S390: Hardware breakpoint support
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
618f726f 3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
3a2b436a 1609/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1610 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1611enum pc_bounds_kind
1612{
e385593e 1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1614 PC_BOUNDS_NOT_PRESENT,
1615
e385593e
JK
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
3a2b436a
JK
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625};
1626
1627static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
c906108c 1631
fae299cd
DC
1632static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
801e3a5b
JB
1636static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
a14ed312 1639static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1640 struct dwarf2_cu *);
c906108c 1641
a14ed312 1642static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1643 struct type *, struct dwarf2_cu *);
c906108c 1644
a14ed312 1645static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1646 struct die_info *, struct type *,
e7c27a73 1647 struct dwarf2_cu *);
c906108c 1648
a14ed312 1649static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1650 struct type *,
1651 struct dwarf2_cu *);
c906108c 1652
134d01f1 1653static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1654
e7c27a73 1655static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1656
e7c27a73 1657static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1658
5d7cb8df
JK
1659static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
22cee43f
PMR
1661static struct using_direct **using_directives (enum language);
1662
27aa8d6a
SW
1663static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
74921315
KS
1665static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
f55ee35c
JK
1667static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
38d518c9 1670static const char *namespace_name (struct die_info *die,
e142c38c 1671 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1672
134d01f1 1673static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1674
e7c27a73 1675static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1676
6e70227d 1677static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1678 struct dwarf2_cu *);
1679
bf6af496 1680static struct die_info *read_die_and_siblings_1
d521ce57 1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1682 struct die_info *);
639d11d3 1683
dee91e82 1684static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
639d11d3
DC
1687 struct die_info *parent);
1688
d521ce57
TT
1689static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
3019eac3 1692
d521ce57
TT
1693static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
93311388 1696
e7c27a73 1697static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1698
15d034d0
TT
1699static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
71c25dea 1701
15d034d0 1702static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1703
15d034d0 1704static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
ca69b9e6
DE
1708static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
e142c38c 1711static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1712 struct dwarf2_cu **);
9219021c 1713
f39c6ffd 1714static const char *dwarf_tag_name (unsigned int);
c906108c 1715
f39c6ffd 1716static const char *dwarf_attr_name (unsigned int);
c906108c 1717
f39c6ffd 1718static const char *dwarf_form_name (unsigned int);
c906108c 1719
a14ed312 1720static char *dwarf_bool_name (unsigned int);
c906108c 1721
f39c6ffd 1722static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1723
f9aca02d 1724static struct die_info *sibling_die (struct die_info *);
c906108c 1725
d97bc12b
DE
1726static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728static void dump_die_for_error (struct die_info *);
1729
1730static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
c906108c 1732
d97bc12b 1733/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1734
51545339 1735static void store_in_ref_table (struct die_info *,
10b3939b 1736 struct dwarf2_cu *);
c906108c 1737
ff39bb5e 1738static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1739
ff39bb5e 1740static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1741
348e048f 1742static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1743 const struct attribute *,
348e048f
DE
1744 struct dwarf2_cu **);
1745
10b3939b 1746static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1747 const struct attribute *,
f2f0e013 1748 struct dwarf2_cu **);
c906108c 1749
348e048f 1750static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1751 const struct attribute *,
348e048f
DE
1752 struct dwarf2_cu **);
1753
ac9ec31b
DE
1754static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1758 const struct attribute *,
ac9ec31b
DE
1759 struct dwarf2_cu *);
1760
e5fe5e75 1761static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1762
52dc124a 1763static void read_signatured_type (struct signatured_type *);
348e048f 1764
63e43d3a
PMR
1765static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
c906108c
SS
1769/* memory allocation interface */
1770
7b5a2f43 1771static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1772
b60c80d6 1773static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1774
43f3e411 1775static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1776
6e5a29e1 1777static int attr_form_is_block (const struct attribute *);
8e19ed76 1778
6e5a29e1 1779static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1780
6e5a29e1 1781static int attr_form_is_constant (const struct attribute *);
3690dd37 1782
6e5a29e1 1783static int attr_form_is_ref (const struct attribute *);
7771576e 1784
8cf6f0b1
TT
1785static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
ff39bb5e 1787 const struct attribute *attr);
8cf6f0b1 1788
ff39bb5e 1789static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1790 struct symbol *sym,
f1e6e072
TT
1791 struct dwarf2_cu *cu,
1792 int is_block);
4c2df51b 1793
d521ce57
TT
1794static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
4bb7a0a7 1797
72bf9492
DJ
1798static void free_stack_comp_unit (void *);
1799
72bf9492
DJ
1800static hashval_t partial_die_hash (const void *item);
1801
1802static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
ae038cb0 1804static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1806
9816fde3 1807static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1808 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1809
1810static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
93311388 1813
68dc6402 1814static void free_heap_comp_unit (void *);
ae038cb0
DJ
1815
1816static void free_cached_comp_units (void *);
1817
1818static void age_cached_comp_units (void);
1819
dee91e82 1820static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1821
f792889a
DJ
1822static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1c379e20 1824
ae038cb0
DJ
1825static void create_all_comp_units (struct objfile *);
1826
0e50663e 1827static int create_all_type_units (struct objfile *);
1fd400ff 1828
95554aad
TT
1829static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
10b3939b 1831
95554aad
TT
1832static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
10b3939b 1834
f4dc4d17
DE
1835static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
10b3939b
DJ
1838static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
ae038cb0
DJ
1841static void dwarf2_mark (struct dwarf2_cu *);
1842
1843static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
b64f50a1 1845static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1846 struct dwarf2_per_cu_data *);
673bfd45 1847
f792889a 1848static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1849
9291a0cd
TT
1850static void dwarf2_release_queue (void *dummy);
1851
95554aad
TT
1852static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
a0f42c21 1855static void process_queue (void);
9291a0cd
TT
1856
1857static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
15d034d0 1859 const char **name, const char **comp_dir);
9291a0cd
TT
1860
1861static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
d521ce57 1864static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
d521ce57 1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1868 int is_debug_types_section);
1869
fd820528 1870static void init_cutu_and_read_dies
f4dc4d17
DE
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
3019eac3
DE
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
dee91e82
DE
1875static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1878
673bfd45 1879static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1880
3019eac3
DE
1881static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
57d63ce2
DE
1883static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1886
1887static struct dwp_file *get_dwp_file (void);
1888
3019eac3 1889static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1891
1892static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1893 (struct signatured_type *, const char *, const char *);
3019eac3 1894
89e63ee4
DE
1895static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
3019eac3
DE
1897static void free_dwo_file_cleanup (void *);
1898
95554aad
TT
1899static void process_cu_includes (void);
1900
1b80a9fa 1901static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1902
1903static void free_line_header_voidp (void *arg);
4390d890
DE
1904\f
1905/* Various complaints about symbol reading that don't abort the process. */
1906
1907static void
1908dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909{
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912}
1913
1914static void
1915dwarf2_debug_line_missing_file_complaint (void)
1916{
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919}
1920
1921static void
1922dwarf2_debug_line_missing_end_sequence_complaint (void)
1923{
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927}
1928
1929static void
1930dwarf2_complex_location_expr_complaint (void)
1931{
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933}
1934
1935static void
1936dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938{
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942}
1943
1944static void
1945dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946{
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
a32a8923
DE
1950 get_section_name (section),
1951 get_section_file_name (section));
4390d890 1952}
1b80a9fa 1953
4390d890
DE
1954static void
1955dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956{
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961}
1962
1963static void
1964dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965{
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969}
527f3840
JK
1970
1971/* Hash function for line_header_hash. */
1972
1973static hashval_t
1974line_header_hash (const struct line_header *ofs)
1975{
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977}
1978
1979/* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981static hashval_t
1982line_header_hash_voidp (const void *item)
1983{
9a3c8263 1984 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1985
1986 return line_header_hash (ofs);
1987}
1988
1989/* Equality function for line_header_hash. */
1990
1991static int
1992line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993{
9a3c8263
SM
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999}
2000
4390d890 2001\f
9291a0cd
TT
2002#if WORDS_BIGENDIAN
2003
2004/* Convert VALUE between big- and little-endian. */
2005static offset_type
2006byte_swap (offset_type value)
2007{
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015}
2016
2017#define MAYBE_SWAP(V) byte_swap (V)
2018
2019#else
2020#define MAYBE_SWAP(V) (V)
2021#endif /* WORDS_BIGENDIAN */
2022
31aa7e4e
JB
2023/* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026static CORE_ADDR
2027attr_value_as_address (struct attribute *attr)
2028{
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051}
2052
9291a0cd
TT
2053/* The suffix for an index file. */
2054#define INDEX_SUFFIX ".gdb-index"
2055
c906108c 2056/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
c906108c
SS
2060
2061int
251d32d9
TG
2062dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
c906108c 2064{
9a3c8263
SM
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
8d749320 2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2072
be391dca
TT
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
6502dd73 2076
251d32d9
TG
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
be391dca
TT
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
73869dc2 2081 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2082 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2083 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2085}
2086
2087/* Return the containing section of virtual section SECTION. */
2088
2089static struct dwarf2_section_info *
2090get_containing_section (const struct dwarf2_section_info *section)
2091{
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
c906108c
SS
2094}
2095
a32a8923
DE
2096/* Return the bfd owner of SECTION. */
2097
2098static struct bfd *
2099get_section_bfd_owner (const struct dwarf2_section_info *section)
2100{
73869dc2
DE
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
049412e3 2106 return section->s.section->owner;
a32a8923
DE
2107}
2108
2109/* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112static asection *
2113get_section_bfd_section (const struct dwarf2_section_info *section)
2114{
73869dc2
DE
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
049412e3 2120 return section->s.section;
a32a8923
DE
2121}
2122
2123/* Return the name of SECTION. */
2124
2125static const char *
2126get_section_name (const struct dwarf2_section_info *section)
2127{
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132}
2133
2134/* Return the name of the file SECTION is in. */
2135
2136static const char *
2137get_section_file_name (const struct dwarf2_section_info *section)
2138{
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142}
2143
2144/* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147static int
2148get_section_id (const struct dwarf2_section_info *section)
2149{
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155}
2156
2157/* Return the flags of SECTION.
73869dc2 2158 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2159
2160static int
2161get_section_flags (const struct dwarf2_section_info *section)
2162{
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167}
2168
251d32d9
TG
2169/* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
233a11ab
CS
2171
2172static int
251d32d9
TG
2173section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
233a11ab 2175{
251d32d9
TG
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
233a11ab
CS
2183}
2184
c906108c
SS
2185/* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189static void
251d32d9 2190dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2191{
251d32d9 2192 const struct dwarf2_debug_sections *names;
dc7650b8 2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
dc7650b8
JK
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2207 }
251d32d9 2208 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2209 {
049412e3 2210 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->line))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2217 }
251d32d9 2218 else if (section_is_p (sectp->name, &names->loc))
c906108c 2219 {
049412e3 2220 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2224 {
049412e3 2225 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2227 }
cf2c3c16
TT
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
049412e3 2230 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->str))
c906108c 2234 {
049412e3 2235 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2237 }
3019eac3
DE
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
049412e3 2240 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
251d32d9 2243 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2244 {
049412e3 2245 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2247 }
251d32d9 2248 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2249 {
049412e3 2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2252 }
251d32d9 2253 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2254 {
049412e3 2255 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2257 }
251d32d9 2258 else if (section_is_p (sectp->name, &names->types))
348e048f 2259 {
8b70b953
TT
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
049412e3 2263 type_section.s.section = sectp;
8b70b953
TT
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
348e048f 2268 }
251d32d9 2269 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2270 {
049412e3 2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
dce234bc 2274
b4e1fd61 2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2278}
2279
fceca515
DE
2280/* A helper function that decides whether a section is empty,
2281 or not present. */
9e0ac564
TT
2282
2283static int
19ac8c2e 2284dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2285{
73869dc2
DE
2286 if (section->is_virtual)
2287 return section->size == 0;
049412e3 2288 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2289}
2290
3019eac3
DE
2291/* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
dce234bc 2295 If the section is compressed, uncompress it before returning. */
c906108c 2296
dce234bc
PP
2297static void
2298dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2299{
a32a8923 2300 asection *sectp;
3019eac3 2301 bfd *abfd;
dce234bc 2302 gdb_byte *buf, *retbuf;
c906108c 2303
be391dca
TT
2304 if (info->readin)
2305 return;
dce234bc 2306 info->buffer = NULL;
be391dca 2307 info->readin = 1;
188dd5d6 2308
9e0ac564 2309 if (dwarf2_section_empty_p (info))
dce234bc 2310 return;
c906108c 2311
a32a8923 2312 sectp = get_section_bfd_section (info);
3019eac3 2313
73869dc2
DE
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
4bf44c1c
TT
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2342 {
d521ce57 2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2344 return;
dce234bc 2345 }
dce234bc 2346
224c3ddb 2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2348 info->buffer = buf;
dce234bc
PP
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
ac8035ab 2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
a32a8923
DE
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
dce234bc
PP
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
dce234bc
PP
2371}
2372
9e0ac564
TT
2373/* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380static bfd_size_type
2381dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383{
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387}
2388
dce234bc 2389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2390 SECTION_NAME. */
af34e669 2391
dce234bc 2392void
3017a003
TG
2393dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
d521ce57 2395 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2396 bfd_size_type *sizep)
2397{
2398 struct dwarf2_per_objfile *data
9a3c8263
SM
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
dce234bc 2401 struct dwarf2_section_info *info;
a3b2a86b
TT
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
3017a003
TG
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
dce234bc 2423
9e0ac564 2424 dwarf2_read_section (objfile, info);
dce234bc 2425
a32a8923 2426 *sectp = get_section_bfd_section (info);
dce234bc
PP
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429}
2430
36586728
TT
2431/* A helper function to find the sections for a .dwz file. */
2432
2433static void
2434locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435{
9a3c8263 2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
049412e3 2442 dwz_file->abbrev.s.section = sectp;
36586728
TT
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
049412e3 2447 dwz_file->info.s.section = sectp;
36586728
TT
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
049412e3 2452 dwz_file->str.s.section = sectp;
36586728
TT
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
049412e3 2457 dwz_file->line.s.section = sectp;
36586728
TT
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
049412e3 2462 dwz_file->macro.s.section = sectp;
36586728
TT
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2ec9a5e0
TT
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
049412e3 2467 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
36586728
TT
2470}
2471
4db1a1dc
TT
2472/* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
36586728
TT
2475
2476static struct dwz_file *
2477dwarf2_get_dwz_file (void)
2478{
4db1a1dc
TT
2479 bfd *dwz_bfd;
2480 char *data;
36586728
TT
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
acd13123 2484 bfd_size_type buildid_len_arg;
dc294be5
TT
2485 size_t buildid_len;
2486 bfd_byte *buildid;
36586728
TT
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
4db1a1dc
TT
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2493 &buildid_len_arg, &buildid);
4db1a1dc
TT
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
36586728 2501 cleanup = make_cleanup (xfree, data);
dc294be5 2502 make_cleanup (xfree, buildid);
36586728 2503
acd13123
TT
2504 buildid_len = (size_t) buildid_len_arg;
2505
f9d83a0b 2506 filename = (const char *) data;
36586728
TT
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
4262abfb 2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
dc294be5
TT
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
36586728 2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2524 if (dwz_bfd != NULL)
36586728 2525 {
dc294be5
TT
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
36586728
TT
2531 }
2532
dc294be5
TT
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
36586728
TT
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
13aaf454 2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2549 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2550 return result;
2551}
9291a0cd 2552\f
7b9f3c50
DE
2553/* DWARF quick_symbols_functions support. */
2554
2555/* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560struct quick_file_names
2561{
094b34ac
DE
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
7b9f3c50
DE
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575};
2576
2577/* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580struct dwarf2_per_cu_quick_data
2581{
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
43f3e411 2589 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598};
2599
094b34ac
DE
2600/* Utility hash function for a stmt_list_hash. */
2601
2602static hashval_t
2603hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604{
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611}
2612
2613/* Utility equality function for a stmt_list_hash. */
2614
2615static int
2616eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618{
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626}
2627
7b9f3c50
DE
2628/* Hash function for a quick_file_names. */
2629
2630static hashval_t
2631hash_file_name_entry (const void *e)
2632{
9a3c8263
SM
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
7b9f3c50 2635
094b34ac 2636 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2637}
2638
2639/* Equality function for a quick_file_names. */
2640
2641static int
2642eq_file_name_entry (const void *a, const void *b)
2643{
9a3c8263
SM
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2646
094b34ac 2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2648}
2649
2650/* Delete function for a quick_file_names. */
2651
2652static void
2653delete_file_name_entry (void *e)
2654{
9a3c8263 2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667}
2668
2669/* Create a quick_file_names hash table. */
2670
2671static htab_t
2672create_quick_file_names_table (unsigned int nr_initial_entries)
2673{
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677}
9291a0cd 2678
918dd910
JK
2679/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683static void
2684load_cu (struct dwarf2_per_cu_data *per_cu)
2685{
3019eac3 2686 if (per_cu->is_debug_types)
e5fe5e75 2687 load_full_type_unit (per_cu);
918dd910 2688 else
95554aad 2689 load_full_comp_unit (per_cu, language_minimal);
918dd910 2690
cc12ce38
DE
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2dc860c0
DE
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2695}
2696
a0f42c21 2697/* Read in the symbols for PER_CU. */
2fdf6df6 2698
9291a0cd 2699static void
a0f42c21 2700dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2701{
2702 struct cleanup *back_to;
2703
f4dc4d17
DE
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
9291a0cd
TT
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
95554aad 2711 if (dwarf2_per_objfile->using_index
43f3e411 2712 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
89e63ee4
DE
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
cc12ce38 2722 && per_cu->cu != NULL
89e63ee4
DE
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
95554aad 2729 }
9291a0cd 2730
a0f42c21 2731 process_queue ();
9291a0cd
TT
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738}
2739
2740/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2fdf6df6 2743
43f3e411 2744static struct compunit_symtab *
a0f42c21 2745dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2746{
95554aad 2747 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2748 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
a0f42c21 2752 dw2_do_instantiate_symtab (per_cu);
95554aad 2753 process_cu_includes ();
9291a0cd
TT
2754 do_cleanups (back_to);
2755 }
f194fefb 2756
43f3e411 2757 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2758}
2759
8832e7e3 2760/* Return the CU/TU given its index.
f4dc4d17
DE
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
8832e7e3 2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2768
2769 ...;
2770 }
2771*/
2fdf6df6 2772
1fd400ff 2773static struct dwarf2_per_cu_data *
8832e7e3 2774dw2_get_cutu (int index)
1fd400ff
TT
2775{
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
f4dc4d17 2778 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784}
2785
8832e7e3
DE
2786/* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
f4dc4d17
DE
2789
2790static struct dwarf2_per_cu_data *
8832e7e3 2791dw2_get_cu (int index)
f4dc4d17 2792{
8832e7e3 2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2794
1fd400ff
TT
2795 return dwarf2_per_objfile->all_comp_units[index];
2796}
2797
2ec9a5e0
TT
2798/* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2fdf6df6 2800
74a0d9f6 2801static void
2ec9a5e0
TT
2802create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
9291a0cd
TT
2807{
2808 offset_type i;
9291a0cd 2809
2ec9a5e0 2810 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
74a0d9f6
JK
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
b64f50a1 2822 the_cu->offset.sect_off = offset;
9291a0cd
TT
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
8a0459fd 2825 the_cu->section = section;
9291a0cd
TT
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2830 }
9291a0cd
TT
2831}
2832
2ec9a5e0 2833/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2834 the CU objects for this objfile. */
2ec9a5e0 2835
74a0d9f6 2836static void
2ec9a5e0
TT
2837create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840{
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2847
74a0d9f6
JK
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2850
2851 if (dwz_elements == 0)
74a0d9f6 2852 return;
2ec9a5e0
TT
2853
2854 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2ec9a5e0
TT
2857}
2858
1fd400ff 2859/* Create the signatured type hash table from the index. */
673bfd45 2860
74a0d9f6 2861static void
673bfd45 2862create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2863 struct dwarf2_section_info *section,
673bfd45
DE
2864 const gdb_byte *bytes,
2865 offset_type elements)
1fd400ff
TT
2866{
2867 offset_type i;
673bfd45 2868 htab_t sig_types_hash;
1fd400ff 2869
6aa5f3a6
DE
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
8d749320
SM
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2875
673bfd45 2876 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
52dc124a
DE
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2882 void **slot;
2883
74a0d9f6
JK
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
52dc124a 2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2892 struct signatured_type);
52dc124a 2893 sig_type->signature = signature;
3019eac3
DE
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2896 sig_type->per_cu.section = section;
52dc124a
DE
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
1fd400ff
TT
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
52dc124a
DE
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
1fd400ff 2905
b4dd5633 2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2907 }
2908
673bfd45 2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2910}
2911
9291a0cd
TT
2912/* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2914
9291a0cd
TT
2915static void
2916create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917{
3e29f34a 2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
f652bce2 2943
24a55014 2944 if (lo > hi)
f652bce2 2945 {
24a55014
DE
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2948 hex_string (lo), hex_string (hi));
24a55014 2949 continue;
f652bce2 2950 }
24a55014
DE
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
24a55014 2957 continue;
f652bce2 2958 }
24a55014 2959
3e29f34a
MR
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968}
2969
59d7bcaf
JK
2970/* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2977
9291a0cd 2978static hashval_t
559a7a62 2979mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2980{
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
559a7a62
JK
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
9291a0cd
TT
2991
2992 return r;
2993}
2994
2995/* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2998
9291a0cd
TT
2999static int
3000find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002{
0cf03b49
JK
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
9291a0cd 3005 offset_type slot, step;
559a7a62 3006 int (*cmp) (const char *, const char *);
9291a0cd 3007
0cf03b49
JK
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_java
45280282
IB
3010 || current_language->la_language == language_fortran
3011 || current_language->la_language == language_d)
0cf03b49
JK
3012 {
3013 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3014 not contain any. */
a8719064 3015
72998fb3 3016 if (strchr (name, '(') != NULL)
0cf03b49 3017 {
72998fb3 3018 char *without_params = cp_remove_params (name);
0cf03b49 3019
72998fb3
DE
3020 if (without_params != NULL)
3021 {
3022 make_cleanup (xfree, without_params);
3023 name = without_params;
3024 }
0cf03b49
JK
3025 }
3026 }
3027
559a7a62 3028 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3029 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3030 simulate our NAME being searched is also lowercased. */
3031 hash = mapped_index_string_hash ((index->version == 4
3032 && case_sensitivity == case_sensitive_off
3033 ? 5 : index->version),
3034 name);
3035
3876f04e
DE
3036 slot = hash & (index->symbol_table_slots - 1);
3037 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3038 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3039
3040 for (;;)
3041 {
3042 /* Convert a slot number to an offset into the table. */
3043 offset_type i = 2 * slot;
3044 const char *str;
3876f04e 3045 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3046 {
3047 do_cleanups (back_to);
3048 return 0;
3049 }
9291a0cd 3050
3876f04e 3051 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3052 if (!cmp (name, str))
9291a0cd
TT
3053 {
3054 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3055 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3056 do_cleanups (back_to);
9291a0cd
TT
3057 return 1;
3058 }
3059
3876f04e 3060 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3061 }
3062}
3063
2ec9a5e0
TT
3064/* A helper function that reads the .gdb_index from SECTION and fills
3065 in MAP. FILENAME is the name of the file containing the section;
3066 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3067 ok to use deprecated sections.
3068
3069 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3070 out parameters that are filled in with information about the CU and
3071 TU lists in the section.
3072
3073 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3074
9291a0cd 3075static int
2ec9a5e0
TT
3076read_index_from_section (struct objfile *objfile,
3077 const char *filename,
3078 int deprecated_ok,
3079 struct dwarf2_section_info *section,
3080 struct mapped_index *map,
3081 const gdb_byte **cu_list,
3082 offset_type *cu_list_elements,
3083 const gdb_byte **types_list,
3084 offset_type *types_list_elements)
9291a0cd 3085{
948f8e3d 3086 const gdb_byte *addr;
2ec9a5e0 3087 offset_type version;
b3b272e1 3088 offset_type *metadata;
1fd400ff 3089 int i;
9291a0cd 3090
2ec9a5e0 3091 if (dwarf2_section_empty_p (section))
9291a0cd 3092 return 0;
82430852
JK
3093
3094 /* Older elfutils strip versions could keep the section in the main
3095 executable while splitting it for the separate debug info file. */
a32a8923 3096 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3097 return 0;
3098
2ec9a5e0 3099 dwarf2_read_section (objfile, section);
9291a0cd 3100
2ec9a5e0 3101 addr = section->buffer;
9291a0cd 3102 /* Version check. */
1fd400ff 3103 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3104 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3105 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3106 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3107 indices. */
831adc1f 3108 if (version < 4)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3114 filename);
481860b3
GB
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Index version 4 uses a different hash function than index version
3120 5 and later.
3121
3122 Versions earlier than 6 did not emit psymbols for inlined
3123 functions. Using these files will cause GDB not to be able to
3124 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3125 indices unless the user has done
3126 "set use-deprecated-index-sections on". */
2ec9a5e0 3127 if (version < 6 && !deprecated_ok)
481860b3
GB
3128 {
3129 static int warning_printed = 0;
3130 if (!warning_printed)
3131 {
e615022a
DE
3132 warning (_("\
3133Skipping deprecated .gdb_index section in %s.\n\
3134Do \"set use-deprecated-index-sections on\" before the file is read\n\
3135to use the section anyway."),
2ec9a5e0 3136 filename);
481860b3
GB
3137 warning_printed = 1;
3138 }
3139 return 0;
3140 }
796a7ff8 3141 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3142 of the TU (for symbols coming from TUs),
3143 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3144 Plus gold-generated indices can have duplicate entries for global symbols,
3145 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3146 These are just performance bugs, and we can't distinguish gdb-generated
3147 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3148
481860b3 3149 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3150 longer backward compatible. */
796a7ff8 3151 if (version > 8)
594e8718 3152 return 0;
9291a0cd 3153
559a7a62 3154 map->version = version;
2ec9a5e0 3155 map->total_size = section->size;
9291a0cd
TT
3156
3157 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3158
3159 i = 0;
2ec9a5e0
TT
3160 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3161 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3162 / 8);
1fd400ff
TT
3163 ++i;
3164
2ec9a5e0
TT
3165 *types_list = addr + MAYBE_SWAP (metadata[i]);
3166 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3167 - MAYBE_SWAP (metadata[i]))
3168 / 8);
987d643c 3169 ++i;
1fd400ff
TT
3170
3171 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3172 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3173 - MAYBE_SWAP (metadata[i]));
3174 ++i;
3175
3876f04e
DE
3176 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3177 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3178 - MAYBE_SWAP (metadata[i]))
3179 / (2 * sizeof (offset_type)));
1fd400ff 3180 ++i;
9291a0cd 3181
f9d83a0b 3182 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3183
2ec9a5e0
TT
3184 return 1;
3185}
3186
3187
3188/* Read the index file. If everything went ok, initialize the "quick"
3189 elements of all the CUs and return 1. Otherwise, return 0. */
3190
3191static int
3192dwarf2_read_index (struct objfile *objfile)
3193{
3194 struct mapped_index local_map, *map;
3195 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3196 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3197 struct dwz_file *dwz;
2ec9a5e0 3198
4262abfb 3199 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3200 use_deprecated_index_sections,
3201 &dwarf2_per_objfile->gdb_index, &local_map,
3202 &cu_list, &cu_list_elements,
3203 &types_list, &types_list_elements))
3204 return 0;
3205
0fefef59 3206 /* Don't use the index if it's empty. */
2ec9a5e0 3207 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3208 return 0;
3209
2ec9a5e0
TT
3210 /* If there is a .dwz file, read it so we can get its CU list as
3211 well. */
4db1a1dc
TT
3212 dwz = dwarf2_get_dwz_file ();
3213 if (dwz != NULL)
2ec9a5e0 3214 {
2ec9a5e0
TT
3215 struct mapped_index dwz_map;
3216 const gdb_byte *dwz_types_ignore;
3217 offset_type dwz_types_elements_ignore;
3218
3219 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3220 1,
3221 &dwz->gdb_index, &dwz_map,
3222 &dwz_list, &dwz_list_elements,
3223 &dwz_types_ignore,
3224 &dwz_types_elements_ignore))
3225 {
3226 warning (_("could not read '.gdb_index' section from %s; skipping"),
3227 bfd_get_filename (dwz->dwz_bfd));
3228 return 0;
3229 }
3230 }
3231
74a0d9f6
JK
3232 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3233 dwz_list_elements);
1fd400ff 3234
8b70b953
TT
3235 if (types_list_elements)
3236 {
3237 struct dwarf2_section_info *section;
3238
3239 /* We can only handle a single .debug_types when we have an
3240 index. */
3241 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3242 return 0;
3243
3244 section = VEC_index (dwarf2_section_info_def,
3245 dwarf2_per_objfile->types, 0);
3246
74a0d9f6
JK
3247 create_signatured_type_table_from_index (objfile, section, types_list,
3248 types_list_elements);
8b70b953 3249 }
9291a0cd 3250
2ec9a5e0
TT
3251 create_addrmap_from_index (objfile, &local_map);
3252
8d749320 3253 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3254 *map = local_map;
9291a0cd
TT
3255
3256 dwarf2_per_objfile->index_table = map;
3257 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3258 dwarf2_per_objfile->quick_file_names_table =
3259 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3260
3261 return 1;
3262}
3263
3264/* A helper for the "quick" functions which sets the global
3265 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3266
9291a0cd
TT
3267static void
3268dw2_setup (struct objfile *objfile)
3269{
9a3c8263
SM
3270 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3271 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3272 gdb_assert (dwarf2_per_objfile);
3273}
3274
dee91e82 3275/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3276
dee91e82
DE
3277static void
3278dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3279 const gdb_byte *info_ptr,
dee91e82
DE
3280 struct die_info *comp_unit_die,
3281 int has_children,
3282 void *data)
9291a0cd 3283{
dee91e82
DE
3284 struct dwarf2_cu *cu = reader->cu;
3285 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3286 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3287 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3288 struct line_header *lh;
9291a0cd 3289 struct attribute *attr;
dee91e82 3290 int i;
15d034d0 3291 const char *name, *comp_dir;
7b9f3c50
DE
3292 void **slot;
3293 struct quick_file_names *qfn;
3294 unsigned int line_offset;
9291a0cd 3295
0186c6a7
DE
3296 gdb_assert (! this_cu->is_debug_types);
3297
07261596
TT
3298 /* Our callers never want to match partial units -- instead they
3299 will match the enclosing full CU. */
3300 if (comp_unit_die->tag == DW_TAG_partial_unit)
3301 {
3302 this_cu->v.quick->no_file_data = 1;
3303 return;
3304 }
3305
0186c6a7 3306 lh_cu = this_cu;
7b9f3c50
DE
3307 lh = NULL;
3308 slot = NULL;
3309 line_offset = 0;
dee91e82
DE
3310
3311 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3312 if (attr)
3313 {
7b9f3c50
DE
3314 struct quick_file_names find_entry;
3315
3316 line_offset = DW_UNSND (attr);
3317
3318 /* We may have already read in this line header (TU line header sharing).
3319 If we have we're done. */
094b34ac
DE
3320 find_entry.hash.dwo_unit = cu->dwo_unit;
3321 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3323 &find_entry, INSERT);
3324 if (*slot != NULL)
3325 {
9a3c8263 3326 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3327 return;
7b9f3c50
DE
3328 }
3329
3019eac3 3330 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3331 }
3332 if (lh == NULL)
3333 {
094b34ac 3334 lh_cu->v.quick->no_file_data = 1;
dee91e82 3335 return;
9291a0cd
TT
3336 }
3337
8d749320 3338 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3339 qfn->hash.dwo_unit = cu->dwo_unit;
3340 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3341 gdb_assert (slot != NULL);
3342 *slot = qfn;
9291a0cd 3343
dee91e82 3344 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3345
7b9f3c50 3346 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3347 qfn->file_names =
3348 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3349 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3350 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3351 qfn->real_names = NULL;
9291a0cd 3352
7b9f3c50 3353 free_line_header (lh);
7b9f3c50 3354
094b34ac 3355 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3356}
3357
3358/* A helper for the "quick" functions which attempts to read the line
3359 table for THIS_CU. */
3360
3361static struct quick_file_names *
e4a48d9d 3362dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3363{
0186c6a7
DE
3364 /* This should never be called for TUs. */
3365 gdb_assert (! this_cu->is_debug_types);
3366 /* Nor type unit groups. */
3367 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3368
dee91e82
DE
3369 if (this_cu->v.quick->file_names != NULL)
3370 return this_cu->v.quick->file_names;
3371 /* If we know there is no line data, no point in looking again. */
3372 if (this_cu->v.quick->no_file_data)
3373 return NULL;
3374
0186c6a7 3375 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3376
3377 if (this_cu->v.quick->no_file_data)
3378 return NULL;
3379 return this_cu->v.quick->file_names;
9291a0cd
TT
3380}
3381
3382/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3383 real path for a given file name from the line table. */
2fdf6df6 3384
9291a0cd 3385static const char *
7b9f3c50
DE
3386dw2_get_real_path (struct objfile *objfile,
3387 struct quick_file_names *qfn, int index)
9291a0cd 3388{
7b9f3c50
DE
3389 if (qfn->real_names == NULL)
3390 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3391 qfn->num_file_names, const char *);
9291a0cd 3392
7b9f3c50
DE
3393 if (qfn->real_names[index] == NULL)
3394 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3395
7b9f3c50 3396 return qfn->real_names[index];
9291a0cd
TT
3397}
3398
3399static struct symtab *
3400dw2_find_last_source_symtab (struct objfile *objfile)
3401{
43f3e411 3402 struct compunit_symtab *cust;
9291a0cd 3403 int index;
ae2de4f8 3404
9291a0cd
TT
3405 dw2_setup (objfile);
3406 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3407 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3408 if (cust == NULL)
3409 return NULL;
3410 return compunit_primary_filetab (cust);
9291a0cd
TT
3411}
3412
7b9f3c50
DE
3413/* Traversal function for dw2_forget_cached_source_info. */
3414
3415static int
3416dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3417{
7b9f3c50 3418 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3419
7b9f3c50 3420 if (file_data->real_names)
9291a0cd 3421 {
7b9f3c50 3422 int i;
9291a0cd 3423
7b9f3c50 3424 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3425 {
7b9f3c50
DE
3426 xfree ((void*) file_data->real_names[i]);
3427 file_data->real_names[i] = NULL;
9291a0cd
TT
3428 }
3429 }
7b9f3c50
DE
3430
3431 return 1;
3432}
3433
3434static void
3435dw2_forget_cached_source_info (struct objfile *objfile)
3436{
3437 dw2_setup (objfile);
3438
3439 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3440 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3441}
3442
f8eba3c6
TT
3443/* Helper function for dw2_map_symtabs_matching_filename that expands
3444 the symtabs and calls the iterator. */
3445
3446static int
3447dw2_map_expand_apply (struct objfile *objfile,
3448 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3449 const char *name, const char *real_path,
f8eba3c6
TT
3450 int (*callback) (struct symtab *, void *),
3451 void *data)
3452{
43f3e411 3453 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3454
3455 /* Don't visit already-expanded CUs. */
43f3e411 3456 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3457 return 0;
3458
3459 /* This may expand more than one symtab, and we want to iterate over
3460 all of them. */
a0f42c21 3461 dw2_instantiate_symtab (per_cu);
f8eba3c6 3462
f5b95b50 3463 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3464 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3465}
3466
3467/* Implementation of the map_symtabs_matching_filename method. */
3468
9291a0cd 3469static int
f8eba3c6 3470dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3471 const char *real_path,
f8eba3c6
TT
3472 int (*callback) (struct symtab *, void *),
3473 void *data)
9291a0cd
TT
3474{
3475 int i;
c011a4f4 3476 const char *name_basename = lbasename (name);
9291a0cd
TT
3477
3478 dw2_setup (objfile);
ae2de4f8 3479
848e3e78
DE
3480 /* The rule is CUs specify all the files, including those used by
3481 any TU, so there's no need to scan TUs here. */
f4dc4d17 3482
848e3e78 3483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3484 {
3485 int j;
8832e7e3 3486 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3487 struct quick_file_names *file_data;
9291a0cd 3488
3d7bb9d9 3489 /* We only need to look at symtabs not already expanded. */
43f3e411 3490 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3491 continue;
3492
e4a48d9d 3493 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3494 if (file_data == NULL)
9291a0cd
TT
3495 continue;
3496
7b9f3c50 3497 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3498 {
7b9f3c50 3499 const char *this_name = file_data->file_names[j];
da235a7c 3500 const char *this_real_name;
9291a0cd 3501
af529f8f 3502 if (compare_filenames_for_search (this_name, name))
9291a0cd 3503 {
f5b95b50 3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3505 callback, data))
3506 return 1;
288e77a7 3507 continue;
4aac40c8 3508 }
9291a0cd 3509
c011a4f4
DE
3510 /* Before we invoke realpath, which can get expensive when many
3511 files are involved, do a quick comparison of the basenames. */
3512 if (! basenames_may_differ
3513 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3514 continue;
3515
da235a7c
JK
3516 this_real_name = dw2_get_real_path (objfile, file_data, j);
3517 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3518 {
da235a7c
JK
3519 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3520 callback, data))
3521 return 1;
288e77a7 3522 continue;
da235a7c 3523 }
9291a0cd 3524
da235a7c
JK
3525 if (real_path != NULL)
3526 {
af529f8f
JK
3527 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3528 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3529 if (this_real_name != NULL
af529f8f 3530 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3531 {
f5b95b50 3532 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3533 callback, data))
3534 return 1;
288e77a7 3535 continue;
9291a0cd
TT
3536 }
3537 }
3538 }
3539 }
3540
9291a0cd
TT
3541 return 0;
3542}
3543
da51c347
DE
3544/* Struct used to manage iterating over all CUs looking for a symbol. */
3545
3546struct dw2_symtab_iterator
9291a0cd 3547{
da51c347
DE
3548 /* The internalized form of .gdb_index. */
3549 struct mapped_index *index;
3550 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3551 int want_specific_block;
3552 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3553 Unused if !WANT_SPECIFIC_BLOCK. */
3554 int block_index;
3555 /* The kind of symbol we're looking for. */
3556 domain_enum domain;
3557 /* The list of CUs from the index entry of the symbol,
3558 or NULL if not found. */
3559 offset_type *vec;
3560 /* The next element in VEC to look at. */
3561 int next;
3562 /* The number of elements in VEC, or zero if there is no match. */
3563 int length;
8943b874
DE
3564 /* Have we seen a global version of the symbol?
3565 If so we can ignore all further global instances.
3566 This is to work around gold/15646, inefficient gold-generated
3567 indices. */
3568 int global_seen;
da51c347 3569};
9291a0cd 3570
da51c347
DE
3571/* Initialize the index symtab iterator ITER.
3572 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3573 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3574
9291a0cd 3575static void
da51c347
DE
3576dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3577 struct mapped_index *index,
3578 int want_specific_block,
3579 int block_index,
3580 domain_enum domain,
3581 const char *name)
3582{
3583 iter->index = index;
3584 iter->want_specific_block = want_specific_block;
3585 iter->block_index = block_index;
3586 iter->domain = domain;
3587 iter->next = 0;
8943b874 3588 iter->global_seen = 0;
da51c347
DE
3589
3590 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3591 iter->length = MAYBE_SWAP (*iter->vec);
3592 else
3593 {
3594 iter->vec = NULL;
3595 iter->length = 0;
3596 }
3597}
3598
3599/* Return the next matching CU or NULL if there are no more. */
3600
3601static struct dwarf2_per_cu_data *
3602dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3603{
3604 for ( ; iter->next < iter->length; ++iter->next)
3605 {
3606 offset_type cu_index_and_attrs =
3607 MAYBE_SWAP (iter->vec[iter->next + 1]);
3608 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3609 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3610 int want_static = iter->block_index != GLOBAL_BLOCK;
3611 /* This value is only valid for index versions >= 7. */
3612 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3613 gdb_index_symbol_kind symbol_kind =
3614 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3615 /* Only check the symbol attributes if they're present.
3616 Indices prior to version 7 don't record them,
3617 and indices >= 7 may elide them for certain symbols
3618 (gold does this). */
3619 int attrs_valid =
3620 (iter->index->version >= 7
3621 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3622
3190f0c6
DE
3623 /* Don't crash on bad data. */
3624 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3625 + dwarf2_per_objfile->n_type_units))
3626 {
3627 complaint (&symfile_complaints,
3628 _(".gdb_index entry has bad CU index"
4262abfb
JK
3629 " [in module %s]"),
3630 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3631 continue;
3632 }
3633
8832e7e3 3634 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3635
da51c347 3636 /* Skip if already read in. */
43f3e411 3637 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3638 continue;
3639
8943b874
DE
3640 /* Check static vs global. */
3641 if (attrs_valid)
3642 {
3643 if (iter->want_specific_block
3644 && want_static != is_static)
3645 continue;
3646 /* Work around gold/15646. */
3647 if (!is_static && iter->global_seen)
3648 continue;
3649 if (!is_static)
3650 iter->global_seen = 1;
3651 }
da51c347
DE
3652
3653 /* Only check the symbol's kind if it has one. */
3654 if (attrs_valid)
3655 {
3656 switch (iter->domain)
3657 {
3658 case VAR_DOMAIN:
3659 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3660 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3661 /* Some types are also in VAR_DOMAIN. */
3662 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3663 continue;
3664 break;
3665 case STRUCT_DOMAIN:
3666 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3667 continue;
3668 break;
3669 case LABEL_DOMAIN:
3670 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3671 continue;
3672 break;
3673 default:
3674 break;
3675 }
3676 }
3677
3678 ++iter->next;
3679 return per_cu;
3680 }
3681
3682 return NULL;
3683}
3684
43f3e411 3685static struct compunit_symtab *
da51c347
DE
3686dw2_lookup_symbol (struct objfile *objfile, int block_index,
3687 const char *name, domain_enum domain)
9291a0cd 3688{
43f3e411 3689 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3690 struct mapped_index *index;
3691
9291a0cd
TT
3692 dw2_setup (objfile);
3693
156942c7
DE
3694 index = dwarf2_per_objfile->index_table;
3695
da51c347 3696 /* index is NULL if OBJF_READNOW. */
156942c7 3697 if (index)
9291a0cd 3698 {
da51c347
DE
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3703
da51c347 3704 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3705 {
b2e2f908 3706 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3707 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3708 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3709 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3710
b2e2f908
DE
3711 sym = block_find_symbol (block, name, domain,
3712 block_find_non_opaque_type_preferred,
3713 &with_opaque);
3714
da51c347
DE
3715 /* Some caution must be observed with overloaded functions
3716 and methods, since the index will not contain any overload
3717 information (but NAME might contain it). */
da51c347 3718
b2e2f908
DE
3719 if (sym != NULL
3720 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3721 return stab;
3722 if (with_opaque != NULL
3723 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3724 stab_best = stab;
da51c347
DE
3725
3726 /* Keep looking through other CUs. */
9291a0cd
TT
3727 }
3728 }
9291a0cd 3729
da51c347 3730 return stab_best;
9291a0cd
TT
3731}
3732
3733static void
3734dw2_print_stats (struct objfile *objfile)
3735{
e4a48d9d 3736 int i, total, count;
9291a0cd
TT
3737
3738 dw2_setup (objfile);
e4a48d9d 3739 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3740 count = 0;
e4a48d9d 3741 for (i = 0; i < total; ++i)
9291a0cd 3742 {
8832e7e3 3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3744
43f3e411 3745 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3746 ++count;
3747 }
e4a48d9d 3748 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3749 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3750}
3751
779bd270
DE
3752/* This dumps minimal information about the index.
3753 It is called via "mt print objfiles".
3754 One use is to verify .gdb_index has been loaded by the
3755 gdb.dwarf2/gdb-index.exp testcase. */
3756
9291a0cd
TT
3757static void
3758dw2_dump (struct objfile *objfile)
3759{
779bd270
DE
3760 dw2_setup (objfile);
3761 gdb_assert (dwarf2_per_objfile->using_index);
3762 printf_filtered (".gdb_index:");
3763 if (dwarf2_per_objfile->index_table != NULL)
3764 {
3765 printf_filtered (" version %d\n",
3766 dwarf2_per_objfile->index_table->version);
3767 }
3768 else
3769 printf_filtered (" faked for \"readnow\"\n");
3770 printf_filtered ("\n");
9291a0cd
TT
3771}
3772
3773static void
3189cb12
DE
3774dw2_relocate (struct objfile *objfile,
3775 const struct section_offsets *new_offsets,
3776 const struct section_offsets *delta)
9291a0cd
TT
3777{
3778 /* There's nothing to relocate here. */
3779}
3780
3781static void
3782dw2_expand_symtabs_for_function (struct objfile *objfile,
3783 const char *func_name)
3784{
da51c347
DE
3785 struct mapped_index *index;
3786
3787 dw2_setup (objfile);
3788
3789 index = dwarf2_per_objfile->index_table;
3790
3791 /* index is NULL if OBJF_READNOW. */
3792 if (index)
3793 {
3794 struct dw2_symtab_iterator iter;
3795 struct dwarf2_per_cu_data *per_cu;
3796
3797 /* Note: It doesn't matter what we pass for block_index here. */
3798 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3799 func_name);
3800
3801 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3802 dw2_instantiate_symtab (per_cu);
3803 }
9291a0cd
TT
3804}
3805
3806static void
3807dw2_expand_all_symtabs (struct objfile *objfile)
3808{
3809 int i;
3810
3811 dw2_setup (objfile);
1fd400ff
TT
3812
3813 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3814 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3815 {
8832e7e3 3816 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3817
a0f42c21 3818 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3819 }
3820}
3821
3822static void
652a8996
JK
3823dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3824 const char *fullname)
9291a0cd
TT
3825{
3826 int i;
3827
3828 dw2_setup (objfile);
d4637a04
DE
3829
3830 /* We don't need to consider type units here.
3831 This is only called for examining code, e.g. expand_line_sal.
3832 There can be an order of magnitude (or more) more type units
3833 than comp units, and we avoid them if we can. */
3834
3835 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3836 {
3837 int j;
8832e7e3 3838 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3839 struct quick_file_names *file_data;
9291a0cd 3840
3d7bb9d9 3841 /* We only need to look at symtabs not already expanded. */
43f3e411 3842 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3843 continue;
3844
e4a48d9d 3845 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3846 if (file_data == NULL)
9291a0cd
TT
3847 continue;
3848
7b9f3c50 3849 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3850 {
652a8996
JK
3851 const char *this_fullname = file_data->file_names[j];
3852
3853 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3854 {
a0f42c21 3855 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3856 break;
3857 }
3858 }
3859 }
3860}
3861
9291a0cd 3862static void
ade7ed9e 3863dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3864 const char * name, domain_enum domain,
ade7ed9e 3865 int global,
40658b94
PH
3866 int (*callback) (struct block *,
3867 struct symbol *, void *),
2edb89d3
JK
3868 void *data, symbol_compare_ftype *match,
3869 symbol_compare_ftype *ordered_compare)
9291a0cd 3870{
40658b94 3871 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3872 current language is Ada for a non-Ada objfile using GNU index. As Ada
3873 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3874}
3875
3876static void
f8eba3c6
TT
3877dw2_expand_symtabs_matching
3878 (struct objfile *objfile,
206f2a57
DE
3879 expand_symtabs_file_matcher_ftype *file_matcher,
3880 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3881 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3882 enum search_domain kind,
3883 void *data)
9291a0cd
TT
3884{
3885 int i;
3886 offset_type iter;
4b5246aa 3887 struct mapped_index *index;
9291a0cd
TT
3888
3889 dw2_setup (objfile);
ae2de4f8
DE
3890
3891 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3892 if (!dwarf2_per_objfile->index_table)
3893 return;
4b5246aa 3894 index = dwarf2_per_objfile->index_table;
9291a0cd 3895
7b08b9eb 3896 if (file_matcher != NULL)
24c79950
TT
3897 {
3898 struct cleanup *cleanup;
3899 htab_t visited_found, visited_not_found;
3900
3901 visited_found = htab_create_alloc (10,
3902 htab_hash_pointer, htab_eq_pointer,
3903 NULL, xcalloc, xfree);
3904 cleanup = make_cleanup_htab_delete (visited_found);
3905 visited_not_found = htab_create_alloc (10,
3906 htab_hash_pointer, htab_eq_pointer,
3907 NULL, xcalloc, xfree);
3908 make_cleanup_htab_delete (visited_not_found);
3909
848e3e78
DE
3910 /* The rule is CUs specify all the files, including those used by
3911 any TU, so there's no need to scan TUs here. */
3912
3913 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3914 {
3915 int j;
8832e7e3 3916 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3917 struct quick_file_names *file_data;
3918 void **slot;
7b08b9eb 3919
61d96d7e
DE
3920 QUIT;
3921
24c79950 3922 per_cu->v.quick->mark = 0;
3d7bb9d9 3923
24c79950 3924 /* We only need to look at symtabs not already expanded. */
43f3e411 3925 if (per_cu->v.quick->compunit_symtab)
24c79950 3926 continue;
7b08b9eb 3927
e4a48d9d 3928 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3929 if (file_data == NULL)
3930 continue;
7b08b9eb 3931
24c79950
TT
3932 if (htab_find (visited_not_found, file_data) != NULL)
3933 continue;
3934 else if (htab_find (visited_found, file_data) != NULL)
3935 {
3936 per_cu->v.quick->mark = 1;
3937 continue;
3938 }
3939
3940 for (j = 0; j < file_data->num_file_names; ++j)
3941 {
da235a7c
JK
3942 const char *this_real_name;
3943
fbd9ab74 3944 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3945 {
3946 per_cu->v.quick->mark = 1;
3947 break;
3948 }
da235a7c
JK
3949
3950 /* Before we invoke realpath, which can get expensive when many
3951 files are involved, do a quick comparison of the basenames. */
3952 if (!basenames_may_differ
3953 && !file_matcher (lbasename (file_data->file_names[j]),
3954 data, 1))
3955 continue;
3956
3957 this_real_name = dw2_get_real_path (objfile, file_data, j);
3958 if (file_matcher (this_real_name, data, 0))
3959 {
3960 per_cu->v.quick->mark = 1;
3961 break;
3962 }
24c79950
TT
3963 }
3964
3965 slot = htab_find_slot (per_cu->v.quick->mark
3966 ? visited_found
3967 : visited_not_found,
3968 file_data, INSERT);
3969 *slot = file_data;
3970 }
3971
3972 do_cleanups (cleanup);
3973 }
9291a0cd 3974
3876f04e 3975 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3976 {
3977 offset_type idx = 2 * iter;
3978 const char *name;
3979 offset_type *vec, vec_len, vec_idx;
8943b874 3980 int global_seen = 0;
9291a0cd 3981
61d96d7e
DE
3982 QUIT;
3983
3876f04e 3984 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3985 continue;
3986
3876f04e 3987 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3988
206f2a57 3989 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3990 continue;
3991
3992 /* The name was matched, now expand corresponding CUs that were
3993 marked. */
4b5246aa 3994 vec = (offset_type *) (index->constant_pool
3876f04e 3995 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3996 vec_len = MAYBE_SWAP (vec[0]);
3997 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3998 {
e254ef6a 3999 struct dwarf2_per_cu_data *per_cu;
156942c7 4000 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4001 /* This value is only valid for index versions >= 7. */
4002 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4003 gdb_index_symbol_kind symbol_kind =
4004 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4005 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4006 /* Only check the symbol attributes if they're present.
4007 Indices prior to version 7 don't record them,
4008 and indices >= 7 may elide them for certain symbols
4009 (gold does this). */
4010 int attrs_valid =
4011 (index->version >= 7
4012 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4013
8943b874
DE
4014 /* Work around gold/15646. */
4015 if (attrs_valid)
4016 {
4017 if (!is_static && global_seen)
4018 continue;
4019 if (!is_static)
4020 global_seen = 1;
4021 }
4022
3190f0c6
DE
4023 /* Only check the symbol's kind if it has one. */
4024 if (attrs_valid)
156942c7
DE
4025 {
4026 switch (kind)
4027 {
4028 case VARIABLES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4030 continue;
4031 break;
4032 case FUNCTIONS_DOMAIN:
4033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4034 continue;
4035 break;
4036 case TYPES_DOMAIN:
4037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 default:
4041 break;
4042 }
4043 }
4044
3190f0c6
DE
4045 /* Don't crash on bad data. */
4046 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4047 + dwarf2_per_objfile->n_type_units))
4048 {
4049 complaint (&symfile_complaints,
4050 _(".gdb_index entry has bad CU index"
4262abfb 4051 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4052 continue;
4053 }
4054
8832e7e3 4055 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4056 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4057 {
4058 int symtab_was_null =
4059 (per_cu->v.quick->compunit_symtab == NULL);
4060
4061 dw2_instantiate_symtab (per_cu);
4062
4063 if (expansion_notify != NULL
4064 && symtab_was_null
4065 && per_cu->v.quick->compunit_symtab != NULL)
4066 {
4067 expansion_notify (per_cu->v.quick->compunit_symtab,
4068 data);
4069 }
4070 }
9291a0cd
TT
4071 }
4072 }
4073}
4074
43f3e411 4075/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4076 symtab. */
4077
43f3e411
DE
4078static struct compunit_symtab *
4079recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4080 CORE_ADDR pc)
9703b513
TT
4081{
4082 int i;
4083
43f3e411
DE
4084 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4085 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4086 return cust;
9703b513 4087
43f3e411 4088 if (cust->includes == NULL)
a3ec0bb1
DE
4089 return NULL;
4090
43f3e411 4091 for (i = 0; cust->includes[i]; ++i)
9703b513 4092 {
43f3e411 4093 struct compunit_symtab *s = cust->includes[i];
9703b513 4094
43f3e411 4095 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4096 if (s != NULL)
4097 return s;
4098 }
4099
4100 return NULL;
4101}
4102
43f3e411
DE
4103static struct compunit_symtab *
4104dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4105 struct bound_minimal_symbol msymbol,
4106 CORE_ADDR pc,
4107 struct obj_section *section,
4108 int warn_if_readin)
9291a0cd
TT
4109{
4110 struct dwarf2_per_cu_data *data;
43f3e411 4111 struct compunit_symtab *result;
9291a0cd
TT
4112
4113 dw2_setup (objfile);
4114
4115 if (!objfile->psymtabs_addrmap)
4116 return NULL;
4117
9a3c8263
SM
4118 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4119 pc);
9291a0cd
TT
4120 if (!data)
4121 return NULL;
4122
43f3e411 4123 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4124 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4125 paddress (get_objfile_arch (objfile), pc));
4126
43f3e411
DE
4127 result
4128 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4129 pc);
9703b513
TT
4130 gdb_assert (result != NULL);
4131 return result;
9291a0cd
TT
4132}
4133
9291a0cd 4134static void
44b13c5a 4135dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4136 void *data, int need_fullname)
9291a0cd
TT
4137{
4138 int i;
24c79950
TT
4139 struct cleanup *cleanup;
4140 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4141 NULL, xcalloc, xfree);
9291a0cd 4142
24c79950 4143 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4144 dw2_setup (objfile);
ae2de4f8 4145
848e3e78
DE
4146 /* The rule is CUs specify all the files, including those used by
4147 any TU, so there's no need to scan TUs here.
4148 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4149
848e3e78 4150 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4151 {
8832e7e3 4152 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4153
43f3e411 4154 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4155 {
4156 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4157 INSERT);
4158
4159 *slot = per_cu->v.quick->file_names;
4160 }
4161 }
4162
848e3e78 4163 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4164 {
4165 int j;
8832e7e3 4166 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4167 struct quick_file_names *file_data;
24c79950 4168 void **slot;
9291a0cd 4169
3d7bb9d9 4170 /* We only need to look at symtabs not already expanded. */
43f3e411 4171 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4172 continue;
4173
e4a48d9d 4174 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4175 if (file_data == NULL)
9291a0cd
TT
4176 continue;
4177
24c79950
TT
4178 slot = htab_find_slot (visited, file_data, INSERT);
4179 if (*slot)
4180 {
4181 /* Already visited. */
4182 continue;
4183 }
4184 *slot = file_data;
4185
7b9f3c50 4186 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4187 {
74e2f255
DE
4188 const char *this_real_name;
4189
4190 if (need_fullname)
4191 this_real_name = dw2_get_real_path (objfile, file_data, j);
4192 else
4193 this_real_name = NULL;
7b9f3c50 4194 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4195 }
4196 }
24c79950
TT
4197
4198 do_cleanups (cleanup);
9291a0cd
TT
4199}
4200
4201static int
4202dw2_has_symbols (struct objfile *objfile)
4203{
4204 return 1;
4205}
4206
4207const struct quick_symbol_functions dwarf2_gdb_index_functions =
4208{
4209 dw2_has_symbols,
4210 dw2_find_last_source_symtab,
4211 dw2_forget_cached_source_info,
f8eba3c6 4212 dw2_map_symtabs_matching_filename,
9291a0cd 4213 dw2_lookup_symbol,
9291a0cd
TT
4214 dw2_print_stats,
4215 dw2_dump,
4216 dw2_relocate,
4217 dw2_expand_symtabs_for_function,
4218 dw2_expand_all_symtabs,
652a8996 4219 dw2_expand_symtabs_with_fullname,
40658b94 4220 dw2_map_matching_symbols,
9291a0cd 4221 dw2_expand_symtabs_matching,
43f3e411 4222 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4223 dw2_map_symbol_filenames
4224};
4225
4226/* Initialize for reading DWARF for this objfile. Return 0 if this
4227 file will use psymtabs, or 1 if using the GNU index. */
4228
4229int
4230dwarf2_initialize_objfile (struct objfile *objfile)
4231{
4232 /* If we're about to read full symbols, don't bother with the
4233 indices. In this case we also don't care if some other debug
4234 format is making psymtabs, because they are all about to be
4235 expanded anyway. */
4236 if ((objfile->flags & OBJF_READNOW))
4237 {
4238 int i;
4239
4240 dwarf2_per_objfile->using_index = 1;
4241 create_all_comp_units (objfile);
0e50663e 4242 create_all_type_units (objfile);
7b9f3c50
DE
4243 dwarf2_per_objfile->quick_file_names_table =
4244 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4245
1fd400ff 4246 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4247 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4248 {
8832e7e3 4249 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4250
e254ef6a
DE
4251 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4252 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4253 }
4254
4255 /* Return 1 so that gdb sees the "quick" functions. However,
4256 these functions will be no-ops because we will have expanded
4257 all symtabs. */
4258 return 1;
4259 }
4260
4261 if (dwarf2_read_index (objfile))
4262 return 1;
4263
9291a0cd
TT
4264 return 0;
4265}
4266
4267\f
4268
dce234bc
PP
4269/* Build a partial symbol table. */
4270
4271void
f29dff0a 4272dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4273{
c9bf0622 4274
f29dff0a 4275 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4276 {
4277 init_psymbol_list (objfile, 1024);
4278 }
4279
492d29ea 4280 TRY
c9bf0622
TT
4281 {
4282 /* This isn't really ideal: all the data we allocate on the
4283 objfile's obstack is still uselessly kept around. However,
4284 freeing it seems unsafe. */
4285 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4286
4287 dwarf2_build_psymtabs_hard (objfile);
4288 discard_cleanups (cleanups);
4289 }
492d29ea
PA
4290 CATCH (except, RETURN_MASK_ERROR)
4291 {
4292 exception_print (gdb_stderr, except);
4293 }
4294 END_CATCH
c906108c 4295}
c906108c 4296
1ce1cefd
DE
4297/* Return the total length of the CU described by HEADER. */
4298
4299static unsigned int
4300get_cu_length (const struct comp_unit_head *header)
4301{
4302 return header->initial_length_size + header->length;
4303}
4304
45452591
DE
4305/* Return TRUE if OFFSET is within CU_HEADER. */
4306
4307static inline int
b64f50a1 4308offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4309{
b64f50a1 4310 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4311 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4312
b64f50a1 4313 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4314}
4315
3b80fe9b
DE
4316/* Find the base address of the compilation unit for range lists and
4317 location lists. It will normally be specified by DW_AT_low_pc.
4318 In DWARF-3 draft 4, the base address could be overridden by
4319 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4320 compilation units with discontinuous ranges. */
4321
4322static void
4323dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4324{
4325 struct attribute *attr;
4326
4327 cu->base_known = 0;
4328 cu->base_address = 0;
4329
4330 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4331 if (attr)
4332 {
31aa7e4e 4333 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4334 cu->base_known = 1;
4335 }
4336 else
4337 {
4338 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4339 if (attr)
4340 {
31aa7e4e 4341 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4342 cu->base_known = 1;
4343 }
4344 }
4345}
4346
93311388
DE
4347/* Read in the comp unit header information from the debug_info at info_ptr.
4348 NOTE: This leaves members offset, first_die_offset to be filled in
4349 by the caller. */
107d2387 4350
d521ce57 4351static const gdb_byte *
107d2387 4352read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4353 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4354{
4355 int signed_addr;
891d2f0b 4356 unsigned int bytes_read;
c764a876
DE
4357
4358 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4359 cu_header->initial_length_size = bytes_read;
4360 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4361 info_ptr += bytes_read;
107d2387
AC
4362 cu_header->version = read_2_bytes (abfd, info_ptr);
4363 info_ptr += 2;
b64f50a1
JK
4364 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4365 &bytes_read);
613e1657 4366 info_ptr += bytes_read;
107d2387
AC
4367 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4368 info_ptr += 1;
4369 signed_addr = bfd_get_sign_extend_vma (abfd);
4370 if (signed_addr < 0)
8e65ff28 4371 internal_error (__FILE__, __LINE__,
e2e0b3e5 4372 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4373 cu_header->signed_addr_p = signed_addr;
c764a876 4374
107d2387
AC
4375 return info_ptr;
4376}
4377
36586728
TT
4378/* Helper function that returns the proper abbrev section for
4379 THIS_CU. */
4380
4381static struct dwarf2_section_info *
4382get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4383{
4384 struct dwarf2_section_info *abbrev;
4385
4386 if (this_cu->is_dwz)
4387 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4388 else
4389 abbrev = &dwarf2_per_objfile->abbrev;
4390
4391 return abbrev;
4392}
4393
9ff913ba
DE
4394/* Subroutine of read_and_check_comp_unit_head and
4395 read_and_check_type_unit_head to simplify them.
4396 Perform various error checking on the header. */
4397
4398static void
4399error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4400 struct dwarf2_section_info *section,
4401 struct dwarf2_section_info *abbrev_section)
9ff913ba 4402{
a32a8923 4403 const char *filename = get_section_file_name (section);
9ff913ba
DE
4404
4405 if (header->version != 2 && header->version != 3 && header->version != 4)
4406 error (_("Dwarf Error: wrong version in compilation unit header "
4407 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4408 filename);
4409
b64f50a1 4410 if (header->abbrev_offset.sect_off
36586728 4411 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4412 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4413 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4414 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4415 filename);
4416
4417 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4418 avoid potential 32-bit overflow. */
1ce1cefd 4419 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4420 > section->size)
4421 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4422 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4423 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4424 filename);
4425}
4426
4427/* Read in a CU/TU header and perform some basic error checking.
4428 The contents of the header are stored in HEADER.
4429 The result is a pointer to the start of the first DIE. */
adabb602 4430
d521ce57 4431static const gdb_byte *
9ff913ba
DE
4432read_and_check_comp_unit_head (struct comp_unit_head *header,
4433 struct dwarf2_section_info *section,
4bdcc0c1 4434 struct dwarf2_section_info *abbrev_section,
d521ce57 4435 const gdb_byte *info_ptr,
9ff913ba 4436 int is_debug_types_section)
72bf9492 4437{
d521ce57 4438 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4439 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4440
b64f50a1 4441 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4442
72bf9492
DJ
4443 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4444
460c1c54
CC
4445 /* If we're reading a type unit, skip over the signature and
4446 type_offset fields. */
b0df02fd 4447 if (is_debug_types_section)
460c1c54
CC
4448 info_ptr += 8 /*signature*/ + header->offset_size;
4449
b64f50a1 4450 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4451
4bdcc0c1 4452 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4453
4454 return info_ptr;
4455}
4456
348e048f
DE
4457/* Read in the types comp unit header information from .debug_types entry at
4458 types_ptr. The result is a pointer to one past the end of the header. */
4459
d521ce57 4460static const gdb_byte *
9ff913ba
DE
4461read_and_check_type_unit_head (struct comp_unit_head *header,
4462 struct dwarf2_section_info *section,
4bdcc0c1 4463 struct dwarf2_section_info *abbrev_section,
d521ce57 4464 const gdb_byte *info_ptr,
dee91e82
DE
4465 ULONGEST *signature,
4466 cu_offset *type_offset_in_tu)
348e048f 4467{
d521ce57 4468 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4469 bfd *abfd = get_section_bfd_owner (section);
348e048f 4470
b64f50a1 4471 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4472
9ff913ba 4473 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4474
9ff913ba
DE
4475 /* If we're reading a type unit, skip over the signature and
4476 type_offset fields. */
4477 if (signature != NULL)
4478 *signature = read_8_bytes (abfd, info_ptr);
4479 info_ptr += 8;
dee91e82
DE
4480 if (type_offset_in_tu != NULL)
4481 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4482 header->offset_size);
9ff913ba
DE
4483 info_ptr += header->offset_size;
4484
b64f50a1 4485 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4486
4bdcc0c1 4487 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4488
4489 return info_ptr;
348e048f
DE
4490}
4491
f4dc4d17
DE
4492/* Fetch the abbreviation table offset from a comp or type unit header. */
4493
4494static sect_offset
4495read_abbrev_offset (struct dwarf2_section_info *section,
4496 sect_offset offset)
4497{
a32a8923 4498 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4499 const gdb_byte *info_ptr;
ac298888 4500 unsigned int initial_length_size, offset_size;
f4dc4d17
DE
4501 sect_offset abbrev_offset;
4502
4503 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4504 info_ptr = section->buffer + offset.sect_off;
ac298888 4505 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17
DE
4506 offset_size = initial_length_size == 4 ? 4 : 8;
4507 info_ptr += initial_length_size + 2 /*version*/;
4508 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4509 return abbrev_offset;
4510}
4511
aaa75496
JB
4512/* Allocate a new partial symtab for file named NAME and mark this new
4513 partial symtab as being an include of PST. */
4514
4515static void
d521ce57 4516dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4517 struct objfile *objfile)
4518{
4519 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4520
fbd9ab74
JK
4521 if (!IS_ABSOLUTE_PATH (subpst->filename))
4522 {
4523 /* It shares objfile->objfile_obstack. */
4524 subpst->dirname = pst->dirname;
4525 }
4526
aaa75496
JB
4527 subpst->textlow = 0;
4528 subpst->texthigh = 0;
4529
8d749320
SM
4530 subpst->dependencies
4531 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4532 subpst->dependencies[0] = pst;
4533 subpst->number_of_dependencies = 1;
4534
4535 subpst->globals_offset = 0;
4536 subpst->n_global_syms = 0;
4537 subpst->statics_offset = 0;
4538 subpst->n_static_syms = 0;
43f3e411 4539 subpst->compunit_symtab = NULL;
aaa75496
JB
4540 subpst->read_symtab = pst->read_symtab;
4541 subpst->readin = 0;
4542
4543 /* No private part is necessary for include psymtabs. This property
4544 can be used to differentiate between such include psymtabs and
10b3939b 4545 the regular ones. */
58a9656e 4546 subpst->read_symtab_private = NULL;
aaa75496
JB
4547}
4548
4549/* Read the Line Number Program data and extract the list of files
4550 included by the source file represented by PST. Build an include
d85a05f0 4551 partial symtab for each of these included files. */
aaa75496
JB
4552
4553static void
4554dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4555 struct die_info *die,
4556 struct partial_symtab *pst)
aaa75496 4557{
d85a05f0
DJ
4558 struct line_header *lh = NULL;
4559 struct attribute *attr;
aaa75496 4560
d85a05f0
DJ
4561 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4562 if (attr)
3019eac3 4563 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4564 if (lh == NULL)
4565 return; /* No linetable, so no includes. */
4566
c6da4cef 4567 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4568 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4569
4570 free_line_header (lh);
4571}
4572
348e048f 4573static hashval_t
52dc124a 4574hash_signatured_type (const void *item)
348e048f 4575{
9a3c8263
SM
4576 const struct signatured_type *sig_type
4577 = (const struct signatured_type *) item;
9a619af0 4578
348e048f 4579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4580 return sig_type->signature;
348e048f
DE
4581}
4582
4583static int
52dc124a 4584eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4585{
9a3c8263
SM
4586 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4587 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4588
348e048f
DE
4589 return lhs->signature == rhs->signature;
4590}
4591
1fd400ff
TT
4592/* Allocate a hash table for signatured types. */
4593
4594static htab_t
673bfd45 4595allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4596{
4597 return htab_create_alloc_ex (41,
52dc124a
DE
4598 hash_signatured_type,
4599 eq_signatured_type,
1fd400ff
TT
4600 NULL,
4601 &objfile->objfile_obstack,
4602 hashtab_obstack_allocate,
4603 dummy_obstack_deallocate);
4604}
4605
d467dd73 4606/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4607
4608static int
d467dd73 4609add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4610{
9a3c8263
SM
4611 struct signatured_type *sigt = (struct signatured_type *) *slot;
4612 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4613
b4dd5633 4614 **datap = sigt;
1fd400ff
TT
4615 ++*datap;
4616
4617 return 1;
4618}
4619
c88ee1f0
DE
4620/* Create the hash table of all entries in the .debug_types
4621 (or .debug_types.dwo) section(s).
4622 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4623 otherwise it is NULL.
4624
4625 The result is a pointer to the hash table or NULL if there are no types.
4626
4627 Note: This function processes DWO files only, not DWP files. */
348e048f 4628
3019eac3
DE
4629static htab_t
4630create_debug_types_hash_table (struct dwo_file *dwo_file,
4631 VEC (dwarf2_section_info_def) *types)
348e048f 4632{
3019eac3 4633 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4634 htab_t types_htab = NULL;
8b70b953
TT
4635 int ix;
4636 struct dwarf2_section_info *section;
4bdcc0c1 4637 struct dwarf2_section_info *abbrev_section;
348e048f 4638
3019eac3
DE
4639 if (VEC_empty (dwarf2_section_info_def, types))
4640 return NULL;
348e048f 4641
4bdcc0c1
DE
4642 abbrev_section = (dwo_file != NULL
4643 ? &dwo_file->sections.abbrev
4644 : &dwarf2_per_objfile->abbrev);
4645
b4f54984 4646 if (dwarf_read_debug)
09406207
DE
4647 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4648 dwo_file ? ".dwo" : "",
a32a8923 4649 get_section_file_name (abbrev_section));
09406207 4650
8b70b953 4651 for (ix = 0;
3019eac3 4652 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4653 ++ix)
4654 {
3019eac3 4655 bfd *abfd;
d521ce57 4656 const gdb_byte *info_ptr, *end_ptr;
348e048f 4657
8b70b953
TT
4658 dwarf2_read_section (objfile, section);
4659 info_ptr = section->buffer;
348e048f 4660
8b70b953
TT
4661 if (info_ptr == NULL)
4662 continue;
348e048f 4663
3019eac3 4664 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4665 not present, in which case the bfd is unknown. */
4666 abfd = get_section_bfd_owner (section);
3019eac3 4667
dee91e82
DE
4668 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4669 because we don't need to read any dies: the signature is in the
4670 header. */
8b70b953
TT
4671
4672 end_ptr = info_ptr + section->size;
4673 while (info_ptr < end_ptr)
4674 {
b64f50a1 4675 sect_offset offset;
3019eac3 4676 cu_offset type_offset_in_tu;
8b70b953 4677 ULONGEST signature;
52dc124a 4678 struct signatured_type *sig_type;
3019eac3 4679 struct dwo_unit *dwo_tu;
8b70b953 4680 void **slot;
d521ce57 4681 const gdb_byte *ptr = info_ptr;
9ff913ba 4682 struct comp_unit_head header;
dee91e82 4683 unsigned int length;
348e048f 4684
b64f50a1 4685 offset.sect_off = ptr - section->buffer;
348e048f 4686
8b70b953 4687 /* We need to read the type's signature in order to build the hash
9ff913ba 4688 table, but we don't need anything else just yet. */
348e048f 4689
4bdcc0c1
DE
4690 ptr = read_and_check_type_unit_head (&header, section,
4691 abbrev_section, ptr,
3019eac3 4692 &signature, &type_offset_in_tu);
6caca83c 4693
1ce1cefd 4694 length = get_cu_length (&header);
dee91e82 4695
6caca83c 4696 /* Skip dummy type units. */
dee91e82
DE
4697 if (ptr >= info_ptr + length
4698 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4699 {
1ce1cefd 4700 info_ptr += length;
6caca83c
CC
4701 continue;
4702 }
8b70b953 4703
0349ea22
DE
4704 if (types_htab == NULL)
4705 {
4706 if (dwo_file)
4707 types_htab = allocate_dwo_unit_table (objfile);
4708 else
4709 types_htab = allocate_signatured_type_table (objfile);
4710 }
4711
3019eac3
DE
4712 if (dwo_file)
4713 {
4714 sig_type = NULL;
4715 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4716 struct dwo_unit);
4717 dwo_tu->dwo_file = dwo_file;
4718 dwo_tu->signature = signature;
4719 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4720 dwo_tu->section = section;
3019eac3
DE
4721 dwo_tu->offset = offset;
4722 dwo_tu->length = length;
4723 }
4724 else
4725 {
4726 /* N.B.: type_offset is not usable if this type uses a DWO file.
4727 The real type_offset is in the DWO file. */
4728 dwo_tu = NULL;
4729 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4730 struct signatured_type);
4731 sig_type->signature = signature;
4732 sig_type->type_offset_in_tu = type_offset_in_tu;
4733 sig_type->per_cu.objfile = objfile;
4734 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4735 sig_type->per_cu.section = section;
3019eac3
DE
4736 sig_type->per_cu.offset = offset;
4737 sig_type->per_cu.length = length;
4738 }
8b70b953 4739
3019eac3
DE
4740 slot = htab_find_slot (types_htab,
4741 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4742 INSERT);
8b70b953
TT
4743 gdb_assert (slot != NULL);
4744 if (*slot != NULL)
4745 {
3019eac3
DE
4746 sect_offset dup_offset;
4747
4748 if (dwo_file)
4749 {
9a3c8263
SM
4750 const struct dwo_unit *dup_tu
4751 = (const struct dwo_unit *) *slot;
3019eac3
DE
4752
4753 dup_offset = dup_tu->offset;
4754 }
4755 else
4756 {
9a3c8263
SM
4757 const struct signatured_type *dup_tu
4758 = (const struct signatured_type *) *slot;
3019eac3
DE
4759
4760 dup_offset = dup_tu->per_cu.offset;
4761 }
b3c8eb43 4762
8b70b953 4763 complaint (&symfile_complaints,
c88ee1f0 4764 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4765 " the entry at offset 0x%x, signature %s"),
3019eac3 4766 offset.sect_off, dup_offset.sect_off,
4031ecc5 4767 hex_string (signature));
8b70b953 4768 }
3019eac3 4769 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4770
b4f54984 4771 if (dwarf_read_debug > 1)
4031ecc5 4772 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4773 offset.sect_off,
4031ecc5 4774 hex_string (signature));
348e048f 4775
dee91e82 4776 info_ptr += length;
8b70b953 4777 }
348e048f
DE
4778 }
4779
3019eac3
DE
4780 return types_htab;
4781}
4782
4783/* Create the hash table of all entries in the .debug_types section,
4784 and initialize all_type_units.
4785 The result is zero if there is an error (e.g. missing .debug_types section),
4786 otherwise non-zero. */
4787
4788static int
4789create_all_type_units (struct objfile *objfile)
4790{
4791 htab_t types_htab;
b4dd5633 4792 struct signatured_type **iter;
3019eac3
DE
4793
4794 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4795 if (types_htab == NULL)
4796 {
4797 dwarf2_per_objfile->signatured_types = NULL;
4798 return 0;
4799 }
4800
348e048f
DE
4801 dwarf2_per_objfile->signatured_types = types_htab;
4802
6aa5f3a6
DE
4803 dwarf2_per_objfile->n_type_units
4804 = dwarf2_per_objfile->n_allocated_type_units
4805 = htab_elements (types_htab);
8d749320
SM
4806 dwarf2_per_objfile->all_type_units =
4807 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4808 iter = &dwarf2_per_objfile->all_type_units[0];
4809 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4810 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4811 == dwarf2_per_objfile->n_type_units);
1fd400ff 4812
348e048f
DE
4813 return 1;
4814}
4815
6aa5f3a6
DE
4816/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4817 If SLOT is non-NULL, it is the entry to use in the hash table.
4818 Otherwise we find one. */
4819
4820static struct signatured_type *
4821add_type_unit (ULONGEST sig, void **slot)
4822{
4823 struct objfile *objfile = dwarf2_per_objfile->objfile;
4824 int n_type_units = dwarf2_per_objfile->n_type_units;
4825 struct signatured_type *sig_type;
4826
4827 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4828 ++n_type_units;
4829 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4830 {
4831 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4832 dwarf2_per_objfile->n_allocated_type_units = 1;
4833 dwarf2_per_objfile->n_allocated_type_units *= 2;
4834 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4835 = XRESIZEVEC (struct signatured_type *,
4836 dwarf2_per_objfile->all_type_units,
4837 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4838 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4839 }
4840 dwarf2_per_objfile->n_type_units = n_type_units;
4841
4842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4843 struct signatured_type);
4844 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4845 sig_type->signature = sig;
4846 sig_type->per_cu.is_debug_types = 1;
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 sig_type->per_cu.v.quick =
4850 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4851 struct dwarf2_per_cu_quick_data);
4852 }
4853
4854 if (slot == NULL)
4855 {
4856 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4857 sig_type, INSERT);
4858 }
4859 gdb_assert (*slot == NULL);
4860 *slot = sig_type;
4861 /* The rest of sig_type must be filled in by the caller. */
4862 return sig_type;
4863}
4864
a2ce51a0
DE
4865/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4866 Fill in SIG_ENTRY with DWO_ENTRY. */
4867
4868static void
4869fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4870 struct signatured_type *sig_entry,
4871 struct dwo_unit *dwo_entry)
4872{
7ee85ab1 4873 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4874 gdb_assert (! sig_entry->per_cu.queued);
4875 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4876 if (dwarf2_per_objfile->using_index)
4877 {
4878 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4879 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4880 }
4881 else
4882 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4883 gdb_assert (sig_entry->signature == dwo_entry->signature);
4884 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4885 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4886 gdb_assert (sig_entry->dwo_unit == NULL);
4887
4888 sig_entry->per_cu.section = dwo_entry->section;
4889 sig_entry->per_cu.offset = dwo_entry->offset;
4890 sig_entry->per_cu.length = dwo_entry->length;
4891 sig_entry->per_cu.reading_dwo_directly = 1;
4892 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4893 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4894 sig_entry->dwo_unit = dwo_entry;
4895}
4896
4897/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4898 If we haven't read the TU yet, create the signatured_type data structure
4899 for a TU to be read in directly from a DWO file, bypassing the stub.
4900 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4901 using .gdb_index, then when reading a CU we want to stay in the DWO file
4902 containing that CU. Otherwise we could end up reading several other DWO
4903 files (due to comdat folding) to process the transitive closure of all the
4904 mentioned TUs, and that can be slow. The current DWO file will have every
4905 type signature that it needs.
a2ce51a0
DE
4906 We only do this for .gdb_index because in the psymtab case we already have
4907 to read all the DWOs to build the type unit groups. */
4908
4909static struct signatured_type *
4910lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911{
4912 struct objfile *objfile = dwarf2_per_objfile->objfile;
4913 struct dwo_file *dwo_file;
4914 struct dwo_unit find_dwo_entry, *dwo_entry;
4915 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4916 void **slot;
a2ce51a0
DE
4917
4918 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4919
6aa5f3a6
DE
4920 /* If TU skeletons have been removed then we may not have read in any
4921 TUs yet. */
4922 if (dwarf2_per_objfile->signatured_types == NULL)
4923 {
4924 dwarf2_per_objfile->signatured_types
4925 = allocate_signatured_type_table (objfile);
4926 }
a2ce51a0
DE
4927
4928 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4929 Use the global signatured_types array to do our own comdat-folding
4930 of types. If this is the first time we're reading this TU, and
4931 the TU has an entry in .gdb_index, replace the recorded data from
4932 .gdb_index with this TU. */
a2ce51a0 4933
a2ce51a0 4934 find_sig_entry.signature = sig;
6aa5f3a6
DE
4935 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4936 &find_sig_entry, INSERT);
9a3c8263 4937 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4938
4939 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4940 read. Don't reassign the global entry to point to this DWO if that's
4941 the case. Also note that if the TU is already being read, it may not
4942 have come from a DWO, the program may be a mix of Fission-compiled
4943 code and non-Fission-compiled code. */
4944
4945 /* Have we already tried to read this TU?
4946 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4947 needn't exist in the global table yet). */
4948 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4949 return sig_entry;
4950
6aa5f3a6
DE
4951 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4952 dwo_unit of the TU itself. */
4953 dwo_file = cu->dwo_unit->dwo_file;
4954
a2ce51a0
DE
4955 /* Ok, this is the first time we're reading this TU. */
4956 if (dwo_file->tus == NULL)
4957 return NULL;
4958 find_dwo_entry.signature = sig;
9a3c8263 4959 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4960 if (dwo_entry == NULL)
4961 return NULL;
4962
6aa5f3a6
DE
4963 /* If the global table doesn't have an entry for this TU, add one. */
4964 if (sig_entry == NULL)
4965 sig_entry = add_type_unit (sig, slot);
4966
a2ce51a0 4967 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4968 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4969 return sig_entry;
4970}
4971
a2ce51a0
DE
4972/* Subroutine of lookup_signatured_type.
4973 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4974 then try the DWP file. If the TU stub (skeleton) has been removed then
4975 it won't be in .gdb_index. */
a2ce51a0
DE
4976
4977static struct signatured_type *
4978lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4979{
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwp_file *dwp_file = get_dwp_file ();
4982 struct dwo_unit *dwo_entry;
4983 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4984 void **slot;
a2ce51a0
DE
4985
4986 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4987 gdb_assert (dwp_file != NULL);
4988
6aa5f3a6
DE
4989 /* If TU skeletons have been removed then we may not have read in any
4990 TUs yet. */
4991 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4992 {
6aa5f3a6
DE
4993 dwarf2_per_objfile->signatured_types
4994 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4995 }
4996
6aa5f3a6
DE
4997 find_sig_entry.signature = sig;
4998 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4999 &find_sig_entry, INSERT);
9a3c8263 5000 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5001
5002 /* Have we already tried to read this TU?
5003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5004 needn't exist in the global table yet). */
5005 if (sig_entry != NULL)
5006 return sig_entry;
5007
a2ce51a0
DE
5008 if (dwp_file->tus == NULL)
5009 return NULL;
57d63ce2
DE
5010 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5011 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5012 if (dwo_entry == NULL)
5013 return NULL;
5014
6aa5f3a6 5015 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5016 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5017
a2ce51a0
DE
5018 return sig_entry;
5019}
5020
380bca97 5021/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5022 Returns NULL if signature SIG is not present in the table.
5023 It is up to the caller to complain about this. */
348e048f
DE
5024
5025static struct signatured_type *
a2ce51a0 5026lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5027{
a2ce51a0
DE
5028 if (cu->dwo_unit
5029 && dwarf2_per_objfile->using_index)
5030 {
5031 /* We're in a DWO/DWP file, and we're using .gdb_index.
5032 These cases require special processing. */
5033 if (get_dwp_file () == NULL)
5034 return lookup_dwo_signatured_type (cu, sig);
5035 else
5036 return lookup_dwp_signatured_type (cu, sig);
5037 }
5038 else
5039 {
5040 struct signatured_type find_entry, *entry;
348e048f 5041
a2ce51a0
DE
5042 if (dwarf2_per_objfile->signatured_types == NULL)
5043 return NULL;
5044 find_entry.signature = sig;
9a3c8263
SM
5045 entry = ((struct signatured_type *)
5046 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5047 return entry;
5048 }
348e048f 5049}
42e7ad6c
DE
5050\f
5051/* Low level DIE reading support. */
348e048f 5052
d85a05f0
DJ
5053/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5054
5055static void
5056init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5057 struct dwarf2_cu *cu,
3019eac3
DE
5058 struct dwarf2_section_info *section,
5059 struct dwo_file *dwo_file)
d85a05f0 5060{
fceca515 5061 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5062 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5063 reader->cu = cu;
3019eac3 5064 reader->dwo_file = dwo_file;
dee91e82
DE
5065 reader->die_section = section;
5066 reader->buffer = section->buffer;
f664829e 5067 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5068 reader->comp_dir = NULL;
d85a05f0
DJ
5069}
5070
b0c7bfa9
DE
5071/* Subroutine of init_cutu_and_read_dies to simplify it.
5072 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5073 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5074 already.
5075
5076 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5077 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5078 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5079 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5080 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5081 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5082 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5083 are filled in with the info of the DIE from the DWO file.
5084 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5085 provided an abbrev table to use.
5086 The result is non-zero if a valid (non-dummy) DIE was found. */
5087
5088static int
5089read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5090 struct dwo_unit *dwo_unit,
5091 int abbrev_table_provided,
5092 struct die_info *stub_comp_unit_die,
a2ce51a0 5093 const char *stub_comp_dir,
b0c7bfa9 5094 struct die_reader_specs *result_reader,
d521ce57 5095 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5096 struct die_info **result_comp_unit_die,
5097 int *result_has_children)
5098{
5099 struct objfile *objfile = dwarf2_per_objfile->objfile;
5100 struct dwarf2_cu *cu = this_cu->cu;
5101 struct dwarf2_section_info *section;
5102 bfd *abfd;
d521ce57 5103 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5104 ULONGEST signature; /* Or dwo_id. */
5105 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5106 int i,num_extra_attrs;
5107 struct dwarf2_section_info *dwo_abbrev_section;
5108 struct attribute *attr;
5109 struct die_info *comp_unit_die;
5110
b0aeadb3
DE
5111 /* At most one of these may be provided. */
5112 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5113
b0c7bfa9
DE
5114 /* These attributes aren't processed until later:
5115 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5116 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5117 referenced later. However, these attributes are found in the stub
5118 which we won't have later. In order to not impose this complication
5119 on the rest of the code, we read them here and copy them to the
5120 DWO CU/TU die. */
b0c7bfa9
DE
5121
5122 stmt_list = NULL;
5123 low_pc = NULL;
5124 high_pc = NULL;
5125 ranges = NULL;
5126 comp_dir = NULL;
5127
5128 if (stub_comp_unit_die != NULL)
5129 {
5130 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5131 DWO file. */
5132 if (! this_cu->is_debug_types)
5133 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5134 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5135 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5136 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5137 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5138
5139 /* There should be a DW_AT_addr_base attribute here (if needed).
5140 We need the value before we can process DW_FORM_GNU_addr_index. */
5141 cu->addr_base = 0;
5142 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5143 if (attr)
5144 cu->addr_base = DW_UNSND (attr);
5145
5146 /* There should be a DW_AT_ranges_base attribute here (if needed).
5147 We need the value before we can process DW_AT_ranges. */
5148 cu->ranges_base = 0;
5149 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5150 if (attr)
5151 cu->ranges_base = DW_UNSND (attr);
5152 }
a2ce51a0
DE
5153 else if (stub_comp_dir != NULL)
5154 {
5155 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5156 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5157 comp_dir->name = DW_AT_comp_dir;
5158 comp_dir->form = DW_FORM_string;
5159 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5160 DW_STRING (comp_dir) = stub_comp_dir;
5161 }
b0c7bfa9
DE
5162
5163 /* Set up for reading the DWO CU/TU. */
5164 cu->dwo_unit = dwo_unit;
5165 section = dwo_unit->section;
5166 dwarf2_read_section (objfile, section);
a32a8923 5167 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5168 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5169 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5170 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5171
5172 if (this_cu->is_debug_types)
5173 {
5174 ULONGEST header_signature;
5175 cu_offset type_offset_in_tu;
5176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5177
5178 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5179 dwo_abbrev_section,
5180 info_ptr,
5181 &header_signature,
5182 &type_offset_in_tu);
a2ce51a0
DE
5183 /* This is not an assert because it can be caused by bad debug info. */
5184 if (sig_type->signature != header_signature)
5185 {
5186 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5187 " TU at offset 0x%x [in module %s]"),
5188 hex_string (sig_type->signature),
5189 hex_string (header_signature),
5190 dwo_unit->offset.sect_off,
5191 bfd_get_filename (abfd));
5192 }
b0c7bfa9
DE
5193 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5194 /* For DWOs coming from DWP files, we don't know the CU length
5195 nor the type's offset in the TU until now. */
5196 dwo_unit->length = get_cu_length (&cu->header);
5197 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5198
5199 /* Establish the type offset that can be used to lookup the type.
5200 For DWO files, we don't know it until now. */
5201 sig_type->type_offset_in_section.sect_off =
5202 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5203 }
5204 else
5205 {
5206 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5207 dwo_abbrev_section,
5208 info_ptr, 0);
5209 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5210 /* For DWOs coming from DWP files, we don't know the CU length
5211 until now. */
5212 dwo_unit->length = get_cu_length (&cu->header);
5213 }
5214
02142a6c
DE
5215 /* Replace the CU's original abbrev table with the DWO's.
5216 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5217 if (abbrev_table_provided)
5218 {
5219 /* Don't free the provided abbrev table, the caller of
5220 init_cutu_and_read_dies owns it. */
5221 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5222 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5223 make_cleanup (dwarf2_free_abbrev_table, cu);
5224 }
5225 else
5226 {
5227 dwarf2_free_abbrev_table (cu);
5228 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5229 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5230 }
5231
5232 /* Read in the die, but leave space to copy over the attributes
5233 from the stub. This has the benefit of simplifying the rest of
5234 the code - all the work to maintain the illusion of a single
5235 DW_TAG_{compile,type}_unit DIE is done here. */
5236 num_extra_attrs = ((stmt_list != NULL)
5237 + (low_pc != NULL)
5238 + (high_pc != NULL)
5239 + (ranges != NULL)
5240 + (comp_dir != NULL));
5241 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5242 result_has_children, num_extra_attrs);
5243
5244 /* Copy over the attributes from the stub to the DIE we just read in. */
5245 comp_unit_die = *result_comp_unit_die;
5246 i = comp_unit_die->num_attrs;
5247 if (stmt_list != NULL)
5248 comp_unit_die->attrs[i++] = *stmt_list;
5249 if (low_pc != NULL)
5250 comp_unit_die->attrs[i++] = *low_pc;
5251 if (high_pc != NULL)
5252 comp_unit_die->attrs[i++] = *high_pc;
5253 if (ranges != NULL)
5254 comp_unit_die->attrs[i++] = *ranges;
5255 if (comp_dir != NULL)
5256 comp_unit_die->attrs[i++] = *comp_dir;
5257 comp_unit_die->num_attrs += num_extra_attrs;
5258
b4f54984 5259 if (dwarf_die_debug)
bf6af496
DE
5260 {
5261 fprintf_unfiltered (gdb_stdlog,
5262 "Read die from %s@0x%x of %s:\n",
a32a8923 5263 get_section_name (section),
bf6af496
DE
5264 (unsigned) (begin_info_ptr - section->buffer),
5265 bfd_get_filename (abfd));
b4f54984 5266 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5267 }
5268
a2ce51a0
DE
5269 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5270 TUs by skipping the stub and going directly to the entry in the DWO file.
5271 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5272 to get it via circuitous means. Blech. */
5273 if (comp_dir != NULL)
5274 result_reader->comp_dir = DW_STRING (comp_dir);
5275
b0c7bfa9
DE
5276 /* Skip dummy compilation units. */
5277 if (info_ptr >= begin_info_ptr + dwo_unit->length
5278 || peek_abbrev_code (abfd, info_ptr) == 0)
5279 return 0;
5280
5281 *result_info_ptr = info_ptr;
5282 return 1;
5283}
5284
5285/* Subroutine of init_cutu_and_read_dies to simplify it.
5286 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5287 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5288
5289static struct dwo_unit *
5290lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5291 struct die_info *comp_unit_die)
5292{
5293 struct dwarf2_cu *cu = this_cu->cu;
5294 struct attribute *attr;
5295 ULONGEST signature;
5296 struct dwo_unit *dwo_unit;
5297 const char *comp_dir, *dwo_name;
5298
a2ce51a0
DE
5299 gdb_assert (cu != NULL);
5300
b0c7bfa9 5301 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5302 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5303 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5304
5305 if (this_cu->is_debug_types)
5306 {
5307 struct signatured_type *sig_type;
5308
5309 /* Since this_cu is the first member of struct signatured_type,
5310 we can go from a pointer to one to a pointer to the other. */
5311 sig_type = (struct signatured_type *) this_cu;
5312 signature = sig_type->signature;
5313 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5314 }
5315 else
5316 {
5317 struct attribute *attr;
5318
5319 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5320 if (! attr)
5321 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5322 " [in module %s]"),
4262abfb 5323 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5324 signature = DW_UNSND (attr);
5325 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5326 signature);
5327 }
5328
b0c7bfa9
DE
5329 return dwo_unit;
5330}
5331
a2ce51a0 5332/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5333 See it for a description of the parameters.
5334 Read a TU directly from a DWO file, bypassing the stub.
5335
5336 Note: This function could be a little bit simpler if we shared cleanups
5337 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5338 to do, so we keep this function self-contained. Or we could move this
5339 into our caller, but it's complex enough already. */
a2ce51a0
DE
5340
5341static void
6aa5f3a6
DE
5342init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5343 int use_existing_cu, int keep,
a2ce51a0
DE
5344 die_reader_func_ftype *die_reader_func,
5345 void *data)
5346{
5347 struct dwarf2_cu *cu;
5348 struct signatured_type *sig_type;
6aa5f3a6 5349 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5350 struct die_reader_specs reader;
5351 const gdb_byte *info_ptr;
5352 struct die_info *comp_unit_die;
5353 int has_children;
5354
5355 /* Verify we can do the following downcast, and that we have the
5356 data we need. */
5357 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5358 sig_type = (struct signatured_type *) this_cu;
5359 gdb_assert (sig_type->dwo_unit != NULL);
5360
5361 cleanups = make_cleanup (null_cleanup, NULL);
5362
6aa5f3a6
DE
5363 if (use_existing_cu && this_cu->cu != NULL)
5364 {
5365 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5366 cu = this_cu->cu;
5367 /* There's no need to do the rereading_dwo_cu handling that
5368 init_cutu_and_read_dies does since we don't read the stub. */
5369 }
5370 else
5371 {
5372 /* If !use_existing_cu, this_cu->cu must be NULL. */
5373 gdb_assert (this_cu->cu == NULL);
8d749320 5374 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5375 init_one_comp_unit (cu, this_cu);
5376 /* If an error occurs while loading, release our storage. */
5377 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5378 }
5379
5380 /* A future optimization, if needed, would be to use an existing
5381 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5382 could share abbrev tables. */
a2ce51a0
DE
5383
5384 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5385 0 /* abbrev_table_provided */,
5386 NULL /* stub_comp_unit_die */,
5387 sig_type->dwo_unit->dwo_file->comp_dir,
5388 &reader, &info_ptr,
5389 &comp_unit_die, &has_children) == 0)
5390 {
5391 /* Dummy die. */
5392 do_cleanups (cleanups);
5393 return;
5394 }
5395
5396 /* All the "real" work is done here. */
5397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5398
6aa5f3a6 5399 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5400 but the alternative is making the latter more complex.
5401 This function is only for the special case of using DWO files directly:
5402 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5403 if (free_cu_cleanup != NULL)
a2ce51a0 5404 {
6aa5f3a6
DE
5405 if (keep)
5406 {
5407 /* We've successfully allocated this compilation unit. Let our
5408 caller clean it up when finished with it. */
5409 discard_cleanups (free_cu_cleanup);
a2ce51a0 5410
6aa5f3a6
DE
5411 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5412 So we have to manually free the abbrev table. */
5413 dwarf2_free_abbrev_table (cu);
a2ce51a0 5414
6aa5f3a6
DE
5415 /* Link this CU into read_in_chain. */
5416 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5417 dwarf2_per_objfile->read_in_chain = this_cu;
5418 }
5419 else
5420 do_cleanups (free_cu_cleanup);
a2ce51a0 5421 }
a2ce51a0
DE
5422
5423 do_cleanups (cleanups);
5424}
5425
fd820528 5426/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5427 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5428
f4dc4d17
DE
5429 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5430 Otherwise the table specified in the comp unit header is read in and used.
5431 This is an optimization for when we already have the abbrev table.
5432
dee91e82
DE
5433 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5434 Otherwise, a new CU is allocated with xmalloc.
5435
5436 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5437 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5438
5439 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5440 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5441
70221824 5442static void
fd820528 5443init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5444 struct abbrev_table *abbrev_table,
fd820528
DE
5445 int use_existing_cu, int keep,
5446 die_reader_func_ftype *die_reader_func,
5447 void *data)
c906108c 5448{
dee91e82 5449 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5450 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5451 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5452 struct dwarf2_cu *cu;
d521ce57 5453 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5454 struct die_reader_specs reader;
d85a05f0 5455 struct die_info *comp_unit_die;
dee91e82 5456 int has_children;
d85a05f0 5457 struct attribute *attr;
365156ad 5458 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5459 struct signatured_type *sig_type = NULL;
4bdcc0c1 5460 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5461 /* Non-zero if CU currently points to a DWO file and we need to
5462 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5463 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5464 int rereading_dwo_cu = 0;
c906108c 5465
b4f54984 5466 if (dwarf_die_debug)
09406207
DE
5467 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5468 this_cu->is_debug_types ? "type" : "comp",
5469 this_cu->offset.sect_off);
5470
dee91e82
DE
5471 if (use_existing_cu)
5472 gdb_assert (keep);
23745b47 5473
a2ce51a0
DE
5474 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5475 file (instead of going through the stub), short-circuit all of this. */
5476 if (this_cu->reading_dwo_directly)
5477 {
5478 /* Narrow down the scope of possibilities to have to understand. */
5479 gdb_assert (this_cu->is_debug_types);
5480 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5481 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5482 die_reader_func, data);
a2ce51a0
DE
5483 return;
5484 }
5485
dee91e82
DE
5486 cleanups = make_cleanup (null_cleanup, NULL);
5487
5488 /* This is cheap if the section is already read in. */
5489 dwarf2_read_section (objfile, section);
5490
5491 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5492
5493 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5494
5495 if (use_existing_cu && this_cu->cu != NULL)
5496 {
5497 cu = this_cu->cu;
42e7ad6c
DE
5498 /* If this CU is from a DWO file we need to start over, we need to
5499 refetch the attributes from the skeleton CU.
5500 This could be optimized by retrieving those attributes from when we
5501 were here the first time: the previous comp_unit_die was stored in
5502 comp_unit_obstack. But there's no data yet that we need this
5503 optimization. */
5504 if (cu->dwo_unit != NULL)
5505 rereading_dwo_cu = 1;
dee91e82
DE
5506 }
5507 else
5508 {
5509 /* If !use_existing_cu, this_cu->cu must be NULL. */
5510 gdb_assert (this_cu->cu == NULL);
8d749320 5511 cu = XNEW (struct dwarf2_cu);
dee91e82 5512 init_one_comp_unit (cu, this_cu);
dee91e82 5513 /* If an error occurs while loading, release our storage. */
365156ad 5514 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5515 }
dee91e82 5516
b0c7bfa9 5517 /* Get the header. */
42e7ad6c
DE
5518 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5519 {
5520 /* We already have the header, there's no need to read it in again. */
5521 info_ptr += cu->header.first_die_offset.cu_off;
5522 }
5523 else
5524 {
3019eac3 5525 if (this_cu->is_debug_types)
dee91e82
DE
5526 {
5527 ULONGEST signature;
42e7ad6c 5528 cu_offset type_offset_in_tu;
dee91e82 5529
4bdcc0c1
DE
5530 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5531 abbrev_section, info_ptr,
42e7ad6c
DE
5532 &signature,
5533 &type_offset_in_tu);
dee91e82 5534
42e7ad6c
DE
5535 /* Since per_cu is the first member of struct signatured_type,
5536 we can go from a pointer to one to a pointer to the other. */
5537 sig_type = (struct signatured_type *) this_cu;
5538 gdb_assert (sig_type->signature == signature);
5539 gdb_assert (sig_type->type_offset_in_tu.cu_off
5540 == type_offset_in_tu.cu_off);
dee91e82
DE
5541 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5542
42e7ad6c
DE
5543 /* LENGTH has not been set yet for type units if we're
5544 using .gdb_index. */
1ce1cefd 5545 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5546
5547 /* Establish the type offset that can be used to lookup the type. */
5548 sig_type->type_offset_in_section.sect_off =
5549 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5550 }
5551 else
5552 {
4bdcc0c1
DE
5553 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5554 abbrev_section,
5555 info_ptr, 0);
dee91e82
DE
5556
5557 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5558 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5559 }
5560 }
10b3939b 5561
6caca83c 5562 /* Skip dummy compilation units. */
dee91e82 5563 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5564 || peek_abbrev_code (abfd, info_ptr) == 0)
5565 {
dee91e82 5566 do_cleanups (cleanups);
21b2bd31 5567 return;
6caca83c
CC
5568 }
5569
433df2d4
DE
5570 /* If we don't have them yet, read the abbrevs for this compilation unit.
5571 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5572 done. Note that it's important that if the CU had an abbrev table
5573 on entry we don't free it when we're done: Somewhere up the call stack
5574 it may be in use. */
f4dc4d17
DE
5575 if (abbrev_table != NULL)
5576 {
5577 gdb_assert (cu->abbrev_table == NULL);
5578 gdb_assert (cu->header.abbrev_offset.sect_off
5579 == abbrev_table->offset.sect_off);
5580 cu->abbrev_table = abbrev_table;
5581 }
5582 else if (cu->abbrev_table == NULL)
dee91e82 5583 {
4bdcc0c1 5584 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5585 make_cleanup (dwarf2_free_abbrev_table, cu);
5586 }
42e7ad6c
DE
5587 else if (rereading_dwo_cu)
5588 {
5589 dwarf2_free_abbrev_table (cu);
5590 dwarf2_read_abbrevs (cu, abbrev_section);
5591 }
af703f96 5592
dee91e82 5593 /* Read the top level CU/TU die. */
3019eac3 5594 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5595 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5596
b0c7bfa9
DE
5597 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5598 from the DWO file.
5599 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5600 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5601 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5602 if (attr)
5603 {
3019eac3 5604 struct dwo_unit *dwo_unit;
b0c7bfa9 5605 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5606
5607 if (has_children)
6a506a2d
DE
5608 {
5609 complaint (&symfile_complaints,
5610 _("compilation unit with DW_AT_GNU_dwo_name"
5611 " has children (offset 0x%x) [in module %s]"),
5612 this_cu->offset.sect_off, bfd_get_filename (abfd));
5613 }
b0c7bfa9 5614 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5615 if (dwo_unit != NULL)
3019eac3 5616 {
6a506a2d
DE
5617 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5618 abbrev_table != NULL,
a2ce51a0 5619 comp_unit_die, NULL,
6a506a2d
DE
5620 &reader, &info_ptr,
5621 &dwo_comp_unit_die, &has_children) == 0)
5622 {
5623 /* Dummy die. */
5624 do_cleanups (cleanups);
5625 return;
5626 }
5627 comp_unit_die = dwo_comp_unit_die;
5628 }
5629 else
5630 {
5631 /* Yikes, we couldn't find the rest of the DIE, we only have
5632 the stub. A complaint has already been logged. There's
5633 not much more we can do except pass on the stub DIE to
5634 die_reader_func. We don't want to throw an error on bad
5635 debug info. */
3019eac3
DE
5636 }
5637 }
5638
b0c7bfa9 5639 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5640 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5641
b0c7bfa9 5642 /* Done, clean up. */
365156ad 5643 if (free_cu_cleanup != NULL)
348e048f 5644 {
365156ad
TT
5645 if (keep)
5646 {
5647 /* We've successfully allocated this compilation unit. Let our
5648 caller clean it up when finished with it. */
5649 discard_cleanups (free_cu_cleanup);
dee91e82 5650
365156ad
TT
5651 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5652 So we have to manually free the abbrev table. */
5653 dwarf2_free_abbrev_table (cu);
dee91e82 5654
365156ad
TT
5655 /* Link this CU into read_in_chain. */
5656 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5657 dwarf2_per_objfile->read_in_chain = this_cu;
5658 }
5659 else
5660 do_cleanups (free_cu_cleanup);
348e048f 5661 }
365156ad
TT
5662
5663 do_cleanups (cleanups);
dee91e82
DE
5664}
5665
33e80786
DE
5666/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5667 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5668 to have already done the lookup to find the DWO file).
dee91e82
DE
5669
5670 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5671 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5672
5673 We fill in THIS_CU->length.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5676 linker) then DIE_READER_FUNC will not get called.
5677
5678 THIS_CU->cu is always freed when done.
3019eac3
DE
5679 This is done in order to not leave THIS_CU->cu in a state where we have
5680 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5681
5682static void
5683init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5684 struct dwo_file *dwo_file,
dee91e82
DE
5685 die_reader_func_ftype *die_reader_func,
5686 void *data)
5687{
5688 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5689 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5690 bfd *abfd = get_section_bfd_owner (section);
33e80786 5691 struct dwarf2_section_info *abbrev_section;
dee91e82 5692 struct dwarf2_cu cu;
d521ce57 5693 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5694 struct die_reader_specs reader;
5695 struct cleanup *cleanups;
5696 struct die_info *comp_unit_die;
5697 int has_children;
5698
b4f54984 5699 if (dwarf_die_debug)
09406207
DE
5700 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5701 this_cu->is_debug_types ? "type" : "comp",
5702 this_cu->offset.sect_off);
5703
dee91e82
DE
5704 gdb_assert (this_cu->cu == NULL);
5705
33e80786
DE
5706 abbrev_section = (dwo_file != NULL
5707 ? &dwo_file->sections.abbrev
5708 : get_abbrev_section_for_cu (this_cu));
5709
dee91e82
DE
5710 /* This is cheap if the section is already read in. */
5711 dwarf2_read_section (objfile, section);
5712
5713 init_one_comp_unit (&cu, this_cu);
5714
5715 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5716
5717 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5718 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5719 abbrev_section, info_ptr,
3019eac3 5720 this_cu->is_debug_types);
dee91e82 5721
1ce1cefd 5722 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5723
5724 /* Skip dummy compilation units. */
5725 if (info_ptr >= begin_info_ptr + this_cu->length
5726 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5727 {
dee91e82 5728 do_cleanups (cleanups);
21b2bd31 5729 return;
93311388 5730 }
72bf9492 5731
dee91e82
DE
5732 dwarf2_read_abbrevs (&cu, abbrev_section);
5733 make_cleanup (dwarf2_free_abbrev_table, &cu);
5734
3019eac3 5735 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5736 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5737
5738 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5739
5740 do_cleanups (cleanups);
5741}
5742
3019eac3
DE
5743/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5744 does not lookup the specified DWO file.
5745 This cannot be used to read DWO files.
dee91e82
DE
5746
5747 THIS_CU->cu is always freed when done.
3019eac3
DE
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU.
5750 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5751
5752static void
5753init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756{
33e80786 5757 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5758}
0018ea6f
DE
5759\f
5760/* Type Unit Groups.
dee91e82 5761
0018ea6f
DE
5762 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5763 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5764 so that all types coming from the same compilation (.o file) are grouped
5765 together. A future step could be to put the types in the same symtab as
5766 the CU the types ultimately came from. */
ff013f42 5767
f4dc4d17
DE
5768static hashval_t
5769hash_type_unit_group (const void *item)
5770{
9a3c8263
SM
5771 const struct type_unit_group *tu_group
5772 = (const struct type_unit_group *) item;
f4dc4d17 5773
094b34ac 5774 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5775}
348e048f
DE
5776
5777static int
f4dc4d17 5778eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5779{
9a3c8263
SM
5780 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5781 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5782
094b34ac 5783 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5784}
348e048f 5785
f4dc4d17
DE
5786/* Allocate a hash table for type unit groups. */
5787
5788static htab_t
5789allocate_type_unit_groups_table (void)
5790{
5791 return htab_create_alloc_ex (3,
5792 hash_type_unit_group,
5793 eq_type_unit_group,
5794 NULL,
5795 &dwarf2_per_objfile->objfile->objfile_obstack,
5796 hashtab_obstack_allocate,
5797 dummy_obstack_deallocate);
5798}
dee91e82 5799
f4dc4d17
DE
5800/* Type units that don't have DW_AT_stmt_list are grouped into their own
5801 partial symtabs. We combine several TUs per psymtab to not let the size
5802 of any one psymtab grow too big. */
5803#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5804#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5805
094b34ac 5806/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5807 Create the type_unit_group object used to hold one or more TUs. */
5808
5809static struct type_unit_group *
094b34ac 5810create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5811{
5812 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5813 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5814 struct type_unit_group *tu_group;
f4dc4d17
DE
5815
5816 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5817 struct type_unit_group);
094b34ac 5818 per_cu = &tu_group->per_cu;
f4dc4d17 5819 per_cu->objfile = objfile;
f4dc4d17 5820
094b34ac
DE
5821 if (dwarf2_per_objfile->using_index)
5822 {
5823 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5824 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5825 }
5826 else
5827 {
5828 unsigned int line_offset = line_offset_struct.sect_off;
5829 struct partial_symtab *pst;
5830 char *name;
5831
5832 /* Give the symtab a useful name for debug purposes. */
5833 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5834 name = xstrprintf ("<type_units_%d>",
5835 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5836 else
5837 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5838
5839 pst = create_partial_symtab (per_cu, name);
5840 pst->anonymous = 1;
f4dc4d17 5841
094b34ac
DE
5842 xfree (name);
5843 }
f4dc4d17 5844
094b34ac
DE
5845 tu_group->hash.dwo_unit = cu->dwo_unit;
5846 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5847
5848 return tu_group;
5849}
5850
094b34ac
DE
5851/* Look up the type_unit_group for type unit CU, and create it if necessary.
5852 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5853
5854static struct type_unit_group *
ff39bb5e 5855get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5856{
5857 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5858 struct type_unit_group *tu_group;
5859 void **slot;
5860 unsigned int line_offset;
5861 struct type_unit_group type_unit_group_for_lookup;
5862
5863 if (dwarf2_per_objfile->type_unit_groups == NULL)
5864 {
5865 dwarf2_per_objfile->type_unit_groups =
5866 allocate_type_unit_groups_table ();
5867 }
5868
5869 /* Do we need to create a new group, or can we use an existing one? */
5870
5871 if (stmt_list)
5872 {
5873 line_offset = DW_UNSND (stmt_list);
5874 ++tu_stats->nr_symtab_sharers;
5875 }
5876 else
5877 {
5878 /* Ugh, no stmt_list. Rare, but we have to handle it.
5879 We can do various things here like create one group per TU or
5880 spread them over multiple groups to split up the expansion work.
5881 To avoid worst case scenarios (too many groups or too large groups)
5882 we, umm, group them in bunches. */
5883 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5884 | (tu_stats->nr_stmt_less_type_units
5885 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5886 ++tu_stats->nr_stmt_less_type_units;
5887 }
5888
094b34ac
DE
5889 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5890 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5891 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5892 &type_unit_group_for_lookup, INSERT);
5893 if (*slot != NULL)
5894 {
9a3c8263 5895 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5896 gdb_assert (tu_group != NULL);
5897 }
5898 else
5899 {
5900 sect_offset line_offset_struct;
5901
5902 line_offset_struct.sect_off = line_offset;
094b34ac 5903 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5904 *slot = tu_group;
5905 ++tu_stats->nr_symtabs;
5906 }
5907
5908 return tu_group;
5909}
0018ea6f
DE
5910\f
5911/* Partial symbol tables. */
5912
5913/* Create a psymtab named NAME and assign it to PER_CU.
5914
5915 The caller must fill in the following details:
5916 dirname, textlow, texthigh. */
5917
5918static struct partial_symtab *
5919create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5920{
5921 struct objfile *objfile = per_cu->objfile;
5922 struct partial_symtab *pst;
5923
18a94d75 5924 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5925 objfile->global_psymbols.next,
5926 objfile->static_psymbols.next);
5927
5928 pst->psymtabs_addrmap_supported = 1;
5929
5930 /* This is the glue that links PST into GDB's symbol API. */
5931 pst->read_symtab_private = per_cu;
5932 pst->read_symtab = dwarf2_read_symtab;
5933 per_cu->v.psymtab = pst;
5934
5935 return pst;
5936}
5937
b93601f3
TT
5938/* The DATA object passed to process_psymtab_comp_unit_reader has this
5939 type. */
5940
5941struct process_psymtab_comp_unit_data
5942{
5943 /* True if we are reading a DW_TAG_partial_unit. */
5944
5945 int want_partial_unit;
5946
5947 /* The "pretend" language that is used if the CU doesn't declare a
5948 language. */
5949
5950 enum language pretend_language;
5951};
5952
0018ea6f
DE
5953/* die_reader_func for process_psymtab_comp_unit. */
5954
5955static void
5956process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5957 const gdb_byte *info_ptr,
0018ea6f
DE
5958 struct die_info *comp_unit_die,
5959 int has_children,
5960 void *data)
5961{
5962 struct dwarf2_cu *cu = reader->cu;
5963 struct objfile *objfile = cu->objfile;
3e29f34a 5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5966 CORE_ADDR baseaddr;
5967 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5968 struct partial_symtab *pst;
3a2b436a 5969 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 5970 const char *filename;
9a3c8263
SM
5971 struct process_psymtab_comp_unit_data *info
5972 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5973
b93601f3 5974 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5975 return;
5976
5977 gdb_assert (! per_cu->is_debug_types);
5978
b93601f3 5979 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5980
5981 cu->list_in_scope = &file_symbols;
5982
5983 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5984 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5985 if (filename == NULL)
0018ea6f 5986 filename = "";
0018ea6f
DE
5987
5988 pst = create_partial_symtab (per_cu, filename);
5989
5990 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5991 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5992
5993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5994
5995 dwarf2_find_base_address (comp_unit_die, cu);
5996
5997 /* Possibly set the default values of LOWPC and HIGHPC from
5998 `DW_AT_ranges'. */
3a2b436a
JK
5999 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6000 &best_highpc, cu, pst);
6001 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6002 /* Store the contiguous range if it is not empty; it can be empty for
6003 CUs with no code. */
6004 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6005 gdbarch_adjust_dwarf2_addr (gdbarch,
6006 best_lowpc + baseaddr),
6007 gdbarch_adjust_dwarf2_addr (gdbarch,
6008 best_highpc + baseaddr) - 1,
6009 pst);
0018ea6f
DE
6010
6011 /* Check if comp unit has_children.
6012 If so, read the rest of the partial symbols from this comp unit.
6013 If not, there's no more debug_info for this comp unit. */
6014 if (has_children)
6015 {
6016 struct partial_die_info *first_die;
6017 CORE_ADDR lowpc, highpc;
6018
6019 lowpc = ((CORE_ADDR) -1);
6020 highpc = ((CORE_ADDR) 0);
6021
6022 first_die = load_partial_dies (reader, info_ptr, 1);
6023
6024 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6025 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6026
6027 /* If we didn't find a lowpc, set it to highpc to avoid
6028 complaints from `maint check'. */
6029 if (lowpc == ((CORE_ADDR) -1))
6030 lowpc = highpc;
6031
6032 /* If the compilation unit didn't have an explicit address range,
6033 then use the information extracted from its child dies. */
e385593e 6034 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6035 {
6036 best_lowpc = lowpc;
6037 best_highpc = highpc;
6038 }
6039 }
3e29f34a
MR
6040 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6041 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6042
8763cede 6043 end_psymtab_common (objfile, pst);
0018ea6f
DE
6044
6045 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6046 {
6047 int i;
6048 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6049 struct dwarf2_per_cu_data *iter;
6050
6051 /* Fill in 'dependencies' here; we fill in 'users' in a
6052 post-pass. */
6053 pst->number_of_dependencies = len;
8d749320
SM
6054 pst->dependencies =
6055 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6056 for (i = 0;
6057 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6058 i, iter);
6059 ++i)
6060 pst->dependencies[i] = iter->v.psymtab;
6061
6062 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6063 }
6064
6065 /* Get the list of files included in the current compilation unit,
6066 and build a psymtab for each of them. */
6067 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6068
b4f54984 6069 if (dwarf_read_debug)
0018ea6f
DE
6070 {
6071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6072
6073 fprintf_unfiltered (gdb_stdlog,
6074 "Psymtab for %s unit @0x%x: %s - %s"
6075 ", %d global, %d static syms\n",
6076 per_cu->is_debug_types ? "type" : "comp",
6077 per_cu->offset.sect_off,
6078 paddress (gdbarch, pst->textlow),
6079 paddress (gdbarch, pst->texthigh),
6080 pst->n_global_syms, pst->n_static_syms);
6081 }
6082}
6083
6084/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6085 Process compilation unit THIS_CU for a psymtab. */
6086
6087static void
6088process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6089 int want_partial_unit,
6090 enum language pretend_language)
0018ea6f 6091{
b93601f3
TT
6092 struct process_psymtab_comp_unit_data info;
6093
0018ea6f
DE
6094 /* If this compilation unit was already read in, free the
6095 cached copy in order to read it in again. This is
6096 necessary because we skipped some symbols when we first
6097 read in the compilation unit (see load_partial_dies).
6098 This problem could be avoided, but the benefit is unclear. */
6099 if (this_cu->cu != NULL)
6100 free_one_cached_comp_unit (this_cu);
6101
6102 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6103 info.want_partial_unit = want_partial_unit;
6104 info.pretend_language = pretend_language;
0018ea6f
DE
6105 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6106 process_psymtab_comp_unit_reader,
b93601f3 6107 &info);
0018ea6f
DE
6108
6109 /* Age out any secondary CUs. */
6110 age_cached_comp_units ();
6111}
f4dc4d17
DE
6112
6113/* Reader function for build_type_psymtabs. */
6114
6115static void
6116build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6117 const gdb_byte *info_ptr,
f4dc4d17
DE
6118 struct die_info *type_unit_die,
6119 int has_children,
6120 void *data)
6121{
6122 struct objfile *objfile = dwarf2_per_objfile->objfile;
6123 struct dwarf2_cu *cu = reader->cu;
6124 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6125 struct signatured_type *sig_type;
f4dc4d17
DE
6126 struct type_unit_group *tu_group;
6127 struct attribute *attr;
6128 struct partial_die_info *first_die;
6129 CORE_ADDR lowpc, highpc;
6130 struct partial_symtab *pst;
6131
6132 gdb_assert (data == NULL);
0186c6a7
DE
6133 gdb_assert (per_cu->is_debug_types);
6134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6135
6136 if (! has_children)
6137 return;
6138
6139 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6140 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6141
0186c6a7 6142 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6143
6144 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6145 cu->list_in_scope = &file_symbols;
6146 pst = create_partial_symtab (per_cu, "");
6147 pst->anonymous = 1;
6148
6149 first_die = load_partial_dies (reader, info_ptr, 1);
6150
6151 lowpc = (CORE_ADDR) -1;
6152 highpc = (CORE_ADDR) 0;
6153 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6154
8763cede 6155 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6156}
6157
73051182
DE
6158/* Struct used to sort TUs by their abbreviation table offset. */
6159
6160struct tu_abbrev_offset
6161{
6162 struct signatured_type *sig_type;
6163 sect_offset abbrev_offset;
6164};
6165
6166/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6167
6168static int
6169sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6170{
9a3c8263
SM
6171 const struct tu_abbrev_offset * const *a
6172 = (const struct tu_abbrev_offset * const*) ap;
6173 const struct tu_abbrev_offset * const *b
6174 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6175 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6176 unsigned int boff = (*b)->abbrev_offset.sect_off;
6177
6178 return (aoff > boff) - (aoff < boff);
6179}
6180
6181/* Efficiently read all the type units.
6182 This does the bulk of the work for build_type_psymtabs.
6183
6184 The efficiency is because we sort TUs by the abbrev table they use and
6185 only read each abbrev table once. In one program there are 200K TUs
6186 sharing 8K abbrev tables.
6187
6188 The main purpose of this function is to support building the
6189 dwarf2_per_objfile->type_unit_groups table.
6190 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6191 can collapse the search space by grouping them by stmt_list.
6192 The savings can be significant, in the same program from above the 200K TUs
6193 share 8K stmt_list tables.
6194
6195 FUNC is expected to call get_type_unit_group, which will create the
6196 struct type_unit_group if necessary and add it to
6197 dwarf2_per_objfile->type_unit_groups. */
6198
6199static void
6200build_type_psymtabs_1 (void)
6201{
73051182
DE
6202 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6203 struct cleanup *cleanups;
6204 struct abbrev_table *abbrev_table;
6205 sect_offset abbrev_offset;
6206 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6207 int i;
6208
6209 /* It's up to the caller to not call us multiple times. */
6210 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6211
6212 if (dwarf2_per_objfile->n_type_units == 0)
6213 return;
6214
6215 /* TUs typically share abbrev tables, and there can be way more TUs than
6216 abbrev tables. Sort by abbrev table to reduce the number of times we
6217 read each abbrev table in.
6218 Alternatives are to punt or to maintain a cache of abbrev tables.
6219 This is simpler and efficient enough for now.
6220
6221 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6222 symtab to use). Typically TUs with the same abbrev offset have the same
6223 stmt_list value too so in practice this should work well.
6224
6225 The basic algorithm here is:
6226
6227 sort TUs by abbrev table
6228 for each TU with same abbrev table:
6229 read abbrev table if first user
6230 read TU top level DIE
6231 [IWBN if DWO skeletons had DW_AT_stmt_list]
6232 call FUNC */
6233
b4f54984 6234 if (dwarf_read_debug)
73051182
DE
6235 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6236
6237 /* Sort in a separate table to maintain the order of all_type_units
6238 for .gdb_index: TU indices directly index all_type_units. */
6239 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6240 dwarf2_per_objfile->n_type_units);
6241 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6242 {
6243 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6244
6245 sorted_by_abbrev[i].sig_type = sig_type;
6246 sorted_by_abbrev[i].abbrev_offset =
6247 read_abbrev_offset (sig_type->per_cu.section,
6248 sig_type->per_cu.offset);
6249 }
6250 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6251 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6252 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6253
6254 abbrev_offset.sect_off = ~(unsigned) 0;
6255 abbrev_table = NULL;
6256 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6257
6258 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6259 {
6260 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6261
6262 /* Switch to the next abbrev table if necessary. */
6263 if (abbrev_table == NULL
6264 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6265 {
6266 if (abbrev_table != NULL)
6267 {
6268 abbrev_table_free (abbrev_table);
6269 /* Reset to NULL in case abbrev_table_read_table throws
6270 an error: abbrev_table_free_cleanup will get called. */
6271 abbrev_table = NULL;
6272 }
6273 abbrev_offset = tu->abbrev_offset;
6274 abbrev_table =
6275 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6276 abbrev_offset);
6277 ++tu_stats->nr_uniq_abbrev_tables;
6278 }
6279
6280 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6281 build_type_psymtabs_reader, NULL);
6282 }
6283
73051182 6284 do_cleanups (cleanups);
6aa5f3a6 6285}
73051182 6286
6aa5f3a6
DE
6287/* Print collected type unit statistics. */
6288
6289static void
6290print_tu_stats (void)
6291{
6292 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6293
6294 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6295 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6296 dwarf2_per_objfile->n_type_units);
6297 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6298 tu_stats->nr_uniq_abbrev_tables);
6299 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6300 tu_stats->nr_symtabs);
6301 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6302 tu_stats->nr_symtab_sharers);
6303 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6304 tu_stats->nr_stmt_less_type_units);
6305 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6306 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6307}
6308
f4dc4d17
DE
6309/* Traversal function for build_type_psymtabs. */
6310
6311static int
6312build_type_psymtab_dependencies (void **slot, void *info)
6313{
6314 struct objfile *objfile = dwarf2_per_objfile->objfile;
6315 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6316 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6317 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6318 int len = VEC_length (sig_type_ptr, tu_group->tus);
6319 struct signatured_type *iter;
f4dc4d17
DE
6320 int i;
6321
6322 gdb_assert (len > 0);
0186c6a7 6323 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6324
6325 pst->number_of_dependencies = len;
8d749320
SM
6326 pst->dependencies =
6327 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6328 for (i = 0;
0186c6a7 6329 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6330 ++i)
6331 {
0186c6a7
DE
6332 gdb_assert (iter->per_cu.is_debug_types);
6333 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6334 iter->type_unit_group = tu_group;
f4dc4d17
DE
6335 }
6336
0186c6a7 6337 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6338
6339 return 1;
6340}
6341
6342/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6343 Build partial symbol tables for the .debug_types comp-units. */
6344
6345static void
6346build_type_psymtabs (struct objfile *objfile)
6347{
0e50663e 6348 if (! create_all_type_units (objfile))
348e048f
DE
6349 return;
6350
73051182 6351 build_type_psymtabs_1 ();
6aa5f3a6 6352}
f4dc4d17 6353
6aa5f3a6
DE
6354/* Traversal function for process_skeletonless_type_unit.
6355 Read a TU in a DWO file and build partial symbols for it. */
6356
6357static int
6358process_skeletonless_type_unit (void **slot, void *info)
6359{
6360 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6361 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6362 struct signatured_type find_entry, *entry;
6363
6364 /* If this TU doesn't exist in the global table, add it and read it in. */
6365
6366 if (dwarf2_per_objfile->signatured_types == NULL)
6367 {
6368 dwarf2_per_objfile->signatured_types
6369 = allocate_signatured_type_table (objfile);
6370 }
6371
6372 find_entry.signature = dwo_unit->signature;
6373 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6374 INSERT);
6375 /* If we've already seen this type there's nothing to do. What's happening
6376 is we're doing our own version of comdat-folding here. */
6377 if (*slot != NULL)
6378 return 1;
6379
6380 /* This does the job that create_all_type_units would have done for
6381 this TU. */
6382 entry = add_type_unit (dwo_unit->signature, slot);
6383 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6384 *slot = entry;
6385
6386 /* This does the job that build_type_psymtabs_1 would have done. */
6387 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6388 build_type_psymtabs_reader, NULL);
6389
6390 return 1;
6391}
6392
6393/* Traversal function for process_skeletonless_type_units. */
6394
6395static int
6396process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6397{
6398 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6399
6400 if (dwo_file->tus != NULL)
6401 {
6402 htab_traverse_noresize (dwo_file->tus,
6403 process_skeletonless_type_unit, info);
6404 }
6405
6406 return 1;
6407}
6408
6409/* Scan all TUs of DWO files, verifying we've processed them.
6410 This is needed in case a TU was emitted without its skeleton.
6411 Note: This can't be done until we know what all the DWO files are. */
6412
6413static void
6414process_skeletonless_type_units (struct objfile *objfile)
6415{
6416 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6417 if (get_dwp_file () == NULL
6418 && dwarf2_per_objfile->dwo_files != NULL)
6419 {
6420 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6421 process_dwo_file_for_skeletonless_type_units,
6422 objfile);
6423 }
348e048f
DE
6424}
6425
60606b2c
TT
6426/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6427
6428static void
6429psymtabs_addrmap_cleanup (void *o)
6430{
9a3c8263 6431 struct objfile *objfile = (struct objfile *) o;
ec61707d 6432
60606b2c
TT
6433 objfile->psymtabs_addrmap = NULL;
6434}
6435
95554aad
TT
6436/* Compute the 'user' field for each psymtab in OBJFILE. */
6437
6438static void
6439set_partial_user (struct objfile *objfile)
6440{
6441 int i;
6442
6443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6444 {
8832e7e3 6445 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6446 struct partial_symtab *pst = per_cu->v.psymtab;
6447 int j;
6448
36586728
TT
6449 if (pst == NULL)
6450 continue;
6451
95554aad
TT
6452 for (j = 0; j < pst->number_of_dependencies; ++j)
6453 {
6454 /* Set the 'user' field only if it is not already set. */
6455 if (pst->dependencies[j]->user == NULL)
6456 pst->dependencies[j]->user = pst;
6457 }
6458 }
6459}
6460
93311388
DE
6461/* Build the partial symbol table by doing a quick pass through the
6462 .debug_info and .debug_abbrev sections. */
72bf9492 6463
93311388 6464static void
c67a9c90 6465dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6466{
60606b2c
TT
6467 struct cleanup *back_to, *addrmap_cleanup;
6468 struct obstack temp_obstack;
21b2bd31 6469 int i;
93311388 6470
b4f54984 6471 if (dwarf_read_debug)
45cfd468
DE
6472 {
6473 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6474 objfile_name (objfile));
45cfd468
DE
6475 }
6476
98bfdba5
PA
6477 dwarf2_per_objfile->reading_partial_symbols = 1;
6478
be391dca 6479 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6480
93311388
DE
6481 /* Any cached compilation units will be linked by the per-objfile
6482 read_in_chain. Make sure to free them when we're done. */
6483 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6484
348e048f
DE
6485 build_type_psymtabs (objfile);
6486
93311388 6487 create_all_comp_units (objfile);
c906108c 6488
60606b2c
TT
6489 /* Create a temporary address map on a temporary obstack. We later
6490 copy this to the final obstack. */
6491 obstack_init (&temp_obstack);
6492 make_cleanup_obstack_free (&temp_obstack);
6493 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6494 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6495
21b2bd31 6496 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6497 {
8832e7e3 6498 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6499
b93601f3 6500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6501 }
ff013f42 6502
6aa5f3a6
DE
6503 /* This has to wait until we read the CUs, we need the list of DWOs. */
6504 process_skeletonless_type_units (objfile);
6505
6506 /* Now that all TUs have been processed we can fill in the dependencies. */
6507 if (dwarf2_per_objfile->type_unit_groups != NULL)
6508 {
6509 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6510 build_type_psymtab_dependencies, NULL);
6511 }
6512
b4f54984 6513 if (dwarf_read_debug)
6aa5f3a6
DE
6514 print_tu_stats ();
6515
95554aad
TT
6516 set_partial_user (objfile);
6517
ff013f42
JK
6518 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6519 &objfile->objfile_obstack);
60606b2c 6520 discard_cleanups (addrmap_cleanup);
ff013f42 6521
ae038cb0 6522 do_cleanups (back_to);
45cfd468 6523
b4f54984 6524 if (dwarf_read_debug)
45cfd468 6525 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6526 objfile_name (objfile));
ae038cb0
DJ
6527}
6528
3019eac3 6529/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6530
6531static void
dee91e82 6532load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6533 const gdb_byte *info_ptr,
dee91e82
DE
6534 struct die_info *comp_unit_die,
6535 int has_children,
6536 void *data)
ae038cb0 6537{
dee91e82 6538 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6539
95554aad 6540 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6541
ae038cb0
DJ
6542 /* Check if comp unit has_children.
6543 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6544 If not, there's no more debug_info for this comp unit. */
d85a05f0 6545 if (has_children)
dee91e82
DE
6546 load_partial_dies (reader, info_ptr, 0);
6547}
98bfdba5 6548
dee91e82
DE
6549/* Load the partial DIEs for a secondary CU into memory.
6550 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6551
dee91e82
DE
6552static void
6553load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6554{
f4dc4d17
DE
6555 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6556 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6557}
6558
ae038cb0 6559static void
36586728
TT
6560read_comp_units_from_section (struct objfile *objfile,
6561 struct dwarf2_section_info *section,
6562 unsigned int is_dwz,
6563 int *n_allocated,
6564 int *n_comp_units,
6565 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6566{
d521ce57 6567 const gdb_byte *info_ptr;
a32a8923 6568 bfd *abfd = get_section_bfd_owner (section);
be391dca 6569
b4f54984 6570 if (dwarf_read_debug)
bf6af496 6571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6572 get_section_name (section),
6573 get_section_file_name (section));
bf6af496 6574
36586728 6575 dwarf2_read_section (objfile, section);
ae038cb0 6576
36586728 6577 info_ptr = section->buffer;
6e70227d 6578
36586728 6579 while (info_ptr < section->buffer + section->size)
ae038cb0 6580 {
c764a876 6581 unsigned int length, initial_length_size;
ae038cb0 6582 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6583 sect_offset offset;
ae038cb0 6584
36586728 6585 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6586
6587 /* Read just enough information to find out where the next
6588 compilation unit is. */
36586728 6589 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6590
6591 /* Save the compilation unit for later lookup. */
8d749320 6592 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6593 memset (this_cu, 0, sizeof (*this_cu));
6594 this_cu->offset = offset;
c764a876 6595 this_cu->length = length + initial_length_size;
36586728 6596 this_cu->is_dwz = is_dwz;
9291a0cd 6597 this_cu->objfile = objfile;
8a0459fd 6598 this_cu->section = section;
ae038cb0 6599
36586728 6600 if (*n_comp_units == *n_allocated)
ae038cb0 6601 {
36586728 6602 *n_allocated *= 2;
224c3ddb
SM
6603 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6604 *all_comp_units, *n_allocated);
ae038cb0 6605 }
36586728
TT
6606 (*all_comp_units)[*n_comp_units] = this_cu;
6607 ++*n_comp_units;
ae038cb0
DJ
6608
6609 info_ptr = info_ptr + this_cu->length;
6610 }
36586728
TT
6611}
6612
6613/* Create a list of all compilation units in OBJFILE.
6614 This is only done for -readnow and building partial symtabs. */
6615
6616static void
6617create_all_comp_units (struct objfile *objfile)
6618{
6619 int n_allocated;
6620 int n_comp_units;
6621 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6622 struct dwz_file *dwz;
36586728
TT
6623
6624 n_comp_units = 0;
6625 n_allocated = 10;
8d749320 6626 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6627
6628 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6629 &n_allocated, &n_comp_units, &all_comp_units);
6630
4db1a1dc
TT
6631 dwz = dwarf2_get_dwz_file ();
6632 if (dwz != NULL)
6633 read_comp_units_from_section (objfile, &dwz->info, 1,
6634 &n_allocated, &n_comp_units,
6635 &all_comp_units);
ae038cb0 6636
8d749320
SM
6637 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6638 struct dwarf2_per_cu_data *,
6639 n_comp_units);
ae038cb0
DJ
6640 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6641 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6642 xfree (all_comp_units);
6643 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6644}
6645
5734ee8b 6646/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6647 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6648 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6649 DW_AT_ranges). See the comments of add_partial_subprogram on how
6650 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6651
72bf9492
DJ
6652static void
6653scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6654 CORE_ADDR *highpc, int set_addrmap,
6655 struct dwarf2_cu *cu)
c906108c 6656{
72bf9492 6657 struct partial_die_info *pdi;
c906108c 6658
91c24f0a
DC
6659 /* Now, march along the PDI's, descending into ones which have
6660 interesting children but skipping the children of the other ones,
6661 until we reach the end of the compilation unit. */
c906108c 6662
72bf9492 6663 pdi = first_die;
91c24f0a 6664
72bf9492
DJ
6665 while (pdi != NULL)
6666 {
6667 fixup_partial_die (pdi, cu);
c906108c 6668
f55ee35c 6669 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6670 children, so we need to look at them. Ditto for anonymous
6671 enums. */
933c6fe4 6672
72bf9492 6673 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6674 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6675 || pdi->tag == DW_TAG_imported_unit)
c906108c 6676 {
72bf9492 6677 switch (pdi->tag)
c906108c
SS
6678 {
6679 case DW_TAG_subprogram:
cdc07690 6680 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6681 break;
72929c62 6682 case DW_TAG_constant:
c906108c
SS
6683 case DW_TAG_variable:
6684 case DW_TAG_typedef:
91c24f0a 6685 case DW_TAG_union_type:
72bf9492 6686 if (!pdi->is_declaration)
63d06c5c 6687 {
72bf9492 6688 add_partial_symbol (pdi, cu);
63d06c5c
DC
6689 }
6690 break;
c906108c 6691 case DW_TAG_class_type:
680b30c7 6692 case DW_TAG_interface_type:
c906108c 6693 case DW_TAG_structure_type:
72bf9492 6694 if (!pdi->is_declaration)
c906108c 6695 {
72bf9492 6696 add_partial_symbol (pdi, cu);
c906108c 6697 }
e98c9e7c
TT
6698 if (cu->language == language_rust && pdi->has_children)
6699 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6700 set_addrmap, cu);
c906108c 6701 break;
91c24f0a 6702 case DW_TAG_enumeration_type:
72bf9492
DJ
6703 if (!pdi->is_declaration)
6704 add_partial_enumeration (pdi, cu);
c906108c
SS
6705 break;
6706 case DW_TAG_base_type:
a02abb62 6707 case DW_TAG_subrange_type:
c906108c 6708 /* File scope base type definitions are added to the partial
c5aa993b 6709 symbol table. */
72bf9492 6710 add_partial_symbol (pdi, cu);
c906108c 6711 break;
d9fa45fe 6712 case DW_TAG_namespace:
cdc07690 6713 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6714 break;
5d7cb8df 6715 case DW_TAG_module:
cdc07690 6716 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6717 break;
95554aad
TT
6718 case DW_TAG_imported_unit:
6719 {
6720 struct dwarf2_per_cu_data *per_cu;
6721
f4dc4d17
DE
6722 /* For now we don't handle imported units in type units. */
6723 if (cu->per_cu->is_debug_types)
6724 {
6725 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6726 " supported in type units [in module %s]"),
4262abfb 6727 objfile_name (cu->objfile));
f4dc4d17
DE
6728 }
6729
95554aad 6730 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6731 pdi->is_dwz,
95554aad
TT
6732 cu->objfile);
6733
6734 /* Go read the partial unit, if needed. */
6735 if (per_cu->v.psymtab == NULL)
b93601f3 6736 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6737
f4dc4d17 6738 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6739 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6740 }
6741 break;
74921315
KS
6742 case DW_TAG_imported_declaration:
6743 add_partial_symbol (pdi, cu);
6744 break;
c906108c
SS
6745 default:
6746 break;
6747 }
6748 }
6749
72bf9492
DJ
6750 /* If the die has a sibling, skip to the sibling. */
6751
6752 pdi = pdi->die_sibling;
6753 }
6754}
6755
6756/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6757
72bf9492 6758 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6759 name is concatenated with "::" and the partial DIE's name. For
6760 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6761 Enumerators are an exception; they use the scope of their parent
6762 enumeration type, i.e. the name of the enumeration type is not
6763 prepended to the enumerator.
91c24f0a 6764
72bf9492
DJ
6765 There are two complexities. One is DW_AT_specification; in this
6766 case "parent" means the parent of the target of the specification,
6767 instead of the direct parent of the DIE. The other is compilers
6768 which do not emit DW_TAG_namespace; in this case we try to guess
6769 the fully qualified name of structure types from their members'
6770 linkage names. This must be done using the DIE's children rather
6771 than the children of any DW_AT_specification target. We only need
6772 to do this for structures at the top level, i.e. if the target of
6773 any DW_AT_specification (if any; otherwise the DIE itself) does not
6774 have a parent. */
6775
6776/* Compute the scope prefix associated with PDI's parent, in
6777 compilation unit CU. The result will be allocated on CU's
6778 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6779 field. NULL is returned if no prefix is necessary. */
15d034d0 6780static const char *
72bf9492
DJ
6781partial_die_parent_scope (struct partial_die_info *pdi,
6782 struct dwarf2_cu *cu)
6783{
15d034d0 6784 const char *grandparent_scope;
72bf9492 6785 struct partial_die_info *parent, *real_pdi;
91c24f0a 6786
72bf9492
DJ
6787 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6788 then this means the parent of the specification DIE. */
6789
6790 real_pdi = pdi;
72bf9492 6791 while (real_pdi->has_specification)
36586728
TT
6792 real_pdi = find_partial_die (real_pdi->spec_offset,
6793 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6794
6795 parent = real_pdi->die_parent;
6796 if (parent == NULL)
6797 return NULL;
6798
6799 if (parent->scope_set)
6800 return parent->scope;
6801
6802 fixup_partial_die (parent, cu);
6803
10b3939b 6804 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6805
acebe513
UW
6806 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6807 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6808 Work around this problem here. */
6809 if (cu->language == language_cplus
6e70227d 6810 && parent->tag == DW_TAG_namespace
acebe513
UW
6811 && strcmp (parent->name, "::") == 0
6812 && grandparent_scope == NULL)
6813 {
6814 parent->scope = NULL;
6815 parent->scope_set = 1;
6816 return NULL;
6817 }
6818
9c6c53f7
SA
6819 if (pdi->tag == DW_TAG_enumerator)
6820 /* Enumerators should not get the name of the enumeration as a prefix. */
6821 parent->scope = grandparent_scope;
6822 else if (parent->tag == DW_TAG_namespace
f55ee35c 6823 || parent->tag == DW_TAG_module
72bf9492
DJ
6824 || parent->tag == DW_TAG_structure_type
6825 || parent->tag == DW_TAG_class_type
680b30c7 6826 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6827 || parent->tag == DW_TAG_union_type
6828 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6829 {
6830 if (grandparent_scope == NULL)
6831 parent->scope = parent->name;
6832 else
3e43a32a
MS
6833 parent->scope = typename_concat (&cu->comp_unit_obstack,
6834 grandparent_scope,
f55ee35c 6835 parent->name, 0, cu);
72bf9492 6836 }
72bf9492
DJ
6837 else
6838 {
6839 /* FIXME drow/2004-04-01: What should we be doing with
6840 function-local names? For partial symbols, we should probably be
6841 ignoring them. */
6842 complaint (&symfile_complaints,
e2e0b3e5 6843 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6844 parent->tag, pdi->offset.sect_off);
72bf9492 6845 parent->scope = grandparent_scope;
c906108c
SS
6846 }
6847
72bf9492
DJ
6848 parent->scope_set = 1;
6849 return parent->scope;
6850}
6851
6852/* Return the fully scoped name associated with PDI, from compilation unit
6853 CU. The result will be allocated with malloc. */
4568ecf9 6854
72bf9492
DJ
6855static char *
6856partial_die_full_name (struct partial_die_info *pdi,
6857 struct dwarf2_cu *cu)
6858{
15d034d0 6859 const char *parent_scope;
72bf9492 6860
98bfdba5
PA
6861 /* If this is a template instantiation, we can not work out the
6862 template arguments from partial DIEs. So, unfortunately, we have
6863 to go through the full DIEs. At least any work we do building
6864 types here will be reused if full symbols are loaded later. */
6865 if (pdi->has_template_arguments)
6866 {
6867 fixup_partial_die (pdi, cu);
6868
6869 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6870 {
6871 struct die_info *die;
6872 struct attribute attr;
6873 struct dwarf2_cu *ref_cu = cu;
6874
b64f50a1 6875 /* DW_FORM_ref_addr is using section offset. */
b4069958 6876 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6877 attr.form = DW_FORM_ref_addr;
4568ecf9 6878 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6879 die = follow_die_ref (NULL, &attr, &ref_cu);
6880
6881 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6882 }
6883 }
6884
72bf9492
DJ
6885 parent_scope = partial_die_parent_scope (pdi, cu);
6886 if (parent_scope == NULL)
6887 return NULL;
6888 else
f55ee35c 6889 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6890}
6891
6892static void
72bf9492 6893add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6894{
e7c27a73 6895 struct objfile *objfile = cu->objfile;
3e29f34a 6896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6897 CORE_ADDR addr = 0;
15d034d0 6898 const char *actual_name = NULL;
e142c38c 6899 CORE_ADDR baseaddr;
15d034d0 6900 char *built_actual_name;
e142c38c
DJ
6901
6902 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6903
15d034d0
TT
6904 built_actual_name = partial_die_full_name (pdi, cu);
6905 if (built_actual_name != NULL)
6906 actual_name = built_actual_name;
63d06c5c 6907
72bf9492
DJ
6908 if (actual_name == NULL)
6909 actual_name = pdi->name;
6910
c906108c
SS
6911 switch (pdi->tag)
6912 {
6913 case DW_TAG_subprogram:
3e29f34a 6914 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6915 if (pdi->is_external || cu->language == language_ada)
c906108c 6916 {
2cfa0c8d
JB
6917 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6918 of the global scope. But in Ada, we want to be able to access
6919 nested procedures globally. So all Ada subprograms are stored
6920 in the global scope. */
f47fb265 6921 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6922 built_actual_name != NULL,
f47fb265
MS
6923 VAR_DOMAIN, LOC_BLOCK,
6924 &objfile->global_psymbols,
1762568f 6925 addr, cu->language, objfile);
c906108c
SS
6926 }
6927 else
6928 {
f47fb265 6929 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6930 built_actual_name != NULL,
f47fb265
MS
6931 VAR_DOMAIN, LOC_BLOCK,
6932 &objfile->static_psymbols,
1762568f 6933 addr, cu->language, objfile);
c906108c
SS
6934 }
6935 break;
72929c62
JB
6936 case DW_TAG_constant:
6937 {
6938 struct psymbol_allocation_list *list;
6939
6940 if (pdi->is_external)
6941 list = &objfile->global_psymbols;
6942 else
6943 list = &objfile->static_psymbols;
f47fb265 6944 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6945 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6946 list, 0, cu->language, objfile);
72929c62
JB
6947 }
6948 break;
c906108c 6949 case DW_TAG_variable:
95554aad
TT
6950 if (pdi->d.locdesc)
6951 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6952
95554aad 6953 if (pdi->d.locdesc
caac4577
JG
6954 && addr == 0
6955 && !dwarf2_per_objfile->has_section_at_zero)
6956 {
6957 /* A global or static variable may also have been stripped
6958 out by the linker if unused, in which case its address
6959 will be nullified; do not add such variables into partial
6960 symbol table then. */
6961 }
6962 else if (pdi->is_external)
c906108c
SS
6963 {
6964 /* Global Variable.
6965 Don't enter into the minimal symbol tables as there is
6966 a minimal symbol table entry from the ELF symbols already.
6967 Enter into partial symbol table if it has a location
6968 descriptor or a type.
6969 If the location descriptor is missing, new_symbol will create
6970 a LOC_UNRESOLVED symbol, the address of the variable will then
6971 be determined from the minimal symbol table whenever the variable
6972 is referenced.
6973 The address for the partial symbol table entry is not
6974 used by GDB, but it comes in handy for debugging partial symbol
6975 table building. */
6976
95554aad 6977 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6978 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6979 built_actual_name != NULL,
f47fb265
MS
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->global_psymbols,
1762568f 6982 addr + baseaddr,
f47fb265 6983 cu->language, objfile);
c906108c
SS
6984 }
6985 else
6986 {
ff908ebf
AW
6987 int has_loc = pdi->d.locdesc != NULL;
6988
6989 /* Static Variable. Skip symbols whose value we cannot know (those
6990 without location descriptors or constant values). */
6991 if (!has_loc && !pdi->has_const_value)
decbce07 6992 {
15d034d0 6993 xfree (built_actual_name);
decbce07
MS
6994 return;
6995 }
ff908ebf 6996
f47fb265 6997 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6998 built_actual_name != NULL,
f47fb265
MS
6999 VAR_DOMAIN, LOC_STATIC,
7000 &objfile->static_psymbols,
ff908ebf 7001 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7002 cu->language, objfile);
c906108c
SS
7003 }
7004 break;
7005 case DW_TAG_typedef:
7006 case DW_TAG_base_type:
a02abb62 7007 case DW_TAG_subrange_type:
38d518c9 7008 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7009 built_actual_name != NULL,
176620f1 7010 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7011 &objfile->static_psymbols,
1762568f 7012 0, cu->language, objfile);
c906108c 7013 break;
74921315 7014 case DW_TAG_imported_declaration:
72bf9492
DJ
7015 case DW_TAG_namespace:
7016 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7017 built_actual_name != NULL,
72bf9492
DJ
7018 VAR_DOMAIN, LOC_TYPEDEF,
7019 &objfile->global_psymbols,
1762568f 7020 0, cu->language, objfile);
72bf9492 7021 break;
530e8392
KB
7022 case DW_TAG_module:
7023 add_psymbol_to_list (actual_name, strlen (actual_name),
7024 built_actual_name != NULL,
7025 MODULE_DOMAIN, LOC_TYPEDEF,
7026 &objfile->global_psymbols,
1762568f 7027 0, cu->language, objfile);
530e8392 7028 break;
c906108c 7029 case DW_TAG_class_type:
680b30c7 7030 case DW_TAG_interface_type:
c906108c
SS
7031 case DW_TAG_structure_type:
7032 case DW_TAG_union_type:
7033 case DW_TAG_enumeration_type:
fa4028e9
JB
7034 /* Skip external references. The DWARF standard says in the section
7035 about "Structure, Union, and Class Type Entries": "An incomplete
7036 structure, union or class type is represented by a structure,
7037 union or class entry that does not have a byte size attribute
7038 and that has a DW_AT_declaration attribute." */
7039 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7040 {
15d034d0 7041 xfree (built_actual_name);
decbce07
MS
7042 return;
7043 }
fa4028e9 7044
63d06c5c
DC
7045 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7046 static vs. global. */
38d518c9 7047 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7048 built_actual_name != NULL,
176620f1 7049 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7050 (cu->language == language_cplus
7051 || cu->language == language_java)
63d06c5c
DC
7052 ? &objfile->global_psymbols
7053 : &objfile->static_psymbols,
1762568f 7054 0, cu->language, objfile);
c906108c 7055
c906108c
SS
7056 break;
7057 case DW_TAG_enumerator:
38d518c9 7058 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7059 built_actual_name != NULL,
176620f1 7060 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7061 (cu->language == language_cplus
7062 || cu->language == language_java)
f6fe98ef
DJ
7063 ? &objfile->global_psymbols
7064 : &objfile->static_psymbols,
1762568f 7065 0, cu->language, objfile);
c906108c
SS
7066 break;
7067 default:
7068 break;
7069 }
5c4e30ca 7070
15d034d0 7071 xfree (built_actual_name);
c906108c
SS
7072}
7073
5c4e30ca
DC
7074/* Read a partial die corresponding to a namespace; also, add a symbol
7075 corresponding to that namespace to the symbol table. NAMESPACE is
7076 the name of the enclosing namespace. */
91c24f0a 7077
72bf9492
DJ
7078static void
7079add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7081 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7082{
72bf9492 7083 /* Add a symbol for the namespace. */
e7c27a73 7084
72bf9492 7085 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7086
7087 /* Now scan partial symbols in that namespace. */
7088
91c24f0a 7089 if (pdi->has_children)
cdc07690 7090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7091}
7092
5d7cb8df
JK
7093/* Read a partial die corresponding to a Fortran module. */
7094
7095static void
7096add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7097 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7098{
530e8392
KB
7099 /* Add a symbol for the namespace. */
7100
7101 add_partial_symbol (pdi, cu);
7102
f55ee35c 7103 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7104
7105 if (pdi->has_children)
cdc07690 7106 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7107}
7108
bc30ff58
JB
7109/* Read a partial die corresponding to a subprogram and create a partial
7110 symbol for that subprogram. When the CU language allows it, this
7111 routine also defines a partial symbol for each nested subprogram
cdc07690 7112 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7113 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7114 and highest PC values found in PDI.
6e70227d 7115
cdc07690
YQ
7116 PDI may also be a lexical block, in which case we simply search
7117 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7118 Again, this is only performed when the CU language allows this
7119 type of definitions. */
7120
7121static void
7122add_partial_subprogram (struct partial_die_info *pdi,
7123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7124 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7125{
7126 if (pdi->tag == DW_TAG_subprogram)
7127 {
7128 if (pdi->has_pc_info)
7129 {
7130 if (pdi->lowpc < *lowpc)
7131 *lowpc = pdi->lowpc;
7132 if (pdi->highpc > *highpc)
7133 *highpc = pdi->highpc;
cdc07690 7134 if (set_addrmap)
5734ee8b 7135 {
5734ee8b 7136 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7138 CORE_ADDR baseaddr;
7139 CORE_ADDR highpc;
7140 CORE_ADDR lowpc;
5734ee8b
DJ
7141
7142 baseaddr = ANOFFSET (objfile->section_offsets,
7143 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7144 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7145 pdi->lowpc + baseaddr);
7146 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7147 pdi->highpc + baseaddr);
7148 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7149 cu->per_cu->v.psymtab);
5734ee8b 7150 }
481860b3
GB
7151 }
7152
7153 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7154 {
bc30ff58 7155 if (!pdi->is_declaration)
e8d05480
JB
7156 /* Ignore subprogram DIEs that do not have a name, they are
7157 illegal. Do not emit a complaint at this point, we will
7158 do so when we convert this psymtab into a symtab. */
7159 if (pdi->name)
7160 add_partial_symbol (pdi, cu);
bc30ff58
JB
7161 }
7162 }
6e70227d 7163
bc30ff58
JB
7164 if (! pdi->has_children)
7165 return;
7166
7167 if (cu->language == language_ada)
7168 {
7169 pdi = pdi->die_child;
7170 while (pdi != NULL)
7171 {
7172 fixup_partial_die (pdi, cu);
7173 if (pdi->tag == DW_TAG_subprogram
7174 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7175 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7176 pdi = pdi->die_sibling;
7177 }
7178 }
7179}
7180
91c24f0a
DC
7181/* Read a partial die corresponding to an enumeration type. */
7182
72bf9492
DJ
7183static void
7184add_partial_enumeration (struct partial_die_info *enum_pdi,
7185 struct dwarf2_cu *cu)
91c24f0a 7186{
72bf9492 7187 struct partial_die_info *pdi;
91c24f0a
DC
7188
7189 if (enum_pdi->name != NULL)
72bf9492
DJ
7190 add_partial_symbol (enum_pdi, cu);
7191
7192 pdi = enum_pdi->die_child;
7193 while (pdi)
91c24f0a 7194 {
72bf9492 7195 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7196 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7197 else
72bf9492
DJ
7198 add_partial_symbol (pdi, cu);
7199 pdi = pdi->die_sibling;
91c24f0a 7200 }
91c24f0a
DC
7201}
7202
6caca83c
CC
7203/* Return the initial uleb128 in the die at INFO_PTR. */
7204
7205static unsigned int
d521ce57 7206peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7207{
7208 unsigned int bytes_read;
7209
7210 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7211}
7212
4bb7a0a7
DJ
7213/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7214 Return the corresponding abbrev, or NULL if the number is zero (indicating
7215 an empty DIE). In either case *BYTES_READ will be set to the length of
7216 the initial number. */
7217
7218static struct abbrev_info *
d521ce57 7219peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7220 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7221{
7222 bfd *abfd = cu->objfile->obfd;
7223 unsigned int abbrev_number;
7224 struct abbrev_info *abbrev;
7225
7226 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7227
7228 if (abbrev_number == 0)
7229 return NULL;
7230
433df2d4 7231 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7232 if (!abbrev)
7233 {
422b9917
DE
7234 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7235 " at offset 0x%x [in module %s]"),
7236 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7237 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7238 }
7239
7240 return abbrev;
7241}
7242
93311388
DE
7243/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7244 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7245 DIE. Any children of the skipped DIEs will also be skipped. */
7246
d521ce57
TT
7247static const gdb_byte *
7248skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7249{
dee91e82 7250 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7251 struct abbrev_info *abbrev;
7252 unsigned int bytes_read;
7253
7254 while (1)
7255 {
7256 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7257 if (abbrev == NULL)
7258 return info_ptr + bytes_read;
7259 else
dee91e82 7260 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7261 }
7262}
7263
93311388
DE
7264/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7265 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7266 abbrev corresponding to that skipped uleb128 should be passed in
7267 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7268 children. */
7269
d521ce57
TT
7270static const gdb_byte *
7271skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7272 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7273{
7274 unsigned int bytes_read;
7275 struct attribute attr;
dee91e82
DE
7276 bfd *abfd = reader->abfd;
7277 struct dwarf2_cu *cu = reader->cu;
d521ce57 7278 const gdb_byte *buffer = reader->buffer;
f664829e 7279 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7280 unsigned int form, i;
7281
7282 for (i = 0; i < abbrev->num_attrs; i++)
7283 {
7284 /* The only abbrev we care about is DW_AT_sibling. */
7285 if (abbrev->attrs[i].name == DW_AT_sibling)
7286 {
dee91e82 7287 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7288 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7289 complaint (&symfile_complaints,
7290 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7291 else
b9502d3f
WN
7292 {
7293 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7294 const gdb_byte *sibling_ptr = buffer + off;
7295
7296 if (sibling_ptr < info_ptr)
7297 complaint (&symfile_complaints,
7298 _("DW_AT_sibling points backwards"));
22869d73
KS
7299 else if (sibling_ptr > reader->buffer_end)
7300 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7301 else
7302 return sibling_ptr;
7303 }
4bb7a0a7
DJ
7304 }
7305
7306 /* If it isn't DW_AT_sibling, skip this attribute. */
7307 form = abbrev->attrs[i].form;
7308 skip_attribute:
7309 switch (form)
7310 {
4bb7a0a7 7311 case DW_FORM_ref_addr:
ae411497
TT
7312 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7313 and later it is offset sized. */
7314 if (cu->header.version == 2)
7315 info_ptr += cu->header.addr_size;
7316 else
7317 info_ptr += cu->header.offset_size;
7318 break;
36586728
TT
7319 case DW_FORM_GNU_ref_alt:
7320 info_ptr += cu->header.offset_size;
7321 break;
ae411497 7322 case DW_FORM_addr:
4bb7a0a7
DJ
7323 info_ptr += cu->header.addr_size;
7324 break;
7325 case DW_FORM_data1:
7326 case DW_FORM_ref1:
7327 case DW_FORM_flag:
7328 info_ptr += 1;
7329 break;
2dc7f7b3
TT
7330 case DW_FORM_flag_present:
7331 break;
4bb7a0a7
DJ
7332 case DW_FORM_data2:
7333 case DW_FORM_ref2:
7334 info_ptr += 2;
7335 break;
7336 case DW_FORM_data4:
7337 case DW_FORM_ref4:
7338 info_ptr += 4;
7339 break;
7340 case DW_FORM_data8:
7341 case DW_FORM_ref8:
55f1336d 7342 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7343 info_ptr += 8;
7344 break;
7345 case DW_FORM_string:
9b1c24c8 7346 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7347 info_ptr += bytes_read;
7348 break;
2dc7f7b3 7349 case DW_FORM_sec_offset:
4bb7a0a7 7350 case DW_FORM_strp:
36586728 7351 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7352 info_ptr += cu->header.offset_size;
7353 break;
2dc7f7b3 7354 case DW_FORM_exprloc:
4bb7a0a7
DJ
7355 case DW_FORM_block:
7356 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7357 info_ptr += bytes_read;
7358 break;
7359 case DW_FORM_block1:
7360 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7361 break;
7362 case DW_FORM_block2:
7363 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7364 break;
7365 case DW_FORM_block4:
7366 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7367 break;
7368 case DW_FORM_sdata:
7369 case DW_FORM_udata:
7370 case DW_FORM_ref_udata:
3019eac3
DE
7371 case DW_FORM_GNU_addr_index:
7372 case DW_FORM_GNU_str_index:
d521ce57 7373 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7374 break;
7375 case DW_FORM_indirect:
7376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7377 info_ptr += bytes_read;
7378 /* We need to continue parsing from here, so just go back to
7379 the top. */
7380 goto skip_attribute;
7381
7382 default:
3e43a32a
MS
7383 error (_("Dwarf Error: Cannot handle %s "
7384 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7385 dwarf_form_name (form),
7386 bfd_get_filename (abfd));
7387 }
7388 }
7389
7390 if (abbrev->has_children)
dee91e82 7391 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7392 else
7393 return info_ptr;
7394}
7395
93311388 7396/* Locate ORIG_PDI's sibling.
dee91e82 7397 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7398
d521ce57 7399static const gdb_byte *
dee91e82
DE
7400locate_pdi_sibling (const struct die_reader_specs *reader,
7401 struct partial_die_info *orig_pdi,
d521ce57 7402 const gdb_byte *info_ptr)
91c24f0a
DC
7403{
7404 /* Do we know the sibling already? */
72bf9492 7405
91c24f0a
DC
7406 if (orig_pdi->sibling)
7407 return orig_pdi->sibling;
7408
7409 /* Are there any children to deal with? */
7410
7411 if (!orig_pdi->has_children)
7412 return info_ptr;
7413
4bb7a0a7 7414 /* Skip the children the long way. */
91c24f0a 7415
dee91e82 7416 return skip_children (reader, info_ptr);
91c24f0a
DC
7417}
7418
257e7a09 7419/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7420 not NULL. */
c906108c
SS
7421
7422static void
257e7a09
YQ
7423dwarf2_read_symtab (struct partial_symtab *self,
7424 struct objfile *objfile)
c906108c 7425{
257e7a09 7426 if (self->readin)
c906108c 7427 {
442e4d9c 7428 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7429 self->filename);
442e4d9c
YQ
7430 }
7431 else
7432 {
7433 if (info_verbose)
c906108c 7434 {
442e4d9c 7435 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7436 self->filename);
442e4d9c 7437 gdb_flush (gdb_stdout);
c906108c 7438 }
c906108c 7439
442e4d9c 7440 /* Restore our global data. */
9a3c8263
SM
7441 dwarf2_per_objfile
7442 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7443 dwarf2_objfile_data_key);
10b3939b 7444
442e4d9c
YQ
7445 /* If this psymtab is constructed from a debug-only objfile, the
7446 has_section_at_zero flag will not necessarily be correct. We
7447 can get the correct value for this flag by looking at the data
7448 associated with the (presumably stripped) associated objfile. */
7449 if (objfile->separate_debug_objfile_backlink)
7450 {
7451 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7452 = ((struct dwarf2_per_objfile *)
7453 objfile_data (objfile->separate_debug_objfile_backlink,
7454 dwarf2_objfile_data_key));
9a619af0 7455
442e4d9c
YQ
7456 dwarf2_per_objfile->has_section_at_zero
7457 = dpo_backlink->has_section_at_zero;
7458 }
b2ab525c 7459
442e4d9c 7460 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7461
257e7a09 7462 psymtab_to_symtab_1 (self);
c906108c 7463
442e4d9c
YQ
7464 /* Finish up the debug error message. */
7465 if (info_verbose)
7466 printf_filtered (_("done.\n"));
c906108c 7467 }
95554aad
TT
7468
7469 process_cu_includes ();
c906108c 7470}
9cdd5dbd
DE
7471\f
7472/* Reading in full CUs. */
c906108c 7473
10b3939b
DJ
7474/* Add PER_CU to the queue. */
7475
7476static void
95554aad
TT
7477queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7478 enum language pretend_language)
10b3939b
DJ
7479{
7480 struct dwarf2_queue_item *item;
7481
7482 per_cu->queued = 1;
8d749320 7483 item = XNEW (struct dwarf2_queue_item);
10b3939b 7484 item->per_cu = per_cu;
95554aad 7485 item->pretend_language = pretend_language;
10b3939b
DJ
7486 item->next = NULL;
7487
7488 if (dwarf2_queue == NULL)
7489 dwarf2_queue = item;
7490 else
7491 dwarf2_queue_tail->next = item;
7492
7493 dwarf2_queue_tail = item;
7494}
7495
89e63ee4
DE
7496/* If PER_CU is not yet queued, add it to the queue.
7497 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7498 dependency.
0907af0c 7499 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7500 meaning either PER_CU is already queued or it is already loaded.
7501
7502 N.B. There is an invariant here that if a CU is queued then it is loaded.
7503 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7504
7505static int
89e63ee4 7506maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7507 struct dwarf2_per_cu_data *per_cu,
7508 enum language pretend_language)
7509{
7510 /* We may arrive here during partial symbol reading, if we need full
7511 DIEs to process an unusual case (e.g. template arguments). Do
7512 not queue PER_CU, just tell our caller to load its DIEs. */
7513 if (dwarf2_per_objfile->reading_partial_symbols)
7514 {
7515 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7516 return 1;
7517 return 0;
7518 }
7519
7520 /* Mark the dependence relation so that we don't flush PER_CU
7521 too early. */
89e63ee4
DE
7522 if (dependent_cu != NULL)
7523 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7524
7525 /* If it's already on the queue, we have nothing to do. */
7526 if (per_cu->queued)
7527 return 0;
7528
7529 /* If the compilation unit is already loaded, just mark it as
7530 used. */
7531 if (per_cu->cu != NULL)
7532 {
7533 per_cu->cu->last_used = 0;
7534 return 0;
7535 }
7536
7537 /* Add it to the queue. */
7538 queue_comp_unit (per_cu, pretend_language);
7539
7540 return 1;
7541}
7542
10b3939b
DJ
7543/* Process the queue. */
7544
7545static void
a0f42c21 7546process_queue (void)
10b3939b
DJ
7547{
7548 struct dwarf2_queue_item *item, *next_item;
7549
b4f54984 7550 if (dwarf_read_debug)
45cfd468
DE
7551 {
7552 fprintf_unfiltered (gdb_stdlog,
7553 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7554 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7555 }
7556
03dd20cc
DJ
7557 /* The queue starts out with one item, but following a DIE reference
7558 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7559 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7560 {
cc12ce38
DE
7561 if ((dwarf2_per_objfile->using_index
7562 ? !item->per_cu->v.quick->compunit_symtab
7563 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7564 /* Skip dummy CUs. */
7565 && item->per_cu->cu != NULL)
f4dc4d17
DE
7566 {
7567 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7568 unsigned int debug_print_threshold;
247f5c4f 7569 char buf[100];
f4dc4d17 7570
247f5c4f 7571 if (per_cu->is_debug_types)
f4dc4d17 7572 {
247f5c4f
DE
7573 struct signatured_type *sig_type =
7574 (struct signatured_type *) per_cu;
7575
7576 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7577 hex_string (sig_type->signature),
7578 per_cu->offset.sect_off);
7579 /* There can be 100s of TUs.
7580 Only print them in verbose mode. */
7581 debug_print_threshold = 2;
f4dc4d17 7582 }
247f5c4f 7583 else
73be47f5
DE
7584 {
7585 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7586 debug_print_threshold = 1;
7587 }
247f5c4f 7588
b4f54984 7589 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7591
7592 if (per_cu->is_debug_types)
7593 process_full_type_unit (per_cu, item->pretend_language);
7594 else
7595 process_full_comp_unit (per_cu, item->pretend_language);
7596
b4f54984 7597 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7599 }
10b3939b
DJ
7600
7601 item->per_cu->queued = 0;
7602 next_item = item->next;
7603 xfree (item);
7604 }
7605
7606 dwarf2_queue_tail = NULL;
45cfd468 7607
b4f54984 7608 if (dwarf_read_debug)
45cfd468
DE
7609 {
7610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7611 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7612 }
10b3939b
DJ
7613}
7614
7615/* Free all allocated queue entries. This function only releases anything if
7616 an error was thrown; if the queue was processed then it would have been
7617 freed as we went along. */
7618
7619static void
7620dwarf2_release_queue (void *dummy)
7621{
7622 struct dwarf2_queue_item *item, *last;
7623
7624 item = dwarf2_queue;
7625 while (item)
7626 {
7627 /* Anything still marked queued is likely to be in an
7628 inconsistent state, so discard it. */
7629 if (item->per_cu->queued)
7630 {
7631 if (item->per_cu->cu != NULL)
dee91e82 7632 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7633 item->per_cu->queued = 0;
7634 }
7635
7636 last = item;
7637 item = item->next;
7638 xfree (last);
7639 }
7640
7641 dwarf2_queue = dwarf2_queue_tail = NULL;
7642}
7643
7644/* Read in full symbols for PST, and anything it depends on. */
7645
c906108c 7646static void
fba45db2 7647psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7648{
10b3939b 7649 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7650 int i;
7651
95554aad
TT
7652 if (pst->readin)
7653 return;
7654
aaa75496 7655 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7656 if (!pst->dependencies[i]->readin
7657 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7658 {
7659 /* Inform about additional files that need to be read in. */
7660 if (info_verbose)
7661 {
a3f17187 7662 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7663 fputs_filtered (" ", gdb_stdout);
7664 wrap_here ("");
7665 fputs_filtered ("and ", gdb_stdout);
7666 wrap_here ("");
7667 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7668 wrap_here (""); /* Flush output. */
aaa75496
JB
7669 gdb_flush (gdb_stdout);
7670 }
7671 psymtab_to_symtab_1 (pst->dependencies[i]);
7672 }
7673
9a3c8263 7674 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7675
7676 if (per_cu == NULL)
aaa75496
JB
7677 {
7678 /* It's an include file, no symbols to read for it.
7679 Everything is in the parent symtab. */
7680 pst->readin = 1;
7681 return;
7682 }
c906108c 7683
a0f42c21 7684 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7685}
7686
dee91e82
DE
7687/* Trivial hash function for die_info: the hash value of a DIE
7688 is its offset in .debug_info for this objfile. */
10b3939b 7689
dee91e82
DE
7690static hashval_t
7691die_hash (const void *item)
10b3939b 7692{
9a3c8263 7693 const struct die_info *die = (const struct die_info *) item;
6502dd73 7694
dee91e82
DE
7695 return die->offset.sect_off;
7696}
63d06c5c 7697
dee91e82
DE
7698/* Trivial comparison function for die_info structures: two DIEs
7699 are equal if they have the same offset. */
98bfdba5 7700
dee91e82
DE
7701static int
7702die_eq (const void *item_lhs, const void *item_rhs)
7703{
9a3c8263
SM
7704 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7705 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7706
dee91e82
DE
7707 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7708}
c906108c 7709
dee91e82
DE
7710/* die_reader_func for load_full_comp_unit.
7711 This is identical to read_signatured_type_reader,
7712 but is kept separate for now. */
c906108c 7713
dee91e82
DE
7714static void
7715load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7716 const gdb_byte *info_ptr,
dee91e82
DE
7717 struct die_info *comp_unit_die,
7718 int has_children,
7719 void *data)
7720{
7721 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7722 enum language *language_ptr = (enum language *) data;
6caca83c 7723
dee91e82
DE
7724 gdb_assert (cu->die_hash == NULL);
7725 cu->die_hash =
7726 htab_create_alloc_ex (cu->header.length / 12,
7727 die_hash,
7728 die_eq,
7729 NULL,
7730 &cu->comp_unit_obstack,
7731 hashtab_obstack_allocate,
7732 dummy_obstack_deallocate);
e142c38c 7733
dee91e82
DE
7734 if (has_children)
7735 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7736 &info_ptr, comp_unit_die);
7737 cu->dies = comp_unit_die;
7738 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7739
7740 /* We try not to read any attributes in this function, because not
9cdd5dbd 7741 all CUs needed for references have been loaded yet, and symbol
10b3939b 7742 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7743 or we won't be able to build types correctly.
7744 Similarly, if we do not read the producer, we can not apply
7745 producer-specific interpretation. */
95554aad 7746 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7747}
10b3939b 7748
dee91e82 7749/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7750
dee91e82 7751static void
95554aad
TT
7752load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7753 enum language pretend_language)
dee91e82 7754{
3019eac3 7755 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7756
f4dc4d17
DE
7757 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7758 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7759}
7760
3da10d80
KS
7761/* Add a DIE to the delayed physname list. */
7762
7763static void
7764add_to_method_list (struct type *type, int fnfield_index, int index,
7765 const char *name, struct die_info *die,
7766 struct dwarf2_cu *cu)
7767{
7768 struct delayed_method_info mi;
7769 mi.type = type;
7770 mi.fnfield_index = fnfield_index;
7771 mi.index = index;
7772 mi.name = name;
7773 mi.die = die;
7774 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7775}
7776
7777/* A cleanup for freeing the delayed method list. */
7778
7779static void
7780free_delayed_list (void *ptr)
7781{
7782 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7783 if (cu->method_list != NULL)
7784 {
7785 VEC_free (delayed_method_info, cu->method_list);
7786 cu->method_list = NULL;
7787 }
7788}
7789
7790/* Compute the physnames of any methods on the CU's method list.
7791
7792 The computation of method physnames is delayed in order to avoid the
7793 (bad) condition that one of the method's formal parameters is of an as yet
7794 incomplete type. */
7795
7796static void
7797compute_delayed_physnames (struct dwarf2_cu *cu)
7798{
7799 int i;
7800 struct delayed_method_info *mi;
7801 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7802 {
1d06ead6 7803 const char *physname;
3da10d80
KS
7804 struct fn_fieldlist *fn_flp
7805 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7806 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7807 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7808 = physname ? physname : "";
3da10d80
KS
7809 }
7810}
7811
a766d390
DE
7812/* Go objects should be embedded in a DW_TAG_module DIE,
7813 and it's not clear if/how imported objects will appear.
7814 To keep Go support simple until that's worked out,
7815 go back through what we've read and create something usable.
7816 We could do this while processing each DIE, and feels kinda cleaner,
7817 but that way is more invasive.
7818 This is to, for example, allow the user to type "p var" or "b main"
7819 without having to specify the package name, and allow lookups
7820 of module.object to work in contexts that use the expression
7821 parser. */
7822
7823static void
7824fixup_go_packaging (struct dwarf2_cu *cu)
7825{
7826 char *package_name = NULL;
7827 struct pending *list;
7828 int i;
7829
7830 for (list = global_symbols; list != NULL; list = list->next)
7831 {
7832 for (i = 0; i < list->nsyms; ++i)
7833 {
7834 struct symbol *sym = list->symbol[i];
7835
7836 if (SYMBOL_LANGUAGE (sym) == language_go
7837 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7838 {
7839 char *this_package_name = go_symbol_package_name (sym);
7840
7841 if (this_package_name == NULL)
7842 continue;
7843 if (package_name == NULL)
7844 package_name = this_package_name;
7845 else
7846 {
7847 if (strcmp (package_name, this_package_name) != 0)
7848 complaint (&symfile_complaints,
7849 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7850 (symbol_symtab (sym) != NULL
7851 ? symtab_to_filename_for_display
7852 (symbol_symtab (sym))
4262abfb 7853 : objfile_name (cu->objfile)),
a766d390
DE
7854 this_package_name, package_name);
7855 xfree (this_package_name);
7856 }
7857 }
7858 }
7859 }
7860
7861 if (package_name != NULL)
7862 {
7863 struct objfile *objfile = cu->objfile;
34a68019 7864 const char *saved_package_name
224c3ddb
SM
7865 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7866 package_name,
7867 strlen (package_name));
19f392bc
UW
7868 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7869 saved_package_name);
a766d390
DE
7870 struct symbol *sym;
7871
7872 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7873
e623cf5d 7874 sym = allocate_symbol (objfile);
f85f34ed 7875 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7876 SYMBOL_SET_NAMES (sym, saved_package_name,
7877 strlen (saved_package_name), 0, objfile);
a766d390
DE
7878 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7879 e.g., "main" finds the "main" module and not C's main(). */
7880 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7881 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7882 SYMBOL_TYPE (sym) = type;
7883
7884 add_symbol_to_list (sym, &global_symbols);
7885
7886 xfree (package_name);
7887 }
7888}
7889
95554aad
TT
7890/* Return the symtab for PER_CU. This works properly regardless of
7891 whether we're using the index or psymtabs. */
7892
43f3e411
DE
7893static struct compunit_symtab *
7894get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7895{
7896 return (dwarf2_per_objfile->using_index
43f3e411
DE
7897 ? per_cu->v.quick->compunit_symtab
7898 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7899}
7900
7901/* A helper function for computing the list of all symbol tables
7902 included by PER_CU. */
7903
7904static void
43f3e411 7905recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7906 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7907 struct dwarf2_per_cu_data *per_cu,
43f3e411 7908 struct compunit_symtab *immediate_parent)
95554aad
TT
7909{
7910 void **slot;
7911 int ix;
43f3e411 7912 struct compunit_symtab *cust;
95554aad
TT
7913 struct dwarf2_per_cu_data *iter;
7914
7915 slot = htab_find_slot (all_children, per_cu, INSERT);
7916 if (*slot != NULL)
7917 {
7918 /* This inclusion and its children have been processed. */
7919 return;
7920 }
7921
7922 *slot = per_cu;
7923 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7924 cust = get_compunit_symtab (per_cu);
7925 if (cust != NULL)
ec94af83
DE
7926 {
7927 /* If this is a type unit only add its symbol table if we haven't
7928 seen it yet (type unit per_cu's can share symtabs). */
7929 if (per_cu->is_debug_types)
7930 {
43f3e411 7931 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7932 if (*slot == NULL)
7933 {
43f3e411
DE
7934 *slot = cust;
7935 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7936 if (cust->user == NULL)
7937 cust->user = immediate_parent;
ec94af83
DE
7938 }
7939 }
7940 else
f9125b6c 7941 {
43f3e411
DE
7942 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7943 if (cust->user == NULL)
7944 cust->user = immediate_parent;
f9125b6c 7945 }
ec94af83 7946 }
95554aad
TT
7947
7948 for (ix = 0;
796a7ff8 7949 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7950 ++ix)
ec94af83
DE
7951 {
7952 recursively_compute_inclusions (result, all_children,
43f3e411 7953 all_type_symtabs, iter, cust);
ec94af83 7954 }
95554aad
TT
7955}
7956
43f3e411 7957/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7958 PER_CU. */
7959
7960static void
43f3e411 7961compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7962{
f4dc4d17
DE
7963 gdb_assert (! per_cu->is_debug_types);
7964
796a7ff8 7965 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7966 {
7967 int ix, len;
ec94af83 7968 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7969 struct compunit_symtab *compunit_symtab_iter;
7970 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7971 htab_t all_children, all_type_symtabs;
43f3e411 7972 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7973
7974 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7975 if (cust == NULL)
95554aad
TT
7976 return;
7977
7978 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7979 NULL, xcalloc, xfree);
ec94af83
DE
7980 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7981 NULL, xcalloc, xfree);
95554aad
TT
7982
7983 for (ix = 0;
796a7ff8 7984 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7985 ix, per_cu_iter);
95554aad 7986 ++ix)
ec94af83
DE
7987 {
7988 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7989 all_type_symtabs, per_cu_iter,
43f3e411 7990 cust);
ec94af83 7991 }
95554aad 7992
ec94af83 7993 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7994 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7995 cust->includes
8d749320
SM
7996 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7997 struct compunit_symtab *, len + 1);
95554aad 7998 for (ix = 0;
43f3e411
DE
7999 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8000 compunit_symtab_iter);
95554aad 8001 ++ix)
43f3e411
DE
8002 cust->includes[ix] = compunit_symtab_iter;
8003 cust->includes[len] = NULL;
95554aad 8004
43f3e411 8005 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8006 htab_delete (all_children);
ec94af83 8007 htab_delete (all_type_symtabs);
95554aad
TT
8008 }
8009}
8010
8011/* Compute the 'includes' field for the symtabs of all the CUs we just
8012 read. */
8013
8014static void
8015process_cu_includes (void)
8016{
8017 int ix;
8018 struct dwarf2_per_cu_data *iter;
8019
8020 for (ix = 0;
8021 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8022 ix, iter);
8023 ++ix)
f4dc4d17
DE
8024 {
8025 if (! iter->is_debug_types)
43f3e411 8026 compute_compunit_symtab_includes (iter);
f4dc4d17 8027 }
95554aad
TT
8028
8029 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8030}
8031
9cdd5dbd 8032/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8033 already been loaded into memory. */
8034
8035static void
95554aad
TT
8036process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8037 enum language pretend_language)
10b3939b 8038{
10b3939b 8039 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8040 struct objfile *objfile = per_cu->objfile;
3e29f34a 8041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8042 CORE_ADDR lowpc, highpc;
43f3e411 8043 struct compunit_symtab *cust;
3da10d80 8044 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8045 CORE_ADDR baseaddr;
4359dff1 8046 struct block *static_block;
3e29f34a 8047 CORE_ADDR addr;
10b3939b
DJ
8048
8049 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8050
10b3939b
DJ
8051 buildsym_init ();
8052 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8053 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8054
8055 cu->list_in_scope = &file_symbols;
c906108c 8056
95554aad
TT
8057 cu->language = pretend_language;
8058 cu->language_defn = language_def (cu->language);
8059
c906108c 8060 /* Do line number decoding in read_file_scope () */
10b3939b 8061 process_die (cu->dies, cu);
c906108c 8062
a766d390
DE
8063 /* For now fudge the Go package. */
8064 if (cu->language == language_go)
8065 fixup_go_packaging (cu);
8066
3da10d80
KS
8067 /* Now that we have processed all the DIEs in the CU, all the types
8068 should be complete, and it should now be safe to compute all of the
8069 physnames. */
8070 compute_delayed_physnames (cu);
8071 do_cleanups (delayed_list_cleanup);
8072
fae299cd
DC
8073 /* Some compilers don't define a DW_AT_high_pc attribute for the
8074 compilation unit. If the DW_AT_high_pc is missing, synthesize
8075 it, by scanning the DIE's below the compilation unit. */
10b3939b 8076 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8077
3e29f34a
MR
8078 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8079 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8080
8081 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8082 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8083 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8084 addrmap to help ensure it has an accurate map of pc values belonging to
8085 this comp unit. */
8086 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8087
43f3e411
DE
8088 cust = end_symtab_from_static_block (static_block,
8089 SECT_OFF_TEXT (objfile), 0);
c906108c 8090
43f3e411 8091 if (cust != NULL)
c906108c 8092 {
df15bd07 8093 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8094
8be455d7
JK
8095 /* Set symtab language to language from DW_AT_language. If the
8096 compilation is from a C file generated by language preprocessors, do
8097 not set the language if it was already deduced by start_subfile. */
43f3e411 8098 if (!(cu->language == language_c
40e3ad0e 8099 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8100 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8101
8102 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8103 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8104 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8105 there were bugs in prologue debug info, fixed later in GCC-4.5
8106 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8107
8108 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8109 needed, it would be wrong due to missing DW_AT_producer there.
8110
8111 Still one can confuse GDB by using non-standard GCC compilation
8112 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8113 */
ab260dad 8114 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8115 cust->locations_valid = 1;
e0d00bc7
JK
8116
8117 if (gcc_4_minor >= 5)
43f3e411 8118 cust->epilogue_unwind_valid = 1;
96408a79 8119
43f3e411 8120 cust->call_site_htab = cu->call_site_htab;
c906108c 8121 }
9291a0cd
TT
8122
8123 if (dwarf2_per_objfile->using_index)
43f3e411 8124 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8125 else
8126 {
8127 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8128 pst->compunit_symtab = cust;
9291a0cd
TT
8129 pst->readin = 1;
8130 }
c906108c 8131
95554aad
TT
8132 /* Push it for inclusion processing later. */
8133 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8134
c906108c 8135 do_cleanups (back_to);
f4dc4d17 8136}
45cfd468 8137
f4dc4d17
DE
8138/* Generate full symbol information for type unit PER_CU, whose DIEs have
8139 already been loaded into memory. */
8140
8141static void
8142process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8143 enum language pretend_language)
8144{
8145 struct dwarf2_cu *cu = per_cu->cu;
8146 struct objfile *objfile = per_cu->objfile;
43f3e411 8147 struct compunit_symtab *cust;
f4dc4d17 8148 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8149 struct signatured_type *sig_type;
8150
8151 gdb_assert (per_cu->is_debug_types);
8152 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8153
8154 buildsym_init ();
8155 back_to = make_cleanup (really_free_pendings, NULL);
8156 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8157
8158 cu->list_in_scope = &file_symbols;
8159
8160 cu->language = pretend_language;
8161 cu->language_defn = language_def (cu->language);
8162
8163 /* The symbol tables are set up in read_type_unit_scope. */
8164 process_die (cu->dies, cu);
8165
8166 /* For now fudge the Go package. */
8167 if (cu->language == language_go)
8168 fixup_go_packaging (cu);
8169
8170 /* Now that we have processed all the DIEs in the CU, all the types
8171 should be complete, and it should now be safe to compute all of the
8172 physnames. */
8173 compute_delayed_physnames (cu);
8174 do_cleanups (delayed_list_cleanup);
8175
8176 /* TUs share symbol tables.
8177 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8178 of it with end_expandable_symtab. Otherwise, complete the addition of
8179 this TU's symbols to the existing symtab. */
43f3e411 8180 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8181 {
43f3e411
DE
8182 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8183 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8184
43f3e411 8185 if (cust != NULL)
f4dc4d17
DE
8186 {
8187 /* Set symtab language to language from DW_AT_language. If the
8188 compilation is from a C file generated by language preprocessors,
8189 do not set the language if it was already deduced by
8190 start_subfile. */
43f3e411
DE
8191 if (!(cu->language == language_c
8192 && COMPUNIT_FILETABS (cust)->language != language_c))
8193 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8194 }
8195 }
8196 else
8197 {
0ab9ce85 8198 augment_type_symtab ();
43f3e411 8199 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8200 }
8201
8202 if (dwarf2_per_objfile->using_index)
43f3e411 8203 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8204 else
8205 {
8206 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8207 pst->compunit_symtab = cust;
f4dc4d17 8208 pst->readin = 1;
45cfd468 8209 }
f4dc4d17
DE
8210
8211 do_cleanups (back_to);
c906108c
SS
8212}
8213
95554aad
TT
8214/* Process an imported unit DIE. */
8215
8216static void
8217process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8218{
8219 struct attribute *attr;
8220
f4dc4d17
DE
8221 /* For now we don't handle imported units in type units. */
8222 if (cu->per_cu->is_debug_types)
8223 {
8224 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8225 " supported in type units [in module %s]"),
4262abfb 8226 objfile_name (cu->objfile));
f4dc4d17
DE
8227 }
8228
95554aad
TT
8229 attr = dwarf2_attr (die, DW_AT_import, cu);
8230 if (attr != NULL)
8231 {
8232 struct dwarf2_per_cu_data *per_cu;
95554aad 8233 sect_offset offset;
36586728 8234 int is_dwz;
95554aad
TT
8235
8236 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8237 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8238 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8239
69d751e3 8240 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8241 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8242 load_full_comp_unit (per_cu, cu->language);
8243
796a7ff8 8244 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8245 per_cu);
8246 }
8247}
8248
adde2bff
DE
8249/* Reset the in_process bit of a die. */
8250
8251static void
8252reset_die_in_process (void *arg)
8253{
9a3c8263 8254 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8255
adde2bff
DE
8256 die->in_process = 0;
8257}
8258
c906108c
SS
8259/* Process a die and its children. */
8260
8261static void
e7c27a73 8262process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8263{
adde2bff
DE
8264 struct cleanup *in_process;
8265
8266 /* We should only be processing those not already in process. */
8267 gdb_assert (!die->in_process);
8268
8269 die->in_process = 1;
8270 in_process = make_cleanup (reset_die_in_process,die);
8271
c906108c
SS
8272 switch (die->tag)
8273 {
8274 case DW_TAG_padding:
8275 break;
8276 case DW_TAG_compile_unit:
95554aad 8277 case DW_TAG_partial_unit:
e7c27a73 8278 read_file_scope (die, cu);
c906108c 8279 break;
348e048f
DE
8280 case DW_TAG_type_unit:
8281 read_type_unit_scope (die, cu);
8282 break;
c906108c 8283 case DW_TAG_subprogram:
c906108c 8284 case DW_TAG_inlined_subroutine:
edb3359d 8285 read_func_scope (die, cu);
c906108c
SS
8286 break;
8287 case DW_TAG_lexical_block:
14898363
L
8288 case DW_TAG_try_block:
8289 case DW_TAG_catch_block:
e7c27a73 8290 read_lexical_block_scope (die, cu);
c906108c 8291 break;
96408a79
SA
8292 case DW_TAG_GNU_call_site:
8293 read_call_site_scope (die, cu);
8294 break;
c906108c 8295 case DW_TAG_class_type:
680b30c7 8296 case DW_TAG_interface_type:
c906108c
SS
8297 case DW_TAG_structure_type:
8298 case DW_TAG_union_type:
134d01f1 8299 process_structure_scope (die, cu);
c906108c
SS
8300 break;
8301 case DW_TAG_enumeration_type:
134d01f1 8302 process_enumeration_scope (die, cu);
c906108c 8303 break;
134d01f1 8304
f792889a
DJ
8305 /* These dies have a type, but processing them does not create
8306 a symbol or recurse to process the children. Therefore we can
8307 read them on-demand through read_type_die. */
c906108c 8308 case DW_TAG_subroutine_type:
72019c9c 8309 case DW_TAG_set_type:
c906108c 8310 case DW_TAG_array_type:
c906108c 8311 case DW_TAG_pointer_type:
c906108c 8312 case DW_TAG_ptr_to_member_type:
c906108c 8313 case DW_TAG_reference_type:
c906108c 8314 case DW_TAG_string_type:
c906108c 8315 break;
134d01f1 8316
c906108c 8317 case DW_TAG_base_type:
a02abb62 8318 case DW_TAG_subrange_type:
cb249c71 8319 case DW_TAG_typedef:
134d01f1
DJ
8320 /* Add a typedef symbol for the type definition, if it has a
8321 DW_AT_name. */
f792889a 8322 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8323 break;
c906108c 8324 case DW_TAG_common_block:
e7c27a73 8325 read_common_block (die, cu);
c906108c
SS
8326 break;
8327 case DW_TAG_common_inclusion:
8328 break;
d9fa45fe 8329 case DW_TAG_namespace:
4d4ec4e5 8330 cu->processing_has_namespace_info = 1;
e7c27a73 8331 read_namespace (die, cu);
d9fa45fe 8332 break;
5d7cb8df 8333 case DW_TAG_module:
4d4ec4e5 8334 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8335 read_module (die, cu);
8336 break;
d9fa45fe 8337 case DW_TAG_imported_declaration:
74921315
KS
8338 cu->processing_has_namespace_info = 1;
8339 if (read_namespace_alias (die, cu))
8340 break;
8341 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8342 case DW_TAG_imported_module:
4d4ec4e5 8343 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8344 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8345 || cu->language != language_fortran))
8346 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8347 dwarf_tag_name (die->tag));
8348 read_import_statement (die, cu);
d9fa45fe 8349 break;
95554aad
TT
8350
8351 case DW_TAG_imported_unit:
8352 process_imported_unit_die (die, cu);
8353 break;
8354
c906108c 8355 default:
e7c27a73 8356 new_symbol (die, NULL, cu);
c906108c
SS
8357 break;
8358 }
adde2bff
DE
8359
8360 do_cleanups (in_process);
c906108c 8361}
ca69b9e6
DE
8362\f
8363/* DWARF name computation. */
c906108c 8364
94af9270
KS
8365/* A helper function for dwarf2_compute_name which determines whether DIE
8366 needs to have the name of the scope prepended to the name listed in the
8367 die. */
8368
8369static int
8370die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8371{
1c809c68
TT
8372 struct attribute *attr;
8373
94af9270
KS
8374 switch (die->tag)
8375 {
8376 case DW_TAG_namespace:
8377 case DW_TAG_typedef:
8378 case DW_TAG_class_type:
8379 case DW_TAG_interface_type:
8380 case DW_TAG_structure_type:
8381 case DW_TAG_union_type:
8382 case DW_TAG_enumeration_type:
8383 case DW_TAG_enumerator:
8384 case DW_TAG_subprogram:
08a76f8a 8385 case DW_TAG_inlined_subroutine:
94af9270 8386 case DW_TAG_member:
74921315 8387 case DW_TAG_imported_declaration:
94af9270
KS
8388 return 1;
8389
8390 case DW_TAG_variable:
c2b0a229 8391 case DW_TAG_constant:
94af9270
KS
8392 /* We only need to prefix "globally" visible variables. These include
8393 any variable marked with DW_AT_external or any variable that
8394 lives in a namespace. [Variables in anonymous namespaces
8395 require prefixing, but they are not DW_AT_external.] */
8396
8397 if (dwarf2_attr (die, DW_AT_specification, cu))
8398 {
8399 struct dwarf2_cu *spec_cu = cu;
9a619af0 8400
94af9270
KS
8401 return die_needs_namespace (die_specification (die, &spec_cu),
8402 spec_cu);
8403 }
8404
1c809c68 8405 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8406 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8407 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8408 return 0;
8409 /* A variable in a lexical block of some kind does not need a
8410 namespace, even though in C++ such variables may be external
8411 and have a mangled name. */
8412 if (die->parent->tag == DW_TAG_lexical_block
8413 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8414 || die->parent->tag == DW_TAG_catch_block
8415 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8416 return 0;
8417 return 1;
94af9270
KS
8418
8419 default:
8420 return 0;
8421 }
8422}
8423
98bfdba5
PA
8424/* Retrieve the last character from a mem_file. */
8425
8426static void
8427do_ui_file_peek_last (void *object, const char *buffer, long length)
8428{
8429 char *last_char_p = (char *) object;
8430
8431 if (length > 0)
8432 *last_char_p = buffer[length - 1];
8433}
8434
94af9270 8435/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8436 compute the physname for the object, which include a method's:
8437 - formal parameters (C++/Java),
8438 - receiver type (Go),
8439 - return type (Java).
8440
8441 The term "physname" is a bit confusing.
8442 For C++, for example, it is the demangled name.
8443 For Go, for example, it's the mangled name.
94af9270 8444
af6b7be1
JB
8445 For Ada, return the DIE's linkage name rather than the fully qualified
8446 name. PHYSNAME is ignored..
8447
94af9270
KS
8448 The result is allocated on the objfile_obstack and canonicalized. */
8449
8450static const char *
15d034d0
TT
8451dwarf2_compute_name (const char *name,
8452 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8453 int physname)
8454{
bb5ed363
DE
8455 struct objfile *objfile = cu->objfile;
8456
94af9270
KS
8457 if (name == NULL)
8458 name = dwarf2_name (die, cu);
8459
2ee7123e
DE
8460 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8461 but otherwise compute it by typename_concat inside GDB.
8462 FIXME: Actually this is not really true, or at least not always true.
8463 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8464 Fortran names because there is no mangling standard. So new_symbol_full
8465 will set the demangled name to the result of dwarf2_full_name, and it is
8466 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8467 if (cu->language == language_ada
8468 || (cu->language == language_fortran && physname))
8469 {
8470 /* For Ada unit, we prefer the linkage name over the name, as
8471 the former contains the exported name, which the user expects
8472 to be able to reference. Ideally, we want the user to be able
8473 to reference this entity using either natural or linkage name,
8474 but we haven't started looking at this enhancement yet. */
2ee7123e 8475 const char *linkage_name;
f55ee35c 8476
2ee7123e
DE
8477 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8478 if (linkage_name == NULL)
8479 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8480 if (linkage_name != NULL)
8481 return linkage_name;
f55ee35c
JK
8482 }
8483
94af9270
KS
8484 /* These are the only languages we know how to qualify names in. */
8485 if (name != NULL
f55ee35c 8486 && (cu->language == language_cplus || cu->language == language_java
c44af4eb
TT
8487 || cu->language == language_fortran || cu->language == language_d
8488 || cu->language == language_rust))
94af9270
KS
8489 {
8490 if (die_needs_namespace (die, cu))
8491 {
8492 long length;
0d5cff50 8493 const char *prefix;
94af9270 8494 struct ui_file *buf;
34a68019
TT
8495 char *intermediate_name;
8496 const char *canonical_name = NULL;
94af9270
KS
8497
8498 prefix = determine_prefix (die, cu);
8499 buf = mem_fileopen ();
8500 if (*prefix != '\0')
8501 {
f55ee35c
JK
8502 char *prefixed_name = typename_concat (NULL, prefix, name,
8503 physname, cu);
9a619af0 8504
94af9270
KS
8505 fputs_unfiltered (prefixed_name, buf);
8506 xfree (prefixed_name);
8507 }
8508 else
62d5b8da 8509 fputs_unfiltered (name, buf);
94af9270 8510
98bfdba5
PA
8511 /* Template parameters may be specified in the DIE's DW_AT_name, or
8512 as children with DW_TAG_template_type_param or
8513 DW_TAG_value_type_param. If the latter, add them to the name
8514 here. If the name already has template parameters, then
8515 skip this step; some versions of GCC emit both, and
8516 it is more efficient to use the pre-computed name.
8517
8518 Something to keep in mind about this process: it is very
8519 unlikely, or in some cases downright impossible, to produce
8520 something that will match the mangled name of a function.
8521 If the definition of the function has the same debug info,
8522 we should be able to match up with it anyway. But fallbacks
8523 using the minimal symbol, for instance to find a method
8524 implemented in a stripped copy of libstdc++, will not work.
8525 If we do not have debug info for the definition, we will have to
8526 match them up some other way.
8527
8528 When we do name matching there is a related problem with function
8529 templates; two instantiated function templates are allowed to
8530 differ only by their return types, which we do not add here. */
8531
8532 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8533 {
8534 struct attribute *attr;
8535 struct die_info *child;
8536 int first = 1;
8537
8538 die->building_fullname = 1;
8539
8540 for (child = die->child; child != NULL; child = child->sibling)
8541 {
8542 struct type *type;
12df843f 8543 LONGEST value;
d521ce57 8544 const gdb_byte *bytes;
98bfdba5
PA
8545 struct dwarf2_locexpr_baton *baton;
8546 struct value *v;
8547
8548 if (child->tag != DW_TAG_template_type_param
8549 && child->tag != DW_TAG_template_value_param)
8550 continue;
8551
8552 if (first)
8553 {
8554 fputs_unfiltered ("<", buf);
8555 first = 0;
8556 }
8557 else
8558 fputs_unfiltered (", ", buf);
8559
8560 attr = dwarf2_attr (child, DW_AT_type, cu);
8561 if (attr == NULL)
8562 {
8563 complaint (&symfile_complaints,
8564 _("template parameter missing DW_AT_type"));
8565 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8566 continue;
8567 }
8568 type = die_type (child, cu);
8569
8570 if (child->tag == DW_TAG_template_type_param)
8571 {
79d43c61 8572 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8573 continue;
8574 }
8575
8576 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8577 if (attr == NULL)
8578 {
8579 complaint (&symfile_complaints,
3e43a32a
MS
8580 _("template parameter missing "
8581 "DW_AT_const_value"));
98bfdba5
PA
8582 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8583 continue;
8584 }
8585
8586 dwarf2_const_value_attr (attr, type, name,
8587 &cu->comp_unit_obstack, cu,
8588 &value, &bytes, &baton);
8589
8590 if (TYPE_NOSIGN (type))
8591 /* GDB prints characters as NUMBER 'CHAR'. If that's
8592 changed, this can use value_print instead. */
8593 c_printchar (value, type, buf);
8594 else
8595 {
8596 struct value_print_options opts;
8597
8598 if (baton != NULL)
8599 v = dwarf2_evaluate_loc_desc (type, NULL,
8600 baton->data,
8601 baton->size,
8602 baton->per_cu);
8603 else if (bytes != NULL)
8604 {
8605 v = allocate_value (type);
8606 memcpy (value_contents_writeable (v), bytes,
8607 TYPE_LENGTH (type));
8608 }
8609 else
8610 v = value_from_longest (type, value);
8611
3e43a32a
MS
8612 /* Specify decimal so that we do not depend on
8613 the radix. */
98bfdba5
PA
8614 get_formatted_print_options (&opts, 'd');
8615 opts.raw = 1;
8616 value_print (v, buf, &opts);
8617 release_value (v);
8618 value_free (v);
8619 }
8620 }
8621
8622 die->building_fullname = 0;
8623
8624 if (!first)
8625 {
8626 /* Close the argument list, with a space if necessary
8627 (nested templates). */
8628 char last_char = '\0';
8629 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8630 if (last_char == '>')
8631 fputs_unfiltered (" >", buf);
8632 else
8633 fputs_unfiltered (">", buf);
8634 }
8635 }
8636
94af9270
KS
8637 /* For Java and C++ methods, append formal parameter type
8638 information, if PHYSNAME. */
6e70227d 8639
94af9270
KS
8640 if (physname && die->tag == DW_TAG_subprogram
8641 && (cu->language == language_cplus
8642 || cu->language == language_java))
8643 {
8644 struct type *type = read_type_die (die, cu);
8645
79d43c61
TT
8646 c_type_print_args (type, buf, 1, cu->language,
8647 &type_print_raw_options);
94af9270
KS
8648
8649 if (cu->language == language_java)
8650 {
8651 /* For java, we must append the return type to method
0963b4bd 8652 names. */
94af9270
KS
8653 if (die->tag == DW_TAG_subprogram)
8654 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8655 0, 0, &type_print_raw_options);
94af9270
KS
8656 }
8657 else if (cu->language == language_cplus)
8658 {
60430eff
DJ
8659 /* Assume that an artificial first parameter is
8660 "this", but do not crash if it is not. RealView
8661 marks unnamed (and thus unused) parameters as
8662 artificial; there is no way to differentiate
8663 the two cases. */
94af9270
KS
8664 if (TYPE_NFIELDS (type) > 0
8665 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8666 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8667 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8668 0))))
94af9270
KS
8669 fputs_unfiltered (" const", buf);
8670 }
8671 }
8672
34a68019 8673 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8674 ui_file_delete (buf);
8675
8676 if (cu->language == language_cplus)
34a68019
TT
8677 canonical_name
8678 = dwarf2_canonicalize_name (intermediate_name, cu,
8679 &objfile->per_bfd->storage_obstack);
8680
8681 /* If we only computed INTERMEDIATE_NAME, or if
8682 INTERMEDIATE_NAME is already canonical, then we need to
8683 copy it to the appropriate obstack. */
8684 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8685 name = ((const char *)
8686 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8687 intermediate_name,
8688 strlen (intermediate_name)));
34a68019
TT
8689 else
8690 name = canonical_name;
9a619af0 8691
34a68019 8692 xfree (intermediate_name);
94af9270
KS
8693 }
8694 }
8695
8696 return name;
8697}
8698
0114d602
DJ
8699/* Return the fully qualified name of DIE, based on its DW_AT_name.
8700 If scope qualifiers are appropriate they will be added. The result
34a68019 8701 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8702 not have a name. NAME may either be from a previous call to
8703 dwarf2_name or NULL.
8704
0963b4bd 8705 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8706
8707static const char *
15d034d0 8708dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8709{
94af9270
KS
8710 return dwarf2_compute_name (name, die, cu, 0);
8711}
0114d602 8712
94af9270
KS
8713/* Construct a physname for the given DIE in CU. NAME may either be
8714 from a previous call to dwarf2_name or NULL. The result will be
8715 allocated on the objfile_objstack or NULL if the DIE does not have a
8716 name.
0114d602 8717
94af9270 8718 The output string will be canonicalized (if C++/Java). */
0114d602 8719
94af9270 8720static const char *
15d034d0 8721dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8722{
bb5ed363 8723 struct objfile *objfile = cu->objfile;
900e11f9
JK
8724 const char *retval, *mangled = NULL, *canon = NULL;
8725 struct cleanup *back_to;
8726 int need_copy = 1;
8727
8728 /* In this case dwarf2_compute_name is just a shortcut not building anything
8729 on its own. */
8730 if (!die_needs_namespace (die, cu))
8731 return dwarf2_compute_name (name, die, cu, 1);
8732
8733 back_to = make_cleanup (null_cleanup, NULL);
8734
7d45c7c3
KB
8735 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8736 if (mangled == NULL)
8737 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8738
e98c9e7c
TT
8739 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8740 See https://github.com/rust-lang/rust/issues/32925. */
8741 if (cu->language == language_rust && mangled != NULL
8742 && strchr (mangled, '{') != NULL)
8743 mangled = NULL;
8744
900e11f9
JK
8745 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8746 has computed. */
7d45c7c3 8747 if (mangled != NULL)
900e11f9
JK
8748 {
8749 char *demangled;
8750
900e11f9
JK
8751 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8752 type. It is easier for GDB users to search for such functions as
8753 `name(params)' than `long name(params)'. In such case the minimal
8754 symbol names do not match the full symbol names but for template
8755 functions there is never a need to look up their definition from their
8756 declaration so the only disadvantage remains the minimal symbol
8757 variant `long name(params)' does not have the proper inferior type.
8758 */
8759
a766d390
DE
8760 if (cu->language == language_go)
8761 {
8762 /* This is a lie, but we already lie to the caller new_symbol_full.
8763 new_symbol_full assumes we return the mangled name.
8764 This just undoes that lie until things are cleaned up. */
8765 demangled = NULL;
8766 }
8767 else
8768 {
8de20a37
TT
8769 demangled = gdb_demangle (mangled,
8770 (DMGL_PARAMS | DMGL_ANSI
8771 | (cu->language == language_java
8772 ? DMGL_JAVA | DMGL_RET_POSTFIX
8773 : DMGL_RET_DROP)));
a766d390 8774 }
900e11f9
JK
8775 if (demangled)
8776 {
8777 make_cleanup (xfree, demangled);
8778 canon = demangled;
8779 }
8780 else
8781 {
8782 canon = mangled;
8783 need_copy = 0;
8784 }
8785 }
8786
8787 if (canon == NULL || check_physname)
8788 {
8789 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8790
8791 if (canon != NULL && strcmp (physname, canon) != 0)
8792 {
8793 /* It may not mean a bug in GDB. The compiler could also
8794 compute DW_AT_linkage_name incorrectly. But in such case
8795 GDB would need to be bug-to-bug compatible. */
8796
8797 complaint (&symfile_complaints,
8798 _("Computed physname <%s> does not match demangled <%s> "
8799 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8800 physname, canon, mangled, die->offset.sect_off,
8801 objfile_name (objfile));
900e11f9
JK
8802
8803 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8804 is available here - over computed PHYSNAME. It is safer
8805 against both buggy GDB and buggy compilers. */
8806
8807 retval = canon;
8808 }
8809 else
8810 {
8811 retval = physname;
8812 need_copy = 0;
8813 }
8814 }
8815 else
8816 retval = canon;
8817
8818 if (need_copy)
224c3ddb
SM
8819 retval = ((const char *)
8820 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8821 retval, strlen (retval)));
900e11f9
JK
8822
8823 do_cleanups (back_to);
8824 return retval;
0114d602
DJ
8825}
8826
74921315
KS
8827/* Inspect DIE in CU for a namespace alias. If one exists, record
8828 a new symbol for it.
8829
8830 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8831
8832static int
8833read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8834{
8835 struct attribute *attr;
8836
8837 /* If the die does not have a name, this is not a namespace
8838 alias. */
8839 attr = dwarf2_attr (die, DW_AT_name, cu);
8840 if (attr != NULL)
8841 {
8842 int num;
8843 struct die_info *d = die;
8844 struct dwarf2_cu *imported_cu = cu;
8845
8846 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8847 keep inspecting DIEs until we hit the underlying import. */
8848#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8849 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8850 {
8851 attr = dwarf2_attr (d, DW_AT_import, cu);
8852 if (attr == NULL)
8853 break;
8854
8855 d = follow_die_ref (d, attr, &imported_cu);
8856 if (d->tag != DW_TAG_imported_declaration)
8857 break;
8858 }
8859
8860 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8861 {
8862 complaint (&symfile_complaints,
8863 _("DIE at 0x%x has too many recursively imported "
8864 "declarations"), d->offset.sect_off);
8865 return 0;
8866 }
8867
8868 if (attr != NULL)
8869 {
8870 struct type *type;
8871 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8872
8873 type = get_die_type_at_offset (offset, cu->per_cu);
8874 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8875 {
8876 /* This declaration is a global namespace alias. Add
8877 a symbol for it whose type is the aliased namespace. */
8878 new_symbol (die, type, cu);
8879 return 1;
8880 }
8881 }
8882 }
8883
8884 return 0;
8885}
8886
22cee43f
PMR
8887/* Return the using directives repository (global or local?) to use in the
8888 current context for LANGUAGE.
8889
8890 For Ada, imported declarations can materialize renamings, which *may* be
8891 global. However it is impossible (for now?) in DWARF to distinguish
8892 "external" imported declarations and "static" ones. As all imported
8893 declarations seem to be static in all other languages, make them all CU-wide
8894 global only in Ada. */
8895
8896static struct using_direct **
8897using_directives (enum language language)
8898{
8899 if (language == language_ada && context_stack_depth == 0)
8900 return &global_using_directives;
8901 else
8902 return &local_using_directives;
8903}
8904
27aa8d6a
SW
8905/* Read the import statement specified by the given die and record it. */
8906
8907static void
8908read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8909{
bb5ed363 8910 struct objfile *objfile = cu->objfile;
27aa8d6a 8911 struct attribute *import_attr;
32019081 8912 struct die_info *imported_die, *child_die;
de4affc9 8913 struct dwarf2_cu *imported_cu;
27aa8d6a 8914 const char *imported_name;
794684b6 8915 const char *imported_name_prefix;
13387711
SW
8916 const char *canonical_name;
8917 const char *import_alias;
8918 const char *imported_declaration = NULL;
794684b6 8919 const char *import_prefix;
32019081
JK
8920 VEC (const_char_ptr) *excludes = NULL;
8921 struct cleanup *cleanups;
13387711 8922
27aa8d6a
SW
8923 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8924 if (import_attr == NULL)
8925 {
8926 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8927 dwarf_tag_name (die->tag));
8928 return;
8929 }
8930
de4affc9
CC
8931 imported_cu = cu;
8932 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8933 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8934 if (imported_name == NULL)
8935 {
8936 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8937
8938 The import in the following code:
8939 namespace A
8940 {
8941 typedef int B;
8942 }
8943
8944 int main ()
8945 {
8946 using A::B;
8947 B b;
8948 return b;
8949 }
8950
8951 ...
8952 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8953 <52> DW_AT_decl_file : 1
8954 <53> DW_AT_decl_line : 6
8955 <54> DW_AT_import : <0x75>
8956 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8957 <59> DW_AT_name : B
8958 <5b> DW_AT_decl_file : 1
8959 <5c> DW_AT_decl_line : 2
8960 <5d> DW_AT_type : <0x6e>
8961 ...
8962 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8963 <76> DW_AT_byte_size : 4
8964 <77> DW_AT_encoding : 5 (signed)
8965
8966 imports the wrong die ( 0x75 instead of 0x58 ).
8967 This case will be ignored until the gcc bug is fixed. */
8968 return;
8969 }
8970
82856980
SW
8971 /* Figure out the local name after import. */
8972 import_alias = dwarf2_name (die, cu);
27aa8d6a 8973
794684b6
SW
8974 /* Figure out where the statement is being imported to. */
8975 import_prefix = determine_prefix (die, cu);
8976
8977 /* Figure out what the scope of the imported die is and prepend it
8978 to the name of the imported die. */
de4affc9 8979 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8980
f55ee35c
JK
8981 if (imported_die->tag != DW_TAG_namespace
8982 && imported_die->tag != DW_TAG_module)
794684b6 8983 {
13387711
SW
8984 imported_declaration = imported_name;
8985 canonical_name = imported_name_prefix;
794684b6 8986 }
13387711 8987 else if (strlen (imported_name_prefix) > 0)
12aaed36 8988 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8989 imported_name_prefix,
8990 (cu->language == language_d ? "." : "::"),
8991 imported_name, (char *) NULL);
13387711
SW
8992 else
8993 canonical_name = imported_name;
794684b6 8994
32019081
JK
8995 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8996
8997 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8998 for (child_die = die->child; child_die && child_die->tag;
8999 child_die = sibling_die (child_die))
9000 {
9001 /* DWARF-4: A Fortran use statement with a “rename list” may be
9002 represented by an imported module entry with an import attribute
9003 referring to the module and owned entries corresponding to those
9004 entities that are renamed as part of being imported. */
9005
9006 if (child_die->tag != DW_TAG_imported_declaration)
9007 {
9008 complaint (&symfile_complaints,
9009 _("child DW_TAG_imported_declaration expected "
9010 "- DIE at 0x%x [in module %s]"),
4262abfb 9011 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9012 continue;
9013 }
9014
9015 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9016 if (import_attr == NULL)
9017 {
9018 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9019 dwarf_tag_name (child_die->tag));
9020 continue;
9021 }
9022
9023 imported_cu = cu;
9024 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9025 &imported_cu);
9026 imported_name = dwarf2_name (imported_die, imported_cu);
9027 if (imported_name == NULL)
9028 {
9029 complaint (&symfile_complaints,
9030 _("child DW_TAG_imported_declaration has unknown "
9031 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9032 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9033 continue;
9034 }
9035
9036 VEC_safe_push (const_char_ptr, excludes, imported_name);
9037
9038 process_die (child_die, cu);
9039 }
9040
22cee43f
PMR
9041 add_using_directive (using_directives (cu->language),
9042 import_prefix,
9043 canonical_name,
9044 import_alias,
9045 imported_declaration,
9046 excludes,
9047 0,
9048 &objfile->objfile_obstack);
32019081
JK
9049
9050 do_cleanups (cleanups);
27aa8d6a
SW
9051}
9052
f4dc4d17 9053/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9054
cb1df416
DJ
9055static void
9056free_cu_line_header (void *arg)
9057{
9a3c8263 9058 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9059
9060 free_line_header (cu->line_header);
9061 cu->line_header = NULL;
9062}
9063
1b80a9fa
JK
9064/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9065 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9066 this, it was first present in GCC release 4.3.0. */
9067
9068static int
9069producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9070{
9071 if (!cu->checked_producer)
9072 check_producer (cu);
9073
9074 return cu->producer_is_gcc_lt_4_3;
9075}
9076
9291a0cd
TT
9077static void
9078find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9079 const char **name, const char **comp_dir)
9291a0cd 9080{
9291a0cd
TT
9081 /* Find the filename. Do not use dwarf2_name here, since the filename
9082 is not a source language identifier. */
7d45c7c3
KB
9083 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9084 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9085
7d45c7c3
KB
9086 if (*comp_dir == NULL
9087 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9088 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9089 {
15d034d0
TT
9090 char *d = ldirname (*name);
9091
9092 *comp_dir = d;
9093 if (d != NULL)
9094 make_cleanup (xfree, d);
9291a0cd
TT
9095 }
9096 if (*comp_dir != NULL)
9097 {
9098 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9099 directory, get rid of it. */
e6a959d6 9100 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9101
9102 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9103 *comp_dir = cp + 1;
9104 }
9105
9106 if (*name == NULL)
9107 *name = "<unknown>";
9108}
9109
f4dc4d17
DE
9110/* Handle DW_AT_stmt_list for a compilation unit.
9111 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9112 COMP_DIR is the compilation directory. LOWPC is passed to
9113 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9114
9115static void
9116handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9117 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9118{
527f3840 9119 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9120 struct attribute *attr;
527f3840
JK
9121 unsigned int line_offset;
9122 struct line_header line_header_local;
9123 hashval_t line_header_local_hash;
9124 unsigned u;
9125 void **slot;
9126 int decode_mapping;
2ab95328 9127
f4dc4d17
DE
9128 gdb_assert (! cu->per_cu->is_debug_types);
9129
2ab95328 9130 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9131 if (attr == NULL)
9132 return;
9133
9134 line_offset = DW_UNSND (attr);
9135
9136 /* The line header hash table is only created if needed (it exists to
9137 prevent redundant reading of the line table for partial_units).
9138 If we're given a partial_unit, we'll need it. If we're given a
9139 compile_unit, then use the line header hash table if it's already
9140 created, but don't create one just yet. */
9141
9142 if (dwarf2_per_objfile->line_header_hash == NULL
9143 && die->tag == DW_TAG_partial_unit)
2ab95328 9144 {
527f3840
JK
9145 dwarf2_per_objfile->line_header_hash
9146 = htab_create_alloc_ex (127, line_header_hash_voidp,
9147 line_header_eq_voidp,
9148 free_line_header_voidp,
9149 &objfile->objfile_obstack,
9150 hashtab_obstack_allocate,
9151 dummy_obstack_deallocate);
9152 }
2ab95328 9153
527f3840
JK
9154 line_header_local.offset.sect_off = line_offset;
9155 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9156 line_header_local_hash = line_header_hash (&line_header_local);
9157 if (dwarf2_per_objfile->line_header_hash != NULL)
9158 {
9159 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9160 &line_header_local,
9161 line_header_local_hash, NO_INSERT);
9162
9163 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9164 is not present in *SLOT (since if there is something in *SLOT then
9165 it will be for a partial_unit). */
9166 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9167 {
527f3840 9168 gdb_assert (*slot != NULL);
9a3c8263 9169 cu->line_header = (struct line_header *) *slot;
527f3840 9170 return;
dee91e82 9171 }
2ab95328 9172 }
527f3840
JK
9173
9174 /* dwarf_decode_line_header does not yet provide sufficient information.
9175 We always have to call also dwarf_decode_lines for it. */
9176 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9177 if (cu->line_header == NULL)
9178 return;
9179
9180 if (dwarf2_per_objfile->line_header_hash == NULL)
9181 slot = NULL;
9182 else
9183 {
9184 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9185 &line_header_local,
9186 line_header_local_hash, INSERT);
9187 gdb_assert (slot != NULL);
9188 }
9189 if (slot != NULL && *slot == NULL)
9190 {
9191 /* This newly decoded line number information unit will be owned
9192 by line_header_hash hash table. */
9193 *slot = cu->line_header;
9194 }
9195 else
9196 {
9197 /* We cannot free any current entry in (*slot) as that struct line_header
9198 may be already used by multiple CUs. Create only temporary decoded
9199 line_header for this CU - it may happen at most once for each line
9200 number information unit. And if we're not using line_header_hash
9201 then this is what we want as well. */
9202 gdb_assert (die->tag != DW_TAG_partial_unit);
9203 make_cleanup (free_cu_line_header, cu);
9204 }
9205 decode_mapping = (die->tag != DW_TAG_partial_unit);
9206 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9207 decode_mapping);
2ab95328
TT
9208}
9209
95554aad 9210/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9211
c906108c 9212static void
e7c27a73 9213read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9214{
dee91e82 9215 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9217 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9218 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9219 CORE_ADDR highpc = ((CORE_ADDR) 0);
9220 struct attribute *attr;
15d034d0
TT
9221 const char *name = NULL;
9222 const char *comp_dir = NULL;
c906108c 9223 struct die_info *child_die;
e142c38c 9224 CORE_ADDR baseaddr;
6e70227d 9225
e142c38c 9226 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9227
fae299cd 9228 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9229
9230 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9231 from finish_block. */
2acceee2 9232 if (lowpc == ((CORE_ADDR) -1))
c906108c 9233 lowpc = highpc;
3e29f34a 9234 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9235
9291a0cd 9236 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9237
95554aad 9238 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9239
f4b8a18d
KW
9240 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9241 standardised yet. As a workaround for the language detection we fall
9242 back to the DW_AT_producer string. */
9243 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9244 cu->language = language_opencl;
9245
3019eac3
DE
9246 /* Similar hack for Go. */
9247 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9248 set_cu_language (DW_LANG_Go, cu);
9249
f4dc4d17 9250 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9251
9252 /* Decode line number information if present. We do this before
9253 processing child DIEs, so that the line header table is available
9254 for DW_AT_decl_file. */
c3b7b696 9255 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9256
9257 /* Process all dies in compilation unit. */
9258 if (die->child != NULL)
9259 {
9260 child_die = die->child;
9261 while (child_die && child_die->tag)
9262 {
9263 process_die (child_die, cu);
9264 child_die = sibling_die (child_die);
9265 }
9266 }
9267
9268 /* Decode macro information, if present. Dwarf 2 macro information
9269 refers to information in the line number info statement program
9270 header, so we can only read it if we've read the header
9271 successfully. */
9272 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9273 if (attr && cu->line_header)
9274 {
9275 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9276 complaint (&symfile_complaints,
9277 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9278
43f3e411 9279 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9280 }
9281 else
9282 {
9283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9284 if (attr && cu->line_header)
9285 {
9286 unsigned int macro_offset = DW_UNSND (attr);
9287
43f3e411 9288 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9289 }
9290 }
9291
9292 do_cleanups (back_to);
9293}
9294
f4dc4d17
DE
9295/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9296 Create the set of symtabs used by this TU, or if this TU is sharing
9297 symtabs with another TU and the symtabs have already been created
9298 then restore those symtabs in the line header.
9299 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9300
9301static void
f4dc4d17 9302setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9303{
f4dc4d17
DE
9304 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9305 struct type_unit_group *tu_group;
9306 int first_time;
9307 struct line_header *lh;
3019eac3 9308 struct attribute *attr;
f4dc4d17 9309 unsigned int i, line_offset;
0186c6a7 9310 struct signatured_type *sig_type;
3019eac3 9311
f4dc4d17 9312 gdb_assert (per_cu->is_debug_types);
0186c6a7 9313 sig_type = (struct signatured_type *) per_cu;
3019eac3 9314
f4dc4d17 9315 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9316
f4dc4d17 9317 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9318 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9319 if (sig_type->type_unit_group == NULL)
9320 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9321 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9322
9323 /* If we've already processed this stmt_list there's no real need to
9324 do it again, we could fake it and just recreate the part we need
9325 (file name,index -> symtab mapping). If data shows this optimization
9326 is useful we can do it then. */
43f3e411 9327 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9328
9329 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9330 debug info. */
9331 lh = NULL;
9332 if (attr != NULL)
3019eac3 9333 {
f4dc4d17
DE
9334 line_offset = DW_UNSND (attr);
9335 lh = dwarf_decode_line_header (line_offset, cu);
9336 }
9337 if (lh == NULL)
9338 {
9339 if (first_time)
9340 dwarf2_start_symtab (cu, "", NULL, 0);
9341 else
9342 {
9343 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9344 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9345 }
f4dc4d17 9346 return;
3019eac3
DE
9347 }
9348
f4dc4d17
DE
9349 cu->line_header = lh;
9350 make_cleanup (free_cu_line_header, cu);
3019eac3 9351
f4dc4d17
DE
9352 if (first_time)
9353 {
43f3e411 9354 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9355
1fd60fc0
DE
9356 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9357 still initializing it, and our caller (a few levels up)
9358 process_full_type_unit still needs to know if this is the first
9359 time. */
9360
f4dc4d17
DE
9361 tu_group->num_symtabs = lh->num_file_names;
9362 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9363
f4dc4d17
DE
9364 for (i = 0; i < lh->num_file_names; ++i)
9365 {
d521ce57 9366 const char *dir = NULL;
f4dc4d17 9367 struct file_entry *fe = &lh->file_names[i];
3019eac3 9368
afa6c9ab 9369 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9370 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9371 dwarf2_start_subfile (fe->name, dir);
3019eac3 9372
f4dc4d17
DE
9373 if (current_subfile->symtab == NULL)
9374 {
9375 /* NOTE: start_subfile will recognize when it's been passed
9376 a file it has already seen. So we can't assume there's a
43f3e411 9377 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9378 lh->file_names may contain dups. */
43f3e411
DE
9379 current_subfile->symtab
9380 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9381 }
9382
9383 fe->symtab = current_subfile->symtab;
9384 tu_group->symtabs[i] = fe->symtab;
9385 }
9386 }
9387 else
3019eac3 9388 {
0ab9ce85 9389 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9390
9391 for (i = 0; i < lh->num_file_names; ++i)
9392 {
9393 struct file_entry *fe = &lh->file_names[i];
9394
9395 fe->symtab = tu_group->symtabs[i];
9396 }
3019eac3
DE
9397 }
9398
f4dc4d17
DE
9399 /* The main symtab is allocated last. Type units don't have DW_AT_name
9400 so they don't have a "real" (so to speak) symtab anyway.
9401 There is later code that will assign the main symtab to all symbols
9402 that don't have one. We need to handle the case of a symbol with a
9403 missing symtab (DW_AT_decl_file) anyway. */
9404}
3019eac3 9405
f4dc4d17
DE
9406/* Process DW_TAG_type_unit.
9407 For TUs we want to skip the first top level sibling if it's not the
9408 actual type being defined by this TU. In this case the first top
9409 level sibling is there to provide context only. */
3019eac3 9410
f4dc4d17
DE
9411static void
9412read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9413{
9414 struct die_info *child_die;
3019eac3 9415
f4dc4d17
DE
9416 prepare_one_comp_unit (cu, die, language_minimal);
9417
9418 /* Initialize (or reinitialize) the machinery for building symtabs.
9419 We do this before processing child DIEs, so that the line header table
9420 is available for DW_AT_decl_file. */
9421 setup_type_unit_groups (die, cu);
9422
9423 if (die->child != NULL)
9424 {
9425 child_die = die->child;
9426 while (child_die && child_die->tag)
9427 {
9428 process_die (child_die, cu);
9429 child_die = sibling_die (child_die);
9430 }
9431 }
3019eac3
DE
9432}
9433\f
80626a55
DE
9434/* DWO/DWP files.
9435
9436 http://gcc.gnu.org/wiki/DebugFission
9437 http://gcc.gnu.org/wiki/DebugFissionDWP
9438
9439 To simplify handling of both DWO files ("object" files with the DWARF info)
9440 and DWP files (a file with the DWOs packaged up into one file), we treat
9441 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9442
9443static hashval_t
9444hash_dwo_file (const void *item)
9445{
9a3c8263 9446 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9447 hashval_t hash;
3019eac3 9448
a2ce51a0
DE
9449 hash = htab_hash_string (dwo_file->dwo_name);
9450 if (dwo_file->comp_dir != NULL)
9451 hash += htab_hash_string (dwo_file->comp_dir);
9452 return hash;
3019eac3
DE
9453}
9454
9455static int
9456eq_dwo_file (const void *item_lhs, const void *item_rhs)
9457{
9a3c8263
SM
9458 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9459 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9460
a2ce51a0
DE
9461 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9462 return 0;
9463 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9464 return lhs->comp_dir == rhs->comp_dir;
9465 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9466}
9467
9468/* Allocate a hash table for DWO files. */
9469
9470static htab_t
9471allocate_dwo_file_hash_table (void)
9472{
9473 struct objfile *objfile = dwarf2_per_objfile->objfile;
9474
9475 return htab_create_alloc_ex (41,
9476 hash_dwo_file,
9477 eq_dwo_file,
9478 NULL,
9479 &objfile->objfile_obstack,
9480 hashtab_obstack_allocate,
9481 dummy_obstack_deallocate);
9482}
9483
80626a55
DE
9484/* Lookup DWO file DWO_NAME. */
9485
9486static void **
0ac5b59e 9487lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9488{
9489 struct dwo_file find_entry;
9490 void **slot;
9491
9492 if (dwarf2_per_objfile->dwo_files == NULL)
9493 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9494
9495 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9496 find_entry.dwo_name = dwo_name;
9497 find_entry.comp_dir = comp_dir;
80626a55
DE
9498 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9499
9500 return slot;
9501}
9502
3019eac3
DE
9503static hashval_t
9504hash_dwo_unit (const void *item)
9505{
9a3c8263 9506 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9507
9508 /* This drops the top 32 bits of the id, but is ok for a hash. */
9509 return dwo_unit->signature;
9510}
9511
9512static int
9513eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9514{
9a3c8263
SM
9515 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9516 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9517
9518 /* The signature is assumed to be unique within the DWO file.
9519 So while object file CU dwo_id's always have the value zero,
9520 that's OK, assuming each object file DWO file has only one CU,
9521 and that's the rule for now. */
9522 return lhs->signature == rhs->signature;
9523}
9524
9525/* Allocate a hash table for DWO CUs,TUs.
9526 There is one of these tables for each of CUs,TUs for each DWO file. */
9527
9528static htab_t
9529allocate_dwo_unit_table (struct objfile *objfile)
9530{
9531 /* Start out with a pretty small number.
9532 Generally DWO files contain only one CU and maybe some TUs. */
9533 return htab_create_alloc_ex (3,
9534 hash_dwo_unit,
9535 eq_dwo_unit,
9536 NULL,
9537 &objfile->objfile_obstack,
9538 hashtab_obstack_allocate,
9539 dummy_obstack_deallocate);
9540}
9541
80626a55 9542/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9543
19c3d4c9 9544struct create_dwo_cu_data
3019eac3
DE
9545{
9546 struct dwo_file *dwo_file;
19c3d4c9 9547 struct dwo_unit dwo_unit;
3019eac3
DE
9548};
9549
19c3d4c9 9550/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9551
9552static void
19c3d4c9
DE
9553create_dwo_cu_reader (const struct die_reader_specs *reader,
9554 const gdb_byte *info_ptr,
9555 struct die_info *comp_unit_die,
9556 int has_children,
9557 void *datap)
3019eac3
DE
9558{
9559 struct dwarf2_cu *cu = reader->cu;
3019eac3 9560 sect_offset offset = cu->per_cu->offset;
8a0459fd 9561 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9562 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9563 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9564 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9565 struct attribute *attr;
3019eac3
DE
9566
9567 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9568 if (attr == NULL)
9569 {
19c3d4c9
DE
9570 complaint (&symfile_complaints,
9571 _("Dwarf Error: debug entry at offset 0x%x is missing"
9572 " its dwo_id [in module %s]"),
9573 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9574 return;
9575 }
9576
3019eac3
DE
9577 dwo_unit->dwo_file = dwo_file;
9578 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9579 dwo_unit->section = section;
3019eac3
DE
9580 dwo_unit->offset = offset;
9581 dwo_unit->length = cu->per_cu->length;
9582
b4f54984 9583 if (dwarf_read_debug)
4031ecc5
DE
9584 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9585 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9586}
9587
19c3d4c9
DE
9588/* Create the dwo_unit for the lone CU in DWO_FILE.
9589 Note: This function processes DWO files only, not DWP files. */
3019eac3 9590
19c3d4c9
DE
9591static struct dwo_unit *
9592create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9593{
9594 struct objfile *objfile = dwarf2_per_objfile->objfile;
9595 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9596 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9597 struct create_dwo_cu_data create_dwo_cu_data;
9598 struct dwo_unit *dwo_unit;
3019eac3
DE
9599
9600 dwarf2_read_section (objfile, section);
9601 info_ptr = section->buffer;
9602
9603 if (info_ptr == NULL)
9604 return NULL;
9605
b4f54984 9606 if (dwarf_read_debug)
19c3d4c9
DE
9607 {
9608 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9609 get_section_name (section),
9610 get_section_file_name (section));
19c3d4c9 9611 }
3019eac3 9612
19c3d4c9
DE
9613 create_dwo_cu_data.dwo_file = dwo_file;
9614 dwo_unit = NULL;
3019eac3
DE
9615
9616 end_ptr = info_ptr + section->size;
9617 while (info_ptr < end_ptr)
9618 {
9619 struct dwarf2_per_cu_data per_cu;
9620
19c3d4c9
DE
9621 memset (&create_dwo_cu_data.dwo_unit, 0,
9622 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9623 memset (&per_cu, 0, sizeof (per_cu));
9624 per_cu.objfile = objfile;
9625 per_cu.is_debug_types = 0;
9626 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9627 per_cu.section = section;
3019eac3 9628
33e80786 9629 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9630 create_dwo_cu_reader,
9631 &create_dwo_cu_data);
9632
9633 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9634 {
9635 /* If we've already found one, complain. We only support one
9636 because having more than one requires hacking the dwo_name of
9637 each to match, which is highly unlikely to happen. */
9638 if (dwo_unit != NULL)
9639 {
9640 complaint (&symfile_complaints,
9641 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9642 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9643 break;
9644 }
9645
9646 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9647 *dwo_unit = create_dwo_cu_data.dwo_unit;
9648 }
3019eac3
DE
9649
9650 info_ptr += per_cu.length;
9651 }
9652
19c3d4c9 9653 return dwo_unit;
3019eac3
DE
9654}
9655
80626a55
DE
9656/* DWP file .debug_{cu,tu}_index section format:
9657 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9658
d2415c6c
DE
9659 DWP Version 1:
9660
80626a55
DE
9661 Both index sections have the same format, and serve to map a 64-bit
9662 signature to a set of section numbers. Each section begins with a header,
9663 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9664 indexes, and a pool of 32-bit section numbers. The index sections will be
9665 aligned at 8-byte boundaries in the file.
9666
d2415c6c
DE
9667 The index section header consists of:
9668
9669 V, 32 bit version number
9670 -, 32 bits unused
9671 N, 32 bit number of compilation units or type units in the index
9672 M, 32 bit number of slots in the hash table
80626a55 9673
d2415c6c 9674 Numbers are recorded using the byte order of the application binary.
80626a55 9675
d2415c6c
DE
9676 The hash table begins at offset 16 in the section, and consists of an array
9677 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9678 order of the application binary). Unused slots in the hash table are 0.
9679 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9680
d2415c6c
DE
9681 The parallel table begins immediately after the hash table
9682 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9683 array of 32-bit indexes (using the byte order of the application binary),
9684 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9685 table contains a 32-bit index into the pool of section numbers. For unused
9686 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9687
73869dc2
DE
9688 The pool of section numbers begins immediately following the hash table
9689 (at offset 16 + 12 * M from the beginning of the section). The pool of
9690 section numbers consists of an array of 32-bit words (using the byte order
9691 of the application binary). Each item in the array is indexed starting
9692 from 0. The hash table entry provides the index of the first section
9693 number in the set. Additional section numbers in the set follow, and the
9694 set is terminated by a 0 entry (section number 0 is not used in ELF).
9695
9696 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9697 section must be the first entry in the set, and the .debug_abbrev.dwo must
9698 be the second entry. Other members of the set may follow in any order.
9699
9700 ---
9701
9702 DWP Version 2:
9703
9704 DWP Version 2 combines all the .debug_info, etc. sections into one,
9705 and the entries in the index tables are now offsets into these sections.
9706 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9707 section.
9708
9709 Index Section Contents:
9710 Header
9711 Hash Table of Signatures dwp_hash_table.hash_table
9712 Parallel Table of Indices dwp_hash_table.unit_table
9713 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9714 Table of Section Sizes dwp_hash_table.v2.sizes
9715
9716 The index section header consists of:
9717
9718 V, 32 bit version number
9719 L, 32 bit number of columns in the table of section offsets
9720 N, 32 bit number of compilation units or type units in the index
9721 M, 32 bit number of slots in the hash table
9722
9723 Numbers are recorded using the byte order of the application binary.
9724
9725 The hash table has the same format as version 1.
9726 The parallel table of indices has the same format as version 1,
9727 except that the entries are origin-1 indices into the table of sections
9728 offsets and the table of section sizes.
9729
9730 The table of offsets begins immediately following the parallel table
9731 (at offset 16 + 12 * M from the beginning of the section). The table is
9732 a two-dimensional array of 32-bit words (using the byte order of the
9733 application binary), with L columns and N+1 rows, in row-major order.
9734 Each row in the array is indexed starting from 0. The first row provides
9735 a key to the remaining rows: each column in this row provides an identifier
9736 for a debug section, and the offsets in the same column of subsequent rows
9737 refer to that section. The section identifiers are:
9738
9739 DW_SECT_INFO 1 .debug_info.dwo
9740 DW_SECT_TYPES 2 .debug_types.dwo
9741 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9742 DW_SECT_LINE 4 .debug_line.dwo
9743 DW_SECT_LOC 5 .debug_loc.dwo
9744 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9745 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9746 DW_SECT_MACRO 8 .debug_macro.dwo
9747
9748 The offsets provided by the CU and TU index sections are the base offsets
9749 for the contributions made by each CU or TU to the corresponding section
9750 in the package file. Each CU and TU header contains an abbrev_offset
9751 field, used to find the abbreviations table for that CU or TU within the
9752 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9753 be interpreted as relative to the base offset given in the index section.
9754 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9755 should be interpreted as relative to the base offset for .debug_line.dwo,
9756 and offsets into other debug sections obtained from DWARF attributes should
9757 also be interpreted as relative to the corresponding base offset.
9758
9759 The table of sizes begins immediately following the table of offsets.
9760 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9761 with L columns and N rows, in row-major order. Each row in the array is
9762 indexed starting from 1 (row 0 is shared by the two tables).
9763
9764 ---
9765
9766 Hash table lookup is handled the same in version 1 and 2:
9767
9768 We assume that N and M will not exceed 2^32 - 1.
9769 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9770
d2415c6c
DE
9771 Given a 64-bit compilation unit signature or a type signature S, an entry
9772 in the hash table is located as follows:
80626a55 9773
d2415c6c
DE
9774 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9775 the low-order k bits all set to 1.
80626a55 9776
d2415c6c 9777 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9778
d2415c6c
DE
9779 3) If the hash table entry at index H matches the signature, use that
9780 entry. If the hash table entry at index H is unused (all zeroes),
9781 terminate the search: the signature is not present in the table.
80626a55 9782
d2415c6c 9783 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9784
d2415c6c 9785 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9786 to stop at an unused slot or find the match. */
80626a55
DE
9787
9788/* Create a hash table to map DWO IDs to their CU/TU entry in
9789 .debug_{info,types}.dwo in DWP_FILE.
9790 Returns NULL if there isn't one.
9791 Note: This function processes DWP files only, not DWO files. */
9792
9793static struct dwp_hash_table *
9794create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9795{
9796 struct objfile *objfile = dwarf2_per_objfile->objfile;
9797 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9798 const gdb_byte *index_ptr, *index_end;
80626a55 9799 struct dwarf2_section_info *index;
73869dc2 9800 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9801 struct dwp_hash_table *htab;
9802
9803 if (is_debug_types)
9804 index = &dwp_file->sections.tu_index;
9805 else
9806 index = &dwp_file->sections.cu_index;
9807
9808 if (dwarf2_section_empty_p (index))
9809 return NULL;
9810 dwarf2_read_section (objfile, index);
9811
9812 index_ptr = index->buffer;
9813 index_end = index_ptr + index->size;
9814
9815 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9816 index_ptr += 4;
9817 if (version == 2)
9818 nr_columns = read_4_bytes (dbfd, index_ptr);
9819 else
9820 nr_columns = 0;
9821 index_ptr += 4;
80626a55
DE
9822 nr_units = read_4_bytes (dbfd, index_ptr);
9823 index_ptr += 4;
9824 nr_slots = read_4_bytes (dbfd, index_ptr);
9825 index_ptr += 4;
9826
73869dc2 9827 if (version != 1 && version != 2)
80626a55 9828 {
21aa081e 9829 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9830 " [in module %s]"),
21aa081e 9831 pulongest (version), dwp_file->name);
80626a55
DE
9832 }
9833 if (nr_slots != (nr_slots & -nr_slots))
9834 {
21aa081e 9835 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9836 " is not power of 2 [in module %s]"),
21aa081e 9837 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9838 }
9839
9840 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9841 htab->version = version;
9842 htab->nr_columns = nr_columns;
80626a55
DE
9843 htab->nr_units = nr_units;
9844 htab->nr_slots = nr_slots;
9845 htab->hash_table = index_ptr;
9846 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9847
9848 /* Exit early if the table is empty. */
9849 if (nr_slots == 0 || nr_units == 0
9850 || (version == 2 && nr_columns == 0))
9851 {
9852 /* All must be zero. */
9853 if (nr_slots != 0 || nr_units != 0
9854 || (version == 2 && nr_columns != 0))
9855 {
9856 complaint (&symfile_complaints,
9857 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9858 " all zero [in modules %s]"),
9859 dwp_file->name);
9860 }
9861 return htab;
9862 }
9863
9864 if (version == 1)
9865 {
9866 htab->section_pool.v1.indices =
9867 htab->unit_table + sizeof (uint32_t) * nr_slots;
9868 /* It's harder to decide whether the section is too small in v1.
9869 V1 is deprecated anyway so we punt. */
9870 }
9871 else
9872 {
9873 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9874 int *ids = htab->section_pool.v2.section_ids;
9875 /* Reverse map for error checking. */
9876 int ids_seen[DW_SECT_MAX + 1];
9877 int i;
9878
9879 if (nr_columns < 2)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, too few columns"
9882 " in section table [in module %s]"),
9883 dwp_file->name);
9884 }
9885 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, too many columns"
9888 " in section table [in module %s]"),
9889 dwp_file->name);
9890 }
9891 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9892 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9893 for (i = 0; i < nr_columns; ++i)
9894 {
9895 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9896
9897 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9898 {
9899 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9900 " in section table [in module %s]"),
9901 id, dwp_file->name);
9902 }
9903 if (ids_seen[id] != -1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9906 " id %d in section table [in module %s]"),
9907 id, dwp_file->name);
9908 }
9909 ids_seen[id] = i;
9910 ids[i] = id;
9911 }
9912 /* Must have exactly one info or types section. */
9913 if (((ids_seen[DW_SECT_INFO] != -1)
9914 + (ids_seen[DW_SECT_TYPES] != -1))
9915 != 1)
9916 {
9917 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9918 " DWO info/types section [in module %s]"),
9919 dwp_file->name);
9920 }
9921 /* Must have an abbrev section. */
9922 if (ids_seen[DW_SECT_ABBREV] == -1)
9923 {
9924 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9925 " section [in module %s]"),
9926 dwp_file->name);
9927 }
9928 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9929 htab->section_pool.v2.sizes =
9930 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9931 * nr_units * nr_columns);
9932 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9933 * nr_units * nr_columns))
9934 > index_end)
9935 {
9936 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9937 " [in module %s]"),
9938 dwp_file->name);
9939 }
9940 }
80626a55
DE
9941
9942 return htab;
9943}
9944
9945/* Update SECTIONS with the data from SECTP.
9946
9947 This function is like the other "locate" section routines that are
9948 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9949 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9950
9951 The result is non-zero for success, or zero if an error was found. */
9952
9953static int
73869dc2
DE
9954locate_v1_virtual_dwo_sections (asection *sectp,
9955 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9956{
9957 const struct dwop_section_names *names = &dwop_section_names;
9958
9959 if (section_is_p (sectp->name, &names->abbrev_dwo))
9960 {
9961 /* There can be only one. */
049412e3 9962 if (sections->abbrev.s.section != NULL)
80626a55 9963 return 0;
049412e3 9964 sections->abbrev.s.section = sectp;
80626a55
DE
9965 sections->abbrev.size = bfd_get_section_size (sectp);
9966 }
9967 else if (section_is_p (sectp->name, &names->info_dwo)
9968 || section_is_p (sectp->name, &names->types_dwo))
9969 {
9970 /* There can be only one. */
049412e3 9971 if (sections->info_or_types.s.section != NULL)
80626a55 9972 return 0;
049412e3 9973 sections->info_or_types.s.section = sectp;
80626a55
DE
9974 sections->info_or_types.size = bfd_get_section_size (sectp);
9975 }
9976 else if (section_is_p (sectp->name, &names->line_dwo))
9977 {
9978 /* There can be only one. */
049412e3 9979 if (sections->line.s.section != NULL)
80626a55 9980 return 0;
049412e3 9981 sections->line.s.section = sectp;
80626a55
DE
9982 sections->line.size = bfd_get_section_size (sectp);
9983 }
9984 else if (section_is_p (sectp->name, &names->loc_dwo))
9985 {
9986 /* There can be only one. */
049412e3 9987 if (sections->loc.s.section != NULL)
80626a55 9988 return 0;
049412e3 9989 sections->loc.s.section = sectp;
80626a55
DE
9990 sections->loc.size = bfd_get_section_size (sectp);
9991 }
9992 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9993 {
9994 /* There can be only one. */
049412e3 9995 if (sections->macinfo.s.section != NULL)
80626a55 9996 return 0;
049412e3 9997 sections->macinfo.s.section = sectp;
80626a55
DE
9998 sections->macinfo.size = bfd_get_section_size (sectp);
9999 }
10000 else if (section_is_p (sectp->name, &names->macro_dwo))
10001 {
10002 /* There can be only one. */
049412e3 10003 if (sections->macro.s.section != NULL)
80626a55 10004 return 0;
049412e3 10005 sections->macro.s.section = sectp;
80626a55
DE
10006 sections->macro.size = bfd_get_section_size (sectp);
10007 }
10008 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10009 {
10010 /* There can be only one. */
049412e3 10011 if (sections->str_offsets.s.section != NULL)
80626a55 10012 return 0;
049412e3 10013 sections->str_offsets.s.section = sectp;
80626a55
DE
10014 sections->str_offsets.size = bfd_get_section_size (sectp);
10015 }
10016 else
10017 {
10018 /* No other kind of section is valid. */
10019 return 0;
10020 }
10021
10022 return 1;
10023}
10024
73869dc2
DE
10025/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10026 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10027 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10028 This is for DWP version 1 files. */
80626a55
DE
10029
10030static struct dwo_unit *
73869dc2
DE
10031create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10032 uint32_t unit_index,
10033 const char *comp_dir,
10034 ULONGEST signature, int is_debug_types)
80626a55
DE
10035{
10036 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10037 const struct dwp_hash_table *dwp_htab =
10038 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10039 bfd *dbfd = dwp_file->dbfd;
10040 const char *kind = is_debug_types ? "TU" : "CU";
10041 struct dwo_file *dwo_file;
10042 struct dwo_unit *dwo_unit;
73869dc2 10043 struct virtual_v1_dwo_sections sections;
80626a55
DE
10044 void **dwo_file_slot;
10045 char *virtual_dwo_name;
80626a55
DE
10046 struct cleanup *cleanups;
10047 int i;
10048
73869dc2
DE
10049 gdb_assert (dwp_file->version == 1);
10050
b4f54984 10051 if (dwarf_read_debug)
80626a55 10052 {
73869dc2 10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10054 kind,
73869dc2 10055 pulongest (unit_index), hex_string (signature),
80626a55
DE
10056 dwp_file->name);
10057 }
10058
19ac8c2e 10059 /* Fetch the sections of this DWO unit.
80626a55
DE
10060 Put a limit on the number of sections we look for so that bad data
10061 doesn't cause us to loop forever. */
10062
73869dc2 10063#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10064 (1 /* .debug_info or .debug_types */ \
10065 + 1 /* .debug_abbrev */ \
10066 + 1 /* .debug_line */ \
10067 + 1 /* .debug_loc */ \
10068 + 1 /* .debug_str_offsets */ \
19ac8c2e 10069 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10070 + 1 /* trailing zero */)
10071
10072 memset (&sections, 0, sizeof (sections));
10073 cleanups = make_cleanup (null_cleanup, 0);
10074
73869dc2 10075 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10076 {
10077 asection *sectp;
10078 uint32_t section_nr =
10079 read_4_bytes (dbfd,
73869dc2
DE
10080 dwp_htab->section_pool.v1.indices
10081 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10082
10083 if (section_nr == 0)
10084 break;
10085 if (section_nr >= dwp_file->num_sections)
10086 {
10087 error (_("Dwarf Error: bad DWP hash table, section number too large"
10088 " [in module %s]"),
10089 dwp_file->name);
10090 }
10091
10092 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10093 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10094 {
10095 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10096 " [in module %s]"),
10097 dwp_file->name);
10098 }
10099 }
10100
10101 if (i < 2
a32a8923
DE
10102 || dwarf2_section_empty_p (&sections.info_or_types)
10103 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10104 {
10105 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10106 " [in module %s]"),
10107 dwp_file->name);
10108 }
73869dc2 10109 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10110 {
10111 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10112 " [in module %s]"),
10113 dwp_file->name);
10114 }
10115
10116 /* It's easier for the rest of the code if we fake a struct dwo_file and
10117 have dwo_unit "live" in that. At least for now.
10118
10119 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10120 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10121 file, we can combine them back into a virtual DWO file to save space
10122 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10123 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10124
2792b94d
PM
10125 virtual_dwo_name =
10126 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10127 get_section_id (&sections.abbrev),
10128 get_section_id (&sections.line),
10129 get_section_id (&sections.loc),
10130 get_section_id (&sections.str_offsets));
80626a55
DE
10131 make_cleanup (xfree, virtual_dwo_name);
10132 /* Can we use an existing virtual DWO file? */
0ac5b59e 10133 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10134 /* Create one if necessary. */
10135 if (*dwo_file_slot == NULL)
10136 {
b4f54984 10137 if (dwarf_read_debug)
80626a55
DE
10138 {
10139 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10140 virtual_dwo_name);
10141 }
10142 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10143 dwo_file->dwo_name
10144 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10145 virtual_dwo_name,
10146 strlen (virtual_dwo_name));
0ac5b59e 10147 dwo_file->comp_dir = comp_dir;
80626a55
DE
10148 dwo_file->sections.abbrev = sections.abbrev;
10149 dwo_file->sections.line = sections.line;
10150 dwo_file->sections.loc = sections.loc;
10151 dwo_file->sections.macinfo = sections.macinfo;
10152 dwo_file->sections.macro = sections.macro;
10153 dwo_file->sections.str_offsets = sections.str_offsets;
10154 /* The "str" section is global to the entire DWP file. */
10155 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10156 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10157 there's no need to record it in dwo_file.
10158 Also, we can't simply record type sections in dwo_file because
10159 we record a pointer into the vector in dwo_unit. As we collect more
10160 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10161 for it, invalidating all copies of pointers into the previous
10162 contents. */
80626a55
DE
10163 *dwo_file_slot = dwo_file;
10164 }
10165 else
10166 {
b4f54984 10167 if (dwarf_read_debug)
80626a55
DE
10168 {
10169 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10170 virtual_dwo_name);
10171 }
9a3c8263 10172 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10173 }
10174 do_cleanups (cleanups);
10175
10176 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10177 dwo_unit->dwo_file = dwo_file;
10178 dwo_unit->signature = signature;
8d749320
SM
10179 dwo_unit->section =
10180 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10181 *dwo_unit->section = sections.info_or_types;
57d63ce2 10182 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10183
10184 return dwo_unit;
10185}
10186
73869dc2
DE
10187/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10188 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10189 piece within that section used by a TU/CU, return a virtual section
10190 of just that piece. */
10191
10192static struct dwarf2_section_info
10193create_dwp_v2_section (struct dwarf2_section_info *section,
10194 bfd_size_type offset, bfd_size_type size)
10195{
10196 struct dwarf2_section_info result;
10197 asection *sectp;
10198
10199 gdb_assert (section != NULL);
10200 gdb_assert (!section->is_virtual);
10201
10202 memset (&result, 0, sizeof (result));
10203 result.s.containing_section = section;
10204 result.is_virtual = 1;
10205
10206 if (size == 0)
10207 return result;
10208
10209 sectp = get_section_bfd_section (section);
10210
10211 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10212 bounds of the real section. This is a pretty-rare event, so just
10213 flag an error (easier) instead of a warning and trying to cope. */
10214 if (sectp == NULL
10215 || offset + size > bfd_get_section_size (sectp))
10216 {
10217 bfd *abfd = sectp->owner;
10218
10219 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10220 " in section %s [in module %s]"),
10221 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10222 objfile_name (dwarf2_per_objfile->objfile));
10223 }
10224
10225 result.virtual_offset = offset;
10226 result.size = size;
10227 return result;
10228}
10229
10230/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10231 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10232 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10233 This is for DWP version 2 files. */
10234
10235static struct dwo_unit *
10236create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10237 uint32_t unit_index,
10238 const char *comp_dir,
10239 ULONGEST signature, int is_debug_types)
10240{
10241 struct objfile *objfile = dwarf2_per_objfile->objfile;
10242 const struct dwp_hash_table *dwp_htab =
10243 is_debug_types ? dwp_file->tus : dwp_file->cus;
10244 bfd *dbfd = dwp_file->dbfd;
10245 const char *kind = is_debug_types ? "TU" : "CU";
10246 struct dwo_file *dwo_file;
10247 struct dwo_unit *dwo_unit;
10248 struct virtual_v2_dwo_sections sections;
10249 void **dwo_file_slot;
10250 char *virtual_dwo_name;
73869dc2
DE
10251 struct cleanup *cleanups;
10252 int i;
10253
10254 gdb_assert (dwp_file->version == 2);
10255
b4f54984 10256 if (dwarf_read_debug)
73869dc2
DE
10257 {
10258 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10259 kind,
10260 pulongest (unit_index), hex_string (signature),
10261 dwp_file->name);
10262 }
10263
10264 /* Fetch the section offsets of this DWO unit. */
10265
10266 memset (&sections, 0, sizeof (sections));
10267 cleanups = make_cleanup (null_cleanup, 0);
10268
10269 for (i = 0; i < dwp_htab->nr_columns; ++i)
10270 {
10271 uint32_t offset = read_4_bytes (dbfd,
10272 dwp_htab->section_pool.v2.offsets
10273 + (((unit_index - 1) * dwp_htab->nr_columns
10274 + i)
10275 * sizeof (uint32_t)));
10276 uint32_t size = read_4_bytes (dbfd,
10277 dwp_htab->section_pool.v2.sizes
10278 + (((unit_index - 1) * dwp_htab->nr_columns
10279 + i)
10280 * sizeof (uint32_t)));
10281
10282 switch (dwp_htab->section_pool.v2.section_ids[i])
10283 {
10284 case DW_SECT_INFO:
10285 case DW_SECT_TYPES:
10286 sections.info_or_types_offset = offset;
10287 sections.info_or_types_size = size;
10288 break;
10289 case DW_SECT_ABBREV:
10290 sections.abbrev_offset = offset;
10291 sections.abbrev_size = size;
10292 break;
10293 case DW_SECT_LINE:
10294 sections.line_offset = offset;
10295 sections.line_size = size;
10296 break;
10297 case DW_SECT_LOC:
10298 sections.loc_offset = offset;
10299 sections.loc_size = size;
10300 break;
10301 case DW_SECT_STR_OFFSETS:
10302 sections.str_offsets_offset = offset;
10303 sections.str_offsets_size = size;
10304 break;
10305 case DW_SECT_MACINFO:
10306 sections.macinfo_offset = offset;
10307 sections.macinfo_size = size;
10308 break;
10309 case DW_SECT_MACRO:
10310 sections.macro_offset = offset;
10311 sections.macro_size = size;
10312 break;
10313 }
10314 }
10315
10316 /* It's easier for the rest of the code if we fake a struct dwo_file and
10317 have dwo_unit "live" in that. At least for now.
10318
10319 The DWP file can be made up of a random collection of CUs and TUs.
10320 However, for each CU + set of TUs that came from the same original DWO
10321 file, we can combine them back into a virtual DWO file to save space
10322 (fewer struct dwo_file objects to allocate). Remember that for really
10323 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10324
10325 virtual_dwo_name =
10326 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10327 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10328 (long) (sections.line_size ? sections.line_offset : 0),
10329 (long) (sections.loc_size ? sections.loc_offset : 0),
10330 (long) (sections.str_offsets_size
10331 ? sections.str_offsets_offset : 0));
10332 make_cleanup (xfree, virtual_dwo_name);
10333 /* Can we use an existing virtual DWO file? */
10334 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10335 /* Create one if necessary. */
10336 if (*dwo_file_slot == NULL)
10337 {
b4f54984 10338 if (dwarf_read_debug)
73869dc2
DE
10339 {
10340 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10341 virtual_dwo_name);
10342 }
10343 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10344 dwo_file->dwo_name
10345 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10346 virtual_dwo_name,
10347 strlen (virtual_dwo_name));
73869dc2
DE
10348 dwo_file->comp_dir = comp_dir;
10349 dwo_file->sections.abbrev =
10350 create_dwp_v2_section (&dwp_file->sections.abbrev,
10351 sections.abbrev_offset, sections.abbrev_size);
10352 dwo_file->sections.line =
10353 create_dwp_v2_section (&dwp_file->sections.line,
10354 sections.line_offset, sections.line_size);
10355 dwo_file->sections.loc =
10356 create_dwp_v2_section (&dwp_file->sections.loc,
10357 sections.loc_offset, sections.loc_size);
10358 dwo_file->sections.macinfo =
10359 create_dwp_v2_section (&dwp_file->sections.macinfo,
10360 sections.macinfo_offset, sections.macinfo_size);
10361 dwo_file->sections.macro =
10362 create_dwp_v2_section (&dwp_file->sections.macro,
10363 sections.macro_offset, sections.macro_size);
10364 dwo_file->sections.str_offsets =
10365 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10366 sections.str_offsets_offset,
10367 sections.str_offsets_size);
10368 /* The "str" section is global to the entire DWP file. */
10369 dwo_file->sections.str = dwp_file->sections.str;
10370 /* The info or types section is assigned below to dwo_unit,
10371 there's no need to record it in dwo_file.
10372 Also, we can't simply record type sections in dwo_file because
10373 we record a pointer into the vector in dwo_unit. As we collect more
10374 types we'll grow the vector and eventually have to reallocate space
10375 for it, invalidating all copies of pointers into the previous
10376 contents. */
10377 *dwo_file_slot = dwo_file;
10378 }
10379 else
10380 {
b4f54984 10381 if (dwarf_read_debug)
73869dc2
DE
10382 {
10383 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10384 virtual_dwo_name);
10385 }
9a3c8263 10386 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10387 }
10388 do_cleanups (cleanups);
10389
10390 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10391 dwo_unit->dwo_file = dwo_file;
10392 dwo_unit->signature = signature;
8d749320
SM
10393 dwo_unit->section =
10394 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10395 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10396 ? &dwp_file->sections.types
10397 : &dwp_file->sections.info,
10398 sections.info_or_types_offset,
10399 sections.info_or_types_size);
10400 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10401
10402 return dwo_unit;
10403}
10404
57d63ce2
DE
10405/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10406 Returns NULL if the signature isn't found. */
80626a55
DE
10407
10408static struct dwo_unit *
57d63ce2
DE
10409lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10410 ULONGEST signature, int is_debug_types)
80626a55 10411{
57d63ce2
DE
10412 const struct dwp_hash_table *dwp_htab =
10413 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10414 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10415 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10416 uint32_t hash = signature & mask;
10417 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10418 unsigned int i;
10419 void **slot;
870f88f7 10420 struct dwo_unit find_dwo_cu;
80626a55
DE
10421
10422 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10423 find_dwo_cu.signature = signature;
19ac8c2e
DE
10424 slot = htab_find_slot (is_debug_types
10425 ? dwp_file->loaded_tus
10426 : dwp_file->loaded_cus,
10427 &find_dwo_cu, INSERT);
80626a55
DE
10428
10429 if (*slot != NULL)
9a3c8263 10430 return (struct dwo_unit *) *slot;
80626a55
DE
10431
10432 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10433 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10434 {
10435 ULONGEST signature_in_table;
10436
10437 signature_in_table =
57d63ce2 10438 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10439 if (signature_in_table == signature)
10440 {
57d63ce2
DE
10441 uint32_t unit_index =
10442 read_4_bytes (dbfd,
10443 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10444
73869dc2
DE
10445 if (dwp_file->version == 1)
10446 {
10447 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10448 comp_dir, signature,
10449 is_debug_types);
10450 }
10451 else
10452 {
10453 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10454 comp_dir, signature,
10455 is_debug_types);
10456 }
9a3c8263 10457 return (struct dwo_unit *) *slot;
80626a55
DE
10458 }
10459 if (signature_in_table == 0)
10460 return NULL;
10461 hash = (hash + hash2) & mask;
10462 }
10463
10464 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10465 " [in module %s]"),
10466 dwp_file->name);
10467}
10468
ab5088bf 10469/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10470 Open the file specified by FILE_NAME and hand it off to BFD for
10471 preliminary analysis. Return a newly initialized bfd *, which
10472 includes a canonicalized copy of FILE_NAME.
80626a55 10473 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10474 SEARCH_CWD is true if the current directory is to be searched.
10475 It will be searched before debug-file-directory.
13aaf454
DE
10476 If successful, the file is added to the bfd include table of the
10477 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10478 If unable to find/open the file, return NULL.
3019eac3
DE
10479 NOTE: This function is derived from symfile_bfd_open. */
10480
10481static bfd *
6ac97d4c 10482try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10483{
10484 bfd *sym_bfd;
80626a55 10485 int desc, flags;
3019eac3 10486 char *absolute_name;
9c02c129
DE
10487 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10488 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10489 to debug_file_directory. */
10490 char *search_path;
10491 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10492
6ac97d4c
DE
10493 if (search_cwd)
10494 {
10495 if (*debug_file_directory != '\0')
10496 search_path = concat (".", dirname_separator_string,
b36cec19 10497 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10498 else
10499 search_path = xstrdup (".");
10500 }
9c02c129 10501 else
6ac97d4c 10502 search_path = xstrdup (debug_file_directory);
3019eac3 10503
492c0ab7 10504 flags = OPF_RETURN_REALPATH;
80626a55
DE
10505 if (is_dwp)
10506 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10507 desc = openp (search_path, flags, file_name,
3019eac3 10508 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10509 xfree (search_path);
3019eac3
DE
10510 if (desc < 0)
10511 return NULL;
10512
bb397797 10513 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10514 xfree (absolute_name);
9c02c129
DE
10515 if (sym_bfd == NULL)
10516 return NULL;
3019eac3
DE
10517 bfd_set_cacheable (sym_bfd, 1);
10518
10519 if (!bfd_check_format (sym_bfd, bfd_object))
10520 {
cbb099e8 10521 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10522 return NULL;
10523 }
10524
13aaf454
DE
10525 /* Success. Record the bfd as having been included by the objfile's bfd.
10526 This is important because things like demangled_names_hash lives in the
10527 objfile's per_bfd space and may have references to things like symbol
10528 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10530
3019eac3
DE
10531 return sym_bfd;
10532}
10533
ab5088bf 10534/* Try to open DWO file FILE_NAME.
3019eac3
DE
10535 COMP_DIR is the DW_AT_comp_dir attribute.
10536 The result is the bfd handle of the file.
10537 If there is a problem finding or opening the file, return NULL.
10538 Upon success, the canonicalized path of the file is stored in the bfd,
10539 same as symfile_bfd_open. */
10540
10541static bfd *
ab5088bf 10542open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10543{
10544 bfd *abfd;
3019eac3 10545
80626a55 10546 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10547 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10548
10549 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10550
10551 if (comp_dir != NULL)
10552 {
b36cec19
PA
10553 char *path_to_try = concat (comp_dir, SLASH_STRING,
10554 file_name, (char *) NULL);
3019eac3
DE
10555
10556 /* NOTE: If comp_dir is a relative path, this will also try the
10557 search path, which seems useful. */
6ac97d4c 10558 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10559 xfree (path_to_try);
10560 if (abfd != NULL)
10561 return abfd;
10562 }
10563
10564 /* That didn't work, try debug-file-directory, which, despite its name,
10565 is a list of paths. */
10566
10567 if (*debug_file_directory == '\0')
10568 return NULL;
10569
6ac97d4c 10570 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10571}
10572
80626a55
DE
10573/* This function is mapped across the sections and remembers the offset and
10574 size of each of the DWO debugging sections we are interested in. */
10575
10576static void
10577dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10578{
9a3c8263 10579 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10580 const struct dwop_section_names *names = &dwop_section_names;
10581
10582 if (section_is_p (sectp->name, &names->abbrev_dwo))
10583 {
049412e3 10584 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10585 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->info_dwo))
10588 {
049412e3 10589 dwo_sections->info.s.section = sectp;
80626a55
DE
10590 dwo_sections->info.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->line_dwo))
10593 {
049412e3 10594 dwo_sections->line.s.section = sectp;
80626a55
DE
10595 dwo_sections->line.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->loc_dwo))
10598 {
049412e3 10599 dwo_sections->loc.s.section = sectp;
80626a55
DE
10600 dwo_sections->loc.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10603 {
049412e3 10604 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10605 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10606 }
10607 else if (section_is_p (sectp->name, &names->macro_dwo))
10608 {
049412e3 10609 dwo_sections->macro.s.section = sectp;
80626a55
DE
10610 dwo_sections->macro.size = bfd_get_section_size (sectp);
10611 }
10612 else if (section_is_p (sectp->name, &names->str_dwo))
10613 {
049412e3 10614 dwo_sections->str.s.section = sectp;
80626a55
DE
10615 dwo_sections->str.size = bfd_get_section_size (sectp);
10616 }
10617 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10618 {
049412e3 10619 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10620 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10621 }
10622 else if (section_is_p (sectp->name, &names->types_dwo))
10623 {
10624 struct dwarf2_section_info type_section;
10625
10626 memset (&type_section, 0, sizeof (type_section));
049412e3 10627 type_section.s.section = sectp;
80626a55
DE
10628 type_section.size = bfd_get_section_size (sectp);
10629 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10630 &type_section);
10631 }
10632}
10633
ab5088bf 10634/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10635 by PER_CU. This is for the non-DWP case.
80626a55 10636 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10637
10638static struct dwo_file *
0ac5b59e
DE
10639open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10640 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10641{
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10643 struct dwo_file *dwo_file;
10644 bfd *dbfd;
3019eac3
DE
10645 struct cleanup *cleanups;
10646
ab5088bf 10647 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10648 if (dbfd == NULL)
10649 {
b4f54984 10650 if (dwarf_read_debug)
80626a55
DE
10651 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10652 return NULL;
10653 }
10654 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10655 dwo_file->dwo_name = dwo_name;
10656 dwo_file->comp_dir = comp_dir;
80626a55 10657 dwo_file->dbfd = dbfd;
3019eac3
DE
10658
10659 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10660
80626a55 10661 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10662
19c3d4c9 10663 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10664
10665 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10666 dwo_file->sections.types);
10667
10668 discard_cleanups (cleanups);
10669
b4f54984 10670 if (dwarf_read_debug)
80626a55
DE
10671 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10672
3019eac3
DE
10673 return dwo_file;
10674}
10675
80626a55 10676/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10677 size of each of the DWP debugging sections common to version 1 and 2 that
10678 we are interested in. */
3019eac3 10679
80626a55 10680static void
73869dc2
DE
10681dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10682 void *dwp_file_ptr)
3019eac3 10683{
9a3c8263 10684 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10685 const struct dwop_section_names *names = &dwop_section_names;
10686 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10687
80626a55 10688 /* Record the ELF section number for later lookup: this is what the
73869dc2 10689 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10690 gdb_assert (elf_section_nr < dwp_file->num_sections);
10691 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10692
80626a55
DE
10693 /* Look for specific sections that we need. */
10694 if (section_is_p (sectp->name, &names->str_dwo))
10695 {
049412e3 10696 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10697 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->cu_index))
10700 {
049412e3 10701 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10702 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->tu_index))
10705 {
049412e3 10706 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10707 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10708 }
10709}
3019eac3 10710
73869dc2
DE
10711/* This function is mapped across the sections and remembers the offset and
10712 size of each of the DWP version 2 debugging sections that we are interested
10713 in. This is split into a separate function because we don't know if we
10714 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10715
10716static void
10717dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10718{
9a3c8263 10719 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10720 const struct dwop_section_names *names = &dwop_section_names;
10721 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10722
10723 /* Record the ELF section number for later lookup: this is what the
10724 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10725 gdb_assert (elf_section_nr < dwp_file->num_sections);
10726 dwp_file->elf_sections[elf_section_nr] = sectp;
10727
10728 /* Look for specific sections that we need. */
10729 if (section_is_p (sectp->name, &names->abbrev_dwo))
10730 {
049412e3 10731 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10732 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->info_dwo))
10735 {
049412e3 10736 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10737 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->line_dwo))
10740 {
049412e3 10741 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10742 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->loc_dwo))
10745 {
049412e3 10746 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10747 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10748 }
10749 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10750 {
049412e3 10751 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10752 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10753 }
10754 else if (section_is_p (sectp->name, &names->macro_dwo))
10755 {
049412e3 10756 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10757 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10758 }
10759 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10760 {
049412e3 10761 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10762 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10763 }
10764 else if (section_is_p (sectp->name, &names->types_dwo))
10765 {
049412e3 10766 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10767 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10768 }
10769}
10770
80626a55 10771/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10772
80626a55
DE
10773static hashval_t
10774hash_dwp_loaded_cutus (const void *item)
10775{
9a3c8263 10776 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10777
80626a55
DE
10778 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10779 return dwo_unit->signature;
3019eac3
DE
10780}
10781
80626a55 10782/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10783
80626a55
DE
10784static int
10785eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10786{
9a3c8263
SM
10787 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10788 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10789
80626a55
DE
10790 return dua->signature == dub->signature;
10791}
3019eac3 10792
80626a55 10793/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10794
80626a55
DE
10795static htab_t
10796allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10797{
10798 return htab_create_alloc_ex (3,
10799 hash_dwp_loaded_cutus,
10800 eq_dwp_loaded_cutus,
10801 NULL,
10802 &objfile->objfile_obstack,
10803 hashtab_obstack_allocate,
10804 dummy_obstack_deallocate);
10805}
3019eac3 10806
ab5088bf
DE
10807/* Try to open DWP file FILE_NAME.
10808 The result is the bfd handle of the file.
10809 If there is a problem finding or opening the file, return NULL.
10810 Upon success, the canonicalized path of the file is stored in the bfd,
10811 same as symfile_bfd_open. */
10812
10813static bfd *
10814open_dwp_file (const char *file_name)
10815{
6ac97d4c
DE
10816 bfd *abfd;
10817
10818 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10819 if (abfd != NULL)
10820 return abfd;
10821
10822 /* Work around upstream bug 15652.
10823 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10824 [Whether that's a "bug" is debatable, but it is getting in our way.]
10825 We have no real idea where the dwp file is, because gdb's realpath-ing
10826 of the executable's path may have discarded the needed info.
10827 [IWBN if the dwp file name was recorded in the executable, akin to
10828 .gnu_debuglink, but that doesn't exist yet.]
10829 Strip the directory from FILE_NAME and search again. */
10830 if (*debug_file_directory != '\0')
10831 {
10832 /* Don't implicitly search the current directory here.
10833 If the user wants to search "." to handle this case,
10834 it must be added to debug-file-directory. */
10835 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10836 0 /*search_cwd*/);
10837 }
10838
10839 return NULL;
ab5088bf
DE
10840}
10841
80626a55
DE
10842/* Initialize the use of the DWP file for the current objfile.
10843 By convention the name of the DWP file is ${objfile}.dwp.
10844 The result is NULL if it can't be found. */
a766d390 10845
80626a55 10846static struct dwp_file *
ab5088bf 10847open_and_init_dwp_file (void)
80626a55
DE
10848{
10849 struct objfile *objfile = dwarf2_per_objfile->objfile;
10850 struct dwp_file *dwp_file;
10851 char *dwp_name;
10852 bfd *dbfd;
6c447423 10853 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10854
82bf32bc
JK
10855 /* Try to find first .dwp for the binary file before any symbolic links
10856 resolving. */
6c447423
DE
10857
10858 /* If the objfile is a debug file, find the name of the real binary
10859 file and get the name of dwp file from there. */
10860 if (objfile->separate_debug_objfile_backlink != NULL)
10861 {
10862 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10863 const char *backlink_basename = lbasename (backlink->original_name);
10864 char *debug_dirname = ldirname (objfile->original_name);
10865
10866 make_cleanup (xfree, debug_dirname);
10867 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10868 SLASH_STRING, backlink_basename);
10869 }
10870 else
10871 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10872 make_cleanup (xfree, dwp_name);
80626a55 10873
ab5088bf 10874 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10875 if (dbfd == NULL
10876 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10877 {
10878 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10879 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10880 make_cleanup (xfree, dwp_name);
10881 dbfd = open_dwp_file (dwp_name);
10882 }
10883
80626a55
DE
10884 if (dbfd == NULL)
10885 {
b4f54984 10886 if (dwarf_read_debug)
80626a55
DE
10887 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10888 do_cleanups (cleanups);
10889 return NULL;
3019eac3 10890 }
80626a55 10891 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10892 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10893 dwp_file->dbfd = dbfd;
10894 do_cleanups (cleanups);
c906108c 10895
80626a55
DE
10896 /* +1: section 0 is unused */
10897 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10898 dwp_file->elf_sections =
10899 OBSTACK_CALLOC (&objfile->objfile_obstack,
10900 dwp_file->num_sections, asection *);
10901
73869dc2 10902 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10903
10904 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10905
10906 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10907
73869dc2
DE
10908 /* The DWP file version is stored in the hash table. Oh well. */
10909 if (dwp_file->cus->version != dwp_file->tus->version)
10910 {
10911 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10912 pretty bizarre. We use pulongest here because that's the established
4d65956b 10913 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10914 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10915 " TU version %s [in DWP file %s]"),
10916 pulongest (dwp_file->cus->version),
10917 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10918 }
10919 dwp_file->version = dwp_file->cus->version;
10920
10921 if (dwp_file->version == 2)
10922 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10923
19ac8c2e
DE
10924 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10925 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10926
b4f54984 10927 if (dwarf_read_debug)
80626a55
DE
10928 {
10929 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10930 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10931 " %s CUs, %s TUs\n",
10932 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10933 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10934 }
10935
10936 return dwp_file;
3019eac3 10937}
c906108c 10938
ab5088bf
DE
10939/* Wrapper around open_and_init_dwp_file, only open it once. */
10940
10941static struct dwp_file *
10942get_dwp_file (void)
10943{
10944 if (! dwarf2_per_objfile->dwp_checked)
10945 {
10946 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10947 dwarf2_per_objfile->dwp_checked = 1;
10948 }
10949 return dwarf2_per_objfile->dwp_file;
10950}
10951
80626a55
DE
10952/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10953 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10954 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10955 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10956 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10957
10958 This is called, for example, when wanting to read a variable with a
10959 complex location. Therefore we don't want to do file i/o for every call.
10960 Therefore we don't want to look for a DWO file on every call.
10961 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10962 then we check if we've already seen DWO_NAME, and only THEN do we check
10963 for a DWO file.
10964
1c658ad5 10965 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10966 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10967
3019eac3 10968static struct dwo_unit *
80626a55
DE
10969lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10970 const char *dwo_name, const char *comp_dir,
10971 ULONGEST signature, int is_debug_types)
3019eac3
DE
10972{
10973 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10974 const char *kind = is_debug_types ? "TU" : "CU";
10975 void **dwo_file_slot;
3019eac3 10976 struct dwo_file *dwo_file;
80626a55 10977 struct dwp_file *dwp_file;
cb1df416 10978
6a506a2d
DE
10979 /* First see if there's a DWP file.
10980 If we have a DWP file but didn't find the DWO inside it, don't
10981 look for the original DWO file. It makes gdb behave differently
10982 depending on whether one is debugging in the build tree. */
cf2c3c16 10983
ab5088bf 10984 dwp_file = get_dwp_file ();
80626a55 10985 if (dwp_file != NULL)
cf2c3c16 10986 {
80626a55
DE
10987 const struct dwp_hash_table *dwp_htab =
10988 is_debug_types ? dwp_file->tus : dwp_file->cus;
10989
10990 if (dwp_htab != NULL)
10991 {
10992 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10993 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10994 signature, is_debug_types);
80626a55
DE
10995
10996 if (dwo_cutu != NULL)
10997 {
b4f54984 10998 if (dwarf_read_debug)
80626a55
DE
10999 {
11000 fprintf_unfiltered (gdb_stdlog,
11001 "Virtual DWO %s %s found: @%s\n",
11002 kind, hex_string (signature),
11003 host_address_to_string (dwo_cutu));
11004 }
11005 return dwo_cutu;
11006 }
11007 }
11008 }
6a506a2d 11009 else
80626a55 11010 {
6a506a2d 11011 /* No DWP file, look for the DWO file. */
80626a55 11012
6a506a2d
DE
11013 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11014 if (*dwo_file_slot == NULL)
80626a55 11015 {
6a506a2d
DE
11016 /* Read in the file and build a table of the CUs/TUs it contains. */
11017 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11018 }
6a506a2d 11019 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11020 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11021
6a506a2d 11022 if (dwo_file != NULL)
19c3d4c9 11023 {
6a506a2d
DE
11024 struct dwo_unit *dwo_cutu = NULL;
11025
11026 if (is_debug_types && dwo_file->tus)
11027 {
11028 struct dwo_unit find_dwo_cutu;
11029
11030 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11031 find_dwo_cutu.signature = signature;
9a3c8263
SM
11032 dwo_cutu
11033 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11034 }
11035 else if (!is_debug_types && dwo_file->cu)
80626a55 11036 {
6a506a2d
DE
11037 if (signature == dwo_file->cu->signature)
11038 dwo_cutu = dwo_file->cu;
11039 }
11040
11041 if (dwo_cutu != NULL)
11042 {
b4f54984 11043 if (dwarf_read_debug)
6a506a2d
DE
11044 {
11045 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11046 kind, dwo_name, hex_string (signature),
11047 host_address_to_string (dwo_cutu));
11048 }
11049 return dwo_cutu;
80626a55
DE
11050 }
11051 }
2e276125 11052 }
9cdd5dbd 11053
80626a55
DE
11054 /* We didn't find it. This could mean a dwo_id mismatch, or
11055 someone deleted the DWO/DWP file, or the search path isn't set up
11056 correctly to find the file. */
11057
b4f54984 11058 if (dwarf_read_debug)
80626a55
DE
11059 {
11060 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11061 kind, dwo_name, hex_string (signature));
11062 }
3019eac3 11063
6656a72d
DE
11064 /* This is a warning and not a complaint because it can be caused by
11065 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11066 {
11067 /* Print the name of the DWP file if we looked there, helps the user
11068 better diagnose the problem. */
11069 char *dwp_text = NULL;
11070 struct cleanup *cleanups;
11071
11072 if (dwp_file != NULL)
11073 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11074 cleanups = make_cleanup (xfree, dwp_text);
11075
11076 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11077 " [in module %s]"),
11078 kind, dwo_name, hex_string (signature),
11079 dwp_text != NULL ? dwp_text : "",
11080 this_unit->is_debug_types ? "TU" : "CU",
11081 this_unit->offset.sect_off, objfile_name (objfile));
11082
11083 do_cleanups (cleanups);
11084 }
3019eac3 11085 return NULL;
5fb290d7
DJ
11086}
11087
80626a55
DE
11088/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11089 See lookup_dwo_cutu_unit for details. */
11090
11091static struct dwo_unit *
11092lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11093 const char *dwo_name, const char *comp_dir,
11094 ULONGEST signature)
11095{
11096 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11097}
11098
11099/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11100 See lookup_dwo_cutu_unit for details. */
11101
11102static struct dwo_unit *
11103lookup_dwo_type_unit (struct signatured_type *this_tu,
11104 const char *dwo_name, const char *comp_dir)
11105{
11106 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11107}
11108
89e63ee4
DE
11109/* Traversal function for queue_and_load_all_dwo_tus. */
11110
11111static int
11112queue_and_load_dwo_tu (void **slot, void *info)
11113{
11114 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11115 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11116 ULONGEST signature = dwo_unit->signature;
11117 struct signatured_type *sig_type =
11118 lookup_dwo_signatured_type (per_cu->cu, signature);
11119
11120 if (sig_type != NULL)
11121 {
11122 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11123
11124 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11125 a real dependency of PER_CU on SIG_TYPE. That is detected later
11126 while processing PER_CU. */
11127 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11128 load_full_type_unit (sig_cu);
11129 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11130 }
11131
11132 return 1;
11133}
11134
11135/* Queue all TUs contained in the DWO of PER_CU to be read in.
11136 The DWO may have the only definition of the type, though it may not be
11137 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11138 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11139
11140static void
11141queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11142{
11143 struct dwo_unit *dwo_unit;
11144 struct dwo_file *dwo_file;
11145
11146 gdb_assert (!per_cu->is_debug_types);
11147 gdb_assert (get_dwp_file () == NULL);
11148 gdb_assert (per_cu->cu != NULL);
11149
11150 dwo_unit = per_cu->cu->dwo_unit;
11151 gdb_assert (dwo_unit != NULL);
11152
11153 dwo_file = dwo_unit->dwo_file;
11154 if (dwo_file->tus != NULL)
11155 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11156}
11157
3019eac3
DE
11158/* Free all resources associated with DWO_FILE.
11159 Close the DWO file and munmap the sections.
11160 All memory should be on the objfile obstack. */
348e048f
DE
11161
11162static void
3019eac3 11163free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11164{
348e048f 11165
5c6fa7ab 11166 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11167 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11168
3019eac3
DE
11169 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11170}
348e048f 11171
3019eac3 11172/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11173
3019eac3
DE
11174static void
11175free_dwo_file_cleanup (void *arg)
11176{
11177 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11178 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11179
3019eac3
DE
11180 free_dwo_file (dwo_file, objfile);
11181}
348e048f 11182
3019eac3 11183/* Traversal function for free_dwo_files. */
2ab95328 11184
3019eac3
DE
11185static int
11186free_dwo_file_from_slot (void **slot, void *info)
11187{
11188 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11189 struct objfile *objfile = (struct objfile *) info;
348e048f 11190
3019eac3 11191 free_dwo_file (dwo_file, objfile);
348e048f 11192
3019eac3
DE
11193 return 1;
11194}
348e048f 11195
3019eac3 11196/* Free all resources associated with DWO_FILES. */
348e048f 11197
3019eac3
DE
11198static void
11199free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11200{
11201 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11202}
3019eac3
DE
11203\f
11204/* Read in various DIEs. */
348e048f 11205
d389af10
JK
11206/* qsort helper for inherit_abstract_dies. */
11207
11208static int
11209unsigned_int_compar (const void *ap, const void *bp)
11210{
11211 unsigned int a = *(unsigned int *) ap;
11212 unsigned int b = *(unsigned int *) bp;
11213
11214 return (a > b) - (b > a);
11215}
11216
11217/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11218 Inherit only the children of the DW_AT_abstract_origin DIE not being
11219 already referenced by DW_AT_abstract_origin from the children of the
11220 current DIE. */
d389af10
JK
11221
11222static void
11223inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11224{
11225 struct die_info *child_die;
11226 unsigned die_children_count;
11227 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11228 sect_offset *offsets;
11229 sect_offset *offsets_end, *offsetp;
d389af10
JK
11230 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11231 struct die_info *origin_die;
11232 /* Iterator of the ORIGIN_DIE children. */
11233 struct die_info *origin_child_die;
11234 struct cleanup *cleanups;
11235 struct attribute *attr;
cd02d79d
PA
11236 struct dwarf2_cu *origin_cu;
11237 struct pending **origin_previous_list_in_scope;
d389af10
JK
11238
11239 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11240 if (!attr)
11241 return;
11242
cd02d79d
PA
11243 /* Note that following die references may follow to a die in a
11244 different cu. */
11245
11246 origin_cu = cu;
11247 origin_die = follow_die_ref (die, attr, &origin_cu);
11248
11249 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11250 symbols in. */
11251 origin_previous_list_in_scope = origin_cu->list_in_scope;
11252 origin_cu->list_in_scope = cu->list_in_scope;
11253
edb3359d
DJ
11254 if (die->tag != origin_die->tag
11255 && !(die->tag == DW_TAG_inlined_subroutine
11256 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11257 complaint (&symfile_complaints,
11258 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11259 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11260
11261 child_die = die->child;
11262 die_children_count = 0;
11263 while (child_die && child_die->tag)
11264 {
11265 child_die = sibling_die (child_die);
11266 die_children_count++;
11267 }
8d749320 11268 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11269 cleanups = make_cleanup (xfree, offsets);
11270
11271 offsets_end = offsets;
3ea89b92
PMR
11272 for (child_die = die->child;
11273 child_die && child_die->tag;
11274 child_die = sibling_die (child_die))
11275 {
11276 struct die_info *child_origin_die;
11277 struct dwarf2_cu *child_origin_cu;
11278
11279 /* We are trying to process concrete instance entries:
11280 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11281 it's not relevant to our analysis here. i.e. detecting DIEs that are
11282 present in the abstract instance but not referenced in the concrete
11283 one. */
11284 if (child_die->tag == DW_TAG_GNU_call_site)
11285 continue;
11286
c38f313d
DJ
11287 /* For each CHILD_DIE, find the corresponding child of
11288 ORIGIN_DIE. If there is more than one layer of
11289 DW_AT_abstract_origin, follow them all; there shouldn't be,
11290 but GCC versions at least through 4.4 generate this (GCC PR
11291 40573). */
3ea89b92
PMR
11292 child_origin_die = child_die;
11293 child_origin_cu = cu;
c38f313d
DJ
11294 while (1)
11295 {
cd02d79d
PA
11296 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11297 child_origin_cu);
c38f313d
DJ
11298 if (attr == NULL)
11299 break;
cd02d79d
PA
11300 child_origin_die = follow_die_ref (child_origin_die, attr,
11301 &child_origin_cu);
c38f313d
DJ
11302 }
11303
d389af10
JK
11304 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11305 counterpart may exist. */
c38f313d 11306 if (child_origin_die != child_die)
d389af10 11307 {
edb3359d
DJ
11308 if (child_die->tag != child_origin_die->tag
11309 && !(child_die->tag == DW_TAG_inlined_subroutine
11310 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11311 complaint (&symfile_complaints,
11312 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11313 "different tags"), child_die->offset.sect_off,
11314 child_origin_die->offset.sect_off);
c38f313d
DJ
11315 if (child_origin_die->parent != origin_die)
11316 complaint (&symfile_complaints,
11317 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11318 "different parents"), child_die->offset.sect_off,
11319 child_origin_die->offset.sect_off);
c38f313d
DJ
11320 else
11321 *offsets_end++ = child_origin_die->offset;
d389af10 11322 }
d389af10
JK
11323 }
11324 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11325 unsigned_int_compar);
11326 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11327 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11328 complaint (&symfile_complaints,
11329 _("Multiple children of DIE 0x%x refer "
11330 "to DIE 0x%x as their abstract origin"),
b64f50a1 11331 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11332
11333 offsetp = offsets;
11334 origin_child_die = origin_die->child;
11335 while (origin_child_die && origin_child_die->tag)
11336 {
11337 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11338 while (offsetp < offsets_end
11339 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11340 offsetp++;
b64f50a1
JK
11341 if (offsetp >= offsets_end
11342 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11343 {
adde2bff
DE
11344 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11345 Check whether we're already processing ORIGIN_CHILD_DIE.
11346 This can happen with mutually referenced abstract_origins.
11347 PR 16581. */
11348 if (!origin_child_die->in_process)
11349 process_die (origin_child_die, origin_cu);
d389af10
JK
11350 }
11351 origin_child_die = sibling_die (origin_child_die);
11352 }
cd02d79d 11353 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11354
11355 do_cleanups (cleanups);
11356}
11357
c906108c 11358static void
e7c27a73 11359read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11360{
e7c27a73 11361 struct objfile *objfile = cu->objfile;
3e29f34a 11362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11363 struct context_stack *newobj;
c906108c
SS
11364 CORE_ADDR lowpc;
11365 CORE_ADDR highpc;
11366 struct die_info *child_die;
edb3359d 11367 struct attribute *attr, *call_line, *call_file;
15d034d0 11368 const char *name;
e142c38c 11369 CORE_ADDR baseaddr;
801e3a5b 11370 struct block *block;
edb3359d 11371 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11372 VEC (symbolp) *template_args = NULL;
11373 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11374
11375 if (inlined_func)
11376 {
11377 /* If we do not have call site information, we can't show the
11378 caller of this inlined function. That's too confusing, so
11379 only use the scope for local variables. */
11380 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11381 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11382 if (call_line == NULL || call_file == NULL)
11383 {
11384 read_lexical_block_scope (die, cu);
11385 return;
11386 }
11387 }
c906108c 11388
e142c38c
DJ
11389 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11390
94af9270 11391 name = dwarf2_name (die, cu);
c906108c 11392
e8d05480
JB
11393 /* Ignore functions with missing or empty names. These are actually
11394 illegal according to the DWARF standard. */
11395 if (name == NULL)
11396 {
11397 complaint (&symfile_complaints,
b64f50a1
JK
11398 _("missing name for subprogram DIE at %d"),
11399 die->offset.sect_off);
e8d05480
JB
11400 return;
11401 }
11402
11403 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11404 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11405 <= PC_BOUNDS_INVALID)
e8d05480 11406 {
ae4d0c03
PM
11407 attr = dwarf2_attr (die, DW_AT_external, cu);
11408 if (!attr || !DW_UNSND (attr))
11409 complaint (&symfile_complaints,
3e43a32a
MS
11410 _("cannot get low and high bounds "
11411 "for subprogram DIE at %d"),
b64f50a1 11412 die->offset.sect_off);
e8d05480
JB
11413 return;
11414 }
c906108c 11415
3e29f34a
MR
11416 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11417 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11418
34eaf542
TT
11419 /* If we have any template arguments, then we must allocate a
11420 different sort of symbol. */
11421 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11422 {
11423 if (child_die->tag == DW_TAG_template_type_param
11424 || child_die->tag == DW_TAG_template_value_param)
11425 {
e623cf5d 11426 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11427 templ_func->base.is_cplus_template_function = 1;
11428 break;
11429 }
11430 }
11431
fe978cb0
PA
11432 newobj = push_context (0, lowpc);
11433 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11434 (struct symbol *) templ_func);
4c2df51b 11435
4cecd739
DJ
11436 /* If there is a location expression for DW_AT_frame_base, record
11437 it. */
e142c38c 11438 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11439 if (attr)
fe978cb0 11440 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11441
63e43d3a
PMR
11442 /* If there is a location for the static link, record it. */
11443 newobj->static_link = NULL;
11444 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11445 if (attr)
11446 {
224c3ddb
SM
11447 newobj->static_link
11448 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11449 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11450 }
11451
e142c38c 11452 cu->list_in_scope = &local_symbols;
c906108c 11453
639d11d3 11454 if (die->child != NULL)
c906108c 11455 {
639d11d3 11456 child_die = die->child;
c906108c
SS
11457 while (child_die && child_die->tag)
11458 {
34eaf542
TT
11459 if (child_die->tag == DW_TAG_template_type_param
11460 || child_die->tag == DW_TAG_template_value_param)
11461 {
11462 struct symbol *arg = new_symbol (child_die, NULL, cu);
11463
f1078f66
DJ
11464 if (arg != NULL)
11465 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11466 }
11467 else
11468 process_die (child_die, cu);
c906108c
SS
11469 child_die = sibling_die (child_die);
11470 }
11471 }
11472
d389af10
JK
11473 inherit_abstract_dies (die, cu);
11474
4a811a97
UW
11475 /* If we have a DW_AT_specification, we might need to import using
11476 directives from the context of the specification DIE. See the
11477 comment in determine_prefix. */
11478 if (cu->language == language_cplus
11479 && dwarf2_attr (die, DW_AT_specification, cu))
11480 {
11481 struct dwarf2_cu *spec_cu = cu;
11482 struct die_info *spec_die = die_specification (die, &spec_cu);
11483
11484 while (spec_die)
11485 {
11486 child_die = spec_die->child;
11487 while (child_die && child_die->tag)
11488 {
11489 if (child_die->tag == DW_TAG_imported_module)
11490 process_die (child_die, spec_cu);
11491 child_die = sibling_die (child_die);
11492 }
11493
11494 /* In some cases, GCC generates specification DIEs that
11495 themselves contain DW_AT_specification attributes. */
11496 spec_die = die_specification (spec_die, &spec_cu);
11497 }
11498 }
11499
fe978cb0 11500 newobj = pop_context ();
c906108c 11501 /* Make a block for the local symbols within. */
fe978cb0 11502 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11503 newobj->static_link, lowpc, highpc);
801e3a5b 11504
df8a16a1 11505 /* For C++, set the block's scope. */
45280282
IB
11506 if ((cu->language == language_cplus
11507 || cu->language == language_fortran
c44af4eb
TT
11508 || cu->language == language_d
11509 || cu->language == language_rust)
4d4ec4e5 11510 && cu->processing_has_namespace_info)
195a3f6c
TT
11511 block_set_scope (block, determine_prefix (die, cu),
11512 &objfile->objfile_obstack);
df8a16a1 11513
801e3a5b
JB
11514 /* If we have address ranges, record them. */
11515 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11516
fe978cb0 11517 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11518
34eaf542
TT
11519 /* Attach template arguments to function. */
11520 if (! VEC_empty (symbolp, template_args))
11521 {
11522 gdb_assert (templ_func != NULL);
11523
11524 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11525 templ_func->template_arguments
8d749320
SM
11526 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11527 templ_func->n_template_arguments);
34eaf542
TT
11528 memcpy (templ_func->template_arguments,
11529 VEC_address (symbolp, template_args),
11530 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11531 VEC_free (symbolp, template_args);
11532 }
11533
208d8187
JB
11534 /* In C++, we can have functions nested inside functions (e.g., when
11535 a function declares a class that has methods). This means that
11536 when we finish processing a function scope, we may need to go
11537 back to building a containing block's symbol lists. */
fe978cb0 11538 local_symbols = newobj->locals;
22cee43f 11539 local_using_directives = newobj->local_using_directives;
208d8187 11540
921e78cf
JB
11541 /* If we've finished processing a top-level function, subsequent
11542 symbols go in the file symbol list. */
11543 if (outermost_context_p ())
e142c38c 11544 cu->list_in_scope = &file_symbols;
c906108c
SS
11545}
11546
11547/* Process all the DIES contained within a lexical block scope. Start
11548 a new scope, process the dies, and then close the scope. */
11549
11550static void
e7c27a73 11551read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11552{
e7c27a73 11553 struct objfile *objfile = cu->objfile;
3e29f34a 11554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11555 struct context_stack *newobj;
c906108c
SS
11556 CORE_ADDR lowpc, highpc;
11557 struct die_info *child_die;
e142c38c
DJ
11558 CORE_ADDR baseaddr;
11559
11560 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11561
11562 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11563 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11564 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11565 be nasty. Might be easier to properly extend generic blocks to
af34e669 11566 describe ranges. */
e385593e
JK
11567 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11568 {
11569 case PC_BOUNDS_NOT_PRESENT:
11570 /* DW_TAG_lexical_block has no attributes, process its children as if
11571 there was no wrapping by that DW_TAG_lexical_block.
11572 GCC does no longer produces such DWARF since GCC r224161. */
11573 for (child_die = die->child;
11574 child_die != NULL && child_die->tag;
11575 child_die = sibling_die (child_die))
11576 process_die (child_die, cu);
11577 return;
11578 case PC_BOUNDS_INVALID:
11579 return;
11580 }
3e29f34a
MR
11581 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11582 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11583
11584 push_context (0, lowpc);
639d11d3 11585 if (die->child != NULL)
c906108c 11586 {
639d11d3 11587 child_die = die->child;
c906108c
SS
11588 while (child_die && child_die->tag)
11589 {
e7c27a73 11590 process_die (child_die, cu);
c906108c
SS
11591 child_die = sibling_die (child_die);
11592 }
11593 }
3ea89b92 11594 inherit_abstract_dies (die, cu);
fe978cb0 11595 newobj = pop_context ();
c906108c 11596
22cee43f 11597 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11598 {
801e3a5b 11599 struct block *block
63e43d3a 11600 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11601 newobj->start_addr, highpc);
801e3a5b
JB
11602
11603 /* Note that recording ranges after traversing children, as we
11604 do here, means that recording a parent's ranges entails
11605 walking across all its children's ranges as they appear in
11606 the address map, which is quadratic behavior.
11607
11608 It would be nicer to record the parent's ranges before
11609 traversing its children, simply overriding whatever you find
11610 there. But since we don't even decide whether to create a
11611 block until after we've traversed its children, that's hard
11612 to do. */
11613 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11614 }
fe978cb0 11615 local_symbols = newobj->locals;
22cee43f 11616 local_using_directives = newobj->local_using_directives;
c906108c
SS
11617}
11618
96408a79
SA
11619/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11620
11621static void
11622read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11623{
11624 struct objfile *objfile = cu->objfile;
11625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11626 CORE_ADDR pc, baseaddr;
11627 struct attribute *attr;
11628 struct call_site *call_site, call_site_local;
11629 void **slot;
11630 int nparams;
11631 struct die_info *child_die;
11632
11633 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11634
11635 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11636 if (!attr)
11637 {
11638 complaint (&symfile_complaints,
11639 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11640 "DIE 0x%x [in module %s]"),
4262abfb 11641 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11642 return;
11643 }
31aa7e4e 11644 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11645 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11646
11647 if (cu->call_site_htab == NULL)
11648 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11649 NULL, &objfile->objfile_obstack,
11650 hashtab_obstack_allocate, NULL);
11651 call_site_local.pc = pc;
11652 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11653 if (*slot != NULL)
11654 {
11655 complaint (&symfile_complaints,
11656 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11657 "DIE 0x%x [in module %s]"),
4262abfb
JK
11658 paddress (gdbarch, pc), die->offset.sect_off,
11659 objfile_name (objfile));
96408a79
SA
11660 return;
11661 }
11662
11663 /* Count parameters at the caller. */
11664
11665 nparams = 0;
11666 for (child_die = die->child; child_die && child_die->tag;
11667 child_die = sibling_die (child_die))
11668 {
11669 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11670 {
11671 complaint (&symfile_complaints,
11672 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11673 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11674 child_die->tag, child_die->offset.sect_off,
11675 objfile_name (objfile));
96408a79
SA
11676 continue;
11677 }
11678
11679 nparams++;
11680 }
11681
224c3ddb
SM
11682 call_site
11683 = ((struct call_site *)
11684 obstack_alloc (&objfile->objfile_obstack,
11685 sizeof (*call_site)
11686 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11687 *slot = call_site;
11688 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11689 call_site->pc = pc;
11690
11691 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11692 {
11693 struct die_info *func_die;
11694
11695 /* Skip also over DW_TAG_inlined_subroutine. */
11696 for (func_die = die->parent;
11697 func_die && func_die->tag != DW_TAG_subprogram
11698 && func_die->tag != DW_TAG_subroutine_type;
11699 func_die = func_die->parent);
11700
11701 /* DW_AT_GNU_all_call_sites is a superset
11702 of DW_AT_GNU_all_tail_call_sites. */
11703 if (func_die
11704 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11705 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11706 {
11707 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11708 not complete. But keep CALL_SITE for look ups via call_site_htab,
11709 both the initial caller containing the real return address PC and
11710 the final callee containing the current PC of a chain of tail
11711 calls do not need to have the tail call list complete. But any
11712 function candidate for a virtual tail call frame searched via
11713 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11714 determined unambiguously. */
11715 }
11716 else
11717 {
11718 struct type *func_type = NULL;
11719
11720 if (func_die)
11721 func_type = get_die_type (func_die, cu);
11722 if (func_type != NULL)
11723 {
11724 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11725
11726 /* Enlist this call site to the function. */
11727 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11728 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11729 }
11730 else
11731 complaint (&symfile_complaints,
11732 _("Cannot find function owning DW_TAG_GNU_call_site "
11733 "DIE 0x%x [in module %s]"),
4262abfb 11734 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11735 }
11736 }
11737
11738 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11739 if (attr == NULL)
11740 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11741 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11742 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11743 /* Keep NULL DWARF_BLOCK. */;
11744 else if (attr_form_is_block (attr))
11745 {
11746 struct dwarf2_locexpr_baton *dlbaton;
11747
8d749320 11748 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11749 dlbaton->data = DW_BLOCK (attr)->data;
11750 dlbaton->size = DW_BLOCK (attr)->size;
11751 dlbaton->per_cu = cu->per_cu;
11752
11753 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11754 }
7771576e 11755 else if (attr_form_is_ref (attr))
96408a79 11756 {
96408a79
SA
11757 struct dwarf2_cu *target_cu = cu;
11758 struct die_info *target_die;
11759
ac9ec31b 11760 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11761 gdb_assert (target_cu->objfile == objfile);
11762 if (die_is_declaration (target_die, target_cu))
11763 {
7d45c7c3 11764 const char *target_physname;
9112db09
JK
11765
11766 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11767 target_physname = dwarf2_string_attr (target_die,
11768 DW_AT_linkage_name,
11769 target_cu);
11770 if (target_physname == NULL)
11771 target_physname = dwarf2_string_attr (target_die,
11772 DW_AT_MIPS_linkage_name,
11773 target_cu);
11774 if (target_physname == NULL)
9112db09 11775 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11776 if (target_physname == NULL)
11777 complaint (&symfile_complaints,
11778 _("DW_AT_GNU_call_site_target target DIE has invalid "
11779 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11780 die->offset.sect_off, objfile_name (objfile));
96408a79 11781 else
7d455152 11782 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11783 }
11784 else
11785 {
11786 CORE_ADDR lowpc;
11787
11788 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11789 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11790 <= PC_BOUNDS_INVALID)
96408a79
SA
11791 complaint (&symfile_complaints,
11792 _("DW_AT_GNU_call_site_target target DIE has invalid "
11793 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11794 die->offset.sect_off, objfile_name (objfile));
96408a79 11795 else
3e29f34a
MR
11796 {
11797 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11798 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11799 }
96408a79
SA
11800 }
11801 }
11802 else
11803 complaint (&symfile_complaints,
11804 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11805 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11806 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11807
11808 call_site->per_cu = cu->per_cu;
11809
11810 for (child_die = die->child;
11811 child_die && child_die->tag;
11812 child_die = sibling_die (child_die))
11813 {
96408a79 11814 struct call_site_parameter *parameter;
1788b2d3 11815 struct attribute *loc, *origin;
96408a79
SA
11816
11817 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11818 {
11819 /* Already printed the complaint above. */
11820 continue;
11821 }
11822
11823 gdb_assert (call_site->parameter_count < nparams);
11824 parameter = &call_site->parameter[call_site->parameter_count];
11825
1788b2d3
JK
11826 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11827 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11828 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11829
24c5c679 11830 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11831 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11832 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11833 {
11834 sect_offset offset;
11835
11836 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11837 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11838 if (!offset_in_cu_p (&cu->header, offset))
11839 {
11840 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11841 binding can be done only inside one CU. Such referenced DIE
11842 therefore cannot be even moved to DW_TAG_partial_unit. */
11843 complaint (&symfile_complaints,
11844 _("DW_AT_abstract_origin offset is not in CU for "
11845 "DW_TAG_GNU_call_site child DIE 0x%x "
11846 "[in module %s]"),
4262abfb 11847 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11848 continue;
11849 }
1788b2d3
JK
11850 parameter->u.param_offset.cu_off = (offset.sect_off
11851 - cu->header.offset.sect_off);
11852 }
11853 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11854 {
11855 complaint (&symfile_complaints,
11856 _("No DW_FORM_block* DW_AT_location for "
11857 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11858 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11859 continue;
11860 }
24c5c679 11861 else
96408a79 11862 {
24c5c679
JK
11863 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11864 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11865 if (parameter->u.dwarf_reg != -1)
11866 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11867 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11868 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11869 &parameter->u.fb_offset))
11870 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11871 else
11872 {
11873 complaint (&symfile_complaints,
11874 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11875 "for DW_FORM_block* DW_AT_location is supported for "
11876 "DW_TAG_GNU_call_site child DIE 0x%x "
11877 "[in module %s]"),
4262abfb 11878 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11879 continue;
11880 }
96408a79
SA
11881 }
11882
11883 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11884 if (!attr_form_is_block (attr))
11885 {
11886 complaint (&symfile_complaints,
11887 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11888 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11889 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11890 continue;
11891 }
11892 parameter->value = DW_BLOCK (attr)->data;
11893 parameter->value_size = DW_BLOCK (attr)->size;
11894
11895 /* Parameters are not pre-cleared by memset above. */
11896 parameter->data_value = NULL;
11897 parameter->data_value_size = 0;
11898 call_site->parameter_count++;
11899
11900 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11901 if (attr)
11902 {
11903 if (!attr_form_is_block (attr))
11904 complaint (&symfile_complaints,
11905 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11906 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11907 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11908 else
11909 {
11910 parameter->data_value = DW_BLOCK (attr)->data;
11911 parameter->data_value_size = DW_BLOCK (attr)->size;
11912 }
11913 }
11914 }
11915}
11916
43039443 11917/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11918 Return 1 if the attributes are present and valid, otherwise, return 0.
11919 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11920
11921static int
11922dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11923 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11924 struct partial_symtab *ranges_pst)
43039443
JK
11925{
11926 struct objfile *objfile = cu->objfile;
3e29f34a 11927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11928 struct comp_unit_head *cu_header = &cu->header;
11929 bfd *obfd = objfile->obfd;
11930 unsigned int addr_size = cu_header->addr_size;
11931 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11932 /* Base address selection entry. */
11933 CORE_ADDR base;
11934 int found_base;
11935 unsigned int dummy;
d521ce57 11936 const gdb_byte *buffer;
43039443
JK
11937 int low_set;
11938 CORE_ADDR low = 0;
11939 CORE_ADDR high = 0;
ff013f42 11940 CORE_ADDR baseaddr;
43039443 11941
d00adf39
DE
11942 found_base = cu->base_known;
11943 base = cu->base_address;
43039443 11944
be391dca 11945 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11946 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11947 {
11948 complaint (&symfile_complaints,
11949 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11950 offset);
11951 return 0;
11952 }
dce234bc 11953 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11954
43039443
JK
11955 low_set = 0;
11956
e7030f15 11957 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11958
43039443
JK
11959 while (1)
11960 {
11961 CORE_ADDR range_beginning, range_end;
11962
11963 range_beginning = read_address (obfd, buffer, cu, &dummy);
11964 buffer += addr_size;
11965 range_end = read_address (obfd, buffer, cu, &dummy);
11966 buffer += addr_size;
11967 offset += 2 * addr_size;
11968
11969 /* An end of list marker is a pair of zero addresses. */
11970 if (range_beginning == 0 && range_end == 0)
11971 /* Found the end of list entry. */
11972 break;
11973
11974 /* Each base address selection entry is a pair of 2 values.
11975 The first is the largest possible address, the second is
11976 the base address. Check for a base address here. */
11977 if ((range_beginning & mask) == mask)
11978 {
28d2bfb9
AB
11979 /* If we found the largest possible address, then we already
11980 have the base address in range_end. */
11981 base = range_end;
43039443
JK
11982 found_base = 1;
11983 continue;
11984 }
11985
11986 if (!found_base)
11987 {
11988 /* We have no valid base address for the ranges
11989 data. */
11990 complaint (&symfile_complaints,
11991 _("Invalid .debug_ranges data (no base address)"));
11992 return 0;
11993 }
11994
9277c30c
UW
11995 if (range_beginning > range_end)
11996 {
11997 /* Inverted range entries are invalid. */
11998 complaint (&symfile_complaints,
11999 _("Invalid .debug_ranges data (inverted range)"));
12000 return 0;
12001 }
12002
12003 /* Empty range entries have no effect. */
12004 if (range_beginning == range_end)
12005 continue;
12006
43039443
JK
12007 range_beginning += base;
12008 range_end += base;
12009
01093045
DE
12010 /* A not-uncommon case of bad debug info.
12011 Don't pollute the addrmap with bad data. */
12012 if (range_beginning + baseaddr == 0
12013 && !dwarf2_per_objfile->has_section_at_zero)
12014 {
12015 complaint (&symfile_complaints,
12016 _(".debug_ranges entry has start address of zero"
4262abfb 12017 " [in module %s]"), objfile_name (objfile));
01093045
DE
12018 continue;
12019 }
12020
9277c30c 12021 if (ranges_pst != NULL)
3e29f34a
MR
12022 {
12023 CORE_ADDR lowpc;
12024 CORE_ADDR highpc;
12025
12026 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12027 range_beginning + baseaddr);
12028 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12029 range_end + baseaddr);
12030 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12031 ranges_pst);
12032 }
ff013f42 12033
43039443
JK
12034 /* FIXME: This is recording everything as a low-high
12035 segment of consecutive addresses. We should have a
12036 data structure for discontiguous block ranges
12037 instead. */
12038 if (! low_set)
12039 {
12040 low = range_beginning;
12041 high = range_end;
12042 low_set = 1;
12043 }
12044 else
12045 {
12046 if (range_beginning < low)
12047 low = range_beginning;
12048 if (range_end > high)
12049 high = range_end;
12050 }
12051 }
12052
12053 if (! low_set)
12054 /* If the first entry is an end-of-list marker, the range
12055 describes an empty scope, i.e. no instructions. */
12056 return 0;
12057
12058 if (low_return)
12059 *low_return = low;
12060 if (high_return)
12061 *high_return = high;
12062 return 1;
12063}
12064
3a2b436a
JK
12065/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12066 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12067 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12068
3a2b436a 12069static enum pc_bounds_kind
af34e669 12070dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12071 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12072 struct partial_symtab *pst)
c906108c
SS
12073{
12074 struct attribute *attr;
91da1414 12075 struct attribute *attr_high;
af34e669
DJ
12076 CORE_ADDR low = 0;
12077 CORE_ADDR high = 0;
e385593e 12078 enum pc_bounds_kind ret;
c906108c 12079
91da1414
MW
12080 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12081 if (attr_high)
af34e669 12082 {
e142c38c 12083 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12084 if (attr)
91da1414 12085 {
31aa7e4e
JB
12086 low = attr_value_as_address (attr);
12087 high = attr_value_as_address (attr_high);
12088 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12089 high += low;
91da1414 12090 }
af34e669
DJ
12091 else
12092 /* Found high w/o low attribute. */
e385593e 12093 return PC_BOUNDS_INVALID;
af34e669
DJ
12094
12095 /* Found consecutive range of addresses. */
3a2b436a 12096 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12097 }
c906108c 12098 else
af34e669 12099 {
e142c38c 12100 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12101 if (attr != NULL)
12102 {
ab435259
DE
12103 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12104 We take advantage of the fact that DW_AT_ranges does not appear
12105 in DW_TAG_compile_unit of DWO files. */
12106 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12107 unsigned int ranges_offset = (DW_UNSND (attr)
12108 + (need_ranges_base
12109 ? cu->ranges_base
12110 : 0));
2e3cf129 12111
af34e669 12112 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12113 .debug_ranges section. */
2e3cf129 12114 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12115 return PC_BOUNDS_INVALID;
43039443 12116 /* Found discontinuous range of addresses. */
3a2b436a 12117 ret = PC_BOUNDS_RANGES;
af34e669 12118 }
e385593e
JK
12119 else
12120 return PC_BOUNDS_NOT_PRESENT;
af34e669 12121 }
c906108c 12122
9373cf26
JK
12123 /* read_partial_die has also the strict LOW < HIGH requirement. */
12124 if (high <= low)
e385593e 12125 return PC_BOUNDS_INVALID;
c906108c
SS
12126
12127 /* When using the GNU linker, .gnu.linkonce. sections are used to
12128 eliminate duplicate copies of functions and vtables and such.
12129 The linker will arbitrarily choose one and discard the others.
12130 The AT_*_pc values for such functions refer to local labels in
12131 these sections. If the section from that file was discarded, the
12132 labels are not in the output, so the relocs get a value of 0.
12133 If this is a discarded function, mark the pc bounds as invalid,
12134 so that GDB will ignore it. */
72dca2f5 12135 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12136 return PC_BOUNDS_INVALID;
c906108c
SS
12137
12138 *lowpc = low;
96408a79
SA
12139 if (highpc)
12140 *highpc = high;
af34e669 12141 return ret;
c906108c
SS
12142}
12143
b084d499
JB
12144/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12145 its low and high PC addresses. Do nothing if these addresses could not
12146 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12147 and HIGHPC to the high address if greater than HIGHPC. */
12148
12149static void
12150dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12152 struct dwarf2_cu *cu)
12153{
12154 CORE_ADDR low, high;
12155 struct die_info *child = die->child;
12156
e385593e 12157 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499
JB
12158 {
12159 *lowpc = min (*lowpc, low);
12160 *highpc = max (*highpc, high);
12161 }
12162
12163 /* If the language does not allow nested subprograms (either inside
12164 subprograms or lexical blocks), we're done. */
12165 if (cu->language != language_ada)
12166 return;
6e70227d 12167
b084d499
JB
12168 /* Check all the children of the given DIE. If it contains nested
12169 subprograms, then check their pc bounds. Likewise, we need to
12170 check lexical blocks as well, as they may also contain subprogram
12171 definitions. */
12172 while (child && child->tag)
12173 {
12174 if (child->tag == DW_TAG_subprogram
12175 || child->tag == DW_TAG_lexical_block)
12176 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12177 child = sibling_die (child);
12178 }
12179}
12180
fae299cd
DC
12181/* Get the low and high pc's represented by the scope DIE, and store
12182 them in *LOWPC and *HIGHPC. If the correct values can't be
12183 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12184
12185static void
12186get_scope_pc_bounds (struct die_info *die,
12187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12188 struct dwarf2_cu *cu)
12189{
12190 CORE_ADDR best_low = (CORE_ADDR) -1;
12191 CORE_ADDR best_high = (CORE_ADDR) 0;
12192 CORE_ADDR current_low, current_high;
12193
3a2b436a 12194 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12195 >= PC_BOUNDS_RANGES)
fae299cd
DC
12196 {
12197 best_low = current_low;
12198 best_high = current_high;
12199 }
12200 else
12201 {
12202 struct die_info *child = die->child;
12203
12204 while (child && child->tag)
12205 {
12206 switch (child->tag) {
12207 case DW_TAG_subprogram:
b084d499 12208 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12209 break;
12210 case DW_TAG_namespace:
f55ee35c 12211 case DW_TAG_module:
fae299cd
DC
12212 /* FIXME: carlton/2004-01-16: Should we do this for
12213 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12214 that current GCC's always emit the DIEs corresponding
12215 to definitions of methods of classes as children of a
12216 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12217 the DIEs giving the declarations, which could be
12218 anywhere). But I don't see any reason why the
12219 standards says that they have to be there. */
12220 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12221
12222 if (current_low != ((CORE_ADDR) -1))
12223 {
12224 best_low = min (best_low, current_low);
12225 best_high = max (best_high, current_high);
12226 }
12227 break;
12228 default:
0963b4bd 12229 /* Ignore. */
fae299cd
DC
12230 break;
12231 }
12232
12233 child = sibling_die (child);
12234 }
12235 }
12236
12237 *lowpc = best_low;
12238 *highpc = best_high;
12239}
12240
801e3a5b
JB
12241/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12242 in DIE. */
380bca97 12243
801e3a5b
JB
12244static void
12245dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12246 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12247{
bb5ed363 12248 struct objfile *objfile = cu->objfile;
3e29f34a 12249 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12250 struct attribute *attr;
91da1414 12251 struct attribute *attr_high;
801e3a5b 12252
91da1414
MW
12253 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12254 if (attr_high)
801e3a5b 12255 {
801e3a5b
JB
12256 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12257 if (attr)
12258 {
31aa7e4e
JB
12259 CORE_ADDR low = attr_value_as_address (attr);
12260 CORE_ADDR high = attr_value_as_address (attr_high);
12261
12262 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12263 high += low;
9a619af0 12264
3e29f34a
MR
12265 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12266 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12267 record_block_range (block, low, high - 1);
801e3a5b
JB
12268 }
12269 }
12270
12271 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12272 if (attr)
12273 {
bb5ed363 12274 bfd *obfd = objfile->obfd;
ab435259
DE
12275 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12276 We take advantage of the fact that DW_AT_ranges does not appear
12277 in DW_TAG_compile_unit of DWO files. */
12278 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12279
12280 /* The value of the DW_AT_ranges attribute is the offset of the
12281 address range list in the .debug_ranges section. */
ab435259
DE
12282 unsigned long offset = (DW_UNSND (attr)
12283 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12284 const gdb_byte *buffer;
801e3a5b
JB
12285
12286 /* For some target architectures, but not others, the
12287 read_address function sign-extends the addresses it returns.
12288 To recognize base address selection entries, we need a
12289 mask. */
12290 unsigned int addr_size = cu->header.addr_size;
12291 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12292
12293 /* The base address, to which the next pair is relative. Note
12294 that this 'base' is a DWARF concept: most entries in a range
12295 list are relative, to reduce the number of relocs against the
12296 debugging information. This is separate from this function's
12297 'baseaddr' argument, which GDB uses to relocate debugging
12298 information from a shared library based on the address at
12299 which the library was loaded. */
d00adf39
DE
12300 CORE_ADDR base = cu->base_address;
12301 int base_known = cu->base_known;
801e3a5b 12302
d62bfeaf 12303 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12304 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12305 {
12306 complaint (&symfile_complaints,
12307 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12308 offset);
12309 return;
12310 }
d62bfeaf 12311 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12312
12313 for (;;)
12314 {
12315 unsigned int bytes_read;
12316 CORE_ADDR start, end;
12317
12318 start = read_address (obfd, buffer, cu, &bytes_read);
12319 buffer += bytes_read;
12320 end = read_address (obfd, buffer, cu, &bytes_read);
12321 buffer += bytes_read;
12322
12323 /* Did we find the end of the range list? */
12324 if (start == 0 && end == 0)
12325 break;
12326
12327 /* Did we find a base address selection entry? */
12328 else if ((start & base_select_mask) == base_select_mask)
12329 {
12330 base = end;
12331 base_known = 1;
12332 }
12333
12334 /* We found an ordinary address range. */
12335 else
12336 {
12337 if (!base_known)
12338 {
12339 complaint (&symfile_complaints,
3e43a32a
MS
12340 _("Invalid .debug_ranges data "
12341 "(no base address)"));
801e3a5b
JB
12342 return;
12343 }
12344
9277c30c
UW
12345 if (start > end)
12346 {
12347 /* Inverted range entries are invalid. */
12348 complaint (&symfile_complaints,
12349 _("Invalid .debug_ranges data "
12350 "(inverted range)"));
12351 return;
12352 }
12353
12354 /* Empty range entries have no effect. */
12355 if (start == end)
12356 continue;
12357
01093045
DE
12358 start += base + baseaddr;
12359 end += base + baseaddr;
12360
12361 /* A not-uncommon case of bad debug info.
12362 Don't pollute the addrmap with bad data. */
12363 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12364 {
12365 complaint (&symfile_complaints,
12366 _(".debug_ranges entry has start address of zero"
4262abfb 12367 " [in module %s]"), objfile_name (objfile));
01093045
DE
12368 continue;
12369 }
12370
3e29f34a
MR
12371 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12372 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12373 record_block_range (block, start, end - 1);
801e3a5b
JB
12374 }
12375 }
12376 }
12377}
12378
685b1105
JK
12379/* Check whether the producer field indicates either of GCC < 4.6, or the
12380 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12381
685b1105
JK
12382static void
12383check_producer (struct dwarf2_cu *cu)
60d5a603 12384{
38360086 12385 int major, minor;
60d5a603
JK
12386
12387 if (cu->producer == NULL)
12388 {
12389 /* For unknown compilers expect their behavior is DWARF version
12390 compliant.
12391
12392 GCC started to support .debug_types sections by -gdwarf-4 since
12393 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12394 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12395 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12396 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12397 }
b1ffba5a 12398 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12399 {
38360086
MW
12400 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12401 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12402 }
61012eef 12403 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12404 cu->producer_is_icc = 1;
12405 else
12406 {
12407 /* For other non-GCC compilers, expect their behavior is DWARF version
12408 compliant. */
60d5a603
JK
12409 }
12410
ba919b58 12411 cu->checked_producer = 1;
685b1105 12412}
ba919b58 12413
685b1105
JK
12414/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12415 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12416 during 4.6.0 experimental. */
12417
12418static int
12419producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12420{
12421 if (!cu->checked_producer)
12422 check_producer (cu);
12423
12424 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12425}
12426
12427/* Return the default accessibility type if it is not overriden by
12428 DW_AT_accessibility. */
12429
12430static enum dwarf_access_attribute
12431dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12432{
12433 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12434 {
12435 /* The default DWARF 2 accessibility for members is public, the default
12436 accessibility for inheritance is private. */
12437
12438 if (die->tag != DW_TAG_inheritance)
12439 return DW_ACCESS_public;
12440 else
12441 return DW_ACCESS_private;
12442 }
12443 else
12444 {
12445 /* DWARF 3+ defines the default accessibility a different way. The same
12446 rules apply now for DW_TAG_inheritance as for the members and it only
12447 depends on the container kind. */
12448
12449 if (die->parent->tag == DW_TAG_class_type)
12450 return DW_ACCESS_private;
12451 else
12452 return DW_ACCESS_public;
12453 }
12454}
12455
74ac6d43
TT
12456/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12457 offset. If the attribute was not found return 0, otherwise return
12458 1. If it was found but could not properly be handled, set *OFFSET
12459 to 0. */
12460
12461static int
12462handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12463 LONGEST *offset)
12464{
12465 struct attribute *attr;
12466
12467 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12468 if (attr != NULL)
12469 {
12470 *offset = 0;
12471
12472 /* Note that we do not check for a section offset first here.
12473 This is because DW_AT_data_member_location is new in DWARF 4,
12474 so if we see it, we can assume that a constant form is really
12475 a constant and not a section offset. */
12476 if (attr_form_is_constant (attr))
12477 *offset = dwarf2_get_attr_constant_value (attr, 0);
12478 else if (attr_form_is_section_offset (attr))
12479 dwarf2_complex_location_expr_complaint ();
12480 else if (attr_form_is_block (attr))
12481 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12482 else
12483 dwarf2_complex_location_expr_complaint ();
12484
12485 return 1;
12486 }
12487
12488 return 0;
12489}
12490
c906108c
SS
12491/* Add an aggregate field to the field list. */
12492
12493static void
107d2387 12494dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12495 struct dwarf2_cu *cu)
6e70227d 12496{
e7c27a73 12497 struct objfile *objfile = cu->objfile;
5e2b427d 12498 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12499 struct nextfield *new_field;
12500 struct attribute *attr;
12501 struct field *fp;
15d034d0 12502 const char *fieldname = "";
c906108c
SS
12503
12504 /* Allocate a new field list entry and link it in. */
8d749320 12505 new_field = XNEW (struct nextfield);
b8c9b27d 12506 make_cleanup (xfree, new_field);
c906108c 12507 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12508
12509 if (die->tag == DW_TAG_inheritance)
12510 {
12511 new_field->next = fip->baseclasses;
12512 fip->baseclasses = new_field;
12513 }
12514 else
12515 {
12516 new_field->next = fip->fields;
12517 fip->fields = new_field;
12518 }
c906108c
SS
12519 fip->nfields++;
12520
e142c38c 12521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12522 if (attr)
12523 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12524 else
12525 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12526 if (new_field->accessibility != DW_ACCESS_public)
12527 fip->non_public_fields = 1;
60d5a603 12528
e142c38c 12529 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12530 if (attr)
12531 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12532 else
12533 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12534
12535 fp = &new_field->field;
a9a9bd0f 12536
e142c38c 12537 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12538 {
74ac6d43
TT
12539 LONGEST offset;
12540
a9a9bd0f 12541 /* Data member other than a C++ static data member. */
6e70227d 12542
c906108c 12543 /* Get type of field. */
e7c27a73 12544 fp->type = die_type (die, cu);
c906108c 12545
d6a843b5 12546 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12547
c906108c 12548 /* Get bit size of field (zero if none). */
e142c38c 12549 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12550 if (attr)
12551 {
12552 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12553 }
12554 else
12555 {
12556 FIELD_BITSIZE (*fp) = 0;
12557 }
12558
12559 /* Get bit offset of field. */
74ac6d43
TT
12560 if (handle_data_member_location (die, cu, &offset))
12561 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12562 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12563 if (attr)
12564 {
5e2b427d 12565 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12566 {
12567 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12568 additional bit offset from the MSB of the containing
12569 anonymous object to the MSB of the field. We don't
12570 have to do anything special since we don't need to
12571 know the size of the anonymous object. */
f41f5e61 12572 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12573 }
12574 else
12575 {
12576 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12577 MSB of the anonymous object, subtract off the number of
12578 bits from the MSB of the field to the MSB of the
12579 object, and then subtract off the number of bits of
12580 the field itself. The result is the bit offset of
12581 the LSB of the field. */
c906108c
SS
12582 int anonymous_size;
12583 int bit_offset = DW_UNSND (attr);
12584
e142c38c 12585 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12586 if (attr)
12587 {
12588 /* The size of the anonymous object containing
12589 the bit field is explicit, so use the
12590 indicated size (in bytes). */
12591 anonymous_size = DW_UNSND (attr);
12592 }
12593 else
12594 {
12595 /* The size of the anonymous object containing
12596 the bit field must be inferred from the type
12597 attribute of the data member containing the
12598 bit field. */
12599 anonymous_size = TYPE_LENGTH (fp->type);
12600 }
f41f5e61
PA
12601 SET_FIELD_BITPOS (*fp,
12602 (FIELD_BITPOS (*fp)
12603 + anonymous_size * bits_per_byte
12604 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12605 }
12606 }
12607
12608 /* Get name of field. */
39cbfefa
DJ
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 fieldname = "";
d8151005
DJ
12612
12613 /* The name is already allocated along with this objfile, so we don't
12614 need to duplicate it for the type. */
12615 fp->name = fieldname;
c906108c
SS
12616
12617 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12618 pointer or virtual base class pointer) to private. */
e142c38c 12619 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12620 {
d48cc9dd 12621 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12622 new_field->accessibility = DW_ACCESS_private;
12623 fip->non_public_fields = 1;
12624 }
12625 }
a9a9bd0f 12626 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12627 {
a9a9bd0f
DC
12628 /* C++ static member. */
12629
12630 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12631 is a declaration, but all versions of G++ as of this writing
12632 (so through at least 3.2.1) incorrectly generate
12633 DW_TAG_variable tags. */
6e70227d 12634
ff355380 12635 const char *physname;
c906108c 12636
a9a9bd0f 12637 /* Get name of field. */
39cbfefa
DJ
12638 fieldname = dwarf2_name (die, cu);
12639 if (fieldname == NULL)
c906108c
SS
12640 return;
12641
254e6b9e 12642 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12643 if (attr
12644 /* Only create a symbol if this is an external value.
12645 new_symbol checks this and puts the value in the global symbol
12646 table, which we want. If it is not external, new_symbol
12647 will try to put the value in cu->list_in_scope which is wrong. */
12648 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12649 {
12650 /* A static const member, not much different than an enum as far as
12651 we're concerned, except that we can support more types. */
12652 new_symbol (die, NULL, cu);
12653 }
12654
2df3850c 12655 /* Get physical name. */
ff355380 12656 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12657
d8151005
DJ
12658 /* The name is already allocated along with this objfile, so we don't
12659 need to duplicate it for the type. */
12660 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12661 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12662 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12663 }
12664 else if (die->tag == DW_TAG_inheritance)
12665 {
74ac6d43 12666 LONGEST offset;
d4b96c9a 12667
74ac6d43
TT
12668 /* C++ base class field. */
12669 if (handle_data_member_location (die, cu, &offset))
12670 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12671 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12672 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12673 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12674 fip->nbaseclasses++;
12675 }
12676}
12677
98751a41
JK
12678/* Add a typedef defined in the scope of the FIP's class. */
12679
12680static void
12681dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12682 struct dwarf2_cu *cu)
6e70227d 12683{
98751a41 12684 struct typedef_field_list *new_field;
98751a41 12685 struct typedef_field *fp;
98751a41
JK
12686
12687 /* Allocate a new field list entry and link it in. */
8d749320 12688 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12689 make_cleanup (xfree, new_field);
12690
12691 gdb_assert (die->tag == DW_TAG_typedef);
12692
12693 fp = &new_field->field;
12694
12695 /* Get name of field. */
12696 fp->name = dwarf2_name (die, cu);
12697 if (fp->name == NULL)
12698 return;
12699
12700 fp->type = read_type_die (die, cu);
12701
12702 new_field->next = fip->typedef_field_list;
12703 fip->typedef_field_list = new_field;
12704 fip->typedef_field_list_count++;
12705}
12706
c906108c
SS
12707/* Create the vector of fields, and attach it to the type. */
12708
12709static void
fba45db2 12710dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12711 struct dwarf2_cu *cu)
c906108c
SS
12712{
12713 int nfields = fip->nfields;
12714
12715 /* Record the field count, allocate space for the array of fields,
12716 and create blank accessibility bitfields if necessary. */
12717 TYPE_NFIELDS (type) = nfields;
12718 TYPE_FIELDS (type) = (struct field *)
12719 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12720 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12721
b4ba55a1 12722 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12723 {
12724 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12725
12726 TYPE_FIELD_PRIVATE_BITS (type) =
12727 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12728 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12729
12730 TYPE_FIELD_PROTECTED_BITS (type) =
12731 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12732 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12733
774b6a14
TT
12734 TYPE_FIELD_IGNORE_BITS (type) =
12735 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12736 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12737 }
12738
12739 /* If the type has baseclasses, allocate and clear a bit vector for
12740 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12741 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12742 {
12743 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12744 unsigned char *pointer;
c906108c
SS
12745
12746 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12747 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12748 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12749 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12750 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12751 }
12752
3e43a32a
MS
12753 /* Copy the saved-up fields into the field vector. Start from the head of
12754 the list, adding to the tail of the field array, so that they end up in
12755 the same order in the array in which they were added to the list. */
c906108c
SS
12756 while (nfields-- > 0)
12757 {
7d0ccb61
DJ
12758 struct nextfield *fieldp;
12759
12760 if (fip->fields)
12761 {
12762 fieldp = fip->fields;
12763 fip->fields = fieldp->next;
12764 }
12765 else
12766 {
12767 fieldp = fip->baseclasses;
12768 fip->baseclasses = fieldp->next;
12769 }
12770
12771 TYPE_FIELD (type, nfields) = fieldp->field;
12772 switch (fieldp->accessibility)
c906108c 12773 {
c5aa993b 12774 case DW_ACCESS_private:
b4ba55a1
JB
12775 if (cu->language != language_ada)
12776 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12777 break;
c906108c 12778
c5aa993b 12779 case DW_ACCESS_protected:
b4ba55a1
JB
12780 if (cu->language != language_ada)
12781 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12782 break;
c906108c 12783
c5aa993b
JM
12784 case DW_ACCESS_public:
12785 break;
c906108c 12786
c5aa993b
JM
12787 default:
12788 /* Unknown accessibility. Complain and treat it as public. */
12789 {
e2e0b3e5 12790 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12791 fieldp->accessibility);
c5aa993b
JM
12792 }
12793 break;
c906108c
SS
12794 }
12795 if (nfields < fip->nbaseclasses)
12796 {
7d0ccb61 12797 switch (fieldp->virtuality)
c906108c 12798 {
c5aa993b
JM
12799 case DW_VIRTUALITY_virtual:
12800 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12801 if (cu->language == language_ada)
a73c6dcd 12802 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12803 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12804 break;
c906108c
SS
12805 }
12806 }
c906108c
SS
12807 }
12808}
12809
7d27a96d
TT
12810/* Return true if this member function is a constructor, false
12811 otherwise. */
12812
12813static int
12814dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12815{
12816 const char *fieldname;
fe978cb0 12817 const char *type_name;
7d27a96d
TT
12818 int len;
12819
12820 if (die->parent == NULL)
12821 return 0;
12822
12823 if (die->parent->tag != DW_TAG_structure_type
12824 && die->parent->tag != DW_TAG_union_type
12825 && die->parent->tag != DW_TAG_class_type)
12826 return 0;
12827
12828 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12829 type_name = dwarf2_name (die->parent, cu);
12830 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12831 return 0;
12832
12833 len = strlen (fieldname);
fe978cb0
PA
12834 return (strncmp (fieldname, type_name, len) == 0
12835 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12836}
12837
c906108c
SS
12838/* Add a member function to the proper fieldlist. */
12839
12840static void
107d2387 12841dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12842 struct type *type, struct dwarf2_cu *cu)
c906108c 12843{
e7c27a73 12844 struct objfile *objfile = cu->objfile;
c906108c
SS
12845 struct attribute *attr;
12846 struct fnfieldlist *flp;
12847 int i;
12848 struct fn_field *fnp;
15d034d0 12849 const char *fieldname;
c906108c 12850 struct nextfnfield *new_fnfield;
f792889a 12851 struct type *this_type;
60d5a603 12852 enum dwarf_access_attribute accessibility;
c906108c 12853
b4ba55a1 12854 if (cu->language == language_ada)
a73c6dcd 12855 error (_("unexpected member function in Ada type"));
b4ba55a1 12856
2df3850c 12857 /* Get name of member function. */
39cbfefa
DJ
12858 fieldname = dwarf2_name (die, cu);
12859 if (fieldname == NULL)
2df3850c 12860 return;
c906108c 12861
c906108c
SS
12862 /* Look up member function name in fieldlist. */
12863 for (i = 0; i < fip->nfnfields; i++)
12864 {
27bfe10e 12865 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12866 break;
12867 }
12868
12869 /* Create new list element if necessary. */
12870 if (i < fip->nfnfields)
12871 flp = &fip->fnfieldlists[i];
12872 else
12873 {
12874 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12875 {
12876 fip->fnfieldlists = (struct fnfieldlist *)
12877 xrealloc (fip->fnfieldlists,
12878 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12879 * sizeof (struct fnfieldlist));
c906108c 12880 if (fip->nfnfields == 0)
c13c43fd 12881 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12882 }
12883 flp = &fip->fnfieldlists[fip->nfnfields];
12884 flp->name = fieldname;
12885 flp->length = 0;
12886 flp->head = NULL;
3da10d80 12887 i = fip->nfnfields++;
c906108c
SS
12888 }
12889
12890 /* Create a new member function field and chain it to the field list
0963b4bd 12891 entry. */
8d749320 12892 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12893 make_cleanup (xfree, new_fnfield);
c906108c
SS
12894 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12895 new_fnfield->next = flp->head;
12896 flp->head = new_fnfield;
12897 flp->length++;
12898
12899 /* Fill in the member function field info. */
12900 fnp = &new_fnfield->fnfield;
3da10d80
KS
12901
12902 /* Delay processing of the physname until later. */
12903 if (cu->language == language_cplus || cu->language == language_java)
12904 {
12905 add_to_method_list (type, i, flp->length - 1, fieldname,
12906 die, cu);
12907 }
12908 else
12909 {
1d06ead6 12910 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12911 fnp->physname = physname ? physname : "";
12912 }
12913
c906108c 12914 fnp->type = alloc_type (objfile);
f792889a
DJ
12915 this_type = read_type_die (die, cu);
12916 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12917 {
f792889a 12918 int nparams = TYPE_NFIELDS (this_type);
c906108c 12919
f792889a 12920 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12921 of the method itself (TYPE_CODE_METHOD). */
12922 smash_to_method_type (fnp->type, type,
f792889a
DJ
12923 TYPE_TARGET_TYPE (this_type),
12924 TYPE_FIELDS (this_type),
12925 TYPE_NFIELDS (this_type),
12926 TYPE_VARARGS (this_type));
c906108c
SS
12927
12928 /* Handle static member functions.
c5aa993b 12929 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12930 member functions. G++ helps GDB by marking the first
12931 parameter for non-static member functions (which is the this
12932 pointer) as artificial. We obtain this information from
12933 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12934 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12935 fnp->voffset = VOFFSET_STATIC;
12936 }
12937 else
e2e0b3e5 12938 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12939 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12940
12941 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12942 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12943 fnp->fcontext = die_containing_type (die, cu);
c906108c 12944
3e43a32a
MS
12945 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12946 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12947
12948 /* Get accessibility. */
e142c38c 12949 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12950 if (attr)
aead7601 12951 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12952 else
12953 accessibility = dwarf2_default_access_attribute (die, cu);
12954 switch (accessibility)
c906108c 12955 {
60d5a603
JK
12956 case DW_ACCESS_private:
12957 fnp->is_private = 1;
12958 break;
12959 case DW_ACCESS_protected:
12960 fnp->is_protected = 1;
12961 break;
c906108c
SS
12962 }
12963
b02dede2 12964 /* Check for artificial methods. */
e142c38c 12965 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12966 if (attr && DW_UNSND (attr) != 0)
12967 fnp->is_artificial = 1;
12968
7d27a96d
TT
12969 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12970
0d564a31 12971 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12972 function. For older versions of GCC, this is an offset in the
12973 appropriate virtual table, as specified by DW_AT_containing_type.
12974 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12975 to the object address. */
12976
e142c38c 12977 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12978 if (attr)
8e19ed76 12979 {
aec5aa8b 12980 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12981 {
aec5aa8b
TT
12982 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12983 {
12984 /* Old-style GCC. */
12985 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12986 }
12987 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12988 || (DW_BLOCK (attr)->size > 1
12989 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12990 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12991 {
aec5aa8b
TT
12992 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12993 if ((fnp->voffset % cu->header.addr_size) != 0)
12994 dwarf2_complex_location_expr_complaint ();
12995 else
12996 fnp->voffset /= cu->header.addr_size;
12997 fnp->voffset += 2;
12998 }
12999 else
13000 dwarf2_complex_location_expr_complaint ();
13001
13002 if (!fnp->fcontext)
7e993ebf
KS
13003 {
13004 /* If there is no `this' field and no DW_AT_containing_type,
13005 we cannot actually find a base class context for the
13006 vtable! */
13007 if (TYPE_NFIELDS (this_type) == 0
13008 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13009 {
13010 complaint (&symfile_complaints,
13011 _("cannot determine context for virtual member "
13012 "function \"%s\" (offset %d)"),
13013 fieldname, die->offset.sect_off);
13014 }
13015 else
13016 {
13017 fnp->fcontext
13018 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13019 }
13020 }
aec5aa8b 13021 }
3690dd37 13022 else if (attr_form_is_section_offset (attr))
8e19ed76 13023 {
4d3c2250 13024 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13025 }
13026 else
13027 {
4d3c2250
KB
13028 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13029 fieldname);
8e19ed76 13030 }
0d564a31 13031 }
d48cc9dd
DJ
13032 else
13033 {
13034 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13035 if (attr && DW_UNSND (attr))
13036 {
13037 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13038 complaint (&symfile_complaints,
3e43a32a
MS
13039 _("Member function \"%s\" (offset %d) is virtual "
13040 "but the vtable offset is not specified"),
b64f50a1 13041 fieldname, die->offset.sect_off);
9655fd1a 13042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13043 TYPE_CPLUS_DYNAMIC (type) = 1;
13044 }
13045 }
c906108c
SS
13046}
13047
13048/* Create the vector of member function fields, and attach it to the type. */
13049
13050static void
fba45db2 13051dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13052 struct dwarf2_cu *cu)
c906108c
SS
13053{
13054 struct fnfieldlist *flp;
c906108c
SS
13055 int i;
13056
b4ba55a1 13057 if (cu->language == language_ada)
a73c6dcd 13058 error (_("unexpected member functions in Ada type"));
b4ba55a1 13059
c906108c
SS
13060 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13061 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13062 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13063
13064 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13065 {
13066 struct nextfnfield *nfp = flp->head;
13067 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13068 int k;
13069
13070 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13071 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13072 fn_flp->fn_fields = (struct fn_field *)
13073 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13074 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13075 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13076 }
13077
13078 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13079}
13080
1168df01
JB
13081/* Returns non-zero if NAME is the name of a vtable member in CU's
13082 language, zero otherwise. */
13083static int
13084is_vtable_name (const char *name, struct dwarf2_cu *cu)
13085{
13086 static const char vptr[] = "_vptr";
987504bb 13087 static const char vtable[] = "vtable";
1168df01 13088
987504bb
JJ
13089 /* Look for the C++ and Java forms of the vtable. */
13090 if ((cu->language == language_java
61012eef
GB
13091 && startswith (name, vtable))
13092 || (startswith (name, vptr)
987504bb 13093 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13094 return 1;
13095
13096 return 0;
13097}
13098
c0dd20ea 13099/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13100 functions, with the ABI-specified layout. If TYPE describes
13101 such a structure, smash it into a member function type.
61049d3b
DJ
13102
13103 GCC shouldn't do this; it should just output pointer to member DIEs.
13104 This is GCC PR debug/28767. */
c0dd20ea 13105
0b92b5bb
TT
13106static void
13107quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13108{
09e2d7c7 13109 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13110
13111 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13112 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13113 return;
c0dd20ea
DJ
13114
13115 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13116 if (TYPE_FIELD_NAME (type, 0) == NULL
13117 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13118 || TYPE_FIELD_NAME (type, 1) == NULL
13119 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13120 return;
c0dd20ea
DJ
13121
13122 /* Find the type of the method. */
0b92b5bb 13123 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13124 if (pfn_type == NULL
13125 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13126 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13127 return;
c0dd20ea
DJ
13128
13129 /* Look for the "this" argument. */
13130 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13131 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13132 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13133 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13134 return;
c0dd20ea 13135
09e2d7c7 13136 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13137 new_type = alloc_type (objfile);
09e2d7c7 13138 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13139 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13140 TYPE_VARARGS (pfn_type));
0b92b5bb 13141 smash_to_methodptr_type (type, new_type);
c0dd20ea 13142}
1168df01 13143
685b1105
JK
13144/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13145 (icc). */
13146
13147static int
13148producer_is_icc (struct dwarf2_cu *cu)
13149{
13150 if (!cu->checked_producer)
13151 check_producer (cu);
13152
13153 return cu->producer_is_icc;
13154}
13155
c906108c 13156/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13157 (definition) to create a type for the structure or union. Fill in
13158 the type's name and general properties; the members will not be
83655187
DE
13159 processed until process_structure_scope. A symbol table entry for
13160 the type will also not be done until process_structure_scope (assuming
13161 the type has a name).
c906108c 13162
c767944b
DJ
13163 NOTE: we need to call these functions regardless of whether or not the
13164 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13165 structure or union. This gets the type entered into our set of
83655187 13166 user defined types. */
c906108c 13167
f792889a 13168static struct type *
134d01f1 13169read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13170{
e7c27a73 13171 struct objfile *objfile = cu->objfile;
c906108c
SS
13172 struct type *type;
13173 struct attribute *attr;
15d034d0 13174 const char *name;
c906108c 13175
348e048f
DE
13176 /* If the definition of this type lives in .debug_types, read that type.
13177 Don't follow DW_AT_specification though, that will take us back up
13178 the chain and we want to go down. */
45e58e77 13179 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13180 if (attr)
13181 {
ac9ec31b 13182 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13183
ac9ec31b 13184 /* The type's CU may not be the same as CU.
02142a6c 13185 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13186 return set_die_type (die, type, cu);
13187 }
13188
c0dd20ea 13189 type = alloc_type (objfile);
c906108c 13190 INIT_CPLUS_SPECIFIC (type);
93311388 13191
39cbfefa
DJ
13192 name = dwarf2_name (die, cu);
13193 if (name != NULL)
c906108c 13194 {
987504bb 13195 if (cu->language == language_cplus
45280282 13196 || cu->language == language_java
c44af4eb
TT
13197 || cu->language == language_d
13198 || cu->language == language_rust)
63d06c5c 13199 {
15d034d0 13200 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13201
13202 /* dwarf2_full_name might have already finished building the DIE's
13203 type. If so, there is no need to continue. */
13204 if (get_die_type (die, cu) != NULL)
13205 return get_die_type (die, cu);
13206
13207 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13208 if (die->tag == DW_TAG_structure_type
13209 || die->tag == DW_TAG_class_type)
13210 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13211 }
13212 else
13213 {
d8151005
DJ
13214 /* The name is already allocated along with this objfile, so
13215 we don't need to duplicate it for the type. */
7d455152 13216 TYPE_TAG_NAME (type) = name;
94af9270
KS
13217 if (die->tag == DW_TAG_class_type)
13218 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13219 }
c906108c
SS
13220 }
13221
13222 if (die->tag == DW_TAG_structure_type)
13223 {
13224 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13225 }
13226 else if (die->tag == DW_TAG_union_type)
13227 {
13228 TYPE_CODE (type) = TYPE_CODE_UNION;
13229 }
13230 else
13231 {
4753d33b 13232 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13233 }
13234
0cc2414c
TT
13235 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13236 TYPE_DECLARED_CLASS (type) = 1;
13237
e142c38c 13238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13239 if (attr)
13240 {
155bfbd3
JB
13241 if (attr_form_is_constant (attr))
13242 TYPE_LENGTH (type) = DW_UNSND (attr);
13243 else
13244 {
13245 /* For the moment, dynamic type sizes are not supported
13246 by GDB's struct type. The actual size is determined
13247 on-demand when resolving the type of a given object,
13248 so set the type's length to zero for now. Otherwise,
13249 we record an expression as the length, and that expression
13250 could lead to a very large value, which could eventually
13251 lead to us trying to allocate that much memory when creating
13252 a value of that type. */
13253 TYPE_LENGTH (type) = 0;
13254 }
c906108c
SS
13255 }
13256 else
13257 {
13258 TYPE_LENGTH (type) = 0;
13259 }
13260
422b1cb0 13261 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13262 {
13263 /* ICC does not output the required DW_AT_declaration
13264 on incomplete types, but gives them a size of zero. */
422b1cb0 13265 TYPE_STUB (type) = 1;
685b1105
JK
13266 }
13267 else
13268 TYPE_STUB_SUPPORTED (type) = 1;
13269
dc718098 13270 if (die_is_declaration (die, cu))
876cecd0 13271 TYPE_STUB (type) = 1;
a6c727b2
DJ
13272 else if (attr == NULL && die->child == NULL
13273 && producer_is_realview (cu->producer))
13274 /* RealView does not output the required DW_AT_declaration
13275 on incomplete types. */
13276 TYPE_STUB (type) = 1;
dc718098 13277
c906108c
SS
13278 /* We need to add the type field to the die immediately so we don't
13279 infinitely recurse when dealing with pointers to the structure
0963b4bd 13280 type within the structure itself. */
1c379e20 13281 set_die_type (die, type, cu);
c906108c 13282
7e314c57
JK
13283 /* set_die_type should be already done. */
13284 set_descriptive_type (type, die, cu);
13285
c767944b
DJ
13286 return type;
13287}
13288
13289/* Finish creating a structure or union type, including filling in
13290 its members and creating a symbol for it. */
13291
13292static void
13293process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13294{
13295 struct objfile *objfile = cu->objfile;
ca040673 13296 struct die_info *child_die;
c767944b
DJ
13297 struct type *type;
13298
13299 type = get_die_type (die, cu);
13300 if (type == NULL)
13301 type = read_structure_type (die, cu);
13302
e142c38c 13303 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13304 {
13305 struct field_info fi;
34eaf542 13306 VEC (symbolp) *template_args = NULL;
c767944b 13307 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13308
13309 memset (&fi, 0, sizeof (struct field_info));
13310
639d11d3 13311 child_die = die->child;
c906108c
SS
13312
13313 while (child_die && child_die->tag)
13314 {
a9a9bd0f
DC
13315 if (child_die->tag == DW_TAG_member
13316 || child_die->tag == DW_TAG_variable)
c906108c 13317 {
a9a9bd0f
DC
13318 /* NOTE: carlton/2002-11-05: A C++ static data member
13319 should be a DW_TAG_member that is a declaration, but
13320 all versions of G++ as of this writing (so through at
13321 least 3.2.1) incorrectly generate DW_TAG_variable
13322 tags for them instead. */
e7c27a73 13323 dwarf2_add_field (&fi, child_die, cu);
c906108c 13324 }
8713b1b1 13325 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13326 {
e98c9e7c
TT
13327 /* Rust doesn't have member functions in the C++ sense.
13328 However, it does emit ordinary functions as children
13329 of a struct DIE. */
13330 if (cu->language == language_rust)
13331 read_func_scope (child_die, cu);
13332 else
13333 {
13334 /* C++ member function. */
13335 dwarf2_add_member_fn (&fi, child_die, type, cu);
13336 }
c906108c
SS
13337 }
13338 else if (child_die->tag == DW_TAG_inheritance)
13339 {
13340 /* C++ base class field. */
e7c27a73 13341 dwarf2_add_field (&fi, child_die, cu);
c906108c 13342 }
98751a41
JK
13343 else if (child_die->tag == DW_TAG_typedef)
13344 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13345 else if (child_die->tag == DW_TAG_template_type_param
13346 || child_die->tag == DW_TAG_template_value_param)
13347 {
13348 struct symbol *arg = new_symbol (child_die, NULL, cu);
13349
f1078f66
DJ
13350 if (arg != NULL)
13351 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13352 }
13353
c906108c
SS
13354 child_die = sibling_die (child_die);
13355 }
13356
34eaf542
TT
13357 /* Attach template arguments to type. */
13358 if (! VEC_empty (symbolp, template_args))
13359 {
13360 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13361 TYPE_N_TEMPLATE_ARGUMENTS (type)
13362 = VEC_length (symbolp, template_args);
13363 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13364 = XOBNEWVEC (&objfile->objfile_obstack,
13365 struct symbol *,
13366 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13367 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13368 VEC_address (symbolp, template_args),
13369 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13370 * sizeof (struct symbol *)));
13371 VEC_free (symbolp, template_args);
13372 }
13373
c906108c
SS
13374 /* Attach fields and member functions to the type. */
13375 if (fi.nfields)
e7c27a73 13376 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13377 if (fi.nfnfields)
13378 {
e7c27a73 13379 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13380
c5aa993b 13381 /* Get the type which refers to the base class (possibly this
c906108c 13382 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13383 class from the DW_AT_containing_type attribute. This use of
13384 DW_AT_containing_type is a GNU extension. */
c906108c 13385
e142c38c 13386 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13387 {
e7c27a73 13388 struct type *t = die_containing_type (die, cu);
c906108c 13389
ae6ae975 13390 set_type_vptr_basetype (type, t);
c906108c
SS
13391 if (type == t)
13392 {
c906108c
SS
13393 int i;
13394
13395 /* Our own class provides vtbl ptr. */
13396 for (i = TYPE_NFIELDS (t) - 1;
13397 i >= TYPE_N_BASECLASSES (t);
13398 --i)
13399 {
0d5cff50 13400 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13401
1168df01 13402 if (is_vtable_name (fieldname, cu))
c906108c 13403 {
ae6ae975 13404 set_type_vptr_fieldno (type, i);
c906108c
SS
13405 break;
13406 }
13407 }
13408
13409 /* Complain if virtual function table field not found. */
13410 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13411 complaint (&symfile_complaints,
3e43a32a
MS
13412 _("virtual function table pointer "
13413 "not found when defining class '%s'"),
4d3c2250
KB
13414 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13415 "");
c906108c
SS
13416 }
13417 else
13418 {
ae6ae975 13419 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13420 }
13421 }
f6235d4c 13422 else if (cu->producer
61012eef 13423 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13424 {
13425 /* The IBM XLC compiler does not provide direct indication
13426 of the containing type, but the vtable pointer is
13427 always named __vfp. */
13428
13429 int i;
13430
13431 for (i = TYPE_NFIELDS (type) - 1;
13432 i >= TYPE_N_BASECLASSES (type);
13433 --i)
13434 {
13435 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13436 {
ae6ae975
DE
13437 set_type_vptr_fieldno (type, i);
13438 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13439 break;
13440 }
13441 }
13442 }
c906108c 13443 }
98751a41
JK
13444
13445 /* Copy fi.typedef_field_list linked list elements content into the
13446 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13447 if (fi.typedef_field_list)
13448 {
13449 int i = fi.typedef_field_list_count;
13450
a0d7a4ff 13451 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13452 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13453 = ((struct typedef_field *)
13454 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13455 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13456
13457 /* Reverse the list order to keep the debug info elements order. */
13458 while (--i >= 0)
13459 {
13460 struct typedef_field *dest, *src;
6e70227d 13461
98751a41
JK
13462 dest = &TYPE_TYPEDEF_FIELD (type, i);
13463 src = &fi.typedef_field_list->field;
13464 fi.typedef_field_list = fi.typedef_field_list->next;
13465 *dest = *src;
13466 }
13467 }
c767944b
DJ
13468
13469 do_cleanups (back_to);
eb2a6f42
TT
13470
13471 if (HAVE_CPLUS_STRUCT (type))
13472 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13473 }
63d06c5c 13474
bb5ed363 13475 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13476
90aeadfc
DC
13477 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13478 snapshots) has been known to create a die giving a declaration
13479 for a class that has, as a child, a die giving a definition for a
13480 nested class. So we have to process our children even if the
13481 current die is a declaration. Normally, of course, a declaration
13482 won't have any children at all. */
134d01f1 13483
ca040673
DE
13484 child_die = die->child;
13485
90aeadfc
DC
13486 while (child_die != NULL && child_die->tag)
13487 {
13488 if (child_die->tag == DW_TAG_member
13489 || child_die->tag == DW_TAG_variable
34eaf542
TT
13490 || child_die->tag == DW_TAG_inheritance
13491 || child_die->tag == DW_TAG_template_value_param
13492 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13493 {
90aeadfc 13494 /* Do nothing. */
134d01f1 13495 }
90aeadfc
DC
13496 else
13497 process_die (child_die, cu);
134d01f1 13498
90aeadfc 13499 child_die = sibling_die (child_die);
134d01f1
DJ
13500 }
13501
fa4028e9
JB
13502 /* Do not consider external references. According to the DWARF standard,
13503 these DIEs are identified by the fact that they have no byte_size
13504 attribute, and a declaration attribute. */
13505 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13506 || !die_is_declaration (die, cu))
c767944b 13507 new_symbol (die, type, cu);
134d01f1
DJ
13508}
13509
55426c9d
JB
13510/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13511 update TYPE using some information only available in DIE's children. */
13512
13513static void
13514update_enumeration_type_from_children (struct die_info *die,
13515 struct type *type,
13516 struct dwarf2_cu *cu)
13517{
13518 struct obstack obstack;
60f7655a 13519 struct die_info *child_die;
55426c9d
JB
13520 int unsigned_enum = 1;
13521 int flag_enum = 1;
13522 ULONGEST mask = 0;
13523 struct cleanup *old_chain;
13524
13525 obstack_init (&obstack);
13526 old_chain = make_cleanup_obstack_free (&obstack);
13527
60f7655a
DE
13528 for (child_die = die->child;
13529 child_die != NULL && child_die->tag;
13530 child_die = sibling_die (child_die))
55426c9d
JB
13531 {
13532 struct attribute *attr;
13533 LONGEST value;
13534 const gdb_byte *bytes;
13535 struct dwarf2_locexpr_baton *baton;
13536 const char *name;
60f7655a 13537
55426c9d
JB
13538 if (child_die->tag != DW_TAG_enumerator)
13539 continue;
13540
13541 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13542 if (attr == NULL)
13543 continue;
13544
13545 name = dwarf2_name (child_die, cu);
13546 if (name == NULL)
13547 name = "<anonymous enumerator>";
13548
13549 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13550 &value, &bytes, &baton);
13551 if (value < 0)
13552 {
13553 unsigned_enum = 0;
13554 flag_enum = 0;
13555 }
13556 else if ((mask & value) != 0)
13557 flag_enum = 0;
13558 else
13559 mask |= value;
13560
13561 /* If we already know that the enum type is neither unsigned, nor
13562 a flag type, no need to look at the rest of the enumerates. */
13563 if (!unsigned_enum && !flag_enum)
13564 break;
55426c9d
JB
13565 }
13566
13567 if (unsigned_enum)
13568 TYPE_UNSIGNED (type) = 1;
13569 if (flag_enum)
13570 TYPE_FLAG_ENUM (type) = 1;
13571
13572 do_cleanups (old_chain);
13573}
13574
134d01f1
DJ
13575/* Given a DW_AT_enumeration_type die, set its type. We do not
13576 complete the type's fields yet, or create any symbols. */
c906108c 13577
f792889a 13578static struct type *
134d01f1 13579read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13580{
e7c27a73 13581 struct objfile *objfile = cu->objfile;
c906108c 13582 struct type *type;
c906108c 13583 struct attribute *attr;
0114d602 13584 const char *name;
134d01f1 13585
348e048f
DE
13586 /* If the definition of this type lives in .debug_types, read that type.
13587 Don't follow DW_AT_specification though, that will take us back up
13588 the chain and we want to go down. */
45e58e77 13589 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13590 if (attr)
13591 {
ac9ec31b 13592 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13593
ac9ec31b 13594 /* The type's CU may not be the same as CU.
02142a6c 13595 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13596 return set_die_type (die, type, cu);
13597 }
13598
c906108c
SS
13599 type = alloc_type (objfile);
13600
13601 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13602 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13603 if (name != NULL)
7d455152 13604 TYPE_TAG_NAME (type) = name;
c906108c 13605
0626fc76
TT
13606 attr = dwarf2_attr (die, DW_AT_type, cu);
13607 if (attr != NULL)
13608 {
13609 struct type *underlying_type = die_type (die, cu);
13610
13611 TYPE_TARGET_TYPE (type) = underlying_type;
13612 }
13613
e142c38c 13614 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13615 if (attr)
13616 {
13617 TYPE_LENGTH (type) = DW_UNSND (attr);
13618 }
13619 else
13620 {
13621 TYPE_LENGTH (type) = 0;
13622 }
13623
137033e9
JB
13624 /* The enumeration DIE can be incomplete. In Ada, any type can be
13625 declared as private in the package spec, and then defined only
13626 inside the package body. Such types are known as Taft Amendment
13627 Types. When another package uses such a type, an incomplete DIE
13628 may be generated by the compiler. */
02eb380e 13629 if (die_is_declaration (die, cu))
876cecd0 13630 TYPE_STUB (type) = 1;
02eb380e 13631
0626fc76
TT
13632 /* Finish the creation of this type by using the enum's children.
13633 We must call this even when the underlying type has been provided
13634 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13635 update_enumeration_type_from_children (die, type, cu);
13636
0626fc76
TT
13637 /* If this type has an underlying type that is not a stub, then we
13638 may use its attributes. We always use the "unsigned" attribute
13639 in this situation, because ordinarily we guess whether the type
13640 is unsigned -- but the guess can be wrong and the underlying type
13641 can tell us the reality. However, we defer to a local size
13642 attribute if one exists, because this lets the compiler override
13643 the underlying type if needed. */
13644 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13645 {
13646 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13647 if (TYPE_LENGTH (type) == 0)
13648 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13649 }
13650
3d567982
TT
13651 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13652
f792889a 13653 return set_die_type (die, type, cu);
134d01f1
DJ
13654}
13655
13656/* Given a pointer to a die which begins an enumeration, process all
13657 the dies that define the members of the enumeration, and create the
13658 symbol for the enumeration type.
13659
13660 NOTE: We reverse the order of the element list. */
13661
13662static void
13663process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13664{
f792889a 13665 struct type *this_type;
134d01f1 13666
f792889a
DJ
13667 this_type = get_die_type (die, cu);
13668 if (this_type == NULL)
13669 this_type = read_enumeration_type (die, cu);
9dc481d3 13670
639d11d3 13671 if (die->child != NULL)
c906108c 13672 {
9dc481d3
DE
13673 struct die_info *child_die;
13674 struct symbol *sym;
13675 struct field *fields = NULL;
13676 int num_fields = 0;
15d034d0 13677 const char *name;
9dc481d3 13678
639d11d3 13679 child_die = die->child;
c906108c
SS
13680 while (child_die && child_die->tag)
13681 {
13682 if (child_die->tag != DW_TAG_enumerator)
13683 {
e7c27a73 13684 process_die (child_die, cu);
c906108c
SS
13685 }
13686 else
13687 {
39cbfefa
DJ
13688 name = dwarf2_name (child_die, cu);
13689 if (name)
c906108c 13690 {
f792889a 13691 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13692
13693 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13694 {
13695 fields = (struct field *)
13696 xrealloc (fields,
13697 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13698 * sizeof (struct field));
c906108c
SS
13699 }
13700
3567439c 13701 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13702 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13703 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13704 FIELD_BITSIZE (fields[num_fields]) = 0;
13705
13706 num_fields++;
13707 }
13708 }
13709
13710 child_die = sibling_die (child_die);
13711 }
13712
13713 if (num_fields)
13714 {
f792889a
DJ
13715 TYPE_NFIELDS (this_type) = num_fields;
13716 TYPE_FIELDS (this_type) = (struct field *)
13717 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13718 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13719 sizeof (struct field) * num_fields);
b8c9b27d 13720 xfree (fields);
c906108c 13721 }
c906108c 13722 }
134d01f1 13723
6c83ed52
TT
13724 /* If we are reading an enum from a .debug_types unit, and the enum
13725 is a declaration, and the enum is not the signatured type in the
13726 unit, then we do not want to add a symbol for it. Adding a
13727 symbol would in some cases obscure the true definition of the
13728 enum, giving users an incomplete type when the definition is
13729 actually available. Note that we do not want to do this for all
13730 enums which are just declarations, because C++0x allows forward
13731 enum declarations. */
3019eac3 13732 if (cu->per_cu->is_debug_types
6c83ed52
TT
13733 && die_is_declaration (die, cu))
13734 {
52dc124a 13735 struct signatured_type *sig_type;
6c83ed52 13736
c0f78cd4 13737 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13738 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13739 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13740 return;
13741 }
13742
f792889a 13743 new_symbol (die, this_type, cu);
c906108c
SS
13744}
13745
13746/* Extract all information from a DW_TAG_array_type DIE and put it in
13747 the DIE's type field. For now, this only handles one dimensional
13748 arrays. */
13749
f792889a 13750static struct type *
e7c27a73 13751read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13752{
e7c27a73 13753 struct objfile *objfile = cu->objfile;
c906108c 13754 struct die_info *child_die;
7e314c57 13755 struct type *type;
c906108c
SS
13756 struct type *element_type, *range_type, *index_type;
13757 struct type **range_types = NULL;
13758 struct attribute *attr;
13759 int ndim = 0;
13760 struct cleanup *back_to;
15d034d0 13761 const char *name;
dc53a7ad 13762 unsigned int bit_stride = 0;
c906108c 13763
e7c27a73 13764 element_type = die_type (die, cu);
c906108c 13765
7e314c57
JK
13766 /* The die_type call above may have already set the type for this DIE. */
13767 type = get_die_type (die, cu);
13768 if (type)
13769 return type;
13770
dc53a7ad
JB
13771 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13772 if (attr != NULL)
13773 bit_stride = DW_UNSND (attr) * 8;
13774
13775 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13776 if (attr != NULL)
13777 bit_stride = DW_UNSND (attr);
13778
c906108c
SS
13779 /* Irix 6.2 native cc creates array types without children for
13780 arrays with unspecified length. */
639d11d3 13781 if (die->child == NULL)
c906108c 13782 {
46bf5051 13783 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13784 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13785 type = create_array_type_with_stride (NULL, element_type, range_type,
13786 bit_stride);
f792889a 13787 return set_die_type (die, type, cu);
c906108c
SS
13788 }
13789
13790 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13791 child_die = die->child;
c906108c
SS
13792 while (child_die && child_die->tag)
13793 {
13794 if (child_die->tag == DW_TAG_subrange_type)
13795 {
f792889a 13796 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13797
f792889a 13798 if (child_type != NULL)
a02abb62 13799 {
0963b4bd
MS
13800 /* The range type was succesfully read. Save it for the
13801 array type creation. */
a02abb62
JB
13802 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13803 {
13804 range_types = (struct type **)
13805 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13806 * sizeof (struct type *));
13807 if (ndim == 0)
13808 make_cleanup (free_current_contents, &range_types);
13809 }
f792889a 13810 range_types[ndim++] = child_type;
a02abb62 13811 }
c906108c
SS
13812 }
13813 child_die = sibling_die (child_die);
13814 }
13815
13816 /* Dwarf2 dimensions are output from left to right, create the
13817 necessary array types in backwards order. */
7ca2d3a3 13818
c906108c 13819 type = element_type;
7ca2d3a3
DL
13820
13821 if (read_array_order (die, cu) == DW_ORD_col_major)
13822 {
13823 int i = 0;
9a619af0 13824
7ca2d3a3 13825 while (i < ndim)
dc53a7ad
JB
13826 type = create_array_type_with_stride (NULL, type, range_types[i++],
13827 bit_stride);
7ca2d3a3
DL
13828 }
13829 else
13830 {
13831 while (ndim-- > 0)
dc53a7ad
JB
13832 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13833 bit_stride);
7ca2d3a3 13834 }
c906108c 13835
f5f8a009
EZ
13836 /* Understand Dwarf2 support for vector types (like they occur on
13837 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13838 array type. This is not part of the Dwarf2/3 standard yet, but a
13839 custom vendor extension. The main difference between a regular
13840 array and the vector variant is that vectors are passed by value
13841 to functions. */
e142c38c 13842 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13843 if (attr)
ea37ba09 13844 make_vector_type (type);
f5f8a009 13845
dbc98a8b
KW
13846 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13847 implementation may choose to implement triple vectors using this
13848 attribute. */
13849 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13850 if (attr)
13851 {
13852 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13853 TYPE_LENGTH (type) = DW_UNSND (attr);
13854 else
3e43a32a
MS
13855 complaint (&symfile_complaints,
13856 _("DW_AT_byte_size for array type smaller "
13857 "than the total size of elements"));
dbc98a8b
KW
13858 }
13859
39cbfefa
DJ
13860 name = dwarf2_name (die, cu);
13861 if (name)
13862 TYPE_NAME (type) = name;
6e70227d 13863
0963b4bd 13864 /* Install the type in the die. */
7e314c57
JK
13865 set_die_type (die, type, cu);
13866
13867 /* set_die_type should be already done. */
b4ba55a1
JB
13868 set_descriptive_type (type, die, cu);
13869
c906108c
SS
13870 do_cleanups (back_to);
13871
7e314c57 13872 return type;
c906108c
SS
13873}
13874
7ca2d3a3 13875static enum dwarf_array_dim_ordering
6e70227d 13876read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13877{
13878 struct attribute *attr;
13879
13880 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13881
aead7601
SM
13882 if (attr)
13883 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13884
0963b4bd
MS
13885 /* GNU F77 is a special case, as at 08/2004 array type info is the
13886 opposite order to the dwarf2 specification, but data is still
13887 laid out as per normal fortran.
7ca2d3a3 13888
0963b4bd
MS
13889 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13890 version checking. */
7ca2d3a3 13891
905e0470
PM
13892 if (cu->language == language_fortran
13893 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13894 {
13895 return DW_ORD_row_major;
13896 }
13897
6e70227d 13898 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13899 {
13900 case array_column_major:
13901 return DW_ORD_col_major;
13902 case array_row_major:
13903 default:
13904 return DW_ORD_row_major;
13905 };
13906}
13907
72019c9c 13908/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13909 the DIE's type field. */
72019c9c 13910
f792889a 13911static struct type *
72019c9c
GM
13912read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13913{
7e314c57
JK
13914 struct type *domain_type, *set_type;
13915 struct attribute *attr;
f792889a 13916
7e314c57
JK
13917 domain_type = die_type (die, cu);
13918
13919 /* The die_type call above may have already set the type for this DIE. */
13920 set_type = get_die_type (die, cu);
13921 if (set_type)
13922 return set_type;
13923
13924 set_type = create_set_type (NULL, domain_type);
13925
13926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13927 if (attr)
13928 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13929
f792889a 13930 return set_die_type (die, set_type, cu);
72019c9c 13931}
7ca2d3a3 13932
0971de02
TT
13933/* A helper for read_common_block that creates a locexpr baton.
13934 SYM is the symbol which we are marking as computed.
13935 COMMON_DIE is the DIE for the common block.
13936 COMMON_LOC is the location expression attribute for the common
13937 block itself.
13938 MEMBER_LOC is the location expression attribute for the particular
13939 member of the common block that we are processing.
13940 CU is the CU from which the above come. */
13941
13942static void
13943mark_common_block_symbol_computed (struct symbol *sym,
13944 struct die_info *common_die,
13945 struct attribute *common_loc,
13946 struct attribute *member_loc,
13947 struct dwarf2_cu *cu)
13948{
13949 struct objfile *objfile = dwarf2_per_objfile->objfile;
13950 struct dwarf2_locexpr_baton *baton;
13951 gdb_byte *ptr;
13952 unsigned int cu_off;
13953 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13954 LONGEST offset = 0;
13955
13956 gdb_assert (common_loc && member_loc);
13957 gdb_assert (attr_form_is_block (common_loc));
13958 gdb_assert (attr_form_is_block (member_loc)
13959 || attr_form_is_constant (member_loc));
13960
8d749320 13961 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13962 baton->per_cu = cu->per_cu;
13963 gdb_assert (baton->per_cu);
13964
13965 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13966
13967 if (attr_form_is_constant (member_loc))
13968 {
13969 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13970 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13971 }
13972 else
13973 baton->size += DW_BLOCK (member_loc)->size;
13974
224c3ddb 13975 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13976 baton->data = ptr;
13977
13978 *ptr++ = DW_OP_call4;
13979 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13980 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13981 ptr += 4;
13982
13983 if (attr_form_is_constant (member_loc))
13984 {
13985 *ptr++ = DW_OP_addr;
13986 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13987 ptr += cu->header.addr_size;
13988 }
13989 else
13990 {
13991 /* We have to copy the data here, because DW_OP_call4 will only
13992 use a DW_AT_location attribute. */
13993 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13994 ptr += DW_BLOCK (member_loc)->size;
13995 }
13996
13997 *ptr++ = DW_OP_plus;
13998 gdb_assert (ptr - baton->data == baton->size);
13999
0971de02 14000 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14001 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14002}
14003
4357ac6c
TT
14004/* Create appropriate locally-scoped variables for all the
14005 DW_TAG_common_block entries. Also create a struct common_block
14006 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14007 is used to sepate the common blocks name namespace from regular
14008 variable names. */
c906108c
SS
14009
14010static void
e7c27a73 14011read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14012{
0971de02
TT
14013 struct attribute *attr;
14014
14015 attr = dwarf2_attr (die, DW_AT_location, cu);
14016 if (attr)
14017 {
14018 /* Support the .debug_loc offsets. */
14019 if (attr_form_is_block (attr))
14020 {
14021 /* Ok. */
14022 }
14023 else if (attr_form_is_section_offset (attr))
14024 {
14025 dwarf2_complex_location_expr_complaint ();
14026 attr = NULL;
14027 }
14028 else
14029 {
14030 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14031 "common block member");
14032 attr = NULL;
14033 }
14034 }
14035
639d11d3 14036 if (die->child != NULL)
c906108c 14037 {
4357ac6c
TT
14038 struct objfile *objfile = cu->objfile;
14039 struct die_info *child_die;
14040 size_t n_entries = 0, size;
14041 struct common_block *common_block;
14042 struct symbol *sym;
74ac6d43 14043
4357ac6c
TT
14044 for (child_die = die->child;
14045 child_die && child_die->tag;
14046 child_die = sibling_die (child_die))
14047 ++n_entries;
14048
14049 size = (sizeof (struct common_block)
14050 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14051 common_block
14052 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14053 size);
4357ac6c
TT
14054 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14055 common_block->n_entries = 0;
14056
14057 for (child_die = die->child;
14058 child_die && child_die->tag;
14059 child_die = sibling_die (child_die))
14060 {
14061 /* Create the symbol in the DW_TAG_common_block block in the current
14062 symbol scope. */
e7c27a73 14063 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14064 if (sym != NULL)
14065 {
14066 struct attribute *member_loc;
14067
14068 common_block->contents[common_block->n_entries++] = sym;
14069
14070 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14071 cu);
14072 if (member_loc)
14073 {
14074 /* GDB has handled this for a long time, but it is
14075 not specified by DWARF. It seems to have been
14076 emitted by gfortran at least as recently as:
14077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14078 complaint (&symfile_complaints,
14079 _("Variable in common block has "
14080 "DW_AT_data_member_location "
14081 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14082 child_die->offset.sect_off,
14083 objfile_name (cu->objfile));
0971de02
TT
14084
14085 if (attr_form_is_section_offset (member_loc))
14086 dwarf2_complex_location_expr_complaint ();
14087 else if (attr_form_is_constant (member_loc)
14088 || attr_form_is_block (member_loc))
14089 {
14090 if (attr)
14091 mark_common_block_symbol_computed (sym, die, attr,
14092 member_loc, cu);
14093 }
14094 else
14095 dwarf2_complex_location_expr_complaint ();
14096 }
14097 }
c906108c 14098 }
4357ac6c
TT
14099
14100 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14101 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14102 }
14103}
14104
0114d602 14105/* Create a type for a C++ namespace. */
d9fa45fe 14106
0114d602
DJ
14107static struct type *
14108read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14109{
e7c27a73 14110 struct objfile *objfile = cu->objfile;
0114d602 14111 const char *previous_prefix, *name;
9219021c 14112 int is_anonymous;
0114d602
DJ
14113 struct type *type;
14114
14115 /* For extensions, reuse the type of the original namespace. */
14116 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14117 {
14118 struct die_info *ext_die;
14119 struct dwarf2_cu *ext_cu = cu;
9a619af0 14120
0114d602
DJ
14121 ext_die = dwarf2_extension (die, &ext_cu);
14122 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14123
14124 /* EXT_CU may not be the same as CU.
02142a6c 14125 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14126 return set_die_type (die, type, cu);
14127 }
9219021c 14128
e142c38c 14129 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14130
14131 /* Now build the name of the current namespace. */
14132
0114d602
DJ
14133 previous_prefix = determine_prefix (die, cu);
14134 if (previous_prefix[0] != '\0')
14135 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14136 previous_prefix, name, 0, cu);
0114d602
DJ
14137
14138 /* Create the type. */
19f392bc 14139 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14140 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14141
60531b24 14142 return set_die_type (die, type, cu);
0114d602
DJ
14143}
14144
22cee43f 14145/* Read a namespace scope. */
0114d602
DJ
14146
14147static void
14148read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14149{
14150 struct objfile *objfile = cu->objfile;
0114d602 14151 int is_anonymous;
9219021c 14152
5c4e30ca
DC
14153 /* Add a symbol associated to this if we haven't seen the namespace
14154 before. Also, add a using directive if it's an anonymous
14155 namespace. */
9219021c 14156
f2f0e013 14157 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14158 {
14159 struct type *type;
14160
0114d602 14161 type = read_type_die (die, cu);
e7c27a73 14162 new_symbol (die, type, cu);
5c4e30ca 14163
e8e80198 14164 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14165 if (is_anonymous)
0114d602
DJ
14166 {
14167 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14168
22cee43f
PMR
14169 add_using_directive (using_directives (cu->language),
14170 previous_prefix, TYPE_NAME (type), NULL,
14171 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14172 }
5c4e30ca 14173 }
9219021c 14174
639d11d3 14175 if (die->child != NULL)
d9fa45fe 14176 {
639d11d3 14177 struct die_info *child_die = die->child;
6e70227d 14178
d9fa45fe
DC
14179 while (child_die && child_die->tag)
14180 {
e7c27a73 14181 process_die (child_die, cu);
d9fa45fe
DC
14182 child_die = sibling_die (child_die);
14183 }
14184 }
38d518c9
EZ
14185}
14186
f55ee35c
JK
14187/* Read a Fortran module as type. This DIE can be only a declaration used for
14188 imported module. Still we need that type as local Fortran "use ... only"
14189 declaration imports depend on the created type in determine_prefix. */
14190
14191static struct type *
14192read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14193{
14194 struct objfile *objfile = cu->objfile;
15d034d0 14195 const char *module_name;
f55ee35c
JK
14196 struct type *type;
14197
14198 module_name = dwarf2_name (die, cu);
14199 if (!module_name)
3e43a32a
MS
14200 complaint (&symfile_complaints,
14201 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14202 die->offset.sect_off);
19f392bc 14203 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14204
14205 /* determine_prefix uses TYPE_TAG_NAME. */
14206 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14207
14208 return set_die_type (die, type, cu);
14209}
14210
5d7cb8df
JK
14211/* Read a Fortran module. */
14212
14213static void
14214read_module (struct die_info *die, struct dwarf2_cu *cu)
14215{
14216 struct die_info *child_die = die->child;
530e8392
KB
14217 struct type *type;
14218
14219 type = read_type_die (die, cu);
14220 new_symbol (die, type, cu);
5d7cb8df 14221
5d7cb8df
JK
14222 while (child_die && child_die->tag)
14223 {
14224 process_die (child_die, cu);
14225 child_die = sibling_die (child_die);
14226 }
14227}
14228
38d518c9
EZ
14229/* Return the name of the namespace represented by DIE. Set
14230 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14231 namespace. */
14232
14233static const char *
e142c38c 14234namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14235{
14236 struct die_info *current_die;
14237 const char *name = NULL;
14238
14239 /* Loop through the extensions until we find a name. */
14240
14241 for (current_die = die;
14242 current_die != NULL;
f2f0e013 14243 current_die = dwarf2_extension (die, &cu))
38d518c9 14244 {
96553a0c
DE
14245 /* We don't use dwarf2_name here so that we can detect the absence
14246 of a name -> anonymous namespace. */
7d45c7c3 14247 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14248
38d518c9
EZ
14249 if (name != NULL)
14250 break;
14251 }
14252
14253 /* Is it an anonymous namespace? */
14254
14255 *is_anonymous = (name == NULL);
14256 if (*is_anonymous)
2b1dbab0 14257 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14258
14259 return name;
d9fa45fe
DC
14260}
14261
c906108c
SS
14262/* Extract all information from a DW_TAG_pointer_type DIE and add to
14263 the user defined type vector. */
14264
f792889a 14265static struct type *
e7c27a73 14266read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14267{
5e2b427d 14268 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14269 struct comp_unit_head *cu_header = &cu->header;
c906108c 14270 struct type *type;
8b2dbe47
KB
14271 struct attribute *attr_byte_size;
14272 struct attribute *attr_address_class;
14273 int byte_size, addr_class;
7e314c57
JK
14274 struct type *target_type;
14275
14276 target_type = die_type (die, cu);
c906108c 14277
7e314c57
JK
14278 /* The die_type call above may have already set the type for this DIE. */
14279 type = get_die_type (die, cu);
14280 if (type)
14281 return type;
14282
14283 type = lookup_pointer_type (target_type);
8b2dbe47 14284
e142c38c 14285 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14286 if (attr_byte_size)
14287 byte_size = DW_UNSND (attr_byte_size);
c906108c 14288 else
8b2dbe47
KB
14289 byte_size = cu_header->addr_size;
14290
e142c38c 14291 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14292 if (attr_address_class)
14293 addr_class = DW_UNSND (attr_address_class);
14294 else
14295 addr_class = DW_ADDR_none;
14296
14297 /* If the pointer size or address class is different than the
14298 default, create a type variant marked as such and set the
14299 length accordingly. */
14300 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14301 {
5e2b427d 14302 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14303 {
14304 int type_flags;
14305
849957d9 14306 type_flags = gdbarch_address_class_type_flags
5e2b427d 14307 (gdbarch, byte_size, addr_class);
876cecd0
TT
14308 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14309 == 0);
8b2dbe47
KB
14310 type = make_type_with_address_space (type, type_flags);
14311 }
14312 else if (TYPE_LENGTH (type) != byte_size)
14313 {
3e43a32a
MS
14314 complaint (&symfile_complaints,
14315 _("invalid pointer size %d"), byte_size);
8b2dbe47 14316 }
6e70227d 14317 else
9a619af0
MS
14318 {
14319 /* Should we also complain about unhandled address classes? */
14320 }
c906108c 14321 }
8b2dbe47
KB
14322
14323 TYPE_LENGTH (type) = byte_size;
f792889a 14324 return set_die_type (die, type, cu);
c906108c
SS
14325}
14326
14327/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14328 the user defined type vector. */
14329
f792889a 14330static struct type *
e7c27a73 14331read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14332{
14333 struct type *type;
14334 struct type *to_type;
14335 struct type *domain;
14336
e7c27a73
DJ
14337 to_type = die_type (die, cu);
14338 domain = die_containing_type (die, cu);
0d5de010 14339
7e314c57
JK
14340 /* The calls above may have already set the type for this DIE. */
14341 type = get_die_type (die, cu);
14342 if (type)
14343 return type;
14344
0d5de010
DJ
14345 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14346 type = lookup_methodptr_type (to_type);
7078baeb
TT
14347 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14348 {
14349 struct type *new_type = alloc_type (cu->objfile);
14350
14351 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14352 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14353 TYPE_VARARGS (to_type));
14354 type = lookup_methodptr_type (new_type);
14355 }
0d5de010
DJ
14356 else
14357 type = lookup_memberptr_type (to_type, domain);
c906108c 14358
f792889a 14359 return set_die_type (die, type, cu);
c906108c
SS
14360}
14361
14362/* Extract all information from a DW_TAG_reference_type DIE and add to
14363 the user defined type vector. */
14364
f792889a 14365static struct type *
e7c27a73 14366read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14367{
e7c27a73 14368 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14369 struct type *type, *target_type;
c906108c
SS
14370 struct attribute *attr;
14371
7e314c57
JK
14372 target_type = die_type (die, cu);
14373
14374 /* The die_type call above may have already set the type for this DIE. */
14375 type = get_die_type (die, cu);
14376 if (type)
14377 return type;
14378
14379 type = lookup_reference_type (target_type);
e142c38c 14380 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14381 if (attr)
14382 {
14383 TYPE_LENGTH (type) = DW_UNSND (attr);
14384 }
14385 else
14386 {
107d2387 14387 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14388 }
f792889a 14389 return set_die_type (die, type, cu);
c906108c
SS
14390}
14391
cf363f18
MW
14392/* Add the given cv-qualifiers to the element type of the array. GCC
14393 outputs DWARF type qualifiers that apply to an array, not the
14394 element type. But GDB relies on the array element type to carry
14395 the cv-qualifiers. This mimics section 6.7.3 of the C99
14396 specification. */
14397
14398static struct type *
14399add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14400 struct type *base_type, int cnst, int voltl)
14401{
14402 struct type *el_type, *inner_array;
14403
14404 base_type = copy_type (base_type);
14405 inner_array = base_type;
14406
14407 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14408 {
14409 TYPE_TARGET_TYPE (inner_array) =
14410 copy_type (TYPE_TARGET_TYPE (inner_array));
14411 inner_array = TYPE_TARGET_TYPE (inner_array);
14412 }
14413
14414 el_type = TYPE_TARGET_TYPE (inner_array);
14415 cnst |= TYPE_CONST (el_type);
14416 voltl |= TYPE_VOLATILE (el_type);
14417 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14418
14419 return set_die_type (die, base_type, cu);
14420}
14421
f792889a 14422static struct type *
e7c27a73 14423read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14424{
f792889a 14425 struct type *base_type, *cv_type;
c906108c 14426
e7c27a73 14427 base_type = die_type (die, cu);
7e314c57
JK
14428
14429 /* The die_type call above may have already set the type for this DIE. */
14430 cv_type = get_die_type (die, cu);
14431 if (cv_type)
14432 return cv_type;
14433
2f608a3a
KW
14434 /* In case the const qualifier is applied to an array type, the element type
14435 is so qualified, not the array type (section 6.7.3 of C99). */
14436 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14437 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14438
f792889a
DJ
14439 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14440 return set_die_type (die, cv_type, cu);
c906108c
SS
14441}
14442
f792889a 14443static struct type *
e7c27a73 14444read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14445{
f792889a 14446 struct type *base_type, *cv_type;
c906108c 14447
e7c27a73 14448 base_type = die_type (die, cu);
7e314c57
JK
14449
14450 /* The die_type call above may have already set the type for this DIE. */
14451 cv_type = get_die_type (die, cu);
14452 if (cv_type)
14453 return cv_type;
14454
cf363f18
MW
14455 /* In case the volatile qualifier is applied to an array type, the
14456 element type is so qualified, not the array type (section 6.7.3
14457 of C99). */
14458 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14459 return add_array_cv_type (die, cu, base_type, 0, 1);
14460
f792889a
DJ
14461 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14462 return set_die_type (die, cv_type, cu);
c906108c
SS
14463}
14464
06d66ee9
TT
14465/* Handle DW_TAG_restrict_type. */
14466
14467static struct type *
14468read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14469{
14470 struct type *base_type, *cv_type;
14471
14472 base_type = die_type (die, cu);
14473
14474 /* The die_type call above may have already set the type for this DIE. */
14475 cv_type = get_die_type (die, cu);
14476 if (cv_type)
14477 return cv_type;
14478
14479 cv_type = make_restrict_type (base_type);
14480 return set_die_type (die, cv_type, cu);
14481}
14482
a2c2acaf
MW
14483/* Handle DW_TAG_atomic_type. */
14484
14485static struct type *
14486read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14487{
14488 struct type *base_type, *cv_type;
14489
14490 base_type = die_type (die, cu);
14491
14492 /* The die_type call above may have already set the type for this DIE. */
14493 cv_type = get_die_type (die, cu);
14494 if (cv_type)
14495 return cv_type;
14496
14497 cv_type = make_atomic_type (base_type);
14498 return set_die_type (die, cv_type, cu);
14499}
14500
c906108c
SS
14501/* Extract all information from a DW_TAG_string_type DIE and add to
14502 the user defined type vector. It isn't really a user defined type,
14503 but it behaves like one, with other DIE's using an AT_user_def_type
14504 attribute to reference it. */
14505
f792889a 14506static struct type *
e7c27a73 14507read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14508{
e7c27a73 14509 struct objfile *objfile = cu->objfile;
3b7538c0 14510 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14511 struct type *type, *range_type, *index_type, *char_type;
14512 struct attribute *attr;
14513 unsigned int length;
14514
e142c38c 14515 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14516 if (attr)
14517 {
14518 length = DW_UNSND (attr);
14519 }
14520 else
14521 {
0963b4bd 14522 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14524 if (attr)
14525 {
14526 length = DW_UNSND (attr);
14527 }
14528 else
14529 {
14530 length = 1;
14531 }
c906108c 14532 }
6ccb9162 14533
46bf5051 14534 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14535 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14536 char_type = language_string_char_type (cu->language_defn, gdbarch);
14537 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14538
f792889a 14539 return set_die_type (die, type, cu);
c906108c
SS
14540}
14541
4d804846
JB
14542/* Assuming that DIE corresponds to a function, returns nonzero
14543 if the function is prototyped. */
14544
14545static int
14546prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14547{
14548 struct attribute *attr;
14549
14550 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14551 if (attr && (DW_UNSND (attr) != 0))
14552 return 1;
14553
14554 /* The DWARF standard implies that the DW_AT_prototyped attribute
14555 is only meaninful for C, but the concept also extends to other
14556 languages that allow unprototyped functions (Eg: Objective C).
14557 For all other languages, assume that functions are always
14558 prototyped. */
14559 if (cu->language != language_c
14560 && cu->language != language_objc
14561 && cu->language != language_opencl)
14562 return 1;
14563
14564 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14565 prototyped and unprototyped functions; default to prototyped,
14566 since that is more common in modern code (and RealView warns
14567 about unprototyped functions). */
14568 if (producer_is_realview (cu->producer))
14569 return 1;
14570
14571 return 0;
14572}
14573
c906108c
SS
14574/* Handle DIES due to C code like:
14575
14576 struct foo
c5aa993b
JM
14577 {
14578 int (*funcp)(int a, long l);
14579 int b;
14580 };
c906108c 14581
0963b4bd 14582 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14583
f792889a 14584static struct type *
e7c27a73 14585read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14586{
bb5ed363 14587 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14588 struct type *type; /* Type that this function returns. */
14589 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14590 struct attribute *attr;
14591
e7c27a73 14592 type = die_type (die, cu);
7e314c57
JK
14593
14594 /* The die_type call above may have already set the type for this DIE. */
14595 ftype = get_die_type (die, cu);
14596 if (ftype)
14597 return ftype;
14598
0c8b41f1 14599 ftype = lookup_function_type (type);
c906108c 14600
4d804846 14601 if (prototyped_function_p (die, cu))
a6c727b2 14602 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14603
c055b101
CV
14604 /* Store the calling convention in the type if it's available in
14605 the subroutine die. Otherwise set the calling convention to
14606 the default value DW_CC_normal. */
14607 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14608 if (attr)
14609 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14610 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14611 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14612 else
14613 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14614
743649fd
MW
14615 /* Record whether the function returns normally to its caller or not
14616 if the DWARF producer set that information. */
14617 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14618 if (attr && (DW_UNSND (attr) != 0))
14619 TYPE_NO_RETURN (ftype) = 1;
14620
76c10ea2
GM
14621 /* We need to add the subroutine type to the die immediately so
14622 we don't infinitely recurse when dealing with parameters
0963b4bd 14623 declared as the same subroutine type. */
76c10ea2 14624 set_die_type (die, ftype, cu);
6e70227d 14625
639d11d3 14626 if (die->child != NULL)
c906108c 14627 {
bb5ed363 14628 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14629 struct die_info *child_die;
8072405b 14630 int nparams, iparams;
c906108c
SS
14631
14632 /* Count the number of parameters.
14633 FIXME: GDB currently ignores vararg functions, but knows about
14634 vararg member functions. */
8072405b 14635 nparams = 0;
639d11d3 14636 child_die = die->child;
c906108c
SS
14637 while (child_die && child_die->tag)
14638 {
14639 if (child_die->tag == DW_TAG_formal_parameter)
14640 nparams++;
14641 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14642 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14643 child_die = sibling_die (child_die);
14644 }
14645
14646 /* Allocate storage for parameters and fill them in. */
14647 TYPE_NFIELDS (ftype) = nparams;
14648 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14649 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14650
8072405b
JK
14651 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14652 even if we error out during the parameters reading below. */
14653 for (iparams = 0; iparams < nparams; iparams++)
14654 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14655
14656 iparams = 0;
639d11d3 14657 child_die = die->child;
c906108c
SS
14658 while (child_die && child_die->tag)
14659 {
14660 if (child_die->tag == DW_TAG_formal_parameter)
14661 {
3ce3b1ba
PA
14662 struct type *arg_type;
14663
14664 /* DWARF version 2 has no clean way to discern C++
14665 static and non-static member functions. G++ helps
14666 GDB by marking the first parameter for non-static
14667 member functions (which is the this pointer) as
14668 artificial. We pass this information to
14669 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14670
14671 DWARF version 3 added DW_AT_object_pointer, which GCC
14672 4.5 does not yet generate. */
e142c38c 14673 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14674 if (attr)
14675 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14676 else
418835cc
KS
14677 {
14678 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14679
14680 /* GCC/43521: In java, the formal parameter
14681 "this" is sometimes not marked with DW_AT_artificial. */
14682 if (cu->language == language_java)
14683 {
14684 const char *name = dwarf2_name (child_die, cu);
9a619af0 14685
418835cc
KS
14686 if (name && !strcmp (name, "this"))
14687 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14688 }
14689 }
3ce3b1ba
PA
14690 arg_type = die_type (child_die, cu);
14691
14692 /* RealView does not mark THIS as const, which the testsuite
14693 expects. GCC marks THIS as const in method definitions,
14694 but not in the class specifications (GCC PR 43053). */
14695 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14696 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14697 {
14698 int is_this = 0;
14699 struct dwarf2_cu *arg_cu = cu;
14700 const char *name = dwarf2_name (child_die, cu);
14701
14702 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14703 if (attr)
14704 {
14705 /* If the compiler emits this, use it. */
14706 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14707 is_this = 1;
14708 }
14709 else if (name && strcmp (name, "this") == 0)
14710 /* Function definitions will have the argument names. */
14711 is_this = 1;
14712 else if (name == NULL && iparams == 0)
14713 /* Declarations may not have the names, so like
14714 elsewhere in GDB, assume an artificial first
14715 argument is "this". */
14716 is_this = 1;
14717
14718 if (is_this)
14719 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14720 arg_type, 0);
14721 }
14722
14723 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14724 iparams++;
14725 }
14726 child_die = sibling_die (child_die);
14727 }
14728 }
14729
76c10ea2 14730 return ftype;
c906108c
SS
14731}
14732
f792889a 14733static struct type *
e7c27a73 14734read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14735{
e7c27a73 14736 struct objfile *objfile = cu->objfile;
0114d602 14737 const char *name = NULL;
3c8e0968 14738 struct type *this_type, *target_type;
c906108c 14739
94af9270 14740 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
14741 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14742 TYPE_TARGET_STUB (this_type) = 1;
f792889a 14743 set_die_type (die, this_type, cu);
3c8e0968
DE
14744 target_type = die_type (die, cu);
14745 if (target_type != this_type)
14746 TYPE_TARGET_TYPE (this_type) = target_type;
14747 else
14748 {
14749 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14750 spec and cause infinite loops in GDB. */
14751 complaint (&symfile_complaints,
14752 _("Self-referential DW_TAG_typedef "
14753 "- DIE at 0x%x [in module %s]"),
4262abfb 14754 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14755 TYPE_TARGET_TYPE (this_type) = NULL;
14756 }
f792889a 14757 return this_type;
c906108c
SS
14758}
14759
9b790ce7
UW
14760/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14761 (which may be different from NAME) to the architecture back-end to allow
14762 it to guess the correct format if necessary. */
14763
14764static struct type *
14765dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14766 const char *name_hint)
14767{
14768 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14769 const struct floatformat **format;
14770 struct type *type;
14771
14772 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14773 if (format)
14774 type = init_float_type (objfile, bits, name, format);
14775 else
14776 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14777
14778 return type;
14779}
14780
c906108c
SS
14781/* Find a representation of a given base type and install
14782 it in the TYPE field of the die. */
14783
f792889a 14784static struct type *
e7c27a73 14785read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14786{
e7c27a73 14787 struct objfile *objfile = cu->objfile;
c906108c
SS
14788 struct type *type;
14789 struct attribute *attr;
19f392bc 14790 int encoding = 0, bits = 0;
15d034d0 14791 const char *name;
c906108c 14792
e142c38c 14793 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14794 if (attr)
14795 {
14796 encoding = DW_UNSND (attr);
14797 }
e142c38c 14798 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14799 if (attr)
14800 {
19f392bc 14801 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 14802 }
39cbfefa 14803 name = dwarf2_name (die, cu);
6ccb9162 14804 if (!name)
c906108c 14805 {
6ccb9162
UW
14806 complaint (&symfile_complaints,
14807 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14808 }
6ccb9162
UW
14809
14810 switch (encoding)
c906108c 14811 {
6ccb9162
UW
14812 case DW_ATE_address:
14813 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
14814 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14815 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
14816 break;
14817 case DW_ATE_boolean:
19f392bc 14818 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
14819 break;
14820 case DW_ATE_complex_float:
9b790ce7 14821 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 14822 type = init_complex_type (objfile, name, type);
6ccb9162
UW
14823 break;
14824 case DW_ATE_decimal_float:
19f392bc 14825 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
14826 break;
14827 case DW_ATE_float:
9b790ce7 14828 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
14829 break;
14830 case DW_ATE_signed:
19f392bc 14831 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14832 break;
14833 case DW_ATE_unsigned:
3b2b8fea
TT
14834 if (cu->language == language_fortran
14835 && name
61012eef 14836 && startswith (name, "character("))
19f392bc
UW
14837 type = init_character_type (objfile, bits, 1, name);
14838 else
14839 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
14840 break;
14841 case DW_ATE_signed_char:
6e70227d 14842 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14843 || cu->language == language_pascal
14844 || cu->language == language_fortran)
19f392bc
UW
14845 type = init_character_type (objfile, bits, 0, name);
14846 else
14847 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14848 break;
14849 case DW_ATE_unsigned_char:
868a0084 14850 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 14851 || cu->language == language_pascal
c44af4eb
TT
14852 || cu->language == language_fortran
14853 || cu->language == language_rust)
19f392bc
UW
14854 type = init_character_type (objfile, bits, 1, name);
14855 else
14856 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 14857 break;
75079b2b
TT
14858 case DW_ATE_UTF:
14859 /* We just treat this as an integer and then recognize the
14860 type by name elsewhere. */
19f392bc 14861 type = init_integer_type (objfile, bits, 0, name);
75079b2b
TT
14862 break;
14863
6ccb9162
UW
14864 default:
14865 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14866 dwarf_type_encoding_name (encoding));
19f392bc
UW
14867 type = init_type (objfile, TYPE_CODE_ERROR,
14868 bits / TARGET_CHAR_BIT, name);
6ccb9162 14869 break;
c906108c 14870 }
6ccb9162 14871
0114d602 14872 if (name && strcmp (name, "char") == 0)
876cecd0 14873 TYPE_NOSIGN (type) = 1;
0114d602 14874
f792889a 14875 return set_die_type (die, type, cu);
c906108c
SS
14876}
14877
80180f79
SA
14878/* Parse dwarf attribute if it's a block, reference or constant and put the
14879 resulting value of the attribute into struct bound_prop.
14880 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14881
14882static int
14883attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14884 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14885{
14886 struct dwarf2_property_baton *baton;
14887 struct obstack *obstack = &cu->objfile->objfile_obstack;
14888
14889 if (attr == NULL || prop == NULL)
14890 return 0;
14891
14892 if (attr_form_is_block (attr))
14893 {
8d749320 14894 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14895 baton->referenced_type = NULL;
14896 baton->locexpr.per_cu = cu->per_cu;
14897 baton->locexpr.size = DW_BLOCK (attr)->size;
14898 baton->locexpr.data = DW_BLOCK (attr)->data;
14899 prop->data.baton = baton;
14900 prop->kind = PROP_LOCEXPR;
14901 gdb_assert (prop->data.baton != NULL);
14902 }
14903 else if (attr_form_is_ref (attr))
14904 {
14905 struct dwarf2_cu *target_cu = cu;
14906 struct die_info *target_die;
14907 struct attribute *target_attr;
14908
14909 target_die = follow_die_ref (die, attr, &target_cu);
14910 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14911 if (target_attr == NULL)
14912 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14913 target_cu);
80180f79
SA
14914 if (target_attr == NULL)
14915 return 0;
14916
df25ebbd 14917 switch (target_attr->name)
80180f79 14918 {
df25ebbd
JB
14919 case DW_AT_location:
14920 if (attr_form_is_section_offset (target_attr))
14921 {
8d749320 14922 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14923 baton->referenced_type = die_type (target_die, target_cu);
14924 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14925 prop->data.baton = baton;
14926 prop->kind = PROP_LOCLIST;
14927 gdb_assert (prop->data.baton != NULL);
14928 }
14929 else if (attr_form_is_block (target_attr))
14930 {
8d749320 14931 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14932 baton->referenced_type = die_type (target_die, target_cu);
14933 baton->locexpr.per_cu = cu->per_cu;
14934 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14935 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14936 prop->data.baton = baton;
14937 prop->kind = PROP_LOCEXPR;
14938 gdb_assert (prop->data.baton != NULL);
14939 }
14940 else
14941 {
14942 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14943 "dynamic property");
14944 return 0;
14945 }
14946 break;
14947 case DW_AT_data_member_location:
14948 {
14949 LONGEST offset;
14950
14951 if (!handle_data_member_location (target_die, target_cu,
14952 &offset))
14953 return 0;
14954
8d749320 14955 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14956 baton->referenced_type = read_type_die (target_die->parent,
14957 target_cu);
df25ebbd
JB
14958 baton->offset_info.offset = offset;
14959 baton->offset_info.type = die_type (target_die, target_cu);
14960 prop->data.baton = baton;
14961 prop->kind = PROP_ADDR_OFFSET;
14962 break;
14963 }
80180f79
SA
14964 }
14965 }
14966 else if (attr_form_is_constant (attr))
14967 {
14968 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14969 prop->kind = PROP_CONST;
14970 }
14971 else
14972 {
14973 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14974 dwarf2_name (die, cu));
14975 return 0;
14976 }
14977
14978 return 1;
14979}
14980
a02abb62
JB
14981/* Read the given DW_AT_subrange DIE. */
14982
f792889a 14983static struct type *
a02abb62
JB
14984read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14985{
4c9ad8c2 14986 struct type *base_type, *orig_base_type;
a02abb62
JB
14987 struct type *range_type;
14988 struct attribute *attr;
729efb13 14989 struct dynamic_prop low, high;
4fae6e18 14990 int low_default_is_valid;
c451ebe5 14991 int high_bound_is_count = 0;
15d034d0 14992 const char *name;
43bbcdc2 14993 LONGEST negative_mask;
e77813c8 14994
4c9ad8c2
TT
14995 orig_base_type = die_type (die, cu);
14996 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14997 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14998 creating the range type, but we use the result of check_typedef
14999 when examining properties of the type. */
15000 base_type = check_typedef (orig_base_type);
a02abb62 15001
7e314c57
JK
15002 /* The die_type call above may have already set the type for this DIE. */
15003 range_type = get_die_type (die, cu);
15004 if (range_type)
15005 return range_type;
15006
729efb13
SA
15007 low.kind = PROP_CONST;
15008 high.kind = PROP_CONST;
15009 high.data.const_val = 0;
15010
4fae6e18
JK
15011 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15012 omitting DW_AT_lower_bound. */
15013 switch (cu->language)
6e70227d 15014 {
4fae6e18
JK
15015 case language_c:
15016 case language_cplus:
729efb13 15017 low.data.const_val = 0;
4fae6e18
JK
15018 low_default_is_valid = 1;
15019 break;
15020 case language_fortran:
729efb13 15021 low.data.const_val = 1;
4fae6e18
JK
15022 low_default_is_valid = 1;
15023 break;
15024 case language_d:
15025 case language_java:
15026 case language_objc:
c44af4eb 15027 case language_rust:
729efb13 15028 low.data.const_val = 0;
4fae6e18
JK
15029 low_default_is_valid = (cu->header.version >= 4);
15030 break;
15031 case language_ada:
15032 case language_m2:
15033 case language_pascal:
729efb13 15034 low.data.const_val = 1;
4fae6e18
JK
15035 low_default_is_valid = (cu->header.version >= 4);
15036 break;
15037 default:
729efb13 15038 low.data.const_val = 0;
4fae6e18
JK
15039 low_default_is_valid = 0;
15040 break;
a02abb62
JB
15041 }
15042
e142c38c 15043 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15044 if (attr)
11c1ba78 15045 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15046 else if (!low_default_is_valid)
15047 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15048 "- DIE at 0x%x [in module %s]"),
4262abfb 15049 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15050
e142c38c 15051 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15052 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15053 {
15054 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15055 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15056 {
c451ebe5
SA
15057 /* If bounds are constant do the final calculation here. */
15058 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15059 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15060 else
15061 high_bound_is_count = 1;
c2ff108b 15062 }
e77813c8
PM
15063 }
15064
15065 /* Dwarf-2 specifications explicitly allows to create subrange types
15066 without specifying a base type.
15067 In that case, the base type must be set to the type of
15068 the lower bound, upper bound or count, in that order, if any of these
15069 three attributes references an object that has a type.
15070 If no base type is found, the Dwarf-2 specifications say that
15071 a signed integer type of size equal to the size of an address should
15072 be used.
15073 For the following C code: `extern char gdb_int [];'
15074 GCC produces an empty range DIE.
15075 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15076 high bound or count are not yet handled by this code. */
e77813c8
PM
15077 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15078 {
15079 struct objfile *objfile = cu->objfile;
15080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15081 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15082 struct type *int_type = objfile_type (objfile)->builtin_int;
15083
15084 /* Test "int", "long int", and "long long int" objfile types,
15085 and select the first one having a size above or equal to the
15086 architecture address size. */
15087 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15088 base_type = int_type;
15089 else
15090 {
15091 int_type = objfile_type (objfile)->builtin_long;
15092 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15093 base_type = int_type;
15094 else
15095 {
15096 int_type = objfile_type (objfile)->builtin_long_long;
15097 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15098 base_type = int_type;
15099 }
15100 }
15101 }
a02abb62 15102
dbb9c2b1
JB
15103 /* Normally, the DWARF producers are expected to use a signed
15104 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15105 But this is unfortunately not always the case, as witnessed
15106 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15107 is used instead. To work around that ambiguity, we treat
15108 the bounds as signed, and thus sign-extend their values, when
15109 the base type is signed. */
6e70227d 15110 negative_mask =
66c6502d 15111 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15112 if (low.kind == PROP_CONST
15113 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15114 low.data.const_val |= negative_mask;
15115 if (high.kind == PROP_CONST
15116 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15117 high.data.const_val |= negative_mask;
43bbcdc2 15118
729efb13 15119 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15120
c451ebe5
SA
15121 if (high_bound_is_count)
15122 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15123
c2ff108b
JK
15124 /* Ada expects an empty array on no boundary attributes. */
15125 if (attr == NULL && cu->language != language_ada)
729efb13 15126 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15127
39cbfefa
DJ
15128 name = dwarf2_name (die, cu);
15129 if (name)
15130 TYPE_NAME (range_type) = name;
6e70227d 15131
e142c38c 15132 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15133 if (attr)
15134 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15135
7e314c57
JK
15136 set_die_type (die, range_type, cu);
15137
15138 /* set_die_type should be already done. */
b4ba55a1
JB
15139 set_descriptive_type (range_type, die, cu);
15140
7e314c57 15141 return range_type;
a02abb62 15142}
6e70227d 15143
f792889a 15144static struct type *
81a17f79
JB
15145read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15146{
15147 struct type *type;
81a17f79 15148
81a17f79
JB
15149 /* For now, we only support the C meaning of an unspecified type: void. */
15150
19f392bc 15151 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15152 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15153
f792889a 15154 return set_die_type (die, type, cu);
81a17f79 15155}
a02abb62 15156
639d11d3
DC
15157/* Read a single die and all its descendents. Set the die's sibling
15158 field to NULL; set other fields in the die correctly, and set all
15159 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15160 location of the info_ptr after reading all of those dies. PARENT
15161 is the parent of the die in question. */
15162
15163static struct die_info *
dee91e82 15164read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15165 const gdb_byte *info_ptr,
15166 const gdb_byte **new_info_ptr,
dee91e82 15167 struct die_info *parent)
639d11d3
DC
15168{
15169 struct die_info *die;
d521ce57 15170 const gdb_byte *cur_ptr;
639d11d3
DC
15171 int has_children;
15172
bf6af496 15173 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15174 if (die == NULL)
15175 {
15176 *new_info_ptr = cur_ptr;
15177 return NULL;
15178 }
93311388 15179 store_in_ref_table (die, reader->cu);
639d11d3
DC
15180
15181 if (has_children)
bf6af496 15182 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15183 else
15184 {
15185 die->child = NULL;
15186 *new_info_ptr = cur_ptr;
15187 }
15188
15189 die->sibling = NULL;
15190 die->parent = parent;
15191 return die;
15192}
15193
15194/* Read a die, all of its descendents, and all of its siblings; set
15195 all of the fields of all of the dies correctly. Arguments are as
15196 in read_die_and_children. */
15197
15198static struct die_info *
bf6af496 15199read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15200 const gdb_byte *info_ptr,
15201 const gdb_byte **new_info_ptr,
bf6af496 15202 struct die_info *parent)
639d11d3
DC
15203{
15204 struct die_info *first_die, *last_sibling;
d521ce57 15205 const gdb_byte *cur_ptr;
639d11d3 15206
c906108c 15207 cur_ptr = info_ptr;
639d11d3
DC
15208 first_die = last_sibling = NULL;
15209
15210 while (1)
c906108c 15211 {
639d11d3 15212 struct die_info *die
dee91e82 15213 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15214
1d325ec1 15215 if (die == NULL)
c906108c 15216 {
639d11d3
DC
15217 *new_info_ptr = cur_ptr;
15218 return first_die;
c906108c 15219 }
1d325ec1
DJ
15220
15221 if (!first_die)
15222 first_die = die;
c906108c 15223 else
1d325ec1
DJ
15224 last_sibling->sibling = die;
15225
15226 last_sibling = die;
c906108c 15227 }
c906108c
SS
15228}
15229
bf6af496
DE
15230/* Read a die, all of its descendents, and all of its siblings; set
15231 all of the fields of all of the dies correctly. Arguments are as
15232 in read_die_and_children.
15233 This the main entry point for reading a DIE and all its children. */
15234
15235static struct die_info *
15236read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15237 const gdb_byte *info_ptr,
15238 const gdb_byte **new_info_ptr,
bf6af496
DE
15239 struct die_info *parent)
15240{
15241 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15242 new_info_ptr, parent);
15243
b4f54984 15244 if (dwarf_die_debug)
bf6af496
DE
15245 {
15246 fprintf_unfiltered (gdb_stdlog,
15247 "Read die from %s@0x%x of %s:\n",
a32a8923 15248 get_section_name (reader->die_section),
bf6af496
DE
15249 (unsigned) (info_ptr - reader->die_section->buffer),
15250 bfd_get_filename (reader->abfd));
b4f54984 15251 dump_die (die, dwarf_die_debug);
bf6af496
DE
15252 }
15253
15254 return die;
15255}
15256
3019eac3
DE
15257/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15258 attributes.
15259 The caller is responsible for filling in the extra attributes
15260 and updating (*DIEP)->num_attrs.
15261 Set DIEP to point to a newly allocated die with its information,
15262 except for its child, sibling, and parent fields.
15263 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15264
d521ce57 15265static const gdb_byte *
3019eac3 15266read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15267 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15268 int *has_children, int num_extra_attrs)
93311388 15269{
b64f50a1
JK
15270 unsigned int abbrev_number, bytes_read, i;
15271 sect_offset offset;
93311388
DE
15272 struct abbrev_info *abbrev;
15273 struct die_info *die;
15274 struct dwarf2_cu *cu = reader->cu;
15275 bfd *abfd = reader->abfd;
15276
b64f50a1 15277 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15278 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15279 info_ptr += bytes_read;
15280 if (!abbrev_number)
15281 {
15282 *diep = NULL;
15283 *has_children = 0;
15284 return info_ptr;
15285 }
15286
433df2d4 15287 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15288 if (!abbrev)
348e048f
DE
15289 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15290 abbrev_number,
15291 bfd_get_filename (abfd));
15292
3019eac3 15293 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15294 die->offset = offset;
15295 die->tag = abbrev->tag;
15296 die->abbrev = abbrev_number;
15297
3019eac3
DE
15298 /* Make the result usable.
15299 The caller needs to update num_attrs after adding the extra
15300 attributes. */
93311388
DE
15301 die->num_attrs = abbrev->num_attrs;
15302
15303 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15304 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15305 info_ptr);
93311388
DE
15306
15307 *diep = die;
15308 *has_children = abbrev->has_children;
15309 return info_ptr;
15310}
15311
3019eac3
DE
15312/* Read a die and all its attributes.
15313 Set DIEP to point to a newly allocated die with its information,
15314 except for its child, sibling, and parent fields.
15315 Set HAS_CHILDREN to tell whether the die has children or not. */
15316
d521ce57 15317static const gdb_byte *
3019eac3 15318read_full_die (const struct die_reader_specs *reader,
d521ce57 15319 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15320 int *has_children)
15321{
d521ce57 15322 const gdb_byte *result;
bf6af496
DE
15323
15324 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15325
b4f54984 15326 if (dwarf_die_debug)
bf6af496
DE
15327 {
15328 fprintf_unfiltered (gdb_stdlog,
15329 "Read die from %s@0x%x of %s:\n",
a32a8923 15330 get_section_name (reader->die_section),
bf6af496
DE
15331 (unsigned) (info_ptr - reader->die_section->buffer),
15332 bfd_get_filename (reader->abfd));
b4f54984 15333 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15334 }
15335
15336 return result;
3019eac3 15337}
433df2d4
DE
15338\f
15339/* Abbreviation tables.
3019eac3 15340
433df2d4 15341 In DWARF version 2, the description of the debugging information is
c906108c
SS
15342 stored in a separate .debug_abbrev section. Before we read any
15343 dies from a section we read in all abbreviations and install them
433df2d4
DE
15344 in a hash table. */
15345
15346/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15347
15348static struct abbrev_info *
15349abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15350{
15351 struct abbrev_info *abbrev;
15352
8d749320 15353 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15354 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15355
433df2d4
DE
15356 return abbrev;
15357}
15358
15359/* Add an abbreviation to the table. */
c906108c
SS
15360
15361static void
433df2d4
DE
15362abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15363 unsigned int abbrev_number,
15364 struct abbrev_info *abbrev)
15365{
15366 unsigned int hash_number;
15367
15368 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15369 abbrev->next = abbrev_table->abbrevs[hash_number];
15370 abbrev_table->abbrevs[hash_number] = abbrev;
15371}
dee91e82 15372
433df2d4
DE
15373/* Look up an abbrev in the table.
15374 Returns NULL if the abbrev is not found. */
15375
15376static struct abbrev_info *
15377abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15378 unsigned int abbrev_number)
c906108c 15379{
433df2d4
DE
15380 unsigned int hash_number;
15381 struct abbrev_info *abbrev;
15382
15383 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15384 abbrev = abbrev_table->abbrevs[hash_number];
15385
15386 while (abbrev)
15387 {
15388 if (abbrev->number == abbrev_number)
15389 return abbrev;
15390 abbrev = abbrev->next;
15391 }
15392 return NULL;
15393}
15394
15395/* Read in an abbrev table. */
15396
15397static struct abbrev_table *
15398abbrev_table_read_table (struct dwarf2_section_info *section,
15399 sect_offset offset)
15400{
15401 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15402 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15403 struct abbrev_table *abbrev_table;
d521ce57 15404 const gdb_byte *abbrev_ptr;
c906108c
SS
15405 struct abbrev_info *cur_abbrev;
15406 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15407 unsigned int abbrev_form;
f3dd6933
DJ
15408 struct attr_abbrev *cur_attrs;
15409 unsigned int allocated_attrs;
c906108c 15410
70ba0933 15411 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15412 abbrev_table->offset = offset;
433df2d4 15413 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15414 abbrev_table->abbrevs =
15415 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15416 ABBREV_HASH_SIZE);
433df2d4
DE
15417 memset (abbrev_table->abbrevs, 0,
15418 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15419
433df2d4
DE
15420 dwarf2_read_section (objfile, section);
15421 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15422 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15423 abbrev_ptr += bytes_read;
15424
f3dd6933 15425 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15426 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15427
0963b4bd 15428 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15429 while (abbrev_number)
15430 {
433df2d4 15431 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15432
15433 /* read in abbrev header */
15434 cur_abbrev->number = abbrev_number;
aead7601
SM
15435 cur_abbrev->tag
15436 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15437 abbrev_ptr += bytes_read;
15438 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15439 abbrev_ptr += 1;
15440
15441 /* now read in declarations */
15442 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15443 abbrev_ptr += bytes_read;
15444 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15445 abbrev_ptr += bytes_read;
15446 while (abbrev_name)
15447 {
f3dd6933 15448 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15449 {
f3dd6933
DJ
15450 allocated_attrs += ATTR_ALLOC_CHUNK;
15451 cur_attrs
224c3ddb 15452 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15453 }
ae038cb0 15454
aead7601
SM
15455 cur_attrs[cur_abbrev->num_attrs].name
15456 = (enum dwarf_attribute) abbrev_name;
15457 cur_attrs[cur_abbrev->num_attrs++].form
15458 = (enum dwarf_form) abbrev_form;
c906108c
SS
15459 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15460 abbrev_ptr += bytes_read;
15461 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15462 abbrev_ptr += bytes_read;
15463 }
15464
8d749320
SM
15465 cur_abbrev->attrs =
15466 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15467 cur_abbrev->num_attrs);
f3dd6933
DJ
15468 memcpy (cur_abbrev->attrs, cur_attrs,
15469 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15470
433df2d4 15471 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15472
15473 /* Get next abbreviation.
15474 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15475 always properly terminated with an abbrev number of 0.
15476 Exit loop if we encounter an abbreviation which we have
15477 already read (which means we are about to read the abbreviations
15478 for the next compile unit) or if the end of the abbreviation
15479 table is reached. */
433df2d4 15480 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15481 break;
15482 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15483 abbrev_ptr += bytes_read;
433df2d4 15484 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15485 break;
15486 }
f3dd6933
DJ
15487
15488 xfree (cur_attrs);
433df2d4 15489 return abbrev_table;
c906108c
SS
15490}
15491
433df2d4 15492/* Free the resources held by ABBREV_TABLE. */
c906108c 15493
c906108c 15494static void
433df2d4 15495abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15496{
433df2d4
DE
15497 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15498 xfree (abbrev_table);
c906108c
SS
15499}
15500
f4dc4d17
DE
15501/* Same as abbrev_table_free but as a cleanup.
15502 We pass in a pointer to the pointer to the table so that we can
15503 set the pointer to NULL when we're done. It also simplifies
73051182 15504 build_type_psymtabs_1. */
f4dc4d17
DE
15505
15506static void
15507abbrev_table_free_cleanup (void *table_ptr)
15508{
9a3c8263 15509 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15510
15511 if (*abbrev_table_ptr != NULL)
15512 abbrev_table_free (*abbrev_table_ptr);
15513 *abbrev_table_ptr = NULL;
15514}
15515
433df2d4
DE
15516/* Read the abbrev table for CU from ABBREV_SECTION. */
15517
15518static void
15519dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15520 struct dwarf2_section_info *abbrev_section)
c906108c 15521{
433df2d4
DE
15522 cu->abbrev_table =
15523 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15524}
c906108c 15525
433df2d4 15526/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15527
433df2d4
DE
15528static void
15529dwarf2_free_abbrev_table (void *ptr_to_cu)
15530{
9a3c8263 15531 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15532
a2ce51a0
DE
15533 if (cu->abbrev_table != NULL)
15534 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15535 /* Set this to NULL so that we SEGV if we try to read it later,
15536 and also because free_comp_unit verifies this is NULL. */
15537 cu->abbrev_table = NULL;
15538}
15539\f
72bf9492
DJ
15540/* Returns nonzero if TAG represents a type that we might generate a partial
15541 symbol for. */
15542
15543static int
15544is_type_tag_for_partial (int tag)
15545{
15546 switch (tag)
15547 {
15548#if 0
15549 /* Some types that would be reasonable to generate partial symbols for,
15550 that we don't at present. */
15551 case DW_TAG_array_type:
15552 case DW_TAG_file_type:
15553 case DW_TAG_ptr_to_member_type:
15554 case DW_TAG_set_type:
15555 case DW_TAG_string_type:
15556 case DW_TAG_subroutine_type:
15557#endif
15558 case DW_TAG_base_type:
15559 case DW_TAG_class_type:
680b30c7 15560 case DW_TAG_interface_type:
72bf9492
DJ
15561 case DW_TAG_enumeration_type:
15562 case DW_TAG_structure_type:
15563 case DW_TAG_subrange_type:
15564 case DW_TAG_typedef:
15565 case DW_TAG_union_type:
15566 return 1;
15567 default:
15568 return 0;
15569 }
15570}
15571
15572/* Load all DIEs that are interesting for partial symbols into memory. */
15573
15574static struct partial_die_info *
dee91e82 15575load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15576 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15577{
dee91e82 15578 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15579 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15580 struct partial_die_info *part_die;
15581 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15582 struct abbrev_info *abbrev;
15583 unsigned int bytes_read;
5afb4e99 15584 unsigned int load_all = 0;
72bf9492
DJ
15585 int nesting_level = 1;
15586
15587 parent_die = NULL;
15588 last_die = NULL;
15589
7adf1e79
DE
15590 gdb_assert (cu->per_cu != NULL);
15591 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15592 load_all = 1;
15593
72bf9492
DJ
15594 cu->partial_dies
15595 = htab_create_alloc_ex (cu->header.length / 12,
15596 partial_die_hash,
15597 partial_die_eq,
15598 NULL,
15599 &cu->comp_unit_obstack,
15600 hashtab_obstack_allocate,
15601 dummy_obstack_deallocate);
15602
8d749320 15603 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15604
15605 while (1)
15606 {
15607 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15608
15609 /* A NULL abbrev means the end of a series of children. */
15610 if (abbrev == NULL)
15611 {
15612 if (--nesting_level == 0)
15613 {
15614 /* PART_DIE was probably the last thing allocated on the
15615 comp_unit_obstack, so we could call obstack_free
15616 here. We don't do that because the waste is small,
15617 and will be cleaned up when we're done with this
15618 compilation unit. This way, we're also more robust
15619 against other users of the comp_unit_obstack. */
15620 return first_die;
15621 }
15622 info_ptr += bytes_read;
15623 last_die = parent_die;
15624 parent_die = parent_die->die_parent;
15625 continue;
15626 }
15627
98bfdba5
PA
15628 /* Check for template arguments. We never save these; if
15629 they're seen, we just mark the parent, and go on our way. */
15630 if (parent_die != NULL
15631 && cu->language == language_cplus
15632 && (abbrev->tag == DW_TAG_template_type_param
15633 || abbrev->tag == DW_TAG_template_value_param))
15634 {
15635 parent_die->has_template_arguments = 1;
15636
15637 if (!load_all)
15638 {
15639 /* We don't need a partial DIE for the template argument. */
dee91e82 15640 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15641 continue;
15642 }
15643 }
15644
0d99eb77 15645 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15646 Skip their other children. */
15647 if (!load_all
15648 && cu->language == language_cplus
15649 && parent_die != NULL
15650 && parent_die->tag == DW_TAG_subprogram)
15651 {
dee91e82 15652 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15653 continue;
15654 }
15655
5afb4e99
DJ
15656 /* Check whether this DIE is interesting enough to save. Normally
15657 we would not be interested in members here, but there may be
15658 later variables referencing them via DW_AT_specification (for
15659 static members). */
15660 if (!load_all
15661 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15662 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15663 && abbrev->tag != DW_TAG_enumerator
15664 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15665 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15666 && abbrev->tag != DW_TAG_variable
5afb4e99 15667 && abbrev->tag != DW_TAG_namespace
f55ee35c 15668 && abbrev->tag != DW_TAG_module
95554aad 15669 && abbrev->tag != DW_TAG_member
74921315
KS
15670 && abbrev->tag != DW_TAG_imported_unit
15671 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15672 {
15673 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15674 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15675 continue;
15676 }
15677
dee91e82
DE
15678 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15679 info_ptr);
72bf9492
DJ
15680
15681 /* This two-pass algorithm for processing partial symbols has a
15682 high cost in cache pressure. Thus, handle some simple cases
15683 here which cover the majority of C partial symbols. DIEs
15684 which neither have specification tags in them, nor could have
15685 specification tags elsewhere pointing at them, can simply be
15686 processed and discarded.
15687
15688 This segment is also optional; scan_partial_symbols and
15689 add_partial_symbol will handle these DIEs if we chain
15690 them in normally. When compilers which do not emit large
15691 quantities of duplicate debug information are more common,
15692 this code can probably be removed. */
15693
15694 /* Any complete simple types at the top level (pretty much all
15695 of them, for a language without namespaces), can be processed
15696 directly. */
15697 if (parent_die == NULL
15698 && part_die->has_specification == 0
15699 && part_die->is_declaration == 0
d8228535 15700 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15701 || part_die->tag == DW_TAG_base_type
15702 || part_die->tag == DW_TAG_subrange_type))
15703 {
15704 if (building_psymtab && part_die->name != NULL)
04a679b8 15705 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15706 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15707 &objfile->static_psymbols,
1762568f 15708 0, cu->language, objfile);
dee91e82 15709 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15710 continue;
15711 }
15712
d8228535
JK
15713 /* The exception for DW_TAG_typedef with has_children above is
15714 a workaround of GCC PR debug/47510. In the case of this complaint
15715 type_name_no_tag_or_error will error on such types later.
15716
15717 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15718 it could not find the child DIEs referenced later, this is checked
15719 above. In correct DWARF DW_TAG_typedef should have no children. */
15720
15721 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15722 complaint (&symfile_complaints,
15723 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15724 "- DIE at 0x%x [in module %s]"),
4262abfb 15725 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15726
72bf9492
DJ
15727 /* If we're at the second level, and we're an enumerator, and
15728 our parent has no specification (meaning possibly lives in a
15729 namespace elsewhere), then we can add the partial symbol now
15730 instead of queueing it. */
15731 if (part_die->tag == DW_TAG_enumerator
15732 && parent_die != NULL
15733 && parent_die->die_parent == NULL
15734 && parent_die->tag == DW_TAG_enumeration_type
15735 && parent_die->has_specification == 0)
15736 {
15737 if (part_die->name == NULL)
3e43a32a
MS
15738 complaint (&symfile_complaints,
15739 _("malformed enumerator DIE ignored"));
72bf9492 15740 else if (building_psymtab)
04a679b8 15741 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15742 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15743 (cu->language == language_cplus
15744 || cu->language == language_java)
bb5ed363
DE
15745 ? &objfile->global_psymbols
15746 : &objfile->static_psymbols,
1762568f 15747 0, cu->language, objfile);
72bf9492 15748
dee91e82 15749 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15750 continue;
15751 }
15752
15753 /* We'll save this DIE so link it in. */
15754 part_die->die_parent = parent_die;
15755 part_die->die_sibling = NULL;
15756 part_die->die_child = NULL;
15757
15758 if (last_die && last_die == parent_die)
15759 last_die->die_child = part_die;
15760 else if (last_die)
15761 last_die->die_sibling = part_die;
15762
15763 last_die = part_die;
15764
15765 if (first_die == NULL)
15766 first_die = part_die;
15767
15768 /* Maybe add the DIE to the hash table. Not all DIEs that we
15769 find interesting need to be in the hash table, because we
15770 also have the parent/sibling/child chains; only those that we
15771 might refer to by offset later during partial symbol reading.
15772
15773 For now this means things that might have be the target of a
15774 DW_AT_specification, DW_AT_abstract_origin, or
15775 DW_AT_extension. DW_AT_extension will refer only to
15776 namespaces; DW_AT_abstract_origin refers to functions (and
15777 many things under the function DIE, but we do not recurse
15778 into function DIEs during partial symbol reading) and
15779 possibly variables as well; DW_AT_specification refers to
15780 declarations. Declarations ought to have the DW_AT_declaration
15781 flag. It happens that GCC forgets to put it in sometimes, but
15782 only for functions, not for types.
15783
15784 Adding more things than necessary to the hash table is harmless
15785 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15786 wasted time in find_partial_die, when we reread the compilation
15787 unit with load_all_dies set. */
72bf9492 15788
5afb4e99 15789 if (load_all
72929c62 15790 || abbrev->tag == DW_TAG_constant
5afb4e99 15791 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15792 || abbrev->tag == DW_TAG_variable
15793 || abbrev->tag == DW_TAG_namespace
15794 || part_die->is_declaration)
15795 {
15796 void **slot;
15797
15798 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15799 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15800 *slot = part_die;
15801 }
15802
8d749320 15803 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15804
15805 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15806 we have no reason to follow the children of structures; for other
98bfdba5
PA
15807 languages we have to, so that we can get at method physnames
15808 to infer fully qualified class names, for DW_AT_specification,
15809 and for C++ template arguments. For C++, we also look one level
15810 inside functions to find template arguments (if the name of the
15811 function does not already contain the template arguments).
bc30ff58
JB
15812
15813 For Ada, we need to scan the children of subprograms and lexical
15814 blocks as well because Ada allows the definition of nested
15815 entities that could be interesting for the debugger, such as
15816 nested subprograms for instance. */
72bf9492 15817 if (last_die->has_children
5afb4e99
DJ
15818 && (load_all
15819 || last_die->tag == DW_TAG_namespace
f55ee35c 15820 || last_die->tag == DW_TAG_module
72bf9492 15821 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15822 || (cu->language == language_cplus
15823 && last_die->tag == DW_TAG_subprogram
15824 && (last_die->name == NULL
15825 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15826 || (cu->language != language_c
15827 && (last_die->tag == DW_TAG_class_type
680b30c7 15828 || last_die->tag == DW_TAG_interface_type
72bf9492 15829 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15830 || last_die->tag == DW_TAG_union_type))
15831 || (cu->language == language_ada
15832 && (last_die->tag == DW_TAG_subprogram
15833 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15834 {
15835 nesting_level++;
15836 parent_die = last_die;
15837 continue;
15838 }
15839
15840 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15841 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15842
15843 /* Back to the top, do it again. */
15844 }
15845}
15846
c906108c
SS
15847/* Read a minimal amount of information into the minimal die structure. */
15848
d521ce57 15849static const gdb_byte *
dee91e82
DE
15850read_partial_die (const struct die_reader_specs *reader,
15851 struct partial_die_info *part_die,
15852 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15853 const gdb_byte *info_ptr)
c906108c 15854{
dee91e82 15855 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15856 struct objfile *objfile = cu->objfile;
d521ce57 15857 const gdb_byte *buffer = reader->buffer;
fa238c03 15858 unsigned int i;
c906108c 15859 struct attribute attr;
c5aa993b 15860 int has_low_pc_attr = 0;
c906108c 15861 int has_high_pc_attr = 0;
91da1414 15862 int high_pc_relative = 0;
c906108c 15863
72bf9492 15864 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15865
b64f50a1 15866 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15867
15868 info_ptr += abbrev_len;
15869
15870 if (abbrev == NULL)
15871 return info_ptr;
15872
c906108c
SS
15873 part_die->tag = abbrev->tag;
15874 part_die->has_children = abbrev->has_children;
c906108c
SS
15875
15876 for (i = 0; i < abbrev->num_attrs; ++i)
15877 {
dee91e82 15878 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15879
15880 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15881 partial symbol table. */
c906108c
SS
15882 switch (attr.name)
15883 {
15884 case DW_AT_name:
71c25dea
TT
15885 switch (part_die->tag)
15886 {
15887 case DW_TAG_compile_unit:
95554aad 15888 case DW_TAG_partial_unit:
348e048f 15889 case DW_TAG_type_unit:
71c25dea
TT
15890 /* Compilation units have a DW_AT_name that is a filename, not
15891 a source language identifier. */
15892 case DW_TAG_enumeration_type:
15893 case DW_TAG_enumerator:
15894 /* These tags always have simple identifiers already; no need
15895 to canonicalize them. */
15896 part_die->name = DW_STRING (&attr);
15897 break;
15898 default:
15899 part_die->name
15900 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15901 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15902 break;
15903 }
c906108c 15904 break;
31ef98ae 15905 case DW_AT_linkage_name:
c906108c 15906 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15907 /* Note that both forms of linkage name might appear. We
15908 assume they will be the same, and we only store the last
15909 one we see. */
94af9270
KS
15910 if (cu->language == language_ada)
15911 part_die->name = DW_STRING (&attr);
abc72ce4 15912 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15913 break;
15914 case DW_AT_low_pc:
15915 has_low_pc_attr = 1;
31aa7e4e 15916 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15917 break;
15918 case DW_AT_high_pc:
15919 has_high_pc_attr = 1;
31aa7e4e
JB
15920 part_die->highpc = attr_value_as_address (&attr);
15921 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15922 high_pc_relative = 1;
c906108c
SS
15923 break;
15924 case DW_AT_location:
0963b4bd 15925 /* Support the .debug_loc offsets. */
8e19ed76
PS
15926 if (attr_form_is_block (&attr))
15927 {
95554aad 15928 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15929 }
3690dd37 15930 else if (attr_form_is_section_offset (&attr))
8e19ed76 15931 {
4d3c2250 15932 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15933 }
15934 else
15935 {
4d3c2250
KB
15936 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15937 "partial symbol information");
8e19ed76 15938 }
c906108c 15939 break;
c906108c
SS
15940 case DW_AT_external:
15941 part_die->is_external = DW_UNSND (&attr);
15942 break;
15943 case DW_AT_declaration:
15944 part_die->is_declaration = DW_UNSND (&attr);
15945 break;
15946 case DW_AT_type:
15947 part_die->has_type = 1;
15948 break;
15949 case DW_AT_abstract_origin:
15950 case DW_AT_specification:
72bf9492
DJ
15951 case DW_AT_extension:
15952 part_die->has_specification = 1;
c764a876 15953 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15954 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15955 || cu->per_cu->is_dwz);
c906108c
SS
15956 break;
15957 case DW_AT_sibling:
15958 /* Ignore absolute siblings, they might point outside of
15959 the current compile unit. */
15960 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15961 complaint (&symfile_complaints,
15962 _("ignoring absolute DW_AT_sibling"));
c906108c 15963 else
b9502d3f
WN
15964 {
15965 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15966 const gdb_byte *sibling_ptr = buffer + off;
15967
15968 if (sibling_ptr < info_ptr)
15969 complaint (&symfile_complaints,
15970 _("DW_AT_sibling points backwards"));
22869d73
KS
15971 else if (sibling_ptr > reader->buffer_end)
15972 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15973 else
15974 part_die->sibling = sibling_ptr;
15975 }
c906108c 15976 break;
fa4028e9
JB
15977 case DW_AT_byte_size:
15978 part_die->has_byte_size = 1;
15979 break;
ff908ebf
AW
15980 case DW_AT_const_value:
15981 part_die->has_const_value = 1;
15982 break;
68511cec
CES
15983 case DW_AT_calling_convention:
15984 /* DWARF doesn't provide a way to identify a program's source-level
15985 entry point. DW_AT_calling_convention attributes are only meant
15986 to describe functions' calling conventions.
15987
15988 However, because it's a necessary piece of information in
15989 Fortran, and because DW_CC_program is the only piece of debugging
15990 information whose definition refers to a 'main program' at all,
15991 several compilers have begun marking Fortran main programs with
15992 DW_CC_program --- even when those functions use the standard
15993 calling conventions.
15994
15995 So until DWARF specifies a way to provide this information and
15996 compilers pick up the new representation, we'll support this
15997 practice. */
15998 if (DW_UNSND (&attr) == DW_CC_program
dc365182
JH
15999 && cu->language == language_fortran
16000 && part_die->name != NULL)
3d548a53 16001 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 16002 break;
481860b3
GB
16003 case DW_AT_inline:
16004 if (DW_UNSND (&attr) == DW_INL_inlined
16005 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16006 part_die->may_be_inlined = 1;
16007 break;
95554aad
TT
16008
16009 case DW_AT_import:
16010 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
16011 {
16012 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16013 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16014 || cu->per_cu->is_dwz);
16015 }
95554aad
TT
16016 break;
16017
c906108c
SS
16018 default:
16019 break;
16020 }
16021 }
16022
91da1414
MW
16023 if (high_pc_relative)
16024 part_die->highpc += part_die->lowpc;
16025
9373cf26
JK
16026 if (has_low_pc_attr && has_high_pc_attr)
16027 {
16028 /* When using the GNU linker, .gnu.linkonce. sections are used to
16029 eliminate duplicate copies of functions and vtables and such.
16030 The linker will arbitrarily choose one and discard the others.
16031 The AT_*_pc values for such functions refer to local labels in
16032 these sections. If the section from that file was discarded, the
16033 labels are not in the output, so the relocs get a value of 0.
16034 If this is a discarded function, mark the pc bounds as invalid,
16035 so that GDB will ignore it. */
16036 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16037 {
bb5ed363 16038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16039
16040 complaint (&symfile_complaints,
16041 _("DW_AT_low_pc %s is zero "
16042 "for DIE at 0x%x [in module %s]"),
16043 paddress (gdbarch, part_die->lowpc),
4262abfb 16044 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16045 }
16046 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16047 else if (part_die->lowpc >= part_die->highpc)
16048 {
bb5ed363 16049 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16050
16051 complaint (&symfile_complaints,
16052 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16053 "for DIE at 0x%x [in module %s]"),
16054 paddress (gdbarch, part_die->lowpc),
16055 paddress (gdbarch, part_die->highpc),
4262abfb 16056 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16057 }
16058 else
16059 part_die->has_pc_info = 1;
16060 }
85cbf3d3 16061
c906108c
SS
16062 return info_ptr;
16063}
16064
72bf9492
DJ
16065/* Find a cached partial DIE at OFFSET in CU. */
16066
16067static struct partial_die_info *
b64f50a1 16068find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16069{
16070 struct partial_die_info *lookup_die = NULL;
16071 struct partial_die_info part_die;
16072
16073 part_die.offset = offset;
9a3c8263
SM
16074 lookup_die = ((struct partial_die_info *)
16075 htab_find_with_hash (cu->partial_dies, &part_die,
16076 offset.sect_off));
72bf9492 16077
72bf9492
DJ
16078 return lookup_die;
16079}
16080
348e048f
DE
16081/* Find a partial DIE at OFFSET, which may or may not be in CU,
16082 except in the case of .debug_types DIEs which do not reference
16083 outside their CU (they do however referencing other types via
55f1336d 16084 DW_FORM_ref_sig8). */
72bf9492
DJ
16085
16086static struct partial_die_info *
36586728 16087find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16088{
bb5ed363 16089 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16090 struct dwarf2_per_cu_data *per_cu = NULL;
16091 struct partial_die_info *pd = NULL;
72bf9492 16092
36586728
TT
16093 if (offset_in_dwz == cu->per_cu->is_dwz
16094 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16095 {
16096 pd = find_partial_die_in_comp_unit (offset, cu);
16097 if (pd != NULL)
16098 return pd;
0d99eb77
DE
16099 /* We missed recording what we needed.
16100 Load all dies and try again. */
16101 per_cu = cu->per_cu;
5afb4e99 16102 }
0d99eb77
DE
16103 else
16104 {
16105 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16106 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16107 {
16108 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16109 " external reference to offset 0x%lx [in module %s].\n"),
16110 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16111 bfd_get_filename (objfile->obfd));
16112 }
36586728
TT
16113 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16114 objfile);
72bf9492 16115
0d99eb77
DE
16116 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16117 load_partial_comp_unit (per_cu);
ae038cb0 16118
0d99eb77
DE
16119 per_cu->cu->last_used = 0;
16120 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16121 }
5afb4e99 16122
dee91e82
DE
16123 /* If we didn't find it, and not all dies have been loaded,
16124 load them all and try again. */
16125
5afb4e99
DJ
16126 if (pd == NULL && per_cu->load_all_dies == 0)
16127 {
5afb4e99 16128 per_cu->load_all_dies = 1;
fd820528
DE
16129
16130 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16131 THIS_CU->cu may already be in use. So we can't just free it and
16132 replace its DIEs with the ones we read in. Instead, we leave those
16133 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16134 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16135 set. */
dee91e82 16136 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16137
16138 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16139 }
16140
16141 if (pd == NULL)
16142 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16143 _("could not find partial DIE 0x%x "
16144 "in cache [from module %s]\n"),
b64f50a1 16145 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16146 return pd;
72bf9492
DJ
16147}
16148
abc72ce4
DE
16149/* See if we can figure out if the class lives in a namespace. We do
16150 this by looking for a member function; its demangled name will
16151 contain namespace info, if there is any. */
16152
16153static void
16154guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16155 struct dwarf2_cu *cu)
16156{
16157 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16158 what template types look like, because the demangler
16159 frequently doesn't give the same name as the debug info. We
16160 could fix this by only using the demangled name to get the
16161 prefix (but see comment in read_structure_type). */
16162
16163 struct partial_die_info *real_pdi;
16164 struct partial_die_info *child_pdi;
16165
16166 /* If this DIE (this DIE's specification, if any) has a parent, then
16167 we should not do this. We'll prepend the parent's fully qualified
16168 name when we create the partial symbol. */
16169
16170 real_pdi = struct_pdi;
16171 while (real_pdi->has_specification)
36586728
TT
16172 real_pdi = find_partial_die (real_pdi->spec_offset,
16173 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16174
16175 if (real_pdi->die_parent != NULL)
16176 return;
16177
16178 for (child_pdi = struct_pdi->die_child;
16179 child_pdi != NULL;
16180 child_pdi = child_pdi->die_sibling)
16181 {
16182 if (child_pdi->tag == DW_TAG_subprogram
16183 && child_pdi->linkage_name != NULL)
16184 {
16185 char *actual_class_name
16186 = language_class_name_from_physname (cu->language_defn,
16187 child_pdi->linkage_name);
16188 if (actual_class_name != NULL)
16189 {
16190 struct_pdi->name
224c3ddb
SM
16191 = ((const char *)
16192 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16193 actual_class_name,
16194 strlen (actual_class_name)));
abc72ce4
DE
16195 xfree (actual_class_name);
16196 }
16197 break;
16198 }
16199 }
16200}
16201
72bf9492
DJ
16202/* Adjust PART_DIE before generating a symbol for it. This function
16203 may set the is_external flag or change the DIE's name. */
16204
16205static void
16206fixup_partial_die (struct partial_die_info *part_die,
16207 struct dwarf2_cu *cu)
16208{
abc72ce4
DE
16209 /* Once we've fixed up a die, there's no point in doing so again.
16210 This also avoids a memory leak if we were to call
16211 guess_partial_die_structure_name multiple times. */
16212 if (part_die->fixup_called)
16213 return;
16214
72bf9492
DJ
16215 /* If we found a reference attribute and the DIE has no name, try
16216 to find a name in the referred to DIE. */
16217
16218 if (part_die->name == NULL && part_die->has_specification)
16219 {
16220 struct partial_die_info *spec_die;
72bf9492 16221
36586728
TT
16222 spec_die = find_partial_die (part_die->spec_offset,
16223 part_die->spec_is_dwz, cu);
72bf9492 16224
10b3939b 16225 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16226
16227 if (spec_die->name)
16228 {
16229 part_die->name = spec_die->name;
16230
16231 /* Copy DW_AT_external attribute if it is set. */
16232 if (spec_die->is_external)
16233 part_die->is_external = spec_die->is_external;
16234 }
16235 }
16236
16237 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16238
16239 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16240 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16241
abc72ce4
DE
16242 /* If there is no parent die to provide a namespace, and there are
16243 children, see if we can determine the namespace from their linkage
122d1940 16244 name. */
abc72ce4 16245 if (cu->language == language_cplus
8b70b953 16246 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16247 && part_die->die_parent == NULL
16248 && part_die->has_children
16249 && (part_die->tag == DW_TAG_class_type
16250 || part_die->tag == DW_TAG_structure_type
16251 || part_die->tag == DW_TAG_union_type))
16252 guess_partial_die_structure_name (part_die, cu);
16253
53832f31
TT
16254 /* GCC might emit a nameless struct or union that has a linkage
16255 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16256 if (part_die->name == NULL
96408a79
SA
16257 && (part_die->tag == DW_TAG_class_type
16258 || part_die->tag == DW_TAG_interface_type
16259 || part_die->tag == DW_TAG_structure_type
16260 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16261 && part_die->linkage_name != NULL)
16262 {
16263 char *demangled;
16264
8de20a37 16265 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16266 if (demangled)
16267 {
96408a79
SA
16268 const char *base;
16269
16270 /* Strip any leading namespaces/classes, keep only the base name.
16271 DW_AT_name for named DIEs does not contain the prefixes. */
16272 base = strrchr (demangled, ':');
16273 if (base && base > demangled && base[-1] == ':')
16274 base++;
16275 else
16276 base = demangled;
16277
34a68019 16278 part_die->name
224c3ddb
SM
16279 = ((const char *)
16280 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16281 base, strlen (base)));
53832f31
TT
16282 xfree (demangled);
16283 }
16284 }
16285
abc72ce4 16286 part_die->fixup_called = 1;
72bf9492
DJ
16287}
16288
a8329558 16289/* Read an attribute value described by an attribute form. */
c906108c 16290
d521ce57 16291static const gdb_byte *
dee91e82
DE
16292read_attribute_value (const struct die_reader_specs *reader,
16293 struct attribute *attr, unsigned form,
d521ce57 16294 const gdb_byte *info_ptr)
c906108c 16295{
dee91e82 16296 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16297 struct objfile *objfile = cu->objfile;
16298 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16299 bfd *abfd = reader->abfd;
e7c27a73 16300 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16301 unsigned int bytes_read;
16302 struct dwarf_block *blk;
16303
aead7601 16304 attr->form = (enum dwarf_form) form;
a8329558 16305 switch (form)
c906108c 16306 {
c906108c 16307 case DW_FORM_ref_addr:
ae411497 16308 if (cu->header.version == 2)
4568ecf9 16309 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16310 else
4568ecf9
DE
16311 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16312 &cu->header, &bytes_read);
ae411497
TT
16313 info_ptr += bytes_read;
16314 break;
36586728
TT
16315 case DW_FORM_GNU_ref_alt:
16316 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16317 info_ptr += bytes_read;
16318 break;
ae411497 16319 case DW_FORM_addr:
e7c27a73 16320 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16321 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16322 info_ptr += bytes_read;
c906108c
SS
16323 break;
16324 case DW_FORM_block2:
7b5a2f43 16325 blk = dwarf_alloc_block (cu);
c906108c
SS
16326 blk->size = read_2_bytes (abfd, info_ptr);
16327 info_ptr += 2;
16328 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16329 info_ptr += blk->size;
16330 DW_BLOCK (attr) = blk;
16331 break;
16332 case DW_FORM_block4:
7b5a2f43 16333 blk = dwarf_alloc_block (cu);
c906108c
SS
16334 blk->size = read_4_bytes (abfd, info_ptr);
16335 info_ptr += 4;
16336 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16337 info_ptr += blk->size;
16338 DW_BLOCK (attr) = blk;
16339 break;
16340 case DW_FORM_data2:
16341 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16342 info_ptr += 2;
16343 break;
16344 case DW_FORM_data4:
16345 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16346 info_ptr += 4;
16347 break;
16348 case DW_FORM_data8:
16349 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16350 info_ptr += 8;
16351 break;
2dc7f7b3
TT
16352 case DW_FORM_sec_offset:
16353 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16354 info_ptr += bytes_read;
16355 break;
c906108c 16356 case DW_FORM_string:
9b1c24c8 16357 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16358 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16359 info_ptr += bytes_read;
16360 break;
4bdf3d34 16361 case DW_FORM_strp:
36586728
TT
16362 if (!cu->per_cu->is_dwz)
16363 {
16364 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16365 &bytes_read);
16366 DW_STRING_IS_CANONICAL (attr) = 0;
16367 info_ptr += bytes_read;
16368 break;
16369 }
16370 /* FALLTHROUGH */
16371 case DW_FORM_GNU_strp_alt:
16372 {
16373 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16374 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16375 &bytes_read);
16376
16377 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16378 DW_STRING_IS_CANONICAL (attr) = 0;
16379 info_ptr += bytes_read;
16380 }
4bdf3d34 16381 break;
2dc7f7b3 16382 case DW_FORM_exprloc:
c906108c 16383 case DW_FORM_block:
7b5a2f43 16384 blk = dwarf_alloc_block (cu);
c906108c
SS
16385 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16386 info_ptr += bytes_read;
16387 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16388 info_ptr += blk->size;
16389 DW_BLOCK (attr) = blk;
16390 break;
16391 case DW_FORM_block1:
7b5a2f43 16392 blk = dwarf_alloc_block (cu);
c906108c
SS
16393 blk->size = read_1_byte (abfd, info_ptr);
16394 info_ptr += 1;
16395 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16396 info_ptr += blk->size;
16397 DW_BLOCK (attr) = blk;
16398 break;
16399 case DW_FORM_data1:
16400 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16401 info_ptr += 1;
16402 break;
16403 case DW_FORM_flag:
16404 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16405 info_ptr += 1;
16406 break;
2dc7f7b3
TT
16407 case DW_FORM_flag_present:
16408 DW_UNSND (attr) = 1;
16409 break;
c906108c
SS
16410 case DW_FORM_sdata:
16411 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16412 info_ptr += bytes_read;
16413 break;
16414 case DW_FORM_udata:
16415 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16416 info_ptr += bytes_read;
16417 break;
16418 case DW_FORM_ref1:
4568ecf9
DE
16419 DW_UNSND (attr) = (cu->header.offset.sect_off
16420 + read_1_byte (abfd, info_ptr));
c906108c
SS
16421 info_ptr += 1;
16422 break;
16423 case DW_FORM_ref2:
4568ecf9
DE
16424 DW_UNSND (attr) = (cu->header.offset.sect_off
16425 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16426 info_ptr += 2;
16427 break;
16428 case DW_FORM_ref4:
4568ecf9
DE
16429 DW_UNSND (attr) = (cu->header.offset.sect_off
16430 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16431 info_ptr += 4;
16432 break;
613e1657 16433 case DW_FORM_ref8:
4568ecf9
DE
16434 DW_UNSND (attr) = (cu->header.offset.sect_off
16435 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16436 info_ptr += 8;
16437 break;
55f1336d 16438 case DW_FORM_ref_sig8:
ac9ec31b 16439 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16440 info_ptr += 8;
16441 break;
c906108c 16442 case DW_FORM_ref_udata:
4568ecf9
DE
16443 DW_UNSND (attr) = (cu->header.offset.sect_off
16444 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16445 info_ptr += bytes_read;
16446 break;
c906108c 16447 case DW_FORM_indirect:
a8329558
KW
16448 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16449 info_ptr += bytes_read;
dee91e82 16450 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16451 break;
3019eac3
DE
16452 case DW_FORM_GNU_addr_index:
16453 if (reader->dwo_file == NULL)
16454 {
16455 /* For now flag a hard error.
16456 Later we can turn this into a complaint. */
16457 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16458 dwarf_form_name (form),
16459 bfd_get_filename (abfd));
16460 }
16461 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16462 info_ptr += bytes_read;
16463 break;
16464 case DW_FORM_GNU_str_index:
16465 if (reader->dwo_file == NULL)
16466 {
16467 /* For now flag a hard error.
16468 Later we can turn this into a complaint if warranted. */
16469 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16470 dwarf_form_name (form),
16471 bfd_get_filename (abfd));
16472 }
16473 {
16474 ULONGEST str_index =
16475 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16476
342587c4 16477 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16478 DW_STRING_IS_CANONICAL (attr) = 0;
16479 info_ptr += bytes_read;
16480 }
16481 break;
c906108c 16482 default:
8a3fe4f8 16483 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16484 dwarf_form_name (form),
16485 bfd_get_filename (abfd));
c906108c 16486 }
28e94949 16487
36586728 16488 /* Super hack. */
7771576e 16489 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16490 attr->form = DW_FORM_GNU_ref_alt;
16491
28e94949
JB
16492 /* We have seen instances where the compiler tried to emit a byte
16493 size attribute of -1 which ended up being encoded as an unsigned
16494 0xffffffff. Although 0xffffffff is technically a valid size value,
16495 an object of this size seems pretty unlikely so we can relatively
16496 safely treat these cases as if the size attribute was invalid and
16497 treat them as zero by default. */
16498 if (attr->name == DW_AT_byte_size
16499 && form == DW_FORM_data4
16500 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16501 {
16502 complaint
16503 (&symfile_complaints,
43bbcdc2
PH
16504 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16505 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16506 DW_UNSND (attr) = 0;
16507 }
28e94949 16508
c906108c
SS
16509 return info_ptr;
16510}
16511
a8329558
KW
16512/* Read an attribute described by an abbreviated attribute. */
16513
d521ce57 16514static const gdb_byte *
dee91e82
DE
16515read_attribute (const struct die_reader_specs *reader,
16516 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16517 const gdb_byte *info_ptr)
a8329558
KW
16518{
16519 attr->name = abbrev->name;
dee91e82 16520 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16521}
16522
0963b4bd 16523/* Read dwarf information from a buffer. */
c906108c
SS
16524
16525static unsigned int
a1855c1d 16526read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16527{
fe1b8b76 16528 return bfd_get_8 (abfd, buf);
c906108c
SS
16529}
16530
16531static int
a1855c1d 16532read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16533{
fe1b8b76 16534 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16535}
16536
16537static unsigned int
a1855c1d 16538read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16539{
fe1b8b76 16540 return bfd_get_16 (abfd, buf);
c906108c
SS
16541}
16542
21ae7a4d 16543static int
a1855c1d 16544read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16545{
16546 return bfd_get_signed_16 (abfd, buf);
16547}
16548
c906108c 16549static unsigned int
a1855c1d 16550read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16551{
fe1b8b76 16552 return bfd_get_32 (abfd, buf);
c906108c
SS
16553}
16554
21ae7a4d 16555static int
a1855c1d 16556read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16557{
16558 return bfd_get_signed_32 (abfd, buf);
16559}
16560
93311388 16561static ULONGEST
a1855c1d 16562read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16563{
fe1b8b76 16564 return bfd_get_64 (abfd, buf);
c906108c
SS
16565}
16566
16567static CORE_ADDR
d521ce57 16568read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16569 unsigned int *bytes_read)
c906108c 16570{
e7c27a73 16571 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16572 CORE_ADDR retval = 0;
16573
107d2387 16574 if (cu_header->signed_addr_p)
c906108c 16575 {
107d2387
AC
16576 switch (cu_header->addr_size)
16577 {
16578 case 2:
fe1b8b76 16579 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16580 break;
16581 case 4:
fe1b8b76 16582 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16583 break;
16584 case 8:
fe1b8b76 16585 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16586 break;
16587 default:
8e65ff28 16588 internal_error (__FILE__, __LINE__,
e2e0b3e5 16589 _("read_address: bad switch, signed [in module %s]"),
659b0389 16590 bfd_get_filename (abfd));
107d2387
AC
16591 }
16592 }
16593 else
16594 {
16595 switch (cu_header->addr_size)
16596 {
16597 case 2:
fe1b8b76 16598 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16599 break;
16600 case 4:
fe1b8b76 16601 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16602 break;
16603 case 8:
fe1b8b76 16604 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16605 break;
16606 default:
8e65ff28 16607 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16608 _("read_address: bad switch, "
16609 "unsigned [in module %s]"),
659b0389 16610 bfd_get_filename (abfd));
107d2387 16611 }
c906108c 16612 }
64367e0a 16613
107d2387
AC
16614 *bytes_read = cu_header->addr_size;
16615 return retval;
c906108c
SS
16616}
16617
f7ef9339 16618/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16619 specification allows the initial length to take up either 4 bytes
16620 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16621 bytes describe the length and all offsets will be 8 bytes in length
16622 instead of 4.
16623
f7ef9339
KB
16624 An older, non-standard 64-bit format is also handled by this
16625 function. The older format in question stores the initial length
16626 as an 8-byte quantity without an escape value. Lengths greater
16627 than 2^32 aren't very common which means that the initial 4 bytes
16628 is almost always zero. Since a length value of zero doesn't make
16629 sense for the 32-bit format, this initial zero can be considered to
16630 be an escape value which indicates the presence of the older 64-bit
16631 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16632 greater than 4GB. If it becomes necessary to handle lengths
16633 somewhat larger than 4GB, we could allow other small values (such
16634 as the non-sensical values of 1, 2, and 3) to also be used as
16635 escape values indicating the presence of the old format.
f7ef9339 16636
917c78fc
MK
16637 The value returned via bytes_read should be used to increment the
16638 relevant pointer after calling read_initial_length().
c764a876 16639
613e1657
KB
16640 [ Note: read_initial_length() and read_offset() are based on the
16641 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16642 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16643 from:
16644
f7ef9339 16645 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16646
613e1657
KB
16647 This document is only a draft and is subject to change. (So beware.)
16648
f7ef9339 16649 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16650 determined empirically by examining 64-bit ELF files produced by
16651 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16652
16653 - Kevin, July 16, 2002
613e1657
KB
16654 ] */
16655
16656static LONGEST
d521ce57 16657read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16658{
fe1b8b76 16659 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16660
dd373385 16661 if (length == 0xffffffff)
613e1657 16662 {
fe1b8b76 16663 length = bfd_get_64 (abfd, buf + 4);
613e1657 16664 *bytes_read = 12;
613e1657 16665 }
dd373385 16666 else if (length == 0)
f7ef9339 16667 {
dd373385 16668 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16669 length = bfd_get_64 (abfd, buf);
f7ef9339 16670 *bytes_read = 8;
f7ef9339 16671 }
613e1657
KB
16672 else
16673 {
16674 *bytes_read = 4;
613e1657
KB
16675 }
16676
c764a876
DE
16677 return length;
16678}
dd373385 16679
c764a876
DE
16680/* Cover function for read_initial_length.
16681 Returns the length of the object at BUF, and stores the size of the
16682 initial length in *BYTES_READ and stores the size that offsets will be in
16683 *OFFSET_SIZE.
16684 If the initial length size is not equivalent to that specified in
16685 CU_HEADER then issue a complaint.
16686 This is useful when reading non-comp-unit headers. */
dd373385 16687
c764a876 16688static LONGEST
d521ce57 16689read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16690 const struct comp_unit_head *cu_header,
16691 unsigned int *bytes_read,
16692 unsigned int *offset_size)
16693{
16694 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16695
16696 gdb_assert (cu_header->initial_length_size == 4
16697 || cu_header->initial_length_size == 8
16698 || cu_header->initial_length_size == 12);
16699
16700 if (cu_header->initial_length_size != *bytes_read)
16701 complaint (&symfile_complaints,
16702 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16703
c764a876 16704 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16705 return length;
613e1657
KB
16706}
16707
16708/* Read an offset from the data stream. The size of the offset is
917c78fc 16709 given by cu_header->offset_size. */
613e1657
KB
16710
16711static LONGEST
d521ce57
TT
16712read_offset (bfd *abfd, const gdb_byte *buf,
16713 const struct comp_unit_head *cu_header,
891d2f0b 16714 unsigned int *bytes_read)
c764a876
DE
16715{
16716 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16717
c764a876
DE
16718 *bytes_read = cu_header->offset_size;
16719 return offset;
16720}
16721
16722/* Read an offset from the data stream. */
16723
16724static LONGEST
d521ce57 16725read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16726{
16727 LONGEST retval = 0;
16728
c764a876 16729 switch (offset_size)
613e1657
KB
16730 {
16731 case 4:
fe1b8b76 16732 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16733 break;
16734 case 8:
fe1b8b76 16735 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16736 break;
16737 default:
8e65ff28 16738 internal_error (__FILE__, __LINE__,
c764a876 16739 _("read_offset_1: bad switch [in module %s]"),
659b0389 16740 bfd_get_filename (abfd));
613e1657
KB
16741 }
16742
917c78fc 16743 return retval;
613e1657
KB
16744}
16745
d521ce57
TT
16746static const gdb_byte *
16747read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16748{
16749 /* If the size of a host char is 8 bits, we can return a pointer
16750 to the buffer, otherwise we have to copy the data to a buffer
16751 allocated on the temporary obstack. */
4bdf3d34 16752 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16753 return buf;
c906108c
SS
16754}
16755
d521ce57
TT
16756static const char *
16757read_direct_string (bfd *abfd, const gdb_byte *buf,
16758 unsigned int *bytes_read_ptr)
c906108c
SS
16759{
16760 /* If the size of a host char is 8 bits, we can return a pointer
16761 to the string, otherwise we have to copy the string to a buffer
16762 allocated on the temporary obstack. */
4bdf3d34 16763 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16764 if (*buf == '\0')
16765 {
16766 *bytes_read_ptr = 1;
16767 return NULL;
16768 }
d521ce57
TT
16769 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16770 return (const char *) buf;
4bdf3d34
JJ
16771}
16772
d521ce57 16773static const char *
cf2c3c16 16774read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16775{
be391dca 16776 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16777 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16778 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16779 bfd_get_filename (abfd));
dce234bc 16780 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16781 error (_("DW_FORM_strp pointing outside of "
16782 ".debug_str section [in module %s]"),
16783 bfd_get_filename (abfd));
4bdf3d34 16784 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16785 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16786 return NULL;
d521ce57 16787 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16788}
16789
36586728
TT
16790/* Read a string at offset STR_OFFSET in the .debug_str section from
16791 the .dwz file DWZ. Throw an error if the offset is too large. If
16792 the string consists of a single NUL byte, return NULL; otherwise
16793 return a pointer to the string. */
16794
d521ce57 16795static const char *
36586728
TT
16796read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16797{
16798 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16799
16800 if (dwz->str.buffer == NULL)
16801 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16802 "section [in module %s]"),
16803 bfd_get_filename (dwz->dwz_bfd));
16804 if (str_offset >= dwz->str.size)
16805 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16806 ".debug_str section [in module %s]"),
16807 bfd_get_filename (dwz->dwz_bfd));
16808 gdb_assert (HOST_CHAR_BIT == 8);
16809 if (dwz->str.buffer[str_offset] == '\0')
16810 return NULL;
d521ce57 16811 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16812}
16813
d521ce57
TT
16814static const char *
16815read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16816 const struct comp_unit_head *cu_header,
16817 unsigned int *bytes_read_ptr)
16818{
16819 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16820
16821 return read_indirect_string_at_offset (abfd, str_offset);
16822}
16823
12df843f 16824static ULONGEST
d521ce57
TT
16825read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16826 unsigned int *bytes_read_ptr)
c906108c 16827{
12df843f 16828 ULONGEST result;
ce5d95e1 16829 unsigned int num_read;
870f88f7 16830 int shift;
c906108c
SS
16831 unsigned char byte;
16832
16833 result = 0;
16834 shift = 0;
16835 num_read = 0;
c906108c
SS
16836 while (1)
16837 {
fe1b8b76 16838 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16839 buf++;
16840 num_read++;
12df843f 16841 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16842 if ((byte & 128) == 0)
16843 {
16844 break;
16845 }
16846 shift += 7;
16847 }
16848 *bytes_read_ptr = num_read;
16849 return result;
16850}
16851
12df843f 16852static LONGEST
d521ce57
TT
16853read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16854 unsigned int *bytes_read_ptr)
c906108c 16855{
12df843f 16856 LONGEST result;
870f88f7 16857 int shift, num_read;
c906108c
SS
16858 unsigned char byte;
16859
16860 result = 0;
16861 shift = 0;
c906108c 16862 num_read = 0;
c906108c
SS
16863 while (1)
16864 {
fe1b8b76 16865 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16866 buf++;
16867 num_read++;
12df843f 16868 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16869 shift += 7;
16870 if ((byte & 128) == 0)
16871 {
16872 break;
16873 }
16874 }
77e0b926 16875 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16876 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16877 *bytes_read_ptr = num_read;
16878 return result;
16879}
16880
3019eac3
DE
16881/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16882 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16883 ADDR_SIZE is the size of addresses from the CU header. */
16884
16885static CORE_ADDR
16886read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16887{
16888 struct objfile *objfile = dwarf2_per_objfile->objfile;
16889 bfd *abfd = objfile->obfd;
16890 const gdb_byte *info_ptr;
16891
16892 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16893 if (dwarf2_per_objfile->addr.buffer == NULL)
16894 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16895 objfile_name (objfile));
3019eac3
DE
16896 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16897 error (_("DW_FORM_addr_index pointing outside of "
16898 ".debug_addr section [in module %s]"),
4262abfb 16899 objfile_name (objfile));
3019eac3
DE
16900 info_ptr = (dwarf2_per_objfile->addr.buffer
16901 + addr_base + addr_index * addr_size);
16902 if (addr_size == 4)
16903 return bfd_get_32 (abfd, info_ptr);
16904 else
16905 return bfd_get_64 (abfd, info_ptr);
16906}
16907
16908/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16909
16910static CORE_ADDR
16911read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16912{
16913 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16914}
16915
16916/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16917
16918static CORE_ADDR
d521ce57 16919read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16920 unsigned int *bytes_read)
16921{
16922 bfd *abfd = cu->objfile->obfd;
16923 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16924
16925 return read_addr_index (cu, addr_index);
16926}
16927
16928/* Data structure to pass results from dwarf2_read_addr_index_reader
16929 back to dwarf2_read_addr_index. */
16930
16931struct dwarf2_read_addr_index_data
16932{
16933 ULONGEST addr_base;
16934 int addr_size;
16935};
16936
16937/* die_reader_func for dwarf2_read_addr_index. */
16938
16939static void
16940dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16941 const gdb_byte *info_ptr,
3019eac3
DE
16942 struct die_info *comp_unit_die,
16943 int has_children,
16944 void *data)
16945{
16946 struct dwarf2_cu *cu = reader->cu;
16947 struct dwarf2_read_addr_index_data *aidata =
16948 (struct dwarf2_read_addr_index_data *) data;
16949
16950 aidata->addr_base = cu->addr_base;
16951 aidata->addr_size = cu->header.addr_size;
16952}
16953
16954/* Given an index in .debug_addr, fetch the value.
16955 NOTE: This can be called during dwarf expression evaluation,
16956 long after the debug information has been read, and thus per_cu->cu
16957 may no longer exist. */
16958
16959CORE_ADDR
16960dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16961 unsigned int addr_index)
16962{
16963 struct objfile *objfile = per_cu->objfile;
16964 struct dwarf2_cu *cu = per_cu->cu;
16965 ULONGEST addr_base;
16966 int addr_size;
16967
16968 /* This is intended to be called from outside this file. */
16969 dw2_setup (objfile);
16970
16971 /* We need addr_base and addr_size.
16972 If we don't have PER_CU->cu, we have to get it.
16973 Nasty, but the alternative is storing the needed info in PER_CU,
16974 which at this point doesn't seem justified: it's not clear how frequently
16975 it would get used and it would increase the size of every PER_CU.
16976 Entry points like dwarf2_per_cu_addr_size do a similar thing
16977 so we're not in uncharted territory here.
16978 Alas we need to be a bit more complicated as addr_base is contained
16979 in the DIE.
16980
16981 We don't need to read the entire CU(/TU).
16982 We just need the header and top level die.
a1b64ce1 16983
3019eac3 16984 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16985 For now we skip this optimization. */
3019eac3
DE
16986
16987 if (cu != NULL)
16988 {
16989 addr_base = cu->addr_base;
16990 addr_size = cu->header.addr_size;
16991 }
16992 else
16993 {
16994 struct dwarf2_read_addr_index_data aidata;
16995
a1b64ce1
DE
16996 /* Note: We can't use init_cutu_and_read_dies_simple here,
16997 we need addr_base. */
16998 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16999 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17000 addr_base = aidata.addr_base;
17001 addr_size = aidata.addr_size;
17002 }
17003
17004 return read_addr_index_1 (addr_index, addr_base, addr_size);
17005}
17006
57d63ce2
DE
17007/* Given a DW_FORM_GNU_str_index, fetch the string.
17008 This is only used by the Fission support. */
3019eac3 17009
d521ce57 17010static const char *
342587c4 17011read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17012{
17013 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17014 const char *objf_name = objfile_name (objfile);
3019eac3 17015 bfd *abfd = objfile->obfd;
342587c4 17016 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17017 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17018 struct dwarf2_section_info *str_offsets_section =
17019 &reader->dwo_file->sections.str_offsets;
d521ce57 17020 const gdb_byte *info_ptr;
3019eac3 17021 ULONGEST str_offset;
57d63ce2 17022 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17023
73869dc2
DE
17024 dwarf2_read_section (objfile, str_section);
17025 dwarf2_read_section (objfile, str_offsets_section);
17026 if (str_section->buffer == NULL)
57d63ce2 17027 error (_("%s used without .debug_str.dwo section"
3019eac3 17028 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17029 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17030 if (str_offsets_section->buffer == NULL)
57d63ce2 17031 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 17032 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17033 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17034 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17035 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 17036 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17037 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17038 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17039 + str_index * cu->header.offset_size);
17040 if (cu->header.offset_size == 4)
17041 str_offset = bfd_get_32 (abfd, info_ptr);
17042 else
17043 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17044 if (str_offset >= str_section->size)
57d63ce2 17045 error (_("Offset from %s pointing outside of"
3019eac3 17046 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17047 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17048 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17049}
17050
3019eac3
DE
17051/* Return the length of an LEB128 number in BUF. */
17052
17053static int
17054leb128_size (const gdb_byte *buf)
17055{
17056 const gdb_byte *begin = buf;
17057 gdb_byte byte;
17058
17059 while (1)
17060 {
17061 byte = *buf++;
17062 if ((byte & 128) == 0)
17063 return buf - begin;
17064 }
17065}
17066
c906108c 17067static void
e142c38c 17068set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17069{
17070 switch (lang)
17071 {
17072 case DW_LANG_C89:
76bee0cc 17073 case DW_LANG_C99:
0cfd832f 17074 case DW_LANG_C11:
c906108c 17075 case DW_LANG_C:
d1be3247 17076 case DW_LANG_UPC:
e142c38c 17077 cu->language = language_c;
c906108c
SS
17078 break;
17079 case DW_LANG_C_plus_plus:
0cfd832f
MW
17080 case DW_LANG_C_plus_plus_11:
17081 case DW_LANG_C_plus_plus_14:
e142c38c 17082 cu->language = language_cplus;
c906108c 17083 break;
6aecb9c2
JB
17084 case DW_LANG_D:
17085 cu->language = language_d;
17086 break;
c906108c
SS
17087 case DW_LANG_Fortran77:
17088 case DW_LANG_Fortran90:
b21b22e0 17089 case DW_LANG_Fortran95:
f7de9aab
MW
17090 case DW_LANG_Fortran03:
17091 case DW_LANG_Fortran08:
e142c38c 17092 cu->language = language_fortran;
c906108c 17093 break;
a766d390
DE
17094 case DW_LANG_Go:
17095 cu->language = language_go;
17096 break;
c906108c 17097 case DW_LANG_Mips_Assembler:
e142c38c 17098 cu->language = language_asm;
c906108c 17099 break;
bebd888e 17100 case DW_LANG_Java:
e142c38c 17101 cu->language = language_java;
bebd888e 17102 break;
c906108c 17103 case DW_LANG_Ada83:
8aaf0b47 17104 case DW_LANG_Ada95:
bc5f45f8
JB
17105 cu->language = language_ada;
17106 break;
72019c9c
GM
17107 case DW_LANG_Modula2:
17108 cu->language = language_m2;
17109 break;
fe8e67fd
PM
17110 case DW_LANG_Pascal83:
17111 cu->language = language_pascal;
17112 break;
22566fbd
DJ
17113 case DW_LANG_ObjC:
17114 cu->language = language_objc;
17115 break;
c44af4eb
TT
17116 case DW_LANG_Rust:
17117 case DW_LANG_Rust_old:
17118 cu->language = language_rust;
17119 break;
c906108c
SS
17120 case DW_LANG_Cobol74:
17121 case DW_LANG_Cobol85:
c906108c 17122 default:
e142c38c 17123 cu->language = language_minimal;
c906108c
SS
17124 break;
17125 }
e142c38c 17126 cu->language_defn = language_def (cu->language);
c906108c
SS
17127}
17128
17129/* Return the named attribute or NULL if not there. */
17130
17131static struct attribute *
e142c38c 17132dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17133{
a48e046c 17134 for (;;)
c906108c 17135 {
a48e046c
TT
17136 unsigned int i;
17137 struct attribute *spec = NULL;
17138
17139 for (i = 0; i < die->num_attrs; ++i)
17140 {
17141 if (die->attrs[i].name == name)
17142 return &die->attrs[i];
17143 if (die->attrs[i].name == DW_AT_specification
17144 || die->attrs[i].name == DW_AT_abstract_origin)
17145 spec = &die->attrs[i];
17146 }
17147
17148 if (!spec)
17149 break;
c906108c 17150
f2f0e013 17151 die = follow_die_ref (die, spec, &cu);
f2f0e013 17152 }
c5aa993b 17153
c906108c
SS
17154 return NULL;
17155}
17156
348e048f
DE
17157/* Return the named attribute or NULL if not there,
17158 but do not follow DW_AT_specification, etc.
17159 This is for use in contexts where we're reading .debug_types dies.
17160 Following DW_AT_specification, DW_AT_abstract_origin will take us
17161 back up the chain, and we want to go down. */
17162
17163static struct attribute *
45e58e77 17164dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17165{
17166 unsigned int i;
17167
17168 for (i = 0; i < die->num_attrs; ++i)
17169 if (die->attrs[i].name == name)
17170 return &die->attrs[i];
17171
17172 return NULL;
17173}
17174
7d45c7c3
KB
17175/* Return the string associated with a string-typed attribute, or NULL if it
17176 is either not found or is of an incorrect type. */
17177
17178static const char *
17179dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17180{
17181 struct attribute *attr;
17182 const char *str = NULL;
17183
17184 attr = dwarf2_attr (die, name, cu);
17185
17186 if (attr != NULL)
17187 {
17188 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17189 || attr->form == DW_FORM_GNU_strp_alt)
17190 str = DW_STRING (attr);
17191 else
17192 complaint (&symfile_complaints,
17193 _("string type expected for attribute %s for "
17194 "DIE at 0x%x in module %s"),
17195 dwarf_attr_name (name), die->offset.sect_off,
17196 objfile_name (cu->objfile));
17197 }
17198
17199 return str;
17200}
17201
05cf31d1
JB
17202/* Return non-zero iff the attribute NAME is defined for the given DIE,
17203 and holds a non-zero value. This function should only be used for
2dc7f7b3 17204 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17205
17206static int
17207dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17208{
17209 struct attribute *attr = dwarf2_attr (die, name, cu);
17210
17211 return (attr && DW_UNSND (attr));
17212}
17213
3ca72b44 17214static int
e142c38c 17215die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17216{
05cf31d1
JB
17217 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17218 which value is non-zero. However, we have to be careful with
17219 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17220 (via dwarf2_flag_true_p) follows this attribute. So we may
17221 end up accidently finding a declaration attribute that belongs
17222 to a different DIE referenced by the specification attribute,
17223 even though the given DIE does not have a declaration attribute. */
17224 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17225 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17226}
17227
63d06c5c 17228/* Return the die giving the specification for DIE, if there is
f2f0e013 17229 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17230 containing the return value on output. If there is no
17231 specification, but there is an abstract origin, that is
17232 returned. */
63d06c5c
DC
17233
17234static struct die_info *
f2f0e013 17235die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17236{
f2f0e013
DJ
17237 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17238 *spec_cu);
63d06c5c 17239
edb3359d
DJ
17240 if (spec_attr == NULL)
17241 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17242
63d06c5c
DC
17243 if (spec_attr == NULL)
17244 return NULL;
17245 else
f2f0e013 17246 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17247}
c906108c 17248
debd256d 17249/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17250 refers to.
17251 NOTE: This is also used as a "cleanup" function. */
17252
debd256d
JB
17253static void
17254free_line_header (struct line_header *lh)
17255{
17256 if (lh->standard_opcode_lengths)
a8bc7b56 17257 xfree (lh->standard_opcode_lengths);
debd256d
JB
17258
17259 /* Remember that all the lh->file_names[i].name pointers are
17260 pointers into debug_line_buffer, and don't need to be freed. */
17261 if (lh->file_names)
a8bc7b56 17262 xfree (lh->file_names);
debd256d
JB
17263
17264 /* Similarly for the include directory names. */
17265 if (lh->include_dirs)
a8bc7b56 17266 xfree (lh->include_dirs);
debd256d 17267
a8bc7b56 17268 xfree (lh);
debd256d
JB
17269}
17270
527f3840
JK
17271/* Stub for free_line_header to match void * callback types. */
17272
17273static void
17274free_line_header_voidp (void *arg)
17275{
9a3c8263 17276 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17277
17278 free_line_header (lh);
17279}
17280
debd256d 17281/* Add an entry to LH's include directory table. */
ae2de4f8 17282
debd256d 17283static void
d521ce57 17284add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17285{
27e0867f
DE
17286 if (dwarf_line_debug >= 2)
17287 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17288 lh->num_include_dirs + 1, include_dir);
17289
debd256d
JB
17290 /* Grow the array if necessary. */
17291 if (lh->include_dirs_size == 0)
c5aa993b 17292 {
debd256d 17293 lh->include_dirs_size = 1; /* for testing */
8d749320 17294 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17295 }
17296 else if (lh->num_include_dirs >= lh->include_dirs_size)
17297 {
17298 lh->include_dirs_size *= 2;
8d749320
SM
17299 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17300 lh->include_dirs_size);
c5aa993b 17301 }
c906108c 17302
debd256d
JB
17303 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17304}
6e70227d 17305
debd256d 17306/* Add an entry to LH's file name table. */
ae2de4f8 17307
debd256d
JB
17308static void
17309add_file_name (struct line_header *lh,
d521ce57 17310 const char *name,
debd256d
JB
17311 unsigned int dir_index,
17312 unsigned int mod_time,
17313 unsigned int length)
17314{
17315 struct file_entry *fe;
17316
27e0867f
DE
17317 if (dwarf_line_debug >= 2)
17318 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17319 lh->num_file_names + 1, name);
17320
debd256d
JB
17321 /* Grow the array if necessary. */
17322 if (lh->file_names_size == 0)
17323 {
17324 lh->file_names_size = 1; /* for testing */
8d749320 17325 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17326 }
17327 else if (lh->num_file_names >= lh->file_names_size)
17328 {
17329 lh->file_names_size *= 2;
224c3ddb
SM
17330 lh->file_names
17331 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17332 }
17333
17334 fe = &lh->file_names[lh->num_file_names++];
17335 fe->name = name;
17336 fe->dir_index = dir_index;
17337 fe->mod_time = mod_time;
17338 fe->length = length;
aaa75496 17339 fe->included_p = 0;
cb1df416 17340 fe->symtab = NULL;
debd256d 17341}
6e70227d 17342
83769d0b 17343/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17344
17345static struct dwarf2_section_info *
17346get_debug_line_section (struct dwarf2_cu *cu)
17347{
17348 struct dwarf2_section_info *section;
17349
17350 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17351 DWO file. */
17352 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17353 section = &cu->dwo_unit->dwo_file->sections.line;
17354 else if (cu->per_cu->is_dwz)
17355 {
17356 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17357
17358 section = &dwz->line;
17359 }
17360 else
17361 section = &dwarf2_per_objfile->line;
17362
17363 return section;
17364}
17365
debd256d 17366/* Read the statement program header starting at OFFSET in
3019eac3 17367 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17368 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17369 Returns NULL if there is a problem reading the header, e.g., if it
17370 has a version we don't understand.
debd256d
JB
17371
17372 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17373 the returned object point into the dwarf line section buffer,
17374 and must not be freed. */
ae2de4f8 17375
debd256d 17376static struct line_header *
3019eac3 17377dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17378{
17379 struct cleanup *back_to;
17380 struct line_header *lh;
d521ce57 17381 const gdb_byte *line_ptr;
c764a876 17382 unsigned int bytes_read, offset_size;
debd256d 17383 int i;
d521ce57 17384 const char *cur_dir, *cur_file;
3019eac3
DE
17385 struct dwarf2_section_info *section;
17386 bfd *abfd;
17387
36586728 17388 section = get_debug_line_section (cu);
3019eac3
DE
17389 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17390 if (section->buffer == NULL)
debd256d 17391 {
3019eac3
DE
17392 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17393 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17394 else
17395 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17396 return 0;
17397 }
17398
fceca515
DE
17399 /* We can't do this until we know the section is non-empty.
17400 Only then do we know we have such a section. */
a32a8923 17401 abfd = get_section_bfd_owner (section);
fceca515 17402
a738430d
MK
17403 /* Make sure that at least there's room for the total_length field.
17404 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17405 if (offset + 4 >= section->size)
debd256d 17406 {
4d3c2250 17407 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17408 return 0;
17409 }
17410
8d749320 17411 lh = XNEW (struct line_header);
debd256d
JB
17412 memset (lh, 0, sizeof (*lh));
17413 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17414 (void *) lh);
17415
527f3840
JK
17416 lh->offset.sect_off = offset;
17417 lh->offset_in_dwz = cu->per_cu->is_dwz;
17418
3019eac3 17419 line_ptr = section->buffer + offset;
debd256d 17420
a738430d 17421 /* Read in the header. */
6e70227d 17422 lh->total_length =
c764a876
DE
17423 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17424 &bytes_read, &offset_size);
debd256d 17425 line_ptr += bytes_read;
3019eac3 17426 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17427 {
4d3c2250 17428 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17429 do_cleanups (back_to);
debd256d
JB
17430 return 0;
17431 }
17432 lh->statement_program_end = line_ptr + lh->total_length;
17433 lh->version = read_2_bytes (abfd, line_ptr);
17434 line_ptr += 2;
cd366ee8
DE
17435 if (lh->version > 4)
17436 {
17437 /* This is a version we don't understand. The format could have
17438 changed in ways we don't handle properly so just punt. */
17439 complaint (&symfile_complaints,
17440 _("unsupported version in .debug_line section"));
17441 return NULL;
17442 }
c764a876
DE
17443 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17444 line_ptr += offset_size;
debd256d
JB
17445 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17446 line_ptr += 1;
2dc7f7b3
TT
17447 if (lh->version >= 4)
17448 {
17449 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17450 line_ptr += 1;
17451 }
17452 else
17453 lh->maximum_ops_per_instruction = 1;
17454
17455 if (lh->maximum_ops_per_instruction == 0)
17456 {
17457 lh->maximum_ops_per_instruction = 1;
17458 complaint (&symfile_complaints,
3e43a32a
MS
17459 _("invalid maximum_ops_per_instruction "
17460 "in `.debug_line' section"));
2dc7f7b3
TT
17461 }
17462
debd256d
JB
17463 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17464 line_ptr += 1;
17465 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17466 line_ptr += 1;
17467 lh->line_range = read_1_byte (abfd, line_ptr);
17468 line_ptr += 1;
17469 lh->opcode_base = read_1_byte (abfd, line_ptr);
17470 line_ptr += 1;
8d749320 17471 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17472
17473 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17474 for (i = 1; i < lh->opcode_base; ++i)
17475 {
17476 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17477 line_ptr += 1;
17478 }
17479
a738430d 17480 /* Read directory table. */
9b1c24c8 17481 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17482 {
17483 line_ptr += bytes_read;
17484 add_include_dir (lh, cur_dir);
17485 }
17486 line_ptr += bytes_read;
17487
a738430d 17488 /* Read file name table. */
9b1c24c8 17489 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17490 {
17491 unsigned int dir_index, mod_time, length;
17492
17493 line_ptr += bytes_read;
17494 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17495 line_ptr += bytes_read;
17496 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17497 line_ptr += bytes_read;
17498 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17499 line_ptr += bytes_read;
17500
17501 add_file_name (lh, cur_file, dir_index, mod_time, length);
17502 }
17503 line_ptr += bytes_read;
6e70227d 17504 lh->statement_program_start = line_ptr;
debd256d 17505
3019eac3 17506 if (line_ptr > (section->buffer + section->size))
4d3c2250 17507 complaint (&symfile_complaints,
3e43a32a
MS
17508 _("line number info header doesn't "
17509 "fit in `.debug_line' section"));
debd256d
JB
17510
17511 discard_cleanups (back_to);
17512 return lh;
17513}
c906108c 17514
c6da4cef
DE
17515/* Subroutine of dwarf_decode_lines to simplify it.
17516 Return the file name of the psymtab for included file FILE_INDEX
17517 in line header LH of PST.
17518 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17519 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17520 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17521
17522 The function creates dangling cleanup registration. */
c6da4cef 17523
d521ce57 17524static const char *
c6da4cef
DE
17525psymtab_include_file_name (const struct line_header *lh, int file_index,
17526 const struct partial_symtab *pst,
17527 const char *comp_dir)
17528{
17529 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17530 const char *include_name = fe.name;
17531 const char *include_name_to_compare = include_name;
17532 const char *dir_name = NULL;
72b9f47f
TT
17533 const char *pst_filename;
17534 char *copied_name = NULL;
c6da4cef
DE
17535 int file_is_pst;
17536
afa6c9ab 17537 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17538 dir_name = lh->include_dirs[fe.dir_index - 1];
17539
17540 if (!IS_ABSOLUTE_PATH (include_name)
17541 && (dir_name != NULL || comp_dir != NULL))
17542 {
17543 /* Avoid creating a duplicate psymtab for PST.
17544 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17545 Before we do the comparison, however, we need to account
17546 for DIR_NAME and COMP_DIR.
17547 First prepend dir_name (if non-NULL). If we still don't
17548 have an absolute path prepend comp_dir (if non-NULL).
17549 However, the directory we record in the include-file's
17550 psymtab does not contain COMP_DIR (to match the
17551 corresponding symtab(s)).
17552
17553 Example:
17554
17555 bash$ cd /tmp
17556 bash$ gcc -g ./hello.c
17557 include_name = "hello.c"
17558 dir_name = "."
17559 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17560 DW_AT_name = "./hello.c"
17561
17562 */
c6da4cef
DE
17563
17564 if (dir_name != NULL)
17565 {
d521ce57
TT
17566 char *tem = concat (dir_name, SLASH_STRING,
17567 include_name, (char *)NULL);
17568
17569 make_cleanup (xfree, tem);
17570 include_name = tem;
c6da4cef 17571 include_name_to_compare = include_name;
c6da4cef
DE
17572 }
17573 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17574 {
d521ce57
TT
17575 char *tem = concat (comp_dir, SLASH_STRING,
17576 include_name, (char *)NULL);
17577
17578 make_cleanup (xfree, tem);
17579 include_name_to_compare = tem;
c6da4cef
DE
17580 }
17581 }
17582
17583 pst_filename = pst->filename;
17584 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17585 {
72b9f47f
TT
17586 copied_name = concat (pst->dirname, SLASH_STRING,
17587 pst_filename, (char *)NULL);
17588 pst_filename = copied_name;
c6da4cef
DE
17589 }
17590
1e3fad37 17591 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17592
72b9f47f
TT
17593 if (copied_name != NULL)
17594 xfree (copied_name);
c6da4cef
DE
17595
17596 if (file_is_pst)
17597 return NULL;
17598 return include_name;
17599}
17600
d9b3de22
DE
17601/* State machine to track the state of the line number program. */
17602
17603typedef struct
17604{
17605 /* These are part of the standard DWARF line number state machine. */
17606
17607 unsigned char op_index;
17608 unsigned int file;
17609 unsigned int line;
17610 CORE_ADDR address;
17611 int is_stmt;
17612 unsigned int discriminator;
17613
17614 /* Additional bits of state we need to track. */
17615
17616 /* The last file that we called dwarf2_start_subfile for.
17617 This is only used for TLLs. */
17618 unsigned int last_file;
17619 /* The last file a line number was recorded for. */
17620 struct subfile *last_subfile;
17621
17622 /* The function to call to record a line. */
17623 record_line_ftype *record_line;
17624
17625 /* The last line number that was recorded, used to coalesce
17626 consecutive entries for the same line. This can happen, for
17627 example, when discriminators are present. PR 17276. */
17628 unsigned int last_line;
17629 int line_has_non_zero_discriminator;
17630} lnp_state_machine;
17631
17632/* There's a lot of static state to pass to dwarf_record_line.
17633 This keeps it all together. */
17634
17635typedef struct
17636{
17637 /* The gdbarch. */
17638 struct gdbarch *gdbarch;
17639
17640 /* The line number header. */
17641 struct line_header *line_header;
17642
17643 /* Non-zero if we're recording lines.
17644 Otherwise we're building partial symtabs and are just interested in
17645 finding include files mentioned by the line number program. */
17646 int record_lines_p;
17647} lnp_reader_state;
17648
c91513d8
PP
17649/* Ignore this record_line request. */
17650
17651static void
17652noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17653{
17654 return;
17655}
17656
a05a36a5
DE
17657/* Return non-zero if we should add LINE to the line number table.
17658 LINE is the line to add, LAST_LINE is the last line that was added,
17659 LAST_SUBFILE is the subfile for LAST_LINE.
17660 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17661 had a non-zero discriminator.
17662
17663 We have to be careful in the presence of discriminators.
17664 E.g., for this line:
17665
17666 for (i = 0; i < 100000; i++);
17667
17668 clang can emit four line number entries for that one line,
17669 each with a different discriminator.
17670 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17671
17672 However, we want gdb to coalesce all four entries into one.
17673 Otherwise the user could stepi into the middle of the line and
17674 gdb would get confused about whether the pc really was in the
17675 middle of the line.
17676
17677 Things are further complicated by the fact that two consecutive
17678 line number entries for the same line is a heuristic used by gcc
17679 to denote the end of the prologue. So we can't just discard duplicate
17680 entries, we have to be selective about it. The heuristic we use is
17681 that we only collapse consecutive entries for the same line if at least
17682 one of those entries has a non-zero discriminator. PR 17276.
17683
17684 Note: Addresses in the line number state machine can never go backwards
17685 within one sequence, thus this coalescing is ok. */
17686
17687static int
17688dwarf_record_line_p (unsigned int line, unsigned int last_line,
17689 int line_has_non_zero_discriminator,
17690 struct subfile *last_subfile)
17691{
17692 if (current_subfile != last_subfile)
17693 return 1;
17694 if (line != last_line)
17695 return 1;
17696 /* Same line for the same file that we've seen already.
17697 As a last check, for pr 17276, only record the line if the line
17698 has never had a non-zero discriminator. */
17699 if (!line_has_non_zero_discriminator)
17700 return 1;
17701 return 0;
17702}
17703
252a6764
DE
17704/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17705 in the line table of subfile SUBFILE. */
17706
17707static void
d9b3de22
DE
17708dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17709 unsigned int line, CORE_ADDR address,
17710 record_line_ftype p_record_line)
252a6764
DE
17711{
17712 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17713
27e0867f
DE
17714 if (dwarf_line_debug)
17715 {
17716 fprintf_unfiltered (gdb_stdlog,
17717 "Recording line %u, file %s, address %s\n",
17718 line, lbasename (subfile->name),
17719 paddress (gdbarch, address));
17720 }
17721
d5962de5 17722 (*p_record_line) (subfile, line, addr);
252a6764
DE
17723}
17724
17725/* Subroutine of dwarf_decode_lines_1 to simplify it.
17726 Mark the end of a set of line number records.
d9b3de22 17727 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17728 If SUBFILE is NULL the request is ignored. */
17729
17730static void
17731dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17732 CORE_ADDR address, record_line_ftype p_record_line)
17733{
27e0867f
DE
17734 if (subfile == NULL)
17735 return;
17736
17737 if (dwarf_line_debug)
17738 {
17739 fprintf_unfiltered (gdb_stdlog,
17740 "Finishing current line, file %s, address %s\n",
17741 lbasename (subfile->name),
17742 paddress (gdbarch, address));
17743 }
17744
d9b3de22
DE
17745 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17746}
17747
17748/* Record the line in STATE.
17749 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17750
17751static void
17752dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17753 int end_sequence)
17754{
17755 const struct line_header *lh = reader->line_header;
17756 unsigned int file, line, discriminator;
17757 int is_stmt;
17758
17759 file = state->file;
17760 line = state->line;
17761 is_stmt = state->is_stmt;
17762 discriminator = state->discriminator;
17763
17764 if (dwarf_line_debug)
17765 {
17766 fprintf_unfiltered (gdb_stdlog,
17767 "Processing actual line %u: file %u,"
17768 " address %s, is_stmt %u, discrim %u\n",
17769 line, file,
17770 paddress (reader->gdbarch, state->address),
17771 is_stmt, discriminator);
17772 }
17773
17774 if (file == 0 || file - 1 >= lh->num_file_names)
17775 dwarf2_debug_line_missing_file_complaint ();
17776 /* For now we ignore lines not starting on an instruction boundary.
17777 But not when processing end_sequence for compatibility with the
17778 previous version of the code. */
17779 else if (state->op_index == 0 || end_sequence)
17780 {
17781 lh->file_names[file - 1].included_p = 1;
17782 if (reader->record_lines_p && is_stmt)
17783 {
e815d2d2 17784 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17785 {
17786 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17787 state->address, state->record_line);
17788 }
17789
17790 if (!end_sequence)
17791 {
17792 if (dwarf_record_line_p (line, state->last_line,
17793 state->line_has_non_zero_discriminator,
17794 state->last_subfile))
17795 {
17796 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17797 line, state->address,
17798 state->record_line);
17799 }
17800 state->last_subfile = current_subfile;
17801 state->last_line = line;
17802 }
17803 }
17804 }
17805}
17806
17807/* Initialize STATE for the start of a line number program. */
17808
17809static void
17810init_lnp_state_machine (lnp_state_machine *state,
17811 const lnp_reader_state *reader)
17812{
17813 memset (state, 0, sizeof (*state));
17814
17815 /* Just starting, there is no "last file". */
17816 state->last_file = 0;
17817 state->last_subfile = NULL;
17818
17819 state->record_line = record_line;
17820
17821 state->last_line = 0;
17822 state->line_has_non_zero_discriminator = 0;
17823
17824 /* Initialize these according to the DWARF spec. */
17825 state->op_index = 0;
17826 state->file = 1;
17827 state->line = 1;
17828 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17829 was a line entry for it so that the backend has a chance to adjust it
17830 and also record it in case it needs it. This is currently used by MIPS
17831 code, cf. `mips_adjust_dwarf2_line'. */
17832 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17833 state->is_stmt = reader->line_header->default_is_stmt;
17834 state->discriminator = 0;
252a6764
DE
17835}
17836
924c2928
DE
17837/* Check address and if invalid nop-out the rest of the lines in this
17838 sequence. */
17839
17840static void
d9b3de22 17841check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17842 const gdb_byte *line_ptr,
17843 CORE_ADDR lowpc, CORE_ADDR address)
17844{
17845 /* If address < lowpc then it's not a usable value, it's outside the
17846 pc range of the CU. However, we restrict the test to only address
17847 values of zero to preserve GDB's previous behaviour which is to
17848 handle the specific case of a function being GC'd by the linker. */
17849
17850 if (address == 0 && address < lowpc)
17851 {
17852 /* This line table is for a function which has been
17853 GCd by the linker. Ignore it. PR gdb/12528 */
17854
17855 struct objfile *objfile = cu->objfile;
17856 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17857
17858 complaint (&symfile_complaints,
17859 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17860 line_offset, objfile_name (objfile));
d9b3de22
DE
17861 state->record_line = noop_record_line;
17862 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17863 until we see DW_LNE_end_sequence. */
17864 }
17865}
17866
f3f5162e 17867/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17868 Process the line number information in LH.
17869 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17870 program in order to set included_p for every referenced header. */
debd256d 17871
c906108c 17872static void
43f3e411
DE
17873dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17874 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17875{
d521ce57
TT
17876 const gdb_byte *line_ptr, *extended_end;
17877 const gdb_byte *line_end;
a8c50c1f 17878 unsigned int bytes_read, extended_len;
699ca60a 17879 unsigned char op_code, extended_op;
e142c38c
DJ
17880 CORE_ADDR baseaddr;
17881 struct objfile *objfile = cu->objfile;
f3f5162e 17882 bfd *abfd = objfile->obfd;
fbf65064 17883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17884 /* Non-zero if we're recording line info (as opposed to building partial
17885 symtabs). */
17886 int record_lines_p = !decode_for_pst_p;
17887 /* A collection of things we need to pass to dwarf_record_line. */
17888 lnp_reader_state reader_state;
e142c38c
DJ
17889
17890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17891
debd256d
JB
17892 line_ptr = lh->statement_program_start;
17893 line_end = lh->statement_program_end;
c906108c 17894
d9b3de22
DE
17895 reader_state.gdbarch = gdbarch;
17896 reader_state.line_header = lh;
17897 reader_state.record_lines_p = record_lines_p;
17898
c906108c
SS
17899 /* Read the statement sequences until there's nothing left. */
17900 while (line_ptr < line_end)
17901 {
d9b3de22
DE
17902 /* The DWARF line number program state machine. */
17903 lnp_state_machine state_machine;
c906108c 17904 int end_sequence = 0;
d9b3de22
DE
17905
17906 /* Reset the state machine at the start of each sequence. */
17907 init_lnp_state_machine (&state_machine, &reader_state);
17908
17909 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17910 {
aaa75496 17911 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17912 /* lh->include_dirs and lh->file_names are 0-based, but the
17913 directory and file name numbers in the statement program
17914 are 1-based. */
d9b3de22 17915 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17916 const char *dir = NULL;
a738430d 17917
afa6c9ab 17918 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17919 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17920
4d663531 17921 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17922 }
17923
a738430d 17924 /* Decode the table. */
d9b3de22 17925 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17926 {
17927 op_code = read_1_byte (abfd, line_ptr);
17928 line_ptr += 1;
9aa1fe7e 17929
debd256d 17930 if (op_code >= lh->opcode_base)
6e70227d 17931 {
8e07a239 17932 /* Special opcode. */
699ca60a 17933 unsigned char adj_opcode;
3e29f34a 17934 CORE_ADDR addr_adj;
a05a36a5 17935 int line_delta;
8e07a239 17936
debd256d 17937 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17938 addr_adj = (((state_machine.op_index
17939 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17940 / lh->maximum_ops_per_instruction)
17941 * lh->minimum_instruction_length);
d9b3de22
DE
17942 state_machine.address
17943 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17944 state_machine.op_index = ((state_machine.op_index
17945 + (adj_opcode / lh->line_range))
17946 % lh->maximum_ops_per_instruction);
a05a36a5 17947 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17948 state_machine.line += line_delta;
a05a36a5 17949 if (line_delta != 0)
d9b3de22
DE
17950 state_machine.line_has_non_zero_discriminator
17951 = state_machine.discriminator != 0;
17952
17953 dwarf_record_line (&reader_state, &state_machine, 0);
17954 state_machine.discriminator = 0;
9aa1fe7e
GK
17955 }
17956 else switch (op_code)
c906108c
SS
17957 {
17958 case DW_LNS_extended_op:
3e43a32a
MS
17959 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17960 &bytes_read);
473b7be6 17961 line_ptr += bytes_read;
a8c50c1f 17962 extended_end = line_ptr + extended_len;
c906108c
SS
17963 extended_op = read_1_byte (abfd, line_ptr);
17964 line_ptr += 1;
17965 switch (extended_op)
17966 {
17967 case DW_LNE_end_sequence:
d9b3de22 17968 state_machine.record_line = record_line;
c906108c 17969 end_sequence = 1;
c906108c
SS
17970 break;
17971 case DW_LNE_set_address:
d9b3de22
DE
17972 {
17973 CORE_ADDR address
17974 = read_address (abfd, line_ptr, cu, &bytes_read);
17975
17976 line_ptr += bytes_read;
17977 check_line_address (cu, &state_machine, line_ptr,
17978 lowpc, address);
17979 state_machine.op_index = 0;
17980 address += baseaddr;
17981 state_machine.address
17982 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17983 }
c906108c
SS
17984 break;
17985 case DW_LNE_define_file:
debd256d 17986 {
d521ce57 17987 const char *cur_file;
debd256d 17988 unsigned int dir_index, mod_time, length;
6e70227d 17989
3e43a32a
MS
17990 cur_file = read_direct_string (abfd, line_ptr,
17991 &bytes_read);
debd256d
JB
17992 line_ptr += bytes_read;
17993 dir_index =
17994 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17995 line_ptr += bytes_read;
17996 mod_time =
17997 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17998 line_ptr += bytes_read;
17999 length =
18000 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18001 line_ptr += bytes_read;
18002 add_file_name (lh, cur_file, dir_index, mod_time, length);
18003 }
c906108c 18004 break;
d0c6ba3d
CC
18005 case DW_LNE_set_discriminator:
18006 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
18007 just ignore it. We still need to check its value though:
18008 if there are consecutive entries for the same
18009 (non-prologue) line we want to coalesce them.
18010 PR 17276. */
d9b3de22
DE
18011 state_machine.discriminator
18012 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18013 state_machine.line_has_non_zero_discriminator
18014 |= state_machine.discriminator != 0;
a05a36a5 18015 line_ptr += bytes_read;
d0c6ba3d 18016 break;
c906108c 18017 default:
4d3c2250 18018 complaint (&symfile_complaints,
e2e0b3e5 18019 _("mangled .debug_line section"));
debd256d 18020 return;
c906108c 18021 }
a8c50c1f
DJ
18022 /* Make sure that we parsed the extended op correctly. If e.g.
18023 we expected a different address size than the producer used,
18024 we may have read the wrong number of bytes. */
18025 if (line_ptr != extended_end)
18026 {
18027 complaint (&symfile_complaints,
18028 _("mangled .debug_line section"));
18029 return;
18030 }
c906108c
SS
18031 break;
18032 case DW_LNS_copy:
d9b3de22
DE
18033 dwarf_record_line (&reader_state, &state_machine, 0);
18034 state_machine.discriminator = 0;
c906108c
SS
18035 break;
18036 case DW_LNS_advance_pc:
2dc7f7b3
TT
18037 {
18038 CORE_ADDR adjust
18039 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 18040 CORE_ADDR addr_adj;
2dc7f7b3 18041
d9b3de22 18042 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18043 / lh->maximum_ops_per_instruction)
18044 * lh->minimum_instruction_length);
d9b3de22
DE
18045 state_machine.address
18046 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18047 state_machine.op_index = ((state_machine.op_index + adjust)
18048 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18049 line_ptr += bytes_read;
18050 }
c906108c
SS
18051 break;
18052 case DW_LNS_advance_line:
a05a36a5
DE
18053 {
18054 int line_delta
18055 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18056
d9b3de22 18057 state_machine.line += line_delta;
a05a36a5 18058 if (line_delta != 0)
d9b3de22
DE
18059 state_machine.line_has_non_zero_discriminator
18060 = state_machine.discriminator != 0;
a05a36a5
DE
18061 line_ptr += bytes_read;
18062 }
c906108c
SS
18063 break;
18064 case DW_LNS_set_file:
d9b3de22
DE
18065 {
18066 /* The arrays lh->include_dirs and lh->file_names are
18067 0-based, but the directory and file name numbers in
18068 the statement program are 1-based. */
18069 struct file_entry *fe;
18070 const char *dir = NULL;
18071
18072 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18073 &bytes_read);
18074 line_ptr += bytes_read;
18075 if (state_machine.file == 0
18076 || state_machine.file - 1 >= lh->num_file_names)
18077 dwarf2_debug_line_missing_file_complaint ();
18078 else
18079 {
18080 fe = &lh->file_names[state_machine.file - 1];
18081 if (fe->dir_index && lh->include_dirs != NULL)
18082 dir = lh->include_dirs[fe->dir_index - 1];
18083 if (record_lines_p)
18084 {
18085 state_machine.last_subfile = current_subfile;
18086 state_machine.line_has_non_zero_discriminator
18087 = state_machine.discriminator != 0;
18088 dwarf2_start_subfile (fe->name, dir);
18089 }
18090 }
18091 }
c906108c
SS
18092 break;
18093 case DW_LNS_set_column:
0ad93d4f 18094 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18095 line_ptr += bytes_read;
18096 break;
18097 case DW_LNS_negate_stmt:
d9b3de22 18098 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18099 break;
18100 case DW_LNS_set_basic_block:
c906108c 18101 break;
c2c6d25f
JM
18102 /* Add to the address register of the state machine the
18103 address increment value corresponding to special opcode
a738430d
MK
18104 255. I.e., this value is scaled by the minimum
18105 instruction length since special opcode 255 would have
b021a221 18106 scaled the increment. */
c906108c 18107 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18108 {
18109 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18110 CORE_ADDR addr_adj;
2dc7f7b3 18111
d9b3de22 18112 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18113 / lh->maximum_ops_per_instruction)
18114 * lh->minimum_instruction_length);
d9b3de22
DE
18115 state_machine.address
18116 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18117 state_machine.op_index = ((state_machine.op_index + adjust)
18118 % lh->maximum_ops_per_instruction);
2dc7f7b3 18119 }
c906108c
SS
18120 break;
18121 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18122 {
18123 CORE_ADDR addr_adj;
18124
18125 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18126 state_machine.address
18127 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18128 state_machine.op_index = 0;
3e29f34a
MR
18129 line_ptr += 2;
18130 }
c906108c 18131 break;
9aa1fe7e 18132 default:
a738430d
MK
18133 {
18134 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18135 int i;
a738430d 18136
debd256d 18137 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18138 {
18139 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18140 line_ptr += bytes_read;
18141 }
18142 }
c906108c
SS
18143 }
18144 }
d9b3de22
DE
18145
18146 if (!end_sequence)
18147 dwarf2_debug_line_missing_end_sequence_complaint ();
18148
18149 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18150 in which case we still finish recording the last line). */
18151 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18152 }
f3f5162e
DE
18153}
18154
18155/* Decode the Line Number Program (LNP) for the given line_header
18156 structure and CU. The actual information extracted and the type
18157 of structures created from the LNP depends on the value of PST.
18158
18159 1. If PST is NULL, then this procedure uses the data from the program
18160 to create all necessary symbol tables, and their linetables.
18161
18162 2. If PST is not NULL, this procedure reads the program to determine
18163 the list of files included by the unit represented by PST, and
18164 builds all the associated partial symbol tables.
18165
18166 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18167 It is used for relative paths in the line table.
18168 NOTE: When processing partial symtabs (pst != NULL),
18169 comp_dir == pst->dirname.
18170
18171 NOTE: It is important that psymtabs have the same file name (via strcmp)
18172 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18173 symtab we don't use it in the name of the psymtabs we create.
18174 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18175 A good testcase for this is mb-inline.exp.
18176
527f3840
JK
18177 LOWPC is the lowest address in CU (or 0 if not known).
18178
18179 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18180 for its PC<->lines mapping information. Otherwise only the filename
18181 table is read in. */
f3f5162e
DE
18182
18183static void
18184dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18185 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18186 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18187{
18188 struct objfile *objfile = cu->objfile;
18189 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18190
527f3840
JK
18191 if (decode_mapping)
18192 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18193
18194 if (decode_for_pst_p)
18195 {
18196 int file_index;
18197
18198 /* Now that we're done scanning the Line Header Program, we can
18199 create the psymtab of each included file. */
18200 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18201 if (lh->file_names[file_index].included_p == 1)
18202 {
d521ce57 18203 const char *include_name =
c6da4cef
DE
18204 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18205 if (include_name != NULL)
aaa75496
JB
18206 dwarf2_create_include_psymtab (include_name, pst, objfile);
18207 }
18208 }
cb1df416
DJ
18209 else
18210 {
18211 /* Make sure a symtab is created for every file, even files
18212 which contain only variables (i.e. no code with associated
18213 line numbers). */
43f3e411 18214 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18215 int i;
cb1df416
DJ
18216
18217 for (i = 0; i < lh->num_file_names; i++)
18218 {
d521ce57 18219 const char *dir = NULL;
f3f5162e 18220 struct file_entry *fe;
9a619af0 18221
cb1df416 18222 fe = &lh->file_names[i];
afa6c9ab 18223 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18224 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18225 dwarf2_start_subfile (fe->name, dir);
cb1df416 18226
cb1df416 18227 if (current_subfile->symtab == NULL)
43f3e411
DE
18228 {
18229 current_subfile->symtab
18230 = allocate_symtab (cust, current_subfile->name);
18231 }
cb1df416
DJ
18232 fe->symtab = current_subfile->symtab;
18233 }
18234 }
c906108c
SS
18235}
18236
18237/* Start a subfile for DWARF. FILENAME is the name of the file and
18238 DIRNAME the name of the source directory which contains FILENAME
4d663531 18239 or NULL if not known.
c906108c
SS
18240 This routine tries to keep line numbers from identical absolute and
18241 relative file names in a common subfile.
18242
18243 Using the `list' example from the GDB testsuite, which resides in
18244 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18245 of /srcdir/list0.c yields the following debugging information for list0.c:
18246
c5aa993b 18247 DW_AT_name: /srcdir/list0.c
4d663531 18248 DW_AT_comp_dir: /compdir
357e46e7 18249 files.files[0].name: list0.h
c5aa993b 18250 files.files[0].dir: /srcdir
357e46e7 18251 files.files[1].name: list0.c
c5aa993b 18252 files.files[1].dir: /srcdir
c906108c
SS
18253
18254 The line number information for list0.c has to end up in a single
4f1520fb
FR
18255 subfile, so that `break /srcdir/list0.c:1' works as expected.
18256 start_subfile will ensure that this happens provided that we pass the
18257 concatenation of files.files[1].dir and files.files[1].name as the
18258 subfile's name. */
c906108c
SS
18259
18260static void
4d663531 18261dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18262{
d521ce57 18263 char *copy = NULL;
4f1520fb 18264
4d663531 18265 /* In order not to lose the line information directory,
4f1520fb
FR
18266 we concatenate it to the filename when it makes sense.
18267 Note that the Dwarf3 standard says (speaking of filenames in line
18268 information): ``The directory index is ignored for file names
18269 that represent full path names''. Thus ignoring dirname in the
18270 `else' branch below isn't an issue. */
c906108c 18271
d5166ae1 18272 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18273 {
18274 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18275 filename = copy;
18276 }
c906108c 18277
4d663531 18278 start_subfile (filename);
4f1520fb 18279
d521ce57
TT
18280 if (copy != NULL)
18281 xfree (copy);
c906108c
SS
18282}
18283
f4dc4d17
DE
18284/* Start a symtab for DWARF.
18285 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18286
43f3e411 18287static struct compunit_symtab *
f4dc4d17 18288dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18289 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18290{
43f3e411
DE
18291 struct compunit_symtab *cust
18292 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18293
f4dc4d17
DE
18294 record_debugformat ("DWARF 2");
18295 record_producer (cu->producer);
18296
18297 /* We assume that we're processing GCC output. */
18298 processing_gcc_compilation = 2;
18299
4d4ec4e5 18300 cu->processing_has_namespace_info = 0;
43f3e411
DE
18301
18302 return cust;
f4dc4d17
DE
18303}
18304
4c2df51b
DJ
18305static void
18306var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18307 struct dwarf2_cu *cu)
4c2df51b 18308{
e7c27a73
DJ
18309 struct objfile *objfile = cu->objfile;
18310 struct comp_unit_head *cu_header = &cu->header;
18311
4c2df51b
DJ
18312 /* NOTE drow/2003-01-30: There used to be a comment and some special
18313 code here to turn a symbol with DW_AT_external and a
18314 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18315 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18316 with some versions of binutils) where shared libraries could have
18317 relocations against symbols in their debug information - the
18318 minimal symbol would have the right address, but the debug info
18319 would not. It's no longer necessary, because we will explicitly
18320 apply relocations when we read in the debug information now. */
18321
18322 /* A DW_AT_location attribute with no contents indicates that a
18323 variable has been optimized away. */
18324 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18325 {
f1e6e072 18326 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18327 return;
18328 }
18329
18330 /* Handle one degenerate form of location expression specially, to
18331 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18332 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18333 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18334
18335 if (attr_form_is_block (attr)
3019eac3
DE
18336 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18337 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18338 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18339 && (DW_BLOCK (attr)->size
18340 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18341 {
891d2f0b 18342 unsigned int dummy;
4c2df51b 18343
3019eac3
DE
18344 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18345 SYMBOL_VALUE_ADDRESS (sym) =
18346 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18347 else
18348 SYMBOL_VALUE_ADDRESS (sym) =
18349 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18350 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18351 fixup_symbol_section (sym, objfile);
18352 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18353 SYMBOL_SECTION (sym));
4c2df51b
DJ
18354 return;
18355 }
18356
18357 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18358 expression evaluator, and use LOC_COMPUTED only when necessary
18359 (i.e. when the value of a register or memory location is
18360 referenced, or a thread-local block, etc.). Then again, it might
18361 not be worthwhile. I'm assuming that it isn't unless performance
18362 or memory numbers show me otherwise. */
18363
f1e6e072 18364 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18365
f1e6e072 18366 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18367 cu->has_loclist = 1;
4c2df51b
DJ
18368}
18369
c906108c
SS
18370/* Given a pointer to a DWARF information entry, figure out if we need
18371 to make a symbol table entry for it, and if so, create a new entry
18372 and return a pointer to it.
18373 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18374 used the passed type.
18375 If SPACE is not NULL, use it to hold the new symbol. If it is
18376 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18377
18378static struct symbol *
34eaf542
TT
18379new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18380 struct symbol *space)
c906108c 18381{
e7c27a73 18382 struct objfile *objfile = cu->objfile;
3e29f34a 18383 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18384 struct symbol *sym = NULL;
15d034d0 18385 const char *name;
c906108c
SS
18386 struct attribute *attr = NULL;
18387 struct attribute *attr2 = NULL;
e142c38c 18388 CORE_ADDR baseaddr;
e37fd15a
SW
18389 struct pending **list_to_add = NULL;
18390
edb3359d 18391 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18392
18393 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18394
94af9270 18395 name = dwarf2_name (die, cu);
c906108c
SS
18396 if (name)
18397 {
94af9270 18398 const char *linkagename;
34eaf542 18399 int suppress_add = 0;
94af9270 18400
34eaf542
TT
18401 if (space)
18402 sym = space;
18403 else
e623cf5d 18404 sym = allocate_symbol (objfile);
c906108c 18405 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18406
18407 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18408 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18409 linkagename = dwarf2_physname (name, die, cu);
18410 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18411
f55ee35c
JK
18412 /* Fortran does not have mangling standard and the mangling does differ
18413 between gfortran, iFort etc. */
18414 if (cu->language == language_fortran
b250c185 18415 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18416 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18417 dwarf2_full_name (name, die, cu),
29df156d 18418 NULL);
f55ee35c 18419
c906108c 18420 /* Default assumptions.
c5aa993b 18421 Use the passed type or decode it from the die. */
176620f1 18422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18423 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18424 if (type != NULL)
18425 SYMBOL_TYPE (sym) = type;
18426 else
e7c27a73 18427 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18428 attr = dwarf2_attr (die,
18429 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18430 cu);
c906108c
SS
18431 if (attr)
18432 {
18433 SYMBOL_LINE (sym) = DW_UNSND (attr);
18434 }
cb1df416 18435
edb3359d
DJ
18436 attr = dwarf2_attr (die,
18437 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18438 cu);
cb1df416
DJ
18439 if (attr)
18440 {
18441 int file_index = DW_UNSND (attr);
9a619af0 18442
cb1df416
DJ
18443 if (cu->line_header == NULL
18444 || file_index > cu->line_header->num_file_names)
18445 complaint (&symfile_complaints,
18446 _("file index out of range"));
1c3d648d 18447 else if (file_index > 0)
cb1df416
DJ
18448 {
18449 struct file_entry *fe;
9a619af0 18450
cb1df416 18451 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18452 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18453 }
18454 }
18455
c906108c
SS
18456 switch (die->tag)
18457 {
18458 case DW_TAG_label:
e142c38c 18459 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18460 if (attr)
3e29f34a
MR
18461 {
18462 CORE_ADDR addr;
18463
18464 addr = attr_value_as_address (attr);
18465 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18466 SYMBOL_VALUE_ADDRESS (sym) = addr;
18467 }
0f5238ed
TT
18468 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18469 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18470 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18471 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18472 break;
18473 case DW_TAG_subprogram:
18474 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18475 finish_block. */
f1e6e072 18476 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18477 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18478 if ((attr2 && (DW_UNSND (attr2) != 0))
18479 || cu->language == language_ada)
c906108c 18480 {
2cfa0c8d
JB
18481 /* Subprograms marked external are stored as a global symbol.
18482 Ada subprograms, whether marked external or not, are always
18483 stored as a global symbol, because we want to be able to
18484 access them globally. For instance, we want to be able
18485 to break on a nested subprogram without having to
18486 specify the context. */
e37fd15a 18487 list_to_add = &global_symbols;
c906108c
SS
18488 }
18489 else
18490 {
e37fd15a 18491 list_to_add = cu->list_in_scope;
c906108c
SS
18492 }
18493 break;
edb3359d
DJ
18494 case DW_TAG_inlined_subroutine:
18495 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18496 finish_block. */
f1e6e072 18497 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18498 SYMBOL_INLINED (sym) = 1;
481860b3 18499 list_to_add = cu->list_in_scope;
edb3359d 18500 break;
34eaf542
TT
18501 case DW_TAG_template_value_param:
18502 suppress_add = 1;
18503 /* Fall through. */
72929c62 18504 case DW_TAG_constant:
c906108c 18505 case DW_TAG_variable:
254e6b9e 18506 case DW_TAG_member:
0963b4bd
MS
18507 /* Compilation with minimal debug info may result in
18508 variables with missing type entries. Change the
18509 misleading `void' type to something sensible. */
c906108c 18510 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18511 SYMBOL_TYPE (sym)
46bf5051 18512 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18513
e142c38c 18514 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18515 /* In the case of DW_TAG_member, we should only be called for
18516 static const members. */
18517 if (die->tag == DW_TAG_member)
18518 {
3863f96c
DE
18519 /* dwarf2_add_field uses die_is_declaration,
18520 so we do the same. */
254e6b9e
DE
18521 gdb_assert (die_is_declaration (die, cu));
18522 gdb_assert (attr);
18523 }
c906108c
SS
18524 if (attr)
18525 {
e7c27a73 18526 dwarf2_const_value (attr, sym, cu);
e142c38c 18527 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18528 if (!suppress_add)
34eaf542
TT
18529 {
18530 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18531 list_to_add = &global_symbols;
34eaf542 18532 else
e37fd15a 18533 list_to_add = cu->list_in_scope;
34eaf542 18534 }
c906108c
SS
18535 break;
18536 }
e142c38c 18537 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18538 if (attr)
18539 {
e7c27a73 18540 var_decode_location (attr, sym, cu);
e142c38c 18541 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18542
18543 /* Fortran explicitly imports any global symbols to the local
18544 scope by DW_TAG_common_block. */
18545 if (cu->language == language_fortran && die->parent
18546 && die->parent->tag == DW_TAG_common_block)
18547 attr2 = NULL;
18548
caac4577
JG
18549 if (SYMBOL_CLASS (sym) == LOC_STATIC
18550 && SYMBOL_VALUE_ADDRESS (sym) == 0
18551 && !dwarf2_per_objfile->has_section_at_zero)
18552 {
18553 /* When a static variable is eliminated by the linker,
18554 the corresponding debug information is not stripped
18555 out, but the variable address is set to null;
18556 do not add such variables into symbol table. */
18557 }
18558 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18559 {
f55ee35c
JK
18560 /* Workaround gfortran PR debug/40040 - it uses
18561 DW_AT_location for variables in -fPIC libraries which may
18562 get overriden by other libraries/executable and get
18563 a different address. Resolve it by the minimal symbol
18564 which may come from inferior's executable using copy
18565 relocation. Make this workaround only for gfortran as for
18566 other compilers GDB cannot guess the minimal symbol
18567 Fortran mangling kind. */
18568 if (cu->language == language_fortran && die->parent
18569 && die->parent->tag == DW_TAG_module
18570 && cu->producer
28586665 18571 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18572 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18573
1c809c68
TT
18574 /* A variable with DW_AT_external is never static,
18575 but it may be block-scoped. */
18576 list_to_add = (cu->list_in_scope == &file_symbols
18577 ? &global_symbols : cu->list_in_scope);
1c809c68 18578 }
c906108c 18579 else
e37fd15a 18580 list_to_add = cu->list_in_scope;
c906108c
SS
18581 }
18582 else
18583 {
18584 /* We do not know the address of this symbol.
c5aa993b
JM
18585 If it is an external symbol and we have type information
18586 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18587 The address of the variable will then be determined from
18588 the minimal symbol table whenever the variable is
18589 referenced. */
e142c38c 18590 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18591
18592 /* Fortran explicitly imports any global symbols to the local
18593 scope by DW_TAG_common_block. */
18594 if (cu->language == language_fortran && die->parent
18595 && die->parent->tag == DW_TAG_common_block)
18596 {
18597 /* SYMBOL_CLASS doesn't matter here because
18598 read_common_block is going to reset it. */
18599 if (!suppress_add)
18600 list_to_add = cu->list_in_scope;
18601 }
18602 else if (attr2 && (DW_UNSND (attr2) != 0)
18603 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18604 {
0fe7935b
DJ
18605 /* A variable with DW_AT_external is never static, but it
18606 may be block-scoped. */
18607 list_to_add = (cu->list_in_scope == &file_symbols
18608 ? &global_symbols : cu->list_in_scope);
18609
f1e6e072 18610 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18611 }
442ddf59
JK
18612 else if (!die_is_declaration (die, cu))
18613 {
18614 /* Use the default LOC_OPTIMIZED_OUT class. */
18615 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18616 if (!suppress_add)
18617 list_to_add = cu->list_in_scope;
442ddf59 18618 }
c906108c
SS
18619 }
18620 break;
18621 case DW_TAG_formal_parameter:
edb3359d
DJ
18622 /* If we are inside a function, mark this as an argument. If
18623 not, we might be looking at an argument to an inlined function
18624 when we do not have enough information to show inlined frames;
18625 pretend it's a local variable in that case so that the user can
18626 still see it. */
18627 if (context_stack_depth > 0
18628 && context_stack[context_stack_depth - 1].name != NULL)
18629 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18630 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18631 if (attr)
18632 {
e7c27a73 18633 var_decode_location (attr, sym, cu);
c906108c 18634 }
e142c38c 18635 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18636 if (attr)
18637 {
e7c27a73 18638 dwarf2_const_value (attr, sym, cu);
c906108c 18639 }
f346a30d 18640
e37fd15a 18641 list_to_add = cu->list_in_scope;
c906108c
SS
18642 break;
18643 case DW_TAG_unspecified_parameters:
18644 /* From varargs functions; gdb doesn't seem to have any
18645 interest in this information, so just ignore it for now.
18646 (FIXME?) */
18647 break;
34eaf542
TT
18648 case DW_TAG_template_type_param:
18649 suppress_add = 1;
18650 /* Fall through. */
c906108c 18651 case DW_TAG_class_type:
680b30c7 18652 case DW_TAG_interface_type:
c906108c
SS
18653 case DW_TAG_structure_type:
18654 case DW_TAG_union_type:
72019c9c 18655 case DW_TAG_set_type:
c906108c 18656 case DW_TAG_enumeration_type:
f1e6e072 18657 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18658 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18659
63d06c5c 18660 {
987504bb 18661 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18662 really ever be static objects: otherwise, if you try
18663 to, say, break of a class's method and you're in a file
18664 which doesn't mention that class, it won't work unless
18665 the check for all static symbols in lookup_symbol_aux
18666 saves you. See the OtherFileClass tests in
18667 gdb.c++/namespace.exp. */
18668
e37fd15a 18669 if (!suppress_add)
34eaf542 18670 {
34eaf542
TT
18671 list_to_add = (cu->list_in_scope == &file_symbols
18672 && (cu->language == language_cplus
18673 || cu->language == language_java)
18674 ? &global_symbols : cu->list_in_scope);
63d06c5c 18675
64382290
TT
18676 /* The semantics of C++ state that "struct foo {
18677 ... }" also defines a typedef for "foo". A Java
18678 class declaration also defines a typedef for the
18679 class. */
18680 if (cu->language == language_cplus
18681 || cu->language == language_java
45280282 18682 || cu->language == language_ada
c44af4eb
TT
18683 || cu->language == language_d
18684 || cu->language == language_rust)
64382290
TT
18685 {
18686 /* The symbol's name is already allocated along
18687 with this objfile, so we don't need to
18688 duplicate it for the type. */
18689 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18690 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18691 }
63d06c5c
DC
18692 }
18693 }
c906108c
SS
18694 break;
18695 case DW_TAG_typedef:
f1e6e072 18696 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18697 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18698 list_to_add = cu->list_in_scope;
63d06c5c 18699 break;
c906108c 18700 case DW_TAG_base_type:
a02abb62 18701 case DW_TAG_subrange_type:
f1e6e072 18702 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18703 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18704 list_to_add = cu->list_in_scope;
c906108c
SS
18705 break;
18706 case DW_TAG_enumerator:
e142c38c 18707 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18708 if (attr)
18709 {
e7c27a73 18710 dwarf2_const_value (attr, sym, cu);
c906108c 18711 }
63d06c5c
DC
18712 {
18713 /* NOTE: carlton/2003-11-10: See comment above in the
18714 DW_TAG_class_type, etc. block. */
18715
e142c38c 18716 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18717 && (cu->language == language_cplus
18718 || cu->language == language_java)
e142c38c 18719 ? &global_symbols : cu->list_in_scope);
63d06c5c 18720 }
c906108c 18721 break;
74921315 18722 case DW_TAG_imported_declaration:
5c4e30ca 18723 case DW_TAG_namespace:
f1e6e072 18724 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18725 list_to_add = &global_symbols;
5c4e30ca 18726 break;
530e8392
KB
18727 case DW_TAG_module:
18728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18729 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18730 list_to_add = &global_symbols;
18731 break;
4357ac6c 18732 case DW_TAG_common_block:
f1e6e072 18733 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18734 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18735 add_symbol_to_list (sym, cu->list_in_scope);
18736 break;
c906108c
SS
18737 default:
18738 /* Not a tag we recognize. Hopefully we aren't processing
18739 trash data, but since we must specifically ignore things
18740 we don't recognize, there is nothing else we should do at
0963b4bd 18741 this point. */
e2e0b3e5 18742 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18743 dwarf_tag_name (die->tag));
c906108c
SS
18744 break;
18745 }
df8a16a1 18746
e37fd15a
SW
18747 if (suppress_add)
18748 {
18749 sym->hash_next = objfile->template_symbols;
18750 objfile->template_symbols = sym;
18751 list_to_add = NULL;
18752 }
18753
18754 if (list_to_add != NULL)
18755 add_symbol_to_list (sym, list_to_add);
18756
df8a16a1
DJ
18757 /* For the benefit of old versions of GCC, check for anonymous
18758 namespaces based on the demangled name. */
4d4ec4e5 18759 if (!cu->processing_has_namespace_info
94af9270 18760 && cu->language == language_cplus)
a10964d1 18761 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18762 }
18763 return (sym);
18764}
18765
34eaf542
TT
18766/* A wrapper for new_symbol_full that always allocates a new symbol. */
18767
18768static struct symbol *
18769new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18770{
18771 return new_symbol_full (die, type, cu, NULL);
18772}
18773
98bfdba5
PA
18774/* Given an attr with a DW_FORM_dataN value in host byte order,
18775 zero-extend it as appropriate for the symbol's type. The DWARF
18776 standard (v4) is not entirely clear about the meaning of using
18777 DW_FORM_dataN for a constant with a signed type, where the type is
18778 wider than the data. The conclusion of a discussion on the DWARF
18779 list was that this is unspecified. We choose to always zero-extend
18780 because that is the interpretation long in use by GCC. */
c906108c 18781
98bfdba5 18782static gdb_byte *
ff39bb5e 18783dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18784 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18785{
e7c27a73 18786 struct objfile *objfile = cu->objfile;
e17a4113
UW
18787 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18788 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18789 LONGEST l = DW_UNSND (attr);
18790
18791 if (bits < sizeof (*value) * 8)
18792 {
18793 l &= ((LONGEST) 1 << bits) - 1;
18794 *value = l;
18795 }
18796 else if (bits == sizeof (*value) * 8)
18797 *value = l;
18798 else
18799 {
224c3ddb 18800 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18801 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18802 return bytes;
18803 }
18804
18805 return NULL;
18806}
18807
18808/* Read a constant value from an attribute. Either set *VALUE, or if
18809 the value does not fit in *VALUE, set *BYTES - either already
18810 allocated on the objfile obstack, or newly allocated on OBSTACK,
18811 or, set *BATON, if we translated the constant to a location
18812 expression. */
18813
18814static void
ff39bb5e 18815dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18816 const char *name, struct obstack *obstack,
18817 struct dwarf2_cu *cu,
d521ce57 18818 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18819 struct dwarf2_locexpr_baton **baton)
18820{
18821 struct objfile *objfile = cu->objfile;
18822 struct comp_unit_head *cu_header = &cu->header;
c906108c 18823 struct dwarf_block *blk;
98bfdba5
PA
18824 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18825 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18826
18827 *value = 0;
18828 *bytes = NULL;
18829 *baton = NULL;
c906108c
SS
18830
18831 switch (attr->form)
18832 {
18833 case DW_FORM_addr:
3019eac3 18834 case DW_FORM_GNU_addr_index:
ac56253d 18835 {
ac56253d
TT
18836 gdb_byte *data;
18837
98bfdba5
PA
18838 if (TYPE_LENGTH (type) != cu_header->addr_size)
18839 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18840 cu_header->addr_size,
98bfdba5 18841 TYPE_LENGTH (type));
ac56253d
TT
18842 /* Symbols of this form are reasonably rare, so we just
18843 piggyback on the existing location code rather than writing
18844 a new implementation of symbol_computed_ops. */
8d749320 18845 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18846 (*baton)->per_cu = cu->per_cu;
18847 gdb_assert ((*baton)->per_cu);
ac56253d 18848
98bfdba5 18849 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18850 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18851 (*baton)->data = data;
ac56253d
TT
18852
18853 data[0] = DW_OP_addr;
18854 store_unsigned_integer (&data[1], cu_header->addr_size,
18855 byte_order, DW_ADDR (attr));
18856 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18857 }
c906108c 18858 break;
4ac36638 18859 case DW_FORM_string:
93b5768b 18860 case DW_FORM_strp:
3019eac3 18861 case DW_FORM_GNU_str_index:
36586728 18862 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18863 /* DW_STRING is already allocated on the objfile obstack, point
18864 directly to it. */
d521ce57 18865 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18866 break;
c906108c
SS
18867 case DW_FORM_block1:
18868 case DW_FORM_block2:
18869 case DW_FORM_block4:
18870 case DW_FORM_block:
2dc7f7b3 18871 case DW_FORM_exprloc:
c906108c 18872 blk = DW_BLOCK (attr);
98bfdba5
PA
18873 if (TYPE_LENGTH (type) != blk->size)
18874 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18875 TYPE_LENGTH (type));
18876 *bytes = blk->data;
c906108c 18877 break;
2df3850c
JM
18878
18879 /* The DW_AT_const_value attributes are supposed to carry the
18880 symbol's value "represented as it would be on the target
18881 architecture." By the time we get here, it's already been
18882 converted to host endianness, so we just need to sign- or
18883 zero-extend it as appropriate. */
18884 case DW_FORM_data1:
3aef2284 18885 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18886 break;
c906108c 18887 case DW_FORM_data2:
3aef2284 18888 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18889 break;
c906108c 18890 case DW_FORM_data4:
3aef2284 18891 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18892 break;
c906108c 18893 case DW_FORM_data8:
3aef2284 18894 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18895 break;
18896
c906108c 18897 case DW_FORM_sdata:
98bfdba5 18898 *value = DW_SND (attr);
2df3850c
JM
18899 break;
18900
c906108c 18901 case DW_FORM_udata:
98bfdba5 18902 *value = DW_UNSND (attr);
c906108c 18903 break;
2df3850c 18904
c906108c 18905 default:
4d3c2250 18906 complaint (&symfile_complaints,
e2e0b3e5 18907 _("unsupported const value attribute form: '%s'"),
4d3c2250 18908 dwarf_form_name (attr->form));
98bfdba5 18909 *value = 0;
c906108c
SS
18910 break;
18911 }
18912}
18913
2df3850c 18914
98bfdba5
PA
18915/* Copy constant value from an attribute to a symbol. */
18916
2df3850c 18917static void
ff39bb5e 18918dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18919 struct dwarf2_cu *cu)
2df3850c 18920{
98bfdba5 18921 struct objfile *objfile = cu->objfile;
12df843f 18922 LONGEST value;
d521ce57 18923 const gdb_byte *bytes;
98bfdba5 18924 struct dwarf2_locexpr_baton *baton;
2df3850c 18925
98bfdba5
PA
18926 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18927 SYMBOL_PRINT_NAME (sym),
18928 &objfile->objfile_obstack, cu,
18929 &value, &bytes, &baton);
2df3850c 18930
98bfdba5
PA
18931 if (baton != NULL)
18932 {
98bfdba5 18933 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18934 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18935 }
18936 else if (bytes != NULL)
18937 {
18938 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18939 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18940 }
18941 else
18942 {
18943 SYMBOL_VALUE (sym) = value;
f1e6e072 18944 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18945 }
2df3850c
JM
18946}
18947
c906108c
SS
18948/* Return the type of the die in question using its DW_AT_type attribute. */
18949
18950static struct type *
e7c27a73 18951die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18952{
c906108c 18953 struct attribute *type_attr;
c906108c 18954
e142c38c 18955 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18956 if (!type_attr)
18957 {
18958 /* A missing DW_AT_type represents a void type. */
46bf5051 18959 return objfile_type (cu->objfile)->builtin_void;
c906108c 18960 }
348e048f 18961
673bfd45 18962 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18963}
18964
b4ba55a1
JB
18965/* True iff CU's producer generates GNAT Ada auxiliary information
18966 that allows to find parallel types through that information instead
18967 of having to do expensive parallel lookups by type name. */
18968
18969static int
18970need_gnat_info (struct dwarf2_cu *cu)
18971{
18972 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18973 of GNAT produces this auxiliary information, without any indication
18974 that it is produced. Part of enhancing the FSF version of GNAT
18975 to produce that information will be to put in place an indicator
18976 that we can use in order to determine whether the descriptive type
18977 info is available or not. One suggestion that has been made is
18978 to use a new attribute, attached to the CU die. For now, assume
18979 that the descriptive type info is not available. */
18980 return 0;
18981}
18982
b4ba55a1
JB
18983/* Return the auxiliary type of the die in question using its
18984 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18985 attribute is not present. */
18986
18987static struct type *
18988die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18989{
b4ba55a1 18990 struct attribute *type_attr;
b4ba55a1
JB
18991
18992 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18993 if (!type_attr)
18994 return NULL;
18995
673bfd45 18996 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18997}
18998
18999/* If DIE has a descriptive_type attribute, then set the TYPE's
19000 descriptive type accordingly. */
19001
19002static void
19003set_descriptive_type (struct type *type, struct die_info *die,
19004 struct dwarf2_cu *cu)
19005{
19006 struct type *descriptive_type = die_descriptive_type (die, cu);
19007
19008 if (descriptive_type)
19009 {
19010 ALLOCATE_GNAT_AUX_TYPE (type);
19011 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19012 }
19013}
19014
c906108c
SS
19015/* Return the containing type of the die in question using its
19016 DW_AT_containing_type attribute. */
19017
19018static struct type *
e7c27a73 19019die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19020{
c906108c 19021 struct attribute *type_attr;
c906108c 19022
e142c38c 19023 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19024 if (!type_attr)
19025 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19026 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19027
673bfd45 19028 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19029}
19030
ac9ec31b
DE
19031/* Return an error marker type to use for the ill formed type in DIE/CU. */
19032
19033static struct type *
19034build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19035{
19036 struct objfile *objfile = dwarf2_per_objfile->objfile;
19037 char *message, *saved;
19038
19039 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19040 objfile_name (objfile),
ac9ec31b
DE
19041 cu->header.offset.sect_off,
19042 die->offset.sect_off);
224c3ddb
SM
19043 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19044 message, strlen (message));
ac9ec31b
DE
19045 xfree (message);
19046
19f392bc 19047 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19048}
19049
673bfd45 19050/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19051 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19052 DW_AT_containing_type.
673bfd45
DE
19053 If there is no type substitute an error marker. */
19054
c906108c 19055static struct type *
ff39bb5e 19056lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19057 struct dwarf2_cu *cu)
c906108c 19058{
bb5ed363 19059 struct objfile *objfile = cu->objfile;
f792889a
DJ
19060 struct type *this_type;
19061
ac9ec31b
DE
19062 gdb_assert (attr->name == DW_AT_type
19063 || attr->name == DW_AT_GNAT_descriptive_type
19064 || attr->name == DW_AT_containing_type);
19065
673bfd45
DE
19066 /* First see if we have it cached. */
19067
36586728
TT
19068 if (attr->form == DW_FORM_GNU_ref_alt)
19069 {
19070 struct dwarf2_per_cu_data *per_cu;
19071 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19072
19073 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19074 this_type = get_die_type_at_offset (offset, per_cu);
19075 }
7771576e 19076 else if (attr_form_is_ref (attr))
673bfd45 19077 {
b64f50a1 19078 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19079
19080 this_type = get_die_type_at_offset (offset, cu->per_cu);
19081 }
55f1336d 19082 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19083 {
ac9ec31b 19084 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19085
ac9ec31b 19086 return get_signatured_type (die, signature, cu);
673bfd45
DE
19087 }
19088 else
19089 {
ac9ec31b
DE
19090 complaint (&symfile_complaints,
19091 _("Dwarf Error: Bad type attribute %s in DIE"
19092 " at 0x%x [in module %s]"),
19093 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19094 objfile_name (objfile));
ac9ec31b 19095 return build_error_marker_type (cu, die);
673bfd45
DE
19096 }
19097
19098 /* If not cached we need to read it in. */
19099
19100 if (this_type == NULL)
19101 {
ac9ec31b 19102 struct die_info *type_die = NULL;
673bfd45
DE
19103 struct dwarf2_cu *type_cu = cu;
19104
7771576e 19105 if (attr_form_is_ref (attr))
ac9ec31b
DE
19106 type_die = follow_die_ref (die, attr, &type_cu);
19107 if (type_die == NULL)
19108 return build_error_marker_type (cu, die);
19109 /* If we find the type now, it's probably because the type came
3019eac3
DE
19110 from an inter-CU reference and the type's CU got expanded before
19111 ours. */
ac9ec31b 19112 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19113 }
19114
19115 /* If we still don't have a type use an error marker. */
19116
19117 if (this_type == NULL)
ac9ec31b 19118 return build_error_marker_type (cu, die);
673bfd45 19119
f792889a 19120 return this_type;
c906108c
SS
19121}
19122
673bfd45
DE
19123/* Return the type in DIE, CU.
19124 Returns NULL for invalid types.
19125
02142a6c 19126 This first does a lookup in die_type_hash,
673bfd45
DE
19127 and only reads the die in if necessary.
19128
19129 NOTE: This can be called when reading in partial or full symbols. */
19130
f792889a 19131static struct type *
e7c27a73 19132read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19133{
f792889a
DJ
19134 struct type *this_type;
19135
19136 this_type = get_die_type (die, cu);
19137 if (this_type)
19138 return this_type;
19139
673bfd45
DE
19140 return read_type_die_1 (die, cu);
19141}
19142
19143/* Read the type in DIE, CU.
19144 Returns NULL for invalid types. */
19145
19146static struct type *
19147read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19148{
19149 struct type *this_type = NULL;
19150
c906108c
SS
19151 switch (die->tag)
19152 {
19153 case DW_TAG_class_type:
680b30c7 19154 case DW_TAG_interface_type:
c906108c
SS
19155 case DW_TAG_structure_type:
19156 case DW_TAG_union_type:
f792889a 19157 this_type = read_structure_type (die, cu);
c906108c
SS
19158 break;
19159 case DW_TAG_enumeration_type:
f792889a 19160 this_type = read_enumeration_type (die, cu);
c906108c
SS
19161 break;
19162 case DW_TAG_subprogram:
19163 case DW_TAG_subroutine_type:
edb3359d 19164 case DW_TAG_inlined_subroutine:
f792889a 19165 this_type = read_subroutine_type (die, cu);
c906108c
SS
19166 break;
19167 case DW_TAG_array_type:
f792889a 19168 this_type = read_array_type (die, cu);
c906108c 19169 break;
72019c9c 19170 case DW_TAG_set_type:
f792889a 19171 this_type = read_set_type (die, cu);
72019c9c 19172 break;
c906108c 19173 case DW_TAG_pointer_type:
f792889a 19174 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19175 break;
19176 case DW_TAG_ptr_to_member_type:
f792889a 19177 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19178 break;
19179 case DW_TAG_reference_type:
f792889a 19180 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19181 break;
19182 case DW_TAG_const_type:
f792889a 19183 this_type = read_tag_const_type (die, cu);
c906108c
SS
19184 break;
19185 case DW_TAG_volatile_type:
f792889a 19186 this_type = read_tag_volatile_type (die, cu);
c906108c 19187 break;
06d66ee9
TT
19188 case DW_TAG_restrict_type:
19189 this_type = read_tag_restrict_type (die, cu);
19190 break;
c906108c 19191 case DW_TAG_string_type:
f792889a 19192 this_type = read_tag_string_type (die, cu);
c906108c
SS
19193 break;
19194 case DW_TAG_typedef:
f792889a 19195 this_type = read_typedef (die, cu);
c906108c 19196 break;
a02abb62 19197 case DW_TAG_subrange_type:
f792889a 19198 this_type = read_subrange_type (die, cu);
a02abb62 19199 break;
c906108c 19200 case DW_TAG_base_type:
f792889a 19201 this_type = read_base_type (die, cu);
c906108c 19202 break;
81a17f79 19203 case DW_TAG_unspecified_type:
f792889a 19204 this_type = read_unspecified_type (die, cu);
81a17f79 19205 break;
0114d602
DJ
19206 case DW_TAG_namespace:
19207 this_type = read_namespace_type (die, cu);
19208 break;
f55ee35c
JK
19209 case DW_TAG_module:
19210 this_type = read_module_type (die, cu);
19211 break;
a2c2acaf
MW
19212 case DW_TAG_atomic_type:
19213 this_type = read_tag_atomic_type (die, cu);
19214 break;
c906108c 19215 default:
3e43a32a
MS
19216 complaint (&symfile_complaints,
19217 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19218 dwarf_tag_name (die->tag));
c906108c
SS
19219 break;
19220 }
63d06c5c 19221
f792889a 19222 return this_type;
63d06c5c
DC
19223}
19224
abc72ce4
DE
19225/* See if we can figure out if the class lives in a namespace. We do
19226 this by looking for a member function; its demangled name will
19227 contain namespace info, if there is any.
19228 Return the computed name or NULL.
19229 Space for the result is allocated on the objfile's obstack.
19230 This is the full-die version of guess_partial_die_structure_name.
19231 In this case we know DIE has no useful parent. */
19232
19233static char *
19234guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19235{
19236 struct die_info *spec_die;
19237 struct dwarf2_cu *spec_cu;
19238 struct die_info *child;
19239
19240 spec_cu = cu;
19241 spec_die = die_specification (die, &spec_cu);
19242 if (spec_die != NULL)
19243 {
19244 die = spec_die;
19245 cu = spec_cu;
19246 }
19247
19248 for (child = die->child;
19249 child != NULL;
19250 child = child->sibling)
19251 {
19252 if (child->tag == DW_TAG_subprogram)
19253 {
7d45c7c3 19254 const char *linkage_name;
abc72ce4 19255
7d45c7c3
KB
19256 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19257 if (linkage_name == NULL)
19258 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19259 cu);
19260 if (linkage_name != NULL)
abc72ce4
DE
19261 {
19262 char *actual_name
19263 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19264 linkage_name);
abc72ce4
DE
19265 char *name = NULL;
19266
19267 if (actual_name != NULL)
19268 {
15d034d0 19269 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19270
19271 if (die_name != NULL
19272 && strcmp (die_name, actual_name) != 0)
19273 {
19274 /* Strip off the class name from the full name.
19275 We want the prefix. */
19276 int die_name_len = strlen (die_name);
19277 int actual_name_len = strlen (actual_name);
19278
19279 /* Test for '::' as a sanity check. */
19280 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19281 && actual_name[actual_name_len
19282 - die_name_len - 1] == ':')
224c3ddb
SM
19283 name = (char *) obstack_copy0 (
19284 &cu->objfile->per_bfd->storage_obstack,
19285 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19286 }
19287 }
19288 xfree (actual_name);
19289 return name;
19290 }
19291 }
19292 }
19293
19294 return NULL;
19295}
19296
96408a79
SA
19297/* GCC might emit a nameless typedef that has a linkage name. Determine the
19298 prefix part in such case. See
19299 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19300
19301static char *
19302anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19303{
19304 struct attribute *attr;
e6a959d6 19305 const char *base;
96408a79
SA
19306
19307 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19308 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19309 return NULL;
19310
7d45c7c3 19311 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19312 return NULL;
19313
19314 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19315 if (attr == NULL)
19316 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19317 if (attr == NULL || DW_STRING (attr) == NULL)
19318 return NULL;
19319
19320 /* dwarf2_name had to be already called. */
19321 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19322
19323 /* Strip the base name, keep any leading namespaces/classes. */
19324 base = strrchr (DW_STRING (attr), ':');
19325 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19326 return "";
19327
224c3ddb
SM
19328 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19329 DW_STRING (attr),
19330 &base[-1] - DW_STRING (attr));
96408a79
SA
19331}
19332
fdde2d81 19333/* Return the name of the namespace/class that DIE is defined within,
0114d602 19334 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19335
0114d602
DJ
19336 For example, if we're within the method foo() in the following
19337 code:
19338
19339 namespace N {
19340 class C {
19341 void foo () {
19342 }
19343 };
19344 }
19345
19346 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19347
0d5cff50 19348static const char *
e142c38c 19349determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19350{
0114d602
DJ
19351 struct die_info *parent, *spec_die;
19352 struct dwarf2_cu *spec_cu;
19353 struct type *parent_type;
96408a79 19354 char *retval;
63d06c5c 19355
f55ee35c 19356 if (cu->language != language_cplus && cu->language != language_java
c44af4eb
TT
19357 && cu->language != language_fortran && cu->language != language_d
19358 && cu->language != language_rust)
0114d602
DJ
19359 return "";
19360
96408a79
SA
19361 retval = anonymous_struct_prefix (die, cu);
19362 if (retval)
19363 return retval;
19364
0114d602
DJ
19365 /* We have to be careful in the presence of DW_AT_specification.
19366 For example, with GCC 3.4, given the code
19367
19368 namespace N {
19369 void foo() {
19370 // Definition of N::foo.
19371 }
19372 }
19373
19374 then we'll have a tree of DIEs like this:
19375
19376 1: DW_TAG_compile_unit
19377 2: DW_TAG_namespace // N
19378 3: DW_TAG_subprogram // declaration of N::foo
19379 4: DW_TAG_subprogram // definition of N::foo
19380 DW_AT_specification // refers to die #3
19381
19382 Thus, when processing die #4, we have to pretend that we're in
19383 the context of its DW_AT_specification, namely the contex of die
19384 #3. */
19385 spec_cu = cu;
19386 spec_die = die_specification (die, &spec_cu);
19387 if (spec_die == NULL)
19388 parent = die->parent;
19389 else
63d06c5c 19390 {
0114d602
DJ
19391 parent = spec_die->parent;
19392 cu = spec_cu;
63d06c5c 19393 }
0114d602
DJ
19394
19395 if (parent == NULL)
19396 return "";
98bfdba5
PA
19397 else if (parent->building_fullname)
19398 {
19399 const char *name;
19400 const char *parent_name;
19401
19402 /* It has been seen on RealView 2.2 built binaries,
19403 DW_TAG_template_type_param types actually _defined_ as
19404 children of the parent class:
19405
19406 enum E {};
19407 template class <class Enum> Class{};
19408 Class<enum E> class_e;
19409
19410 1: DW_TAG_class_type (Class)
19411 2: DW_TAG_enumeration_type (E)
19412 3: DW_TAG_enumerator (enum1:0)
19413 3: DW_TAG_enumerator (enum2:1)
19414 ...
19415 2: DW_TAG_template_type_param
19416 DW_AT_type DW_FORM_ref_udata (E)
19417
19418 Besides being broken debug info, it can put GDB into an
19419 infinite loop. Consider:
19420
19421 When we're building the full name for Class<E>, we'll start
19422 at Class, and go look over its template type parameters,
19423 finding E. We'll then try to build the full name of E, and
19424 reach here. We're now trying to build the full name of E,
19425 and look over the parent DIE for containing scope. In the
19426 broken case, if we followed the parent DIE of E, we'd again
19427 find Class, and once again go look at its template type
19428 arguments, etc., etc. Simply don't consider such parent die
19429 as source-level parent of this die (it can't be, the language
19430 doesn't allow it), and break the loop here. */
19431 name = dwarf2_name (die, cu);
19432 parent_name = dwarf2_name (parent, cu);
19433 complaint (&symfile_complaints,
19434 _("template param type '%s' defined within parent '%s'"),
19435 name ? name : "<unknown>",
19436 parent_name ? parent_name : "<unknown>");
19437 return "";
19438 }
63d06c5c 19439 else
0114d602
DJ
19440 switch (parent->tag)
19441 {
63d06c5c 19442 case DW_TAG_namespace:
0114d602 19443 parent_type = read_type_die (parent, cu);
acebe513
UW
19444 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19445 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19446 Work around this problem here. */
19447 if (cu->language == language_cplus
19448 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19449 return "";
0114d602
DJ
19450 /* We give a name to even anonymous namespaces. */
19451 return TYPE_TAG_NAME (parent_type);
63d06c5c 19452 case DW_TAG_class_type:
680b30c7 19453 case DW_TAG_interface_type:
63d06c5c 19454 case DW_TAG_structure_type:
0114d602 19455 case DW_TAG_union_type:
f55ee35c 19456 case DW_TAG_module:
0114d602
DJ
19457 parent_type = read_type_die (parent, cu);
19458 if (TYPE_TAG_NAME (parent_type) != NULL)
19459 return TYPE_TAG_NAME (parent_type);
19460 else
19461 /* An anonymous structure is only allowed non-static data
19462 members; no typedefs, no member functions, et cetera.
19463 So it does not need a prefix. */
19464 return "";
abc72ce4 19465 case DW_TAG_compile_unit:
95554aad 19466 case DW_TAG_partial_unit:
abc72ce4
DE
19467 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19468 if (cu->language == language_cplus
8b70b953 19469 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19470 && die->child != NULL
19471 && (die->tag == DW_TAG_class_type
19472 || die->tag == DW_TAG_structure_type
19473 || die->tag == DW_TAG_union_type))
19474 {
19475 char *name = guess_full_die_structure_name (die, cu);
19476 if (name != NULL)
19477 return name;
19478 }
19479 return "";
3d567982
TT
19480 case DW_TAG_enumeration_type:
19481 parent_type = read_type_die (parent, cu);
19482 if (TYPE_DECLARED_CLASS (parent_type))
19483 {
19484 if (TYPE_TAG_NAME (parent_type) != NULL)
19485 return TYPE_TAG_NAME (parent_type);
19486 return "";
19487 }
19488 /* Fall through. */
63d06c5c 19489 default:
8176b9b8 19490 return determine_prefix (parent, cu);
63d06c5c 19491 }
63d06c5c
DC
19492}
19493
3e43a32a
MS
19494/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19495 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19496 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19497 an obconcat, otherwise allocate storage for the result. The CU argument is
19498 used to determine the language and hence, the appropriate separator. */
987504bb 19499
f55ee35c 19500#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19501
19502static char *
f55ee35c
JK
19503typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19504 int physname, struct dwarf2_cu *cu)
63d06c5c 19505{
f55ee35c 19506 const char *lead = "";
5c315b68 19507 const char *sep;
63d06c5c 19508
3e43a32a
MS
19509 if (suffix == NULL || suffix[0] == '\0'
19510 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19511 sep = "";
19512 else if (cu->language == language_java)
19513 sep = ".";
45280282
IB
19514 else if (cu->language == language_d)
19515 {
19516 /* For D, the 'main' function could be defined in any module, but it
19517 should never be prefixed. */
19518 if (strcmp (suffix, "D main") == 0)
19519 {
19520 prefix = "";
19521 sep = "";
19522 }
19523 else
19524 sep = ".";
19525 }
f55ee35c
JK
19526 else if (cu->language == language_fortran && physname)
19527 {
19528 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19529 DW_AT_MIPS_linkage_name is preferred and used instead. */
19530
19531 lead = "__";
19532 sep = "_MOD_";
19533 }
987504bb
JJ
19534 else
19535 sep = "::";
63d06c5c 19536
6dd47d34
DE
19537 if (prefix == NULL)
19538 prefix = "";
19539 if (suffix == NULL)
19540 suffix = "";
19541
987504bb
JJ
19542 if (obs == NULL)
19543 {
3e43a32a 19544 char *retval
224c3ddb
SM
19545 = ((char *)
19546 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19547
f55ee35c
JK
19548 strcpy (retval, lead);
19549 strcat (retval, prefix);
6dd47d34
DE
19550 strcat (retval, sep);
19551 strcat (retval, suffix);
63d06c5c
DC
19552 return retval;
19553 }
987504bb
JJ
19554 else
19555 {
19556 /* We have an obstack. */
f55ee35c 19557 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19558 }
63d06c5c
DC
19559}
19560
c906108c
SS
19561/* Return sibling of die, NULL if no sibling. */
19562
f9aca02d 19563static struct die_info *
fba45db2 19564sibling_die (struct die_info *die)
c906108c 19565{
639d11d3 19566 return die->sibling;
c906108c
SS
19567}
19568
71c25dea
TT
19569/* Get name of a die, return NULL if not found. */
19570
15d034d0
TT
19571static const char *
19572dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19573 struct obstack *obstack)
19574{
19575 if (name && cu->language == language_cplus)
19576 {
19577 char *canon_name = cp_canonicalize_string (name);
19578
19579 if (canon_name != NULL)
19580 {
19581 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19582 name = (const char *) obstack_copy0 (obstack, canon_name,
19583 strlen (canon_name));
71c25dea
TT
19584 xfree (canon_name);
19585 }
19586 }
19587
19588 return name;
c906108c
SS
19589}
19590
96553a0c
DE
19591/* Get name of a die, return NULL if not found.
19592 Anonymous namespaces are converted to their magic string. */
9219021c 19593
15d034d0 19594static const char *
e142c38c 19595dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19596{
19597 struct attribute *attr;
19598
e142c38c 19599 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19600 if ((!attr || !DW_STRING (attr))
96553a0c 19601 && die->tag != DW_TAG_namespace
53832f31
TT
19602 && die->tag != DW_TAG_class_type
19603 && die->tag != DW_TAG_interface_type
19604 && die->tag != DW_TAG_structure_type
19605 && die->tag != DW_TAG_union_type)
71c25dea
TT
19606 return NULL;
19607
19608 switch (die->tag)
19609 {
19610 case DW_TAG_compile_unit:
95554aad 19611 case DW_TAG_partial_unit:
71c25dea
TT
19612 /* Compilation units have a DW_AT_name that is a filename, not
19613 a source language identifier. */
19614 case DW_TAG_enumeration_type:
19615 case DW_TAG_enumerator:
19616 /* These tags always have simple identifiers already; no need
19617 to canonicalize them. */
19618 return DW_STRING (attr);
907af001 19619
96553a0c
DE
19620 case DW_TAG_namespace:
19621 if (attr != NULL && DW_STRING (attr) != NULL)
19622 return DW_STRING (attr);
19623 return CP_ANONYMOUS_NAMESPACE_STR;
19624
418835cc
KS
19625 case DW_TAG_subprogram:
19626 /* Java constructors will all be named "<init>", so return
19627 the class name when we see this special case. */
19628 if (cu->language == language_java
19629 && DW_STRING (attr) != NULL
19630 && strcmp (DW_STRING (attr), "<init>") == 0)
19631 {
19632 struct dwarf2_cu *spec_cu = cu;
19633 struct die_info *spec_die;
19634
19635 /* GCJ will output '<init>' for Java constructor names.
19636 For this special case, return the name of the parent class. */
19637
cdc07690 19638 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19639 If so, use the name of the specified DIE. */
19640 spec_die = die_specification (die, &spec_cu);
19641 if (spec_die != NULL)
19642 return dwarf2_name (spec_die, spec_cu);
19643
19644 do
19645 {
19646 die = die->parent;
19647 if (die->tag == DW_TAG_class_type)
19648 return dwarf2_name (die, cu);
19649 }
95554aad
TT
19650 while (die->tag != DW_TAG_compile_unit
19651 && die->tag != DW_TAG_partial_unit);
418835cc 19652 }
907af001
UW
19653 break;
19654
19655 case DW_TAG_class_type:
19656 case DW_TAG_interface_type:
19657 case DW_TAG_structure_type:
19658 case DW_TAG_union_type:
19659 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19660 structures or unions. These were of the form "._%d" in GCC 4.1,
19661 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19662 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19663 if (attr && DW_STRING (attr)
61012eef
GB
19664 && (startswith (DW_STRING (attr), "._")
19665 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19666 return NULL;
53832f31
TT
19667
19668 /* GCC might emit a nameless typedef that has a linkage name. See
19669 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19670 if (!attr || DW_STRING (attr) == NULL)
19671 {
df5c6c50 19672 char *demangled = NULL;
53832f31
TT
19673
19674 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19675 if (attr == NULL)
19676 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19677
19678 if (attr == NULL || DW_STRING (attr) == NULL)
19679 return NULL;
19680
df5c6c50
JK
19681 /* Avoid demangling DW_STRING (attr) the second time on a second
19682 call for the same DIE. */
19683 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19684 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19685
19686 if (demangled)
19687 {
e6a959d6 19688 const char *base;
96408a79 19689
53832f31 19690 /* FIXME: we already did this for the partial symbol... */
34a68019 19691 DW_STRING (attr)
224c3ddb
SM
19692 = ((const char *)
19693 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19694 demangled, strlen (demangled)));
53832f31
TT
19695 DW_STRING_IS_CANONICAL (attr) = 1;
19696 xfree (demangled);
96408a79
SA
19697
19698 /* Strip any leading namespaces/classes, keep only the base name.
19699 DW_AT_name for named DIEs does not contain the prefixes. */
19700 base = strrchr (DW_STRING (attr), ':');
19701 if (base && base > DW_STRING (attr) && base[-1] == ':')
19702 return &base[1];
19703 else
19704 return DW_STRING (attr);
53832f31
TT
19705 }
19706 }
907af001
UW
19707 break;
19708
71c25dea 19709 default:
907af001
UW
19710 break;
19711 }
19712
19713 if (!DW_STRING_IS_CANONICAL (attr))
19714 {
19715 DW_STRING (attr)
19716 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19717 &cu->objfile->per_bfd->storage_obstack);
907af001 19718 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19719 }
907af001 19720 return DW_STRING (attr);
9219021c
DC
19721}
19722
19723/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19724 is none. *EXT_CU is the CU containing DIE on input, and the CU
19725 containing the return value on output. */
9219021c
DC
19726
19727static struct die_info *
f2f0e013 19728dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19729{
19730 struct attribute *attr;
9219021c 19731
f2f0e013 19732 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19733 if (attr == NULL)
19734 return NULL;
19735
f2f0e013 19736 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19737}
19738
c906108c
SS
19739/* Convert a DIE tag into its string name. */
19740
f39c6ffd 19741static const char *
aa1ee363 19742dwarf_tag_name (unsigned tag)
c906108c 19743{
f39c6ffd
TT
19744 const char *name = get_DW_TAG_name (tag);
19745
19746 if (name == NULL)
19747 return "DW_TAG_<unknown>";
19748
19749 return name;
c906108c
SS
19750}
19751
19752/* Convert a DWARF attribute code into its string name. */
19753
f39c6ffd 19754static const char *
aa1ee363 19755dwarf_attr_name (unsigned attr)
c906108c 19756{
f39c6ffd
TT
19757 const char *name;
19758
c764a876 19759#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19760 if (attr == DW_AT_MIPS_fde)
19761 return "DW_AT_MIPS_fde";
19762#else
19763 if (attr == DW_AT_HP_block_index)
19764 return "DW_AT_HP_block_index";
c764a876 19765#endif
f39c6ffd
TT
19766
19767 name = get_DW_AT_name (attr);
19768
19769 if (name == NULL)
19770 return "DW_AT_<unknown>";
19771
19772 return name;
c906108c
SS
19773}
19774
19775/* Convert a DWARF value form code into its string name. */
19776
f39c6ffd 19777static const char *
aa1ee363 19778dwarf_form_name (unsigned form)
c906108c 19779{
f39c6ffd
TT
19780 const char *name = get_DW_FORM_name (form);
19781
19782 if (name == NULL)
19783 return "DW_FORM_<unknown>";
19784
19785 return name;
c906108c
SS
19786}
19787
19788static char *
fba45db2 19789dwarf_bool_name (unsigned mybool)
c906108c
SS
19790{
19791 if (mybool)
19792 return "TRUE";
19793 else
19794 return "FALSE";
19795}
19796
19797/* Convert a DWARF type code into its string name. */
19798
f39c6ffd 19799static const char *
aa1ee363 19800dwarf_type_encoding_name (unsigned enc)
c906108c 19801{
f39c6ffd 19802 const char *name = get_DW_ATE_name (enc);
c906108c 19803
f39c6ffd
TT
19804 if (name == NULL)
19805 return "DW_ATE_<unknown>";
c906108c 19806
f39c6ffd 19807 return name;
c906108c 19808}
c906108c 19809
f9aca02d 19810static void
d97bc12b 19811dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19812{
19813 unsigned int i;
19814
d97bc12b
DE
19815 print_spaces (indent, f);
19816 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19817 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19818
19819 if (die->parent != NULL)
19820 {
19821 print_spaces (indent, f);
19822 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19823 die->parent->offset.sect_off);
d97bc12b
DE
19824 }
19825
19826 print_spaces (indent, f);
19827 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19828 dwarf_bool_name (die->child != NULL));
c906108c 19829
d97bc12b
DE
19830 print_spaces (indent, f);
19831 fprintf_unfiltered (f, " attributes:\n");
19832
c906108c
SS
19833 for (i = 0; i < die->num_attrs; ++i)
19834 {
d97bc12b
DE
19835 print_spaces (indent, f);
19836 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19837 dwarf_attr_name (die->attrs[i].name),
19838 dwarf_form_name (die->attrs[i].form));
d97bc12b 19839
c906108c
SS
19840 switch (die->attrs[i].form)
19841 {
c906108c 19842 case DW_FORM_addr:
3019eac3 19843 case DW_FORM_GNU_addr_index:
d97bc12b 19844 fprintf_unfiltered (f, "address: ");
5af949e3 19845 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19846 break;
19847 case DW_FORM_block2:
19848 case DW_FORM_block4:
19849 case DW_FORM_block:
19850 case DW_FORM_block1:
56eb65bd
SP
19851 fprintf_unfiltered (f, "block: size %s",
19852 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19853 break;
2dc7f7b3 19854 case DW_FORM_exprloc:
56eb65bd
SP
19855 fprintf_unfiltered (f, "expression: size %s",
19856 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19857 break;
4568ecf9
DE
19858 case DW_FORM_ref_addr:
19859 fprintf_unfiltered (f, "ref address: ");
19860 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19861 break;
36586728
TT
19862 case DW_FORM_GNU_ref_alt:
19863 fprintf_unfiltered (f, "alt ref address: ");
19864 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19865 break;
10b3939b
DJ
19866 case DW_FORM_ref1:
19867 case DW_FORM_ref2:
19868 case DW_FORM_ref4:
4568ecf9
DE
19869 case DW_FORM_ref8:
19870 case DW_FORM_ref_udata:
d97bc12b 19871 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19872 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19873 break;
c906108c
SS
19874 case DW_FORM_data1:
19875 case DW_FORM_data2:
19876 case DW_FORM_data4:
ce5d95e1 19877 case DW_FORM_data8:
c906108c
SS
19878 case DW_FORM_udata:
19879 case DW_FORM_sdata:
43bbcdc2
PH
19880 fprintf_unfiltered (f, "constant: %s",
19881 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19882 break;
2dc7f7b3
TT
19883 case DW_FORM_sec_offset:
19884 fprintf_unfiltered (f, "section offset: %s",
19885 pulongest (DW_UNSND (&die->attrs[i])));
19886 break;
55f1336d 19887 case DW_FORM_ref_sig8:
ac9ec31b
DE
19888 fprintf_unfiltered (f, "signature: %s",
19889 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19890 break;
c906108c 19891 case DW_FORM_string:
4bdf3d34 19892 case DW_FORM_strp:
3019eac3 19893 case DW_FORM_GNU_str_index:
36586728 19894 case DW_FORM_GNU_strp_alt:
8285870a 19895 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19896 DW_STRING (&die->attrs[i])
8285870a
JK
19897 ? DW_STRING (&die->attrs[i]) : "",
19898 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19899 break;
19900 case DW_FORM_flag:
19901 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19902 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19903 else
d97bc12b 19904 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19905 break;
2dc7f7b3
TT
19906 case DW_FORM_flag_present:
19907 fprintf_unfiltered (f, "flag: TRUE");
19908 break;
a8329558 19909 case DW_FORM_indirect:
0963b4bd
MS
19910 /* The reader will have reduced the indirect form to
19911 the "base form" so this form should not occur. */
3e43a32a
MS
19912 fprintf_unfiltered (f,
19913 "unexpected attribute form: DW_FORM_indirect");
a8329558 19914 break;
c906108c 19915 default:
d97bc12b 19916 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19917 die->attrs[i].form);
d97bc12b 19918 break;
c906108c 19919 }
d97bc12b 19920 fprintf_unfiltered (f, "\n");
c906108c
SS
19921 }
19922}
19923
f9aca02d 19924static void
d97bc12b 19925dump_die_for_error (struct die_info *die)
c906108c 19926{
d97bc12b
DE
19927 dump_die_shallow (gdb_stderr, 0, die);
19928}
19929
19930static void
19931dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19932{
19933 int indent = level * 4;
19934
19935 gdb_assert (die != NULL);
19936
19937 if (level >= max_level)
19938 return;
19939
19940 dump_die_shallow (f, indent, die);
19941
19942 if (die->child != NULL)
c906108c 19943 {
d97bc12b
DE
19944 print_spaces (indent, f);
19945 fprintf_unfiltered (f, " Children:");
19946 if (level + 1 < max_level)
19947 {
19948 fprintf_unfiltered (f, "\n");
19949 dump_die_1 (f, level + 1, max_level, die->child);
19950 }
19951 else
19952 {
3e43a32a
MS
19953 fprintf_unfiltered (f,
19954 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19955 }
19956 }
19957
19958 if (die->sibling != NULL && level > 0)
19959 {
19960 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19961 }
19962}
19963
d97bc12b
DE
19964/* This is called from the pdie macro in gdbinit.in.
19965 It's not static so gcc will keep a copy callable from gdb. */
19966
19967void
19968dump_die (struct die_info *die, int max_level)
19969{
19970 dump_die_1 (gdb_stdlog, 0, max_level, die);
19971}
19972
f9aca02d 19973static void
51545339 19974store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19975{
51545339 19976 void **slot;
c906108c 19977
b64f50a1
JK
19978 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19979 INSERT);
51545339
DJ
19980
19981 *slot = die;
c906108c
SS
19982}
19983
b64f50a1
JK
19984/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19985 required kind. */
19986
19987static sect_offset
ff39bb5e 19988dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19989{
4568ecf9 19990 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19991
7771576e 19992 if (attr_form_is_ref (attr))
b64f50a1 19993 return retval;
93311388 19994
b64f50a1 19995 retval.sect_off = 0;
93311388
DE
19996 complaint (&symfile_complaints,
19997 _("unsupported die ref attribute form: '%s'"),
19998 dwarf_form_name (attr->form));
b64f50a1 19999 return retval;
c906108c
SS
20000}
20001
43bbcdc2
PH
20002/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20003 * the value held by the attribute is not constant. */
a02abb62 20004
43bbcdc2 20005static LONGEST
ff39bb5e 20006dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
20007{
20008 if (attr->form == DW_FORM_sdata)
20009 return DW_SND (attr);
20010 else if (attr->form == DW_FORM_udata
20011 || attr->form == DW_FORM_data1
20012 || attr->form == DW_FORM_data2
20013 || attr->form == DW_FORM_data4
20014 || attr->form == DW_FORM_data8)
20015 return DW_UNSND (attr);
20016 else
20017 {
3e43a32a
MS
20018 complaint (&symfile_complaints,
20019 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20020 dwarf_form_name (attr->form));
20021 return default_value;
20022 }
20023}
20024
348e048f
DE
20025/* Follow reference or signature attribute ATTR of SRC_DIE.
20026 On entry *REF_CU is the CU of SRC_DIE.
20027 On exit *REF_CU is the CU of the result. */
20028
20029static struct die_info *
ff39bb5e 20030follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20031 struct dwarf2_cu **ref_cu)
20032{
20033 struct die_info *die;
20034
7771576e 20035 if (attr_form_is_ref (attr))
348e048f 20036 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20037 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20038 die = follow_die_sig (src_die, attr, ref_cu);
20039 else
20040 {
20041 dump_die_for_error (src_die);
20042 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20043 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20044 }
20045
20046 return die;
03dd20cc
DJ
20047}
20048
5c631832 20049/* Follow reference OFFSET.
673bfd45
DE
20050 On entry *REF_CU is the CU of the source die referencing OFFSET.
20051 On exit *REF_CU is the CU of the result.
20052 Returns NULL if OFFSET is invalid. */
f504f079 20053
f9aca02d 20054static struct die_info *
36586728
TT
20055follow_die_offset (sect_offset offset, int offset_in_dwz,
20056 struct dwarf2_cu **ref_cu)
c906108c 20057{
10b3939b 20058 struct die_info temp_die;
f2f0e013 20059 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20060
348e048f
DE
20061 gdb_assert (cu->per_cu != NULL);
20062
98bfdba5
PA
20063 target_cu = cu;
20064
3019eac3 20065 if (cu->per_cu->is_debug_types)
348e048f
DE
20066 {
20067 /* .debug_types CUs cannot reference anything outside their CU.
20068 If they need to, they have to reference a signatured type via
55f1336d 20069 DW_FORM_ref_sig8. */
348e048f 20070 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20071 return NULL;
348e048f 20072 }
36586728
TT
20073 else if (offset_in_dwz != cu->per_cu->is_dwz
20074 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20075 {
20076 struct dwarf2_per_cu_data *per_cu;
9a619af0 20077
36586728
TT
20078 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20079 cu->objfile);
03dd20cc
DJ
20080
20081 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20082 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20083 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20084
10b3939b
DJ
20085 target_cu = per_cu->cu;
20086 }
98bfdba5
PA
20087 else if (cu->dies == NULL)
20088 {
20089 /* We're loading full DIEs during partial symbol reading. */
20090 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20091 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20092 }
c906108c 20093
f2f0e013 20094 *ref_cu = target_cu;
51545339 20095 temp_die.offset = offset;
9a3c8263
SM
20096 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20097 &temp_die, offset.sect_off);
5c631832 20098}
10b3939b 20099
5c631832
JK
20100/* Follow reference attribute ATTR of SRC_DIE.
20101 On entry *REF_CU is the CU of SRC_DIE.
20102 On exit *REF_CU is the CU of the result. */
20103
20104static struct die_info *
ff39bb5e 20105follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20106 struct dwarf2_cu **ref_cu)
20107{
b64f50a1 20108 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20109 struct dwarf2_cu *cu = *ref_cu;
20110 struct die_info *die;
20111
36586728
TT
20112 die = follow_die_offset (offset,
20113 (attr->form == DW_FORM_GNU_ref_alt
20114 || cu->per_cu->is_dwz),
20115 ref_cu);
5c631832
JK
20116 if (!die)
20117 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20118 "at 0x%x [in module %s]"),
4262abfb
JK
20119 offset.sect_off, src_die->offset.sect_off,
20120 objfile_name (cu->objfile));
348e048f 20121
5c631832
JK
20122 return die;
20123}
20124
d83e736b
JK
20125/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20126 Returned value is intended for DW_OP_call*. Returned
20127 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20128
20129struct dwarf2_locexpr_baton
8b9737bf
TT
20130dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20131 struct dwarf2_per_cu_data *per_cu,
20132 CORE_ADDR (*get_frame_pc) (void *baton),
20133 void *baton)
5c631832 20134{
918dd910 20135 struct dwarf2_cu *cu;
5c631832
JK
20136 struct die_info *die;
20137 struct attribute *attr;
20138 struct dwarf2_locexpr_baton retval;
20139
8cf6f0b1
TT
20140 dw2_setup (per_cu->objfile);
20141
918dd910
JK
20142 if (per_cu->cu == NULL)
20143 load_cu (per_cu);
20144 cu = per_cu->cu;
cc12ce38
DE
20145 if (cu == NULL)
20146 {
20147 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20148 Instead just throw an error, not much else we can do. */
20149 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20150 offset.sect_off, objfile_name (per_cu->objfile));
20151 }
918dd910 20152
36586728 20153 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20154 if (!die)
20155 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20156 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20157
20158 attr = dwarf2_attr (die, DW_AT_location, cu);
20159 if (!attr)
20160 {
e103e986
JK
20161 /* DWARF: "If there is no such attribute, then there is no effect.".
20162 DATA is ignored if SIZE is 0. */
5c631832 20163
e103e986 20164 retval.data = NULL;
5c631832
JK
20165 retval.size = 0;
20166 }
8cf6f0b1
TT
20167 else if (attr_form_is_section_offset (attr))
20168 {
20169 struct dwarf2_loclist_baton loclist_baton;
20170 CORE_ADDR pc = (*get_frame_pc) (baton);
20171 size_t size;
20172
20173 fill_in_loclist_baton (cu, &loclist_baton, attr);
20174
20175 retval.data = dwarf2_find_location_expression (&loclist_baton,
20176 &size, pc);
20177 retval.size = size;
20178 }
5c631832
JK
20179 else
20180 {
20181 if (!attr_form_is_block (attr))
20182 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20183 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20184 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20185
20186 retval.data = DW_BLOCK (attr)->data;
20187 retval.size = DW_BLOCK (attr)->size;
20188 }
20189 retval.per_cu = cu->per_cu;
918dd910 20190
918dd910
JK
20191 age_cached_comp_units ();
20192
5c631832 20193 return retval;
348e048f
DE
20194}
20195
8b9737bf
TT
20196/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20197 offset. */
20198
20199struct dwarf2_locexpr_baton
20200dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20201 struct dwarf2_per_cu_data *per_cu,
20202 CORE_ADDR (*get_frame_pc) (void *baton),
20203 void *baton)
20204{
20205 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20206
20207 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20208}
20209
b6807d98
TT
20210/* Write a constant of a given type as target-ordered bytes into
20211 OBSTACK. */
20212
20213static const gdb_byte *
20214write_constant_as_bytes (struct obstack *obstack,
20215 enum bfd_endian byte_order,
20216 struct type *type,
20217 ULONGEST value,
20218 LONGEST *len)
20219{
20220 gdb_byte *result;
20221
20222 *len = TYPE_LENGTH (type);
224c3ddb 20223 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20224 store_unsigned_integer (result, *len, byte_order, value);
20225
20226 return result;
20227}
20228
20229/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20230 pointer to the constant bytes and set LEN to the length of the
20231 data. If memory is needed, allocate it on OBSTACK. If the DIE
20232 does not have a DW_AT_const_value, return NULL. */
20233
20234const gdb_byte *
20235dwarf2_fetch_constant_bytes (sect_offset offset,
20236 struct dwarf2_per_cu_data *per_cu,
20237 struct obstack *obstack,
20238 LONGEST *len)
20239{
20240 struct dwarf2_cu *cu;
20241 struct die_info *die;
20242 struct attribute *attr;
20243 const gdb_byte *result = NULL;
20244 struct type *type;
20245 LONGEST value;
20246 enum bfd_endian byte_order;
20247
20248 dw2_setup (per_cu->objfile);
20249
20250 if (per_cu->cu == NULL)
20251 load_cu (per_cu);
20252 cu = per_cu->cu;
cc12ce38
DE
20253 if (cu == NULL)
20254 {
20255 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20256 Instead just throw an error, not much else we can do. */
20257 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20258 offset.sect_off, objfile_name (per_cu->objfile));
20259 }
b6807d98
TT
20260
20261 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20262 if (!die)
20263 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20264 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20265
20266
20267 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20268 if (attr == NULL)
20269 return NULL;
20270
20271 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20272 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20273
20274 switch (attr->form)
20275 {
20276 case DW_FORM_addr:
20277 case DW_FORM_GNU_addr_index:
20278 {
20279 gdb_byte *tem;
20280
20281 *len = cu->header.addr_size;
224c3ddb 20282 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20283 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20284 result = tem;
20285 }
20286 break;
20287 case DW_FORM_string:
20288 case DW_FORM_strp:
20289 case DW_FORM_GNU_str_index:
20290 case DW_FORM_GNU_strp_alt:
20291 /* DW_STRING is already allocated on the objfile obstack, point
20292 directly to it. */
20293 result = (const gdb_byte *) DW_STRING (attr);
20294 *len = strlen (DW_STRING (attr));
20295 break;
20296 case DW_FORM_block1:
20297 case DW_FORM_block2:
20298 case DW_FORM_block4:
20299 case DW_FORM_block:
20300 case DW_FORM_exprloc:
20301 result = DW_BLOCK (attr)->data;
20302 *len = DW_BLOCK (attr)->size;
20303 break;
20304
20305 /* The DW_AT_const_value attributes are supposed to carry the
20306 symbol's value "represented as it would be on the target
20307 architecture." By the time we get here, it's already been
20308 converted to host endianness, so we just need to sign- or
20309 zero-extend it as appropriate. */
20310 case DW_FORM_data1:
20311 type = die_type (die, cu);
20312 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20313 if (result == NULL)
20314 result = write_constant_as_bytes (obstack, byte_order,
20315 type, value, len);
20316 break;
20317 case DW_FORM_data2:
20318 type = die_type (die, cu);
20319 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20320 if (result == NULL)
20321 result = write_constant_as_bytes (obstack, byte_order,
20322 type, value, len);
20323 break;
20324 case DW_FORM_data4:
20325 type = die_type (die, cu);
20326 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20327 if (result == NULL)
20328 result = write_constant_as_bytes (obstack, byte_order,
20329 type, value, len);
20330 break;
20331 case DW_FORM_data8:
20332 type = die_type (die, cu);
20333 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20334 if (result == NULL)
20335 result = write_constant_as_bytes (obstack, byte_order,
20336 type, value, len);
20337 break;
20338
20339 case DW_FORM_sdata:
20340 type = die_type (die, cu);
20341 result = write_constant_as_bytes (obstack, byte_order,
20342 type, DW_SND (attr), len);
20343 break;
20344
20345 case DW_FORM_udata:
20346 type = die_type (die, cu);
20347 result = write_constant_as_bytes (obstack, byte_order,
20348 type, DW_UNSND (attr), len);
20349 break;
20350
20351 default:
20352 complaint (&symfile_complaints,
20353 _("unsupported const value attribute form: '%s'"),
20354 dwarf_form_name (attr->form));
20355 break;
20356 }
20357
20358 return result;
20359}
20360
8a9b8146
TT
20361/* Return the type of the DIE at DIE_OFFSET in the CU named by
20362 PER_CU. */
20363
20364struct type *
b64f50a1 20365dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20366 struct dwarf2_per_cu_data *per_cu)
20367{
b64f50a1
JK
20368 sect_offset die_offset_sect;
20369
8a9b8146 20370 dw2_setup (per_cu->objfile);
b64f50a1
JK
20371
20372 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20373 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20374}
20375
ac9ec31b 20376/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20377 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20378 On exit *REF_CU is the CU of the result.
20379 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20380
20381static struct die_info *
ac9ec31b
DE
20382follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20383 struct dwarf2_cu **ref_cu)
348e048f 20384{
348e048f 20385 struct die_info temp_die;
348e048f
DE
20386 struct dwarf2_cu *sig_cu;
20387 struct die_info *die;
20388
ac9ec31b
DE
20389 /* While it might be nice to assert sig_type->type == NULL here,
20390 we can get here for DW_AT_imported_declaration where we need
20391 the DIE not the type. */
348e048f
DE
20392
20393 /* If necessary, add it to the queue and load its DIEs. */
20394
95554aad 20395 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20396 read_signatured_type (sig_type);
348e048f 20397
348e048f 20398 sig_cu = sig_type->per_cu.cu;
69d751e3 20399 gdb_assert (sig_cu != NULL);
3019eac3
DE
20400 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20401 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20402 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20403 temp_die.offset.sect_off);
348e048f
DE
20404 if (die)
20405 {
796a7ff8
DE
20406 /* For .gdb_index version 7 keep track of included TUs.
20407 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20408 if (dwarf2_per_objfile->index_table != NULL
20409 && dwarf2_per_objfile->index_table->version <= 7)
20410 {
20411 VEC_safe_push (dwarf2_per_cu_ptr,
20412 (*ref_cu)->per_cu->imported_symtabs,
20413 sig_cu->per_cu);
20414 }
20415
348e048f
DE
20416 *ref_cu = sig_cu;
20417 return die;
20418 }
20419
ac9ec31b
DE
20420 return NULL;
20421}
20422
20423/* Follow signatured type referenced by ATTR in SRC_DIE.
20424 On entry *REF_CU is the CU of SRC_DIE.
20425 On exit *REF_CU is the CU of the result.
20426 The result is the DIE of the type.
20427 If the referenced type cannot be found an error is thrown. */
20428
20429static struct die_info *
ff39bb5e 20430follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20431 struct dwarf2_cu **ref_cu)
20432{
20433 ULONGEST signature = DW_SIGNATURE (attr);
20434 struct signatured_type *sig_type;
20435 struct die_info *die;
20436
20437 gdb_assert (attr->form == DW_FORM_ref_sig8);
20438
a2ce51a0 20439 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20440 /* sig_type will be NULL if the signatured type is missing from
20441 the debug info. */
20442 if (sig_type == NULL)
20443 {
20444 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20445 " from DIE at 0x%x [in module %s]"),
20446 hex_string (signature), src_die->offset.sect_off,
4262abfb 20447 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20448 }
20449
20450 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20451 if (die == NULL)
20452 {
20453 dump_die_for_error (src_die);
20454 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20455 " from DIE at 0x%x [in module %s]"),
20456 hex_string (signature), src_die->offset.sect_off,
4262abfb 20457 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20458 }
20459
20460 return die;
20461}
20462
20463/* Get the type specified by SIGNATURE referenced in DIE/CU,
20464 reading in and processing the type unit if necessary. */
20465
20466static struct type *
20467get_signatured_type (struct die_info *die, ULONGEST signature,
20468 struct dwarf2_cu *cu)
20469{
20470 struct signatured_type *sig_type;
20471 struct dwarf2_cu *type_cu;
20472 struct die_info *type_die;
20473 struct type *type;
20474
a2ce51a0 20475 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20476 /* sig_type will be NULL if the signatured type is missing from
20477 the debug info. */
20478 if (sig_type == NULL)
20479 {
20480 complaint (&symfile_complaints,
20481 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20482 " from DIE at 0x%x [in module %s]"),
20483 hex_string (signature), die->offset.sect_off,
4262abfb 20484 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20485 return build_error_marker_type (cu, die);
20486 }
20487
20488 /* If we already know the type we're done. */
20489 if (sig_type->type != NULL)
20490 return sig_type->type;
20491
20492 type_cu = cu;
20493 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20494 if (type_die != NULL)
20495 {
20496 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20497 is created. This is important, for example, because for c++ classes
20498 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20499 type = read_type_die (type_die, type_cu);
20500 if (type == NULL)
20501 {
20502 complaint (&symfile_complaints,
20503 _("Dwarf Error: Cannot build signatured type %s"
20504 " referenced from DIE at 0x%x [in module %s]"),
20505 hex_string (signature), die->offset.sect_off,
4262abfb 20506 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20507 type = build_error_marker_type (cu, die);
20508 }
20509 }
20510 else
20511 {
20512 complaint (&symfile_complaints,
20513 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20514 " from DIE at 0x%x [in module %s]"),
20515 hex_string (signature), die->offset.sect_off,
4262abfb 20516 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20517 type = build_error_marker_type (cu, die);
20518 }
20519 sig_type->type = type;
20520
20521 return type;
20522}
20523
20524/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20525 reading in and processing the type unit if necessary. */
20526
20527static struct type *
ff39bb5e 20528get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20529 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20530{
20531 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20532 if (attr_form_is_ref (attr))
ac9ec31b
DE
20533 {
20534 struct dwarf2_cu *type_cu = cu;
20535 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20536
20537 return read_type_die (type_die, type_cu);
20538 }
20539 else if (attr->form == DW_FORM_ref_sig8)
20540 {
20541 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20542 }
20543 else
20544 {
20545 complaint (&symfile_complaints,
20546 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20547 " at 0x%x [in module %s]"),
20548 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20549 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20550 return build_error_marker_type (cu, die);
20551 }
348e048f
DE
20552}
20553
e5fe5e75 20554/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20555
20556static void
e5fe5e75 20557load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20558{
52dc124a 20559 struct signatured_type *sig_type;
348e048f 20560
f4dc4d17
DE
20561 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20562 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20563
6721b2ec
DE
20564 /* We have the per_cu, but we need the signatured_type.
20565 Fortunately this is an easy translation. */
20566 gdb_assert (per_cu->is_debug_types);
20567 sig_type = (struct signatured_type *) per_cu;
348e048f 20568
6721b2ec 20569 gdb_assert (per_cu->cu == NULL);
348e048f 20570
52dc124a 20571 read_signatured_type (sig_type);
348e048f 20572
6721b2ec 20573 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20574}
20575
dee91e82
DE
20576/* die_reader_func for read_signatured_type.
20577 This is identical to load_full_comp_unit_reader,
20578 but is kept separate for now. */
348e048f
DE
20579
20580static void
dee91e82 20581read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20582 const gdb_byte *info_ptr,
dee91e82
DE
20583 struct die_info *comp_unit_die,
20584 int has_children,
20585 void *data)
348e048f 20586{
dee91e82 20587 struct dwarf2_cu *cu = reader->cu;
348e048f 20588
dee91e82
DE
20589 gdb_assert (cu->die_hash == NULL);
20590 cu->die_hash =
20591 htab_create_alloc_ex (cu->header.length / 12,
20592 die_hash,
20593 die_eq,
20594 NULL,
20595 &cu->comp_unit_obstack,
20596 hashtab_obstack_allocate,
20597 dummy_obstack_deallocate);
348e048f 20598
dee91e82
DE
20599 if (has_children)
20600 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20601 &info_ptr, comp_unit_die);
20602 cu->dies = comp_unit_die;
20603 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20604
20605 /* We try not to read any attributes in this function, because not
9cdd5dbd 20606 all CUs needed for references have been loaded yet, and symbol
348e048f 20607 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20608 or we won't be able to build types correctly.
20609 Similarly, if we do not read the producer, we can not apply
20610 producer-specific interpretation. */
95554aad 20611 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20612}
348e048f 20613
3019eac3
DE
20614/* Read in a signatured type and build its CU and DIEs.
20615 If the type is a stub for the real type in a DWO file,
20616 read in the real type from the DWO file as well. */
dee91e82
DE
20617
20618static void
20619read_signatured_type (struct signatured_type *sig_type)
20620{
20621 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20622
3019eac3 20623 gdb_assert (per_cu->is_debug_types);
dee91e82 20624 gdb_assert (per_cu->cu == NULL);
348e048f 20625
f4dc4d17
DE
20626 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20627 read_signatured_type_reader, NULL);
7ee85ab1 20628 sig_type->per_cu.tu_read = 1;
c906108c
SS
20629}
20630
c906108c
SS
20631/* Decode simple location descriptions.
20632 Given a pointer to a dwarf block that defines a location, compute
20633 the location and return the value.
20634
4cecd739
DJ
20635 NOTE drow/2003-11-18: This function is called in two situations
20636 now: for the address of static or global variables (partial symbols
20637 only) and for offsets into structures which are expected to be
20638 (more or less) constant. The partial symbol case should go away,
20639 and only the constant case should remain. That will let this
20640 function complain more accurately. A few special modes are allowed
20641 without complaint for global variables (for instance, global
20642 register values and thread-local values).
c906108c
SS
20643
20644 A location description containing no operations indicates that the
4cecd739 20645 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20646 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20647 callers will only want a very basic result and this can become a
21ae7a4d
JK
20648 complaint.
20649
20650 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20651
20652static CORE_ADDR
e7c27a73 20653decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20654{
e7c27a73 20655 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20656 size_t i;
20657 size_t size = blk->size;
d521ce57 20658 const gdb_byte *data = blk->data;
21ae7a4d
JK
20659 CORE_ADDR stack[64];
20660 int stacki;
20661 unsigned int bytes_read, unsnd;
20662 gdb_byte op;
c906108c 20663
21ae7a4d
JK
20664 i = 0;
20665 stacki = 0;
20666 stack[stacki] = 0;
20667 stack[++stacki] = 0;
20668
20669 while (i < size)
20670 {
20671 op = data[i++];
20672 switch (op)
20673 {
20674 case DW_OP_lit0:
20675 case DW_OP_lit1:
20676 case DW_OP_lit2:
20677 case DW_OP_lit3:
20678 case DW_OP_lit4:
20679 case DW_OP_lit5:
20680 case DW_OP_lit6:
20681 case DW_OP_lit7:
20682 case DW_OP_lit8:
20683 case DW_OP_lit9:
20684 case DW_OP_lit10:
20685 case DW_OP_lit11:
20686 case DW_OP_lit12:
20687 case DW_OP_lit13:
20688 case DW_OP_lit14:
20689 case DW_OP_lit15:
20690 case DW_OP_lit16:
20691 case DW_OP_lit17:
20692 case DW_OP_lit18:
20693 case DW_OP_lit19:
20694 case DW_OP_lit20:
20695 case DW_OP_lit21:
20696 case DW_OP_lit22:
20697 case DW_OP_lit23:
20698 case DW_OP_lit24:
20699 case DW_OP_lit25:
20700 case DW_OP_lit26:
20701 case DW_OP_lit27:
20702 case DW_OP_lit28:
20703 case DW_OP_lit29:
20704 case DW_OP_lit30:
20705 case DW_OP_lit31:
20706 stack[++stacki] = op - DW_OP_lit0;
20707 break;
f1bea926 20708
21ae7a4d
JK
20709 case DW_OP_reg0:
20710 case DW_OP_reg1:
20711 case DW_OP_reg2:
20712 case DW_OP_reg3:
20713 case DW_OP_reg4:
20714 case DW_OP_reg5:
20715 case DW_OP_reg6:
20716 case DW_OP_reg7:
20717 case DW_OP_reg8:
20718 case DW_OP_reg9:
20719 case DW_OP_reg10:
20720 case DW_OP_reg11:
20721 case DW_OP_reg12:
20722 case DW_OP_reg13:
20723 case DW_OP_reg14:
20724 case DW_OP_reg15:
20725 case DW_OP_reg16:
20726 case DW_OP_reg17:
20727 case DW_OP_reg18:
20728 case DW_OP_reg19:
20729 case DW_OP_reg20:
20730 case DW_OP_reg21:
20731 case DW_OP_reg22:
20732 case DW_OP_reg23:
20733 case DW_OP_reg24:
20734 case DW_OP_reg25:
20735 case DW_OP_reg26:
20736 case DW_OP_reg27:
20737 case DW_OP_reg28:
20738 case DW_OP_reg29:
20739 case DW_OP_reg30:
20740 case DW_OP_reg31:
20741 stack[++stacki] = op - DW_OP_reg0;
20742 if (i < size)
20743 dwarf2_complex_location_expr_complaint ();
20744 break;
c906108c 20745
21ae7a4d
JK
20746 case DW_OP_regx:
20747 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20748 i += bytes_read;
20749 stack[++stacki] = unsnd;
20750 if (i < size)
20751 dwarf2_complex_location_expr_complaint ();
20752 break;
c906108c 20753
21ae7a4d
JK
20754 case DW_OP_addr:
20755 stack[++stacki] = read_address (objfile->obfd, &data[i],
20756 cu, &bytes_read);
20757 i += bytes_read;
20758 break;
d53d4ac5 20759
21ae7a4d
JK
20760 case DW_OP_const1u:
20761 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20762 i += 1;
20763 break;
20764
20765 case DW_OP_const1s:
20766 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20767 i += 1;
20768 break;
20769
20770 case DW_OP_const2u:
20771 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20772 i += 2;
20773 break;
20774
20775 case DW_OP_const2s:
20776 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20777 i += 2;
20778 break;
d53d4ac5 20779
21ae7a4d
JK
20780 case DW_OP_const4u:
20781 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20782 i += 4;
20783 break;
20784
20785 case DW_OP_const4s:
20786 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20787 i += 4;
20788 break;
20789
585861ea
JK
20790 case DW_OP_const8u:
20791 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20792 i += 8;
20793 break;
20794
21ae7a4d
JK
20795 case DW_OP_constu:
20796 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20797 &bytes_read);
20798 i += bytes_read;
20799 break;
20800
20801 case DW_OP_consts:
20802 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20803 i += bytes_read;
20804 break;
20805
20806 case DW_OP_dup:
20807 stack[stacki + 1] = stack[stacki];
20808 stacki++;
20809 break;
20810
20811 case DW_OP_plus:
20812 stack[stacki - 1] += stack[stacki];
20813 stacki--;
20814 break;
20815
20816 case DW_OP_plus_uconst:
20817 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20818 &bytes_read);
20819 i += bytes_read;
20820 break;
20821
20822 case DW_OP_minus:
20823 stack[stacki - 1] -= stack[stacki];
20824 stacki--;
20825 break;
20826
20827 case DW_OP_deref:
20828 /* If we're not the last op, then we definitely can't encode
20829 this using GDB's address_class enum. This is valid for partial
20830 global symbols, although the variable's address will be bogus
20831 in the psymtab. */
20832 if (i < size)
20833 dwarf2_complex_location_expr_complaint ();
20834 break;
20835
20836 case DW_OP_GNU_push_tls_address:
4aa4e28b 20837 case DW_OP_form_tls_address:
21ae7a4d
JK
20838 /* The top of the stack has the offset from the beginning
20839 of the thread control block at which the variable is located. */
20840 /* Nothing should follow this operator, so the top of stack would
20841 be returned. */
20842 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20843 address will be bogus in the psymtab. Make it always at least
20844 non-zero to not look as a variable garbage collected by linker
20845 which have DW_OP_addr 0. */
21ae7a4d
JK
20846 if (i < size)
20847 dwarf2_complex_location_expr_complaint ();
585861ea 20848 stack[stacki]++;
21ae7a4d
JK
20849 break;
20850
20851 case DW_OP_GNU_uninit:
20852 break;
20853
3019eac3 20854 case DW_OP_GNU_addr_index:
49f6c839 20855 case DW_OP_GNU_const_index:
3019eac3
DE
20856 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20857 &bytes_read);
20858 i += bytes_read;
20859 break;
20860
21ae7a4d
JK
20861 default:
20862 {
f39c6ffd 20863 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20864
20865 if (name)
20866 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20867 name);
20868 else
20869 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20870 op);
20871 }
20872
20873 return (stack[stacki]);
d53d4ac5 20874 }
3c6e0cb3 20875
21ae7a4d
JK
20876 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20877 outside of the allocated space. Also enforce minimum>0. */
20878 if (stacki >= ARRAY_SIZE (stack) - 1)
20879 {
20880 complaint (&symfile_complaints,
20881 _("location description stack overflow"));
20882 return 0;
20883 }
20884
20885 if (stacki <= 0)
20886 {
20887 complaint (&symfile_complaints,
20888 _("location description stack underflow"));
20889 return 0;
20890 }
20891 }
20892 return (stack[stacki]);
c906108c
SS
20893}
20894
20895/* memory allocation interface */
20896
c906108c 20897static struct dwarf_block *
7b5a2f43 20898dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20899{
8d749320 20900 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20901}
20902
c906108c 20903static struct die_info *
b60c80d6 20904dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20905{
20906 struct die_info *die;
b60c80d6
DJ
20907 size_t size = sizeof (struct die_info);
20908
20909 if (num_attrs > 1)
20910 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20911
b60c80d6 20912 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20913 memset (die, 0, sizeof (struct die_info));
20914 return (die);
20915}
2e276125
JB
20916
20917\f
20918/* Macro support. */
20919
233d95b5
JK
20920/* Return file name relative to the compilation directory of file number I in
20921 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20922 responsible for freeing it. */
233d95b5 20923
2e276125 20924static char *
233d95b5 20925file_file_name (int file, struct line_header *lh)
2e276125 20926{
6a83a1e6
EZ
20927 /* Is the file number a valid index into the line header's file name
20928 table? Remember that file numbers start with one, not zero. */
20929 if (1 <= file && file <= lh->num_file_names)
20930 {
20931 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20932
afa6c9ab
SL
20933 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20934 || lh->include_dirs == NULL)
6a83a1e6 20935 return xstrdup (fe->name);
233d95b5 20936 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 20937 fe->name, (char *) NULL);
6a83a1e6 20938 }
2e276125
JB
20939 else
20940 {
6a83a1e6
EZ
20941 /* The compiler produced a bogus file number. We can at least
20942 record the macro definitions made in the file, even if we
20943 won't be able to find the file by name. */
20944 char fake_name[80];
9a619af0 20945
8c042590
PM
20946 xsnprintf (fake_name, sizeof (fake_name),
20947 "<bad macro file number %d>", file);
2e276125 20948
6e70227d 20949 complaint (&symfile_complaints,
6a83a1e6
EZ
20950 _("bad file number in macro information (%d)"),
20951 file);
2e276125 20952
6a83a1e6 20953 return xstrdup (fake_name);
2e276125
JB
20954 }
20955}
20956
233d95b5
JK
20957/* Return the full name of file number I in *LH's file name table.
20958 Use COMP_DIR as the name of the current directory of the
20959 compilation. The result is allocated using xmalloc; the caller is
20960 responsible for freeing it. */
20961static char *
20962file_full_name (int file, struct line_header *lh, const char *comp_dir)
20963{
20964 /* Is the file number a valid index into the line header's file name
20965 table? Remember that file numbers start with one, not zero. */
20966 if (1 <= file && file <= lh->num_file_names)
20967 {
20968 char *relative = file_file_name (file, lh);
20969
20970 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20971 return relative;
b36cec19
PA
20972 return reconcat (relative, comp_dir, SLASH_STRING,
20973 relative, (char *) NULL);
233d95b5
JK
20974 }
20975 else
20976 return file_file_name (file, lh);
20977}
20978
2e276125
JB
20979
20980static struct macro_source_file *
20981macro_start_file (int file, int line,
20982 struct macro_source_file *current_file,
43f3e411 20983 struct line_header *lh)
2e276125 20984{
233d95b5
JK
20985 /* File name relative to the compilation directory of this source file. */
20986 char *file_name = file_file_name (file, lh);
2e276125 20987
2e276125 20988 if (! current_file)
abc9d0dc 20989 {
fc474241
DE
20990 /* Note: We don't create a macro table for this compilation unit
20991 at all until we actually get a filename. */
43f3e411 20992 struct macro_table *macro_table = get_macro_table ();
fc474241 20993
abc9d0dc
TT
20994 /* If we have no current file, then this must be the start_file
20995 directive for the compilation unit's main source file. */
fc474241
DE
20996 current_file = macro_set_main (macro_table, file_name);
20997 macro_define_special (macro_table);
abc9d0dc 20998 }
2e276125 20999 else
233d95b5 21000 current_file = macro_include (current_file, line, file_name);
2e276125 21001
233d95b5 21002 xfree (file_name);
6e70227d 21003
2e276125
JB
21004 return current_file;
21005}
21006
21007
21008/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21009 followed by a null byte. */
21010static char *
21011copy_string (const char *buf, int len)
21012{
224c3ddb 21013 char *s = (char *) xmalloc (len + 1);
9a619af0 21014
2e276125
JB
21015 memcpy (s, buf, len);
21016 s[len] = '\0';
2e276125
JB
21017 return s;
21018}
21019
21020
21021static const char *
21022consume_improper_spaces (const char *p, const char *body)
21023{
21024 if (*p == ' ')
21025 {
4d3c2250 21026 complaint (&symfile_complaints,
3e43a32a
MS
21027 _("macro definition contains spaces "
21028 "in formal argument list:\n`%s'"),
4d3c2250 21029 body);
2e276125
JB
21030
21031 while (*p == ' ')
21032 p++;
21033 }
21034
21035 return p;
21036}
21037
21038
21039static void
21040parse_macro_definition (struct macro_source_file *file, int line,
21041 const char *body)
21042{
21043 const char *p;
21044
21045 /* The body string takes one of two forms. For object-like macro
21046 definitions, it should be:
21047
21048 <macro name> " " <definition>
21049
21050 For function-like macro definitions, it should be:
21051
21052 <macro name> "() " <definition>
21053 or
21054 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21055
21056 Spaces may appear only where explicitly indicated, and in the
21057 <definition>.
21058
21059 The Dwarf 2 spec says that an object-like macro's name is always
21060 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21061 the space when the macro's definition is the empty string.
2e276125
JB
21062
21063 The Dwarf 2 spec says that there should be no spaces between the
21064 formal arguments in a function-like macro's formal argument list,
21065 but versions of GCC around March 2002 include spaces after the
21066 commas. */
21067
21068
21069 /* Find the extent of the macro name. The macro name is terminated
21070 by either a space or null character (for an object-like macro) or
21071 an opening paren (for a function-like macro). */
21072 for (p = body; *p; p++)
21073 if (*p == ' ' || *p == '(')
21074 break;
21075
21076 if (*p == ' ' || *p == '\0')
21077 {
21078 /* It's an object-like macro. */
21079 int name_len = p - body;
21080 char *name = copy_string (body, name_len);
21081 const char *replacement;
21082
21083 if (*p == ' ')
21084 replacement = body + name_len + 1;
21085 else
21086 {
4d3c2250 21087 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21088 replacement = body + name_len;
21089 }
6e70227d 21090
2e276125
JB
21091 macro_define_object (file, line, name, replacement);
21092
21093 xfree (name);
21094 }
21095 else if (*p == '(')
21096 {
21097 /* It's a function-like macro. */
21098 char *name = copy_string (body, p - body);
21099 int argc = 0;
21100 int argv_size = 1;
8d749320 21101 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21102
21103 p++;
21104
21105 p = consume_improper_spaces (p, body);
21106
21107 /* Parse the formal argument list. */
21108 while (*p && *p != ')')
21109 {
21110 /* Find the extent of the current argument name. */
21111 const char *arg_start = p;
21112
21113 while (*p && *p != ',' && *p != ')' && *p != ' ')
21114 p++;
21115
21116 if (! *p || p == arg_start)
4d3c2250 21117 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21118 else
21119 {
21120 /* Make sure argv has room for the new argument. */
21121 if (argc >= argv_size)
21122 {
21123 argv_size *= 2;
224c3ddb 21124 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21125 }
21126
21127 argv[argc++] = copy_string (arg_start, p - arg_start);
21128 }
21129
21130 p = consume_improper_spaces (p, body);
21131
21132 /* Consume the comma, if present. */
21133 if (*p == ',')
21134 {
21135 p++;
21136
21137 p = consume_improper_spaces (p, body);
21138 }
21139 }
21140
21141 if (*p == ')')
21142 {
21143 p++;
21144
21145 if (*p == ' ')
21146 /* Perfectly formed definition, no complaints. */
21147 macro_define_function (file, line, name,
6e70227d 21148 argc, (const char **) argv,
2e276125
JB
21149 p + 1);
21150 else if (*p == '\0')
21151 {
21152 /* Complain, but do define it. */
4d3c2250 21153 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21154 macro_define_function (file, line, name,
6e70227d 21155 argc, (const char **) argv,
2e276125
JB
21156 p);
21157 }
21158 else
21159 /* Just complain. */
4d3c2250 21160 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21161 }
21162 else
21163 /* Just complain. */
4d3c2250 21164 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21165
21166 xfree (name);
21167 {
21168 int i;
21169
21170 for (i = 0; i < argc; i++)
21171 xfree (argv[i]);
21172 }
21173 xfree (argv);
21174 }
21175 else
4d3c2250 21176 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21177}
21178
cf2c3c16
TT
21179/* Skip some bytes from BYTES according to the form given in FORM.
21180 Returns the new pointer. */
2e276125 21181
d521ce57
TT
21182static const gdb_byte *
21183skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21184 enum dwarf_form form,
21185 unsigned int offset_size,
21186 struct dwarf2_section_info *section)
2e276125 21187{
cf2c3c16 21188 unsigned int bytes_read;
2e276125 21189
cf2c3c16 21190 switch (form)
2e276125 21191 {
cf2c3c16
TT
21192 case DW_FORM_data1:
21193 case DW_FORM_flag:
21194 ++bytes;
21195 break;
21196
21197 case DW_FORM_data2:
21198 bytes += 2;
21199 break;
21200
21201 case DW_FORM_data4:
21202 bytes += 4;
21203 break;
21204
21205 case DW_FORM_data8:
21206 bytes += 8;
21207 break;
21208
21209 case DW_FORM_string:
21210 read_direct_string (abfd, bytes, &bytes_read);
21211 bytes += bytes_read;
21212 break;
21213
21214 case DW_FORM_sec_offset:
21215 case DW_FORM_strp:
36586728 21216 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21217 bytes += offset_size;
21218 break;
21219
21220 case DW_FORM_block:
21221 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21222 bytes += bytes_read;
21223 break;
21224
21225 case DW_FORM_block1:
21226 bytes += 1 + read_1_byte (abfd, bytes);
21227 break;
21228 case DW_FORM_block2:
21229 bytes += 2 + read_2_bytes (abfd, bytes);
21230 break;
21231 case DW_FORM_block4:
21232 bytes += 4 + read_4_bytes (abfd, bytes);
21233 break;
21234
21235 case DW_FORM_sdata:
21236 case DW_FORM_udata:
3019eac3
DE
21237 case DW_FORM_GNU_addr_index:
21238 case DW_FORM_GNU_str_index:
d521ce57 21239 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21240 if (bytes == NULL)
21241 {
21242 dwarf2_section_buffer_overflow_complaint (section);
21243 return NULL;
21244 }
cf2c3c16
TT
21245 break;
21246
21247 default:
21248 {
21249 complain:
21250 complaint (&symfile_complaints,
21251 _("invalid form 0x%x in `%s'"),
a32a8923 21252 form, get_section_name (section));
cf2c3c16
TT
21253 return NULL;
21254 }
2e276125
JB
21255 }
21256
cf2c3c16
TT
21257 return bytes;
21258}
757a13d0 21259
cf2c3c16
TT
21260/* A helper for dwarf_decode_macros that handles skipping an unknown
21261 opcode. Returns an updated pointer to the macro data buffer; or,
21262 on error, issues a complaint and returns NULL. */
757a13d0 21263
d521ce57 21264static const gdb_byte *
cf2c3c16 21265skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21266 const gdb_byte **opcode_definitions,
21267 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21268 bfd *abfd,
21269 unsigned int offset_size,
21270 struct dwarf2_section_info *section)
21271{
21272 unsigned int bytes_read, i;
21273 unsigned long arg;
d521ce57 21274 const gdb_byte *defn;
2e276125 21275
cf2c3c16 21276 if (opcode_definitions[opcode] == NULL)
2e276125 21277 {
cf2c3c16
TT
21278 complaint (&symfile_complaints,
21279 _("unrecognized DW_MACFINO opcode 0x%x"),
21280 opcode);
21281 return NULL;
21282 }
2e276125 21283
cf2c3c16
TT
21284 defn = opcode_definitions[opcode];
21285 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21286 defn += bytes_read;
2e276125 21287
cf2c3c16
TT
21288 for (i = 0; i < arg; ++i)
21289 {
aead7601
SM
21290 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21291 (enum dwarf_form) defn[i], offset_size,
f664829e 21292 section);
cf2c3c16
TT
21293 if (mac_ptr == NULL)
21294 {
21295 /* skip_form_bytes already issued the complaint. */
21296 return NULL;
21297 }
21298 }
757a13d0 21299
cf2c3c16
TT
21300 return mac_ptr;
21301}
757a13d0 21302
cf2c3c16
TT
21303/* A helper function which parses the header of a macro section.
21304 If the macro section is the extended (for now called "GNU") type,
21305 then this updates *OFFSET_SIZE. Returns a pointer to just after
21306 the header, or issues a complaint and returns NULL on error. */
757a13d0 21307
d521ce57
TT
21308static const gdb_byte *
21309dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21310 bfd *abfd,
d521ce57 21311 const gdb_byte *mac_ptr,
cf2c3c16
TT
21312 unsigned int *offset_size,
21313 int section_is_gnu)
21314{
21315 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21316
cf2c3c16
TT
21317 if (section_is_gnu)
21318 {
21319 unsigned int version, flags;
757a13d0 21320
cf2c3c16
TT
21321 version = read_2_bytes (abfd, mac_ptr);
21322 if (version != 4)
21323 {
21324 complaint (&symfile_complaints,
21325 _("unrecognized version `%d' in .debug_macro section"),
21326 version);
21327 return NULL;
21328 }
21329 mac_ptr += 2;
757a13d0 21330
cf2c3c16
TT
21331 flags = read_1_byte (abfd, mac_ptr);
21332 ++mac_ptr;
21333 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21334
cf2c3c16
TT
21335 if ((flags & 2) != 0)
21336 /* We don't need the line table offset. */
21337 mac_ptr += *offset_size;
757a13d0 21338
cf2c3c16
TT
21339 /* Vendor opcode descriptions. */
21340 if ((flags & 4) != 0)
21341 {
21342 unsigned int i, count;
757a13d0 21343
cf2c3c16
TT
21344 count = read_1_byte (abfd, mac_ptr);
21345 ++mac_ptr;
21346 for (i = 0; i < count; ++i)
21347 {
21348 unsigned int opcode, bytes_read;
21349 unsigned long arg;
21350
21351 opcode = read_1_byte (abfd, mac_ptr);
21352 ++mac_ptr;
21353 opcode_definitions[opcode] = mac_ptr;
21354 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21355 mac_ptr += bytes_read;
21356 mac_ptr += arg;
21357 }
757a13d0 21358 }
cf2c3c16 21359 }
757a13d0 21360
cf2c3c16
TT
21361 return mac_ptr;
21362}
757a13d0 21363
cf2c3c16 21364/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21365 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21366
21367static void
d521ce57
TT
21368dwarf_decode_macro_bytes (bfd *abfd,
21369 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21370 struct macro_source_file *current_file,
43f3e411 21371 struct line_header *lh,
cf2c3c16 21372 struct dwarf2_section_info *section,
36586728 21373 int section_is_gnu, int section_is_dwz,
cf2c3c16 21374 unsigned int offset_size,
8fc3fc34 21375 htab_t include_hash)
cf2c3c16 21376{
4d663531 21377 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21378 enum dwarf_macro_record_type macinfo_type;
21379 int at_commandline;
d521ce57 21380 const gdb_byte *opcode_definitions[256];
757a13d0 21381
cf2c3c16
TT
21382 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21383 &offset_size, section_is_gnu);
21384 if (mac_ptr == NULL)
21385 {
21386 /* We already issued a complaint. */
21387 return;
21388 }
757a13d0
JK
21389
21390 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21391 GDB is still reading the definitions from command line. First
21392 DW_MACINFO_start_file will need to be ignored as it was already executed
21393 to create CURRENT_FILE for the main source holding also the command line
21394 definitions. On first met DW_MACINFO_start_file this flag is reset to
21395 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21396
21397 at_commandline = 1;
21398
21399 do
21400 {
21401 /* Do we at least have room for a macinfo type byte? */
21402 if (mac_ptr >= mac_end)
21403 {
f664829e 21404 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21405 break;
21406 }
21407
aead7601 21408 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21409 mac_ptr++;
21410
cf2c3c16
TT
21411 /* Note that we rely on the fact that the corresponding GNU and
21412 DWARF constants are the same. */
757a13d0
JK
21413 switch (macinfo_type)
21414 {
21415 /* A zero macinfo type indicates the end of the macro
21416 information. */
21417 case 0:
21418 break;
2e276125 21419
cf2c3c16
TT
21420 case DW_MACRO_GNU_define:
21421 case DW_MACRO_GNU_undef:
21422 case DW_MACRO_GNU_define_indirect:
21423 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21424 case DW_MACRO_GNU_define_indirect_alt:
21425 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21426 {
891d2f0b 21427 unsigned int bytes_read;
2e276125 21428 int line;
d521ce57 21429 const char *body;
cf2c3c16 21430 int is_define;
2e276125 21431
cf2c3c16
TT
21432 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21433 mac_ptr += bytes_read;
21434
21435 if (macinfo_type == DW_MACRO_GNU_define
21436 || macinfo_type == DW_MACRO_GNU_undef)
21437 {
21438 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21439 mac_ptr += bytes_read;
21440 }
21441 else
21442 {
21443 LONGEST str_offset;
21444
21445 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21446 mac_ptr += offset_size;
2e276125 21447
36586728 21448 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21449 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21450 || section_is_dwz)
36586728
TT
21451 {
21452 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21453
21454 body = read_indirect_string_from_dwz (dwz, str_offset);
21455 }
21456 else
21457 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21458 }
21459
21460 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21461 || macinfo_type == DW_MACRO_GNU_define_indirect
21462 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21463 if (! current_file)
757a13d0
JK
21464 {
21465 /* DWARF violation as no main source is present. */
21466 complaint (&symfile_complaints,
21467 _("debug info with no main source gives macro %s "
21468 "on line %d: %s"),
cf2c3c16
TT
21469 is_define ? _("definition") : _("undefinition"),
21470 line, body);
757a13d0
JK
21471 break;
21472 }
3e43a32a
MS
21473 if ((line == 0 && !at_commandline)
21474 || (line != 0 && at_commandline))
4d3c2250 21475 complaint (&symfile_complaints,
757a13d0
JK
21476 _("debug info gives %s macro %s with %s line %d: %s"),
21477 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21478 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21479 line == 0 ? _("zero") : _("non-zero"), line, body);
21480
cf2c3c16 21481 if (is_define)
757a13d0 21482 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21483 else
21484 {
21485 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21486 || macinfo_type == DW_MACRO_GNU_undef_indirect
21487 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21488 macro_undef (current_file, line, body);
21489 }
2e276125
JB
21490 }
21491 break;
21492
cf2c3c16 21493 case DW_MACRO_GNU_start_file:
2e276125 21494 {
891d2f0b 21495 unsigned int bytes_read;
2e276125
JB
21496 int line, file;
21497
21498 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21499 mac_ptr += bytes_read;
21500 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21501 mac_ptr += bytes_read;
21502
3e43a32a
MS
21503 if ((line == 0 && !at_commandline)
21504 || (line != 0 && at_commandline))
757a13d0
JK
21505 complaint (&symfile_complaints,
21506 _("debug info gives source %d included "
21507 "from %s at %s line %d"),
21508 file, at_commandline ? _("command-line") : _("file"),
21509 line == 0 ? _("zero") : _("non-zero"), line);
21510
21511 if (at_commandline)
21512 {
cf2c3c16
TT
21513 /* This DW_MACRO_GNU_start_file was executed in the
21514 pass one. */
757a13d0
JK
21515 at_commandline = 0;
21516 }
21517 else
43f3e411 21518 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21519 }
21520 break;
21521
cf2c3c16 21522 case DW_MACRO_GNU_end_file:
2e276125 21523 if (! current_file)
4d3c2250 21524 complaint (&symfile_complaints,
3e43a32a
MS
21525 _("macro debug info has an unmatched "
21526 "`close_file' directive"));
2e276125
JB
21527 else
21528 {
21529 current_file = current_file->included_by;
21530 if (! current_file)
21531 {
cf2c3c16 21532 enum dwarf_macro_record_type next_type;
2e276125
JB
21533
21534 /* GCC circa March 2002 doesn't produce the zero
21535 type byte marking the end of the compilation
21536 unit. Complain if it's not there, but exit no
21537 matter what. */
21538
21539 /* Do we at least have room for a macinfo type byte? */
21540 if (mac_ptr >= mac_end)
21541 {
f664829e 21542 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21543 return;
21544 }
21545
21546 /* We don't increment mac_ptr here, so this is just
21547 a look-ahead. */
aead7601
SM
21548 next_type
21549 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21550 mac_ptr);
2e276125 21551 if (next_type != 0)
4d3c2250 21552 complaint (&symfile_complaints,
3e43a32a
MS
21553 _("no terminating 0-type entry for "
21554 "macros in `.debug_macinfo' section"));
2e276125
JB
21555
21556 return;
21557 }
21558 }
21559 break;
21560
cf2c3c16 21561 case DW_MACRO_GNU_transparent_include:
36586728 21562 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21563 {
21564 LONGEST offset;
8fc3fc34 21565 void **slot;
a036ba48
TT
21566 bfd *include_bfd = abfd;
21567 struct dwarf2_section_info *include_section = section;
d521ce57 21568 const gdb_byte *include_mac_end = mac_end;
a036ba48 21569 int is_dwz = section_is_dwz;
d521ce57 21570 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21571
21572 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21573 mac_ptr += offset_size;
21574
a036ba48
TT
21575 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21576 {
21577 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21578
4d663531 21579 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21580
a036ba48 21581 include_section = &dwz->macro;
a32a8923 21582 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21583 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21584 is_dwz = 1;
21585 }
21586
21587 new_mac_ptr = include_section->buffer + offset;
21588 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21589
8fc3fc34
TT
21590 if (*slot != NULL)
21591 {
21592 /* This has actually happened; see
21593 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21594 complaint (&symfile_complaints,
21595 _("recursive DW_MACRO_GNU_transparent_include in "
21596 ".debug_macro section"));
21597 }
21598 else
21599 {
d521ce57 21600 *slot = (void *) new_mac_ptr;
36586728 21601
a036ba48 21602 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21603 include_mac_end, current_file, lh,
36586728 21604 section, section_is_gnu, is_dwz,
4d663531 21605 offset_size, include_hash);
8fc3fc34 21606
d521ce57 21607 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21608 }
cf2c3c16
TT
21609 }
21610 break;
21611
2e276125 21612 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21613 if (!section_is_gnu)
21614 {
21615 unsigned int bytes_read;
2e276125 21616
ac298888
TT
21617 /* This reads the constant, but since we don't recognize
21618 any vendor extensions, we ignore it. */
21619 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21620 mac_ptr += bytes_read;
21621 read_direct_string (abfd, mac_ptr, &bytes_read);
21622 mac_ptr += bytes_read;
2e276125 21623
cf2c3c16
TT
21624 /* We don't recognize any vendor extensions. */
21625 break;
21626 }
21627 /* FALLTHROUGH */
21628
21629 default:
21630 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21631 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21632 section);
21633 if (mac_ptr == NULL)
21634 return;
21635 break;
2e276125 21636 }
757a13d0 21637 } while (macinfo_type != 0);
2e276125 21638}
8e19ed76 21639
cf2c3c16 21640static void
09262596 21641dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21642 int section_is_gnu)
cf2c3c16 21643{
bb5ed363 21644 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21645 struct line_header *lh = cu->line_header;
21646 bfd *abfd;
d521ce57 21647 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21648 struct macro_source_file *current_file = 0;
21649 enum dwarf_macro_record_type macinfo_type;
21650 unsigned int offset_size = cu->header.offset_size;
d521ce57 21651 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21652 struct cleanup *cleanup;
21653 htab_t include_hash;
21654 void **slot;
09262596
DE
21655 struct dwarf2_section_info *section;
21656 const char *section_name;
21657
21658 if (cu->dwo_unit != NULL)
21659 {
21660 if (section_is_gnu)
21661 {
21662 section = &cu->dwo_unit->dwo_file->sections.macro;
21663 section_name = ".debug_macro.dwo";
21664 }
21665 else
21666 {
21667 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21668 section_name = ".debug_macinfo.dwo";
21669 }
21670 }
21671 else
21672 {
21673 if (section_is_gnu)
21674 {
21675 section = &dwarf2_per_objfile->macro;
21676 section_name = ".debug_macro";
21677 }
21678 else
21679 {
21680 section = &dwarf2_per_objfile->macinfo;
21681 section_name = ".debug_macinfo";
21682 }
21683 }
cf2c3c16 21684
bb5ed363 21685 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21686 if (section->buffer == NULL)
21687 {
fceca515 21688 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21689 return;
21690 }
a32a8923 21691 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21692
21693 /* First pass: Find the name of the base filename.
21694 This filename is needed in order to process all macros whose definition
21695 (or undefinition) comes from the command line. These macros are defined
21696 before the first DW_MACINFO_start_file entry, and yet still need to be
21697 associated to the base file.
21698
21699 To determine the base file name, we scan the macro definitions until we
21700 reach the first DW_MACINFO_start_file entry. We then initialize
21701 CURRENT_FILE accordingly so that any macro definition found before the
21702 first DW_MACINFO_start_file can still be associated to the base file. */
21703
21704 mac_ptr = section->buffer + offset;
21705 mac_end = section->buffer + section->size;
21706
21707 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21708 &offset_size, section_is_gnu);
21709 if (mac_ptr == NULL)
21710 {
21711 /* We already issued a complaint. */
21712 return;
21713 }
21714
21715 do
21716 {
21717 /* Do we at least have room for a macinfo type byte? */
21718 if (mac_ptr >= mac_end)
21719 {
21720 /* Complaint is printed during the second pass as GDB will probably
21721 stop the first pass earlier upon finding
21722 DW_MACINFO_start_file. */
21723 break;
21724 }
21725
aead7601 21726 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21727 mac_ptr++;
21728
21729 /* Note that we rely on the fact that the corresponding GNU and
21730 DWARF constants are the same. */
21731 switch (macinfo_type)
21732 {
21733 /* A zero macinfo type indicates the end of the macro
21734 information. */
21735 case 0:
21736 break;
21737
21738 case DW_MACRO_GNU_define:
21739 case DW_MACRO_GNU_undef:
21740 /* Only skip the data by MAC_PTR. */
21741 {
21742 unsigned int bytes_read;
21743
21744 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21745 mac_ptr += bytes_read;
21746 read_direct_string (abfd, mac_ptr, &bytes_read);
21747 mac_ptr += bytes_read;
21748 }
21749 break;
21750
21751 case DW_MACRO_GNU_start_file:
21752 {
21753 unsigned int bytes_read;
21754 int line, file;
21755
21756 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21757 mac_ptr += bytes_read;
21758 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21759 mac_ptr += bytes_read;
21760
43f3e411 21761 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21762 }
21763 break;
21764
21765 case DW_MACRO_GNU_end_file:
21766 /* No data to skip by MAC_PTR. */
21767 break;
21768
21769 case DW_MACRO_GNU_define_indirect:
21770 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21771 case DW_MACRO_GNU_define_indirect_alt:
21772 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21773 {
21774 unsigned int bytes_read;
21775
21776 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21777 mac_ptr += bytes_read;
21778 mac_ptr += offset_size;
21779 }
21780 break;
21781
21782 case DW_MACRO_GNU_transparent_include:
f7a35f02 21783 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21784 /* Note that, according to the spec, a transparent include
21785 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21786 skip this opcode. */
21787 mac_ptr += offset_size;
21788 break;
21789
21790 case DW_MACINFO_vendor_ext:
21791 /* Only skip the data by MAC_PTR. */
21792 if (!section_is_gnu)
21793 {
21794 unsigned int bytes_read;
21795
21796 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21797 mac_ptr += bytes_read;
21798 read_direct_string (abfd, mac_ptr, &bytes_read);
21799 mac_ptr += bytes_read;
21800 }
21801 /* FALLTHROUGH */
21802
21803 default:
21804 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21805 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21806 section);
21807 if (mac_ptr == NULL)
21808 return;
21809 break;
21810 }
21811 } while (macinfo_type != 0 && current_file == NULL);
21812
21813 /* Second pass: Process all entries.
21814
21815 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21816 command-line macro definitions/undefinitions. This flag is unset when we
21817 reach the first DW_MACINFO_start_file entry. */
21818
8fc3fc34
TT
21819 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21820 NULL, xcalloc, xfree);
21821 cleanup = make_cleanup_htab_delete (include_hash);
21822 mac_ptr = section->buffer + offset;
21823 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21824 *slot = (void *) mac_ptr;
8fc3fc34 21825 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21826 current_file, lh, section,
4d663531 21827 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21828 do_cleanups (cleanup);
cf2c3c16
TT
21829}
21830
8e19ed76 21831/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21832 if so return true else false. */
380bca97 21833
8e19ed76 21834static int
6e5a29e1 21835attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21836{
21837 return (attr == NULL ? 0 :
21838 attr->form == DW_FORM_block1
21839 || attr->form == DW_FORM_block2
21840 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21841 || attr->form == DW_FORM_block
21842 || attr->form == DW_FORM_exprloc);
8e19ed76 21843}
4c2df51b 21844
c6a0999f
JB
21845/* Return non-zero if ATTR's value is a section offset --- classes
21846 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21847 You may use DW_UNSND (attr) to retrieve such offsets.
21848
21849 Section 7.5.4, "Attribute Encodings", explains that no attribute
21850 may have a value that belongs to more than one of these classes; it
21851 would be ambiguous if we did, because we use the same forms for all
21852 of them. */
380bca97 21853
3690dd37 21854static int
6e5a29e1 21855attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21856{
21857 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21858 || attr->form == DW_FORM_data8
21859 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21860}
21861
3690dd37
JB
21862/* Return non-zero if ATTR's value falls in the 'constant' class, or
21863 zero otherwise. When this function returns true, you can apply
21864 dwarf2_get_attr_constant_value to it.
21865
21866 However, note that for some attributes you must check
21867 attr_form_is_section_offset before using this test. DW_FORM_data4
21868 and DW_FORM_data8 are members of both the constant class, and of
21869 the classes that contain offsets into other debug sections
21870 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21871 that, if an attribute's can be either a constant or one of the
21872 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21873 taken as section offsets, not constants. */
380bca97 21874
3690dd37 21875static int
6e5a29e1 21876attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21877{
21878 switch (attr->form)
21879 {
21880 case DW_FORM_sdata:
21881 case DW_FORM_udata:
21882 case DW_FORM_data1:
21883 case DW_FORM_data2:
21884 case DW_FORM_data4:
21885 case DW_FORM_data8:
21886 return 1;
21887 default:
21888 return 0;
21889 }
21890}
21891
7771576e
SA
21892
21893/* DW_ADDR is always stored already as sect_offset; despite for the forms
21894 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21895
21896static int
6e5a29e1 21897attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21898{
21899 switch (attr->form)
21900 {
21901 case DW_FORM_ref_addr:
21902 case DW_FORM_ref1:
21903 case DW_FORM_ref2:
21904 case DW_FORM_ref4:
21905 case DW_FORM_ref8:
21906 case DW_FORM_ref_udata:
21907 case DW_FORM_GNU_ref_alt:
21908 return 1;
21909 default:
21910 return 0;
21911 }
21912}
21913
3019eac3
DE
21914/* Return the .debug_loc section to use for CU.
21915 For DWO files use .debug_loc.dwo. */
21916
21917static struct dwarf2_section_info *
21918cu_debug_loc_section (struct dwarf2_cu *cu)
21919{
21920 if (cu->dwo_unit)
21921 return &cu->dwo_unit->dwo_file->sections.loc;
21922 return &dwarf2_per_objfile->loc;
21923}
21924
8cf6f0b1
TT
21925/* A helper function that fills in a dwarf2_loclist_baton. */
21926
21927static void
21928fill_in_loclist_baton (struct dwarf2_cu *cu,
21929 struct dwarf2_loclist_baton *baton,
ff39bb5e 21930 const struct attribute *attr)
8cf6f0b1 21931{
3019eac3
DE
21932 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21933
21934 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21935
21936 baton->per_cu = cu->per_cu;
21937 gdb_assert (baton->per_cu);
21938 /* We don't know how long the location list is, but make sure we
21939 don't run off the edge of the section. */
3019eac3
DE
21940 baton->size = section->size - DW_UNSND (attr);
21941 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21942 baton->base_address = cu->base_address;
f664829e 21943 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21944}
21945
4c2df51b 21946static void
ff39bb5e 21947dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21948 struct dwarf2_cu *cu, int is_block)
4c2df51b 21949{
bb5ed363 21950 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21951 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21952
3690dd37 21953 if (attr_form_is_section_offset (attr)
3019eac3 21954 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21955 the section. If so, fall through to the complaint in the
21956 other branch. */
3019eac3 21957 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21958 {
0d53c4c4 21959 struct dwarf2_loclist_baton *baton;
4c2df51b 21960
8d749320 21961 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21962
8cf6f0b1 21963 fill_in_loclist_baton (cu, baton, attr);
be391dca 21964
d00adf39 21965 if (cu->base_known == 0)
0d53c4c4 21966 complaint (&symfile_complaints,
3e43a32a
MS
21967 _("Location list used without "
21968 "specifying the CU base address."));
4c2df51b 21969
f1e6e072
TT
21970 SYMBOL_ACLASS_INDEX (sym) = (is_block
21971 ? dwarf2_loclist_block_index
21972 : dwarf2_loclist_index);
0d53c4c4
DJ
21973 SYMBOL_LOCATION_BATON (sym) = baton;
21974 }
21975 else
21976 {
21977 struct dwarf2_locexpr_baton *baton;
21978
8d749320 21979 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21980 baton->per_cu = cu->per_cu;
21981 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21982
21983 if (attr_form_is_block (attr))
21984 {
21985 /* Note that we're just copying the block's data pointer
21986 here, not the actual data. We're still pointing into the
6502dd73
DJ
21987 info_buffer for SYM's objfile; right now we never release
21988 that buffer, but when we do clean up properly this may
21989 need to change. */
0d53c4c4
DJ
21990 baton->size = DW_BLOCK (attr)->size;
21991 baton->data = DW_BLOCK (attr)->data;
21992 }
21993 else
21994 {
21995 dwarf2_invalid_attrib_class_complaint ("location description",
21996 SYMBOL_NATURAL_NAME (sym));
21997 baton->size = 0;
0d53c4c4 21998 }
6e70227d 21999
f1e6e072
TT
22000 SYMBOL_ACLASS_INDEX (sym) = (is_block
22001 ? dwarf2_locexpr_block_index
22002 : dwarf2_locexpr_index);
0d53c4c4
DJ
22003 SYMBOL_LOCATION_BATON (sym) = baton;
22004 }
4c2df51b 22005}
6502dd73 22006
9aa1f1e3
TT
22007/* Return the OBJFILE associated with the compilation unit CU. If CU
22008 came from a separate debuginfo file, then the master objfile is
22009 returned. */
ae0d2f24
UW
22010
22011struct objfile *
22012dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22013{
9291a0cd 22014 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22015
22016 /* Return the master objfile, so that we can report and look up the
22017 correct file containing this variable. */
22018 if (objfile->separate_debug_objfile_backlink)
22019 objfile = objfile->separate_debug_objfile_backlink;
22020
22021 return objfile;
22022}
22023
96408a79
SA
22024/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22025 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22026 CU_HEADERP first. */
22027
22028static const struct comp_unit_head *
22029per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22030 struct dwarf2_per_cu_data *per_cu)
22031{
d521ce57 22032 const gdb_byte *info_ptr;
96408a79
SA
22033
22034 if (per_cu->cu)
22035 return &per_cu->cu->header;
22036
8a0459fd 22037 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
22038
22039 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 22040 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
22041
22042 return cu_headerp;
22043}
22044
ae0d2f24
UW
22045/* Return the address size given in the compilation unit header for CU. */
22046
98714339 22047int
ae0d2f24
UW
22048dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22049{
96408a79
SA
22050 struct comp_unit_head cu_header_local;
22051 const struct comp_unit_head *cu_headerp;
c471e790 22052
96408a79
SA
22053 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22054
22055 return cu_headerp->addr_size;
ae0d2f24
UW
22056}
22057
9eae7c52
TT
22058/* Return the offset size given in the compilation unit header for CU. */
22059
22060int
22061dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22062{
96408a79
SA
22063 struct comp_unit_head cu_header_local;
22064 const struct comp_unit_head *cu_headerp;
9c6c53f7 22065
96408a79
SA
22066 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22067
22068 return cu_headerp->offset_size;
22069}
22070
22071/* See its dwarf2loc.h declaration. */
22072
22073int
22074dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22075{
22076 struct comp_unit_head cu_header_local;
22077 const struct comp_unit_head *cu_headerp;
22078
22079 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22080
22081 if (cu_headerp->version == 2)
22082 return cu_headerp->addr_size;
22083 else
22084 return cu_headerp->offset_size;
181cebd4
JK
22085}
22086
9aa1f1e3
TT
22087/* Return the text offset of the CU. The returned offset comes from
22088 this CU's objfile. If this objfile came from a separate debuginfo
22089 file, then the offset may be different from the corresponding
22090 offset in the parent objfile. */
22091
22092CORE_ADDR
22093dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22094{
bb3fa9d0 22095 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22096
22097 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22098}
22099
348e048f
DE
22100/* Locate the .debug_info compilation unit from CU's objfile which contains
22101 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22102
22103static struct dwarf2_per_cu_data *
b64f50a1 22104dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22105 unsigned int offset_in_dwz,
ae038cb0
DJ
22106 struct objfile *objfile)
22107{
22108 struct dwarf2_per_cu_data *this_cu;
22109 int low, high;
36586728 22110 const sect_offset *cu_off;
ae038cb0 22111
ae038cb0
DJ
22112 low = 0;
22113 high = dwarf2_per_objfile->n_comp_units - 1;
22114 while (high > low)
22115 {
36586728 22116 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22117 int mid = low + (high - low) / 2;
9a619af0 22118
36586728
TT
22119 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22120 cu_off = &mid_cu->offset;
22121 if (mid_cu->is_dwz > offset_in_dwz
22122 || (mid_cu->is_dwz == offset_in_dwz
22123 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22124 high = mid;
22125 else
22126 low = mid + 1;
22127 }
22128 gdb_assert (low == high);
36586728
TT
22129 this_cu = dwarf2_per_objfile->all_comp_units[low];
22130 cu_off = &this_cu->offset;
22131 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22132 {
36586728 22133 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22134 error (_("Dwarf Error: could not find partial DIE containing "
22135 "offset 0x%lx [in module %s]"),
b64f50a1 22136 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22137
b64f50a1
JK
22138 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22139 <= offset.sect_off);
ae038cb0
DJ
22140 return dwarf2_per_objfile->all_comp_units[low-1];
22141 }
22142 else
22143 {
22144 this_cu = dwarf2_per_objfile->all_comp_units[low];
22145 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22146 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22147 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22148 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22149 return this_cu;
22150 }
22151}
22152
23745b47 22153/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22154
9816fde3 22155static void
23745b47 22156init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22157{
9816fde3 22158 memset (cu, 0, sizeof (*cu));
23745b47
DE
22159 per_cu->cu = cu;
22160 cu->per_cu = per_cu;
22161 cu->objfile = per_cu->objfile;
93311388 22162 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22163}
22164
22165/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22166
22167static void
95554aad
TT
22168prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22169 enum language pretend_language)
9816fde3
JK
22170{
22171 struct attribute *attr;
22172
22173 /* Set the language we're debugging. */
22174 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22175 if (attr)
22176 set_cu_language (DW_UNSND (attr), cu);
22177 else
9cded63f 22178 {
95554aad 22179 cu->language = pretend_language;
9cded63f
TT
22180 cu->language_defn = language_def (cu->language);
22181 }
dee91e82 22182
7d45c7c3 22183 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22184}
22185
ae038cb0
DJ
22186/* Release one cached compilation unit, CU. We unlink it from the tree
22187 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22188 the caller is responsible for that.
22189 NOTE: DATA is a void * because this function is also used as a
22190 cleanup routine. */
ae038cb0
DJ
22191
22192static void
68dc6402 22193free_heap_comp_unit (void *data)
ae038cb0 22194{
9a3c8263 22195 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22196
23745b47
DE
22197 gdb_assert (cu->per_cu != NULL);
22198 cu->per_cu->cu = NULL;
ae038cb0
DJ
22199 cu->per_cu = NULL;
22200
22201 obstack_free (&cu->comp_unit_obstack, NULL);
22202
22203 xfree (cu);
22204}
22205
72bf9492 22206/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22207 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22208 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22209
22210static void
22211free_stack_comp_unit (void *data)
22212{
9a3c8263 22213 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22214
23745b47
DE
22215 gdb_assert (cu->per_cu != NULL);
22216 cu->per_cu->cu = NULL;
22217 cu->per_cu = NULL;
22218
72bf9492
DJ
22219 obstack_free (&cu->comp_unit_obstack, NULL);
22220 cu->partial_dies = NULL;
ae038cb0
DJ
22221}
22222
22223/* Free all cached compilation units. */
22224
22225static void
22226free_cached_comp_units (void *data)
22227{
22228 struct dwarf2_per_cu_data *per_cu, **last_chain;
22229
22230 per_cu = dwarf2_per_objfile->read_in_chain;
22231 last_chain = &dwarf2_per_objfile->read_in_chain;
22232 while (per_cu != NULL)
22233 {
22234 struct dwarf2_per_cu_data *next_cu;
22235
22236 next_cu = per_cu->cu->read_in_chain;
22237
68dc6402 22238 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22239 *last_chain = next_cu;
22240
22241 per_cu = next_cu;
22242 }
22243}
22244
22245/* Increase the age counter on each cached compilation unit, and free
22246 any that are too old. */
22247
22248static void
22249age_cached_comp_units (void)
22250{
22251 struct dwarf2_per_cu_data *per_cu, **last_chain;
22252
22253 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22254 per_cu = dwarf2_per_objfile->read_in_chain;
22255 while (per_cu != NULL)
22256 {
22257 per_cu->cu->last_used ++;
b4f54984 22258 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22259 dwarf2_mark (per_cu->cu);
22260 per_cu = per_cu->cu->read_in_chain;
22261 }
22262
22263 per_cu = dwarf2_per_objfile->read_in_chain;
22264 last_chain = &dwarf2_per_objfile->read_in_chain;
22265 while (per_cu != NULL)
22266 {
22267 struct dwarf2_per_cu_data *next_cu;
22268
22269 next_cu = per_cu->cu->read_in_chain;
22270
22271 if (!per_cu->cu->mark)
22272 {
68dc6402 22273 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22274 *last_chain = next_cu;
22275 }
22276 else
22277 last_chain = &per_cu->cu->read_in_chain;
22278
22279 per_cu = next_cu;
22280 }
22281}
22282
22283/* Remove a single compilation unit from the cache. */
22284
22285static void
dee91e82 22286free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22287{
22288 struct dwarf2_per_cu_data *per_cu, **last_chain;
22289
22290 per_cu = dwarf2_per_objfile->read_in_chain;
22291 last_chain = &dwarf2_per_objfile->read_in_chain;
22292 while (per_cu != NULL)
22293 {
22294 struct dwarf2_per_cu_data *next_cu;
22295
22296 next_cu = per_cu->cu->read_in_chain;
22297
dee91e82 22298 if (per_cu == target_per_cu)
ae038cb0 22299 {
68dc6402 22300 free_heap_comp_unit (per_cu->cu);
dee91e82 22301 per_cu->cu = NULL;
ae038cb0
DJ
22302 *last_chain = next_cu;
22303 break;
22304 }
22305 else
22306 last_chain = &per_cu->cu->read_in_chain;
22307
22308 per_cu = next_cu;
22309 }
22310}
22311
fe3e1990
DJ
22312/* Release all extra memory associated with OBJFILE. */
22313
22314void
22315dwarf2_free_objfile (struct objfile *objfile)
22316{
9a3c8263
SM
22317 dwarf2_per_objfile
22318 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22319 dwarf2_objfile_data_key);
fe3e1990
DJ
22320
22321 if (dwarf2_per_objfile == NULL)
22322 return;
22323
22324 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22325 free_cached_comp_units (NULL);
22326
7b9f3c50
DE
22327 if (dwarf2_per_objfile->quick_file_names_table)
22328 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22329
527f3840
JK
22330 if (dwarf2_per_objfile->line_header_hash)
22331 htab_delete (dwarf2_per_objfile->line_header_hash);
22332
fe3e1990
DJ
22333 /* Everything else should be on the objfile obstack. */
22334}
22335
dee91e82
DE
22336/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22337 We store these in a hash table separate from the DIEs, and preserve them
22338 when the DIEs are flushed out of cache.
22339
22340 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22341 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22342 or the type may come from a DWO file. Furthermore, while it's more logical
22343 to use per_cu->section+offset, with Fission the section with the data is in
22344 the DWO file but we don't know that section at the point we need it.
22345 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22346 because we can enter the lookup routine, get_die_type_at_offset, from
22347 outside this file, and thus won't necessarily have PER_CU->cu.
22348 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22349
dee91e82 22350struct dwarf2_per_cu_offset_and_type
1c379e20 22351{
dee91e82 22352 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22353 sect_offset offset;
1c379e20
DJ
22354 struct type *type;
22355};
22356
dee91e82 22357/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22358
22359static hashval_t
dee91e82 22360per_cu_offset_and_type_hash (const void *item)
1c379e20 22361{
9a3c8263
SM
22362 const struct dwarf2_per_cu_offset_and_type *ofs
22363 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22364
dee91e82 22365 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22366}
22367
dee91e82 22368/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22369
22370static int
dee91e82 22371per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22372{
9a3c8263
SM
22373 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22374 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22375 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22376 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22377
dee91e82
DE
22378 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22379 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22380}
22381
22382/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22383 table if necessary. For convenience, return TYPE.
22384
22385 The DIEs reading must have careful ordering to:
22386 * Not cause infite loops trying to read in DIEs as a prerequisite for
22387 reading current DIE.
22388 * Not trying to dereference contents of still incompletely read in types
22389 while reading in other DIEs.
22390 * Enable referencing still incompletely read in types just by a pointer to
22391 the type without accessing its fields.
22392
22393 Therefore caller should follow these rules:
22394 * Try to fetch any prerequisite types we may need to build this DIE type
22395 before building the type and calling set_die_type.
e71ec853 22396 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22397 possible before fetching more types to complete the current type.
22398 * Make the type as complete as possible before fetching more types. */
1c379e20 22399
f792889a 22400static struct type *
1c379e20
DJ
22401set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22402{
dee91e82 22403 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22404 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22405 struct attribute *attr;
22406 struct dynamic_prop prop;
1c379e20 22407
b4ba55a1
JB
22408 /* For Ada types, make sure that the gnat-specific data is always
22409 initialized (if not already set). There are a few types where
22410 we should not be doing so, because the type-specific area is
22411 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22412 where the type-specific area is used to store the floatformat).
22413 But this is not a problem, because the gnat-specific information
22414 is actually not needed for these types. */
22415 if (need_gnat_info (cu)
22416 && TYPE_CODE (type) != TYPE_CODE_FUNC
22417 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22418 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22419 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22420 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22421 && !HAVE_GNAT_AUX_INFO (type))
22422 INIT_GNAT_SPECIFIC (type);
22423
3f2f83dd
KB
22424 /* Read DW_AT_allocated and set in type. */
22425 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22426 if (attr_form_is_block (attr))
22427 {
22428 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22429 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22430 }
22431 else if (attr != NULL)
22432 {
22433 complaint (&symfile_complaints,
22434 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22435 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22436 die->offset.sect_off);
22437 }
22438
22439 /* Read DW_AT_associated and set in type. */
22440 attr = dwarf2_attr (die, DW_AT_associated, cu);
22441 if (attr_form_is_block (attr))
22442 {
22443 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22444 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22445 }
22446 else if (attr != NULL)
22447 {
22448 complaint (&symfile_complaints,
22449 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22450 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22451 die->offset.sect_off);
22452 }
22453
3cdcd0ce
JB
22454 /* Read DW_AT_data_location and set in type. */
22455 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22456 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22457 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22458
dee91e82 22459 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22460 {
dee91e82
DE
22461 dwarf2_per_objfile->die_type_hash =
22462 htab_create_alloc_ex (127,
22463 per_cu_offset_and_type_hash,
22464 per_cu_offset_and_type_eq,
22465 NULL,
22466 &objfile->objfile_obstack,
22467 hashtab_obstack_allocate,
22468 dummy_obstack_deallocate);
f792889a 22469 }
1c379e20 22470
dee91e82 22471 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22472 ofs.offset = die->offset;
22473 ofs.type = type;
dee91e82
DE
22474 slot = (struct dwarf2_per_cu_offset_and_type **)
22475 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22476 if (*slot)
22477 complaint (&symfile_complaints,
22478 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22479 die->offset.sect_off);
8d749320
SM
22480 *slot = XOBNEW (&objfile->objfile_obstack,
22481 struct dwarf2_per_cu_offset_and_type);
1c379e20 22482 **slot = ofs;
f792889a 22483 return type;
1c379e20
DJ
22484}
22485
02142a6c
DE
22486/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22487 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22488
22489static struct type *
b64f50a1 22490get_die_type_at_offset (sect_offset offset,
673bfd45 22491 struct dwarf2_per_cu_data *per_cu)
1c379e20 22492{
dee91e82 22493 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22494
dee91e82 22495 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22496 return NULL;
1c379e20 22497
dee91e82 22498 ofs.per_cu = per_cu;
673bfd45 22499 ofs.offset = offset;
9a3c8263
SM
22500 slot = ((struct dwarf2_per_cu_offset_and_type *)
22501 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22502 if (slot)
22503 return slot->type;
22504 else
22505 return NULL;
22506}
22507
02142a6c 22508/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22509 or return NULL if DIE does not have a saved type. */
22510
22511static struct type *
22512get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22513{
22514 return get_die_type_at_offset (die->offset, cu->per_cu);
22515}
22516
10b3939b
DJ
22517/* Add a dependence relationship from CU to REF_PER_CU. */
22518
22519static void
22520dwarf2_add_dependence (struct dwarf2_cu *cu,
22521 struct dwarf2_per_cu_data *ref_per_cu)
22522{
22523 void **slot;
22524
22525 if (cu->dependencies == NULL)
22526 cu->dependencies
22527 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22528 NULL, &cu->comp_unit_obstack,
22529 hashtab_obstack_allocate,
22530 dummy_obstack_deallocate);
22531
22532 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22533 if (*slot == NULL)
22534 *slot = ref_per_cu;
22535}
1c379e20 22536
f504f079
DE
22537/* Subroutine of dwarf2_mark to pass to htab_traverse.
22538 Set the mark field in every compilation unit in the
ae038cb0
DJ
22539 cache that we must keep because we are keeping CU. */
22540
10b3939b
DJ
22541static int
22542dwarf2_mark_helper (void **slot, void *data)
22543{
22544 struct dwarf2_per_cu_data *per_cu;
22545
22546 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22547
22548 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22549 reading of the chain. As such dependencies remain valid it is not much
22550 useful to track and undo them during QUIT cleanups. */
22551 if (per_cu->cu == NULL)
22552 return 1;
22553
10b3939b
DJ
22554 if (per_cu->cu->mark)
22555 return 1;
22556 per_cu->cu->mark = 1;
22557
22558 if (per_cu->cu->dependencies != NULL)
22559 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22560
22561 return 1;
22562}
22563
f504f079
DE
22564/* Set the mark field in CU and in every other compilation unit in the
22565 cache that we must keep because we are keeping CU. */
22566
ae038cb0
DJ
22567static void
22568dwarf2_mark (struct dwarf2_cu *cu)
22569{
22570 if (cu->mark)
22571 return;
22572 cu->mark = 1;
10b3939b
DJ
22573 if (cu->dependencies != NULL)
22574 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22575}
22576
22577static void
22578dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22579{
22580 while (per_cu)
22581 {
22582 per_cu->cu->mark = 0;
22583 per_cu = per_cu->cu->read_in_chain;
22584 }
72bf9492
DJ
22585}
22586
72bf9492
DJ
22587/* Trivial hash function for partial_die_info: the hash value of a DIE
22588 is its offset in .debug_info for this objfile. */
22589
22590static hashval_t
22591partial_die_hash (const void *item)
22592{
9a3c8263
SM
22593 const struct partial_die_info *part_die
22594 = (const struct partial_die_info *) item;
9a619af0 22595
b64f50a1 22596 return part_die->offset.sect_off;
72bf9492
DJ
22597}
22598
22599/* Trivial comparison function for partial_die_info structures: two DIEs
22600 are equal if they have the same offset. */
22601
22602static int
22603partial_die_eq (const void *item_lhs, const void *item_rhs)
22604{
9a3c8263
SM
22605 const struct partial_die_info *part_die_lhs
22606 = (const struct partial_die_info *) item_lhs;
22607 const struct partial_die_info *part_die_rhs
22608 = (const struct partial_die_info *) item_rhs;
9a619af0 22609
b64f50a1 22610 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22611}
22612
b4f54984
DE
22613static struct cmd_list_element *set_dwarf_cmdlist;
22614static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22615
22616static void
b4f54984 22617set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22618{
b4f54984 22619 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22620 gdb_stdout);
ae038cb0
DJ
22621}
22622
22623static void
b4f54984 22624show_dwarf_cmd (char *args, int from_tty)
6e70227d 22625{
b4f54984 22626 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22627}
22628
4bf44c1c 22629/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22630
22631static void
c1bd65d0 22632dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22633{
9a3c8263 22634 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22635 int ix;
8b70b953 22636
626f2d1c
TT
22637 /* Make sure we don't accidentally use dwarf2_per_objfile while
22638 cleaning up. */
22639 dwarf2_per_objfile = NULL;
22640
59b0c7c1
JB
22641 for (ix = 0; ix < data->n_comp_units; ++ix)
22642 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22643
59b0c7c1 22644 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22645 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22646 data->all_type_units[ix]->per_cu.imported_symtabs);
22647 xfree (data->all_type_units);
95554aad 22648
8b70b953 22649 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22650
22651 if (data->dwo_files)
22652 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22653 if (data->dwp_file)
22654 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22655
22656 if (data->dwz_file && data->dwz_file->dwz_bfd)
22657 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22658}
22659
22660\f
ae2de4f8 22661/* The "save gdb-index" command. */
9291a0cd
TT
22662
22663/* The contents of the hash table we create when building the string
22664 table. */
22665struct strtab_entry
22666{
22667 offset_type offset;
22668 const char *str;
22669};
22670
559a7a62
JK
22671/* Hash function for a strtab_entry.
22672
22673 Function is used only during write_hash_table so no index format backward
22674 compatibility is needed. */
b89be57b 22675
9291a0cd
TT
22676static hashval_t
22677hash_strtab_entry (const void *e)
22678{
9a3c8263 22679 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22680 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22681}
22682
22683/* Equality function for a strtab_entry. */
b89be57b 22684
9291a0cd
TT
22685static int
22686eq_strtab_entry (const void *a, const void *b)
22687{
9a3c8263
SM
22688 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22689 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22690 return !strcmp (ea->str, eb->str);
22691}
22692
22693/* Create a strtab_entry hash table. */
b89be57b 22694
9291a0cd
TT
22695static htab_t
22696create_strtab (void)
22697{
22698 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22699 xfree, xcalloc, xfree);
22700}
22701
22702/* Add a string to the constant pool. Return the string's offset in
22703 host order. */
b89be57b 22704
9291a0cd
TT
22705static offset_type
22706add_string (htab_t table, struct obstack *cpool, const char *str)
22707{
22708 void **slot;
22709 struct strtab_entry entry;
22710 struct strtab_entry *result;
22711
22712 entry.str = str;
22713 slot = htab_find_slot (table, &entry, INSERT);
22714 if (*slot)
9a3c8263 22715 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22716 else
22717 {
22718 result = XNEW (struct strtab_entry);
22719 result->offset = obstack_object_size (cpool);
22720 result->str = str;
22721 obstack_grow_str0 (cpool, str);
22722 *slot = result;
22723 }
22724 return result->offset;
22725}
22726
22727/* An entry in the symbol table. */
22728struct symtab_index_entry
22729{
22730 /* The name of the symbol. */
22731 const char *name;
22732 /* The offset of the name in the constant pool. */
22733 offset_type index_offset;
22734 /* A sorted vector of the indices of all the CUs that hold an object
22735 of this name. */
22736 VEC (offset_type) *cu_indices;
22737};
22738
22739/* The symbol table. This is a power-of-2-sized hash table. */
22740struct mapped_symtab
22741{
22742 offset_type n_elements;
22743 offset_type size;
22744 struct symtab_index_entry **data;
22745};
22746
22747/* Hash function for a symtab_index_entry. */
b89be57b 22748
9291a0cd
TT
22749static hashval_t
22750hash_symtab_entry (const void *e)
22751{
9a3c8263
SM
22752 const struct symtab_index_entry *entry
22753 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22754 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22755 sizeof (offset_type) * VEC_length (offset_type,
22756 entry->cu_indices),
22757 0);
22758}
22759
22760/* Equality function for a symtab_index_entry. */
b89be57b 22761
9291a0cd
TT
22762static int
22763eq_symtab_entry (const void *a, const void *b)
22764{
9a3c8263
SM
22765 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22766 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22767 int len = VEC_length (offset_type, ea->cu_indices);
22768 if (len != VEC_length (offset_type, eb->cu_indices))
22769 return 0;
22770 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22771 VEC_address (offset_type, eb->cu_indices),
22772 sizeof (offset_type) * len);
22773}
22774
22775/* Destroy a symtab_index_entry. */
b89be57b 22776
9291a0cd
TT
22777static void
22778delete_symtab_entry (void *p)
22779{
9a3c8263 22780 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22781 VEC_free (offset_type, entry->cu_indices);
22782 xfree (entry);
22783}
22784
22785/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22786
9291a0cd 22787static htab_t
3876f04e 22788create_symbol_hash_table (void)
9291a0cd
TT
22789{
22790 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22791 delete_symtab_entry, xcalloc, xfree);
22792}
22793
22794/* Create a new mapped symtab object. */
b89be57b 22795
9291a0cd
TT
22796static struct mapped_symtab *
22797create_mapped_symtab (void)
22798{
22799 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22800 symtab->n_elements = 0;
22801 symtab->size = 1024;
22802 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22803 return symtab;
22804}
22805
22806/* Destroy a mapped_symtab. */
b89be57b 22807
9291a0cd
TT
22808static void
22809cleanup_mapped_symtab (void *p)
22810{
9a3c8263 22811 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22812 /* The contents of the array are freed when the other hash table is
22813 destroyed. */
22814 xfree (symtab->data);
22815 xfree (symtab);
22816}
22817
22818/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22819 the slot.
22820
22821 Function is used only during write_hash_table so no index format backward
22822 compatibility is needed. */
b89be57b 22823
9291a0cd
TT
22824static struct symtab_index_entry **
22825find_slot (struct mapped_symtab *symtab, const char *name)
22826{
559a7a62 22827 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22828
22829 index = hash & (symtab->size - 1);
22830 step = ((hash * 17) & (symtab->size - 1)) | 1;
22831
22832 for (;;)
22833 {
22834 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22835 return &symtab->data[index];
22836 index = (index + step) & (symtab->size - 1);
22837 }
22838}
22839
22840/* Expand SYMTAB's hash table. */
b89be57b 22841
9291a0cd
TT
22842static void
22843hash_expand (struct mapped_symtab *symtab)
22844{
22845 offset_type old_size = symtab->size;
22846 offset_type i;
22847 struct symtab_index_entry **old_entries = symtab->data;
22848
22849 symtab->size *= 2;
22850 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22851
22852 for (i = 0; i < old_size; ++i)
22853 {
22854 if (old_entries[i])
22855 {
22856 struct symtab_index_entry **slot = find_slot (symtab,
22857 old_entries[i]->name);
22858 *slot = old_entries[i];
22859 }
22860 }
22861
22862 xfree (old_entries);
22863}
22864
156942c7
DE
22865/* Add an entry to SYMTAB. NAME is the name of the symbol.
22866 CU_INDEX is the index of the CU in which the symbol appears.
22867 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22868
9291a0cd
TT
22869static void
22870add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22871 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22872 offset_type cu_index)
22873{
22874 struct symtab_index_entry **slot;
156942c7 22875 offset_type cu_index_and_attrs;
9291a0cd
TT
22876
22877 ++symtab->n_elements;
22878 if (4 * symtab->n_elements / 3 >= symtab->size)
22879 hash_expand (symtab);
22880
22881 slot = find_slot (symtab, name);
22882 if (!*slot)
22883 {
22884 *slot = XNEW (struct symtab_index_entry);
22885 (*slot)->name = name;
156942c7 22886 /* index_offset is set later. */
9291a0cd
TT
22887 (*slot)->cu_indices = NULL;
22888 }
156942c7
DE
22889
22890 cu_index_and_attrs = 0;
22891 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22892 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22893 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22894
22895 /* We don't want to record an index value twice as we want to avoid the
22896 duplication.
22897 We process all global symbols and then all static symbols
22898 (which would allow us to avoid the duplication by only having to check
22899 the last entry pushed), but a symbol could have multiple kinds in one CU.
22900 To keep things simple we don't worry about the duplication here and
22901 sort and uniqufy the list after we've processed all symbols. */
22902 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22903}
22904
22905/* qsort helper routine for uniquify_cu_indices. */
22906
22907static int
22908offset_type_compare (const void *ap, const void *bp)
22909{
22910 offset_type a = *(offset_type *) ap;
22911 offset_type b = *(offset_type *) bp;
22912
22913 return (a > b) - (b > a);
22914}
22915
22916/* Sort and remove duplicates of all symbols' cu_indices lists. */
22917
22918static void
22919uniquify_cu_indices (struct mapped_symtab *symtab)
22920{
22921 int i;
22922
22923 for (i = 0; i < symtab->size; ++i)
22924 {
22925 struct symtab_index_entry *entry = symtab->data[i];
22926
22927 if (entry
22928 && entry->cu_indices != NULL)
22929 {
22930 unsigned int next_to_insert, next_to_check;
22931 offset_type last_value;
22932
22933 qsort (VEC_address (offset_type, entry->cu_indices),
22934 VEC_length (offset_type, entry->cu_indices),
22935 sizeof (offset_type), offset_type_compare);
22936
22937 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22938 next_to_insert = 1;
22939 for (next_to_check = 1;
22940 next_to_check < VEC_length (offset_type, entry->cu_indices);
22941 ++next_to_check)
22942 {
22943 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22944 != last_value)
22945 {
22946 last_value = VEC_index (offset_type, entry->cu_indices,
22947 next_to_check);
22948 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22949 last_value);
22950 ++next_to_insert;
22951 }
22952 }
22953 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22954 }
22955 }
9291a0cd
TT
22956}
22957
22958/* Add a vector of indices to the constant pool. */
b89be57b 22959
9291a0cd 22960static offset_type
3876f04e 22961add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22962 struct symtab_index_entry *entry)
22963{
22964 void **slot;
22965
3876f04e 22966 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22967 if (!*slot)
22968 {
22969 offset_type len = VEC_length (offset_type, entry->cu_indices);
22970 offset_type val = MAYBE_SWAP (len);
22971 offset_type iter;
22972 int i;
22973
22974 *slot = entry;
22975 entry->index_offset = obstack_object_size (cpool);
22976
22977 obstack_grow (cpool, &val, sizeof (val));
22978 for (i = 0;
22979 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22980 ++i)
22981 {
22982 val = MAYBE_SWAP (iter);
22983 obstack_grow (cpool, &val, sizeof (val));
22984 }
22985 }
22986 else
22987 {
9a3c8263
SM
22988 struct symtab_index_entry *old_entry
22989 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22990 entry->index_offset = old_entry->index_offset;
22991 entry = old_entry;
22992 }
22993 return entry->index_offset;
22994}
22995
22996/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22997 constant pool entries going into the obstack CPOOL. */
b89be57b 22998
9291a0cd
TT
22999static void
23000write_hash_table (struct mapped_symtab *symtab,
23001 struct obstack *output, struct obstack *cpool)
23002{
23003 offset_type i;
3876f04e 23004 htab_t symbol_hash_table;
9291a0cd
TT
23005 htab_t str_table;
23006
3876f04e 23007 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 23008 str_table = create_strtab ();
3876f04e 23009
9291a0cd
TT
23010 /* We add all the index vectors to the constant pool first, to
23011 ensure alignment is ok. */
23012 for (i = 0; i < symtab->size; ++i)
23013 {
23014 if (symtab->data[i])
3876f04e 23015 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
23016 }
23017
23018 /* Now write out the hash table. */
23019 for (i = 0; i < symtab->size; ++i)
23020 {
23021 offset_type str_off, vec_off;
23022
23023 if (symtab->data[i])
23024 {
23025 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23026 vec_off = symtab->data[i]->index_offset;
23027 }
23028 else
23029 {
23030 /* While 0 is a valid constant pool index, it is not valid
23031 to have 0 for both offsets. */
23032 str_off = 0;
23033 vec_off = 0;
23034 }
23035
23036 str_off = MAYBE_SWAP (str_off);
23037 vec_off = MAYBE_SWAP (vec_off);
23038
23039 obstack_grow (output, &str_off, sizeof (str_off));
23040 obstack_grow (output, &vec_off, sizeof (vec_off));
23041 }
23042
23043 htab_delete (str_table);
3876f04e 23044 htab_delete (symbol_hash_table);
9291a0cd
TT
23045}
23046
0a5429f6
DE
23047/* Struct to map psymtab to CU index in the index file. */
23048struct psymtab_cu_index_map
23049{
23050 struct partial_symtab *psymtab;
23051 unsigned int cu_index;
23052};
23053
23054static hashval_t
23055hash_psymtab_cu_index (const void *item)
23056{
9a3c8263
SM
23057 const struct psymtab_cu_index_map *map
23058 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
23059
23060 return htab_hash_pointer (map->psymtab);
23061}
23062
23063static int
23064eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23065{
9a3c8263
SM
23066 const struct psymtab_cu_index_map *lhs
23067 = (const struct psymtab_cu_index_map *) item_lhs;
23068 const struct psymtab_cu_index_map *rhs
23069 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23070
23071 return lhs->psymtab == rhs->psymtab;
23072}
23073
23074/* Helper struct for building the address table. */
23075struct addrmap_index_data
23076{
23077 struct objfile *objfile;
23078 struct obstack *addr_obstack;
23079 htab_t cu_index_htab;
23080
23081 /* Non-zero if the previous_* fields are valid.
23082 We can't write an entry until we see the next entry (since it is only then
23083 that we know the end of the entry). */
23084 int previous_valid;
23085 /* Index of the CU in the table of all CUs in the index file. */
23086 unsigned int previous_cu_index;
0963b4bd 23087 /* Start address of the CU. */
0a5429f6
DE
23088 CORE_ADDR previous_cu_start;
23089};
23090
23091/* Write an address entry to OBSTACK. */
b89be57b 23092
9291a0cd 23093static void
0a5429f6
DE
23094add_address_entry (struct objfile *objfile, struct obstack *obstack,
23095 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23096{
0a5429f6 23097 offset_type cu_index_to_write;
948f8e3d 23098 gdb_byte addr[8];
9291a0cd
TT
23099 CORE_ADDR baseaddr;
23100
23101 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23102
0a5429f6
DE
23103 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23104 obstack_grow (obstack, addr, 8);
23105 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23106 obstack_grow (obstack, addr, 8);
23107 cu_index_to_write = MAYBE_SWAP (cu_index);
23108 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23109}
23110
23111/* Worker function for traversing an addrmap to build the address table. */
23112
23113static int
23114add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23115{
9a3c8263
SM
23116 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23117 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23118
23119 if (data->previous_valid)
23120 add_address_entry (data->objfile, data->addr_obstack,
23121 data->previous_cu_start, start_addr,
23122 data->previous_cu_index);
23123
23124 data->previous_cu_start = start_addr;
23125 if (pst != NULL)
23126 {
23127 struct psymtab_cu_index_map find_map, *map;
23128 find_map.psymtab = pst;
9a3c8263
SM
23129 map = ((struct psymtab_cu_index_map *)
23130 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23131 gdb_assert (map != NULL);
23132 data->previous_cu_index = map->cu_index;
23133 data->previous_valid = 1;
23134 }
23135 else
23136 data->previous_valid = 0;
23137
23138 return 0;
23139}
23140
23141/* Write OBJFILE's address map to OBSTACK.
23142 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23143 in the index file. */
23144
23145static void
23146write_address_map (struct objfile *objfile, struct obstack *obstack,
23147 htab_t cu_index_htab)
23148{
23149 struct addrmap_index_data addrmap_index_data;
23150
23151 /* When writing the address table, we have to cope with the fact that
23152 the addrmap iterator only provides the start of a region; we have to
23153 wait until the next invocation to get the start of the next region. */
23154
23155 addrmap_index_data.objfile = objfile;
23156 addrmap_index_data.addr_obstack = obstack;
23157 addrmap_index_data.cu_index_htab = cu_index_htab;
23158 addrmap_index_data.previous_valid = 0;
23159
23160 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23161 &addrmap_index_data);
23162
23163 /* It's highly unlikely the last entry (end address = 0xff...ff)
23164 is valid, but we should still handle it.
23165 The end address is recorded as the start of the next region, but that
23166 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23167 anyway. */
23168 if (addrmap_index_data.previous_valid)
23169 add_address_entry (objfile, obstack,
23170 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23171 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23172}
23173
156942c7
DE
23174/* Return the symbol kind of PSYM. */
23175
23176static gdb_index_symbol_kind
23177symbol_kind (struct partial_symbol *psym)
23178{
23179 domain_enum domain = PSYMBOL_DOMAIN (psym);
23180 enum address_class aclass = PSYMBOL_CLASS (psym);
23181
23182 switch (domain)
23183 {
23184 case VAR_DOMAIN:
23185 switch (aclass)
23186 {
23187 case LOC_BLOCK:
23188 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23189 case LOC_TYPEDEF:
23190 return GDB_INDEX_SYMBOL_KIND_TYPE;
23191 case LOC_COMPUTED:
23192 case LOC_CONST_BYTES:
23193 case LOC_OPTIMIZED_OUT:
23194 case LOC_STATIC:
23195 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23196 case LOC_CONST:
23197 /* Note: It's currently impossible to recognize psyms as enum values
23198 short of reading the type info. For now punt. */
23199 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23200 default:
23201 /* There are other LOC_FOO values that one might want to classify
23202 as variables, but dwarf2read.c doesn't currently use them. */
23203 return GDB_INDEX_SYMBOL_KIND_OTHER;
23204 }
23205 case STRUCT_DOMAIN:
23206 return GDB_INDEX_SYMBOL_KIND_TYPE;
23207 default:
23208 return GDB_INDEX_SYMBOL_KIND_OTHER;
23209 }
23210}
23211
9291a0cd 23212/* Add a list of partial symbols to SYMTAB. */
b89be57b 23213
9291a0cd
TT
23214static void
23215write_psymbols (struct mapped_symtab *symtab,
987d643c 23216 htab_t psyms_seen,
9291a0cd
TT
23217 struct partial_symbol **psymp,
23218 int count,
987d643c
TT
23219 offset_type cu_index,
23220 int is_static)
9291a0cd
TT
23221{
23222 for (; count-- > 0; ++psymp)
23223 {
156942c7
DE
23224 struct partial_symbol *psym = *psymp;
23225 void **slot;
987d643c 23226
156942c7 23227 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23228 error (_("Ada is not currently supported by the index"));
987d643c 23229
987d643c 23230 /* Only add a given psymbol once. */
156942c7 23231 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23232 if (!*slot)
23233 {
156942c7
DE
23234 gdb_index_symbol_kind kind = symbol_kind (psym);
23235
23236 *slot = psym;
23237 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23238 is_static, kind, cu_index);
987d643c 23239 }
9291a0cd
TT
23240 }
23241}
23242
23243/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23244 exception if there is an error. */
b89be57b 23245
9291a0cd
TT
23246static void
23247write_obstack (FILE *file, struct obstack *obstack)
23248{
23249 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23250 file)
23251 != obstack_object_size (obstack))
23252 error (_("couldn't data write to file"));
23253}
23254
23255/* Unlink a file if the argument is not NULL. */
b89be57b 23256
9291a0cd
TT
23257static void
23258unlink_if_set (void *p)
23259{
9a3c8263 23260 char **filename = (char **) p;
9291a0cd
TT
23261 if (*filename)
23262 unlink (*filename);
23263}
23264
1fd400ff
TT
23265/* A helper struct used when iterating over debug_types. */
23266struct signatured_type_index_data
23267{
23268 struct objfile *objfile;
23269 struct mapped_symtab *symtab;
23270 struct obstack *types_list;
987d643c 23271 htab_t psyms_seen;
1fd400ff
TT
23272 int cu_index;
23273};
23274
23275/* A helper function that writes a single signatured_type to an
23276 obstack. */
b89be57b 23277
1fd400ff
TT
23278static int
23279write_one_signatured_type (void **slot, void *d)
23280{
9a3c8263
SM
23281 struct signatured_type_index_data *info
23282 = (struct signatured_type_index_data *) d;
1fd400ff 23283 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23284 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23285 gdb_byte val[8];
23286
23287 write_psymbols (info->symtab,
987d643c 23288 info->psyms_seen,
3e43a32a
MS
23289 info->objfile->global_psymbols.list
23290 + psymtab->globals_offset,
987d643c
TT
23291 psymtab->n_global_syms, info->cu_index,
23292 0);
1fd400ff 23293 write_psymbols (info->symtab,
987d643c 23294 info->psyms_seen,
3e43a32a
MS
23295 info->objfile->static_psymbols.list
23296 + psymtab->statics_offset,
987d643c
TT
23297 psymtab->n_static_syms, info->cu_index,
23298 1);
1fd400ff 23299
b64f50a1
JK
23300 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23301 entry->per_cu.offset.sect_off);
1fd400ff 23302 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23303 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23304 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23305 obstack_grow (info->types_list, val, 8);
23306 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23307 obstack_grow (info->types_list, val, 8);
23308
23309 ++info->cu_index;
23310
23311 return 1;
23312}
23313
95554aad
TT
23314/* Recurse into all "included" dependencies and write their symbols as
23315 if they appeared in this psymtab. */
23316
23317static void
23318recursively_write_psymbols (struct objfile *objfile,
23319 struct partial_symtab *psymtab,
23320 struct mapped_symtab *symtab,
23321 htab_t psyms_seen,
23322 offset_type cu_index)
23323{
23324 int i;
23325
23326 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23327 if (psymtab->dependencies[i]->user != NULL)
23328 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23329 symtab, psyms_seen, cu_index);
23330
23331 write_psymbols (symtab,
23332 psyms_seen,
23333 objfile->global_psymbols.list + psymtab->globals_offset,
23334 psymtab->n_global_syms, cu_index,
23335 0);
23336 write_psymbols (symtab,
23337 psyms_seen,
23338 objfile->static_psymbols.list + psymtab->statics_offset,
23339 psymtab->n_static_syms, cu_index,
23340 1);
23341}
23342
9291a0cd 23343/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23344
9291a0cd
TT
23345static void
23346write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23347{
23348 struct cleanup *cleanup;
23349 char *filename, *cleanup_filename;
1fd400ff
TT
23350 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23351 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23352 int i;
23353 FILE *out_file;
23354 struct mapped_symtab *symtab;
23355 offset_type val, size_of_contents, total_len;
23356 struct stat st;
987d643c 23357 htab_t psyms_seen;
0a5429f6
DE
23358 htab_t cu_index_htab;
23359 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23360
9291a0cd
TT
23361 if (dwarf2_per_objfile->using_index)
23362 error (_("Cannot use an index to create the index"));
23363
8b70b953
TT
23364 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23365 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23366
260b681b
DE
23367 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23368 return;
23369
4262abfb
JK
23370 if (stat (objfile_name (objfile), &st) < 0)
23371 perror_with_name (objfile_name (objfile));
9291a0cd 23372
4262abfb 23373 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23374 INDEX_SUFFIX, (char *) NULL);
23375 cleanup = make_cleanup (xfree, filename);
23376
614c279d 23377 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23378 if (!out_file)
23379 error (_("Can't open `%s' for writing"), filename);
23380
23381 cleanup_filename = filename;
23382 make_cleanup (unlink_if_set, &cleanup_filename);
23383
23384 symtab = create_mapped_symtab ();
23385 make_cleanup (cleanup_mapped_symtab, symtab);
23386
23387 obstack_init (&addr_obstack);
23388 make_cleanup_obstack_free (&addr_obstack);
23389
23390 obstack_init (&cu_list);
23391 make_cleanup_obstack_free (&cu_list);
23392
1fd400ff
TT
23393 obstack_init (&types_cu_list);
23394 make_cleanup_obstack_free (&types_cu_list);
23395
987d643c
TT
23396 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23397 NULL, xcalloc, xfree);
96408a79 23398 make_cleanup_htab_delete (psyms_seen);
987d643c 23399
0a5429f6
DE
23400 /* While we're scanning CU's create a table that maps a psymtab pointer
23401 (which is what addrmap records) to its index (which is what is recorded
23402 in the index file). This will later be needed to write the address
23403 table. */
23404 cu_index_htab = htab_create_alloc (100,
23405 hash_psymtab_cu_index,
23406 eq_psymtab_cu_index,
23407 NULL, xcalloc, xfree);
96408a79 23408 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23409 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23410 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23411 make_cleanup (xfree, psymtab_cu_index_map);
23412
23413 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23414 work here. Also, the debug_types entries do not appear in
23415 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23416 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23417 {
3e43a32a
MS
23418 struct dwarf2_per_cu_data *per_cu
23419 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23420 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23421 gdb_byte val[8];
0a5429f6
DE
23422 struct psymtab_cu_index_map *map;
23423 void **slot;
9291a0cd 23424
92fac807
JK
23425 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23426 It may be referenced from a local scope but in such case it does not
23427 need to be present in .gdb_index. */
23428 if (psymtab == NULL)
23429 continue;
23430
95554aad
TT
23431 if (psymtab->user == NULL)
23432 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23433
0a5429f6
DE
23434 map = &psymtab_cu_index_map[i];
23435 map->psymtab = psymtab;
23436 map->cu_index = i;
23437 slot = htab_find_slot (cu_index_htab, map, INSERT);
23438 gdb_assert (slot != NULL);
23439 gdb_assert (*slot == NULL);
23440 *slot = map;
9291a0cd 23441
b64f50a1
JK
23442 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23443 per_cu->offset.sect_off);
9291a0cd 23444 obstack_grow (&cu_list, val, 8);
e254ef6a 23445 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23446 obstack_grow (&cu_list, val, 8);
23447 }
23448
0a5429f6
DE
23449 /* Dump the address map. */
23450 write_address_map (objfile, &addr_obstack, cu_index_htab);
23451
1fd400ff
TT
23452 /* Write out the .debug_type entries, if any. */
23453 if (dwarf2_per_objfile->signatured_types)
23454 {
23455 struct signatured_type_index_data sig_data;
23456
23457 sig_data.objfile = objfile;
23458 sig_data.symtab = symtab;
23459 sig_data.types_list = &types_cu_list;
987d643c 23460 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23461 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23462 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23463 write_one_signatured_type, &sig_data);
23464 }
23465
156942c7
DE
23466 /* Now that we've processed all symbols we can shrink their cu_indices
23467 lists. */
23468 uniquify_cu_indices (symtab);
23469
9291a0cd
TT
23470 obstack_init (&constant_pool);
23471 make_cleanup_obstack_free (&constant_pool);
23472 obstack_init (&symtab_obstack);
23473 make_cleanup_obstack_free (&symtab_obstack);
23474 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23475
23476 obstack_init (&contents);
23477 make_cleanup_obstack_free (&contents);
1fd400ff 23478 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23479 total_len = size_of_contents;
23480
23481 /* The version number. */
796a7ff8 23482 val = MAYBE_SWAP (8);
9291a0cd
TT
23483 obstack_grow (&contents, &val, sizeof (val));
23484
23485 /* The offset of the CU list from the start of the file. */
23486 val = MAYBE_SWAP (total_len);
23487 obstack_grow (&contents, &val, sizeof (val));
23488 total_len += obstack_object_size (&cu_list);
23489
1fd400ff
TT
23490 /* The offset of the types CU list from the start of the file. */
23491 val = MAYBE_SWAP (total_len);
23492 obstack_grow (&contents, &val, sizeof (val));
23493 total_len += obstack_object_size (&types_cu_list);
23494
9291a0cd
TT
23495 /* The offset of the address table from the start of the file. */
23496 val = MAYBE_SWAP (total_len);
23497 obstack_grow (&contents, &val, sizeof (val));
23498 total_len += obstack_object_size (&addr_obstack);
23499
23500 /* The offset of the symbol table from the start of the file. */
23501 val = MAYBE_SWAP (total_len);
23502 obstack_grow (&contents, &val, sizeof (val));
23503 total_len += obstack_object_size (&symtab_obstack);
23504
23505 /* The offset of the constant pool from the start of the file. */
23506 val = MAYBE_SWAP (total_len);
23507 obstack_grow (&contents, &val, sizeof (val));
23508 total_len += obstack_object_size (&constant_pool);
23509
23510 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23511
23512 write_obstack (out_file, &contents);
23513 write_obstack (out_file, &cu_list);
1fd400ff 23514 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23515 write_obstack (out_file, &addr_obstack);
23516 write_obstack (out_file, &symtab_obstack);
23517 write_obstack (out_file, &constant_pool);
23518
23519 fclose (out_file);
23520
23521 /* We want to keep the file, so we set cleanup_filename to NULL
23522 here. See unlink_if_set. */
23523 cleanup_filename = NULL;
23524
23525 do_cleanups (cleanup);
23526}
23527
90476074
TT
23528/* Implementation of the `save gdb-index' command.
23529
23530 Note that the file format used by this command is documented in the
23531 GDB manual. Any changes here must be documented there. */
11570e71 23532
9291a0cd
TT
23533static void
23534save_gdb_index_command (char *arg, int from_tty)
23535{
23536 struct objfile *objfile;
23537
23538 if (!arg || !*arg)
96d19272 23539 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23540
23541 ALL_OBJFILES (objfile)
23542 {
23543 struct stat st;
23544
23545 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23546 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23547 continue;
23548
9a3c8263
SM
23549 dwarf2_per_objfile
23550 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23551 dwarf2_objfile_data_key);
9291a0cd
TT
23552 if (dwarf2_per_objfile)
23553 {
9291a0cd 23554
492d29ea 23555 TRY
9291a0cd
TT
23556 {
23557 write_psymtabs_to_index (objfile, arg);
23558 }
492d29ea
PA
23559 CATCH (except, RETURN_MASK_ERROR)
23560 {
23561 exception_fprintf (gdb_stderr, except,
23562 _("Error while writing index for `%s': "),
23563 objfile_name (objfile));
23564 }
23565 END_CATCH
9291a0cd
TT
23566 }
23567 }
dce234bc
PP
23568}
23569
9291a0cd
TT
23570\f
23571
b4f54984 23572int dwarf_always_disassemble;
9eae7c52
TT
23573
23574static void
b4f54984
DE
23575show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23576 struct cmd_list_element *c, const char *value)
9eae7c52 23577{
3e43a32a
MS
23578 fprintf_filtered (file,
23579 _("Whether to always disassemble "
23580 "DWARF expressions is %s.\n"),
9eae7c52
TT
23581 value);
23582}
23583
900e11f9
JK
23584static void
23585show_check_physname (struct ui_file *file, int from_tty,
23586 struct cmd_list_element *c, const char *value)
23587{
23588 fprintf_filtered (file,
23589 _("Whether to check \"physname\" is %s.\n"),
23590 value);
23591}
23592
6502dd73
DJ
23593void _initialize_dwarf2_read (void);
23594
23595void
23596_initialize_dwarf2_read (void)
23597{
96d19272
JK
23598 struct cmd_list_element *c;
23599
dce234bc 23600 dwarf2_objfile_data_key
c1bd65d0 23601 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23602
b4f54984
DE
23603 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23604Set DWARF specific variables.\n\
23605Configure DWARF variables such as the cache size"),
23606 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23607 0/*allow-unknown*/, &maintenance_set_cmdlist);
23608
b4f54984
DE
23609 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23610Show DWARF specific variables\n\
23611Show DWARF variables such as the cache size"),
23612 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23613 0/*allow-unknown*/, &maintenance_show_cmdlist);
23614
23615 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23616 &dwarf_max_cache_age, _("\
23617Set the upper bound on the age of cached DWARF compilation units."), _("\
23618Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23619A higher limit means that cached compilation units will be stored\n\
23620in memory longer, and more total memory will be used. Zero disables\n\
23621caching, which can slow down startup."),
2c5b56ce 23622 NULL,
b4f54984
DE
23623 show_dwarf_max_cache_age,
23624 &set_dwarf_cmdlist,
23625 &show_dwarf_cmdlist);
d97bc12b 23626
9eae7c52 23627 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23628 &dwarf_always_disassemble, _("\
9eae7c52
TT
23629Set whether `info address' always disassembles DWARF expressions."), _("\
23630Show whether `info address' always disassembles DWARF expressions."), _("\
23631When enabled, DWARF expressions are always printed in an assembly-like\n\
23632syntax. When disabled, expressions will be printed in a more\n\
23633conversational style, when possible."),
23634 NULL,
b4f54984
DE
23635 show_dwarf_always_disassemble,
23636 &set_dwarf_cmdlist,
23637 &show_dwarf_cmdlist);
23638
23639 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23640Set debugging of the DWARF reader."), _("\
23641Show debugging of the DWARF reader."), _("\
23642When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23643reading and symtab expansion. A value of 1 (one) provides basic\n\
23644information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23645 NULL,
23646 NULL,
23647 &setdebuglist, &showdebuglist);
23648
b4f54984
DE
23649 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23650Set debugging of the DWARF DIE reader."), _("\
23651Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23652When enabled (non-zero), DIEs are dumped after they are read in.\n\
23653The value is the maximum depth to print."),
ccce17b0
YQ
23654 NULL,
23655 NULL,
23656 &setdebuglist, &showdebuglist);
9291a0cd 23657
27e0867f
DE
23658 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23659Set debugging of the dwarf line reader."), _("\
23660Show debugging of the dwarf line reader."), _("\
23661When enabled (non-zero), line number entries are dumped as they are read in.\n\
23662A value of 1 (one) provides basic information.\n\
23663A value greater than 1 provides more verbose information."),
23664 NULL,
23665 NULL,
23666 &setdebuglist, &showdebuglist);
23667
900e11f9
JK
23668 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23669Set cross-checking of \"physname\" code against demangler."), _("\
23670Show cross-checking of \"physname\" code against demangler."), _("\
23671When enabled, GDB's internal \"physname\" code is checked against\n\
23672the demangler."),
23673 NULL, show_check_physname,
23674 &setdebuglist, &showdebuglist);
23675
e615022a
DE
23676 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23677 no_class, &use_deprecated_index_sections, _("\
23678Set whether to use deprecated gdb_index sections."), _("\
23679Show whether to use deprecated gdb_index sections."), _("\
23680When enabled, deprecated .gdb_index sections are used anyway.\n\
23681Normally they are ignored either because of a missing feature or\n\
23682performance issue.\n\
23683Warning: This option must be enabled before gdb reads the file."),
23684 NULL,
23685 NULL,
23686 &setlist, &showlist);
23687
96d19272 23688 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23689 _("\
fc1a9d6e 23690Save a gdb-index file.\n\
11570e71 23691Usage: save gdb-index DIRECTORY"),
96d19272
JK
23692 &save_cmdlist);
23693 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23694
23695 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23696 &dwarf2_locexpr_funcs);
23697 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23698 &dwarf2_loclist_funcs);
23699
23700 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23701 &dwarf2_block_frame_base_locexpr_funcs);
23702 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23703 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23704}
This page took 5.5084 seconds and 4 git commands to generate.