unsigned long unsnd;
465 long int snd;
c906108c
SS
466 CORE_ADDR addr;
467 }
468 u;
469 };
470
5fb290d7
DJ
471struct function_range
472{
473 const char *name;
474 CORE_ADDR lowpc, highpc;
475 int seen_line;
476 struct function_range *next;
477};
478
c906108c
SS
479/* Get at parts of an attribute structure */
480
481#define DW_STRING(attr) ((attr)->u.str)
482#define DW_UNSND(attr) ((attr)->u.unsnd)
483#define DW_BLOCK(attr) ((attr)->u.blk)
484#define DW_SND(attr) ((attr)->u.snd)
485#define DW_ADDR(attr) ((attr)->u.addr)
486
487/* Blocks are a bunch of untyped bytes. */
488struct dwarf_block
489 {
490 unsigned int size;
491 char *data;
492 };
493
c906108c
SS
494#ifndef ATTR_ALLOC_CHUNK
495#define ATTR_ALLOC_CHUNK 4
496#endif
497
c906108c
SS
498/* A hash table of die offsets for following references. */
499#ifndef REF_HASH_SIZE
500#define REF_HASH_SIZE 1021
501#endif
502
503static struct die_info *die_ref_table[REF_HASH_SIZE];
504
c906108c
SS
505/* Allocate fields for structs, unions and enums in this size. */
506#ifndef DW_FIELD_ALLOC_CHUNK
507#define DW_FIELD_ALLOC_CHUNK 4
508#endif
509
c906108c
SS
510/* A zeroed version of a partial die for initialization purposes. */
511static struct partial_die_info zeroed_partial_die;
512
7a292a7a
SS
513/* FIXME: decode_locdesc sets these variables to describe the location
514 to the caller. These ought to be a structure or something. If
515 none of the flags are set, the object lives at the address returned
516 by decode_locdesc. */
517
7a292a7a
SS
518static int isreg; /* Object lives in register.
519 decode_locdesc's return value is
520 the register number. */
c906108c 521
c906108c 522/* We put a pointer to this structure in the read_symtab_private field
6502dd73 523 of the psymtab. */
c906108c
SS
524
525struct dwarf2_pinfo
c5aa993b 526 {
6502dd73 527 /* Offset in .debug_info for this compilation unit. */
c906108c 528
c5aa993b 529 unsigned long dwarf_info_offset;
c5aa993b 530 };
c906108c
SS
531
532#define PST_PRIVATE(p) ((struct dwarf2_pinfo *)(p)->read_symtab_private)
c906108c 533#define DWARF_INFO_OFFSET(p) (PST_PRIVATE(p)->dwarf_info_offset)
c906108c 534
c906108c
SS
535/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
536 but this would require a corresponding change in unpack_field_as_long
537 and friends. */
538static int bits_per_byte = 8;
539
540/* The routines that read and process dies for a C struct or C++ class
541 pass lists of data member fields and lists of member function fields
542 in an instance of a field_info structure, as defined below. */
543struct field_info
c5aa993b
JM
544 {
545 /* List of data member and baseclasses fields. */
546 struct nextfield
547 {
548 struct nextfield *next;
549 int accessibility;
550 int virtuality;
551 struct field field;
552 }
553 *fields;
c906108c 554
c5aa993b
JM
555 /* Number of fields. */
556 int nfields;
c906108c 557
c5aa993b
JM
558 /* Number of baseclasses. */
559 int nbaseclasses;
c906108c 560
c5aa993b
JM
561 /* Set if the accesibility of one of the fields is not public. */
562 int non_public_fields;
c906108c 563
c5aa993b
JM
564 /* Member function fields array, entries are allocated in the order they
565 are encountered in the object file. */
566 struct nextfnfield
567 {
568 struct nextfnfield *next;
569 struct fn_field fnfield;
570 }
571 *fnfields;
c906108c 572
c5aa993b
JM
573 /* Member function fieldlist array, contains name of possibly overloaded
574 member function, number of overloaded member functions and a pointer
575 to the head of the member function field chain. */
576 struct fnfieldlist
577 {
578 char *name;
579 int length;
580 struct nextfnfield *head;
581 }
582 *fnfieldlists;
c906108c 583
c5aa993b
JM
584 /* Number of entries in the fnfieldlists array. */
585 int nfnfields;
586 };
c906108c 587
c906108c
SS
588/* Various complaints about symbol reading that don't abort the process */
589
4d3c2250
KB
590static void
591dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 592{
4d3c2250
KB
593 complaint (&symfile_complaints,
594 "statement list doesn't fit in .debug_line section");
595}
596
597static void
598dwarf2_complex_location_expr_complaint (void)
2e276125 599{
4d3c2250
KB
600 complaint (&symfile_complaints, "location expression too complex");
601}
602
4d3c2250
KB
603static void
604dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
605 int arg3)
2e276125 606{
4d3c2250
KB
607 complaint (&symfile_complaints,
608 "const value length mismatch for '%s', got %d, expected %d", arg1,
609 arg2, arg3);
610}
611
612static void
613dwarf2_macros_too_long_complaint (void)
2e276125 614{
4d3c2250
KB
615 complaint (&symfile_complaints,
616 "macro info runs off end of `.debug_macinfo' section");
617}
618
619static void
620dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 621{
4d3c2250
KB
622 complaint (&symfile_complaints,
623 "macro debug info contains a malformed macro definition:\n`%s'",
624 arg1);
625}
626
627static void
628dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 629{
4d3c2250
KB
630 complaint (&symfile_complaints,
631 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
632}
c906108c 633
c906108c
SS
634/* local function prototypes */
635
4efb68b1 636static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
637
638#if 0
a14ed312 639static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
640#endif
641
aaa75496
JB
642static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
643 struct objfile *);
644
645static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
646 struct partial_die_info *,
647 struct partial_symtab *);
648
a14ed312 649static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 650
72bf9492
DJ
651static void scan_partial_symbols (struct partial_die_info *,
652 CORE_ADDR *, CORE_ADDR *,
653 struct dwarf2_cu *);
c906108c 654
72bf9492
DJ
655static void add_partial_symbol (struct partial_die_info *,
656 struct dwarf2_cu *);
63d06c5c 657
72bf9492 658static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 659
72bf9492
DJ
660static void add_partial_namespace (struct partial_die_info *pdi,
661 CORE_ADDR *lowpc, CORE_ADDR *highpc,
662 struct dwarf2_cu *cu);
63d06c5c 663
72bf9492
DJ
664static void add_partial_enumeration (struct partial_die_info *enum_pdi,
665 struct dwarf2_cu *cu);
91c24f0a
DC
666
667static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
668 char *info_ptr,
669 bfd *abfd,
e7c27a73 670 struct dwarf2_cu *cu);
91c24f0a 671
a14ed312 672static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 673
a14ed312 674static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 675
188dd5d6 676char *dwarf2_read_section (struct objfile *, asection *);
c906108c 677
e7c27a73 678static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 679
f3dd6933 680static void dwarf2_free_abbrev_table (void *);
c906108c 681
72bf9492
DJ
682static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
683
57349743 684static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 685 struct dwarf2_cu *);
c906108c 686
72bf9492
DJ
687static struct partial_die_info *load_partial_dies (bfd *, char *, int,
688 struct dwarf2_cu *);
689
a14ed312 690static char *read_partial_die (struct partial_die_info *,
72bf9492 691 struct abbrev_info *abbrev, unsigned int,
e7c27a73 692 bfd *, char *, struct dwarf2_cu *);
c906108c 693
72bf9492
DJ
694static struct partial_die_info *find_partial_die (unsigned long,
695 struct dwarf2_cu *,
696 struct dwarf2_cu **);
697
698static void fixup_partial_die (struct partial_die_info *,
699 struct dwarf2_cu *);
700
107d2387 701static char *read_full_die (struct die_info **, bfd *, char *,
e7c27a73 702 struct dwarf2_cu *, int *);
c906108c 703
a14ed312 704static char *read_attribute (struct attribute *, struct attr_abbrev *,
e7c27a73 705 bfd *, char *, struct dwarf2_cu *);
c906108c 706
a8329558 707static char *read_attribute_value (struct attribute *, unsigned,
e7c27a73 708 bfd *, char *, struct dwarf2_cu *);
a8329558 709
a14ed312 710static unsigned int read_1_byte (bfd *, char *);
c906108c 711
a14ed312 712static int read_1_signed_byte (bfd *, char *);
c906108c 713
a14ed312 714static unsigned int read_2_bytes (bfd *, char *);
c906108c 715
a14ed312 716static unsigned int read_4_bytes (bfd *, char *);
c906108c 717
ce5d95e1 718static unsigned long read_8_bytes (bfd *, char *);
c906108c 719
e7c27a73 720static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
107d2387 721 int *bytes_read);
c906108c 722
613e1657
KB
723static LONGEST read_initial_length (bfd *, char *,
724 struct comp_unit_head *, int *bytes_read);
725
726static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
727 int *bytes_read);
728
a14ed312 729static char *read_n_bytes (bfd *, char *, unsigned int);
c906108c 730
a14ed312 731static char *read_string (bfd *, char *, unsigned int *);
c906108c 732
4bdf3d34
JJ
733static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
734 unsigned int *);
735
ce5d95e1 736static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
c906108c 737
ce5d95e1 738static long read_signed_leb128 (bfd *, char *, unsigned int *);
c906108c 739
4bb7a0a7
DJ
740static char *skip_leb128 (bfd *, char *);
741
e142c38c 742static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 743
e142c38c
DJ
744static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
745 struct dwarf2_cu *);
c906108c 746
05cf31d1
JB
747static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
748 struct dwarf2_cu *cu);
749
e142c38c 750static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 751
e142c38c
DJ
752static struct die_info *die_specification (struct die_info *die,
753 struct dwarf2_cu *);
63d06c5c 754
debd256d
JB
755static void free_line_header (struct line_header *lh);
756
aaa75496
JB
757static void add_file_name (struct line_header *, char *, unsigned int,
758 unsigned int, unsigned int);
759
debd256d
JB
760static struct line_header *(dwarf_decode_line_header
761 (unsigned int offset,
e7c27a73 762 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
763
764static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 765 struct dwarf2_cu *, struct partial_symtab *);
c906108c 766
a14ed312 767static void dwarf2_start_subfile (char *, char *);
c906108c 768
a14ed312 769static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 770 struct dwarf2_cu *);
c906108c 771
a14ed312 772static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 773 struct dwarf2_cu *);
c906108c 774
2df3850c
JM
775static void dwarf2_const_value_data (struct attribute *attr,
776 struct symbol *sym,
777 int bits);
778
e7c27a73 779static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 780
e7c27a73
DJ
781static struct type *die_containing_type (struct die_info *,
782 struct dwarf2_cu *);
c906108c
SS
783
784#if 0
a14ed312 785static struct type *type_at_offset (unsigned int, struct objfile *);
c906108c
SS
786#endif
787
e7c27a73 788static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 789
e7c27a73 790static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 791
086ed43d 792static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c
DC
793
794static char *typename_concat (const char *prefix, const char *suffix);
795
e7c27a73 796static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 797
e7c27a73 798static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 799
a02abb62
JB
800static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
801
e7c27a73 802static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 803
e7c27a73 804static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 805
e7c27a73 806static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 807
a14ed312 808static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 809 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 810
fae299cd
DC
811static void get_scope_pc_bounds (struct die_info *,
812 CORE_ADDR *, CORE_ADDR *,
813 struct dwarf2_cu *);
814
a14ed312 815static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 816 struct dwarf2_cu *);
c906108c 817
a14ed312 818static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 819 struct type *, struct dwarf2_cu *);
c906108c 820
a14ed312 821static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 822 struct die_info *, struct type *,
e7c27a73 823 struct dwarf2_cu *);
c906108c 824
a14ed312 825static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 826 struct type *, struct dwarf2_cu *);
c906108c 827
134d01f1
DJ
828static void read_structure_type (struct die_info *, struct dwarf2_cu *);
829
830static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 831
8176b9b8
DC
832static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
833
e7c27a73 834static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 835
e7c27a73 836static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 837
38d518c9 838static const char *namespace_name (struct die_info *die,
e142c38c 839 int *is_anonymous, struct dwarf2_cu *);
38d518c9 840
134d01f1
DJ
841static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
842
843static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 844
e7c27a73 845static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 846
e7c27a73 847static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 848
e7c27a73 849static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 850
7ca2d3a3
DL
851static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
852 struct dwarf2_cu *);
853
e7c27a73 854static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 855
e7c27a73
DJ
856static void read_tag_ptr_to_member_type (struct die_info *,
857 struct dwarf2_cu *);
c906108c 858
e7c27a73 859static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 860
e7c27a73 861static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 862
e7c27a73 863static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 864
e7c27a73 865static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 866
e7c27a73 867static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 868
e7c27a73 869static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
c906108c 870
639d11d3 871static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
e7c27a73 872 struct dwarf2_cu *,
639d11d3
DC
873 char **new_info_ptr,
874 struct die_info *parent);
875
876static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
e7c27a73 877 struct dwarf2_cu *,
639d11d3
DC
878 char **new_info_ptr,
879 struct die_info *parent);
880
a14ed312 881static void free_die_list (struct die_info *);
c906108c 882
74b7792f
AC
883static struct cleanup *make_cleanup_free_die_list (struct die_info *);
884
e7c27a73 885static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 886
e142c38c 887static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 888
e142c38c 889static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 890
e142c38c
DJ
891static struct die_info *dwarf2_extension (struct die_info *die,
892 struct dwarf2_cu *);
9219021c 893
a14ed312 894static char *dwarf_tag_name (unsigned int);
c906108c 895
a14ed312 896static char *dwarf_attr_name (unsigned int);
c906108c 897
a14ed312 898static char *dwarf_form_name (unsigned int);
c906108c 899
a14ed312 900static char *dwarf_stack_op_name (unsigned int);
c906108c 901
a14ed312 902static char *dwarf_bool_name (unsigned int);
c906108c 903
a14ed312 904static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
905
906#if 0
a14ed312 907static char *dwarf_cfi_name (unsigned int);
c906108c 908
a14ed312 909struct die_info *copy_die (struct die_info *);
c906108c
SS
910#endif
911
f9aca02d 912static struct die_info *sibling_die (struct die_info *);
c906108c 913
f9aca02d 914static void dump_die (struct die_info *);
c906108c 915
f9aca02d 916static void dump_die_list (struct die_info *);
c906108c 917
f9aca02d 918static void store_in_ref_table (unsigned int, struct die_info *);
c906108c 919
7f0e3f52 920static void dwarf2_empty_hash_tables (void);
c906108c 921
e142c38c
DJ
922static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
923 struct dwarf2_cu *);
c906108c 924
a02abb62
JB
925static int dwarf2_get_attr_constant_value (struct attribute *, int);
926
f9aca02d 927static struct die_info *follow_die_ref (unsigned int);
c906108c 928
e142c38c
DJ
929static struct type *dwarf2_fundamental_type (struct objfile *, int,
930 struct dwarf2_cu *);
c906108c
SS
931
932/* memory allocation interface */
933
7b5a2f43 934static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 935
f3dd6933 936static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 937
a14ed312 938static struct die_info *dwarf_alloc_die (void);
c906108c 939
e142c38c 940static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 941
e142c38c
DJ
942static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
943 struct dwarf2_cu *);
5fb290d7 944
2e276125 945static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 946 char *, bfd *, struct dwarf2_cu *);
2e276125 947
8e19ed76
PS
948static int attr_form_is_block (struct attribute *);
949
4c2df51b
DJ
950static void
951dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 952 struct dwarf2_cu *cu);
4c2df51b 953
4bb7a0a7
DJ
954static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
955 struct dwarf2_cu *cu);
956
72bf9492
DJ
957static void free_stack_comp_unit (void *);
958
959static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
960
961static void dummy_obstack_deallocate (void *object, void *data);
962
963static hashval_t partial_die_hash (const void *item);
964
965static int partial_die_eq (const void *item_lhs, const void *item_rhs);
966
c906108c
SS
967/* Try to locate the sections we need for DWARF 2 debugging
968 information and return true if we have enough to do something. */
969
970int
6502dd73 971dwarf2_has_info (struct objfile *objfile)
c906108c 972{
6502dd73
DJ
973 struct dwarf2_per_objfile *data;
974
975 /* Initialize per-objfile state. */
976 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
977 memset (data, 0, sizeof (*data));
978 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
979 dwarf2_per_objfile = data;
980
188dd5d6
DJ
981 dwarf_info_section = 0;
982 dwarf_abbrev_section = 0;
983 dwarf_line_section = 0;
984 dwarf_str_section = 0;
985 dwarf_macinfo_section = 0;
986 dwarf_frame_section = 0;
987 dwarf_eh_frame_section = 0;
988 dwarf_ranges_section = 0;
989 dwarf_loc_section = 0;
af34e669 990
6502dd73 991 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 992 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
993}
994
995/* This function is mapped across the sections and remembers the
996 offset and size of each of the debugging sections we are interested
997 in. */
998
999static void
4efb68b1 1000dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
c906108c 1001{
6314a349 1002 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1003 {
2c500098 1004 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1005 dwarf_info_section = sectp;
c906108c 1006 }
6314a349 1007 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1008 {
2c500098 1009 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1010 dwarf_abbrev_section = sectp;
c906108c 1011 }
6314a349 1012 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1013 {
2c500098 1014 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1015 dwarf_line_section = sectp;
c906108c 1016 }
6314a349 1017 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1018 {
2c500098 1019 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1020 dwarf_pubnames_section = sectp;
c906108c 1021 }
6314a349 1022 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1023 {
2c500098 1024 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1025 dwarf_aranges_section = sectp;
c906108c 1026 }
6314a349 1027 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1028 {
2c500098 1029 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1030 dwarf_loc_section = sectp;
c906108c 1031 }
6314a349 1032 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1033 {
2c500098 1034 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1035 dwarf_macinfo_section = sectp;
c906108c 1036 }
6314a349 1037 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1038 {
2c500098 1039 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1040 dwarf_str_section = sectp;
c906108c 1041 }
6314a349 1042 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1043 {
2c500098 1044 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1045 dwarf_frame_section = sectp;
b6af0555 1046 }
6314a349 1047 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1048 {
3799ccc6
EZ
1049 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1050 if (aflag & SEC_HAS_CONTENTS)
1051 {
2c500098 1052 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1053 dwarf_eh_frame_section = sectp;
1054 }
b6af0555 1055 }
6314a349 1056 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1057 {
2c500098 1058 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1059 dwarf_ranges_section = sectp;
af34e669 1060 }
c906108c
SS
1061}
1062
1063/* Build a partial symbol table. */
1064
1065void
fba45db2 1066dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1067{
c906108c
SS
1068 /* We definitely need the .debug_info and .debug_abbrev sections */
1069
6502dd73
DJ
1070 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1071 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1072
1073 if (dwarf_line_section)
6502dd73 1074 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1075 else
6502dd73 1076 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1077
188dd5d6 1078 if (dwarf_str_section)
6502dd73 1079 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1080 else
6502dd73 1081 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1082
188dd5d6 1083 if (dwarf_macinfo_section)
6502dd73 1084 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1085 dwarf_macinfo_section);
2e276125 1086 else
6502dd73 1087 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1088
188dd5d6 1089 if (dwarf_ranges_section)
6502dd73 1090 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1091 else
6502dd73 1092 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1093
188dd5d6 1094 if (dwarf_loc_section)
6502dd73 1095 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1096 else
6502dd73 1097 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1098
ef96bde8
EZ
1099 if (mainline
1100 || (objfile->global_psymbols.size == 0
1101 && objfile->static_psymbols.size == 0))
c906108c
SS
1102 {
1103 init_psymbol_list (objfile, 1024);
1104 }
1105
1106#if 0
1107 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1108 {
d4f3574e 1109 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1110 .debug_pubnames sections */
1111
d4f3574e 1112 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1113 }
1114 else
1115#endif
1116 /* only test this case for now */
c5aa993b 1117 {
c906108c 1118 /* In this case we have to work a bit harder */
d4f3574e 1119 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1120 }
1121}
1122
1123#if 0
1124/* Build the partial symbol table from the information in the
1125 .debug_pubnames and .debug_aranges sections. */
1126
1127static void
fba45db2 1128dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1129{
1130 bfd *abfd = objfile->obfd;
1131 char *aranges_buffer, *pubnames_buffer;
1132 char *aranges_ptr, *pubnames_ptr;
1133 unsigned int entry_length, version, info_offset, info_size;
1134
1135 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1136 dwarf_pubnames_section);
c906108c 1137 pubnames_ptr = pubnames_buffer;
6502dd73 1138 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1139 {
613e1657
KB
1140 struct comp_unit_head cu_header;
1141 int bytes_read;
1142
1143 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1144 &bytes_read);
1145 pubnames_ptr += bytes_read;
c906108c
SS
1146 version = read_1_byte (abfd, pubnames_ptr);
1147 pubnames_ptr += 1;
1148 info_offset = read_4_bytes (abfd, pubnames_ptr);
1149 pubnames_ptr += 4;
1150 info_size = read_4_bytes (abfd, pubnames_ptr);
1151 pubnames_ptr += 4;
1152 }
1153
1154 aranges_buffer = dwarf2_read_section (objfile,
086df311 1155 dwarf_aranges_section);
c906108c
SS
1156
1157}
1158#endif
1159
107d2387
AC
1160/* Read in the comp unit header information from the debug_info at
1161 info_ptr. */
1162
1163static char *
1164read_comp_unit_head (struct comp_unit_head *cu_header,
1165 char *info_ptr, bfd *abfd)
1166{
1167 int signed_addr;
613e1657
KB
1168 int bytes_read;
1169 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1170 &bytes_read);
1171 info_ptr += bytes_read;
107d2387
AC
1172 cu_header->version = read_2_bytes (abfd, info_ptr);
1173 info_ptr += 2;
613e1657
KB
1174 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1175 &bytes_read);
1176 info_ptr += bytes_read;
107d2387
AC
1177 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1178 info_ptr += 1;
1179 signed_addr = bfd_get_sign_extend_vma (abfd);
1180 if (signed_addr < 0)
8e65ff28
AC
1181 internal_error (__FILE__, __LINE__,
1182 "read_comp_unit_head: dwarf from non elf file");
107d2387
AC
1183 cu_header->signed_addr_p = signed_addr;
1184 return info_ptr;
1185}
1186
72bf9492
DJ
1187static char *
1188partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1189 bfd *abfd)
1190{
1191 char *beg_of_comp_unit = info_ptr;
1192
1193 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1194
1195 if (header->version != 2)
1196 error ("Dwarf Error: wrong version in compilation unit header "
1197 "(is %d, should be %d) [in module %s]", header->version,
1198 2, bfd_get_filename (abfd));
1199
1200 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1201 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1202 "(offset 0x%lx + 6) [in module %s]",
1203 (long) header->abbrev_offset,
1204 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1205 bfd_get_filename (abfd));
1206
1207 if (beg_of_comp_unit + header->length + header->initial_length_size
1208 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1209 error ("Dwarf Error: bad length (0x%lx) in compilation unit header "
1210 "(offset 0x%lx + 0) [in module %s]",
1211 (long) header->length,
1212 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1213 bfd_get_filename (abfd));
1214
1215 return info_ptr;
1216}
1217
aaa75496
JB
1218/* Allocate a new partial symtab for file named NAME and mark this new
1219 partial symtab as being an include of PST. */
1220
1221static void
1222dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1223 struct objfile *objfile)
1224{
1225 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1226
1227 subpst->section_offsets = pst->section_offsets;
1228 subpst->textlow = 0;
1229 subpst->texthigh = 0;
1230
1231 subpst->dependencies = (struct partial_symtab **)
1232 obstack_alloc (&objfile->objfile_obstack,
1233 sizeof (struct partial_symtab *));
1234 subpst->dependencies[0] = pst;
1235 subpst->number_of_dependencies = 1;
1236
1237 subpst->globals_offset = 0;
1238 subpst->n_global_syms = 0;
1239 subpst->statics_offset = 0;
1240 subpst->n_static_syms = 0;
1241 subpst->symtab = NULL;
1242 subpst->read_symtab = pst->read_symtab;
1243 subpst->readin = 0;
1244
1245 /* No private part is necessary for include psymtabs. This property
1246 can be used to differentiate between such include psymtabs and
1247 the regular ones. If it ever happens that a regular psymtab can
58a9656e 1248 legitimally have a NULL private part, then we'll have to add a
aaa75496 1249 dedicated field for that in the dwarf2_pinfo structure. */
58a9656e 1250 subpst->read_symtab_private = NULL;
aaa75496
JB
1251}
1252
1253/* Read the Line Number Program data and extract the list of files
1254 included by the source file represented by PST. Build an include
1255 partial symtab for each of these included files.
1256
1257 This procedure assumes that there *is* a Line Number Program in
1258 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1259 before calling this procedure. */
1260
1261static void
1262dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1263 struct partial_die_info *pdi,
1264 struct partial_symtab *pst)
1265{
1266 struct objfile *objfile = cu->objfile;
1267 bfd *abfd = objfile->obfd;
1268 struct line_header *lh;
1269
1270 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1271 if (lh == NULL)
1272 return; /* No linetable, so no includes. */
1273
1274 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1275
1276 free_line_header (lh);
1277}
1278
1279
c906108c
SS
1280/* Build the partial symbol table by doing a quick pass through the
1281 .debug_info and .debug_abbrev sections. */
1282
1283static void
fba45db2 1284dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1285{
1286 /* Instead of reading this into a big buffer, we should probably use
1287 mmap() on architectures that support it. (FIXME) */
1288 bfd *abfd = objfile->obfd;
72bf9492 1289 char *info_ptr;
c906108c 1290 char *beg_of_comp_unit;
c906108c
SS
1291 struct partial_die_info comp_unit_die;
1292 struct partial_symtab *pst;
e142c38c 1293 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1294
6502dd73 1295 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1296
6502dd73 1297 /* Since the objects we're extracting from .debug_info vary in
af703f96 1298 length, only the individual functions to extract them (like
72bf9492 1299 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1300 the buffer is large enough to hold another complete object.
1301
6502dd73
DJ
1302 At the moment, they don't actually check that. If .debug_info
1303 holds just one extra byte after the last compilation unit's dies,
1304 then read_comp_unit_head will happily read off the end of the
1305 buffer. read_partial_die is similarly casual. Those functions
1306 should be fixed.
af703f96
JB
1307
1308 For this loop condition, simply checking whether there's any data
1309 left at all should be sufficient. */
6502dd73
DJ
1310 while (info_ptr < (dwarf2_per_objfile->info_buffer
1311 + dwarf2_per_objfile->info_size))
c906108c 1312 {
f3dd6933 1313 struct cleanup *back_to_inner;
e7c27a73 1314 struct dwarf2_cu cu;
72bf9492
DJ
1315 struct abbrev_info *abbrev;
1316 unsigned int bytes_read;
1317 struct dwarf2_per_cu_data *this_cu;
1318
c906108c 1319 beg_of_comp_unit = info_ptr;
c906108c 1320
72bf9492
DJ
1321 memset (&cu, 0, sizeof (cu));
1322
1323 obstack_init (&cu.comp_unit_obstack);
1324
1325 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1326
e7c27a73 1327 cu.objfile = objfile;
72bf9492 1328 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1329
57349743 1330 /* Complete the cu_header */
6502dd73 1331 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1332 cu.header.first_die_ptr = info_ptr;
1333 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1334
e142c38c
DJ
1335 cu.list_in_scope = &file_symbols;
1336
72bf9492
DJ
1337 cu.partial_dies = NULL;
1338
c906108c 1339 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1340 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1341 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c
SS
1342
1343 /* Read the compilation unit die */
72bf9492
DJ
1344 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1345 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1346 abfd, info_ptr, &cu);
c906108c
SS
1347
1348 /* Set the language we're debugging */
e142c38c 1349 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1350
1351 /* Allocate a new partial symbol table structure */
d4f3574e 1352 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1353 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1354 comp_unit_die.lowpc,
1355 objfile->global_psymbols.next,
1356 objfile->static_psymbols.next);
1357
57c22c6c
BR
1358 if (comp_unit_die.dirname)
1359 pst->dirname = xstrdup (comp_unit_die.dirname);
1360
c906108c 1361 pst->read_symtab_private = (char *)
8b92e4d5 1362 obstack_alloc (&objfile->objfile_obstack, sizeof (struct dwarf2_pinfo));
6502dd73 1363 DWARF_INFO_OFFSET (pst) = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
613e1657 1364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1365
1366 /* Store the function that reads in the rest of the symbol table */
1367 pst->read_symtab = dwarf2_psymtab_to_symtab;
1368
1369 /* Check if comp unit has_children.
1370 If so, read the rest of the partial symbols from this comp unit.
1371 If not, there's no more debug_info for this comp unit. */
1372 if (comp_unit_die.has_children)
1373 {
72bf9492
DJ
1374 struct partial_die_info *first_die;
1375
91c24f0a
DC
1376 lowpc = ((CORE_ADDR) -1);
1377 highpc = ((CORE_ADDR) 0);
1378
72bf9492
DJ
1379 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1380
1381 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1382
91c24f0a
DC
1383 /* If we didn't find a lowpc, set it to highpc to avoid
1384 complaints from `maint check'. */
1385 if (lowpc == ((CORE_ADDR) -1))
1386 lowpc = highpc;
72bf9492 1387
c906108c
SS
1388 /* If the compilation unit didn't have an explicit address range,
1389 then use the information extracted from its child dies. */
0b010bcc 1390 if (! comp_unit_die.has_pc_info)
c906108c 1391 {
c5aa993b 1392 comp_unit_die.lowpc = lowpc;
c906108c
SS
1393 comp_unit_die.highpc = highpc;
1394 }
1395 }
c5aa993b 1396 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1397 pst->texthigh = comp_unit_die.highpc + baseaddr;
1398
1399 pst->n_global_syms = objfile->global_psymbols.next -
1400 (objfile->global_psymbols.list + pst->globals_offset);
1401 pst->n_static_syms = objfile->static_psymbols.next -
1402 (objfile->static_psymbols.list + pst->statics_offset);
1403 sort_pst_symbols (pst);
1404
1405 /* If there is already a psymtab or symtab for a file of this
1406 name, remove it. (If there is a symtab, more drastic things
1407 also happen.) This happens in VxWorks. */
1408 free_named_symtabs (pst->filename);
1409
aaa75496
JB
1410 if (comp_unit_die.has_stmt_list)
1411 {
1412 /* Get the list of files included in the current compilation unit,
1413 and build a psymtab for each of them. */
1414 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1415 }
1416
72bf9492 1417 info_ptr = beg_of_comp_unit + cu.header.length
e7c27a73 1418 + cu.header.initial_length_size;
f3dd6933
DJ
1419
1420 do_cleanups (back_to_inner);
c906108c 1421 }
c906108c
SS
1422}
1423
72bf9492
DJ
1424/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1425 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1426 in CU. */
c906108c 1427
72bf9492
DJ
1428static void
1429scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1430 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1431{
e7c27a73 1432 struct objfile *objfile = cu->objfile;
c906108c 1433 bfd *abfd = objfile->obfd;
72bf9492 1434 struct partial_die_info *pdi;
c906108c 1435
91c24f0a
DC
1436 /* Now, march along the PDI's, descending into ones which have
1437 interesting children but skipping the children of the other ones,
1438 until we reach the end of the compilation unit. */
c906108c 1439
72bf9492 1440 pdi = first_die;
91c24f0a 1441
72bf9492
DJ
1442 while (pdi != NULL)
1443 {
1444 fixup_partial_die (pdi, cu);
c906108c 1445
91c24f0a
DC
1446 /* Anonymous namespaces have no name but have interesting
1447 children, so we need to look at them. Ditto for anonymous
1448 enums. */
933c6fe4 1449
72bf9492
DJ
1450 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1451 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1452 {
72bf9492 1453 switch (pdi->tag)
c906108c
SS
1454 {
1455 case DW_TAG_subprogram:
72bf9492 1456 if (pdi->has_pc_info)
c906108c 1457 {
72bf9492 1458 if (pdi->lowpc < *lowpc)
c906108c 1459 {
72bf9492 1460 *lowpc = pdi->lowpc;
c906108c 1461 }
72bf9492 1462 if (pdi->highpc > *highpc)
c906108c 1463 {
72bf9492 1464 *highpc = pdi->highpc;
c906108c 1465 }
72bf9492 1466 if (!pdi->is_declaration)
c906108c 1467 {
72bf9492 1468 add_partial_symbol (pdi, cu);
c906108c
SS
1469 }
1470 }
1471 break;
1472 case DW_TAG_variable:
1473 case DW_TAG_typedef:
91c24f0a 1474 case DW_TAG_union_type:
72bf9492 1475 if (!pdi->is_declaration)
63d06c5c 1476 {
72bf9492 1477 add_partial_symbol (pdi, cu);
63d06c5c
DC
1478 }
1479 break;
c906108c
SS
1480 case DW_TAG_class_type:
1481 case DW_TAG_structure_type:
72bf9492 1482 if (!pdi->is_declaration)
c906108c 1483 {
72bf9492 1484 add_partial_symbol (pdi, cu);
c906108c
SS
1485 }
1486 break;
91c24f0a 1487 case DW_TAG_enumeration_type:
72bf9492
DJ
1488 if (!pdi->is_declaration)
1489 add_partial_enumeration (pdi, cu);
c906108c
SS
1490 break;
1491 case DW_TAG_base_type:
a02abb62 1492 case DW_TAG_subrange_type:
c906108c 1493 /* File scope base type definitions are added to the partial
c5aa993b 1494 symbol table. */
72bf9492 1495 add_partial_symbol (pdi, cu);
c906108c 1496 break;
d9fa45fe 1497 case DW_TAG_namespace:
72bf9492 1498 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1499 break;
c906108c
SS
1500 default:
1501 break;
1502 }
1503 }
1504
72bf9492
DJ
1505 /* If the die has a sibling, skip to the sibling. */
1506
1507 pdi = pdi->die_sibling;
1508 }
1509}
1510
1511/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1512
72bf9492
DJ
1513 Normally, this is simple. For C++, the parent DIE's fully scoped
1514 name is concatenated with "::" and the partial DIE's name.
1515 Enumerators are an exception; they use the scope of their parent
1516 enumeration type, i.e. the name of the enumeration type is not
1517 prepended to the enumerator.
91c24f0a 1518
72bf9492
DJ
1519 There are two complexities. One is DW_AT_specification; in this
1520 case "parent" means the parent of the target of the specification,
1521 instead of the direct parent of the DIE. The other is compilers
1522 which do not emit DW_TAG_namespace; in this case we try to guess
1523 the fully qualified name of structure types from their members'
1524 linkage names. This must be done using the DIE's children rather
1525 than the children of any DW_AT_specification target. We only need
1526 to do this for structures at the top level, i.e. if the target of
1527 any DW_AT_specification (if any; otherwise the DIE itself) does not
1528 have a parent. */
1529
1530/* Compute the scope prefix associated with PDI's parent, in
1531 compilation unit CU. The result will be allocated on CU's
1532 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1533 field. NULL is returned if no prefix is necessary. */
1534static char *
1535partial_die_parent_scope (struct partial_die_info *pdi,
1536 struct dwarf2_cu *cu)
1537{
1538 char *grandparent_scope;
1539 struct partial_die_info *parent, *real_pdi;
1540 struct dwarf2_cu *spec_cu;
91c24f0a 1541
72bf9492
DJ
1542 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1543 then this means the parent of the specification DIE. */
1544
1545 real_pdi = pdi;
1546 spec_cu = cu;
1547 while (real_pdi->has_specification)
1548 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
1549
1550 parent = real_pdi->die_parent;
1551 if (parent == NULL)
1552 return NULL;
1553
1554 if (parent->scope_set)
1555 return parent->scope;
1556
1557 fixup_partial_die (parent, cu);
1558
1559 grandparent_scope = partial_die_parent_scope (parent, spec_cu);
1560
1561 if (parent->tag == DW_TAG_namespace
1562 || parent->tag == DW_TAG_structure_type
1563 || parent->tag == DW_TAG_class_type
1564 || parent->tag == DW_TAG_union_type)
1565 {
1566 if (grandparent_scope == NULL)
1567 parent->scope = parent->name;
1568 else
1569 parent->scope = obconcat (&cu->comp_unit_obstack, grandparent_scope,
1570 "::", parent->name);
1571 }
1572 else if (parent->tag == DW_TAG_enumeration_type)
1573 /* Enumerators should not get the name of the enumeration as a prefix. */
1574 parent->scope = grandparent_scope;
1575 else
1576 {
1577 /* FIXME drow/2004-04-01: What should we be doing with
1578 function-local names? For partial symbols, we should probably be
1579 ignoring them. */
1580 complaint (&symfile_complaints,
1581 "unhandled containing DIE tag %d for DIE at %d",
1582 parent->tag, pdi->offset);
1583 parent->scope = grandparent_scope;
c906108c
SS
1584 }
1585
72bf9492
DJ
1586 parent->scope_set = 1;
1587 return parent->scope;
1588}
1589
1590/* Return the fully scoped name associated with PDI, from compilation unit
1591 CU. The result will be allocated with malloc. */
1592static char *
1593partial_die_full_name (struct partial_die_info *pdi,
1594 struct dwarf2_cu *cu)
1595{
1596 char *parent_scope;
1597
1598 parent_scope = partial_die_parent_scope (pdi, cu);
1599 if (parent_scope == NULL)
1600 return NULL;
1601 else
1602 return concat (parent_scope, "::", pdi->name, NULL);
c906108c
SS
1603}
1604
1605static void
72bf9492 1606add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1607{
e7c27a73 1608 struct objfile *objfile = cu->objfile;
c906108c 1609 CORE_ADDR addr = 0;
72bf9492
DJ
1610 char *actual_name;
1611 const char *my_prefix;
5c4e30ca 1612 const struct partial_symbol *psym = NULL;
e142c38c 1613 CORE_ADDR baseaddr;
72bf9492 1614 int built_actual_name = 0;
e142c38c
DJ
1615
1616 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1617
72bf9492
DJ
1618 actual_name = NULL;
1619
1620 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1621 {
72bf9492
DJ
1622 actual_name = partial_die_full_name (pdi, cu);
1623 if (actual_name)
1624 built_actual_name = 1;
63d06c5c
DC
1625 }
1626
72bf9492
DJ
1627 if (actual_name == NULL)
1628 actual_name = pdi->name;
1629
c906108c
SS
1630 switch (pdi->tag)
1631 {
1632 case DW_TAG_subprogram:
1633 if (pdi->is_external)
1634 {
38d518c9 1635 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1636 mst_text, objfile); */
38d518c9 1637 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1638 VAR_DOMAIN, LOC_BLOCK,
1639 &objfile->global_psymbols,
1640 0, pdi->lowpc + baseaddr,
e142c38c 1641 cu->language, objfile);
c906108c
SS
1642 }
1643 else
1644 {
38d518c9 1645 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1646 mst_file_text, objfile); */
38d518c9 1647 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1648 VAR_DOMAIN, LOC_BLOCK,
1649 &objfile->static_psymbols,
1650 0, pdi->lowpc + baseaddr,
e142c38c 1651 cu->language, objfile);
c906108c
SS
1652 }
1653 break;
1654 case DW_TAG_variable:
1655 if (pdi->is_external)
1656 {
1657 /* Global Variable.
1658 Don't enter into the minimal symbol tables as there is
1659 a minimal symbol table entry from the ELF symbols already.
1660 Enter into partial symbol table if it has a location
1661 descriptor or a type.
1662 If the location descriptor is missing, new_symbol will create
1663 a LOC_UNRESOLVED symbol, the address of the variable will then
1664 be determined from the minimal symbol table whenever the variable
1665 is referenced.
1666 The address for the partial symbol table entry is not
1667 used by GDB, but it comes in handy for debugging partial symbol
1668 table building. */
1669
1670 if (pdi->locdesc)
e7c27a73 1671 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1672 if (pdi->locdesc || pdi->has_type)
38d518c9 1673 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1674 VAR_DOMAIN, LOC_STATIC,
1675 &objfile->global_psymbols,
1676 0, addr + baseaddr,
e142c38c 1677 cu->language, objfile);
c906108c
SS
1678 }
1679 else
1680 {
1681 /* Static Variable. Skip symbols without location descriptors. */
1682 if (pdi->locdesc == NULL)
1683 return;
e7c27a73 1684 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1685 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1686 mst_file_data, objfile); */
38d518c9 1687 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1688 VAR_DOMAIN, LOC_STATIC,
1689 &objfile->static_psymbols,
1690 0, addr + baseaddr,
e142c38c 1691 cu->language, objfile);
c906108c
SS
1692 }
1693 break;
1694 case DW_TAG_typedef:
1695 case DW_TAG_base_type:
a02abb62 1696 case DW_TAG_subrange_type:
38d518c9 1697 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1698 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1699 &objfile->static_psymbols,
e142c38c 1700 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1701 break;
72bf9492
DJ
1702 case DW_TAG_namespace:
1703 add_psymbol_to_list (actual_name, strlen (actual_name),
1704 VAR_DOMAIN, LOC_TYPEDEF,
1705 &objfile->global_psymbols,
1706 0, (CORE_ADDR) 0, cu->language, objfile);
1707 break;
c906108c
SS
1708 case DW_TAG_class_type:
1709 case DW_TAG_structure_type:
1710 case DW_TAG_union_type:
1711 case DW_TAG_enumeration_type:
1712 /* Skip aggregate types without children, these are external
c5aa993b 1713 references. */
63d06c5c
DC
1714 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1715 static vs. global. */
c906108c
SS
1716 if (pdi->has_children == 0)
1717 return;
38d518c9 1718 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1719 STRUCT_DOMAIN, LOC_TYPEDEF,
e142c38c 1720 cu->language == language_cplus
63d06c5c
DC
1721 ? &objfile->global_psymbols
1722 : &objfile->static_psymbols,
e142c38c 1723 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1724
e142c38c 1725 if (cu->language == language_cplus)
c906108c
SS
1726 {
1727 /* For C++, these implicitly act as typedefs as well. */
38d518c9 1728 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1729 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 1730 &objfile->global_psymbols,
e142c38c 1731 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
1732 }
1733 break;
1734 case DW_TAG_enumerator:
38d518c9 1735 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1736 VAR_DOMAIN, LOC_CONST,
e142c38c 1737 cu->language == language_cplus
f6fe98ef
DJ
1738 ? &objfile->global_psymbols
1739 : &objfile->static_psymbols,
e142c38c 1740 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
1741 break;
1742 default:
1743 break;
1744 }
5c4e30ca
DC
1745
1746 /* Check to see if we should scan the name for possible namespace
1747 info. Only do this if this is C++, if we don't have namespace
1748 debugging info in the file, if the psym is of an appropriate type
1749 (otherwise we'll have psym == NULL), and if we actually had a
1750 mangled name to begin with. */
1751
72bf9492
DJ
1752 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1753 cases which do not set PSYM above? */
1754
e142c38c 1755 if (cu->language == language_cplus
72bf9492 1756 && cu->has_namespace_info == 0
5c4e30ca
DC
1757 && psym != NULL
1758 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
1759 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
1760 objfile);
72bf9492
DJ
1761
1762 if (built_actual_name)
1763 xfree (actual_name);
c906108c
SS
1764}
1765
72bf9492
DJ
1766/* Determine whether a die of type TAG living in a C++ class or
1767 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
1768 name listed in the die. */
1769
1770static int
72bf9492 1771pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 1772{
63d06c5c
DC
1773 switch (tag)
1774 {
72bf9492 1775 case DW_TAG_namespace:
63d06c5c
DC
1776 case DW_TAG_typedef:
1777 case DW_TAG_class_type:
1778 case DW_TAG_structure_type:
1779 case DW_TAG_union_type:
1780 case DW_TAG_enumeration_type:
1781 case DW_TAG_enumerator:
1782 return 1;
1783 default:
1784 return 0;
1785 }
1786}
1787
5c4e30ca
DC
1788/* Read a partial die corresponding to a namespace; also, add a symbol
1789 corresponding to that namespace to the symbol table. NAMESPACE is
1790 the name of the enclosing namespace. */
91c24f0a 1791
72bf9492
DJ
1792static void
1793add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 1794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 1795 struct dwarf2_cu *cu)
91c24f0a 1796{
e7c27a73 1797 struct objfile *objfile = cu->objfile;
5c4e30ca 1798
72bf9492 1799 /* Add a symbol for the namespace. */
e7c27a73 1800
72bf9492 1801 add_partial_symbol (pdi, cu);
5c4e30ca
DC
1802
1803 /* Now scan partial symbols in that namespace. */
1804
91c24f0a 1805 if (pdi->has_children)
72bf9492 1806 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
1807}
1808
72bf9492
DJ
1809/* See if we can figure out if the class lives in a namespace. We do
1810 this by looking for a member function; its demangled name will
1811 contain namespace info, if there is any. */
63d06c5c 1812
72bf9492
DJ
1813static void
1814guess_structure_name (struct partial_die_info *struct_pdi,
1815 struct dwarf2_cu *cu)
63d06c5c 1816{
e142c38c 1817 if (cu->language == language_cplus
72bf9492 1818 && cu->has_namespace_info == 0
63d06c5c
DC
1819 && struct_pdi->has_children)
1820 {
63d06c5c
DC
1821 /* NOTE: carlton/2003-10-07: Getting the info this way changes
1822 what template types look like, because the demangler
1823 frequently doesn't give the same name as the debug info. We
1824 could fix this by only using the demangled name to get the
134d01f1 1825 prefix (but see comment in read_structure_type). */
63d06c5c 1826
72bf9492
DJ
1827 struct partial_die_info *child_pdi = struct_pdi->die_child;
1828 struct partial_die_info *real_pdi;
1829 struct dwarf2_cu *spec_cu;
5d51ca54 1830
72bf9492
DJ
1831 /* If this DIE (this DIE's specification, if any) has a parent, then
1832 we should not do this. We'll prepend the parent's fully qualified
1833 name when we create the partial symbol. */
5d51ca54 1834
72bf9492
DJ
1835 real_pdi = struct_pdi;
1836 spec_cu = cu;
1837 while (real_pdi->has_specification)
1838 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
63d06c5c 1839
72bf9492
DJ
1840 if (real_pdi->die_parent != NULL)
1841 return;
63d06c5c 1842
72bf9492
DJ
1843 while (child_pdi != NULL)
1844 {
1845 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 1846 {
72bf9492 1847 char *actual_class_name
31c27f77
JJ
1848 = language_class_name_from_physname (cu->language_defn,
1849 child_pdi->name);
63d06c5c 1850 if (actual_class_name != NULL)
72bf9492
DJ
1851 {
1852 struct_pdi->name
1853 = obsavestring (actual_class_name,
1854 strlen (actual_class_name),
1855 &cu->comp_unit_obstack);
1856 xfree (actual_class_name);
1857 }
63d06c5c
DC
1858 break;
1859 }
72bf9492
DJ
1860
1861 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
1862 }
1863 }
63d06c5c
DC
1864}
1865
91c24f0a
DC
1866/* Read a partial die corresponding to an enumeration type. */
1867
72bf9492
DJ
1868static void
1869add_partial_enumeration (struct partial_die_info *enum_pdi,
1870 struct dwarf2_cu *cu)
91c24f0a 1871{
e7c27a73 1872 struct objfile *objfile = cu->objfile;
91c24f0a 1873 bfd *abfd = objfile->obfd;
72bf9492 1874 struct partial_die_info *pdi;
91c24f0a
DC
1875
1876 if (enum_pdi->name != NULL)
72bf9492
DJ
1877 add_partial_symbol (enum_pdi, cu);
1878
1879 pdi = enum_pdi->die_child;
1880 while (pdi)
91c24f0a 1881 {
72bf9492 1882 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
91c24f0a
DC
1883 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
1884 else
72bf9492
DJ
1885 add_partial_symbol (pdi, cu);
1886 pdi = pdi->die_sibling;
91c24f0a 1887 }
91c24f0a
DC
1888}
1889
4bb7a0a7
DJ
1890/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
1891 Return the corresponding abbrev, or NULL if the number is zero (indicating
1892 an empty DIE). In either case *BYTES_READ will be set to the length of
1893 the initial number. */
1894
1895static struct abbrev_info *
1896peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
1897{
1898 bfd *abfd = cu->objfile->obfd;
1899 unsigned int abbrev_number;
1900 struct abbrev_info *abbrev;
1901
1902 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
1903
1904 if (abbrev_number == 0)
1905 return NULL;
1906
1907 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
1908 if (!abbrev)
1909 {
1910 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
1911 bfd_get_filename (abfd));
1912 }
1913
1914 return abbrev;
1915}
1916
1917/* Scan the debug information for CU starting at INFO_PTR. Returns a
1918 pointer to the end of a series of DIEs, terminated by an empty
1919 DIE. Any children of the skipped DIEs will also be skipped. */
1920
1921static char *
1922skip_children (char *info_ptr, struct dwarf2_cu *cu)
1923{
1924 struct abbrev_info *abbrev;
1925 unsigned int bytes_read;
1926
1927 while (1)
1928 {
1929 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1930 if (abbrev == NULL)
1931 return info_ptr + bytes_read;
1932 else
1933 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
1934 }
1935}
1936
1937/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
1938 should point just after the initial uleb128 of a DIE, and the
1939 abbrev corresponding to that skipped uleb128 should be passed in
1940 ABBREV. Returns a pointer to this DIE's sibling, skipping any
1941 children. */
1942
1943static char *
1944skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1945 struct dwarf2_cu *cu)
1946{
1947 unsigned int bytes_read;
1948 struct attribute attr;
1949 bfd *abfd = cu->objfile->obfd;
1950 unsigned int form, i;
1951
1952 for (i = 0; i < abbrev->num_attrs; i++)
1953 {
1954 /* The only abbrev we care about is DW_AT_sibling. */
1955 if (abbrev->attrs[i].name == DW_AT_sibling)
1956 {
1957 read_attribute (&attr, &abbrev->attrs[i],
1958 abfd, info_ptr, cu);
1959 if (attr.form == DW_FORM_ref_addr)
1960 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
1961 else
6502dd73
DJ
1962 return dwarf2_per_objfile->info_buffer
1963 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
1964 }
1965
1966 /* If it isn't DW_AT_sibling, skip this attribute. */
1967 form = abbrev->attrs[i].form;
1968 skip_attribute:
1969 switch (form)
1970 {
1971 case DW_FORM_addr:
1972 case DW_FORM_ref_addr:
1973 info_ptr += cu->header.addr_size;
1974 break;
1975 case DW_FORM_data1:
1976 case DW_FORM_ref1:
1977 case DW_FORM_flag:
1978 info_ptr += 1;
1979 break;
1980 case DW_FORM_data2:
1981 case DW_FORM_ref2:
1982 info_ptr += 2;
1983 break;
1984 case DW_FORM_data4:
1985 case DW_FORM_ref4:
1986 info_ptr += 4;
1987 break;
1988 case DW_FORM_data8:
1989 case DW_FORM_ref8:
1990 info_ptr += 8;
1991 break;
1992 case DW_FORM_string:
1993 read_string (abfd, info_ptr, &bytes_read);
1994 info_ptr += bytes_read;
1995 break;
1996 case DW_FORM_strp:
1997 info_ptr += cu->header.offset_size;
1998 break;
1999 case DW_FORM_block:
2000 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2001 info_ptr += bytes_read;
2002 break;
2003 case DW_FORM_block1:
2004 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2005 break;
2006 case DW_FORM_block2:
2007 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2008 break;
2009 case DW_FORM_block4:
2010 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2011 break;
2012 case DW_FORM_sdata:
2013 case DW_FORM_udata:
2014 case DW_FORM_ref_udata:
2015 info_ptr = skip_leb128 (abfd, info_ptr);
2016 break;
2017 case DW_FORM_indirect:
2018 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2019 info_ptr += bytes_read;
2020 /* We need to continue parsing from here, so just go back to
2021 the top. */
2022 goto skip_attribute;
2023
2024 default:
2025 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
2026 dwarf_form_name (form),
2027 bfd_get_filename (abfd));
2028 }
2029 }
2030
2031 if (abbrev->has_children)
2032 return skip_children (info_ptr, cu);
2033 else
2034 return info_ptr;
2035}
2036
2037/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2038 the next DIE after ORIG_PDI. */
91c24f0a
DC
2039
2040static char *
2041locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
e7c27a73 2042 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2043{
2044 /* Do we know the sibling already? */
72bf9492 2045
91c24f0a
DC
2046 if (orig_pdi->sibling)
2047 return orig_pdi->sibling;
2048
2049 /* Are there any children to deal with? */
2050
2051 if (!orig_pdi->has_children)
2052 return info_ptr;
2053
4bb7a0a7 2054 /* Skip the children the long way. */
91c24f0a 2055
4bb7a0a7 2056 return skip_children (info_ptr, cu);
91c24f0a
DC
2057}
2058
c906108c
SS
2059/* Expand this partial symbol table into a full symbol table. */
2060
2061static void
fba45db2 2062dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2063{
2064 /* FIXME: This is barely more than a stub. */
2065 if (pst != NULL)
2066 {
2067 if (pst->readin)
2068 {
2069 warning ("bug: psymtab for %s is already read in.", pst->filename);
2070 }
2071 else
2072 {
2073 if (info_verbose)
2074 {
2075 printf_filtered ("Reading in symbols for %s...", pst->filename);
2076 gdb_flush (gdb_stdout);
2077 }
2078
2079 psymtab_to_symtab_1 (pst);
2080
2081 /* Finish up the debug error message. */
2082 if (info_verbose)
2083 printf_filtered ("done.\n");
2084 }
2085 }
2086}
2087
2088static void
fba45db2 2089psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2090{
2091 struct objfile *objfile = pst->objfile;
2092 bfd *abfd = objfile->obfd;
e7c27a73 2093 struct dwarf2_cu cu;
c906108c
SS
2094 struct die_info *dies;
2095 unsigned long offset;
2096 CORE_ADDR lowpc, highpc;
2097 struct die_info *child_die;
2098 char *info_ptr;
2099 struct symtab *symtab;
2100 struct cleanup *back_to;
0d53c4c4 2101 struct attribute *attr;
e142c38c 2102 CORE_ADDR baseaddr;
aaa75496
JB
2103 int i;
2104
2105 for (i = 0; i < pst->number_of_dependencies; i++)
2106 if (!pst->dependencies[i]->readin)
2107 {
2108 /* Inform about additional files that need to be read in. */
2109 if (info_verbose)
2110 {
2111 fputs_filtered (" ", gdb_stdout);
2112 wrap_here ("");
2113 fputs_filtered ("and ", gdb_stdout);
2114 wrap_here ("");
2115 printf_filtered ("%s...", pst->dependencies[i]->filename);
2116 wrap_here (""); /* Flush output */
2117 gdb_flush (gdb_stdout);
2118 }
2119 psymtab_to_symtab_1 (pst->dependencies[i]);
2120 }
2121
58a9656e 2122 if (pst->read_symtab_private == NULL)
aaa75496
JB
2123 {
2124 /* It's an include file, no symbols to read for it.
2125 Everything is in the parent symtab. */
2126 pst->readin = 1;
2127 return;
2128 }
c906108c 2129
6502dd73
DJ
2130 dwarf2_per_objfile = objfile_data (pst->objfile, dwarf2_objfile_data_key);
2131
c906108c 2132 /* Set local variables from the partial symbol table info. */
c5aa993b 2133 offset = DWARF_INFO_OFFSET (pst);
6502dd73
DJ
2134
2135 info_ptr = dwarf2_per_objfile->info_buffer + offset;
e142c38c 2136 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2137
63d06c5c
DC
2138 /* We're in the global namespace. */
2139 processing_current_prefix = "";
2140
7b5a2f43
DJ
2141 obstack_init (&cu.comp_unit_obstack);
2142 back_to = make_cleanup (free_stack_comp_unit, &cu);
c906108c
SS
2143
2144 buildsym_init ();
a0b3c4fd 2145 make_cleanup (really_free_pendings, NULL);
c906108c 2146
e7c27a73
DJ
2147 cu.objfile = objfile;
2148
c906108c 2149 /* read in the comp_unit header */
e7c27a73 2150 info_ptr = read_comp_unit_head (&cu.header, info_ptr, abfd);
c906108c
SS
2151
2152 /* Read the abbrevs for this compilation unit */
e7c27a73 2153 dwarf2_read_abbrevs (abfd, &cu);
f3dd6933 2154 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 2155
e142c38c
DJ
2156 cu.header.offset = offset;
2157
2158 cu.list_in_scope = &file_symbols;
2159
e7c27a73 2160 dies = read_comp_unit (info_ptr, abfd, &cu);
c906108c 2161
74b7792f 2162 make_cleanup_free_die_list (dies);
c906108c 2163
0d53c4c4
DJ
2164 /* Find the base address of the compilation unit for range lists and
2165 location lists. It will normally be specified by DW_AT_low_pc.
2166 In DWARF-3 draft 4, the base address could be overridden by
2167 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2168 compilation units with discontinuous ranges. */
2169
e7c27a73
DJ
2170 cu.header.base_known = 0;
2171 cu.header.base_address = 0;
0d53c4c4 2172
e142c38c 2173 attr = dwarf2_attr (dies, DW_AT_entry_pc, &cu);
0d53c4c4
DJ
2174 if (attr)
2175 {
e7c27a73
DJ
2176 cu.header.base_address = DW_ADDR (attr);
2177 cu.header.base_known = 1;
0d53c4c4
DJ
2178 }
2179 else
2180 {
e142c38c 2181 attr = dwarf2_attr (dies, DW_AT_low_pc, &cu);
0d53c4c4
DJ
2182 if (attr)
2183 {
e7c27a73
DJ
2184 cu.header.base_address = DW_ADDR (attr);
2185 cu.header.base_known = 1;
0d53c4c4
DJ
2186 }
2187 }
2188
c906108c 2189 /* Do line number decoding in read_file_scope () */
e7c27a73 2190 process_die (dies, &cu);
c906108c 2191
fae299cd
DC
2192 /* Some compilers don't define a DW_AT_high_pc attribute for the
2193 compilation unit. If the DW_AT_high_pc is missing, synthesize
2194 it, by scanning the DIE's below the compilation unit. */
2195 get_scope_pc_bounds (dies, &lowpc, &highpc, &cu);
c906108c 2196
613e1657 2197 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2198
2199 /* Set symtab language to language from DW_AT_language.
2200 If the compilation is from a C file generated by language preprocessors,
2201 do not set the language if it was already deduced by start_subfile. */
2202 if (symtab != NULL
e142c38c 2203 && !(cu.language == language_c && symtab->language != language_c))
c906108c 2204 {
e142c38c 2205 symtab->language = cu.language;
c906108c
SS
2206 }
2207 pst->symtab = symtab;
2208 pst->readin = 1;
c906108c
SS
2209
2210 do_cleanups (back_to);
2211}
2212
2213/* Process a die and its children. */
2214
2215static void
e7c27a73 2216process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2217{
2218 switch (die->tag)
2219 {
2220 case DW_TAG_padding:
2221 break;
2222 case DW_TAG_compile_unit:
e7c27a73 2223 read_file_scope (die, cu);
c906108c
SS
2224 break;
2225 case DW_TAG_subprogram:
e7c27a73
DJ
2226 read_subroutine_type (die, cu);
2227 read_func_scope (die, cu);
c906108c
SS
2228 break;
2229 case DW_TAG_inlined_subroutine:
2230 /* FIXME: These are ignored for now.
c5aa993b
JM
2231 They could be used to set breakpoints on all inlined instances
2232 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2233 break;
2234 case DW_TAG_lexical_block:
14898363
L
2235 case DW_TAG_try_block:
2236 case DW_TAG_catch_block:
e7c27a73 2237 read_lexical_block_scope (die, cu);
c906108c
SS
2238 break;
2239 case DW_TAG_class_type:
2240 case DW_TAG_structure_type:
2241 case DW_TAG_union_type:
134d01f1
DJ
2242 read_structure_type (die, cu);
2243 process_structure_scope (die, cu);
c906108c
SS
2244 break;
2245 case DW_TAG_enumeration_type:
134d01f1
DJ
2246 read_enumeration_type (die, cu);
2247 process_enumeration_scope (die, cu);
c906108c 2248 break;
134d01f1
DJ
2249
2250 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2251 a symbol or process any children. Therefore it doesn't do anything
2252 that won't be done on-demand by read_type_die. */
c906108c 2253 case DW_TAG_subroutine_type:
e7c27a73 2254 read_subroutine_type (die, cu);
c906108c
SS
2255 break;
2256 case DW_TAG_array_type:
e7c27a73 2257 read_array_type (die, cu);
c906108c
SS
2258 break;
2259 case DW_TAG_pointer_type:
e7c27a73 2260 read_tag_pointer_type (die, cu);
c906108c
SS
2261 break;
2262 case DW_TAG_ptr_to_member_type:
e7c27a73 2263 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2264 break;
2265 case DW_TAG_reference_type:
e7c27a73 2266 read_tag_reference_type (die, cu);
c906108c
SS
2267 break;
2268 case DW_TAG_string_type:
e7c27a73 2269 read_tag_string_type (die, cu);
c906108c 2270 break;
134d01f1
DJ
2271 /* END FIXME */
2272
c906108c 2273 case DW_TAG_base_type:
e7c27a73 2274 read_base_type (die, cu);
134d01f1
DJ
2275 /* Add a typedef symbol for the type definition, if it has a
2276 DW_AT_name. */
2277 new_symbol (die, die->type, cu);
c906108c 2278 break;
a02abb62
JB
2279 case DW_TAG_subrange_type:
2280 read_subrange_type (die, cu);
134d01f1
DJ
2281 /* Add a typedef symbol for the type definition, if it has a
2282 DW_AT_name. */
2283 new_symbol (die, die->type, cu);
a02abb62 2284 break;
c906108c 2285 case DW_TAG_common_block:
e7c27a73 2286 read_common_block (die, cu);
c906108c
SS
2287 break;
2288 case DW_TAG_common_inclusion:
2289 break;
d9fa45fe 2290 case DW_TAG_namespace:
63d06c5c 2291 processing_has_namespace_info = 1;
e7c27a73 2292 read_namespace (die, cu);
d9fa45fe
DC
2293 break;
2294 case DW_TAG_imported_declaration:
2295 case DW_TAG_imported_module:
2296 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2297 information contained in these. DW_TAG_imported_declaration
2298 dies shouldn't have children; DW_TAG_imported_module dies
2299 shouldn't in the C++ case, but conceivably could in the
2300 Fortran case, so we'll have to replace this gdb_assert if
2301 Fortran compilers start generating that info. */
63d06c5c 2302 processing_has_namespace_info = 1;
639d11d3 2303 gdb_assert (die->child == NULL);
d9fa45fe 2304 break;
c906108c 2305 default:
e7c27a73 2306 new_symbol (die, NULL, cu);
c906108c
SS
2307 break;
2308 }
2309}
2310
5fb290d7 2311static void
e142c38c 2312initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2313{
e142c38c 2314 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2315}
2316
c906108c 2317static void
e7c27a73 2318read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2319{
e7c27a73
DJ
2320 struct objfile *objfile = cu->objfile;
2321 struct comp_unit_head *cu_header = &cu->header;
debd256d 2322 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2323 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2324 CORE_ADDR highpc = ((CORE_ADDR) 0);
2325 struct attribute *attr;
2326 char *name = "<unknown>";
2327 char *comp_dir = NULL;
2328 struct die_info *child_die;
2329 bfd *abfd = objfile->obfd;
debd256d 2330 struct line_header *line_header = 0;
e142c38c
DJ
2331 CORE_ADDR baseaddr;
2332
2333 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2334
fae299cd 2335 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2336
2337 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2338 from finish_block. */
2acceee2 2339 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2340 lowpc = highpc;
2341 lowpc += baseaddr;
2342 highpc += baseaddr;
2343
e142c38c 2344 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2345 if (attr)
2346 {
2347 name = DW_STRING (attr);
2348 }
e142c38c 2349 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c
SS
2350 if (attr)
2351 {
2352 comp_dir = DW_STRING (attr);
2353 if (comp_dir)
2354 {
2355 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2356 directory, get rid of it. */
2357 char *cp = strchr (comp_dir, ':');
2358
2359 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2360 comp_dir = cp + 1;
2361 }
2362 }
2363
e142c38c 2364 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2365 if (attr)
2366 {
e142c38c 2367 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2368 }
2369
b0f35d58
DL
2370 attr = dwarf2_attr (die, DW_AT_producer, cu);
2371 if (attr)
2372 cu->producer = DW_STRING (attr);
2373
c906108c
SS
2374 /* We assume that we're processing GCC output. */
2375 processing_gcc_compilation = 2;
2376#if 0
c5aa993b
JM
2377 /* FIXME:Do something here. */
2378 if (dip->at_producer != NULL)
c906108c
SS
2379 {
2380 handle_producer (dip->at_producer);
2381 }
2382#endif
2383
2384 /* The compilation unit may be in a different language or objfile,
2385 zero out all remembered fundamental types. */
e142c38c 2386 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2387
2388 start_symtab (name, comp_dir, lowpc);
2389 record_debugformat ("DWARF 2");
2390
e142c38c 2391 initialize_cu_func_list (cu);
c906108c
SS
2392
2393 /* Process all dies in compilation unit. */
639d11d3 2394 if (die->child != NULL)
c906108c 2395 {
639d11d3 2396 child_die = die->child;
c906108c
SS
2397 while (child_die && child_die->tag)
2398 {
e7c27a73 2399 process_die (child_die, cu);
c906108c
SS
2400 child_die = sibling_die (child_die);
2401 }
2402 }
5fb290d7
DJ
2403
2404 /* Decode line number information if present. */
e142c38c 2405 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2406 if (attr)
2407 {
debd256d 2408 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2409 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2410 if (line_header)
2411 {
2412 make_cleanup ((make_cleanup_ftype *) free_line_header,
2413 (void *) line_header);
aaa75496 2414 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2415 }
5fb290d7 2416 }
debd256d 2417
2e276125
JB
2418 /* Decode macro information, if present. Dwarf 2 macro information
2419 refers to information in the line number info statement program
2420 header, so we can only read it if we've read the header
2421 successfully. */
e142c38c 2422 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2423 if (attr && line_header)
2e276125
JB
2424 {
2425 unsigned int macro_offset = DW_UNSND (attr);
2426 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2427 comp_dir, abfd, cu);
2e276125 2428 }
debd256d 2429 do_cleanups (back_to);
5fb290d7
DJ
2430}
2431
2432static void
e142c38c
DJ
2433add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2434 struct dwarf2_cu *cu)
5fb290d7
DJ
2435{
2436 struct function_range *thisfn;
2437
2438 thisfn = (struct function_range *)
7b5a2f43 2439 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2440 thisfn->name = name;
2441 thisfn->lowpc = lowpc;
2442 thisfn->highpc = highpc;
2443 thisfn->seen_line = 0;
2444 thisfn->next = NULL;
2445
e142c38c
DJ
2446 if (cu->last_fn == NULL)
2447 cu->first_fn = thisfn;
5fb290d7 2448 else
e142c38c 2449 cu->last_fn->next = thisfn;
5fb290d7 2450
e142c38c 2451 cu->last_fn = thisfn;
c906108c
SS
2452}
2453
2454static void
e7c27a73 2455read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2456{
e7c27a73 2457 struct objfile *objfile = cu->objfile;
52f0bd74 2458 struct context_stack *new;
c906108c
SS
2459 CORE_ADDR lowpc;
2460 CORE_ADDR highpc;
2461 struct die_info *child_die;
2462 struct attribute *attr;
2463 char *name;
fdde2d81
DC
2464 const char *previous_prefix = processing_current_prefix;
2465 struct cleanup *back_to = NULL;
e142c38c 2466 CORE_ADDR baseaddr;
c906108c 2467
e142c38c
DJ
2468 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2469
2470 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2471
2472 /* Ignore functions with missing or empty names and functions with
2473 missing or invalid low and high pc attributes. */
e7c27a73 2474 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2475 return;
2476
086ed43d 2477 if (cu->language == language_cplus)
fdde2d81 2478 {
086ed43d 2479 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2480
2a35147e
JB
2481 /* NOTE: carlton/2004-01-23: We have to be careful in the
2482 presence of DW_AT_specification. For example, with GCC 3.4,
2483 given the code
2484
2485 namespace N {
2486 void foo() {
2487 // Definition of N::foo.
2488 }
2489 }
2490
2491 then we'll have a tree of DIEs like this:
2492
2493 1: DW_TAG_compile_unit
2494 2: DW_TAG_namespace // N
2495 3: DW_TAG_subprogram // declaration of N::foo
2496 4: DW_TAG_subprogram // definition of N::foo
2497 DW_AT_specification // refers to die #3
2498
2499 Thus, when processing die #4, we have to pretend that we're
2500 in the context of its DW_AT_specification, namely the contex
2501 of die #3. */
fdde2d81
DC
2502
2503 if (spec_die != NULL)
2504 {
e142c38c 2505 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2506 processing_current_prefix = specification_prefix;
2507 back_to = make_cleanup (xfree, specification_prefix);
2508 }
2509 }
2510
c906108c
SS
2511 lowpc += baseaddr;
2512 highpc += baseaddr;
2513
5fb290d7 2514 /* Record the function range for dwarf_decode_lines. */
e142c38c 2515 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2516
c906108c 2517 new = push_context (0, lowpc);
e7c27a73 2518 new->name = new_symbol (die, die->type, cu);
4c2df51b 2519
4cecd739
DJ
2520 /* If there is a location expression for DW_AT_frame_base, record
2521 it. */
e142c38c 2522 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2523 if (attr)
c034e007
AC
2524 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2525 expression is being recorded directly in the function's symbol
2526 and not in a separate frame-base object. I guess this hack is
2527 to avoid adding some sort of frame-base adjunct/annex to the
2528 function's symbol :-(. The problem with doing this is that it
2529 results in a function symbol with a location expression that
2530 has nothing to do with the location of the function, ouch! The
2531 relationship should be: a function's symbol has-a frame base; a
2532 frame-base has-a location expression. */
e7c27a73 2533 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2534
e142c38c 2535 cu->list_in_scope = &local_symbols;
c906108c 2536
639d11d3 2537 if (die->child != NULL)
c906108c 2538 {
639d11d3 2539 child_die = die->child;
c906108c
SS
2540 while (child_die && child_die->tag)
2541 {
e7c27a73 2542 process_die (child_die, cu);
c906108c
SS
2543 child_die = sibling_die (child_die);
2544 }
2545 }
2546
2547 new = pop_context ();
2548 /* Make a block for the local symbols within. */
2549 finish_block (new->name, &local_symbols, new->old_blocks,
2550 lowpc, highpc, objfile);
208d8187
JB
2551
2552 /* In C++, we can have functions nested inside functions (e.g., when
2553 a function declares a class that has methods). This means that
2554 when we finish processing a function scope, we may need to go
2555 back to building a containing block's symbol lists. */
2556 local_symbols = new->locals;
2557 param_symbols = new->params;
2558
921e78cf
JB
2559 /* If we've finished processing a top-level function, subsequent
2560 symbols go in the file symbol list. */
2561 if (outermost_context_p ())
e142c38c 2562 cu->list_in_scope = &file_symbols;
fdde2d81
DC
2563
2564 processing_current_prefix = previous_prefix;
2565 if (back_to != NULL)
2566 do_cleanups (back_to);
c906108c
SS
2567}
2568
2569/* Process all the DIES contained within a lexical block scope. Start
2570 a new scope, process the dies, and then close the scope. */
2571
2572static void
e7c27a73 2573read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2574{
e7c27a73 2575 struct objfile *objfile = cu->objfile;
52f0bd74 2576 struct context_stack *new;
c906108c
SS
2577 CORE_ADDR lowpc, highpc;
2578 struct die_info *child_die;
e142c38c
DJ
2579 CORE_ADDR baseaddr;
2580
2581 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
2582
2583 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
2584 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2585 as multiple lexical blocks? Handling children in a sane way would
2586 be nasty. Might be easier to properly extend generic blocks to
2587 describe ranges. */
e7c27a73 2588 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2589 return;
2590 lowpc += baseaddr;
2591 highpc += baseaddr;
2592
2593 push_context (0, lowpc);
639d11d3 2594 if (die->child != NULL)
c906108c 2595 {
639d11d3 2596 child_die = die->child;
c906108c
SS
2597 while (child_die && child_die->tag)
2598 {
e7c27a73 2599 process_die (child_die, cu);
c906108c
SS
2600 child_die = sibling_die (child_die);
2601 }
2602 }
2603 new = pop_context ();
2604
2605 if (local_symbols != NULL)
2606 {
2607 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
2608 highpc, objfile);
2609 }
2610 local_symbols = new->locals;
2611}
2612
af34e669
DJ
2613/* Get low and high pc attributes from a die. Return 1 if the attributes
2614 are present and valid, otherwise, return 0. Return -1 if the range is
2615 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 2616static int
af34e669 2617dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 2618 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 2619{
e7c27a73
DJ
2620 struct objfile *objfile = cu->objfile;
2621 struct comp_unit_head *cu_header = &cu->header;
c906108c 2622 struct attribute *attr;
af34e669
DJ
2623 bfd *obfd = objfile->obfd;
2624 CORE_ADDR low = 0;
2625 CORE_ADDR high = 0;
2626 int ret = 0;
c906108c 2627
e142c38c 2628 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 2629 if (attr)
af34e669
DJ
2630 {
2631 high = DW_ADDR (attr);
e142c38c 2632 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
2633 if (attr)
2634 low = DW_ADDR (attr);
2635 else
2636 /* Found high w/o low attribute. */
2637 return 0;
2638
2639 /* Found consecutive range of addresses. */
2640 ret = 1;
2641 }
c906108c 2642 else
af34e669 2643 {
e142c38c 2644 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
2645 if (attr != NULL)
2646 {
2647 unsigned int addr_size = cu_header->addr_size;
2648 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2649 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 2650 .debug_ranges section. */
af34e669
DJ
2651 unsigned int offset = DW_UNSND (attr);
2652 /* Base address selection entry. */
0d53c4c4
DJ
2653 CORE_ADDR base;
2654 int found_base;
af34e669 2655 int dummy;
af34e669
DJ
2656 char *buffer;
2657 CORE_ADDR marker;
2658 int low_set;
2659
0d53c4c4
DJ
2660 found_base = cu_header->base_known;
2661 base = cu_header->base_address;
a604369a 2662
6502dd73 2663 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
2664 {
2665 complaint (&symfile_complaints,
2666 "Offset %d out of bounds for DW_AT_ranges attribute",
2667 offset);
2668 return 0;
2669 }
6502dd73 2670 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 2671
af34e669 2672 /* Read in the largest possible address. */
e7c27a73 2673 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
2674 if ((marker & mask) == mask)
2675 {
2676 /* If we found the largest possible address, then
2677 read the base address. */
e7c27a73 2678 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
2679 buffer += 2 * addr_size;
2680 offset += 2 * addr_size;
2681 found_base = 1;
2682 }
2683
2684 low_set = 0;
2685
2686 while (1)
2687 {
2688 CORE_ADDR range_beginning, range_end;
2689
e7c27a73 2690 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 2691 buffer += addr_size;
e7c27a73 2692 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
2693 buffer += addr_size;
2694 offset += 2 * addr_size;
2695
2696 /* An end of list marker is a pair of zero addresses. */
2697 if (range_beginning == 0 && range_end == 0)
2698 /* Found the end of list entry. */
2699 break;
2700
2701 /* Each base address selection entry is a pair of 2 values.
2702 The first is the largest possible address, the second is
2703 the base address. Check for a base address here. */
2704 if ((range_beginning & mask) == mask)
2705 {
2706 /* If we found the largest possible address, then
2707 read the base address. */
e7c27a73 2708 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
2709 found_base = 1;
2710 continue;
2711 }
2712
2713 if (!found_base)
2714 {
2715 /* We have no valid base address for the ranges
2716 data. */
2717 complaint (&symfile_complaints,
2718 "Invalid .debug_ranges data (no base address)");
2719 return 0;
2720 }
2721
8f05cde5
DJ
2722 range_beginning += base;
2723 range_end += base;
2724
af34e669
DJ
2725 /* FIXME: This is recording everything as a low-high
2726 segment of consecutive addresses. We should have a
2727 data structure for discontiguous block ranges
2728 instead. */
2729 if (! low_set)
2730 {
2731 low = range_beginning;
2732 high = range_end;
2733 low_set = 1;
2734 }
2735 else
2736 {
2737 if (range_beginning < low)
2738 low = range_beginning;
2739 if (range_end > high)
2740 high = range_end;
2741 }
2742 }
2743
2744 if (! low_set)
2745 /* If the first entry is an end-of-list marker, the range
2746 describes an empty scope, i.e. no instructions. */
2747 return 0;
2748
2749 ret = -1;
2750 }
2751 }
c906108c
SS
2752
2753 if (high < low)
2754 return 0;
2755
2756 /* When using the GNU linker, .gnu.linkonce. sections are used to
2757 eliminate duplicate copies of functions and vtables and such.
2758 The linker will arbitrarily choose one and discard the others.
2759 The AT_*_pc values for such functions refer to local labels in
2760 these sections. If the section from that file was discarded, the
2761 labels are not in the output, so the relocs get a value of 0.
2762 If this is a discarded function, mark the pc bounds as invalid,
2763 so that GDB will ignore it. */
af34e669 2764 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
c906108c
SS
2765 return 0;
2766
2767 *lowpc = low;
2768 *highpc = high;
af34e669 2769 return ret;
c906108c
SS
2770}
2771
fae299cd
DC
2772/* Get the low and high pc's represented by the scope DIE, and store
2773 them in *LOWPC and *HIGHPC. If the correct values can't be
2774 determined, set *LOWPC to -1 and *HIGHPC to 0. */
2775
2776static void
2777get_scope_pc_bounds (struct die_info *die,
2778 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2779 struct dwarf2_cu *cu)
2780{
2781 CORE_ADDR best_low = (CORE_ADDR) -1;
2782 CORE_ADDR best_high = (CORE_ADDR) 0;
2783 CORE_ADDR current_low, current_high;
2784
2785 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
2786 {
2787 best_low = current_low;
2788 best_high = current_high;
2789 }
2790 else
2791 {
2792 struct die_info *child = die->child;
2793
2794 while (child && child->tag)
2795 {
2796 switch (child->tag) {
2797 case DW_TAG_subprogram:
2798 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
2799 {
2800 best_low = min (best_low, current_low);
2801 best_high = max (best_high, current_high);
2802 }
2803 break;
2804 case DW_TAG_namespace:
2805 /* FIXME: carlton/2004-01-16: Should we do this for
2806 DW_TAG_class_type/DW_TAG_structure_type, too? I think
2807 that current GCC's always emit the DIEs corresponding
2808 to definitions of methods of classes as children of a
2809 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
2810 the DIEs giving the declarations, which could be
2811 anywhere). But I don't see any reason why the
2812 standards says that they have to be there. */
2813 get_scope_pc_bounds (child, &current_low, &current_high, cu);
2814
2815 if (current_low != ((CORE_ADDR) -1))
2816 {
2817 best_low = min (best_low, current_low);
2818 best_high = max (best_high, current_high);
2819 }
2820 break;
2821 default:
2822 /* Ignore. */
2823 break;
2824 }
2825
2826 child = sibling_die (child);
2827 }
2828 }
2829
2830 *lowpc = best_low;
2831 *highpc = best_high;
2832}
2833
c906108c
SS
2834/* Add an aggregate field to the field list. */
2835
2836static void
107d2387 2837dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
2838 struct dwarf2_cu *cu)
2839{
2840 struct objfile *objfile = cu->objfile;
c906108c
SS
2841 struct nextfield *new_field;
2842 struct attribute *attr;
2843 struct field *fp;
2844 char *fieldname = "";
2845
2846 /* Allocate a new field list entry and link it in. */
2847 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 2848 make_cleanup (xfree, new_field);
c906108c
SS
2849 memset (new_field, 0, sizeof (struct nextfield));
2850 new_field->next = fip->fields;
2851 fip->fields = new_field;
2852 fip->nfields++;
2853
2854 /* Handle accessibility and virtuality of field.
2855 The default accessibility for members is public, the default
2856 accessibility for inheritance is private. */
2857 if (die->tag != DW_TAG_inheritance)
2858 new_field->accessibility = DW_ACCESS_public;
2859 else
2860 new_field->accessibility = DW_ACCESS_private;
2861 new_field->virtuality = DW_VIRTUALITY_none;
2862
e142c38c 2863 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
2864 if (attr)
2865 new_field->accessibility = DW_UNSND (attr);
2866 if (new_field->accessibility != DW_ACCESS_public)
2867 fip->non_public_fields = 1;
e142c38c 2868 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
2869 if (attr)
2870 new_field->virtuality = DW_UNSND (attr);
2871
2872 fp = &new_field->field;
a9a9bd0f 2873
e142c38c 2874 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 2875 {
a9a9bd0f
DC
2876 /* Data member other than a C++ static data member. */
2877
c906108c 2878 /* Get type of field. */
e7c27a73 2879 fp->type = die_type (die, cu);
c906108c 2880
01ad7f36
DJ
2881 FIELD_STATIC_KIND (*fp) = 0;
2882
c906108c 2883 /* Get bit size of field (zero if none). */
e142c38c 2884 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
2885 if (attr)
2886 {
2887 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
2888 }
2889 else
2890 {
2891 FIELD_BITSIZE (*fp) = 0;
2892 }
2893
2894 /* Get bit offset of field. */
e142c38c 2895 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
2896 if (attr)
2897 {
2898 FIELD_BITPOS (*fp) =
e7c27a73 2899 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
2900 }
2901 else
2902 FIELD_BITPOS (*fp) = 0;
e142c38c 2903 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
2904 if (attr)
2905 {
2906 if (BITS_BIG_ENDIAN)
2907 {
2908 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
2909 additional bit offset from the MSB of the containing
2910 anonymous object to the MSB of the field. We don't
2911 have to do anything special since we don't need to
2912 know the size of the anonymous object. */
c906108c
SS
2913 FIELD_BITPOS (*fp) += DW_UNSND (attr);
2914 }
2915 else
2916 {
2917 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
2918 MSB of the anonymous object, subtract off the number of
2919 bits from the MSB of the field to the MSB of the
2920 object, and then subtract off the number of bits of
2921 the field itself. The result is the bit offset of
2922 the LSB of the field. */
c906108c
SS
2923 int anonymous_size;
2924 int bit_offset = DW_UNSND (attr);
2925
e142c38c 2926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
2927 if (attr)
2928 {
2929 /* The size of the anonymous object containing
2930 the bit field is explicit, so use the
2931 indicated size (in bytes). */
2932 anonymous_size = DW_UNSND (attr);
2933 }
2934 else
2935 {
2936 /* The size of the anonymous object containing
2937 the bit field must be inferred from the type
2938 attribute of the data member containing the
2939 bit field. */
2940 anonymous_size = TYPE_LENGTH (fp->type);
2941 }
2942 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
2943 - bit_offset - FIELD_BITSIZE (*fp);
2944 }
2945 }
2946
2947 /* Get name of field. */
e142c38c 2948 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2949 if (attr && DW_STRING (attr))
2950 fieldname = DW_STRING (attr);
d8151005
DJ
2951
2952 /* The name is already allocated along with this objfile, so we don't
2953 need to duplicate it for the type. */
2954 fp->name = fieldname;
c906108c
SS
2955
2956 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 2957 pointer or virtual base class pointer) to private. */
e142c38c 2958 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
2959 {
2960 new_field->accessibility = DW_ACCESS_private;
2961 fip->non_public_fields = 1;
2962 }
2963 }
a9a9bd0f 2964 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 2965 {
a9a9bd0f
DC
2966 /* C++ static member. */
2967
2968 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
2969 is a declaration, but all versions of G++ as of this writing
2970 (so through at least 3.2.1) incorrectly generate
2971 DW_TAG_variable tags. */
2972
c906108c 2973 char *physname;
c906108c 2974
a9a9bd0f 2975 /* Get name of field. */
e142c38c 2976 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
2977 if (attr && DW_STRING (attr))
2978 fieldname = DW_STRING (attr);
2979 else
c906108c
SS
2980 return;
2981
2df3850c 2982 /* Get physical name. */
e142c38c 2983 physname = dwarf2_linkage_name (die, cu);
c906108c 2984
d8151005
DJ
2985 /* The name is already allocated along with this objfile, so we don't
2986 need to duplicate it for the type. */
2987 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 2988 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 2989 FIELD_NAME (*fp) = fieldname;
c906108c
SS
2990 }
2991 else if (die->tag == DW_TAG_inheritance)
2992 {
2993 /* C++ base class field. */
e142c38c 2994 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 2995 if (attr)
e7c27a73 2996 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 2997 * bits_per_byte);
c906108c 2998 FIELD_BITSIZE (*fp) = 0;
01ad7f36 2999 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3000 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3001 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3002 fip->nbaseclasses++;
3003 }
3004}
3005
3006/* Create the vector of fields, and attach it to the type. */
3007
3008static void
fba45db2 3009dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3010 struct dwarf2_cu *cu)
c906108c
SS
3011{
3012 int nfields = fip->nfields;
3013
3014 /* Record the field count, allocate space for the array of fields,
3015 and create blank accessibility bitfields if necessary. */
3016 TYPE_NFIELDS (type) = nfields;
3017 TYPE_FIELDS (type) = (struct field *)
3018 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3019 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3020
3021 if (fip->non_public_fields)
3022 {
3023 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3024
3025 TYPE_FIELD_PRIVATE_BITS (type) =
3026 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3027 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3028
3029 TYPE_FIELD_PROTECTED_BITS (type) =
3030 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3031 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3032
3033 TYPE_FIELD_IGNORE_BITS (type) =
3034 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3035 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3036 }
3037
3038 /* If the type has baseclasses, allocate and clear a bit vector for
3039 TYPE_FIELD_VIRTUAL_BITS. */
3040 if (fip->nbaseclasses)
3041 {
3042 int num_bytes = B_BYTES (fip->nbaseclasses);
3043 char *pointer;
3044
3045 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3046 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3047 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3048 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3049 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3050 }
3051
3052 /* Copy the saved-up fields into the field vector. Start from the head
3053 of the list, adding to the tail of the field array, so that they end
3054 up in the same order in the array in which they were added to the list. */
3055 while (nfields-- > 0)
3056 {
3057 TYPE_FIELD (type, nfields) = fip->fields->field;
3058 switch (fip->fields->accessibility)
3059 {
c5aa993b
JM
3060 case DW_ACCESS_private:
3061 SET_TYPE_FIELD_PRIVATE (type, nfields);
3062 break;
c906108c 3063
c5aa993b
JM
3064 case DW_ACCESS_protected:
3065 SET_TYPE_FIELD_PROTECTED (type, nfields);
3066 break;
c906108c 3067
c5aa993b
JM
3068 case DW_ACCESS_public:
3069 break;
c906108c 3070
c5aa993b
JM
3071 default:
3072 /* Unknown accessibility. Complain and treat it as public. */
3073 {
4d3c2250
KB
3074 complaint (&symfile_complaints, "unsupported accessibility %d",
3075 fip->fields->accessibility);
c5aa993b
JM
3076 }
3077 break;
c906108c
SS
3078 }
3079 if (nfields < fip->nbaseclasses)
3080 {
3081 switch (fip->fields->virtuality)
3082 {
c5aa993b
JM
3083 case DW_VIRTUALITY_virtual:
3084 case DW_VIRTUALITY_pure_virtual:
3085 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3086 break;
c906108c
SS
3087 }
3088 }
3089 fip->fields = fip->fields->next;
3090 }
3091}
3092
c906108c
SS
3093/* Add a member function to the proper fieldlist. */
3094
3095static void
107d2387 3096dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3097 struct type *type, struct dwarf2_cu *cu)
c906108c 3098{
e7c27a73 3099 struct objfile *objfile = cu->objfile;
c906108c
SS
3100 struct attribute *attr;
3101 struct fnfieldlist *flp;
3102 int i;
3103 struct fn_field *fnp;
3104 char *fieldname;
3105 char *physname;
3106 struct nextfnfield *new_fnfield;
3107
2df3850c 3108 /* Get name of member function. */
e142c38c 3109 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3110 if (attr && DW_STRING (attr))
3111 fieldname = DW_STRING (attr);
c906108c 3112 else
2df3850c 3113 return;
c906108c 3114
2df3850c 3115 /* Get the mangled name. */
e142c38c 3116 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3117
3118 /* Look up member function name in fieldlist. */
3119 for (i = 0; i < fip->nfnfields; i++)
3120 {
27bfe10e 3121 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3122 break;
3123 }
3124
3125 /* Create new list element if necessary. */
3126 if (i < fip->nfnfields)
3127 flp = &fip->fnfieldlists[i];
3128 else
3129 {
3130 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3131 {
3132 fip->fnfieldlists = (struct fnfieldlist *)
3133 xrealloc (fip->fnfieldlists,
3134 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3135 * sizeof (struct fnfieldlist));
c906108c 3136 if (fip->nfnfields == 0)
c13c43fd 3137 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3138 }
3139 flp = &fip->fnfieldlists[fip->nfnfields];
3140 flp->name = fieldname;
3141 flp->length = 0;
3142 flp->head = NULL;
3143 fip->nfnfields++;
3144 }
3145
3146 /* Create a new member function field and chain it to the field list
3147 entry. */
3148 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3149 make_cleanup (xfree, new_fnfield);
c906108c
SS
3150 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3151 new_fnfield->next = flp->head;
3152 flp->head = new_fnfield;
3153 flp->length++;
3154
3155 /* Fill in the member function field info. */
3156 fnp = &new_fnfield->fnfield;
d8151005
DJ
3157 /* The name is already allocated along with this objfile, so we don't
3158 need to duplicate it for the type. */
3159 fnp->physname = physname ? physname : "";
c906108c
SS
3160 fnp->type = alloc_type (objfile);
3161 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3162 {
c906108c 3163 int nparams = TYPE_NFIELDS (die->type);
c906108c 3164
e26fb1d7
DC
3165 /* TYPE is the domain of this method, and DIE->TYPE is the type
3166 of the method itself (TYPE_CODE_METHOD). */
3167 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3168 TYPE_TARGET_TYPE (die->type),
3169 TYPE_FIELDS (die->type),
3170 TYPE_NFIELDS (die->type),
3171 TYPE_VARARGS (die->type));
c906108c
SS
3172
3173 /* Handle static member functions.
c5aa993b
JM
3174 Dwarf2 has no clean way to discern C++ static and non-static
3175 member functions. G++ helps GDB by marking the first
3176 parameter for non-static member functions (which is the
3177 this pointer) as artificial. We obtain this information
3178 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3179 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3180 fnp->voffset = VOFFSET_STATIC;
3181 }
3182 else
4d3c2250
KB
3183 complaint (&symfile_complaints, "member function type missing for '%s'",
3184 physname);
c906108c
SS
3185
3186 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3187 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3188 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3189
3190 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3191 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3192
3193 /* Get accessibility. */
e142c38c 3194 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3195 if (attr)
3196 {
3197 switch (DW_UNSND (attr))
3198 {
c5aa993b
JM
3199 case DW_ACCESS_private:
3200 fnp->is_private = 1;
3201 break;
3202 case DW_ACCESS_protected:
3203 fnp->is_protected = 1;
3204 break;
c906108c
SS
3205 }
3206 }
3207
b02dede2 3208 /* Check for artificial methods. */
e142c38c 3209 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3210 if (attr && DW_UNSND (attr) != 0)
3211 fnp->is_artificial = 1;
3212
c906108c 3213 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3214 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3215 if (attr)
8e19ed76
PS
3216 {
3217 /* Support the .debug_loc offsets */
3218 if (attr_form_is_block (attr))
3219 {
e7c27a73 3220 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3221 }
3222 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3223 {
4d3c2250 3224 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3225 }
3226 else
3227 {
4d3c2250
KB
3228 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3229 fieldname);
8e19ed76
PS
3230 }
3231 }
c906108c
SS
3232}
3233
3234/* Create the vector of member function fields, and attach it to the type. */
3235
3236static void
fba45db2 3237dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3238 struct dwarf2_cu *cu)
c906108c
SS
3239{
3240 struct fnfieldlist *flp;
3241 int total_length = 0;
3242 int i;
3243
3244 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3245 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3246 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3247
3248 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3249 {
3250 struct nextfnfield *nfp = flp->head;
3251 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3252 int k;
3253
3254 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3255 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3256 fn_flp->fn_fields = (struct fn_field *)
3257 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3258 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3259 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3260
3261 total_length += flp->length;
3262 }
3263
3264 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3265 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3266}
3267
3268/* Called when we find the DIE that starts a structure or union scope
3269 (definition) to process all dies that define the members of the
3270 structure or union.
3271
3272 NOTE: we need to call struct_type regardless of whether or not the
3273 DIE has an at_name attribute, since it might be an anonymous
3274 structure or union. This gets the type entered into our set of
3275 user defined types.
3276
3277 However, if the structure is incomplete (an opaque struct/union)
3278 then suppress creating a symbol table entry for it since gdb only
3279 wants to find the one with the complete definition. Note that if
3280 it is complete, we just call new_symbol, which does it's own
3281 checking about whether the struct/union is anonymous or not (and
3282 suppresses creating a symbol table entry itself). */
3283
3284static void
134d01f1 3285read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3286{
e7c27a73 3287 struct objfile *objfile = cu->objfile;
c906108c
SS
3288 struct type *type;
3289 struct attribute *attr;
63d06c5c
DC
3290 const char *previous_prefix = processing_current_prefix;
3291 struct cleanup *back_to = NULL;
c906108c 3292
134d01f1
DJ
3293 if (die->type)
3294 return;
3295
c906108c
SS
3296 type = alloc_type (objfile);
3297
3298 INIT_CPLUS_SPECIFIC (type);
e142c38c 3299 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3300 if (attr && DW_STRING (attr))
3301 {
e142c38c 3302 if (cu->language == language_cplus)
63d06c5c 3303 {
8176b9b8
DC
3304 char *new_prefix = determine_class_name (die, cu);
3305 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3306 strlen (new_prefix),
3307 &objfile->objfile_obstack);
3308 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3309 processing_current_prefix = new_prefix;
3310 }
3311 else
3312 {
d8151005
DJ
3313 /* The name is already allocated along with this objfile, so
3314 we don't need to duplicate it for the type. */
8176b9b8 3315 TYPE_TAG_NAME (type) = DW_STRING (attr);
63d06c5c 3316 }
c906108c
SS
3317 }
3318
3319 if (die->tag == DW_TAG_structure_type)
3320 {
3321 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3322 }
3323 else if (die->tag == DW_TAG_union_type)
3324 {
3325 TYPE_CODE (type) = TYPE_CODE_UNION;
3326 }
3327 else
3328 {
3329 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3330 in gdbtypes.h. */
c906108c
SS
3331 TYPE_CODE (type) = TYPE_CODE_CLASS;
3332 }
3333
e142c38c 3334 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3335 if (attr)
3336 {
3337 TYPE_LENGTH (type) = DW_UNSND (attr);
3338 }
3339 else
3340 {
3341 TYPE_LENGTH (type) = 0;
3342 }
3343
dc718098
JB
3344 if (die_is_declaration (die, cu))
3345 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3346
c906108c
SS
3347 /* We need to add the type field to the die immediately so we don't
3348 infinitely recurse when dealing with pointers to the structure
3349 type within the structure itself. */
3350 die->type = type;
3351
e142c38c 3352 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3353 {
3354 struct field_info fi;
3355 struct die_info *child_die;
3356 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3357
3358 memset (&fi, 0, sizeof (struct field_info));
3359
639d11d3 3360 child_die = die->child;
c906108c
SS
3361
3362 while (child_die && child_die->tag)
3363 {
a9a9bd0f
DC
3364 if (child_die->tag == DW_TAG_member
3365 || child_die->tag == DW_TAG_variable)
c906108c 3366 {
a9a9bd0f
DC
3367 /* NOTE: carlton/2002-11-05: A C++ static data member
3368 should be a DW_TAG_member that is a declaration, but
3369 all versions of G++ as of this writing (so through at
3370 least 3.2.1) incorrectly generate DW_TAG_variable
3371 tags for them instead. */
e7c27a73 3372 dwarf2_add_field (&fi, child_die, cu);
c906108c 3373 }
8713b1b1 3374 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3375 {
3376 /* C++ member function. */
134d01f1 3377 read_type_die (child_die, cu);
e7c27a73 3378 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3379 }
3380 else if (child_die->tag == DW_TAG_inheritance)
3381 {
3382 /* C++ base class field. */
e7c27a73 3383 dwarf2_add_field (&fi, child_die, cu);
c906108c 3384 }
c906108c
SS
3385 child_die = sibling_die (child_die);
3386 }
3387
3388 /* Attach fields and member functions to the type. */
3389 if (fi.nfields)
e7c27a73 3390 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3391 if (fi.nfnfields)
3392 {
e7c27a73 3393 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3394
c5aa993b 3395 /* Get the type which refers to the base class (possibly this
c906108c
SS
3396 class itself) which contains the vtable pointer for the current
3397 class from the DW_AT_containing_type attribute. */
3398
e142c38c 3399 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3400 {
e7c27a73 3401 struct type *t = die_containing_type (die, cu);
c906108c
SS
3402
3403 TYPE_VPTR_BASETYPE (type) = t;
3404 if (type == t)
3405 {
c5aa993b
JM
3406 static const char vptr_name[] =
3407 {'_', 'v', 'p', 't', 'r', '\0'};
c906108c
SS
3408 int i;
3409
3410 /* Our own class provides vtbl ptr. */
3411 for (i = TYPE_NFIELDS (t) - 1;
3412 i >= TYPE_N_BASECLASSES (t);
3413 --i)
3414 {
3415 char *fieldname = TYPE_FIELD_NAME (t, i);
3416
27bfe10e
JB
3417 if ((strncmp (fieldname, vptr_name,
3418 strlen (vptr_name) - 1)
3419 == 0)
c906108c
SS
3420 && is_cplus_marker (fieldname[strlen (vptr_name)]))
3421 {
3422 TYPE_VPTR_FIELDNO (type) = i;
3423 break;
3424 }
3425 }
3426
3427 /* Complain if virtual function table field not found. */
3428 if (i < TYPE_N_BASECLASSES (t))
4d3c2250
KB
3429 complaint (&symfile_complaints,
3430 "virtual function table pointer not found when defining class '%s'",
3431 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3432 "");
c906108c
SS
3433 }
3434 else
3435 {
3436 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3437 }
3438 }
3439 }
3440
c906108c
SS
3441 do_cleanups (back_to);
3442 }
63d06c5c
DC
3443
3444 processing_current_prefix = previous_prefix;
3445 if (back_to != NULL)
3446 do_cleanups (back_to);
c906108c
SS
3447}
3448
134d01f1
DJ
3449static void
3450process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3451{
3452 struct objfile *objfile = cu->objfile;
3453 const char *previous_prefix = processing_current_prefix;
90aeadfc 3454 struct die_info *child_die = die->child;
c906108c 3455
134d01f1
DJ
3456 if (TYPE_TAG_NAME (die->type) != NULL)
3457 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 3458
90aeadfc
DC
3459 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3460 snapshots) has been known to create a die giving a declaration
3461 for a class that has, as a child, a die giving a definition for a
3462 nested class. So we have to process our children even if the
3463 current die is a declaration. Normally, of course, a declaration
3464 won't have any children at all. */
134d01f1 3465
90aeadfc
DC
3466 while (child_die != NULL && child_die->tag)
3467 {
3468 if (child_die->tag == DW_TAG_member
3469 || child_die->tag == DW_TAG_variable
3470 || child_die->tag == DW_TAG_inheritance)
134d01f1 3471 {
90aeadfc 3472 /* Do nothing. */
134d01f1 3473 }
90aeadfc
DC
3474 else
3475 process_die (child_die, cu);
134d01f1 3476
90aeadfc 3477 child_die = sibling_die (child_die);
134d01f1
DJ
3478 }
3479
90aeadfc
DC
3480 if (die->child != NULL && ! die_is_declaration (die, cu))
3481 new_symbol (die, die->type, cu);
3482
134d01f1
DJ
3483 processing_current_prefix = previous_prefix;
3484}
3485
3486/* Given a DW_AT_enumeration_type die, set its type. We do not
3487 complete the type's fields yet, or create any symbols. */
c906108c
SS
3488
3489static void
134d01f1 3490read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3491{
e7c27a73 3492 struct objfile *objfile = cu->objfile;
c906108c 3493 struct type *type;
c906108c 3494 struct attribute *attr;
134d01f1
DJ
3495
3496 if (die->type)
3497 return;
c906108c
SS
3498
3499 type = alloc_type (objfile);
3500
3501 TYPE_CODE (type) = TYPE_CODE_ENUM;
e142c38c 3502 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3503 if (attr && DW_STRING (attr))
3504 {
d8151005 3505 char *name = DW_STRING (attr);
63d06c5c
DC
3506
3507 if (processing_has_namespace_info)
3508 {
b99607ea 3509 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
63d06c5c
DC
3510 processing_current_prefix,
3511 processing_current_prefix[0] == '\0'
3512 ? "" : "::",
3513 name);
3514 }
3515 else
3516 {
d8151005
DJ
3517 /* The name is already allocated along with this objfile, so
3518 we don't need to duplicate it for the type. */
3519 TYPE_TAG_NAME (type) = name;
63d06c5c 3520 }
c906108c
SS
3521 }
3522
e142c38c 3523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3524 if (attr)
3525 {
3526 TYPE_LENGTH (type) = DW_UNSND (attr);
3527 }
3528 else
3529 {
3530 TYPE_LENGTH (type) = 0;
3531 }
3532
134d01f1
DJ
3533 die->type = type;
3534}
3535
8176b9b8
DC
3536/* Determine the name of the type represented by DIE, which should be
3537 a named C++ compound type. Return the name in question; the caller
3538 is responsible for xfree()'ing it. */
3539
3540static char *
3541determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3542{
3543 struct cleanup *back_to = NULL;
3544 struct die_info *spec_die = die_specification (die, cu);
3545 char *new_prefix = NULL;
3546
3547 /* If this is the definition of a class that is declared by another
3548 die, then processing_current_prefix may not be accurate; see
3549 read_func_scope for a similar example. */
3550 if (spec_die != NULL)
3551 {
3552 char *specification_prefix = determine_prefix (spec_die, cu);
3553 processing_current_prefix = specification_prefix;
3554 back_to = make_cleanup (xfree, specification_prefix);
3555 }
3556
3557 /* If we don't have namespace debug info, guess the name by trying
3558 to demangle the names of members, just like we did in
72bf9492 3559 guess_structure_name. */
8176b9b8
DC
3560 if (!processing_has_namespace_info)
3561 {
3562 struct die_info *child;
3563
3564 for (child = die->child;
3565 child != NULL && child->tag != 0;
3566 child = sibling_die (child))
3567 {
3568 if (child->tag == DW_TAG_subprogram)
3569 {
31c27f77
JJ
3570 new_prefix
3571 = language_class_name_from_physname (cu->language_defn,
3572 dwarf2_linkage_name
8176b9b8
DC
3573 (child, cu));
3574
3575 if (new_prefix != NULL)
3576 break;
3577 }
3578 }
3579 }
3580
3581 if (new_prefix == NULL)
3582 {
3583 const char *name = dwarf2_name (die, cu);
3584 new_prefix = typename_concat (processing_current_prefix,
3585 name ? name : "<<anonymous>>");
3586 }
3587
3588 if (back_to != NULL)
3589 do_cleanups (back_to);
3590
3591 return new_prefix;
3592}
3593
134d01f1
DJ
3594/* Given a pointer to a die which begins an enumeration, process all
3595 the dies that define the members of the enumeration, and create the
3596 symbol for the enumeration type.
3597
3598 NOTE: We reverse the order of the element list. */
3599
3600static void
3601process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
3602{
3603 struct objfile *objfile = cu->objfile;
3604 struct die_info *child_die;
3605 struct field *fields;
3606 struct attribute *attr;
3607 struct symbol *sym;
3608 int num_fields;
3609 int unsigned_enum = 1;
3610
c906108c
SS
3611 num_fields = 0;
3612 fields = NULL;
639d11d3 3613 if (die->child != NULL)
c906108c 3614 {
639d11d3 3615 child_die = die->child;
c906108c
SS
3616 while (child_die && child_die->tag)
3617 {
3618 if (child_die->tag != DW_TAG_enumerator)
3619 {
e7c27a73 3620 process_die (child_die, cu);
c906108c
SS
3621 }
3622 else
3623 {
e142c38c 3624 attr = dwarf2_attr (child_die, DW_AT_name, cu);
c906108c
SS
3625 if (attr)
3626 {
134d01f1 3627 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
3628 if (SYMBOL_VALUE (sym) < 0)
3629 unsigned_enum = 0;
3630
3631 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
3632 {
3633 fields = (struct field *)
3634 xrealloc (fields,
3635 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3636 * sizeof (struct field));
c906108c
SS
3637 }
3638
22abf04a 3639 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
3640 FIELD_TYPE (fields[num_fields]) = NULL;
3641 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
3642 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 3643 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
3644
3645 num_fields++;
3646 }
3647 }
3648
3649 child_die = sibling_die (child_die);
3650 }
3651
3652 if (num_fields)
3653 {
134d01f1
DJ
3654 TYPE_NFIELDS (die->type) = num_fields;
3655 TYPE_FIELDS (die->type) = (struct field *)
3656 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
3657 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 3658 sizeof (struct field) * num_fields);
b8c9b27d 3659 xfree (fields);
c906108c
SS
3660 }
3661 if (unsigned_enum)
134d01f1 3662 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 3663 }
134d01f1
DJ
3664
3665 new_symbol (die, die->type, cu);
c906108c
SS
3666}
3667
3668/* Extract all information from a DW_TAG_array_type DIE and put it in
3669 the DIE's type field. For now, this only handles one dimensional
3670 arrays. */
3671
3672static void
e7c27a73 3673read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3674{
e7c27a73 3675 struct objfile *objfile = cu->objfile;
c906108c
SS
3676 struct die_info *child_die;
3677 struct type *type = NULL;
3678 struct type *element_type, *range_type, *index_type;
3679 struct type **range_types = NULL;
3680 struct attribute *attr;
3681 int ndim = 0;
3682 struct cleanup *back_to;
3683
3684 /* Return if we've already decoded this type. */
3685 if (die->type)
3686 {
3687 return;
3688 }
3689
e7c27a73 3690 element_type = die_type (die, cu);
c906108c
SS
3691
3692 /* Irix 6.2 native cc creates array types without children for
3693 arrays with unspecified length. */
639d11d3 3694 if (die->child == NULL)
c906108c 3695 {
e142c38c 3696 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c
SS
3697 range_type = create_range_type (NULL, index_type, 0, -1);
3698 die->type = create_array_type (NULL, element_type, range_type);
3699 return;
3700 }
3701
3702 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 3703 child_die = die->child;
c906108c
SS
3704 while (child_die && child_die->tag)
3705 {
3706 if (child_die->tag == DW_TAG_subrange_type)
3707 {
a02abb62 3708 read_subrange_type (child_die, cu);
c906108c 3709
a02abb62
JB
3710 if (child_die->type != NULL)
3711 {
3712 /* The range type was succesfully read. Save it for
3713 the array type creation. */
3714 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
3715 {
3716 range_types = (struct type **)
3717 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
3718 * sizeof (struct type *));
3719 if (ndim == 0)
3720 make_cleanup (free_current_contents, &range_types);
3721 }
3722 range_types[ndim++] = child_die->type;
3723 }
c906108c
SS
3724 }
3725 child_die = sibling_die (child_die);
3726 }
3727
3728 /* Dwarf2 dimensions are output from left to right, create the
3729 necessary array types in backwards order. */
7ca2d3a3 3730
c906108c 3731 type = element_type;
7ca2d3a3
DL
3732
3733 if (read_array_order (die, cu) == DW_ORD_col_major)
3734 {
3735 int i = 0;
3736 while (i < ndim)
3737 type = create_array_type (NULL, type, range_types[i++]);
3738 }
3739 else
3740 {
3741 while (ndim-- > 0)
3742 type = create_array_type (NULL, type, range_types[ndim]);
3743 }
c906108c 3744
f5f8a009
EZ
3745 /* Understand Dwarf2 support for vector types (like they occur on
3746 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
3747 array type. This is not part of the Dwarf2/3 standard yet, but a
3748 custom vendor extension. The main difference between a regular
3749 array and the vector variant is that vectors are passed by value
3750 to functions. */
e142c38c 3751 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009
EZ
3752 if (attr)
3753 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
3754
c906108c
SS
3755 do_cleanups (back_to);
3756
3757 /* Install the type in the die. */
3758 die->type = type;
3759}
3760
7ca2d3a3
DL
3761static enum dwarf_array_dim_ordering
3762read_array_order (struct die_info *die, struct dwarf2_cu *cu)
3763{
3764 struct attribute *attr;
3765
3766 attr = dwarf2_attr (die, DW_AT_ordering, cu);
3767
3768 if (attr) return DW_SND (attr);
3769
3770 /*
3771 GNU F77 is a special case, as at 08/2004 array type info is the
3772 opposite order to the dwarf2 specification, but data is still
3773 laid out as per normal fortran.
3774
3775 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
3776 version checking.
3777 */
3778
3779 if (cu->language == language_fortran &&
3780 cu->producer && strstr (cu->producer, "GNU F77"))
3781 {
3782 return DW_ORD_row_major;
3783 }
3784
3785 switch (cu->language_defn->la_array_ordering)
3786 {
3787 case array_column_major:
3788 return DW_ORD_col_major;
3789 case array_row_major:
3790 default:
3791 return DW_ORD_row_major;
3792 };
3793}
3794
3795
c906108c
SS
3796/* First cut: install each common block member as a global variable. */
3797
3798static void
e7c27a73 3799read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
3800{
3801 struct die_info *child_die;
3802 struct attribute *attr;
3803 struct symbol *sym;
3804 CORE_ADDR base = (CORE_ADDR) 0;
3805
e142c38c 3806 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
3807 if (attr)
3808 {
8e19ed76
PS
3809 /* Support the .debug_loc offsets */
3810 if (attr_form_is_block (attr))
3811 {
e7c27a73 3812 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
3813 }
3814 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3815 {
4d3c2250 3816 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3817 }
3818 else
3819 {
4d3c2250
KB
3820 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
3821 "common block member");
8e19ed76 3822 }
c906108c 3823 }
639d11d3 3824 if (die->child != NULL)
c906108c 3825 {
639d11d3 3826 child_die = die->child;
c906108c
SS
3827 while (child_die && child_die->tag)
3828 {
e7c27a73 3829 sym = new_symbol (child_die, NULL, cu);
e142c38c 3830 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
3831 if (attr)
3832 {
3833 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 3834 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
3835 add_symbol_to_list (sym, &global_symbols);
3836 }
3837 child_die = sibling_die (child_die);
3838 }
3839 }
3840}
3841
d9fa45fe
DC
3842/* Read a C++ namespace. */
3843
d9fa45fe 3844static void
e7c27a73 3845read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 3846{
e7c27a73 3847 struct objfile *objfile = cu->objfile;
38d518c9 3848 const char *previous_prefix = processing_current_prefix;
63d06c5c 3849 const char *name;
9219021c
DC
3850 int is_anonymous;
3851 struct die_info *current_die;
3852
e142c38c 3853 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
3854
3855 /* Now build the name of the current namespace. */
3856
38d518c9 3857 if (previous_prefix[0] == '\0')
9219021c 3858 {
38d518c9 3859 processing_current_prefix = name;
9219021c
DC
3860 }
3861 else
3862 {
38d518c9 3863 /* We need temp_name around because processing_current_prefix
9219021c 3864 is a const char *. */
38d518c9 3865 char *temp_name = alloca (strlen (previous_prefix)
9219021c 3866 + 2 + strlen(name) + 1);
38d518c9 3867 strcpy (temp_name, previous_prefix);
9219021c
DC
3868 strcat (temp_name, "::");
3869 strcat (temp_name, name);
3870
38d518c9 3871 processing_current_prefix = temp_name;
9219021c
DC
3872 }
3873
5c4e30ca
DC
3874 /* Add a symbol associated to this if we haven't seen the namespace
3875 before. Also, add a using directive if it's an anonymous
3876 namespace. */
9219021c 3877
e142c38c 3878 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
3879 {
3880 struct type *type;
3881
3882 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
3883 this cast will hopefully become unnecessary. */
3884 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 3885 (char *) processing_current_prefix,
5c4e30ca
DC
3886 objfile);
3887 TYPE_TAG_NAME (type) = TYPE_NAME (type);
3888
e7c27a73 3889 new_symbol (die, type, cu);
8176b9b8 3890 die->type = type;
5c4e30ca
DC
3891
3892 if (is_anonymous)
38d518c9
EZ
3893 cp_add_using_directive (processing_current_prefix,
3894 strlen (previous_prefix),
3895 strlen (processing_current_prefix));
5c4e30ca 3896 }
9219021c 3897
639d11d3 3898 if (die->child != NULL)
d9fa45fe 3899 {
639d11d3 3900 struct die_info *child_die = die->child;
d9fa45fe
DC
3901
3902 while (child_die && child_die->tag)
3903 {
e7c27a73 3904 process_die (child_die, cu);
d9fa45fe
DC
3905 child_die = sibling_die (child_die);
3906 }
3907 }
9219021c 3908
38d518c9
EZ
3909 processing_current_prefix = previous_prefix;
3910}
3911
3912/* Return the name of the namespace represented by DIE. Set
3913 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
3914 namespace. */
3915
3916static const char *
e142c38c 3917namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
3918{
3919 struct die_info *current_die;
3920 const char *name = NULL;
3921
3922 /* Loop through the extensions until we find a name. */
3923
3924 for (current_die = die;
3925 current_die != NULL;
e142c38c 3926 current_die = dwarf2_extension (die, cu))
38d518c9 3927 {
e142c38c 3928 name = dwarf2_name (current_die, cu);
38d518c9
EZ
3929 if (name != NULL)
3930 break;
3931 }
3932
3933 /* Is it an anonymous namespace? */
3934
3935 *is_anonymous = (name == NULL);
3936 if (*is_anonymous)
3937 name = "(anonymous namespace)";
3938
3939 return name;
d9fa45fe
DC
3940}
3941
c906108c
SS
3942/* Extract all information from a DW_TAG_pointer_type DIE and add to
3943 the user defined type vector. */
3944
3945static void
e7c27a73 3946read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3947{
e7c27a73 3948 struct comp_unit_head *cu_header = &cu->header;
c906108c 3949 struct type *type;
8b2dbe47
KB
3950 struct attribute *attr_byte_size;
3951 struct attribute *attr_address_class;
3952 int byte_size, addr_class;
c906108c
SS
3953
3954 if (die->type)
3955 {
3956 return;
3957 }
3958
e7c27a73 3959 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 3960
e142c38c 3961 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
3962 if (attr_byte_size)
3963 byte_size = DW_UNSND (attr_byte_size);
c906108c 3964 else
8b2dbe47
KB
3965 byte_size = cu_header->addr_size;
3966
e142c38c 3967 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
3968 if (attr_address_class)
3969 addr_class = DW_UNSND (attr_address_class);
3970 else
3971 addr_class = DW_ADDR_none;
3972
3973 /* If the pointer size or address class is different than the
3974 default, create a type variant marked as such and set the
3975 length accordingly. */
3976 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 3977 {
8b2dbe47
KB
3978 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
3979 {
3980 int type_flags;
3981
3982 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
3983 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
3984 type = make_type_with_address_space (type, type_flags);
3985 }
3986 else if (TYPE_LENGTH (type) != byte_size)
3987 {
4d3c2250 3988 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
8b2dbe47
KB
3989 }
3990 else {
3991 /* Should we also complain about unhandled address classes? */
3992 }
c906108c 3993 }
8b2dbe47
KB
3994
3995 TYPE_LENGTH (type) = byte_size;
c906108c
SS
3996 die->type = type;
3997}
3998
3999/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4000 the user defined type vector. */
4001
4002static void
e7c27a73 4003read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4004{
e7c27a73 4005 struct objfile *objfile = cu->objfile;
c906108c
SS
4006 struct type *type;
4007 struct type *to_type;
4008 struct type *domain;
4009
4010 if (die->type)
4011 {
4012 return;
4013 }
4014
4015 type = alloc_type (objfile);
e7c27a73
DJ
4016 to_type = die_type (die, cu);
4017 domain = die_containing_type (die, cu);
c906108c
SS
4018 smash_to_member_type (type, domain, to_type);
4019
4020 die->type = type;
4021}
4022
4023/* Extract all information from a DW_TAG_reference_type DIE and add to
4024 the user defined type vector. */
4025
4026static void
e7c27a73 4027read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4028{
e7c27a73 4029 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4030 struct type *type;
4031 struct attribute *attr;
4032
4033 if (die->type)
4034 {
4035 return;
4036 }
4037
e7c27a73 4038 type = lookup_reference_type (die_type (die, cu));
e142c38c 4039 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4040 if (attr)
4041 {
4042 TYPE_LENGTH (type) = DW_UNSND (attr);
4043 }
4044 else
4045 {
107d2387 4046 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c
SS
4047 }
4048 die->type = type;
4049}
4050
4051static void
e7c27a73 4052read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4053{
090c42a4
JB
4054 struct type *base_type;
4055
c906108c
SS
4056 if (die->type)
4057 {
4058 return;
4059 }
4060
e7c27a73 4061 base_type = die_type (die, cu);
090c42a4 4062 die->type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
c906108c
SS
4063}
4064
4065static void
e7c27a73 4066read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4067{
090c42a4
JB
4068 struct type *base_type;
4069
c906108c
SS
4070 if (die->type)
4071 {
4072 return;
4073 }
4074
e7c27a73 4075 base_type = die_type (die, cu);
090c42a4 4076 die->type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
c906108c
SS
4077}
4078
4079/* Extract all information from a DW_TAG_string_type DIE and add to
4080 the user defined type vector. It isn't really a user defined type,
4081 but it behaves like one, with other DIE's using an AT_user_def_type
4082 attribute to reference it. */
4083
4084static void
e7c27a73 4085read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4086{
e7c27a73 4087 struct objfile *objfile = cu->objfile;
c906108c
SS
4088 struct type *type, *range_type, *index_type, *char_type;
4089 struct attribute *attr;
4090 unsigned int length;
4091
4092 if (die->type)
4093 {
4094 return;
4095 }
4096
e142c38c 4097 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4098 if (attr)
4099 {
4100 length = DW_UNSND (attr);
4101 }
4102 else
4103 {
b21b22e0 4104 /* check for the DW_AT_byte_size attribute */
e142c38c 4105 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4106 if (attr)
4107 {
4108 length = DW_UNSND (attr);
4109 }
4110 else
4111 {
4112 length = 1;
4113 }
c906108c 4114 }
e142c38c 4115 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4116 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4117 if (cu->language == language_fortran)
b21b22e0
PS
4118 {
4119 /* Need to create a unique string type for bounds
4120 information */
4121 type = create_string_type (0, range_type);
4122 }
4123 else
4124 {
e142c38c 4125 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4126 type = create_string_type (char_type, range_type);
4127 }
c906108c
SS
4128 die->type = type;
4129}
4130
4131/* Handle DIES due to C code like:
4132
4133 struct foo
c5aa993b
JM
4134 {
4135 int (*funcp)(int a, long l);
4136 int b;
4137 };
c906108c
SS
4138
4139 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4140 */
c906108c
SS
4141
4142static void
e7c27a73 4143read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4144{
4145 struct type *type; /* Type that this function returns */
4146 struct type *ftype; /* Function that returns above type */
4147 struct attribute *attr;
4148
4149 /* Decode the type that this subroutine returns */
4150 if (die->type)
4151 {
4152 return;
4153 }
e7c27a73 4154 type = die_type (die, cu);
c906108c
SS
4155 ftype = lookup_function_type (type);
4156
4157 /* All functions in C++ have prototypes. */
e142c38c 4158 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4159 if ((attr && (DW_UNSND (attr) != 0))
e142c38c 4160 || cu->language == language_cplus)
c906108c
SS
4161 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4162
639d11d3 4163 if (die->child != NULL)
c906108c
SS
4164 {
4165 struct die_info *child_die;
4166 int nparams = 0;
4167 int iparams = 0;
4168
4169 /* Count the number of parameters.
4170 FIXME: GDB currently ignores vararg functions, but knows about
4171 vararg member functions. */
639d11d3 4172 child_die = die->child;
c906108c
SS
4173 while (child_die && child_die->tag)
4174 {
4175 if (child_die->tag == DW_TAG_formal_parameter)
4176 nparams++;
4177 else if (child_die->tag == DW_TAG_unspecified_parameters)
4178 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4179 child_die = sibling_die (child_die);
4180 }
4181
4182 /* Allocate storage for parameters and fill them in. */
4183 TYPE_NFIELDS (ftype) = nparams;
4184 TYPE_FIELDS (ftype) = (struct field *)
4185 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4186
639d11d3 4187 child_die = die->child;
c906108c
SS
4188 while (child_die && child_die->tag)
4189 {
4190 if (child_die->tag == DW_TAG_formal_parameter)
4191 {
4192 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4193 member functions. G++ helps GDB by marking the first
4194 parameter for non-static member functions (which is the
4195 this pointer) as artificial. We pass this information
4196 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4197 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4198 if (attr)
4199 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4200 else
4201 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4202 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4203 iparams++;
4204 }
4205 child_die = sibling_die (child_die);
4206 }
4207 }
4208
4209 die->type = ftype;
4210}
4211
4212static void
e7c27a73 4213read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4214{
e7c27a73 4215 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4216 struct attribute *attr;
4217 char *name = NULL;
c906108c
SS
4218
4219 if (!die->type)
4220 {
e142c38c 4221 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c 4222 if (attr && DW_STRING (attr))
2f038fcb
FF
4223 {
4224 name = DW_STRING (attr);
4225 }
4226 die->type = init_type (TYPE_CODE_TYPEDEF, 0, TYPE_FLAG_TARGET_STUB, name, objfile);
e7c27a73 4227 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4228 }
4229}
4230
4231/* Find a representation of a given base type and install
4232 it in the TYPE field of the die. */
4233
4234static void
e7c27a73 4235read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4236{
e7c27a73 4237 struct objfile *objfile = cu->objfile;
c906108c
SS
4238 struct type *type;
4239 struct attribute *attr;
4240 int encoding = 0, size = 0;
4241
4242 /* If we've already decoded this die, this is a no-op. */
4243 if (die->type)
4244 {
4245 return;
4246 }
4247
e142c38c 4248 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4249 if (attr)
4250 {
4251 encoding = DW_UNSND (attr);
4252 }
e142c38c 4253 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4254 if (attr)
4255 {
4256 size = DW_UNSND (attr);
4257 }
e142c38c 4258 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4259 if (attr && DW_STRING (attr))
4260 {
4261 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4262 int type_flags = 0;
c906108c
SS
4263
4264 switch (encoding)
4265 {
4266 case DW_ATE_address:
4267 /* Turn DW_ATE_address into a void * pointer. */
4268 code = TYPE_CODE_PTR;
f5ef7c67 4269 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4270 break;
4271 case DW_ATE_boolean:
4272 code = TYPE_CODE_BOOL;
f5ef7c67 4273 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4274 break;
4275 case DW_ATE_complex_float:
4276 code = TYPE_CODE_COMPLEX;
4277 break;
4278 case DW_ATE_float:
4279 code = TYPE_CODE_FLT;
4280 break;
4281 case DW_ATE_signed:
4282 case DW_ATE_signed_char:
4283 break;
4284 case DW_ATE_unsigned:
4285 case DW_ATE_unsigned_char:
f5ef7c67 4286 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4287 break;
4288 default:
4d3c2250
KB
4289 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
4290 dwarf_type_encoding_name (encoding));
c906108c
SS
4291 break;
4292 }
f5ef7c67 4293 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
c906108c 4294 if (encoding == DW_ATE_address)
e142c38c
DJ
4295 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4296 cu);
f65ca430
DJ
4297 else if (encoding == DW_ATE_complex_float)
4298 {
4299 if (size == 32)
4300 TYPE_TARGET_TYPE (type)
e142c38c 4301 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4302 else if (size == 16)
4303 TYPE_TARGET_TYPE (type)
e142c38c 4304 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4305 else if (size == 8)
4306 TYPE_TARGET_TYPE (type)
e142c38c 4307 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4308 }
c906108c
SS
4309 }
4310 else
4311 {
e7c27a73 4312 type = dwarf_base_type (encoding, size, cu);
c906108c
SS
4313 }
4314 die->type = type;
4315}
4316
a02abb62
JB
4317/* Read the given DW_AT_subrange DIE. */
4318
4319static void
4320read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4321{
4322 struct type *base_type;
4323 struct type *range_type;
4324 struct attribute *attr;
4325 int low = 0;
4326 int high = -1;
4327
4328 /* If we have already decoded this die, then nothing more to do. */
4329 if (die->type)
4330 return;
4331
4332 base_type = die_type (die, cu);
4333 if (base_type == NULL)
4334 {
4335 complaint (&symfile_complaints,
4336 "DW_AT_type missing from DW_TAG_subrange_type");
4337 return;
4338 }
4339
4340 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4341 base_type = alloc_type (NULL);
4342
e142c38c 4343 if (cu->language == language_fortran)
a02abb62
JB
4344 {
4345 /* FORTRAN implies a lower bound of 1, if not given. */
4346 low = 1;
4347 }
4348
e142c38c 4349 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4350 if (attr)
4351 low = dwarf2_get_attr_constant_value (attr, 0);
4352
e142c38c 4353 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4354 if (attr)
4355 {
4356 if (attr->form == DW_FORM_block1)
4357 {
4358 /* GCC encodes arrays with unspecified or dynamic length
4359 with a DW_FORM_block1 attribute.
4360 FIXME: GDB does not yet know how to handle dynamic
4361 arrays properly, treat them as arrays with unspecified
4362 length for now.
4363
4364 FIXME: jimb/2003-09-22: GDB does not really know
4365 how to handle arrays of unspecified length
4366 either; we just represent them as zero-length
4367 arrays. Choose an appropriate upper bound given
4368 the lower bound we've computed above. */
4369 high = low - 1;
4370 }
4371 else
4372 high = dwarf2_get_attr_constant_value (attr, 1);
4373 }
4374
4375 range_type = create_range_type (NULL, base_type, low, high);
4376
e142c38c 4377 attr = dwarf2_attr (die, DW_AT_name, cu);
a02abb62
JB
4378 if (attr && DW_STRING (attr))
4379 TYPE_NAME (range_type) = DW_STRING (attr);
4380
e142c38c 4381 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4382 if (attr)
4383 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4384
4385 die->type = range_type;
4386}
4387
4388
c906108c
SS
4389/* Read a whole compilation unit into a linked list of dies. */
4390
f9aca02d 4391static struct die_info *
e7c27a73 4392read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 4393{
b3810801 4394 /* Reset die reference table; we are
7f0e3f52
AC
4395 building new ones now. */
4396 dwarf2_empty_hash_tables ();
c906108c 4397
e7c27a73 4398 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
4399}
4400
4401/* Read a single die and all its descendents. Set the die's sibling
4402 field to NULL; set other fields in the die correctly, and set all
4403 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4404 location of the info_ptr after reading all of those dies. PARENT
4405 is the parent of the die in question. */
4406
4407static struct die_info *
4408read_die_and_children (char *info_ptr, bfd *abfd,
e7c27a73 4409 struct dwarf2_cu *cu,
639d11d3
DC
4410 char **new_info_ptr,
4411 struct die_info *parent)
4412{
4413 struct die_info *die;
4414 char *cur_ptr;
4415 int has_children;
4416
e7c27a73 4417 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
639d11d3
DC
4418 store_in_ref_table (die->offset, die);
4419
4420 if (has_children)
4421 {
e7c27a73 4422 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
4423 new_info_ptr, die);
4424 }
4425 else
4426 {
4427 die->child = NULL;
4428 *new_info_ptr = cur_ptr;
4429 }
4430
4431 die->sibling = NULL;
4432 die->parent = parent;
4433 return die;
4434}
4435
4436/* Read a die, all of its descendents, and all of its siblings; set
4437 all of the fields of all of the dies correctly. Arguments are as
4438 in read_die_and_children. */
4439
4440static struct die_info *
4441read_die_and_siblings (char *info_ptr, bfd *abfd,
e7c27a73 4442 struct dwarf2_cu *cu,
639d11d3
DC
4443 char **new_info_ptr,
4444 struct die_info *parent)
4445{
4446 struct die_info *first_die, *last_sibling;
4447 char *cur_ptr;
4448
c906108c 4449 cur_ptr = info_ptr;
639d11d3
DC
4450 first_die = last_sibling = NULL;
4451
4452 while (1)
c906108c 4453 {
639d11d3 4454 struct die_info *die
e7c27a73 4455 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
4456
4457 if (!first_die)
c906108c 4458 {
639d11d3 4459 first_die = die;
c906108c 4460 }
639d11d3 4461 else
c906108c 4462 {
639d11d3 4463 last_sibling->sibling = die;
c906108c
SS
4464 }
4465
639d11d3 4466 if (die->tag == 0)
c906108c 4467 {
639d11d3
DC
4468 *new_info_ptr = cur_ptr;
4469 return first_die;
c906108c
SS
4470 }
4471 else
4472 {
639d11d3 4473 last_sibling = die;
c906108c
SS
4474 }
4475 }
c906108c
SS
4476}
4477
4478/* Free a linked list of dies. */
4479
4480static void
fba45db2 4481free_die_list (struct die_info *dies)
c906108c
SS
4482{
4483 struct die_info *die, *next;
4484
4485 die = dies;
4486 while (die)
4487 {
639d11d3
DC
4488 if (die->child != NULL)
4489 free_die_list (die->child);
4490 next = die->sibling;
b8c9b27d
KB
4491 xfree (die->attrs);
4492 xfree (die);
c906108c
SS
4493 die = next;
4494 }
4495}
4496
74b7792f
AC
4497static void
4498do_free_die_list_cleanup (void *dies)
4499{
4500 free_die_list (dies);
4501}
4502
4503static struct cleanup *
4504make_cleanup_free_die_list (struct die_info *dies)
4505{
4506 return make_cleanup (do_free_die_list_cleanup, dies);
4507}
4508
4509
c906108c 4510/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 4511 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 4512
b6af0555 4513char *
188dd5d6 4514dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
4515{
4516 bfd *abfd = objfile->obfd;
086df311 4517 char *buf, *retbuf;
2c500098 4518 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
4519
4520 if (size == 0)
4521 return NULL;
4522
8b92e4d5 4523 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
086df311
DJ
4524 retbuf
4525 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4526 if (retbuf != NULL)
4527 return retbuf;
4528
188dd5d6
DJ
4529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4530 || bfd_bread (buf, size, abfd) != size)
4531 error ("Dwarf Error: Can't read DWARF data from '%s'",
4532 bfd_get_filename (abfd));
4533
c906108c
SS
4534 return buf;
4535}
4536
4537/* In DWARF version 2, the description of the debugging information is
4538 stored in a separate .debug_abbrev section. Before we read any
4539 dies from a section we read in all abbreviations and install them
72bf9492
DJ
4540 in a hash table. This function also sets flags in CU describing
4541 the data found in the abbrev table. */
c906108c
SS
4542
4543static void
e7c27a73 4544dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 4545{
e7c27a73 4546 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4547 char *abbrev_ptr;
4548 struct abbrev_info *cur_abbrev;
4549 unsigned int abbrev_number, bytes_read, abbrev_name;
4550 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
4551 struct attr_abbrev *cur_attrs;
4552 unsigned int allocated_attrs;
c906108c 4553
57349743 4554 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
4555 obstack_init (&cu->abbrev_obstack);
4556 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4557 (ABBREV_HASH_SIZE
4558 * sizeof (struct abbrev_info *)));
4559 memset (cu->dwarf2_abbrevs, 0,
4560 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 4561
6502dd73 4562 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
4563 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4564 abbrev_ptr += bytes_read;
4565
f3dd6933
DJ
4566 allocated_attrs = ATTR_ALLOC_CHUNK;
4567 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4568
c906108c
SS
4569 /* loop until we reach an abbrev number of 0 */
4570 while (abbrev_number)
4571 {
f3dd6933 4572 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
4573
4574 /* read in abbrev header */
4575 cur_abbrev->number = abbrev_number;
4576 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4577 abbrev_ptr += bytes_read;
4578 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4579 abbrev_ptr += 1;
4580
72bf9492
DJ
4581 if (cur_abbrev->tag == DW_TAG_namespace)
4582 cu->has_namespace_info = 1;
4583
c906108c
SS
4584 /* now read in declarations */
4585 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4586 abbrev_ptr += bytes_read;
4587 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4588 abbrev_ptr += bytes_read;
4589 while (abbrev_name)
4590 {
f3dd6933 4591 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 4592 {
f3dd6933
DJ
4593 allocated_attrs += ATTR_ALLOC_CHUNK;
4594 cur_attrs
4595 = xrealloc (cur_attrs, (allocated_attrs
4596 * sizeof (struct attr_abbrev)));
c906108c 4597 }
f3dd6933
DJ
4598 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
4599 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
4600 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4601 abbrev_ptr += bytes_read;
4602 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4603 abbrev_ptr += bytes_read;
4604 }
4605
f3dd6933
DJ
4606 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
4607 (cur_abbrev->num_attrs
4608 * sizeof (struct attr_abbrev)));
4609 memcpy (cur_abbrev->attrs, cur_attrs,
4610 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
4611
c906108c 4612 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
4613 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
4614 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
4615
4616 /* Get next abbreviation.
4617 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
4618 always properly terminated with an abbrev number of 0.
4619 Exit loop if we encounter an abbreviation which we have
4620 already read (which means we are about to read the abbreviations
4621 for the next compile unit) or if the end of the abbreviation
4622 table is reached. */
6502dd73
DJ
4623 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
4624 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
4625 break;
4626 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4627 abbrev_ptr += bytes_read;
e7c27a73 4628 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
4629 break;
4630 }
f3dd6933
DJ
4631
4632 xfree (cur_attrs);
c906108c
SS
4633}
4634
f3dd6933 4635/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 4636
c906108c 4637static void
f3dd6933 4638dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 4639{
f3dd6933 4640 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 4641
f3dd6933
DJ
4642 obstack_free (&cu->abbrev_obstack, NULL);
4643 cu->dwarf2_abbrevs = NULL;
c906108c
SS
4644}
4645
4646/* Lookup an abbrev_info structure in the abbrev hash table. */
4647
4648static struct abbrev_info *
e7c27a73 4649dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
4650{
4651 unsigned int hash_number;
4652 struct abbrev_info *abbrev;
4653
4654 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 4655 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
4656
4657 while (abbrev)
4658 {
4659 if (abbrev->number == number)
4660 return abbrev;
4661 else
4662 abbrev = abbrev->next;
4663 }
4664 return NULL;
4665}
4666
72bf9492
DJ
4667/* Returns nonzero if TAG represents a type that we might generate a partial
4668 symbol for. */
4669
4670static int
4671is_type_tag_for_partial (int tag)
4672{
4673 switch (tag)
4674 {
4675#if 0
4676 /* Some types that would be reasonable to generate partial symbols for,
4677 that we don't at present. */
4678 case DW_TAG_array_type:
4679 case DW_TAG_file_type:
4680 case DW_TAG_ptr_to_member_type:
4681 case DW_TAG_set_type:
4682 case DW_TAG_string_type:
4683 case DW_TAG_subroutine_type:
4684#endif
4685 case DW_TAG_base_type:
4686 case DW_TAG_class_type:
4687 case DW_TAG_enumeration_type:
4688 case DW_TAG_structure_type:
4689 case DW_TAG_subrange_type:
4690 case DW_TAG_typedef:
4691 case DW_TAG_union_type:
4692 return 1;
4693 default:
4694 return 0;
4695 }
4696}
4697
4698/* Load all DIEs that are interesting for partial symbols into memory. */
4699
4700static struct partial_die_info *
4701load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
4702 struct dwarf2_cu *cu)
4703{
4704 struct partial_die_info *part_die;
4705 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
4706 struct abbrev_info *abbrev;
4707 unsigned int bytes_read;
4708
4709 int nesting_level = 1;
4710
4711 parent_die = NULL;
4712 last_die = NULL;
4713
4714 cu->partial_dies
4715 = htab_create_alloc_ex (cu->header.length / 12,
4716 partial_die_hash,
4717 partial_die_eq,
4718 NULL,
4719 &cu->comp_unit_obstack,
4720 hashtab_obstack_allocate,
4721 dummy_obstack_deallocate);
4722
4723 part_die = obstack_alloc (&cu->comp_unit_obstack,
4724 sizeof (struct partial_die_info));
4725
4726 while (1)
4727 {
4728 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4729
4730 /* A NULL abbrev means the end of a series of children. */
4731 if (abbrev == NULL)
4732 {
4733 if (--nesting_level == 0)
4734 {
4735 /* PART_DIE was probably the last thing allocated on the
4736 comp_unit_obstack, so we could call obstack_free
4737 here. We don't do that because the waste is small,
4738 and will be cleaned up when we're done with this
4739 compilation unit. This way, we're also more robust
4740 against other users of the comp_unit_obstack. */
4741 return first_die;
4742 }
4743 info_ptr += bytes_read;
4744 last_die = parent_die;
4745 parent_die = parent_die->die_parent;
4746 continue;
4747 }
4748
4749 /* Check whether this DIE is interesting enough to save. */
4750 if (!is_type_tag_for_partial (abbrev->tag)
4751 && abbrev->tag != DW_TAG_enumerator
4752 && abbrev->tag != DW_TAG_subprogram
4753 && abbrev->tag != DW_TAG_variable
4754 && abbrev->tag != DW_TAG_namespace)
4755 {
4756 /* Otherwise we skip to the next sibling, if any. */
4757 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
4758 continue;
4759 }
4760
4761 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
4762 abfd, info_ptr, cu);
4763
4764 /* This two-pass algorithm for processing partial symbols has a
4765 high cost in cache pressure. Thus, handle some simple cases
4766 here which cover the majority of C partial symbols. DIEs
4767 which neither have specification tags in them, nor could have
4768 specification tags elsewhere pointing at them, can simply be
4769 processed and discarded.
4770
4771 This segment is also optional; scan_partial_symbols and
4772 add_partial_symbol will handle these DIEs if we chain
4773 them in normally. When compilers which do not emit large
4774 quantities of duplicate debug information are more common,
4775 this code can probably be removed. */
4776
4777 /* Any complete simple types at the top level (pretty much all
4778 of them, for a language without namespaces), can be processed
4779 directly. */
4780 if (parent_die == NULL
4781 && part_die->has_specification == 0
4782 && part_die->is_declaration == 0
4783 && (part_die->tag == DW_TAG_typedef
4784 || part_die->tag == DW_TAG_base_type
4785 || part_die->tag == DW_TAG_subrange_type))
4786 {
4787 if (building_psymtab && part_die->name != NULL)
4788 add_psymbol_to_list (part_die->name, strlen (part_die->name),
4789 VAR_DOMAIN, LOC_TYPEDEF,
4790 &cu->objfile->static_psymbols,
4791 0, (CORE_ADDR) 0, cu->language, cu->objfile);
4792 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
4793 continue;
4794 }
4795
4796 /* If we're at the second level, and we're an enumerator, and
4797 our parent has no specification (meaning possibly lives in a
4798 namespace elsewhere), then we can add the partial symbol now
4799 instead of queueing it. */
4800 if (part_die->tag == DW_TAG_enumerator
4801 && parent_die != NULL
4802 && parent_die->die_parent == NULL
4803 && parent_die->tag == DW_TAG_enumeration_type
4804 && parent_die->has_specification == 0)
4805 {
4806 if (part_die->name == NULL)
4807 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
4808 else if (building_psymtab)
4809 add_psymbol_to_list (part_die->name, strlen (part_die->name),
4810 VAR_DOMAIN, LOC_CONST,
4811 cu->language == language_cplus
4812 ? &cu->objfile->global_psymbols
4813 : &cu->objfile->static_psymbols,
4814 0, (CORE_ADDR) 0, cu->language, cu->objfile);
4815
4816 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
4817 continue;
4818 }
4819
4820 /* We'll save this DIE so link it in. */
4821 part_die->die_parent = parent_die;
4822 part_die->die_sibling = NULL;
4823 part_die->die_child = NULL;
4824
4825 if (last_die && last_die == parent_die)
4826 last_die->die_child = part_die;
4827 else if (last_die)
4828 last_die->die_sibling = part_die;
4829
4830 last_die = part_die;
4831
4832 if (first_die == NULL)
4833 first_die = part_die;
4834
4835 /* Maybe add the DIE to the hash table. Not all DIEs that we
4836 find interesting need to be in the hash table, because we
4837 also have the parent/sibling/child chains; only those that we
4838 might refer to by offset later during partial symbol reading.
4839
4840 For now this means things that might have be the target of a
4841 DW_AT_specification, DW_AT_abstract_origin, or
4842 DW_AT_extension. DW_AT_extension will refer only to
4843 namespaces; DW_AT_abstract_origin refers to functions (and
4844 many things under the function DIE, but we do not recurse
4845 into function DIEs during partial symbol reading) and
4846 possibly variables as well; DW_AT_specification refers to
4847 declarations. Declarations ought to have the DW_AT_declaration
4848 flag. It happens that GCC forgets to put it in sometimes, but
4849 only for functions, not for types.
4850
4851 Adding more things than necessary to the hash table is harmless
4852 except for the performance cost. Adding too few will result in
4853 internal errors in find_partial_die. */
4854
4855 if (abbrev->tag == DW_TAG_subprogram
4856 || abbrev->tag == DW_TAG_variable
4857 || abbrev->tag == DW_TAG_namespace
4858 || part_die->is_declaration)
4859 {
4860 void **slot;
4861
4862 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
4863 part_die->offset, INSERT);
4864 *slot = part_die;
4865 }
4866
4867 part_die = obstack_alloc (&cu->comp_unit_obstack,
4868 sizeof (struct partial_die_info));
4869
4870 /* For some DIEs we want to follow their children (if any). For C
4871 we have no reason to follow the children of structures; for other
4872 languages we have to, both so that we can get at method physnames
4873 to infer fully qualified class names, and for DW_AT_specification. */
4874 if (last_die->has_children
4875 && (last_die->tag == DW_TAG_namespace
4876 || last_die->tag == DW_TAG_enumeration_type
4877 || (cu->language != language_c
4878 && (last_die->tag == DW_TAG_class_type
4879 || last_die->tag == DW_TAG_structure_type
4880 || last_die->tag == DW_TAG_union_type))))
4881 {
4882 nesting_level++;
4883 parent_die = last_die;
4884 continue;
4885 }
4886
4887 /* Otherwise we skip to the next sibling, if any. */
4888 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
4889
4890 /* Back to the top, do it again. */
4891 }
4892}
4893
c906108c
SS
4894/* Read a minimal amount of information into the minimal die structure. */
4895
4896static char *
72bf9492
DJ
4897read_partial_die (struct partial_die_info *part_die,
4898 struct abbrev_info *abbrev,
4899 unsigned int abbrev_len, bfd *abfd,
e7c27a73 4900 char *info_ptr, struct dwarf2_cu *cu)
c906108c 4901{
72bf9492 4902 unsigned int bytes_read, i;
c906108c 4903 struct attribute attr;
c5aa993b 4904 int has_low_pc_attr = 0;
c906108c
SS
4905 int has_high_pc_attr = 0;
4906
72bf9492 4907 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 4908
6502dd73 4909 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
4910
4911 info_ptr += abbrev_len;
4912
4913 if (abbrev == NULL)
4914 return info_ptr;
4915
c906108c
SS
4916 part_die->tag = abbrev->tag;
4917 part_die->has_children = abbrev->has_children;
c906108c
SS
4918
4919 for (i = 0; i < abbrev->num_attrs; ++i)
4920 {
e7c27a73 4921 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
4922
4923 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 4924 partial symbol table. */
c906108c
SS
4925 switch (attr.name)
4926 {
4927 case DW_AT_name:
4928
4929 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
4930 if (part_die->name == NULL)
4931 part_die->name = DW_STRING (&attr);
4932 break;
57c22c6c
BR
4933 case DW_AT_comp_dir:
4934 if (part_die->dirname == NULL)
4935 part_die->dirname = DW_STRING (&attr);
4936 break;
c906108c
SS
4937 case DW_AT_MIPS_linkage_name:
4938 part_die->name = DW_STRING (&attr);
4939 break;
4940 case DW_AT_low_pc:
4941 has_low_pc_attr = 1;
4942 part_die->lowpc = DW_ADDR (&attr);
4943 break;
4944 case DW_AT_high_pc:
4945 has_high_pc_attr = 1;
4946 part_die->highpc = DW_ADDR (&attr);
4947 break;
4948 case DW_AT_location:
8e19ed76
PS
4949 /* Support the .debug_loc offsets */
4950 if (attr_form_is_block (&attr))
4951 {
4952 part_die->locdesc = DW_BLOCK (&attr);
4953 }
4954 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
4955 {
4d3c2250 4956 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4957 }
4958 else
4959 {
4d3c2250
KB
4960 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4961 "partial symbol information");
8e19ed76 4962 }
c906108c
SS
4963 break;
4964 case DW_AT_language:
4965 part_die->language = DW_UNSND (&attr);
4966 break;
4967 case DW_AT_external:
4968 part_die->is_external = DW_UNSND (&attr);
4969 break;
4970 case DW_AT_declaration:
4971 part_die->is_declaration = DW_UNSND (&attr);
4972 break;
4973 case DW_AT_type:
4974 part_die->has_type = 1;
4975 break;
4976 case DW_AT_abstract_origin:
4977 case DW_AT_specification:
72bf9492
DJ
4978 case DW_AT_extension:
4979 part_die->has_specification = 1;
4980 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
4981 break;
4982 case DW_AT_sibling:
4983 /* Ignore absolute siblings, they might point outside of
4984 the current compile unit. */
4985 if (attr.form == DW_FORM_ref_addr)
4d3c2250 4986 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
c906108c 4987 else
6502dd73
DJ
4988 part_die->sibling = dwarf2_per_objfile->info_buffer
4989 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 4990 break;
aaa75496
JB
4991 case DW_AT_stmt_list:
4992 part_die->has_stmt_list = 1;
4993 part_die->line_offset = DW_UNSND (&attr);
4994 break;
c906108c
SS
4995 default:
4996 break;
4997 }
4998 }
4999
c906108c
SS
5000 /* When using the GNU linker, .gnu.linkonce. sections are used to
5001 eliminate duplicate copies of functions and vtables and such.
5002 The linker will arbitrarily choose one and discard the others.
5003 The AT_*_pc values for such functions refer to local labels in
5004 these sections. If the section from that file was discarded, the
5005 labels are not in the output, so the relocs get a value of 0.
5006 If this is a discarded function, mark the pc bounds as invalid,
5007 so that GDB will ignore it. */
5008 if (has_low_pc_attr && has_high_pc_attr
5009 && part_die->lowpc < part_die->highpc
5010 && (part_die->lowpc != 0
5011 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
0b010bcc 5012 part_die->has_pc_info = 1;
c906108c
SS
5013 return info_ptr;
5014}
5015
72bf9492
DJ
5016/* Find a cached partial DIE at OFFSET in CU. */
5017
5018static struct partial_die_info *
5019find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5020{
5021 struct partial_die_info *lookup_die = NULL;
5022 struct partial_die_info part_die;
5023
5024 part_die.offset = offset;
5025 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5026
5027 if (lookup_die == NULL)
5028 internal_error (__FILE__, __LINE__,
5029 "could not find partial DIE in cache\n");
5030
5031 return lookup_die;
5032}
5033
5034/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5035
5036static struct partial_die_info *
5037find_partial_die (unsigned long offset, struct dwarf2_cu *cu,
5038 struct dwarf2_cu **target_cu)
5039{
5040 struct dwarf2_per_cu_data *per_cu;
5041
5042 if (offset >= cu->header.offset
5043 && offset < cu->header.offset + cu->header.length)
5044 {
5045 *target_cu = cu;
5046 return find_partial_die_in_comp_unit (offset, cu);
5047 }
5048
5049 internal_error (__FILE__, __LINE__,
5050 "unsupported inter-compilation-unit reference");
5051}
5052
5053/* Adjust PART_DIE before generating a symbol for it. This function
5054 may set the is_external flag or change the DIE's name. */
5055
5056static void
5057fixup_partial_die (struct partial_die_info *part_die,
5058 struct dwarf2_cu *cu)
5059{
5060 /* If we found a reference attribute and the DIE has no name, try
5061 to find a name in the referred to DIE. */
5062
5063 if (part_die->name == NULL && part_die->has_specification)
5064 {
5065 struct partial_die_info *spec_die;
5066 struct dwarf2_cu *spec_cu;
5067
5068 spec_die = find_partial_die (part_die->spec_offset, cu, &spec_cu);
5069
5070 fixup_partial_die (spec_die, spec_cu);
5071
5072 if (spec_die->name)
5073 {
5074 part_die->name = spec_die->name;
5075
5076 /* Copy DW_AT_external attribute if it is set. */
5077 if (spec_die->is_external)
5078 part_die->is_external = spec_die->is_external;
5079 }
5080 }
5081
5082 /* Set default names for some unnamed DIEs. */
5083 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5084 || part_die->tag == DW_TAG_class_type))
5085 part_die->name = "(anonymous class)";
5086
5087 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5088 part_die->name = "(anonymous namespace)";
5089
5090 if (part_die->tag == DW_TAG_structure_type
5091 || part_die->tag == DW_TAG_class_type
5092 || part_die->tag == DW_TAG_union_type)
5093 guess_structure_name (part_die, cu);
5094}
5095
639d11d3
DC
5096/* Read the die from the .debug_info section buffer. Set DIEP to
5097 point to a newly allocated die with its information, except for its
5098 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5099 whether the die has children or not. */
c906108c
SS
5100
5101static char *
107d2387 5102read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
e7c27a73 5103 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5104{
5105 unsigned int abbrev_number, bytes_read, i, offset;
5106 struct abbrev_info *abbrev;
5107 struct die_info *die;
5108
6502dd73 5109 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5110 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5111 info_ptr += bytes_read;
5112 if (!abbrev_number)
5113 {
5114 die = dwarf_alloc_die ();
5115 die->tag = 0;
5116 die->abbrev = abbrev_number;
5117 die->type = NULL;
5118 *diep = die;
639d11d3 5119 *has_children = 0;
c906108c
SS
5120 return info_ptr;
5121 }
5122
e7c27a73 5123 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5124 if (!abbrev)
5125 {
639d11d3 5126 error ("Dwarf Error: could not find abbrev number %d [in module %s]",
72bf9492 5127 abbrev_number,
639d11d3 5128 bfd_get_filename (abfd));
c906108c
SS
5129 }
5130 die = dwarf_alloc_die ();
5131 die->offset = offset;
5132 die->tag = abbrev->tag;
c906108c
SS
5133 die->abbrev = abbrev_number;
5134 die->type = NULL;
5135
5136 die->num_attrs = abbrev->num_attrs;
5137 die->attrs = (struct attribute *)
5138 xmalloc (die->num_attrs * sizeof (struct attribute));
5139
5140 for (i = 0; i < abbrev->num_attrs; ++i)
5141 {
5142 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5143 abfd, info_ptr, cu);
c906108c
SS
5144 }
5145
5146 *diep = die;
639d11d3 5147 *has_children = abbrev->has_children;
c906108c
SS
5148 return info_ptr;
5149}
5150
a8329558 5151/* Read an attribute value described by an attribute form. */
c906108c
SS
5152
5153static char *
a8329558 5154read_attribute_value (struct attribute *attr, unsigned form,
e7c27a73
DJ
5155 bfd *abfd, char *info_ptr,
5156 struct dwarf2_cu *cu)
c906108c 5157{
e7c27a73 5158 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5159 unsigned int bytes_read;
5160 struct dwarf_block *blk;
5161
a8329558
KW
5162 attr->form = form;
5163 switch (form)
c906108c
SS
5164 {
5165 case DW_FORM_addr:
5166 case DW_FORM_ref_addr:
e7c27a73 5167 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5168 info_ptr += bytes_read;
c906108c
SS
5169 break;
5170 case DW_FORM_block2:
7b5a2f43 5171 blk = dwarf_alloc_block (cu);
c906108c
SS
5172 blk->size = read_2_bytes (abfd, info_ptr);
5173 info_ptr += 2;
5174 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5175 info_ptr += blk->size;
5176 DW_BLOCK (attr) = blk;
5177 break;
5178 case DW_FORM_block4:
7b5a2f43 5179 blk = dwarf_alloc_block (cu);
c906108c
SS
5180 blk->size = read_4_bytes (abfd, info_ptr);
5181 info_ptr += 4;
5182 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5183 info_ptr += blk->size;
5184 DW_BLOCK (attr) = blk;
5185 break;
5186 case DW_FORM_data2:
5187 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5188 info_ptr += 2;
5189 break;
5190 case DW_FORM_data4:
5191 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5192 info_ptr += 4;
5193 break;
5194 case DW_FORM_data8:
5195 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5196 info_ptr += 8;
5197 break;
5198 case DW_FORM_string:
5199 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5200 info_ptr += bytes_read;
5201 break;
4bdf3d34
JJ
5202 case DW_FORM_strp:
5203 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5204 &bytes_read);
5205 info_ptr += bytes_read;
5206 break;
c906108c 5207 case DW_FORM_block:
7b5a2f43 5208 blk = dwarf_alloc_block (cu);
c906108c
SS
5209 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5210 info_ptr += bytes_read;
5211 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5212 info_ptr += blk->size;
5213 DW_BLOCK (attr) = blk;
5214 break;
5215 case DW_FORM_block1:
7b5a2f43 5216 blk = dwarf_alloc_block (cu);
c906108c
SS
5217 blk->size = read_1_byte (abfd, info_ptr);
5218 info_ptr += 1;
5219 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5220 info_ptr += blk->size;
5221 DW_BLOCK (attr) = blk;
5222 break;
5223 case DW_FORM_data1:
5224 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5225 info_ptr += 1;
5226 break;
5227 case DW_FORM_flag:
5228 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5229 info_ptr += 1;
5230 break;
5231 case DW_FORM_sdata:
5232 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5233 info_ptr += bytes_read;
5234 break;
5235 case DW_FORM_udata:
5236 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5237 info_ptr += bytes_read;
5238 break;
5239 case DW_FORM_ref1:
5240 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5241 info_ptr += 1;
5242 break;
5243 case DW_FORM_ref2:
5244 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5245 info_ptr += 2;
5246 break;
5247 case DW_FORM_ref4:
5248 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5249 info_ptr += 4;
5250 break;
613e1657
KB
5251 case DW_FORM_ref8:
5252 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5253 info_ptr += 8;
5254 break;
c906108c
SS
5255 case DW_FORM_ref_udata:
5256 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5257 info_ptr += bytes_read;
5258 break;
c906108c 5259 case DW_FORM_indirect:
a8329558
KW
5260 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5261 info_ptr += bytes_read;
e7c27a73 5262 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5263 break;
c906108c 5264 default:
659b0389
ML
5265 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
5266 dwarf_form_name (form),
5267 bfd_get_filename (abfd));
c906108c
SS
5268 }
5269 return info_ptr;
5270}
5271
a8329558
KW
5272/* Read an attribute described by an abbreviated attribute. */
5273
5274static char *
5275read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
e7c27a73 5276 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5277{
5278 attr->name = abbrev->name;
e7c27a73 5279 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5280}
5281
c906108c
SS
5282/* read dwarf information from a buffer */
5283
5284static unsigned int
fba45db2 5285read_1_byte (bfd *abfd, char *buf)
c906108c
SS
5286{
5287 return bfd_get_8 (abfd, (bfd_byte *) buf);
5288}
5289
5290static int
fba45db2 5291read_1_signed_byte (bfd *abfd, char *buf)
c906108c
SS
5292{
5293 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5294}
5295
5296static unsigned int
fba45db2 5297read_2_bytes (bfd *abfd, char *buf)
c906108c
SS
5298{
5299 return bfd_get_16 (abfd, (bfd_byte *) buf);
5300}
5301
5302static int
fba45db2 5303read_2_signed_bytes (bfd *abfd, char *buf)
c906108c
SS
5304{
5305 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5306}
5307
5308static unsigned int
fba45db2 5309read_4_bytes (bfd *abfd, char *buf)
c906108c
SS
5310{
5311 return bfd_get_32 (abfd, (bfd_byte *) buf);
5312}
5313
5314static int
fba45db2 5315read_4_signed_bytes (bfd *abfd, char *buf)
c906108c
SS
5316{
5317 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5318}
5319
ce5d95e1 5320static unsigned long
fba45db2 5321read_8_bytes (bfd *abfd, char *buf)
c906108c
SS
5322{
5323 return bfd_get_64 (abfd, (bfd_byte *) buf);
5324}
5325
5326static CORE_ADDR
e7c27a73 5327read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
c906108c 5328{
e7c27a73 5329 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5330 CORE_ADDR retval = 0;
5331
107d2387 5332 if (cu_header->signed_addr_p)
c906108c 5333 {
107d2387
AC
5334 switch (cu_header->addr_size)
5335 {
5336 case 2:
5337 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5338 break;
5339 case 4:
5340 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5341 break;
5342 case 8:
5343 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5344 break;
5345 default:
8e65ff28 5346 internal_error (__FILE__, __LINE__,
659b0389
ML
5347 "read_address: bad switch, signed [in module %s]",
5348 bfd_get_filename (abfd));
107d2387
AC
5349 }
5350 }
5351 else
5352 {
5353 switch (cu_header->addr_size)
5354 {
5355 case 2:
5356 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5357 break;
5358 case 4:
5359 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5360 break;
5361 case 8:
5362 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5363 break;
5364 default:
8e65ff28 5365 internal_error (__FILE__, __LINE__,
659b0389
ML
5366 "read_address: bad switch, unsigned [in module %s]",
5367 bfd_get_filename (abfd));
107d2387 5368 }
c906108c 5369 }
64367e0a 5370
107d2387
AC
5371 *bytes_read = cu_header->addr_size;
5372 return retval;
c906108c
SS
5373}
5374
f7ef9339 5375/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
5376 specification allows the initial length to take up either 4 bytes
5377 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5378 bytes describe the length and all offsets will be 8 bytes in length
5379 instead of 4.
5380
f7ef9339
KB
5381 An older, non-standard 64-bit format is also handled by this
5382 function. The older format in question stores the initial length
5383 as an 8-byte quantity without an escape value. Lengths greater
5384 than 2^32 aren't very common which means that the initial 4 bytes
5385 is almost always zero. Since a length value of zero doesn't make
5386 sense for the 32-bit format, this initial zero can be considered to
5387 be an escape value which indicates the presence of the older 64-bit
5388 format. As written, the code can't detect (old format) lengths
5389 greater than 4GB. If it becomes necessary to handle lengths somewhat
5390 larger than 4GB, we could allow other small values (such as the
5391 non-sensical values of 1, 2, and 3) to also be used as escape values
5392 indicating the presence of the old format.
5393
613e1657
KB
5394 The value returned via bytes_read should be used to increment
5395 the relevant pointer after calling read_initial_length().
5396
5397 As a side effect, this function sets the fields initial_length_size
5398 and offset_size in cu_header to the values appropriate for the
5399 length field. (The format of the initial length field determines
5400 the width of file offsets to be fetched later with fetch_offset().)
5401
5402 [ Note: read_initial_length() and read_offset() are based on the
5403 document entitled "DWARF Debugging Information Format", revision
f7ef9339 5404 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
5405 from:
5406
f7ef9339 5407 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
5408
5409 This document is only a draft and is subject to change. (So beware.)
5410
f7ef9339
KB
5411 Details regarding the older, non-standard 64-bit format were
5412 determined empirically by examining 64-bit ELF files produced
5413 by the SGI toolchain on an IRIX 6.5 machine.
5414
5415 - Kevin, July 16, 2002
613e1657
KB
5416 ] */
5417
5418static LONGEST
5419read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5420 int *bytes_read)
5421{
5422 LONGEST retval = 0;
5423
5424 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5425
5426 if (retval == 0xffffffff)
5427 {
5428 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5429 *bytes_read = 12;
5430 if (cu_header != NULL)
5431 {
5432 cu_header->initial_length_size = 12;
5433 cu_header->offset_size = 8;
5434 }
5435 }
f7ef9339
KB
5436 else if (retval == 0)
5437 {
5438 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5439 by IRIX. */
5440 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5441 *bytes_read = 8;
5442 if (cu_header != NULL)
5443 {
5444 cu_header->initial_length_size = 8;
5445 cu_header->offset_size = 8;
5446 }
5447 }
613e1657
KB
5448 else
5449 {
5450 *bytes_read = 4;
5451 if (cu_header != NULL)
5452 {
5453 cu_header->initial_length_size = 4;
5454 cu_header->offset_size = 4;
5455 }
5456 }
5457
5458 return retval;
5459}
5460
5461/* Read an offset from the data stream. The size of the offset is
5462 given by cu_header->offset_size. */
5463
5464static LONGEST
5465read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5466 int *bytes_read)
5467{
5468 LONGEST retval = 0;
5469
5470 switch (cu_header->offset_size)
5471 {
5472 case 4:
5473 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5474 *bytes_read = 4;
5475 break;
5476 case 8:
5477 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5478 *bytes_read = 8;
5479 break;
5480 default:
8e65ff28 5481 internal_error (__FILE__, __LINE__,
659b0389
ML
5482 "read_offset: bad switch [in module %s]",
5483 bfd_get_filename (abfd));
613e1657
KB
5484 }
5485
5486 return retval;
5487}
5488
c906108c 5489static char *
fba45db2 5490read_n_bytes (bfd *abfd, char *buf, unsigned int size)
c906108c
SS
5491{
5492 /* If the size of a host char is 8 bits, we can return a pointer
5493 to the buffer, otherwise we have to copy the data to a buffer
5494 allocated on the temporary obstack. */
4bdf3d34 5495 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 5496 return buf;
c906108c
SS
5497}
5498
5499static char *
fba45db2 5500read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
c906108c
SS
5501{
5502 /* If the size of a host char is 8 bits, we can return a pointer
5503 to the string, otherwise we have to copy the string to a buffer
5504 allocated on the temporary obstack. */
4bdf3d34 5505 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
5506 if (*buf == '\0')
5507 {
5508 *bytes_read_ptr = 1;
5509 return NULL;
5510 }
5511 *bytes_read_ptr = strlen (buf) + 1;
5512 return buf;
4bdf3d34
JJ
5513}
5514
5515static char *
5516read_indirect_string (bfd *abfd, char *buf,
5517 const struct comp_unit_head *cu_header,
5518 unsigned int *bytes_read_ptr)
5519{
5520 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5521 (int *) bytes_read_ptr);
c906108c 5522
6502dd73 5523 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 5524 {
659b0389
ML
5525 error ("DW_FORM_strp used without .debug_str section [in module %s]",
5526 bfd_get_filename (abfd));
4bdf3d34 5527 return NULL;
c906108c 5528 }
6502dd73 5529 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 5530 {
659b0389
ML
5531 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
5532 bfd_get_filename (abfd));
c906108c
SS
5533 return NULL;
5534 }
4bdf3d34 5535 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 5536 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 5537 return NULL;
6502dd73 5538 return dwarf2_per_objfile->str_buffer + str_offset;
c906108c
SS
5539}
5540
ce5d95e1 5541static unsigned long
fba45db2 5542read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
c906108c 5543{
ce5d95e1
JB
5544 unsigned long result;
5545 unsigned int num_read;
c906108c
SS
5546 int i, shift;
5547 unsigned char byte;
5548
5549 result = 0;
5550 shift = 0;
5551 num_read = 0;
5552 i = 0;
5553 while (1)
5554 {
5555 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5556 buf++;
5557 num_read++;
ce5d95e1 5558 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
5559 if ((byte & 128) == 0)
5560 {
5561 break;
5562 }
5563 shift += 7;
5564 }
5565 *bytes_read_ptr = num_read;
5566 return result;
5567}
5568
ce5d95e1 5569static long
fba45db2 5570read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
c906108c 5571{
ce5d95e1 5572 long result;
c906108c
SS
5573 int i, shift, size, num_read;
5574 unsigned char byte;
5575
5576 result = 0;
5577 shift = 0;
5578 size = 32;
5579 num_read = 0;
5580 i = 0;
5581 while (1)
5582 {
5583 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5584 buf++;
5585 num_read++;
ce5d95e1 5586 result |= ((long)(byte & 127) << shift);
c906108c
SS
5587 shift += 7;
5588 if ((byte & 128) == 0)
5589 {
5590 break;
5591 }
5592 }
5593 if ((shift < size) && (byte & 0x40))
5594 {
5595 result |= -(1 << shift);
5596 }
5597 *bytes_read_ptr = num_read;
5598 return result;
5599}
5600
4bb7a0a7
DJ
5601/* Return a pointer to just past the end of an LEB128 number in BUF. */
5602
5603static char *
5604skip_leb128 (bfd *abfd, char *buf)
5605{
5606 int byte;
5607
5608 while (1)
5609 {
5610 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5611 buf++;
5612 if ((byte & 128) == 0)
5613 return buf;
5614 }
5615}
5616
c906108c 5617static void
e142c38c 5618set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
5619{
5620 switch (lang)
5621 {
5622 case DW_LANG_C89:
5623 case DW_LANG_C:
e142c38c 5624 cu->language = language_c;
c906108c
SS
5625 break;
5626 case DW_LANG_C_plus_plus:
e142c38c 5627 cu->language = language_cplus;
c906108c
SS
5628 break;
5629 case DW_LANG_Fortran77:
5630 case DW_LANG_Fortran90:
b21b22e0 5631 case DW_LANG_Fortran95:
e142c38c 5632 cu->language = language_fortran;
c906108c
SS
5633 break;
5634 case DW_LANG_Mips_Assembler:
e142c38c 5635 cu->language = language_asm;
c906108c 5636 break;
bebd888e 5637 case DW_LANG_Java:
e142c38c 5638 cu->language = language_java;
bebd888e 5639 break;
c906108c 5640 case DW_LANG_Ada83:
8aaf0b47 5641 case DW_LANG_Ada95:
c906108c
SS
5642 case DW_LANG_Cobol74:
5643 case DW_LANG_Cobol85:
5644 case DW_LANG_Pascal83:
5645 case DW_LANG_Modula2:
5646 default:
e142c38c 5647 cu->language = language_minimal;
c906108c
SS
5648 break;
5649 }
e142c38c 5650 cu->language_defn = language_def (cu->language);
c906108c
SS
5651}
5652
5653/* Return the named attribute or NULL if not there. */
5654
5655static struct attribute *
e142c38c 5656dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
5657{
5658 unsigned int i;
5659 struct attribute *spec = NULL;
5660
5661 for (i = 0; i < die->num_attrs; ++i)
5662 {
5663 if (die->attrs[i].name == name)
5664 {
5665 return &die->attrs[i];
5666 }
5667 if (die->attrs[i].name == DW_AT_specification
5668 || die->attrs[i].name == DW_AT_abstract_origin)
5669 spec = &die->attrs[i];
5670 }
5671 if (spec)
5672 {
5673 struct die_info *ref_die =
e142c38c 5674 follow_die_ref (dwarf2_get_ref_die_offset (spec, cu));
c906108c
SS
5675
5676 if (ref_die)
e142c38c 5677 return dwarf2_attr (ref_die, name, cu);
c906108c 5678 }
c5aa993b 5679
c906108c
SS
5680 return NULL;
5681}
5682
05cf31d1
JB
5683/* Return non-zero iff the attribute NAME is defined for the given DIE,
5684 and holds a non-zero value. This function should only be used for
5685 DW_FORM_flag attributes. */
5686
5687static int
5688dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
5689{
5690 struct attribute *attr = dwarf2_attr (die, name, cu);
5691
5692 return (attr && DW_UNSND (attr));
5693}
5694
3ca72b44 5695static int
e142c38c 5696die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 5697{
05cf31d1
JB
5698 /* A DIE is a declaration if it has a DW_AT_declaration attribute
5699 which value is non-zero. However, we have to be careful with
5700 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
5701 (via dwarf2_flag_true_p) follows this attribute. So we may
5702 end up accidently finding a declaration attribute that belongs
5703 to a different DIE referenced by the specification attribute,
5704 even though the given DIE does not have a declaration attribute. */
5705 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
5706 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
5707}
5708
63d06c5c
DC
5709/* Return the die giving the specification for DIE, if there is
5710 one. */
5711
5712static struct die_info *
e142c38c 5713die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 5714{
e142c38c 5715 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
5716
5717 if (spec_attr == NULL)
5718 return NULL;
5719 else
e142c38c 5720 return follow_die_ref (dwarf2_get_ref_die_offset (spec_attr, cu));
63d06c5c 5721}
c906108c 5722
debd256d
JB
5723/* Free the line_header structure *LH, and any arrays and strings it
5724 refers to. */
5725static void
5726free_line_header (struct line_header *lh)
5727{
5728 if (lh->standard_opcode_lengths)
a8bc7b56 5729 xfree (lh->standard_opcode_lengths);
debd256d
JB
5730
5731 /* Remember that all the lh->file_names[i].name pointers are
5732 pointers into debug_line_buffer, and don't need to be freed. */
5733 if (lh->file_names)
a8bc7b56 5734 xfree (lh->file_names);
debd256d
JB
5735
5736 /* Similarly for the include directory names. */
5737 if (lh->include_dirs)
a8bc7b56 5738 xfree (lh->include_dirs);
debd256d 5739
a8bc7b56 5740 xfree (lh);
debd256d
JB
5741}
5742
5743
5744/* Add an entry to LH's include directory table. */
5745static void
5746add_include_dir (struct line_header *lh, char *include_dir)
c906108c 5747{
debd256d
JB
5748 /* Grow the array if necessary. */
5749 if (lh->include_dirs_size == 0)
c5aa993b 5750 {
debd256d
JB
5751 lh->include_dirs_size = 1; /* for testing */
5752 lh->include_dirs = xmalloc (lh->include_dirs_size
5753 * sizeof (*lh->include_dirs));
5754 }
5755 else if (lh->num_include_dirs >= lh->include_dirs_size)
5756 {
5757 lh->include_dirs_size *= 2;
5758 lh->include_dirs = xrealloc (lh->include_dirs,
5759 (lh->include_dirs_size
5760 * sizeof (*lh->include_dirs)));
c5aa993b 5761 }
c906108c 5762
debd256d
JB
5763 lh->include_dirs[lh->num_include_dirs++] = include_dir;
5764}
5765
5766
5767/* Add an entry to LH's file name table. */
5768static void
5769add_file_name (struct line_header *lh,
5770 char *name,
5771 unsigned int dir_index,
5772 unsigned int mod_time,
5773 unsigned int length)
5774{
5775 struct file_entry *fe;
5776
5777 /* Grow the array if necessary. */
5778 if (lh->file_names_size == 0)
5779 {
5780 lh->file_names_size = 1; /* for testing */
5781 lh->file_names = xmalloc (lh->file_names_size
5782 * sizeof (*lh->file_names));
5783 }
5784 else if (lh->num_file_names >= lh->file_names_size)
5785 {
5786 lh->file_names_size *= 2;
5787 lh->file_names = xrealloc (lh->file_names,
5788 (lh->file_names_size
5789 * sizeof (*lh->file_names)));
5790 }
5791
5792 fe = &lh->file_names[lh->num_file_names++];
5793 fe->name = name;
5794 fe->dir_index = dir_index;
5795 fe->mod_time = mod_time;
5796 fe->length = length;
aaa75496 5797 fe->included_p = 0;
debd256d
JB
5798}
5799
5800
5801/* Read the statement program header starting at OFFSET in
6502dd73
DJ
5802 .debug_line, according to the endianness of ABFD. Return a pointer
5803 to a struct line_header, allocated using xmalloc.
debd256d
JB
5804
5805 NOTE: the strings in the include directory and file name tables of
5806 the returned object point into debug_line_buffer, and must not be
5807 freed. */
5808static struct line_header *
5809dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 5810 struct dwarf2_cu *cu)
debd256d
JB
5811{
5812 struct cleanup *back_to;
5813 struct line_header *lh;
5814 char *line_ptr;
5815 int bytes_read;
5816 int i;
5817 char *cur_dir, *cur_file;
5818
6502dd73 5819 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 5820 {
4d3c2250 5821 complaint (&symfile_complaints, "missing .debug_line section");
debd256d
JB
5822 return 0;
5823 }
5824
5825 /* Make sure that at least there's room for the total_length field. That
5826 could be 12 bytes long, but we're just going to fudge that. */
6502dd73 5827 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 5828 {
4d3c2250 5829 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
5830 return 0;
5831 }
5832
5833 lh = xmalloc (sizeof (*lh));
5834 memset (lh, 0, sizeof (*lh));
5835 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
5836 (void *) lh);
5837
6502dd73 5838 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d
JB
5839
5840 /* read in the header */
5841 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
5842 line_ptr += bytes_read;
6502dd73
DJ
5843 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
5844 + dwarf2_per_objfile->line_size))
debd256d 5845 {
4d3c2250 5846 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
5847 return 0;
5848 }
5849 lh->statement_program_end = line_ptr + lh->total_length;
5850 lh->version = read_2_bytes (abfd, line_ptr);
5851 line_ptr += 2;
e7c27a73 5852 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
5853 line_ptr += bytes_read;
5854 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
5855 line_ptr += 1;
5856 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
5857 line_ptr += 1;
5858 lh->line_base = read_1_signed_byte (abfd, line_ptr);
5859 line_ptr += 1;
5860 lh->line_range = read_1_byte (abfd, line_ptr);
5861 line_ptr += 1;
5862 lh->opcode_base = read_1_byte (abfd, line_ptr);
5863 line_ptr += 1;
5864 lh->standard_opcode_lengths
5865 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
5866
5867 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
5868 for (i = 1; i < lh->opcode_base; ++i)
5869 {
5870 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
5871 line_ptr += 1;
5872 }
5873
5874 /* Read directory table */
5875 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
5876 {
5877 line_ptr += bytes_read;
5878 add_include_dir (lh, cur_dir);
5879 }
5880 line_ptr += bytes_read;
5881
5882 /* Read file name table */
5883 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
5884 {
5885 unsigned int dir_index, mod_time, length;
5886
5887 line_ptr += bytes_read;
5888 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5889 line_ptr += bytes_read;
5890 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5891 line_ptr += bytes_read;
5892 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5893 line_ptr += bytes_read;
5894
5895 add_file_name (lh, cur_file, dir_index, mod_time, length);
5896 }
5897 line_ptr += bytes_read;
5898 lh->statement_program_start = line_ptr;
5899
6502dd73
DJ
5900 if (line_ptr > (dwarf2_per_objfile->line_buffer
5901 + dwarf2_per_objfile->line_size))
4d3c2250
KB
5902 complaint (&symfile_complaints,
5903 "line number info header doesn't fit in `.debug_line' section");
debd256d
JB
5904
5905 discard_cleanups (back_to);
5906 return lh;
5907}
c906108c 5908
5fb290d7
DJ
5909/* This function exists to work around a bug in certain compilers
5910 (particularly GCC 2.95), in which the first line number marker of a
5911 function does not show up until after the prologue, right before
5912 the second line number marker. This function shifts ADDRESS down
5913 to the beginning of the function if necessary, and is called on
5914 addresses passed to record_line. */
5915
5916static CORE_ADDR
e142c38c 5917check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
5918{
5919 struct function_range *fn;
5920
5921 /* Find the function_range containing address. */
e142c38c 5922 if (!cu->first_fn)
5fb290d7
DJ
5923 return address;
5924
e142c38c
DJ
5925 if (!cu->cached_fn)
5926 cu->cached_fn = cu->first_fn;
5fb290d7 5927
e142c38c 5928 fn = cu->cached_fn;
5fb290d7
DJ
5929 while (fn)
5930 if (fn->lowpc <= address && fn->highpc > address)
5931 goto found;
5932 else
5933 fn = fn->next;
5934
e142c38c
DJ
5935 fn = cu->first_fn;
5936 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
5937 if (fn->lowpc <= address && fn->highpc > address)
5938 goto found;
5939 else
5940 fn = fn->next;
5941
5942 return address;
5943
5944 found:
5945 if (fn->seen_line)
5946 return address;
5947 if (address != fn->lowpc)
4d3c2250
KB
5948 complaint (&symfile_complaints,
5949 "misplaced first line number at 0x%lx for '%s'",
5950 (unsigned long) address, fn->name);
5fb290d7
DJ
5951 fn->seen_line = 1;
5952 return fn->lowpc;
5953}
5954
aaa75496
JB
5955/* Decode the Line Number Program (LNP) for the given line_header
5956 structure and CU. The actual information extracted and the type
5957 of structures created from the LNP depends on the value of PST.
5958
5959 1. If PST is NULL, then this procedure uses the data from the program
5960 to create all necessary symbol tables, and their linetables.
5961 The compilation directory of the file is passed in COMP_DIR,
5962 and must not be NULL.
5963
5964 2. If PST is not NULL, this procedure reads the program to determine
5965 the list of files included by the unit represented by PST, and
5966 builds all the associated partial symbol tables. In this case,
5967 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
5968 is not used to compute the full name of the symtab, and therefore
5969 omitting it when building the partial symtab does not introduce
5970 the potential for inconsistency - a partial symtab and its associated
5971 symbtab having a different fullname -). */
debd256d 5972
c906108c 5973static void
debd256d 5974dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 5975 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c
SS
5976{
5977 char *line_ptr;
5978 char *line_end;
e7c27a73 5979 unsigned int bytes_read;
c906108c 5980 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
5981 CORE_ADDR baseaddr;
5982 struct objfile *objfile = cu->objfile;
aaa75496 5983 const int decode_for_pst_p = (pst != NULL);
e142c38c
DJ
5984
5985 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5986
debd256d
JB
5987 line_ptr = lh->statement_program_start;
5988 line_end = lh->statement_program_end;
c906108c
SS
5989
5990 /* Read the statement sequences until there's nothing left. */
5991 while (line_ptr < line_end)
5992 {
5993 /* state machine registers */
5994 CORE_ADDR address = 0;
5995 unsigned int file = 1;
5996 unsigned int line = 1;
5997 unsigned int column = 0;
debd256d 5998 int is_stmt = lh->default_is_stmt;
c906108c
SS
5999 int basic_block = 0;
6000 int end_sequence = 0;
6001
aaa75496 6002 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6003 {
aaa75496 6004 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6005 /* lh->include_dirs and lh->file_names are 0-based, but the
6006 directory and file name numbers in the statement program
6007 are 1-based. */
6008 struct file_entry *fe = &lh->file_names[file - 1];
6009 char *dir;
6010 if (fe->dir_index)
6011 dir = lh->include_dirs[fe->dir_index - 1];
6012 else
6013 dir = comp_dir;
6014 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
6015 }
6016
6017 /* Decode the table. */
c5aa993b 6018 while (!end_sequence)
c906108c
SS
6019 {
6020 op_code = read_1_byte (abfd, line_ptr);
6021 line_ptr += 1;
9aa1fe7e 6022
debd256d 6023 if (op_code >= lh->opcode_base)
9aa1fe7e 6024 { /* Special operand. */
debd256d
JB
6025 adj_opcode = op_code - lh->opcode_base;
6026 address += (adj_opcode / lh->line_range)
6027 * lh->minimum_instruction_length;
6028 line += lh->line_base + (adj_opcode % lh->line_range);
aa495d11 6029 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6030 if (!decode_for_pst_p)
6031 {
6032 /* append row to matrix using current values */
6033 record_line (current_subfile, line,
6034 check_cu_functions (address, cu));
6035 }
9aa1fe7e
GK
6036 basic_block = 1;
6037 }
6038 else switch (op_code)
c906108c
SS
6039 {
6040 case DW_LNS_extended_op:
473b7be6
DJ
6041 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6042 line_ptr += bytes_read;
c906108c
SS
6043 extended_op = read_1_byte (abfd, line_ptr);
6044 line_ptr += 1;
6045 switch (extended_op)
6046 {
6047 case DW_LNE_end_sequence:
6048 end_sequence = 1;
aa495d11 6049 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6050 if (!decode_for_pst_p)
6051 record_line (current_subfile, 0, address);
c906108c
SS
6052 break;
6053 case DW_LNE_set_address:
e7c27a73 6054 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6055 line_ptr += bytes_read;
6056 address += baseaddr;
c906108c
SS
6057 break;
6058 case DW_LNE_define_file:
debd256d
JB
6059 {
6060 char *cur_file;
6061 unsigned int dir_index, mod_time, length;
6062
6063 cur_file = read_string (abfd, line_ptr, &bytes_read);
6064 line_ptr += bytes_read;
6065 dir_index =
6066 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6067 line_ptr += bytes_read;
6068 mod_time =
6069 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6070 line_ptr += bytes_read;
6071 length =
6072 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6073 line_ptr += bytes_read;
6074 add_file_name (lh, cur_file, dir_index, mod_time, length);
6075 }
c906108c
SS
6076 break;
6077 default:
4d3c2250
KB
6078 complaint (&symfile_complaints,
6079 "mangled .debug_line section");
debd256d 6080 return;
c906108c
SS
6081 }
6082 break;
6083 case DW_LNS_copy:
aa495d11 6084 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6085 if (!decode_for_pst_p)
6086 record_line (current_subfile, line,
6087 check_cu_functions (address, cu));
c906108c
SS
6088 basic_block = 0;
6089 break;
6090 case DW_LNS_advance_pc:
debd256d 6091 address += lh->minimum_instruction_length
c906108c
SS
6092 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6093 line_ptr += bytes_read;
6094 break;
6095 case DW_LNS_advance_line:
6096 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6097 line_ptr += bytes_read;
6098 break;
6099 case DW_LNS_set_file:
debd256d
JB
6100 {
6101 /* lh->include_dirs and lh->file_names are 0-based,
6102 but the directory and file name numbers in the
6103 statement program are 1-based. */
6104 struct file_entry *fe;
6105 char *dir;
6106 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6107 line_ptr += bytes_read;
6108 fe = &lh->file_names[file - 1];
6109 if (fe->dir_index)
6110 dir = lh->include_dirs[fe->dir_index - 1];
6111 else
6112 dir = comp_dir;
aaa75496
JB
6113 if (!decode_for_pst_p)
6114 dwarf2_start_subfile (fe->name, dir);
debd256d 6115 }
c906108c
SS
6116 break;
6117 case DW_LNS_set_column:
6118 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6119 line_ptr += bytes_read;
6120 break;
6121 case DW_LNS_negate_stmt:
6122 is_stmt = (!is_stmt);
6123 break;
6124 case DW_LNS_set_basic_block:
6125 basic_block = 1;
6126 break;
c2c6d25f
JM
6127 /* Add to the address register of the state machine the
6128 address increment value corresponding to special opcode
6129 255. Ie, this value is scaled by the minimum instruction
6130 length since special opcode 255 would have scaled the
6131 the increment. */
c906108c 6132 case DW_LNS_const_add_pc:
debd256d
JB
6133 address += (lh->minimum_instruction_length
6134 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6135 break;
6136 case DW_LNS_fixed_advance_pc:
6137 address += read_2_bytes (abfd, line_ptr);
6138 line_ptr += 2;
6139 break;
9aa1fe7e
GK
6140 default:
6141 { /* Unknown standard opcode, ignore it. */
6142 int i;
debd256d 6143 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6144 {
6145 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6146 line_ptr += bytes_read;
6147 }
6148 }
c906108c
SS
6149 }
6150 }
6151 }
aaa75496
JB
6152
6153 if (decode_for_pst_p)
6154 {
6155 int file_index;
6156
6157 /* Now that we're done scanning the Line Header Program, we can
6158 create the psymtab of each included file. */
6159 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6160 if (lh->file_names[file_index].included_p == 1)
6161 {
6162 char *include_name = lh->file_names [file_index].name;
6163
6164 if (strcmp (include_name, pst->filename) != 0)
6165 dwarf2_create_include_psymtab (include_name, pst, objfile);
6166 }
6167 }
c906108c
SS
6168}
6169
6170/* Start a subfile for DWARF. FILENAME is the name of the file and
6171 DIRNAME the name of the source directory which contains FILENAME
6172 or NULL if not known.
6173 This routine tries to keep line numbers from identical absolute and
6174 relative file names in a common subfile.
6175
6176 Using the `list' example from the GDB testsuite, which resides in
6177 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6178 of /srcdir/list0.c yields the following debugging information for list0.c:
6179
c5aa993b
JM
6180 DW_AT_name: /srcdir/list0.c
6181 DW_AT_comp_dir: /compdir
357e46e7 6182 files.files[0].name: list0.h
c5aa993b 6183 files.files[0].dir: /srcdir
357e46e7 6184 files.files[1].name: list0.c
c5aa993b 6185 files.files[1].dir: /srcdir
c906108c
SS
6186
6187 The line number information for list0.c has to end up in a single
6188 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6189
6190static void
fba45db2 6191dwarf2_start_subfile (char *filename, char *dirname)
c906108c
SS
6192{
6193 /* If the filename isn't absolute, try to match an existing subfile
6194 with the full pathname. */
6195
d5166ae1 6196 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
c906108c
SS
6197 {
6198 struct subfile *subfile;
6199 char *fullname = concat (dirname, "/", filename, NULL);
6200
6201 for (subfile = subfiles; subfile; subfile = subfile->next)
6202 {
d5166ae1 6203 if (FILENAME_CMP (subfile->name, fullname) == 0)
c906108c
SS
6204 {
6205 current_subfile = subfile;
b8c9b27d 6206 xfree (fullname);
c906108c
SS
6207 return;
6208 }
6209 }
b8c9b27d 6210 xfree (fullname);
c906108c
SS
6211 }
6212 start_subfile (filename, dirname);
6213}
6214
4c2df51b
DJ
6215static void
6216var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 6217 struct dwarf2_cu *cu)
4c2df51b 6218{
e7c27a73
DJ
6219 struct objfile *objfile = cu->objfile;
6220 struct comp_unit_head *cu_header = &cu->header;
6221
4c2df51b
DJ
6222 /* NOTE drow/2003-01-30: There used to be a comment and some special
6223 code here to turn a symbol with DW_AT_external and a
6224 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6225 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6226 with some versions of binutils) where shared libraries could have
6227 relocations against symbols in their debug information - the
6228 minimal symbol would have the right address, but the debug info
6229 would not. It's no longer necessary, because we will explicitly
6230 apply relocations when we read in the debug information now. */
6231
6232 /* A DW_AT_location attribute with no contents indicates that a
6233 variable has been optimized away. */
6234 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6235 {
6236 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6237 return;
6238 }
6239
6240 /* Handle one degenerate form of location expression specially, to
6241 preserve GDB's previous behavior when section offsets are
6242 specified. If this is just a DW_OP_addr then mark this symbol
6243 as LOC_STATIC. */
6244
6245 if (attr_form_is_block (attr)
6246 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6247 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6248 {
6249 int dummy;
6250
6251 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 6252 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
6253 fixup_symbol_section (sym, objfile);
6254 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6255 SYMBOL_SECTION (sym));
6256 SYMBOL_CLASS (sym) = LOC_STATIC;
6257 return;
6258 }
6259
6260 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6261 expression evaluator, and use LOC_COMPUTED only when necessary
6262 (i.e. when the value of a register or memory location is
6263 referenced, or a thread-local block, etc.). Then again, it might
6264 not be worthwhile. I'm assuming that it isn't unless performance
6265 or memory numbers show me otherwise. */
6266
e7c27a73 6267 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
6268 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6269}
6270
c906108c
SS
6271/* Given a pointer to a DWARF information entry, figure out if we need
6272 to make a symbol table entry for it, and if so, create a new entry
6273 and return a pointer to it.
6274 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 6275 used the passed type. */
c906108c
SS
6276
6277static struct symbol *
e7c27a73 6278new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 6279{
e7c27a73 6280 struct objfile *objfile = cu->objfile;
c906108c
SS
6281 struct symbol *sym = NULL;
6282 char *name;
6283 struct attribute *attr = NULL;
6284 struct attribute *attr2 = NULL;
e142c38c
DJ
6285 CORE_ADDR baseaddr;
6286
6287 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6288
5c4e30ca 6289 if (die->tag != DW_TAG_namespace)
e142c38c 6290 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
6291 else
6292 name = TYPE_NAME (type);
6293
c906108c
SS
6294 if (name)
6295 {
4a146b47 6296 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
6297 sizeof (struct symbol));
6298 OBJSTAT (objfile, n_syms++);
6299 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
6300
6301 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 6302 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 6303 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
6304
6305 /* Default assumptions.
c5aa993b 6306 Use the passed type or decode it from the die. */
176620f1 6307 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
6308 SYMBOL_CLASS (sym) = LOC_STATIC;
6309 if (type != NULL)
6310 SYMBOL_TYPE (sym) = type;
6311 else
e7c27a73 6312 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 6313 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
6314 if (attr)
6315 {
6316 SYMBOL_LINE (sym) = DW_UNSND (attr);
6317 }
c906108c
SS
6318 switch (die->tag)
6319 {
6320 case DW_TAG_label:
e142c38c 6321 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
6322 if (attr)
6323 {
6324 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6325 }
6326 SYMBOL_CLASS (sym) = LOC_LABEL;
6327 break;
6328 case DW_TAG_subprogram:
6329 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6330 finish_block. */
6331 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 6332 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6333 if (attr2 && (DW_UNSND (attr2) != 0))
6334 {
6335 add_symbol_to_list (sym, &global_symbols);
6336 }
6337 else
6338 {
e142c38c 6339 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6340 }
6341 break;
6342 case DW_TAG_variable:
6343 /* Compilation with minimal debug info may result in variables
6344 with missing type entries. Change the misleading `void' type
6345 to something sensible. */
6346 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6347 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6348 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6349 "<variable, no debug info>",
6350 objfile);
e142c38c 6351 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6352 if (attr)
6353 {
e7c27a73 6354 dwarf2_const_value (attr, sym, cu);
e142c38c 6355 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6356 if (attr2 && (DW_UNSND (attr2) != 0))
6357 add_symbol_to_list (sym, &global_symbols);
6358 else
e142c38c 6359 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6360 break;
6361 }
e142c38c 6362 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6363 if (attr)
6364 {
e7c27a73 6365 var_decode_location (attr, sym, cu);
e142c38c 6366 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6367 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 6368 add_symbol_to_list (sym, &global_symbols);
c906108c 6369 else
e142c38c 6370 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6371 }
6372 else
6373 {
6374 /* We do not know the address of this symbol.
c5aa993b
JM
6375 If it is an external symbol and we have type information
6376 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6377 The address of the variable will then be determined from
6378 the minimal symbol table whenever the variable is
6379 referenced. */
e142c38c 6380 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6381 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 6382 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
6383 {
6384 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6385 add_symbol_to_list (sym, &global_symbols);
6386 }
6387 }
6388 break;
6389 case DW_TAG_formal_parameter:
e142c38c 6390 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6391 if (attr)
6392 {
e7c27a73 6393 var_decode_location (attr, sym, cu);
7cf6e574
DJ
6394 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6395 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6396 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 6397 }
e142c38c 6398 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6399 if (attr)
6400 {
e7c27a73 6401 dwarf2_const_value (attr, sym, cu);
c906108c 6402 }
e142c38c 6403 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6404 break;
6405 case DW_TAG_unspecified_parameters:
6406 /* From varargs functions; gdb doesn't seem to have any
6407 interest in this information, so just ignore it for now.
6408 (FIXME?) */
6409 break;
6410 case DW_TAG_class_type:
6411 case DW_TAG_structure_type:
6412 case DW_TAG_union_type:
6413 case DW_TAG_enumeration_type:
6414 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 6415 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 6416
63d06c5c
DC
6417 /* Make sure that the symbol includes appropriate enclosing
6418 classes/namespaces in its name. These are calculated in
134d01f1 6419 read_structure_type, and the correct name is saved in
63d06c5c
DC
6420 the type. */
6421
e142c38c 6422 if (cu->language == language_cplus)
c906108c 6423 {
63d06c5c
DC
6424 struct type *type = SYMBOL_TYPE (sym);
6425
6426 if (TYPE_TAG_NAME (type) != NULL)
6427 {
6428 /* FIXME: carlton/2003-11-10: Should this use
6429 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
6430 arises further down in this function.) */
6431 /* The type's name is already allocated along with
6432 this objfile, so we don't need to duplicate it
6433 for the symbol. */
6434 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 6435 }
c906108c 6436 }
63d06c5c
DC
6437
6438 {
6439 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
6440 really ever be static objects: otherwise, if you try
6441 to, say, break of a class's method and you're in a file
6442 which doesn't mention that class, it won't work unless
6443 the check for all static symbols in lookup_symbol_aux
6444 saves you. See the OtherFileClass tests in
6445 gdb.c++/namespace.exp. */
6446
6447 struct pending **list_to_add;
6448
e142c38c
DJ
6449 list_to_add = (cu->list_in_scope == &file_symbols
6450 && cu->language == language_cplus
6451 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
6452
6453 add_symbol_to_list (sym, list_to_add);
6454
6455 /* The semantics of C++ state that "struct foo { ... }" also
6456 defines a typedef for "foo". Synthesize a typedef symbol so
6457 that "ptype foo" works as expected. */
e142c38c 6458 if (cu->language == language_cplus)
63d06c5c
DC
6459 {
6460 struct symbol *typedef_sym = (struct symbol *)
4a146b47 6461 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
6462 sizeof (struct symbol));
6463 *typedef_sym = *sym;
6464 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
6465 /* The symbol's name is already allocated along with
6466 this objfile, so we don't need to duplicate it for
6467 the type. */
63d06c5c 6468 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
d8151005 6469 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
63d06c5c
DC
6470 add_symbol_to_list (typedef_sym, list_to_add);
6471 }
6472 }
c906108c
SS
6473 break;
6474 case DW_TAG_typedef:
63d06c5c
DC
6475 if (processing_has_namespace_info
6476 && processing_current_prefix[0] != '\0')
6477 {
4a146b47 6478 SYMBOL_LINKAGE_NAME (sym) = obconcat (&objfile->objfile_obstack,
63d06c5c
DC
6479 processing_current_prefix,
6480 "::",
6481 name);
6482 }
6483 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6484 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 6485 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 6486 break;
c906108c 6487 case DW_TAG_base_type:
a02abb62 6488 case DW_TAG_subrange_type:
c906108c 6489 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 6490 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 6491 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6492 break;
6493 case DW_TAG_enumerator:
63d06c5c
DC
6494 if (processing_has_namespace_info
6495 && processing_current_prefix[0] != '\0')
6496 {
4a146b47 6497 SYMBOL_LINKAGE_NAME (sym) = obconcat (&objfile->objfile_obstack,
63d06c5c
DC
6498 processing_current_prefix,
6499 "::",
6500 name);
6501 }
e142c38c 6502 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6503 if (attr)
6504 {
e7c27a73 6505 dwarf2_const_value (attr, sym, cu);
c906108c 6506 }
63d06c5c
DC
6507 {
6508 /* NOTE: carlton/2003-11-10: See comment above in the
6509 DW_TAG_class_type, etc. block. */
6510
6511 struct pending **list_to_add;
6512
e142c38c
DJ
6513 list_to_add = (cu->list_in_scope == &file_symbols
6514 && cu->language == language_cplus
6515 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
6516
6517 add_symbol_to_list (sym, list_to_add);
6518 }
c906108c 6519 break;
5c4e30ca
DC
6520 case DW_TAG_namespace:
6521 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6522 add_symbol_to_list (sym, &global_symbols);
6523 break;
c906108c
SS
6524 default:
6525 /* Not a tag we recognize. Hopefully we aren't processing
6526 trash data, but since we must specifically ignore things
6527 we don't recognize, there is nothing else we should do at
6528 this point. */
4d3c2250
KB
6529 complaint (&symfile_complaints, "unsupported tag: '%s'",
6530 dwarf_tag_name (die->tag));
c906108c
SS
6531 break;
6532 }
6533 }
6534 return (sym);
6535}
6536
6537/* Copy constant value from an attribute to a symbol. */
6538
6539static void
107d2387 6540dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 6541 struct dwarf2_cu *cu)
c906108c 6542{
e7c27a73
DJ
6543 struct objfile *objfile = cu->objfile;
6544 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6545 struct dwarf_block *blk;
6546
6547 switch (attr->form)
6548 {
6549 case DW_FORM_addr:
107d2387 6550 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 6551 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
6552 cu_header->addr_size,
6553 TYPE_LENGTH (SYMBOL_TYPE
6554 (sym)));
c906108c 6555 SYMBOL_VALUE_BYTES (sym) = (char *)
4a146b47 6556 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
6557 /* NOTE: cagney/2003-05-09: In-lined store_address call with
6558 it's body - store_unsigned_integer. */
6559 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
6560 DW_ADDR (attr));
c906108c
SS
6561 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6562 break;
6563 case DW_FORM_block1:
6564 case DW_FORM_block2:
6565 case DW_FORM_block4:
6566 case DW_FORM_block:
6567 blk = DW_BLOCK (attr);
6568 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 6569 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
6570 blk->size,
6571 TYPE_LENGTH (SYMBOL_TYPE
6572 (sym)));
c906108c 6573 SYMBOL_VALUE_BYTES (sym) = (char *)
4a146b47 6574 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
6575 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
6576 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6577 break;
2df3850c
JM
6578
6579 /* The DW_AT_const_value attributes are supposed to carry the
6580 symbol's value "represented as it would be on the target
6581 architecture." By the time we get here, it's already been
6582 converted to host endianness, so we just need to sign- or
6583 zero-extend it as appropriate. */
6584 case DW_FORM_data1:
6585 dwarf2_const_value_data (attr, sym, 8);
6586 break;
c906108c 6587 case DW_FORM_data2:
2df3850c
JM
6588 dwarf2_const_value_data (attr, sym, 16);
6589 break;
c906108c 6590 case DW_FORM_data4:
2df3850c
JM
6591 dwarf2_const_value_data (attr, sym, 32);
6592 break;
c906108c 6593 case DW_FORM_data8:
2df3850c
JM
6594 dwarf2_const_value_data (attr, sym, 64);
6595 break;
6596
c906108c 6597 case DW_FORM_sdata:
2df3850c
JM
6598 SYMBOL_VALUE (sym) = DW_SND (attr);
6599 SYMBOL_CLASS (sym) = LOC_CONST;
6600 break;
6601
c906108c
SS
6602 case DW_FORM_udata:
6603 SYMBOL_VALUE (sym) = DW_UNSND (attr);
6604 SYMBOL_CLASS (sym) = LOC_CONST;
6605 break;
2df3850c 6606
c906108c 6607 default:
4d3c2250
KB
6608 complaint (&symfile_complaints,
6609 "unsupported const value attribute form: '%s'",
6610 dwarf_form_name (attr->form));
c906108c
SS
6611 SYMBOL_VALUE (sym) = 0;
6612 SYMBOL_CLASS (sym) = LOC_CONST;
6613 break;
6614 }
6615}
6616
2df3850c
JM
6617
6618/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
6619 or zero-extend it as appropriate for the symbol's type. */
6620static void
6621dwarf2_const_value_data (struct attribute *attr,
6622 struct symbol *sym,
6623 int bits)
6624{
6625 LONGEST l = DW_UNSND (attr);
6626
6627 if (bits < sizeof (l) * 8)
6628 {
6629 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
6630 l &= ((LONGEST) 1 << bits) - 1;
6631 else
bf9198f1 6632 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
6633 }
6634
6635 SYMBOL_VALUE (sym) = l;
6636 SYMBOL_CLASS (sym) = LOC_CONST;
6637}
6638
6639
c906108c
SS
6640/* Return the type of the die in question using its DW_AT_type attribute. */
6641
6642static struct type *
e7c27a73 6643die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
6644{
6645 struct type *type;
6646 struct attribute *type_attr;
6647 struct die_info *type_die;
6648 unsigned int ref;
6649
e142c38c 6650 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
6651 if (!type_attr)
6652 {
6653 /* A missing DW_AT_type represents a void type. */
e142c38c 6654 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
6655 }
6656 else
6657 {
e142c38c 6658 ref = dwarf2_get_ref_die_offset (type_attr, cu);
c906108c
SS
6659 type_die = follow_die_ref (ref);
6660 if (!type_die)
6661 {
659b0389 6662 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]",
e7c27a73 6663 ref, cu->objfile->name);
c906108c
SS
6664 return NULL;
6665 }
6666 }
e7c27a73 6667 type = tag_type_to_type (type_die, cu);
c906108c
SS
6668 if (!type)
6669 {
6670 dump_die (type_die);
659b0389 6671 error ("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]",
e7c27a73 6672 cu->objfile->name);
c906108c
SS
6673 }
6674 return type;
6675}
6676
6677/* Return the containing type of the die in question using its
6678 DW_AT_containing_type attribute. */
6679
6680static struct type *
e7c27a73 6681die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
6682{
6683 struct type *type = NULL;
6684 struct attribute *type_attr;
6685 struct die_info *type_die = NULL;
6686 unsigned int ref;
6687
e142c38c 6688 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
6689 if (type_attr)
6690 {
e142c38c 6691 ref = dwarf2_get_ref_die_offset (type_attr, cu);
c906108c
SS
6692 type_die = follow_die_ref (ref);
6693 if (!type_die)
6694 {
659b0389 6695 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]", ref,
e7c27a73 6696 cu->objfile->name);
c906108c
SS
6697 return NULL;
6698 }
e7c27a73 6699 type = tag_type_to_type (type_die, cu);
c906108c
SS
6700 }
6701 if (!type)
6702 {
6703 if (type_die)
6704 dump_die (type_die);
659b0389 6705 error ("Dwarf Error: Problem turning containing type into gdb type [in module %s]",
e7c27a73 6706 cu->objfile->name);
c906108c
SS
6707 }
6708 return type;
6709}
6710
6711#if 0
6712static struct type *
e7c27a73 6713type_at_offset (unsigned int offset, struct dwarf2_cu *cu)
c906108c
SS
6714{
6715 struct die_info *die;
6716 struct type *type;
6717
6718 die = follow_die_ref (offset);
6719 if (!die)
6720 {
6721 error ("Dwarf Error: Cannot find type referent at offset %d.", offset);
6722 return NULL;
6723 }
e7c27a73 6724 type = tag_type_to_type (die, cu);
c906108c
SS
6725 return type;
6726}
6727#endif
6728
6729static struct type *
e7c27a73 6730tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
6731{
6732 if (die->type)
6733 {
6734 return die->type;
6735 }
6736 else
6737 {
e7c27a73 6738 read_type_die (die, cu);
c906108c
SS
6739 if (!die->type)
6740 {
6741 dump_die (die);
659b0389 6742 error ("Dwarf Error: Cannot find type of die [in module %s]",
e7c27a73 6743 cu->objfile->name);
c906108c
SS
6744 }
6745 return die->type;
6746 }
6747}
6748
6749static void
e7c27a73 6750read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6751{
e142c38c 6752 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
6753 const char *old_prefix = processing_current_prefix;
6754 struct cleanup *back_to = make_cleanup (xfree, prefix);
6755 processing_current_prefix = prefix;
6756
c906108c
SS
6757 switch (die->tag)
6758 {
6759 case DW_TAG_class_type:
6760 case DW_TAG_structure_type:
6761 case DW_TAG_union_type:
134d01f1 6762 read_structure_type (die, cu);
c906108c
SS
6763 break;
6764 case DW_TAG_enumeration_type:
134d01f1 6765 read_enumeration_type (die, cu);
c906108c
SS
6766 break;
6767 case DW_TAG_subprogram:
6768 case DW_TAG_subroutine_type:
e7c27a73 6769 read_subroutine_type (die, cu);
c906108c
SS
6770 break;
6771 case DW_TAG_array_type:
e7c27a73 6772 read_array_type (die, cu);
c906108c
SS
6773 break;
6774 case DW_TAG_pointer_type:
e7c27a73 6775 read_tag_pointer_type (die, cu);
c906108c
SS
6776 break;
6777 case DW_TAG_ptr_to_member_type:
e7c27a73 6778 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
6779 break;
6780 case DW_TAG_reference_type:
e7c27a73 6781 read_tag_reference_type (die, cu);
c906108c
SS
6782 break;
6783 case DW_TAG_const_type:
e7c27a73 6784 read_tag_const_type (die, cu);
c906108c
SS
6785 break;
6786 case DW_TAG_volatile_type:
e7c27a73 6787 read_tag_volatile_type (die, cu);
c906108c
SS
6788 break;
6789 case DW_TAG_string_type:
e7c27a73 6790 read_tag_string_type (die, cu);
c906108c
SS
6791 break;
6792 case DW_TAG_typedef:
e7c27a73 6793 read_typedef (die, cu);
c906108c 6794 break;
a02abb62
JB
6795 case DW_TAG_subrange_type:
6796 read_subrange_type (die, cu);
6797 break;
c906108c 6798 case DW_TAG_base_type:
e7c27a73 6799 read_base_type (die, cu);
c906108c
SS
6800 break;
6801 default:
4d3c2250
KB
6802 complaint (&symfile_complaints, "unexepected tag in read_type_die: '%s'",
6803 dwarf_tag_name (die->tag));
c906108c
SS
6804 break;
6805 }
63d06c5c
DC
6806
6807 processing_current_prefix = old_prefix;
6808 do_cleanups (back_to);
6809}
6810
fdde2d81
DC
6811/* Return the name of the namespace/class that DIE is defined within,
6812 or "" if we can't tell. The caller should xfree the result. */
6813
6814/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
6815 therein) for an example of how to use this function to deal with
6816 DW_AT_specification. */
6817
6818static char *
e142c38c 6819determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
6820{
6821 struct die_info *parent;
6822
e142c38c 6823 if (cu->language != language_cplus)
63d06c5c
DC
6824 return NULL;
6825
6826 parent = die->parent;
6827
6828 if (parent == NULL)
6829 {
8176b9b8 6830 return xstrdup ("");
63d06c5c
DC
6831 }
6832 else
6833 {
63d06c5c
DC
6834 switch (parent->tag) {
6835 case DW_TAG_namespace:
6836 {
8176b9b8
DC
6837 /* FIXME: carlton/2004-03-05: Should I follow extension dies
6838 before doing this check? */
6839 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
6840 {
6841 return xstrdup (TYPE_TAG_NAME (parent->type));
6842 }
6843 else
6844 {
6845 int dummy;
6846 char *parent_prefix = determine_prefix (parent, cu);
6847 char *retval = typename_concat (parent_prefix,
6848 namespace_name (parent, &dummy,
6849 cu));
6850 xfree (parent_prefix);
6851 return retval;
6852 }
63d06c5c
DC
6853 }
6854 break;
6855 case DW_TAG_class_type:
6856 case DW_TAG_structure_type:
6857 {
8176b9b8 6858 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 6859 {
8176b9b8 6860 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
6861 }
6862 else
8176b9b8
DC
6863 {
6864 const char *old_prefix = processing_current_prefix;
6865 char *new_prefix = determine_prefix (parent, cu);
6866 char *retval;
6867
6868 processing_current_prefix = new_prefix;
6869 retval = determine_class_name (parent, cu);
6870 processing_current_prefix = old_prefix;
6871
6872 xfree (new_prefix);
6873 return retval;
6874 }
63d06c5c 6875 }
63d06c5c 6876 default:
8176b9b8 6877 return determine_prefix (parent, cu);
63d06c5c 6878 }
63d06c5c
DC
6879 }
6880}
6881
6882/* Return a newly-allocated string formed by concatenating PREFIX,
6883 "::", and SUFFIX, except that if PREFIX is NULL or the empty
6884 string, just return a copy of SUFFIX. */
6885
6886static char *
6887typename_concat (const char *prefix, const char *suffix)
6888{
6889 if (prefix == NULL || prefix[0] == '\0')
6890 return xstrdup (suffix);
6891 else
6892 {
6893 char *retval = xmalloc (strlen (prefix) + 2 + strlen (suffix) + 1);
6894
6895 strcpy (retval, prefix);
6896 strcat (retval, "::");
6897 strcat (retval, suffix);
6898
6899 return retval;
6900 }
6901}
6902
c906108c 6903static struct type *
e7c27a73 6904dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 6905{
e7c27a73
DJ
6906 struct objfile *objfile = cu->objfile;
6907
c906108c
SS
6908 /* FIXME - this should not produce a new (struct type *)
6909 every time. It should cache base types. */
6910 struct type *type;
6911 switch (encoding)
6912 {
6913 case DW_ATE_address:
e142c38c 6914 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
6915 return type;
6916 case DW_ATE_boolean:
e142c38c 6917 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
6918 return type;
6919 case DW_ATE_complex_float:
6920 if (size == 16)
6921 {
e142c38c 6922 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
6923 }
6924 else
6925 {
e142c38c 6926 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
6927 }
6928 return type;
6929 case DW_ATE_float:
6930 if (size == 8)
6931 {
e142c38c 6932 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
6933 }
6934 else
6935 {
e142c38c 6936 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
6937 }
6938 return type;
6939 case DW_ATE_signed:
6940 switch (size)
6941 {
6942 case 1:
e142c38c 6943 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
6944 break;
6945 case 2:
e142c38c 6946 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
6947 break;
6948 default:
6949 case 4:
e142c38c 6950 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
6951 break;
6952 }
6953 return type;
6954 case DW_ATE_signed_char:
e142c38c 6955 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
6956 return type;
6957 case DW_ATE_unsigned:
6958 switch (size)
6959 {
6960 case 1:
e142c38c 6961 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
6962 break;
6963 case 2:
e142c38c 6964 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
6965 break;
6966 default:
6967 case 4:
e142c38c 6968 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
6969 break;
6970 }
6971 return type;
6972 case DW_ATE_unsigned_char:
e142c38c 6973 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
6974 return type;
6975 default:
e142c38c 6976 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
6977 return type;
6978 }
6979}
6980
6981#if 0
6982struct die_info *
fba45db2 6983copy_die (struct die_info *old_die)
c906108c
SS
6984{
6985 struct die_info *new_die;
6986 int i, num_attrs;
6987
6988 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
6989 memset (new_die, 0, sizeof (struct die_info));
6990
6991 new_die->tag = old_die->tag;
6992 new_die->has_children = old_die->has_children;
6993 new_die->abbrev = old_die->abbrev;
6994 new_die->offset = old_die->offset;
6995 new_die->type = NULL;
6996
6997 num_attrs = old_die->num_attrs;
6998 new_die->num_attrs = num_attrs;
6999 new_die->attrs = (struct attribute *)
7000 xmalloc (num_attrs * sizeof (struct attribute));
7001
7002 for (i = 0; i < old_die->num_attrs; ++i)
7003 {
7004 new_die->attrs[i].name = old_die->attrs[i].name;
7005 new_die->attrs[i].form = old_die->attrs[i].form;
7006 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7007 }
7008
7009 new_die->next = NULL;
7010 return new_die;
7011}
7012#endif
7013
7014/* Return sibling of die, NULL if no sibling. */
7015
f9aca02d 7016static struct die_info *
fba45db2 7017sibling_die (struct die_info *die)
c906108c 7018{
639d11d3 7019 return die->sibling;
c906108c
SS
7020}
7021
7022/* Get linkage name of a die, return NULL if not found. */
7023
7024static char *
e142c38c 7025dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7026{
7027 struct attribute *attr;
7028
e142c38c 7029 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7030 if (attr && DW_STRING (attr))
7031 return DW_STRING (attr);
e142c38c 7032 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7033 if (attr && DW_STRING (attr))
7034 return DW_STRING (attr);
7035 return NULL;
7036}
7037
9219021c
DC
7038/* Get name of a die, return NULL if not found. */
7039
7040static char *
e142c38c 7041dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7042{
7043 struct attribute *attr;
7044
e142c38c 7045 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7046 if (attr && DW_STRING (attr))
7047 return DW_STRING (attr);
7048 return NULL;
7049}
7050
7051/* Return the die that this die in an extension of, or NULL if there
7052 is none. */
7053
7054static struct die_info *
e142c38c 7055dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7056{
7057 struct attribute *attr;
7058 struct die_info *extension_die;
7059 unsigned int ref;
7060
e142c38c 7061 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7062 if (attr == NULL)
7063 return NULL;
7064
e142c38c 7065 ref = dwarf2_get_ref_die_offset (attr, cu);
9219021c
DC
7066 extension_die = follow_die_ref (ref);
7067 if (!extension_die)
7068 {
7069 error ("Dwarf Error: Cannot find referent at offset %d.", ref);
7070 }
7071
7072 return extension_die;
7073}
7074
c906108c
SS
7075/* Convert a DIE tag into its string name. */
7076
7077static char *
aa1ee363 7078dwarf_tag_name (unsigned tag)
c906108c
SS
7079{
7080 switch (tag)
7081 {
7082 case DW_TAG_padding:
7083 return "DW_TAG_padding";
7084 case DW_TAG_array_type:
7085 return "DW_TAG_array_type";
7086 case DW_TAG_class_type:
7087 return "DW_TAG_class_type";
7088 case DW_TAG_entry_point:
7089 return "DW_TAG_entry_point";
7090 case DW_TAG_enumeration_type:
7091 return "DW_TAG_enumeration_type";
7092 case DW_TAG_formal_parameter:
7093 return "DW_TAG_formal_parameter";
7094 case DW_TAG_imported_declaration:
7095 return "DW_TAG_imported_declaration";
7096 case DW_TAG_label:
7097 return "DW_TAG_label";
7098 case DW_TAG_lexical_block:
7099 return "DW_TAG_lexical_block";
7100 case DW_TAG_member:
7101 return "DW_TAG_member";
7102 case DW_TAG_pointer_type:
7103 return "DW_TAG_pointer_type";
7104 case DW_TAG_reference_type:
7105 return "DW_TAG_reference_type";
7106 case DW_TAG_compile_unit:
7107 return "DW_TAG_compile_unit";
7108 case DW_TAG_string_type:
7109 return "DW_TAG_string_type";
7110 case DW_TAG_structure_type:
7111 return "DW_TAG_structure_type";
7112 case DW_TAG_subroutine_type:
7113 return "DW_TAG_subroutine_type";
7114 case DW_TAG_typedef:
7115 return "DW_TAG_typedef";
7116 case DW_TAG_union_type:
7117 return "DW_TAG_union_type";
7118 case DW_TAG_unspecified_parameters:
7119 return "DW_TAG_unspecified_parameters";
7120 case DW_TAG_variant:
7121 return "DW_TAG_variant";
7122 case DW_TAG_common_block:
7123 return "DW_TAG_common_block";
7124 case DW_TAG_common_inclusion:
7125 return "DW_TAG_common_inclusion";
7126 case DW_TAG_inheritance:
7127 return "DW_TAG_inheritance";
7128 case DW_TAG_inlined_subroutine:
7129 return "DW_TAG_inlined_subroutine";
7130 case DW_TAG_module:
7131 return "DW_TAG_module";
7132 case DW_TAG_ptr_to_member_type:
7133 return "DW_TAG_ptr_to_member_type";
7134 case DW_TAG_set_type:
7135 return "DW_TAG_set_type";
7136 case DW_TAG_subrange_type:
7137 return "DW_TAG_subrange_type";
7138 case DW_TAG_with_stmt:
7139 return "DW_TAG_with_stmt";
7140 case DW_TAG_access_declaration:
7141 return "DW_TAG_access_declaration";
7142 case DW_TAG_base_type:
7143 return "DW_TAG_base_type";
7144 case DW_TAG_catch_block:
7145 return "DW_TAG_catch_block";
7146 case DW_TAG_const_type:
7147 return "DW_TAG_const_type";
7148 case DW_TAG_constant:
7149 return "DW_TAG_constant";
7150 case DW_TAG_enumerator:
7151 return "DW_TAG_enumerator";
7152 case DW_TAG_file_type:
7153 return "DW_TAG_file_type";
7154 case DW_TAG_friend:
7155 return "DW_TAG_friend";
7156 case DW_TAG_namelist:
7157 return "DW_TAG_namelist";
7158 case DW_TAG_namelist_item:
7159 return "DW_TAG_namelist_item";
7160 case DW_TAG_packed_type:
7161 return "DW_TAG_packed_type";
7162 case DW_TAG_subprogram:
7163 return "DW_TAG_subprogram";
7164 case DW_TAG_template_type_param:
7165 return "DW_TAG_template_type_param";
7166 case DW_TAG_template_value_param:
7167 return "DW_TAG_template_value_param";
7168 case DW_TAG_thrown_type:
7169 return "DW_TAG_thrown_type";
7170 case DW_TAG_try_block:
7171 return "DW_TAG_try_block";
7172 case DW_TAG_variant_part:
7173 return "DW_TAG_variant_part";
7174 case DW_TAG_variable:
7175 return "DW_TAG_variable";
7176 case DW_TAG_volatile_type:
7177 return "DW_TAG_volatile_type";
d9fa45fe
DC
7178 case DW_TAG_dwarf_procedure:
7179 return "DW_TAG_dwarf_procedure";
7180 case DW_TAG_restrict_type:
7181 return "DW_TAG_restrict_type";
7182 case DW_TAG_interface_type:
7183 return "DW_TAG_interface_type";
7184 case DW_TAG_namespace:
7185 return "DW_TAG_namespace";
7186 case DW_TAG_imported_module:
7187 return "DW_TAG_imported_module";
7188 case DW_TAG_unspecified_type:
7189 return "DW_TAG_unspecified_type";
7190 case DW_TAG_partial_unit:
7191 return "DW_TAG_partial_unit";
7192 case DW_TAG_imported_unit:
7193 return "DW_TAG_imported_unit";
c906108c
SS
7194 case DW_TAG_MIPS_loop:
7195 return "DW_TAG_MIPS_loop";
7196 case DW_TAG_format_label:
7197 return "DW_TAG_format_label";
7198 case DW_TAG_function_template:
7199 return "DW_TAG_function_template";
7200 case DW_TAG_class_template:
7201 return "DW_TAG_class_template";
7202 default:
7203 return "DW_TAG_<unknown>";
7204 }
7205}
7206
7207/* Convert a DWARF attribute code into its string name. */
7208
7209static char *
aa1ee363 7210dwarf_attr_name (unsigned attr)
c906108c
SS
7211{
7212 switch (attr)
7213 {
7214 case DW_AT_sibling:
7215 return "DW_AT_sibling";
7216 case DW_AT_location:
7217 return "DW_AT_location";
7218 case DW_AT_name:
7219 return "DW_AT_name";
7220 case DW_AT_ordering:
7221 return "DW_AT_ordering";
7222 case DW_AT_subscr_data:
7223 return "DW_AT_subscr_data";
7224 case DW_AT_byte_size:
7225 return "DW_AT_byte_size";
7226 case DW_AT_bit_offset:
7227 return "DW_AT_bit_offset";
7228 case DW_AT_bit_size:
7229 return "DW_AT_bit_size";
7230 case DW_AT_element_list:
7231 return "DW_AT_element_list";
7232 case DW_AT_stmt_list:
7233 return "DW_AT_stmt_list";
7234 case DW_AT_low_pc:
7235 return "DW_AT_low_pc";
7236 case DW_AT_high_pc:
7237 return "DW_AT_high_pc";
7238 case DW_AT_language:
7239 return "DW_AT_language";
7240 case DW_AT_member:
7241 return "DW_AT_member";
7242 case DW_AT_discr:
7243 return "DW_AT_discr";
7244 case DW_AT_discr_value:
7245 return "DW_AT_discr_value";
7246 case DW_AT_visibility:
7247 return "DW_AT_visibility";
7248 case DW_AT_import:
7249 return "DW_AT_import";
7250 case DW_AT_string_length:
7251 return "DW_AT_string_length";
7252 case DW_AT_common_reference:
7253 return "DW_AT_common_reference";
7254 case DW_AT_comp_dir:
7255 return "DW_AT_comp_dir";
7256 case DW_AT_const_value:
7257 return "DW_AT_const_value";
7258 case DW_AT_containing_type:
7259 return "DW_AT_containing_type";
7260 case DW_AT_default_value:
7261 return "DW_AT_default_value";
7262 case DW_AT_inline:
7263 return "DW_AT_inline";
7264 case DW_AT_is_optional:
7265 return "DW_AT_is_optional";
7266 case DW_AT_lower_bound:
7267 return "DW_AT_lower_bound";
7268 case DW_AT_producer:
7269 return "DW_AT_producer";
7270 case DW_AT_prototyped:
7271 return "DW_AT_prototyped";
7272 case DW_AT_return_addr:
7273 return "DW_AT_return_addr";
7274 case DW_AT_start_scope:
7275 return "DW_AT_start_scope";
7276 case DW_AT_stride_size:
7277 return "DW_AT_stride_size";
7278 case DW_AT_upper_bound:
7279 return "DW_AT_upper_bound";
7280 case DW_AT_abstract_origin:
7281 return "DW_AT_abstract_origin";
7282 case DW_AT_accessibility:
7283 return "DW_AT_accessibility";
7284 case DW_AT_address_class:
7285 return "DW_AT_address_class";
7286 case DW_AT_artificial:
7287 return "DW_AT_artificial";
7288 case DW_AT_base_types:
7289 return "DW_AT_base_types";
7290 case DW_AT_calling_convention:
7291 return "DW_AT_calling_convention";
7292 case DW_AT_count:
7293 return "DW_AT_count";
7294 case DW_AT_data_member_location:
7295 return "DW_AT_data_member_location";
7296 case DW_AT_decl_column:
7297 return "DW_AT_decl_column";
7298 case DW_AT_decl_file:
7299 return "DW_AT_decl_file";
7300 case DW_AT_decl_line:
7301 return "DW_AT_decl_line";
7302 case DW_AT_declaration:
7303 return "DW_AT_declaration";
7304 case DW_AT_discr_list:
7305 return "DW_AT_discr_list";
7306 case DW_AT_encoding:
7307 return "DW_AT_encoding";
7308 case DW_AT_external:
7309 return "DW_AT_external";
7310 case DW_AT_frame_base:
7311 return "DW_AT_frame_base";
7312 case DW_AT_friend:
7313 return "DW_AT_friend";
7314 case DW_AT_identifier_case:
7315 return "DW_AT_identifier_case";
7316 case DW_AT_macro_info:
7317 return "DW_AT_macro_info";
7318 case DW_AT_namelist_items:
7319 return "DW_AT_namelist_items";
7320 case DW_AT_priority:
7321 return "DW_AT_priority";
7322 case DW_AT_segment:
7323 return "DW_AT_segment";
7324 case DW_AT_specification:
7325 return "DW_AT_specification";
7326 case DW_AT_static_link:
7327 return "DW_AT_static_link";
7328 case DW_AT_type:
7329 return "DW_AT_type";
7330 case DW_AT_use_location:
7331 return "DW_AT_use_location";
7332 case DW_AT_variable_parameter:
7333 return "DW_AT_variable_parameter";
7334 case DW_AT_virtuality:
7335 return "DW_AT_virtuality";
7336 case DW_AT_vtable_elem_location:
7337 return "DW_AT_vtable_elem_location";
d9fa45fe
DC
7338 case DW_AT_allocated:
7339 return "DW_AT_allocated";
7340 case DW_AT_associated:
7341 return "DW_AT_associated";
7342 case DW_AT_data_location:
7343 return "DW_AT_data_location";
7344 case DW_AT_stride:
7345 return "DW_AT_stride";
7346 case DW_AT_entry_pc:
7347 return "DW_AT_entry_pc";
7348 case DW_AT_use_UTF8:
7349 return "DW_AT_use_UTF8";
7350 case DW_AT_extension:
7351 return "DW_AT_extension";
7352 case DW_AT_ranges:
7353 return "DW_AT_ranges";
7354 case DW_AT_trampoline:
7355 return "DW_AT_trampoline";
7356 case DW_AT_call_column:
7357 return "DW_AT_call_column";
7358 case DW_AT_call_file:
7359 return "DW_AT_call_file";
7360 case DW_AT_call_line:
7361 return "DW_AT_call_line";
c906108c
SS
7362#ifdef MIPS
7363 case DW_AT_MIPS_fde:
7364 return "DW_AT_MIPS_fde";
7365 case DW_AT_MIPS_loop_begin:
7366 return "DW_AT_MIPS_loop_begin";
7367 case DW_AT_MIPS_tail_loop_begin:
7368 return "DW_AT_MIPS_tail_loop_begin";
7369 case DW_AT_MIPS_epilog_begin:
7370 return "DW_AT_MIPS_epilog_begin";
7371 case DW_AT_MIPS_loop_unroll_factor:
7372 return "DW_AT_MIPS_loop_unroll_factor";
7373 case DW_AT_MIPS_software_pipeline_depth:
7374 return "DW_AT_MIPS_software_pipeline_depth";
e0a4f5a1 7375#endif
c906108c
SS
7376 case DW_AT_MIPS_linkage_name:
7377 return "DW_AT_MIPS_linkage_name";
c906108c
SS
7378
7379 case DW_AT_sf_names:
7380 return "DW_AT_sf_names";
7381 case DW_AT_src_info:
7382 return "DW_AT_src_info";
7383 case DW_AT_mac_info:
7384 return "DW_AT_mac_info";
7385 case DW_AT_src_coords:
7386 return "DW_AT_src_coords";
7387 case DW_AT_body_begin:
7388 return "DW_AT_body_begin";
7389 case DW_AT_body_end:
7390 return "DW_AT_body_end";
f5f8a009
EZ
7391 case DW_AT_GNU_vector:
7392 return "DW_AT_GNU_vector";
c906108c
SS
7393 default:
7394 return "DW_AT_<unknown>";
7395 }
7396}
7397
7398/* Convert a DWARF value form code into its string name. */
7399
7400static char *
aa1ee363 7401dwarf_form_name (unsigned form)
c906108c
SS
7402{
7403 switch (form)
7404 {
7405 case DW_FORM_addr:
7406 return "DW_FORM_addr";
7407 case DW_FORM_block2:
7408 return "DW_FORM_block2";
7409 case DW_FORM_block4:
7410 return "DW_FORM_block4";
7411 case DW_FORM_data2:
7412 return "DW_FORM_data2";
7413 case DW_FORM_data4:
7414 return "DW_FORM_data4";
7415 case DW_FORM_data8:
7416 return "DW_FORM_data8";
7417 case DW_FORM_string:
7418 return "DW_FORM_string";
7419 case DW_FORM_block:
7420 return "DW_FORM_block";
7421 case DW_FORM_block1:
7422 return "DW_FORM_block1";
7423 case DW_FORM_data1:
7424 return "DW_FORM_data1";
7425 case DW_FORM_flag:
7426 return "DW_FORM_flag";
7427 case DW_FORM_sdata:
7428 return "DW_FORM_sdata";
7429 case DW_FORM_strp:
7430 return "DW_FORM_strp";
7431 case DW_FORM_udata:
7432 return "DW_FORM_udata";
7433 case DW_FORM_ref_addr:
7434 return "DW_FORM_ref_addr";
7435 case DW_FORM_ref1:
7436 return "DW_FORM_ref1";
7437 case DW_FORM_ref2:
7438 return "DW_FORM_ref2";
7439 case DW_FORM_ref4:
7440 return "DW_FORM_ref4";
7441 case DW_FORM_ref8:
7442 return "DW_FORM_ref8";
7443 case DW_FORM_ref_udata:
7444 return "DW_FORM_ref_udata";
7445 case DW_FORM_indirect:
7446 return "DW_FORM_indirect";
7447 default:
7448 return "DW_FORM_<unknown>";
7449 }
7450}
7451
7452/* Convert a DWARF stack opcode into its string name. */
7453
7454static char *
aa1ee363 7455dwarf_stack_op_name (unsigned op)
c906108c
SS
7456{
7457 switch (op)
7458 {
7459 case DW_OP_addr:
7460 return "DW_OP_addr";
7461 case DW_OP_deref:
7462 return "DW_OP_deref";
7463 case DW_OP_const1u:
7464 return "DW_OP_const1u";
7465 case DW_OP_const1s:
7466 return "DW_OP_const1s";
7467 case DW_OP_const2u:
7468 return "DW_OP_const2u";
7469 case DW_OP_const2s:
7470 return "DW_OP_const2s";
7471 case DW_OP_const4u:
7472 return "DW_OP_const4u";
7473 case DW_OP_const4s:
7474 return "DW_OP_const4s";
7475 case DW_OP_const8u:
7476 return "DW_OP_const8u";
7477 case DW_OP_const8s:
7478 return "DW_OP_const8s";
7479 case DW_OP_constu:
7480 return "DW_OP_constu";
7481 case DW_OP_consts:
7482 return "DW_OP_consts";
7483 case DW_OP_dup:
7484 return "DW_OP_dup";
7485 case DW_OP_drop:
7486 return "DW_OP_drop";
7487 case DW_OP_over:
7488 return "DW_OP_over";
7489 case DW_OP_pick:
7490 return "DW_OP_pick";
7491 case DW_OP_swap:
7492 return "DW_OP_swap";
7493 case DW_OP_rot:
7494 return "DW_OP_rot";
7495 case DW_OP_xderef:
7496 return "DW_OP_xderef";
7497 case DW_OP_abs:
7498 return "DW_OP_abs";
7499 case DW_OP_and:
7500 return "DW_OP_and";
7501 case DW_OP_div:
7502 return "DW_OP_div";
7503 case DW_OP_minus:
7504 return "DW_OP_minus";
7505 case DW_OP_mod:
7506 return "DW_OP_mod";
7507 case DW_OP_mul:
7508 return "DW_OP_mul";
7509 case DW_OP_neg:
7510 return "DW_OP_neg";
7511 case DW_OP_not:
7512 return "DW_OP_not";
7513 case DW_OP_or:
7514 return "DW_OP_or";
7515 case DW_OP_plus:
7516 return "DW_OP_plus";
7517 case DW_OP_plus_uconst:
7518 return "DW_OP_plus_uconst";
7519 case DW_OP_shl:
7520 return "DW_OP_shl";
7521 case DW_OP_shr:
7522 return "DW_OP_shr";
7523 case DW_OP_shra:
7524 return "DW_OP_shra";
7525 case DW_OP_xor:
7526 return "DW_OP_xor";
7527 case DW_OP_bra:
7528 return "DW_OP_bra";
7529 case DW_OP_eq:
7530 return "DW_OP_eq";
7531 case DW_OP_ge:
7532 return "DW_OP_ge";
7533 case DW_OP_gt:
7534 return "DW_OP_gt";
7535 case DW_OP_le:
7536 return "DW_OP_le";
7537 case DW_OP_lt:
7538 return "DW_OP_lt";
7539 case DW_OP_ne:
7540 return "DW_OP_ne";
7541 case DW_OP_skip:
7542 return "DW_OP_skip";
7543 case DW_OP_lit0:
7544 return "DW_OP_lit0";
7545 case DW_OP_lit1:
7546 return "DW_OP_lit1";
7547 case DW_OP_lit2:
7548 return "DW_OP_lit2";
7549 case DW_OP_lit3:
7550 return "DW_OP_lit3";
7551 case DW_OP_lit4:
7552 return "DW_OP_lit4";
7553 case DW_OP_lit5:
7554 return "DW_OP_lit5";
7555 case DW_OP_lit6:
7556 return "DW_OP_lit6";
7557 case DW_OP_lit7:
7558 return "DW_OP_lit7";
7559 case DW_OP_lit8:
7560 return "DW_OP_lit8";
7561 case DW_OP_lit9:
7562 return "DW_OP_lit9";
7563 case DW_OP_lit10:
7564 return "DW_OP_lit10";
7565 case DW_OP_lit11:
7566 return "DW_OP_lit11";
7567 case DW_OP_lit12:
7568 return "DW_OP_lit12";
7569 case DW_OP_lit13:
7570 return "DW_OP_lit13";
7571 case DW_OP_lit14:
7572 return "DW_OP_lit14";
7573 case DW_OP_lit15:
7574 return "DW_OP_lit15";
7575 case DW_OP_lit16:
7576 return "DW_OP_lit16";
7577 case DW_OP_lit17:
7578 return "DW_OP_lit17";
7579 case DW_OP_lit18:
7580 return "DW_OP_lit18";
7581 case DW_OP_lit19:
7582 return "DW_OP_lit19";
7583 case DW_OP_lit20:
7584 return "DW_OP_lit20";
7585 case DW_OP_lit21:
7586 return "DW_OP_lit21";
7587 case DW_OP_lit22:
7588 return "DW_OP_lit22";
7589 case DW_OP_lit23:
7590 return "DW_OP_lit23";
7591 case DW_OP_lit24:
7592 return "DW_OP_lit24";
7593 case DW_OP_lit25:
7594 return "DW_OP_lit25";
7595 case DW_OP_lit26:
7596 return "DW_OP_lit26";
7597 case DW_OP_lit27:
7598 return "DW_OP_lit27";
7599 case DW_OP_lit28:
7600 return "DW_OP_lit28";
7601 case DW_OP_lit29:
7602 return "DW_OP_lit29";
7603 case DW_OP_lit30:
7604 return "DW_OP_lit30";
7605 case DW_OP_lit31:
7606 return "DW_OP_lit31";
7607 case DW_OP_reg0:
7608 return "DW_OP_reg0";
7609 case DW_OP_reg1:
7610 return "DW_OP_reg1";
7611 case DW_OP_reg2:
7612 return "DW_OP_reg2";
7613 case DW_OP_reg3:
7614 return "DW_OP_reg3";
7615 case DW_OP_reg4:
7616 return "DW_OP_reg4";
7617 case DW_OP_reg5:
7618 return "DW_OP_reg5";
7619 case DW_OP_reg6:
7620 return "DW_OP_reg6";
7621 case DW_OP_reg7:
7622 return "DW_OP_reg7";
7623 case DW_OP_reg8:
7624 return "DW_OP_reg8";
7625 case DW_OP_reg9:
7626 return "DW_OP_reg9";
7627 case DW_OP_reg10:
7628 return "DW_OP_reg10";
7629 case DW_OP_reg11:
7630 return "DW_OP_reg11";
7631 case DW_OP_reg12:
7632 return "DW_OP_reg12";
7633 case DW_OP_reg13:
7634 return "DW_OP_reg13";
7635 case DW_OP_reg14:
7636 return "DW_OP_reg14";
7637 case DW_OP_reg15:
7638 return "DW_OP_reg15";
7639 case DW_OP_reg16:
7640 return "DW_OP_reg16";
7641 case DW_OP_reg17:
7642 return "DW_OP_reg17";
7643 case DW_OP_reg18:
7644 return "DW_OP_reg18";
7645 case DW_OP_reg19:
7646 return "DW_OP_reg19";
7647 case DW_OP_reg20:
7648 return "DW_OP_reg20";
7649 case DW_OP_reg21:
7650 return "DW_OP_reg21";
7651 case DW_OP_reg22:
7652 return "DW_OP_reg22";
7653 case DW_OP_reg23:
7654 return "DW_OP_reg23";
7655 case DW_OP_reg24:
7656 return "DW_OP_reg24";
7657 case DW_OP_reg25:
7658 return "DW_OP_reg25";
7659 case DW_OP_reg26:
7660 return "DW_OP_reg26";
7661 case DW_OP_reg27:
7662 return "DW_OP_reg27";
7663 case DW_OP_reg28:
7664 return "DW_OP_reg28";
7665 case DW_OP_reg29:
7666 return "DW_OP_reg29";
7667 case DW_OP_reg30:
7668 return "DW_OP_reg30";
7669 case DW_OP_reg31:
7670 return "DW_OP_reg31";
7671 case DW_OP_breg0:
7672 return "DW_OP_breg0";
7673 case DW_OP_breg1:
7674 return "DW_OP_breg1";
7675 case DW_OP_breg2:
7676 return "DW_OP_breg2";
7677 case DW_OP_breg3:
7678 return "DW_OP_breg3";
7679 case DW_OP_breg4:
7680 return "DW_OP_breg4";
7681 case DW_OP_breg5:
7682 return "DW_OP_breg5";
7683 case DW_OP_breg6:
7684 return "DW_OP_breg6";
7685 case DW_OP_breg7:
7686 return "DW_OP_breg7";
7687 case DW_OP_breg8:
7688 return "DW_OP_breg8";
7689 case DW_OP_breg9:
7690 return "DW_OP_breg9";
7691 case DW_OP_breg10:
7692 return "DW_OP_breg10";
7693 case DW_OP_breg11:
7694 return "DW_OP_breg11";
7695 case DW_OP_breg12:
7696 return "DW_OP_breg12";
7697 case DW_OP_breg13:
7698 return "DW_OP_breg13";
7699 case DW_OP_breg14:
7700 return "DW_OP_breg14";
7701 case DW_OP_breg15:
7702 return "DW_OP_breg15";
7703 case DW_OP_breg16:
7704 return "DW_OP_breg16";
7705 case DW_OP_breg17:
7706 return "DW_OP_breg17";
7707 case DW_OP_breg18:
7708 return "DW_OP_breg18";
7709 case DW_OP_breg19:
7710 return "DW_OP_breg19";
7711 case DW_OP_breg20:
7712 return "DW_OP_breg20";
7713 case DW_OP_breg21:
7714 return "DW_OP_breg21";
7715 case DW_OP_breg22:
7716 return "DW_OP_breg22";
7717 case DW_OP_breg23:
7718 return "DW_OP_breg23";
7719 case DW_OP_breg24:
7720 return "DW_OP_breg24";
7721 case DW_OP_breg25:
7722 return "DW_OP_breg25";
7723 case DW_OP_breg26:
7724 return "DW_OP_breg26";
7725 case DW_OP_breg27:
7726 return "DW_OP_breg27";
7727 case DW_OP_breg28:
7728 return "DW_OP_breg28";
7729 case DW_OP_breg29:
7730 return "DW_OP_breg29";
7731 case DW_OP_breg30:
7732 return "DW_OP_breg30";
7733 case DW_OP_breg31:
7734 return "DW_OP_breg31";
7735 case DW_OP_regx:
7736 return "DW_OP_regx";
7737 case DW_OP_fbreg:
7738 return "DW_OP_fbreg";
7739 case DW_OP_bregx:
7740 return "DW_OP_bregx";
7741 case DW_OP_piece:
7742 return "DW_OP_piece";
7743 case DW_OP_deref_size:
7744 return "DW_OP_deref_size";
7745 case DW_OP_xderef_size:
7746 return "DW_OP_xderef_size";
7747 case DW_OP_nop:
7748 return "DW_OP_nop";
ed348acc
EZ
7749 /* DWARF 3 extensions. */
7750 case DW_OP_push_object_address:
7751 return "DW_OP_push_object_address";
7752 case DW_OP_call2:
7753 return "DW_OP_call2";
7754 case DW_OP_call4:
7755 return "DW_OP_call4";
7756 case DW_OP_call_ref:
7757 return "DW_OP_call_ref";
7758 /* GNU extensions. */
7759 case DW_OP_GNU_push_tls_address:
7760 return "DW_OP_GNU_push_tls_address";
c906108c
SS
7761 default:
7762 return "OP_<unknown>";
7763 }
7764}
7765
7766static char *
fba45db2 7767dwarf_bool_name (unsigned mybool)
c906108c
SS
7768{
7769 if (mybool)
7770 return "TRUE";
7771 else
7772 return "FALSE";
7773}
7774
7775/* Convert a DWARF type code into its string name. */
7776
7777static char *
aa1ee363 7778dwarf_type_encoding_name (unsigned enc)
c906108c
SS
7779{
7780 switch (enc)
7781 {
7782 case DW_ATE_address:
7783 return "DW_ATE_address";
7784 case DW_ATE_boolean:
7785 return "DW_ATE_boolean";
7786 case DW_ATE_complex_float:
7787 return "DW_ATE_complex_float";
7788 case DW_ATE_float:
7789 return "DW_ATE_float";
7790 case DW_ATE_signed:
7791 return "DW_ATE_signed";
7792 case DW_ATE_signed_char:
7793 return "DW_ATE_signed_char";
7794 case DW_ATE_unsigned:
7795 return "DW_ATE_unsigned";
7796 case DW_ATE_unsigned_char:
7797 return "DW_ATE_unsigned_char";
d9fa45fe
DC
7798 case DW_ATE_imaginary_float:
7799 return "DW_ATE_imaginary_float";
c906108c
SS
7800 default:
7801 return "DW_ATE_<unknown>";
7802 }
7803}
7804
7805/* Convert a DWARF call frame info operation to its string name. */
7806
7807#if 0
7808static char *
aa1ee363 7809dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
7810{
7811 switch (cfi_opc)
7812 {
7813 case DW_CFA_advance_loc:
7814 return "DW_CFA_advance_loc";
7815 case DW_CFA_offset:
7816 return "DW_CFA_offset";
7817 case DW_CFA_restore:
7818 return "DW_CFA_restore";
7819 case DW_CFA_nop:
7820 return "DW_CFA_nop";
7821 case DW_CFA_set_loc:
7822 return "DW_CFA_set_loc";
7823 case DW_CFA_advance_loc1:
7824 return "DW_CFA_advance_loc1";
7825 case DW_CFA_advance_loc2:
7826 return "DW_CFA_advance_loc2";
7827 case DW_CFA_advance_loc4:
7828 return "DW_CFA_advance_loc4";
7829 case DW_CFA_offset_extended:
7830 return "DW_CFA_offset_extended";
7831 case DW_CFA_restore_extended:
7832 return "DW_CFA_restore_extended";
7833 case DW_CFA_undefined:
7834 return "DW_CFA_undefined";
7835 case DW_CFA_same_value:
7836 return "DW_CFA_same_value";
7837 case DW_CFA_register:
7838 return "DW_CFA_register";
7839 case DW_CFA_remember_state:
7840 return "DW_CFA_remember_state";
7841 case DW_CFA_restore_state:
7842 return "DW_CFA_restore_state";
7843 case DW_CFA_def_cfa:
7844 return "DW_CFA_def_cfa";
7845 case DW_CFA_def_cfa_register:
7846 return "DW_CFA_def_cfa_register";
7847 case DW_CFA_def_cfa_offset:
7848 return "DW_CFA_def_cfa_offset";
985cb1a3
JM
7849
7850 /* DWARF 3 */
7851 case DW_CFA_def_cfa_expression:
7852 return "DW_CFA_def_cfa_expression";
7853 case DW_CFA_expression:
7854 return "DW_CFA_expression";
7855 case DW_CFA_offset_extended_sf:
7856 return "DW_CFA_offset_extended_sf";
7857 case DW_CFA_def_cfa_sf:
7858 return "DW_CFA_def_cfa_sf";
7859 case DW_CFA_def_cfa_offset_sf:
7860 return "DW_CFA_def_cfa_offset_sf";
7861
c906108c
SS
7862 /* SGI/MIPS specific */
7863 case DW_CFA_MIPS_advance_loc8:
7864 return "DW_CFA_MIPS_advance_loc8";
985cb1a3
JM
7865
7866 /* GNU extensions */
7867 case DW_CFA_GNU_window_save:
7868 return "DW_CFA_GNU_window_save";
7869 case DW_CFA_GNU_args_size:
7870 return "DW_CFA_GNU_args_size";
7871 case DW_CFA_GNU_negative_offset_extended:
7872 return "DW_CFA_GNU_negative_offset_extended";
7873
c906108c
SS
7874 default:
7875 return "DW_CFA_<unknown>";
7876 }
7877}
7878#endif
7879
f9aca02d 7880static void
fba45db2 7881dump_die (struct die_info *die)
c906108c
SS
7882{
7883 unsigned int i;
7884
48cd0caa 7885 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 7886 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 7887 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 7888 dwarf_bool_name (die->child != NULL));
c906108c 7889
48cd0caa 7890 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
7891 for (i = 0; i < die->num_attrs; ++i)
7892 {
48cd0caa 7893 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
7894 dwarf_attr_name (die->attrs[i].name),
7895 dwarf_form_name (die->attrs[i].form));
7896 switch (die->attrs[i].form)
7897 {
7898 case DW_FORM_ref_addr:
7899 case DW_FORM_addr:
48cd0caa 7900 fprintf_unfiltered (gdb_stderr, "address: ");
c906108c
SS
7901 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
7902 break;
7903 case DW_FORM_block2:
7904 case DW_FORM_block4:
7905 case DW_FORM_block:
7906 case DW_FORM_block1:
48cd0caa 7907 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c
SS
7908 break;
7909 case DW_FORM_data1:
7910 case DW_FORM_data2:
7911 case DW_FORM_data4:
ce5d95e1 7912 case DW_FORM_data8:
c906108c
SS
7913 case DW_FORM_ref1:
7914 case DW_FORM_ref2:
7915 case DW_FORM_ref4:
7916 case DW_FORM_udata:
7917 case DW_FORM_sdata:
48cd0caa 7918 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
7919 break;
7920 case DW_FORM_string:
4bdf3d34 7921 case DW_FORM_strp:
48cd0caa 7922 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 7923 DW_STRING (&die->attrs[i])
c5aa993b 7924 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
7925 break;
7926 case DW_FORM_flag:
7927 if (DW_UNSND (&die->attrs[i]))
48cd0caa 7928 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 7929 else
48cd0caa 7930 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 7931 break;
a8329558
KW
7932 case DW_FORM_indirect:
7933 /* the reader will have reduced the indirect form to
7934 the "base form" so this form should not occur */
48cd0caa 7935 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 7936 break;
c906108c 7937 default:
48cd0caa 7938 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 7939 die->attrs[i].form);
c906108c 7940 }
48cd0caa 7941 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
7942 }
7943}
7944
f9aca02d 7945static void
fba45db2 7946dump_die_list (struct die_info *die)
c906108c
SS
7947{
7948 while (die)
7949 {
7950 dump_die (die);
639d11d3
DC
7951 if (die->child != NULL)
7952 dump_die_list (die->child);
7953 if (die->sibling != NULL)
7954 dump_die_list (die->sibling);
c906108c
SS
7955 }
7956}
7957
f9aca02d 7958static void
fba45db2 7959store_in_ref_table (unsigned int offset, struct die_info *die)
c906108c
SS
7960{
7961 int h;
7962 struct die_info *old;
7963
7964 h = (offset % REF_HASH_SIZE);
7965 old = die_ref_table[h];
7966 die->next_ref = old;
7967 die_ref_table[h] = die;
7968}
7969
7970
7971static void
fba45db2 7972dwarf2_empty_hash_tables (void)
c906108c
SS
7973{
7974 memset (die_ref_table, 0, sizeof (die_ref_table));
7975}
7976
7977static unsigned int
e142c38c 7978dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
7979{
7980 unsigned int result = 0;
7981
7982 switch (attr->form)
7983 {
7984 case DW_FORM_ref_addr:
7985 result = DW_ADDR (attr);
7986 break;
7987 case DW_FORM_ref1:
7988 case DW_FORM_ref2:
7989 case DW_FORM_ref4:
613e1657 7990 case DW_FORM_ref8:
c906108c 7991 case DW_FORM_ref_udata:
e142c38c 7992 result = cu->header.offset + DW_UNSND (attr);
c906108c
SS
7993 break;
7994 default:
4d3c2250
KB
7995 complaint (&symfile_complaints,
7996 "unsupported die ref attribute form: '%s'",
7997 dwarf_form_name (attr->form));
c906108c
SS
7998 }
7999 return result;
8000}
8001
a02abb62
JB
8002/* Return the constant value held by the given attribute. Return -1
8003 if the value held by the attribute is not constant. */
8004
8005static int
8006dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8007{
8008 if (attr->form == DW_FORM_sdata)
8009 return DW_SND (attr);
8010 else if (attr->form == DW_FORM_udata
8011 || attr->form == DW_FORM_data1
8012 || attr->form == DW_FORM_data2
8013 || attr->form == DW_FORM_data4
8014 || attr->form == DW_FORM_data8)
8015 return DW_UNSND (attr);
8016 else
8017 {
8018 complaint (&symfile_complaints, "Attribute value is not a constant (%s)",
8019 dwarf_form_name (attr->form));
8020 return default_value;
8021 }
8022}
8023
f9aca02d 8024static struct die_info *
fba45db2 8025follow_die_ref (unsigned int offset)
c906108c
SS
8026{
8027 struct die_info *die;
8028 int h;
8029
8030 h = (offset % REF_HASH_SIZE);
8031 die = die_ref_table[h];
8032 while (die)
8033 {
8034 if (die->offset == offset)
8035 {
8036 return die;
8037 }
8038 die = die->next_ref;
8039 }
8040 return NULL;
8041}
8042
8043static struct type *
e142c38c
DJ
8044dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8045 struct dwarf2_cu *cu)
c906108c
SS
8046{
8047 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8048 {
659b0389
ML
8049 error ("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]",
8050 typeid, objfile->name);
c906108c
SS
8051 }
8052
8053 /* Look for this particular type in the fundamental type vector. If
8054 one is not found, create and install one appropriate for the
8055 current language and the current target machine. */
8056
e142c38c 8057 if (cu->ftypes[typeid] == NULL)
c906108c 8058 {
e142c38c 8059 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
8060 }
8061
e142c38c 8062 return (cu->ftypes[typeid]);
c906108c
SS
8063}
8064
8065/* Decode simple location descriptions.
8066 Given a pointer to a dwarf block that defines a location, compute
8067 the location and return the value.
8068
4cecd739
DJ
8069 NOTE drow/2003-11-18: This function is called in two situations
8070 now: for the address of static or global variables (partial symbols
8071 only) and for offsets into structures which are expected to be
8072 (more or less) constant. The partial symbol case should go away,
8073 and only the constant case should remain. That will let this
8074 function complain more accurately. A few special modes are allowed
8075 without complaint for global variables (for instance, global
8076 register values and thread-local values).
c906108c
SS
8077
8078 A location description containing no operations indicates that the
4cecd739 8079 object is optimized out. The return value is 0 for that case.
6b992462
DJ
8080 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8081 callers will only want a very basic result and this can become a
8082 complaint.
c906108c
SS
8083
8084 When the result is a register number, the global isreg flag is set,
8085 otherwise it is cleared.
8086
c906108c
SS
8087 Note that stack[0] is unused except as a default error return.
8088 Note that stack overflow is not yet handled. */
8089
8090static CORE_ADDR
e7c27a73 8091decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 8092{
e7c27a73
DJ
8093 struct objfile *objfile = cu->objfile;
8094 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
8095 int i;
8096 int size = blk->size;
8097 char *data = blk->data;
8098 CORE_ADDR stack[64];
8099 int stacki;
8100 unsigned int bytes_read, unsnd;
8101 unsigned char op;
8102
8103 i = 0;
8104 stacki = 0;
8105 stack[stacki] = 0;
8106 isreg = 0;
c906108c
SS
8107
8108 while (i < size)
8109 {
c906108c
SS
8110 op = data[i++];
8111 switch (op)
8112 {
f1bea926
JM
8113 case DW_OP_lit0:
8114 case DW_OP_lit1:
8115 case DW_OP_lit2:
8116 case DW_OP_lit3:
8117 case DW_OP_lit4:
8118 case DW_OP_lit5:
8119 case DW_OP_lit6:
8120 case DW_OP_lit7:
8121 case DW_OP_lit8:
8122 case DW_OP_lit9:
8123 case DW_OP_lit10:
8124 case DW_OP_lit11:
8125 case DW_OP_lit12:
8126 case DW_OP_lit13:
8127 case DW_OP_lit14:
8128 case DW_OP_lit15:
8129 case DW_OP_lit16:
8130 case DW_OP_lit17:
8131 case DW_OP_lit18:
8132 case DW_OP_lit19:
8133 case DW_OP_lit20:
8134 case DW_OP_lit21:
8135 case DW_OP_lit22:
8136 case DW_OP_lit23:
8137 case DW_OP_lit24:
8138 case DW_OP_lit25:
8139 case DW_OP_lit26:
8140 case DW_OP_lit27:
8141 case DW_OP_lit28:
8142 case DW_OP_lit29:
8143 case DW_OP_lit30:
8144 case DW_OP_lit31:
8145 stack[++stacki] = op - DW_OP_lit0;
8146 break;
8147
c906108c
SS
8148 case DW_OP_reg0:
8149 case DW_OP_reg1:
8150 case DW_OP_reg2:
8151 case DW_OP_reg3:
8152 case DW_OP_reg4:
8153 case DW_OP_reg5:
8154 case DW_OP_reg6:
8155 case DW_OP_reg7:
8156 case DW_OP_reg8:
8157 case DW_OP_reg9:
8158 case DW_OP_reg10:
8159 case DW_OP_reg11:
8160 case DW_OP_reg12:
8161 case DW_OP_reg13:
8162 case DW_OP_reg14:
8163 case DW_OP_reg15:
8164 case DW_OP_reg16:
8165 case DW_OP_reg17:
8166 case DW_OP_reg18:
8167 case DW_OP_reg19:
8168 case DW_OP_reg20:
8169 case DW_OP_reg21:
8170 case DW_OP_reg22:
8171 case DW_OP_reg23:
8172 case DW_OP_reg24:
8173 case DW_OP_reg25:
8174 case DW_OP_reg26:
8175 case DW_OP_reg27:
8176 case DW_OP_reg28:
8177 case DW_OP_reg29:
8178 case DW_OP_reg30:
8179 case DW_OP_reg31:
8180 isreg = 1;
8181 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
8182 if (i < size)
8183 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8184 break;
8185
8186 case DW_OP_regx:
8187 isreg = 1;
8188 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8189 i += bytes_read;
c906108c 8190 stack[++stacki] = unsnd;
4cecd739
DJ
8191 if (i < size)
8192 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8193 break;
8194
8195 case DW_OP_addr:
107d2387 8196 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 8197 cu, &bytes_read);
107d2387 8198 i += bytes_read;
c906108c
SS
8199 break;
8200
8201 case DW_OP_const1u:
8202 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8203 i += 1;
8204 break;
8205
8206 case DW_OP_const1s:
8207 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8208 i += 1;
8209 break;
8210
8211 case DW_OP_const2u:
8212 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8213 i += 2;
8214 break;
8215
8216 case DW_OP_const2s:
8217 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8218 i += 2;
8219 break;
8220
8221 case DW_OP_const4u:
8222 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8223 i += 4;
8224 break;
8225
8226 case DW_OP_const4s:
8227 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8228 i += 4;
8229 break;
8230
8231 case DW_OP_constu:
8232 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 8233 &bytes_read);
c906108c
SS
8234 i += bytes_read;
8235 break;
8236
8237 case DW_OP_consts:
8238 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8239 i += bytes_read;
8240 break;
8241
f1bea926
JM
8242 case DW_OP_dup:
8243 stack[stacki + 1] = stack[stacki];
8244 stacki++;
8245 break;
8246
c906108c
SS
8247 case DW_OP_plus:
8248 stack[stacki - 1] += stack[stacki];
8249 stacki--;
8250 break;
8251
8252 case DW_OP_plus_uconst:
8253 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8254 i += bytes_read;
8255 break;
8256
8257 case DW_OP_minus:
f1bea926 8258 stack[stacki - 1] -= stack[stacki];
c906108c
SS
8259 stacki--;
8260 break;
8261
7a292a7a 8262 case DW_OP_deref:
7a292a7a 8263 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
8264 this using GDB's address_class enum. This is valid for partial
8265 global symbols, although the variable's address will be bogus
8266 in the psymtab. */
7a292a7a 8267 if (i < size)
4d3c2250 8268 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
8269 break;
8270
9d774e44 8271 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
8272 /* The top of the stack has the offset from the beginning
8273 of the thread control block at which the variable is located. */
8274 /* Nothing should follow this operator, so the top of stack would
8275 be returned. */
4cecd739
DJ
8276 /* This is valid for partial global symbols, but the variable's
8277 address will be bogus in the psymtab. */
9d774e44 8278 if (i < size)
4d3c2250 8279 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
8280 break;
8281
c906108c 8282 default:
4d3c2250
KB
8283 complaint (&symfile_complaints, "unsupported stack op: '%s'",
8284 dwarf_stack_op_name (op));
c906108c
SS
8285 return (stack[stacki]);
8286 }
8287 }
8288 return (stack[stacki]);
8289}
8290
8291/* memory allocation interface */
8292
c906108c 8293static struct dwarf_block *
7b5a2f43 8294dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
8295{
8296 struct dwarf_block *blk;
8297
8298 blk = (struct dwarf_block *)
7b5a2f43 8299 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
8300 return (blk);
8301}
8302
8303static struct abbrev_info *
f3dd6933 8304dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
8305{
8306 struct abbrev_info *abbrev;
8307
f3dd6933
DJ
8308 abbrev = (struct abbrev_info *)
8309 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
8310 memset (abbrev, 0, sizeof (struct abbrev_info));
8311 return (abbrev);
8312}
8313
8314static struct die_info *
fba45db2 8315dwarf_alloc_die (void)
c906108c
SS
8316{
8317 struct die_info *die;
8318
8319 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8320 memset (die, 0, sizeof (struct die_info));
8321 return (die);
8322}
2e276125
JB
8323
8324\f
8325/* Macro support. */
8326
8327
8328/* Return the full name of file number I in *LH's file name table.
8329 Use COMP_DIR as the name of the current directory of the
8330 compilation. The result is allocated using xmalloc; the caller is
8331 responsible for freeing it. */
8332static char *
8333file_full_name (int file, struct line_header *lh, const char *comp_dir)
8334{
8335 struct file_entry *fe = &lh->file_names[file - 1];
8336
8337 if (IS_ABSOLUTE_PATH (fe->name))
8338 return xstrdup (fe->name);
8339 else
8340 {
8341 const char *dir;
8342 int dir_len;
8343 char *full_name;
8344
8345 if (fe->dir_index)
8346 dir = lh->include_dirs[fe->dir_index - 1];
8347 else
8348 dir = comp_dir;
8349
8350 if (dir)
8351 {
8352 dir_len = strlen (dir);
8353 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8354 strcpy (full_name, dir);
8355 full_name[dir_len] = '/';
8356 strcpy (full_name + dir_len + 1, fe->name);
8357 return full_name;
8358 }
8359 else
8360 return xstrdup (fe->name);
8361 }
8362}
8363
8364
8365static struct macro_source_file *
8366macro_start_file (int file, int line,
8367 struct macro_source_file *current_file,
8368 const char *comp_dir,
8369 struct line_header *lh, struct objfile *objfile)
8370{
8371 /* The full name of this source file. */
8372 char *full_name = file_full_name (file, lh, comp_dir);
8373
8374 /* We don't create a macro table for this compilation unit
8375 at all until we actually get a filename. */
8376 if (! pending_macros)
4a146b47 8377 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 8378 objfile->macro_cache);
2e276125
JB
8379
8380 if (! current_file)
8381 /* If we have no current file, then this must be the start_file
8382 directive for the compilation unit's main source file. */
8383 current_file = macro_set_main (pending_macros, full_name);
8384 else
8385 current_file = macro_include (current_file, line, full_name);
8386
8387 xfree (full_name);
8388
8389 return current_file;
8390}
8391
8392
8393/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8394 followed by a null byte. */
8395static char *
8396copy_string (const char *buf, int len)
8397{
8398 char *s = xmalloc (len + 1);
8399 memcpy (s, buf, len);
8400 s[len] = '\0';
8401
8402 return s;
8403}
8404
8405
8406static const char *
8407consume_improper_spaces (const char *p, const char *body)
8408{
8409 if (*p == ' ')
8410 {
4d3c2250
KB
8411 complaint (&symfile_complaints,
8412 "macro definition contains spaces in formal argument list:\n`%s'",
8413 body);
2e276125
JB
8414
8415 while (*p == ' ')
8416 p++;
8417 }
8418
8419 return p;
8420}
8421
8422
8423static void
8424parse_macro_definition (struct macro_source_file *file, int line,
8425 const char *body)
8426{
8427 const char *p;
8428
8429 /* The body string takes one of two forms. For object-like macro
8430 definitions, it should be:
8431
8432 <macro name> " " <definition>
8433
8434 For function-like macro definitions, it should be:
8435
8436 <macro name> "() " <definition>
8437 or
8438 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8439
8440 Spaces may appear only where explicitly indicated, and in the
8441 <definition>.
8442
8443 The Dwarf 2 spec says that an object-like macro's name is always
8444 followed by a space, but versions of GCC around March 2002 omit
8445 the space when the macro's definition is the empty string.
8446
8447 The Dwarf 2 spec says that there should be no spaces between the
8448 formal arguments in a function-like macro's formal argument list,
8449 but versions of GCC around March 2002 include spaces after the
8450 commas. */
8451
8452
8453 /* Find the extent of the macro name. The macro name is terminated
8454 by either a space or null character (for an object-like macro) or
8455 an opening paren (for a function-like macro). */
8456 for (p = body; *p; p++)
8457 if (*p == ' ' || *p == '(')
8458 break;
8459
8460 if (*p == ' ' || *p == '\0')
8461 {
8462 /* It's an object-like macro. */
8463 int name_len = p - body;
8464 char *name = copy_string (body, name_len);
8465 const char *replacement;
8466
8467 if (*p == ' ')
8468 replacement = body + name_len + 1;
8469 else
8470 {
4d3c2250 8471 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
8472 replacement = body + name_len;
8473 }
8474
8475 macro_define_object (file, line, name, replacement);
8476
8477 xfree (name);
8478 }
8479 else if (*p == '(')
8480 {
8481 /* It's a function-like macro. */
8482 char *name = copy_string (body, p - body);
8483 int argc = 0;
8484 int argv_size = 1;
8485 char **argv = xmalloc (argv_size * sizeof (*argv));
8486
8487 p++;
8488
8489 p = consume_improper_spaces (p, body);
8490
8491 /* Parse the formal argument list. */
8492 while (*p && *p != ')')
8493 {
8494 /* Find the extent of the current argument name. */
8495 const char *arg_start = p;
8496
8497 while (*p && *p != ',' && *p != ')' && *p != ' ')
8498 p++;
8499
8500 if (! *p || p == arg_start)
4d3c2250 8501 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
8502 else
8503 {
8504 /* Make sure argv has room for the new argument. */
8505 if (argc >= argv_size)
8506 {
8507 argv_size *= 2;
8508 argv = xrealloc (argv, argv_size * sizeof (*argv));
8509 }
8510
8511 argv[argc++] = copy_string (arg_start, p - arg_start);
8512 }
8513
8514 p = consume_improper_spaces (p, body);
8515
8516 /* Consume the comma, if present. */
8517 if (*p == ',')
8518 {
8519 p++;
8520
8521 p = consume_improper_spaces (p, body);
8522 }
8523 }
8524
8525 if (*p == ')')
8526 {
8527 p++;
8528
8529 if (*p == ' ')
8530 /* Perfectly formed definition, no complaints. */
8531 macro_define_function (file, line, name,
8532 argc, (const char **) argv,
8533 p + 1);
8534 else if (*p == '\0')
8535 {
8536 /* Complain, but do define it. */
4d3c2250 8537 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
8538 macro_define_function (file, line, name,
8539 argc, (const char **) argv,
8540 p);
8541 }
8542 else
8543 /* Just complain. */
4d3c2250 8544 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
8545 }
8546 else
8547 /* Just complain. */
4d3c2250 8548 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
8549
8550 xfree (name);
8551 {
8552 int i;
8553
8554 for (i = 0; i < argc; i++)
8555 xfree (argv[i]);
8556 }
8557 xfree (argv);
8558 }
8559 else
4d3c2250 8560 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
8561}
8562
8563
8564static void
8565dwarf_decode_macros (struct line_header *lh, unsigned int offset,
8566 char *comp_dir, bfd *abfd,
e7c27a73 8567 struct dwarf2_cu *cu)
2e276125
JB
8568{
8569 char *mac_ptr, *mac_end;
8570 struct macro_source_file *current_file = 0;
8571
6502dd73 8572 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 8573 {
4d3c2250 8574 complaint (&symfile_complaints, "missing .debug_macinfo section");
2e276125
JB
8575 return;
8576 }
8577
6502dd73
DJ
8578 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
8579 mac_end = dwarf2_per_objfile->macinfo_buffer
8580 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
8581
8582 for (;;)
8583 {
8584 enum dwarf_macinfo_record_type macinfo_type;
8585
8586 /* Do we at least have room for a macinfo type byte? */
8587 if (mac_ptr >= mac_end)
8588 {
4d3c2250 8589 dwarf2_macros_too_long_complaint ();
2e276125
JB
8590 return;
8591 }
8592
8593 macinfo_type = read_1_byte (abfd, mac_ptr);
8594 mac_ptr++;
8595
8596 switch (macinfo_type)
8597 {
8598 /* A zero macinfo type indicates the end of the macro
8599 information. */
8600 case 0:
8601 return;
8602
8603 case DW_MACINFO_define:
8604 case DW_MACINFO_undef:
8605 {
8606 int bytes_read;
8607 int line;
8608 char *body;
8609
8610 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8611 mac_ptr += bytes_read;
8612 body = read_string (abfd, mac_ptr, &bytes_read);
8613 mac_ptr += bytes_read;
8614
8615 if (! current_file)
4d3c2250
KB
8616 complaint (&symfile_complaints,
8617 "debug info gives macro %s outside of any file: %s",
8618 macinfo_type ==
8619 DW_MACINFO_define ? "definition" : macinfo_type ==
8620 DW_MACINFO_undef ? "undefinition" :
8621 "something-or-other", body);
2e276125
JB
8622 else
8623 {
8624 if (macinfo_type == DW_MACINFO_define)
8625 parse_macro_definition (current_file, line, body);
8626 else if (macinfo_type == DW_MACINFO_undef)
8627 macro_undef (current_file, line, body);
8628 }
8629 }
8630 break;
8631
8632 case DW_MACINFO_start_file:
8633 {
8634 int bytes_read;
8635 int line, file;
8636
8637 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8638 mac_ptr += bytes_read;
8639 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8640 mac_ptr += bytes_read;
8641
8642 current_file = macro_start_file (file, line,
8643 current_file, comp_dir,
e7c27a73 8644 lh, cu->objfile);
2e276125
JB
8645 }
8646 break;
8647
8648 case DW_MACINFO_end_file:
8649 if (! current_file)
4d3c2250
KB
8650 complaint (&symfile_complaints,
8651 "macro debug info has an unmatched `close_file' directive");
2e276125
JB
8652 else
8653 {
8654 current_file = current_file->included_by;
8655 if (! current_file)
8656 {
8657 enum dwarf_macinfo_record_type next_type;
8658
8659 /* GCC circa March 2002 doesn't produce the zero
8660 type byte marking the end of the compilation
8661 unit. Complain if it's not there, but exit no
8662 matter what. */
8663
8664 /* Do we at least have room for a macinfo type byte? */
8665 if (mac_ptr >= mac_end)
8666 {
4d3c2250 8667 dwarf2_macros_too_long_complaint ();
2e276125
JB
8668 return;
8669 }
8670
8671 /* We don't increment mac_ptr here, so this is just
8672 a look-ahead. */
8673 next_type = read_1_byte (abfd, mac_ptr);
8674 if (next_type != 0)
4d3c2250
KB
8675 complaint (&symfile_complaints,
8676 "no terminating 0-type entry for macros in `.debug_macinfo' section");
2e276125
JB
8677
8678 return;
8679 }
8680 }
8681 break;
8682
8683 case DW_MACINFO_vendor_ext:
8684 {
8685 int bytes_read;
8686 int constant;
8687 char *string;
8688
8689 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8690 mac_ptr += bytes_read;
8691 string = read_string (abfd, mac_ptr, &bytes_read);
8692 mac_ptr += bytes_read;
8693
8694 /* We don't recognize any vendor extensions. */
8695 }
8696 break;
8697 }
8698 }
8699}
8e19ed76
PS
8700
8701/* Check if the attribute's form is a DW_FORM_block*
8702 if so return true else false. */
8703static int
8704attr_form_is_block (struct attribute *attr)
8705{
8706 return (attr == NULL ? 0 :
8707 attr->form == DW_FORM_block1
8708 || attr->form == DW_FORM_block2
8709 || attr->form == DW_FORM_block4
8710 || attr->form == DW_FORM_block);
8711}
4c2df51b
DJ
8712
8713static void
8714dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 8715 struct dwarf2_cu *cu)
4c2df51b 8716{
0d53c4c4 8717 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4c2df51b 8718 {
0d53c4c4 8719 struct dwarf2_loclist_baton *baton;
4c2df51b 8720
4a146b47 8721 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 8722 sizeof (struct dwarf2_loclist_baton));
e7c27a73 8723 baton->objfile = cu->objfile;
4c2df51b 8724
0d53c4c4
DJ
8725 /* We don't know how long the location list is, but make sure we
8726 don't run off the edge of the section. */
6502dd73
DJ
8727 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
8728 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
8729 baton->base_address = cu->header.base_address;
8730 if (cu->header.base_known == 0)
0d53c4c4
DJ
8731 complaint (&symfile_complaints,
8732 "Location list used without specifying the CU base address.");
4c2df51b 8733
a67af2b9 8734 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
8735 SYMBOL_LOCATION_BATON (sym) = baton;
8736 }
8737 else
8738 {
8739 struct dwarf2_locexpr_baton *baton;
8740
4a146b47 8741 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 8742 sizeof (struct dwarf2_locexpr_baton));
e7c27a73 8743 baton->objfile = cu->objfile;
0d53c4c4
DJ
8744
8745 if (attr_form_is_block (attr))
8746 {
8747 /* Note that we're just copying the block's data pointer
8748 here, not the actual data. We're still pointing into the
6502dd73
DJ
8749 info_buffer for SYM's objfile; right now we never release
8750 that buffer, but when we do clean up properly this may
8751 need to change. */
0d53c4c4
DJ
8752 baton->size = DW_BLOCK (attr)->size;
8753 baton->data = DW_BLOCK (attr)->data;
8754 }
8755 else
8756 {
8757 dwarf2_invalid_attrib_class_complaint ("location description",
8758 SYMBOL_NATURAL_NAME (sym));
8759 baton->size = 0;
8760 baton->data = NULL;
8761 }
8762
a67af2b9 8763 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
8764 SYMBOL_LOCATION_BATON (sym) = baton;
8765 }
4c2df51b 8766}
6502dd73 8767
72bf9492
DJ
8768/* This cleanup function is passed the address of a dwarf2_cu on the stack
8769 when we're finished with it. We can't free the pointer itself, but
8770 release any associated storage.
8771
8772 Only used during partial symbol parsing. */
8773
8774static void
8775free_stack_comp_unit (void *data)
8776{
8777 struct dwarf2_cu *cu = data;
8778
8779 obstack_free (&cu->comp_unit_obstack, NULL);
8780 cu->partial_dies = NULL;
8781}
8782
8783/* Allocation function for the libiberty hash table which uses an
8784 obstack. */
8785
8786static void *
8787hashtab_obstack_allocate (void *data, size_t size, size_t count)
8788{
8789 unsigned int total = size * count;
8790 void *ptr = obstack_alloc ((struct obstack *) data, total);
8791 memset (ptr, 0, total);
8792 return ptr;
8793}
8794
8795/* Trivial deallocation function for the libiberty splay tree and hash
8796 table - don't deallocate anything. Rely on later deletion of the
8797 obstack. */
8798
8799static void
8800dummy_obstack_deallocate (void *object, void *data)
8801{
8802 return;
8803}
8804
8805/* Trivial hash function for partial_die_info: the hash value of a DIE
8806 is its offset in .debug_info for this objfile. */
8807
8808static hashval_t
8809partial_die_hash (const void *item)
8810{
8811 const struct partial_die_info *part_die = item;
8812 return part_die->offset;
8813}
8814
8815/* Trivial comparison function for partial_die_info structures: two DIEs
8816 are equal if they have the same offset. */
8817
8818static int
8819partial_die_eq (const void *item_lhs, const void *item_rhs)
8820{
8821 const struct partial_die_info *part_die_lhs = item_lhs;
8822 const struct partial_die_info *part_die_rhs = item_rhs;
8823 return part_die_lhs->offset == part_die_rhs->offset;
8824}
8825
6502dd73
DJ
8826void _initialize_dwarf2_read (void);
8827
8828void
8829_initialize_dwarf2_read (void)
8830{
8831 dwarf2_objfile_data_key = register_objfile_data ();
8832}
This page took 0.932945 seconds and 4 git commands to generate.